


Symmetry Methods for Differential Equations

Symmetry is the key to solving differential equations. There are many well-
known techniques for obtaining exact solutions, but most of them are merely
special cases of a few powerful symmetry methods. These methods can be
applied to differential equations of an unfamiliar type; they do not rely on
special "tricks." Instead, a given differential equation can be made to reveal its
symmetries, which are then used to construct exact solutions.

This book is a straightforward introduction to symmetry methods; it is aimed
at applied mathematicians, physicists, and engineers. The presentation is in-
formal, with many worked examples. It is written at a level suitable for post-
graduates and advanced undergraduates. The reader should be able to master
the main techniques quickly and easily.

This text contains several new methods that will interest those whose research
involves symmetries. In particular, methods for obtaining discrete symmetries
and first integrals are described.

Peter Hydon is a Lecturer in Mathematics at the University of Surrey.
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Preface

There are many ingenious techniques for obtaining exact solutions of differen-
tial equations, but most work only for a very limited class of problems. How
can one solve differential equations of an unfamiliar type?

Surprisingly, most well-known techniques have a common feature: they ex-
ploit symmetries of differential equations. It is often quite easy to find sym-
metries of a given differential equation (even an unfamiliar one) and to use
them systematically to obtain exact solutions. Symmetries can also be used to
simplify problems and to understand bifurcations of nonlinear systems.

More than a century ago, the Norwegian mathematician Sophus Lie put for-
ward many of the fundamental ideas behind symmetry methods. Most of these
ideas are essentially simple, but are so far reaching that they are still the basis of
much research. As an applied mathematician, I have found symmetry methods
to be invaluable. They are fairly easy to master and provide the user with a
powerful range of tools for studying new equations. I believe that no one who
works with differential equations can afford to be ignorant of these methods.

This book introduces applied mathematicians, engineers, and physicists to
the most useful symmetry methods. It is aimed primarily at postgraduates
and those involved in research, but there is sufficient elementary material for
a one-semester undergraduate course. (Over the past five years, I have taught
these methods to both undergraduates and postgraduates.) Bearing in mind the
interests and needs of the intended readership, the book focuses on techniques.
These are described and justified informally, without a "theorem-proof" format.
I have tried to present the theory straightforwardly, sacrificing rigour and gener-
ality (where necessary) in order to communicate the most useful results clearly.

The topics are arranged so as to provide a graded introduction. Thus the
reader can see symmetry methods applied at an early stage, without first hav-
ing to absorb much new notation. As the book progresses, the methods are

IX



x Preface

generalized and extended. Practice is essential to develop skill in using sym-
metry methods; readers are urged to try the exercises at the end of each chapter.
Solutions and hints for some exercises are available at the end of the book.

Here are some suggestions for those wishing to use this book as the basis
of a lecture course. The first six chapters consist of core material on ordinary
differential equations. In my experience, this is sufficient for a one-semester
undergraduate course. For a postgraduate course, Chapters 8 and 9 (which
deal with basic symmetry methods for partial differential equations) should
also be included. I strongly recommend that students learn how to use an
appropriate computer algebra package, because symmetry calculations can be
lengthy (particularly for partial differential equations). I have briefly outlined
some packages that are currently available at no cost to the user.

The remaining chapters outline some recent developments. These are se-
lected on the grounds that they are widely applicable and easy to master. Some
of these topics have not previously been described at an elementary level. I
have omitted several techniques on the grounds that they are difficult to describe
accurately without using complicated mathematical ideas. My aim throughout
has been to enable the reader to become proficient in the most useful symmetry
methods.

Peter E. Hydon
January 1999
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Introduction to Symmetries

I know it when I see it.

(Justice Potter Stewart: Jacoblellis v. Ohio, 378 U.S. 184, 197 [1964])

1.1 Symmetries of Planar Objects

In order to understand symmetries of differential equations, it is helpful to
consider symmetries of simpler objects. Roughly speaking, a symmetry of a
geometrical object is a transformation whose action leaves the object apparently
unchanged. For instance, consider the result of rotating an equilateral triangle
anticlockwise about its centre. After a rotation of 27T/3, the triangle looks the
same as it did before the rotation, so this transformation is a symmetry. Rotations
of 4TT/3 and 2n are also symmetries of the equilateral triangle. In fact, rotating
by 2n is equivalent to doing nothing, because each point is mapped to itself. The
transformation mapping each point to itself is a symmetry of any geometrical
object: it is called the trivial symmetry.

Symmetries are commonly used to classify geometrical objects. Suppose
that the three triangles illustrated in Fig. 1.1 are made from some rigid material,
with indistinguishable sides. The symmetries of these triangles are readily found
by experiment. The equilateral triangle has the trivial symmetry, the rotations
described above, and flips about the three axes marked in Fig. 1.1 (a). These
flips are equivalent to reflections in the axes. So an equilateral triangle has
six distinct symmetries. The isoceles triangle in Fig. 1.1 (b) has two: a flip (as
shown) and the trivial symmetry. Finally, the triangle with three unequal sides
in Fig. 1.1 (c) has only the trivial symmetry.

There are certain constraints on symmetries of geometrical objects. Each
symmetry has a unique inverse, which is itself a symmetry. The combined
action of the symmetry and its inverse upon the object (in either order) leaves
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(a) (b) (c)

Fig. 1.1. Some triangles and their symmetries.

the object unchanged. For example, let F denote a rotation of the equilateral
triangle by 2n/3. Then F"1 (the inverse of F) is a rotation by 4n/3.

For simplicity, we restrict attention to symmetries that are smooth. (This
somewhat technical requirement is not greatly restrictive, and it frees us from
the need to consider pathological examples.) If x denotes the position of a
general point of the object, and if

V : x x(x)

is any symmetry, then we assume that x is infinitely differentiable with respect
to x. Moreover, since F"1 is also a symmetry, x is infinitely differentiable with
respect to x. Thus F is a (C°°) diffeomorphism, that is, a smooth invertible
mapping whose inverse is also smooth.

Symmetries are also required to be structure preserving. It is usual for ge-
ometrical objects to have some structure which (loosely speaking) describes
what the object is made from. To use an analogy from continuum mechanics,
the structure is the constitutive relation for the object. Earlier, we considered
symmetries of triangles made from a rigid material. The only transformations
under which a triangle remains rigid are those which preserve the distance
between any two points on the triangle, namely translations, rotations, and
reflections (flips). These transformations are the only possible symmetries, be-
cause all other transformations fail to preserve the rigid structure. However,
if the triangles are made from an elastic material such as rubber, the class
of structure-preserving transformations is larger, and new symmetries may be
found. For example, a triangle with three unequal sides can be stretched into an
equilateral triangle, then rotated by In 13 about its centre, and finally stretched
so as to appear to have its original shape. This transformation is not a symmetry
of a rigid triangle. Clearly, the structure associated with a geometrical object
has a considerable influence upon the set of symmetries of the object.
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In summary, a transformation is a symmetry if it satisfies the following:

(51) The transformation preserves the structure.
(52) The transformation is a diffeomorphism.
(53) The transformation maps the object to itself [e.g., a planar object in the

(x, y) plane and its image in the (x, y) plane are indistinguishable].

Henceforth, we restrict attention to transformations satisfying (SI) and (S2).
Such transformations are symmetries if they also satisfy (S3), which is called
the symmetry condition.

A rigid triangle has a finite set of symmetries. Many objects have an infinite
set of symmetries. For example, the (rigid) unit circle

has a symmetry

F£ : (x, y) M- (x, y) = (JCCOSS — y sine, x sine + y cose)

for each e e (—n, n].ln terms of polar coordinates,

Fs : (cos0, sinO) H> (cos(# + e), sin(# + £)),

as shown in Fig. 1.2. Hence the transformation is a rotation by e about the centre
of the circle. It preserves the structure (rotations are rigid), and it is smooth and
invertible (the inverse of a rotation by e is a rotation by —e). To prove that the
symmetry condition (S3) is satisfied, note that

x2 + y2 = x2 + y2,

Fig. 1.2. Rotation of the unit circle.
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and therefore

x2 + y2 = 1 when x2 + y2 — 1.

The unit circle has other symmetries, namely reflections in each straight line
passing through the centre. It is not difficult to show that every reflection is
equivalent to the reflection

YR :(x,y)t+ (-x,y)

followed by a rotation F£.
The infinite set of symmetries Fe is an example of a. one-parameter Lie group.

This class of symmetries is immensely useful and is the key to constructing exact
solutions of many differential equations. Suppose that an object occupying a
subset of R^ has an infinite set of symmetries

TE : x s ^ x s ( x l , . . . , x N ; s ) , s = l , . . . , N ,

where e is a real parameter, and that the following conditions are satisfied.

(LI) To is the trivial symmetry, so that xs = xs when s = 0.
(L2) Fe is a symmetry for every e in some neighbourhood of zero.
(L3) T8rs = T8+£ for every 8, s sufficiently close to zero.
(L4) Each xs may be represented as a Taylor series in e (in some neighbourhood

of s = 0), and therefore

JC^JC 1 , . . . , **;*?) =xs +s%s(x\...,xN) + O(s2), s = 1 iV.

Then the set of symmetries V£ is a one-parameter local Lie group. The term
"local" (which we shall usually omit hereafter) refers to the fact that the con-
ditions need only apply in some neighbourhood of s = 0. Furthermore, the
maximum size of the neighbourhood may depend onx5 , s = I,..., N. The
term "group" is used because the symmetries V£ satisfy the axioms of a group, at
least for s sufficiently close to zero. In particular, (L3) implies that F~l = F_e.
Conditions (LI) to (L4) are slightly more restrictive than is necessary, but they
allow us to start solving differential equations without becoming entangled in
complexities.

Symmetries belonging to a one-parameter Lie group depend continuously
on the parameter. As we have seen, an object may also have symmetries that
belong to a discrete group. These discrete symmetries cannot be represented by
a continuous parameter. For example, the set of symmetries of the equilateral
triangle has the structure of the dihedral group D3, whereas the two symmetries
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of the isoceles triangle form the cyclic group Z2. Discrete symmetries are useful
in many ways, as described at the end of the book. Until then, we shall focus on
parametrized Lie groups of symmetries, which are easier to find and use. For
brevity, we refer to such symmetries as Lie symmetries.

For most of the time, we shall study the functions xs directly, without refer-
ence to any ideas from group theory. Therefore it is convenient to simplify the
notation by abbreviating

to

Suffix notation is useful for stating general results, but we shall avoid using it

in examples, as far as possible. Variables will be named x, y,... in preference

to x1 , x 2 ,

1.2 Symmetries of the Simplest ODE

What are the symmetries of ordinary differential equations (ODEs)? To begin
to answer this question, consider the simplest ODE of all, namely

dy
/=0. (1.1)
dx

The set of all solutions of the ODE is the set of lines

y(x) = c, c e R,

which fills the (x, y) plane. The ODE (1.1) is represented geometrically by the
set of all solutions, and so any symmetry of the ODE must necessarily map the
solution set to itself. More formally, the symmetry condition (S3) requires that
the set of solution curves in the (x, y) plane must be indistinguishable from its
image in the (Jt, y) plane, and therefore

^ = 0 when — = 0. (1.2)
dx dx

A smooth transformation of the plane is invertible if its Jacobian is nonzero, so
we impose the further condition

xxyy -xyyx 7^0. (1.3)
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y '

l-

-1 0

- l -

I1 ;

1 —

-1

Fig. 1.3. Solutions of (1.1) transformed by a scaling, (1.5).

(Throughout the book, variable subscripts denote partial derivatives, e.g., xx

denotes | j . ) A particular solution curve will be mapped to a (possibly different)
solution curve, and so

V C G R . (1.4)

Here x is regarded as a function of x and c that is obtained by inverting

x = x (x, c).

The ODE (1.1) has many symmetries, some of which are obvious from
Fig. 1.3. There are discrete symmetries, such as reflections in the x and y axes.
Lie symmetries include scalings of the form

(x,y) = (x,e£y), e e (1.5)

[Figure 1.3 depicts the effect of the scalings (1.5) on only a few solution curves;
if all solution curves could be shown, the two halves of the figure would be
identical.] Every translation,

(x, y) = (x £2 (1.6)

is a symmetry. The set of all translations depends upon two parameters, s\ and
£2. By setting e\ to zero, we obtain the one-parameter Lie group of translations
in the y direction. Similarly, the one-parameter Lie group of translations in the
x direction is obtained by setting £2 to zero. The set of translations (1.6) is a
ftvo-parameter Lie group, which can be regarded as a composition of the one-
parameter Lie groups of translations parametrized by e\ and s2 respectively.
Roughly speaking, symmetries belonging to an /^-parameter Lie group can be
regarded as a composition of symmetries from R one-parameter Lie groups.
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Not every one-parameter Lie group is useful. For example, a translation (1.6)
maps a solution curve y = c to the curve y = c + s2. If s2 = 0, any solution
curve is mapped to itself by the symmetry. This is obvious, because translations
in the x direction move points along the curves of constant y. Symmetries that
map every solution curve to itself are described as trivial, even if they move
points along the curves.

The ODE (1.1) is extremely simple, and so all of its symmetries can be found.
Differentiating (1.4) with respect to x, we obtain

yx(x,c)=09 VceM.

Therefore, taking (1.3) into account, the symmetries of (1.1) are of the form

(jc, y) = (f(x, y), g(y)), fx ^ 0, gy ^ 0, (1.7)

where / and g are assumed to be smooth functions of their arguments. The
ODE has a very large family of symmetries. (Perhaps surprisingly, so does
every first-order ODE.)

We were able to use the known general solution of (1.1) to derive (1.2), which
led to the result (1.7). However, we could also have obtained this result directly
from (1.2), as follows. On the solution curves, y is a function of x, and hence
x(x, y) and y(x, y) may be regarded as functions of JC. Then, by the chain rule,
(1.2) can be rewritten as

dy Dxy dy
— = —^- = 0 when — = 0,
dx Dxx dx

where Dx denotes the total derivative with respect to x:

D x = aJC + / a y + / a y + .... (1.8)

(The following notation is used throughout the book: dx denotes ^ , etc; yf

denotes ^ , etc.) Therefore (1.2) amounts to

y*+y'yy=0 w h e n / = <>,

xx + y'Xy

that is,

Hence (1.7) holds. The advantage of using the symmetry condition in the form
(1.2) is that one can obtain information about the symmetries without having
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to know the solution of the differential equation in advance. This observation
is fundamental, for it suggests that it might be possible to find symmetries of a
given differential equation whose solution is unknown.

1.3 The Symmetry Condition for First-Order ODEs

The symmetries of y' = 0 are easily visualized, because the solution curves
are parallel lines. It may not be possible to find symmetries of a complicated
first-order ODE by looking at a picture of its solution curves. Nevertheless, the
symmetry condition requires that any symmetry maps the set of solution curves
in the (x, y) plane to an identical set of curves in the (Jc, y) plane. Consider a
first-order ODE,

dy
-r=a>(x,y). (1.9)
dx

(For simplicity, we shall restrict attention to regions of the plane in which co is
a smooth function of its arguments.) The symmetry condition for (1.9) is

dy dy
——=a)(x,y) when — = co(x, y). (1.10)
dx dx

As before, we regard y as a function of x (and a constant of integration) on the
solution curves. Then (1.10) yields

Dxy yx + y'yy dy
— 7 = ~ r~ — co(x, y) when — = CD(X, y).
Dxx xx -h y'xy dx

Therefore the symmetry condition for the first-order ODE (1.9) is equivalent to
the constraint

% +a)(x,y)yy

= co(x, y), (1.11)xx +cQ(x,y)xy

together with the requirement that the mapping should be a diffeomorphism. It
may be possible to determine some or all of the symmetries of a given ODE
from (1.11). One approach is use an ansatz, that is, to look for a symmetry of
a particular form.

Example 1.1 Consider the ODE

dr = y- (i.i2)
dx
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The constraint (1.11) implies that every symmetry of (1.12) satisfies the partial
differential equation (PDE)

Rather than trying to find the general solution of this PDE, let us see whether
or not there are symmetries that satisfy a simple ansatz. For example, are there
any symmetries mapping y to itself? If so, then

(Jc, y) = (x(x, y), y),

and the constraint (1.11) reduces to

y
T — — — = y-

Therefore (taking (1.3) into account),

xx+yxy = l, xx^0.

There are many symmetries of this type; the simplest are the Lie symmetries

(x,y) = (x+e,y), £ e R. (1.13)

Earlier, we found that translations in the x direction are trivial symmetries
of y' = 0; are they also trivial symmetries of (1.12)? The general solution of
(1.12) is easily found; it is

y = c{e
x, c\ e R.

A translation (1.13) maps the solution curve corresponding to a particular value
of ci to the curve

y = y = c\ex = c\ex~E = C2ex, where C2 = c\e~e.

Therefore translations in the x direction are nontrivial symmetries of (1.12),
because (generally) c^ ^ c\. (Of course, s = 0 necessarily gives a trivial sym-
metry.) Interestingly, one solution curve is mapped to itself by every translation,
namely y = 0. Curves that are mapped to themselves by a symmetry are said
to be invariant under the symmetry. The solution y = 0 partitions the set of
solution curves y = c\ex, as shown in Fig. 1.4. The translational symmetries
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y

Fig. 1.4. Solutions of / = y.

(1.13) are unable to map solutions with c\ > 0 to solutions with c\ < 0. How-
ever, the ODE does have symmetries that exchange the solutions in the upper
and lower half-planes. One such symmetry is

(x,y) = U, - y ) ;

this is a discrete symmetry.
So far, we have looked at symmetries of very simple ODEs, but one strength

of symmetry methods is that they are applicable to almost any ODE. Here are
some more complicated examples.

Example 1.2 The Riccati equation

dy _ y + 1
dx x

(1.14)

seems complicated, but its general solution is quite simple (as we shall see in
the next chapter). The symmetries of this ODE include a one-parameter Lie
group of inversions,

(1.15)
1 — EX 1 — EX
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2T

y

11

Fig. 1.5. Solutions of (1.16).

To prove this, simply substitute (1.15) into the symmetry condition (1.11), with
co defined by the right-hand side of (1.14). The inversions are our first example
of a Lie group of symmetries that is not well defined for all real s. (The radius
of convergence of the Taylor series about s = 0 is

Example 13 Consider the ODE

dy_

dx
y3 + x2y — y — x

xy2 + x3 + y — x '
(1.16)

The set of solution curves is sketched in Fig. 1.5, which suggests that rota-
tions about the origin are symmetries. It is left to the reader to check that the
rotations

(x, 50 = (JCCOSS — y sine, x sins + ycose)

form a one-parameter Lie group of symmetries of (1.16).

(1.17)

1.4 Lie Symmetries Solve First-Order ODEs

The title of this section comes from the following rather surprising result. Sup-
pose that we are able to find a nontrivial one-parameter Lie group of symmetries
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of a first-order ODE, (1.9). Then the Lie group can be used to determine the
general solution of the ODE. This result is an indication of the usefulness of
Lie symmetries; it is entirely independent of the function co(x, y). The main
ideas leading to the result are outlined below, and a more detailed discussion
follows in the next chapter.

First, suppose that the symmetries of (1.9) include the Lie group of transla-
tions in the y direction,

(x,y) = (x,y + e). (1.18)

Then the symmetry condition (1.11) reduces to

co(x,y) = co(x,y + e), (1.19)

for all s in some neighbourhood of zero. Differentiating (1.19) with respect to
£ at s = 0 leads to the result

o)y(x, y) =0.

Therefore the most general ODE whose symmetries include the Lie group of
translations (1.18) is of the form

dy ( .
— = co(x).
dx

This ODE can be solved immediately: the general solution is

y = co(x)dx + c. (1.20)

(We shall regard a differential equation as being solved if all that remains is
to carry out quadrature, i.e., to evaluate an integral.) The particular solution
corresponding to c = 0 is mapped by the translation to the solution

= / co(x) dx + £ = / co(x) dx + £,

which is the solution corresponding to c = £. So by using the one-parameter
Lie group, we obtain the general solution from one particular solution. The Lie
group acts on the set of solution curves by changing the constant of integration.

Clearly, every first-order ODE with the Lie group of translations (1.18) is
easily solved. Is the same true for ODEs with other one-parameter Lie groups?
Consider the rotationally symmetric ODE (1.16), depicted in Fig. 1.5. It is
natural to rewrite the ODE in terms of polar coordinates (r, 0), where

x = rcos#, y = rsinO.
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We obtain a far simpler ODE,

dr ~
— = r ( l - r 2 ) , (1.21)
UU

which is immediately integrable. The one-parameter Lie group of rotations
(1.17), rewritten in polar coordinates, becomes

(r, 0) = (r, 0 + s).

In the new coordinates, the rotational symmetries become translations in 0, so
the ODE is easily solved.

The same idea works for all one-parameter Lie groups. In a suitable coor-
dinate system, the symmetries parametrized by s sufficiently close to zero are
equivalent to translations (except at fixed points). One problem remains: what
is the "suitable" coordinate system? For instance, the appropriate coordinate
system for the ODE (1.14) is not obvious. It turns out that the Lie group itself
holds the solution to this problem, as we shall see in the next chapter.

Exercises

1.1 Sketch the set of solutions of the ODE

dy y

dx x

How many different kinds of symmetries can you identify?

1.2 Show that the transformation defined by

(x, y) = (esx, y)

is a symmetry of

dy = l - y2

dx x

for all 8 G M. Describe these symmetries geometrically; how do they
transform the solutions of the ODE?

1.3 Verify that the rotations (1.17) are symmetries of the ODE (1.16).
1.4 Determine the value of a for which
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is a symmetry of

dy 2 -x-f- = y2e
dx

for all s eR.
1.5 Show that, for every e e l ,

(x,y) = I x, y + s exp < / F(x) dx

is a symmetry of the general first-order linear ODE

~dx~ ~~

Explain the connection between these symmetries and the linear superpo-
sition principle.



Lie Symmetries of First-Order ODEs

Great floods have flown
From simple sources

(William Shakespeare: All's Well that Ends Well)

2.1 The Action of Lie Symmetries on the Plane

So far, we have considered only a few particular first-order ODEs of the form

dy
r=a>(x,y). (2.1)

dx

The purpose of this chapter is to develop techniques that are applicable to any
ODE (2.1). We begin with a close examination of the way in which symmetries
act on the plane. The main ideas are not difficult and can be illustrated with the
aid of some very simple ODEs. Nevertheless, these ideas are quite general, and
by the end of the chapter we shall have used them to solve ODEs that cannot
be solved by standard methods.

Suppose that y = fix) is a solution of (2.1) and that a particular symmetry
maps this solution to the curve y = fix), which is a solution of

dy
— = co(x,y).
dx

The function / is obtained as follows. The symmetry transforms the curve
y = f(x) to the set of points (x, y), where

x = *(*, f{x)), y = y(x, f(x)). (2.2)

This is a curve in the (Jc, y) plane, written in parametric form (JC is the parameter).
Now solve the first equation of (2.2) to obtain x as a function of x, and substitute

15
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the result into the second equation of (2.2). This gives

(2.3)

If the symmetry belongs to a one-parameter Lie group, then / is a function of
x and the parameter s.

Example 2.1 The general solution of the ODE

ax x

is

y = ex2. (2.5)

Let us restrict attention to the quadrant x > 0, y > 0, in which each solution
curve (2.5) corresponds to a particular c > 0. The set of solutions in this region
is mapped to itself by the discrete symmetry

(x,y)= ( - , - Y (2.6)
\y yJ

Specifically, the solution curve corresponding to c = c\ is mapped to the curve

1 1
C\X ' C\X2

Therefore x = \/{c\x) and so the solution curve y = c\x2 is mapped to

The ODE (2.4) has many other symmetries, including the one-parameter Lie
group of scalings

(£,>>) = (e£x, e~£y). (2.7)

Any symmetry of this form maps the solution curve y = c\x2 to the curve

(x, y) = (e£x, c\e~£x2).

Solving for JC, we obtain x = e~£x, and therefore the transformed solution is

y = cie~3sx2.
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The (x, 50 plane and the (JC, y) plane contain the same set of solution curves.
Instead of working with two identical planes, it is more convenient to superim-
pose them. Then the symmetry is regarded as a mapping of the (JC, y) plane to
itself, called the action of the symmetry on the (x, y) plane. Specifically, the
point with coordinates (x, y) is mapped to the point whose coordinates are

(x, 50 = (x(x, y), y(x> y))-

The solution curve y = f(x) is the set of points with coordinates (JC, / ( JC) ) .

It is mapped to the set of points with coordinates (x, / ( JC) ) , that is, to the
solution curve y = / ( JC) . Therefore the curve y = f(x) is invariant under the
symmetry if / = / . A symmetry is trivial if its action leaves every solution
curve invariant.
(N.B. It may be necessary to restrict attention to a subset of the plane, if the
ODE or the symmetry is not well defined on the whole plane.)

Example 2,2 In the previous example, we considered various symmetries of
the ODE

dy_

dx
2y_

x

We found that symmetries of the form (2.7) map the solution curve y = c\x2 to
the curve y = c\e~3sx2 in the (jc, 50 plane. Therefore the action of a symmetry
(2.7) on the quadrant JC > 0, y > 0 maps the solution y = c\x2 to the solution
y = c\e~3sx2, as shown in Fig. 2.1. The discrete symmetry (2.6) maps every
solution curve y = c\x2 to itself; hence (2.6) is a trivial symmetry.

Fig. 2.1. The action of a symmetry (2.7) on a solution of (2.4).
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y

Fig. 2.2. Part of a one-dimensional orbit.

It is useful to study the action of a one-parameter Lie group of symmetries
on points in the plane. The orbit of the group through (*, y) is the set of points
to which (x, y) can be mapped by a suitable choice of s. The coordinates of the
points on the orbit through (x, y) are

where

(*, y) = (x(x, y\ £), y(x,

(x(x,y;0),

(2.8)

(2.9)

The orbit through a typical point is a smooth curve, as shown in Fig. 2.2.
However there may also be one or more invariant points, each of which is
mapped to itself by the Lie symmetries. An invariant point is a zero-dimensional
orbit of the Lie group.

Example 2.3 The Lie symmetries of the ODE (1.16) include the rotations

(jc, 50 = (x coss — y sins, x sins + jcose) .

In polar coordinates, these amount to

(r,0) = (r, 0 + e).

The orbit through any point (JCO, yo) # (0, 0) is the circle r = \ /xo + ^0'
whereas (0, 0) is mapped to itself and is therefore an invariant point.

The action of a Lie group maps every point on an orbit to a point on the same
orbit. In other words, every orbit is invariant under the action of the Lie group.
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Now consider the orbit through a noninvariant point (x,y). The tangent
vector to the orbit at the point (JC, y) is (£(jc, y), rj(x, y)), where

dx dy
— =f(Jc,y), — = r}(x,y). (2.10)

In particular, the tangent vector at (JC, V) is

d> ' (2.11)
£=0 ' de e=0

Therefore, to first order in e, the Taylor series for the Lie group action is

x = % ( , y ) ( ) ,
(2.12)

y = y + erj(x, y) + O(s ) .

An invariant point is mapped to itself by every Lie symmetry. Therefore, from
(2.12), the point (JC, y) is invariant only if the tangent vector is zero, that is,

$(x,y) = ri(x,y)=0. (2.13)

In fact this necessary condition is also sufficient, which can be proved by re-
peatedly differentiating (2.10) with respect to e, then setting e to zero. The set
of tangent vectors for a particular Lie group is an example of a smooth vector
field, because the tangent vectors vary smoothly with (x,y).

It is helpful to think of (2.10) as describing a steady flow of particles on
the plane. In this analogy, e is the "time" and the tangent vector at a point is
the velocity of a particle at that point; the orbit is the pathline of the particle.
Invariant points are the fixed points of the flow.

If an orbit crosses any curve C transversely at a point (JC, y) then there are
Lie symmetries that map (JC, y) to points that are not on C. Therefore a curve
is invariant if and only if no orbit crosses it. (The "if" holds because each orbit
is invariant.) In other words, C is an invariant curve if and only if the tangent to
C at each point (JC, y) is parallel to the tangent vector (i=(x,y), rj(x, y)). This
condition can be expressed mathematically by introducing the characteristic,

Q(x, v, / ) = *;(*, y) - y'$(x, y). (2.14)

If C is the curve y = y(x), the tangent to C at (x,y(x)) is in the direction
(1, / ( JC) ) ; it is parallel to (i;(x,y), rj(x, v)) if and only if

Q(x,y,y')=0 on C. (2.15)
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This result enables us to characterize the invariant solutions of (2.1), as follows.
On all solutions of (2.1), the characteristic is equivalent to

Q(x, y) = Q(x, v, co(x, y)) = r](x, y) - co(x, y) §(*, y). (2.16)

[We call Q(x,y) the reduced characteristic] A solution curve y = f(x) is
invariant if and only if

Q(x,y) = 0 when y = f{x). (2.17)

The Lie symmetries are trivial if and only if Q(x, y) is identically zero, that is,

ri(x,y)=co(x,y)$(x,y). (2.18)

If Qy ^ 0 then it is possible to determine the curves y = f(x) that satisfy
(2.17). Every such curve is an invariant solution of (2.1), as will be shown later.
Therefore (2.17) can be used to find all solutions that are invariant under a given
nontrivial Lie group, without it being necessary to carry out any integration!

Example 2.4 The ODE

dy
-r = y (2.19)

dx

has scaling symmetries of the form
(x,y) = (x, e£y). (2.20)

The tangent vector at (x, y) is found by differentiating (2.20) with respect to s
at £ = 0:

G(x,y), ri(x,y)) = (0,y). (2.21)

From (2.13), every point on the line y = 0 is invariant under the action of the
Lie symmetries (2.20). On the solutions of (2.19), the characteristic reduces to

Q(x, y) = r](x, y) - yi=(x, y) = y.

Therefore this Lie group acts nontrivially on the solutions of (2.19). From (2.17),
the only invariant solution is y = 0, which is composed entirely of invariant
points. Here is another one-parameter Lie group of symmetries of (2.19):

(jc, 50 = (e£x, exp{(ee - l)x}y). (2.22)
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The tangent vector at (x, y) is

(§(x,v), ri(x,y)) = (x,xy). (2.23)

Every point on the line x = 0 is invariant. Furthermore,

Q(x,y) = ri(x,y)-y$(x,y)=O,

so the Lie symmetries (2.22) act trivially on the solutions of (2.19).

Example 2.5 The Riccati equation

y y A ( #
X X3

has a Lie group of scaling symmetries

(Jc, }0 = (eex, e~l£y)-

The tangent vector field is

(§(jt,;y), rj(x,y)) = (x, -2y),

and so the reduced characteristic is

) 22

A (*#0) (2.24)

Therefore the Lie symmetries are nontrivial, and there are two invariant solu-
tions:

y = ±x~2.

Most symmetry methods use the tangent vectors, rather than the symmetries
themselves. However, Lie symmetries can be reconstructed from the tangent
vectors by integrating the coupled ODEs (2.10) subject to the initial conditions
(2.9). So (locally) there is a one-to-one correspondence between each one-
parameter Lie group and its tangent vector field.

Example 2.6 The Lie symmetries associated with the tangent vector field (2.21)
are reconstructed as follows. Substitute (2.21) into (2.10) to obtain

dx dy

ds de
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whose general solution is

x(x, y; s) = A(x, y), y(x, y; s) = B(x, y)eE.

Then set E = 0 and use the initial condition (2.9), which yields

(x,y) = (x, e£y)

in agreement with (2.20).

2.2 Canonical Coordinates

In §1.4 we found that every ODE (2.1) whose symmetries include the transla-
tions

(x,y) = (x,y + e) (2.25)

may be integrated directly. More generally, if an ODE has Lie symmetries
that are equivalent to translations (under a change of coordinates), the ODE
can be solved by rewriting it in terms of the new coordinates. How can these
coordinates be found?

All orbits of the symmetries (2.25) have the same tangent vector at every
point:

($(*,?), ?K*,:y)) = (O,i). (2.26)

[The orbits of (2.25) are the lines of constant x.] Given any one-parameter Lie
group of symmetries, we aim to introduce coordinates

(r,s) = (r(x,y), s(x,y))

such that

(r, s) = (r(Jc, 50, s(x, y)) = (r, s + e). (2.27)

If this is possible then, in the new coordinates, the tangent vector at the point
(r, s) is (0, 1), that is,

dr

E=0

= 0. £
ds

i

£ = 0
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Fig. 2.3. Curves of constant r (—) and s (—). Some tangent vectors are shown.

Using the chain rule and (2.10), we obtain

£(x, y)rx + r](x, y)ry = 0,

l=(x,y)sx + ri(x,y)sy = 1.
(2.28)

The change of coordinates should be invertible in some neighbourhood of (x, y),
so we impose the nondegeneracy condition

¥0. (2.29)

This condition ensures that if a curve of constant s and a curve of constant r
meet at a point, they cross one another transversely, as shown in Fig. 2.3. Any
pair of functions r(x, y), s(x, y) satisfying (2.28) and (2.29) is called a pair of
canonical coordinates.

By definition, the tangent vector at any noninvariant point is parallel to the
curve of constant r passing through that point. Therefore the curve of constant
r coincides (locally) with the orbit through the point. The orbit is invariant
under the Lie group, so r is sometimes referred to as an invariant canonical
coordinate. The curves of constant s are not invariant, because they cross the
one-dimensional orbits transversely.

Canonical coordinates cannot be defined at an invariant point, because the
determining equation for s in (2.28) has no solution if

However, canonical coordinates do exist in some neighbourhood of any non-
invariant point. In other words, it is always possible to normalise the tangent
vectors (at least, locally) provided that they are nonzero. Canonical coordinates
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are not uniquely defined by (2.28). Indeed, if (r, s) satisfies (2.28), then so does

(r,s) = (F(r), s + G(r)\ (2.30)

for arbitrary smooth functions F and G. The nondegeneracy condition imposes
the constraint F'(r) ^ 0, but there is still plenty of freedom. We intend to rewrite
the ODE (2.1) in terms of canonical coordinates. This involves differentiation,
so it is wise to use the above freedom to make r and s as simple as possible.
For example, it is quite common to find Lie symmetries with 77 linear in y and
§ independent of y. For these symmetries, if %(x) =£ 0, there are canonical
coordinates with r linear in y and s independent of y. Wherever possible, we
shall try to use a simple nondegenerate solution of (2.28).

Canonical coordinates can be obtained from (2.28) by using the method of
characteristics. The characteristic equations are

dx dy

%(x,y) rj(x,y)

A first integral of a given first-order ODE

= ds. (2.31)

(2.32)

is a nonconstant function <f)(x,y) whose value is constant on any solution
y = y(x) of the ODE (2.32). Therefore

0* + / (* , ;y )0 y =O, 0y # 0 . (2.33)

The general solution of (2.32) is

0(jc,;y) = c. (2.34)

Suppose that § (JC , y) 7̂  0. Comparing (2.28) and (2.33), we see that the invariant
canonical coordinate r is a first integral of

T = ?r4 (235)

dx %(x,y)
So r = 0(x, y) is found by solving (2.35). Quite often, a solution s(x, y) of
(2.28) may be found by inspection. Otherwise we can use r = r(x, y) to write
y as a function of r and x. Then the coordinate sir, x) is obtained from (2.31)
by quadrature:

( \ ' • dx

s(r,x) =
; (2.36)

r=r(x,y)

here the integral is evaluated with r being treated as a constant.
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Similarly, if £(JC, y) = 0 and rj(x,y) ^0 then

f f dy \
r=x, s = / — , (2.37)

\J V(r,y)J r=x
are canonical coordinates.

Example 2.7 Consider the following Lie symmetries, which are scalings:

(jc, y) = (e£x, ek£y), k > 0. (2.38)

The tangent vector is

and therefore r is a first integral of

dy _ ky
dx x

The general solution of this ODE is y = cxk, so we choose r = x~ky, for
simplicity. As § is nonzero and independent of y, it is easiest to choose s to be
a function of x alone. We obtain

(r, s) = (x~ky, In |JC|). (2.39)

These canonical coordinates cannot be used on the whole plane: s = In |JC | fails
on the line x = 0. The following canonical coordinates are suitable for use near
to x = 0, except on the line 3; = 0:

(r, s) = (xky~\ k~l In \y\). (2.40)

Canonical coordinates do not exist at the invariant point (0, 0).

The above example illustrates a minor difficulty with canonical coordinates.
They cannot be defined at an invariant point, and so it is necessary to use several
coordinate "patches" to cover all noninvariant points.

Example 2.8 The one-parameter Lie group of inversions

( x y \
(x,y)= , — y — \ (2.41)

\ 1 — £X 1 — £X J

has the tangent vector field

(£(x, y), rj(x, y)) = (JC , xy). (2.42)
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The method outlined above yields the following (simple) canonical coordinates:

(r,s) =(?-,--) x^O. (2.43)
\x xj

Every point on the line x = 0 is invariant, so canonical coordinates cannot be
defined there.

The most common use of canonical coordinates is for obtaining solutions of
ODEs. However, many features of Lie symmetries become transparent when
canonical coordinates are used. For example, it becomes easy to reconstruct
the Lie symmetries, as follows. First, write x and y in terms of the canonical
coordinates:

x = f(r,s), y = g(r,s).

Therefore, from (2.27),

x = / (r , s) = f(r(x, y), s(x, y) + e),
(2.44)

y = g(r, s) = g(r(x, y), s(x9 y) + e).

Example 2.9 Consider the tangent vector (2.42); the canonical coordinates
(2.43) are inverted to obtain

Therefore (2.44) gives

1 r

S + 6* S + 6 J \ l — 8X* 1 — £JC / '

as expected.

2.3 How to Solve ODEs with Lie Symmetries

Suppose that we have been able to find nontrivial Lie symmetries of a given
ODE (2.1). Recall that Lie symmetries are nontrivial if and only if

)Hx,y). (2.45)

(The reason for this restriction is discussed later.)
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Then the ODE (2.1) can be reduced to quadrature by rewriting it in terms of
canonical coordinates as follows:

ds sx+co(x,y)sy ( 2 4 6 )
( 2 4 6 )

dr rx +Q)(x,y)ry'
The right-hand side of (2.46) can now be written as a function of r and s. For
a general change of variables (x, y) H> (r, s), the transformed ODE would be
of the form

ds
— = fi(r,j), (2.47)
dr

for some function Q. However, (r, s) are canonical coordiates, and so the ODE
is invariant under the group of translations in the s direction:

(r,s) = (r, s + e).

Therefore, from §1.4, the ODE (2.47) is of the form

^ (2.48)
dr

The problem is now reduced to quadrature. The general solution of (2.48) is

— / Q(r)dr = c,

where c is an arbitrary constant. Therefore the general solution of the original
ODE (2.1) is

rr(x,y)
s(x,y) - / Q(r)dr = c. (2.49)

This very simple method can be applied to any ODE (2.1) with a known nontriv-
ial one-parameter Lie group of symmetries. Of course, one must first determine
the canonical coordinates by solving the ODE (2.35). Typically, (2.35) is very
much easier to solve than (2.1). The examples below demonstrate the effec-
tiveness of the method in dealing with ODEs whose solutions are not obvious.
(Henceforth, arbitrary constants will be denoted by c or Q.)

Example 2.10 We have already found the solutions of the Riccati equation

/ ^ l (JC^O), (2.50)
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that are invariant under the Lie symmetries

(Jc,50 = (e£x, e~l£y).

Let us now complete the solution of (2.50). From (2.39), suitable canonical
coordinates are

Then (2.50) reduces to

ds

~dr

The quadrature is straightforward, and we find (after writing r and s in terms
of x and y) that the general solution of (2.50) is

c 4- x2

xz(c — x1)

The invariant solution curve y = x~2 can be regarded as the limit of (2.51) as
c approaches infinity. The other invariant solution is obtained by setting c = 0
in (2.51).

Example 2.11 In Example 1.2, we found that the ODE

dy _ y + l y2

dx x x3

has Lie symmetries of the form

1 — sx 1 — sx )

The canonical coordinates for these inversions are given by (2.43). They reduce
the ODE to

ds 1

dr 1 + r 2 '

The general solution is

s = tan -1(r) + c

which is equivalent to

y = —x tan ( — h e ) .
\x
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Example 2.12 The ODE

y — 4xy2 — 16JC3

y = 3 •;»2 . — ( 2 - 5 2 )

y3 +4x2y + x

has Lie symmetries whose tangent vector field is

(A method for deriving this vector field directly from the ODE is outlined in
§2.4.) The characteristic equation for r is

dy Ax

dx y

and so we can take r = \/Ax2 + y2. Now consider the region y > 0; here
y(r, x) = \Jr2 — Ax2, and so a second canonical coordinate is

dx 1 J2x\ 1 J2x\
s e (0, ft jT).

In this region, the ODE (2.52) reduces to

ds

[The reduction to quadrature is similar in other regions of the (x, y) plane.]
Reverting to the original variables, we obtain the general solution of (2.52):

y COS(4JC2 + y2 + c) + 2x sin(Ax2 + y2 + c) = 0.

Why is it necessary to exclude one-parameter Lie groups whose action on the
set of solutions is trivial? In principle, there is no difficulty in defining canonical
coordinates in the usual way. Suppose that (r, s) are canonical coordinates for
a trivial one-parameter Lie group of symmetries of a given ODE (2.1). Write
the general solution of the ODE as

0(r, s) = c.

Every solution is invariant under the action of the Lie symmetries, and therefore

0(r, s + e) = <p(r,s),
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for all e sufficiently close to zero. Hence 0 is independent of s and, without
loss of generality, the general solution of the ODE can be rewritten as

r = c.

So we need only find the invariant canonical coordinate r, which is a first
integral of

T = ?H- (Z53)

dx %(x,y)
Lie symmetries of (2.1) are trivial if and only if

rj(x,y) =co(x,y)i;(x,y),

and so (2.53) reduces to the original ODE (2.1)! Our aim is to solve this ODE,
so the trivial symmetries are useless.

2.4 The Linearized Symmetry Condition

How can one find symmetries of (2.1)? One method is to use the symmetry
condition (1.10), which is equivalent to

yx +u>(x,y)yy
^— -r =co(x,y). (2.54)
xx +co(x,y)xy

In general, this is a complicated nonlinear partial differential equation in the
two unknowns x and y. However, Lie symmetries can be derived from a much
simpler condition on the tangent vector field. (Remember that once the tangent
vectors have been found, the Lie symmetries can be reconstructed.)

By definition, the Lie symmetries of (2.1) are of the form

x =x + s%(x,y) + O(s2),
(2.55)

y = y + £r](x,y) + O(sz),

for some smooth functions § and rj. To simplify notation, the arguments (x, y)
will be omitted from £ and rj from now on. Substituting (2.55) into (2.54), we
obtain

y} + O(£2)

(2.56)
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We now expand each side of (2.56) as a Taylor series about e = 0, assuming
that each series converges.

co + e{qx + (fly - $=x)co - %yco2} + O(s2) = to + e{%cox + rjcoy} + <9(e2);

here &> is shorthand for co(x, y). This condition is necessarily satisfied at £ = 0,
which corresponds to the trivial symmetery (Jc, y) = (x, y). Equating the O(s)
terms gives the linearized symmetry condition

*lx + (rjy - t=x)co - %y(o2 = %o)x + rjcoy. (2.57)

Like (2.54), this is a single PDE involving two dependent variables, which has
infinitely many functionally independent solutions. However, (2.57) is linear
and is simpler than (2.54). It is usually much easier to find solutions of (2.57)
using some ansatz than to try to solve (2.54) directly.

The linearized symmetry condition can be rewritten in terms of the reduced
characteristic

as follows:

Qx+<oQy=(OyQ. (2.58)

Each solution of (2.58) corresponds to infinitely many Lie groups, for if Q
satisfies (2.58) then

is a tangent vector field of a one-parameter group, for any function £. All
trivial Lie symmetries correspond to the solution Q = 0 of (2.58). In principle,
the nontrivial symmetries can be found from (2.58) by using the method of
characteristics. The characteristic equations are

dx dy dQ

1 co(x,y) coy(x,y)Q'

The first equation of (2.59) is equivalent to the ODE (2.1), so usually one cannot
find a nonzero solution of (2.58) without knowing the general solution of (2.1).

N.B. If ($, rj) is a nonzero solution of (2.57), then so is (fc§, krj), for any
nonzero constant, k. This freedom corresponds to replacing s by k~ls, which
does not alter the orbits of the Lie group. So the same Lie symmetries are
recovered, irrespective of the value of k. The freedom to rescale e means that
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Q can be multiplied by any convenient nonzero constant, without affecting the
orbits.

To solve (2.57) it is necessary to use an appropriate ansatz, that is, to place
some additional constraints upon £ and r\. The following example illustrates
the general idea.

Example 2.13 Consider the ODE

dy = 1 - y2

dx xy
+ 1. (2.60)

Here the function co(x, y) is fairly simple, so let us try an ansatz that is not too
restrictive. Many Lie symmetries have tangent vector fields of the form

£ = a(x), rj = /3(x)y + y(x),

for some functions a, p and y. Does (2.60) have any such symmetries? If so,
the linearized symmetry condition is

xy2

(2.61)

Although (2.61) is a single equation, it can be split into an overdetermined
system of equations by comparing terms that are multiplied by each power of
y. The y~2 terms give

y=o,

and the y~l terms are

6 - OL' a 6

The terms that are independent of y give

and hence

- = 0 .
x
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This ODE is easily solved; the general solution is

a = c\x~x,

and therefore

/? = -ciX-2.

The remaining terms in the linearized symmetry condition provide no further
constraints, so any tangent vector field of the form

(£, rj) = (c{x~\ -c{x~2y)

satisfies the linearized symmetry condition.

Having found a tangent vector field, we can easily check whether it is trivial;
if it is not, it may be used to solve the ODE. Generally speaking, the difficulty
of the calculations increases with the generality of the ansatz. If a)(x, y) is
complicated, it is a good idea to begin with a fairly restrictive ansatz in order to
keep the calculations manageable. If this does not succeed, then one may need
to resort to computer algebra in order to try out more general ansatze.

Example 2.14 Some common symmetries, including translations, scalings and
rotations, can be found with the ansatz

§ = c\x + c2y + c3, rj = c4x + c5y + c6. (2.62)

On the whole, (2.62) is more restrictive than the ansatz used in the previous ex-
ample, for it has no arbitrary functions. The reader is invited to verify that (2.62)
satisfies the linearized symmetry condition for the ODE (2.52) provided that

c\ = c3 = c5 = c6 = 0, c4 = -4c2.

(The use of a computer algebra package is recommended, though not essential,
for this example.)

There are now several reliable computer algebra packages that can greatly
reduce the effort involved in finding and using symmetries. For example, the
ODEtools package within MapleV (Release 5) has a program called Symgen,
which attempts to find solutions of (2.57) with an ansatz defined by the user.

Nevertheless, for some ODEs, the search for a nontrivial symmetry may be
fruitless, even though infinitely many such symmetries exist. This is the chief



34 2 Lie Symmetries of First-Order ODEs

obstacle to using symmetries of first-order ODEs. (Symmetries of higher-order
ODEs and PDEs, however, can usually be found systematically.)

We end this section by justifying the assertion made earlier, that every curve
y = f(x) satisfying

g = 0 when y = f(x), Qy^0, (2.63)

is a solution of (2.1). Differentiate (2.63) with respect to JC, to obtain

Qx + f'WQy=0 when y = f(x). (2.64)

Now compare (2.58) and (2.64), taking (2.63) into account. This gives

f'(x) = co(x,f(x)),

which is the required result.

2.5 Symmetries and Standard Methods

Canonical coordinates are associated with a particular Lie group. So all first-
order ODEs admitting a given one-parameter symmetry group can be reduced
to quadrature, using canonical coordinates defined by the group generator. This
gives rise to methods that work for whole classes of ODEs, some of which are
taught as standard methods.

Example 2.15 Every ODE of the form

admits the one-parameter Lie group of scaling symmetries

(x,y) = (e£x,e£y).

The standard solution method for this type of ODE is to introduce new variables

r = —, s = In |;t|;
x

these are canonical coordinates (for x =£ 0). There are two possibilities. If
F(r) = r, the symmetries are trivial, and the general solution of (2.65) is
r = c, that is,

y = ex.
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Otherwise, (2.65) is equivalent to

ds _ 1
~dr = F(r)-r'

so the general solution of (2.65) is

ry/x dr

Example 2.16 Consider the general linear ODE

/ + F(x)y = G(x). (2.66)

The homogeneous ODE

u + F(x)u = 0

is separable; one nonzero solution is

f f }
u = uo(x) = exp< - / F(x)dx >.

V J )

The principle of linear superposition states that if y = y(x) is a solution of
(2.66), then so is y = y(x) + euo(x), for each s e R. This principle is equivalent
to the statement that (2.66) has the Lie symmetries

(x, y) = (x, y + euo(x)).

The tangent vector field is

(?, ri) = (0, iio

so some simple canonical coordinates are

In these coordinates, (2.66) is equivalent to

ds _ G(r)
dr uo(r)'

Thus we obtain the well-known result that the general solution of (2.66) is

-IKoto J uo(r)

G(r)
• dr = c.
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Similarly, almost all standard methods that use a change of variables are
special cases of the general technique outlined above. A different approach is
to use an integrating factor to solve the ODE (2.1), written in the "Pfaffian"
form

dy-codx = 0. (2.67)

The aim is to find a function /X(JC, y) such that the general solution of (2.67)
can be written as a line integral:

O(JC, y) = / fji(dy — codx) = c.

Consequently

Ox = -con, ®y = V*,

which leads to the condition

lix + (cofi)y = 0. (2.68)

Comparing (2.68) with (2.58), we find that

is an integrating factor, provided that Q is not identically zero. Therefore if
(§, rj) is the tangent vector field for a nontrivial one-parameter Lie group of
symmetries of (2.1), the general solution of (2.1) is

dy~adx = c. (2.69)

The integrating factor method is entirely equivalent to the method of canonical
coordinates. To see this, we rearrange (2.46) and (2.48) as follows:

sx-Q(r)rxco = . (2.70)
sy - £2(r)ry

From (2.28),

${sx - V(r)rx} + n{sy - Q(r)ry} = 1.
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Therefore

sx - ri-cof

sy - Q(r)ry =

and so (2.69) is equivalent to

ds - Q(r)dr = {sx - Q(r)rx]dx + {sy - Q(r)ry}dy = c.

The integrating factor method is particularly useful if it is difficult to calculate
canonical coordinates, as the following example shows.

Example 2.17 The ODE

3 2 + x — x5

is not easily solved by any standard method, but is invariant under the symmetry
group whose tangent vector field is

(§, r]) = (y3 + y - 3x2y, x3 - x - 3xy2).

The characteristic equation for r(x,y) is

dy x3 — x — 3xy2

dx y3 4- y — 3x2y'

which seems as difficult to solve as (2.71). Now let us try to use (2.69); this
gives (after factorization)

(x3 — x — 3xy2) dy 4- (y3 + y — 3x2y) dx

(y2 4- *2)(y2 + (x + l)2)(y2 + (x - I)2) = °'

which is readily integrated (using partial fractions) to yield

Standard trigonometric identities reduce this to the simpler form

xy
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We have two different methods of solution to choose from; if one method
presents problems, the other may succeed. The difficulty is that one must first
find a nontrivial symmetry group, a task that may not be easy!

An alternative approach is to classify all ODEs that have a given Lie group.
The idea is simple:

(i) choose a symmetry group, and use its generator to determine the canonical

coordinates r(x, y) and s(x, y);

(ii) from (2.70), the most general first order ODE invariant under this group is

, = sAx,y)-to(r(x,y))rx(x,y)
sy(x, y) - Q(r(x, y))ry(x, y)'

where £2 is an arbitrary smooth function.

In this way, a catalogue of equation types can be constructed. The catalogue
cannot be complete, for several reasons. There are infinitely many symmetry
groups of first order ODEs, so a complete list would need an infinity of entries.
Furthermore, the method relies on the construction of canonical coordinates;
we have seen that this is not always easy. Nevertheless, it is helpful to be able to
recognise some of the symmetries that occur most frequently in applications.

Example 2.18 The group of rotations about the origin has the tangent vector
field

The usual canonical coordinates for this Lie group are the polar coordinates

(r,s)= -\(y

So, from (2.72), the most general first order ODE invariant under the group of
rotations is

where Q is an arbitrary smooth function.

2.6 The Infinitesimal Generator

So far, we have restricted attention to first-order ODEs of the form (2.1); this
has enabled us to discuss many of the geometrical ideas that are the foundation
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of symmetry methods. We need to extend these ideas to higher-order ODEs
and PDEs, and it will no longer be possible to use two-dimensional pictures to
represent everything of importance. Instead, we introduce a compact notation
that is easily extended to deal with differential equations of arbitrary order, with
any number of dependent and independent variables.

Suppose that a first-order ODE has a one-parameter Lie group of symmetries,
whose tangent vector at (JC, y) is (£,77). Then the partial differential operator

X = $(x,y)dx + ri(x,y)dy (2.73)

is called the infinitesimal generator of the Lie group. We have already encoun-
tered this operator; equations (2.28), which define canonical coordinates, can
be rewritten as

Xr = 0, Xs = \. {2.1 A)

How is the infinitesimal generator affected by a change of coordinates? To
find this out, suppose that (u, v) are the new coordinates and let F(u, v) be an
arbitrary smooth function. Then, by the chain rule,

XF(u, v) = XF(u(x, y), v(x, y))

= %{uxFu + vxFv] + r]{uyFu + vyFv]

(Xv)Fv.

However F(u, v) is arbitrary and therefore, in terms of the new coordinates,
the infinitesimal generator is

X = (Xu)du + (Xv)dv. (2.75)

In particular, if (u, v) = (r, s), then (2.74) yields

X = (Xr)dr + (Xs)ds = ds. (2.76)

In canonical coordinates, the tangent vector is (0, 1), and therefore (2.76) is
consistent with our definition of the infinitesimal generator. In fact, X represents
the tangent vector field in all coordinate systems. If we regard {dx, 3̂ } as a basis
for the space of vector fields on the plane, X is the tangent vector at (x, y).

The infinitesimal generator provides a coordinate-independent way of char-
acterizing the action of Lie symmetries on functions. Suppose that G(r, s) is a
smooth function, and let

) = G(r(x,y), s(x,y)).
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At any noninvariant point (x, y), the Lie symmetries map F(x, y) to

F(x,y) = G(r,s) = G(r, s + e).

Applying Taylor's theorem and (2.76), we obtain

We now revert to using (x, y) as coordinates, which gives

j=o J'

(2.77)

If the expansion on the right-hand side of (2.77) converges, it is called the Lie
series of F about (x, y). We have so far assumed that (x, y) is not an invariant
point, but (2.77) is also valid at all invariant points. The reason for this is that
X = 0 at any invariant point, so the Lie series has only the j = 0 term, which
is F(x, y).

A convenient shorthand for the Lie series (2.77) is

F(x,y) = e£XF(x,y); (2.78)

this notation is suggested by the form of the Lie series. In particular, the Lie
symmetries can be reconstructed as follows:

x = esXx,
(2.79)

y = ee y

Therefore (2.78) amounts to the identity

F(esXx, esXy) = eeXF(x, y). (2.80)

Everything in this section generalizes to any number of variables. Suppose that
there are L variables, zl,..., zL, and that the Lie symmetries are

zs(z\ . . . , zL\ s) = zs +e?5(z1 , • . . , zL) + O(s2), 5 = 1 , . . . , L. (2.81)

Then the infinitesimal generator of the one-parameter Lie group is

X = f J ( z 1 , . . . , z L ) — . (2.82)
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(The summation convention is used: if an index is used twice, one should sum
over all possible values of that index.) Lie symmetries may be reconstructed
from the Lie series:

zs=eeXzs, J = 1 , . . . , L . (2.83)

More generally, if F is a smooth function,

F(eeXz\ • • •, eeXzL) = e*xF(z\ . . . , zL). (2.84)

These general results will prove to be useful as we study higher-order differential
equations.

Further Reading

Readers should consult Chapter 1 of Olver (1993) to find out more about the
geometry of differential equations and symmetry groups. Ibragimov (1994)
contains a classification of first-order ODEs that have various common Lie
symmetries.

Exercises

2.1 Calculate the infinitesimal generator corresponding to each of the fol-
lowing one-parameter Lie groups of symmetries:
(a) (x,y) = (x + s9 y + e);

(b) (*,?) = (T^.T^) ;
(c) (x,y) = (x,eexy).
Now find a pair of canonical coordinates for each generator.

2.2 Construct the one-parameter Lie groups corresponding to each of the
following infinitesimal generators:
(a) X = dx+ydy;
(b) X = (1 + x2)dx + xydy-
(c) X = 2xydx + (y2 -x2)dy.

2.3 Show that (x, y) = (e£x, eaey) is a symmetry of y' = 2y/x for every a
and £. Find every point that is invariant under each of these symmetries.
For which a are the symmetries trivial?

2.4 Solve (2.60), using the symmetries that were derived in Example 2.13.
2.5 Show that X = xdx -\- 3ydy generates Lie symmetries of the ODE

x 2y + x3

Use this result to solve the ODE.
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2.6 The ODE

/ = e~xy2 -\-y + ex

has a symmetry generator such that § and r\ are linear functions of x and
y. Find this generator and use it to solve the ODE.

2.7 Repeat the last question for the ODE

y x + (x + \)y2 '

2.8 What is the most general first-order ODE that has the Lie symmetries
(jc, 50 = (e£x, eaey)l (Treat a as a fixed constant.)

2.9 Suppose that Q j and Q2 are linearly independent reduced characteristics
of symmetries of the ODE y' = a)(x, y). Show that the general solution
of the ODE is Qi = cQ2, where c is an arbitrary constant.

2.10 Use the Lie series (2.77) to verify that (2.79) holds for each of the
following infinitesimal generators:
(a) X=xdx-y8y;
(b) X =x2dx+xydy;
(c) X = -ydx+xdy.



How to Find Lie Point Symmetries of ODEs

Good hunting!

(Rudyard Kipling: The Jungle Book)

3.1 The Symmetry Condition

We have now met many of the basic ideas behind symmetry methods in the
context of first-order ODEs. These ideas can be extended and applied to higher-
order ODEs. For simplicity, we shall consider only ODEs of the form

y™ = co(x, y, / , . . . , y<»-»), y{k) = 0 . (3.1)

It is assumed that co is (locally) a smooth function of all of its arguments.
We begin by stating the symmetry condition and examining some of its

consequences. (The detailed justification of the symmetry condition is deferred
until the end of this chapter.) A symmetry of (3.1) is a diffeomorphism that
maps the set of solutions of the ODE to itself. Any diffeomorphism,

r:(x,y)» (x,y), (3.2)

maps smooth planar curves to smooth planar curves. This action of T on the
plane induces an action on the derivatives y(k\ which is the mapping

r : ( J C , y , / , . . . , y { n ) ) >—> ( * , y , y ' , . . - , y ( n ) ) , (3.3)

where

= % k=l,...,n. (3.4)

43
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This mapping is called the nth prolongation of P. The functions y^ are calcu-
lated recursively (using the chain rule) as follows:

(3.5)
9 , 9 s 9 .

ax Dxx

Here Dx is the total derivative with respect to x:

Dx = dx + yfdy + y"dy + • • •. (3.6)

The symmetry condition for the ODE (3.1) is

5>(w> = co(x, y,y,..., y(n~l)) when (3.1) holds, (3.7)

where the functions y(k) are given by (3.5).
For almost all ODEs, the symmetry condition (3.7) is nonlinear. Lie sym-

metries are obtained by linearizing (3.7) about e = 0. No such linearization is
possible for discrete symmetries, which makes them hard to find. However, it is
usually easy to find out whether or not a given diffeomorphism is a symmetry
of a particular ODE.

Example 3.1 Here we show that the transformation

(x,y) = (-,-) (3.8)
\x x)

is a symmetry of the second-order ODE

y" = 0, x > 0. (3.9)

From (3.5), we obtain

., Dx(y/x)
y = = y — xy ,

Dx(l/x)

y Dx(l/x) y

Therefore the symmetry condition,

y" = 0 when y" = 0,

is satisfied. This symmetry is its own inverse, and so it belongs to a discrete
group of order 2. The general solution of the ODE,

y=ClX+C2, (3.10)
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is mapped by (3.8) to the solution

y C2
y = - =c{-{ = c i +c2x.

X X

Hence this symmetry acts on the set of solution curves by exchanging the
constants of integration c\ and c2.

The linearized symmetry condition for Lie symmetries is derived by the same
method that we used for first-order ODEs. The trivial symmetry corresponding
to s = 0 leaves every point unchanged. Therefore, for s sufficiently close to
zero, the prolonged Lie symmetries are of the form

x = x + s% + O(s2),
2 (3.11)

, k>\.

[N.B. The superscript in rj^ is merely an index; it does not denote a derivative
of t].] We substitute (3.11) into the symmetry condition (3.7); the O(s) terms
yield the linearized symmetry condition:

r](n) = %cox + rjcoy + r](l)cjoy -\ h r](n~l)coy(n-D when (3.1) holds.
(3.12)

The functions r/^ are calculated recursively from (3.5), as follows. For k = 1,
we obtain

Dxx 1 + eDx% + O(s2) v '

(3.13)

Therefore, from (3.11),

^ = Dxr]-y'Dx^ (3.14)

Similarly,

and hence

t,<» (x, y,y',..., yM) = Dxrj^ - y^DxH- (3.15)
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The functions §, r\ and rj^ can all be written in terms of the characteristic,
Q = n — y'i-, as follows:

ri=Q-y'Qy, (3-16)

[The derivation of (3.16) is left to the reader as an exercise.] This result is useful
for computational purposes and readily generalizes to symmetries other than
point symmetries (see Chapter 7).

For first-order ODEs, the right-hand side of the linearized symmetry condi-
tion (3.12) is Xco, where X is the infinitesimal generator

Recall that the infinitesimal generator is associated with the tangent vector to
the orbit passing through (x, y), namely

«••»-(£•?
yds as

8=0

To deal with the action of Lie symmetries on derivatives of order n or smaller,
we introduce the prolonged infinitesimal generator

X(H) = t;dx + T]dy + 77(1)3y + • • • + TJ™ dyw . (3.17)

The coefficient of 9 ^ is the O(s) term in the expansion of y(k\ and so X(n) is
associated with the tangent vector in the space of variables (x, y, / , . . . , v(/t)).
We can use the prolonged infinitesimal generator to write the linearized sym-
metry condition (3.12) in a compact form:

Xin) (y(n) - co(x, y, / , . . . , y{n~l))) = 0 when (3.1) holds. (3.18)

3.2 The Determining Equations for Lie Point Symmetries

Every symmetry that we have met so far is a diffeomorphism of the form

(jc,5>) = (jc(jt,)O, y(x,y)). (3.19)

This type of diffeomorphism is called a point transformation; any point trans-
formation that is also a symmetry is called a point symmetry. For now, we
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restrict attention to point symmetries; other types of symmetries are discussed
in Chapter 7.

To find the Lie point symmetries of an ODE (3.1), we must first calculate
rj(k\k = 1, . . . , n. The functions § and rj depend upon x and y only, and
therefore (3.14) and (3.15) give the following results.

??(1) = ̂  + ( ^ -^ ) / -^ / 2 ; (3.20)

r](2) = nxx + {2rixy - $xx)y' + (riyy - 2$xy)y
a - ^ / 3

+ {^-2^-3^/}/; (3.21)

+ {riy - 3t;x - ^yy
f}y'\ (3.22)

The number of terms in rj^ increases exponentially with /c, so computer algebra
is recommended for the study of high-order ODEs. However, the basic technique
for finding Lie point symmetries can be learned by studying low-order ODEs.
It is important to master this technique before resorting to computer algebra;
practice is essential!

We begin by considering second-order ODEs of the form

/ ' = *>(*,?,/). (3.23)

The linearized symmetry condition is obtained by substituting (3.20) and (3.21)
into (3.12) and then replacing y" by co(x, y, y'). This gives

rixx + (2rixy - $xx)y' + (r)yy - 2$xy)y'2 - %yyy
/3 + {^ - 2 ^

= t=oox + rjo)y + {r]x + (riy - $x)y' - $yy
f2} coy. (3.24)

Although (3.24) looks complicated, it is commonly easy to solve. Both § and rj
are independent of / , and therefore (3.24) can be decomposed into a system of
PDEs, which are the determining equations for the Lie point symmetries. The
following examples illustrate the procedure.

Example 3.2 Consider the simplest second-order ODE,

y" = 0. (3.25)

The linearized symmetry condition for this ODE is

T/2> = 0 when y" = 0,
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that is,

rixx + (2rjxy - ^xx)y
! + (nyy - 2 ^ ) / 2 - $yyy* = 0.

As § and rj are independent of yf, the linearized symmetry condition splits into
the following system of determining equations:

r\xx = 0, 2r]xy - %xx = 0, riyy - 2$xy = 0, $yy = 0. (3.26)

The general solution of the last of (3.26) is

for arbitrary functions A and B. The third of (3.26) gives

rj(x, y) = A'(x)y2 + C(x)y

where C and D are also arbitrary functions. Then the remaining equations in
(3.26) amount to

A'"(x)y2 + C"(x)y + D\x) = 0, 3A / /(JC)J + 2C'(JC) - i5r/(x) = 0. (3.27)

Equating powers of y in (3.27), we obtain a system of ODEs for the unknown
functions A, B, C, and D\

A"(x) = 0, C\x) = 0, Dr/(x) = 0, B"(x) = 2C\x).

These ODEs are easily solved, leading to the following result. For every one-
parameter Lie group of symmetries of (3.25), the functions § and rj are of the
form

§(x, y) = c\ + c3x + c5y + c7x
2

rj(x, y) = c2 + c4y + c6x

where (as usual) c\, . . . , eg are constants. Therefore the most general infinites-
imal generator is

where

Xi = â , x2 = av, x3=xdx, x4 = ydy, x5 =

X6 = xdy, X7 = JC29X + xv9y, X8 = xj9^ + y2dy.
(3.28)
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Example 33 The ODE

V2

y" = — - y2 (3.29)

arises in the study of swimming micro-organisms. The linearized symmetry
condition is

r)xx + (2r]xy — %xx)y' + (rjyy — 2tjxy)y
f2 — %yyy'3

(3.30)

By comparing powers of y', we obtain the determining equations:

The

then

first

the

n*x-yHr,y-

of (3.31) is readily integrated

§ = A(x)h

second of (3.31) yields

r) = A \ x ) y ( I n \y\f-

1
yy y y

1 1
~rly ~\ 2 ^ =

y y

2$x) + 2yt] =

I to give

i \y\ + B(x);

\-C(x)yln\y\

0,

0,

0.

+ D(x)y.

(3.31)

(3.32)

(3.33)

Here A, B,C, and D are unknown functions that are determined by the remain-
ing equations of (3.31). Substituting (3.32) and (3.33) into the third determining
equation, we obtain

3A"(x) In \y\ + 3A(x)y + 2C'(x) - B"(x) = 0.

Therefore

A(x) = 0, B'\x) = 2C'(x). (3.34)
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Now we substitute (3.32) and (3.33) into the last of the determining equations
(3.31), bearing in mind that A = 0. This leads to

C(x)y2 In \y\ + C"(x)y In \y\ + (2B\x) - C(x) + D(x))y2 + D"(x)y = 0,

which splits into the system

C(x) = 0, D(x) = -2B\x), D"(x) = 0.

Taking (3.34) into account, we find that

B(x) = a + c2x, D(x) = -c 2 ,

where c\ and c2 are arbitrary constants. Hence the general solution of the
linearized symmetry condition is

r1 = -2c1y. (3.35)

Every infinitesimal generator is of the form

X = cxXx +c2X2,

where

Xx = 3X, X2 = xdx - 2ydy. (3.36)

Let C denote the set of all infinitesimal generators of one-parameter Lie
groups of point symmetries of an ODE of order n > 2. The linearized symmetry
condition is linear in £ and rj, and so

Xu X2 e C =» ciXi + c2X2 G C, Vci, c2 e R.

Therefore £ is a vector space. The dimension, R, of this vector space is the
number of arbitrary constants that appear in the general solution of the linearized
symmetry condition. As in the above examples, every X e C may be written
in the form

(3.37)

where {X\,..., XR] is a basis for C. The set of point symmetries generated by
all X e C forms an R-parameter (local) Lie group. We shall call this "the group
generated by £" from here on.
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The order of the ODE places restrictions upon R. For second-order ODEs,
R is 0, 1,2, 3, or 8. Moreover, R is 8 if and only if the ODE either is linear,
or is linearizable by a point transformation. Every ODE of order n > 3 has
R < n + 4; if the ODE is linear (or linearizable), then/? e {n + 1, n + 2, n +4}.
We shall not prove these results, but they provide us with a useful test. If
one obtains a "general solution" of the linearized symmetry condition that
contravenes these results, an error has been made.

For most second-order ODEs that arise from applications, co is polynomial
in y'. This makes it easy to split the linearized symmetry condition into the
determining equations, by reading off all terms that are multiplied by a particular
power of y'. For more general <w, splitting is achieved by collecting together all
terms whose ratio is independent of y'.

The same technique works for higher-order ODEs. As a general rule, it is best
to begin by calculating only those determining equations that are multiplied by
the highest power of y^n~l\ This gives some information about § and r\. Then
look at the next highest power of y^n~l) to find out more, and so on. The
following example shows how this is done.

Example 3.4 The following ODE occurs in the study of flow in thin films with
free boundaries:

y" = y~3. (3.38)

The linearized symmetry condition for this ODE is

T/3> = -3y~4r] when (3.38) holds. (3.39)

From (3.22), we see that (3.39) is quadratic in y". The terms involving y"1 give

- 3 § y = 0.

Therefore

£ = A(x), (3.40)

for some function A. Taking (3.40) into account, the terms in (3.39) that have
a factor y" yield the following:

r)xy - A"(x) + rjyyy' = 0.

Equating powers of / in the above, we obtain

ri=(A'(x) + ci)y + B(x), (3.41)
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where B is a function and c\ is constant. The remaining terms in the linearized
symmetry condition reduce to

A""{x)y + B"'(x) + 2A'"(x)yf + (cx - 2A\x))y~3

= -3{(A'(x) + Cl)y + B(x)}y-\

Therefore

A = -4c{x + c2, B=0,

and so C is two dimensional, with a basis

Later, we shall use the equivalent basis

Xi = dx, X2 = xdx + lydy, (3.42)

to derive some exact solutions of (3.38).

In the above example, the fact that co is independent of y" immediately places
severe restrictions upon § and rj. This result generalizes, as follows. For any
ODE of the form

y ( n ) = co(x, v , / , . . . , y { n ' 2 ) ) , n > 3 , (3.43)

the linearized symmetry condition constrains £ and rj to be of the form

% = A(x), n = (\(n - \)A'{x) + d) v + B(x). (3.44)

Here A and J5 are functions and c\ is a constant.

3.3 Linear ODEs

Linear ODEs of order n > 2 prove to be surprisingly resistant to symmetry
analysis, even though there is no shortage of Lie point symmetries. [Recall that
for linear ODEs, R = dim(£) > n+1.] The problem is that most of the Lie point
symmetries cannot be found until the general solution of the ODE is known.

To illustrate this, consider the second-order linear ODE

y" = p(x)y' + q(x)y, (3.45)

where p(x) and q{x) are given. The linearized symmetry condition leads to the
result

§ = A(x)y + B(x), x) = {A\x) + p(x)A(x)}y2 4- C(x)y + D(x),
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where

A" + (pA)f -qA = O,

B" + (pB)' = 2C",

C" - pC = 2qB' + q'B,

D" - pD' -qD = 0.

The equation for D is the original ODE, and A satisfies the adjoint ODE.
Suppose that the general solution of (3.45) is

y = hy\(x) + k2y2(x),

where k\ and k2 are arbitrary constants. Then the general solution of the system
of ODEs for A, B, C, and D is

B = e-f*x)dx (c6y
2
x + 2ciyiy2

C = ci + e-fp(x)dx(c6yiy[

D = c2yi +c3y2.

Hence the vector space of infinitesimal generators is eight dimensional and has
a basis

X{ = ydy,

X2 = yidy,

X3 = y2dy,

Xl = e-f^
dx(2yiy2dx + (y[y2 + yiy'2)ydy),

Every generator except X\ depends upon the solutions of the original ODE, so
it is not usually possible to solve the linearized symmetry condition completely.

Every homogeneous linear ODE of order n > 3 has infinitesimal generators
of the form

X{=ydy, X2 = y{dy, . . . , Xn+X = yndy,
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where {yu • • •, yn) is a set of functionally independent solutions of the ODE.
Some linear ODEs have one more infinitesimal generator. Other linear ODEs
have three more and can be mapped to the ODE y{n) = 0 by a point transfor-
mation. The three extra infinitesimal generators for

y(n) = 0

are

Xn+2 = 9JO Xn+3 = Xdx, Xn+4 = X2dx + (ft - l)xydy.

3.4 Justification of the Symmetry Condition

At the start of this chapter, the symmetry condition was stated with little attempt
at justification. Having seen how the linearized symmetry condition enables us
to find Lie symmetries systematically, let us now think a little about the origin
of the symmetry condition. Consider a diffeomorphism,

T : (x,y) H> (Jc,.y), (3.46)

that maps a solution curve y = f(x) to a "new" curve £ = f(x). The function
f(x) satisfies

fn\x) = a>(x, f(x), f(x)9 ..., f(n-l)W), (3.47)

because y = f(x) is a solution of the ODE (3.1). Clearly, T is a symmetry only
if the new curve is also a solution of the ODE, that is,

f("\x) = <o(x, fix), fix),..., fn~l\x)). (3.48)

We hardly ever know the general solution of the ODE in advance, so it is not
practical to use (3.48) as a test. Nevertheless, any symmetry condition must tell
us whether or not (3.48) is satisfied for each solution y = f(x).

We achieve this by working in the (ft + 2)-dimensional Euclidean space of
variables (JC, v, / , . . . , y(n)), which is called the nth jet space, Jn. The ODE
(3.1) defines a (hyper-) surface, 5 , in Jn. For example, the ODE y' = co(x, y)
is represented as a surface in 71, which is the space whose coordinates are
(x,y,y').

Any smooth curve y = /(JC) in the plane is represented in Jn by the unique
smooth curve

(JC, y,y',..., y(n)) = (x, fix), fix),..., f(n\x)). (3.49)
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The curve (3.49) is called the lift ofy = / (JC); the term lifted curve is also used.
The (JC, y) coordinates of any lift determine the original curve on the plane. This
correspondence between smooth curves on the plane and their lifts means that
any smooth mapping (3.46) between curves on the plane can be extended to Jn:

r : (JC, ;y, / , . . . , y{n)) h—• (jc, y9 y,..., y{n)), (3.50)

where, by definition of the lift,

dkv

dxk fc = 1 n. (3.51)

This extension of the action of F to all derivatives of order n or less is the nth
prolongation of F.

From (3.47), if y = /(JC) is a solution of the ODE then its lift (3.49) lies
within S. Conversely, any lifted curve that lies within <S is a solution of the ODE.
The nth prolongation of F maps S to a new surface, S, which is of the form

(3.52)

In particular, if F maps a solution y = /(JC) to the curve y = /(Jc), then the
lift of the new curve lies within <S, that is,

/W(x) = &(x, f(x), f(x),..., f-l\x)). (3.53)

So (3.48) holds if and only if co = co on the lift of y = /(JC). Until now, we
have considered a single solution curve. The equivalent condition for the whole
set of solution curves is that co = co on S, that is,

yW = co(x, y,y',..., y(n'l)) when (3.1) holds, (3.54)

Therefore <S is mapped to itself by the (prolonged) action of any symmetry. In
other words, S is invariant under any symmetry. Of course, this is to be expected
from our premise that a symmetry is a diffeomorphism that leaves an object
apparently unchanged.

N.B. The above discussion shows that some care is needed in defining symme-
tries. Not every diffeomorphism mapping the surface S to itself is a symmetry.
There is an extra condition (3.51), which ensures that the diffeomorphism maps
each lift to a lift (at least, for those lifts that lie in S). This condition is the re-
quirement that symmetries preserve the "structure" of solutions of differential
equations.
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Notes and Further Reading

In principle, the symmetry condition could be used to find the discrete point
symmetries of a given ODE of order n > 2. The functions y^ are determined by
the prolongation formulae (3.5). Although the symmetry condition is a highly
nonlinear partial differential equation, it can be simplified somewhat because x
and y are independent of y', y"', . . . , y(n~l\ This splits the symmetry condition
into a system of coupled nonlinear PDEs. However, such systems are generally
extremely difficult to solve. A much easier method of obtaining the discrete
symmetries is described in Chapter 11.

Lie algebras of symmetry generators for ODEs are subject to various con-
straints (some of which are mentioned in §3.2). There are enough constraints
for a complete classification to be made of all Lie algebras of point symmetry
generators. Olver (1995) contains further details and references.

The result (3.44) simplifies the calculation of symmetry generators for a large
class of ODEs. Many similar labour-saving results are described in Bluman and
Kumei (1989).

The justification of the symmetry condition in §3.4 is based on the action of a
symmetry on an individual solution curve. In particular, the lift is used to derive
the prolongation formulae. Some authors derive the same formulae using the
idea of tangential contact between pairs of curves. For a comparison of these
two approaches, see Sewell and Roulstone (1994).

Exercises

3.1 Show that §, rj and rjik) satisfy (3.16).
3.2 Derive (3.21) and (3.22) from the prolongation formula (3.15) and write

down rj(4) explicitly.
3.3 Calculate Z (4) for each of the following generators:

(a) X = dy;
(b) X = xdx + ccydy, where a is constant;
(c) X = xydx+y2dy',
(d) X = -ydx+xdy.

3.4 Write down and solve the determining equations for the symmetry gener-
ators of y" = y'A + ay'1 (where a is constant). What is the dimension of
C for most values of a? For which a is the dimension of C greater than
this?

3.5 Find the most general infinitesimal generator for the ODE

y>" = 7 / - 6y.
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Note that dim(X) < 7 in this example, even though the ODE is linear.
3.6 The overdetermined set of PDEs for £ and rj are not always easy to

solve. For example, if an ODE has a discrete symmetry (x, y) = (y, x)
then rj(x,y) and %(y,x) satisfy the same PDEs, which are typically
highly coupled. Write down the determining equations for the ODE
y" = (1 — / ) 3 . Now calculate the general solution of the determining
equations. (Hint: Look for a suitable change of variables.)

3.7 It is sometimes useful to classify members of a family of ODEs according
to their symmetries. Consider the ODEs of the form

Every such ODE has symmetries generated by Xi = dx. Use the linearized
symmetry condition to find all functions f(y) for which there are addi-
tional Lie point symmetries. [This is an example of a group classification
problem. See Bluman and Kumei (1989) for further examples.]



How to Use a One-Parameter Lie Group

You know my methods.
Apply them.

(Sir Arthur Conan Doyle: A Study in Scarlet)

4.1 Reduction of Order by Using Canonical Coordinates

Now that we are able to find Lie symmetries systematically, how should they be
used? To solve a first-order ODE, we write it in terms of canonical coordinates.
Higher-order ODEs also benefit from canonical coordinates. Henceforth, dif-
ferentiation with respect to r is denoted by a dot (•); for example, s denotes j-r-

Suppose that X is an infinitesimal generator of a one-parameter Lie group of
symmetries of the ODE

yW = CD(X, y , y \ . . . , y ( n ~ l ) ) , n > 2 . (4.1)

Let (r, s) be canonical coordinates for the group generated by X, so that

X = ds. (4.2)

If the ODE (4.1) is written in terms of canonical coordinates, it is of the form

for some £2. However, the ODE (4.3) is invariant under the Lie group of
translations in s, so the symmetry condition gives

Qs = 0.

Therefore

s ( n ) = £2(r,s,...,s(n~l)). (4.4)

58
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By writing the ODE (4.1) in terms of canonical coordinates, we have reduced
it to an ODE of order n — 1 for i; = s:

v{n~l) = Q(r,v, ..., t/"-2)), v(k) = J - ^ J . (4.5)

Suppose that the reduced ODE has the general solution

v = f(r;cu . . . ,c w _i) .

Then the general solution of the original ODE (4.1) is

/

r(x,y)

f(r\cu ...,cn-i)dr + cn.

More generally, if v is any function of s and r such that i>j(r, s) ^ 0, the ODE
(4.4) reduces to an ODE of the form

^ (4.6)v = Q ( r , i; , . . . , i ; ) , v = ^ .
v ' drk

Once the general solution of (4.6) has been found, the relationship

s = s(r, v)

gives the general solution of (4.1):

/

r(x,y)
s(r, v(r,ci,...,cn-i))dr + cn. (4.7)

To summarize: if we know a one-parameter Lie group of symmetries, we are
able to solve (4.1) by solving a lower-order ODE, then integrating. This is
encouraging, for we already have a systematic technique for deriving Lie point
symmetries.

Example 4.1 Consider the linear ODE

/ = (l-2x\y' + 4y. (4.8)

We do not yet know any solutions of (4.8), and so only one infinitesimal gen-
erator is available, namely

X = ydy.

The simplest canonical coordinates are

r = x , s = In \y\,
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which prolong to

y2dr y ' dr2 y y2

Hence the ODE (4.8) reduces to the Riccati equation

dv / 3 \ 2 ds y'
[ 2 ) + 4 2[ 2 r ) v + 4 v , v . ( 4 . 9 )

dr \r ) dr y
This reduction is a standard technique, which yields the general solution of the
original ODE if one solution of the reduced equation can be found. The Riccati
equation (4.9) has one simple solution:

v = -2r. (4.10)

Then the remaining solutions are of the form

v = -2r + w~[, (4.11)

where w satisfies the linear ODE

dw i

Therefore

w = %e~rl + 1 - -L . (4.12)

Having found s = v(r; c\), all that remains is to carry out the quadrature. The
exceptional solution (4.10) gives

In \y\ = s = —r2 4- c2 — —x1 + c2.

Similarly, the general solution (4.11) yields

\n\y\ =\n\cxe-x2 + \(x2 - 1)| +c2 .

Combining these results and redefining the arbitrary constants, we find that the
general solution of (4.8) is

J = C , ^ 2 + C 2 ( J C 2 - 1 ) . (4.13)

In the above example, it was convenient to take v = s. Commonly, this is
not the most convenient choice for i>, as the following example shows.
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Example 4.2 The nonlinear second-order ODE

y" = — + (y - -) / (4.14)
y V yJ

has a one-parameter Lie group of symmetries whose infinitesimal generator is

These translations are the only Lie point symmetries of (4.14). The simplest
canonical coordinates are obvious:

(r,s) = (y,x).

If we choose v to be s = ( / )"*, the ODE (4.14) reduces to

dv y" v (\

This is a Bernoulli equation, which can be solved by rewriting it as a linear
equation for i;"1.

Clearly, it is much easier to choose

v = y\ i.e., v = (s)~l,

from the outset. With this choice of v, the ODE (4.14) reduces directly to the
linear ODE

—- = J— = - + r - - . (4.15)
dr y' r r

The general solution of (4.15) is

v = r2 — 2c\r + 1.

(The factor —2 in front of the arbitrary constant c\ is there for convenience.)
Therefore

J v(r) J r 2 -
dr

2c\r + 1

After carrying out the (easy) quadrature, we obtain the general solution of (4.14):

c\ — \/c2 — 1 tanh(^/cj — 1 (x + c2)), c\ > 1;

y = ^ ci — (x + c2) - 1 , Cj = 1; (4.16)

-c?(* + c2)), ĉ  < 1.



62 4 How to Use a One-Parameter Lie Group

In each of the previous examples, we were able to solve the reduced ODE
to find s as a function of r. This is unusual; knowing a one-parameter group
of symmetries enables us to reduce the order of the ODE, but there is no
guarantee that the reduced ODE is easy to solve! However, suppose that we
know more than one infinitesimal generator, that is, R = dim(£) > 2. Could
these Lie symmetries be used to reduce the order of the ODE by R, or to solve
it completely if n < Rl To answer this question, we need to know more about
the symmetries, as the next example shows.

Example 4.3 Consider the ODE

y'" = \ , * > 0 , (4.17)
y

whose Lie point symmetries are generated by

Xi =3*, X2=xdx + lydy.

The group generated by X\ consists of translations, whereas X2 generates
scaling symmetries. First we reduce the ODE (4.17) by using X\; the canonical
coordinates (r\,s\) = (y9x) yield

^T = 4? - L (P)2 > where »! =(,)-<=/• (4.18)^T 4?
drf rfvf

The only Lie point symmetries of the reduced ODE (4.18) are the scalings
generated by

X2 = lrldri-\vldVl. (4.19)

These symmetries are inherited from the original ODE (4.17); they arise from
the unused one-parameter Lie group generated by X2. To find out how this group
acts on the reduced set of variables (r\, vi) = (y, yf), we need to prolong X2'.

The reduced generator X2 is obtained by restricting attention to those terms in
Xjl) that act on (r\, v\). In this example, X2 is independent of s\ = x, so it
generates point symmetries of the reduced ODE. These symmetries enable us
to reduce the order again. If we use

1 \dvx
r2 = r{v\, v2 = r{ -—,

drx
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the reduced ODE is

dv2 3 — 4r?v2 •

dr2 ri(r2-

The symmetries of (4.20) are not known, so we cannot proceed further.
Nevertheless, we have succeeded in using both Lie symmetries of (4.17) to
reduce the order by 2.

Surprisingly, the key to this success is that we used X\ first. If any other
infinitesimal generator is used first, the resulting second-order ODE does not
inherit the unused symmetries. For example, if X2 is used first, the ODE (4.17)
reduces to

, 4 ( f ) 9 ^ (421)
3r 4v 'dr2 r3(3r-4v)2 3r - 4v

where

r = x~*y, v = x*y'.

The reduced ODE (4.21) has no Lie point symmetries.

In the next chapter, we shall investigate the set of infinitesimal generators
more thoroughly. This will enable us to find out which symmetries should be
used first, if other symmetries are to be inherited by the reduced ODE.

4.2 Variational Symmetries

If an ODE is derived from a variational principle, it may be possible to use
a one-parameter Lie group of point symmetries to reduce the order by 2. To
begin with, consider the variational principle

8W = 0; (4.22)

here the action, W, is of the form

W = f L(x,y,y')dx, (4.23)

where L(x, y, y') is the Lagrangian. This variational principle leads to the
Euler-Lagrange equation

Ly - Dx(Ly>) = 0 . (4.24)
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Suppose that a point transformation maps W to

W = I L{x,y,y')dx, (4.25)

where

W = W. (4.26)

Such a transformation is called a variational symmetry. The Euler-Lagrange
equation for the transformed problem is

Ly - D x ( L y ) = 0 , w h e r e L = L ( x , y , y ) ,

and so the variational symmetry is also a point symmetry of the Euler-Lagrange
equation. If we can find the Lie point symmetries of the Euler-Lagrange equa-
tion, it is usually easy to check which of these are also variational symme-
tries.

Suppose that X = %dx + r]dy generates a one-parameter Lie group of point
symmetries of the Euler-Lagrange equation (4.24). Then W may be expanded
in powers of £:

• / '
W = {L(x, y, / ) + sX{l)L + 0(sl)}{\ + e(Dx$) + <9(£2)} rfx.

Collecting together the first-order terms, W = W if

X(l)L + (£>*£)£ = 0. (4.27)

In particular, X = dy generates variational symmetries if Ly = 0. One
consequence of this condition is that the Euler-Lagrange equation is

Dx(Ly)=0,

and hence

Ly(x9y') = ci. (4.28)

The reduced ODE (4.28) retains the Lie symmetries generated by X = dy, so
a further reduction of order is possible. This is easily done, by using (4.28) to
write

/ = F(x\d)
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(for some function F), and then integrating:

y = F(x\c\)dx + c2.

The above technique can also be used for other variational Lie point symmetries.
Having ascertained that a particular generator X satisfies (4.27), one should re-
write the variational problem in terms of canonical coordinates. Then X = ds

generates variational symmetries of

= 8 L(r,s,s)dr = 0,8W = 8 L(r, s, s) dr = 0, (4.29)

where the change of variables in the integral requires that

L
L(r,s,s) = . (4.30)

Dxr

The condition (4.27), rewritten in terms of canonical coordinates, amounts to
Ls = 0. Therefore the Euler-Lagrange equation,

Ls-Dr(Ls)=0,

reduces to

Li(r,i) = ci. (4.31)

The solution is completed by using (4.31) to write s as a function of r and c\
then integrating to find s.

Example 4.4 One of the fundamental problems of classical mechanics is to
compute the motion of an object described by a conservative system. Hamilton's
principle states that the Lagrangian is

L = T -U,

where T is the object's kinetic energy and U is the potential energy. The
simplest such systems are of the form

L = {y'2-U(y); (4.32)

here y (x) is the position of the object at time x. The Euler-Lagrange equation is

y" = -G(y), where G{y) = -^-. (4.33)
dy
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Every ODE (4.33) has Lie symmetries generated by X = dx; indeed, for most
functions G, these are the only Lie point symmetries. These symmetries are
variational, because

Xil)L + (Dx$)L = Lx =0.

Using the canonical coordinates (r, s) = (y, JC), the variational problem is
equivalent to (4.29), where

L(r, s) = -— = — — = — - U(r)s.
Dxr 2 y1 2s

Applying (4.31), we obtain the first integral

s 2J2

Reverting to the original variables,

\y'2 + U{y) = -cu (4.34)

and therefore

x = ±f , ^Jy
 x , = 4- c2. (4.35)

ODEs of the form (4.33) are usually solved by the standard trick of multiply-
ing both sides by / and then integrating to obtain the separable ODE (4.34).
This trick is nothing more than the exploitation of one particular Lie group of
variational symmetries. For other classes of variational problem, the solution
method may not be so obvious. Nevertheless, if variational symmetries exist,
they can be found and used systematically.

Example 4.5 Consider the ODE

v' 3v2

-*" = 7 + 2? <4J6)

which arises from the variational problem whose Lagrangian is

L(W') = S + ̂ - (4-37)
This ODE has the scaling symmetries generated by

X =xdx+ydy;
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it has no other Lie point symmetries. However the symmetries generated by X
are variational, because

X{l)L + (DX%)L = xLx + yLy + L = 0.

Using the canonical coordinates

(r,s)= U,

the transformed Lagrangian is

Dxr

Therefore the Euler-Lagrange equation reduces to

and so the general solution is

Cx , , d[ _ . (4.38)

The same ideas carry over to higher-order variational problems. Given a
Lagrangian

L = L(x,y,y', ...,yip)), (4.39)

the Euler-Lagrange equation is

Ly - Dx(Ly>) + D2
x(Lr) + {-\)pDp

x{Ly{P)) = 0. (4.40)

By the same argument as for p = 1, Lie point symmetries of the Euler-Lagrange
equation are variational symmetries if

X{p)L + (DX%)L = 0. (4.41)

Suppose that X = dy (if necessary, rewrite the problem in canonical coordinates
first). Then (4.41) amounts to Ly = 0, and therefore the Euler-Lagrange
equation reduces to

Ly - Dx(Ly») + • • • + (-l)p-lDp-l(L/P)) = c{. (4.42)
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This reduced ODE has Lie point symmetries generated by X, and so it can be
reduced further to

Lv - Dr(Lv) + • • • + ( - l / - 1 ^ - 1 ^ - , ) ) = 0, (4.43)

where

(r,v) = (x,yf),

L(r,v,...,v(p~l)) = L-cxv,

and

Dr = dr + vdv + vdy + • • •.

Clearly, (4.43) is the Euler-Lagrange equation for the reduced variational prob-
lem

8 I Ldr = 0.

If one can solve this problem (possibly with the aid of variational symmetries)
then the solution of the original problem is obtained by quadrature:

= / v(r;a,...,c2p-i)dr + c2p.

4.3 Invariant Solutions

Many ODEs cannot be completely solved using their Lie point symmetries.
Even so, it may be possible to derive solutions that are invariant under the
group generated by a particular X. From (2.15), every curve C on the (x, y)
plane that is invariant under the group generated by X satisfies

Q(x,y,y') = ri-y'$=0 (4.44)

on C. All that is needed is to solve the first-order ODE (4.44), then to check
which (if any) of these solutions satisfy the given ODE.

Example 4.6 The Blasius equation,

y" = -yy", (4.45)

has translational and scaling symmetries generated by

Xi = dx, X2 = xdx - ydy. (4.46)
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These symmetries enable the Blasius equation to be reduced to a first-order ODE
whose solution is not known. So our only chance of finding exact solutions
is to look for invariant solutions. For X = X\, the invariant curve condition
(4.44) reduces to / = 0. Therefore every curve that is invariant under X\ is of
the form

y = c. (4.47)

All such curves are solutions of the Blasius equation.
Now we seek solutions that are invariant under X = X2. The invariant curve

condition is

Q = -y-xy' = 0.

Therefore the invariant curves are

y = -, ceR.
x

The Blasius equation is satisfied if

y = 0 or y = - (4.48)
x

The curve y = 0 is the only solution that is invariant under both X\ and X2.
Are there any other invariant solutions? We have not yet considered all

possible one-parameter groups. This is easily done, because every remaining
one-parameter Lie group is generated by X = kX\ + X2, for some nonzero k.
The invariant curve condition is

Q = ~y ~ (x + k)y' = 0,

which leads to the invariant solutions

y = 0, y = —?—. (4.49)
x + k

These solutions can also be obtained by considering the action of the group
generated by X\ upon each of the invariant solutions (4.48). The symmetries
generated by X\ are

(jc, 50 = (x + £, y), s eR. (4.50)

Consider the action of (4.50) upon the invariant solution y = 3/x. This solution
may be rewritten as

y = -^—; (4.51)
X — £
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it is invariant under

X2 = (X2x)dx + (X2y)d9

= Xdx ~ ydy

= (x ~8)dx -ydy-

We now introduce a useful notation; if

Xi=b(x,y)dx + rn(x,y)dy

then let

Xt = £•(*> y)dx + rn(x, y)dy. (4.52)

Therefore (4.51) is invariant under

X2 = X2-sXu

Dropping carets, y = 3/x is mapped to

y = -^—, (4.53)
JC — 6:

which is invariant under X2 — sX\. A similar calculation shows that y = 0 is
mapped to itself by the action of the group generated by X\.

The invariant canonical coordinate r(x, y) satisfies

%Dxr + Qry = $rx + r\ry = 0 ,

so every invariant solution on which £ ^ 0 is of the form r(x, y) = c. There
may also be invariant solutions y = f(x) such that

£(*,/(*)) = *7(*,/(x))=0 (4.54)

Generally speaking, these are easily obtained by solving either £(JC, y) = 0 or
rj(x, y) = 0, then checking that the solution satisfies the given ODE and (4.54).

There is another way to find invariant solutions on which £ does not vanish,
which is particularly useful if (4.44) is hard to solve. For Lie point symmetries,
§ and rj are functions of x and y only. Therefore (4.44) holds if

y' = f^\ (4.55)
§ ( )

on invariant curves for which §(;t, y) ^ 0. Higher derivatives are calculated by
the usual prolongation formula. When the results are substituted into the ODE,
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one obtains an algebraic equation that defines all invariant solution curves. The
next example illustrates the general procedure.

Example 4.7 Recall that the ODE

y"' = \ , x > 0, (4.56)

r
has C spanned by

Unlike the previous example, there are no solutions that are invariant under the
group generated by Xi. The invariant curve condition for X = X2 is

So, on every invariant curve,

y ~ Ax'

Now we use (4.57) to calculate y" and y'" on the invariant curves. First differ-
entiate (4.57) with respect to x:

y = ~4x~ ~ Jx2'

Then use (4.57) to determine y" as a function of x and y:

/ / = 9y 3v = 3y
y 16x2 Ax2 16JC2'

Similarly,

^ - l / ^A, 1̂ A^

(4.58)
8x3 64x3

on every invariant curve. Comparing (4.58) with (4.56), we see that the invariant
solution curves are

y = ±(f5)
l*xl (4.59)

As in the previous example, there is a whole family of invariant solutions arising
from the action of the group generated by Xi on the solutions that are invariant
under X2. Specifically,

y = ±(%)*(x-s)$. (4.60)

is invariant under X2 — sX\.
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Further Reading

Bluman and Kumei (1989) and Olver (1993) describe variational symmetries
in considerable detail. These symmetries are most important in the context of
PDEs, where (by Nother's theorem) they can be used to derive conservation
laws.

Some invariant solutions of ODEs have special topological properties, which
distinguish them from neighbouring solutions. Section 3.6 of Bluman and
Kumei (1989) includes many examples of such invariant solutions.

Exercises

4.1 Calculate the Lie point symmetry generators for the ODE

v-y-

Use canonical coordinates corresponding to X\ = dx to reduce this ODE
to a simple first-order equation, and thereby solve the original ODE.
Now try to solve the ODE by using another symmetry generator. What
happens?

4.2 The ODE

f =

has (amongst others) the Lie symmetries generated by X = dx. Use these
symmetries to reduce the ODE to a first-order ODE that is solvable by a
standard technique. Hence solve the original ODE.

4.3 The ODE y" = 0 is the Euler-Lagrange equation for the variational
problem whose Lagrangian is L = \ya. Use (3.28) to find three lin-
early independent generators of variational symmetries for this prob-
lem.

4.4 Derive the Euler-Lagrange equation for the variational problem with
Lagrangian

L ^'2 +

Show that the scaling symmetries of the Euler-Lagrange equation are vari-
ational symmetries, and hence find the general solution of the variational
problem.
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4.5 Show that X = xydx + y2dy generates Lie point symmetries of

y =
y3

Which solutions are invariant under these symmetries?
4.6 Find all solutions of (1.16) that are invariant under the rotational symme-

tries generated by X = —ydx + xdy. Use Fig. 1.5 to explain the topolog-
ical significance of the result.

4.7 Find a nontrivial group-invariant solution to the Thomas-Fermi equa-
tion

rt - L I

y = x 2y2.

4 .8 The Poisson-Boltzman equation,

/ = — y'-8ey, k^O, 8 e {-1,1},
x

has Lie point symmetries generated by

X =XdX ~2dy.

This ODE arises from the variational problem with the Lagrangian

k O

Find the value of k for which X generates variational symmetries and
solve the ODE in this case. For all other nonzero k, find all solutions that
are invariant under the group generated by X.

4.9 Consider the family of variational problems with a Lagrangian of the
form

x2y2 x2yk

L-— r , k^O.

Find each value of k for which variational symmetries exist and hence
solve the Euler-Lagrange equation in each case.



Lie Symmetries with Several Parameters

Because I could not bear to make
An Algebraist cry
I gazed with interest at X
And never thought of Why.

(G. K. Chesterton: True Sympathy)

5.1 Differential Invariants and Reduction of Order

A single generator of Lie point symmetries enables us to reduce the order of
an ODE once. We have also seen an example of a double reduction of order
using two Lie point symmetries. In fact, one can reduce an nth order ODE with
R < n Lie point symmetries to an ODE of order n — R (or to an algebraic
equation, if R = n). This section describes how such reductions are achieved.

If X generates Lie point symmetries of the ODE

y ( n ) = co(x, ) > , / , . . . , y ( n ~ l ) ) , n > 2 (5.1)

then, in terms of canonical coordinates (r, s), the ODE (5.1) reduces to

v(n~l) = Q(r,v,...,v(n-2)), (5.2)

where v = v(r, s) is any function such that Vs ^ 0. The reduced ODE (5.2)
consists entirely of functions that are invariant under the (prolonged) action of
the group generated by X = ds. Such functions are called differential invariants.
A nonconstant function / (x, y, yf, . . . , y^) is a /cth order differential invariant
of the group generated by X if

X{k)I=0. (5.3)

In canonical coordinates, X(k) = ds, so every &th order differential invariant is

74
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of the form

I = F(r,s,...,s{k))

or (equivalently)

/ = F ( r , v, ...,v(k-l)) (5.4)

for some function F. The invariant canonical coordinate r(x, y) is the only dif-
ferential invariant of order zero (up to functional dependence). All first-order
differential invariants are functions of r(x, y) and v(x, y, / ) • Furthermore, all
differential invariants of order 2 or greater are functions of r, v and derivatives
of i; with respect to r. Therefore, r and v are called fundamental differential
invariants. We can usually find a convenient pair of fundamental differential
invariants without first having to determine s. From (5.3), every kth order dif-
ferential invariant satisfies

> = °'
so (by the method of characteristics), / is a first integral of

dx dy dy{k)

(k) ( 5 ' 5 )

In particular, r is a first integral of

dx dy

y = V
and v is a first integral of

dx _dy _ dy'

Sometimes it is necessary to use r to obtain i>, as the following example shows.

Example 5.1 Find fundamental differential invariants of the group of rotations
generated by

X = -ydx+xdy. (5.6)

These satisfy Xr = 0 and X^v = 0, so r(x, y) is a first integral of

dx dy

-y ^
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one solution is r = (x2 + y2) 2. Similarly, f (x, y, yr) is a first integral of

dx _dy _ dy'

^ ~~T ~ 1 + y/2 '

For simplicity, let us restrict attention to the region x > 0, where

dy dy

(5.7)

Then the first integrals of (5.7) are of the form

/ = F (r, tan"1 yf - sin"1 - J = F (r, tan"1 / - tan"1 - j .

A convenient choice for v is

( -1 / -\y\ xy'-y
v = tan tan y — tan - = .

V xj x + yy>
It is left to the reader to verify that v = rs, where s = tan"1 j .

An ODE that has more than one Lie point symmetry generator can be written
in terms of the differential invariants of each generator. Consequently, the ODE
can be written in terms of functions that are invariant under all of its symme-
try generators. Suppose that {X\, . . . , XR} is a basis of C. The fundamental
differential invariants of the group generated by C are solutions of the system

£1 m *7i

§2 m n?

h

h
ly —

"0"

0

0_

(5.8)

This system has two functionally independent solutions (provided that the ma-
trix on the left-hand side has rank R). They can be found by using Gaussian
elimination and the method of characteristics. One solution is independent of
y(/?) and is denoted r#. We use VR to denote the other solution, which depends
nontrivially on y(/?). As dvR/drR depends on y ( / ?+1\ and so on, the ODE (5.1)
reduces to

(n-R)
VR , VR, . . . ,

(n-R-l)\ dkvR

dry
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for some function Q. Thus an R -parameter symmetry group enables us to reduce
the order of the ODE by R.

Example 5.2 The ODE

y y ^ j _ _ t y _

has a three-parameter Lie group of point symmetries, generated by

Xi=dx, X2=xdx+ydy, X3 = x2dx + 2xydy.

The fundamental differential invariants are obtained by solving

1 0 0

x y 0

x2 2xy 2y

0 0

-y" -2ym

/ - xy") -4xyf

h

iy

v
IV

=

"o"
0

0

First, simplify the problem by using Gaussian elimination:

1 0 0 0 0

0 y 0 - / ' -2y"

0 0 y y' 0

Iy

iy

v
v

=
"0"

0

0

(5.9)

(5.10)

(5.11)

Then use each equation of (5.11) in turn to determine the differential invariants,
as follows. The third equation, ylyi + y'Iy» — 0, gives

Substituting this result into the second equation yields

I = I(x,2yy"-y'2,y2y'").

Finally, the first equation of (5.11) gives

= I(2yy"-ya,y2y'").
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So the fundamental differential invariants of the group generated by (5.10) are

r,=2yy"-y>\ v3 = y2y'\ (5.12)

Having found the fundamental differential invariants, we can now calculate
higher-order differential invariants, for example,

dv3 Dxv3 yy^

Therefore the ODE (5.9) is equivalent to

£-••
whose general solution is

i>3 = r3 + c\.

This algebraic equation is equivalent to the third-order ODE

which is invariant under the three-parameter Lie group generated by C

Fundamental differential invariants can be used to construct ODEs that have
given Lie point symmetries. If (rR, vR) are fundamental differential invariants
of an /^-dimensional Lie group G, then every ODE (5.1) of order n > R that
has G as its symmetry group can be written in the form

(n-R) j7 ( (n-l-R)\ /c 1 o\
VR = F(rR,vR,...,vR

 ; ) , (5.13)

for some function F. By writing (5.13) in terms ofx,y,..., y^n\ one obtains a
family of ODEs that have the desired symmetries. (N.B. Some of these ODEs
may have extra symmetries.)

Example 5.3 The fundamental differential invariants of the three-parameter
group generated by

Xi = dx, X2 = dy, X3 = xdx + ydy (5.14)

are
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Hence the most general third-order ODE with these symmetries is v$ = F(r$),
which amounts to

y =yzF(y).

The most general fourth-order ODE with these symmetries is

y

which is equivalent to -^- = Ffo, U3).

N.B. This method works for ODEs of order n > R. There may be ODEs of
order n < R whose symmetries include those in G. For instance, the symmetries
of y" = 0 include those generated by (5.14).

5.2 The Lie Algebra of Point Symmetry Generators

Suppose that the Lie point symmetries of the ODE (5.1) are generated by
£, which is R dimensional. By rewriting (5.1) in terms of the fundamental
differential invariants (r/?, u/?),we obtain an ODE of order n — R. If the reduced
ODE can be solved (as in Example 5.2), we are left with an algebraic equation,

= F(rR;cu

which is equivalent to an ODE of order R that has the ^-parameter group of
symmetries generated by £. Is there a way to use these symmetries to complete
the solution of the ODE? To answer this question, it is necessary to learn more
about the structure of C.

Suppose that X\, X2 e £, where

X( = &•(*, 303* + m(x, y)dy, i = 1, 2. (5.15)

The product X\X2 is a second-order partial differential operator:

The product X2X\ is also second order, with exactly the same second-order
terms as X\X2. Therefore the commutator of X\ with X2,

[Xu X2] = XXX2 - X2XU (5.16)
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is a first-order operator. Specifically,

[Xu X2] = {XxHi ~ X2$i)dx + {Xxm - Xim)dy. (5.17)

The commutator has many useful properties, some of which are obvious from
the definition. It is antisymmetric, that is,

[X2,Xi] = -[Xi,X2l (5.18)

and satisfies the Jacobi identity

[Xu [X2, X3]] + [X2, [X3, Xi]] + [X3, [Xls X2]] = 0. (5.19)

The commutator is also bilinear (i.e., linear in both arguments):

+ c2X2, X3] = cx[Xu X3] + c2[X2, X3],
(5.20)

i, c2X2 + c3X3] = c2[X!, X2] + c3[Xi, X3].

(Here, as usual, c/ denotes an arbitrary constant.)
Under a change of variables from (x, y) to (u, v), each generator X; trans-

forms according to the chain rule. To find out how this transformation affects
the commutator, let

X3 = [X!,X2]. (5.21)

For the time being, we use X, to denote the result of writing X; in terms of

Let F{u,v) be an arbitrary function. Then

[Xi, X2]F = X{{(X2u)Fu + (X2v)Fv} - X2{(X{u)Fu + (Xxv)Fv}

= (X{X2u)Fu + (XlX2v)Fv - (X2Xxu)Fu - (X2X{v)Fv

However F is arbitrary, so

[Xi, X2] = (X3u)du + (X3v)dv = X3. (5.22)

Therefore the commutator of Xi with X2 is essentially independent of coordi-
nate system in which it is calculated. There is no longer any need to distinguish
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between Xt and Xt, so we revert to using Xt to denote the generators (in every
coordinate system).

So far, we have considered the commutator of generators acting on the plane.
The commutator of the prolonged generators

is defined similarly:

(k) v(k)l _ v(k)v(k) v(k)v(k)
1 ' A 2 J — A l A 2 ~ A 2 A l2 J — A l A 2 ~ A 2 A l •

We now show that if [Xx, X2] = X3 then

[Xf\xf] =xf. (5.23)

Suppose that

Xi = dy, X2 = $(x, y)dx + nix, y)dy. (5.24)

There is no loss of generality in making this supposition, for we have shown
that a change of variables - in this case, to canonical coordinates of X\ - does
not affect the commutator. From (5.24),

X3 = [XuX2] = ^ydx + r]ydy.

Therefore the prolongation formula gives

X(
3
l) = $ydX + Tlydy + (Dxrjy " / D, £y) 3y .

Because 3^ and Dx commute, that is,

the last term of X(
3
l) may be rewritten as rj^dy, where

Therefore

X3
{1) =

y li ' A2 J-
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So the result (5.23) holds for k = 1. The result for k > 1 is obtained similarly,
using the observation that

Furthermore, (5.23) holds in any system of coordinates, because it holds in one
system.

We have not yet used the fact that X\ and X2 generate Lie point symmetries
of the ODE (5.1). Indeed, everything that we have discussed applies to all first-
order partial differential operators of the form (5.15). However each generator
in C also satisfies the linearized symmetry condition

Xf> (/"> - co) = rin) - xfco = 0 when y{n) = co.

For n > 2, the prolongation formula implies that rj^n) is linear in the high-
est derivative, y(n\ whereas co, and thus XJn)co, is independent of the highest
derivative. Therefore the linearized symmetry condition is satisfied if and only if

Xf{y^-co)=h(y^-co), (5.25)

where

X,(X,y,y',...,/»-") = ^ .

This alternative characterization of the linearized symmetry condition leads to
an important result: if X\ and X2 generate Lie point symmetries, then so does
X = [X\, X2]. This result is obtained quite simply, as follows. For brevity, let
A = y{n) - co. Then, from (5.23) and (5.25),

X{n)A=

= X(")(X2A)-X(
2

n)(XlA)

Hence X{n) A = 0 when A = 0, and therefore X generates Lie point symme-
tries. [The same result also holds for n = 1, but the above argument requires
slight modification because rj^ is quadratic in / . ]

For n > 2, the set £ is a finite-dimensional vector space. Once we have chosen
a basis {X\,..., XR] for C, every generator of Lie point symmetries can be
written as a linear combination of the generators in the basis. The commutator is
bilinear, and so it is sufficient to restrict attention to the commutators of the basis
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generators. We have just demonstrated that C is closed under the commutator,
that is,

Xt,Xj eC => [Xi9Xj] eC.

Therefore the commutator of any two generators in the basis is a linear combi-
nation of the basis generators:

[XhXj] = c*jXk. (5.26)

(Remember, we sum over all possible values of any index that occurs twice.)
The constants c\- are called-structure constants. If [X;, Xj] = 0, the generators
Xt and Xj are said to commute. In particular, every generator commutes with
itself.

Example 5.4 The vector space of generators of Lie point symmetries of y'" =
y~3 is two dimensional and is spanned by

Xi =dx, X2=xdx + \ydy. (5.27)

Therefore the commutator of Xi with X2 is

[X,, X2] = (X,(*) - X2(l))8,

The remaining commutators are found without any need for further calculation.
Each generator commutes with itself, so

[X,,X,] = 0, [X2,X2]=0.

Moreover, the commutator is antisymmetric, and hence

[X2,X,] = -[Xi,X2] = -X1.

Summarizing these results, the only nonzero structure constants for the basis
(5.27) are

c}2 = l, c\x = -\. (5.28)

The existence of the commutator as a "product" on C means that C is not just
a vector space; it is a Lie algebra. Formally, a Lie algebra is a vector space that



84 5 Lie Symmetries with Several Parameters

is closed under a product [•, •] which is bilinear, antisymmetric, and satisfies
the Jacobi identity. The last two conditions impose some constraints on the
structure constants. The commutator is antisymmetric if

[Xj,Xi] = -[Xi,Xjl ViJ, (5.29)

which implies that

4 = - 4 , V/,;,£. (5.30)

One consequence of this identity is that we need only calculate the commutators
of basis generators with / < j . The Jacobi identity

[Xt, [Xj, Xk]] + [Xj, [Xk, Xi]] + [Xk, [Xt, Xj]] = 0, Vi, j , k, (5.31)

holds if and only if

4 4 + c)kc\q + 4 4 =0, V i, j , k, I. (5.32)

Lie algebras occur in many branches of applied mathematics and physics. Com-
monly, one is interested in the action of a multiparameter Lie group, whose
linearization about the identity yields the Lie algebra that generates the group.
Lie algebras may also exist without reference to an underlying Lie group. A
Lie algebra is defined abstractly by its structure constants, but it may appear in
many different forms (or realizations), as the following example shows.

Example 5,5 Perhaps the most well-known Lie algebra is the space of vectors
x e R3 under the cross product, which plays the role of the commutator:

[Xi, X2] = Xi X X2.

(The cross product is bilinear and antisymmetric; the reader may wish to check
that the Jacobi identity is satisfied.) With the standard Cartesian basis for M3,

xi = (1 0 0)T, x2 = (0 1 0)T, x3 = (0 0 1)T,

the cross product gives the following nontrivial relations:

Xi X X2 = X3, Xi X X3 = —X2, X2 X X3 = X i .

The only nonzero structure constants are

c i2 = C23 =cli = h c\x = cl
32 = c2

l3 =-U (5.33)
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note that the structure constants are unchanged by cyclic permutations of the
indices (123). The abstract Lie algebra which has the structure constants (5.33)
in some basis is called so(3). The Lie group generated by so (3) is the special
orthogonal group SO(3), a simple example of which is the group of rotations
in R3. The Lie algebra so (3) can also be realized in terms of generators of Lie
point transformations of the plane:

X{ =ydx-xdy, X2 = \{\+x2-y2)dx+xydy,

± ( l 2 2

The reader should check that this basis gives the structure constants (5.33).

From our earlier results, the structure constants are unaffected by either
prolongation or a change of variables. However, they do depend on the choice
of basis for £, and it is useful to try to choose a basis with as few nonzero
structure constants as possible. If all generators in the basis commute (i.e.,
every structure constant is zero), the Lie algebra is abelian.

Example 5.6 Consider the most general two-dimensional Lie algebra, with a
basis {X\, X2}. The commutator of X\ with X2 is of the form

[Xl,X2]=c\2Xl+c2
2X2. (5.35)

The Lie algebra is abelian if and only if c\2 = c\2 = 0. Otherwise, there exists
a basis [X\, X2} such that

[Xi,X2] = Xi. (5.36)

To find this basis, note that the commutator of any two generators is necessarily
a multiple of the right-hand side of (5.35). So let

If c\2 7̂  0, then X2 is linearly independent of X\, and

Rescaling, we obtain (5.36) by choosing

X2 = -7-X2.
c\2
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Similarly, if c\2 = 0 but the Lie algebra is non-abelian, we may satisfy (5.36)
by taking

X2 = -*-X\.

So every two-dimensional Lie algebra is either abelian or else can be written in
a basis for which the only nonzero structure constants are

c\2 = h cl
2l = -l. (5.37)

Ordinary vector spaces are constructed from subpaces. Similarly, Lie alge-
bras are built from subalgebras; the way in which these are joined together
determines the structure constants. For convenience, let [M, AT] denote the set
of all commutators of generators in M C C with generators in J\f c C, that is,

[MM] = {[Xi9Xj] : Xt e M, Xj eM). (5.38)

A subspace M C C is a subalgebra if it is closed under the commutator:

[M,M]CM. (5.39)

In other words, any subalgebra of a Lie algebra is a Lie algebra in its own right.
A subalgebra M C C is an ideal of C if

[MX] CM. (5.40)

Trivially, {0} and C are subalgebras; moreover, they are ideals of C. Any ideal
other than {0} and C is called a proper ideal. If a Lie algebra is non-abelian and
has no proper ideals, it is said to be simple. Every one-dimensional subspace
of £ is a subalgebra (but not necessarily an ideal), because each generator
commutes with itself. Almost all Lie algebras of dimension R > 2 have at least
one two-dimensional subalgebra; the one exception is the simple Lie algebra
80(3).

Example 5.7 Consider the three-dimensional Lie algebra with the basis

Xx=dx, X2=xdx, X3=x2dx. (5.41)

The nontrivial commutators [Xt, Xj] (with i < j) are

[XUX2] = XU [XUX3] = 2X2, [X2,X3] = X3. (5.42)
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The abstract Lie algebra with the commutators (5.42) is called 51(2); it generates
the special linear group SL(2). The subspace spanned by X\ and X2 is a two-
dimensional subalgebra, as is Span(X2, X3). However Span(Xi, X3) is not a
subalgebra, because [X\, X3] does not lie in this subspace. Although 51(2) has
nontrivial subalgebras, it has no ideals other than itself and {0}; therefore it is
simple.

Given any Lie algebra £, one ideal that can always be constructed is the
derived subalgebra £ (1), which consists of all commutators of elements of C:

£(1) = [CXI (5.43)

Clearly, [£(1), C] is a subset of £ ( 1 \ which is why £(1) is an ideal.
C, we can go on to find the derived subalgebra of £(1), namely

] (5.44)

We can continue this process, letting

£<*)= [£<*-!>, £<*-!>], (5.45)

until we fail to obtain a new subalgebra. If the series of derived subalgebras ter-
minates with £(k) = {0} for some k, then C is said to be solvable. Equivalently,
an R-dimensional Lie algebra is solvable if there is a chain of subalgebras

{0} = Co c d C • • • C CR = C, (5.46)

where dim(££) — k, such that £k-i is an ideal of Ck for each k. Every abelian
Lie algebra is solvable, whereas simple Lie algebras are not solvable. We have
seen that any non-abelian two-dimensional Lie algebra has a basis such that
[X\, X2] = X\, and hence is solvable. For each R > 3, there exist Lie algebras
that are not solvable.

Given an R-dimensional solvable Lie algebra, it is convenient to choose a
basis such that

XkeCk, XktCk-u * = 1 , . . . , * , (5.47)

and hence
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We shall call any basis defined by (5.47) a canonical basis. Equivalently, a basis
is canonical if the structure constants satisfy

c\. = 0 , V / < j <k. (5.48)

Example 5.8 The fourth-order ODE

ym = / "* (5.49)

has a five-dimensional Lie algebra £, which has a basis

Xl=dy, X2=Xdy, X3=X28y,
(5.50)

X4 = dx, X5 = x dx.

The nonzero commutators [X/, Xj] (with / < j) are

[X2, X4] = -Xu [X2, X5] = - X 2 , [X3, X4] = -2X 2 ,

[X3,X5] = -2X3, [X4,X5] = X4.

Therefore C has the derived algebra

= Span(Xi, X2, X3, X4). (5.52)

As C^ ^ C, we may go on to calculate £(2). From (5.51), the nonzero com-
mutators of elements in C^ are

Therefore

C(2) =Span(X!,X2). (5.53)

Finally, Xi and X2 commute, so the series terminates with

£(3) = {0}. (5.54)

Hence C is solvable. Note that the basis (5.50) is canonical.
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5.3 Stepwise Integration of ODEs

We now return to the problem of integrating an ODE of order R that has an R-
dimensional Lie algebra C. The ODE can be written in terms of the fundamental
differential invariants as

VR = F(rR), (5.55)

for some function F. We aim to solve the ODE by using each symmetry gen-
erator in turn. (N.B. Henceforth, we do not explicitly refer to the order of
prolongation of the generators, unless there is a good reason for doing so. In-
stead, we adopt the convention that generators are prolonged sufficiently to
describe the linearized group action on all variables.)

Suppose that the generators X i , . . . , XR-\ form a subalgebra of L. Let
(rR-\, vR-\) be the fundamental differential invariants of this subalgebra. If
the remaining generator, XR, acts on (rR-\, vR-\) as a generator of point trans-
formations, there exist canonical coordinates

(rR, SR) — (rR(rR-l> VR-\), SR(rR-\, VR-\)j,

at every noninvariant "point," in terms of which XR = dSR. (We already know
rR, and sR can be found by the usual method.) Then vR is a function of rR and
sR = dsR/drR only, and so (5.55) can be inverted (at least, in principle) to yield

SR = G(rR),

for some function G. Hence we obtain

G(rR)drR+c,

which is invariant under the group generated by Xi, . . . , XR-\. If this equation
can be solved for vR-\ as a function of rR-\, we obtain a problem of the form
(5.55), but with R — 1 replacing R. Provided that we can iterate this method
sufficiently many times, we will obtain the general solution of the ODE.

N.B. Throughout this chapter, we focus on the problem of finding the general
solution of an ODE. Solutions that are invariant under a one-parameter group
can be sought with the methods described at the end of Chapter 4. Although
there may be many invariant solutions, the Lie algebra can be used to classify
them, as described in Chapter 10. This greatly reduces the effort needed to find
all invariant solutions.
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Clearly, XR acts on (r#_i, VR-\) as a generator of point transformations if
the restriction of XR to the variables (r#_i, VR-\) is of the form

XR = a(rR_i, VR-i)drR_{ + P(rR-i, vR-i)dVR_{

for some functions a, /3, at least one of which is nonzero. Therefore we require
that

XR rfl-i = a(rR-u vR-i), XR VR-\

The differential invariants rR-i, vR-\ satisfy

Xt rR^x = 0, Xt VR-X = 0 , V i = 1, . . . , R - 1,

and hence

[X,-, XRITK-! = XMrR-u vR-<) = 0 , V i = 1,..., R - 1.

This can be rewritten as

c ^ r a - i = 0, Vi = 1 , . . . , J ? - 1 ,

which leads to the condition

c?Ra(rR-U VR-\) = 0, Vi = 1 J? — 1.

By a similar argument, [X/, X#] i;/?.! = 0 leads to the condition

cf^(r*_i , v*_i) = 0, V i = 1, . . . , / ? - 1.

Hence, since at least one of a, /3 is nonzero,

c?R=0, Vi = l,...,R- 1.

Span(Xi, . . . , XR-\) is a subalgebra if

c?j=0, VI <i < j <R-l.

So X/̂  acts as a generator of point transformations on (r#_i, u/?_i) if and only if

c£ = 0 , Vl<i <j <R. (5.56)

This condition enables us to reduce the order once. Similarly, a second reduction
of order is possible if

c ? j - l = O , V I < i < j < R - l . (5.57)
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Continuing in the same way, each generator Xk may be used to carry out one
integration if

c\} = 0, V 1 < / < j < k. (5.58)

This condition is satisfied (in any canonical basis) if and only if C is a solvable
Lie algebra.

So far, we have restricted attention to Lie algebras with R < n. However,
the above method also works if R > n, provided that C has an n -dimensional
solvable subalgebra. In the next chapter, we shall put this method into practice
and discuss what can be done if C does not have a sufficiently large solvable
subalgebra.

Further Reading

Differential invariants are not only useful for reduction of order. They are
also used to construct models that have given symmetries. Olver (1995) in-
cludes a clear, detailed description of differential invariants and some of their
applications.

Lie algebras are widely used throughout mathematics and theoretical physics.
Sattinger and Weaver (1986) is a straightforward introduction. For a more com-
prehensive treatment, I recommend Fuchs and Schweigert (1997).

Exercises

5.1 What is the most general third-order ODE whose symmetries include the
group generated by X = xdx + <xydy (where a is a constant)?

5.2 Derive a set of fundamental differential invariants for
(a) the group generated by X\ = xydx + y2dy;
(b) the group generated by X2 = xdx — ydy\
(c) the group generated by X\ and X2.
Now find the most general third-order ODE whose symmetries include
the group generated by X\ and X2.

5.3 Find the most general second-order ODE whose symmetries include the
group generated by (5.34).

5.4 Show that the basis (5.34) has the so(3) structure constants (5.33).
5.5 Show that there is no three-dimensional Lie algebra with the following

commutators between its basis generators:

[Xu X2] = Xi, [Xi, X3] = - X 3 , [X2, X3] = X2.
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5.6 Consider the two-dimensional vector space spanned by the generators
X\ = xdx — aydy and X2 = —ydx + xdy. For which value of a is this
vector space a Lie algebra? For every other a e R, find the smallest
Lie algebra C(q) that contains X\ and X2. Show that C(pt) has an s\{2)
subalgebra, and state the dimension of the largest solvable subalgebras.

5.7 Show that if / is a differential invariant of the one-parameter groups
generated by X\ and X2, it is also a differential invariant of the group gen-
erated by [X\, X2]. Hence find the lowest-order differential invariant that
is common to the groups generated by Xi = 3^ and X2 = 2xydx + y2dy.



Solution of ODEs with Multiparameter Lie Groups

Little by little does the trick.

(Aesop: Fables)

6.1 The Basic Method: Exploiting Solvability

We now have a systematic method for solving ODEs with a sufficiently large
solvable Lie (sub)algebra:

(1) Use the linearized symmetry condition to determine the Lie point symme-
tries.

(2) Calculate the commutators of the basis generators and hence find the series
of derived subalgebras.

(3) Find a sufficiently large solvable subalgebra, choose a canonical basis, and
calculate the fundamental differential invariants.

(4) Rewrite the ODE in terms of differential invariants; then use each generator
in turn to carry out one integration, as described in Chapter 5.

The purpose of this section is to show how the method works in practice. In
the following, we shall focus on step (4), having already obtained a canonical
basis for the generators.

Example 6.1 Recall that the ODE

/ ' = - y 2 , y>o, (6.1)
V

has Lie point symmetries generated by

Xi = dx, X2 = xdx - 2ydy. (6.2)

93
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The group generated by X\ has fundamental differential invariants

n = y, v i = y',

and the fundamental differential invariants of the group generated by X\ and
X2 are

Hence the ODE (6.1) reduces to the algebraic equation

v2 = r\-\. (6.3)

The Lie algebra is solvable and (6.2) is a canonical basis, so X2 generates point
transformations of the variables (r\, v\). Explicitly,

X2r{ = -2y = -2ru X{
2

l)vx = - 3 / = -3vu

and so the restricition of X2 to (r\, v\) is

We have already chosen the invariant canonical coordinate r2 = v\/r\/2; for
simplicity, let s2 = — \ ln(n). Then

ds2 ds2 I dr2 r2

dr2 dx I dx 3r2 — 2v2

Therefore, from (6.3), the reduced ODE is equivalent to

ds2 r2

d72
 = r\ + 2

The quadrature is straightforward:

s2 = I ln(r2
2 + 2) + c.

After rewriting this solution in terms of (r\,v\), we obtain the algebraic

equation

vi =±rl(4c2
l-2rl)K (6.4)

where c\ is an arbitrary positive constant. Having completed one step of the
iteration, we repeat the same process, now using the generator X\ to solve (6.4).
With the canonical coordinates (n, s\) = (y, JC), we obtain

dsi _ 1 _ ±1

dr~i=y = r 1 ( 4 c 2 - 2 r 1 ) 1 / 2 '
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Therefore the general solution of the ODE is

S\ = C2 T C\l COSh"11 CM / — I •

Reverting to the original variables, we obtain

y = 2c2 seen2 (cx ix - c2)). (6.5)

Example 6.2 Consider the third-order ODE

y"1

yf" = — , (6.6)
/(!+/)

whose Lie point symmetries are generated by

Xi = dx, X2 = dy, X3 = xdx + ydy. (6.7)

Fundamental differential invariants for each subalgebra Ck in the solvable chain
are

n = y, v\ = y' for C\ = Span(Zi);

r2 = y\ v2 = y" for C2 = Span(Xi, X2); (6.8)

r3 = y, v3 = y'"ly'a for C3 = S p a n ^ , X2, X3).

Thus the ODE (6.6) is equivalent to the algebraic equation

r 3 ( l + r 3 )

To find the restriction of X3 to the differential invariants (r2, v2), note that

X{
3

l)r2 = 0, Xf]v2 = -y" = -u 2 ;

hence the restricted generator is

X3 = -V2dV2.

Let

j 3 = -ln|i;2l = - l n | / | ;

then (6.9) is equivalent to the first-order ODE

ds3

(6.9)

= -v3 =
dr3 r3(l+r3)



96 6 Solution of ODEs with Multiparameter Lie Groups

Writing the solution of this ODE in terms of r2 and v2, we obtain

v2 = -^~. (6.10)
1 + r 2

In the next step, we find that the restriction of X2 to the variables (r\, v\) is

Then s2 = r\ is a suitable canonical coordinate. Provided that c\ ^ 0, the
algebraic equation (6.10) is equivalent to

dr2 v2 cx

whose solution is (in terms of r\, v\)

(6.11)

Finally, with s\ = i , w e obtain

dsx 1

- 1 ± y/2c\(ri - c2)

After carrying out the quadrature and replacing s\ and r\by x and v respectively,
we obtain the general solution of (6.6) in closed form:

1
x = c3 + — (In 1 — 1 ± yj2cx(y-ci) ± ^/2ci(y - cx)). (6.12)

C\ '

Given a basis for an ^-dimensional solvable subalgebra, it is common for
there to be several different orderings of the generators, each of which is
a canonical basis. In principle, it does not matter which canonical basis is
chosen. In practice, some choices may make the quadratures unnecessarily
difficult (or even intractable). It seems that the only way to resolve this prob-
lem is by experimenting with various canonical bases, as the next example
shows. By now the procedure for solving ODEs should be familiar, so most
details of the following calculations are omitted (they should be supplied by the
reader).

Example 63 In the previous example, we could have chosen the canonical
basis

Xi=dy, X2 = dx, X3=xdx + ydy, (6.13)
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which puts the commuting generators dx and dy in a different order from (6.7).
The set of fundamental differential invariants (6.8) is almost unaltered; the only
difference is that now r\ = x. Hence the calculations are unchanged as far as
(6.10), which now reduces to

dr2 v2 cx

The quadrature yields
1

r\=c2-\ (in \v\\ -h v\), (6.14)
c\

which presents us with a problem: we cannot use (6.14) to obtain v\ as a
function of r\. Therefore the ordering of the canonical basis turns out to be
crucial in determining the general solution of (6.6).

The above examples are straightforward, because it is easy to find a canonical
basis such that vk can be written as a function of rk at each stage. If such a basis
cannot be found, it may be possible to obtain the general solution in parametric
form. Suppose that

r = f(v) (6.15)

and that s = ds/dr can be written in terms of r and v. Then

= g(v) = / i(r, v)
df(v)

r=f(v) dv
dv + c. (6.16)

If (6.15) and (6.16) permit the parameter v to be written as a function of r and
s, then v can be eliminated. This process, which is called implicitization, can
always be carried out if f(v) and g(v) are rational polynomials. However not
all ODEs allow implicitization; if v cannot be eliminated, the solution must
remain in parametric form.

Example 6.4 Consider the ODE

y" ( 6 1 7 )

whose Lie algebra of Lie point symmetry generators is spanned by

X\ = dx, X2 = dy.

Using the fundamental differential invariants

(r l fi;i) = ( ? , / ) , (r2, v2) = ( / , / )
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and the canonical coordinate s2 = ru we obtain

ri = ^- + - + c i . (6.18)

Let s\ = x,

Then, from

so

(6.

that

16),

ds\
Sl~~dr~x~

1
S\ = V\ -\ ~

1

+ c2. (6.19)

There is a simple technique for eliminating the parameter v\ from (6.18) and
(6.19). First write each equation as a polynomial mv\\

v\ — 2(r\ — c\)v\ + 4 = 0,

v\ - (si - c2)v\ + 1 = 0 .

Now eliminate the highest power of v\ from one equation:

(s\ — c2)v\ — 2(ri — c\)v\ + 3 = 0.

Use the lower-order equation (multiplied by an appropriate power of ui) to
eliminate the highest power of v\ from the other equation:

2(n — c\)v\ — {2(n — c\)(s\ — c2) + 3}ui + 4(^1 — c2) = 0,

Iterate until v\ is found; in this example, only one more elimination is needed
to obtain a linear equation for ui, whose solution is

4(n - ci)2 - 2(n - CI)(JI - c2)2 - 3(5! - ci)

(provided that the denominator is nonzero). The general solution of the ODE
is obtained by substituting (6.20) into

(si - c2)v\ - 2(ri - c\)v\ + 3 = 0

and replacing (r\,s\) by (y,x). Another way of reaching the solution is to
continue using the elimination algorithm until v\ vanishes from one equation.
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The algorithm works for any parametric solution such that r and s are both
rational polynomials in some parameter (which need not be v).

6.2 New Symmetries Obtained During Reduction

So far, we have assumed that the Lie algebra has a solvable subalgebra that is
sufficiently large to enable us to solve the ODE completely. The remainder of
this chapter deals with the problem of solving ODEs of order n whose largest
solvable subalgebras are of dimension n — 1 or less. Let {X\,..., Xs} be a
canonical basis for such a subalgebra. In terms of the fundamental differential
invariants (rs, vs) of this subalgebra, the original ODE is equivalent to an
ODE of order n — S. The general solution of the reduced ODE is an algebraic
equation of the form

vs = F(rs\cu...9cn-s). (6.21)

If this solution can be determined (perhaps by exploiting symmetries of the
reduced ODE) the problem disappears, because (6.21) is equivalent to an ODE
of order S that admits the symmetries generated by {X\,..., Xs). What can
be done if (6.21) cannot be found?

Each subalgebra Ck = Span(Xi,. . . , X^) in the solvable chain can be used to
reduce the original ODE to an equivalent ODE of order n —kin the fundamen-
tal differential invariants (r&, v^). Thus there is a sequence of "intermediate"
reduced ODEs. Until now, we have used the whole of Cs in order to achieve
the maximal reduction of order. This is of no use if the maximally reduced
ODE cannot be solved. However, it may be that one of the intermediate ODEs
has new point symmetries, as well as those inherited from the original ODE.
With a sufficient number of new symmetries, it might be possible to obtain the
general solution of an intermediate equation in the form

cn-k).

Then the symmetries in Ck can be used to complete the solution of the original
ODE. The following example illustrates this idea.

Example 6.5 The third-order ODE

y'" = -1— + y- + ^— (6.22)

y x x

has the two-dimensional abelian Lie algebra generated by

X\ — Oy , X2 — X UX .
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The fundamental differential invariants are

n = x, v\ = y' for C\ = Span(Zi);
(6.23)

r2 = Xy\ v2 = x2y" for C2 = Span(Xi, X2).

Therefore the ODE (6.22) is equivalent to

dv2 2v2 + 3r2v2 + r\

dr2
(6.24)

whose symmetries are not obvious. However, (6.22) is also equivalent to the
second-order ODE

dr\ vx \dr\) rx \dr

which has an eight-dimensional Lie algebra of point symmetry generators.
The symmetries generated by X2 are inherited from the original ODE (6.22),
but the remaining symmetries are new. Rather than examining the whole Lie
algebra, we shall focus on the two-dimensional subalgebra C2 that is span-
ned by

Xi = u^ui, X2 = ndri - v{dV]. (6.26)

Note that X2 is the restriction of the inherited generator X2 to (n, v\). The
basis (6.26) is canonical, because

[Xi,X2] = Xl.

Hence the ODE (6.25) can be reduced to quadratures, using the differential
invariants

f\ = n , v\ = -2 - j - - for
vf drx

dvx
ior L,\ = dpan^Aij;

(6.27)
V ) f o r

v\ dr\ v\ dr\ v\

Skipping the details, we arrive at the general solution of (6.25):

(6.28)
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Finally, the canonical coordinates (n, s\) = (x,y) are used to complete the
solution of (6.22), which is

' c3 + 2c2 tan"1 (C

C\X

In

1)),

+ 1 — C2

c2 = (c2)~
2 > 0;

(6.29)

C\X +C2
c2 = -cc\ 0.

This example shows that it is worthwhile calculating the point symmetries
of the intermediate ODEs if the fully reduced ODE cannot be solved.

6.3 Integration of Third-Order ODEs with s 1(2)

The three-dimensional Lie algebra 01(2) is not solvable, and the above methods
do not work for third-order ODEs with this Lie algebra. One of the simplest
realizations of s[(2) as a set of generators of Lie point symmetries is

X2=xdx, X3=x2dx. (6.30)

The fundamental differential invariants for the Lie group generated by (6.30)
are

/ /// Q,,//2

= y, va =
ly'y'" - V (6.31)

Hence every third-order ODE whose Lie point symmetries are generated by
(6.30) is of the form

va = F(ra) (6.32)

for some function F. We can reduce (6.32) to a first-order ODE in the usual
way, by using the solvable subgroup generated by X\ and X2. The reduced
ODE is the Riccati equation

— + \
dy l where z = —r,

ya
(6.33)

which can be linearized by introducing the function
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Then z = 2\l/f(y)/x//(y), where xj/(y) satisfies the Schrodinger equation

2~F(y)Y — 0. (6.34)

Suppose that ^ ( j ) is a n arbitrary nonzero solution of (6.34). If (p(y) is any
nonzero solution that is linearly independent of \/f(y), the Wronskian

W =

is a nonzero constant. Note that

( W

dy\f{y)J V2 dy'

and hence

w(y)

For simplicity we rescale (p to give W = 1; this does not alter the solution.
Moreover, we may take c to be zero (redefining cp if necessary). So the general
solution of the third-order ODE (6.32) is

x = M (6.35)
iKy)

The solution depends upon three arbitrary constants, not four, because cp is
normalized to ensure that W = 1.

The set of generators (6.30) is not the only realization of s[(2) on the (JC, y)
plane. It is one of three distinct realizations that cannot be mapped to one
another by any point transformation. The other two are

X! = dx, X2 = xdx - ydy, X3 = x2dx - 2xydy. (6.36)

Xi = dX9 X2 = xdx - ydy, X3 = x2dx - (2xy + l)dy. (6.37)

Each of the three realizations is a representative of an equivalence class of real-
izations that can be mapped to one another by a complex point transformation.

For any ODE whose generators can be mapped to (6.30) by a point trans-
formation, the solution strategy is obvious: carry out the transformation, solve
the Schrodinger equation (6.34) (if possible), and then transform the solution
back to the original variables. Remarkably, the same strategy works for ODEs
whose generators are equivalent to one of the other two realizations: the only
difference is that the required transformation is not a point transformation.
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The first prolongation of the set of generators (6.30) is

Xi = dx, X2 = xdx - y'dy, X3 = x2dx - 2xy'dy.

Let p = y ; then the prolonged generators are

Xi = dx, X2 = xdx - pdp, X3 = x2dx - 2xpdp, (6.38)

which is the second realization (6.36) (with p replacing y). The most general
third-order ODE with the symmetries generated by (6.38) is

vp = G(rp), (6.39)

where the fundamental differential invariants are

7" - 3/7/2 dva p2pm - bpp'p" + 6/7/3

p a 2/74 ' P dra p6

(6.40)
Therefore

(+c = y + c. (6.41)
G(va) " •

Our aim is to determine p = y' as a function of x, so we may set c to any
convenient value, without affecting the result. Provided that (6.41) can be
solved to obtain an expression of

va = F{ra),

we can reduce the problem to the one treated earlier. Once the solution

x = ̂ - (6.42)

has been found, it is easy to obtain

(6.43)

Taken together, (6.42) and (6.43) constitute a parametric solution of the ODE
(6.39).

Example 6.6 To illustrate the method, we shall complete the solution of the
fourth-order ODE

fv) = l(l-y')y'". (6.44)
y
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(Here y is used in place of y to avoid confusion later.) In Example 5.2, we
reduced this ODE to

_,„ 2yyf + Cl
y = o ' (6.45)

T

whose Lie point symmetry generators are

Xi = dx, X2 = xdx + yd~y, X3 = x2dx + 2xyd~y. (6.46)

Let p = \/y\ then the generators (6.46) are equivalent to (6.36). The reduced
ODE (6.45) is equivalent to

vp =2rp - a .

Therefore

va = F(ra) = \c{ + exp{2(ra + c)}.

It is convenient to choose c = ^ (In 2 4- TC/), so that the Schrodinger equation is

This is equivalent to Bessel's equation

* , o r t—-—h (? — v )\/f = 0, r = e3', v = ^ VcT. (6.47)
dt2 dt 2^

So, from (6.42) and (6.43), the general solution of the third-order ODE (6.45)
is

x = c2Jv(t) + c3Yv(t)

c4Jv{t) + c5Yv(tY (6.48)

p= (c4Jv(t) + c5Yv(t))\

where Jv(t) and Yv(t) are Bessel functions and either c2 or c3 is chosen so that

2
W = —{c3c4 -c2c5) = 1.

n

Finally, we obtain the solution of (6.44) from the identity y = p~l.

The third realization, (6.37), is related to the second realization in much the
same way as the second is related to the first. Prolonging the generators (6.38)
once, we obtain

X\ = dx, X2 = xdx — pdp — 2p'dp>,

X3 = x2dx - 2xpdp - (Axp' + 2p)dP',
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which is equivalent to

X\ = dx, X2 = xdx - pdp - qdq,

X3 = x2dx — 2xpdp — (2xq + l)dq,

where

(6.49)

Therefore the restriction of prolonged second realization to functions of x and
q is

Xx = dx, X2= xdx - qdq, X3 = x2dx - (2xq + l)dq, (6.50)

which is equivalent to the third realization. The fundamental differential in-
variants of (6.50) are

_ vp _ q" - 6qq' + 4q3

( , 5 1 )

_2vldvl_ q'" - \2qq" + \%q'2
Vv ~ rj drp ~ W - q2)2

Hence the general third-order ODE whose Lie point symmetries are generated
by (6.50), namely

vy = H(ry),

is equivalent to

rl drp-"\rl'2 '

This first-order ODE has scaling symmetries (which are generated by
X = 2rpdrfi + 31^9^); these enable us to reduce the ODE to quadrature:

Suppose that (6.53) can be rearranged to give rY in terms of rp. Then the
problem is reduced to that of finding the general solution of an ODE whose Lie
point symmetries belong to the second realization, namely

l/2 (6.54)
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We already know from (6.42) and (6.43) that the general solution of (6.54) is
of the form

<P(y)
x =

Therefore

P(y) y
\l/(y) ax

2p(x) (y).

So the parametric solution of a general ODE whose symmetries are in the third
realization is

\ Q = nyWiy)- (6-55)

It is remarkable that all three realizations are related by prolongation so that
(in principle) everything reduces to a study of the Schrodinger equation. How-
ever, the method also requires that the quadratures at each stage should be
tractable.

Further Reading

The method of successive integration described in §6.1 is presented in various
forms in the literature. Stephani (1989) describes several different versions,
including Lie's algorithm for constructing line integrals at each stage.

For most of this book, we ignore the problem of the existence of closed-
form solutions. Cox, Little, and O'Shea (1992) includes an easy introduction
to implicitization and various related problems.

Section 6.3 is based on a seminal paper by Clarkson and Olver (1996), which
particularly focuses on the Chazy equation. This paper clearly illustrates the
value of symmetry methods for dealing with difficult analytical problems.

Exercises

6.1 Find the general solution of

y =y (i -y)/y,

whose Lie point symmetries are generated by X\ = dx, X2 = xdx + ydy.
6.2 Solve the ODE

// yy' 2 4
y = — - y * •

X*



6.3 Derive (6.28).
6.4 Solve the ODE

6.5 The ODE

Exercises 107

„ 1
y = —=

xy<

has a two-dimensional Lie algebra that is spanned by X\ = xdx,
X2 = ydy. Use these generators, in a suitable order, to solve the ODE.

6.6 Solve the ODE

which has the $ I (2) Lie algebra spanned by

Xx=dx, X2=xdx, X3=x2dx.

6.7 Use the symmetry generators X\ = dx, X2 = ^3^ + ^ to obtain the
general solution to

in parametric form. Now eliminate the parameter to obtain the solution
in the form

y = F(x;cuc2).



Techniques Based on First Integrals

The junior Bat asked the senior Bat
A question most profound:
'How do the humans down below
Hang by their feet from the ground?'

(Dick Smithells and Ian Pillinger: Alphabet Zoop)

7.1 First Integrals Derived from Symmetries

Second-order ODEs whose Lie algebra is 50(3) cannot be solved by using a
two-dimensional solvable subalgebra, for no such subalgebra exists. However
these ODEs can be solved by a different approach. In this section, we derive a
simple way of using Lie point symmetries to determiners/ integrals of a given
ODE. This technique relies upon the dimension of the Lie algebra being higher
than the order of the ODE. [Recall: $0(3) is three-dimensional.] Remarkably,
the method enables us to solve some ODEs without having to carry out any
quadrature whatsoever!

A first integral of the ODE

y(n) =co(x,y,y\...,yin-l)) (7.1)

is a nonconstant function

<l>{x,y,y',...,yin-l)), (7.2)

that is constant on solutions of the ODE. Hence

Dx(j) = 0 when (7.1) holds. (7.3)

A neater form of the defining equation is

D0 = 0, 03,0,-n ^ 0, (7.4)

108
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where

D = dx + y'dy + • • • + yin-l)dyin-2) + ^ o , - . ) . (7.5)

So far, we have generally characterized Lie point symmetries by their infinites-
imal generators, but throughout this chapter it will be more convenient to work
in terms of the characteristic, Q = rj — yf^. The linearized symmetry condition
can be expressed in terms of Q as follows:

D nQ - coy(n-i)D
n~lQ coyDQ -coyQ = 0. (7.6)

To derive this result, we substitute the identities

x k = 0,...,n, (7.7)

into the linearized symmetry condition (3.12), obtaining

Dn
xQ-a>yin-»Dn

x-
lQ- ••• -coyDxQ-Q)yQ

+ %DX(y(n) -co) =0 when y(n) = to. (7.8)

The terms that are multiplied by § vanish, because every solution of the ODE
(7.1) is a solution of

Dk
x(y

(n) - c o ) = 0 , it = 0 , 1 , 2 , . . . . (7.9)

Now we isolate terms of the form D Q in each derivative; for example,

where

H = (y(n) -co)dyin-i). (7.10)

Similarly

D2
XQ = D2Q + H(DQ) + DX(HQ),

and, more generally,

k-\

Dk
xQ = Dk Q

7=0
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Taking (7.9) into account, (7.11) yields

DxQ\ («)- = DlCQ, k = 0, 1, 2 , . . .

for any function Q(x, y, yf, . . . , y(w~^), and thus (7.8) is equivalent to (7.6).
Suppose that the infinitesimal generators X\,..., XR constitute a basis for

the Lie algebra of point symmetry generators of a given ODE (7.1). Then
the corresponding characteristics Q\,..., QR form a basis for the set of all
solutions of (7.6) that depend only upon (x, y, yf) and are linear in y'. Other
solutions of (7.6) are discussed in the next section.

For now, let us restrict our attention to second-order ODEs

y" = co(x,y,y') (7.12)

whose Lie algebra C has dimension R > 2. A function (j){x, y, y') is a first
integral of (7.12) if

Dcj) = 0 , </>y ^ 0 , (7.13)

where

D = dx + y'dy + cody. (7.14)

If we can find two functionally independent first integrals 01 and 02, we obtain
the general solution of the ODE in the parametric form

4>l(x, y, yf) = c\, (p2(x, y, y') = C2- (7.15)

Here y' acts as a parameter, which must be eliminated if the general solution is
to be written in closed form.

Given a basis {X\,..., XR} for £, we use Qi to denote the characteristic
corresponding to X;. Let

Wij = QtDQj - QjDQi, 1 < i < j < R. (7.16)

The linearized symmetry condition (7.6) is

D2Qt - coyDQt - cOyQt = 0. (7.17)

and hence

DWij = QtD
 2Qj - Qj D 2Qi = coy Wtj. (7.18)
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The ratio of any two nonzero Wtj is either a constant or else a first integral,
because (7.18) yields

5 (^ -1=0 .

First integrals also arise when Wtj = 0, for then

\Qi)

[The ratio Qj/Qi is a first integral, not a constant, because Xt and X7- are
linearly independent.] With these results, it is straightforward to calculate first
integrals.

N.B. For some functions co, an extra first integral may be obtained from
(7.18). For example, if ooy> = 0 then every nonconstant Wij is a first integral.

Example 7.1 The Lie algebra so (3) is realized by the symmetry generators

Xi = ydx — xdy, X2 = i ( l + x2 — y2)dx + xydy,
, , , (7-1 9)

X3 = xv3 x + ^(1 — x + y )dy.

These generators have the characteristics

Qi = - x - yy\ Q2=xy-\(\+x2- y2)y\

We shall use the method described above to solve the ODE

r ) Y \ ( )
1 + x 2 + y2

which has the Lie point symmetries generated by (7.19). First, we apply the
operator

n a , 'a i a u 2{xy'- y){\ + y>2)
D = ax + y 9v + cooy>, where co = ,

\+x2 + y2

to each characteristic in turn, obtaining

DQ2 = y(l + / 2 ) + \{y2 -x2- l)a>, (7.22)

= -x(l+yf2)-xyco.
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Now we calculate each Wtj, substituting the right-hand side of (7.21) for co:

Wu = \{\ + ya){2x(xy' - y) - / ( I + x2 + y2)},

Wn = \{\ + / 2 ){2 j (x / - j) + 1 + x2 + / } , (7.23)

Wn X 2(x/ - y)

Therefore two functionally independent first integrals of (7.21) are

, 1 ^ 1 2

^23

^ = W23"

Eliminating yr from (7.15), we obtain the general solution

(JC - ci)2 + (y - ci)2 = \+c2 + c2
2.

(7.24)

(7.25)

(N.B. There are also solutions of the form y = ex, on which W23 vanishes.)
Every second-order ODE whose Lie algebra is 50(3) may be solved in this way.

To see how the above method is derived, and how it may be generalized,
consider the third-order ODE

y'" = co(x,y,y',y"),

The linearized symmetry condition is

(7.26)

(7.27)

(7.28)

D3Q - corD
2Q - coyDQ -

where now

D = dx + y'dy + y'dyi + o)dy».

First integrals are the solutions of

D(j) = 0, (j)r ^ 0.

Suppose that R > 4, and consider any four linearly independent characteristic
functions Q\, ..., Q4 satisfying (7.27). The rank of the matrix

S1234 =

Qi Q3 QA

DQ2 DQ3 DQ4

D3Q4
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is three or less, because (7.27) enables us to write the fourth row of Q1234 as a
linear combination of the other three rows. Let

DQj DQk

D2Qj D2Qk\

and let

Note that

Wuk = det(Qyt).

ijk = corWuk. (7.29)

If the rank of Q1234 is three then, without loss of generality, we may suppose that
the column space of Q1234 is spanned by the first three columns (renumbering
the functions Qi if necessary). Then there exist functions /i; such that

S123

" / X l "

/x2

_ / X 3 _

= DQ4

D2QA

(7.30)

and

(7.31)

By applying the operator D to (7.30) and then taking (7.30) and (7.31) into
account, we obtain

'Dpi'

D/JL2

D/x3

=

"o"
0

0

Ql23

We have assumed that Q 12i is nonsingular, and therefore

DfjLi=O, / = 1,2, 3.

(7.32)

(7.33)

Hence the functions /̂ , are either first integrals or constants. To find out which,
we solve (7.30) using Cramer's rule:

W.423

W123'
(7.34)
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If (7.34) yields only two functionally independent first integrals, it is worth
checking to see whether an extra first integral is obtainable from the relationship
(7.29).

So far, we have assumed that rank(Qi234) = 3, so that at least one of the
determinants Wtjk is nonzero. If rank(Qi234) = 2, we may apply the above
argument to each matrix Qijk that is of rank two. Suppose that rank(Qi23) = 2,
and that the column space of Qi23 is spanned by the first two columns. Let

Qu =
Qj

DQj

and let

Wu = det(Qy) = QiDQj - QjDQh

Repeating the argument that led to (7.33) and (7.34), we obtain

Wl2J
(7.35)

Hence the ratios of the functions W/y are either first integrals or constants.
To summarize, the strategy for finding first integrals of third-order ODEs

(with four symmetry generators) is as follows. If rank(Qi234) = 3, calculate
the ratios of any nonzero determinants Wtjk. (There is no need to consider ratios
of subdeterminants of any Qtjk for which Wijk = 0, as these are already included
in the ratios that have been calculated.) If this yields only two first integrals,
check to see whether an extra one can be found from (7.29). If rank(Qi234) = 2
then one should calculate the ratios of any nonzero determinants Wtj.

The generalization of the above method to higher-order ODEs is obvious.
Given an ODE of order n with R > n + 1 generators of Lie point symmetries,
begin by calculating

v = rank

Qi

DQi

QR

DQR
(7.36)
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Then calculate determinants of v x v matrices of the form

115

Qh...iv =

DQh

Dv~lQl2

DQiv

(7.37)

The ratios of the nonzero determinants are either first integrals or constants. If
v = n and the method yields only n — 1 first integrals, try to obtain an extra
one from

DWh..Av =ay»-i>W/I.../y, where W;,...,-, = det(Q l WJ . (7.38)

For point symmetries, each Qt is a function of x, y, and yr only. Therefore

All first integrals involve y^n~l\ and hence we can obtain first integrals by the
above procedure only if v e {n — l,n}. Usually v = n, but the other possibility
may occur if the full Lie algebra is not used.

Example 7.2 To illustrate the method described above, consider the ODE

( 3 / - D / / 2

y = (7.39)

which has the four-dimensional Lie algebra spanned by

Xx = dy, X2 = dx, X3 = xdx + ydy, X4 = ydx. (7.40)

Therefore

v = rank

1 — / y — xy'

0 -y" - I V

-yy

-yf - ya

0 — co —xoo — y" —yco — ?>y'yf

= 3 (if/^0).

(As usual, co denotes the right-hand side of the ODE.) Now we calculate the
determinants W^:

"\W123 = y

Wl24 = 3 / y 2 - yf2co = Z2 ,
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W134 = Qxy' - y)y"2 - y'2y" ~ xyaco = (x - y)y"2 - y'2y"\

w234 = -lyy'y"2 + y3y" + yy'2^ = -yy"2 + y*y".

Because W\2i = W124, we obtain only two first integrals:

y (7.41)

*•-> + $•

However, the relationship

DWijk = a>rWijk = 2Oy 1)y Wijk

y

(with Wtjk = W123) leads to the third (functionally independent) first integral

03 = 2 1 n | / | - 61n | / | . (7.42)

Eliminating yf and y" from the equations <pl = ct•, we obtain the general solution

x = y + c{ - Oy + c 2 )Qc 3 +ln |y + c2 |). (7.43)

This method is quite easy to use, particularly with the assistance of a reliable
computer algebra system. It succeeds in solving second-order ODEs whose
Lie algebra is 50 (3). For other ODEs, it can provide a useful shortcut to the
general solution. The method may be used with any sufficiently large set of
linearly independent solutions of

D nQ - coyin-i)Dn~lQ coyDQ - coyQ = 0. (7.44)

The linearized symmetry condition (7.44) has infinitely many solutions, most
of which are not characteristics of Lie point symmetries. Instead, they are
associated with higher-order symmetries.

7.2 Contact Symmetries and Dynamical Symmetries

So far, we have looked only for symmetries that are point transformations, that
is, diffeomorphisms of the plane. Every generator of a one-parameter Lie group
of point transformations has a characteristic Q{x, y, y') that is linear in / ; the
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functions £, r\ and T?(1) are expressible in terms of Q and its first derivatives as
follows:

§ = -Qy>, ri = Q- y'Qy, ^ = Qx + / g y . (7.45)

A contact transformation is a diffeomorphism of the variables x, y, and /
that extends to derivatives by the usual prolongation conditions

ik = 0, 1 (7.46)
ax

Therefore a diffeomorphism

(*, y, SO = (*(*, y, / ) , 5K*> y. / ) . y'(*> y> y')) (7-47)

is a contact transformation if (7.46) is satisfied for k = 0, that is, if

(7.48)

As j 7 is required to be independent of y", every contact transformation (7.47)
satisfies the contact condition

yy = y'xy. (7.49)

Consequently, (7.48) leads to

yx + y'yy = yXxx + y'xy). (7.50)

One-parameter Lie groups of contact transformations are constructed by ex-
panding about the identity, as follows:

x =x + e%(x,y,y') + O(s2),

y = v + en(x, v, y') + ^(^ 2 ) ,
(7.51)

O(S2).

Just as for Lie point transformations, each r]^ depends upon derivatives of
order k or smaller. However, § and rj may now depend upon x, y, and y\ and
so Q(x, y, yf) = rj — y'% need not be linear in y1. The prolongation rules are
the same as for Lie point transformations:

to k (7.52)
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In particular,

*?(1) = GJc+/Gy+/'(G/+£).

so ?7(1) is independent of y" if and only if § = — Qy. Hence the relationships
(7.45) hold for all Lie contact transformations, not just those that are point
transformations.

A Lie contact symmetry is a one-parameter Lie group of contact transforma-
tions whose characteristic satisfies the symmetry condition (7.44). Every Lie
point symmetry is a Lie contact symmetry. Second-order ODEs have an infinite
set of Lie contact symmetries (just as first-order ODEs have infinitely many
Lie point symmetries), but it is not usually possible to find any. However, the
Lie contact symmetries of a given ODE of order n > 3 can usually be found
by splitting the symmetry condition, using the fact that Q is independent of
y",..., y(n~l\ This is essentially the same technique as is used to find Lie
point symmetries.

Example 7.3 In Chapter 3, it was shown that the simplest third-order ODE,

y" = 0, (7.53)

has a seven-dimensional Lie algebra of Lie point symmetry generators. The
characteristic corresponding to any such symmetry is a linear combination of

Gi = l, Qi=x, Qi=x\ Q* = y,

Qs = - / , Qe = -xy\ Qi = 2xy - x2y'.

However, the ODE (7.53) also has nonpoint Lie contact symmetries. These are
found by substituting Q = Q(x,y,y') into (7.44) to obtain

0 = (Qxxx + 3y'Qxxy + 3y^Qxyy + y'3Qyyy)

Qxxy> + 2y'Qxy? + y'2Qyyy> + Qxy + y'Qyy) (7.55)

As Q is independent of y'\ it follows that each set of terms enclosed by paren-
theses vanishes. The y'l?> terms vanish if

Q = A(x, y)y2 + B(x, y)y' + C(x, y)

for some functions A, B, and C. Then the y"1 terms yield

+ ^ ) + 4 / ^ ) =0.
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Equating powers of y', we obtain

A = a(x), B = -2a\x)y + 0(x)

for some functions a and /3. Continuing in this way, we eventually obtain
the general solution of (7.55), which depends upon ten arbitrary constants.
Besides the seven characteristics listed in (7.54), there are three characteristics
corresponding to nonpoint contact symmetries:

2s = ~y'\ 29 = 2yyf - xy/2, 2io = (2y - xy')2. (7.56)

The infinitesimal generators of these nonpoint contact symmetries are

X8 = 2y'dx + y/2dy, X9 = 2{xyf - y)dx + xy'2dy + yady,

Xio = 2x(2y - xy!)dx + {Ay2 - x2yt2)dy + 2y'{2y - xy')dy.
 ( 7 ' 5 7 )

After finding the set of all Q(x,y, y') corresponding to contact symmetries
of a given ODE, one can determine first integrals by using the method outlined
in §7.1 (if there are sufficiently many symmetries).

Example 7.4 Consider the third-order ODE

y'» = x{x - I ) / 3 - 2xy"2 + / , (7.58)

whose Lie contact symmetry generators have the characteristics

G i , Q i x , Q 3 ,
, , (7-59)

Q4 = (Xy! -y-x)ey , Q5 = e ^ ^ +x.

There are two Lie point symmetry generators, whose characteristics are Q\ and
Q2, but these are not sufficient to solve the ODE. [If one writes (7.58) in terms
of the differential invariants fa, 1̂2) — (x, y"), the reduced ODE is

whose solution is not obvious.] Nevertheless, the ODE (7.58) can be solved by
using the contact symmetries to construct first integrals. The method of §7.1
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yields the three functionally independent first integrals

wm ( j c - i ) y - r

VK123 = (l~X + y)ey~Xy+X' ( 7 ' 6 0 )

<T = T77- = 1 + — £?* .
W123 V (J: — l)y" — 1 /

It is easy to eliminate y", but not yr, so the solution necessarily remains in
parametric form.

Point and contact transformations are geometrical transformations that are
well defined without reference to any particular ODE. Point transformations are
diffeomorphisms of the plane, whereas contact transformations are diffeomor-
phisms of the jet space J] (that satisfy the contact condition). Both classes of
transformations are extended to higher jet spaces by prolongation. It turns out
that there are no other classes of diffeomorphisms of any finite-order jet space
Jk, k > 1, that satisfy the prolongation formulae on the whole of Jk. However,
this does not mean that every symmetry of an ODE is a contact symmetry. We
are only concerned with the action of diffeomorphisms on the subset S of Jn

defined by the ODE y{n) = co. Therefore we do not need the prolongation
conditions to hold on all of Jn, as long as they are satisfied on S.

Any generator X whose characteristic Q satisfies the linearized symmetry
condition (7.44) is said to generate dynamical symmetries (or internal symme-
tries). If Q depends upon any derivative y{k), k > 1, the dynamical symmetries
are not contact symmetries.

Note that X = £ Dx generates dynamical symmetries for all §, because the
characteristic corresponding to X is Q = 0 (irrespective of £). This is a trivial
solution of the linearized symmetry condition; every solution is invariant, and
so these symmetries are of no use. Two dynamical symmetry generators X\
and X2 are said to be equivalent if

X\ — X2 = %DX when y ^ = co,

for some function §. Equivalent generators have identical characteristics. Hence,
without loss of generality, we may restrict attention to dynamical symmetries
whose generators have no dx term. These generators, restricted to the solutions
of y^ = co, are of the form

X=Qdy + DQdy>+ ••• + Dn~lQdy(n-\). (7.61)
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Henceforth we shall assume that generators of dynamical symmetries have the
form (7.61).

If Q = Qo is a solution of the linearized symmetry condition

D nQ - coy(n-i)Dn~lQ coyDQ -coyQ = 0, (7.62)

then so is Q = 0<2o> for anY first integral 0. Given a set of n functionally
independent first integrals, 01, . . . , 0n , one can construct a set of generators
Xi, . . . , Xn such that

(Here 8j is the Kronecker delta.) If Q\,..., Qn are the characteristics corre-
sponding to these generators, then the general solution of (7.62) is

Q = F\(j)\..^(t>n)Qi, (7.63)

where F 1 , . . . , Fn are arbitrary functions of the first integrals. If we use
(x, 01, . . . , (j)n) as coordinates, the generators Xt reduce to

which are translations. So (up to equivalence) every dynamical symmetry gen-
erator is of the form

X = Fl ( 0 , . . . , 4>n)d(f)i. (7.64)

Thus dynamical symmetries of ODEs can be regarded as transformations of the
set of first integrals.

Normally one cannot find all dynamical symmetries without first solving
the ODE. But, just as for contact symmetries, it is possible to seek those dy-
namical symmetries that depend on x, y, / , . . . , y^n~l) in some specific way.
For instance, it is often fruitful to look for characteristics that are independent
of y(n~l\ If a sufficient number of dynamical symmetries can be found, the
method of §7.1 enables the user to construct first integrals.

Example 7.5 Consider the fourth-order ODE

V - I - V

y""=y / , (7.65)

which has a four-dimensional Lie algebra of point symmetry generators. Al-
though this ODE can be solved by using differential invariants, it is instructive to
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try to use the method of §7.1. There are six linearly independent characteristics
corresponding to dynamical symmetries that are independent of y'":

2-y, 3-x, 4 - y xy,

Q5 = y», Q6=xy"-lx\

(These are found by equating powers of y'" in the linearized symmetry condi-
tion.) Although v = 4, there are only three first integrals that can be obtained
by taking ratios of determinants W^/. These are:

y"
,2 = », + ,l _ //0K2 (7.67)

03 = y" - xy"' - \x24>1 + (xyf - y)(01)2.

At first sight, the relationship

DWijki = ayW i m = l+ly Wijkl (7.68)

does not seem to provide the extra first integral. However, we have the freedom
to substitute any of the known first integrals into (7.68). For instance, we may
rewrite (7.68) as

DWijki = (01 + y— J Wiju = D((j)lx + \n\y"\)Wijki.
\ y J

Substituting W1234 = (y"f + y'"2) into the above yields the first integral

-<plx. (7.69)
y»

The general solution of the ODE is obtainable in closed form by eliminating
/ , y\ and / " :

y = —-x2 + c2x + c3 + c4e
ClX. (7.70)

7.3 Integrating Factors

The method outlined in §7.1 is useful because it can produce the general solution
of a given ODE, without any need for quadrature. Furthermore, it does not
depend on the existence of an rc-dimensional solvable subalgebra; there is no
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direct use of the algebraic structure. However, the method is limited by the
need for at least n + 1 symmetry generators.

Some ODEs that can be solved easily lack Lie point symmetries but have an
obvious first integral, 01. If the reduced ODE 01 = c\ has symmetries that can
be found, or an obvious first integral, then further reduction of order is possible.

Example 7.6 Consider the class of ODEs of the form

y'2

y" = — + fWyy + f'Wy • (7.71)

These ODEs have no Lie point symmetries unless there are constants k\,..., A4
(not all of which are zero) such that

(klX + k2)f(x) + (k3X + *4)/(*) = 0.

Nevertheless, every ODE (7.71) can be reduced to quadrature, as follows. Mul-
tiply (7.71) by y~l and integrate once to obtain

01 = — - f(x)y = cx. (7.72)

The first-order ODE (7.72) is a Bernoulli equation for y, and is equivalent to

This can be solved with an integrating factor (using the symmetries associated
with linear superposition). Thus the general solution of (7.71) is

y = c2-Jf(x)e^dx ' (7 '?3)

The key step in solving the above example was the multiplication of the ODE
by y~l. This method generalizes to arbitrary ODEs as follows. A (nonzero)
function A is an integrating factor for the ODE (7.1) if

(y(n)-co)A = DxX (7.74)

for some function x(x> y,y', - • • > y ( n l ) ) ; thus x is a first integral. Indeed,
every first integral 0 satisfies

Dx(j) = D(j) + (y(n) - (o)03,0.-0 = (y(n) - coj^ytn-i). (7.75)
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Therefore every integrating factor of (7.1) is of the form

A(x,y,y', ...,y{n-l)) = <V-o (7.76)

for some first integral </>.
Integrating factors can be determined systematically, in much the same way

as symmetries are found from (7.62). The following identities are useful:

Ddy(k) = dy(k)D — dy(k~\) — COy(k)dy(n-\), fc = 0 , . . . , W " l j (1.11)

here we adopt the conventions y = y(0) and dy(-D = 0. Equation (7.76) gives

(py(n-i) = A . (7.78)

We now apply the operator D to </yn-n. Using the identity (7.77) with k = n — 1,
and taking D<fi = 0 into account, we obtain

(j)y(n-2) = —(^D(j)y(n-\) + (Oy(n-D(py(n-l)Y (7.79)

Similarly, applying D to each partial derivative (j)y(k) in turn yields

(fryik-D = -(D(/)y(k) + o)y(k)(t)yin-\)), k = 0, . . . , n - 1. (7.80)

In particular, the k = 0 equation is

0 = -(D03, +^03,(1.-1)), (7.81)

so the sequence terminates. Furthermore, the relationship D(p = 0 gives

(j)x = -yf(j)y - y " $ y , yin~l)4>y^-2) - CO</)y(n-i). (7.82)

Thus it is possible to use (7.78) to write each partial derivative of 0 in terms of
A and its derivatives, and (7.81) yields

D nA + D n~\coyin-nA) - D n~\cDyin-2) A) + • • •

+ ( - l ) n - 1 ^ A = 0. (7.83)

Note that the first two terms have the same sign, whereas subsequent terms
alternate in sign. Equation (7.83) is the adjoint of the linearized symmetry
condition (7.62), and so its solutions have been called adjoint symmetries. This
is a rather misleading name, because they are neither symmetries nor genera-
tors of symmetries. Instead, we shall call any nonzero solution A of (7.83) a
cocharacteristic. By construction, every integrating factor is a cocharacteristic.
However, the converse is not true, as is shown below.
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Cocharacteristics are found by the same strategy as is used to find character-
istics for dynamical symmetries, namely by supposing that A is of a particular
form. For example, we may systematically search for all solutions of (7.83) that
are independent of y(n~l\ After the solution(s) A* have been found, it is easy
to find out which (if any) are integrating factors. First calculate (recursively)
the quantities

K-\ = A1",
(7.84)

l k l 2 lPl
k_x = -DPI -

From (7.78), (7.80), and (7.82), we see that A' is an integrating factor if

(7.85)

fo r s o m e f u n c t i o n 4>l. T h e i n t e g r a b i l i t y c o n d i t i o n s 4>'U)(t) = </>' «•> w a n d 4>' {k)x

<pl
xy{k) a m o u n t t o

dPl dP'i
—k = —TIT. 0< j <k<n-l,
3 0 ) dW - J -

Perhaps surprisingly, these conditions are all satisfied if and only if

dPi , dP)
-TT7=r = ^ 7 ^ T T ' 0<j<n-2. (7.86)

(The derivation of this result is left as an exercise.) Thus A' is an integrating
factor if and only if the integrability conditions (7.86) are satisfied. Specifically,
(j)1 is obtained as a line integral from

y + 0j, dy1 + • • • + 0;(fl-1) dyin~l)

= f Pl
0{dy - y' dx) + P[{dy' - y" dx) + ••• + P ^ ( d y { n - l ) - co d x ) .

(7.87)

Example 7.7 The third-order ODE

y" = 3yy' (7.88)
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has a two-parameter Lie group of point symmetries, with generators

X\ = dx, X2 = xdx — 2ydy;

these are the only Lie contact symmetries. The method of differential invariants
leads to the first-order ODE

dv2 2r2(3-2v2) _3/2 , _2

te U) = (y ' y y y )dr2 2v2 — 3r2
_3/2 , _2

but this appears to be intractable. Equation (7.83) for the integrating factors
amounts to

D3A - D(3yA) + 3/A = 0. (7.89)

Just as for contact symmetries, we find the solutions of the form A = A (JC , y, y')
by equating powers of y" in (7.89) and then solving the resulting overdetermined
set of PDEs. This yields three linearly independent solutions:

From (7.84), we obtain

P2' = l, p}=0, Pj = -3y;

Pi = y, P\ - - / , Pi = y" - 3y2;

Pi = y
a - y\ p3 = 3y2y' - 2y'y",

pi = 2y"2 - 3y2y" - 3yy'2 + 3y4.

The integrability conditions (7.86) are satisfied for i — 1, 2, so A1 and A2 are
integrating factors. However,

dyf dy" y ^

so A3 is not an integrating factor. Thus we have obtained two first integrals:

01 = [(dy" - 3yy'dx) - 3y(dy - y'dx) = y" - \y2\ (7.90)

02 = J y(dy" - 3yy'dx) - y\dy' - y" dx) + ( / - 3y2)(dy - y' dx)

= yy" - \ya - y\ (7.91)

We do not yet have enough first integrals to describe the general solution of the
ODE, but combining the equations (pl = C(, i = 1,2 leads to the separable



7.3 Integrating Factors 127

first-order ODE

Hence the general solution of (7.88) is

x = c3 ± [ dy . (7.92)
J y V + 2c iy-2c2

Another way to generate first integrals is to combine cocharacteristics and
symmetries. For example, suppose that A is a cocharacteristic for the second-
order ODE

y" = co(x, y, / ) .

As usual, let

Px = A, Po = -(DPi +coyA),

and note that DP0 + coyA = 0. Now suppose that Q is the characteristic for
any (nontrivial) symmetry of the ODE, and let

<D = P0Q + PXDQ.

Then <J> is either a first integral or a constant, because

= (DP0)Q + (Po + DPX)DQ + P{D
2Q

= 0.

A similar result holds for every ODE v(n) = co. Given any cocharacteristic A
and any characteristic Q, the function

k=o

is either a first integral or a constant. This result does not depend upon the in-
tegrability conditions (7.86) being satisfied. If several symmetries are known,
then each characteristic can be substituted into (7.93). Thus a single cocharac-
teristic may yield several functionally independent first integrals.
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7.4 Systems of ODEs

The above ideas may be generalized to systems of ODEs. For simplicity, we
shall concentrate on systems of n first-order ODEs

y'k = CDk(x, y u . . . , y n ) , k = 1, . . . , n. (7.94)

There is no loss of generality in doing this, for every system of ODEs can be
rewritten as an equivalent first-order system. The main results on symmetries
and integrating factors are derived by the same methods as we have used for a
single ODE. Therefore we state these results without detailed justification; the
reader should be able to derive them.

Lie point transformations of the variables x, y\, . . . , yn are generated by
infinitesimal generators of the form

X = § ( * , y u . . . , yn)dx + r]k(x, y u . . . , yn)dyk. (7.95)

(Here the usual summation convention applies.) The characteristic of the one-
parameter Lie group generated by X is Q = (Q\,..., Qn), where

Qk = m -y'k%> fc = i , . . . , n .

To find Lie point symmetries of the system (7.94), we prolong the infinitesimal
generator X to first derivatives as follows:

where

4) = Dxm-y'kDxH = DxQk + y'lH, * = l , . . . , n . (7.96)

Then the linearized symmetry condition is

X ( 1 ) ( ^ - ^ ) = 0 , fc = 1 w, when (7.94) holds. (7.97)

This condition may also be written in terms of the reduced characteristic,
Q = ( Q i , . . . , 2 n ) , whose components are

Qk(x, yu • • •, yk) = rjk - cok^ k = 1, . . . , n.

With a little work, it can be shown that the linearized symmetry condition
amounts to

^ j = 0 , k=l,...,n, (7.98)
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where

D = dx + cot dy..

A solution is invariant under a one-parameter Lie group of symmetries if the
reduced characteristic is zero on the solution. The symmetry group is trivial
if every solution is invariant, that is, if Qk = 0 , k = 1 , . . . , n. Therefore a
one-parameter Lie group of symmetries is trivial if and only if its infinitesimal
generator is of the form

X = %D,

for some function §. Any symmetry generator (7.95) may be split into its trivial
and nontrivial components as follows:

Therefore the difference between any two generators with the same Q is the
generator of a trivial symmetry. For now, let us exclude trivial symmetries by
setting § = 0 and considering only those generators that are of the form

X = Qkdyt. (7.99)

Any single ODE y(n) = co may be represented (in many ways) by an equiva-
lent system of n first-order ODEs. (Here "equivalent" means that the general
solution is the same.) We now show that there is a one-to-one correspondence
between the nontrivial dynamical symmetries of y^ = co and the Lie point
symmetries (7.99) of any equivalent first-order system.

A nonconstant function </>(x, y\,..., yn) is a first integral of (7.94) if

D(p = 0. (7.100)

The general solution of (7.94) depends on n arbitrary constants, and thus there
are n functionally independent first integrals, 01, . . . , 4>n. The general solu-
tion is

so the system of ODEs (7.94) is equivalent to

d(bk

= 0 , fc = 1 n. (7.101)
dx
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Assuming that the change of dependent variables from yk to <f>k is a diffeomor-
phism, the Lie point symmetries of (7.94) correspond to Lie point symmetries
of the equivalent system (7.101). Under this change of variables, the generator
(7.99) is (by the chain rule)

X = Fl(x, 0 1 , . . . , 0 " % , where Fl = Qkfyk. (7.102)

The chain rule also yields

Thus the linearized symmetry condition for (7.101) is

DF[ = Fj = 0 , / = l , . . . , n .

Consequently, every Lie point symmetry generator (7.102) is of the form

Z = F / (0 1 , . . . ,0 r t )a 0 ( , (7.103)

for some (arbitrary) functions Fx,..., Fn.
If (7.94) is equivalent to a single ODE y(n) = co, that ODE has the same

general solution, and thus the same set of first integrals. Comparing (7.103)
with (7.64), we see that the Lie point symmetries of the system (7.94) are the
same as the dynamical symmetries of the equivalent nth order ODE.

There are infinitely many Lie point symmetries of any given first-order system
of ODEs, but generally one cannot find them without first solving the system.
Some sort of ansatz is needed; commonly, one seeks reduced characteristics that
are independent of (or linear in) one variable. Alternatively, we can substitute a
particular ansatz for (£, rj\, . . . , rjn) into (7.97). For some of the most common
point transformations (e.g., translations, scalings, and rotations), § and rjk are
linear in each variable.

Once a nontrivial symmetry generator has been found, it is possible (in prin-
ciple) to reduce the problem of solving (7.94) to that of solving n — \ first-order
ODEs and then carrying out a final quadrature. To do this, introduce canonical
coordinates (s, n , . . . , rn) such that

Xrk=0, ifc = l , . . . , n , Xs = l.

Then X = ds, and so the system of ODEs is equivalent to

^ = ^ ( n , . . . , r n ) , J f c = l , . . . , n (7.104)
ds
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for some functions Qk. If these functions are all zero, then (7.104) can be solved
immediately. Otherwise, assume (without loss of generality) that ^ i ^ 0 . Then
(7.104) yields n — 1 ODEs involving only the differential invariants rk\

*L = * , * = 2 , . . . , « . (7.105)
dr\ ll\

If the solution of (7.105) gives r2, . . . , rn in terms of n , the remaining ODE in
(7.104) can be solved by quadrature:

=/ '
, . . . , rn(rx))

+cn. (7.106)

If the solution of (7.105) is parametric, s is obtained by rewriting the integral
in (7.106) in terms of the parameter.

The above method requires the user to find differential invariants of the
given one-parameter group. In practice this is not always possible, because the
characteristic equations

*=**=... = **=ds (7.107)
§ Til Tin

may be hard to solve. The method is most successful for ODEs that have
symmetry generators of a fairly simple form.

The Lie point symmetry generators of a given first-order system of ODEs
form an infinite-dimensional Lie algebra. As the commutator of any two gen-
erators is a generator, one may be able to construct new generators from known
ones. Usually this process terminates quickly, and one is left with a finite-
dimensional subalgebra, C. If C has an solvable subalgebra of dimension R <n,
the system of ODEs (7.94) may be reduced to n — R ODEs in the differential
invariants, together with R quadratures. The procedure is similar to that for a
single nth order ODE.

Systems of ODEs can also be solved by using integrating factors to construct
first integrals. If 0(x, yy,..., yn) is a first integral of the system (7.94) then
D(j) = 0, and hence

k y (7.108)

We call A = (A 1 , . . . , An) an integrating factor of the system (7.94) if

(y'k - (Dk)A
k = D^
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for some nonconstant function 4>(x, y\,..., yn). Therefore the components of
every integrating factor satisfy

(j)yk=Ak, fc = l , . . . , n . (7.109)

Applying D to (7.109) and taking Dcp = 0 into account, we obtain

DAk + — A ' = 0 , k = l,...,n. (7.110)

Each nonzero solution A of (7.110) is called a cocharacteristic. A cocharac-
teristic is an integrating factor if and only it satifies the integrability conditions

= , l<j<k<n. (7.111)
dyj Syk - J -

Given any integrating factor, we use (7.108) to reconstruct the corresponding
first integral as follows:

- / •

0 = / Ak(dyk-cokdx). (7.112)

Another way to construct first integrals is to combine characteristics and cochar-
acteristics, just as we did for single ODEs. From (7.98) and (7.110), we find
that

D(QkA
k)=0. (7.113)

Hence O = QkA
k is either a constant or a first integral.

Example 7.8 Consider the system of ODEs

1 V1V2-X2'
n n , (7.114)
xyi + y\

y2 = ——-i-

This system has the scaling symmetries generated by

X =xdx+y{dyi +y2dy2;

this is the only infinitesimal generator whose coefficients are linear in vi and y2.
The characteristic equations (7.107) are easily solved to obtain the canonical
coordinates

(s,rur2) = (ln|x|, yx/x9 v2/x).
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Therefore the system (7.114) is equivalent to

dn_ _ 2r\ +r\- r\r2

ds

dr2 _

ds

As promised, this yields one ODE

dr2

drx ~

r
2r2-f

1̂ *2 - 1

2 2- Tj — TiT2

rxr2 - 1

that

2r2H

2rH

is independent of s:

hr?-r,r2
2

hr2
2-r2r2'

However this ODE has no obvious symmetries; it does not seem easy to solve.
The system (7.114) has two linearly independent cocharacteristics whose

components are linear functions of y\ and y2\ these are

Ai = (vi, -x), A2 = (-x, y2).

Each of these satisfy the integrability conditions (7.111), and (7.112) enables
us to construct the first integrals

2 (7.115)
</> = ^y2-xy{.

Therefore the general solution of the system (7.114) is

y]4 - 4c{yj - 8x3
yi - 8c2x

2 + Ac] = 0,

y\ - Ac2y\ - Sx3y2 - Sc{x
2 + 4cj = 0.

Further Reading

Dynamical symmetries are described in greater detail by Stephani (1989), who
includes several examples from classical physics.

The integrating factor method of §7.3 is a modified version of the technique
described in Anco and Bluman (1998). These authors have also addressed the
related problem of constructing conservation laws of PDEs.

Exercises

7.1 Find three functionally independent first integrals of the ODE

,„ _ 6y'y" 6 / 3

y
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using the symmetries generated by

X{=dx, X2 = y2dy, X3=xy2dy, X4=xdx-2ydy.

Use the first integrals to determine the general solution of the ODE.
7.2 Find all characteristics of contact symmetries of the ODE

/ " = 3/2/(2/) + 2/3

and use them to construct the first integrals.
7.3 Derive all characteristics of contact symmetries of the ODE

y"'=x(x-\)y'«-2xy"2 + y"

and use them to construct the first integrals (7.60).
7.4 Given an infinitesimal generator of Lie contact symmetries, one can try

to reconstruct the finite contact symmetries by solving

dx , A/ dy ^ dy' (1) ^
— = § ( * , y , y ) , — = rj(x, y , y ) , — = rf ; ( x , y , y ) ,

subject to the initial conditions

(Jc, y, y') = (x, y, y') when e = 0.

Find the finite contact symmetries corresponding to each characteristic in
(7.56).

7.5 Use the dynamical symmetries (7.66) to derive the first integrals (7.67).
7.6 Show that the integrability conditions (7.86) are sufficient to ensure that

all integrability conditions are satisfied. [Hint: Let

y 3y(k)

and apply D to the integrability condition Jj = 0.]
7.7 Find all characteristics and cocharacteristics depending on(x,y, yf) for

the ODE

y = (2y - l)y + y .

Hence reduce the ODE to the first-order (Riccati) equation

v' — v2 = c\ex'.
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(The solutions of this equation can be written in terms of Bessel functions,
as follows. First substitute v = —z'/z, to linearize the Riccati equation;
then introduce a new independent variable t = e~xfl, to obtain Bessel's
equation.) Now determine the general solution of the original third-order
ODE.

7.8 Show that if O is defined by (7.93) then DO = 0.
7.9 Use the first integrals (7.41), (7.42) to construct the generators Xt = 9^.

[You should find that X3 is a dynamical symmetry.] Write the character-
istic corresponding to each point symmetry generator (7.40) in the form
(7.63). Use your results to explain why the first integral (7.42) could not
be found by taking ratios of the determinants W^.
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How to Obtain Lie Point Symmetries ofPDEs

Yet what are all such gaities to me
Whose thoughts are full of indices . . . ?

(Lewis Carroll: Four Riddles)

8.1 Scalar PDEs with Two Dependent Variables

Point symmetries of PDEs are defined in much the same way as those of ODEs.
For simplicity, let us start by considering PDEs with one dependent variable,
w, and two independent variables, x and t. A point transformation is a diffeo-
morphism

T : (JC, t, u) H> (JC(JC, t, w), i(x, t, M), U(X, t, u)). (8.1)

This transformation maps the surface u = u(x,t) to the following surface
(which is parametrized by x and t):

x = JC(JC, t, u(x, 0 ) ,

t = i(x,t,u(x,t)), (8.2)

u = u{x, t, u(x, t)).

To calculate the prolongation of a given transformation, we need to differentiate
(8.2) with respect to each of the parameters x and t. To do this, we introduce
the following total derivatives:

Dx = dx + uxdu + uxxdUx + uxtdUl H ,

Dt = dt + utdu + uxtdUx + uttdUt -\ .

(Total derivatives treat the dependent variable u and its derivatives as functions
of the independent variables.)

136
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The first two equations of (8.2) may be inverted (locally) to give x and t in
terms of x and ?, provided that the Jacobian is nonzero, that is,

rr
Dxx Dxi

0 when u = u(x, t).
Dtx Dti

If (8.4) is satisfied, then the last equation of (8.2) can be rewritten as

u = u(x, t).

Applying the chain rule to (8.5), we obtain

(8.4)

(8.5)

Dxu

Dtu

and therefore (by Cramer's rule)

Dxx Dxi

Dtx Dti

ux = —J

Dxu Dxi

Dtu Dti J
Dxx Dxii

Dtx Dtu
(8.6)

dx

diu

1

~ J

1
= J

Dxuj

Dtu3

Dxx

D,x

Dxt

Dtt

Dxiij

Dtu2

Higher-order prolongations are obtained recursively by repeating the above
argument. If u j is any derivative of u with respect to x and ?, then

(8.7)

For example, the transformation is prolonged to second derivatives as follows:

(8.8)

We are now in a position to define point symmetries of an nth order PDE:

A(x,t,u,ux,ut,...) =0. (8.9)

For simplicity, we shall restrict attention to PDEs of the form

A = uo — co(x, t, u, ux, ut, ...) = 0, (8.10)

1 Dx ux Dxi

Dtux Dti

1 Dxut Dxi

Dtut Dti

1
= 1

1

~ ^

Dxx

D,x

Dxx

Dtx

Dxiix

D,uk

Dxii't

D,u-t



138 8 How to Obtain Lie Point Symmetries ofPDEs

where uo is one of the nth order derivatives of u and co is independent of ua.
(More generally, ua could be of order k < n provided that co does not depend
upon uo or any derivatives of ua.)

The point transformation T is a point symmetry of (8.9) if

A(Jc, ?, fl, M*, fi?, .. .) = 0 when (8.9) holds. (8.11)

Typically, the symmetry condition (8.11) is extremely complicated, so we shall
not try to solve it directly. Nevertheless, it is quite easy to check whether or not
a given point transformation is a symmetry of a particular PDE.

Example 8.1 Here we use the symmetry condition to show that

x —1

2f' At

is a point symmetry of Burgers' equation

Ut + UUX = Mr

The Jacobian of the point transformation (8.12) is

(8.12)

(8.13)

J =
Tt °

Z1x J _
It2 At2

and therefore

iix = St3

ui = St3

Urr =

2(tux - 1) 0

2(tut + u) ^

$ 2{tut

= 4t(tux-l),

= $t(t2ut 4- xtux +tu — x),

Note that

Uf + UUjc = 8f (Ut + UUX),

and hence the point transformation satisfies the symmetry condition

U} + MMjc = Mjcjc when ut + MMX = uxx.
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Generally speaking, we do not know a priori what form the point symmetries
of a given PDE will take. However, it is usually possible to carry out a systematic
search for one-parameter Lie groups of point symmetries. The technique is
essentially the same as for ODEs. We seek point symmetries of the form

x = x + e£(jt,f, w) + O(s2),

i = t + er(x, t, u) + O(s2), (8.14)

u = u + erj(x, t, u) + O(s2).

Just as for Lie point transformations of the plane, each one-parameter (local) Lie
group of point transformations is obtained by exponentiating its infinitesimal
generator, which is

X = l;dx + Tdt + ridu. (8.15)

Equivalently, we can obtain (x, i, u) by solving

Ji dt du
— = £(£, t, u), — = r(x, t, u), — = r](x, t, M),
de ds de

subject to the initial conditions

( x , i , u ) \ £ = 0 = ( x , t , u ) .

A surface u = u(x, t) is mapped to itself by the group of transformations
generated by X if

X(u-u(x,t)) =0 when u = u(x,t). (8.16)

This condition can be expressed neatly by using the characteristic of the group,
which is

Q = rj-Sux-rut. (8.17)

From (8.16), the surface u = u(x, t) is invariant provided that

Q = 0 when u = u(x,t). (8.18)

Equation (8.18) is called the invariant surface condition; it is central to some
of the main techniques for finding exact solutions of PDEs.

The prolongation of the point transformation (8.14) to first derivatives is

u% = ux -h £rjx(x, t, u, ux, ut) + O(s2),
(8.19)

uj — u, + srj'ix, t, u, ux, u,) + O(el),
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where, from (8.6),

rjx(x, t, u, ux, ut) = Dxrj — uxDx% — utDxr,
(8.20)

rf(x, t, u, ux, ut) — Dtr\ — uxDt% — utDtx.

The transformation is prolonged to higher-order derivatives recursively, using
(8.7). Suppose that

uj = uj + er]3 + O(s2), (8.21)

where

for some numbers j \ and 72. Then (8.7) yields

Ujjt = UJx +ST]Jx + O(£2),
(8.22)

Uji = UJt +£T]3t + O(£2),

where

^ = Dxr]J -ujxDx%-uJtDxT,

r]Jt = Dtr]J -uJxDt^ -uJtDtr.

Alternatively, we can express the functions r\J in terms of the characteristic, for
example,

7]X = DXQ+%UXX +TUxt,
(8.24)

rf = DtQ + %uxt + zutt.

The higher-order terms are obtained by induction on j \ and 72'

r]J = DjQ + $DjUx + rDjUt, (8.25)

where

D3 = D^DJ
t
2. (8.26)

The infinitesimal generator is prolonged to derivatives by adding all terms of
the form r]JdUj up to the desired order. For example,

= $dx + rdt + r]du 4- rfdUx + rjK, = X + r]xdUx + ?/aMr, (8.27)

X ( 2 ) = X ( 1 ) + nxxdUxx + ^ r 3 M j r / + r)ndUu, (8.28)
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From now on, we adopt the convention that the generator is prolonged as many
times as is needed to describe the group's action on all variables. (We shall
not usually refer explicitly to the order of prolongation.) To find the Lie point
symmetries, we need explicit expressions for (8.23). Here are some:

I* = rix + (rju - %x)ux - xxut - %uu
2

x - xuiixut, (8.29)

rf = rjt - %tux + (rju - xt)ut - %uuxut - xuu), (8.30)

rjxx = i)xx + (2*lxu ~ %xx)ux - xxxut + (nuu - 2%xu)u
2
x

- 2xxuuxut - %uuu
3
x - xuuu\ut + (j\u - 2i;x)uxx

- 2xxuxt - 3%uuxiixx - xuutuxx - 2xuuxuxt, (8.31)

?lxt = r\xt + (t]tu - %xt)ux + (rixu - xxt)ut - %tuu
2
x

+ (nuu - %xu - xtu)uxut - xxuu) - ^uuu\ut - xuuuxu]

- HtUxx - %uutuxx + (nu - %x - xt)uxt - 2%uuxiixt

- 2xuutuxt - xxutt - xuuxutt, (8.32)

r\u = r\tt - %ttux + (2rjtu - xtt)ut - 2%tuuxut

+ (nuu - 2xtu)u] - %uuuxu
2
t - xuuu] - 2%tuxt

- 2%uutuxt + (rju - 2xt)utt - %uuxutt - 3xuututt. (8.33)

Lie point symmetries are obtained by differentiating the symmetry condition
(8.11) with respect to s at s = 0. We obtain the linearized symmetry condition

XA = 0 when A = 0. (8.34)

The restriction (8.10) enables us to eliminate uo from (8.34); then we split the
remaining terms (according to their dependence on derivatives of u) to obtain
a linear system of determining equations for £, r, and rj. The vector space C of
all Lie point symmetry generators of a given PDE is a Lie algebra, although it
may not be finite dimensional.

Example 8.2 As a simple illustration of the technique, consider the PDE

u t = u2
x. (8.35)

The linearized symmetry condition is

rf = 2uxr]x when (8.35) holds. (8.36)
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Writing this out explicitly and using (8.35) to eliminate ut, we obtain

r\t ~ %tux + (tju - xt)u
2
x - %uu\ - xuu\

= 2ux{r\x + (rju - %x)ux - (£M + rx)u
2
x - TUU\)

After equating the terms that are multiplied by each power of ux, we are left
with the system of determining equations

ru = 0, (8.37)

& + 2xx = 0, (8.38)

T)u + rt - 2$x = 0, (8.39)

£ + 2r)x = 0, (8.40)

r]t = 0 . (8.41)

(These are ordered with the u\ terms first, then the u\ terms, etc.) We begin by
solving (8.37) to obtain

r = A(x,t),

where A is an arbitrary function (at present). Therefore the general solution of
(8.38) is

§ = -2Axu + B(x,t),

and (8.39) yields

rj = -2Axxu
2 + (2BX - At)u + C(x, t),

for some functions B and C. Substituting these results into (8.40) and (8.41),
we obtain

-4Axxxu
2 + 4(BXX - Axt)u + Bt + 2CX = 0, (8.42)

-2Axxtu
2 + (2Bxt - Att)u + C, = 0. (8.43)

The functions A, B, and C are independent of u, so (8.42) and (8.43) can be
decomposed by equating powers of u, as follows:

Ct = 0, (8.44)

Bt + 2CX = 0, (8.45)

2Bxt - Att = 0, (8.46)

Bxx - Axt = 0, (8.47)
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Axxt = 0, (8.48)

Axxx = 0, (8.49)

Using each of (8.44), (8.45), and (8.46) in turn, we obtain

C = a(x), B = -2a'{x)t +
(8.50)

A = -2a"(x)t2 + y(x)t + 8(x).

Here a, /3, y, 8 are functions of x that are determined by substituting (8.50) into
(8.47), (8.48), and (8.49), then equating powers of t, and solving the resulting
ODEs. We eventually arrive at the general solution

§ = —Ac\tx — 2c2t + C4Q.X2 — 2tu) + c§x + C7 — 4c%xu — 2cgu,

x — -4c{t
2 + c4xt + c5t + c8x2 + c9x + cio, (8.51)

r; = c i x 2 + C2X + C3 -f C4X11 — C5W + 2c6W — 4cgw2.

There are ten arbitrary constants, signifying that the Lie algebra is ten dimen-
sional.

As we have seen, Lie point symmetries of PDEs and ODEs are found by
essentially the same procedure. However, PDEs involve several independent
variables, so the calculations are typically lengthy. For the rest of this chapter,
we merely outline the calculations, giving enough information to enable the
reader to fill in the details.

In the previous example we solved the determining equations one at a time,
using the terms multiplied by uk

x before those multiplied by uk~x. The informa-
tion gained at each stage was then used to simplify the next equation. This is a
very efficient technique that generalizes to higher-order PDEs (for which there
may be many determining equations) as follows.

First write down the linearized symmetry condition, but do not expand each
T]3. Instead, identify the terms in the linearized symmetry condition that are
multiplied by the highest power of the highest-order derivative(s) of u. These
terms yield some of the determining equations, which should now be solved.
Then the results are used to simplify the remaining terms in the linearized
symmetry condition. Now write down the terms that are multiplied by the
highest remaining power of the highest remaining derivative(s), and solve the
resulting determining equations. Iterate until the linearized symmetry condition
has been completely satisfied.

This procedure generally works well, but sometimes the result is obtained
more quickly by changing the order in which terms are used.
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Example 8.3 The linearized symmetry condition for Burgers' equation,

ut + uux = uxx, (8.52)

is

rf + urjx + uxr] = r]xx when (8.52) holds. (8.53)

Once uxx has been replaced by the left-hand side of (8.52), the highest-order
derivative terms in (8.53) have a factor uxt. We start by writing down those
terms alone:

0 = —2xxuxt — 2ruuxuxt.

This leads to

T* = TM = 0,

which removes many terms from the linearized symmetry condition; the re-
maining terms are

r\t - $tux + (j]u - xt)ut - %uuxut + u(rjx + (rju - %x)ux - %uu
2
x) + uxr]

= r)xx + (2rjxu - %xx)ux + (j]uu - 2%xu)u\ - %uuu\

+ (rju - 2%x - 3%uux)(ut + uux).

In particular, the terms multiplied by ut are

{Y]u - Tt)ut - %uUxllt = (f]u - 2t;x - 3%uUx)ut.

This yields two determining equations:

Hence

for some function a. The remaining terms in the linearized symmetry condition
determine a and r up to five arbitrary constants. The Lie algebra of point
symmetry generators is spanned by

X.\ = dx, X2 — Of> ^ 3 ^ ^ 9JC ~f~ 9M ,

X4 = xdx + 2tdt - udu, X5 = xtdx + t2dt + (JC - ut)du.
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N.B. In the above calculations, it was expedient to give terms multiplied by ut

precedence over those multiplied by powers of ux. This is usual for evolution
equations, which are PDEs of the form

ut = F(x, t, u, ux, uxx, uxxx, . . . ) .

(F contains derivatives of u with respect to x only, not t.) For Burgers' equation,
F has a term proportional to uxx, so it is natural for ut to take precedence over
the ux terms.

If a PDE is linear and homogeneous, it has an infinite-dimensional Lie algebra
of point symmetry generators. The principle of linear superposition states that
if u(x, t) and U(x,t) are solutions of the PDE, then so is

u = u + sU(x,t)

(for all s). Therefore

Xu = U(x,t)du (8.54)

is a symmetry generator, for any solution U(x,t). The PDE has infinitely many
linearly independent solutions, so the Lie algebra is infinite dimensional. Simi-
larly, if u satisfies an inhomogeneous linear PDE and U(x,t) is any solution of
the related homogeneous PDE, then (8.54) is a symmetry generator. Suppose
that a given nonlinear PDE has point symmetry generators that depend upon
arbitrary solutions of some linear homogeneous equation. Then, by comparing
the symmetry generators of the two equations, one may be able to linearize
the original PDE. The aim is to construct a point transformation that maps the
nonlinear PDE to the linear equation (or to a related inhomogeneous equation).
The next example shows how this is done.

Example 8.4 The Lie algebra of point symmetry generators of the Thomas
equation

uxt = uxut - 1 (8.55)

is spanned by

X\ = dx, X2 = 3?, X3 = 9W, X4 = xdx — tdt,

(8.56)

{Xv = V(x,t)eudu:Vxt = V}.

The fact that the Lie algebra of the Thomas equation depends upon solutions of
vxt = v (8.57)
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suggests that we might be able to transform the Thomas equation into (8.57).
The Lie algebra of point symmetry generators of (8.57) is spanned by

X\ = dx, X2 = dt, X3 = vdv, X4 = xdx — tdt,
(8.58)

{Xv = V(x,t)dv: Vxt = V}.

We compare the Lie algebras (8.56) and (8.58), with the aim of finding a point
transformation that maps one to the other. Both Lie algebras have the same
action on x and t, which suggests that these variables are unchanged by the point
transformation. So we seek a change of variables v = f(u) that maps (8.56) to
(8.58). The usual change of variables formula for infinitesimal generators leads
to

v = e~u. (8.59)

The reader can check that this transformation does indeed linearize the Thomas
equation.

If the Lie algebra of point symmetry generators of a given PDE is finite
dimensional, the PDE cannot be linearized by a point transformation. The point
symmetry generators of the untransformed PDE are mapped to those of the
transformed PDE (and vice versa) by the chain rule, so the dimension of the
Lie algebra is unchanged by any point transformation. However, some PDEs
with finite Lie algebras can be linearized by nonpoint transformations.

8.2 The Linearized Symmetry Condition for General PDEs

Everything in the previous section generalizes to PDEs with M dependent
variables u = (M1 , . . . ,uM) and N independent variables x = (xl,..., xN).To
keep the notation to a minimum, we shall use u^ to denote the set of dependent
variables and their partial derivatives of order k or less. By now the procedure
for determining the linearized symmetry condition should be familiar; the only
difference is that we need more indices! Therefore we describe only the main
points, without going into detail.

Suppose that X is the infinitesimal generator of a one-parameter Lie group
of point transformations, that is,

X = F(x9u)dxi+ria(x,u)du: ( 8 . 60 )

T h e c h a r a c t e r i s t i c of t h e g r o u p i s Q = ( Q i , . . . , ( 2 M ) > w h e r e

Qa = r i a - ? u a
x i , a = l , . . . , A f . (8.61)
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To prolong the linearized group action, we need the total derivatives,

Dxi = dx, +<<A« + ---.

The first prolongation of X is

where

ril
a(x, u(l)) = Dx,Qa^^Dx,u

a
xi. (8.62)

Similarly, the general formula for the prolonged generators is

X = §'"(*, u)dxi + r]a(x, u)dua + riJ
adua, (8.63)

where ua
3 = Djua and

riJ
a = DjQa+pDjua

xi. (8.64)

Here

D r\j\ r\h T\JM

and the prolonged generator (8.63) is assumed to contain all terms that are
needed to describe the linearized group action on a given PDE.

For simplicity, we shall consider only PDEs of the form

A^ = uop - o)p(x, u(n)) = 0 , 0 = 1, . . . , M, (8.65)

where each uap is a "highest derivative" of some ua, in the sense that no other
term in the system contains either uGfi or any of its derivatives. This enables us
to replace each uap in the linearized symmetry condition by the corresponding
cop. The resulting system can then be split into the determining equations by
equating powers of the remaining derivatives of u.

N.B. We have restricted attention to systems of PDEs with the same number
of equations as dependent variables. To avoid technical difficulties, we assume
that the system is analytic and that there exists a unique solution to a Cauchy
problem with arbitrary initial data in the region of interest. The beginner should
not spend time investigating this technicality, as a firm grasp of basic symmetry
methods is needed before its significance can be appreciated!

Example 8.5 Some PDEs have linearizing transformations that are not point
transformations in the original variables but appear as point transformations
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when the PDE is written as a first-order system. We have shown that Burgers'
equation,

ut + uux = uxx, (8.66)

has a five-dimensional Lie algebra of point symmetry generators. Therefore it
is not linearizable by a point transformation. Burgers' equation can be written
as a conservation law, as follows:

W, + (\u2 ~Ux)x = 0.

Hence there exists a potential, u, such that

u2,
(8.67)

\u2,
2

vx = u.

If we eliminate v from (8.67), we obtain Burgers' equation. Alternatively, we
could eliminate u to obtain the "potential form" of Burgers' equation,

vt + \v2
x = vxx. (8.68)

Let us seek the Lie point symmetries of the system (8.67). From (8.60), the Lie
point symmetry generators are of the form

X = %(x, t, u, v)dx + r(x, t, u, v)dt + r](x, t, u, v)du + x(x> t, u> v)^v

(Here the variables and functions are assigned distinct letters to avoid a prolif-
eration of indices.) The linearized symmetry condition is

yf = x1 + uri, xx = i), when (8.67) holds. (8.69)

After a straightforward calculation (which is left as an exercise), we obtain an
infinite-dimensional Lie algebra that is spanned by

X\ = dx, X2 = 9?, X3 = dv, X4 = xdx + 2tdt — udu,

X5 =tdx + du +xdv, X6 =xtdx +t2dt + (x -tu)du + (^x2 + t)dv,

{Xw = [Wx(x, t) + \W(x, t)u]ev'2du + W(x, t)ev'2dv : W, = Wxx}.

(8.70)

If we temporarily ignore all terms multiplied by dv, we recover the five gener-
ators that were found in Example 8.3. We also obtain generators of the form

Xw = [Wx(x, t) + ±W(x, O«K/29«, (8.71)
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which do not generate point symmetries of Burgers' equation. Point symmetry
generators depend only on (JC, t, u), whereas generators of the form (8.71) de-
pend also on the potential, v. (They are called potential symmetries of Burgers'
equation.)

Now we consider the restriction of the generators (8.70) to the variables
(x, t, v), ignoring the du terms. The restricted generators are

X\ = dx, X2 = dt, X3 = dv, X4 = x dx + 2t dt,

X5 = tdx + xdv, X6 = xtdx + t2dt + (±JC2 + t)dv, (8.72)

{Xw = W(x, t)ev'2dv : Wt = Wxx}.

These depend onx, t, and i>, but not u\ they are the point symmetry generators
for the potential form of Burgers' equation. The generators Xw depend on
arbitrary solutions of the heat equation

and it is easily shown that (8.68) is mapped to the heat equation by writing

w = e~v/1. (8.73)

(The derivation of this result is left as an exercise.) Therefore

wx = —^vxe~vl2 = —^uw,

which leads to the well-known Hopf-Cole transformation:

u = - 2 — . (8.74)
w

This is not a point transformation of Burgers' equation, but point symmetries
of the system (8.67) have enabled us to derive it.

8.3 Finding Symmetries by Computer Algebra

The linearized symmetry condition gives us a fairly systematic approach to
finding Lie point symmetries. However, as the number of variables or the order
of the differential equation increases, the calculations rapidly become unman-
ageable. (The examples that we have studied so far are relatively simple, being
low-order PDEs with few variables.) Over the past few years, symmetry-finding
packages have been developed for many computer algebra systems. This sec-
tion is a brief introduction to some packages that are currently available. It is
not comprehensive but is intended to give the reader enough information to
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get started. Many packages have subroutines to enable the user to find exact
solutions, calculate commutators, and so on. These useful tools vary greatly
between packages, and we do not describe them here. Packages and detailed
documentation can be downloaded from the websites listed at the end of the
section.

To obtain the Lie point symmetries of a given PDE (8.65), a package must
first calculate the determining equations by splitting the linearized symmetry
condition. The user inputs the differential equation(s) and tells the program
which terms uap are to be eliminated. Many packages require the PDE to be
polynomial, at least in the derivatives of u, in order to be able to derive the
determining equations by equating powers of the derivatives. PDEs that are
rational polynomials, such as the nonlinear filtration equation

u, = T ^ - , (8.75)

can be input in polynomial form, for example,

(1 +u2
x)ut -uxx = 0.

Usually the derivation of the determining equations is straightforward and is
accomplished without intervention by the user. If the system of PDEs is very
large, high order, or complicated, the package may run into memory limitations.
One way around this problem is to start by finding the first few determining
equations, solving them, and using the results to simplify the remaining calcu-
lations. This is the same procedure that we used earlier to find symmetries by
hand.

The output from the above calculations should be a set of determining equa-
tions whose general solution yields all Lie point symmetry generators. For
many PDEs, there are redundancies in the "raw" set of determining equations
that one obtains by equating powers of derivatives. For example, suppose that
the determining equations include

U = o.
The second of these is redundant, because it is a consequence of the first.
Symmetry-finding packages normally produce a reduced list of determining
equations, with the redundancies eliminated.

Having obtained some or all of the determining equations, the next step is
to solve them. Many packages do this automatically, using basic integration
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techniques wherever appropriate. Some of these packages use the computer
algebra system's general routines for solving differential equations; others have
their own routines.

Warning: Some packages with automatic solvers occasionally fail to obtain
the general solution of the determining equations. Therefore such packages may
not find all of the symmetry generators. Surprisingly, it is possible to determine
the size of the Lie algebra for a given PDE without first solving the determining
equations. There are several programs that do this, enabling the user to check
that a symmetry-finding package has obtained all symmetries.

Not all symmetry-finding packages incorporate differential equation solvers.
Packages without solvers are designed so that the user is in control of the
solution process. Such packages are usually very reliable and are capable of
dealing with very large and complicated systems of PDEs. The determining
equations are usually solved in stages, just as if the calculations were being
done by hand. When a determining equation has been solved (or integrated to
yield a lower-order equation), the result can be fed back into the remaining
determining equations. The package may then be able to split some equations
by equating powers of the dependent and independent variables. At each stage,
the aim is to obtain whatever information can be deduced easily and to use this
to simplify the unsolved equations.

The above strategy is based on the premise that at least one of the determining
equations is easy to solve (or reduce to a lower-order PDE). What is to be done
if the set of determining equations is highly coupled, so that the system seems to
be intractable? Coupled systems of linear algebraic equations can be solved by
Gaussian elimination, which reduces the problem to that of solving the system

where the matrix A is in echelon (i.e., upper triangular) form. The reduced
system consists of equations of increasing complexity (reading upwards). The
simplest equation is easy to solve and yields one component of x. This informa-
tion enables us to solve for the next component, and so on. A similar strategy
is used to solve coupled systems of polynomial nonlinear algebraic equations.
The variables are ordered in an appropriate way, and Buchberger's algorithm
is used to construct a reduced Grobner basis. Roughly speaking, the Grobner
basis is a system of equations in "echelon" form, with the same set of solutions
as the original system. The reduced system is generally much easier to solve
than the original system.

The same approach has been adapted to linear and nonlinear systems of differ-
ential equations. Programs are available that use differentiation, multiplication,
and addition to arrive at a "differential Grobner basis." The outcome depends
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chiefly on the ordering of the variables. There are several standard ordering
schemes that succeed in simplifying many systems. Even so, it is sometimes
difficult to obtain a differential Grobner basis (for reasons that are beyond the
scope of this book).

The best way to learn more about symmetry-finding packages is to acquire
one and carry out some experiments. Many different packages are available
for the various computer algebra systems (CASs). Here is a selection of some
widely used packages (one for each of three major CASs, and one that does not
need a pre-installed CAS).

LIE and BIGLIE: Self-contained; for IBM-compatible PCs only.
Author: A. K. Head
http://archives.math.utk.edu/software/msdos/adv.diff.equations/lie51.html

LIE is written in muMATH, a DOS-based CAS that runs on IBM-compatible
PCs. A limited version of muMATH is bundled with LIE, so the package is self-
contained. Version 5.1 is available at the time of writing; unlike earlier versions,
it seems to run safely in Windows 95 DOS.

LIE is able to determine symmetry generators for PDEs that are polynomial
in the derivatives of u. Usually the package derives and solves the determining
equations automatically, using a few basic integration techniques. The main
constraint on LIE is that muMATH allows only 256 Kb of memory for the
program and workspace. Nevertheless, LIE is able to deal with surprisingly
complex systems, because it uses the available memory very efficiently. A
related program, BIGLIE, is able to determine Lie point symmetries for PDEs
that are too complex for LIE.

SPDE: Requires REDUCE.
Author: F. Schwarz
http://casun2.gmd.de/ Email: reduce-netlib@rand.org

The current version (1.0) of SPDE can determine symmetry generators for
PDEs that are algebraic in their arguments. The package is able to obtain the
size of the symmetry group directly from the determining equations. For this
to be accomplished, a differential Grobner basis is constructed. SPDE inte-
grates the reduced determining eqations automatically; it is guaranteed to find
all generators with algebraic coefficients for nonlinear PDEs of order 2 or
more.

SPDE can be used interactively at the above website; the full package is
available by email.
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SYMMGRP.MAX: Requires MACSYMA.
Authors: B. Champagne, P. Winternitz, and W. Hereman
ftp: //mine s. edu/pub/paper s/math _c s _dept/s oft ware/symmetry /

SYMMGRP.MAX is a flexible, well-tested package that is designed to be
used interactively. It can cope with very large systems, calculating a few de-
termining equations at a time. The user has to solve one or more of these,
the results of which simplify the next few determining equations, and so on.
SYMMGRP.MAX is most effective when it is used in conjunction with a pack-
age that constructs differential Grobner bases, such as DIFFGR0B2 (see below).

DIFFGROB2: Requires Maple.
Author: E. L. Mansfield
ftp ://ftp. ukc. ac. uk/pub/maths/liz/

DIFFGROB2 is an effective, powerful package for simplifying systems of
linear or nonlinear PDEs. It can construct differential Grobner bases for general
linear systems and some nonlinear systems. The choice of term ordering is cru-
cial, so the package may be used interactively to enable the user to try out various
orderings. DIFFGROB2 is a very useful adjunct to symmetry-finding packages
that do not include Grobner basis algorithms (e.g., SYMMGRP.MAX). It is vir-
tually a necessity if one seeks "nonclassical" symmetries, whose determining
equations are nonlinear (see §9.3).

Further Reading

Many important nonlinear PDEs admit linearizing transformations, which can
often be found by symmetry methods. This chapter has introduced such trans-
formations and has shown how they may be constructed. Nevertheless, our
treatment is neither rigorous nor exhaustive. To find out more, the reader should
consult Chapter 6 of Bluman and Kumei (1989). These authors also present a
thorough discussion of potential symmetries, with many examples and applica-
tions.

The Cauchy-Kovalevskaya theorem gives conditions for the existence of so-
lutions to the Cauchy problem for an analytic system of PDEs. Olver (1993) ex-
plains why the existence and uniqueness of solutions ensures that the linearized
symmetry condition yields the most general (connected) symmetry group.

Readers intending to use SPDE or DIFFGROB2 should first become familiar
with Grobner bases for polynomial nonlinear systems. The text by Cox, Little,
and O'Shea (1992) contains a very readable account of Buchberger's algorithm
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and is intended for newcomers to commutative algebra. The simplest intro-
duction to DIFFGR0B2 is by Mansfield and Clarkson (1997), who describe
various strategies for simplifying the determining equations.

Readers who wish to know more about symmetry software should consult the
paper by Hereman (1996). This clear, careful review includes details of many
packages other than those listed in §8.3.

Exercises

8.1 Show that the hodograph transformation (x, i, u) = («, t, x) is a symme-
try of the nonlinear filtration equation (8.75).

8.2 Determine the Lie point symmetries of

ut = u3
x.

8.3 Derive the Lie point symmetry generators for the heat equation,

ut = uxx.

8.4 Show that the Lie algebra of point symmetry generators of (8.68) is
spanned by (8.72).

8.5 Compare the symmetry generators of the heat equation with (8.72), and
hence derive the transformation (8.73).

8.6 In shallow water, one-dimensional motion of long waves is governed by
the system

ut + uux + 1^=0,

vt + uvx + vux = 0.

Find the Lie point symmetry generators for this system, and hence obtain
a linearizing transformation.

8.7 Obtain a symmetry-finding computer algebra package and use it to red-
erive the symmetries that have been obtained in this chapter.



Methods for Obtaining Exact Solutions of PDEs

If he's a change, give me a constancy.

(Charles Dickens: Dombey and Son)

9.1 Group-Invariant Solutions

Armed with the methods from the previous chapter, we are able to find the
Lie point symmetries of a given PDE systematically. This chapter describes
how to use symmetries to construct exact solutions. The methods used are a
generalization of §4.3, which the reader may wish to revisit before continuing.

Nearly all exact methods relate a given PDE to one or more ODEs. For
example, the general solution of a first-order quasilinear PDE is constructed
by integrating the characteristic equations. For most PDEs, we cannot write
down the "general solution" but have to rely on various ansatze. We may seek
similarity solutions, travelling waves, separable solutions, and so on. Many of
these methods involve nothing more than looking for solutions that are invariant
under a particular group of symmetries. For example, PDEs for u(x, t) whose
symmetry generators include

X{ = dx, X2 = dt

generally have travelling wave solutions of the form

u = F(x-ct). (9.1)

These solutions are invariant under the group generated by

X = cX{ +X2 = cdx + dt, (9.2)

because both u and x — ct are invariants. In the same way, PDEs with scaling
symmetries admit similarity solutions, which are constructed from the invariants
of the group.

155
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This idea is easily generalized to any Lie group of symmetries of a given
PDE

A = 0. (9.3)

For now, let us restrict attention to scalar PDEs with two independent variables.
Recall that a solution u = u(x, t) is invariant under the group generated by

if and only if the characteristic vanishes on the solution. In other words, every
invariant solution satisfies the invariant surface condition

Q = n - $ux - xut = 0. (9.4)

Usually (9.4) is much easier to solve than the original PDE! Having solved
(9.4), we can find out which solutions also satisfy (9.3). For example, the group
generated by (9.2) has the characteristic

Q = -cux-ut. (9.5)

The travelling wave ansatz (9.1) is the general solution of the invariant surface
condition Q = 0.

For now, suppose that § and r are not both zero. Then the invariant surface
condition is a first-order quasilinear PDE that can be solved by the method of
characteristics. The characteristic equations are

dx dt du
— = - = — . (9.6)
§ r r]

If r(x, t, u) and v(x, t, u) are two functionally independent first integrals of
(9.6), every invariant of the group is a function of r and v. Usually, it is conve-
nient to let one invariant play the role of a dependent variable. Suppose (without
loss of generality) that vu =£ 0; then the general solution of the invariant surface
condition is

i; = F(r). (9.7)

This solution is now substituted into the PDE (9.3) to determine the function F.
If r and v both depend on u, it is necessary to find out whether the PDE has

any solutions of the form

r = c. (9.8)



9.1 Group-Invariant Solutions 157

These are the only solutions of the invariant surface condition that are not
(locally) of the form (9.7). If r is a function of the independent variables x and
t only, then (9.8) cannot yield a solution u = u(x,t).

Example 9.1 Among the many symmetries of the heat equation,

ut=uXX9 (9.9)

there is a two-parameter Lie group of scalings, which is generated by

X{ =xdx+2tdt, X2 = udu.

Every generator of a one-parameter Lie group of scalings is of the form

X = hX{ +kX2,

for some constants h, k. Remember that if X is any nonzero constant, X and XX
generate the same one-parameter group. (The group parameter e is changed,
but this does not affect the group.) Therefore if h ^ 0 we may assume that
h = 1 without loss of generality; if h = 0, we set k = 1.

Suppose that h = 1, so that

X = xdx + 2tdt + kudu. (9.10)

The invariant surface condition is

Q = ku — xux — 2tut = 0,

which is solved by integrating the characteristic equations

dx dt du

x ~ It ~ ku '

Simple quadrature yields the invariants

r = xt~l/2, v = ut~k/2.

Because r is independent of w, every invariant solution is of the form

v = F(r),

which is equivalent to

u = tk/2F(xrl/2). (9.11)
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Differentiating (9.11), we obtain

ut = f(*

Uxx = t \ )

Therefore (9.11) is a solution of the heat equation if

F" + \rFf - \kF = 0. (9.12)

The general solution of (9.12) is

F(r) = c{U(k + ±, 2"1/2r) + c2V(£: + \, 2"1 / 2r),

where U(p, z) and V(/?, z) are parabolic cylinder functions. If k is an integer,
these functions can be expressed in terms of elementary functions and their
integrals. For example, if k = 0 then

F(r) = ci erf ( 0 +c2,

where

V* Jo

is the error function. If k = — 1,

Substituting these results into (9.11), we obtain a large family of solutions which
includes the fundamental solution

the error function solution

and many other well-known solutions.

So far, we have assumed that § and r are not both zero, so that at least one of
the invariants r, v depends on u. If § and r are zero at some point on an invariant
surface, the invariant surface condition (9.4) implies that r\ is also zero at that
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point. Hence the generator X vanishes there, and the point is invariant. If § and
r are identically zero, the only possible invariant solutions are those for which

rj(x,t,u) =0. (9.13)

Such solutions consist entirely of points that are invariant under the group
generated by X. Of course, (9.13) need not have any solutions of the form
u = u(x,t). For instance, if

X = du

then

(£,r,r/) = (0,0,1),

so (9.13) cannot be satisfied. There are other generators X = rjdu for which
(9.13) does have solutions u = u(x, t). It is usually easy to check whether any
of these solutions also solve the PDE (9.3).

Example 9,2 In the previous example, we did not look for scaling-invariant
solutions generated by

x = udu.

Here £ and r are both zero, but the invariant surface condition does have a
solution, namely

u = 0.

This is a solution of the heat equation, even though it is not a particularly
interesting one!

Although travelling waves and scale-invariant (similarity) solutions will be
familiar to most readers, there is nothing that sets these transformations apart
from other symmetries. The procedure for finding group-invariant solutions is
the same, whatever the group is.

Example 9.3 The nonlinear filtration ̂ equation

u, = ^ (9.14)
1 + u\

has the five-parameter Lie group of point symmetries generated by

X\ = dx, X2 = 9,, X3 = dU9
(9.15)

X4 = xdx + 2tdt + udu, X5 = udx - xdu.
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The one-parameter group of rotations generated by X5 has invariants

r = t, v = y x2 + u1.

Any invariant solution v = F(r) is equivalent to

u = ±^F{t)2-x2. (9.16)

Substituting (9.16) into the PDE (9.14) leads to the ODE

F\r) = -^-~ (9.17)
Fir)

[Readers may be surprised that the second-order PDE has been reduced to a
first-order ODE. This occurs because (9.14) has no second-order derivatives
with respect to the invariant coordinate t.] The general solution of (9.17) is

so the solutions of (9.14) that are invariant under the rotations generated by X5

are

u = ±y/a -It -x2. (9.18)

The idea of looking for group-invariant solutions generalizes quite naturally
to PDEs with any number of independent and dependent variables. In general, a
one-parameter group that acts nontrivially on one or more independent variables
can be used to reduce the number of independent variables by one. For example,
suppose that a scalar PDE with three independent variables is written in terms of
invariants of a one-parameter group. There are three functionally independent
invariants, at least one of which depends on u, so the original PDE reduces to a
scalar PDE with two independent variables. A further one-parameter symmetry
group is needed to reduce this PDE to an ODE.

For systems of PDEs with M dependent variables, u = (u\,..., UM), the
characteristic Q has M components, each of which is zero on any invariant
solution. For example, if there are two independent variables x and t, the solution
u = u(x, t) is invariant if and only if

Qa , =X\ua -ua(x,t)]\ , , = 0 , of = l , . . . , M .
*£•« u=u(x,t) L v ' ' \ \u=u(x,t)

Just as for scalar PDEs, the best strategy is to start by solving the invariant
surface condition

Qa=0, a = l , . . . , M ; (9.19)
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then substitute the solution into the given system of PDEs to obtain a reduced
problem.

Example 9.4 The following system models two-dimensional free convection
of an incompressible viscous fluid between heated horizontal boundaries:

UUX + VUy = Uxx + Uyy ~ /?X ,

uvx + vvv = vxx -f vvv — Vy + X6,
(9.20)

X +0yy),

Ux + Vy = 0.

(This model uses the Boussinesq approximation. The fluid velocity has com-
ponents u, v in the horizontal and vertical directions, respectively; p is the
pressure; 0 is the temperature perturbation. All variables are suitably nondi-
mensionalized; the dimensionless parameters are the Grashof number, A, and
the Prandtl number, a.)

The system (9.20) has the five-parameter Lie group of point symmetries
generated by

0,

$ = xdx + ydy — udu — vdv — 2pdp —

The one-parameter groups generated by X\, X2, and X3 consist of translations,
whereas X$ generates scalings (which lead to similarity solutions). For X4, the
characteristic

Q = (Qu,Qv,QP,Qe)

has the components

Qu=0, Qv=0, Qp = ly, Qe = l-

Therefore no solutions are invariant under the group generated by X4. However,
we can use X4 to obtain invariant solutions by combining it with X\. The
characteristic of the group generated by

p+kde, k^O (9.22)

has the components

Qu = -ux, Qv = -vx, Qp = kXy-Px, Qe = k-0x. (9.23)
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Therefore the general solution of the invariant surface condition Q = 0 is

u = F(y),

(9.24)
p - kXxy = H(y),

0 -kx = K(y).

Substituting (9.24) into the original system of PDEs (9.20) leads to the following
system of ODEs:

GF' = F" - kXy,

GGf = G" -Hf + XK,

kF + GK' = oK"

G' = 0.

The last of these is easily solved:

The remaining ODEs reduce to the linear system

F"-ciF' = ,

o o
H' = XK.

This system has elementary solutions containing six arbitrary constants. We
have not considered boundary conditions, which constrain the solution set. For
example, the above solution has v = G = c\. If the boundaries are impermeable
then v is zero there; our invariant solutions satisfy this condition if and only if
d=0.

9.2 New Solutions from Known Ones

Suppose that we have found a solution that is invariant under a group of Lie
point symmetries. If there are other symmetries under which this solution is not
invariant, we can use them to map it to a family of new solutions. The procedure
is exactly the same as for ODEs (see §4.3), as the next example shows.

Example 9.5 Earlier, we found that the nonlinear filtration equation

ut = (9.26)
1 + ut
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has a one-parameter family of solutions,

u = \/cx -2t-x2, (9.27)

each of which is invariant under X5 = udx — xdu. Let us try to construct new
solutions from (9.27), using all remaining symmetry generators (9.15). The
symmetries generated by X\ = dx are

(jc, ?, u) = (x +e,t, u).

Therefore (9.27) is equivalent to

u = y/c\ - It - (Jc - s)2.

Removing carets, we conclude that the group generated by Xi maps (9.27) to
a two-parameter family of solutions:

u = y/ci -2t + (x-e)2. (9.28)

The one-parameter group generated by X3 = du is

(Jc,?, u) = (x,t,u + 8),

which maps (9.28) to the three-parameter family

u = y / a -2t + (x- s ) 2 + 8. (9.29)

Lie point symmetries generated by X2 and X4 produce no further solutions
from (9.29); their action merely changes the values of the arbitrary constants
c\, 5, and s. Therefore we can obtain no further solutions from (9.27) by the
above method.

N.B. Each solution (9.29) is invariant under the one-parameter group gener-
ated by

= X5-8XX +sX3. (9.30)

Clearly, X5 and X$ are related. Both generate rotations in the (x, u) plane,
but X generates rotations about (£, 8) rather than (0, 0).

Given any solution that is invariant under a one-parameter symmetry group,
we can derive a family of solutions by applying the remaining symmetries. (Of
course, if the solution is invariant under all symmetries, it is the only member of
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the family.) In Chapter 10 we shall show that each of these solutions is invariant
under (at least) a one-parameter symmetry group. Hence the set of all invariant
solutions splits into equivalence classes; solutions are in the same class if they
can be mapped to one another by a point symmetry. Typically there are only a
few classes, which makes it fairly easy to classify all invariant solutions.

For homogeneous linear PDEs, there is another way to generate new solu-
tions. For simplicity, we consider only scalar PDEs for u(x,t). It is possible
to show (from the linearized symmetry condition) that every generator of Lie
point symmetries of a homogeneous linear PDE, A = 0, is of the form

X = §(*, 03* + r(x, t)dt + (f(x, t)u + U(x, t))du, (9.31)

where u = U(x, t) is an arbitrary solution of A = 0. The Lie algebra C
of point symmetry generators splits into a finite-dimensional subalgebra Co,
consisting of generators (9.31) with U = 0, and the infinite-dimensional abelian
subalgebra C^ spanned by the generators

Xv = U(x, t)du, where A\u=U(xJ) = 0. (9.32)

Given any solution u = U(x, t) of the PDE A = 0, construct the generator
Xu e CQQ. Now calculate the commutator of XJJ with each X( G CO in turn.
Each X( is of the form

Xt = &(JC, t)dx + nix, t)dt + fix, t)udu, (9.33)

and therefore

[Xu,Xi] = Ui(x,t)du, (9.34)

where

Ui(x, t) = f(x, t)U(x, t) - &(*, t)Ux(x, t) - nix, t)Utix, t). (9.35)

The commutator of any two generators is itself a symmetry generator, that is,

Uiix,t)du eC.

Moreover, this generator is of the form (9.32), so

Uiix,t)du eC^.

Hence u = Utix, t) is a solution of the PDE A = 0. If new solutions are
obtained, each one can be used in place of U in an attempt to create further new
solutions by the above method.
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Example 9.6 Recall from Example 8.4 that the Lie point symmetries of

uxt = u (9.36)

are generated by

Xi=dx, X2 = dt, X3 = udu, X4=xdx-tdt, (9.37)

and

{Xu = U(x,t)du :Uxt = U}. (9.38)

Clearly the generators (9.37) form a basis for the finite-dimensional subalgebra
Co, whereas (9.38) spans C^. Given any solution u = U(x, t), the generators
(9.37) produce

02 ut,
(9.39)

u3 = u,
U4 = tUt-xUx.

Any of these solutions except U3 may be (but need not be) different from U.
For example, let us start with the travelling wave solution

U = ex+t (9.40)

(which is invariant under the group generated by X2 — X\). Neither U\ nor U2

is independent of U, but

U4 = (t-x)ex+t (9.41)

is new. Repeating the process, now with U = (t — x)ex+t, gives

U4= [(t-x)2 + t+x]ex+t. (9.42)

It appears that X\ produces a new solution, namely

Ul = (t-x- \)ex+t,

but this is merely a linear superposition of (9.40) and (9.41), so we gain nothing
new. However X4 repeatedly produces new solutions; the next in the series is

U4 = ((t - x)3 + 3(t2 - x2) + t - x)ex+t. (9.43)
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If we had chosen a different starting solution, X\ or X2 might have been able
to generate new solutions.

The above idea also works for nonlinear PDEs that are linearizable by an
invertible transformation. Each solution of the nonlinear PDE corresponds to
a solution of the linear equation. Therefore, one can use the above method to
generate new solutions of the linear equation and then transform these back into
solutions of the original nonlinear PDE. For instance, the Thomas equation

uxt = uxut - 1

can be linearized to (9.36), as shown in Example 8.4. The reader may verify
that each of the new solutions (9.41)-(9.43) corresponds to a solution of the
Thomas equation.

9.3 Nonclassical Symmetries

This section introduces a class of point transformation groups that are not sym-
metries but that can lead to exact solutions of a given PDE. To avoid undue
complexity, we restrict attention to scalar PDEs for u(x,t). The method gener-
alizes to arbitrary PDEs, but the complexity of the calculations increases greatly
with the number of variables.

Lie point symmetries of a given PDE map the set of all solutions to itself.
This is useful as soon as we know some solutions, but it does not enable us
to construct new solutions from nothing. To do that, we seek solutions that
are invariant under a one-parameter Lie group of point transformations. All
solutions that are invariant under the group with characteristic Q satisfy the
PDE and the invariant surface condition; they are the solutions of the system

A = 0,
(9.44)

e = o.
If we seek only invariant solutions, it is worthwhile trying to determine all X
that generate point symmetries of the system (9.44). The difficulty is that the
second equation (Q = 0) depends on X! Nevertheless it is often possible to find
all such generators (systematically). For some PDEs these lead to new invariant
solutions that cannot be found from the "classical" point symmetries.

The linearized symmetry condition for systems states that the generator X
corresponding to Q generates symmetries of the nth order PDE (9.44) if

X(n) A = 0, X(l)Q = 0, when (9.44) holds. (9.45)
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(For now, we show the order of prolongation explicitly.) This condition is
simplified by the identity

(9.46)

(which the reader is asked to derive as an exercise). From (9.46), it follows that

X(l)Q=0 when Q = 0.

Therefore X is a symmetry of (9.44) if

X{n)A = 0 when A = 0 and 2 = 0. (9.47)

In other words, the group generated by X needs only to map the invariant
solutions to themselves. The remaining solutions of A = 0 need not be mapped
to solutions.

Clearly, if X generates symmetries of the PDE, it satisfies the linearized
symmetry condition

X(n)A = 0 when A = 0, (9.48)

and hence it satisfies the weaker condition (9.47). However, there may be gen-
erators X that satisfy (9.47) but not the linearized symmetry condition (9.48).
These are generators of nonclassical symmetries.

The solutions of (9.47) are obtained by calculating X^ A, eliminating some
derivatives of u by using A = 0 and 2 = 0 , and finally equating powers
of the remaining derivatives of u to obtain the determining equations. This
sounds like the same procedure that is used to find the classical symmetries,
but there is an important difference. The determining equations are nonlinear,
because Q = 0 involves the unknown functions (£, r, rj). Consequently, the
set of nonclassical symmetry generators is not a vector space, let alone a Lie
algebra. Furthermore, the determining equations are usually too hard to solve
without computer algebra.

Some simplification is achieved by the observation that if X generates a
nonclassical symmetry then so does XX, for any nonzero function X. To derive
this result, we use the identity (XX)^ = XX^ when Q = 0, which is a
consequence of the prolongation formula (8.25). If X generates nonclassical
symmetries then

C=0 =XXin)A Q=o = 0 ,
A=0 A=0

so XX also generates nonclassical symmetries. Therefore, without loss of gen-
erality, we set x = 1 if x is nonzero and £ = 1 if r = 0. (If both £ and x are



168 9 Methods for Obtaining Exact Solutions ofPDEs

zero, the invariant surface condition requires that r\ is also zero. Then there is no
way of systematically finding the invariant surfaces unless a classical symmetry
generator is known.)

Example 9.7 The Huxley equation,

ut = uxx+2u2(\ - M ) , (9.49)

has a two-parameter Lie group of (classical) point symmetries, generated by

X\ = dx, X2 = dt.

All solutions that are invariant under the group generated by X\ are spatially
uniform, sow = F{t) where

F' = 2F2(\ - F). (9.50)

The only other solutions that are invariant under classical symmetries are trav-
elling (or stationary) waves, u = F(x — ct), where

F" + cF' + 2F2(1 - F) = 0. (9.51)

Let us look for nonclassical symmetries with r = 1, so that the invariant surface
condition amounts to the constraint

ut = ri-$ux. (9.52)

The linearized symmetry condition for these nonclassical symmetries is

r\xx -rf + (4M - 6u2)r] = 0, when (9.49) and (9.52) hold. (9.53)

The determining equations are obtained by writing (9.53) out in full, using (9.49)
and (9.52) to eliminate uxx and uu and then splitting the resulting equation by
equating powers of ux. This produces the system

huu = 0 ,

M = 0 ,
(9.54)

2r]xu - %xx - (2ri + 6u3 - 6u2)^u + 2£& + %t = 0,

r]xx - 2^x + 2u2(u - l)(nu - 2$x) -t]t + (4M - 6u2)rj = 0.

Some of these determining equations are nonlinear, but (9.54) is quite easily
solved (because it happens to be in a "triangular" form). The general solution
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of the first equation is

§ = A(x,t)u + B(x,t),

which leads to the solution of the second equation:

rj = -\A2v? + (Ax - AB)u2 + C(x, t)u + D(x, t).

These results enable us to split the remaining equations by equating powers of
u, and so on. As this is now a familiar process, we skip the details and simply
present the result. The solutions of (9.54) are

£ = 1, *7 = 0, (9.55)

and

£ = ±(3w-l), r\ = 3u2(l-u). (9.56)

We already know about (9.55), which corresponds to the classical symmetry
generator X\ + X2 (remember, r = 1). However (9.56) is new; it gives the
nonclassical symmetry generators

X = ±(3w - 1)3* + dt + 3w2(l - u)du. (9.57)

The invariant surface condition for the nonclassical symmetries is

ut ± (3M - \)ux = 3u2(l - w), (9.58)

which is easily solved by the method of characteristics. Two functionally inde-
pendent invariants are

r = (- - l)et±x
9 v = -+2tT*.

\u J u

Now we substitute v = F(r) into the Huxley equation, which reduces to

F" = 0.

Therefore F(r) = c\r + C2', writing this in terms of the original variables, we
obtain

«= l~Ciel±: . (9.59)
2t±x -c{e

t±x+c2

The solutions with c\ ^ 0 are not obtainable by any classical reduction. If
c\ = 0, the solution v = c2 is a travelling wave. There is also a travelling wave
solution r = c3.
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We have not yet looked for nonclassical symmetries with r = 0, for which

X = dx + r](x,t,u)du.

The invariant surface condition is

ux = 17, (9.60)

so any invariant solution of the Huxley equation satisfies

ut = rix + ririu + 2u2(l - u). (9.61)

Without going into details, we find that the nonclassical linearized symmetry
condition is

rjxx + 2rjr]xu + r]2rjuu - 2u2(l - u)rju - r\t + (4M - 6u2)rj = 0,

which is simply the integrability condition for the system (9.60), (9.61). There
is only one equation, because all derivatives of u are eliminated when (9.60) and
(9.61) are taken into account. Consequently, we are unable to proceed further,
except by trying various ansatze.

The above example is atypical in that the determining equations (with r = 1)
are easy to solve! For most PDEs with nonclassical symmetries, the determining
equations have to be simplified with the aid of computer algebra. The package
DIFFGROB2 (discussed in Chapter 8) is able to deal with many nonlinear
systems of overdetermined PDEs; nevertheless, it does not always succeed.

For many PDEs, every nonclassical reduction is also obtainable with classical
symmetries. However, a few PDEs (such as the Boussinesq equation) have large
families of solutions that cannot be found with classical symmetries. The reason
for this is not yet understood.

Further Reading

The symmetries, linearizing transformations, and invariant solutions of many
well-known PDEs have been classified during the past three decades. Most of
these results are included in the useful handbook by Ibragimov (1994, 1995).

We have not taken initial or boundary conditions into account. Roughly
speaking, an invariant solution to a boundary value problem exists if the PDE,
the domain, and the boundary conditions are all invariant under the symmetry
group. For example, Poiseuille flow in a cylindrical pipe is possible because
the equations of motion, the domain (a cylinder), and the boundary conditions
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(zero flow at the pipe wall) are invariant under rotations about the pipe's axis.
(N.B. The existence of an invariant solution is no guarantee of its stability. For
example, turbulent pipe flow is not axisymmetric.) Under some circumstances,
it is possible to use invariant solutions of the PDE to build up a composite
solution that satisfies given boundary conditions. Bluman and Kumei (1989)
describe how to do this for linear PDEs.

In many applications, invariant solutions describe the limiting behaviour of
a system, "far away" from initial or boundary conditions. For instance, the lim-
iting behaviour of a parabolic PDE on an unbounded domain is often described
by a similarity solution. Barenblatt (1996) describes many physical problems
for which this occurs and develops techniques for the analysis of scale-invariant
limiting behaviour.

Nonclassical symmetries have attracted much research effort recently, as
reliable computer algebra packages have become available. The analysis of the
Boussinesq equation by Clarkson (1996) is a good starting point for readers
who wish to find out more about nonclassical symmetries.

Exercises

9.1 In Chapter 8, we showed that the Thomas equation (8.55) may be lin-
earized to

uxt = u,

whose symmetries include the scalings generated by

X = xdx -tdt + kudu.

Find all solutions of the above PDE that are invariant under the group
generated by X (for arbitrary k). What are the solutions if A: = ^? Use
the methods of §9.2 to construct a large family of invariant solutions from
the ones that you have already found. Now use your results to construct a
family of solutions of the Thomas equation. [Hint: Use r = <Jx~t as one
invariant.]

9.2 Show that the characteristic of a one-parameter Lie group of point sym-
metries of a scalar PDE satisfies the identity

XQ = QQU.

What is the corresponding result for point symmetries of a system of PDEs
with M dependent variables?
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9.3 Calculate the travelling wave solutions of the nonlinear filtration equation
(9.14). Use the remaining symmetries (9.15) to construct a family of
solutions from the solutions that you have found.

9.4 The Spherical Korteweg-de Vries equation,

ut H (- uux + uxxx = 0,

has Lie point symmetries generated by

Xi = 8X, X2 = \ntdx +t-]du,

X3 = 3tdt+xdx -2udu.

Find the most general solution that is invariant under the group generated
by X2. Now use the remaining Lie point symmetries to construct a two-
parameter family of solutions from the invariant solution.

9.5 Calculate the (r = 1) nonclassical symmetries of Burgers' equation and
find any invariant solutions.
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Classification of Invariant Solutions

Instead of a million count half a dozen . . .
Simplify, simplify.

(H. D. Thoreau: Walden)

10.1 Equivalence of Invariant Solutions

Our aim in this chapter is to divide the set of all invariant solutions of a given
differential equation into equivalence classes. Two invariant solutions are equiv-
alent if one can be mapped to the other by a point symmetry of the PDE. Classi-
fication greatly simplifies the problem of determining all invariant solutions. It
is only necessary to find one (general) invariant solution from each class; then
the whole class can be constructed by applying the symmetries. This strategy
minimizes the effort needed to obtain invariant solutions.

For simplicity, we restrict attention to the problem of equivalence of solutions
that are invariant under a one-parameter Lie group of point symmetries. To
avoid a proliferation of indices, let x and u denote the N independent and M
dependent variables respectively, and let z be the set of all variables, that is,
z = (x, u). We shall examine what happens when a symmetry

r:mz (10.1)

acts on a solution that is invariant under the one-parameter symmetry group
generated by

X = KiXi, (10.2)

where each /<:' is a constant and the generators

Xi=ti(z)dz. (10.3)
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form a basis for the Lie algebra of point symmetry generators. Henceforth, we
adopt the convention that a caret over a function or operator means that z has
been replaced by 2. For instance,

Xi=!?(z)di>; (10.4)

here the functions £/ are exactly the same as in (10.3), although their argument
has changed.

The procedure for generating families of invariant solutions should now be
familiar (see §4.3 and Example 9.5). Suppose that the solution u = f(x) is
invariant under the one-parameter symmetry group generated by X. We write
u = /(JC) in terms of (Jc, u) to obtains = /(Jc). The symmetry group generator
X is also written in terms of (Jc, M), and finally the carets are removed. This
yields the generator of a one-parameter group under which the transformed
solution u = /(JC) is invariant; we call this generator X.

The solutions u = /(JC) and u = /(JC) are equivalent, because a symmetry
(F) maps one to the other. Similarly, the symmetry maps X to X, so these
generators are regarded as equivalent. We aim to classify invariant solutions
by classifying the associated symmetry generators. Having done this, one
generator from each class is used to obtain the desired set of invariant solutions.
A set consisting of exactly one generator from each class is called an optimal
system of generators.

To classify the generators, we must write X in terms of £. Recall from §2.6
that if z = eeXJz then

eeXJF(z) = F(esXJZ) = F(z) (10.5)

for any smooth function F. More generally, we define the action of any sym-
metry (10.1) on any smooth function F similarly:

VF(z) = F(Tz) = F(z) (10.6)

(This allows us to deal with discrete symmetries as well as Lie symmetries.)
Now let F(<$) denote the one-parameter Lie group of symmetries generated by
X. Here 8 is the group parameter and

r(«) : z H> e*xz. (10.7)

If F is an arbitrary smooth function then, from (10.6),

XF{Z) = TXF(Z) = rxr~l F(z).
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Hence

X2F(Z) = rxr-lrxr~l F(z) = rx2r~l
 F(Z),

and so on, and (assuming convergence) we can form the Lie series

f (8)F(z) = e8XF(z) = Te8Xr~lF(z) = rr(<5)r"1F(z).

As F is arbitrary, we conclude that

X = r x r ~ ! (10.8)

is the generator of the one-parameter Lie group of symmetries

f 1. QO.9)

In Chapter 11, we shall use this result to obtain discrete symmetries. The re-
mainder of the current chapter deals only with equivalence under Lie symmetries
that are generated by a finite-dimensional Lie algebra with a basis {X\, . . . , XR}.
(We ignore classes of generators that depend on arbitrary functions, such as the
infinite-dimensional subalgebras that occur in linear or linearizable PDEs.) It
can be shown that this restricted equivalence problem is solvable by studying
a finite sequence of one-dimensional problems. In each of these problems, we
look at equivalence under the symmetries obtained from one of the generators
in the basis,

r : m z = esXu. (10.10)

From (10.8),

X = e£XJXe~£XJ (10.11)

for any generator X. (Here and for the rest of this chapter we do not sum over
the index j , even when it is repeated, because Xj denotes a specific generator.)
In particular (10.11) holds for X = Xj, which commutes with e~eXJ; therefore

Xj=Xj. (10.12)

We can now write any generator X in terms of z by solving (10.11) for X and
using (10.12) to obtain

X = e-e**Xee*'. (10.13)
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For each £, the right-hand side of (10.13) generates a one-parameter symmetry
group under which u = f(x) is invariant. Therefore the transformed solution
u = f(x) is invariant under the group generated by

X = e~eXJXeeXj, (10.14)

which is equivalent to X. This result holds for all Lie point symmetry generators
Xj. Essentially, the classification problem for generators is solved by using
(10.14), with various generators Xj in turn, to reduce every generator to the
simplest equivalent form. We now discuss how to carry out this task.

10.2 How to Classify Symmetry Generators

The equivalence relation (10.14) involves symmetry generators, rather than
solutions of any particular differential equation. Once we have classified the
generators for a particular Lie algebra, the classification applies to every differ-
ential equation with that Lie algebra, whether it is an ODE or PDE. If we knew
every possible Lie algebra, we could solve the classification problem once and
for all. The problem of identifying all possible Lie algebras has been solved
for scalar ODEs, but not for PDEs or systems of ODEs. Therefore we usually
need to do the classification on a case-by-case basis.

From (10.14), X satisfies the initial-value problem

— = -XjX + XXj = -[Xj, X], X\e=0 = X. (10.15)
ds ' i i

Differentiating the above ODE with respect to e, we obtain

d2X f dX
ds2 L ds

and so on. Taylor's theorem leads to the following series solution, which is
valid for all e sufficiently close to zero:

s2

X = X- e[XJ9 X] + -[Xj, [Xj, X]] - • •. (10.16)

If X and Xj commute then (10.16) yields

X = X Ve, (10.17)

so the generator X is unaltered. For abelian Lie algebras, all generators com-
mute; thus no two linearly independent generators are equivalent. The "optimal
system" of generators contains every generator!
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For non-abelian Lie algebras, we aim to use each basis generator Xj to
simplify X by eliminating as many of the constants K1 as possible. One further
simplification is possible: we can multiply X by any nonzero constant X. (Recall
that the group generated by AX is precisely the same as the group generated
by X. Therefore the set of group-invariant solutions is unaffected when X is
rescaled.)

Example 10.1 Consider the non-abelian two-dimensional Lie algebra with a
basis {Xi, X2} such that

[This Lie algebra is usually denoted by a(l).] Each generator is of the form

X=KXXX +K2X2.

We start by determining the set of generators that are equivalent to X under the
group generated by X\. From (10.16),

2

X = X - s[Xu X] + £-[Xu [Xu X]] - . • •

t - e[Xu Xt] + £-[Xu [XU X,-]] - •

= KlXl+K2(X2-£Xl)

= (K1 -SK2)XX +K2X2.

In particular, if K2 ^ 0 then we can choose e = K1/K2, to show that X is
equivalent to K2X2. Rescaling, we set K2 = 1 without loss of generality (be-
cause of the assumption that K2 ^ 0). The only remaining possibility is that
K2 = 0. Then X = KlX\ for some /c1 =̂  0, and we rescale to set K1 = 1.

In summary, the set {X\, X2} is an optimal system for a(l). Every solution
that is invariant under a one-parameter group generated by X e a(l) is equiv-
alent to a solution that is invariant under the group generated by one of the
generators in the optimal system.

In this very simple example, we have been able to solve the equivalence
problem by using only the group generated by X\. What would have happened
if we had tried to use the group generated by X2 instead? In that case,

s2

Xt - e[X2, Xt] + - [ X 2 , [X2, Xt]] - •

= e£KlXl +K2X2.
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This group acts on X by rescaling one of the components. If K2 ^ 0, we rescale
X and set K2 = 1 without loss of generality. If A:1 ^ 0 also, we may choose
s = — \n\Kl\ to get

x= ±x{ + x2.

Although we have been able to simplify the generator considerably, we cannot
reach the simplest equivalent form,

X = X2,

without also using the group generated by X\.

Usually, most or all of the one-parameter groups esXj are needed to produce
an optimal system of generators. The calculations are fairly simple for low-
dimensional Lie algebras but increase in complexity as the dimension increases.
Therefore, we now restate the equivalence problem in terms of matrices, in order
to take advantage of computer algebra packages for matrix manipulation.

To begin with, we split X and X into components as follows:

X = KiXi, (10.18)

X = KlXi = K[e~eX}XieeX^ (10.19)

Recall that any Lie algebra is closed under the commutator, so

Xi = (AU,e))^Xm (10.20)

for some R x R matrix A(j, e). Therefore

X = kmXm, (10.21)

where

lcm=Ki(AU,s))^. (10.22)

It is convenient to introduce the row vectors

ic =

Then F can be regarded as a map that acts on the constants K as follows:

r :K H> ic =KA{J,S). (10.23)
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Once we know the matrix A(j, s) corresponding to each generator Xj, we try
to solve the equivalence problem by applying these matrices to K appropriately,
each time choosing s so as to simplify ic.

Our task now is to obtain A(j, e). The generator X, is the solution of the
initial-value problem

de ~

A;|e=o = A/.

Therefore, from (10.20),

The generators Xm are linearly independent, so

' l— = cf. (AO> £))™> (^O> 0))™ = <5f\ (10.24)

We now define the matrix CO), whose components are

(CO'))J = c*.. (10.25)

This enables us to write (10.24) as the matrix differential equation

dA(j,e)
de

whose general solution is

AO\0) = /, (10.26)

:) = expfeCO")} = Y]CU)n— (10.27)

For low-dimensional Lie algebras, it is easy enough to calculate A(j, s) by
hand, as the next example shows. Most computer algebra systems have linear
algebra packages that will calculate the matrix exponential, A(j, s), given the
matrix of structure constants, CO)- Whether or not computer assistance is
used, it is always wise to choose a basis in which as many structure constants
as possible are zero to avoid making the task of simplifying K unnecessarily
difficult.

As we have seen, generators of abelian Lie algebras cannot be simplified at
all, for each generator is invariant under the group generated by any other one.
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Some non-abelian Lie algebras also have one or more invariants, /(A:), such
that

7(/cexp[£CO')]) =/(*:) , V j , 8. (10.28)

Invariants act as constraints on the amount of simplification that is possible,
so it is important to be able to derive them systematically. We now develop a
technique for doing this.

Differentiating (10.28) with respect to s at s = 0 leads to the following
necessary (and sufficient) condition for I (/c) to be invariant:

KC(J)VI(K) = 0, Vj, (10.29)

where

3/QO
die'

The invariance conditions (10.29) can be solved by the method of characteris-
tics. A convenient way to do this is to write (10.29) as

K(K)VI(K) = 0, (10.30)

where K(K) is the R x R matrix whose jth row is KC(J). The matrix
PDE (10.30) may be simplified by reducing K(K) to echelon form; the re-
duced equations are usually easy to solve by the method of characteristics. If
p = Rank(K(ie)), there are R — p functionally independent invariants.

Example 10.2 Here we use the matrix method to determine an optimal system
of generators for the three-dimensional Lie algebra 51(2). As usual, we choose
a basis {Xi, X2, X3} such that

[Xi, X2] = Xu [Xu X3] = 2X2, [X2, X3] = X3.

The only nonzero structure constants c\- with j = I are

L21 = - 1 , L31 = - 2 ,

so

0 0 0

- 1 0 0

0 - 2 0
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Similarly, the remaining nonzero structure constants give
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C(2) =

1 0

0 0

0

0

0 0 - 1

C(3) =

"0

0

0

2

0

0

0"

1

0_

Now we exponentiate the matrices sC(j) to obtain

1

—s

s2

0

1

-2s

A(3,<

0"

0

1

"l

0

0

A(2

2s

1

0

,e) =

S2~

s

1

V
0

0

0

1

0

0 "

0

e~£ _
(10.31)

Before trying to simplify K, let us first check for the existence of invariants.
The row vectors KC(J) are

KC{\) = (-K2,-2K\0),

KC(2) = (K\0,-K3),

KC(3) = (0,2K1 ,*:2),

so any invariants satisfy

9
— K

K[

0

-2K3

0

2/c1

0

- K

9
K

Here p = 2, so there is one invariant:

/ = (K2)2 -4K1K1K\ (10.32)

(The calculation leading to (10.32) is left as an exercise.) We cannot affect
/ except by rescaling X, which is equivalent to multiplying K by a nonzero
constant. As / is quadratic in the components of A:, rescaling can only multiply
/ by a positive constant. Therefore we must consider three distinct problems,
namely / > 0, / < 0 and 7 = 0 .



182 10 Classification of Invariant Solutions

The vector K is transformed by the matrices A(j, s) as follows:

K:A(1, e) = (K1 - £K2 + e V , K2 - 2SK3, /c3), (10.33)

/cA(2, e) = (e£Kl, K2, e~£K3), (10.34)

/cA(3, e) = (/c1, 2SK1 + /c2, e V + e/c2 + /c3). (10.35)

Suppose that/ > 0. Then (10.33) can be used to replace K1 by zero. [If A:3 ^ 0,
choose s = (K2 + \/7)/(2/c3); otherwise (i.e., if A:3 = 0), choose e = K1/K2,

bearing in mind that K2 and K3 cannot both be zero if / is positive.] Next we
use (10.35) with e = —K3/K2 to replace K3 by zero (if it is not already zero).
Finally the generator is rescaled by setting K2 = 1. Therefore every generator
with / > 0 is equivalent to X2.

Now suppose that / < 0, which implies that K1K3 > 0. First replace K2 by
zero, using (10.33) with e = K2/(2K3). Then use (10.34) withe = ±]n(K3/icl)
to make K1 and K3 equal. After rescaling we find that every generator with
/ < 0 is equivalent to X\ + X3.

If / = 0 then either all three components of K are nonzero or else K2 and one
of K1 , K3 are zero. We can reduce the first case to the second by using (10.35)
with e = —K2/(2K1) to replace K2 and K3 by zero. Moreover

(0, 0, /c3)A(l, 1)A(3, 1) = (/c3, -2K3, /C3)A(3, 1) = (K3, 0, 0),

so we can replace the second and third components of any K by zero. Rescaling,
we conclude that all generators for which 7 = 0 are equivalent to X\.

Therefore {X{, X2, X\ + X3} is an optimal system of generators for sl(2).

In the last two examples, the number of generators in the optimal system
coincides with the dimension (R) of the Lie algebra. This does not always
happen; quite commonly, the number of inequivalent generators exceeds R.

10.3 Optimal Systems of Invariant Solutions

Having obtained an optimal system of generators, we can use the method de-
scribed in §9.1 to calculate the associated invariant solutions. Any complete
set of these solutions, from which all other invariant solutions can be derived,
is called an optimal system of invariant solutions. There are two obstacles that
we may encounter. The first is that a generator in the optimal system might not
yield any invariant solutions.
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Example 10.3 We shall attempt to construct an optimal set of invariant solutions
of

y" = y~\ (10.36)

whose Lie point symmetries are generated by

Xx = dx, X2 = xdx + \ydy, X3 = x2dx + xydy. (10.37)

The Lie algebra is s 1(2) (with our usual structure constants). Example 10.2
shows that {X\, X2, X\ + X3} is an optimal system of generators. No solution
is invariant under the group generated by X\, because the invariant curves are
all of the form

y = c.

Neither does the group generated by X2 yield any invariant solutions, for the
invariant curves are

y =C^fx.

Such a curve is a solution only if c4 = —4, so there are no real-valued solutions.
The group generated by X\ + X3 has two invariant solutions, namely

(10.38)

The action of the remaining symmetries on these two solutions yields the general
solution of the ODE, which is

y = ±Vc{ + (x + C2)2/cu a > 0. (10.39)

Recall that X\ and X2 are representatives of the classes of generators with
7 = 0 and / > 0, respectively. Might there be invariant solutions associated
with other generators in these classes? In fact, there are no such solutions. (The
derivation of this result is left as an exercise.)

The second obstacle is that the reduced equation(s) determining one or more
invariant solutions may be too difficult to solve analytically. Even if we cannot
obtain an optimal system, we may still be able to find some invariant solutions.

Example 10.4 Consider the linear PDE

2

x
ut = uxx - —u. (10.40)
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The finite-dimensional subalgebra Co has a basis

Xi =dt, X2 = ±xdx + tdt-\udU9

X3 = xtdx + t2dt - (\x2 + \t)udu, X4 = udu,

for which the only nonzero commutators are

[XU X2] = XU [XU X3] = 2X2, [X2, X3] = X3.

Thus the first three generators in the basis span an 5[(2) subalgebra (which is
the derived subalgebra of £Q) and X4 commutes with all generators. There are
two invariants /(/c), namely

The generators are classified almost exactly as in Example 10.2, but each gen-
erator has an arbitrary multiple of X4 added to it. We must also consider the
possibility that the first three components of K are all zero; rescaling, we set
K4 = 1 without loss of generality. Therefore the following system of generators
is optimal:

Xi + M*4, X2 + M*4, Xx + X3 + /xX4, X4.

(Here /x is an arbitrary constant.) To find an optimal system of solutions, we
use each of these generators in turn. The solutions that are invariant under
Xi + /xX4 are of the form

u = efltF(x), (10.42)

where

The general solution of this ODE is

F(x) = { W V (10.43)
[ c\x + C2X , \i = 0,

and so the general invariant solution is obtained by substituting (10.43) into
(10.42). Similarly, the most general solution that is invariant under X2 + /xX4 is

u = ^ - 1 / 4 F ( r ) , r = xf1 / 2 , (10.44)

where

F" + \rF' + (I - M - 2r"2) F = 0. (10.45)
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The solution of (10.45) can be expressed in terms of confluent hypergeometric
functions; it is rather messy! A simpler form is possible for some values of /x;
for example, when \i = 1/4, one solution of the form (10.44) is

u = x~ltl/2e~^.

The solutions that are invariant under X\ + X3 + /zXj. are of the form

f x2t 1
u = (1 + t2yl/4 exp I /x tan"11 - 4(l 2) >F(r), r = x(l + t2)~l/\

(10.46)

where

*"' + {\r2 - /n- 2r~2)F = 0. (10.47)

These solutions are also combinations of confluent hypergeometric functions
and elementary functions. Finally, the group generated by X4 leaves only the
trivial solution u = 0 invariant.

After an optimal system of invariant solutions is found, it is often quite easy
to generate each class of invariant solutions, as described in §9.2. Although
most PDEs have many solutions that are not invariant under any point sym-
metry, the invariant solutions typically describe limiting behaviour (especially
for solutions of parabolic PDEs). Similarity (scaling-invariant) solutions are
particularly useful in this respect.

Notes and Further Reading

PDEs with N >3 independent variables can be reduced to ODEs if one looks
for solutions that are invariant under an (N — 1)-parameter Lie (sub)group
of symmetries. It is possible to construct an optimal set of such reductions,
building on the results for one-parameter groups (see Ovsiannikov (1982) for
some further details).

Exercises

10.1 Show that (10.32) is the only invariant of 5[(2).
10.2 Calculate an optimal system of generators for 50(3), in a basis whose

nonzero structure constants are (5.33). Are there any invariants I(jc)l
10.3 Consider the equivalence problem for the symmetries generated by the

six-dimensional subalgebra of the heat equation [excluding generators
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of the form X = U(x, t)du]. These generators may be found at the
end of the book, in the solution to Exercise 8.3. Calculate two func-
tionally independent invariants, and hence derive an optimal system of
generators.

10.4 Show that K1 is invariant if X; ^ [£ ,£] . Is this condition necessary to
ensure that K1 is invariant?

10.5 Show that the ODE in Example 10.3 has no real-valued solutions that
are invariant under any group whose generator has / > 0 (in the notation
of Example 10.2).

10.6 Calculate an optimal system of generators for the free convection prob-
lem described in Example 9.4. Use your results to obtain an optimal
system of invariant solutions. (N.B. This system is very large, but most
solutions are easy to obtain.)
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Discrete Symmetries

There is a place apart
Beyond the solar ray,
Where parallel straight lines can meet
in an unofficial way.

(G. K. Chesterton: The Higher Mathematics)

11.1 Some Uses of Discrete Symmetries

In Chapter 1, the discrete symmetries of a triangle are used to introduce the
reader to Lie symmetries. It seems appropriate that this closing chapter in-
troduces a method that uses Lie symmetries to reveal the discrete symmetries
of a given differential equation. Here are some reasons why it is important to
determine the discrete symmetries.

(i) Discrete point symmetries are used to increase the efficiency of compu-
tational methods. If a boundary-value problem (BVP) is symmetric and
the solution is known to be unique, computation can be carried out on a
reduced domain. Alternatively, a spectral method can be used, with basis
functions that are invariant under the symmetry. The presence of a discrete
symmetry also improves the accuracy of some numerical methods.

(ii) Many nonlinear B VPs have multiple solutions, and it is necessary to iden-
tify when and how the system changes its behaviour as any parameters vary.
Discrete symmetries must be taken into account, because the behaviour
of "generic" nonsymmetric systems is usually quite different from that of
systems with symmetries. It is important to identify all of the symmetries
in a problem in order to understand its behaviour correctly.

(iii) Like Lie symmetries, discrete symmetries can be used to generate new
solutions from known solutions. They can also be used to simplify an
optimal system of generators. If two generators in the optimal system

187
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are related by a discrete symmetry, only one is needed; the other can be
removed.

(iv) Discrete symmetries involving charge conjugation, parity change, and time
reversal are central in quantum field theories. (Other discrete symmetries
are important in physics, but we do not discuss them here.)

(v) Although we shall restrict our attention to discrete point symmetries, other
types of discrete symmetries are also useful. The Legendre transformation
is perhaps the best-known example of a discrete contact transformation.
Such transformations can occur as symmetries of differential equations,
even if there are no Lie contact symmetries. Auto-Backlund transforma-
tions are nonpoint discrete symmetries; they enable the user to construct
hierarchies of solutions to nonlinear integrable PDEs.

The symmetry condition for discrete symmetries is almost always too hard to
solve by a direct approach. This is because the determining equations typically
form a highly coupled nonlinear system. Sometimes it is possible to simplify
this system with the aid of computer algebra. An ansatz may lead to some
discrete symmetries; however, there is no guarantee of obtaining all of them.

Nearly all problems that arise from applications have at least a one-parameter
Lie group of point symmetries. If a given differential equation has a known
finite-dimensional Lie algebra of symmetry generators, the direct approach
described above is no longer necessary. Discrete and Lie symmetries interact
in a way that can be used to derive the discrete symmetries systematically. (The
same ideas also work for infinite-dimensional Lie algebras, but extra care is
needed; we shall not discuss these algebras further.)

11.2 How to Obtain Discrete Symmetries from Lie Symmetries

From here on we use the notation introduced in § 10.1, which readers may wish
to review before continuing. Let

V:z^z (11.1)

be an arbitrary symmetry of a given differential equation, where z denotes the
M dependent and N independent variables. We assume that the Lie algebra C
of Lie point symmetry generators is R dimensional, and that the generators

Xi = tf(z)dzs, i = l , . . . , / ? , (11.2)

form a basis for C In §10.1 we showed that if X e £, then

x = rxr~l
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generates a one-parameter Lie group of point symmetries of the differential
equation. The Lie algebra C is the set of all generators of Lie point symmetries.
Consequently X e C. In particular, each basis generator

Xi = TXiT-1 =^{l)dts (11.3)

is in C. Furthermore, the set of generators {X\, . . . , XR] is a basis for £,
because it is simply the original basis with z replacing z. Therefore each X[
can be written as a linear combination of the X; 's, as follows:

Xi=b\Xl. (11.4)

The coefficients b\ are constants which are determined by the symmetry T and
the basis {X{, . . . , XR}. It is useful to regard these coefficients as elements of
an R x R matrix

B = {b\). (11.5)

The linear equations (11.4) constitute a transformation between two bases
(namely, the X/'s and the X/'s). Therefore the matrix B is nonsingular.

We use (11.4) to construct discrete symmetries as follows. First apply (11.4)
to each of the variables Is in turn, to obtain

$ r i ( z ) — r = b \ X i z s = b \ ^ ( z ) , 1 < / < / ? , \ < s < M + N . ( 1 1 . 6 )

This system of (M + N)R partial differential equations can be solved by the
method of characteristics, which yields z in terms of z, the unknown constants
b\, and some arbitrary functions or constants of integration. By construction,
every symmetry (discrete or otherwise) satisfies (11.6) for some matrix B,
although (11.6) may also have solutions that are not symmetries. However, it is
usually easy for us to identify all of the symmetries, by substituting the general
solution of (11.6) into the symmetry condition.

As we already know the Lie point symmetries, we can discard them (i.e.,
factor them out) at any convenient stage in the calculation. This will leave us
with a list of inequivalent discrete point symmetries that cannot be mapped to
one another by any Lie point symmetry.

Example 11.1 To demonstrate the method in a simple context, we now deter-
mine the discrete symmetries of the ODE

/ = tan/, (11.7)

whose Lie algebra of point symmetry generators has a basis

X{ = dx, X2 = dy. (11.8)
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Here z = (x, y) and therefore (11.6) is

Xx

_Xy yy_

'b\ bX
b\_

"1

0

0"

1

The general solution of this system is

(jc, >0 = {b\x + b\y b\x + b\y + c2) (11.9)

At this stage, it is worth simplifying (11.9) by factoring out the Lie symmetries.
The translations generated by X\ and X2 add arbitrary constants to x and y
respectively. We need only study the solution

(jc,5>)= (b\x+bl
2y9 b2

{x+b2
2y), (11.10)

because the remaining solutions can be generated from this one by using the Lie
symmetries. Every discrete symmetry is of the form (11.10) for some matrix B
(up to equivalence under translations). To find out which matrices correspond
to discrete symmetries, we substitute (11.10) into the symmetry condition

y" = tany' when y" = t a n / . (11.11)

The prolongation formulae give

., b\+b\y'
b\+bl

2y
r

r- '/ ,.
Therefore the symmetry condition is

J tan /

where J = det(£) ^ 0.

= tan (11.12)

Differentiating (11.12) with respect to y', we obtain

/(1+tan2/) 3^/tan/ J f

{b\+b\y'f " (b\+b\y)4~ (b\+bly>)2{
1 + tan2

1 +

b\+b\y'j

72tan2/ \

(b\+b\y>)6)'

(11.13)
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If b\ were nonzero, (11.13) would be an algebraic equation for tan y' in terms
of y'. This cannot be so, for tan is a transcendental function. Thus b\ = 0,
which leads to b\ = 1, b\ = a e {—1,1}; hence (11.12) is reduced to

a tan / = tan (ay' + b\).

Therefore the inequivalent discrete symmetries are

(5c, y) = (JC, ay + qnx), a e {-1, 1}, q e Z. (11.14)

This example illustrates the basic method. The calculations are usually fairly
easy if C is low dimensional. (To make them as simple as possible, work in
coordinates that are canonical for one generator.) The number of unknown
coefficients b\ increases rapidly with R\ if C is abelian and R > 2, computer
algebra should be used. If C is non-abelian, however, it is possible to factor
out Lie symmetries before solving equations (11.6). Typically, this reduces the
number of nonzero coefficients in B from R2 to R. Then it is possible to find
the discrete symmetries of differential equations for which R is not small, with
little more effort than is needed to determine the Lie symmetries. Essentially, B
is simplified by the same method that is used in § 10.2 to classify the generators
of one-parameter symmetry groups. We now investigate this in detail in order
to be able to deal with differential equations for which R > 2.

11.3 Classification of Discrete Symmetries

If C is non-abelian then at least some of the commutators

[Xi,Xj] = <*jXk (11.15)

are nonzero. Therefore the generators belong to equivalence classes (with more
than one element), which we shall use to simplify B. Recall that Xj is equivalent
to

under the Lie symmetries generated by Xj. We can rewrite (11.4) as

Xi=bl
iXh (11.16)

where
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Therefore (11.16) is equivalent to

Xt =bl
iXh (11.17)

Consequently, the solutions z of (11.6) are related to the solutions of

by symmetries in the one-parameter group generated by Xj. In other words, B is
equivalent to the family of matrices A(j, e)B. To factor out the Lie symmetries
generated by Xj, we solve (11.18) for just one (simple) matrix in this family.
Often, we are able to replace one or more elements of B by zero.

Similarly, the generator X/ is equivalent to (A(j, s))^Xp under the Lie sym-
metries generated by Xj. Therefore, by the same argument as above, B is
equivalent to BA(j,s). Henceforth the term equivalence transformation is
used to describe the replacement of B by either BA(j,s) or A{j, s)B.

For abelian Lie algebras, the elements of B are unrelated. This is not so
for non-abelian Lie algebras, and we now derive the relationships between the
elements. These relationships, together with the equivalence transformations,
usually enable us to reduce B to a very simple form.

The symmetry generators Xi satisfy the same commutator relations as X;,
because each X; is obtained from the corresponding X; merely by replacing z
with z. For example, the generators

x1 = dx, x2=xd.x

have the commutator

If Xi and X2 are defined similarly, but with x replacing x, then

Therefore the structure constants are unaltered by the change of basis. The
same is true in general: if the generators X; satisfy (11.15), then

[Xi,Xj] = c$jXk (11.19)

(with the same structure constants). Now we substitute X; = b\Xi into (11.15)
to obtain
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Then (11.19) leads to the useful identities

193

(11.20)

These equations are nonlinear constraints on the elements of B. The constraints
with / > j are essentially the same as those with / < j (the proof of this is left as
an exercise). Therefore we restrict attention to the constraints (11.20) for which
i < j . The constraints are not affected by any equivalence transformation.
(Again, the proof is left as an exercise.) Furthermore, the order in which
the matrices A(j, e) are used does not affect the classification of the matrices
B; any ordering gives the same final form, provided that the parameters s are
chosen appropriately. Therefore we may use the constraints and the equivalence
transformations in whichever order is most convenient.

Example 11.2 Consider the two-dimensional non-abelian Lie algebra a(l),
with a basis {X\, X2} such that [X[, X2] = X\. The only nonzero structure
constants are

(11.21)

The constraints (11.20) (with / < j) are

b\b\-b\b\ =b\, = (1,2, 1),

and therefore (bearing in mind that B is nonsingular)

B =
b\ 0

b\ 1
b\ ± 0. (11.22)

We now try to simplify B further by using equivalence transformations. The
matrices A(j, e) = exp{eC(j)} are

1 0

-8 1
A(2,e) =

e£ 0

0 1
(11.23)

Postmultiplying B by A(l, s), we obtain

BA(l,e) =
b\ 0

b\-e 1
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Therefore, by choosing £ = ^ , we can replace b\ by zero. Then

BA(2,e) =
e£b\ 0

0 1

which can be simplified by setting s = — In \b\ |; this is equivalent to replacing b\
by ± 1. No further simplification is possible, so we are left with two inequivalent
matrices:

B =
a 0

0 1
where a e {—1, 1}. (11.24)

N.B. Exactly the same result can be obtained by premultiplying (11.22) by
A(j, £), although different choices of s are needed.

Example 11.3 In this example, we identify the inequivalent matrices B asso-
ciated with sl(2). We shall work in our usual basis, for which the only nonzero
structure constants are

rl — rl —C12 — ~C2\ — r2 - r2 - ?
c 1 3 — — c 3 1 — z ,

r3 - r3 -C23 — ~ C 3 2 — (11.25)

From (10.31),

1 0 0

-e 1 0

s2 -2s 1

e£ 0 0

0 1 0

0 0 e~E

(11.26)

A(2,e) =

1 2s s2

0 1 s

0 0 1

The constraints (11.20) are highly coupled (because 51(2) is a simple Lie
algebra). For example, the constraints with n = 1 are

.1/2 *xb\

\b\-b\b\ =2b\9

(11.27)

(11.28)

(11.29)

(The other constraints are left for the reader to find and use.)
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0, we premultiply B by A(l, b\/b\), which is equivalent to setting
Then (11.27) gives b\ = 1, and so (11.29) is satisfied if b\ = 0.

Consequently (11.28) yields b\ = 0. So far, we have reduced B to the form

If*} =
b\ = 0.

B = 0 1 b\

0 0 b\

(11.30)

Next we postmultiply (11.30) by A (3, -fc?/(2&})) to set b\ = 0. Then it turns
out that the remaining constraints (11.20) are satisfied only if b\ = bl = 0
and bl = l/b\. Finally, we premultiply B by A(2, — ln|fe}|) to obtain two
inequivalent matrices:

B =

a

0

0

0

1

0

0"

0

a

« € { - ! , ! } . (11.31)

The only remaining possiblity is that b\ = 0. Applying a similar procedure
to the above, we find that

B =

0

0

a

0

-

0

1

a

0

0

a e {-1, 1} (11.32)

So there are four distinct matrices B that are inequivalent under Lie symmetries.

11.4 Examples

All of the results in the previous section depend only on the given Lie algebra
(not on any particular differential equation). The advantage of such general
results is that they can be applied directly to any differential equation having
that Lie algebra. On one hand, each inequivalent B may lead to more than
one discrete symmetry of a particular differential equation. On the other hand,
some matrices B that satisfy the constraints (11.20) may not correspond to even
one discrete symmetry. We end this chapter with three examples to show how
the method works in practice.



196 11 Discrete Symmetries

Example HA Consider the ODE

y"1 y"
m y_ y__

y ~ x y'
whose Lie algebra of point symmetry generators has a basis

Xi = dy, X2 = \xdx +ydy.

(11.33)

(11.34)

In this basis, [Xi, X2] = X{, so (from Example 11.2) the inequivalent discrete
symmetries satisfy

A \X A [ y

X2x X2y

whose general solution is

X = C\X,

a

0

0"

1

r
y

'0

\x

a

y

y = ay + c2x a € { — 1, 1}. (11.35)

The symmetry condition is satisfied if and only if OLC\ = 1 and c2 = 0. There-
fore the only real-valued discrete point symmetries (up to equivalence) are

tf,y)e{(x9y),(-x,y)}. (11.36)

Both of these correspond to a = 1. There are no real-valued symmetries with
a = — 1 (although there are two inequivalent complex-valued symmetries).

Example 11.5 The Chazy equation

y'" = 2yy" - 3 / 2 + X(6yf - y2)2,

has the following basis for its Lie algebra:

Xi=dx, X2=xdx-ydy, X3=x2dx-(2xy + 6)dy.

The commutators of these generators are

[Xi, X2] = Xu [Xu X3] = 2X2, [X2, X3] = X3,

and therefore the Lie algebra is 5 [(2).
For the Chazy equation, the system (11.6) is

(11.37)

(11.38)

X{x

X2x

X3x

X{y

X2y

X3y

= B

1

X

x2

0

-y

-(2xy

(11.39)
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where B is one of the four matrices (11.31), (11.32). It turns out that there are
two solutions of (11.39) for each B. For example, if B is the identity matrix then

However, only the first of these is a symmetry of the Chazy equation; the other
solution violates the symmetry condition. Each matrix B generates precisely
one discrete symmetry of the Chazy equation; the complete list is

(Jc, 50 e {(JC, y), (-JC, -y), ( -1 / JC, x2y + 6x), (1/JC, -(x2y + 6x))} .

(11.40)

Example 11.6 The above method works for PDEs and ODEs, scalar equations
and systems. Consider the Harry-Dym equation,

ut=u3uxxx, (11.41)

which has a five-dimensional Lie algebra of point symmetry generators. The
basis

Xi = dx, X2=xdx+udu, X3=x2dx+2xudu,

has the following nonzero structure constants c\-, i < j :

rl — 1 r2 — 9 r3 — 1 r4 — 1

Note that the first three generators form a basis for an 5 [(2) subalgebra, and the
other two generators span an a(l) subalgebra. It turns out that the inequivalent
matrices B incorporate the $[(2) and a(l) matrices as subblocks: either

(Xi, X2, X3, X4, X5) = (otX\, X2, ofX3, PX4, X5), (11.42)

or

(Xi, X2, X3, X4, X5) = (aX3, - X 2 , aXi, fiX4, X5), (11.43)

where a, /3 are each either 1 or —1.
The general solution of (11.6) with (11.42) is

(Jc, i, u) = (ax, fit, cu).

Substituting this result into the symmetry condition, we obtain c = a/3. The
discrete symmetries corresponding to (11.43) are found similarly. In all, there
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are eight inequivalent real discrete symmetries:

f fa aBu\>\
(x,t,u)e Uax,l3t,al3u), ( - - , fit, -^-j >, a , j 8 e { - l , 1}.

(11.44)

Further Reading

Bifurcation theory describes the way in which nonlinear systems change their
behaviour as parameters are varied. For systems with symmetries, equivariant
bifurcation theory is needed to deal with degeneracies that are associated with
the symmetries. Golubitsky, Stewart, and Schaeffer (1988) is a comprehensive
introduction to this fascinating subject.

In §11.3, we studied a set of linear transformations of the Lie algebra. These
transformations, which are represented by the matrix B, are called automor-
phisms. For more information about Lie algebras in general, and automor-
phisms in particular, I recommend Fuchs and Schweigert (1997) (which is
aimed at physicists).

The Chazy equation has many interesting properties, as described in Clarkson
and Olver (1996). This paper develops the methods outlined in §6.3 and applies
them to the Chazy equation.

The methods described in this chapter are fairly new. To learn more, consult
Hydon (1998a,b).

Exercises

11.1 Find a set of inequivalent real-valued discrete symmetries of

A/ 4A?2

xy = - + TT'

whose Lie symmetries are generated by X\ = xdx + ydy.
11.2 Show that the constraints (11.20) with / < j are sufficient to describe

the whole set (i.e., the constraints with / > j give nothing new).
11.3 Show that the constraints (11.20) are unchanged if B is replaced by

either A(j, s)B or BA(j, s). Hint: First show that

11.4 Derive the results obtained in Example 11.3, by writing out the (nine)
constraints (11.20) in detail.

11.5 Find a set of inequivalent matrices B for the Lie algebra so(3).
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11.6 Calculate a set of inequivalent discrete symmetries of the ODE (5.9).
11.7 Calculate a set of inequivalent discrete symmetries of Burgers' equa-

tion.
11.8 Calculate a set of inequivalent discrete symmetries of the nonlinear

filtration equation (9.26). This equation is invariant under the hodo-
graph transformation (x, t, u) H> (u,t,x); if this transformation is not
in your set of inequivalent discrete symmetries, show how it can be
derived from a member of the set.

11.9 Use the results of Exercise 3.6 to calculate a set of inequivalent discrete
symmetries of

y" = (i - y')3-

11.10 To find discrete contact symmetries, the generators Xt in (11.6) are
prolonged once (because z depends upon JC, u, and first derivatives of
u). The only Lie contact symmetries of the ODE (11.33) are the point
symmetries (11.34). Show that this ODE has nonpoint discrete contact
symmetries. (N.B. Remember that for a contact transformation, Jc, y,
and yf depend on x, y, and y' only.)





Hints and Partial Solutions to Some Exercises

Chapter 1

1.1 The general solution is y = ex, so the solutions are straight lines passing
through the origin. The most obvious symmetries are reflections, rota-
tions, and scalings of the form (x,y) = (kx, ky) (where k is a positive
constant).

1.2 The general solution of the ODE is

ex2 - 1

the symmetries are scalings in the x direction.
1.4 a = 2.
1.5 The linear superposition principle: if y = y (x) is any solution of the inho-

mogeneous ODE and y = yo(x) is any solution of the homogeneous ODE
y = F(x)y, then y = y(x) + yo(x) is a solution of the inhomogeneous
ODE. The general solution of the homogeneous ODE is

y = £exp< / F(x)dx(x) dx 1 .

Chapter 2

2.1 (a) X = dx + dy, (r,s) = (y-x, JC),

(b) X = xydx + y2dy, (r, s) = (y/x, - 1 /v ) .
2.2 (a) (jc,5>) = (x + e, e£y),

(b) (Jc,y) = (*cosg+sing, 2 L ^ ) ,
v y v > . / / V c o s e—JC s i n e ' c o s e — x s i n e / '

(c) Hint: use canonical coordinates.

201
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2.3 If a 7̂  0, the origin (0, 0) is the only invariant point. (If a = 0, every
point on the line x = 0 is invariant.) The symmetries are trivial if a = 2.

2.4 In terms of the canonical coordinates (r, s) = (xy, \x2), the ODE re-
duces to

ds r

dr ~ l+r '

2.5 Use canonical coordinates, for example,

2.6 The generator is X = dx + ydy.
2.7 The generator is X = ydx.
2.9 Use the linearized symmetry condition in the form (2.58) to prove this

result.

Chapter 3

3.1 Start with Q = rj(x, y) — y'i;(x, v); take the total derivative repeatedly
to obtain rj(l\ T?(2),

3.2 r]{4) = r]xxxx + (4r]xxxy - %xxxx)y
f + (6rixxyy - 4%xxxy)(y

f)2

+ Vrixyyy ~ 6^xxyy)(y
f)3 + (riyyyy - 4 ^ w ) ( / ) 4 - %yyyy(y')5

+ {6rixxy - 4$xxx + (I2r)xyy - 1 8 ^ ) / + (6r]yyy - 2 4 £ ^ ) ( / ) 2

3.3 (b) X(4) = xdx + aydy + (a - l)y'dy, + (a - 2)y"dr

+ (a - 3)y'"dr + (a - 4)y(iv)dyu,u
(d) X<4> = - y 3 x + xdy + (1 + y/2)9y + 3y'y"dr

+ (43;'/" + 3y / / 2 )3 r + (5y'y™ + l O y / ' O a ^ ) .
3.4 If a = 0 then C is three-dimensional; otherwise, it is two-dimensional.
3.5 Every generator is of the form

X = c{dx + (c2e
x + C3*2* + c4e~3jc + 6:5 )̂93;.

3.6 Write down an equivalent ODE, using a new dependent variable
y = y — x\ find the symmetries of this ODE, then transform back to
obtain the symmetries of the original ODE.

3.7 Use the linearized symmetry condition to show that

§ = B(x), 7] = c(x)y + £>(*),
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and to derive conditions on f(y). Solve these conditions for c(x) = 0
and c(x) ^ 0 separately.

Chapter 4

4.1 If (r, s) = (y, x), the ODE reduces to the separable equation

dv

~d~r
= -v2r~\

where v = j - r . However, scaling symmetries reduce the original ODE to
an apparently intractable first-order ODE.

4.2 The general solution is

_

if ci ^ 0; the remaining solutions are

±1
y 2(x + c2) '

4.3 The generators are

X] =dx, X2 = dy, X3=x

4.4 The Euler-Lagrange equation is

V 1 1
y = —

Ax2 s/xy2 y3'

the scaling symmetries are generated by X = xdx + \ydy
4.5 The characteristic is Q = y2 — xyy\ so Q = 0 if and only if y = ex for

some c e i The invariant solutions are y = 0 and y = ±x.
4.6 The closed curve x2 + y2 = 1 is the only invariant solution; it partitions

the set of solutions into two disjoint regions, as shown in Fig. 1.5.

Chapter 5

5.1 The most general such ODE is

y'" = xa-3F(x-ay, xx~ay\ x2'01/
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5.2 (a) r = y/x and v = x - y/y'\ (b) r = xy and v = x2yf. To find the
most general third-order ODE, solve (c) to obtain (r2, u2), then calculate
dv2/dr2 and apply the results of §5.1.

5.3 The ODE is

„ 2{xy> - y)(l + / 2 ) + c(\ + y'2?'2
y

5.5 The Jacobi identity is not satisfied.
5.6 Span(Xi, X2) is a Lie algebra if a = —1. C(\) is three-dimensional and

has a two-dimensional solvable Lie algebra. Otherwise, £(a) is four-
dimensional and has a three-dimensional solvable subalgebra. The 5 [(2)
subalgebra has a basis

Xa = ydx, Xb = 2X$x ~ 2ydy, Xc = —xdy.

5.7 The lowest-order common differential invariant is

2xy" + /
/ = . .

Chapter 6

6.1 The general solution is

x = y — c\ In \y + c\ | + c2;

there are also solutions of the form y = c\.
6.2 The ODE has Lie symmetries generated by

X! = x2dx + xydy, X2 = xdx + 2ydy.

Reduce the order using (r\, v\) = (y/x, xy' — y).
6.5 Let (n, v\) = (x, y'/y)\ these are fundamental differential invariants for

the group generated by X\. If another set of differential invariants is used,
it may appear necessary to write the solution parametrically.

6.6 The general solution is

erf(j/V2) = cx +C2/O + C3);

there are also solutions of the form

erf ( j /A/2) = CI +c 2 x .
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Chapter 7

7.1 Three functionally independent first integrals are

0i = y-*y» - 2y~3y2, 02 = 2y~3y" - 3y~4ya,

03 = y-2(xy" - / ) - 2xy~3yf2.

The general solution is

y = (cxx
2 + c2x + c3) .

7.2 The most general characteristic is

Q = {(CIJC + c 2 V + (c3x + c4)e-y}yn/2

+ {c5x
2 + c6x + cv}};' + c8x2 + c9x + cio-

7.4 The groups generated by <2g, ^9 and Q10 are (respectively)

(Jc, y, 5)') = (x + ley', y + e / 2 , / ) ,
(x,y,y') = (x + 2ep{xy' - y), y + ep2yf2(x - ey), py),

(x, y, yf) = (KX, K2y — SK2(2y — xy')2, icy'),

where

1 _ 1
P ~ l-syr K ~ 1 -s(4y -2xy')'

7.6 If (7.86) holds then Jj~l = 0. The identity

yields Jj = 0, V j < k (by induction). The remaining integrability
conditions follow from this result.

7.7 The characteristics are Q\ = 1 and Q2 = y''. There is only one cochar-
acteristic that is independent of y'\ namely A = ex.

Chapter 8

8.2 The Lie algebra is five-dimensional, because the general solution of the
linearized symmetry condition is

rj = c\u + c2, § = c3x + c4, r = (3c3 - lc\)t + c5.
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8.3 The Lie point symmetry generators for the heat equation are

Xi=dx, X2 = dt, X3 = udu, X4 = xdx+2tdt,

X5 = 2tdx - xudu, X6 = 4xtdx + 4t2dt - (x2 + 2t)udu,

{Xu = U(x,t)du: Ut = Uxx}.

8.6 The Lie point symmetry generators are

Xi = dx, X2 = dt, X3=xdx+tdt, X4 = tdx + du,

{XZT = Z(u, v)dx + T(u, v)dt : Zu - uTu + vTv = 0,

Zv - uTv + Tu = 0} .

A hodograph transformation (by which the dependent and independent
variables are exchanged) linearizes the system.

Chapter 9

9.1 The PDE reduces to v = F(r) where v = tku, r = <sj~x~t, and

= 0.
r

The general solution of this ODE is

where h(z), Kk(z) are modified Bessel functions. When k = ^, the
solution is easier to write as

F ir . —2r

= c\e + c2e .

Rewriting the solution in the original variables, we obtain

u = ( - ] (cilk(2y/xi) + c2Kk(2y/xi)).

These solutions can be extended to a large family with the aid of the
remaining Lie symmetries. To obtain solutions of the Thomas equation,
simply invert the linearizing transformation.
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9.2 Use (8.25) to derive this identity. For systems, the corresponding result
is

Q

9.3 The travelling wave solutions are

+u = c\ + - sin"1 (c2 exp{—c(x — ct)}).

9.4 The two-parameter family of solutions is

x + ci
u = t(\nt + c2)

Chapter 10

10.2 The optimal system consists of just one generator; for example, X\ is
optimal. The only invariant is

10.3 The invariants are

I1=(K*)2-4K2K6
9

which arises from an 51(2) subalgebra, and

I2 = ( ( K 4 ) 2 - 4/C V ) (K3 + \KA) +K{KAK5 - K2(K5)2 - (Kl)2K6.

An optimal system of generators is

Xi, X2 + kX3, X2

X3,

where k is an arbitrary constant.
10.6 An optimal system of generators is

I+HX4, X3+/XX1, X4 + AtXi, X5,

where \i e {—1,0, 1} and /c1 is an arbitrary constant.
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Chapter 11

11.1 A set of inequivalent real-valued discrete symmetries is

(*, y) € {(*, y), (-x, -y), (1/x, y/x2), (—1/JC, -y/x2)}.

11.5 Every matrix B is equivalent to the identity matrix.
11.7 There are four real-valued inequivalent discrete symmetries of Burgers'

equation:

/ fax - 1
(Jc, t,u) e (ax, t, au), — , — , 2a(ut — x)

V V I* At
a e {-1, 1}.

11.10 The ODE has four inequivalent real contact symmetries, two of which
are the point symmetries found in Example 11.4. The other two are

(x, 50 e {(/, xy' - y), (-yf, xy1 - y)}.
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action of symmetry, 15-17
adjoint

action, see equivalent generators
and discrete symmetries, action on
Lie algebra

of linear ODE, 53
adjoint symmetries, see cocharacteristic
algebra, Lie, see Lie algebra
ansatz, 8, 32-33, 130, 155, 188
auto-Backlund transformation, 188
automorphisms, 198

bifurcation theory, equivariant, 198
Blasius equation, 68
boundary conditions, 171
Boussinesq equation, 170, 171
Burgers' equation, 138, 144-145, 148-149

potential form, 148

canonical basis, 88
canonical coordinates, 22-26, 36, 58, 130
chain rule, 137

for generators, 39
change of variables, see chain rule
characteristic, 19, 109, 128, 139, 146

prolongation formulae, 46, 140, 147
reduced, 20, 34, 128

characteristics, method of, see method of
characteristics

Chazy equation, 106, 196-198
classification

equations with given symmetries, 38
cocharacteristic, 124-127, 132
commutator, 79-84
computer algebra packages, 33, 149-153, 179

BIGLIE, 152
DIFFGROB2, 153-154, 170
LIE, 152

SPDE, 152
Symgen, 33
SYMMGRP.MAX, 153

conservation laws, 133, 148
contact

between curves, 56
contact condition, 117
contact symmetry, 116-120
contact transformation, 117, 120
coordinates, canonical, see canonical

coordinates

determining equations, 47-52, 141
diffeomorphism, 2
differential Grobner basis, 151-153
differential invariant, 74-79, 91

fundamental, 75
discrete symmetries, 4, 56, 175

action on Lie algebra, 188-191
inequivalent, 189, 195-198
their uses, 187-188

dynamical symmetries, 120, 129-130, 133

equivalence transformation, 192
equivalent

discrete symmetries, 191-195
generators, 174-182
solutions, 164, 173-174

equivariant bifurcation theory, 198
Euler-Lagrange equation, 63, 67
evolution equations, 145

first integral, 24
from contact symmetries, 119
from dynamical symmetries, 121-122
from integrating factor, 123-127, 131
from point symmetries, 108-116

free convection, 161-162
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generator, symmetry, 38-40, 139
prolonged, 46

Grobner basis, 151, 153
differential, see differential Grobner basis

group
Lie, see Lie group
orbit, 18

Hamilton's principle, 65
Harry-Dym equation, 197
heat equation, 149, 157-159, 206
hodograph transformation, 154, 206
Hopf-Cole transformation, 149
Huxley equation, 168-170

ideal, 86
implicitization, 97, 106
infinitesimal generator, see generator,

symmetry
integrability conditions, 125, 132
integrating factor, 36-37, 122-127, 131, 133
internal symmetries, see dynamical symmetries
invariant

canonical coordinate, 23, 70
curve, 9, 17,68
differential, see differential invariant
in equivalence problem, 180-182
point, 18-19,23
solution, 68-71, 89, 155-162, 166, 170
surface, see invariant surface condition

invariant surface condition, 139, 156,
166-170

Jacobi identity, 80
jet space, 54, 120

Legendre transformation, 188
Lie algebra, 79-88, 91

a(l), 177-178, 193, 197
sl(2), 87, 101, 180-184, 194-197
so(3), 85, 108
abelian, 85, 176, 192
restrictions on, 51, 56
simple, 86
solvable, 87, 91

Lie group
multiparameter, 6, 84
one-parameter, 4, 50

Lie series, 40-41, 175
Lie symmetries, 5

reconstruction, 21, 26, 139
lift, 55
linear superposition, 35, 145
linearization

of nonlinear PDE, 145, 147, 153,
166, 170

linearized symmetry condition, see symmetry
condition, linearized

method of characteristics, 24, 31, 156

Nother's theorem, 72
nonclassical symmetries, 153, 166-171
nonlinear filtration equation, 150, 159, 162-163

ODEs
linear, 47, 52-54
parametric solution, 97, 110, 131
Pfaffian, 36
withsl(2), 101, 106
withso(3), 111
with given symmetries, 78

one-parameter group, see Lie group,
one-parameter

optimal system
of generators, 174, 176-182, 187
of invariant solutions, 182-185

orbit, 18
ordinary differential equations, see ODEs

packages, see computer algebra packages
parameter elimination, see implicitization
partial differential equations, see PDEs
PDEs

linear, 145, 164-166
point symmetry, 46
point transformation, 46, 116, 120, 136
Poiseuille flow, 170
prolongation, 44, 46, 55, 117, 120, 137,

139-141, 147

quadrature, 12, 131

reduced characteristic, 20, 34, 128
reduction of order, 58-63, 89, 131

Schrodinger equation, 102-106
similarity solution, 155, 157-159, 171, 185
solution methods, standard, 34-38
structure constants, 83, 192
subalgebra, 86

derived, 87
summation convention, 41
symmetry

adjoint, see cocharacteristic
contact, see contact symmetry
definition, 3
discrete, see discrete symmetries
dynamical, see dynamical symmetries
generator, see generator, symmetry
internal, see dynamical symmetries
Lie, see Lie symmetries
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nonclassical, see nonclassical symmetries symmetry-finding software, see computer
point, 46 algebra packages
potential, 149, 153
trivial, 1, 7, 20, 29, 31, 120, 129 tangent vector, 19, 39
variational, see variational symmetries Thomas equation, 145, 166, 206

symmetry condition, 3, 8, 30, 43-44, 138 total derivative, 7, 136, 147
linearized, 30-34,45, 82, 109, 116, 128, 141, travelling wave solution, 155, 156, 168, 169

146-149
for nonclassical symmetries, 167 variational symmetries, 63-68
for second-order ODEs, 47 vector field, 19
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