THE GRAPHICAL LOGIC OF C. S. PEIRCE

Zeman, Joseph Jay

ProQ/uei Dissertations and Theses; 1964; ProQuest Dissertations & Theses Full Text
pg. nfa

T 1 O 7 1 7 THE UNIVERSITY OF CHICAGO

DATF Jul_v 13 > . 19.611-

Zeman, J. Jay

Author Birth Date

_Thz_(‘:m.phm]_hgic_nf C., S, Peirece

Title of Dissertation

Philesephy Ph.D., : Sentqmbs;:,_liéb___
“Déparmment or School Degree Convocaton

Permission is herewith granted to the University of Chicago to make copies of the above ditle, at its
discretion, upon the request of individuals or insdtutions and at their expense.

5-/O—é»/ \ \CW\z{#W\/

Date filmed Number of pages of writ

Extensive Quotation or Further Reproduction of This Material by Persons or
Agencies Other than the University of Chicago May Not Be Made without the Express
Permission of the Writer.

SHorT TrTLE:

IRREGULAR NUMBERING [_| OVERSIZED SHEETS []

By cash O
P
e ; By thesis deposit []

DATE BILLED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



THE UNIVERSITY OF CHICAGO

THE GRAPHICAL LOGIC OF C. S. PEIRCE

A DISSERTATION SUBMITTED TO
THE FACULTY OF THE DIVISION OF THE HUMANITTES
IN CANDIDACY FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

DEPARTMENT OF PHILOSOPHEY

BY
J. JAY ZEMAN

CHICAGO, ILLINOIS
SEPTEMBER, 196l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



PREFACE

Virtually all of the material from the writings of Peirce

upon which we have drawn in this paper i1s contained in The Collected

Papers of C, S. Peirce.l In referring to these volumes we have

adopted the method of reference in general use among Peirce
scholars. Thus, "I .567" will mean paragraph 567 of Volume IV of
the Collected Papers.

The principal aim of this paper is the study of Peirce's
graphs as logics, employing in the study modern logical methods.
The notaﬁions and abbreviations we employ are accepted as standard
by contemporary logicians; we shall mention specifically that
we employ "iff" as an abbreviation for "If and only if." This
ébbreviation, although of falrly recent vintage, may now be
considered standard in logical and mathematical literature;
Also, we often use single quotes in a technical manner, not to
be confused with their use in indicating a quotation within a
quotatibn. The complex consisting of a sign enclosed by sinéle
quotes in this usage is the name of the sign; note that all
sentence puhctuation, including periods and commas, will be
placed outside the quotes in this case. This usage of single
quotes is well established in the literature of logic. Another

sign we shall mention is " 'e This symbol will be used to

1C. S. Peirce, The Collected Papers of C. S. Peirce, ed.
Charles Hartshorne and Paul Weiss (Cambridge: Harvard, 1960),
Volss I-VI.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



indicate the conclusion of the proof of a lemms, metatheorem,
or corollary in this paper.

We have numbered in this psper the definitions, certain
"rules of formation," and the lemmas, metatheorems, and corol-
laries. The numbering of definitions is consecutive throughout
the paper; a 'D' followed immediately by an Arabic numeral indi-
cates a definition., The numbering of rules of formation follows
the numbering of sections throughout this paper; the number of a
rule of formatién will be the number of the section within which
it occurs in Arabic numerals followed immediately by the number
of the rule within that section in lower-case Roman numerals.,
Thus '1.21ii' would be the number of the second rule of formation
in Section 1.Z21.

Lemmas, metatheorems, and corollaries are numbered con-
secutively in the chapter in which they occur, using a "decimal”
notation, The number '2,09' would number the ninth lemma, meta-
theorem, or corollary of chapter ii, Whether a number indicates
a metatheorem, a lemma, or a corollary is indicated by prefixing
to it either an asterisk, '%#', the word 'lemma', or the word
'corollary', respectively,

My very special thanks are due to Professor A. N. Prior
who originally put me on the track of the graphs and steered me
through my first months of research on them. To Professors
Dudley Shapere, Sylvain Brombefger, Lars Svenonius, and Manley
Thompson I am indebted; their criticism and suggestions were of
great 2id in the preparation of this papef. And finally, I
thankfully acknowledge the heckling and help (with emphasis on

iii
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the latter) of my wife, Bobbie; without the heckling my work
would have been much less interesting, and without the help,
perhaps impossible.,

Jdz
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INTRODUCTION

A casual thumbing through Volumes IIT and IV of the

Collected Papers of C, S. Peirce will turn up a fair number of

kinds of diagrams, each of which has some claim to the title
"Logical Diagram" or "Logical Greph." 1In this paper I shall
examine in detail one family of these diagrams--or better, of
systems of these diagrams--to which the name "Graphical Logic"
may fairly be applied. These systems are the systems of "Exis-

tential Graphs," and the principal material on them is located

in Volume IV of the Collected Papers, in paragraphs 372 to 58l.

Peirce developed these systems about the turn of the
century--Murray Murphey gives the year as 1896.l Peirce called

the graphs his "chef d'oeuvre,"2 but for the chef d'oeuvre of one

of the great logicians, they have received scant attention till
now, The present work aims at a thorough study of the existential
graphs, using the methods of contemporary logic., I shall attempt
to determine what the existential graphs are as systems, and how
certain of these systems may be fruitfully extended in the light

of modern formal logic,

1Murray G. Murphey, The Development of Peirce's Philosophy
(Cambridge: Harvard, 1961), De. 357

2Peirce thus subtitles what is Book 2 of Volume IV of The
Collected Papers. At this point we shall note again what we men-
tioned in the Preface, that citations from this collection shall
generally be listed in the text of the paper without footnote,
employing the decimal notation normelly employed in Peirce schol-
arship; thus ".327," for example, will mesan paragraph 327 of
Volume IV of the Collected Papers.

1l
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Although the primary aim of this paper is a study of
the graphs as formal systems, I shall also devote some space in
this introduction to a brief investigation of the graphs as part
of Peirce's philosophy; I shall here present my views on why
Peirce considered the existential grephs to be his most important
work,

By 1885 Peirce had developed his "algebra of logic" into
a fairly rich system or group of systems (3.359 ff.). He had

definite ideas as to the raison d'etre of a system of symbolic

loglc; the purpose of such a system is "simply and solely the
investigation of the theory of logic, and not at all the con-
struction of a calculus to aid the drawing of inferences" (L.373).
Sorme comment on Peirce's use of the word calculus is in order
here. 'it is fairly clear that he was thinking of a calculus as a
"computing aid" of some kind, possibly a system to be used as
logarithms, for instance, frequently are. Peirce saw "calculi"
as systems which would reduce to a minimum the number of steps

in a deduction from premises to a conclusion., A logic, on the
other hand, would be a system which would break down the steps

in the deduction to the smallest possible units and thereby
exhibit the deductive process involved. For Peirce, then, a
calculus is a tool for turning out answers to specific problems,
while a logic is a tool for investigating the deductive process
i1tself, (We have taken time to distinguish between Peirce!s use
of these terms since "logic" is often taken to mean the same as
"calculus" in contemporary literature on logic.)

Referring to the investigation of the deductive process,
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Peirce states, "This, then, is the purpose for which my logical
algebras were designed" (L.429). But he adds, "In my opinion,
they do not sufficiently fulfill" this purpose (L.lt29).

"This purpose,” Peirce felt, was better fulfilled by the
systems of existential graphs than by the algebra of logic. We
shall examine in some detail the reasons why Peirce felt this way;
First, however, we shall see what the existential graphs are. We
shell familiagrize ourselves with the symbols of these systems and
with the rules that govern these systems; this will be a helpful--
Oor even necessary--prologue both to our examination of the graphs
as Peirce saw them and to our rigorous formal study of the graphs

as logical systems, which will commence in chapter 1i.

Symbols of the Existential Graphs

Before we consider the graphs as part of Peirce's phi--
losophy or enter into a rigorous formal study of these systems,
we shall introduce ourselves to the terminology and deductive
method of the graphs, and we shall note some strands which con-
nect the various systems.

First of all, Peirce defines "graph" as "the proposi-
tional expression in the System of Existential Graphs of any
possible state of the universe" (l1.359)e. The existential graphs
are then intended by Peirce to be systems of "propositions" or
"assertions.”

Peirce presents the graphs as three general systems
called, respectively, "alpha," hbeta," and "gamma." This divi-

sion corresponds fairly well to his division of the "algebra of
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logic" into "non-relative logic," "first-intentional logic of
relations," and "second-intentional logic of relations"™ (3.359 ff.).
The first and possibly most important sign of the graphical sys-
tems--one common to all three of them--is the "sheet of assertion"
(for which we shall often use the abbreviation "SA")., SA is a
surface upon which the graphs are to be "scribed" according to the
"rules of transformation" of the systems. SA itself, even before
any oI these rules has been applied to it, is to be considered a
graph {I1.396). Also, according to Peirce, the SA is to be taken
as "representing the universe cf discourse, and as asserting what-
ever is taken for granted . . . to be true of that universe"
(lLe396). The SA in its "initial state" (before any of the rules
we shall subsequently state has been applied to it), then, may

be congidered to represent a kind of "postulate set" to be oper-
ated upon by appropriate rules., The content of the "postulates"
will depend upon what we wish to "reason about™ with the graphs.
We might imagine a sheet of assertion, for example, being set

up initially to "deductively reason about™ one of those cute
little problems we find in the Lewis Carroll logic books, In

this case we would consider the special "extralogical” premisés

or postualates needed for the problem at hand to be part of the
initial SA. For the purpose of this paper, that of examining

the graphs as formal systems, we shall find that very little in
the way of such postulates or premises is needed. For alpha,

as an example, all we will need to begin with is a completely
blank SA.

Among the signs which may, under appropriaste circumstances,
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5

be scribed upon SA is one common to all three general graph sys-
tems., In some places (as in [.399) Peirce calls this sign a

"eut™; in others (as in L.)35) he refers to it as a "sep"--from

The Alpha Cut

the Latin saepes, "fence.," The "alpha cut," which we will ordi=--
narily refer to simply as the "cut," except when there is danger
of confusion, is defined by Peirce as "a self-returning linear
separation (naturally represented by a finely drawn or peculiarly
colored line) which severs all that it encloses from the sheet

of assertion on which is stands itself, or from any other area on
which it stands itself" (L .399). The cut "cuts off" what it en-
closes from the area on which it stands. If a graph is an asser-
tion, a sentence, then the enclosure of that graph by a cut is,
in effect, an assertion that the enclosed graph is not asserted.
The cut, then, may be considered a negation sign, inasmuch as it
cuts something off from the asserted universe of discourse repre-
sented by SA., We shall find, indeed, that the alpha cut is com-
pletely analogous to the ordinary negation sign of the proposi-
tional calculus., And if two or more graphs occur in the same
area, with no cuts between .them, they may be considered to be

asserted simultaneously in that area; such "unseparated occur-

rence” of graphs is analogous to PC conjunction.

Peirce mentiops in passing other kinds of cuts than the
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6
one referred to gbove. The one of these other cuts to which he
gives a significant amount of attention is one belonging to the

gamma part of the graphs; it may be called the "broken cut." As

¢ \

4 '

LY ’I
The Broken Cut The "Scroll"--Two Versions

the name implies, it consists of a broken rather than a continuous
line (L .516) ahd may be interpreted as asserting "possibly not®
of its contents; a system containing the broken cut among its
signs may therefore be considered a modal system.

In l4.436 and L.L37 we find Peirce referring to what we
might want to consider a supe»fluous sign, and referring to it
in language which indicates that he thought of it as a primitive
kind of sign. The sign is the "scroll,"” which consists of two
cuts, one enclosing the other, whether they are connected by a
node or not. Although the scroll is merely two cuts, and although
we shall seldom refer to it by name, we shall find that the no-
tion of the scroll-~that is, of two cuts acting as & unit--does
pley a fairly important part at certain phases of our detailed
discussion of alpha in chapter 1i.

Next we shall consider signs characteristic of each of
the systems. The alpha system might be considered g set of
graphical manipulations of "unanalysed" statements; that is, the
"minimal unit™ of alpha is a graph representing a complete,
closed sentence. Alpha does not contain the gpparatus for ex-

pressing or analysing the components of its minimel or stomic
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7
sentences; in this it is much like contemporary propositional
calculi. We may, in fact, consider alpha to contain, among its
signs, "propositional variables" directly analogous to those of
the ordinary PC; Peirce himself employs letters of the Roman
alphabet in his alpha graphs much as we use propositional vari-
ables in the FC.

We remarked earlier that comparisons could be drawn be-
tween Peirce's division of the existential graphs and division of
the algebra of logic. In such a comparison, the beta graphs
would be juxtaposed to the "first-intentional logic of relatives."
In the one case as in the other, we enter the field of "analysed

atomic sentences,"

sentences which contain a predicate and signs
representing individuals for which the predicate holds iff the
sentence is true. Peirce's favorite term for such a predicate

is "rhema," or "rheme" (3.420 ff., 4.438 f£f,)s The "unanalysed
expression" of a rheme in the systems of existential graphs--
specifically, in beta--is called by Peirce a "spot" (lL.403, L.lhl).
Some explication may be in order. A rheme is "a blank form of
proposition produced by « « . erasures [the spaces left by which]
can be filled, each with a proper name, to make & proposition

again” (L.438). In other words, " is good," and " gives

to " are exasmples of rhemes, the first being monadic

(or unary) and the other triadic (or ternary). We see from l.L38
that Peirce recognizes a O-adic rheme, a rheme which, since it
contains no blanks, 1s already a sentence; the unanalysed ex-
pression in the system of graphs of such a rheme might be con-

sidered to be one of the "atomic grephs" of alpha.
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The "spot," then, as the unanalysed expression of a rheme

with one or more blanks, would be a kind of predicate symbol,

analogous to symbols with that function in the predicate calculus
of today.

Peirce specifies that "on the periphery of every spot, a
certain place shall be appropriated to each blank of the rheme,
and such a place shall be called a 'hook! of the spobt" (L.l.03).

He wished the graphs to be graphic; the hooks are to be conceived
of as connecting the predicate in question to the signs represent-

ing the individuals of which it is true. Strangely enough, however,

- Adofs,” or "lines of identity”

-E;-

Binary Spot with "Dots" Atteched to its Hooks

we shall not in practice see these hooks; in any graph properly
so called, all hooks are already filled, connected to the appro-
priate signs for individuals, A spot with empty hooks would not
even be analogous to an open sentence in the predicate calculus;
it would rather be like the non-well-formed-formula which an
n-ary predicates followed by fewer than n individual varigbles
would bee.

When we come to the method of representation of indi-
viduals in beta, we come to a point of marked difference between

the notation of beta and that of ordinary predicate calculi, In
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9
an ordinary predicate calculus, individusals are referred to by
individual variables, which variables are capsble of standing as
arguments of predicates of the system. In beta, however,

A heavy dot attached at the hook of a spot shall be under-
stood as filling the correspondlng blank of the rheme of the
spot with an indefinite sign of an individual, so that when
there is a dot attached to every hook, the result shall be

a proposition (L.LOL).
end further (we state paragraphs directly from CP):

L.JO5 Every heavily marked point, whether isolated, the
extremity of a heavy line, or at the furcation of a heavy
line, shall denote a single individual, without itself indi-
cating what individual it is.

L.JO6 A heavily marked line without any sort of interrup-
tion . « o shall, under the name of a line of identity, be a
graph, subject to all the conventions relating to graphs, and
asserting precisely the 1dent1ty of the individuals denoted
by its extremities,

Instead of representing individuals by means of letters
of the alphabet, beta uses "dots," and it asserts the identity of
what is represented by one dot and what is represented by another
by the simple device of allowing each to stand as the terminal of

a heavy line drawn on the SA.
S———35'

TUnary Spots Connected by "Line of Identity"

In practice we shall find that much of Peirce's complex
terminology for these signs may be avoided; instead of speaking
of "dots," "ligatures," and like terminological complexities
which Peirce seemed to delight in using, we shall find that we
can get by with the notion of line of identity alone--for which

see chapter ii.
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Peirce also provides a subsidiary means of representing
individuals in beta. I say "subsidiary," because--in L.}60, for
example--he advocates it as an alternate notation whose purpose
is to avoid complex tangles of lines of identity. This notation
is the "selective." A selective is a sign, normally a letter of
the Roman alphabet, which actually resembles in appearance and
behavior the (bound) individual veriable of the ordinary predi-
cate calculus. Bubt Pelrce felt that the use of the selective
cen be avcoided (as indeed it can--see L1162}, and should be
avoided (Lol173, L.561ln). As we shall see in the final section
of this introduction, Peirce's preference for the line of iden-
tity to the exclusion of the selective and his reasons for this
preference offer us important clues as to why he considered the

exlistential grsphs to be so important.

S x

A Graph with a Line of Identity, and the same
Graph with the Line of Identity Replaced by Selectives
In L1106 Peirce informs us that "a point upon which
three lines of identity abut is a graph expressing the relation
of teridentity." As Peirce indicates in L. });5, this sign--the

branching of a line of identity--gives us the apparatus for

identifying any number of points on the sheet. One more bit of
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A Branching

Pelrcean terminology may be mentioned at this point; a "network"
of lines of ldentity, &ll of which are connected to each other
and which may cross cuts and contain branchings is called by
Peirce a "ligature" (l.lt07). The ligature, or network of lines of
identity, tles together as representing the same individual all
the points along its length, but is not necessarily itself g
graph. We might note here that Peirce was loath to say flatly
that a line of ldentity is capable of crossing a cut (l.401,
L,106), and so had to develop elaborate conventions to account
for what happens when a line of identity sppears to cross a cut,
We shall find in chapter ii, however, that we may so set things
up that we may think of lines of identity as crossing cuts and
so avold some of the terminology and conventions which Peirce
feels it is necessary to use.

At this point we come to another distinctive feature of
the beta graphs. Peirce formulated the system not only so that
it contained signs for predicates and for individusls, but so
that it would be able to guantify over the individuals represented
as well, This is accomplished quite simply:

Any line of identity whose outermost part is evenly enclosed
[that is, by an even number of or by no cuts] refers to same-
%gigg, and any one whose outermost part is oddly enclosed

that is, by an odd number of cuts] refers to anything there
might be (L4.L158).
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The type of quantification applying to a given line of identity,
then, is determined by examining the line and noting how many
cuts enclose the least-enclosed part of the line., The very in-
teresting feature here is that no explicit sign for gquantifica-
tion--that is, no quantifier--is required to "get quantification"
in beta.

Although this by no means has been an exhaustive catalogue
of the signs of the existential graphs, it will suffice as an

introduction to the notation, Mention will be made of other signs

at appropriate points in the text,

Transformations in the Existential Graphs

We are now in possession of a considerable number of
signs of the graphs., The next step is to see how those signs
work. As we remarked earlier, the starting point in alpha for
our purposes is simply a blank SA. Casting about for an inter-
pretation of a blank SA, we might take it as an exemplification
of "He who says nothing does not lie"; or, since a blank SA is
to be considered a graph, and so is to be taken as asserting
something, as being a proposition, we might interpret it as as-
serting-~in Fregean fashion--"the True" (or perhaps we might
prefer to say "denoting" here rather than "asserting”--from this
point of view, the blank SA would be a "pure denotation" of the
True, with no connotation at all),

For the purposes of beta, one additional starting point
or "axiomatic graph" is to be considered. Peirce states thst

since a Dot [the dot may here be considered a limiting case
‘of the "freestanding" line of identity ] merely asserts that

some individual object exists . . . it may be inserted in any
Area (L4.567).
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This amounts to an axiomatic assertion of the "dot"--or of the -
simple line of identity with no branchings and no connections,
situated entirely in one area. The "assertion of the dot"
amounts to a declaration of the non-emptyness of the beta uni-
verse of discourse. We thus see that the "axioms" required for
alpha and beta as we shall study them are of the very simplest
and most elementary kind,

For gamma gs its signs have been presented, Peirce offers
no additional axiomatic graphs. We shall find in our detailed
examination of parts of gamma in chapter iii, however, that some
interesting systems may be evolved in the notation of gamme,
through the use of certain such graphs.

We shall now list the "rules of transformation"t for the
graphs essentially as we shall employ them in this vaper; 1if the
systems of graphs are considered systems of logic, these rules
of transformation are, in effect, the rules of inference of the
logics involved. These rules will enable us to produce "proofs"
of "theorems" within these logics, taking the first step of any
proof as the appropriate "axiomatic graph" mentioned sbove. The
principal references in Peirce for these rules are &.h92, L .505,
and L;.516, Note that we shall employ a decimal system in number-

ing these rules, using 0 as the number to the left of the decimal

1at this point we will mention a "categorical rule of
transformation" which is listed by Peirce, but which we will find
no occasion to use in our work with the graphs. This is the rule
which reads "Any graph well-understood to be true ma2y be scribed
unenclosed" (44.507). This rule may be considered a rule for the
introduction of "extralogical® Eremises or hypotheses onto the
sheet of assertion in order to "reason about™ special problems,
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point; the purpose of this is to make the numbering of these
rules consistent with the numbering of the lemmas, metatheorens,
and corollaries of the following chapters. Following are the
rules for alphs: |

0.01 In any area of the sheet enclosed by an odd number of
cuts, any graph may be scribed. (this is the rule of
"insertion in odd"),

0.02 1In any area of the sheet enclosed by an even number of,
or by no cuts, any graph may be erased. (2ule of
"erasure in even").

0.03 If a graph X occurs in any area of the sheet, X may
be iterated (that is, "written again") in that same
area Oor in any area enclosed by at least all the cuts
by which the original occurrence of X was enclosed.
(fule of "iteration").

0.0 This rule is the exact converse of 0,03--it is the rule
of "deiteration.”

0,05 Any graph occurring in any area of the sheet may have
scribed about it two cuts; there is to be no graph in
the annular space tetween the cuts thus inserted.

(Pule of "biclosure").

0.06 .This rule is the exact converse of 0e05-=it is the
rule of "negative biclosure.® Note that two cuts re-
moved by this rule are to have nothing in the annular
space between them,

We shall now turn to the rules of transformation for the
beta system. These are rules designed specifically to handle
transformations involving lines of identity; it will be noted
that they closely parallel the alpha rules given above, and
might, in fact, be considered clauses extending the alpha rules
to deal with lines of identity. We will here remark, by the way,
that following our statement of the rules for beta and for gammsg,
we shall present some illustrations of the applications of these
rules, These, then, are the rules which in addition to 0,01-0,06

above are needed for the beta system:
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0.07 In any area enclosed by an odd number of cuts, two
"loose ends" of lines of identity may be joined.
(rule of "joining in odd").

0.08 In any area enclosed by an even number of, or by no
cuts, any line of identity may be broken by erasing a
portion of it. (Rule of "breaking in even')e.

0,09 This is the rule of "beta iteration” and has three
clauses:

(a) From any line of i1dentity at any point a branch
mey be extended.

(b) Any loose end of a line of identity may be ex-
tended inwards through a "nest of cuts," crossing
each cut just once.

(c) Any graph X may be iterated as in 0.03, with the
added provision that if X includes a point on a
line of identity, which point is outside all
cuts in X, that poilnt in the original occurrence
of X mgy be connected by line of identity to the
corresponding point in the new occurrence.l

0.10 This rule is the exact converse of 0,09; it has three
clauses corresponding to those of 0,09, and it may be
called the rule of "beta deiteration.”

IThe yules of beta iteration and deiteration are some-
what difficult to state in a compact and perspicuous manner, as
Peirce's own statements of them testify. Let us give this in-
tuitive picture of how to do it., Given a graph Y containing a
subgraph X which we wish to iterate, first copy the whole of Y
on a separate sheet of paper. Now take a pair of scissors and
cut the subgraph X out of the new copy of ¥, In cutting X out
of Y, we are not allowed to cut across any cuts, but we may cut
through lines of identilty which bind X to other parts of the
whole graph Y, Also, the portion of Y thus cut out must be all
one piece of paper. Take the piece of paper. .thus cut out and
glue it onto the original graph Y, either in the same area within
which the original subgraph X occurs, or in an area enclosed by
at least all the cuts enclosing that original occurrence of X.
Now if there are any points of lines of identity standing out-
side all cuts in X, any such point in the original occurrence of
X mgy be connected to the corresponding point in the new occur-
rence of X by "geodesic line of identity" (this term will be de-
fined in chepter 1i), Or, if a "geodesic line of identity" con-
nected to a point belonging to the original X but outside all
cuts in the original X already goes from that point to within
the area in which the new X has been "pasted,” then the corres-
sponding point in the new X may be connected directly to the al-
ready existing line of identity. But the line of identity con-
nections are optional,
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0.11 Any graph may be enclosed by two cuts as in 0.05, with
the added provision that lines of identity may pass
from entirely outside the outer to entirely inside the
inner cubt; all they are allowed is "free direct passage"
through the annular space between the cuts. Aside
from such lines of identity--which may not even branch
within the annular space~-no sign of any kind is per-
mitted between the two cuts. This rule may be called
"beta biclosure."

0.12 This rule is the exact converse of 0,11l; it may be
called "negative beta biclosure." It permits the re-
moval of two cuts which might have been inserted by
0.11. -

We shall state now the rules which Peirce offers for
transformations involving the "broken cut" of gamma. We shall
comment at length on these rules in chapter iii of this paper.
These rules are drawn from l.516:

0e¢l3 In a broken cut already on SA any graph may be inserted,

0.1y A broken cut in an area enclosed by an odd number of
cuts (which may be either alpha or broken cuts) may
be transformed to an alpha cut (by "f£illing in" the
breaks in it).

0el5 An alpha cut in an area enclosed by an even number of
or by no cuts may be transformed to a broken cut (by
erasing parts of it).

We shall now present some simple examples of transforma-
tions pemitted by the above rules. Note that the "right arrow"--
-3 --indicates permission to transform "in one direction only."
The "double arrow"-- === --indicates "intertransformability."
The examples then are:

0,01 Insertion in odd:

® — &
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0,02 Erasure in even:

x———r

0.03 and 0.0} Iteration and deiteration:

In same aresa:

X -—p X X

“Crossing cuts®,

0,05 and 0,06 Biclosure:

DGR

007 Joining in odd:

-*@

0.08 Breaking in even:

X

0,09 and 0,10 Beta iteration and deiteration:

(2) Extension of branch from line of identity:
X—Y <> x—t-Y

(b) Inward extension of line of identity end:
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(¢c) Iteration or deiteration retaining connections:

In same grea:

X“ B X"—"—x

s
"Crossing cuts":
X
-

Oell and 0,12 Beta biclosure:

x—y = &

O.l; 0ddly enclosed broken cut to alpha cub:

D — & O

0.15 Evenly enclosed alpha cut to broken cut:

f\‘
® — &
\_/
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T have considered it unnecessary to offer an exauple of
O0e¢l3. It should be clear by now that the alpha cut is very
close in its function to the negation sign of the Classical
Propositional Calculus--the rules of biclosure are the most ob-"
vious indication of this, Again, the simultaneous occurrence of
a number of graphs may be interpreted as the conjunction of the
sentences represented by those graphs. The spots of the beta
system behave much like the predicates of the ordinary first-
order calculus; the line of identity, however, is a sign with
a very complex usage in beta, as should now be evident. It be-
haves sometimes like a variable, sometimes like a sentence, and
sometimes like & quantifier, We shall investigate, in detail
and formally, the alpha and beta systems in chepters i and ii
respectively., In chapter iii we shall enter into a study of
certain systems which may be classified as gamma systems., But
before we do this, before we begin to make use of the "raw
material” we have presented up to this point, we shall take a
quick look at the existential graphs as they stand in the phi--.

losophy of Peirce.

The Continuity Interpretation

The systems of existential graphs are, as we shall ses,
systems of logic, and systems of logic in a very well-defined
sense. Pelrce had developed 1ogics along more ordinary lines
before he began his work on the graphs; nevertheless, he clearly
preferred the graphs to his algebras of logic. As we quoted
Peirce a bit earlier:

[The development of a thorough understanding of mathematical
reasoning] is the purpose for which my logical algebras were
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designed, but which, in my opinion, they do not sufficiently
fulfill, The present system of existential graphs is far
more perfect in that respect (L.L29).

But why on earth did he believe that? What is there in
the notation of the graphs that, for Peirce, makes them superior
to the ordinary logical algebras? It should be understood, first
of all, that "mathematical reasoning" covers considerable ground
for Peirce. His definition of mathematics was "the science which
draws necessary conclusions" (L.229). "Mathematical reasoning,"
then, in the broadest sense, is deductive reasoning, and Feirce's
comments in 4,428 indicate to us that he did not wish to restrict
it to a narrower notion in this case. And we find Peirce stating
that "mathematics meddles with every other science without excep-
tion. There is no science whatever to which is not attached an
application of mathematics" (1.245). For Peirce, this is vir-
tually equivalent to saying that mathematical or deductive reason-

ing is an integral part of reglity itself. The development of a

thorough understanding of mathematical reasoning is a first ahd
absolutely essential step towards the development of a thorough
understanding of reglity. The algebras of logic and the graphs
were to foster such an understanding by presenting an analysis
of the deductive process, "by breaking up inferences into the
greatest possible number of steps, and exhibiting them under the
most general categories possible" (L.373).

And for the analysis of the deductive process, Peirce
preferred the systems of existential graphs to the algebras of
logic. We can get a clue to the reasons for this preference by

investigating a passage in which he discusses certain of the
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signs of the graphs. We will recall that we earlier mentioned
a sign of the beta system called the "selective." The selective,
as we noted, is used in many places where a line of identity
might be used; it is, however, much like the ordinary bound
variable of the algebras of logic--rather than being a line,
it is simply a letter of the alphabet. Péirce criticises the
selective as a sign of the graphical systems; his criticism
of the selective may be applied directly to the variables of the
algebras of logic to give a strong indicetion of why he preferred
the graphs to those algebras. "The first respect,” he states,
"$n which Selectives are not as analytical as they might be, and
therefore ought to be, is in representing identity" (L.561n).
Peirce remarks here that the wey that two occurrences of a given
selective (and the same would be true for two occurrences of a
varisble in an algebra) represent the same object is by "a
special convention of interpretation.” Peirce feels that given
two occurrences of such a selective--or variable--although we
know by convention that they are to be considered to represent
the seme object, "There is here no analysis of identity" (L.561n).
Peirée wants a sign which will not merely be conventionally un-
derstood as signifying identity, but which will "wear its meaning
on its sleeve," so to speak; which will offer in its very repre-
sentation of identity an analysis of identity. And "the line
of identity which may be substituted for the selectives very
explicitly represents Identity to belong to the genus Continuity
and to the species Linear Continuity" (4.561n). Identity is a

continuity, and so too is an unbroken line. The self-identical
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individual is far better represented, Peirce felt, by a continuous
line than by a batch of discrete occurrences of an individual
variagble, provided only a formalism can be found which gives the
line the powers that the representative of an individual should
have. In Peirce's opinion the beta formalism does the trick,
and so the beta line of identity is far superior to the selective
or the ordinary varigble to represent the self-identical indi-
vidual. And Peirce goes even further in telling us about this
representing function of the graphs: "The continuity of [the
sheet of assertion] being two dimensional . . . should represent
an external continuity, and especially a continuity of experiential
appearance” (L.561n). And the sheet of assertion,
in representing the field of attention, represents the gen-
eral object of that attention, the Universe of Discourse.
This being the case, the continuity of the [sheet of asser-
tion] in those places where, nothing being scribed, no par-
ticular attention is paid, is the most appropriate icon
possible of the continuity of the Universe of Discourse where
it only receives general attention as that Universe (lL.561ln).
We see from these remarks that Peirce felt that the graphs had a
certain natural appropriateness about them for the task which he

set them to do, and we see further that he felt that th@ continuity

present in certain basic symbols of the graphs was the factor
that made the graphs superior to the logical algebras for that
task of representation and analysis.

Now, the alpha and beta sheets of assertion represent
simply a universe of existent individuals, and the different
parts of the sheet represent facts or true assertions made
concerning that universe. At the cuts we pass into other
areas, areas of conceived propositions which are not re-
alized (4.512).

The cuts are discontinuities on the sheet of assertion, and they
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are nmeant by Peirce to correspond to "discontinuities of the
universe of discourse.,” The non-existent, the unrealized, is in
2 definite sense discontinuous with the existent and realized
insofar as it is not part of the universe of existent individuals.
In general, a cut as a break in the continuity of any area indi-
cates a certain bregk in continuity between what is inside and
what is outside of it., The contents of a cut on the alpha or
beta sheet of assertion represents that which is not part of the
fcontinuity of experiential appearance.”
In attempting to get across the idea of how the graphs
represent, Peirce states:
You may regard the ordinary blank sheet of assertion as a
film upon which there is, as it were, an undeveloped photo-
graph of the facts in the universe. I do not mean a literal
picture, because its elements are propositions, and the
meaning of a proposition is abstract and altogether of a
different nature from a picture. But I ask you to imagine
all the true propositions to have been formulated; and since
facts blend into one another, it can only be in a continuum
that we cen conceive this to be done. . . . Of this continuum
the blank sheet of assertion may be imagined to be a photo-
graph (L.512). '
Peirce then states, "So far I have called the sheet a photo-
graph, so as not to overwhelm you with all the difficulties of
the conception at once. But let us rather call it a map"
(Loe513)e And just what is 2 map? Well, "a map of the simplest
kind represents all the points of one surface by corresponding
points of another surface in such a manner as to preserve the
continuity unbroken, however great may be the distortion"
(4L.513)e It is hardly necessary to add that if an existential
greph is a map, it is not the "simplest kind" of map. Points

in a given grasph are intended to be correlated with what may
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loosely be called "festures of the universe of discourse repre--
sented by the sheet of assertion upon which that graph is
scribed," rather than with "points of another surface.” If
" is red” and "____ is round" are beta spots, they are to be
correlated with the properties of being red and being round; it
is quite clear that in the actual existing universe we do not
have "redness" and "roundness" floating about as "things in
themselves,” without individuals that are red or round. This
Jibes with Peirce's refusal to call a spot whose hooks are eupty
a graph (L.439). But let the two spots mentioned be connected
by a line of identity, and we do have a graph, the graph which
states, "There is something both red and round." The continuity
of the line of identity between spots expresses, for Peirce, the
continulty which is the self-identity of the thing which is both
red and round, It is thus that the graphs are to be considered
"maps"; they are not pictures of facts--for who ever saw a fact
that looked like an existential graph--but they are supposed to
indicate continuity where there is continuity, and to represent
discontinuity where there is discontinuity. A break in a line of
identity is one such representation of discontinuity; the cut,
as we have remarked, is another, of another kind.

All this emphasis on continuity is by no means accidental,
The Peirce of the existential graphs, especially of the passages

from which we have been gquobting, is as well the Peirce of synechisn.l

1Synechism is e metaphysical doctrine developed by Peirce
in his later years and in which he set grest store. An "instant
characterization™ of synechism might be that it is a doctrine
asserting "the reality of continua and the continuity of realiby,."
But this is, of course, rather oversimplified., For further ref-
erence on this topic, see Murphey,; m. 379 ff.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

It is unquestionable that "continuity" is the key word of
Peirce's synechism-~all that is real is, insofar as it is real,
continuous in some wey or other. One passage, perhaps, will
emphasize Peirce's rather firm commitment to the notion of con-
tinuity as a heuristic tool:

Upon the assault of the enemy, when pressed for the explana-

tion of any fact, I lock myself up in my castle of impregnable

logic and squirt_out melted continuity upon the heads of my

besiegers below.d

And cleosely connected to synechism is what Peirce some-

times called "synectics," but which is better known by the name
of "topology." Murphey states, in fact, that

the model upon which Peirce based his metaphysics quite ob-

viously is the topology of Listing. And this is in fact

what one would expect, for his work in mathematics had led

him to the conclusion that topology is the mathematics of

pure continua., If there is any formal system which ought

to provide the key to the synechistic world, it is synectics

or.topology.2 ‘
There is no doubt whatsoever that Peirce in his later years was
fascinated by topology, even though the only topology he knew
was that of Listing, which was a rather low octane brand. It is
also clear that he thought topology to be the mathemestics of
pure continua, and that continuity has a key place in his phi=-
losophye. The only point in doubt is just how Peirce planned to
correlate the "synechistic world" with Listing's topology. For
it is far from evident how we get from "continuity is the master
key, and topclogy is the mathematics of pure continua®™ to "top-

ology is the master key." Murphey does not feel that Peirce was

_ 1Ibid., Pe L406; Murphey here quotes from an unpublished
paper of Peirco.

2Ibid., p. 405,

S
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gble to meke this particular jump successfully, and I would tend
to sgree with Murphey. But the interesting thing from our point
of view here is how Peirce attempted that jump. I submit that
Peirce tried it in a manner which, apparently, did not strike
Murphey. It was through the existential graphs, I suggest, that
Peirce tried to see the way from "the mathematics of pure con-
tinua" to "the synechistic world"--those same existential graphs
that Murphey dismisses as merely one of the factors in Peirce's
"lack of philosophical productivity" at the close of the nine-
teenth century.l

Peirce's "Algebra of Logic" owes its name and a large
part of its form to what, in the later nineteenth century, ve-
came the algebra of real numbers. Although there are similari-
ties between the algebra of logic and the algebra of real numbers,
theré is no doubt that they are different branches of mathematics.
It seems to me that the relation between the existential graphs
and Listing's topology is a very similar kind of thing. Peirce
never indicates that the graphs are topology, even though it is
very difficult to look at his presentations of them without
thinking of topology. The graphs, in fact, rather than being a
topological system, were to help us reason sbout topology and
solve its problems, much as they were to help us solve the problems
of mathematical reasoning in general (L.428), But much és the
algebra of logic was fashioned after the image of the algebra of
real numbers, I believe that the existential graphs were fashioned

1bid., p. 387.
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after the image of Listing's topology. As what became the algebra
of real numbers offered the algebra of logic a "pattern" into
which its signs should fall and an indication of how its signs
should behave, Listing's topology offered the existential graphs
a pattern into which their signs should fall and an indication of
the way their signs should behave., Where the systems of 3,359ff.,
for example, constitute an "algebra of logic," the existential
graphs constitute a "topology of logic.”™ And it is the features
that they share with topology that render the graphs superior as
a logical system, in the Peircean sense, to the algebra of logic.

Thus, while topology was, for Peirce, the mathematics
of pure continua, the existential graphs were the apparatus for
representing symbolically the world of continua, the world of
reality. Listing's topology of itself offered little more help
to Peirce's project of synechism than did real number algebra,
of itself, It was necessary for Peirce to develop a logic of
continua, a system which would permit a mapping of the continua
of reality into itself., This, I feel, is the reason why Peirce
in his later years put so much work into the grephs. And this
too, I am sure, is the explanation for that puzzling "subtitle"
which Peirce attached to the systems of grephs--"My chef d!'oeuvre.”

The study of logical systems for their own sake as formal, math-
emgtical systems was far from the chief interesﬁ of Ce Se Peirce;
hence it is unlikely that he would consider the graphs his major
work merely because they are interesting formal systems. His
fascination with and regard for the graphs goes beyond that; he

sew for them, I am sure, a key place in his synechism. More
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than just a hint of this is given in a passage with which Peirce
concludes a discussion of "An Improvement on the Gamma Graphs"
(L.573fF):
We here reach a point at which novel considerations gboutb
the constitution of knowledge and therefore of the consti-
tution of nature burst in upon the mind with cataclysmal
riultitude and resistlessness. It is that synthesis of tychism
and of pragmatism for which I long ago proposed the name,
Synechism, to which one thus returns; but this time with
stronger reasons than ever before (lL.58l).

But so far we have explicitly mentioned only the alphsg
and beta graphs in their "continuity interpretation."” The alpha-
beta sheet of assertion was to be considered as representing a
very specific universe of discourse, the "universe of actual
existent fact™ (L.51;). Synechism, however, was concerned with
far more than this., Any "account of reality," in fact, which

stopped with the actually existing universe and said nothing of

the realm of possibility must, from the synechistic point of

view, be radically incomplete. If we are correct about the
place of the graphs in the thought of Peirce, then, we would
expect him to have made provision for "the worlds of the possible
in his presentation of the graphs. He did just this; gemma was
to be the system which did for reality as a whole what he felt
that alpha and beta did for the "universe of actual existent
fact.," We have seen that the alpha and beta sheet of assertion,
a two-dimensioned "space," a surface, was to represent this
"universe of actual existent fact" although strictly speaking,
at least three dimensions are required for a complete represen-
tation of beta, since there are instances when lines of identity

are to be consldered as crossing each other without joining;
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this offers no difficulties for what follows, for we can replace
"surface" with "three-dimensional space" and "three-dimensional
space” with "four-dimensional space" with no difficulty at all.
Peirce, taking the alpha or beta SA as a surface, remarks:
e ¢« o in order to represent to our minds the relation between
the universe of possibllities and the universe of actual
existent facts, if we are going to think of the latter as a
surface, we must think of the former as three-dimensional
space in which any surface would represent all the facts
that might exist in one existential universe (L.51l).
Gamma, then, is--quite literally--to add another dimension to
the existential graphs. For gamma was to be the system which
supplied the formalism necessary for the symbolic expression of
the relationships between different universes of discourse,
Alpha and beta are to offer an analysis of the "deductive
(mathematical) reasoning" of the continua of the actually exist-
ing universe, but gamma was supposed to present an analysis of
the deductive process existing between and relating the possible
universes of discourse, including the actual existent universe
of the alpha-beta sheet. The importance for Peirce of gammg
must not be understated. The universe of "actual existent fact"
does not exist in a vacuum, nor did it spring full-panoplied from
the head of Zeus. What is today an "éxistent fact" may yesterday
have been a "not-yet-realized fact,” a possibility; today it is
in the realm of alpha and beta, while yesterday it was not--
what is the connection between that fact as of yesterday and as
of today? The synechistlc explanation must be that at both in-
stances that fact must be part of a continuum which--unlike the

continua represented in alpha and beta--transcends individual

universes of discourses. Bubt what is that continuum, and how are
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we to represent continua of that sort? This is the problem which
gamme was to solve when it had been "Srought to perfection.”
But how are we to go gbout the representations required of gamma?
Peirce suggests that in order to handle the extra dimension re-
guired of gamma, we take as our gemma "sheet of assertion" not a
single sheet, but "a book of separate sheets, tacked together at
points, if not otherwise connected" (lL.512). e are asked to
think of the cut as being literally a cutting of the paper, which
extends "down to one or another depth into the paper, so that
the overturning of the .piece cut out may expose one stratum or
another, these being distinguished by their tints; the different
tints representing different kinds of possibility" (lLL.578). The

operation of "scribing"

a cut now consists of two steps, cutting
through the paper and turning over the portion we have cut out,
That which is written on the reverse side of any of the sheets

is to be considered denied In the universe of discourse which thet
sheet represents (lL.574). When the area on the reverse of one of
the sheets is "turned up" by the scribing of a cut, the denial of
any graphs scribed on that area is asserted for the universe of
discourse connected with the sheet to which the area belongs. We
can pilcture, in this system, a nest of cuts with different cuts
belonging to it penetrating to different strata of the book ef
sheets and expressing an extremely complex modal graph., All
kinds of'possible denlal and possible assertion would be in-
volved, and the situation could be extremely comfusing.

It could be extremely confusing, that is, unless Peirce

is at least able to provide us with a comprehensive set of rules
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of transformation for gamma which will enable us to know exactly
which cuts we are allowed to make and what we may write in which
ar;;. Well, Peirce tells us quite frankly that so far as gamma
goes, he was "able to gain mere glimpses, sufficient only to show
me its reality, and to rouse my intense curiosity, without giving
me any real insight into it" (4.576). The truth is that he was
not able to discover such a comprehensive set of rules, Ve can
see the general plan that Peirce had laid out for gamma., We can
gee just about whers he intended to fit it intc his synechismn.
We can see what he hoped to do with it, but we can see as well
as he could that he was not able to realize those hopes., The
final formulation of gsmma was for Peirce an El Dorado, a golden
city glistening just beneath the horizon.

Peirce set down a large number of signs which he consid-
ered within the scope of gamma, With most of these signs he did
little more than to set them down., Since gamma was to be a logic

of "second intentions,"

it is not strange at all that he set down
signs of gamma which were to be a sort of metalanguage for the
graphs., For gamma was to be able to reason about ideas, and if
this was the case, some provision should be made in it for such
signs. le52~529 offer examples of such symbols. An examination
of these signs leads us to the conclusion that this project was
presented by Peirce as one of the threads that his successors
were going to have to weave into the warp of the completed gamma

 fabric. He gives us no specific rules for working with these

signs, and tells us very little about how they are to be used.
There is glso another suggestion, in L.4170, which is
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interesting but to which Peirce devotes very little time, Here
he shows us a different kind of line of identity, one which ex-
presses the identity of spots rather than of individusls. This
is an intriguing move, since it strongly suggests at least the
second order predicate calculus, with spots now acquiring quan-
tifications, Peirce did very little with this idea, so far as I
am aEle to determine, but it seems to me that there would not be
too much of a problem in working it into a graphical system which
would stand to the higher order calculi as beta stands to the
first-order calculus. The continuity interpretation of the "spot
line of identity" is fairly clear; it maps the continuity of a
property or a relation. The redness of an gpple is the ssme, in
a sense, as the redness of my face if I am wrong; the continuity
of the special line of ldentity introduced in L.l 70 represents
graphically this sameness., This sameness or continuity is not
the same as the identity of individuals; althougﬁ its represen-
tation is scribed upon the beta sheet of assertion, its "second
intentional® nature seems to cause Peirce to classify it with the
gammg signs, The same may be said of the "metalinguistic signs"
mentioned above,

The metalinguistic and "higher-order" signs are, however,
peripheral to the main thrust of gamma ss envisioned by Peirce.
As we noted, and as an examination of ,510ff. and L .573ff. will
verify, gemma was for him, above all, the "three-dimensional,®
the multi-~sheet system. As we also noted, he was unable to come
even close to a complete formulation of rules for that system

(the multi-sheet formulation is, I believe, doomed from the start
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by its very complexity if for no other reason). But he did try
to maeke g start:
In endeavoring to begin the construction of the gamma part
of the system of existential graphs, what I had to do was
to select, from the enormous mass of ideas thus suggested,
a small number convenient to work with. It did not seem
to be convenient to use more than one actual sheet at one
time; but it seemed that various different kinds of cuts
would be wanted (lLi.51l).
He then begins telling us about one of these cuts, the
"broken cut," which we mentioned earlier in this introduction.
In chapter 1ii we shall study several interesting systems con-
structible with the use of the broken cut.
Before we get to chapter iii, however, we will have to

move through chapters i and ii, in which we will view in detail

the alpha and the beta systems respectively.
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CHAPTER T
THE ALPHA SYSTEM

Our detailed study of the existential graphs as formal
systems begins with alpha. This chapter will be devoted to a
comparison of alpha with the classical propositional calculius
(which we shall ordinarily abbreviste by "CPC" or simply "PC").
Alpha, as we shall see, is a logic; the rules of transformation
for alpha presented in the Introduction are the rules of infer-
ence of that loglec. 4s a logic, alpha has theorems, theorems
provable through those rules of transformation; we shall see how
those theorems are related to those of CPC.

"Project alpha," then, is an examination of relationships
existing between alpha and the ordinary CPC, Obviously, since
the notation of alphs is very different from that of gard;n—
variety logics, the first thing we must do is to find a means
of "translating” alpha graphs into wffs of ordinary PCIs and
vice-versa.

We describe a function, or set of instructions, which
wlll enable us to translate any alpha graph into a unique formula
of the PC; this function we call "f£," In describing this func-
tion, we first show how to write "names" of alpha graphs, and
then we designate a set of these names as "standard'™ names; the

designation is such that each alpha graph has one and only one

3k
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standard name. We then show how to transform standard names
into unique CPC wffs, If X is any alpha graph, then the CPC
wif formed by applying these instructions to X will be called
£(X).

At this point we will note that in our work with alpha
we will set out and use two different formulations of the CFPC
rather than just one. The first of these systems 1s one which
has conjunction and negation as primitive operators; this formu-
lation is called P,, (the "r" is for Rosser). The other system
uses implication as a primitive operator and has a primitive
constant false proposition; this formulation is called PW (the
"w" is for Wajsberg). Pr and PW are both complete CPC's, and as
such are "equivalent." The reason we use two systems rather
than just one is one of convenience. Pr is a convenient system
into which to translate alpha graphs in one-one fashion; for a

given alpha graph X the formula f{X) will be a wff of P,. ‘But

PW is a convenient system from which to translate wffs into
alpha grephs in one-one fashion, as we shall see.

We have mentioned that we shall describe a function f
whick "translates™ alpha graphs into wffs of the system Pr; We
shall glso describe a one-one function, or set of instructions,
which will enable us to translate any wff of the system Py into
a unique alpha graph; this function we shall call "g," Where A
is any wff of PW, the unique graph formed by applying this set
of instructions to A will be called g(4).

We shall provide a precise definition of what it means
to be a logic, and we shall show how alpha "fits" this definition;
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that is, we shall show that alpha is a logic. In the process
of doing this, we shall set down precise formulations of the
alpha rules of transformation, which--as we have mentioned--
are the rules of inference of the logic alpha.

Certain of the alpha graphs will be theorems of the logic
alpha. Through a series of lemmas we shall establish that:

The graph X is a theorem of alpha iff the wff £(X) is a CPC
theorem,
We shall also estgblish that:

The wff A is a CPC theorem iff the graph g(A) is a theorem of
alpha,

We shall thus have established that the set of theorems
of alpha maps one-one into the set of theorems of the CPC, and
vice~versa., This means that given the natures of the functions
f and g, alpha itself may be considered a complete classical

CPC.

1.1 The Set of Alpha Graphs

We may first note that involved in the makeup of alpha as
we have examined it is a set of objects, objects which are simply
certain signs and combinations of signs that may be scribed, say,
upon a sheet of paper or a blackboard., Consider a denumerably
infinite set, Ma, of such signs, which we will denote individually
by the letter 'b!' followed by a sequence of primes, which sequence
may be null, The members of the set Maﬁ then, are b, b', b't', , , ., .
it is understood, of course, that the correlation of the members

of M, to the signs 'b', 'b!'!, etc, is strictly one-one. No
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member of M, is analysable into "smaller" signs, so we may call
M, the set of "minimal" or "atomic" graphs of alpha. The first
member of this set, b, has a special status; it is the "null-
graph" or "blank.® Recall thét the blank SA is to be considered
a graph. The other members of Mg, b'y, B'', ¢ . . , may be con-
sidered "graph-variables," with a function not unlike that of
the propositional variables of the ordinary CPC., In the present
treatment, we shall generally employ upper-case Roman letters
'Xt, '¥1, etec. as variables of the metalanguage ranging not only
over the members of My, but over all objects which may come to
be called graphs as well,

Consider now another sign of the metalanguage. Let S(X)
be "the result of enclosing the graph X by the ordinary alpha
cut,” which as we learned in the Introduction is a "self return-
ing linear separation" scribed upon the surface upon which we
are working. Please note that if two "self returning linear
separations" intersect each other, neither qualifies as a "cut,"
The cut itself is not a graph, but it plus the graph it encloses
is a graph; that is, the scribing of a cut around a graph is a
"graph-forming operation.” Note that in practice a cut cannot
be scribéd without forming a graph, for it will always enclose
at least b, the null-graph.

If a graph X is enclosed by a cut, and another graph Y
lies outside that same cuﬁ, we shall say that X and Y are "sep-
arated™; otherwise they are "unseparated," This brings us to
another sign of the metalanguage. Where Xy15 ¢ ¢ o 5 X, aren
alpha grephs, each of which is either of the form S{Y) or is a
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member {other than b) of the set M;, then J(Xl o« o o Xn) is "the
result of scribing the n graphs Xl’ « » o 5, X, unseparated on
SA." The operation of scribing graphs unseparated on SA is
then also a "graph-forming" operation.

We may summarize the above by listing the following
rules; these rules may be considered the rules characterizing
the set of alpha graphs:

1.11i Bach member of the set Mé is an alpha graph.

l.1ii Where X is an alphe graph, S(X) is an alpha graph.

1l.1iii Where Xl’ o o o Xn are n alpha graphs other than b
admitted by rules 1.1i or 1.1ii, then J(X; . « « X)
is an alpha graph.

From what has gone before, we should already have a good
idea of how to go about naming an alpha graph, as we have actually
been using names of alpha graphs in our development. But we
shall list some explicit rules similar to the gbove which will
tell us formally how graphs are named.

l.1liv 'b! names the null-graph; 'b', followed by one prime
or more, names a member of M,; 'b' followed by n
primes names the same graph as 'b' followed by m
primes iff n = n,

l.1v The sequence of signs consisting of 'S(' followed
by the name of the graph X followed by !')' names s
graph; specifically, it names the graph formed by
enclosing X by an alpha cut,

1l.,1lvi Where the graphs Xl, o o o Xn are n, n‘EE 2,
graphs admittgd by rules 1,11 or 1,11i, and none of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39
them is the null-graph then the sequence of signs
consisting of 'J(' followed by the n names of the
X950 o o 5 Xy followed by !')! names a graph; spe-
cifically, it names the graph formed by scribing the

X e o o 3 Xn unseparated on SA.

1?
Now note that since the set of alpha graphs is character-
izegble by the rules 1l,1i-iii, it is a recursive set. Since it
is recursive, it may be ordered (every recursive set is recur-
sively enumerable in increasing order without repetitions) in
such a manner that alpha graphs X and Y are associated with the
same natural number iff X and Y are identical, that is, are able
to be "generated" by exactly the same applications of rules
l.,1i-iii., We could, if we wished, describe means for such an
ordering. Such a description would, however, be long, tedious,
and irrelevant. The important thing is to know that the set may
be so ordered; the exact "how" of the ordering does not make too
much difference. Let us then select some ordering of the alpha
graphs such that each alpha graph is associated with a unique
naturel number, and vice-versa. If, then, the names of the n
alpha grephs X5, « « « , X, are written in a sequence, we shall
say that that sequence is "properly ordered" iff it is ordered
according to our selected unigue ordering of alphs graphs, Of
course, for any n such graphs there is one and only one "proper
ordering,.”
We shall now define what we shall call the "standard

neme” of an alpha graph:

l.1vii The names of graphs admitted by l.liv are standard

namese,
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l.1viii The sequence of signs consisting of 'S(' followed by
the standard name of the graph X followed by ')!' is
a standard name.,

l.1ix Where Xl’ e o o Xn are n,xn;z 2, alpha graphs
admitted by rules 1l.,1i or 1l.1ii, and none of them is
the null-graph, then the sequence of signs consisting
of 'J(! followed by the n standard names of the
Xl, o o o Xﬁ followed by !')!' is a standard name,
provided the sequence of n names between the !'J(!

and the ')!' is properly ordered,

It should be evident that each alpha graph has one and
ohly one standard name,

A question worth noting at this point is that of the
cardinality of the set of alpha graphs. Although we have as-
serted that this set is recursive, and so at most denumerably
infinite, the graphical nature of the system may well conjure
up ghosts of the power of the continuum to haunt us. ILet us
simply remark here that our study involves only graphs contain-
ing a finite number of signs--an assumption well-grounded in the
study, say, of the ordinary logical systems, which deal only
in finitely long words or sentences. Since this is the case,
it is impossible that the number of alpha graphs be larger than
a denumergble infinity. We may seem in this to be som what less
liberal than Peirce himself, who seems at one point to indicate
that grephs containing infinitely many signs are permitted
(Lol9k)s We must comment, however, that there are marked dif-

ferences between the presentation of a system permitting wffs
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of finite length only, and that of one permitting infinitely
long wifs. What Peirce says in L.U9L is certainly a rather casual
remark, the full implications of which did not occur to Peirce
when he made it--and hardly could have, since the study of sys-
tems containing infinitely long sentences is of rather recent
vintage. Indeed, so far as I have been able to determine, he
does not mention the matter again in the writings on the graphs

included in the Collected Papers. We shall thus stick by our

assumption that an alpha graph may be of finite length only.

1.2 The Alpha Graphs and the WFFS of the Classical Propositional

Calculus
We shall begin by setting out two systems of complete

CPC; these systems will be called, respectively, Pp and Rw. The
respective sets of wffs for these systems will be called (Pr) and
(Pw)‘ We shall employ the upper-case letters of the Roman alpha-
bet as varigbles ranging over the CPC wffs. " P; A" shall be
read, "A is a theorem of Pr," and " Fﬁ A" shall be read, "A is a
theorem of PW." The "primitive signs" of P, include a denumerable
infinity of signs, Py> Pys Pps o « o , called "propositional
variables," left and right parentheses, '(!' and ')', and the
sign '-%, called "the negation sign." The rules of formation
for Pr are:

1.2i  p; is wf, 1 = o,

l.2ii rA37 is wf where both A and B are wf.

1.2ii1  -(4) 1is wf where A is wf.

Definitions will be as ususl in the CPC, with a definition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



L2
considered as providing a notational abbreviation for a formulg
in primitive notation; where there is no danger of confusion,
we shall employ the simple letters 'p', ‘'q!', 'r', 's', . . . as
propositional variables in place of the primitive pj, Pos P35 o o o o
As with all definitions, this is to be understood to be a space
and time saving abbreviation. The variable Py will have a

specigl use in this system, in the following definition:

As rules of inference, Pr shall have substitution for variables

and detachment; the axioms shall be Rosser's set:

P D .D.F

P.q. P

P2 ge 2 .-(qr) = ~(rp).
Note that we have presented the axioms in definitionally abbrevi-
ated form rather than in primitive notation.,

The primitive signs of Pw are propositional varigbles,

a sign '0', called the "constant false proposition,™ and a sign
10!, called the "sign of implication." The rules 6f formation
are:

1l,21v ps is wf, where i 2 1.

l.2v 0 is wf,

r.
l.2vi Cap

Again, standard definitional abbreviations will be used, includ-

is wf where both A and B gre wf,
ing the use of P, 9, « « « as notational shorthand for Py, Ppos o « « §

The rules of inference are substitution and detachment, and the

axioms are:
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CCpaCCarCpr
CpCap
CCCpapp
COp.
We are now prepared to set down a means of moving from
the alpha graphs to the wffs of the CPC and vice~versa. We de-
fine a recursive word function f:

Dl: The function f takes the set of alpha graphs as its

j=to

domein, and finds its range in the set (P,). Given

any alpha graph X, write the standard name of X. Wherever

in that standard name the "subname™ J(¥; . . . Y,)
occurs, for all such "subnames" involving 'J', delete
the 'J(' and the ')!, leaving just the sequence Yy o oo Y.
Wherever 'S' occurs, replace it with the sign '-!,
Wherever the simple 'b! occurs, replace it by '1t,

that is, by ‘-(po—po)'. Wherever 'b! occurs followed
by 1 primes, 1 = 1, replace that occyrence of !b!?

and the primes following it by Pje This completes the
instruction for f; the result of the application of this
instruction to an alpha graph X will be called £(X),
and is g wff of Pr'

This last definition tells us how to transform an alphg
graph into a wff of the CPC. As we remarked earlier, there is
one and only one “"standard name" for each alpha graph. It is
quite clear that given any standard name, the latter part of
the instructions in D1 will yield one and only one wff of Pre

The function f as defined gbove, then, is a one-one function;
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£(X) will be the same formula as f£(Y) iff X is the same graph

as Y. The intuitively acceptable interpretations of the signs

of the alpha graphs are preserved in the translation made possible
by the function f; unseparated occurcnce of graphs in an area is
correlated by £ to PC conjunction, and enclosure by a cut is
correlated to inclusion in the scope of a negation sign; the
minimal graphs of alpha are correlated to the atomic formulas

of Pr’

We now move on to the definition of the function which
will enable us to translate wffs of the CPC into alpha graphs.
First of all, we shall consider a subset of the set of alpha
graphs, which we shall call /a? o Membership in f is defined
as follows:

l.2vii All members of the set M, are members of /ao with
the exception of b,
1,2viii S(b) is a2 member of Asy.
1.2ix If X and Y are both members of/g), then S(J(XS(Y)))
is a member of ﬁ.
Let us introduce the following definition:
D2: &(XY) 3, S(T(XS(¥))).
We might now restate the last rule thus: If X and Y both are
members of 5, then G(XY) is a member of /g.
We may now move directly to a statement of the function g:
D3: The function g takes (P_) as its domain, and /f(a
subset of the set of alpha graphs) as its range., Given
any wff of P> replace rCA§1 wherever 1t occurs by

r .
G(AB) ; wherever the variable Py occurs, ror each i
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and each such varigble occurrence, replace it by !'b!
followed by a string of i primes; wherever '0!' (the
constant false proposition) occurs, replace it by
15(b)!'. The result is the name of a graph. Where the
wff with which we began was A, the graph named by the
result of applying this instruction is g(A); draw the
greph thus named. The instruction is complete.

It is clear that the function g is one-one and onto,ﬂi .

1.3 Alpha as g Logic

Before entering into a detailed study of alpha as a
logic, it will be well to say a few words gbout logics in gen-
eral. The definitions we employ are in general adopted from
Martin Davis; we retain, however, our numbering. First of all,
let us say what we mean by "logic."1

Dh: By a logic l: we understand a recursive set A of words,

called the axioms of { , together with a finite set

of recursive word predicates, none of which isg singulary,

called the rules of inference of‘n o

It should be clear that a "recursive word predicate” is to a
number-theoretic predicate as a recursive word function is to g
(partial recursive} number-theoretic function.

D5: When R(Y¥, X7, ¢ « » » X,) is a rule of inference of

I: s We shall sometimes say that ¥ is a consequence of

Xqo o o o » X, in 1: by Re.

7

: A finite sequence of words Xl, Xos o o o Xn is called

WMartin Devis, Compatability and Unsolvability (New York:
McGraw Hill, 1958), p. IL7ff.
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a proof in 2 logic-t. if, for each i, 1< 1< n; either

(1) Xié A, or

(2) There exist Jys dos o ¢ o 5 Jp< i such that X
is a consequence of le, ij, o o o o Xjk in
by one or the rules of inference of 1; .

D7: We say that W is a theorem Qf]: s Or that W is provable

in£ and we write

e v

if there is a proof in I: whose final gtep is W,

This proof is then called a proof of W in .

1.31 "Theorem Generation" in Alphs

It will be our desire to show as quickly as possible
that alpha is a logic, But before we state a metatheorem to
this effect, let us examine alpha in the light of the require-
ments of Davis's definition. The first such requirement is for
a recursive set of axioms; the usual criterion for determining
what--in a given system--is an axiom is the word of the author
of the system. Peirce was not so kind as to say explicitly,
"Such-and-such a graph is an axiom of alpha,” so we must look
closely at the matter. An axiom is a theorem or "assertable
word" of the system which need not be derived or proven within
the system. Examining Peirce's presentation of alpha, we f£ind
one and only one graph which qualifies as such in what may be
called the "unspecialized version" of alpha (that is, alpha with
no "extralogical" premises), That graph is the blank sheet of
assertion itself, We will recall that Peirce exﬁlicitly called

SA a graph, and that we have notation in our metalanguage to
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speak about it. Any blank area on SA (and this includes the
completely blank SA itself) is the null-graph, or b. Since SA
is a presupposition of any graph whatsoever, we shall declare
that the axiom set of alpha contains one and only one member,
b.

It may seem curious to employ a null "something-or-other"
as an axiom, since we very commonly think of the null-set as
correlated in some way with the truth-value "false"; but let us
recall that the "constant false proposition" employed in many
systems of PC is often explicated as the proposition which says
that "everything is true," This explication is exemnplified in
systems which have quantifiers ranging over propositional vari-
ables; in these systems the proposition '-{p)p' is a theorem.

In the sense of "null" which is contrasted to the above sense
of "universal," then, it is quite reasonable to take the "null-
graph" as assertable,

The other requirement of Davis's definition of a logile
is that it contain a finite set of recursive word predicates,
the rules of inference of the system. It is clear that the rules
of transformation for alpha qualify as such recursive word pred-
icates. Employing 'R! with a subscript as notation for these
predicates, we may list them as follows:

Ripg(¥s X): Which is true iff ¥ is identical to X except-
for containing in a position enclosed by an odd
number of cuts a graph Z which X does not contain
at the corresponding position. |

:l?rﬁztrCYQ X): Which is true iff Y is identical to X except for
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containing one more occurrence of a subgraph Z
than does X (with X having at least one occurrence
of Z); the extra occurrence of Z in Y is to be

located in an area enclosed by at least all the

cuts which enclose another occurrence of Z in Y,
which last mentioned occurrence corresponds to
an occurrence of Z in X.

Rbcl(Y, X): Which is true iff Y is identical to X except for
containing a graph S(S(Z)) where X contains
simply Z.

The above predicates may be called the "positive rules
of inference in alpha." 1In addition, we have the following
Tnegative" rules:

Rers(Y’ X): Which is true iff RinS(S(X), S(¥Y)) is true.
Rdit(Y’ X): Which is true iff Ritr(X,'Y) is true.
Rnbc(Y’ X): Which is true iff Bpe1(Xs ¥) is true.

The above six predicates are easily recognized respectively
as Peirce's rules of insertion in odd, iteration, biclosure,
erasure in even, deiteration, and negative biclosure. We may
now state the following metatheorem:

%#1,01 Alpha is a logic,
PRCOF: By D and the gbove exposition of axiom and rules of in-
ference in alpha, .

The aexiom of alphé, then, gives us g starting point from
which we may, by the stated rules of inference of alpha, generate
the theorems of alpha, We now enter into an investigation of

that set of theorems of alpha,
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1.32 The Logic Alpha in the Systenm Pr

In D1 we defined a function f which maps the set of
alpha graphs into the set of wffs of Pr‘ Our project is now
to show that whenever a given alpha graph X is a theorem of
alpha, the corresponding wff, £(X), is a theorem of P,, and then
to show the converse, that whenever f£(X) is a theorem of P,, X
is a theorem of alpha,

IEMMA 1,02 f£(b) is a theorem of P,.

PROOF: By D1, f(b) is '1l!', which is '-(pc.-po)', which is im-
mediately recognized as a theorem of qu l

The above lemma establishes that the axiom of alpha is
correlated by £ to a theorem of Pr‘ We now turn to the rules of
inference in alpha, proving in the process two lemmas that are
of some independent interest in the study of the CPC itself,

We shall say that a given occurrence of wf subformula, B, of Pn

1 t

is in "antecedental position," or "A-pos," in a P, wZf Q, and we
shall write rQA(Bi1 for the whole formula iff the occurrence of
the subformula B is within the scope of an odd number of nega-
tion signs in Q at the one occurrence of B in Q which is in
question. We shall say that that occurrence of B is in "conse-
quential position," or "C-pos," and shall write FaC(B)' for the
whole formula otherwise, that is, when B is in the scope of an
even number of, or of no rnegation signs in Q.
IEMMA 1,03 Where |z 'Q2(B) and |}z 'DDB, then salso
‘-5 rQA(D)-‘ .
IEMA 1.0 Where bz "aC(B)' end |z BOD, then also
bz €.
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PROCF: These two lemmas shell be proven together. It ig under-
stood, of course, that in each lemma the D is to be considered
as replacing the B.
We know that it 1s possible to reduce any wff of Pr to
an equivalent conjunctive normal form. Reduce the formula Q(B)
to such a form, mgking one exception to the usual procedure; that

will be to treat B in the one occurrence witkh which we are con-

cerned as if it were a propositional variable., All occurrences
of propositional variables outside of that occurrence of B are
to be treated as ususl in the reduction, bubt the occurrenc? of
B with which we are concerned will never be "broken up" in the
reduction., The form we thus arrive at we may call the "quasi-
normal-conjunctive" form of Q(B), or "Cnj(Q(B))." The PC laws
needed for the transformation are (in parenthesis-free form):

1, EApKqrKApgApr

2. ENANpNgKpq

3. ENKpgANpNgq

L., EpNNp.
These, together with the definitions of connectives in Pr’ sub-
stitution for variables, and the substitutivity of the bicondi-
tional are 2ll that is needed to perform the required transformg-
tion. An examination of the above laws will show that the prop-
erty in a subformula occurrence in a wff A of being in A-pos or

in C-pos in A is hereditary through applications to A of substi-

tution instances of the gbove laws by substitutivity of the bi-
conditional, But such applications are all that is needed,
taslically, to transform Q{B) to Cnj(Q(B)).
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But this "hereditary nature" of A-pos and C-pos through
the relevant transformations means that (with the aid of the law
'EpKpp') anyAan(QA(B)) may be written in the genersal form:
5. "BV Fi.-BVF,. . .. .-BVFn.Gl.GZG. o v .Gm-‘,
and any Cnj(QC(B)) may be written in the general form:
6. rGl.Ga. e+ WGP VBF,VB ....F VB,

The n indicated occurrences of B in each of 5 and 6 above are
the only occurrences of B in these formulas "derived from" the
occurrence of B in question in QA(B) and QC(B) respectively;
note that in 5 all such occurrences of B are in A-pos, and in 6
all such occurrences are in C-pos. Now, by laws 1-l. above, plus
'EpKpp', 5 may be transformed to a formula of forms

7. "BvsT,
which, of course, is equivalent to

7. "BoDS.
The formula 7' is, of course, equivalent to the original Q&(B),
and the one occurrence.of B as the antecedent of 7! is the only
one in 7' which may be considered "ancestrally derived from"
the occurrence of B in question in Q*(B). Similarly, 6 may be
placed in the form

8. 'RV .s.B",
which is equivalent to a form

g1. "ro.s.8.
The formula 8' is equivalent to QC(B), and the one occurrence
of B in the consequent of 8! is the only one in 8! which is
"ancestrally derived frqmg the occurrence of B in question in

Q?(B). The proof of the lemmas follows immedistely, If
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l-; rD DB-', then 7' is immediately transformable into rD‘DS-';
we can see immediately that this last formula is equivalent to
QA(D). Also, if ,—; Fe 5 D', then 8' is irmediately transform-
gable into rﬂ?ZD .S.ﬁ‘; this formula is clearly equivalent to
(). |

These two lemmas are of some interest in the study of
the CPC as they provide us with a kind of analysis of the rule
of substitutivity of the biconditional. Whereas the latter rule
gives us a means for replacing a subformula B by a subformula D
when "B D.D=>3B', the lemmas 1,03 and 1.0l specify conditions
when the replacement may be made when simply Tp=58' or B0
respectively. These lemmas could not be used, of course, as they
have been proven here, as parts of a proof of the rule of sub-
stitutivity of the biconditional, for that rule has been used
in their proof, It is not difficult to visualize proofs of
these lemmas, however, which would not make use of this rule.

We may now put these lemmas to use in the proof of the
following:

LEMMA 1.05 Whenever, for alpha graphs X and ¥, Ryng(Y¥, X)
is true, then if f£(X) is a theorem of P, SO
too is f£(Y).

IEMMA 1,06 Whenever, for alpha graphs X and Y, Rers(Y, X)
is true, then if f(X) is a theorem of P,, so
too is £(Y).

PROCF: If Rins (Y, X) is true, then there is a subgraph Z oddly

enclosed in Y which does not stand at the corresponding position

in X; X and Y are otherwise identical. By D1 (the definition of
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£), then, £(X) and ©(Y¥) are identical except that £(¥) contains
the subformula which is f(Z) in an A-pos where f£(X) does not
contain it. 1In an A-pos, then, f(Y) contains the subformula
T4.2(2).B', where one but not both of A and B may be null; in
the corresponding position, £(X) contains merely rA.Bﬂ. But it
is tpivially the case that }5 Ta.£(2).B.>.A.B". But then, if
£(X) is a theorem of Pr’ by lemma 1,03 £(Y) must 2lso be g
theorem, and lemma 1,05 holds. The proof of lemma 1.06 is

- s
similen, em n its course, lemme 1,0k, !

—— -

153

We now move to two more lemmas:

IEMMA 1,07 Wherever, for alpha graphs X and ¥, R;... (Y, X)

itr

i1s true, then if f(X) is a theorem of P,, so

too is £(Y).

LEMMA 1,08 Wherever, for alpha grephs X and Y, Rdit(Y’ X)

is true, then if £(X) is a theorem of Pr’ so

too is f(Y).
PROOF: It will be recalled that Ritr(Y’ X) is true iff Y is
identical to X except for containing one more occurrence of a
subgraph Z than does X, with X having at least one occurrence of
Z; the extra occurrence of Z in Y is to be located in an area
enclosed by at least all the cuts which enclose another occurrence
of Z in ¥, which last-mentioned occurrence corresponds to an oc-
currence of Z in X. What we want at this point is a simple means
of characterizing in P, the differences between the wffs f£(X)
and £(¥). A good way of doing this will be to employ the notion

of the "functor variable."l We shall not, however, employ

1., w. Prior, Formal Logic (2nd ed.; Oxford: Oxford,
1962), p. 64ff,
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functor variables as signs of the object language, as Prior
does in the passage cited above. The sign '§ ! will be consid-
ered a sign of the metalanguage; rSp1 will be a schema which
may represent any truth-function of p.

We may now characterize the difference between £(X) and
£(Y¥)s The wffs £(X) and £(¥) are identical except that where
£(X) contains the subformula

F£(2).8 (4.8)",
£(Y) contains the subformula

F2(2). 8 (4.2(2).3) .
Note that one but not both of the wf subformulas A and B may be
null, But it is easily proven (and intuitively acceptable) that

I-; F2(2). 8 (4.8).=.2(2). 8 (4.2(2).B)".

In the presence of the substitutivity of the biconditional, this
means that, given the definition of f and the problem as we have
stated it,

}-; Moy =e(v) .
This means that lemma 1,07 holds; and, since R is the exact

ait
converse of R s> lemma 1,08 also holds., l

itr
We now may move to the two final lemmas of this sequence:
LEMMA 1,09 VWherever, for alpha graphs X and Y, Rpe1 (¥, X)
is true, then if £(X) is a theorem of P.,, 30 too
is £(Y).

LEMMA 1,10 Wherever, for alpha grephs X and Y, R, (¥, X)

nbe
is true, then if f£(X) is a theorem of P,, so
too is f£(Y).

PROCF: Rbcl(Y’ X) is true iff Y is like X except for containing
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a subgraph S(S(Z)) where X contains simply Z. But then £(Y) is
like £(X) except for containing the subformula r--f(Z)ﬁ where
£(X) contains just £(Z). But
f; P=--p;
so by substitutivity of the biconditional,

b= Tro=ea).

Lemma 1,09 then holds, and since Rnbc is the exact converse of
Rypo1s lemma 1.10 holds as well. '

We may now state the metatheorem to which these lemmas
have been leading:

#1,11 If a greph X is a theorem of alpha, then £(X) is a

theorem of Pp.
PROOF': Immediate from the preceding lemmas. For by lemma 1,02,
f of the axiom of alpha is a theorem of Pr’ and the lemnas 1,03~
1.10 show that for each of the rules of inference of alpha there
is a parallsl derived rule of inference in P,. I then there
is a proof in alpha for a graph X, there is also a proof in Pr
for f(X), and the metatheorem holds.
COROLLARY 1l.12 Alpha is consistent.
PROOF: Suppose alphz to be inconsistent. Then any well-formed
graph would be derivable by its rules of inference; specifically,
the graph S(b) would be so derivable. But by *1l.11, £(S(b))
would be a theorem of P,. Now £(S(B)) is equivalent to
'po.-po', which is obviously not a theorem of Pn. Neither, then,
is S(b) a theorem of alpha,.and alpha is consistent,

The next step we must undertake is to prove ths converse

of the metatheorem 1.l1l, Consider a function, which we shall

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

call h, This function is to be many-one, and is to map the set
(Pr) onto the set of alpha graphs. For any P, wff A, form h(A)

as follows: Wherever in A subformula -(B) occurs, replace it by
B , and replace each Pr propositional variagble by an sppropriate
minimel graph of alpha., The Pr variable 'po‘, we will recall,

has a2 special use in the wff '-(po.-po)', which is associated
with the null graph of alpha. We may remark here that if any

P, wff A contains Po Qutside the context '-(po.-po)', then A is
clearly not in the range of the function f, In such cases, simply
substitute for Py wherever it occurs in A a propositional varisble
entirely new to A, Now if '-(po.-po)' occurs in a formula as it
hes been transformed to this point, simply erase it to form the
null graph. This completes the instruction; the result of the
application of this instruction to a wff A is the graph h(4).
Note that where there were conjunctions of subformulas in A,

there are unseparated occurrences of subgraphs in h(4A), and where
there were negation signs, there are cuts.

It should be evident that h is, as we claimed earlier,
many-one and onto alpha, It is many-one (and not one-one) since
the formulas ‘pl.pz' and 'pz.pl', for example, would both trans-
late through h as the same graph. It is onto alpha, since,
quite clearly, from the definition of T,

h(f£(X)) = X,
and for every alpha graph X there is a corresponding wff f£(X).

We shall now establish the following lemma:

~71 IEMMA 1,13 Where A is one of the axioms of Pos h(4) is a

theorem of alpha,
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PROOF: We shall prove this lemma by deriving as theorems of

alpha h of each of the three axioms of Pr which we listed earlier
in this chapter,

Axiom, Ry 4 @ (1)

@, &y, b b o @)

(@), ®, . (3)

Note that (3) is h of the axiom 'p.g.Dp'.

(1), Rypg (1)
(1), Ry, K (5)
(5), Ryp, b (6)

Note that (6) is h of the axiom 'PD.p.p'.

(1), R s o LM U (7)

(7)5 Ripnn (8)
(8), Ritr (9)
(10)

(9), 1?'bcl
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Note that (10) is h of the axiom 'pD geD o-(qr)D -(rp)';
this concludes the proof..

We shall now prove lemmas regarding "derived rules of
inference"” in alpha, Note that we shall make these lemmas do
double duty, stating them both for h and the system Pr and g and
the system P+ This will save us the trouble of proving a
parallel set of lemmas in the next section of this chapter.

IEMMA 1.1 Where "8 p*, as a truth-function of P, is a
theorem of either Pr or Pw’ ana '8 z: is the re-
sult of substituting the wff A for every occurrence
of p in rS p‘ , then if }-5 h(SP)--Or g(Sp),
depending upon the system of which rs p.' is a
theorem--then also ,—5 h( SA)—-or gl S 4), as
the case may be., This lemma is stated only for
the cases in which 1"8 A1 does not contain
’-(po—po)'.

PROCF: This lemma is stated only for the "unspecialized™

alpha system, that is, the system which has b as its sole axiom.
If there is a proof in alpha for h( 8 p)-=or gl 8 p)--I think it
can be seen without elaborate argument that there will also be =
proof for h(SA)--or g(S A). The minimal graph corresponding

to p in h(d p)--or g( 8 p)--had originally to be introduced into
the graph by an application of Rins' But a greph corresponding
to & could just as easily have been introduced at that point,
and then treated in subsequent transformetions just as the min-
imel graph corresponding to p was treated. If, then, h(Sp)«-
or g(8 p)--is an alpha theorem, then n(d A)=--or g(SA)—-must also
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be an alpha theorem. This lemma states, in effect, the existence
of a "derived rule of substitution" for minimal grephs in alpha;
this derived rule may be called Rsbs’ this being a binary re-
cursive word predicate. .
IEMMA 1.15 Where h(ADB) and h(A)--or g(ATB) and g(A),
depending on whether A and B are wffs of Pr or
PW--are theorems of alpha, then h(B)~--or g(B)--
is also a fheorem of alpha,
PROOF: Let h(A)--or g(A)--be the greph X; let h(R)--or g(B)--

be the graph Y. The graph h(A D B)-~or g(AB) is:

This is clear from the definitions of these functions. Now, by

hypothesis, the following graph is a theorem of alpha:

x O

By one application of Rdit’ this becomes:

x @

And by one gpplication of Rers’ this becomes:

And finally, with an application of R be’ we get:
nbc

Y
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But ¥ is h(B)--or g(B), as the case may be--and so the lemma
holds. There is just one case in which there may be some gques-
tion as to the truth of this lemma; this is with regard to the
-Pr theorem. For h(-(po,-po)) is b, the null graph, and not a
graph of form G(X.Y). But note that here the second hypothesis
of the lemma--that h(A) be a theorem of alpha--can never be
realized because of the consistency of alpha and the fact that
h(A) will here be an alpha minimal graph other than b, Since
that hypothesis can never be realized, the antecedent of the
lemma is false in this special case, and so the lemma is true.
This lemma may be considered to assert the existence
in alpha of a derived rule of detachment, which may be called
Ratm—--a ternary recursive word predicate, I
Now we may apply our lemmas thus:
#1,16 If A is g theorem of P, then h(A) is a theorem of
alpha.
PROOF: We know from lemma 1,13 that when A is an axiom of Pos
h(4) is a theorem of alpha, We also know from lemmes 1.1l and
1.15 that analogs of Pr's rules of inference exist as derived
rules of inference in alpha,
Let us now divide the theorems of Pr into two sets:
l. Those which do not contain the subformuls '-(pge=pp)*t, and
2. Those which do contain oceyrrences of this subformula.
Clearly, if there is a proof in Pr for a wff A, and A belongs to
the first of these sets, then there is a proof for h(A) in alpha,
by lemmas 1l.13, l.1ll, and 1,15, and the definition of h.

Now consider a wff A for which there iIs a proof in Pns
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énd which contains one or more occurrences of ’-(po.~po)'. But
if there is a proof in Pr for A, then there is a proof for a
wff A', which is exactly like A except for containing the sub-
formuls '-(pi.-pi)'--with Py entirely new to the formula--
therever A contains ‘-(poo-po)'. This we know because of the
rule of substitutivity of the biconditional. A' is then a
theorem, and belongs to the first of the sets of theorems men-
tioned above, By our remarks in the preceding paragraph, then,
h(A') is a theorem of alpha,

The graph h(A') contains at certain places the subgraph

bl (with the I representing a

string of i primes)
corresponding to the subformula '-(pj.-p;)' in A'., But for any
graph X,., is clearly a theorem of alpha. The subgraphs
bl may then be deiterated from wherever they stand in
h(A!'), leaving blanks at those places., But by our definition of
h, the result of such deiterations from the graph h(A') is pre-
cisely the graph h(A). In the case where A contains occurrences

h(4A) will be a

of '-(pa.-po)', then, and is a theorem of P,

theorem of alpha. Thus, in every case that A is a theorem of
P.s h(A) is a theorem of alpha. .

#1,17 If £(X) is a theorem of P,, then X is a theorem of
alpha.
PROOF: Suppose that £(X) is a theorem of P,. Then, by #1,16,
h{f(X)) is a theorem of alpha. But by the definitions of f and
h, we know that h(f(X)) and X are the same graph; thus X is a

theorem of alpha, and the metatheorem holds,
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1l.33 The System Pw in the Logic Aipha

We now move to a consideration of how a set of PC
theorems maps into the set of alpha theorems. At first glance
this may seem a strange project to enter into st this point, for
we have already indicated that the function h maps the set of
theorems of P, onto the set of alpha theorems (although we have
not formally stated this, it is nonetheless fairly evidently the
case)s But h is not a one-one function, and we wish to show that
the set of PC theorems maps one-one into the set of alpha theorems.
Here we shall make use of the one-one function g and the subset
Agyof alpha graphs.

We shall now introduce a sign of the metalanguage similar
to one we used in the proof of lemmas 1,07 and 1,08, the sign
’5 '« This sign may be used along with the signs of alpha, and
when it appears in a sign complex, that complex will be known
as a "graph schema.," The sign will be a Greek letter, usually
'3 ', followed by a pair of curly braces within which will be
scribed a graph (possibly the null-graph, in which case nothing

will appear between the braces).

3{K3

This sign, with a graph scribed between its braces, may
stand in place of any alpha graph, and its relation to the alpha
system is just the same as that of the 'S' employed in the proof
of lemmas 1,07 and 1,08 to the CPC., It represents, in other
words, a "graph function" of the graph that appears between its

braces,
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We shall now engage in some graphical proofs:
LEMMA 1,18 Let rS{X¥¢ é whenever X& é . Then the (5)
graph iIs a theorem of alpha and a member of é.

PROOF: The lemma is proven by the following graephical steps:

Axiom, R_ . (1)
D @ 3(3 O

3)

(2, Ritr

(3)5 Bigps Rpeq b' (3% 4

(L), Ry oy b GE? ) (5)

The graph at (5) is the one we wished to prove, That

S
o7
A
b4 )
7
™~
)

~~

L)

any graph belonging to this schema is a member of gis a simple
mgtter of inspection. l
IFMMA 1,19 With assumption as above, the graph

)

is a theorem and a2 member of .

PROOF:

(1): Rins (6)
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(6), R, in S{o} (7)

(8)

(8), B @ (9)

The graph at (9) is the one we wished to prove; again,

determining that any graph belonging to this schema belongs to
 1s a matter of inspection..

IEMMA 1,20 With assumptions as above, the graph

510} @1}

is a theorem of alpha and a member of /‘g .

PROOF:

(1), Ring 66' b™ b - (10)
(10, By, S (11)

(11, ®,_, (12)
(12), Rypp L' L'"L"" (13)
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SCED) m(lm

Now with (1), applying (1) first to the graph of lemma 1.18,

(13)5 Ryyq

and the result of that to the graph of lemma 1.19 by the derived
rules Rops @04 Rggy (taking first the graph of 1,18 and then
that of 1.19 as "antecedent" in [14}), we get

@y

Membership in by inspection.

Let us now examine what we have., By the translation
function g, the graph-theorem~-schema of lemma 1,20 is correlated
to the PW theorem schema

"c81c8085 .
Here '1l! is defined as 'C00'. This will be recognized as being
of the same form as the single axiom of Lukasiewicz' Classical
PC with functor variables of 1951.1 Although we are not using
functor variables as primitive symbols, it should be evident
that the formulas belonging to the above schema, when joined
to the rules of inference of detachment and substitution for
varigbles, form a sufficient basis for the complete CPC; the
axioms of P, are derivable in a system containing the above
schema. The presence of the schema of lemma 1.20 in alpha
emphasizes the extensional nature of alpha, and also illustrates
the power of the rules of transformation of alpha. We mgy now

state the metatheorem to which these lemmas have been leading:

1bid., pe 306.
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#1.,21 A wff A is a theorem of PW iff g(A) is a theorem of
alpha,
PROOF: Lemmas 1.l and 1,15, along with lemma 1.20, show us that
whenever there is a proof for A in PW, there is a proof for g(A)
in alpha. Conversely, suppose that g(A) is a theorem of alpha,
but A is not a theorem of Pr‘ Pw is strongly complete, and by
the first part of this metatheorem, every theorem of P, has a
correlate theorem in /E?(the range--in alpha-~-of the function g).
If in addition to these theorems we have g(A) as a theorem deriv-
eble by the alpha rules of transformation, while A is a non-
theorem of Pie it is easy to see that in the presence of the
other theorems of alpha which are members of Agyand the derived
rules of substitution and detachment in alpha that any member of
/2 would then be provable as an alpha theorem. But S(b) is a
member of AZ, and would in this case be an alpha theorem; this,
however, would render alpha inconsistent. But, by corollary
l.12, alpha is consistent., Therefore, it must be the case that
if g(A) is a theorem of alpha, A& is a theorem of Pr’ and the
metatheorem holds in both directions, l
We shall now state another definition of Martin Davis.1
D8: Let 1; and IL' be logics. Then we say that I: is

translatable into,I;' if there exists a recursive word

function k(X) such that h; X iff kﬁ k(X), and more-
over, if, whenever X = Y, we also have k(X) = k(¥Y).
(That is, if k is one-one.)

1Davis, p. 119,
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The following metatheorem applies this notion to alpha:
%122 Any complete CPC is translatable into alpha and
vice-versa.
PROOF: Immediate from D8, %1,11, %1,17, and #1.21, and the
definitions of the functions f and g. l
Actually, considering the natures of the functions f and
g, we are safe in saying that alpha is itself a complete classi-
cal propositional calculus. We may add the following concluding
metatheorem:
*1.23 Alpha is complete in the strongest sense possible
for a system lacking a primitive rule of direct sub-
stitution for variables,

PROOF: TImmediate from +#1,17, which asserts that if £(X) is a

theorem of P X is a theorem of alpha. .

r’
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CHAPTER IXT
THE BETA SYSTEM

We now move to a close-up study of the beta part of the
graphs., As we have seen, alpha may be considered to be a system
of propositional calculus; to be sure, alpha's approach to truth-
functional logic differs from approaches utilizing more ordinary
notation, but it is relatively easy to grasp intuitively. We may
even react quite favorably, in fact, to features of alpha like
The symmetry--or irrélevancy of position--and associativity of
conjunction implicit in the "simultaneous unseparated occurrence"
of alpha graphs, this in spite of the complexities introduced
by such features in, say, the translation of the graphs into
ordinary notation and vice-versa. Beta, however, is a kettle
of fish taken from somewhat deeper waters. Beta, we shall find,
bqgrs a relation to alpha similar to that borne by the ordinary
first-order predicate calculus to the ordinary CPC. But as was
indicated in the Introduction, the "individual variable" and the
method of quantification in beta are, apparently, radically
different from the corresponding elements in the ordinary pred-
icate calculus. While intuition may give willing assent to the
characteristic features of alpha, it is possible that it ﬁay be
a bit more hesitant about beta., But a careful examination of
beta should lead to a more willing acceptance of its features;

such an examination will be the aim of this chapter.

68
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The project of chapter i was a comparison of the alpha
system with the ordinary CPC., As we might infer from the re-
marks we have just made, the project for beta will involve a
comparison of beta with ordinary classical predicate calculus,
We shall, in fact, compare beta with the complete classical
first-order calculus with identity.

The notation of beta is--as we have already seen--
considerably more complicated than that of alpha, We shall,
then, first set down some remarks on that notation. Much of the
terminology of the beta system will be explained, end a list of
rules characterizing the beta graphs will be set down.

In our comparison of alpha with the CPC, we found it
convenient to use two formulations of the CPC. Similarly, we
shall here employ two formulations of the first-order calculus
with identity. The first, F,, will--like Pr of chapter i--have
conjunction and negation as primitive operators; the other, FW,
will use implication and constant false proposition, as did P_.
Both systems will hsve the universal quantifier and the sign of
identity as primitive. Fr and Fw are both full classical first-
order calculi with identity, and are "equivalent" to each other
in the sense that Pr and PW are equivalent,

We shall provide a set of instructions, which shalli be
called the (one-one) function f', and which--when applied to
any beta graph X as argument--will "translate” it into a unique
ctosed wff--called f1(X}--of the logic R,.

| We shall also provide a set of instructions, to be called

the (one-one} function g', which--when applied to any closed wff
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A of the logic F --will translate it into a unique beta-graph--
to be called, in this case, g'{(4).

The description of the functions f' and g' will parallel
in many ways the description of the functions f and g of chapter i.

Then will come an investigation of ."theorem generation”
in beta, This will involve an explicit statement of the rules
of transformation, or inference, in beta. Eere we shall show
both that beta is a logic and that it is consistent.

The next step will be a proof--through a series of lem-
mas showing that the beta rules of transformation have analogs in
Fr--that:

If a beta greph X is a theorem of beta, then the closed wff
£1(X) is a theorem of Fr‘
The proof of the converse of this metatheorem, however, does not
follow as easily as it did in alpha, and will be taken up later
in this chapter.

Then we shall achieve a most remarkable result, We
shall show that:

A closed wff A is g theorem of the logic FW iff the graph
g'{A) is a beta theorenm, |
In the process we will give what amounts to a set of semantical

rules for beta,'that is, a means of assigning an interpretation

to any beta graph. This will enable us to say what it means for
a beta graph to be valid,

We may then enter the final phase of our beta project.
This will be to prove that every valid beta graph is a theorem
of beta. This is, in effect, to prove that beta is complets.
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Once this is done, it will follow that:

If the closed wff £'(X) is 2 theorem of F then X is a

)
theorem of beta.

We shall thus have established that the set of beta
theorems maps one-one into the set of theorems of the first
order calculus with identity, and more importantly, that the set
of theorems of the first-order calculus with identity map into
the set of beta theorems. Given the matures of the mapping func-
tions, f' and g', we will then have shown beta itself to be a

complete first order calculus with identity, and to have a re-

~cursively unsolvable decision problem,

2.1 The Set of Beta Graphs

In the Introduction we examined the beta system--at
arm's length--and got some idea of what it is for a sign-complex
to be a2 beta graph. In this section we shall look mare closely
at the set of beta graphs. Our purpose shall be two-f0ld; we
wish:

(1) 7To recursively characterize the set of beta graphs, and
in the process to say what it means for two beta graphs
to be identical, and

(2) To lay the groundwork for the definition of the func-
tions which will translate beta into an ordinary logic
-and vice-versa.

The characterization of the set of alpha graphs offered
us no problem at all. Given the set of minimal alpha graphs and

the "operations™ S(X) and T(Xy, o o o - X,), we were sasily able
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to characterize the set of alpha graphs.

As might be gathered from the Introduction, beta will
be more difficult to handle than was alpha. It is fairly evi-
dent that beta, with its "spots,” is a "ecalculus of predicates,”
And among the signs of beta is that protean "line of identity"
(which we shall often abbreviate as "ILI"); this sign is sometinmes
itself a graph--and then has a propositional interpretation--and
sometimes, as we remarked in the Intrcduction, a kind of "bound
variable.” The presence of the LI in the vocabulary of beta
considergbly complicates both the characterization of the set of
beta graphs and the definition of "translation functions" parallel-
ing alpha's f and g.

Let us now define a term we shall find quite useful in
our treatment of beta. We shall call a LI "geodesic" between
two points on the SA iff it connects those points, crossing
only the cuts which may be between them, and each of those cuts
only once.

We shall now provide a set of rules which will character-
ize the set of beta graphs. These rules might also be considered
rules for the "generation® of any beta graph.

2.11 The "null-graph,” b, is a beta graph.

2,111 ' 'e-g LI situated entirely in one area with no
connections or branchings is a beta grsph; we shall
say this graph has two "loose ends," which are the
end points of the LI.

2.1iii ' - '--the complex consisting of 3 LI's connected

at one point, all in the same area, and with no cther
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other connections or branchings is a beta graph;
this graph has 3 "loose ends."

: = ; ;
2.1liv 1§ '--an n-adic spot with a LI attached to

\n
each.;; its n hooks, the entire complex in the same
area, and none of the LI's having any other connec-
tions or branchings is a beta graph; this graph has
n "loose ends."
2.1v Where X is a beta graph and has n loose ends, S(X)
is a beta graph and has n loose ends.
2.1v1 Where Xis o o oy Xn, n 2, are n beta graphs admitted
by rules 2,1ii-v above, and the total number of loose
ends in these n graphs is m, then J(Xi .« o o Xn) is
a beta graph and has m "loose ends.”
2,1vii Where X is a beta graph having n loose ends, and X!
is like X except for having two of those ends con-
nected by a geodesic LI, then X' is also a beta
graph, and has n-2 loose ends.
It should be fairly clear that these rules will admit all and
only the sign complexes which Peirce would consider beta grephs,
Two beta graphs are identical iff they have identical "hisiories
of generation" by the above rules.

It is evident that for the generation of a given beta
graph by these rules, the insertion by rules 2,lii-iv of certain
signs involving LI's is essential to the generation of that
graph. To put it another way, we may say thathfor the descrip-
tion of the "LI network" of a given graph, it is necessary that

we know the locations in that graph of certain "eritical points"
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in that network. These "critical points" gre:

(1) The places where LI's connect to hooks of spots,

(2) Branchings in Li's,

(3) The places where LI's come to "dead ends,™

(L) The places where LI's become "non-geodesic,"
In the "generation" of a bets graph by rules 2,1i-vii, these are
the points which must "get into™ the graph through rules 2,l1ii-
ive The remainder of the LI network of the graph may be "filled
in" by rule 2,1vii.

A cormment on (l) above may be in order. If a LT is

hon-geodesic between two points, a little thought will tell us

that there is at least one Place along its length where it crosses

a cut and then re-crosses the same cut thus:

et

Li
Such LI formations will be called "loops." Consider any non-

geodesic LI, snaking its wey through a beta graph., If this LT

were to be broken at all its loops, like this:

A7

it is obvious that each of the LI's resulting from such breaking
would be geodesic. If we wish to pictufe to ourselves the "gen-
eration” of a beta graph containing non-geodesic LI's (which is

the same as saying, "Containing loops"), we may imagine that LI's

with two "dead ends™ are first inserted by rule 2.1ii at places
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in the graph where loops will eventually appear; the connections
which will then "create" the loops may be made by 2.lvii. So,
justified by 2.1ii we have:

And then justified by 2.1lvii:
et

geodesic LI's To other
olals in grap‘f\

The other three kinds of critical poinrt in the LI net-
work require, I think no further explanation. We shall see
that these "ecritical points" play an important role in the
translation of beta into an ordinary logical system in such a
mgnner that X and Y translate as the same formula in ordinary
logic iff the graphs X and Y are identical, that is, have the
same "history of generation."

We will here note one special but unimportant kind of II
formation; if a LI "twists back on itself" and joins end to end,

all in the same area, to form the graph:

O

(This is not a cut, but a LI) with no branchings and homeomorphic
to a circle, that LI we shall call the "eyclic graph."”

» We may alsc add, as a bit of nomenclature, that we shall
sgy that a LI "terminates™ when and only when either it comes to
a dead end, connecting to nothing, or it joins two other LI's at a

branching,
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2.2 The Beta Graphs and the WFFs of Classical Predicate Calculi

2.21 The Systems Fr and Fw

As was the case in Section 1.2 of our investigation of
alpha, we shall set out two systems of classical logic; in this
case these will be systems of first-order predicate calculus with
identity. The systems themselves will be cealled Fr and FW; we
shall be interested in a particular subset of the set of wffs of
each of these systems, the set of closed wffs (for closed wff we
shall write "cwff")., The sets of cwffs of F, and F, respectively
will be (Fr) and (Fw)’ and we shall specify what it is to be a
cewff,

We shall employ the upper-case letters at the beginning
of the Roman alphabet as metalinguistic varigbles for wffs and
for predicates, and the lower-case letters at the beginning of
the Roman alphabet as variables for individual variables. The
letters 'x', 'y', « o o , Will, as usual, be the individual
variables themselves. An upper case letter will normally repre-
sent a predicate oniy when it is followed by a sequence of lower-
case letters, which will represent or be the arguments of that
predicate, " Pﬁ A" shall mean "Ehe closure of A is a theorem of

F

r," and " Fﬁ A" shall mean "the closure of A is a theorem of

FW." The notion of closure is as in the revised edition of

Quine!s Mathematical Togic,.

The primitive signs of the system.Fr are: A denumerable
infinity of signs, W, X, ¥, 2, Wy, X35 « « o , called the "indi-
vidual varisbles," the signs (!, ')?, '=! as in P,., the sign

'=1, a constant dyadic predicate called "the sign of identity."
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The rest of the signs of F} are "variable predicate symbols,"
which we need not show, and each of which has gssociated with it
a natural number éél.called its "degree."
The primitive signs of ¥, are: Individual variables and
variable predicate symbols as in F}, the signs 'C' and !'0' as
in PW, the sign 'I', a constant dyadic predicate called "the
sign of identity," and the sign '—rrk, called the "sign of the
universal quantifier,”
Again, we shall assume all the standard definitions,
including that of the existential quantifier. Note that the
kind of notation used in practice is frequently a matter of
convenience., It will be recalled that sometimes in our work with
Pr in chapter i1 we used the Polish notation, even though the
primitive symbols of that system are not in that notation. We
did this because we feel that the Polish notation is superior to
the "PM-type” notation for work in the PC. For extended work in
quantificational systems, however, we prefer the "PM-type" nota-
tion; hence, we shall often, in this chapter, write out F,; formu-
las in that notation, It is always to be understood, however,
that o formula so presented is a definitional "abbreviation" of
a formula in primitive notation.
Now, the rules of formagtion for ¥n are:
2.214 Ta =1 is wf where a and b are individual variables.
2.,21ii anl o o o a;, is wf where A is a predicate symbol of
degree n and 815 o « o 5 &, are exactly n individual
variables,

r A
2.,21iii -(A) is wf where A is wf.
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2,21iT TAB' is wf where both A and B are wf,
2.21v rka)(A;‘is wf where a is an individual varigble and
A is wf,
An occurrence of a variable a is called "bound in a wff A" if
it is in a wf part of A of form r-(a)E’_‘. Otherwise it is called
"free in A.," A wff in which no variable has a free occurrence
is called "closed.," We write "ewff" for "closed well-formed-
formula.”
The rules of formation for F  are:

2.,21vi O is wf,

2.21vii ria61 is wf where a and b are individual variables,

2.,21lviii This rule is the same as 2.21ii.

r

2.21ix 'CAB  is wf where A and B are wf.

- b |
2.21x TTéA is wf where a2 is an individual variable and
A is wf,

The remarks concerning "freedom," "binding," etc. for F  apply

here as well, mutatis mutandis.

As axioms for both systems we shall employ versions
appropriate to the respective primitive notations of Quine's
"axioms of quantification,” %100, %101, #102, and #103. In
addition we shell have the following axiom schemata for Fos

%_ r a7
R

a
g ™

In FW the extra axiom schemata are:

b A2 DAbS,

- 7
LW Iaa
Pﬁ' rC Tab CB a.Bb—‘ .
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The rule of inference for each system shall be an appropriate

version of Quine's %104, All of Quine'’s metatheorems referred

to here are, of course, from the revised edition of Mathematical

Log ic.

2.22 The Translation Function f!

In chapter i we showed how two functions, f and g, might
be defined. The former was g function which translated alphsg
grephs into formulas of an ordinary PC, and the latter trans-
lated formulas of an ordinary PC into alpha graphs. We are now
prepared to present the similar "translation functions" for the
beta system. These functions will relate beta to the ecalculi
Fr and Ew, end will be called f' and g' respectively,

We shall first consider the function f!'. This function
takes as arguments the members of the set of beta graphs, and
finds its range in the set (Fr) of cwffs of F_. For the pur-
poses of translation, we shall add to the vocabulary of beta
(temporarily) a "translation vocabulary" consisting of three
spots:

(1) 4 unary spot, Q,
(2) A binary spot, L,
(3) &4 ternary spot, B.

We now apply the function f' to an arbitrary beta graph
X. Given X, attach an instance of the spot Q to each dead end
of a LI occurring in X.

Next, we will recall from our earlier remarks what g

loop is. Wherever a loop occurs in X,
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|
o I

break it 1like this:

=

and then attach the two LI ends thus freed, one to each hook

(e

And then, there may be branchings in X. Each of thenm

of the spot L:

will look like this:

>

Erase the center of the branching thus:

~ 7
/

and attach each of the loose ends of LI's thus formed to one of
the hooks of the spot B, like this:
\B/
/

There may be "cyclic graphs" occurring in X. Wherever
such a graph occurs, erase it and write the sign-complex
'(Ew)(w = w)'., Consider this sign-complex for the moment as
if it were a graph.

It is now clear that all the LI's remaining in the graph X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



81

are, must be, geodesic, EBffective means are certainly available
for ordering the set of LI's remaining in X (we remark in pass-
ing that there are now, of course, no dead ends or branchings
left in X). Order this set, and then associate with each such
LT g distinct individual variable of the system F., (excluding
'w')s If a given LI in the graph as it now stands is associated
with the varigble a, erase that LI and write the variable a at
the points in the graph which were connected by the LI in ques-
tion; that is, attach a to the hooks to which the LI had been
connected., Do this for all LI's remalning in the graph. Where
X was the original graph, call the version as so far transformed
I!Xl .H

X' is a graph free of LI's, Where X used LI's to iden-
tify arguments of spots of various kinds, X' uses individual
variables, In this it is much closer to a formula of ordinary
logic than was X. It is also much more similar to an alpha
graph, In fact, we may now use an appropriately altered ver-
sion of the function £ of chapter i to convert X' to a unique
wif of F,. If the cyclic graph occurred in the original graph
X, let the wff '(B w)(w = w)! be carried over into the formuls
we are forming unchanged. The spots Q, L, and B should be as-
soclated with constant predicates Q L, and B of Fr’ the predicates
being unary, binary, and ternary respectively. Al} individual
varigbles should be carried over from X' as arguments of the
predicates associated with the spots to which those individual
varigbles were attached in X'; let the arguments of each of the

predicates I and B be ordered alphabetically, Let esach of the
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variable spots in X' be assoclated with an appropriste variagble
predicate symbol in the formula being formed from X!, Now as-
sign quantifiers to the varigbles of this formula., Begin with
the alphabetically lowest varilable which appears free in the
formula., Where this variable is a, write the quantifier
r(]a.)j in such a manner that it takes as its scope exactly the
least subformula of the whole formula which contains all occur-
rences of a., Do this for each variagble in turn, in alphgbetical
order.

Now for each varisble a2, wherever rQaﬂ occurs, replace

1 B T
the rQa by e = a « For each a and b, wherever Laﬁ\ occurs,

replace it by Co = 51. For each a, b, and ¢, wherever rBab;

occurs, replace it by the formula r(:lw)(a = Web = Wee = wfﬂ.
This completes the instruction for f', Where the graph

we started out with was X, the cwff of F,, we now have is fr{x).

This formula is the unique translation by the function f' of the

graph X into the logic Fr'

2.23 The Translation Function g!

The function g of chapter 1 translates the CPC P, into
the alpha system. The function g' wi 11 perform a similar func-
tion for the first-order calculus and the beta system. Consider
an arbitrary member of the set (Fw)’ A. A is a cwff; its signs
may consist of individual variables, predicate signs of various
degrees, the sign of identity, 'I', the sign of implication, 'C?,
the constant false proposition, '0O!', and the sign of universal

quantification, ! I{ '« Now in the F,, wff A, let us for the
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time being consider the sign complexes':rr-a~l (the'quantifiers)
as if they were themselves wffs, and immedistely before each
! TT ' insert a 'C'; call the resulting formula A'--on the sup-
position that V'T1—a7 is wf, A' is also wf, XNow apply the
function g (from chepter i) to A', with the following adjustments
in instructions: g called for the replacement of PW propositional
variables by alpha minimal graphs, but here let the predicate

signs of A' be replaced by appropriate beta spots: where a predi-

[ B

o8

cate sign of degree n is replaced by a spot {alsc of egrse n,
of course) let the argument variables of that original predicate
sign be'attached to appropriate hooks of the replacing spot. Let
the subformulas P11i;1 and rIaﬁﬂ go into the graph unchanged;
'0', the constant false proposition, will be replaced by the
simple empty cut, S(b).

Now we have transformed A through A' into a graph, but
one without lines of identity. Turn next to the subformulas

"Iab' in that greph. Replace the formula Iab with the greph

D

for each such formula, The motivation behind this move is easy

to understand. If we had taken the fairly obvious step of simply

replacing Iab by the graph a b , we would have no means of

distinguishing the translastion of rIaﬁﬂ from that of "Iba '--for

b and b

a & are, in the beta system, identical graphs;

beta does not distinguish left from right or up from down. The
arrangement of cuts in afggggég—b, however, distinguishes it from
b@—a , and enables us to offer distinct translations for

c

T1ab' and Toat,
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Now turn to the formulas Z] a 1in our graph; consider
an arbitrery one of these formulas in that graph. In the
original formula A there is g quantifier associated with the

1
r]—r a2 we are considering in our greph. In the scope of that
quantifier in A are n occurrences of the variable a which n oc-
currences are bound by the quantifier in question, First of
all, if n = 0, that is, if the quantifier in question is vacuous,
replace the rll a in our graph with ' — !, the simple "double-
dead-end" LI situated entirely in the area in which the ' |\a |
stood.

r -
But if n#+ 0, replace the appropriate 11—a in our graph

with the following sign-complex:

%~——-—-a (1)
— 2 (2)

———a (n)

That is, replace it with a LI having n branchings, at the end
of each of which is the variable a (the parenthesized numerals

in the above diagram are not part of the sign-complex replacing
0.

Now we are ready to complete our translation of the
original formula A into a beta graph. In essence, what we are
gbout to do is just the reverse of a step we took in our descrip-
tion of the function f!'--there we replaced geodesic LI's with
individual variasbles, and here we will replace irdividual vari-

ebles with geodesic LI's., So go to one of the complexes
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Pe oo O

\

standing in our geapn. This sign-complex corresponds to a quanti-
fier in the original cwff A, which quantifier binds n occurrences
of the variable a in A. There are, in our graph as it now
stands, n points--each marked by the variable a--which points
correspond to the n occurrences of a in A bound by the quanti-
fier in question. Let each of the branchings in the above pic-
tured complex be connected by a geodesic LI to one of these
points; erase each of the a's as the LI's are drawn (these vari-
ebles are no longer needed as place holders once the LI's are
present), These connections should be made in some effectiﬁely
determined order; that is, we should have a mechanical procedure
fdr telling which branch of the pictured sign-complex is to be
attached to which point in the graph--we will not describe such
a procedure, but it should be clear that it would be quite easy
(if irrelevantly tedious) to do so.

The above procedure of replacing variables by LI's
should be continued until all variables in the graph have been
replaced by LI's, What we have when we are finished is a beta
graph with ité varisbles replaced by LI's, and with distinctive
signs involving LI's replacing quantifiers and identity formulas,

Where A was the original F_ cwff, the graph we now have is gt(a).t

loP. Willard Van Orman Quine, Mathematical Logic (rev. ed.;
Cambridge: Harvard, 1958), p. 70, Note the similarity between
Quine's "curved line formulas" and the beta graphs which will
constitute the range of g'.
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We must draw attention here to the fact that g! as
described above is not, strictly speeking, one-one, but many-
one, This is so because if B is a mere alphabetic verient of
the cwff A, then with the procedure we have outlined, g'(B)
will be precisely the same graph as g'(A). As a simple example,
the FW cwffs '-TIxIxx' and "(Y&Iyy' will both translate as

the beta graph

One might comment that this is not a serious difficulty;
from one point of view, you might even consider that if A and B
are merely alphabetic variants of each other, then they are
essentially the same formula--from this point of view, g' as it
stands would already be one-one. But I submit that there are
many possible ways of making g'!' take account of alrhabetic vari-
ance, to yleld distinct graphs as values for g' of cwifs A and
B when A and B are distinct alphabetic varients of each other.
Again, however, the description of such means has a definite
tendency to be tedious--to be a kind of intellectual nit-
picking. And it adds little to the main thrust of this paper.
Hence, let us state simply that provisions may be built into g!
to take care of alphabetic varience., Once this is accounted for
and our explicit description of g! taken as above presented, we
may asserp that g' is a one-one recursive word function.

It will be recalled from chapter i that the function g

mapped (PW) onto g recursively characterizable subset of the
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set of alpha graphs, A§7. From the description we have given of
g's, it is clear that the beta graphs constituting the range of
g'! are members of g set in many weys similar to Ag?. As we shall
see later in this chapter, this set too is recursive, although
its characterization is a bit more complex than that of 457.
The set of beta graphs which is the range of g! we will call

2.

to suggest, at least, that beta itself may be considered a com-

The mode of definition of the functions f! and g' tends

plete notational basis for the first-order calculus with identity.
This may seem somewhat weird, for it is quite apparent that beta
has no notation specifically for explicit quantifiers., Weird

it is if we restrict our concept of "gquantification™ to the quan-
tification associated with the ordinary garden-variety quantifier
we are accustomed to seeing. It will be recalled that in work-
ing with the functions f' and g' we make no attempt to correlate
beta graphs with open formulas of predicate calculi; this is
because every beta greph is, in effect, a cwff. One of the
functions of the LI in beta is that of the individual variable,
Quantification over these individual varigbles in beta is not
accomplished by the insertion of a sign of quantification, but

is implicit in a LI wherever it appears. The kind of quantifi-
cation, the way the implicit quantification is to be interpreted,
depends on the location in the beta graph of the LI being con-
sidered, There is nothing unusual about this; it mekes the kind
of quantification (that is, whether the quantification is uni-

versal or existential) depend upon "truth-functional®™ connectives
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in beta, specifically, upon the cuts in the graph by which the
II is enclosed., The ordinary classical quantification depends
for distinction between universal and existential quantification
on truth-functional features also. '(x)! is a universal quanti-
fier, and '-(x)-! is an existential quantifier; the only differ-
ence between them is the presence of negation signs in the latter.
Briefly, we mgy remark that a LI whose outermost point in a
graph X is o0ddly enclosed in X bears an implicit universal quan-
tification in X; otherwise it is existential, This will become
easier to see in our discussion of the theorems of beta, It is
sufficient for now to note that both the function f' and the
function g' take account in their translations of this implicit

guantification in beta.

2.3 Beta as a Logic

2.31 Theorem Generation in Beta

We now move from the study of the set of objects which
qualify to be called beta grephs to the study of the subset of
that set which is characteristic of beta as a logic--the theorems
of beta, We have remarked that every beta graph is to be con-
sidered a closed quantificational formula. It follows rather
trivially from this that every theorem of beta will be a closed
formula., This fact is not as restrictive as it might seem at
first; it is true that there are formulations of the predicate
calculus which recognize some open formulas as theorems, but

this is by no means necessary. The system of Quine's Mathematical

Logic, for example, is one in which every theorem is a cwff; we
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have, in fact, based our systems F, and F, upon the "quantifica-

tion theory"™ of Mathematical Logic.

Beta as a logic is built upon alpha; this becomes appar-
ent in an examination of the set of rules for beta given in
1.505-508, for example., This means that the six rules of infer-
ence for alpha are to be considered to apply to beta graphs as
well, insofar as the transformations wrought by these rules do
not affect the LI's of a greph; in addition, the logic beta
will contain what we may call extensions of these rules for cases
involving transformations affecting LI's; we shall discuss this
presently,

We will recall that the single axiom for alpha is the
simple null-graph b. As we noted in the Introduction, Peirce
indicates that another graph is to be what we would call an
axiom for beta (L.567). For our purposes, we may take this
graph to be the doubly terminating LI--the LI with two dead
ends--standing alone on SA, with no branchings or connections.

It is evident that given this graph as axiom and the rule Rers’
b may be derived as a theorem of beta. Let us then say that the
double-dead-end LI standing on SA is the only axiom of beta.

In beta we have, as we have mentioned, the six alpha
rules of transformation. In this sense beta is founded upon
alpha just as quantification theory is founded upon the PC,
There are also certain specific beta extensions of these rules
which we shall now list (Cf. 4.505-508). Note that we use the
seme notation for these rules as we did for the alpha rules; the

conditions we list here are to be considered clauses extending
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the alpha conditions for the respective rules of transformation,
Following, then, are the "extending clauses” for the
rules of transformation as they shall be employed in beta:
Rins(Y’ X): 1Is true provided Y is exactly like X except

that in an oddly enclosed area where X has two

LTI dead end termini, Y has not those two termini
but a continuous LI joining the points in ¥
corresponding to the points in X to which the

o}

|

terminating LI's were connected {(this rule,

other words, permits the joining of two "loose

ends” in an oddly enclosed area).

Rl r(Y’ X): Is true provided either:

1. Y is exactly like X except that at a point
where X contains a continuous segment of LI,
Y contains a branching with two of the
branches connected respectively to the points
connected by the continous LI in X and the
third coming to a dead end with no cut-
crossings, or

2. X contains at some point a "dead end" LI,
and ¥ is identical to X except for having

that dead end extended geodesically to any

point in Y enclosed by at least all the cuts

by which the original dead end in X was
enclosed, or:
3. We shall call the "boundary" of a subgrsph 2

of a beta graph X an "imsginary self-returning
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line" homeomorphic to a circle which might
te drawn in X to enclose that subgraph; all,
in fact, that is within that boundary will
be considered the subgraph Z., The boundary
may intersect LIfs, but may not intersect
cuts--the contents of the boundary is then

a wf beta graph itseif. Now, if a beta
graph ¥ is exactly like a beta graph X ex-
cept that while X contains somewhere a sub-
graph Z {that is, a boundary could be drawn
somewhere in X, the entire contents of that
boundary being Z), ¥ contains--at some point

enclosed by at least all the cuts enclosing

the original Z--another instance of the
entire contents of the boundary of the sub-
graph Z--if all this is true, then Rj4,(Y, X)
is true. Or,

s X'and Y are as described in clause 3 above
and in gddition, some point (or points) on
an LI (or LI's) belonging to the second
occurrence of Z in Y (that is, within the
boundary of that occurrence of Z) but out-
side any cubts belonging to Z is connected
(are connected) to a geodesic LI (ILI's)
running from the corresponding point (points).
in the original instance of Z into the ares

in whick the new instance of Z in Y has been
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scribed. The connections are always to be
made in that area, and the “"geodesic LI"
may have "branching points" along its
length; that is, it may actually be composed
of a number of LI's connecting at branch-
ing points,

Rbcl(Y’ X): Is true as provided in chapter i for the alpha
system, and in addition, it is true if the two
cuts of the bicleosure present in Y but not in X
intersect LI's in such 2 manner that the inter-
sected segments of LI's pass from entirely
outside the outer to entirely inside the inner
cut--no branching, loops, dead ends, or any

other kind of graph is permitted in the annular

space between the two cuts of the biclosure.

The only signs that may be there are the LI's
enroute from outside to inside the biclosure.
R, (¥s X)2 Is true iff Ry o (8(X), 8(¥)) is true.
Rdit(Y’ X): Is true iff Ritr(x’ Y) is true.
Rnbc(Y’ X): Is true iff Rbcl(X,'Y) is true,

Thus do we state, for the purposes of this chapter, the
beta versions of the rules of transformation, which in the Intro-
duction were numbered 0.07 to 0,12. As is evident, these rules
are not easy to express in English (or French, German, or Sanskrit,
for that matter); but notwithstanding the complexity of their
statement, they are intuitively not at all difficult to grasp.

At this point it might be a good idea tc review the examples of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

the applications of these rules which are presented in the In-
troduction,

We may now move to the statement of g metatheorem which
parallels %#1,01 in the alpha chapter:

%#2,01 Beta is a Logic.,

PROOF: Immediate from our definition of "logic" and the above
statements regarding the axiom and rules of inference of beta, I

Alonzo Churchl makes use of the notion of the "associated
form of the propositional calculus'--abbreviated "afp"--in order
to show that a first-order predicate calculus which he presents is
consistent. We here introduce an analogous notion for the beta
system; we shall speak of "the associated form of the alpha Sys-
tem" or "afa" of a given beta graph. It is clear that the spots
of beta may be correlated one-one with the members of the set Ma
(aside from b), the minimal graphs of alpha., Perform such a
correlation, and for any beta graph X, replace each spot of X
with its associated minimal graph of alpha; in the process, erase
the entire LI network of X. The result of applying these instruc-
tions to a beta graph X is an alpha graph, and this graph will be
called the afa of X,

#2.,02 If X is a theorem of beta, then the afa of X is a
theorem of alpha,.

PROCF: The introduction of any spot with its connected LI's~-
the initial introduction—-into a beta graph is exactly like the

initial introduction of an aglpha minimal graph in the proof of

1Alonzo Church, Introduction to Mathemstical Logic

(Princeton: Princeton, 1556), L, pp. 180-81,
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an alpha graph in that that introduction requires an application
of Rins' Furthermore, all the beta rules of inference as they
apply to transformations involving spots and cuts are directly
parallel to the alpha rules of transformation, prescinding from
the effect these beta rules may have upon any LI's present. IT,
then, there is a proof for the beta graph X, then there is a
proof in alpha directly paralleling the proof of X; where the
proof of X performs some transformation involving a spot, the
proof in alpha performs an analogous transformation involving
an alpha minimel graph associated with the spot in question.
The proof in alpha has no steps paralleling those in beta
which affect only LI's, but this makes no difference, as these
steps do not affect the location, etc., of the spots in X. But
if such a proof exists in alpha, it is, by the definition of afa,
a proof of the afa of X, Thus if X is a beta theorem, the afa of
X is an alpha theorem.l

#2403 Beta is consistent,
PROCOF: It is clear that not every beta graph has an afa which
is a theorem of alpha--an arbitrary spot with its LI's at its
hooks, the whole complex standing alone on SA is sn example of
such a graph. But by #2,02 through modus tollens, then, there
are beta graphs which are not theorems of beta, and beta is con-

sistent..

2e32 The Logic Beta in the System Fo
In section 2.22 we defined a function f' whickh maps the
set of beta graphs into the set of cwffs of Fr' Our project now

is to show that whenever X is a theorem of beta, £'(X) is a
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theorem of Fr' We state first the following lemma?

LEMMA. 2,0l Where X is the axiom of beta, f'(X) is a theorem

of Fr‘
PROCOF: The axiom of beta is a simple double-dead-end LI standing
alone on SA. Then, by the definition of f', £'(X) is the cwff
r(}za)(a = a.a = ai1. This is trivially a theorem of the calculus
Fr'll
This lemma shows that the axiom of beta is correlated by

£* to a theorem of Fr. We now move to lemmas concerning the beta
rules of inference; so far as the "alpha clauses" of these rules
are concerned, we know by our work in chapter i that they "hold"
in Fr’ since F,, 1s, essentially, "based on" the CPC P,.

IEMMA 2.05 Whenever, for beta graphs X and Y, R.,. . (Y, X)

ins
is true, then if fz £'(X), then }-ﬁ £1(Y).

IEMMA 2,06 Whenever, for beta graphs X and Y, Rers(

is true, then if {-ﬁ £1(X), then {-ﬁ £1(Y).

Y, X)

PROOF: (As we will recall, " 5 A" is to be read, "The closure
of A is a theorem of FrP) Based on our work in chapter i (lemmas
1.03 and 1,04) we may take it as fairly evident that the follow-
ing hold:

r a r g r .
- - o - ‘'PA(D)
Ir }-R PA(B) and ‘-R DDE', then \-R PA(D)', and (1)

_ C(ay? _ 5 2 _ BC(py"
If ‘-R PC(B) and [-R B DD, then g PO(D) . (2)
Now let us take as hypotheses:
For beta graphs X and ¥, Ry (¥, X) is true (3)
- 1
bz £ () ()

Now let us define as "Pren(A)" some specific prenex-

normal form of the cwff A; we then have:
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(4), Df. Pren(a) \-ﬁ Pren(f! (X)) (5)
By (3) and the definition of R, ., there are, in an
oddly enclosed area of the graph X two "loose ends™ of LI's,
which loose ends are connected in the graph Y., Hence, by the
definition of the functicn f', Pren(f!(X)) may be represented by
the schema ri’A(a = a.,b = bf’, where Ta = a' and 'b = b are

associated respectively through f! with the two loose ends in

question, It should be clear that we have replaced f£!'(X) by

one of its prenex normel forms to get any gquantifiers which nay
have been introduced by f' out of the way. But now, since

-
rPA(a = a.b = b) 1is the same formula as Pren(f! (X)), we have
by (5) above:

b= P4(a = ap = o) (6),
But by the laws of Fr’ it 1s trivially true that:

¥§ Fa=bD.a=a.b=b" (7).
Then, by (1), (6), (7):

h{. Fph(a = b)! (8).

By Df. Rins’ the graph ¥ differs from the graph :only in having
the two "loose ends" in question connected; the "individuals"
represented by these two "loose ends" in X are then identified
in Y. Step (8) shows that the same identification may be ac-
complished in the system Fr' There should be no trouble in
seeing, given the definition of f! and Rins and the substitutivity
of identity, that l—PA(a = b;‘ is a prenex normal form such that:
b= PA(a = fE £r(x) (9)
Then:by (8), (9) b= 1 (2) (10)

This proves the first of the two lemmas involved. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



97
relation of the second of these lemmas to the first is fairly
clear, and once the first has been proven, the proof of the
second should offer no difficulty.l
We now turn to two more lemmas:
LEMMA 2.07 Whenever, for beta graphs X and Y, Ritp(¥s X)
is true, then if FR £1(X), then FR £1(Y).
LEMMA 2,08 Whenever, for beta graphs X and Y, Rait (¥, X)
is true, then if Pﬁ £1(X), then ‘_ﬁ £ (Y).
PROOF: Recall that for Ripp (and Rs;¢ is Just the converse of
Ritr) there are four basic cases to be considered:
l. When X is transformed into Y by the extension of a branch
from a LI,
S . 2. Vhen X is transformed into Y by the extension inwards
of the loose end of a LI.

3. When X is transformed into ¥ by the iteration of a sub-
graph Z (defined by the notion of the "boundary" of a
subgraph) in the same area or inwards.,

. When X is transformed into Y by an iteration as in 3,
with the maimsenance of certain LI connections.

(For details, see the original statements of the definitions of
Ritr and Rait earlier in this chapter.)
For all of these cases, the following hypotheses will

hold:

hyp. for beta graphs X and Y, Rs;:,.(¥, X) is true (1)
hype. -— 1 (X 2)e
yp [ £1(x) (2)

Now let us consider the first case. Here Y differs from

£ only in having, at some point, 2 branch {(with loose end)
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extending from an LI where X has no such brench. Let a be the
variatle in £!'(X) associated with the LI involved (that from
which the branching is to be extended). The cwff £!'(X) will
then contain at some point a subformula, a function of a con-
taining all occurrences in f!(X) of a, Aa . The cuff f£!'(Y¥)
contains a similar subformula in conjunction with a formulszs
which by £' represents a branching with a loose end. By f!',
the conjunction occurring in f!'(Y) in place of Aa will be of
general form

%]bﬂ}cﬂ]wﬂa=tab=tmc=fuc=0Jb; (3),
where the three formulas involving 'w' represent the branching
itself, and "¢ = ¢' represents the new "loose end" itself, But
clearly, in F p?

{-- La= (Eb (3 c)(]‘w’ J(a = Wweb = Wwec = W.c = c.Ab)-‘ (L.
Then, since f'(Y) differs from £'(X) only in having the equivalent
of (3) where f'(X) has the simple Aa , by the substitutivity of
the biconditional, (Z), and (l.) we have

}ﬁ £1(Y¥), for case 1 (5).

We now consider the second case. Here Y differs from X
only in héving the loose end of a LI "extended geodesically”
inwards from the original position it occupied in X. This means,
by Df. f', that somewhere in £'(X) there will be a subformula
Fa =g corresponding to the loose end in X and the scope of and
bound by a quantifier r( ]a)ﬂ, and that in £'(Y) that formulsa
Ta = &' will not be where it was in £1(X), but will be eisewhere
in the whole formula, though still in the scope of and bound by

that same quantifier (we know from Df, f! that Ta = a' in £1{¥)
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must be within the scope of at least all the negation signs
within whose scope a = a 1is in f!(X))--this all is guaranteed

by the fact that the LI in gquestion is to be extended geodesically

inwards. In all other respects f£'(X) and £!'(¥) are the same.
But we have as an axiom of Fr that

r- Fyg = 2" (6).

R
It should be guite clear from the nature of Fr and (6), then,
that whenever £'(X) and f'(Y) differ only as we have said they
do, then
r _ -

}.ﬁ £1(X)= £ (Y) (7).

(2), (7) h_-{ £1(Y), for case 2 (8)

e turn now to the other cases of the rule R Although

itr.
the stalement of these cases looks very complicated, what they do
in terms of the function f' is really quite simple. We may re-

call the function of the rule Ri in the alpha system. This

tr
rule permits us to iterate a subgraph within the same aresa or
"inmwards.” For the purposes of the beta version of this rule,
we have defined subgraph through the notion of "boundary" in a
graphe Let us ask, first of all, what we do when we iterate

the contents of a "boundary" within a beta graph according to
clause I of the definition of Ritr’ supposing that each distinct
LI outside all cuts in the iterated subgraph is connected by
geodesic LI To the corresponding LI in the original instance of
that subéraph. If there are no such LI's outside all cuts in
this subgraph, then the iteration i§ simply an ordinary alpha
iteration, justified by lemma 1.,07. If there are such LI's,

and all the connections are made as stated, the situation is
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not really too different., What such connections in ¥ assert is
the identity of certain individual variables in £'(Y¥). Where 2
is the iterated graph, and 295 « o o , 8y are the n variables in
£1(Z) which are associated with the n LI's connecting the original
and the new 1lnstances of Z, we are assured by the reguirement of
R't (that such connected points be outside all cuts in Z) and

itr
by the definition of f' that all occurrences of the aj, « « « 5 2

n
in £'(Y) will be in the scope of the appropriate quantifiers,

thet no quantifications will be changed by the iteration. In-
deed, the adjustment of the scope of the quantifiers as they occur
in £'(X) to that as they occur in the formula with iteration,
£1(¥Y), will require, at most, the movement to the right of a right
parenthesis, the scope of each such quantifier in f'(Y) being
included within the scopes of exactly the same negation signs in
£1(Y) as was the scope of the correlate gquantifier in £'(X).

Other than the relatively minor adjustments in scopes of quanti-
fiers in £'(Y), the justification of the transformation from

£1(X) to £1(¥) by R in this case 1s basically the same as the

itr
justification of the transformation from £(X) to £(Y) in lemma
1.07 of chapter i, Thus we see that there is no trouble justify-
ing the iteration of the “contents of a boundary" in a graph X
when each LI within that boundary and outside all cuts in that
boundary is connected by geodesic LI to its correlate LI in the
new instance of the "contents of that boundary,”

Now note that any "significant™ iteration is made into
an evenly encl osed area (for any graph may be inserted in an

oddly enclosed area by R Suppose that such an iteratlon has

ins)'
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been made, with all LI's outside all cuts in Z, the iterated
graph, beling connected by geodesic LI to the correlate Li's
in the original instance of Z, Since the iteration has been made
info an evenly enclosed area, any or all of these geodesic LI's

mey be broken by R (which has already been shown %o have an

ers
anglogous derived rule of inference in Fr) and withdrawn by
clause 2 of Rgyy4 (which also may be considered to have a correlate

derived rule of inference in F

ps DYy our previous work in this

proof). If gll such LI's are broken and withdrawn, the result

———

is the same as that allowed by clause 3 of R, From the in-

itr.
formal argument we have offered, then, I think that it is fairly

easy to accept that when, for beta graphs X and ¥, R:+,.(¥, X)

itr
is true in the cases 3 and l} mentioned at the start of this
proof, and at the same time ¥§ £1(X), then also ¥§ £1(Y).

We have dealt above primarily with Ritr‘ It is safe to
say, I believe, that no elaborate arguments need be offered in
support of lemma 2,08, which asserts the existence in Fr of a
derived rule of inference analogous to Rdit' Rdit is the exact

converse of R and it is clear that lemmas 2,07 and 2.08 stand

itr?
or fall together. We may then say that, in effect, we have
shown that these lermas both hold for Ritr and R34 as previously
defined.l

LEMMA 2,09 Whenever, for beta graphs X and Y, Ryo1 (Y, X)

is true, then if "ﬁ £1(X), then ‘-ﬁ £1(Y).

ILEMMA 2,10 Whenever, for beta graphs X and ¥, Ry, (¥, X)

is true, then if h-{ £1(X), then \-ﬁ £1(¥),

PRCOF: We may say that there are two basic cases to deal with in
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this proof, The first of these is when the two cuts in the bi-
closure which stands in ¥ bubt not in X intersect each LI in-
volved as that LI stands in X no more than once (once, that is,
for each of the cuts). In this case, these lemmss follow im-
mediately from substitutivity of the biconditional and the
theorem-schemsa

!-ﬁ Ta=-',

The other of these basic cases occurs in transformations of the

following kind:
G~y

That is, it occurs when loops are introduced into the graph (or
removed from it) by applications of Rpel (or Rnbc)° We shall
argue very simply here. Note that the translation through f£!
of the graph to the left in the above diagram would be of the
general form
r .
-( 32)(Aa.Ba) s
and that of the graph to the right would be
r )
-(32)(3b)(a = be--(22.B0)) .
Quite trivially in F,, we have
r — . £ j .
- -(ga)(Aa.Ba)T——(g 2)(db)(a = b.--(Aa.Bb) .
This with the substitutivity of the biconditional shows that
lemmas 2.09 and 2,10 hold in the above shown special case. There
would be no trouble in extending the argument to more complex
cases, l
We may move immediately to the metatheorem to which these
len}lfaas have been leading:

%2,11 If a greph X is a theorem of beta, then }-ﬁ £1(X).
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PROOF: Immediate from the preceding lemmas. By 2.0l we know
that there is & proof in Fr for £!' of the axiom of beta, and by
2,05-2,10 we know that when there is a proof in beta leading from
a theorem X of beta to a theorem ¥, and £'(X) is a theorem of Fr’
then there is a proof in Fr for £'(¥)., Thus the metatheorem
holds. .

Thus the functicn f£' relates beta and Fr in one of the
ways that f relates alpha and FP,. As we suggested earlier in
this chapter, the proof of the converse of #2,ll--that is, the
completion of the proof that f' is a full-fledged mapping of the

beta theorems into the Fr theorems--must awailt further develop-

ments in this chapter,

2.33 The System FW in the Logic Beta

The conclusions of the preceding section are not start-
ling. Fr is, after all, a powerful system--the complete first-
oréder calculus with identity. What would be surprising, how-
ever, is to find that the set of theorems of such a calculus
maps one-~-one into the set of beta theorems. It would be sur-
prising from a formal point of view, because the notation of
beta is so different from that of ordinary first-order calculil
and because beta has no explicit quantifier, as well as because
the beta-characteristic clauses of the rules of transformation
seem so directly analogous to the purely alpha parts of the
rules,

It would also be surprising “historically, because al-

- though Peirce may be credited with being one of the midwives

attending the birth of the modern quantifier, he seems--in his
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"algebra of logic"--never to have developed or even to have
tried to develop a complete quantificational logic. If beta
turns out to be, in effect, a complete first-order calculus with
identity, it must be rated as a significant and remarkable ac-
compliskment of a remarkable man, C. S. Peirce.

Again we shall enter into a series of lemmas leading up
to the conclusions of this section., First of 211, a lemma con-
cerning the rule of inference in FW.

LEMMA 2,12 Whenever, for F, cuffs A and B, g'(A) and
g' (A DB) are both beta theorems, then so too
is g'(B).
PROCF: Exactly as for the proof of the "derived rule of detach-
ment" in alpha, lemma 1,15, This is quite clearly a "derived
version" in beta of Quine's #104. The rule 10} reads, "If A
and A B are theorems, then B is a theorem.” In the systenm

of Mathematical Logic~-and so in FW-—all theorems are cwffs;

therefore, the statement of 10l guarantees that both A and B be
cwffs, and so have, in effect, no variables in common. The

graph g!'(ATDOB) will then be of form:

gt (4) ‘EIEH"

There will be no LI's connecting g'(4) and g'(B); thus as we
mentioned, the proof follows exactly as in lemma 1,15, For
beta, we may call this derived rule "Rth.'" l

This last lemma shows that Quine's "axiom of quantifi-

cation” %104 "holds" in the beta system. We now move to a
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consideration of the other "axioms of quantification." First
of all, we shall make some remarks concerning the set of "axioms™
admitted by Quine's %100,

Quine's %100 (taken now for our system FW) reads, "If A
is tautologus, ¥f A" It admits as axioms, then, the closures
of all tautologous wffs of the system. Now, it will be recalled1
that given the axiom schema

feS1cSo8p (1),
where '0!' and '1l! are constant false and true propositions
respectively and ‘8 ' is as we explained in chapter 1, and given
the rules of detachment and substitution for variagbles, we have
a complete basis for the CPC; we have a system within which may
be proven any CPC theorem, any member of the set of tautologous
wffs of the systenm.

Note now the following schema:

'§12.80D(a) . .« (2,)(2)847, n20 (2).
The schema of (2) is to be considered closed, to contain no free
varisbles. The use of 'Q! is as it was in (1); where A is 2
wef of ¥, "8 A" is a wff of F. In (2), A is any wff of F_
(subject to a restriction which will follow), 'O' is the constant
felse proposition, and '1! is the definitional gbbreviation of

10 >0, We specify that where 81s 8o, o o o 5 &, 8Tre the m

$

distinct variables which are free in A, in the schema of (2),

then each of these m varigbles is free at every occurrence in

'S A's This precludes the "capturing" of any of A's free

lcr, Prior, p. 366,
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variablesAby guantifiers which may be "lurking" in the context
3.

It should be evident that (2), when things are as we
have stated them to be, is a theorem schema of FW° But more
interesting is the set of theorems which may be derived from (2)
through the rule of inference %10, A little thought (in the
light of the properties of the schema of (1)) will reveal that

the set of consequences of (2) by %10 includes the entire set

of cuffs of F. which are either themselves tautologous (this is

when, in (2), n = 0) or are formed by prefixing a string of

universal quantifiers to a "most general” tautologous wff of

F,o A "most general" tautology is one which contains no unneces-
sary identifications of free variables. Thus, while '"AxDBy. D:
By DCz.20 AxDCz!' and 'Ax DBx. DD :Bx D Cx, D JAx DCx! are
both tautologies, and both belong to the same tautologous schema,
the latter contains "unnecessary identifications" of free vari-
ables; the former, containing no such unnecesssary identifications,
is a "most general” tautology.

If a2 system, then, contains all the conseguences of (2)
by %10l and contains as well a theorem schema of the general
form:
Qan) N

J
(2 )« oo (a5) « oo (ag)ar” (3),

) e oo (ag) oo (2908 D

where A' is like A except for containing free occurrences of a;s
wherever A contains free occurrences of a., that system will
contain as theorems gll the cwffs which are either themselves

tautologous or are formed by prefixing a string of universal
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guantifiers to any tautologous wff., For (3), which is clearly

a theorem schema of F

permits us to move from the formulas
W’

involving "most general" tautologies to formulas involving less
general tautologies by identifying variables free in the tautolo-
gies in question.

Note that by Quine's definitiont

the closure, properly so
called, of a wff containing free variables is a particular one of
the cwffs which may be formed by prefixing a string of universal
quantifiers to the wff in question--specifically, the closure
is that cwff which has the quantifiers in its prefix arranged
alphabetically, from right to left, none of the quantifiers in
cuestion being vacuous. The set of closures of tautologous
wffs, then, is a subset of the set of theorems provable in the
system conteining (2), (3), and %10u.2 We have slready shown that
#10l has an analog, Rlou’ in beta. If then we can show that
there are theorem schemata in beta which correspond by g!' to
(2) and (3), we will have shown that the following holds:

LEMIA 2,13 When A is the closure of a tautologous wff of

F, s g'(4) is a theorem of beta.
PROCF: We shall first attack the schema (3) above. We shall
prove it only for its simplest case, that is:
by fo)@a=>(a)ar (1),

where A' is like A except for containing free occurrences of a
Lol

1Quine, Pe 79

2Note that since vacuous quantifiers are among those
allowed to be introduced in the schema (2), Quine's %102 would
also be easily provable in this system. We shall not, however,
make use of this in the present development,
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wherever A contains free occurrences of b, The extension to
cases involving more quantifiers and free varigbles wili, I
think, be obvious.

By the alpha rules alone, we have:

beta biclosure, we get:

Applying R;.g» that is, "joining in odd":

‘l||||IIIIIIIII" (7)

With a simple biclosure, (7) becomes:

(8)

By the function g!', (8) may be considered a "graph schema" rep-

Applylng RbCl 2

&

(6)

@

resenting any formula admitted as a theorem of Fw by (L) above;
if, then, B is such a theorem of Fw’ then g'(B) is a theorem of
beta. Note that, strictly speaking, if (8) is g' of (L) then A in
() would contain only one free occurrence of a and one of b, and
A' would contain two free occurrences of a. But let us consider
that each of the two LI's pictured "running into" X in (8) may
represent an indefinite finite number of LI's; (8) may then be
considered to take care of all cases of (L), that is, to account

for the cases when A contains occurrences of a and b in greater

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



109
numbers., We will offer one example; suppose A to contain two

occurrences of a and three of . The schema (8) written out

The proof of this last graph is almost exactly the same as that

fully would then be

of (8) as explicitly shown. It may be said without hesitation
that (8) represents g' of (L), then, regardless of the numbers
of free occurrences of a and b in A .

As we mentioned before, it should be quite clear, now
that we have (8), how one would go about proving g'(B) as a
theorem of beta, where B is an FW theorem which is a member of
the more general schema (3). This would simply be a question of
inserting biclosures at the proper times and places and of making
the proper LI connection as was made at (7) in the above proof.
We shall then state that whenever B is an Fw theorem of the
general form of (3), g'(B) is a theorem of beta.

Now we turn our attention to the schema of (2), which is
really the key schema of this lemma, In the series of grapghs
that follow, we shall execute the proof only for the case in
which n = 1, Extension to cases involving more quantifiers and
free variables will again, I think, be obvious. And the case
where n = 0 is a matter entirely of proof by the alpha rules,
for which see lemma 1,20,

The sign '$f § ' will again be used, and in ruch the

same manner as it was in chapter i. For beta purposes it will
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have a slight extension of usage. Used thus

S

the sign will represent a graph containing occurrences of the
subgraph X, with a separate geodesic LI running from entirely

outside the graph

STKS

to each of the relevant hooks in the subgraph X. If there are
n such hooks in the whole graph thus represented, then there
will be n separate geodesic LI's represented by the LI shown.

If the sign is scribed in this manner:

s

then it will indicate that all these LI's are connected by a
"pranching line" entirely outside the graph so represented.

In the first case, then, the sign will represent a graph of form
«cm

-~
(D)™
W

and in the second, one of form
Q)
163 \/

O]

By the alpha rules and beta Rbcl’ then, we have
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€909

Applying beta Ri :

&-e99

Applying beta R___, "breaking in even":

60 --ED9

Applying beta Ry:., "withdrawal of LI":

60~ 6O

And simple alpha iterations by Ri

tr”

\/\/Z"@

Now we prove another graph--by the alpha rules:

B ED)

s applied as often as necessary:

S§ g R 5 R

Now another new graph--first, agein, by the alpha rules:

s{o}@

as at step (15):

beta R
By eua_ itr

And by beta Ritr
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(1)

(15)

(16)

(17)



1i2

Now apply beta R be’ mnegative biclosure,” as often as needed:
nbc

&:O} (18)

We mey now write the following graph as a specific case of

graph (13);

From the graph of (19) we may deiterate the graphs of (15) and

(18) by R
557 sie} (op%)

But now with several applications of Ry o712 (20) becomes:

ait®

(20)

(21)

An examination of the definition of the function g! will show
us that when B is a member of the schema

F$1:5. S0o(2)84 (22),
where a is free in A (and B is therefore a theorem of Fr)’ the
greph of (21) will do very nicely as g'(B). This means that
when B is a member of the theorem schema (22), g!'(B) is = theorem
of beta. But (22) is the case of the more general schema (2)
when n = 1,

As we mentioned earlier, the extension of the procedure
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to any finite n offers no problem at all., The entire above
proof may be excecuted showing any number of "parallel”™ LI's
explicitly attached to X instead of the one that we actually
showed, If we had shown two such LI's, for example, step (21)

would be (with an extra biclosure):

(23).
This, of course, would be g' of the schemg _
T912.%0D(a,)(a)3 4 (2).
The cases we have been discussing have been cases in-
volving non-vacuous quantifiers. To show that g! of the schems
of (2) is a theorem schema of beta when some of the quantifiers
shown are vacuous would be gquite simple, but irrelevant to the
purpose of the lemma we are proving. e have indicated suffi-
ciently, I think, that when D is g member of the theorem schemna
(2) of Fw’ and all the quantifiers shown are non-vacuous, then
g'(D) is a theorem of beta., We had already shown that if B is

a member of the theorem schema (3) of F_, then g'(B) is a beta

w?
theorem. By lemma 2,12, we know that RlOu’ an analog in beta of
the rule of detachment %10, exists as a derived rule of infer-
ence in beta, Bubt by the remarks we made before we stated the
present lemma, this means that if A is the closure of a tautologous
wff of F s then g'(A) is a theorem of beta. And this is what

we wanted to shcw.'

The last lemma shows that the "axioms of quantification"

admitted %o FW by Quine's *100 map ihto the set ¢f theorems of
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beta by the one-one function g'. The next lemma will show that
the same is true of the axioms of gquantification admitted by
#1011,
IEMMA 2,1} Whenever D is the closure of the Py WEL
M) (aDB)yD.(2)a> (2)E",
then g!'(D) is a theorem of beta.
PROOF: We shall first prove this lemma for the case where D is
precisely the formuls r(a)(A‘DB)‘ID.(a)AD(a)B—‘. Then we
shall show how it holds also in the cases where there are free
veriables in this latter formula. For the case when there are
no variables free in the distribution formula: By the purely

alpha clauses of the rules of transformation:

QO

Applying beta Rbcl:

Applying beta Rers’ "erasure in even':

Applying beta Rj.., "withdrawal of LI":

@ @

Extending branchings by Ritr’ and applying Rbcl several times:
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The graph at (5) is g'(D) when D is the "distribution of univer-
sel quantifier over implication" formula, with no free variables.
Actually, however, (5) as it stands is, strictly speaking; g' (D)
only for the case in which the subformulas A and B of D contain
only one occurrence each of the distributed variable a. It would
be well for us to indicate that g'(D) will be a theorem of beta
regardless of the numbers of occurrences of the distributed
variable in A and B. We shall indicate how the proof may be so
extended by assuming that A contains, say, three occurrences of
the distributed variable, and B two. Then in place of (1)

above, we shall scribe, by the alpha rules alone:

T

Applying beta Ry,; as before:

Now--the characteristic step for these situations--by beta Rygnt

@@ (8)

Note what we have done in step (8). We have iterated segments

(6)

of LI into the annular space between the two cuts of the biclosure

by clause li of beta R We may now easily by beta Rers and

itr*

Rdit move to:
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By applying Rbcl as in step (5) this last graph becomes g! (D),
where D is as hypothesized, with three occurrences of the dis-
tributed variable in A and two in B. It should be evident that
this procedure may be extended to cover any possible combination
of numbers of occurrences of the distributed variable in A and B,

The gbove proocfs were, as we said earlier, procfs for the
case where the distribution formula contains no free variables,
is its own closure. Ve shall offer one example of a case where
the distribution formula contains a free variable; let D be the
cwff

"(5)((2)(aDB) D.(2)a>(a)E)', (10)

where b and only b is free in the distribution formula (with
occurrences, say, in both A and B)., The proof will be identical
to the first we presented, except that we shall start out with a
different first $tep.‘ From our previous work (with lemma 2.,13)

it should be clear that the following is a beta theorem:

(11)

It should be clear that each step of the first proof may be

carried out without difficulty, beginning with (10), to come to

the following result:

(12)
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This last graph is g' of (10) above, assuming that there is one
occurrence of a2 in each of A and B. For cases involving differ-
ent numbers of occurrences of a in A and B, see steps (6) to (9)
above and the remarks therewith. Note that the operations of our
proof do not disturb the LI's representing the occurrences of b
at all, It is clear that the procedure may be extended to any
number of free variagbles in the distribution formula, and we may
consider the lemma proven, l
We now move to a lemma which shows that the "axioms of

quantification" admitted to F by %102 map into the set of beta
theorems by g'.

IEMMA 2,15 Where D is the closure of the F,; WET rA':D(a)A‘,

and the variable a does not occur free in A,
then g'(D) is a theorem of beta.

PROOF: We present the proof only for the case where there are
no variables free in rA‘:D(a)E?; the extension to cases where
there are variables free presents no problem and is quite similar
to the analogous extension in the last lemma. Our explicit
proof, then, is for the case where D is the formula A D (a)h .

The proof involves one step; by the alpha rules alone,

is a theorem of beta; this graph is g! of rk':D(a)Aq when a is
not free in A, that is, when the quantifier r(af1 is vacuous,
The double dead-end Li represents the wacuous quantifier gccord-
ing to g‘.ll

We now move to Quine's +%103:
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IEMMA 2.16 When D is the closure of the F_ wff '(a)A-Dal,
where A' differs from A only in having the (en-
tirely new) variable b wherever A has a, then
g' (D) is a theorem of beta.
PROOF: Once again, we shall show the proof only for the case
where the only free variable in r(a)Aﬁ:DA;1 is b, that is, where
r(a)Aﬂ-l contains no variables free. The extension to cases where
there are other free variables will be as in the preceding lemmas.

By the alpha rules alone we have:

(1)

With beta Ritr and Rbcl we have:

'3

(2)
Applying beta Rers’ breaking in even:

5

(3)

Then, by beta R oy withdrawgl of LI:

_@ 2

di

®

(L)
And finally, Rbcl:

(5)
The graph of (5) is g'(D) where D is the cwff (b)({a)a> Ar) .

&
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The proof as sketched above is, of course, explicitly for the
case when A contains only one occurrence of a fres. The exten-
sion to cases where A contains more than one occurrence of a is
similar to that of steps (6) to (9) of lemma 2.le.l
We now have shown that all the axioms of quantification
of Fw mep into the set of beta theorems by the function g'.
We shall now show that the same is true for the “axioms of
identity" as well.
LEMMA 2,17 When B is one of the FW cwffs

1. r-(a)(a = aix, or the closure of

2. (b)(a)(a =DbD.aaD4ab) ,

then g!'(B) is a theorem of beta,
PROCF: The lemma will be proven by showing that the following
proofs hold in beta:
By the alpha rules, we have:

(1)

Then, by Ritr:

And applying Rpey twice:

(3)
The graph of (3) is g'(B) when B is '(a)(a = a)'.
We shall state the proof for the second schema of this
lemma only for the case in which B itself is the formula
r(b)(a)(a = b .Aa> Ab)'. The proofs for the cases in which A
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contains free variables other than 2 or b wilill be similar to those

outlined in the previous lemmas. We have, then, by the alpha

w

Applying Rbcl twice, we have:

rules and R of beta:
itr

(5)

Applying beta R and, again, beta Rbcl:

itr

(6)
The graph of (6), strictly speaking, is g'(B) when B is the
schema of substitutivity of identity with only one occurrence
of a free in Aa and no varigbles free in B. We shall state
simply that it is quite easy to extend the proof to any case of
the substitutivity of identity. As an example, note a specifiec
instance of this axiom schema:

P () (x = 72 Alxxy) D Alxyy)) e
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The graph corresponding to this formula is

which is easily provable in beta. .

B0

We have now esteblished thet when A is either one of the

axioms of quantification or the axioms of identity of Fw’ then
g'(L) is a theorem of beta. But before we make use of the pre-
ceding lemmas in the proof of the central metatheorem of this
section, let us examine brigfly another issue which shall be of
some importance in that proof,

Apart from the question of whether or not a given beta
graph is a theorem of beta--which is the question of whether or
not there is a proof in beta for that graph--we may raise the
question of whether or not a given beta graph is valid. Although
it is possible to speak of validity in a "purely syntacticall

sense, 1t is undeniable that the notion--even that of syntactical

validity--is intimately related to the interpretation of the

system in question.

From what has gone before, we should have a good idea--
even without the formal statement of semantical rules--of what
the principal interpretation of beta will be., Beta graphs may
be interpreted as statements, statements which are either true

"

or false depending on "certain circumstances,™
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Speaking rather loosely,-we might say that a given beta
graph is valid iff it is true "regardless of what the circum-
stances are," It is incumbent upon us to be rather more specific,
however, in setting down just what it means to say, "The beta
greph X is valid." '

The first step in this direction will be to provide--in
definite terms--a "sound interpretation" of the logic beta. Ac-
cording to Church, |

we call an interpretation of a logistic system sound if,;
under it, all the axioms either denote truth or have always
the value truth, and if further the same thing holds of the
conclusion of any immediate inference if it holds of the
premise.1

The system Fr which we set down earlier in this chapter
is a complete first-order calculus with identity; there are, of
course, sound interpretations of Fr‘ Might it not be possible
to provide our interpretation of beta through F,, and thus
avold the statement of very complex semantical rules for beta?
Indeed it is possible, and the means to do so are already at
hand:

For a given sound interpretation of the system.Fr, let the
interpretation of the beta graph X be precisely the same as
that of the F} cwff £1(X).

Such an interpretation of beta is unquestionably sound,
for our metatheorem #2,11 asserts that if a graph X is a theorem
of beta, then Fﬁ f1(X). This metatheorem guarantees that the
conditions for soundness of an interpretation are met by our

suggestion for an interpretation of the beta system, provided

lchurch, p. 55.
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Fr has a sound interpretation, which it has.

Under this interpretatlion of beta, we may characterize
validity in beta in this manner:

A beta graph X is valid iff the FW ewff £'(X) is valid.

We may then say, in effect, that validity is "preserved"
through the function f"l. In the light of this, we may state
quickly the following lemma:

LEMMA 2,18 Every theorem of beta is valid.
PROOF: By our above remarks on validity in betaa!

Now we may move to the statement of the principal thesis
of this section.,

#2.19 The cwff A is a theorem of F iff g'(A) is a beta

theorem,

PROCF: The "only if" part of this metatheorem follows immediately
from lemmg 2.l12--which asserts the existence of detachment, or
Quine's %104, as a derived rule in beta--lemmas 2,13, 2.1, 2.15,
and 2,16--which assert that the axioms of quantification admitted
to F; by Quine's %100, %101, %102, and %103 respectively map
into the set of beta theorems by g'--and lemma 2,17, which asserts
that the axioms of identity of F,; map by g' into the theorem set
of beta. All the above means that if there is a proof for a
cwff A in F;, then there is a proof for g!(A) in beta, and the
"only if" part of the metatheorem holds.

Now, with the "only if" part holding, it is safe to say
that we could, if we wished, assign a sound interpretation to
FW by means of beta, (through g!') just as we assigned an inter-
pretation to beta through Fne We may say of the fuaction g"l,
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sust as we did of £'7L, that "yalidity is preserved through it."
3

If g'(A) is valid, then, so too will be the cwff A, If the "if"
part of this metatheorem does not hold, then there is some cwff A
of F which is not a theorem of F  while the graph g'(4) is a
beta theorem. But F, is a complete system, which is to say that
in it, every walid cwff 1is a theorem, So if A is not a theorem
of F.., then A is not valid. By modus tollens, then, g!'(A) must
be invalid., But this is impossible, since our supposition was
that g'(4A) is a beta theorem, and by lemma 2.18, every beta
theorem is valid. Thus, if A is not a theorem of F > then gt (4)
cannot be a theorem of beta, and the metatheorem holds in both

directions, l

2.3l The Completeness of Beta
As we stated in the rather trivial lemma 2,18, every
beta theorem is valid, But more interesting than this is the
question of whether or not every valid beta graph is a theorem;
equivalently, this is the question of whether or not beta is
complete., We shall now answer that question in the affirmative:
*2.20 Beta is complete,
PROOF: As we have remarked, beta is complete iff every valid
beta graph is a theorem of beta; this we shall now prove. To
avoid interrupting the general development with a long graphical
proof, we shall, for the moment, assume the following, for which
demonstrations shall subsequently be provided:
1. x the set of beta graphs which is the range of the
function g!', is recursively characterizable,

2. There is a (many-one) function k taking the set of beta
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graphs as its domain and 45? as its range, and such

that:

(a) X is a beta theorem iff k(X) is a beta theorem, and

(b) X is a valid graph iff k(X) is a valid graph.
Suppose that a beta graph X is valid (recall from our earlier
remarks that a beta graph X is valid iff £'(X) is a valid cwff).
Then, by 2~b above, k(X) is also valid. But k(X)éAAS? ;s that is,
there is a cwff A of F, such that k(X) is the same graph as
g'(A); g'(A), being precisely k(X), is valid., But then, as we
remarked in the proof of #2,19, A itself must be valid, and so by
the completeness of F., A must be a theorem of FW. By #2.19,
then, g!'(A)--and so too k(X), which is g'(A)-~-must be a theorem
of beta., But if k(X) is a theorem of beta, then--by 2-a gbove--
so too must X be a theorem of beta. Therefore, if a beta graph
X is valid, it must be a theorem of beta, and beta is complete.
The completion of this proof awaits the demonstration of 1 and
2 gbove, which will follow an immedigte corollary, .
COROLLARY 2,21 If the cwff f£'(X) is a theorem of F,, then the

graph X is & theorem of beta,

PROOF: Immediate: ZEvery theorem of Fr is g valid cwff, so if
£1(X) is a theorem, f'(X) is valid. But then the beta graph X
is also valid, and by %#2.,20 is a beta theoran.l

This last corollary is the long awaited converse of
#2411, and in conjunction with %#2.,1l, it establishes that "A
beta graph X is a theorem of beta iff f£!(X) is a theorem of Fp."

We now move to assumptions 1 and 2 in the proof of %2,20.

We shall first work with the first of these sssumptions, that is,
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that the set ‘4§7is recursively characterizable. We shall show
that it is so characterizable by presenting a set of rules which
characterizes it; these rules will be exactly paral lel respectively
to the rules characterizing the set of cwffs of the system FW.
The major problem here is that the cwffs of FW are defined through
the wffs in general, and there are wffs of Fw which are not
closed; as we have indicated, however, there is no beta graph
which is not a "closed formula,"

We shall require a device in our characterization, then,
to parallel the free varisble of Fw' This device we shall call
the "free LI terminal,” or "fit,"

If a spot has attached to any of its hooks an LI which

crosses no cuts and comes to a dead end without branchings or

connections, that dead end will be called an flt. If either
of the two LI ends extending from the graph '1@5555}" comes to a

dead end without cut-crossing, branching, or connections, it
too will be called an flt. Only these termini will be called
flts,.

Note carefully that the flt is by no means to be consid-
ered to be related to the free variable of F,; by g'--it is merely
an expedient we employ to help us define the set Aé?° We shall
now define a set Q of beta graphs, of which ‘é? is a subset,
just as the cwffs of F,; are a subset of the wffs. We shall in
each case state a rule of formation of F» and with it, the
analogous rule for Q.

2.341 F, rule: '0' (constant false proposition) is wf.
Q rule: The empby cut, ! QO ', velongs to Q, and
has no flts,
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2.3Lhii F._ ruvle:

Q rule:

2.34iii F _ rule:

Q rule:

2.3Liv  F_, rule:

Q rule:

2.3hv F._ rule:

Q@ rule:

127
Igb 1is wf where a2 and b are individual

varigbles,

The graph 'tfzzg}" is a member of Q,

and has 2 flts,
Where A 1s a predicate symbol of degree
n, and 815 835 ¢ ¢ » 5, 2y aren individual

variables, Aajas o o & a, is wf,.
¢

Where s is an n-adic spot, the greph 5;/—‘:."
Cw))
A "

[} o
~ e e do AN hd

f=to
n

e member of Q, and has n flt
LI's attached to the n hooks of s are con-
sidered to terminate with no branchings

or cut-crossings.,

Where A and B are both wf, Cap 1s wf.
Where X and Y are both members of Q, and

X contains m flts and ¥ n flts, then the

is a member of Q and contains m + n flts,
Where A is wf and 2 is an individual vari-
able, '"TTaAﬁ is wf,

(1)--vacuous case--where X is a member of
Q and has n flts, then the graph

is a member of Q and has n flts,
(2)--non-vacuous case--where X is a mem-

ber of Q and has n flts, and Y is the graph
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LIRS %
where both k< n and k = 1 and each of the
k LI's shown "branching off the main
trunk" in the diagram is geodesic for all
1ts length and connects to an gppropriate
one of the flts of X (that is, in a2 deter-
mined "proper order" from the first to
the kth such LI) then Y is a member of
Q and contains n - k flts.
2.34vi  F, rule: (Understanding the meaning of "free
variable") Where A is wf and contains
no free variables, A is a closed wff, or
cwif,
Q rule: Where X is a member of Q, and X contains
no flts, X is a member of //‘O.

This completes the definition of the set 4?7. The "proper
ardering" referred to in 2.3lv is meant to agree with the similar
"ordering of connections" required in the definition of the func-
tion g!' when that function correlates sz non-vacuous quantifier
with a "branching-complex" such as sppears in the graph of 2.3 v,
In fact, if we look back at the definition of the function g!', in
Section 2,23, we shall easily be able to see that the characteriza-
tion of 457 is also the characterization of the set of graphs
which is the range of g!'--the juxtaposition above of the rules

of formation for the system F;» whose cwffs constitute the domain
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of g', and those for the set Q will make this quite obvious,
The set 4§7above characterized is, then, the set of beta graphs
constituting the range of the function g,

The above recursive characterization takes carve of as-
sumption 1 in the proof of %2420, We shall now move on to the
second of these assumptions. This is that there is a function
k with the set of bets graphs as its domain and the set 42935
its range such that:

(a) X is a beta theopem iff k{X) is & beta theorem, and
(b) X is a valid greph iff k(X) is g valig graph,

Because of the large variety of sign-complexes possible
in beta, the demonstration that k exists will be largely a matter
of busy-work, which we now enter into,

First of all, let us specify that if X is az member of 427 s
then k(X) = X, For graphs which are already members of‘427, then,
there is no problem. For them k is simply the identity function,
and trivially possesses the required properties,

For graphs which are not members of the range of g,
however, proving the existence of k is another problem. Our
method will be to show that with applications of the beta rules
of inference alone, any beta graph X as premise has as a conse-
duence a member of Ag’, which we shall eall k(X); and further,
that k(X) as pPremise, by applications of the beta rules alone,
has as a consequence the graph X. If this is the case, then ob-
viously, X is a beta theoprem iff k(X) 1s a bets theorem; this
is one of the required Properties of k.,

We also wished k to be such that X is valid iff k(X)
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is valide If the computation of k(X) from X consists solely in
a deduction from X as premise by the beta rules of transformgtion,
and if, with k(X) as premise X can be derived by the beta rules
alone, then it is indeed the case that X is valid iff k(X) is
valide If R(Y, X) is one of the beta rules, then, as we have
shown for each of these rules, if f'(X) is a theorem of Fns then
so too is £'(¥Y). Suppose X to be valid; then £'(X) must also
be valid, by our definition of velidity in beta.(since we have
agreed that the interpretation of any beta graph is to be exactly
the same as that of f' of that graph). By the completeness of
Fo, then, £'(X) is a theorem of Fn,e Then if for some Y, R(Y, X)
is true, then also f£'(Y) is a theorem of Fr' But then f£'(Y) is
trivially valid, and so too then is ¥, We conclude then that no
consequence of a valild beta graph by the beta rules of inference
can be invalid, and so as we have susgested k should be, X is
valid iff k(X) is valid.

We know, then, that if k(X) is computed by taking X as
a premise and applying the beta rules of transformation, and if
with k(X) as a premise X may be deduced by the beta rules alone,
then both of the properties required of our function k in the
proof of #2,20 are there, that is, X is a beta theorem iff k(X)
is, and X is wvalid iff k(X) is.

It is now a question of showing that any beta graph as
premise may be transformed into a member of 4g?tw'the beta
rules alone, and that that member of 2 as premise may be
transformed back into X by the beta rules of transformation

alone,
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We now take an arbitrary beta graph X which is not a
member of 42?. We may say this: if X is to be transformed into
a member of 427, then there must be transformations available
which will enable us, first, to get the LI network of X into a
pattern characteristic of a member of‘427, and secondly, to
transform the cut-nest of X into a cut-nest characteristic of a
member of R
We first approach the problem of the LI network. We
shall do this in steps:
Step 0: If X is of form <:> > let it as it is; otherwise,
transform it to by Rpe1e
Step 1: The "cyclic graph" step. If there are any cyclic
graphs in X, convert them to double dead end II's

by R.

ity and Rdit th.us:

O— H —|
Rt Kd:f
Step 2: The "dead end" step., If a dead end occurs in a
given area of the graph resulting from the previous

steps, then for that area we have one of the fool-

wing forms, where W is the intire graph in that

area gpart from the dead end in question (note that

W could be as little as the "other end" of a double-
dead-end LI, or even, in some cases, the null-
graph), and--in (2) below--Z is the graph, whatever
it might be, which is outside the area in question,

and to which the dead end in question is connected.
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We thus have, for a given dead end in a given
area, either

(1) or (2)

A )

These may be transformed by Rbcl respectively to

Y

(1) or (21)

=&

Now, in some established order, carry out the ap-

®

plicable one of the transformations above for each

individual dead end in the graph resulting from

step 1.

Step 3: The "branching” step. If a branching occurs in a
given area of the graph resulting from the previous
steps, then for that area we have one of the follow-
ing forms, where W is as in step 2, and X,Y, and Z
all have the function of Z in step 2.

(3) or (L) or (5) or (6)

S & D XD

By Rbcl’ these may be transformed respectively to
(31) or (L4') or (5') or (61)

@ @ 1D H)

Now, in some established order, carry out ths appli-

cable one of the above transformations for every
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individual branching in the graph resulting from

step 2.

Step lL: The "connecting LI" step. In the graph resulting
from the previous steps, there may be places where
two graphs in the same area, ¥ and Z, are connected
by a LI which has ifs outermost portion in the same
area in which ¥ and Z occur. This is case

(7)
Y—"2

BY Rye1s this may be transformed into
(71)

(B

Now, in some established order, carry out the
above transformation for every case in the graph
resulting from the previous steps where two graphs
are connected as in (7).

Step 5: The "in-pointing loop" step. In the graph result-
ing from the above steps, there may be cases where
there are loops with "their ends pointed in'--if
step L had to be applied, there will indeed be such
loops. For a given area into which such a loop

points, using W as before, we have

(8)
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By Rbcl’ this may be transformed to

(81)

For every such in-pointing loop in the graph
resulting from step i, in some estgblished order,
carry out the above transformation., Note that if at
(8) there were two such loops, the finel result of

the transformation would look like

Step 6: The "quantifier-indicating" step. In the graph as
so far transformed, dead-ends, "in-pointing" loops
(those of step 5), and branchings all occur, respec-
tively in subgrephs of the forms, now to be shown,
where the dead end, loop, or branching is the only
sign in the annulaer space between the two cuts
shown with the possible exception of geodesic LI's
which pass from completely outside the outer to
completely inside the inner of the cuts. The operg-
tions to this point have been arranged, then, so
that the dead end, in-pointing loop, or branching
is the only graph standing in that annular space.
Each dead end, in-loop, or branching of the graph,

then, occurs, respectively in a subgreph of form
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(9)--for dead end (10)--for in- (11)--for
pointing loop branching

© @

By Ritr these may be transformed into
(9) (107) (111)

&)

At this point a striking similerity to éomething we
saw in rule 5 of the cheracterization of 4§7shows
upe. Before we remark on that, however, we will
take one further step.

Step 7: The "out-pointing loop" step. A1l loops remaining
in the graph as it now stands are "out-pointing";
where such a loop occurs in a given area, we have

(using W,Y, and Z as before)

(12)
»Yt:zj:::>
X2

By Ry,3 this is transformable to
(121)

Z
Transform every loop remaining in the graph result-

ing from step 6 as above.
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v Y (u_') wkcn 2 ‘cops s'i?md in The
X 2 same avea as W

I contend that we hsve now transformed--using Rbcl’ Ritr’ and
R334 alone--the LI network of the original graph into an LI
network characteristic of a member of 7k Note that all
branchings and dead ends in the transformed graph occur in sub-
graphs of form (9'), (10'), or (11!') above. This is precisely
as 1s required for the branchings and dead ends of a member of

4g) by rules 5 and 6 characterizing /57. Note too that g1l
the loops in the graph we now have occur only in subgraphs
’téEé}', by step 7. This also is as required by the characteriza-
tion of 427. Any LI which crosses a cut--apart from t hose in
the subgraphs R€§§§}'--is eodesic, and moves inwards from one
of the branching complexes '}.*, ! t: fy, or ! EE ' as they occur
in the forms (9'), (10'), and (11!') to connect either to a hook
of a spot or to one end of the graph h@gé;}'. Thus I submit
that we have transformed the LI network of the original greph
into an LI network characteristic of a member of 427. What
follows is easy. The steps required to make the graph as it now
stands a member of ﬂ are almost the same as the steps by which
any alpha graph may be transformed into a member of /ﬁf. That is,
by appropriate biclosures only, the graph may be transformed
into the desired form. The problem in the general case, is that
of getting the cut nest of the graph resultingvfrom our seven
steps into the form of a cut nest characteristic of a member of
/g.

I shall go no further here than to offer the argumnent
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that just as any wff containing only the connectives 'X! and
'N' may be transformed into an equivalent wff containing only
the connective 'C! and the constant false proposition '0!
merely by aepplication of the law 'EpNNp' through substitutivity
of equivalence and the equivalences 'ENNKpNNGNCplg! and then
'ENpCpOt, so too may any graph resulting from the application
of our seven steps be converted, by Rbcl alone, to a member of
422 Once the LI network is taken care of--which we did in the
seven steps--the rest is easy.

Thus we will argue that the function k required for the
proof of the completeness of beta exists, and has the properties
required of it. We have shown explicitly that an arbitrary graph
X may be converted by the beta rules Rbcl’ Ritr’ and Rdit alone
into a member of Ag)which we may call k(X). And since the above
mentioned rules are all that are required to do the job, with
X(X) as a premise, X may be derived, since the converse of each
of the rules used is itself a rule of beta; the proof of X from
k(X) is then just the "reverse" of that of k(X) from X. We have
thus shown that with an arbitrary beta graph X as premise, k(X)
such that k(X) is a member of 42? may be computed using the beta
rules alone, and that if that k(X) is taken as a premise, X may
be derived by the beta mules alone. Therefore, as required in
the metatheorem on completeness, there is a k such that for any
X, k(X)Evéé? > and both X is a theorem of beta iff k(X) is, and

X is valid iff k(X) is.
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2.35 The Intertranslatability of Beta and First Order
Calculi with Identity
Recalling Martin Davis's definition of translatability,
which we employed in chapter i, we may state the following meta-
theorem:

#*2.,22 DBeta is translatable into any complete classical
first-order calculus with identity, and any such cal-
culus is translatable into beta.

PROOF: Immediate. the functions f' and g' are both one-ons
functions, as required in the definition of translatability, and
we have proven that: X is a beta theorem iff f£'(X) is a theorem
of F,,, which means, by the definition, that beta is translatable
into Fr' We have also proven that a cwff A is a theorem of F
iff g'(A) is a theorem of beta, which means that F, is translstable
into beta. But FW and Fr are translatable into each other, and
into any full classical first-order calculus with identity, and
any such calculus is translatable into either Fw_or Fr‘ By the
transitivity of translatability, then, the metatheorem holds, '
COROLLARY 2,23 The decision problem for beta is recursively
unsolvable,

PROCF: By Martin Davis's theoren 8.1.3,l #2,22, and the recursive
unsolvability of the decision problem for full first-order cal-
culi. I

This chapter has been quite an effort--for reader as much

as for author, I am sure--but I believe that it has been worth

1Davis, p. 119,
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ite It has established that the unlikely loocking system beta
is, in effect, a full first-order calculus with identity. And
it has introduced us to and shown us the power of a novel con-
cept in symbolic logic--that of implicit quantification as

exemplified in the beta line of identity.
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CHAPTER IIT
THE GAMMA SYSTEMS

In the Introduction, we showed that the "gamma part" of
the Existential Graphs had & place near to the very heart of
Co S. Peirce., Gomma as Peirce envisioned it was a system of
many signs, of great complexibty. Primsrily, it was to be the
system which, by using a book of sheets of assertion rather than
just one, was to add an "extra dimension" to the logical analysis
of reality; gamma was to help us extend tnis analysis to possible
universes of discourse and to enable us to deal with problems
beyond the scope of alpha and beta,
Hopes for the stereoscopic gamma went a-glimmering,
Peirce was not able to pull the system together as he wanted to,
But he did try to make a start; we restate here a passage we
quoted in the Introduction:
In endeavoring to begin the construction of the gamma part
of the system of existential graphs, what I had to do was
to select, from the enormous mass of ideas thus suggested,
a small number convenient to work with., It did not seem
to be convenient to use more than one actual sheet at one
time; but it seemed that various different kinds of cuts
would be wanted (l,51l),
The "different cut" to which Peirce seems to have paid
most attention is the "broken cut," which we will recall from

the Introduction. This is, in fact, the only of the gamma cuts
to which any real attention is paid in the writings of Peirce

10
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appearing in the Collected Papers. The bulk of this chapter

will be devoted to a study of systems including the broken cut
eamong their signs,

In l1.516, Peirce states two rules for the use of the
broken cut; one of these rules is our 0.13 of the Introduction.
The other rule has two clauses and is stated as our 0,1l and
0.15 in the Introduction, We may at this point repeat these
rules as we stated them there:

0.13 In a broken cut already on SA any graph may be in-
serted,

0.1y A broken cut in an area enclosed by an odd number of
cuts (which may be either alpha or broken cuts) may
be transformed to an alpha cut (by "filling in" the
breaks in it),

0.15 An alpha cut in an area enclosed by an even number of
or by no cuts may be transformed to a broken cut (by
erasing parts of it).

At this point we shall simply remark that these rules
are open to amplification and interpretation, as we shall
eventually see; and depending on how we amplify and interpret,
they will yield us a variety of logical systems. In this they
are like the rule of "strict implication introduction,” for
example, which is used by Anderson and Johnstore 1 to set up a
system of natural deduction which is basicslly equivalent to the
Lewis-modal SL. Although the rule as they present it enables us
to derive the theorems of Sl within their system, there would be
no trouble in so modifying the restrictions on the application

of the rule as to enable us to derive the theorems of, say, the

system S5,

Lronn M, Anderson and Henry W, Johnstone, Jr., Natural
Deduction (Belmont, California: Wadsworth, 1962), p. 130,
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We shall, then, construct several "broken cut" systems
by slightly modifying certain rules for transformations involving

the broken cut. As we will recall from the Introduction, the
aph -
grap (}(>
may be interpreted as asserting, "It is possibly not the case
that X." Systems containing the broken cut among their signs,

then, may be considered systems of modal logic.

In chapters i and ii we compared the alpha and beta sys-
tems to ordinary logical calculi., The project for gamma will
be similar., We shall compare the broken cut systems which we
will define with ordinary systems of modal logic. We shall de-
fine four different broken cut systems, and shail compare them
to four different standard modal systems., Three of the systems
we shall thus use belong to the family of "Lewis-modal" systems,
the "classical" modal systems of contemporary logic. The fourth
gystem is a rather unusual modal system invented by Lukasiewicz.

The usual axiomatizations of modal systems ordinarily
take either "necessity" (with 'Ip!' read as "necessarily p") or
"possibility" (with 'Mp'! read as "possibly p") as primitive
modal operators. Since the primitive modal operator in the
gamma systems is the broken cut, which states "possibly not,"
it may be worthwhile to provide axiomatizations of our ordinary
modal systems taking "possibly not" as primitive rather than the
usual "possibly" or "necessarily.," We thus shall state scme
rather neat axiomatizations of several Lewis-modal sy stems

taking "possibly not" as primitive--these are, so far as T anm
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aware, new bases for these systems,

We shall then present the axiomatic basis for that
unusual system of Lukasiewicz, and then make some remarks about
that calculus,

The next step will be to describe each of the four broken
cut systems we have mentioned, and to compare each in turn to an
appropriate standard modal system. We shall, in fact, show that
our broken cut systems are equivalent to these standard systems

in the same sense that alpha, say, is equivalent to the CPC,

3.1 Remarks on Some Standard Modal Systems

If the alpha cut is to be considered a negation sign,
then the broken cut will be a sign that states "possibly not,"
The broken cut then represents a "weak negation," We shall
presently be comparing the systems involving the broken cut to
cervain standard modal calculi. As we mentioned, these systems
are ordinarily formulated using either 'M!' (possibility) or !'L!
(necessity) as a primitive modal operator. It is easily possible,
however, to get nice axiomatizations of the standard modal sys-
tems with which we will be concerned using "possibly not" as
the only primitive modal concept. We may read 'Rp! as "possibly
not p." Then we have:

Definitions: M é} RN; L 5; NR.

Rule of Inference: If & is a theorem, so too is NR «,
This rule may be called "RL.," (This is
the name of the rule, and not a sequence

of operators,)
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Stock of Axioms:

1, CNCRpRagRCap

1, CRCRpRQRCagp

1r', CRRCpqCRQRp

2e CNpRp

3. CRRpNRRNp.

The axioms and rule will be considered to be subjoined
to a complete CPC base, including the rules of detachment and
substitution of variables, The specific formulestions of the
systems are as follows:

For each of the systems below, any complete base for the

CFC. Also for each of these systems, the rule "RL" mentioned
above. In addition, the axioms for the respective systems
from the above stock are:

For T: 1l and 2,

For Sh: 1' and 2,

For Sh.2: 1!, 2, and 3,

For S5: 1't' and 2,

In what follows, we will allude to "well-known" axiomatizations
of the above systems, ih general, those developed by E, J.
Lemmon.l

At this point I shall also remark that although we will
develop no broken cut system analogous to the calculus T, we
include its axiomatization in 'R' here as a matter of general

interest.

1An excellent quick reference to these well-=-known formula-

tions may be found in Friow. pp. 312 ff.
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The axioms are; in general, quite expressive of the na-

ture of 'R! as a sign of "weak negation." Axiom 2 indicates
that this weak negation of a statement follows from the ordinary
negation; this axiom is equivalent iﬁ deductive power to the
theses 'CLpp' and 'CpMp'. Axioms 1, 1!, and 1!'!' gre "laws of
transposition" for the weak negation, snalogous to ordinary PC
laws of transposition like 'CCNpNqgCgp'. By applications of ap-
propriate CFPC laws and the definition of 'L!', axiom 1 becomes
'CLCpaClplg', and axiom 1! becomes !'CLCpqLCLpla!, It is well-
known that CPC, RL, end the two theses:

*1l, CLCpaCIlpLg

%2, CLpp
together are an axiomatic basis for the system T, while a replace-
ment of *1 above by

%*1', CLCpqLCLpLg
yields the system Sli. Our axioms 1 and 1', again, are easily
shown %o be theses of T and Sl respectively., We may state with-
out hesitation, then, that the axioms in 'R! as we have given
them form bases for T and Sh. The system SL.2 is ordinarily
formulated by subjoining the formula 'CMLpIMp' to a basis suf-
ficient for Sli; our axiom 3 is definitionally equivalent to this
last formula, so we have also provided a sufficient base for
She2.

The iterated modality 'RR' is equivalent to 'ML' ("pos-

8ibly-not possibly-not" is the same as "possibly necessarily").
With this in mind, and transposing the consequent of 1rer, Q11

beconmes:
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#*1'', CMLCpaCLpLge.
This latter formuls is, of course, also easily transformable
back into 1tt!', If #1'% 1s a thesis of g system, and %2 is also
a thesis, then %1 is easily provable. Now substitute 'Cpp!
for 'p' in *1''; the result is:

L. CMLCCppqCLCppldg,
By PC and RL, the following strict equivalence holds:

5. LEqCCprg.
By PC and the substitutivity of strict ecquivalence, which holds
in the system containing PC, RL, %1, and %2, all of which we
have, and using the strict equivalence at 5, L. becomes:

6. CLCppCHLgLg;
detaching now with the thesis 'LCpp', which holds in a2ll Lewis~-
modal systems, we get:

7o CMLQLQ.
This is a characteristic reduction formula for S5, the strongest
of the Lewis-model systems; CPC, RL, %1, %2, and 7, in fact,
constitute a standard exiomatic base for S5. The formula *1!'!
is itself an S5 thesis, and easily shown to be such. It follows,
then, that CPC, RL, #1l'', and %2 form a sufficient base for S5;
and then so too will CPC, RL, 1'!', gnd 2--our axioms in 'R!'--
as we stated earlier,

Of the systems for which we have provided "R-primitive"
bases, we shall be interested in the relationship of Sl, Sh.2,
and S5 to the broken cut systems. We shell also be concerned
with one other modal system in this connection, and a rather

unusual system at that. This is the "H-modal” system of
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if:rx.ﬂzce.s:’Lewicz.q‘L It should be pointed out that this is not the
fairly well-known "three-valued" modal logic of Lukasiewicz,
but a system based on his PC extended to include functor-varigbles,
which we mentioned in chapter i, We will not, however, consider
the system as we state it to include primitive functor variables;
"formulas" like 'CpC&18p!, for example, will be considered
theorem-schemata rather than theorems. It is clear that for
every theorem containing functor variasbles in the system as
fukasiewicz states it, there will be an identical-appearin
theoren schema of the system as we state it., The f-modal system
contains the rules of detachment and substitution for variasbles,
and has as axioms:
8. "Cgpc:SNpgq_1
9. CLpp,
with standard definition "M 5 NIN"; this is the system with
'LY primitive., It might also be stated with 'M! primitive, or
even with 'R! primitive. &Lukasiewicz also lists two "axiomatic
rejections" for the system:
#*Cplp
#NLpe.
These will not be of too much interest for our purposes, for
they do not actually enter into the generation of the set of
theorems of the system,
The system as stated looks innocuous enough, but there

is one catch. Functor signs, like 'S ! in 8, may stand in place

IFor details on this system, see Prior, pp. 208-209, and
A. N, Prior, Time and Modality (Oxford: Oxford, 1957).pp. 1 7f.
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of any context whatsocever, including modal contexts. This
causes some unusual results; the formula

10, CLCpaCpLqg,
for example, is a thesis of the system. This formula could not
be a thesis in any of the Lewis-modal systems, for they all con-~
tain as a law 'LCpp', which in the presence of 10 would yield
as a theorem 'CpLp', and thereby destroy the modal nsture of the
system. <£H-modal, however, contains no thesis of the form FLO?;
end so this problem does not arise there. Also among the stranse
laws of this system are formulas like

11, CMplMLp,
which are also incompatible with many charecteristic Lewis-
modal theses. This last is a reduction formula, but it differs
from, say, the reduction theses of S5. Where the S5 reduction
formulas ﬁreduce" a string of modal operators to the rightmost
member of the string, as indicated by'7, the H-model reduction
theses reduce such a string to the leftmost member, as indicated
by 1l. As zn example, 'MLIMMMIMLPp' is equivalent in S5 to the

simple 'Lp', while in L*modal it is equivalent to 'Mp!?.

3.2 The Broken Cut Systems

We now turn our attention back to the broken cut., Earlier
in this chapter, we repeated from the Introduction the rules
0+13, 0.1, and 0.15 for the use of the broken cut. There is
not too much doubt about how the latter two of these rules.are
to be interpreted and applied; 0,13, however, begs for study.
The question raised by 0,13 is this: Just what is to be the

over-all function of the alpha rules of transformation in s
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system containing the gamms cut? For example, the transformation

&) — D

would involve the iteration of a graph "across a broken cut."

Do we wish to pemit such transformations at a2ll? Do we wish

to permit them with certain restrictions? Or do we wish to
permit them in unlimited fashion? The rule 0.13 is in itself a
very limited rule, as it is stated. But it does involve a cer-
tain "cross-breeding" of alpha and gemma concepts, Although it
is really just a weak "gamma-version" of cur alpha Ring» it
somewhat coercively turns our attention to the aquestion of alpha
and garma eross-breeding" in the rules in general,

Well, we now propose to open an exXperimental farm for the
investigation of some of the possible hybrids, and for the compari-
son of them with some of the earlier mentioned standard breeds of
modal logic., I think we shall find the alpha-gamma progeny, un-
like most hybrids, relatively fertile,

3.21 Gamma-MR: Broken Cuts with Minimal Restrictions
The first broken cut system we shall develop and study
is one which allows the most liberal possible interpretation
within gamma of the alpha rules of inference; we shall call this
system "gamma-MR." The basis for gamma-MR will be as follows:
The single axiom for gemma-MR will be b, the blank
.alpha Sa. |
will apply just as they do in

ins
alpha, and for purposes of their application, broken cuts

The rules R. and Rers
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will be counted as if they were alpha cuts to determine
"oddness" or "eveness" of enclosure.

The rules Ritr and Rdit will apply just as they do in
alpha; any graph may be iterated (or deiterated), across
any kind of cut or combination or cuts, just as if they
were alpha cuts.

The rules R and Rn

bel be
in alpha, in any area at all, But it is understood that the

may be applied just as they are

only cuts that may be inserted or removed by these rules are

alpha cuts.

In addition, there shall be two other rules which shall
apply in this system; these rules correspond to our 0,1l and
0.15.

Rgam(Y’ X): Which is true iff X contains, in an area en-
closed by an even number of or by no cuts of
either kind or in any mixture, an alpha cut, and
Y is like X except for having at that position
a broken cut rather than an alpha cut,

Rngmﬁz’ X): Which is true iff Rgam(S(X), S(Y)) is true.

Before we go any further, let us state--without explicit

proof, however--two theses which will be useful in what follows.
These theses will be analogs for our modal systems of lemmas
1.03 and 1,0l:
%3.01 When QA(B) and ‘DB are theorems of L-modal, so
too is QA(D) .
When FQA(B)1 and D= B are theorems of s, She2,
or S5, then so too is FQA(Df‘ a theorem of the system

in question,
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#3,02 TWhen ’_Q,G(B)—l and’BD D' are theorems of L-modal, so
too is r-QC(D).-‘.
When t-QC(B)—‘ and "B3D' are theorems of Sl, Sh.2, or
S5, then so too is rQC(Df1 a theorem of the system
in question,
The formula 'p —3q'!', of course, is read, "p strictly implies q";
it is equivalent to the formula-~in Polish notation--!'ILCpq’.
The notation used above is used simply for the sake of consis-
tency with that of lemmas 1.03 and 1l.0L. We may assume that the
systems for which these theses are stated are "L-primitive'
systéms; and 'Lt' gffects the A-pos or C-pos of subformulas in
its scope in no way. The theses above are provable by an in-
duction on the number of L's (belonging to the formula Q*(B) or
QC(B)) within whose score B is located. But without going through
the tedium of an explicit proof, I submit that the theses are in-
tuitively quite acceptable. Recall the relationship of lemmas
1,03 and 1,04 to the rule of substitutivity of material equiva-
lence in CPC. It may then help our intuition if we note that
substitutivity of material equivalence holds in the &-modal
system, while substitutivity of strict equivalence holds in all
the Lewis-modal systems. That the above theses would hold in
"M-primitive"™ or "R-primitive" systems is evident. Just note
that since ERpNLp, an R will affect the A-pos or C-pos of formu-
las in its scope just as if it were an 'N?,
We may now begin our comparison of gamma-MR with an
"ordinary" modal logic. The calculus used here will be the &~

modal system. In our comparison of alpha with the CPC we found
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it convenient to use two formulations of that calculus, Pr and
Pw, the former with "K-N" primitive, the latter with "C-0O%
primitive, We may similarly think of two formulations of &H-
modsl, one with "K-N-R" primitive ('R', of course, being our
possibly-not operator) and the other with "C-0-R" as primitive,
in chapter i we defined functions f, h, and g; it should be
evident that we may extend these functions so that they may be
able to relate the broken cut systems to systems like &-modal.
All that is required here is an instruction to correlate the
broken cut to the modal operator 'R!'. Call the functions thus
extended f3%, h*, and g respectively.

In chapter i, we showed that f of the singie axiom of
alpha, the null-graeph, is a theorem of Pr' Theinull-graph b
is also the only axiom of gamma-MR; f%(b) is '-(po.-po)',just
as was f(b)., Clearly, then, £3%(b) is a theorem of L-modal.

We also showed in chapter i1 that when R(Y, X) is one of
the rules of inference of alpha, and is true for alpha grephs
X and Y, then if f£(X) is a CPC theorem, so too is £(¥).

The rules of inference of alpha hold unrestricted in
garma-MR, But %3.01 and #%3.02 hold for &-modal, and the schema
rCSpCSNqu?
holds unrestricted in E-modal, as we have mentioned (it is, in
fact, an axiom-schema of that system). There would then be no
trouble in extending the proofs of chapter i to show that when
R(Y, X) is one of the alpha rules as employed in gamma-MR, and
is true for gammae-MR graphs X and Y, then if £#(X) is a theorem

of E-modal, then so too is £x(Y¥).
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Gamma-MR also includes two rules for the broken cut--
Rgam’ which permits an evenly enclosed alpha cut to be trans-

formed to a broken cut, and Rn s Which permits an oddly enclosed

broken cut to be transformed tfman alpha cut., #-modal, of course,
contains the law 'CNpRp'; in the presence of #%3,01 and 3,02,
this means--since the broken cut is correlated by our functions
to 'R' just as the alpha cut is to 'N!'--that if either Rgam(y’ X)
or Rngm(Y’ X) is true for gamma-MR grephs X and Y, then if f£:%(X)
is ;n B-modal theorem, so too is £%(Y).

In summary, all of the above means that:

If X is a theorem of gamma-MR, then £:(X) is a theorem of

E-modal,
Now turning to the "other direction" of the proof, re-
call again that the rules of insertion and erasure, iteration
and deiteration, and positive and negative biclosure hold un-

restricted in gamma-MR. This means that the graph

@@ )

is provable in gamma-MR just as it is in alpha, even though

here ! g{? ' may stand for any graphical context, may include
broken cuts. This graph corresponds by g% (or by h#*) to the
axiom-schema of H-modal, which is "unrestricted" in the same

sense as is this "graph-schema,"

The greph
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is trivially provable in gamma-MR by R and the alpha rules,

gam
This graph corresponds by gi# (or by h*%) to the &-modal axiom
'CNpRp! (which is, of course, equivalent to 'CLpp!).

It is clear that the analogs of the rules of substitu-
tion and detachment hold in gamma-MR as "derived rules of infer-
ence" just as they do in alpha.

Given the above, we submit that the following hold, as

analogs of %1,1l7 and #%1,21 of chapter i:

If £:#(X) is a theorem of H-modal, then X is s theorem of

gamma-MR, and A is a theorem of F-modal iff gx(X) is s

theorem of gamma-MR,

The three underscored statements in the above develop-
ment assert equivalently that H-modal and gamma-MR are translatable
into each other in our technical sense of "translatable." And
they mean that gamma-MR and &-modal are equivalent 40 each other
in the same senée that alpha is equivalent to the CPC. This
result should;not have been unexpected, since the unrestricted
"eross-breeding” of alphs and gamma concepts in gemma-MR is
strikingly like the unrestricted "cross-breeding" of truth-
functional and modal concepts in the %-modal system,

To drive the point home a little harder, we shall now
engage in a few graphical derivations within gamma-MR, We
shall prove within gamma-MR some typical graphs of the system;
they shall be seen to correspond to characteristic theses of the

H-modal system.

By alpha rules (1)
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(L), R, R (2)
1

tr bel
(2), Ryt (note the
dependence on un-

(3)

restricted R

itr)

(305 Rygy ()

Note that given the definitions 'L' for 'NR!' and 'Np!
for 'Cp0*, (L) is equivalent to a2 characteristic E&-modal thesis,
'CLCpqCpla’. The critical step of this deduction is (3), where
b' is iterated across a broken cut, as permitted by the rules
of gamma-MR. We shall see that in the other broken cut systems
we shall examine, this move, and so the graph of (L), is for-
bidden. We now go on to the proof of a graph which, while not
peculiar to gamma-MR,Amay prove a bit surprising,

alpha rules (5)

alpha rules (:} @ (6)

(6)s Ryeq (7)
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(7), R (8)

gam
(8)5 Rypn (9)
R 10
(9)5 Ross (10)
(10), (5), Rgsgs Rppe (11)
(11), Ry, 70 (12)

The graphs at (11) and (12) express, equivalently, the thesis
'RR1' or fML1l'; they assert that the "true' is "possibly neces-
sary." The thing one might find surprising is that the simple
"broken cut biclosure" with a broken cut enclosed oddly is a
thesis of gamme-MR, derivable only by the rules, It is not

immediately apparent from an examination of R for example,

gam?
that this 1s possible. Yet this theorem should not be too sur-
prising considering that gamma-MR and #modal are equivalent to
each other, and 'ML1! is a law of E-modal,

Wile set about the proof, now, of one more characteristic

graph of gamma-MR, again, one that is equivalent to a character-

istic thesis of H-modal,
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(12), P"bcl’ R:I.ns L’ (13)

(13), By, (1)
alpha rules (15)
(15)s Ritps Ring (16)
(16) Ry s Rypn (17)

(17)5 Rpgms Rope @ (,‘ () (18)

(18), R (19)

nbe

The graph at (19) is a typical gamma-l-ﬂ’i graph, ~e'af1ivalent

) .
Yi *

\\ /)

to the L-modal 'CCpqClMpMqg'!; now take b'! in (19) as (f bt

(20)
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(1), (20),

Raits Fnpe (21)
alpha rules (22)
(22), B, (23)
(23), Ry, (2h)

alpha rules b (25)

-~ 7 \
N (
Now in (25) take b' as (b)) , b'' as ,’, ,

4=3 = ~==
bttt gg l\fP/‘/"l o Then, with (25) (with these substitutions),
(21), (24), Rgy4s and R o2 We have:

(26).
The graph of (26) says the same thing as the formula
'CMpMIp'!; it is thus a "map"™ of a characteristic H-modal thesis.
Note that step (16) in the above deduction, for example, again
employs the unrestricted "iteration across broken cuts" charac-

teristic of gamma-MR.,

The system gamma-MR yields unusuel modal graphs, just as
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H-modal gives us unusual modal formulas. In both case the root
of the strangeness is the "extensionalizing" of modal concepts.
In &-modal this is accomplished by permitting unlimited or un-
restricted use of modal contexts in schemata like C pC HNp q !;
this schema is often referred to as the "thesis of extensionality"
(actually, it is but one of several schemata to which the name
is appropriate). In the "classical" Lewis-modal systems, of
course, such unrestricted treatment of modal operators is not
permitted; the closest we can come Lo a thesis of extensicnality
in these systems is

CLOpaCLCapC S pS q ,+
which is a statement of the substitutivity of strict equivalence,
a principle which, as a rule of inference, is characteristic of
all the Lewis modal systems, and which is considerably weaker
than the £-modal theses of extensionality.

In gamma-MR, the "extensionalizing" is accomplished by
the unrestricted permission to use the rules Ritr and Rdit‘ The
theses #3,01 and #%3,02 show that the rules of insertion and
erasure hold unrestricted even for gamma systems which might be
called "Lewis-type," as we shall see; the rules of biclosure and
for the broken cut also hold without restriction. The strange
nature of gamma-MR may then be credited to its unrestricted

rules of iteration and deiteration.

lrhig theorem-schema holds as stated in the systems Si,
Sl.2, and S5; at this point we will make no claims one way or
the other for the other Lewis-modal systems. I am not aware of
a general proof for this thesis in the literature, so I have
added to this paper a short appendix which discusses the.question
of the deduction theorem in 8li, Sli.2, and S5, and shows that
this schema holds in these systems,
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Another remark is in order here: in l.518 Peirce indi-
cates that if a graph X is assertable at one "state of informa-
tion," then will be assertable at succeeding states of
information, This is much like the move in some Lewis-modal
systems justified by RL: "If ¢ 1is a theorem, then'L & is a
theorem." It is perhaps needless to say that this move cannot
be permitted in gamma-ME, Such a permission, in the presence of
the theorems of gamma-MR, would result in the collapsing of the
modal structure of the system, just as the theoremhood of 'LCpp!
would do for H-modal., The relationship of gamma-MR and H-modal,
in fact, bars all graphs of form from theoremhood in
gamma-MR, since all formulas of form "La&' are rejected in &-

modal,

3.22 Gamma-l: A "Classical™ Broken Cut System

There is little subtlebty to the name we have chosen to
give the broken cut system of the present section; it is a
system which bears the same relation to the Lewis-modal Sl that
gamma=-MR bears to the E-modal system. As we have indicated, the
statement of rules for gamma-li will involve a restriction on the
spplication of the rules Ritp and Rgsge It will also involve
the axiomatic assertion of a certain extra greph. Although

”,

the graph (:’:::‘ was derivable as a theorem of gamma-MR, the
graph was not derivable there, as indicated by the relation-
ship between gamma-MR and &-modal., This latter graph, we inight

say, asserts "the necessity of the true,” But in all the Lewis-

modal systems, there is a sense in which the true is necessary;
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even in the very weakest systems, like Lemmon's SO.S,1 there
are rules which permit us to move from the theoremkood of a
formula <& (belonging to a certain set of theorems, depending
on the system) to the theoremhcod of 'L &' , In S0.5, this rule
is simply, "If @ is tautologous, 'L ' is a theorem"; but in
the systems from T through S5, the presence of the unrestricted
rule RL permits us to move from the assertion of any theorem to
the assertion of the necessity of that theorem. In gamma-l} we
shall discover that we can get the same results with the simple

axiomatic assertion of the graph

which i1s what we might call "the necessity biclosure." Needless
to say, the presence of this graph does not give us the right

to use this pair of cuts as if it were a pair of alpha cuts in

the apnlication of the rules Rbcl and Rnbc‘ These rules will
still apply just to the insertion or deletion of alpha biclosures.
Note too that with R,

and Rnb there is no trouble in getting

gm
from this graph as axiom to the null graph b as theorem.

c

We shall now state the axiom and the rules as they apply
to gamma-li, just as we did for gamma-MR.

The sole axiom of gamma-li is the graph .

Rules Rins and Rers apply just as they did in gamma-MR,

again counting alpha and broken cuts alike to determine

oddness or eveness of enclosure,

lE. J. Lemmon, "New Foundations for the Lewis Modal Sys-
tems," Journal of Symbolic Logic, XXII (1956), 176-86,
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The rules Ry, and Rdit will apply as before, except for

the following restriction: The only graphs that may be

iterated or deiterated across broken cuts are those of form

) .

The rules Rbcl and Rnbc apply as in gamma-MR,.

The rules Rgay and Rngm (for the broken cut) apply as

in gamma-MR.

The restriction on the rules of iteration and deiteration
prevents an iteration in gamma-li like that leading from step (2)
to step (3) in the deductions of Section 3.21.

We turn our attention to the status of these rules in
the system Sli. First of 2ll, the strict implication

LCNpRp
is a thesis of Sh. By #3.01 and #%3,02, this indicates that any
subformula beginning with 'N' and standing in a C-pos in an S4
theorem--that is, a subformula "Nea' --may be replaced by the
same formula with an 'R' in place of the 'N'--that is, by the
subformula 'Rel' . And also, any subformula "R’ standing in an
A-pos in a law of SL may be replaced by "Ne',

This indicates that whenever, for gamma-l graphs X and
¥, either Rgam(Y’ X) or Rngm(Y’ X) is true, then if £%(X) is an
Sl theorem, then so too is fx(Y).

The strict implication

LOKpap
is also a law of Sli; in the presence of #3401 and #3,02 this
means that the rules of insertion in odd and erasure in even

have analogous derived rules of inference in Sk, just as do the
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above mentioned rules for the broken cut,
A strict equivalence that holds in Sl is
LEpNNp.
Since the system SL contains the rule of substitutivity of strict
equivalence, this means that the rules of biclosure have analogous
derived rules of inference in Sl.,

We move now to the rules of iteration and deiteration as
stated for gamma-l4. It will be recalled'that the proof in chap-
ter 1 that the CPC contains rules analogous to Ritr and R+
pivots about the existence in CPC of a certain theorem schema
which for our purposes here we may express as:

EKpS 1XKpd D . (1)
If this schems is in a system, and the system contains the »ule
of substitutivity of material equivalence, then that system
contains derived rules of inference analogous to Ritr and Rdit'

The schema at (1) quite definitely does not hold in the
general case in Sli; however, recalling the nature of the restric-
tion on the rules of iteration and deiteration in ga ma-L, it is
possible to write a schema which does hold in Sii ana whose pres-
ence makes possible proofs of the versions of iteration and de-
iteration appropriate to Sk.

A 1little thoughtwill tell us what this schema must be;
we will recall that the restriction on iteration and deiteration
for gamma-l states that only graphs of form may be iter-
ated across broken cuts, that is, iterated "into modal contexts.”

This suggests that the schema we want in the general case in Sk is:

IEKLp O 1KIp & Lp (2).
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Actually, the simple

EKLp 8 1XIpd Lp (3)
will do, since we can always move from (3) to (2) by RL., The
existence of (2) and the substitutivity of strict equivalence in
Si. would permit us to say that in the general case, where ' § !
may be a modal context, analogs of the rules of iteration and
deiteration of gamma-l exist in Sk,

It will be noted that when 'S’ is a non-modal context,

ot
ct

het is, when the schema is to parallel iterations across aiphsg
cuts only,
EXpS 1Kpd p
does hold in Sl just as it does in CPC.
We shall now show that (3) is indeed a theorem schema

in the general case in Sli. The following schema holds in S&:l

CLOpaCLCapC 8 q S p (L),
where 'S ' may represent any SL context at all,
By (L), a/1 CLCplCLC1pCS 18 p (5)
(5), LCpl, PC CLC1pC & 18p (6)

The following is an easily provable Sl thesis:

CLpLCap ' (7)
(6), (7), PC CLpC 813 p (8)
(8), p/Ip CLIpCS1dIp (9)

But 'LELLplp' is a theorem of SL; by (9) and substitutivity of
strict equivalence, then:

CInC 518 1p " (10)

las we noted earlier, see the Appendix for the proof of
this.
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(10), ®C CKLp & 1KLpd Lp (11)

But (11) is one half of (3), which is the formula we
wished to prove. The converse of (11) is provable along much
the same lines that (11) was. We may then say that (3) holds in
the general case in Sli. But this means that when, for gamme-l
graphs X and Y, Ritr(Y’ X) or Rdit(Y’ X) is true with the gamma-l
restriction, then if £#(X) is an Sl theorem, so too is fi(Y¥).
Iteration into non-modal contexts as in PC.

Where X is the sole axiom of gemme-li, then £:(X) is
'IRNKpaNpny', which is the same as 'LCpopo', and is clearly a
theorem of Sli, We may say, then, that:

If X is g theorem of gamma-li, f#(X) is o theorem of Sli.

Wle shall now go on to show both that the converse of the
above statement holds, and that the set of theorems of Sk mnaps
into the set of theorems of gamma-li by the function g# (fx and
g*, we should recall, are the functions f and g of chapter i ex-
tended to account for the broken cut). Gamma-L contains all that
alpha contains and more. We shall have accomplished our pur-
pose, then, if we can show that the axioms and rule of Sl beyond
those of the CPC map appropriately into the set of theorems of

gamma=L. First of all, we may easily prove the following:

alpha rules b'® (12)

(x2), R (13)

gam
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The graph at (13) is clearly a correlate by g or h# of

our axiom 2 for Sl, 'CNpRp!.

germma-L axiom, Rio1 ()
(L), Rypg (15)
(15), Rien (16)
(16), R, , (17)
(17)5 Ryin, (18)

(19)

(20)

‘/,

5 the graph resulting from these substitu-
tions contains a "replica" of (20) itself. Deiterate this "replical

with (20) and apply R

and Rngm to obtain

nbe

(21)
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by alpha rules (22)
(22), B  (23)

(2L )

(23), R

itr
We may now move, by purely alpha methods, employing (21), {(2L),
and the alpha graph

X@ (25)

to

(26).

The greph at (26) wilil be found, upon examination, to
correspond to our axiom 1' for Sl., 'CRCRpRaCpqa'. The graph of
(2ly) corresponds to 'CRNRpRp', which becomes, on transposition
of antecedent and consequent, 'CLpLLp!', the characteristic re-
duction formula of Slp.

Note that with as an axiom of gamma-lL, the
equivalent of RL holds in gamma-li. This is so because any graph
derivable as g theorem upon the blank SA alone will be derivable

as a theorem within the "necessity biclosure" which is the gamma-l
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axiom; this point is 1llustrated by the deduction leaeing to the
graph of (20) above., It is now fairly clear that both:

A is a theorem of Sk iff g#(A) is a theorem of gamma-l, and

If £5:(X) is a theorem of Sli, then X is a theorem of gamma-l,

The latter by an extension of the argument leading to the proof
of its analog in chapter 1i.

Gamma-ly is then a graphical version of the Lewis modal
Slie One might suspect that there are other Lewis modal systems
which may be formulated in the broken cut notation; this in

fact is the case.

3.23 Gamma-li.2: Another "Lewis-lodal" Broken Cut Systenm

Situated between the Lewis-modal gystems Sl and S5 are
at least two other systems. They are situgted bebtween thess
systems in the sense that their sets of thecrems include those
of Sli and are included in those of S5. These systems may be
formulated by subjoining to Sl certain additional axioms. One
of these systems, Sl.2, is formed by adding to Sl %he axiom

CMLpIlMp.
The other, Sk.3, is formed by adding to Sl. the axiom
ALCLpqLCLap.
She2 is contained in Sl.3. We shall here set down a broken cut
system, gamma-li.2, which bears the same relation to SLk.2 that
gemma-l bears to Sk.

The system gamma-l .2 is based upon gamma-l., It is just
the same as gamma-li except for a slightly more libersl restric-
tion attached to the rules Rji, and Rgjt. Gamma-L permitted
graphs of form to be iterated and deiterated through
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-

L=
broken cuts; gamma-l .2 will permit as well graphs of form ((J(»

-~
-~ -

to be so iterated. Otherwise the systems are the same.

All that we have said about gamme-l and Sli, then, applies
to gamme-L.2 and Sli.2; we have in addition, however, to prove
the rules of iteration and deiteration with the new restriction
in Sk.2, and to prove a graph in gamma-L.2 corresponding to the
special axiom of Sbh.2,

Recall how we went about the proof of the rules of iter-
ation and deiteration in Sh. ihether or not these rules hsld
there was a function of whether or not the schema

EXLp & 1KLpO Lp
held in Sli. The above schema holds in Sh.2, to be sure, as well
as in Sl. But we must show something more for SlL.2; the restric-
tion on the rules of iteration and deiteration has been relaxed
in this system to permit graphs enclosed by two broken cuts to
be iterated or deiterated through broken cuts. The pair of
broken cuts is correlated by our translation functions to the
modal prefix 'RR', which is equivalent to 'ML!, This suggests
that the additional schema which we must show to exist in Sli.2 is
EKMLp & IKMIpS MIp .
A little reflection will show us that this is indeed the case.

Let us turn to step (8) in the deductions of the preced-
ing section, and instead of substituting Ip for D, substitute
MLp (we begin the numbering anew in this section):

CIMLpC & 18 MIp | (1)

Now, in Sli,2 the following thesis holds--it is not a
law of Sl.:
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CMLpIMIp (2).
(1), (2), PC CMLpC & 1 DHMLp (3)
(3), BC , CKMIp O 1KMLpd MIp (L)

We noted that the converse of the analogous formula in Section
3.22 is proven much as is that formula itself; so too will the
converse of (li) follow, and we may state that
EKMIp O 1KMIpS MIp (5).

The formula at (5) is the one we wanted, and we are safe
in saying that approopriate analogs of the rules of iterstion and
deiteration with their gamma-li,2 restrictions hold in Sl.2.
Since all else in gamma-li.2 is as in gamma-li, we may conclude
that:

A graph X is a theorem of gamma-l.2 only if f£i(X) is a

theorem of Sli.2.

To show that the converse of the above holds, and also
that the set of SL.2 theorems maps into the set of gamma-l .2
theorems by g¥*, we must show only that there is a theorem of
gamma-li 42 which corresponds by g# and hi* to the special axiom

of Sl.2, 'CMIpIMp'--or, in 'R', 'CRRpNRRND'.

gamma-l; gxiom | (6)

(6, Rypg | (7)

(8)

(7)5 R4y, (in gamma-li.2 version)
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’ ngm ‘\\ \E— 34 / l\‘\\:’”l "’

(9), R o1 (10)

The graph of (10) states 'CRRpNRRNp', which is the same
as 'CMLpiMp', Note the characteristic gamma-li.2 operation at
step (8)e It is now safe for us to state, on the basis of the
above, our work in Section 3,22, and the relationship between
Sl and SlL.2, that both:
If £%(X) is an Sh.2 theorem, then X is a theorem of gamma-l .2,

and A is a theorem of Sh.2 iff gi#(4) is a theorem of gamma-li.2.

The systems Sli.2 and gamma-l .2 are then translatable into each
other, and also may be considered equivalent in the same sense

that alpha is equivalent to the CPC,

3.2l CGamma-5: The Limiting "Lewié-Modal" Broken Cut System

In many respects, the system S5 may be considered a
"limiting" system among the Lewis-modal calculi--to go into an
extensive study of this, however, would really be outside the
scope of this paper.l

The system gamma-5 is to be a "broken-cut" version of
S5; this is why we have called it a "limiting" broken cut system.
As might be suspected, gamma-5 differs from gamma-l. and gamma-=l,2

only in having a different, more lenient restriction upon its

1But cf., for example, G. I. Lewis and C. H., Langford,
Symbolic Logic (New York: Dover, 1959), p. 501.
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application of the rules of iteration and deiteration, The
statement of this restriction is quite simple:
|
In gamma-5, the rules Ritr
alpha, except that a graph X may be iterated or deiterated

and Rdit apply as they do in

across a broken cut only if each of X's minimal graphs is
in the "scope" of a broken cut belonging to X, that is,
provided each of the minimal graphs of X is part of a sub-
graph of X whose "outermost sign" is 2 broken cut.,
As was the case in Sections 3.22 and 3.23, we shall state
a formula whose theoremhood in S5 will guarantee the existence
in S5 of derived rules of inference analogous to the rules of
iteration and deiteration with the above restriction. The
formula is:
EXatd 1K a Sex » Where & is any
formula of S5 having each of its propositional
varigbles in the scope of a modal operator belong-~
ing to ¢, (1)
All the theorems of Sly and Sl.2, of course, hold in S5;
the schema at (1) is one which does not hold in general in Sk
end Sli.2, but which will be shown to hold in S5. As was the case
in Section 3.23, we shall first turn to step (8) in the deductions
of Section 3,22, and now, instead of substituting 'Ip! for !'p!,
we shall substitute <, where « is any wff having each of its
propositional variables in the scope of a modal operator belong-
ing to &, The result is:
CLa €313 (2).
Now, there is a pair of rules of inference, due to

Prior, which hold in S5 and which--when subjoined to the CPC--
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actually form a basis sufficient for 85.1 The rules are:

¢

1: If "Caff’ is a theorem, ther CLoB" is a theorem, and

o

2: If "Cocﬂ—l is a theorem, then r'Cthg"‘ is a theorem,
provided each of the variables of & is part of a
subformula of & beginning with a modal operator.

We have, by PC alone:

Caa (3)

But let ot be of such a form that each of its propositional

variables is part of a subformula of < beginning with a modal

operator; this means both that the proviso of R2 is fulfilled

and that A is the same as the o of the schema at (2). Then:

(3), R2 Cala (L)
(23, (L), PC cac Slda (5)
(5), PC CKoLd 1IKa S (6).

Again, the converse of (6) will be easily provable, and
we may state:
EK ce 3 IK et O 0t (7),
where oL, of course, is as required in (1).
But (7) is the schema we needed, and so, in the light
of all that has gone before, we may state:

If X is a theorem of gamma-5, then £%(X) is a theorem of S5.

To show that the converse of the gbove holds and that
the set of S5 theorems maps into the set of gamma-5 theorems by
g*, it would be sufficient to show that a graphical correlate

of our axiom 1'!' is a theorem of gamma-5; 1't' is, of course,

1Prior, Formgl Logic, p. 312
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'CRRCpqClRQRp'. But actually it will not be necessary to dsvelop
a proof for this particular graph. We know that if the formula
'CMIpLp' is added to a base sufficient for Sli, the result is the
system S5, Another formula which will do the job, and which,
in fact, is just a transposed version of 'CMLpLp' is

CNLpILNILp.
Another way of writing this formula is

CRPNRRp.

Since gamma-5, with a more liberal restriction on its
rules of iteration and deiteration than either of the other such
systems we have discussed, will contain all the theorems of both
of these systems, it is clear that if a graph corresponding to
the last mentioned exiom cen be proven in gamma-5, then graphs
corresponding to all S5 theses will be derivable. The proof is

as follows:

gamma-l axiom {8)
(8), B, (9)

Y 455y
1tp (gamma~-5 version) b (Lb g (10)

(9), R

(10), By, (11).

The graph of (1l), a theorem of garma-5; corresponds by
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g* or hi to 'CRpNRRp'. We are then safe in asserting that both:

If £#(X) is an S5 theorem, then X is a theorem of gamma-5, and

A is a theorem of S5 iff gi(A) is a theorem of gamma-5.

The systems S5 and gamma~5 are then translatable into
each other, in our technical sense of translatable; and'we nay
consider them equivalent in the same sense that alpha and the CPC

are equivalent.

3.25 A Summary of the Broken Cut Systems Here Presented

In the preceding sections we have shown how systems
equivalent to some contemporary modal systems may be formulated
within the "broken cut” notation of Feirce's gamma graphs. The
method of setting up these systems is quite simple. We add to
the notation and rules of alpha the broken cut and the rules
which permit us to change an evenly enclosed or unenclosed alpha
cut into a broken cut, and an oddly enclosed broken cut into an
alpha cute. We allow the rules of insertion in odd and erasure
in even and of bicdlosure to hold just as they do in alpha,
counting broken cuts as if they were alpha cuts to determine
whether an enclosure_is odd or even. If we add no new graphical
maxiom and allow the rules of iteration and deiteration to apply
with no restrictions, the system obtained, gamma~MR, is equiva-
lent to %-modal,

If we add as an axiom the graph > and place certain
restrictions on the rules of iteration and deiteration, we shall
obtain several different systems, depending on what the re-

strictlions are,
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If we state that only graphs of form may be iter-
ated or reiterated through broken cuts, we get the system gamma-l,

which is equivalent to the Lewis-modal Sl.

If we permit also graphs of form {f};ﬁ to be iterated or
deiterated through broken cuts, the system.;ielded is gamma-l.2,
which is equivalent to the Lewis-modal Sl.2.

If we permit any graph all of whose minimal graphs are
within the scope of broken cuts belonging to that graph to be so
iterated or deiterated, we get gamma-5, which is equivalent to
the system SS.

It is not by accident that the Lewis-modal broken cub
systems are so formulable, In an article on these systems1 I
have shown that SlI and SLk.2 may be formulated by the subjunction
of Prior's rules Rl and R2 (which we saw in Section 3.25) to
the CPC, changing the proviso of R2 to read, "Provided O is
completely molalized," Iidistinguish between Sli, Si.2, and S5
by stating for each of these systems what it is to be completely
modalized. In Sl we find that a formula is completely modalized
if it begins with an 'L!' or is a conjunction of formulas each
of which begins with an 'L!', In Sli,2 we f£ind that in addition
formulas beginning with 'ML' will be completely modalized, For
S5, complete modalization is as in Prior's version of the
Proviso,

It is interesting to note that these definitions of

"complete modalization" correspond to the restrictions on iter-

ation and deiteration for the respective systems gamma-lj,

15, Jay Zeman, "Bases for Sl and Sl.2 without Added
Axioms," Notre Dame Journal of Formal Logic, IV (1963), 227-30.
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gamma-li,2, and gamma-5. We might, then, state the restriction
on these rules in another way, and specify that for all three of
these systems iteration or deiterstion through a broken cut is
permitted only for a "completely modalized graph"--this would be
a thread connecting these three gamma-systems. We would then
identify each of these systems by a svecification of what it is
in that system for a graph to be completely modalized,

It is not at all impossible that other Lewis-modal
systems might be formulated as broken cut systems--at least I
mow of no reason why it should be impossible. At the moment,
however, we shall go no further in this direction., We will re-
mark, however, that the formulability of these broken cut systems
in really so simple a manner is another tribute to the power of
the graphs and to the ingenuity of the man who first thought of
thenm,

3.3 GCleaning Up

It is sad to note, perhaps, that from certain points of
view the Existential Graphs, into which Peirce poured so much
effort, are a failure. The final formulation of the. gamma graphs
as he envisaged it did not come off, and indeed, se;ﬁs to have
been doomed from the start. From this failure follows the fail-
ure of the graphs as the ultimate analytical instrument of de-
ductive reasoning in the broadest sense. And this makes the
graphs, from this point of view, just an unfinished wing in the
incompleted structure that was the philosophy of C., S, Peirce.

But the graphs need not be viewed only ffom this point
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of view., As logical systems they are astoundingly successful,
They seem somewhat awkward to work with, especially till you
get the hang of them, but so too are many contemporary systems,
when considered in their primitive notation. The graphs are,
as we have seen, systems of considerable power, both in the
theorems derivable within them, and in the insights they afford
into logic in general,

HMuch remains to be done with the graphs. We have offered
a sketch, in the Introduction, of how we feel the graphs f£it into
Peirce's philosophy as a whole; this sketch could be expanded
into an interesting study of considerable length, I am sure,
Much might also be said about the place of the graphs in Peirce's
theory of signs. There are also intriguing little suggestions by
Peirce regarding formal features of the graphs, such as the
"state of information LI" which he mentions in Li,251--here we
might find matter for further study and expansion, as we have
studied and expanded the broken cut systems,

This paper has studied the more important parts of the
graphs, those about which Peirce told us‘the mostsy it has studied
them as legics, And from the point of view which this paper has
adopted, we can only say that the graphs are not a failure at

all, but a grand success,
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APPENDIX
THE DEDUCTION THEOREM IN SlL, Slh.2, AND S5

The immediate purpose of our discussion of the deduction

theorem in these modal systems is to show that

CLCpQaCLCapCS pd g
is a theorem-schema of Sl, Sl.2, and S5. But a statement of
the deduction theorem for these systems is itself, I think, of
considerable general interest.

Actually, there is no trick to merely stating the deduc-
tion theorem for any system. The problem is in getting an ap-
propfiate definition of "proof from hypotheses" for the system
in question, Once we have such a definition, thezstatement and
proof of the deduction theorem will ordinarily offer no probien.

The systems with which we will be concerned are considered
to be formulated on a PC base. They will contain, first of all,
any basis sufficient for the complete CPC, including the rules of
substitution and detachment. Each of these systems will also
contain the rule "RL": ™"If & is a theorem, so too is La "
The additional axioms are, for Sk:

l. CLCpgLCLpLg
2. Cippe.
For Sli.2, axioms 1 and 2 and also:

3. CMIpIMp.

179
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For S5, axioms 1 and 2 and also:
L, CNLpLNLp.

Since these systems are formulated on a PC base, we
might suspect that a good part of the definition of "proof from
hypothesas” will be exactly as for the CPC. This is the case;
here we shall make use of Church's definition of "proof from
hypotheses”™ for the CPC.:L The clauses of the definition as he
states them are quite easily exbtendable to our modal systems.
We may thus state what will amount %o most of the definition:

A finite sequence of wffs Bi, B2, e o o 5 By is called
a "proof from the hypotheses Ags &5, « o o A" if for each i,
iﬁm,dﬁ&r

l. B; is one of the Aq, AZ’ o o o An’ or

2. B; is a varient of an axiom, or

3. B, is inferred by the rule of detachment from Bj and By,
where j, k<1 and B; is of form "By DB, or

J
o B; is inferred by the rule of substitution from B.:

j?
where J< 1, and the variable substituted for does not
occur in the A4, Aos o o o 5 Ap.

Note that Clause 2 above may be extended without diffi-
culty to include the axioms of the modal systems with which we
are concerned., We assume that the meéning of "varient" is under-
stood,

But one thing is missing from the above definition, so
far as Sli, Si.2, and S5 are concerned. This is a consideration

of the role of the rule RL in a "proof from hypotheses." It is

obvious that this rule is analogous to the rule of "universal

1Church, p. 87.
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generalization” in predicate calculi; we might, then, expect
to get a hint of how to account for tThis rule by an examination
of the way that "universal generalization" is accounted for in
statements of the deduction theorem for preﬁiéa%é‘calculi.

In the definition of "proof from hypotheses" in the
predicate calculus, the following move 1is permittedl in the
inference of a Bi from a Bj by universal generalization: Bi
may be of form (a)B., where j <1 and the variable a does not
occur free in any of the hypotheses Al’ Aos o« o o An'

The problem for us to find, for the systems S, SL.2,
and S5, an appropriate analog of the statement "The varigble a
does not occur free in any of the hypotheses A4, Ay, ¢ « «
A M
n .

Such an analog is available. Prior has shown that S5
is derivable,2 and I have shown that Sl and Sl.2 are derivable,3
by subjoining to the CPC the following rules:

Rl: If TCofl is a theorem, so too is rCLa.lg" .
R2

Ir "Caff” is a theorem, so too is 'CaLf”, provided

& is completely modalized.,

The definition of "completely modalized" varies among these sys-

tems, and is the factor which distinguishes them. In Sk, a wff
is completely modalized iff either:

l, It is a law of the system, every propositional varigble

ler, ibid., p. 196.

2Prior, Formal Logic, p. 312,

3Zeman, Notre Dsme Journsl of Formal Logic, Vol, - IV_(1963).
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of which is in the scope of a modal operator belonging
to ¢, or
2. It is of the form "KLYKLS. . . LV, with 'Ly as a
limiting case.
In Sl.2 we have--in addition to the gbove-~that Ot is completely
modalized if:
3. Tt is of the form 'NINLA.
In S5, a wff O is completely modalized provided every proposi-
tional varigble of of is in the scope of a modal operator'beléng-
ing to o .
Now, note that the complete quantification theory is
formulable by subjoining to a complete CPC base the following:
RTV 1: 1r "Coc.g" is a theorem, so too is rCTrxacg" :
R1\2: 1If 'Cozg" is a theorem, so too is 'CoLTrx(gﬁ,
provided x is not free in 0OC.

The similarity of the above rules to Rl and R2 for 'Lt
is obvious. And this similarity tells us what the analog for
Slt, She2, and S5 for, "The variable a does not occur free in any
of the hypotheses A, A5, « « & An" will be., Let us now move
to a statement of the final clause in our definition of "proof
from hypotheses" for Sl, Sh.2, and S5.

A finite sequence of wffs Bl’ B2, o o o Bm is called
a "proof from the hypotheses Ay, Ay, « . . , A " if for each i,
i m, either oné of the four previously mentioned clauses holds, or

S. B; is infered from Bj by RL, where j< i and each of the

hypotheses Al’ AZ, o o o An is completely modalized

in the sense of the system in which we are working.

With these five clauses, then, defining "proof from
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hypotheses” in S, Sl.2, and S5, we shall write
Ais Ays o o o 5 A F-B
for "there is a proof from the hypotheses Ay Ay, .i? - 5 Ay
for the wff B." |
The deduction theorem now will merély state that w%gn
| As Ay, oo o 5 A fEB,
then also A
L T N =)t
The proof of this theorem for the first four clauses of
the definition of "proof from hypotheses" will be just like
Church's proof.1
The only extension of the proof needed is to cover our
clause 5; this is easily accomplished. Let each of the
Ay Aoy 0 o . s A be completely modalized. And let B be Bj,
such that if k<i, then
A1 Aoy o o 4y A(n - 1) '—- A, D By,
that is, the deductlon theorem holds for Ay, A, « . . , A, - Bp.
And also, B; is inferred from Bj’ j< i, by RL. This means that,
by our definition of proof from hypotheses, and since Bs is B,
Ais Ass « « . & |- B.
Now, since j<i, then also j<k, and we have
| Bys Bps o o« 5 &y L 1) b- 8nDB;.
But then, since each of the hypotheses is completely modalized,
we have also, by RL and our definition of proof from hypotheses:

Al, AZ: e o e A(n - l) \'- L(An‘D Bj).

1Church, pp. 88-89,
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It is easily provable as a theorem of Sli, Sh.2, or S5 vhat
cLe aApCalp?, where a is completely
modalized,
But this means that we may move to

J
since we originally assumed that 4,, along with the other hypoth-

Ay B25 o o5 Ay gy - A, DIB
eses, is completely‘modalized. But Bi was infered ﬁfff_ﬁiﬂgz//;/?’wwzf——_—
RL, and so is of the form 'LBj’. And thiéfmeéns tﬁét the deduc-
tion theorem holds for clause 5 of owr definition. Note the
role in the above proof of our requirement that 2ll of the hy-
potheses be completely modalized.,

Now we may quickly prove that the schema

CLCpaCLCapC 5 o) 1) q
is indeed a theorem schema of Sl, Sl.2, and S5. With the rule
of substitutivity of strict equivalence, the following holds
for these systems:
Lepa, LCap - ¢dpda.

Note that the hypotheses in this case are completely modalized
in any of three systems in question. But by the deduction
theorem for these systems, the schema we wished %o prove 1is
proven.

Note that we could not in the general case in these
systems have stated:

Cpa, Cap }-C8pda,

even thoughs-as g rule--the substitutivity of material equivalence
holds in these systems. For in the general case there is no

guarancee that the rule RL will not have to be applied to get the
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desired'result, and by our definition of proof from hypotheses,
its application would not be allowed in the last case, since
the "hypotheses" there shown are not completely modalized in

any of the three systems in question.

e
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