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Preface

Why do we have analogies in physics?
This question has been the leitmotif of the author’s research for about half

a century. Six physical theories are considered: particle mechanics, electromag-
netism, mechanics of deformable solids, fluid mechanics, gravitational field and
heat conduction. The reasons for the analogies have been discovered, and the main
purpose of this book is to make them known.

Usually, analogies are revealed based on the similarities of equations of various
physical theories. As the present research developed, it was found that, instead of
starting from the equations, the first step must be an analysis of the physical vari-
ables that compose them, more precisely, an analysis of the global variables from
which the field variables follow as their density and rates. The reason for analo-
gies has been localized in the fact that global variables have a natural association
with the four so-called space elements, i.e. points, lines, surface and volumes, and
with the two time elements, i.e. time instants and time intervals. In this associa-
tion, a fundamental role is played by the notion of the orientation of a space and
time element. It will be shown that there are two kinds of orientation, inner and
outer. Since each of the four space elements can have two possible orientations, it
follows that we must consider eight distinct space elements and four distinct time
elements.

This discovery leads to the construction, for the first time, of a classification
diagram of these eight oriented space elements and, due to the correspondence of
global variables with space and time elements, the construction of a corresponding
classification diagram for the global variables of the physical theories.

It follows that the mathematical structure underlying the classification dia-
gram is of a geometric nature, specifically of a topological nature. This diagram
brings to light the existence of a mathematical structure that is common to various
branches of physics.

However, we emphasize that this is a book about physics, not mathematics. It
begins with an analysis of the operational definition of physical variables, with

vii



viii Preface

their measurement process, and not with a mathematical theory as the theory of
affine spaces or that of differential forms.

The book offers an interdisciplinary approach to the various branches of clas-
sical and relativistic physics. To this end, an attempt has been made to write the
book with Ph.D. students in mind.

At this point, we would like to quote Cornelius Lanczos from the preface of his
book The Variational Principles of Mechanics: “Many of the scientific treatises
of today are formulated in a half-mystical language, as though to impress the
reader with the uncomfortable feeling that he is in the permanent presence of a
superman. The present book is conceived in a humble spirit and is written for
humble people.”

To help the reader, we have made copious citations of books and articles, in-
dicating also the page of the cited books for easy referencing and comparing of
statements and formulae by the reader.
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Chapter 1
Introduction

. . . the aim of mathematical physics is not only to facilitate for the physicist
the numerical calculation of certain constants or the integration of certain
differential equations. It is besides, it is above all, to reveal to him the hidden
harmony of things in making him see them in a new way.

(H. Poincaré, The Value of Science, Dover, 1958, p. 79)

1.1 Aim of the Book

The purpose of this book is to demonstrate the existence of a mathematical
structure that is common to all physical theories of the macrocosm and to explain
the origin of this common structure. The starting point of this investigation is the
analysis of physical variables under a new profile: we take into consideration all
those geometric features that are usually overlooked in physics books.

A detailed analysis of physical variables and of equations of the theories of
the macrocosm makes it possible to put forward as evidence a natural association
of physical variables with elementary geometric elements, such as points, lines,
surface and volumes. This association makes it possible to build a classification
diagram of physical variables and equations that is the same for all theories, both
classic and relativistic.

The association of ‘global’ variables with space elements is a new perspective
in the description of physics and is the raison d’être of this book.

The revelation of a common mathematical structure arose from the ardent de-
sire to explain why analogies exist between physical theories that are very different
in their physical content. The book gives an answer to this question and explains
why all these theories have this common structure.

(a) The role of global variables. As is obvious, the mathematical description
of physics relies on the very existence of quantitative attributes of physical sys-
tems, a fact that makes possible the introduction of physical quantities. Since

E. Tonti, The Mathematical Structure of Classical and Relativistic Physics,
Modeling and Simulation in Science, Engineering and Technology,
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2 1 Introduction

these quantities are linked by equations, we are accustomed to detecting analo-
gies between different physical theories through the similarity of the equations
that describe their laws. Contrary to this practice, we have realized that to explain
the origin of the analogies, we must not start from the similarities of differential
equations, but from ‘global’ physical variables, i.e. those variables that are neither
a density nor a rate of other variables (Chap. 5). We must investigate their origins,
their operative definitions and the role they play in the corresponding theory. The
presentation of a physical theory by starting with global variables, instead of field
variables, brings out a simple topological structure that the differential formula-
tion is not able to show.

What is remarkable is that, in general, global variables arise directly from phys-
ical measurements: this fact is in contrast to our practice of deducing such global
variables from space and time integration of field variables, a fact that leads us to
call them integral variables. The use of global variables from the very beginning
leads to the global formulation and then to the algebraic formulation of physical
theories, while the use of field variables leads to the differential formulation. The
global formulation must precede the differential formulation because it does not
impose those purely mathematical restrictions on the field functions that are indis-
pensable to perform the derivatives but that are not required on physical grounds.

Global variables are linked with domains such as volumes V, surfaces S and
lines L: it is here that topology enters the scene. But we will see that there are also
global variables associated with points P, e.g. temperature and electric potential.
We will call P, L, S and V space elements, and we will say that a variable is
global in space when it is not the volume density, surface density, or line density
of another variable. Global variables can also be associated with instants I and
intervals T. We will call I and T time elements, and we will say that a variable is
global in time when it is not the rate of another variable.

We will show that this association of global variables with space and time ele-
ments is a general property of all physical theories of the macrocosm. This asso-
ciation is intrinsic to the very definition of each physical variable and, when the
variable is measurable, is reflected in its measurement process. The field functions,
which arise as densities of space global variables and as rates of time global vari-
ables, inherit the association with space and time elements of the corresponding
space or time global variable (Chap. 5).

This natural association makes it possible to describe physical theories without
using the differential formulation from the outset. A formulation based on alge-
braic topology emphasizes the topological, geometric and mathematical structures
that are common to all physical theories and that the differential formulation leaves
in the shadow.

Remark. Regarding the microcosm, which is described by quantum mechanics and which

replaces observables with operators, the author does not have sufficient knowledge to iden-

tify the source variables, nor to identify space and time elements with which these operators
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are associated. Despite this, the variables and the equations of relativistic quantum mechanics

for particles with integer spin, such as those of Klein–Gordon and Proca, find their place in a

diagram similar to that of the relativistic formulation of electromagnetism. Moreover, we remark

that both Bohm and Schönberg used algebraic topology for quantum mechanics, as do we in this

book.1 We have included in Chap. 13 six tables dealing with quantum mechanics that are for-

mally similar to the classification diagram presented here, with the purpose of inciting theoretical

physicists to find their justification.

(b) The two kinds of orientations of space and time elements. In the associ-
ation of global variables with space and time elements, the notion of orientation
plays a key role. In fact, space and time elements can be equipped with two types
of orientation: inner or outer orientation. It is shown the every global physical
variable is associated with a space and a time element, each of which has an inner
or an outer orientation (Chap. 3, p. 39).

We will denote the space and time elements endowed with inner orientation
by placing a bar over the boldface, uppercase letters, i.e. P,L, S,V, I,T, and the
space and time elements endowed with outer orientation by placing a tilde over

the boldface, uppercase letters, i.e.
∼
P,
∼
L,
∼
S,
∼
V,
∼
I ,
∼
T.

This association requires consideration of all the possible combinations between
the global variables and the oriented space and time elements. As shown in
Table 1.1, 32 couples are formed by an oriented space element and an oriented
time element.

Table 1.1 The 32 combinations of space and time elements

I T

P [I,P] [T,P]
L [I,L] [T,L]
S [I, S] [T, S]
V [I,V] [T,V]

∼
I

∼
T

∼
P [

∼
I ,
∼
P] [

∼
T,
∼
P]

∼
L [

∼
I ,
∼
L] [

∼
T,
∼
L]

∼
S [

∼
I ,
∼
S] [

∼
T,
∼
S]

∼
V [

∼
I ,
∼
V] [

∼
T,
∼
V]

∼
I

∼
T

P [
∼
I ,P] [

∼
T,P]

L [
∼
I ,L] [

∼
T,L]

S [
∼
I , S] [

∼
T, S]

V [
∼
I ,V] [

∼
T,V]

I T
∼
P [I,

∼
P] [T,

∼
P]

∼
L [I,

∼
L] [T,

∼
L]

∼
S [I,

∼
S] [T,

∼
S]

∼
V [I,

∼
V] [T,

∼
V]

First group Second group

More precisely, these 32 couples can be divided into two groups, each con-
sisting of 16 elements. The 16 couples of the first group are those combinations
of time and space elements both of which are endowed with the same kind of
orientation, either inner or outer. The 16 couples of the second group are those
combinations of time and space elements that are endowed with opposite orien-
tations, one inner the other outer. These two groups are organized in Table 1.2
(p. 7).

1 Bohm et al. [17]; Schönberg [202].
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What is surprising is that each physical variable of every physical theory (of
the macrocosm) can be matched with one of these 32 couples. This is somewhat
similar to the fact that each crystal can be classified in one of the 32 classes of
symmetry2 or that each chemical element can be placed in one of the boxes of
Mendeleev’s table.

It has been found that the variables of physical theories that can be associated
with the elements of the first group, i.e. the one on the left side of Table 1.1, be-
long to mechanical theories, whereas the variables of the physical theories that
can be associated with the elements of the second group, on the right side of
Table 1.1, belong to field theories. In this way we have obtained a classification of
global variables that is valid for both the classic and relativistic versions of every
theory. This fact reveals that the marriage between physics and mathematics is
possible through the intermediation of topology and geometry. This is a natural
consequence of the fact that physical phenomena arise in space.

(c) Role of cell complexes. The differential formulation, which is based on field
variables (i.e. point variables), makes use of coordinate systems. The algebraic
formulation, based on global variables, requires a proper reference structure. The
need to consider oriented space elements to create the algebraic formulation sug-
gests the need to introduce into the working region of a suitable reference structure
whose elements are endowed with spatial extension. A cell complex, as defined in
algebraic topology (usually in the restricted form of simplicial complex), provides
the appropriate tool (Chap. 4).

The four kinds of space elements that make up a cell complex, i.e. vertices,
edges, faces and volumes, can be considered as cells of different dimensions: they
have zero, one, two, or three dimensions, respectively. Following the terminology
of algebraic topology, we will denote these elements by the terms 0-cells, 1-cells,
2-cells and 3-cells, respectively. In general, we will speak about p-dimensional
cells or p-cells for short. In particular, to recover the traditional differential for-
mulation, one can use a cell complex formed by a coordinate system (p. 65).

Once all the p-cells of a complex are endowed with an inner orientation, we
obtain a reference structure for those global variables that are associated with
space elements with an inner orientation. Still lacking is a structure whose p-cells
correspond to an outer orientation. In fact, we need to locate variables that are
associated with space elements endowed with an outer orientation. The idea now
is to use a second complex that is staggered with respect to the first complex
(Fig. 1.1). This is the dual cell complex whose outer orientation is automatically
induced by the inner orientation of the first complex denoted as primal.

Note that every vertex of the primal complex, a 0-cell, is contained in a 3-cell of
the dual complex, and vice versa. Moreover, every edge of the primal complex, a
1-cell, is crossed by a face of the dual complex, a 2-cell, and vice versa; and so on.
In general, every p-cell of the primal is contained into (or intersects or contains) a

2 The coincidence of the number of symmetry classes in crystal classification and of the distinct
space-time elements is purely a matter of chance.
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Fig. 1.1 Cell complex in space (light lines) and its dual (heavy lines)

(3− p)-cell of the dual. Conversely, every p-cell of the dual, contains (or intersects
or is contained into) a (3 − p)-cell of the primal. A pair formed of a p-cell of one
complex and of the corresponding (3− p)-cell of the other complex may be called
a dual pair. One can view this correspondence by a pair of boxes (Fig. 1.2a). The
boxes corresponding to each dual pair are on the same level. This figure represents
the four kinds of cells (pieces of oriented space elements) with four elliptic boxes
arranged vertically: four boxes for the primal cell complex and four boxes for the
dual cell complex.

A great merit of a pair of cell complexes, a primal and a dual, is to enable a
classification of the eight oriented space elements, four equipped with an inner

orientation, P,L, S,V, and four with an outer orientation,
∼
P,
∼
L,
∼
S,
∼
V.

The differential formulation, while making implicit use of a cell complex, that
formed by a coordinate system, lacks a support structure for variables associated
with an outer orientation. In contrast, in the topological formulation, this role is
played brilliantly by the dual complex.

(d) Classification diagram for physical variables. If we take into account the
association of physical variables with the oriented space elements, then we can use
the same classification diagram of space elements as a classification diagram for
the physical variables associated with them. In fact, we can store the global vari-
ables in the appropriate elliptic boxes (Fig. 1.2b). In this way, the two cell com-
plexes, endowed with the two kinds of orientation, become a topological frame for
the classification of global variables in every physical theory of the macrocosm.

Since the field variables inherit the same association of the corresponding
global variables, it is natural to put them in the same boxes as the relative global
variables. This leads to the building of a classification diagram also for field vari-
ables and, hence, for the differential formulation of physical theories.

The physical variables of every physical theory can be divided into configura-
tion, source and energy variables. Analysing the configuration variables we will
see that they are associated with space elements endowed with an inner orienta-
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From the classification of oriented space elements
to the classification of the associated physical variables

primal complex
inner orientation

dual complex
outer orientation

P

L

S

V

V

S

L

P

primal vertex

primal edge

primal face

primal cell

dual cell

dual face

dual edge

dual vertex

dual elements

dual elements

dual elements

dual elements

P

L

S

V

V

S

L

P

dual variables

dual variables

dual variables

dual variables

primal complex
inner orientation

dual complex
outer orientation

a

b

c

d

s

r

q

p

Fig. 1.2 Left Classification of eight oriented space elements. Right Corresponding classification
of physical variables of a physical theory

tion, whereas the source variables are associated with space elements endowed
with an outer orientation.3 It follows that the configuration variables can be as-
sociated with the cells of the primal complex, while the source variables can be
associated with the cells of the dual complex.

Since global physical variables are associated both with an oriented space el-
ement and an oriented time element, it is useful to have a classification diagram
that takes into account space and time elements. Such a diagram can be obtained
by doubling the diagram of Fig. 1.2b and shifting the diagram to the rear, as shown
in Fig. 1.3.4

The four different combinations of the oriented space and time elements shown
in Table 1.1 can be organized in the two diagrams of Table 1.2.

(e) Classification of equations. What about the equations? The equations of ev-
ery physical theory can be obtained by composing elementary equations of differ-
ent types. These include defining equations, topological equations, phenomeno-
logical equations, and equations of behaviour. Since equations are links be-
tween the physical variables, they connect the rounded boxes. In the classification

3 The reason for this astonishing correspondence is not clear, but we take it as an assumption
supported by the evidence.
4 See also Fig. 8.9 on p. 236.
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Fig. 1.3 Generation of space-time diagram from the space diagram

Table 1.2 Two classification diagrams for variables of physical theories
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diagrams, we will represent equations inside rectangular boxes (Table 1.3).
We will show that:

• Topological equations connect the physical variables associated with cells of
different dimensions of the same complex (primal or dual); they are indicated
by arrows;

• Constitutive equations link the physical variables associated with cells in the
primal complex to those associated with cells in the dual complex.

The association of global variables of a physical theory with the cells of dif-
ferent dimensions of a cell complex gives rise to a space distribution of global
variables known in algebraic topology by the (unfortunate) name of cochain but
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Table 1.3 Two kinds of equations of a physical field: field equations and constitutive equations
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conveniently called today discrete form. All topological equations can be obtained
from a very simple and elegant process known as the coboundary process in al-
gebraic topology. When we deduce field variables from the corresponding global
variables, the discrete forms become exterior differential forms and the cobound-
ary process transforms into the exterior differential of a form. More precisely,
while the configuration variables, associated with space elements endowed with
an inner orientation, can be described by exterior differential forms of an even
kind, the source variables, associated with space elements endowed with an outer
orientation, can be described by differential forms of an odd kind (≡ twisted dif-
ferential forms).

The unifying power of the coboundary process on the discrete forms, that is,
the algebraic ancestor of the exterior differential on the exterior differential forms,
is manifested in the fact that it generates the three typical differential operators,
which give rise to the gradient, curl and divergence.

Concepts like global variable, oriented space element, cell complex, chain,
cochain and coboundary operator are usually ignored in the traditional description
of physics, which is based almost exclusively on differential equations.

The differential formulation hides the geometric and topological structures of
physical variables and of physical laws because it reduces every physical variable
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to a field variable, i.e. it deprives physical variables of their geometric content. The
differential machinery disregards the geometric description from the outset and in
so doing obscures the structure that is common to different physical theories based
on the notion of homologous variables. This is why our investigation should not
start from field variables, as the differential formulation does, but from global
variables.

The classification diagram presented in the book reveals a substantial unity
of all physical theories of the macrocosm. To stress this unity, we have included
in all diagrams, inside a small icon, the frame in which all present theories find
their home. This frame was called by Bossavit the Maxwell house because the
variables and the equations of electromagnetism fit nicely inside the frame. The
present book shows that the frame is not only a house for Maxwell’s equations but
for all equations of physical theories of the macrocosm.

The classification of variables and equations obtained in this way exhibits a
general structure that displays many known properties of physical equations in-
cluding, for example, the possibility of a variational formulation of the fundamen-
tal equation, the existence of reciprocity theorems, the uniqueness of the solution
of the fundamental problem of a theory, compatibility conditions, gauge invari-
ance and the possibility of knowing if a constitutive equation is reversible or not.

Another interesting aspect of the common structure is that the classification is
applicable both to the algebraic formulation, which is performed on global vari-
ables, and to the differential formulation, which utilizes field variables.

1.2 Analogies in Physics

As was stated previously, the general framework that we want to set up in this
book arises from the question of why analogies exist in physics. It is therefore
necessary to understand what an analogy is and exemplify the importance that
analogies have had and continue to have today in physics.

In the development of scientific thinking, an essential role has been played
by the discovery that physical theories exhibit structural similarities, commonly
called analogies. Duhem wrote:

The history of physics shows us that the search for analogies between two distinct cat-
egories of phenomena has perhaps been the surest and most fruitful method of all the
procedures put into play in the construction of physical theories.5

An analogy can be defined as the ‘invariance of a relation or statement un-
der changes of the elements involved in it’.6 The corresponding elements of two

5 Duhem [60, p. 95].
6 Rosen [193, Chap. 4].
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fields are called homologous. Analogy is perhaps the weakest form of invariance:
invariance in form.

Analogies are not simply a formal fact; they are a structural fact. Analogies
reveal the existence of an underlying structure, though they do not explain why
that structure exists.

Scientific activity is strongly based on the use of analogies. We use them, more
or less consciously, because they are like roads already traced on the land that we
are investigating. Analogies are a fundamental tool for knowledge because they
allow us to explore a new field using the established knowledge of another field;
we need only find the homologous entities of the two fields.

Analogies are a powerful tool in discovery, learning and teaching, i.e. in the
creation and transmission of knowledge.

Analogies have another important merit: when dealing with a set of abstract no-
tions, one may find an analogy with a set of concrete notions; in this way, the ab-
stract notions can be more easily understood by referring to the concrete ones. The
understanding of abstract notions is greatly facilitated by a well-chosen analogy!
In fact, analogies have played an important role in the development of physics.
Often a theory is built using a one-to-one correspondence between its physical
variables and those of another theory (homologous variables). For example, the
analogy between heat conduction in solids, which is transmitted by contact, and
electrostatics, which is deduced from the laws of action at a distance, supported
the idea that electromagnetic action was also transmitted by contact.7

Similarly, Poisson introduced the idea of electric potential by analogy to the
notion of temperature in a thermal field, a subject previously treated by Fourier
in his book on heat conduction. Another analogy arises from a comparison of the
propagation of waves in a material continuum (solid or fluid) and the propagation
of electromagnetic waves in free space. In both cases, we have the typical phe-
nomena of reflection, refraction, interference, diffraction, polarization and others.

In an analogy between two physical phenomena, homologous variables differ
in many senses: they have different physical meanings, different physical dimen-
sions, and, in general, different mathematical natures. For example, the homolog
of a scalar variable may be a vector variable. The existence of similarities despite
these differences may be the reason for the fascination that similarities have on
many people.

Since a relation between physical variables is expressed by an equation, it fol-
lows that analogies in physics are easily captured by the similarity of equations.

In addion, similarity of the equations in various theories allows us to use the
same mathematical formalism. For example, the existence of analogies between
field theories is shown by the ubiquitous presence of operators such as ‘grad’,
‘curl’ and ‘div’ and by the equations of Laplace, Poisson and d’Alembert arising
from them.

7 Whittaker [254, Vol. I, p. 241].
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Going one step further, we arrive at the formalism of mathematical field theory,
which can be used to investigate the possible forms of, for example, field equa-
tions (elliptic, parabolic, hyperbolic, linear, or nonlinear), variational principles,
invariance properties and conservation laws.

One of the impressive facts underlining the power of analogies in physics and
engineering is that they allow for the construction of many mathematical for-
malisms, such as:

• The formalism of dynamical systems;
• The formalism of generalized network theory;
• The formalism of irreversible thermodynamics;
• The formalism of mathematical field theory;
• The formalism of variational principles;
• The formalism of the first quantization;
• The formalism of the second quantization.

We live among formalisms! Mathematics is universally applied because it is
the king of formalisms: differential and integral calculus, matrix calculus, vector
calculus, operator theory and group theory are all mathematical theories whose
application to different fields of science enables great economy of thought, labour
and time.

When faced with analogies in physics, two approaches are possible: one is to
accept them as a matter of fact and to use them to construct a formalism, the other
is to question the reasons for their existence.

This book aims to provide an answer to the latter, i.e.

What is the reason for analogies between physical theories?

The answer to this question forms the core of this book. The same question was
raised by Richard Feynman8: Why are the equations from different phenomena so
similar? His answer is as follows:

We might say: ‘It is the underlying unity of nature.’ But what does that mean? What could
such a statement mean? It could mean simply that the equations are similar for different
phenomena; but then, of course, we have given no explanation. The ‘underlying unity’
might mean that everything is made out of the same stuff, and therefore obeys the same
equations. That sounds like a good explanation, but let us think. The electrostatic poten-
tial, the diffusion of neutrons, heat flow – are we really dealing with the same stuff? Can
we really imagine that the electrostatic potential is physically identical to the temperature,
or to the density of particles? Certainly φ is not exactly the same as the thermal energy
of particles. The displacement of a membrane is certainly not like a temperature. Why,
then, is there ‘an underlying unity’? A closer look at the physics of the various subjects
shows, in fact, that the equations are not really identical. The equation we found for neu-
tron diffusion is only an approximation that is good when the distance over which we are
looking is large compared with the mean free path. If we look more closely, we would
see the individual neutrons running around. Certainly the motion of an individual neutron

8 Feynman et al. [69, Vol. II; pp. 12–12].
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is a completely different thing from the smooth variation we get from solving the differ-
ential equation. The differential equation is an approximation, because we assume that
the neutrons are smoothly distributed in space. Is it possible that this is the clue? That the
thing which is common to all the phenomena is the space the framework into which the
physics is put?

As we can see, Feynman did not give an answer to the question, even though
his claim that space is responsible has hit the nail on the head.

Analogies show that alongside the traditional criteria for classifying physical
quantities, there is one arising from the fact that some physical quantities are re-
lated to lines and others to surfaces. In 1871, Maxwell published an article entitled
‘Remarks on the Mathematical Classification of Physical Quantities’ [152, p.227],
in which he wrote:

Of the factors which compose it [energy], one is referred to unit of length, and the other
to unit of area. This gives what I regard as a very important distinction among vector
quantities.

Considering that there are vectors relative to lengths and others relative to areas, he
suggested that physical variables could be classified according to their reference
to a geometric element, like lines and surfaces. When this is done, analogies make
a fourfold distinction of polar–axial and line–surface vectors, a distinction absent
in books on vector calculus where with the same vector one performs circulation
along a line and flux across a surface.9 The key point of the present analysis is that
global physical variables have a natural association with the four space elements
and the two time elements. Once this association has been realized, we can easily
see that the homologous variables of two physical theories are those associated
with the same space element. This fact is at the base of the existence of analogies
in physics. Hence, every physical variable can be classified according to the space
and time element with which it is associated.

In the same article Maxwell said

It is only through the progress of science in recent times that we have become acquainted
with so large a number of physical quantities that a classification of them is desirable.
[. . .] But the classification which I now refer to is founded on the mathematical or formal
analogy of the different quantities, and not on the matter to which they belong.

He called this

[. . .] a mathematical classification of quantities. A knowledge of the mathematical clas-
sification of quantities is of great use both to the original investigator and to the ordinary
student of the science.

Speaking about analogies Maxwell said

But it is evident that all analogies of this kind depend on principles of a more fundamental
nature; and that, if we had a true mathematical classification of quantities, we should
be able at once to detect the analogy between any system of quantities presented to us

9 Post [184, p. 630].
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and other systems of quantities in known sciences, so that we should lose no time in
availing ourselves of the mathematical labours of those who had already solved problems
essentially the same. [. . .] At the same time, I think that the progress of science, both in
the way of discovery and in the way of diffusion, would be greatly aided if more attention
were paid in a direct way to the classification of quantities.

In the classification diagram that will be presented in this book, the relations be-
tween variables, i.e. the equations, are displayed in an ordered way such that they
immediately reveal analogies. We want to show that the classification of physical
variables and equations is the key to explaining analogies in physics, and it is the
root of many common mathematical properties of physical theories. The structure
revealed in this way allows us to obtain a classification diagram of variables and
equations that is the same for all physical theories.

In this book we will consider the following six physical theories:

1. Particle mechanics (and part of analytical mechanics),
2. Electromagnetism,
3. Mechanics of deformable solids,
4. Fluid dynamics,
5. Thermal conduction,
6. Gravitation,

and we will unfold the mathematical structure of these physical theories. Although
the classification needs the global formulation, the diagrams are written using the
differential formulation because, to date, this has been the most used language in
physics.

1.3 Role of a Classification

What is the role of a classification? Many physicists believe that the value of a
classification lies essentially in its ability to predict a new property, a new fact,
a new phenomenon: ‘if you do not hope to discover something new, what is the
interest?’

Let us take as an example the periodic table of chemical elements. It is true
that Mendeleev’s classification has made possible the prediction of the existence
of new chemical elements on the basis of their physical and chemical properties,
and it was a big help to discover them. But the value of this classification has not
been exhausted at all in the discovery of new chemical elements. If the predictive
aspect was the predominant one, how are we to explain the fact that Mendeleev’s
table is still hanging on the walls in the classrooms of colleges and universities
around the world? Perhaps this is done to encourage students to discover some
new elements? How do we justify the teaching of the classification of crystals into
32 classes of symmetry? Why do we teach the Linnaean classification of botany?
Perhaps to stimulate the discovery of a new type of animal or vegetal organism?
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One of the advantages of Mendeleev’s table is in the spatial arrangement of the
elements within a table, not simply in a list. In fact, an order can be obtained sim-
ply by making a list of the chemical elements in increasing atomic weight next to
the indication of the physical and chemical characteristics of each element. Such a
list would contain all the information necessary to make the combinations to cre-
ate chemical compounds. But it was soon realized that in such a list, there would
be a periodic behaviour of the chemical properties of the elements and the period
would be composed of eight elements. This fact suggested organizing the ele-
ments in rows of eight elements. In this way, we pass from a one-dimensional list
to a two-dimensional table. Much later it was realized that eight is the maximum
number of electrons that can stay in the outer orbital of an atom.

Doing a classification means dividing into classes according to certain criteria.
The primary goal of a classification is to impose order on a set of elements, but
the value of a classification depends strongly on the criteria used to classify.

The classification of physical quantities that we introduce in this book is based
on the role that the variables have in their theory. This leads to a first criterion
of dividing the variables into three classes – configuration, source and energy
variables. A second criterion concerns the space element with which the variables
are associated. Since each physical variable can be classified according to both
criteria, this allows the formation of a two-dimensional diagram. A third criterion
arises considering the association of a variable with a time element. This leads to
a three-dimensional diagram represented in an assonometric view (Table 1.2).

One of the features of the classification diagram is the clear-cut distinction be-
tween the field equations, such as balance equations, circuital equations and equa-
tions for the formation of gradients (vertical links), and the constitutive equations
which describe both reversible and irreversible processes (horizontal links).

One thing that catches the eye looking at the diagram, as shown in Fig. 8.7
(p. 232), are the irreversible links: these connect a variable located in the left
column of the front part of the diagram with another variable located in the right
column of the rear part of the diagram.

The diagram gives a systematic procedure to obtain the fundamental equation
of a theory: simply combine the equations encountered in the path that goes from
the potential to the source.

1.4 Role of Geometry in Physics

The mathematical description of physics requires the intermediary role of geome-
try because all physical phenomena arise in space and physical variables are intro-
duced with reference to lines or surfaces or volumes, and only a few of them refer
directly to points. For example, the light flux detected by a photocell depends on
the area of the surface and on its position in space, its orientation; a strain-gauge
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Fig. 1.4 Topological notions at origin of three main differential operators

measures the variation of the distance between two points by the increase of the
electric resistance of a wire.

Geometry enters into physics at two levels: by means of topological concepts
and metric concepts. So Coulomb’s law requires the distance between two point
charges and is therefore a metric law. In contrast, the first law of the electrostatic
field says that the sum of the voltages along any closed line is zero. This is a
topological law because the shape of the closed line and its extension are not
involved.

1.4.1 Topological Concepts

Recall that topological properties are those properties of geometric figures which
are invariant under continuous deformations without introducing tears and over-
laps. Stated in more mathematical language, they are invariant under homeo-
morphisms. These concepts differ from metric concepts because no measures of
lengths, areas, volumes or angles are involved.

In physical theories, there are three kinds of topological equations: balance
equations, circuital equations and equations forming gradients.

Figure 1.4 shows the topological ingredients which we use, implicitly or ex-
plicitly, in physical theories, i.e. line surfaces, volumes and their boundaries: they
are involved in the construction of the three differential operators which are ubiq-
uitous in physics – the gradient, the curl and the divergence.

Balance equations. These are the most important physical equations. They play
a pivotal role in all physical theories and include the balance of mass, momentum,
angular momentum, energy, entropy, electric charge and the number of particles.
A balance law states that, given a space region and a time interval, the amount of
a given physical variable produced inside the space region in the time interval can
be divided into two parts: one part is stored inside the region in the time interval,
the other flows across the boundary of the region in the same interval.
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A particular case arises when the production vanishes: in this case the balance
law is reduced to a conservation law.

A distinctive feature of the balance laws is that they can be applied to regions
of whatever shape and extension and for whatever interval of time. The size of
the space region, a metric concept, and the duration of the interval, a chronomet-
ric concept, are not involved. Hence balance laws are described by topological
equations.

Circuital equations. These equations assert that the amount of a given phys-
ical variable associated with a closed curve is equal to the amount of another
physical quantity associated with a surface enclosed by this curve. Such equations
may express a law or simply the definition of a physical variable. These include
André-Marie Ampère circuital law, Faraday’s induction law and Kelvin’s circula-
tion theorem.

In fluid dynamics, the vortex flux through a surface is defined as the velocity’s
circulation along the boundary of the surface. In electromagnetism, the magnetic
flux across a surface is defined as the impulse of the electromotive force10 across
the boundary of the surface. A circuital equation is valid for any shape of the
surface and for any area; hence, circuital equations are topological equations.

Equations forming gradients. These are the third kind of topological equation.
When we form the difference in temperature between two points, we define a new
variable by means of a simple relation which does not involve metric concepts.
Hence the equations forming differences are topological equations. In general this
is a preliminary step towards defining the average temperature gradient, i.e. divid-
ing this temperature difference by the distance of the two points. The division by a
distance introduces a metric attribute and leads to the temperature gradient along
the direction of the line connecting the two points.

Besides these three classes of equations there are other topological concepts.

Connectivity of a region. The existence, in a region, of closed lines which
are not contractible to a point and of closed surfaces which are not contractible
to a closed line leads to the concept of multiply connected regions with respect
to lines and surfaces, respectively. Hence connectivity is a topological concept.
We remark that the projection of a figure, as in axonometry and in perspective,
does not respect connectivity because distinct lines in space may have projections
which intersect, and it does not respect either the topological properties or the
metric properties, as seen in the prospective of a cube.

Orientation. The concept of orientation plays a crucial role in the mathemat-
ical description of physics. Both the inner orientation and the outer orientation,
which we will present in detail in what follows, are used in the description of
physical laws. The concept of orientation, which has a combinatorial nature, is a
topological concept.

10 See pp. 290 and 291.
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1.5 Algebraic Formulation of Fields

The use of global variables leads to an algebraic (or discrete or direct or finite
formulation) of physical theories, which is an alternative to the differential for-
mulation. Starting from the algebraic formulation one can easily deduce the dif-
ferential formulation. This way of presenting physical theories is very useful in
teaching because it makes a strong appeal to physical measurements and avoids
premature recourse to differential operators whose symbolism is exceedingly ab-
stract for the average university student.

For example, the Faraday electrostatics law, which states that the electric
charge Ψ collected on the boundary of a volume is equal to the charge contained
inside the volume, can be grasped more easily than the statement ∇ ·D = ρ, which
states the same thing but in differential formulation.

What is more important is that the algebraic formulation can be immediately
used for computational physics using a cell complex and its dual in the computa-
tional domain. This formulation avoids the discretization of differential equations,
which is necessary in the existing numerical methods, because it uses global vari-
ables and balance equations in a global form. Hence, from a computational point
of view (which is not considered in this book) the direct algebraic formulation
avoids all the typical difficulties linked to differentiability such as the use of gen-
eralized functions (e.g. Dirac delta function), the splitting of physical laws into
differential equations in the regions of regularity and jump conditions across the
surfaces of discontinuity.

The numerical method, which is based on a direct algebraic formulation, is
called the cell method.11

1.6 Summary

In short, a description of physical theories using global variables as a starting point

1. Shows the link between global variables and the oriented space and time ele-
ments;

2. Maintains a close link with physical measurements because global variables
are, in general, the variables we measure;

3. Permits a numerical formulation of physical theories from the very outset, i.e.
without discretizing the differential equations.

The global formulation (algebraic–topological formulation) which we want to
reveal gives an answer to the question of why analogies exist. Moreover, it allows
us to deduce

11 The Web site: http://discretephysics.dicar.units.it/ has collected a large number
of papers dealing with this method.

http://discretephysics.dicar.units.it/
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Fig. 1.5 The four mathematical formulations of physics: three of them are known

• The traditional differential formulation,
• The exterior differential formulation,
• The numerical formulation,

as shown in Fig. 1.5. A further consequence of this association is that balance, cir-
cuital and gradient forming equations can be described through a single algebraic
process which has inherited an unusual name derived from algebraic topology: the
coboundary process. Despite its name, the process is so simple and so intuitive that
it can be presented to undergraduate students. Algebraic topology also enables the
formulation of physical laws in global form, in the large, i.e. considering also
multiply connected domains.

1.6.1 Notation Used in Book

For symbols of physical quantities we have followed the indication of the Inter-
national Union of Pure and Applied Physics (IUPAP). Page 485 contains a list
of the physical variables treated in this book. The units used are those of the SI
system.
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Chapter 2
Terminology Revisited

2.1 Why Do We Need Proper Notation and Terminology?

Sometimes the same symbol is used with different meanings. Let us look at the
following two formulas:

M =
∫

ρ dV, W = −
∫

p dV . (2.1)

In the first integral, M denotes the mass, ρ(P) the mass density at a point P and the
symbol dV indicates an infinitesimal volume; in the second integral, W denotes the
work, p(V) the pressure and dV indicates an infinitesimal variation of the volume.
In Sect. 5.2 we will distinguish material descriptions from spatial descriptions: in
the first integral, V denotes a fixed control volume, typical of a spatial descrip-
tion, whereas in the second integral, V denotes a variable volume, typical of a
system description. We shall denote these two volumes with the symbols V and V
respectively. Hence a more detailed notation is

M =
∫

V
ρ(P) dV, W = −

∫ V2

V1

p(V) dV . (2.2)

Another example of equivocal notation arises when some authors confuse the rate
with the derivative.

Thus in mechanics of continua we must distinguish between the displacement
of a point of a continuum from its position in a reference configuration (total
displacement) and the displacement of a point between two arbitrary positions.1

Hence, in the mechanics of continua, the velocity at an instant t is the time deriva-
tive of the total displacement at the instant t, but it is the rate of the displacement
in a small time interval Δt centred around the instant t.

1 See p. 331.
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Vector calculus does not distinguish line vectors from surface vectors and on
the same vector defines the line integral along a line and the flux across a surface.2

This fact, though mathematically legitimate, can be physically inappropriate. Thus
in electrostatics, it is proper to define the line integral of the electric field strength
E along a line and not the flux of the same vector across a surface; it is proper
to define the flux of the electric displacement D across a surface and not the line
integral of the same vector along a line. In fluid dynamics, it is proper to define the
line integral of the velocity v along a line and not the flux of the velocity across a
surface; it is proper to define the flux of the mass current density q = ρv across a
surface and not the line integral of the same vector along a line.

Vector calculus does not usually make a distinction between polar vectors and
pseudovectors (≡ axial vectors) or between true scalars and pseudoscalars.3 So
the voltage E, which is the line integral of the polar vector E, is a true scalar,
while the magnetic voltage Fm, which is the line integral of the pseudovector H,
is a pseudoscalar.4 It follows that the electric potential φ is a true scalar, whereas
the magnetic scalar potential φm is a pseudoscalar.

In vector calculus, it is not stated that the unit vector normal to a surface in some
cases is a pseudovector, whereas in other cases it is a polar vector. In fact, when
the surface is endowed with inner orientation, the normal is a pseudovector; in
contrast, when the surface is endowed with outer orientation, the normal is a polar
vector. Thus, recalling that in electromagnetism the vector B is a pseudovector
whereas D is a polar vector, and recalling that the magnetic flux B · n dS and
the electric flux D · n dS are true scalars, it follows that in the first case n is a
pseudovector, whereas in the second case n is a polar vector.

In this book, we distinguish pseudovectors and pseudoscalars by placing a mark
upon the letter: thus, B̌, Ȟ, ω̌, φ̌m.

2.2 Many Meanings of Δ

The symbol Δ is used with many different meanings in mathematics: it can denote,
for example, the Laplacian of a function, a space or a time increment, the determi-
nant of a base in a vector space, or the area of a triangle. The following formulae
show some possible meanings:

2 Post [184, p. 630].
3 See p. 145.
4 Recall that a scalar is called axial or pseudoscalar when, by definition, it changes sign when
we pass from a right-handed to a left-handed screw, i.e. when we change the inner orientation of
space.
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−ε Δφ = σ Δu = u(B) − u(A) Δ f = f (t+) − f (t−) ;

Δ = 1
2

∣∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣ Δ = det(e1 ∧ e2 ∧ e3) .
(2.3)

These facts make the symbol Δ ambiguous. When a physical variable depends on
time and space coordinates, say temperature T (t, x, y, z), the symbol Δ is ambigu-
ous because it does not specify if it refers to time or space coordinates or both.
We use the rule that whenever there is a conceptual difference, there must also be
a difference in the notation. To avoid this ambiguity, which we will see implies
an erroneous association with space and time elements of a physical variable, we
will use the two notations Δt and Δs:

ΔtT (t, x)
def
= T (t2, x) − T (t1, x), ΔsT (t, x)

def
= T (t, x2) − T (t, x1),

dtT (t, x)
def
= T (t+ dt, x)−T (t, x), dsT (t, x)

def
=

T (t, x + dx) − T (t, x).

(2.4)

The index t refers to a time variation, whereas the index s refers to a space varia-
tion. In this book we will use the symbol Δ with the following meanings:

Δ for the increment of a function of one variable, in particular:

Δt for a time increment of a function of time and space variables,
Δs for a space increment of a function of time and space variables;

Δ for the determinant of the transition matrix in the change of base vectors.

2.3 Use and Misuse of Symbol ‘d’

Much confusion arises from an improper use of the symbol of differentiation. Let
us analyse the notation used in mathematics to denote the integral. The integral of
a function of one variable is denoted by

F(t) =
∫ t

0
f (τ) dτ, G(x) =

∫ x

0
g(ξ) dξ, H =

∫ 1

0
h(s) ds, (2.5)

with 0 ≤ τ ≤ t, 0 ≤ ξ ≤ x and 0 ≤ s ≤ 1. In this notation the symbol ‘d’ means
the differential of a variable. The notation is well chosen because if we want to
change the variable by putting ξ(η) we can write dξ = (dξ/ dη) dη.

What happens if we consider line, surface and volume integrals? We can ask
ourselves what the symbols dL, dS , dV mean in the notations
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A =
∫

L
f (P) dL, B =

∫
S
g(P) dS , C =

∫
V

h(P) dV . (2.6)

The symbol ‘d’ here simply denotes an infinitesimal length, area and volume, not
the differential of a variable. It is precisely this notation which leads many au-
thors to use the symbol ‘d’ to denote an infinitesimal quantity even if it is not the
variation of another quantity. Thus, it is customary to write

M =
∫

dm which is the continuous analogue of M =
N∑

k=1

mk,

(2.7)

where the notation dm does not mean, of course, an infinitesimal increment of
mass, but only an infinitesimal mass.

Remark. We may also ask ourselves whether the notation dL, dS , dV is convenient from
a mathematical point of view. Let us consider the element dS , which is usually expressed in
a Cartesian plane as dS = dx dy. What happens if we want to pass from Cartesian to polar
coordinates? Since the transformation is given by x = ρ cos θ, y = ρ sin θ, a formal substitution
of dx dy in terms of dρ dθ does not give the correct areal element, i.e. ρ dρ dθ. Things change if
we write

dS = dx ∧ dy, (2.8)

i.e. using the symbol ∧ as exterior product x and y are coordinate function 0-forms, associated
with a point, and therefore dx and dy are functions associated with line elements. The operation
∧ can therefore also be interpreted as the wedge product between differentials and must not be
confused with the cross product, as happens in the Italian and French literature. In this case,
since dρ ∧ dρ ≡ 0, dθ ∧ dθ ≡ 0 and dρ ∧ dθ ≡ − dθ ∧ dρ, we obtain the correct result in the
form

dS = ρ dρ ∧ dθ . (2.9)

In physics the symbol ‘d’ is often used to denote an infinitesimal quantity. For
example, in defining the electric field strength E, some authors use the notation

E
def
= lim

dq→0

dF
dq

instead of E
def
= lim

q→0

F
q
. (2.10)

To this improper notation we must add that the limit in the second formula 2.10
has no physical meaning because the charge is discrete and the smallest charge
known is the charge of the electron. It is better to define the electric field strength

as E
def
= F/q, with the specification that q must be sufficiently small so that it does

not alter the position of the charges that generate the field. Fortunately, this is what
is commonly done.5

5 Jackson [103, p. 23], Pauli [174, p. 14], Schelkunoff [201, p. 8], Becker [11, p. 61], Lorrain
et al. [143, p. 45], Fleury and Mathieu [71, p. 30], Bettini [13, p. 21], Hallen [87, p. 2], Sears
and Zemansky [208, p. 431], Fouillé [72, p. 38], Novozilov and Jappa [169, p. 15], Akhiezer
[5, p. 13].



2.3 Use and Misuse of Symbol ‘d’ 25

The reason why many authors write dq → 0 instead of q → 0 is because they
believe that an infinitesimal quantity must be preceded by the symbol ‘d’. This is
unnecessary because in mathematics infinitesimal quantities like ε and η are used
without any such symbol, with the exception of dL, dS , dV used in integration.

The practice of introducing the symbol ‘d’ when it is not necessary leads to the
introduction of other symbols, say δ, d∗, d̄, d̄ and similar alterations of the letter ‘d’
to denote quantities which are not an exact differential. This is, for instance, the
case in the first law of thermodynamics, which is written in one of the following
forms:6

du = d′q + d′w, dU = dQ + dW, dE = ΔW + ΔQ,
du = dq + dw, dU = d̄q − p dV, dU = δq + δw,

(2.11)

instead of the simpler (and clearer) notation7

ΔtU = Q +W and dtu = q + w . (2.12)

To denote the entropy differential, three notations are used

dS =
dQ
T︸������︷︷������︸, dS =

d′Q
T
=

d̄Q
T
=

d̄Q
T
=
δQ
T︸�����������������������������������︷︷�����������������������������������︸, dS =

q
T︸����︷︷����︸ .

incorrect correct but redundant correct

(2.13)

The first notation is incorrect because the symbol ‘d’ has two different meanings
in the two members of the same equation.8 The second notation is correct but
redundant because the apostrophe, the overbar, the slash or the δ has the purpose
of correcting the inappropriate symbol ‘d’ which precedes the heat Q. Lastly, the
third notation is the correct one.9

To denote a finite difference of a quantity Q, it is customary to use the symbol
ΔQ, and to denote an infinitesimal difference, the symbol dQ is used. The letters
Δ and d are simply the initials of the words difference and differential respec-
tively. To avoid ambiguities, we recommend denoting an infinitesimal amount of
a quantity Q by the symbol q in lower case, instead of dQ or δQ.

6 Sears [207, p. 45], Callen [33, p. 19], Perucca [176, Vol. I, p. 634], Paterson [172, p. 116],
Moore [164, p. 28].
7 Guggenheim [86, Ch. 1, Sect. 12], Fleury and Mathieu [71, Vol. II, p. 95], Fermi [67, Ch. 2,
Sect. 3], Dugdale [59, p. 20]. The subscript t is not essential: it is added here to comply with our
decision to distinguish between time increments and space increments in this book.
8 Callen [33, p. 32], de Groot and Mazur [49, p. 20], Sommerfeld [216, p. 32].
9 Guggenheim [86, p. 46].
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2.4 Rates and Derivatives

Recall that the term rate denotes the ratio of a physical quantity is referred to
a time interval and the duration of the interval. This is the meaning we give to
the term in everyday language, e.g. when we speak of a reaction rate or of the
annual inflation rate. A rate is a time density. The term derivative denotes the limit
of the ratio between two increments, not simply between two quantities. Some
authors do not distinguish between rates and derivatives. For example, in particle
mechanics we must distinguish between the radius vector r(t), which depends on
time instants, and the displacement u = r(t+) − r(t−), which depends on intervals.
Thus it is sometimes said that velocity is a derivative of the displacement, whereas
it is actually the rate of displacement and a derivative of the radius vector. In fact,
we write

v(t) = lim
T→0

u
T
= lim

Δt→0

Δr(t)
Δt
=

dr(t)
dt

, (2.14)

where T = t+ − t− denotes the time interval. Some authors,10 after stating that
power is the rate of work (which is correct), say that power is the derivative of
work (incorrect), i.e.

P(t) =
dW
dt
= Ẇ should not be used. (2.15)

One cannot take the derivative of a variable which depends on a time interval,
like the work W, but only of a variable that is a function of a time instant. Some
international agencies dealing with the nomenclature11 recommend denoting the
rate of a quantity with a dot above the symbol, but since Newton, the dot over the
letter has denoted a time derivative, not a rate!

Ẇ, Q̇, Ṅ should not be used. (2.16)

Some authors write12

F = lim
Δm→0

ΔF
Δm

instead of f = lim
m→0

F
m
. (2.17)

The first notation is improper not only because the symbol Δ is superfluous but
also because we use the same letter to denote the force F and the specific force f.
As an example of this improper notation we present the following relation:13

10 Saletan and Cromer [199, p. 10], Mansfield and O’Sullivan [150, p. 102].
11 Nomenclature in the Journal of Heat Transfer, Vol. 121, No. 4, pp. 770–773, November 1999.
12 Loitsyanskii [142, p. 73].
13 Tolman [225, p. 246].
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v = lim
t→0

l
t
=

dl
dt

should not be used. (2.18)

The vector l used here is the displacement, and the fact that it becomes small does
not authorize us to use dl because the displacement is already the increment of the
radius vector. Moreover, the time t in the first fraction is a duration, better denoted
by T or by τ, and must not be confused with a time instant t used in the second
fraction.

Table 2.1 illustrates the relation between time derivatives, mean rate, primitive
functions and impulses for many physical quantities.

2.5 Definite and Indefinite Integrals

The integral sign is often used without an explicit distinction between definite
and indefinite integrals. For example, some authors use the same letter, say S , to
denote both the definite and the indefinite time integral of Lagrange functions14:
the definite integral gives the action, while the indefinite integral gives Hamilton’s
principal function. Another example: the impulse of a force can be defined as
the definite time integral of force, while momentum is the indefinite time integral
of force. The latter definition seems to be absent in books on mechanics where
momentum is improperly defined as the product of the mass times velocity, i.e. by
a constitutive law.15

Table 2.2 shows that a careful distinction between definite and indefinite space
and time integrals permits one to make clear the meaning of some physical vari-
ables and of their mutual relations.

2.6 Multiplication Symbols × and ∧

Gibbs denoted the vector product of two vectors u and v by the symbol w
def
=

u × v. In the Italian and French literature, the vector product was denoted (and

many authors still use it today) with the symbol ∧, i.e. w
def
= u ∧ v. With the

introduction of the notion of bivector,16 the latter symbol was used to denote the

bivector formed by two vectors, i.e. B
def
= u ∧ v. This is a new geometric entity

completely different from the vector product: only in the three-dimensional space
is the bivector the complement of the vector product.

14 Kompaneyets [115, p. 85; p. 244], Landau and Lifshitz [123, p. 138,139].
15 See Chap. 10, p. 241.
16 For the notion of bivector, which is not very well known, see Appendix B, p. 467.
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Table 2.1 Relation between rates and time derivatives

Particle mechanics
Radius
vector Displacement

Velocity

Derivative Rate

�

�

�

	
r(t)

�

�

�

	
u(τ)

�

�

�

	
v(t)

u(τ) = Δtr(t)

v(t) = lim
u(τ)
τ

v(t) =
dr(t)

dt

�
�

�
�
���

	

�

Mechanics
Kinetic
energy Work

Power

Derivative Rate

�

�

�

	
T (t)

�

�

�

	
W(τ)

�

�

�

	
P(t)

W(τ) = ΔtT (t)

P(t) = lim
W(τ)
τ

P(t) =
dT (t)

dt

�
�

�
�
���

	

�

Analytical mechanics

Hamilton’s
principal
function

Hamiltonian
action

Lagrangian

Derivative Rate

�

�

�

	
S (t)

�

�

�

	
AH(τ)

�

�

�

	
L(t)

AH(τ) = ΔtS (t)

L(t) = lim
AH(τ)
τ

L(t) =
dS (t)

dt

�
�

�
�
���

	

�

Particle mechanics

Momentum Impulse

Force

Derivative Rate

�

�

�

	
p(t)

�

�

�

	
J(τ)

�

�

�

	
F(t)

J(τ) = Δtp(t)

F(t) = lim
J(τ)
τ

F(t) =
dp(t)

dt

�
�

�
�
���

	

�

Electromagnetism
Charge
content Charge flow

Current

Derivative Rate

�

�

�

	
Qc(t)

�

�

�

	
Qf(τ)

�

�

�

	
I(t)

Qf(τ) = ΔtQc(t)

I(t) = lim
Qf(τ)
τ

I(t) =
dQc(t)

dt

�
�

�
�
���

	

�

Thermal conduction

Thermacy No name

Temperature

Derivative Rate

�

�

�

	
T (t)

�

�

�

	
T (τ)

�

�

�

	
T (t)

T (τ) = ΔtT (t)

T (t)= lim
T (τ)
τ

T (t)=
dT (t)

dt

�
�

�
�
���

	

�

The symbol τ denotes the duration of a time interval.
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Table 2.2 Definite and indefinite line and time integrals

This table aims to show that a systematic distinction between definite

and indefinite integrals both on line and on time clarifies the link

between many physical variables.

F

W∗ def
=

∫ B

A
F · t dL

V
def
=

∫ O

P
F · t dL

Virtual
work

Potential
energy

Force

W∗ = V(A) − V(B)

F = −grad V

(note the order)

O reference point

E
def
=

F
q

E
def
=

∫ B

A
E · t dL

φ
def
=

∫ ∞

P
E · t dL

Voltage

Electric
potentialElectric

field strength

E = φ(A) − φ(B)

E = −grad φ

(note the order)

g
def
=

F
m

Vg
def
=

∫ B

A
g · t dL

Ug
def
=

∫ ∞

P
g · t dL

Gravitational
potential
difference

Gravitational
potentialAcceleration

of gravity

Vg = Ug(A) − Ug(B)

g = −grad Ug

(note the order)

F

J(t−, t+)
def
=

∫ t+

t−
F(t) dt

p(t)
def
=

∫ t

0
F(t′) dt′

Impulse

MomentumForce

J(t−, t+) = p(t+) − p(t−)

F(t) =
dp(t)

dt

P

W(t−, t+)
def
=

∫ t+

t−
P(t) dt

T (t)
def
=

∫ t

0
P(t′) dt′

Work

Kinetic
energy

Power

W(t−, t+) = T (t+) − T (t−)

P(t) =
dT (t)

dt

W(t−, t+)
def
=

∫ t+

t−
F(t) · dr(t) =

∫ t+

t−
F(t) · v(t) dt =

∫ t+

t−
P(t) dt
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To increase the confusion, some authors call the vector product of two vectors
an exterior or outer or cross product; others call the exterior or outer or wedge
product of the two vectors the bivector formed by them. As we can see, the terms
exterior and outer products in the two cases give rise to different entities.17

The vector product is possible only in three-dimensional space and makes use
of the screw rule; hence, the vector product of two polar vectors gives a pseu-
dovector. In contrast, the exterior product of two polar vectors is a bivector; it is
valid in a space of two or more dimensions and the screw rule is not involved.

2.7 Many Meanings of “Force”

Some physical variables are improperly denoted as forces. In the terminology of
irreversible thermodynamics, the potential differences for unit length were called
thermodynamic forces.18 This name was introduced by Maxwell.19

The term force has been used also to denote energy, i.e. vis viva for kinetic
energy, vis mortua for potential energy,20 and the term conservation of forces was
used by Mayer (1842) and Helmholtz (1847) instead of conservation of energy.21

Today it is called energy.
Even today we use the terms electromotive force and magnetomotive force:

these are variables with the nature of an electric or magnetic voltage. There are two
new terms: electromotance and magnetomotance, meaning (literally) tendency to
move (“-motance”) an electric charge. Electromotance and magnetomotance are
semantically more accurate, but not commonly adopted.22 It is curious to note that
the electric potential was introduced by Ohm, in analogy to temperature in thermal
conduction, and he called it electroscopic force.23

Table 2.3 shows the modern nomenclature for many forces used in the past.

2.8 Many Meanings of “Flux”

To consider the right association of physical variables with space and time ele-
ments, which is one of the goals of this book, we must avoid any ambiguous use
of nomenclature. Unfortunately, the term flux is used throughout the literature with
different meanings, and this fact can create some misunderstandings.

17 See p. 467.
18 de Groot and Mazur [49, p. 25].
19 Maxwell, [152, p. 227].
20 Lindsay [139, p. 20].
21 Helmholtz [90, pp. 12–75].
22 See the well-written article “Electromotive force” on Wikipedia. The term electromotance is
used in the book by Lorrain et al. [143, pp. 367, 413, 431].
23 Whittaker [254, Vol. I, p. 90].
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Table 2.3 Modern equivalent of various quantities improperly called ‘forces’

Old New
Living force (Leibniz) Kinetic energy
Dead force (Leibniz) Potential energy
Conservation of force (Mayer, Helmholtz) Conservation of energy
Thermodynamic force (Maxwell) (None)
Electroscopic force (Ohm) Electric potential
Electromotive force (Volta) (Electromotance)
Magnetomotive force (Magnetomotance)

Let us start by observing that the term flow refers to the passage of a physical
quantity through a surface.24 This is the use in, for example, traffic flow, water
flow, cash flow and air flow. What about the term flux? The scientific literature
gives the following meanings.

• Some authors use the term flux and flow as synonyms25;

• Some authors use the term flux as a synonym for flow rate. Examples are energy
flux (watt) and luminous flux (lumen).26 A more appropriate name is current. So
electric current I is the electric charge flow for unit time (rate of charge flow),
and nobody calls it flux. In a similar way, we can use the terms energy current,
heat current, entropy current, particle current, momentum current=force.

• Many authors use the term flux as a synonym for flow rate density ≡ current
density. Examples are energy flux (watt/m2), entropy flux, particle flux.27 A
convenient name is current density, and the proper symbol is J with an index
like Js, Je to denote entropy current density, energy current density respectively.
This is the current notation in irreversible thermodynamics.

• We will see that magnetic flux Φ, vortex flux W and electric flux Ψ are physical
variables ‘associated’ with surfaces and instants, i.e. they have nothing to do
with a flow of something through a surface. We will use the term flux only with
this meaning.

24 As a curiosity, Thomson (= Lord Kelvin) called flow the line integral of velocity; see Lamb
[119, p. 33].
25 de Groot and Mazur [49, p. 17; p. 21], Born and Wolf [18, p. 796]. Prigogine [190, p. 2] says:
‘For simplicity, we will also use the term flow instead of density of flow (or current or flux).’ Four
different quantities with the same name: no comment!
26 Fleury and Mathieu [71, Vol. II, p. 423], Paterson [172, p. 523], Lamb [119, p. 38], Landau
and Lifshitz [125, p. 11].
27 Callen [33, p. 286], de Groot and Mazur [49, p. 17], Bird et al. [16, p. 3], Misner et al. [161,
p. 138], Lamarsh [118, p. 321], Batchelor [10, p. 56]. The Gray and Isaacs dictionary of physics
[84] says “neutron flux Syn. neutron flux density.”(!)
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• Flux density, as in magnetic flux density B, electric flux density D (better named
electric displacement), vortex flux density w (better named vorticity), denotes a
flux per unit area.

Faced with this chaotic terminology, we need to make a clear distinction be-
tween five terms:

1. The term flow denotes something passing through a surface during an interval.
This is the case of mass, charge, momentum, heat, particles.

2. The term current denotes the rate of flow or flow per unit time.
3. The term current density denotes the rate of flow for unit area. So the electric

current density J is the charge flow rate for unit area.
4. The term flux will be used in this book only to denote a global physical variable

associated with a surface and a time instant.
5. The term flux density denotes the flux for unit area. This is the case of electric

surface charge density σ.

Table 2.4, summarizes the terminology we use in this book.

Table 2.4 Unambiguous terminology for flux and its related terms

‘Associated’ with intervals
Flow

Current = flow rate
Current density = flow density rate

‘Associated’ with instants
Flux

Flux density

2.9 Many Kinds of Equality

In physics, as in mathematics, the = sign is universally used without distinguishing
the meaning of the equality. So faced with the three ‘equations’

d f
dx
= lim

Δx→0

f (x + Δx) − f (x)
Δx

, (a+b)(a−b) = a2−b2, 3x2+2x−4 = 0,

we can easily see that the first is a definition, the second an identity, i.e. valid
regardless of the values of the variables, and the third simply an equation, i.e. it is
valid only for some values of the variables. This suggests that one should specify
the = sign as follows:

d f
dx

def
= lim

Δx→0

f (x + Δx) − f (x)
Δx

, (a + b)(a − b) ≡ a2 − b2, 3x2 + 2x − 4 = 0.

Even in mathematics it is convenient, for educational purposes, mainly for stu-
dents, to make such distinctions. It is strange that the same mathematicians who
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are so careful with the terminology they use do not feel the need to make system-
atic use of these distinctions.

Notation. The = symbol was introduced for the first time in 1557 by the mathematician and

physician Rober Recorde.28 Later, in 1801, the symbol ≡ was introduced for identities.29

This analysis is even more appropriate in physics, where it is good to distin-
guish between a constitutive or material equation and an equation describing a
universal law. The material laws specify the behaviour of a material or a medium,
considering the vacuum as a limit case, and contains, in general, physical parame-
ters and material constants. These are particular laws, of a phenomenological na-
ture, representing the result of measurements that are valid within a definite range
of values. The universal laws, in contrast, are valid in any situation, do not depend
on the material and, hence, do not contain material parameters. Thus, faced with
the equations

V = RI, σ = E ε, ∂t ρ + div J = 0, grad p = f,

we see that the first two are material laws, whereas the third expresses a conser-
vation (of charge, of mass, of energy) and the fourth the equilibrium of a fluid (of
whatever fluid). This suggests that one should write them as follows:

V
mat
= R I, σ

mat
= E ε, ∂t ρ + div J

law
= 0, grad p

law
= f .

In summary, we will use the following notations:

def
= definition H

def
= U + p V definition of enthalpy,

≡ identity a2 − b2 ≡ (a + b)(a − b) for all a and b,
= equation 3x2 − 2x = 5 the variable x unknown,

mat
= material law V

mat
= R I Ohm’s law,

law
= general law ∂tρ + div J

law
= 0 conservation law.

(2.19)

We admit that this distinction cannot be easily maintained in the elaboration of
the equations. Nevertheless, we think that, at least at the stage of introducing a
theory, it can contribute to clarifying the meaning and the physical content of the
equations. For this reason, even if faced with some uncertainties, in this book we
will make such distinctions as much as possible.

28 See the Web site http://en.wikipedia.org/wiki/Equals_sign and the books cited therein.
29 See http://en.wikipedia.org/wiki/Table_of_mathematical_symbols_by_introduction_date.
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Notation. The notation
def
= is not completely new; it is used by Schouten [204](p. 1), although

more common are the symbols
�
= and := . We prefer that symbol because it is more readable for

non-mathematicians and is similar to the symbols
mat
= and

law
= . The last two symbols seem to be

new.

2.10 Irrotational and Solenoidal Vector Fields

The terminology of vector fields is strongly based on the differential formulation.
Thus, a vector field is commonly said to be irrotational if the curl vanishes and
solenoidal if the divergence vanishes. In this book, we want to stress the finite (i.e.
not differential) formulation of physics because a premature appeal to the process
of performing the limit hides some geometric features. For this reason it is better
to give the following definitions:30

Definition. A vector field is called irrotational in a space region if the
line integral of the vector along any reducible closed line contained
in the region vanishes; it is called solenoidal in a space region if the
surface integral through any reducible closed surface contained in the
region vanishes.

What is not explicit in the corresponding differential formulation, i.e. ∇×u = 0
and ∇ · u = 0, is that closed lines and closed surfaces must be reducible in the
region. This specification is essential when we want to pass from a local form to
a global one: the condition ∇ × u = 0 implies the existence of a scalar potential
φ, i.e. u = ∇φ only in a space region which is simply connected with respect to
lines, i.e. if all its closed lines contained in the region are reducible. Moreover, the
condition ∇ · u = 0 implies the existence of a vector potential v, i.e. u = ∇ × v
only in a space region which is simply connected with respect to surfaces, i.e. if
all its closed surfaces contained in the region are reducible.

Another limitation of the traditional definition ∇ × u = 0 and ∇ · u = 0 is that
the field must be continuous and must have continuous partial derivatives. This
condition is not always satisfied. Thus, the electric field strength E of a metallic
body, for instance, is discontinuous on its surface, and hence one cannot evaluate
its curl at the points of the surface, and therefore one cannot say whether the field
is irrotational. According to the definition just given, since the line integral through
every closed line vanishes, the electric field, even if discontinuous, is irrotational.

30 Recall that a closed line and a closed surface are called reducibles in a given region if they can
be contracted to a point always remaining in the given region, or, which is equivalent, without
crossing the boundary of the region.
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2.11 Reversal of Motion Is Not Time Reversal

Almost all authors consider time reversal to be equivalent to the reversal of mo-
tion.31 Few authors consider the two as different notions;32 in particular, Post dis-
tinguishes between active and passive time reversals.33

By the expression time reversal is meant the change of time variable t into −t,
while by the expression reversal of motion is meant the process of reversing the
time sequence of the natural motion of a system.

It is commonly assumed that time reversal is equivalent to reversal of motion.
In contrast to this, we want to show that these are two distinct operations; the first
is a purely mathematical operation, whereas the latter has a physical meaning.

Let us first consider a particle in motion. According to time reversal, t −→ −t,
we have dt −→ − dt; hence, the velocity v after the time reversal is given by

v′ =
(dr)′

(dt)′
=

dr
(− dt)

= −v . (2.20)

This is a purely mathematical operation. In this operation, the infinitesimal dis-
placement dr is left unchanged. In contrast, if we consider the physical aspect of

t

0 t-t

t

t n-1 t n t n+1

time reversal

reversal of motion

a

b

Fig. 2.1 (a) The change of t into −t means the reflection of the time axis. (b) Reversal of order
of time instants, i.e. reversal of motion

the reversal of motion, then we see that reversing the order of the time sequence
causes the displacement dr to change sign (Fig. 2.1).

In fact, the most impressive manifestation of the backward motion is the re-
versal of the displacement, i.e. dr −→ − dr. This becomes clear when we see
a film running backwards in time and we compare the backward motion in the
pictures with the forward motion of a clock we hold in our hands while watching
the film. This means that the orientation of the time interval dt used to compare
the backward motion with the forward motion has not changed. It is (dt)′ = dt. It
follows that

31 Wigner [250, p. 325].
32 Ballentine [8, p. 377].
33 Post [186, p. 136], [185, p. 287], [187, p. 834].
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v′ =
dr′

dt′
=

(− dr)
dt
= −v . (2.21)

We see that both in the time reversal and in reversal of motion the velocity changes
sign, and this leads us to believe that time reversal and reversal of motion are
synonyms, which is wrong. In time reversal, we perform a purely mathematical
substitution of t into −t, which leaves the displacement dr unchanged, whereas in
reversal of motion, the displacement changes sign, i.e. dr −→ − dr, and the sign
of the time interval is unchanged. This is important in this book because we must
examine the behaviour of global variables under reversal of motion. Henceforth,
we will consider only reversal of motion as physically significant.
Post wrote:34

. . . one should keep in mind that the active time reversal characteristics so obtained cannot
be directly identified with the passive transformational characteristics of physical quanti-
ties under the formal operation of coordinate time reversal. In the active time reversal it is
the object that is being changed, while the reference is unaffected, whereas in the passive
time reversal it is the reference that is being changed while the object remains unaffected.

Ballentine wrote:35

In the first place, the term “time reversal” is misleading, and the operation that is the
subject of this section would be more accurately described as motion reversal. We shall
continue to use the traditional but less accurate expression “time reversal”, because it is
so firmly entrenched.

Irreversibility is detected when backward motion is distinguishable from for-
ward motion. The simple irreversible process of a glass falling down, impacting
the ground and breaking into small pieces, has nothing to do with the mathematical
substitution of t into −t, simply because the displacements are inverted. We sum-
marize the difference between time reversal and reversal of motion in Table 2.5.

Table 2.5 Reversal of motion and time reversal

Reversal of motion Time reversal
or ‘active time reversal’ or ‘passive time reversal’
displacements reversed displacements unchanged

dr −→ − dr dr −→ dr
Time intervals unchanged Time intervals reversed

dt −→ dt dt −→ − dt

Let us denote by R the operation of reversal of motion. Denoting by u a dis-
placement we have the two defining relations

R(u) = −u R(t) = t . (2.22)

34 Post [186, p. 136].
35 Ballentine [8, p. 377].
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Denoting by r the position vector of a particle, v its velocity, u the displacement
in a time interval, F the force acting on it, J the impulse of the force in a time
interval and p its momentum, the following relations are valid:

u =
∫ t+

t−
v(t) dt −→ R(u) =

∫ t+

t−
R[v(t)]R( dt) =

∫ t+

t−
(−v) dt = −u,

r(t) =
∫ t

0
v(t′) dt′ −→ R(r) =

∫ 0

t
R[v(t′)]R( dt′) = −

∫ t

0
−v(t′) dt′ = +r,

J
def
=

∫ t+

t−
F(t) dt −→ R(J) =

∫ t+

t−
R[F(t)]R( dt) =

∫ t+

t−
F(t) dt = +J,

p(t)
def
=

∫ t

0
F(t′) dt′ −→ R(p) =

∫ 0

t
R[F(t′)]R( dt′) = −

∫ t

0
+F(t′) dt′ = −p.

(2.23)
This states that the radius vector and the impulse do not change signs under rever-
sal of motion, whereas the displacement and the momentum change signs.



Chapter 3
Space and Time Elements and Their
Orientation

3.1 Space Elements

Points, lines, surfaces and volumes: these will be called space elements and will be
denoted by their initial capital letter, i.e. P for points, L for lines, S for surfaces,
V for volumes (Fig. 3.1). We have chosen capital letters to render the notation
uniform with the common practice of denoting points by capital letters, such as
A, B,C, P,Q, and we have chosen boldface type because we usually denote a point
function by f (t, x) or f (t,P). Another reason to use boldface type lies in the fact
that we find it natural to use the corresponding letters L, S ,V , in plain text, to
denote the extension of the corresponding space elements, i.e. length, area and
volume.1 In summary:

Point P
Line L −→ L length

Surface S −→ S area (sometimes A)
Volume (as region) V −→ V volume (as magnitude)

(3.1)

P L S V

point line surface volume

Fig. 3.1 The four space elements: points, lines, surfaces, volumes

1 Unfortunately, the term volume has two meanings: it denotes a space region and its magnitude.
This ambiguity does not exist for lines and surfaces whose size, length and area respectively
have a different name.

E. Tonti, The Mathematical Structure of Classical and Relativistic Physics,
Modeling and Simulation in Science, Engineering and Technology,
DOI 10.1007/978-1-4614-7422-7__3, © Springer Science+Business Media New York 2013
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3.2 Orientation of Space Elements

The pages of a book have a front and back, a box has an inside and an outside, a
road can be travelled in one of its two directions, a wheel can spin clockwise or
anticlockwise. All these facts are manifestations of a single concept: orientation.
The notion of orientation is, essentially, a notion of order. All museums have a
port of entry and a port of exit; it follows that the path of the visitors is oriented.

Definition. Given a set composed of two elements, one can say that
this set is oriented when we have decided on an order of the two ele-
ments, which is the preceding element and which is the next or, put an-
other way, which is first and which is second. Terms such as front/back,
before/after, input/output and similar terms fix an order and therefore
provide an orientation.

This notion is important in physics because the sign of a physical variable asso-
ciated with a space element is inverted when we invert the orientation of the space
element. Thus, to describe the motion of a particle along a line, we must choose a
positive sense along the line; when we speak of mass flow, we must discriminate
between the two sides of the surface, and when we write the mass balance, we
choose the outward normal to the volume, as shown in Fig. 3.2. These are some of
the cases in which we make use of the notion of orientation. We will see that the
oriented elements in Fig. 3.2 are particular cases of the notion of orientation of a
space element. As we will see, there is a more systematic way of orienting a space
element which also includes the points and which will lead to the establishment of
the concepts of inner and outer orientation. This distinction will replace the com-
mon notions of Fig. 3.2 by a broader and more systematic classification scheme,
as shown in Table 3.1 on p. 41. The important role of orientation in physics
motivates a detailed analysis of the two types of orientation of space and time
elements.

We stress that the concept of orientation, first used in geometry, can be ex-
pressed in terms of combinatorial calculus using the concept of permutation.

Fig. 3.2 What is commonly meant by ‘oriented’ space elements, but there are other kinds of
orientation
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Table 3.1 The eight oriented space elements

�

Outer orientationInner orientation

P

L

S

V

V

S

L

P

Inner orientation of a point:
a positive orientation
is the one of sink

Inner orientation of a line:
this is the basic notion
used to give a meaning
to all other space elements

Inner orientation of a surface:
this is a compatible orientation
of its edges, i.e. a direction
along its boundary

Inner orientation of a volume:
this is a compatible orientation
of its faces. It is equivalent
to the screw line

Outer orientation of a volume:
a positive orientation is the
one with outwards normals

Outer orientation of a surface:
this is the inner orientation
of a line crossing the surface

Outer orientation of a line:
this is the inner orientation
of a surface crossing the line

Outer orientation of a point:
this is the inner orientation
of the volume containing
the point

The filled balls indicate the most common orientations of lines, surfaces and volumes used in
physics; the empty balls denote orientations seldom mentioned. Finally, the inner and outer

orientations of the points are never mentioned!

3.3 Combinatorial Side of Orientation

In combinatorics, we study the permutations of n objects, and we introduce the
notion of transposition of two elements. Given a reference permutation of three
elements, which we denote by (ABC) by making all the possible inversions, one
obtains other permutations which can be divided into two classes: those resulting
from the reference permutation with an even number of inversions and those ob-
tained with an odd number of inversions. The first are called permutations of an
even class, the second are called permutations of an odd class.

If we agree to use the + sign to indicate all the permutations of the even class,
including the reference one, it is natural use the − sign to indicate those which
belong to the odd class. Hence, if (PQR) is the reference permutation of three
elements, we obtain the following two classes:

(PQR) = (QRP) = (RPQ) even: + ,

(RQP) = (QPR) = (PRQ) odd : − .
(3.2)

At this point, the notion of the orientation of a line, a surface and a volume comes
into play.
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3.4 Orientation in Geometry

In elementary geometry, lengths, areas and volumes are geometric quantities with-
out sign. Since the introduction of analytical geometry these quantities can be en-
dowed with a sign via the notion of orientation. Space elements can be endowed
with orientation.

The orientation of space elements is very useful in the mathematical descrip-
tion of physics because the signs of global physical variables are linked to the
orientation.

The notion of orientation is lacking in Euclidean geometry, and as a conse-
quence, physics inherits this deficiency. Since 1827, the date of publication of
Möbius’ book,2 the notion of orientation has permeated geometry.3

We raise the question: Are negative lengths, negative areas and negative vol-
umes meaningful? The answer is affirmative. The key point is that the sign of
a geometrical element refers to the orientation of the element once a reference
orientation has been fixed.

It is our habit to consider that the area of a rectangle is the product of its base
and height and, as such, is a positive quantity. Since Möbius’ observations, we
are invited to consider not only the rectangle in itself, but also the orientation of
its edges. Thus we can say that the area of a rectangle is ± the product of its
base and height. We are not accustomed to considering negative magnitudes of
space elements despite the fact that mathematics provides formulae for measuring
the extension of a space element endowed with sign. Hence, with reference to
Fig. 3.3, the formulae

LOP =

∣∣∣∣∣ 1 0
1 xP

∣∣∣∣∣ , AOPQ =
1
2!

∣∣∣∣∣∣∣
1 0 0
1 xP yP

1 xQ yQ

∣∣∣∣∣∣∣ , VOPQR =
1
3!

∣∣∣∣∣∣∣∣∣
1 0 0 0
1 xP yP zP

1 xQ yQ zQ

1 xR yR zR

∣∣∣∣∣∣∣∣∣
(3.3)

x

x x

O P

O P

Q
O

P
Q

R

Fig. 3.3 Simplexes of one, two and three dimensions. Recall that the term simplex denotes the
most simple polygon, i.e. the triangle, and the most simple polyhedron, i.e. the tetrahedron

2 Möbius [162].
3 Klein [114, p. 16].
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S

R

O

P

Q

y

x

a

O

y

x

S

R

P

Q

b

O

y

x

S

R

P

Q

c

Fig. 3.4 The oriented area of the polygon is the sum of the oriented areas of the triangles with a
common vertex

give the oriented magnitude of a segment of the x-axis, a triangle in the xy-plane
and a tetrahedron in xyz space respectively.

Notation. In contrast to the traditional notation in the determinant, we set the column com-

posed of ones as the first column instead of the last column: in this way, for a segment OP we

obtain a length of OP = xP and the volume of the tetrahedron OPQR indicated in Fig. 3.3 is

positive. The elements of the first row are the coordinates of the origin of the coordinate system.

In particular, the sign of the area of a triangle depends on the order in which
its vertices are traversed. One advantage of considering areas with a sign is that if
we want to evaluate the area of an oriented polygon, then we can decompose the
polygon into triangles by taking a reference point.

For example, in Fig. 3.4, let us consider the triangles with a common vertex in
the reference point O and with an oriented edge of the polygon as their sides. By
summing the oriented areas of every triangle we obtain the area of the oriented
polygon. This procedure can be used even if the polygon is non-convex and if
the reference point is inside the polygon. Let us remark that we also use oriented
areas in the integration of a function. As is known, the geometric interpretation
of the definite integral of a function of one variable is the area enclosed under the
representative curve. If we reverse the extremes of integration, the orientation of
the time interval is reversed – [a, b] into [b, a] – and the sign of the definite integral
is reversed. As Fig. 3.5 shows, the orientation of the area is also reversed; hence,
this implies that the definite integral is associated with an oriented area, not simply
ti its absolute value. If we give a line an orientation, the length of a line segment
will be positive or negative; this depends on the order given to its vertices.

The great mathematician Felix Klein in his book Elementary Mathematics from
an Advanced Standpoint, Geometry (which we recommend to our reader) states4:

We say ordinarily that length or, as the case may be, the area or the volume, is equal to the
absolute value of these several magnitudes, whereas, actually, our formulas furnish, over
and above that, a definite sign, which depends upon the order in which points are taken.
[. . . ] Great advantages are thus gained over the ordinary elementary geometry which
considers length and contents as absolute magnitudes.

4 Klein [114, pp. 3–5].
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0 1

0 1

=
x

=
x

A B

C
A B

C

J =
1

0
x dx = +

1
2

J =
0

1
x dx = −

1
2

A =
1
2

1 0 0
1 1 0
1 1 1

= +
1
2

A =
1
2

1 0 0
1 1 1
1 1 0

= −
1
2

Fig. 3.5 The definite integral of a function of one variable has a geometrical representation of
the oriented area under the representative curve of the function

When we say that lengths, areas and volumes are additive, we implicitly admit
that each of them can have a negative value. In fact, the additive property implies
the existence of the null element and of the opposite of every element. Analytical
geometry takes into account signs, whereas elementary geometry ignores them.

3.5 Two Kinds of Orientation: Inner and Outer

Physics books do not treat the notion of orientation in detail simply because books
on geometry do the same! Even books on algebraic topology, which use the notion
of orientation, do not usually distinguish between the two kinds of orientation: the
inner and the outer orientation of a space element.5 The orientation we presented
in the preceding section can be properly called inner orientation.

Of course, the outer orientation of a space element can be reduced to an inner
orientation by means of the screw rule. Nevertheless, we do not do this because
this leads to identifying distinct geometric objects.

This is what happens when we replace “skew-symmetric tensors by vectors
. . . this may be justifiable on the ground of economy of expression, but in some
way it hides the essential features,” as Weyl stated.6 In the present analysis the
reduction of outer orientation to inner orientation and vice versa halves the number
of distinct space elements and coalesces distinct geometrical objects.

What is meant by the ‘inner’ and ‘outer’ orientation of a space element? Let
us consider a surface: given a curvilinear triangle and considering an order of
its vertices we have fixed an inner orientation. The term inner refers to the fact
that this orientation requires that only points of a surface be considered, i.e. we
move and stay inside the surface. In contrast, an outer orientation requires us to
consider both sides of the surface, i.e. to pass from one side to the other crossing

5 This subject is extensively treated in the book by Schouten [204].
6 Weyl [247, p. 46].
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L −L L −L
a b

Fig. 3.6 Orientation of a line: (a) inner orientation; (b) outer orientation

the surface, and this implies that we must go out from the surface. This justifies
the term outer for this orientation.

3.5.1 Inner and Outer Orientation of Lines

A one-way street can be represented by a line with an inner orientation because
there is a direction along the line, as seen in Fig. 3.6a. In what follows, a line en-
dowed with an inner orientation will be denoted by putting a bar over the symbol,
i.e. L.

The Earth’s axis of rotation can be represented by a line with a sense of rotation
around the axis, i.e. an outer orientation (Fig. 3.6b). The outer orientation of a line
is useful for describing, for example, the rotatory polarization of a light beam. A
line endowed with an outer orientation will be denoted by putting a tilde over the

symbol, i.e.
∼
L.

3.5.2 Inner and Outer Orientation of Surfaces

A surface has an inner orientation when a direction of its boundary has been se-
lected (Fig. 3.7a). A surface endowed with inner orientation will be denoted by
placing a bar over the symbol, i.e. S.

Example 1. When the boundary is traveled in the counterclockwise sense, the area enclosed

is positive, the system expands giving work to the environment, as shown in Fig. 3.8 a. On the

contrary when the boundary is traveled clockwise, the area enclosed is negative, we have a

S S̃ S̃S

a b

Fig. 3.7 Orientation of a surface: (a) inner orientation; (b) outer orientation
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p

V

A

D

C
B

W > 0

p

V

A

B

C
D

W < 0

a b

Fig. 3.8 Pressure (p)–volume (V) diagram: the orientation of the area is linked with the sign of
the work (W). (a) positive area implies a positive work; (b) a negative area implies a negative
work

compression and the system absorbes work from the environment, as shown in Fig. 3.8 b. This

means that the sign of the oriented area is linked with the sign of the work.

If we use the modern convention7 of considering positive the work entering
a system, as is considered positive the heat entering the system, we see that a
positive area (oriented anticlockwise) implies positive work.

Therefore, if we invert the orientation of the area of the cycle, then the sign
of the associated physical variable work is inverted. Hence the work involved in a
thermodynamic cycle is an example of a physical variable whose sign depends on
the inner orientation of the area which the cycle includes.

A surface has an outer orientation when one of the two sides is chosen as the
front and the other as the back (Fig. 3.9, left). If we choose two colours, say white
and black, we can decide that the front of the surface can be coloured white while
the rear can be in black, as shown in Fig. 3.10. We can also mark the front with a
+ sign and the back with a − sign. Equivalently, we can draw an arrow crossing
the surface from back to front.

The outer orientation of a surface is widely used in physics. Thus, the heat
which crosses a surface is considered positive when it enters the surface, i.e. when
it goes in the opposite direction of the arrow which crosses the surface. The same

+

+
preceding

back

preceding

preceding
subsequent

front

subsequent

subsequent

Fig. 3.9 Orientation of a surface and a volume

7 Clausius and his followers considered positive the work given by the system.
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Fig. 3.10 Outer orientation of a surface represented by two colours on two sides, white and black

convention is used in continuum mechanics: the surface force associated with a
small piece of a flat surface is the one which the matter that lies on the front exerts
on the matter that lies on the back.8

In contrast to these conventions, mass current, energy current, and charge cur-
rent, which are associated with surfaces, are considered positive when they move
in the same direction of the arrow, i.e. from back to front. A surface endowed with
an outer orientation will be denoted by placing a tilde over the symbol, i.e.

∼
S.

3.5.3 Inner and Outer Orientation of Volumes

With reference to Fig. 3.11a, a cube has an inner orientation when an inner ori-
entation is chosen on one of its faces and, hence, is coherently propagated to all
faces. ‘Coherently’ means that the orientation of the two faces induces an opposite
orientation on the common edge. This is Möbius’ law of edges.9 If we consider
two opposite faces of a cube, then we see that their orientations, if viewed from a
single point, are opposite: if we rotate the two faces in the direction of their own
orientation, then we obtain a screw, as shown in Fig. 3.12. Thus the passage from
a left-handed screw to a right-handed screw is equivalent to a change in the inner
orientation of a volume.

A volume endowed with an inner orientation will be denoted by placing a bar
over the symbol, i.e. V.

V-VV-V
a b

Fig. 3.11 Orientation of a volume: (a) inner orientation; (b) outer orientation

8 Fung [77, p. 58], Paterson [172, p. 96], Prager [188, p. 43].
9 Klein [114, p. 17].
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x y

z

x y

z

x,y,z
x,y,z

x,y,z

x y

z

x,y,z

x y

z

Fig. 3.12 The inner orientation of a cube is equivalent to the choice of a right-handed or a left-
handed helix

A volume is endowed with an outer orientation when the interior of the volume
is considered as preceding and the exterior as following, or vice versa, i.e. when
we consider positive the negative and interior the exterior or vice versa. Since to
give an outer orientation to a surface we have selected one of its faces as preced-
ing and considered an arrow going from the preceding side to the following one, it
follows that we can do the same with a volume. Hence, if we have chosen the in-
terior as the preceding part, then the arrow crossing its boundary must be directed
outwards. In contrast, if we consider the exterior of the volume as the preceding
part, the arrows must go inside the volume, as shown in Fig. 3.9. Recall that the
divergence is the limit of the ratio outflow/volume.

Remark. In the old scientific literature, the positive orientation of volumes was the one with

inward arrows. Later it was decided to invert this choice and take the outward normals as pos-

itive. In Maxwell’s time, volumes were oriented with inward normals, and Maxwell introduced

the notion of convergence, which was later changed to divergence: see [152, p. 231]. The old

convention is used by Lamb [119, p. 44], Milne-Thomson [160, p. 54], Fer [66, Vol. II, p. 36].

This convention is still used in hydraulics (see De Marchi [52, Vol. I, p. 24]) and in geotechnics.

The modern convention (outward normals) is the most widely used one today; see Fung [77,

p. 66], Billington and Tate [15, p. 70], Sommerfeld [214, p. 60].

A volume endowed with an outer orientation will be denoted by placing a tilde

over the symbol:
∼
V.
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-P +P
-P +P

x

z
a b

Fig. 3.13 (a) A fountain is a source, whereas a manhole is a sink. (b) A point with an inner
orientation means that it is conceived as a source or a sink

3.5.4 Inner Orientation of Points

Is the orientation of a point meaningful? At first glance the answer would seem
to be negative because a point has no spatial extension. However, we distinguish
water emanating from a source from water disappearing into a hole in the ground:
the first is a source whereas the second is a sink (Fig. 3.13a). When a point is
conceived as a source or a sink, it will be endowed with inner orientation. This is
used in electromagnetism to distinguish a positive from a negative charge. Let us
give the following definition:

Definition. In three-dimensional space, the dual of a space element of
dimension p is an element of dimension (3 − p).

In particular, the dual of a point is a volume, the dual of a line is a surface, the
dual of a surface is a line and the dual of a volume is a point.

As we can see, the notions of inner and outer orientation are linked by the
following rule: the outer orientation of a space element is by definition the inner
orientation of the dual space element. Thus, the outer orientation of a line coin-
cides with the inner orientation of a surface crossing the line and vice versa. This
rule also gives a geometrical meaning to the inner and outer orientations of points.

The best way to give meaning to the inner orientation of a point is to define it as
the outer orientation of its dual space element, i.e. the volume. Since a volume is
endowed with an outer orientation when its boundary has an outgoing or ingoing
normal, we will say that a point is endowed with an inner orientation when the
outcoming or incoming lines are considered positive or negative.

Remark. To illustrate this point, when a concept cannot be applied directly to an object, it

may be possible to apply the notion indirectly to preserve some formal properties. For example,

let us consider the integer powers of a number, such as am. According to its original definition,

a4 means a4 = a × a × a × a, and the power a0 is meaningless. Later, we discover the rule
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Fig. 3.14 (a) The definition of the increment of a function implies that points have been oriented
as sinks. (b) The radius vector is always oriented from the origin of a reference system towards
a point, and hence the point is oriented as a sink

am/an = am−n for m > n. We can make this rule valid also for m = n because am/am = a0 = 1.

Thus the expression a0, which has no direct meaning, can have an indirect meaning by setting

a0 = 1.

In particular, we will show that points are implicitly oriented as sinks, as shown
in Fig. 3.14. This is never explicitly stated, but it can be inferred from the fact that

the usual definition of the increment Δ f (x)
def
= f (x+ h)− f (x) can be reinterpreted

as the following sum:

Δ f = (+1) f (x + h) + (−1) f (x) . (3.4)

In fact, if we consider that all line segments are oriented as the x-axis, we see that
the plus sign in front of the term f (x + h) and the minus sign in front of the term
f (x) can be interpreted as incidence numbers10 between the oriented line segment
and the oriented boundary points, as shown in Fig. 3.14a. Hence, an increment
deals implicitly with the notion of orientation of points.

Another reason for considering points oriented as sinks is the choice of the ra-
dius vector r in geometry and physics which starts at the origin of a coordinate
system and ends at the point, not vice versa, as shown in Fig. 3.14b. A point en-
dowed with an inner orientation will be denoted by placing a bar over the symbol,
i.e. P.

Remark. There is a significant discrepancy in books on algebraic topology regarding the

notion of the orientation of a point. To the author’s knowledge, none of the books gives a phys-

ical or geometric meaning to the concept of orientation of a point. Many of them simply state

that a point is oriented when we associate it with the number −1 or +1.11 Some authors say

10 See p. 186.
11 Veblen and Whitehead [241, p. 24], Patterson [173, Sect. 40], Seifert and Threlfall [210, p. 42],
Schouten [204, p. 55], Ciarlet and Lions [42, p. 123], Alexandrov [3, p. 4], Springer [218, p. 107].
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Fig. 3.15 Orientation of a point: (a) inner orientation; (b) outer orientation

that 0-simplexes (points) ‘admit only one orientation’.12 One author says that ‘a point has no

orientation property’.13

The notion of source and sink, borrowed from electromagnetism and fluid dy-
namics, can be defined as an inner orientation of points because it allows us to
maintain the notion of incidence number from a (p+1)-cell and a p -cell even
when p = 0. We note also that in network theory, to apply Kirchhoff’s law of
currents, we must decide if the currents coming to a node must be computed as
positive or negative, i.e. if nodes must be oriented as sinks or sources.

3.5.5 Outer Orientation of Points

We can define the outer orientation of a point in a similar fashion: a point will
be endowed with an outer orientation when an outer orientation around any line
starting at the point has been selected, as shown in Fig. 3.15b. Of course, the outer
orientation of every line must be coherent with those of the other lines. A point
endowed with an outer orientation will be denoted by placing a tilde over the

symbol:
∼
P. Another way to define the outer orientation of a point is to embed the

point in a volume and to consider the inner orientation of the volume: such an
inner orientation of the volume induces an outer orientation to the point, as shown
in Fig. 3.16.

In conclusion, we can say that points can have two kinds of orientation, an inner
and an outer one, and these two orientations can be easily visualized. The impor-
tant thing in physics is that there are physical variables associated with points with
an inner orientation, such as electric potential and velocity potential, whereas oth-
ers are associated with points endowed with an outer orientation, such as scalar
magnetic potential and stream function in fluid dynamics.14 The author believes
that this alleged lack of meaning about the concepts of inner and outer orientation
of points is due to a lack of interest by scholars of algebraic topology with respect
to the physical applications of the orientation of points.

12 Hilton and Wylie [92, p. 54], Naber [166, p. 113].
13 Whitney [253, pp. 4, 360].
14 See pp. 287 and 363 respectively.
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Fig. 3.16 The inner orientation of a space element induces an outer orientation of the dual ele-
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Fig. 3.17 Fluid flow in plane motion

Example 2. To show the need to endow points with an inner or outer orientation, let us consider

the motion of an inviscid fluid in a rectangular channel. The motion of the fluid is plane, irro-

tational, isochoric and steady, as in Fig. 3.17. The irrotationality condition means that the line

integral of the velocity along every closed line vanishes. The isochoric condition means that the

flux across every closed line vanishes. Since the velocity field is irrotational, by choosing a fixed

point A as the origin we can associate with any point P the line integral of velocity from A to

P. To this end, we must consider every line connecting the two points endowed with an inner

orientation, and the orientation is from A to P. Hence, all lines are incoming at P, and this point

is oriented as a sink or positively inner oriented. Let us now consider the flux across a line. By

choosing a fixed point B as the origin, we can associate with any point R the flux of the vector

q = ρv across every line connecting B with R. Since the motion is isochoric, the flux crossing

a closed line vanishes, and hence the flux across a line connecting B with R is the same for all

lines. Since we need the normal to the line for the evaluation of the flux, we see from Fig. 3.17

that all lines coming at R induce a direction of rotation around R, i.e. an outer orientation of R.
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3.6 Role of Space of Immersion

While the inner orientation of a space element does not depend on the dimension
of the embedding space, the outer orientation does. Thus the outer orientation
of a segment in three-dimensional space is an arrow around the segment, as in
Fig. 3.18a. When the same segment is embedded in a two-dimensional space, its
outer orientation is the direction of an arrow crossing it, as in Fig. 3.18b. When
the same segment belongs to a one-dimensional line, its outer orientation is like
a traction or a compression, as in Fig. 3.18c. In the theory of trusses, the bars
subjected to traction are considered positive. Let us now consider a plane area.
If it is immersed in three-dimensional space, its outer orientation is the direction
of an arrow crossing the surface to the plane, as shown in Fig. 3.19a. When it is
immersed in a surface, its outer orientation is a direction in which its boundary
in the plane is crossed, as shown in Fig. 3.19b. The outer orientation of a point
immersed in three-dimensional space is represented in Fig. 3.20a. When it is im-
mersed in a surface, its outer orientation is a direction of rotation around the point,
as shown in Fig. 3.20b. Lastly, when it is immersed in a line, an orientation is a
crossing direction of the point, as in Fig. 3.20c. With reference to Fig. 3.21a we
see that the outer orientation of the x-axis in a plane is the inner orientation of the
y-axis and the outer orientation of the y-axis is the inner orientation of the x-axis.
Figure 3.21b shows that the outer orientation of the xy-plane is the inner orienta-
tion of the z-axis and the outer orientation of the z-axis is the inner orientation of
the xy-plane.

L
−L

L
−L

L

−L

a b c

Fig. 3.18 Outer orientation of a line: (a) in three-dimensional space; (b) in a plane; (c) on a line
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Fig. 3.19 Outer orientation of a surface element: (a) in three-dimensional space; (b) in a plane
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Fig. 3.20 Outer orientation of a point: (a) in three-dimensional space; (b) in a plane; (c) on a
line
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Fig. 3.21 Relation between inner and outer orientations of coordinate axes: (a) in two dimen-
sions: the outer orientation of one axis coincides with the inner orientation of the other and
viceversa; (b) in three dimensions: the inner orientation of a coordinate plane coincides with the
outer orientation of the third axis

3.6.1 Induced Orientation

Figure 3.22 shows how the inner and outer orientations of a 3-cell is transformed
into the corresponding orientations of a 2-cell and a 1-cell. In particular, the fig-
ure shows that the outer orientation of a 1-cell in a one-dimensional manifold is
the equivalent of the outer orientation of a 3-cell. Figure 3.23 summarizes the
outer orientation of space elements by embedding them into spaces of different
dimensions. The orientation of a space element is maintained by projection on
lower-dimensional spaces. Figure 3.24 shows how an inner or an outer orientation
of a space element induces an inner or an outer orientation to its boundary.

3.6.2 Holes

The propagation of an inner or outer orientation according to Möbius’ law of edges
implies that the orientation of a hole is opposite to that of the surface containing
it, as in Fig. 3.25. So to find the area of a circular crown, we are accostumed to
calculating the difference between the area of the large disk and the area of the
small disk, the hole. Using the notion of oriented area we can say that the area of
the krone is the algebraic sum of the areas of the two disks where the area of the
small disk is negative whereas that of the large disk is positive. This can be done
if we use an inner or an outer orientation of the disks.
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Fig. 3.22 Picture showing how the inner and outer orientations of a cube in three dimensions
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Fig. 3.23 The outer orientation of a space element depends on the dimensions of the embedding
space. The windows must be read in rows
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Fig. 3.24 The orientation of a space element induces a consistent orientation to its boundary

The same happens with the volume of a spherical shell: instead of calculat-
ing the difference between the volume of the outer sphere and that of the inner
sphere, the hole, we can calculate the algebraic sum of the two volumes because
the volume of the inner sphere is negative.

3.7 Historical Note on Orientation

Euclidean geometry was developed without reference to the notion of orientation.
Riemannian geometry, which derives from the generalization of Euclidean geom-
etry, ignores the notion of orientation of a line: the length ds of a line element is
without sign. Function spaces, such as Hilbert and Banach spaces, evolved from
Euclidean geometry and do not take into account the notion of orientation in the
distance of two elements.

If we consider that Euclidean geometry was founded approximately 22 cen-
turies ago, then the notion of orientation appeared in geometry in comparatively

Fig. 3.25 The propagation of the outer orientation of a volume leads to an opposite orientation
of the holes
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Fig. 3.26 Two time elements: time instants and intervals

recent times. It was Möbius who, in 1827, with his book Der baryzentrische
Kalkül, introduced the sign principle into geometry.15

Physics developed without considering the concept of orientation with explicit
reference to the two types of orientation, inner and outer. We are indebted to
Schouten for the systematic use of the two kinds of orientation.16

In what follows, we will consider oriented space and time elements systemati-
cally.

3.8 Time Elements

Global variables refer not only to space elements but to time elements as well.
What is a time element? By this we mean a time instant and a time interval, which
we denote by I and T respectively. Hence, for uniformity with space elements,
we use capital letters for time instants, too. Moreover, we believe it is better to
use boldface capital letters I, T because it seems natural to reserve the letter T to
denote the duration of the time interval T. To analyse time elements, a geometric
representation of time is appropriate. An analogue clock (Fig. 3.26) allows us to
relate time instants with the points of a circumference. The hand on the clock in-
dicates the position of a point on the circumference; hence, a time instant and each
angle of rotation of the hand correspond to a time interval. The natural sequence
of time instants, which allows us to speak about before and after, is represented
by the rotation of the hand of the analogue clock. In place of the circumference of
the clock, we can use a straight line to indicate the sequence of time instants: this
is the time axis. Matching time instants with the points of the time axis we obtain
a geometric representation of time which is frequently used in physics to make
a diagram to describe the time behaviour of a phenomenon. The correspondence
between the time instants and the points of a line and the correspondence between
the time intervals and the segments of the line enables us to apply geometric con-
cepts to time elements.

15 Klein [114, p. 16].
16 Schouten [204].
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Fig. 3.27 Incidence numbers in a time complex

3.8.1 Primal Time Elements and Their Orientation

If we subdivide the time axis into intervals, as shown in Fig. 3.26, we obtain a sub-
division which gives rise to a cell complex in time: the cells are the time intervals
and the boundaries of each cell are the time instants. This cell complex will be
called primal. We denote the elements of a primal complex by placing a bar over
the symbol, i.e. I and T respectively.

Primal time intervals. With reference to Fig. 3.27, the inner orientation of the
primal time intervals is the same as the time axis: each time interval is oriented
from the preceding time instant to the following one in a natural time sequence.
The arrow along the time axis is a geometric representation of the progression of
time. The orientation of a primal time interval can be visualized by placing an
arrow over each primal interval.

Primal time instants. Are time instants orientable? At first glance this seems
non-sensical because time instants have no extension: the situation is similar to
that discussed for points.17 Let us consider a function f (t) and draw up its graph.
The definition of the increment of the function is

Δt f
def
= (+1) f (t+) + (−1) f (t−) . (3.5)

In Eq. 3.5 we draw the reader’s attention to the coefficients +1 and −1, which
can be interpreted as incidence numbers once we orient time instants as sinks,
as shown in Fig. 3.27. Hence, the number (+1) means that the orientation of the
time interval agrees with the orientation of the time instant t+, whereas the number
(−1) means that the orientation of the time interval disagrees with that of the time
instant t−.18 These signs are shown in the bottom of the right part of Fig. 3.28.

t
dual complex I IT

primal complexI IT

t–
+–

–– +

I IT

++ ++
– +

I IT

Fig. 3.28 The two kinds of orientation of time elements using signs

17 See p. 50.
18 See the corresponding notion for oriented space segments and oriented points of Fig. 3.14.
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Fig. 3.29 A primal and a dual cell complex on the time axis: four time elements

3.8.2 Dual Time Elements and Their Orientation

By means of the geometric representation of time, we introduce the notion of dual
complex in time. The intermediate time instant of each interval (Fig. 3.29) will
be called a dual instant and the time intervals between dual time instants will
be called dual intervals. In this way, we have constructed a second cell complex
along the time axis, which can be called a dual of the first: its elements will be

denoted by placing a tilde over the symbol, i.e.
∼
I and

∼
T.

Remark. We are not required to choose the dual time instants in the middle time of the primal

intervals: any time instant which belongs to a primal time interval is a possible candidate as a

dual instant.

The reason for introducing the dual time elements will become clear when
we examine the notion of acceleration of a particle. To define acceleration, let us
consider three time instants t1, t2, t3 with the same duration τ of the time interval
between them, i.e. τ = t3−t2 = t2−t1. If we denote by x1, x2, x3 the three abscissae,
then the mean velocity and the mean acceleration are given respectively by

vm =
x2 − x1

τ
, v′m =

x3 − x2

τ
, am =

v′m − vm

τ
=

x3 − 2x2 + x1

τ2
. (3.6)

From these formulae we see that while velocities change sign under reversal of
motion, acceleration does not change sign. In fact, by inverting the time sequence
t1, t2, t3, we have the sequence t3, t2, t1, and the mean acceleration remains the
same despite the change x1 ↔ x3.

The fact that acceleration does not change its sign under reversal of motion
implies that it cannot be associated with primal time intervals which are endowed
with inner orientation; otherwise the oddness principle19 would be violated. This
leads us to consider intervals not endowed with an inner orientation. Considering
that the mean acceleration makes use of the middle time instants of two consecu-
tive intervals, we see that the time intervals with which it is associated are the dual
ones.

19 See p. 122.
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Fig. 3.30 (a) Outer orientation of surface in space compared with (b) outer orientation of time
interval

We have seen that in a space cell complex, the inner orientation of a p-
dimensional cell of a primal complex induces an outer orientation on its dual cell.
It is therefore natural to define as outer orientation of the dual time elements the
one induced by the inner orientation of the primal time elements, as shown in
Fig. 3.28.

Dual time instants. Let us examine the meaning of the arrow that crosses the

dual instant
∼
I . Referring to Fig. 3.30, let us compare the outer orientation of a

surface embedded in space and the dual instant on the time axis. What does outer
orientation mean? In the case of a surface, it means the choice of one of the two
sides of the surface, like the preceding one and the other as the following one. It
is natural to indicate the preceding part with a minus sign and the following part
with a plus sign. It is also natural to use an arrow that goes from minus to plus.
The arrow passes through the surface.

On the time axis, it is natural to consider the instants that precede and those that
follow a given dual instant and consider these two sets in this order, i.e. to speak
of before and after the instant. It is also natural to assign a minus sign to before
and a plus sign to after. Following the rule used up to now we can draw an arrow
from the minus sign to the plus sign, i.e. from before to after. Hence the arrow that
crosses the dual instant simply means the order before/after or after/before.

Since the orientation of a dual instant is, by definition, the one induced by the
inner orientation of the corresponding primal interval, it follows that a dual instant
∼
I acquires an outer orientation, which is represented by an arrow that ‘crosses’ the
instant (Fig. 3.28). An alternative representation of the orientations is given in the
right part of Fig. 3.28: instead of the arrows we use the + and − signs.

Dual time intervals. Let us raise the question of whether we can call oriented
a time interval endowed with arrows directed outside or inside the interval. Re-
call that in the theory of bars one can consider positive the traction and negative
the compression, as shown in Fig. 3.31. The notion of orientation arises whenever
one entity has two opposite determinations. The outer orientation of dual intervals,

Fig. 3.31 This is the convention used in books on the strength of materials
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Fig. 3.32 Time intervals endowed with outer orientation

induced by the inner orientation of primal time instants, is represented by arrows
pointing inside the interval, like a bar under compression. We stated that the outer
orientation of a volume induced by the inner orientation of a point (sink) was
opposite to that currently used in physics, i.e. the orientation with outward nor-
mals. Hence, to agree with existing conventions, we take as the outer orientation
of volumes the opposite of the orientation induced by primal points.

Therefore, we will do the same here for the outer orientation of intervals:
whereas primal time instants induce an orientation on the dual time intervals with
the arrows directed inwards, we will choose, according to the existing convention,
to direct the arrows outwards, i.e. opposite to the orientation induced by the pri-
mal time instants, as in Fig. 3.28. This sign inversion is needed to agree with the
formula which defines acceleration.

When time instants and time intervals are represented geometrically, as in
Fig. 3.28, the arrows give a geometric meaning to the time orientation. In fact,
in Eq. 3.6, we used the relation

a m =
(+1)v′m + (−1)vm

τ
, (3.7)

in which the coefficients +1 and −1 can be interpreted as incidence numbers be-
tween the time interval with outgoing arrows and the time instants with arrows
crossing them, as shown in Fig. 3.28.

What is the physical meaning of the outer orientation of dual time intervals?
We will show that this type of orientation is widely used in our daily lives. For
example, consider the opening hours of a store. In the morning, the shop is open
from 9 a.m. to 12:30 p.m. and in the afternoon from 4 to 7:30 p.m. Considering the
matter from the point of view of the public and of shoppers these two intervals are
positive, whereas from the point of view of the shop owner and his or her family
members the complementary intervals are positive (Fig. 3.32).

To say that a time interval has an outer orientation means that we must consider
as positive or negative the value of a physical variable associated with such an
interval, disregarding the ‘arrow of time’. The best example is that of the impulse
of a force which does not invert its sign when we perform a reversal of motion.20

In other words, to say that an interval has an outer orientation means that any
event that happens in the interval is considered positive, whereas when it happens
outside of the interval it is considered negative. To take another example, clap-
ping that is done during the execution of an orchestral performance is considered

20 See p. 131.
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negative, whereas clapping done before or after the performance is considered
positive. If you run a video of the event and run the film backwards, the applause
done during the performance remains in the same time interval and is considered
negative even in this case.

The notion of orientation in physics is made difficult to grasp because we are
accustomed to using specific terms to denote the two opposite determinations of
an attribute. Table 3.2 gives examples of such terms.

Table 3.2 Adjectives referring to motion: the + sign is conventional

Minus (-) Plus (+) Minus (-) Plus (+)
To receive To give Backwards Forwards
Incoming Outgoing Preceding Following

Arrival Departure Before After

Table 3.3 shows the two possible meanings of orientation of time instants.

Table 3.3 Inner and outer orientation of time instants

Inner orientation

I

	� �

	� �

To receive
Incoming
Arrival

To give
Outcoming
Departure

Outer orientation

∼
I

	

	

� �

� �

Forward
Following
After

Backward
Preceding
Before



Chapter 4
Cell Complexes

4.1 Coordinate Systems and Cell Complexes

Before Descartes, there were two branches of science which developed separately
for centuries: algebra on the one hand and geometry on the other. Descartes had
the idea of associating a couple of numbers with each point of the plane: a simple
idea, but one with an explosive content. With the birth of Cartesian coordinates,
in fact, the wall that divided algebra and geometry was demolished. This fusion
gave rise to analytic geometry.

The result is surprising: every elementary geometrical figure, such as a line,
parabola, circle, ellipse, hyperbola, spiral of Archimedes, cardioid, cycloid, trac-
trix, catenary or lemniscate of Bernoulli, can be described by an equation which
expresses the relationship between the coordinates of its points. Conversely, to
each function (of one variable) we can associate a line. This correspondence is
commonly used, for example, in seismography for recording earthquakes and in
cardiology for recording heart activity.

The merger between geometry and algebra gave many mathematical operations
a corresponding visual representation: thus, for example, the derivative of a func-
tion is related to the tangent to the curve which represents the function, and the
integral of a function is related to the area enclosed by the curve. The great power
of geometric representation is to capture with immediacy the main features of a
function, for example, its maxima and minima, its stationary points, the regions
of increase and decrease, the zeros and the asymptotes.

Physics greatly benefits from the correspondence between the functions which
represent the behaviour of a phenomenon and their graphical representation: think
of thermodynamic cycles, or the study of oscillations, or the huge number of dia-
grams that express the evolution in time of a physical variable.

Since physics describes phenomena arising in space, it makes extensive use
of geometric concepts such as, for example, distances, lengths, angles, areas
and volumes. Physical notions are translated into mathematical notions by the

E. Tonti, The Mathematical Structure of Classical and Relativistic Physics,
Modeling and Simulation in Science, Engineering and Technology,
DOI 10.1007/978-1-4614-7422-7__4, © Springer Science+Business Media New York 2013
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physics geometry mathematics

Fig. 4.1 Geometry is the indispensable bridge between physics and mathematics

Table 4.1 Summary of symbols and names used to denote space elements

Symbol Space element Cell complex Algebraic topology

P Point Vertex 0-cell e0

L Line Edge 1-cell e1

S Surface Face 2-cell e2

V Volume Cell 3-cell e3

intermediary of geometry (see Fig. 4.1) via the use of coordinate systems. At the
same time physical variables are reduced to the function of points in order to per-
mit the differential formulation of physics. It follows that coordinate systems have
emerged as an indispensable tool to deal with geometrical notions when using the
differential formulation.

On the other hand, if we want to provide a mathematical description of phys-
ical fields using global variables, we must consider that global variables are set
functions, not point functions, i.e. they are associated with lines, surfaces and vol-
umes, not only with points. Hence, a coordinate system is not the most appropriate
framework: the most natural framework is a cell complex.

A cell complex is a subdivision of a space region into small elements called
cells. In numerical analysis cells are usually called elements: this is the term used
in the Finite Element Method (FEM). We prefer to use the term cell and conse-
quently the term cell complex because this is the name given in algebraic topology,
where a complete theory has been developed on this topic. In the algebraic formu-
lation of physics cell complexes play the same role that coordinate systems play
in the differential formulation. Cell complexes offer all the space elements needed
for the algebraic formulation: points (vertices), lines (edges), surfaces (faces) and
volumes (cells).

In algebraic topology, vertices are called zero-dimensional cells, or 0-cells for
short; edges are called one-dimensional cells, or 1-cells for short; faces are called
two-dimensional cells, or 2-cells for short; volumes are called three-dimensional
cells, or 3-cells for short. These p -cells will be denoted by e0, e1, e2, e3 respec-
tively. Table 4.1 summarizes this nomenclature.

In numerical analysis one speaks about meshes, grids, nets or lattices instead
of cell complexes;1 in geometry one speaks about tessellation.2 The notion of

1 Isaacson and Keller [99, p. 364].
2 Coxeter [44].
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Fig. 4.2 Cartesian cell complexes in two and three dimensions

cell complex is more general and contains these geometric structures as particular
cases.

There are two possible alternatives for creating a cell complex:

1. Discretizing a space region by using the coordinate surfaces of a coordinate
system, be it Cartesian, cylindrical, spherical or otherwise. A coordinate cell
complex obtained in this way is useful for deducing the differential formulation
of physical equations from the algebraic formulation;

2. Discretizing a space region by subdividing it into elements of an arbitrary
shape. The simplest subdivisions are formed by tetrahedra (in space) and trian-
gles (in a plane). Since these elements are the simplest polyhedra and polygons,
respectively, they are called simplices, and a cell complex formed by these sim-
plices is called a simplicial complex.

4.1.1 Coordinate Cell Complexes

Figure 4.2 shows a two-dimensional and a three-dimensional cell complex ob-
tained from a Cartesian coordinate system, while Fig. 4.3 shows cells derived from
Cartesian, cylindrical and spherical coordinate systems.

The most natural cell complexes are those formed by the coordinate lines and
surfaces of a coordinate system, such as Cartesian coordinate system (Fig. 4.2)
cylindrical and spherical coordinate systems (Fig. 4.3). We will call them coordi-
nate cell complexes.

The use of coordinate cell complexes is implicit in the customary derivation of
gradient, curl and divergence in Cartesian and in curvilinear coordinate systems.

Thus, to evaluate the gradient of a scalar function, we must evaluate the func-
tion increments along the coordinate lines; to evaluate the curl of a vector field,
we must perform the line integral of the vector along the boundary of a cell face;
to evaluate the divergence of a vector field, we must evaluate the flow through the
boundary of a cell.
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Fig. 4.3 Cells in main coordinate systems: (a) Cartesian; (b) cylindrical; (c) spherical

4.1.2 Families of Cells

Only in the case of cell complexes obtained from coordinate systems can we speak
of a family of lines and a family of surfaces. In other words, the 1-cells which are
relatives of the same kind of coordinate line constitute a family and the 2-cells
which are relatives of the same kind of coordinate surface constitute a family.

To this end, let us consider a Cartesian cell complex in three-dimensional space
(Fig. 4.2). We see that there are three families of lines, those parallel to the x-, y-
and z-axes. There are also three families of surfaces, those parallel to the xy-, yz-
and xz-planes. We see that there is only a single family of points and a single
family of volumes.

Hence, for a coordinate cell complex, and only for this, in three-dimensional
space we can place the number of families in front of the letters denoting the space
elements and write 1P, 3L, 3S, 1V, as shown in Fig. 4.4.

Note that a reduction in the dimension of the ambient space produces a corre-
sponding reduction in the number of families. In fact, as Fig. 4.5 shows, in two-
dimensional space, there are two families for lines but one family for points and
surfaces. Hence, we can write 1P, 2L, 1S.

The same considerations hold for cell complexes obtained from other kinds
of coordinate systems. To summarize, in three-dimensional space, the 1-cells can
be grouped into 3 families: those along the coordinates x, y, z in the Cartesian
complex; φ, ρ, z in the cylindrical cell complex; and φ, r, θ in the spherical cell
complex. The 2-cells can also be grouped into three families: xy, yz, zx in the
Cartesian cell complex; φρ, ρz, zφ in the cylindrical cell complex; and φr, rθ, θφ in
the spherical cell complex. The 0-cells and the 3-cells have only 1 family.

Fig. 4.4 Families of points, lines, surfaces and volumes of a Cartesian coordinate system in
three-dimensional space
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Fig. 4.5 Families of points, lines and surfaces of a Cartesian coordinate system in two-
dimensional space

Table 4.2 Cells of the same dimension of a coordinate cell complex can be grouped into families

One-dimensional region

{
One family of 0-cells
One family of 1-cells

1P
1L

P
Lx

Two-dimensional region

⎧⎪⎪⎪⎨⎪⎪⎪⎩
One family of 0-cells
Two families of 1-cells
One family of 2-cells

1P
2L
1S

P
Lx,Ly

Sxy

Three-dimensional region

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

One family of 0-cells
Three families of 1-cells
Three families of 2-cells
One family of 2-cells

1P
3L
3S
1V

P
Lx,Ly,Lz

Sxy, Sxz, Syz

Vxyz

Four-dimensional region

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

One family of 0-cells
Four families of 1-cells
Six families of 2-cells
Four families of 3-cells
One family of 4-cells

1P
4L
6S
4V
1H

P
Lt,Lx,Ly,Lz

Stx, Sty, Stz, Sxy, Sxz, Syz

Vtxy,Vtxz,Vtyz,Vxyz

Htxyz

Note that in a four-dimensional space, typically space-time, the number of fam-
ilies is 1P, 4L, 6S, 4V, 1H, where the symbol H stands for hypercell. This can be
viewed in Table 4.2 and in the last level of Fig. 4.6. In fact, if we add the coordi-
nate t to the three space coordinates, we have four families of lines, i.e. t, x, y, z;
six families of surfaces, i.e. tx, ty, tz, xy, xz, yz; four families of three-dimensional
cells, i.e. txy, txz, tyz, xyz, and, lastly, one family of points (called events) and
hypervolumes, i.e. txyz.

4.1.3 Simplicial Cell Complexes

As stated previously, even though squares and cubes are easy to draw, they are
not the simplest polygons and polyhedra: triangles and tetrahedra are the simplest
objects in two- and three-dimensional spaces respectively. For this reason triangles
and tetrahedra are called simplices of the corresponding space, and a cell complex
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Fig. 4.6 Pascal’s triangle gives the number of families of elements in spaces of various dimen-
sions

formed by simplices is called a simplicial complex (Fig. 4.7). They are the most
useful complexes for dealing with numerical solutions of physical problems in
complex geometries.

Simplicial complexes3 are mainly used in algebraic topology, one of the two
branches into which topology is divided, the other being point set topology. Many
properties of cell complexes have been developed in algebraic topology, among
them the notions of orientation, duality and incidence numbers. A cell complex
is said to be n-dimensional, and will be denoted by Kn, if the highest-dimensional
cells have dimension n. For example, a lattice of points (nodes), such as that used
in the finite difference method, is a 0-dimensional cell complex, K0. A planar
graph4 formed by vertices and edges is a one-dimensional cell complex, K1.

For simplicial cell complexes we cannot establish families as we did for Carte-
sian cell complexes. Moreover, we must assign a label to every p-dimensional sim-
plex: this is analogous to the assignment of the coordinates to the points by means

3 Wallace [244, p. 168]; Alexandrov [2].
4 Lefschetz [132, p. 93]; Lefschetz [133, p. 47]; Bourgin [24, p. 17]; Singer and Thorpe [211,
p. 101]; Hilton and Wylie [92, p. 64].
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a b

Fig. 4.7 A simplicial complex: (a) in two dimensions; (b) in three dimensions

of a coordinate system. The criterion for assigning a label to each p-dimensional,
and such assignment is automatically performed by the mesh generators used in
computational physics (Fig. 4.8).

4.2 Dual Cell Complexes

In the differential formulation, physical laws are expressed by differential opera-
tors. Let us consider, as an example, the Laplace operator∇2. An equation such as
Poisson’s equation

−k∇2u(P) = ρ(P) (4.1)

links the source density ρ evaluated at a point P with the Laplacian function
∇2u(P) evaluated at the same point. Even though this relation appears to be a
pointwise relation, it is not really pointwise. In fact, the operations involved in
the calculation of the Laplacian requires us to consider a neighbourhood of the
point P to perform the partial derivatives. This means that a differential equation
implies a neighbourhood of every point and not only the point itself. This neigh-
bourhood acts as an auxiliary region of the point, and its extension is undefined.
When one uses a discrete formulation, e.g. the finite difference method, this ex-
tended auxiliary region can be identified with the ‘stencil’ used in the forward and

Fig. 4.8 Space region containing different materials discretized by a simplicial complex and its
dual
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Fig. 4.9 The temperature of a room is measured at its centre

backward differences. As a general principle, the algebraic formulation requires
a surrounding auxiliary region around the nodes of a cell complex.

These simple physical considerations suggest considering an auxiliary region
around the cell complex for every one of its nodes. All these auxiliary regions
constitute another cell complex, called a dual cell complex of the complex.

Example 1. Let us consider two adjacent rooms (Fig 4.9). Let us consider at a time instant the

heat generation rate P1 and P2 (in watt) within each room and the heat current Φ (W) through

the wall separating the rooms. Let T1 and T2 be the temperatures of the two rooms at the same

time instant. What point can be chosen to measure the temperature of each room? An obvious

choice for measuring the temperature is the centre of each room, as shown in Fig. 4.9. When such

a choice is made, the difference between the temperatures of the two rooms is associated with

the line connecting the two centres. Now, if we consider more than two rooms, as in Fig. 4.10b,

then we refer the temperatures to the centres of each cell and the temperature differences to the

lines which connect these centres. The centres of the cells and the lines connecting them can be

conceived as vertices and edges, respectively, of another cell complex, which is dual of the first

complex.

Example 2. Let us consider the deflection of a horizontal plate subjected to a vertical load, and

let us subdivide it into squares, as shown in Fig. 4.11a. These squares will be considered cells of

a cell complex. If we consider the vertical load acting on each cell, then it is natural to consider

the centre of the cell as being representative of the vertical displacement of every cell. In turn,

a b

Fig. 4.10 Cartesian cell complexes in two and three dimensions: the dual complex is shown in
thick lines, the primal complex in thin lines



4.2 Dual Cell Complexes 71

a b

Fig. 4.11 Cell complex and its dual for plate under normal load

the cells can be thought of as auxiliary regions of every central node. Also in this case, we have

obtained another cell complex which is dual to the first complex.

These two examples suggest that by starting with a cell complex called a pri-
mal, we can construct another complex called a dual cell complex, or its dual
for short. We will denote the primal cell complex by K and the dual cell com-

plex by
∼
K.

It is a matter of convenience to consider the first complex as primal and the
second as dual, or vice versa. Experience tell us that it is convenient to consider as
dual that complex whose cells contain the sources of the field. Hence, in thermal
conduction, the rooms are taken to be a dual complex because each of them can
have a heat-generation rate and in the bending of plates the squares of the first
subdivision on which the load is considered are taken to be dual.

The 1-cells of the dual (dual edges) are the lines connecting the dual 0-cells
(dual nodes) contained in two adjacent n-cells of the primal complex. The 2-cells
of the dual are the faces bounded by the 1-cells of the dual: in IE3 they are inter-
sected by the 1-cells of the primal complex. The 3-cells of the dual contain the
0-cells of the primal complex. Then for every p -cell of the primal complex there
is a corresponding (n− p)-cell of the dual. The correspondence lies in the fact that

a

b

p

q

s s

r r

c

a

c
d

dual of (a,b)

dual of (s)
dual of (s)

dual of (r)

dual of (r)dual of (p,q) dual of (a,c)dual of (a,c,d)

a b

Fig. 4.12 Dual of a cell complex: (a) Voronoi dual; (b) barycentric dual
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a b

Fig. 4.13 Around each node one can select the dual cell as a tributary region: (a) Voronoi dual;
(b) barycentric dual

a p -cell of the primal contains or crosses or is contained in an (n − p)-cell of the
dual, as shown in Figs. 4.19 and 4.30 (p. 86). This one-to-one mapping between
p -cells in the primal and (n − p)-cells in the dual motivates the term dual given
to the complex. Moreover, this one-to-one mapping allows us to assign the same
label to a p -cell and the dual (n-p)-cell.

We will denote the primal cell complex by thin lines and the dual one by thick
lines in the figures.

4.2.1 Duals of Simplicial Complexes

Let us consider a simplicial complex in a two-dimensional space, as shown in
Fig. 4.12. In principle, there are many possible ways to construct a dual com-
plex. The simplest way is by using Voronoi cells (Fig. 4.12a) and barycentric cells
(Fig. 4.12b), which are commonly used in computational physics. Voronoi cells
are polygons whose sides are the axes of the edges of a primal complex, as shown
in Fig. 4.12a, whereas barycentric cells are polygons obtained by connecting the
barycentre of every triangle with the midpoint of the edges of the triangles, as
shown in Fig. 4.12b. These polygons are the natural areas of influence or tributary
areas of the nodes.

In a three-dimensional region, a simplicial complex is composed of tetrahedra,
and the dual cells can be, once more, Voronoi or barycentric cells, as shown in
Fig. 4.13a, b.

4.2.2 Voronoi Dual

In the case of a simplicial complex in IE2, instead of the barycentre one can use the
circumcentre. In IE3 we can use the spherocentre, i.e. the centre of a sphere whose
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axes medians

Fig. 4.14 Circumcentre (left) and barycentre (right) of a triangle

surface passes through the four vertices of a tetrahedron. The choice of the circum-
centre has a disadvantage: it is possible that in a simplicial complex the simplices
will have circumcentres which lie outside the simplex. In a plane, this happens
when there are triangles with an angle greater than 90◦. The circumcentres that lie
outside the corresponding triangles generate numerical errors. The circumcentres
which lie outside the corresponding triangles generate numerical errors. A trian-
gulation such that the circumcentre of each triangle lies inside the triangle is called
a Delaunay triangulation.5

In numerical analysis, where metrical concepts are essential, for simplicial
complexes the use of circumcentres and spherocentres is preferred because they
possess the useful property that the line connecting the circumcentres of two ad-
jacent cells is orthogonal to their common face, as shown in Fig. 4.14a.

With reference to Fig. 4.12a in a two-dimensional simplicial complex, the dual
edges (1-cells) which start from a common dual node (0-cell) bound a polygon.
This polygon possesses the property that its interior points have a distance from
the common node which is less than the distance from any other node of the mesh.
This gives rise to a new complex called a Voronoi complex.6 When a Voronoi
complex is made on a Delaunay complex, we obtain the well-known Voronoi–
Delaunay complex (Fig. 4.12a).7

Simplicial complexes are widely used in numerical solutions. The dual is often
of the barycentric type, as shown in Figs. 4.15 and 4.16.

Remark. We stated that the notion of a cell complex in a discrete setting corresponds to

the notion of a coordinate system in a differential setting. We can add that a Voronoi–Delaunay

couple of cell complexes in an algebraic setting corresponds to an orthogonal coordinate system

in a differential setting.

5 Cavendish et al. [37]; Frey and Cavendish [76].
6 Also called a Dirichlet complex. See Frey and Cavendish [76].
7 Cavendish et al. [37].
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Fig. 4.15 Region around an electric wire decomposed using a simplicial complex (left) and its
barycentric dual (right)

4.2.3 Barycentric Dual

In the barycentric subdivision of a plane cell complex, the dual of a 1-cell is com-
posed of two line segments connecting the midpoint of the 1-cell with the two
barycentres of the adjacent cells, as shown in Fig. 4.12b. In other words, the dual
1-cell is not a straight line.

The same happens for the dual of a 1-cell in three dimensions: this dual cell is
formed by many faces, as shown in Fig. 4.17b.8

a b c

Fig. 4.16 (a) Domain composed of different materials. (b) Simplicial complex. (c) Its barycen-
tric dual

8 Munkres [165, p. 378]; Dubrovin et al. [58, Sect. 7].
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Fig. 4.17 The dual of a 1-cell in three dimensions is a face composed of many flat small faces

4.3 Inner and Outer Oriented Cell Complexes

In a planar graph, the graph is said to be directed when all edges have been en-
dowed with an arbitrary orientation, as shown in Fig. 4.18b. In contrast, nodes and
loops are all endowed with a compatible orientation, as shown in Fig. 4.18a, c.

Hence, given a cell complex, one can assign an inner orientation to all its p -
cells as follows:

• First, we can consider all 0-simplices as sinks or sources: sinks are the common
choice.

• Then we must give an inner orientation to all n-simplices. To do this, we choose
one of the two possible orientations of one n-simplex and we propagate the
same orientation to all n-simplices. The propagation criterion is provided by the
Möbius law of edges:9 two adjacent n-cells in IEn have compatible orientations
when they induce opposite orientations on their common face.

compatible arbitrary compatible

a b c

Fig. 4.18 Oriented graph, also called a directed graph. (a) The 0-cells (nodes) all have the same
orientation: e.g. sinks. (b) The 1-cells (edges or branches) have arbitrary orientations. (c) The
2-cells (loops) have a compatible orientation

9 Klein [114, p. 17].
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Fig. 4.19 Oriented cell complexes. (a) Oriented Cartesian complex. (b) Oriented simplicial com-
plex

• For cells of dimension p � 0 and p � n it is not possible to give, in general, a
compatible orientation,10 and this must be done arbitrarily for every p -cell. In
computational physics, it is customary to orient 1-cells from the node with the
smaller label to the node with the greater label.

In conclusion, we can say that a cell complex has an inner orientation when all
the p -dimensional cells, with 0 ≤ p ≤ n, have been oriented (Fig 4.19).11

Since physical variables refer to space elements endowed with an orientation,
it will be useful to assign an orientation to all p-cells of a cell complex (Fig. 4.20).
A Cartesian cell complex with all p-cells endowed with an inner orientation is
shown in Fig. 4.21. This figure has an interesting feature: every vertex of the pri-
mal cell complex lies in the centre of a dual cell; each edge of the primal complex
crosses a face of the dual complex; each face of the primal is crossed by an edge
of the dual, and each cell of the primal has a vertex of the dual as its centre. This
relation between the elements of the primal and dual complexes is called a duality
relation.

4.3.1 Outer Orientation

It is a pleasant surprise to see that if we assign an inner orientation to every p-
cell of the primal complex, this automatically induces an outer orientation on the
dual cells of dimension (n − p), as shown in Fig. 4.22. As a consequence of this
beautiful marriage between the two kinds of cell complex and the two kinds of
orientation, it follows that the same symbol, say L, can be used to denote two
things: a line element endowed with an inner orientation and an edge of the primal

10 Franz [74, p. 31].
11 Hocking and Young [94, p. 223].
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Fig. 4.20 Oriented cell complexes and their dual: (a) oriented Cartesian complex; (b) oriented
simplicial complex and its Voronoi dual
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Fig. 4.21 Primal and dual cell complexes and their orientation: (a) in three dimensions; (b) in
two dimensions; (c) in one dimension.
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Fig. 4.22 The inner orientation of an element of the primal complex induces an outer orientation
on the corresponding element of the dual
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a b

Fig. 4.23 (a) The inner orientation of a 0-cell P as a source (outgoing arrows) induces on the
dual cell S̃ an outer orientation (outward arrows). (b) The inner orientation of the 1-cell L of the
primal induces an outer orientation on the 1-cell of the dual

complex. Similarly, the symbol
∼
S denotes a surface element endowed with an

outer orientation and a face of the dual complex, and so forth.
The bijective mapping between p -cells of the primal and (n − p)-cells of the

dual permits us to define the notion of outer orientation.12

Definition. We call the outer orientation of a p -cell of a dual cell com-
plex K̃ and that induced by the inner orientation of the corresponding
(n − p)-cell of the primal complex K.

With this definition we have a systematic way of defining the outer orientation
of the p -cells. In particular, for historical reasons, points have been (implicitly)
oriented as sinks, whereas volumes have been (explicity) oriented with outward
normals. It follows that the inner orientation of points induce on their dual volume
an orientation which must be inverted to agree with the traditional outer orienta-
tion of volumes. In physics, this fact justifies the omnipresent minus sign in front
of the gradient, as in the relation of electrostatics E = −gradφ (Fig. 4.23). Table 4.3

summarizes the double meaning of each of the eight symbols P,L, S,V,
∼
P,
∼
L,
∼
S,
∼
V.

4.4 Role of Dual Complex in Mathematics

In mathematics, we often perform the subdivision of a region into subregions:
this is done when we approximate a line with a broken line or a surface with a
polyhedral surface, or when we divide a volume into small volumes. The simplest
case occurs in the definition of the definite integral of a function f (x) when we
divide the integration interval [a, b] into many subintervals of length δi = xk−xk−1,
as shown in Fig. 4.24a. Later we take a value ξi inside each subinterval and define
the definite integral as the limit of the sum

12 Veblen and Whitehead [241, p. 55].
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a b

Fig. 4.24 A primal and a dual cell complex useful for performing numerical integration and
numerical derivation

Table 4.3 Summary of symbols used to denote space elements endowed with inner or outer
orientation

Point with inner orientation P Vertex of primal complex
Line with inner orientation L Edge of primal complex

Surface with inner orientation S Face of primal complex
Volume with inner orientation V Cell of primal complex

Point with outer orientation
∼
P Vertex of dual complex

Line with outer orientation
∼
L Edge of dual complex

Surface with outer orientation
∼
S Face of dual complex

Volume with outer orientation
∼
V Cell of dual complex

J =
∫ b

a
f (x) dx

def
= lim

∑
i

f (ξi) δi . (4.2)

The position of the point ξi within the subinterval δi is not important; the midpoint
is a convenient choice for a numerical approximation. The resulting subdivision
can be called dual. Figure 4.24b shows that the incremental ratio of a function
relative to a subinterval gives a good evaluation of the derivative of the function at
the midpoint of the subinterval. This is an approximate version of the mean value
theorem.

4.5 Role of Dual Complex in Physics

Let us consider a simple problem, such as the traction of a rod with uniform
cross section suspended at one end and subjected to its own weight, as shown
in Fig. 4.25a. Suppose also that the material is not homogeneous, so that the elas-
tic modulus is variable along the axis of the stalactite. The fundamental problem
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a b c d

Fig. 4.25 The reason for the introduction of the dual cell complex shown on a stalactite

is the following: given the distribution of the weights along the z-axis of the rod,
find the displacements u(z) of every normal section.

To solve this problem, we start with the discrete case, i.e. we divide the whole
rod into blocks (shaded area) and we impose equilibrium on every block. Consid-
ering, for example, the two faces of block 3, the equation of equilibrium is

+N3 − N2 +W3 = 0, (4.3)

where W3 denotes the weight of the block, as shown in Fig. 4.25b. The axial forces
N2 and N3 are linked to the elastic deformation by Hooke’s law N = EAε, where
ε is the linear strain defined as ΔL/L and A is the area of the section.

We must now examine which L must be considered. A first idea is to consider
the elongation of the same block on which we have imposed equilibrium. But
this is improper because it will give N2 = E2 A2 ε and N3 = E3 A3 ε, so that the
equilibrium equation would be reduced to ε (E3 A3 − E2 A2) + W3 = 0, which is
wrong, as can be easily seen when the rod is homogeneous, i.e. E2 = E3, since it
has a uniform section, i.e. A2 = A3, because this would imply W3 = 0. Hence it
must be ε2 � ε3. To evaluate ε2, we must consider a small region that contains a
face at z2. To do this, we find it natural to introduce two sections at z̃a ≤ z2 ≤ z̃b.
For the same reason we must introduce two sections such that z̃c ≤ z3 ≤ z̃d, as
shown in Fig. 4.25c. Hence, denoting by u the displacement of a section from its
initial position, we have

ε2 =
ΔL2

L2
=

ub − ua

z̃b − z̃a
ε3 =

ΔL3

L3
=

ud − uc

z̃d − z̃c
. (4.4)

Inserting these relations into Eq. 4.3 we obtain the equation
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+E3 A3
ud − uc

z̃d − z̃c
− E2 A2

ub − ua

z̃b − z̃a
+W3 = 0. (4.5)

This obligates us to introduce two sections for every face of the primal blocks.
It follows that the number of displacements (uk) involved is twice the number of
blocks on which we can write the equilibrium; hence, we do not have enough
equations to find all the unknown displacements.

How can we solve the problem? The idea is to increase the lengths L2 = z̃b − z̃a

and L3 = z̃d − z̃c in such a way to make the two sections inside the same block, i.e.
z̃b and z̃c, coincide. The simplest way to do this is by considering the sections at the
midpoint of every block, as shown in Fig. 4.25d. In this way, we have one section
z̃ for every block, and the number of displacements becomes equal to the number
of blocks increased by 2. The two equations which are needed are provided by the
boundary conditions, which is typical of the differential formulation. Equation 4.5
becomes

+E3 A3
u3 − u2

z̃3 − z̃2
− E2 A2

u4 − u3

z̃4 − z̃3
+W3 = 0, (4.6)

and the number of unknowns is equal to the number of equilibrium equations. In
doing this we are naturally prompted to use a dual cell complex. The choice of
the midpoint is not imperative; what we need is to make z̃b coincident with z̃c for
every face of the blocks.

4.6 Global Variables and Computational Physics

The discovery that global physical variables are associated with space elements
endowed with inner or outer orientation, coupled with the use of two cell com-
plexes, the primal and dual, allows us to write physical equations directly in alge-
braic form.

In fact, the traditional mathematical treatment of physics, based on the differ-
ential formulation of its physical laws, easily leads to differential equations. This
is the case for the equations of Poisson, Maxwell, Fourier, Navier–Stokes, etc. But
the solution of these partial differential equations in the cases of practical inter-
est in physics and engineering, involves the use of numerical techniques which
are generally not part of physics books. In these books the solution is found only
for the simplest cases, leaving to computational physics the task of solving more
complex problems numerically. Computational physics uses different methods to
discretize differential equations, such as FEM, BEM, FDM, FVM etc.

In contrast, the algebraic formulation which we will present in this book, which
is obtained by using global variables and taking into account their association
with the space and time elements, directly provides systems of algebraic equations
needed for the numerical solution.
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Hence, an analysis of the mathematical structure of physical theories, made
to explain the reasons for the analogies in physics as well as to provide a ratio-
nal classification of variables and equations of any physical theory, also allows
for a numerical solution of any specific problem because it directly provides the
algebraic equations. This opens the way for a new method of calculation based
on geometry rather than on mathematics, because it is not necessary to make the
discretization of differential equations.

It is a fact that all discretization methods are based on purely mathematical
approaches, i.e. without relation to the physical phenomenon described by the
equation. This is the case of the entire family of weighted residuals methods:
these include the methods of least squares, collocation, sub-domains, Galerkin,
moments.

Since the Galerkin method is based on energy principles, it appears more
“physical” compared to other methods. However, the criterion to approximate
the unknown solution of a physical problem by a linear combination of shape
functions that are chosen in an arbitrary way, is a purely mathematical one. Fur-
thermore, in order to find the coefficients of the linear combination, the criterion
to require that the residual of the differential equation is orthogonal to the every
shape functions, is also a purely mathematical criterion. The same Ritz method,
which requires the minimization of the energy functional, is faithful to the physi-
cal principle of minimum potential energy. Nevertheless, it introduces an arbitrary
mathematical expedient, to express the unknown solution of the problem using a
linear combination of an arbitrary set of basis functions.

The path to be taken in this book is free from this arbitrariness because it di-
rectly gives us the set of discrete equations, all the while remaining closely at-
tached to the physical reality, thanks to the association of the variables with space
and time oriented elements.

4.6.1 Finite Difference Method Reinterpreted

Historically, the first procedure to find the numerical solution to partial differential
equations is the method of finite differences. Its starting point is the discretization
of the differential equation by discretizing the partial derivatives: this is the case
for the Laplace’s equation ∇2T (x, y) = 0. The backdrop is a regular lattice in
Cartesian coordinates, as shown in Fig. 4.26a. A computational “stencil” for the
discrete approximation of ∇2T is

∇2T (x, y) ≈
Ti−1, j − 2Ti, j + Ti+1, j

h2
+

Ti, j−1 − 2Ti, j + Ti, j+1

k2
. (4.7)

A new discretization method. We propose to show that the same result can
be obtained by a more detailed process, i.e. by separately discretizing those
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a b

Fig. 4.26 The reinterpretation of the finite difference method

Fig. 4.27 In a region of uniform heat, the heat current through a flat surface, for any surface
orientation, is proportional to the temperature gradient in the direction normal to the surface

elementary equations that, by composition, give rise to the Laplace’s equation.
The advantage of this new discretizing procedure is that it can be applied to cells
of any shape, not necessarily cubic cells. This allows us to extend the finite differ-
ence method to unstructured meshes, for example to cell complexes with triangu-
lar cells (in 2D problems) and with tetrahedral cells (for 3D problems).

To this end, we extend the lattice of Fig. 4.26a to a cell complex and its dual,
as shown in Fig. 4.26b. The grey area denotes a dual cell. In this complex, we use
a single label to denote the vertices of the primal complex, as is commonly done
by mesh generators.

Considering the constitutive relation of heat conduction, Fourier’s law asserts
that in regions of uniform flow, the heat current for unit area is proportional to
the temperature difference measured in the direction normal to the surface, and
inversely proportional to the distance d between the two points P and Q that lie
on a straight line normal to the surface, as shown in Fig. 4.27, i.e.

Φ

A
= −λ

(
TQ − TP

d

)
. (4.8)

To write the heat balance on the dual cell (note that it must be a dual cell
because of its outer orientation), we must consider the heat current across each
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face of the cell. With reference to Fig. 4.27, we will consider each of the four
faces that belong to different regions of uniform flow13 and apply the constitutive
relation Eq. 4.8. Taking into account that the normals to the faces are directed
outwards, we can write the heat balance as

−λ
[
k

Ta − Te

h
+ k

Tc − Te

h
+ h

Td − Te

k
+ h

Tb − Te

k

]
= 0 . (4.9)

After simplification and division by hk we obtain the same formula of
Eq. 4.7, i.e.

Ta − 2Te + Tc

h2
+

Td − 2Te + Tb

k2
= 0 . (4.10)

The same discretization process can be applied to any cell complex, in particular
those with cells formed by triangles (in two-dimensional problems) or by tetrahe-
dra (in three-dimensional problems). This is the cell method.14

4.7 Classification Diagram for Space Elements

With reference to Fig. 4.28, the duality relation between space elements can be
emphasized by inverting the order of the dual space elements in the right column.
In this way, dual elements appear on the same level. Doing this we obtain a di-
agram which classifies the space elements and summarizes all the properties we
have emphasized until now, i.e. primal and dual complex, inner and outer orienta-
tion and the duality relation.

Note that the sum of the dimensions of the elements on the same level is three
(i.e. the dimension of space) such that the elements on the same level are com-
plementary (i.e. dual) to one another. Hence the dual of a point with an inner
orientation (p = 0) is a volume with an outer orientation (p′ = 3− p = 3); the dual
of a line with an inner orientation (p = 1) is a surface with an outer orientation
(p′ = 3 − p = 2); and so forth.

For space elements in a plane, n = 2, and in a line, n = 1, the pairs of dual
space elements are represented in Fig. 4.29. 0.8Dual elements in two- and one-
dimensional space If we consider a cell complex and its dual, an (n− p)-cell of the
dual complex is dual to the p -cell of the primal complex and vice versa; hence, it
is natural to consider the corresponding cells as dual (Fig. 4.30).

13 A flow is uniform in a region when the velocity of all particles is invariant under translation.
14 The direct algebraic formulation of physical laws is the starting point of the cell method; see
Tonti [230–232, 234] and the papers cited on the Web site discretephysics.dicar.units.it.
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Fig. 4.28 The two kinds of space elements: there are eight in total

4.8 Classification of Time Elements

In Chap. 3 on p. 57 we introduced a cell complex and its dual on the time axis.

Now the four time elements I,T,
∼
I ,
∼
T can be placed in a diagram in a similar

way as was done for space elements. Whereas for space elements the left column
contains elements with an inner orientation, for time elements it will be useful to
consider two classifications, as shown in Table 4.4.

Fig. 4.29 Dual elements in two- and one-dimensional space
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a

b c

Fig. 4.30 Primal and dual cell complexes in three dimensions formed by a Cartesian coordinate
system. The same diagrams are valid for a coordinate cell complex and its dual
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Table 4.4 Two possible classification diagrams of time elements
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∼
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I

The arrangement of the diagram on the left is useful in mechanical theories
where forces are the sources of the phenomenon: this is the case of particle
mechanics, analytical mechanics, solid mechanics and fluid mechanics. The ar-
rangement of the diagram on the right is useful in field theories where the source
variables are charge, mass and heat. Such are electromagnetism, gravitation, dif-
fusion, thermal conduction and acoustics in fluid and non-equilibrium thermody-
namics.

As with space elements, the order of elements in the right column is also oppo-
site to the order of the time elements of the left column. The bars over the letters I
and T denote two things: that time elements belong to a primal time complex and
that they are endowed with an inner orientation. Similarly, the tilde over the letters
∼
I and

∼
T denote two things: that time elements belong to a dual time complex and

that they are endowed with an outer orientation.
In computational physics, the cell complex drawn by a mesh generator is usu-

ally taken as the dual one.



Chapter 5
Analysis of Physical Variables

. . . It is only through the progress of science in recent times that we have

become acquainted with such a large number of physical quantities that a

classification of them is desirable.

J.C. Maxwell, Proc. London Math. Soc., Vol.III, (1871), p. 224

5.1 Role of Mathematics in Physics

Why is mathematics used in physics? Because of the existence of physical quanti-
ties. In fact, mathematics is used in physics thanks to the fact that there are quan-
titative attributes that suggest the introduction of physical quantities, and these
lead to numbers. Physical variables contain more information than the simple
numerical value. Of course, the numerical value is accompanied by the physi-
cal dimensions of the variable. But there is more: each of them is associated with
a particular space element and a particular time element, each endowed with an
inner or an outer orientation. Mathematics deliberately ignores the geometric or
physical content of physical quantities. It is precisely this feature which makes
mathematics so broadly applicable: it can be applied whenever numbers are used,
without regard to the things to which they refer. Poincaré wrote:1:

Mathematicians study not objects, but relations between objects; the replacement of these
objects by others is therefore indifferent to them, provided the relations do not change.
The matter is for them unimportant, the form alone interests them.

Mathematics deliberately ignores the physical objects with which numbers are
associated. In fact, if we consider two containers, each being 30 m3, then the whole

1 Science and Hypothesis, p. 44.

E. Tonti, The Mathematical Structure of Classical and Relativistic Physics,
Modeling and Simulation in Science, Engineering and Technology,
DOI 10.1007/978-1-4614-7422-7__5, © Springer Science+Business Media New York 2013
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capacity is 2 × 30 = 60 m3. Two cables, each conducting 30 A to the same device,
are equivalent to a cable conducting 2×30 = 60 A. Mathematics simply considers
the operation 2 × 30 = 60 and ignores whether the numbers refer to containers or
cables.

Mathematics deliberately ignores both the physical dimensions and the units
of measure of physical variables. While for mathematics 5 is different from 500,
for physics 5 m is equal to 500 cm and 1 kcal is equal to 4,186 J. The numerical
values can be different even if the physical quantity is the same because the units
of measure make the difference.

For these reasons, if we want to perform an investigation on the mathematical
structure of physical theories, the starting point must be an analysis of physical
quantities. Many geometric features of physical variables are hidden because we
usually describe physical theories using differential calculus. In fact, differential
calculus requires the use of field functions, most of which are obtained from global
variables by extracting their densities.2 Field functions, which are required by
the notion of the derivative, hide the association of physical variables with space
and time elements other than points and instants. In fact, it is just the association
with space and time elements, endowed with an inner or an outer orientation, that
makes it possible to discover the intrinsic nature of physical variables, which leads
to a new classification of them.

5.2 Material and Spatial Descriptions

To introduce these two kinds of description,3 let us consider two simple examples.

Example 1. Consider a person looking at an anthill. At first he has a broad view and sees a lot

of ants in disorderly motion. At a given moment his attention is attracted by a group of ants

carrying a large leaf; he follows the group until it disappears from his eyes. At this moment the

observer goes back to a broad view of the anthill. He sees that there are regions in which the ants

are less active and others where they are highly industrious. Continuing to watch, he is attracted

by an ant which drags a small leaf towards a hole in the ground, and he follows the ant up to the

moment in which it disappears inside the hole, and so on.

Example 2. The same may happen to a person watching city traffic from a window. He sees two

columns of cars that stop at a traffic light and notices a busy stream of people walking on the

pavement. Suddenly, his glance is attracted by a limousine of the diplomatic corps with little

flags on the front lights. He follows the car with curiosity until it enters the embassy gate. At

this point, he goes back to a broad view again watching the cars that have divided now into two

different lanes: one continuing straight ahead and the other turning right. He notices that in a

2 For the definition of global variables see p. 106.
3 The term description is equivalent to the terms viewpoint and approach.
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certain area there is a higher concentration of cars, whereas in another the traffic is free flowing.

Then, an eccentrically dressed woman catches his attention: he watches her stopping at a shop

window, then setting off again, then stopping to greet a friend of hers and finally stopping at a

traffic light waiting for the signal to cross the street. Crossing the street, she disappears from

sight. He returns to an overall view of the city traffic, and so on.

t

t+h

system

system or material description
        subject: system
           mass: constant
       volume: variable

spatial or field description
   subject: control volume
      mass: variable
   volume: constant

control
volume

a b

Fig. 5.1 Material and spatial descriptions. (a) system description; (b) spatial description

Starting from these examples we can see that the passage from an indefinite
vision of many objects to a vision concentrated on a particular object is a common
practice in our daily lives. In a broad vision, we look at a space region as a whole
without focusing on a particular object: in physics, this is a field description. In
contrast, in a concentrated vision, we follow the behaviour of a single object and
ignore what is happening in the whole space region: in physics, this is a mate-
rial description. Figure 5.1 shows the difference between the two descriptions. In
summary we have a

• Material or system or referential or Lagrangian description and a
• Spatial or field or Eulerian description.

When we describe physical phenomena, we commonly use one of two comple-
mentary descriptions.4 Material descriptions are typical in the mechanics of rigid

4 A clear distinction between the material and spatial descriptions can be found in Shames [209,
p. 132], where the term field is substituted by the term control volume. The two descriptions
are also clearly analysed by Hughes [97, p. 2]. In fluid dynamics the material description is
also called a system (Shames [209, p. 78]) or referential (Chadwick, [39, p. 54]) or Lagrangian
description (Hunter, [98, p. 23]). The field description is also called an Eulerian descrip-
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bodies, analytical mechanics, mechanics of deformable solids and thermodynam-
ics. Spatial descriptions are typical of field theories, such as electromagnetism,
gravitation, heat conduction, diffusion and irreversible thermodynamics.

Since in a material description the volume of a system is variable (think of
thermodynamics), we will denote it by the calligraphic letter V.5 In what follows,
we will deal mainly with spatial descriptions (Table 5.1).

Table 5.1 The terminology used by different authors about the two descriptions of continuum
mechanics

in this book material spatial
Shames [209, p. 13] system approach control volume approach
Hughes [97, p. 2] system approach control volume approach
Chadwick [39, p. 54] referential description spatial description
Truesdell [239, p. 96] referential description spatial description
Malvern [147, p. 138] referential description spatial description
Fung [77, p. 119] material description spatial description
Milne-Thomson [160, p. 81] Lagrangian (historical) Eulerian (statistical)
Prager [188, p. 189] Lagrangian (...of a driver) Eulerian (...of a policeman)
Batchelor [10, p. 71] Lagrangian description Eulerian description
Paterson [172, p. 38] Lagrangian description Eulerian description
Granger [82, p. 28] Lagrangian description Eulerian description

5.2.1 Material Description

When the object of our observation is a physical system which evolves over time,
we adopt a material description. Only in this case a system can be broken down
into bodies, and bodies into particles.6

The quantitative attributes of a system are expressed by physical quantities
which refer to the system as a whole. Thus we speak, for example, about the po-
tential and kinetic energies of a system, the temperature of a body, the electric
charge of a capacitor and the momentum of a particle. All of these variables are
system variables which change over time. This is the traditional description of me-
chanics of rigid bodies and equilibrium thermodynamics. Therefore, we consider,
for example, mechanical systems, thermodynamic systems and optical systems.
In a material description, physical variables are ‘global’ quantities in space which
change over time, i.e. all variations are time variations. Hence, in the differential

tion (Hunter, [98, p. 27]) or spatial description (Chadwick, [39, p. 54], Eringen and Suhubi [64,
p. 11]).
5 We will use this notation in Chap. 13.
6 In his engaging book Hunter wrote: Particles are mythical mathematical entities which in no
sense are to be confused with atoms or molecules [98, p. 23].
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formulation physical laws are written as ordinary differential equations with time
derivatives only, as in particle mechanics, mechanics of rigid bodies and analytical
mechanics.

In a material description (Fig. 5.1a), we follow the motion of a system, e.g.
a fluid body, and the global physical variables are associated with systems (S ),
bodies (B) and particles (P).

5.2.2 Spatial Description

We speak of a spatial description when the object of our observation is a space
region and we want to know what happens inside it. Only in a spatial description
can we divide the space region into subregions, called control volumes,7 which are
formed by points.

In a spatial description (Fig. 5.1b), global physical variables are associated with
points, lines, surfaces and volumes. So we speak, for example, of mass contained
in a volume, flux through a surface, voltage along a line, temperature at a point,
electric charge contained in a volume and mass flowing through a surface.

To express physical notions in terms of the differential formulation, we need
to use densities and rates by determining the limit to obtain point functions, the
so-called field variables. In this fashion, we can obtain derivatives, and as a con-
sequence, physical laws are expressed by partial differential equations.

In differential formulations we consider an infinitesimal Cartesian cell of sides
dx, dy, dz: this cell is usually conceived of as a small control volume around an
arbitrary point P, but it can also be conceived of as a member of a cell complex
which fills the whole region.

In a spatial description, every system variable is split into two variables: con-
tent and flow, as shown in Table 5.2. For example, let us consider the notion of
mass: usually it is an attribute of a body, and we simply speak about the mass of
a body. In a spatial description, the reference structure is not a body but a control
volume. In this case, we are led to introduce two variables: the mass contained in
the control volume at an instant and the mass leaving the control volume (flow)
during a time interval. This splitting up can be carried out on many physical vari-
ables (extensive variables in thermodynamics). Such a split is found in all balance
equations (Fig. 5.2). A balance equation is a statement which involves four aspects
of an extensive quantity:

• The amount produced in a space region during a time interval,
• The amount contained in a space region at a given time instant,
• The amount stored in a space region during a time interval,
• The amount flowing out from the space region during the same time interval.

7 Shames [209, p. 78].
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A balance can be expressed as follows:

storage
inside the region
in a time interval

+
net outflow

from the region
in a time interval

. =
net production
inside a region

in the time interval

Fig. 5.2 Balance equation in spatial formulation

Table 5.2 Passing from a material to a spatial description global physical variables are split into
content and flow

Material description Spatial description

Mass M Mass content M c Mass flow M f

Energy E Energy content E c Energy flow E f

Momentum P Momentum content P c Momentum flow P f

Ang. momentum L Ang. mom. content L c Ang. mom. flow L f

Charge Q Charge content Q c Charge flow Q f

Particle number N Particle content N c Particle flow N f

Probability P Probability content P c Probability flow P f

Entropy S Entropy content S c Entropy flow S f

In short, we can say that a body is composed of particles, a control volume is
composed of points.

5.2.3 Material and Spatial Descriptions: An Overview

In physics, as in everyday life, material and spatial descriptions are continuously
interchanged. Let us prove the existence of these two descriptions in physical
theories.

1. In classical mechanics, one considers discrete mechanical systems formed
by particles or rigid bodies: this is a material description.

2. In the mechanics of deformable solids, under the hypothesis of small dis-
placements, a natural description is a spatial description. The main kine-
matic variable, the displacement vector u(t, x, y, z), depends on time and space
coordinates.

3. In fluid dynamics, one may use a material description or a spatial de-
scription. Material descriptions are useful for dealing with the convection of
vorticity, with the actual path followed by fluid particles and with the idea of
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virtual masses.8 The lift and drag of an airfoil are examples of global variables
which refer to a system.

In spatial descriptions, typical variables are velocity, pressure and temper-
ature. These variables are conceived of as field functions, i.e. functions of
points and instants. Hence, in a spatial description, the motion of a fluid can
be described as in a field theory, such as in electromagnetism.

4. In thermodynamics, we use material descriptions: the object of investigation
is a thermodynamic system of which we consider, for example, the internal
energy, enthalpy, entropy, phase changes and heat exchanged with the sur-
roundings. Classical thermodynamics uses quasi-static transformations of a
system, such as expansion, compression, cooling and heating. All of these
transformations involve time. In fact, we speak about initial and final states
of a system, and this implies a time evolution.

A closed system of thermodynamics corresponds to material description,
while an open system of thermodynamics corresponds to a control volume
description and, hence, to a spatial description.9

5. Irreversible thermodynamics is developed using a field description. The
electrochemical potential, the degree of advancement of a chemical reaction,
and current densities of energy, entropy and mass depend on space and time
coordinates.10

6. In thermal conduction, we consider, for example, energy density, entropy
density, energy current density, temperature, temperature gradient as func-
tions of space and time coordinates, and hence we use a field description.

7. In electromagnetism, when we consider a conductor, we speak about the
charge, potential and capacitance of the conductor, and hence we use a ma-
terial description. In contrast, when we consider the electromagnetic field in
the region around the conductor, we use a spatial description.

8. In analytical mechanics, Lagrange’s and Hamilton’s functions refer to a
mechanical system; hence, we use a material description.

9. Statistical mechanics uses a spatial description in the phase space. The vari-
ables are functions of the phase coordinates qk and pk.

10. In quantum mechanics, the Schrödinger picture is a spatial description
because the probability amplitude Ψ (t, x) is a function of time and space

8 Temple [223, p. 11].
9 Shames [209, p. 133].
10 de Groot and Mazur [49, p. 3].
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coordinates. In contrast, the Heisenberg picture is a material description be-
cause the dynamic variables (matrices) depends only on time: q k(t), pk(t). The
wave-particle duality is essentially a field-system duality.

5.3 Physical Quantities

Physical quantities can be classified according to at least three different criteria:

1. The physical theory to which they belong, for example mechanics, electromag-
netism or thermodynamics;

2. Their mathematical nature, for example scalar, vector, tensor, axial scalar or
axial vector;

3. Whether they are constants, parameters or variables.

Since the first two classifications are self-evident or well known, we will focus
our attention on the third criterion, which has received less treatment.11

5.3.1 Physical Constants

Some physical quantities have a constant value. To this class belong, for example,
the universal constants such as Planck’s constant h, the speed of light in vacuum
c, the gas constant R, Boltzmann’s constant kB, Avogadro’s number NA and the
gravitational constant G.

5.3.2 Physical Parameters

A parameter is a physical quantity, characteristic of a material, system or process,
which is constant in the context in which it appears but can vary under certain
circumstances.

Broadly speaking, physical constants and physical parameters are those physi-
cal quantities whose values are collected in tables. Some parameters characterize
the medium in which a process takes place; some are critical values of variables
which discriminate between two regimes of a process; some characterize the in-
teraction between two phenomena; and so forth. Physical parameters constitute
a larger class of physical quantities which include system parameters (e.g. induc-
tance of a coil, diopter of a lens, stiffness constant k of a rod), material parameters
(e.g. decay constant, thermal conductivity of a material), process parameters (e.g.
Reynolds number, Nusselt number), modules (e.g. Young modulus), coefficients

11 See p. 493 for the meanings of symbols.
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Table 5.3 A classification of physical quantities

Physical
quantities

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Constants

Parameters

Variables

h, c,R, kB, NA,G, e, � . . .

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
System parameters (R,C, L, M, . . . )
Material parameters (λ, E, ν, μ, ε, σ, . . . )
Coupling coefficients (αl, . . .)
Process parameters (Re, Nu, Fr, η, . . . )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Space global variables and system variables
(M,Q,U,V, S , r, v,P, Mf,Qf , Mc, T, Φ, Ψ, φ, . . . )

Time global variables
(M,Q, AH , S , u,P, Mf,Qf , Mc, Φ, Ψ, ϕ, . . . )

Field variables
(ρ, p,E,D,H,B, J, ω, q, g, k . . . )

(e.g. coupling coefficient), factors (e.g. transmission factor) and ratios (e.g. Pois-
son’s ratio).

Some terms are synonymous:

1. Physical constants, which include the fundamental or universal constants;
2. System parameters, also called lumped parameters;
3. Material parameters, also called distributed parameters;
4. Coupling parameters, also called interaction parameters.

Parameters are generally constant, but many of them suffer slight variations as
a function of certain variables such as temperature. This is the case, for example,
of specific heat, which depends on temperature, mainly near absolute zero, and of
the refractive index, which depends on the wavelength of light.12

Table 5.3 shows a general classification of physical quantities. Table 5.4 gives
examples of physical parameters of the various classes.

5.3.3 Physical Variables

Physical variables13 are all physical quantities that are neither physical constants
nor parameters. A physical variable can be defined in one of the following ways:

12 In mathematics, the distinction between constants, parameters and variables was introduced
by Leibniz; see Bourbaki [22, p. 244].
13 All the physical variables considered in this book are collected in the List of Physical Variables
at the end of the book; see p. 493.
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Table 5.4 Physical parameters

System or lumped parameters
Capacity Of a capacitor Inductance Of a coil
Resistance Of a wire Stiffness Of a spring
Mass Of a star Magnetic moment Of a particle
Electric dipole Of a molecule Luminosity Of a star
Moment of inertia Of a body Mean life Of an atomic system
Heat capacity Of a body Power Of a lens
Period of revolution Of a planet Spin Of a nucleon
Gyromagnetic ratio Of an atomic system Strangeness Of a particle
Proton number Of a nucleus Voltage Of a battery
Reverberation time Of a room Emissivity Of a radiation body
Damping coefficient Of an oscillating sys-

tem
Transport coefficient Of an ion

Charge Of an electron Mass Of a proton

Material or distributed parameters
Permittivity Of a medium Resistivity Of a medium
Elastic modulus Of a material Surface tension Of a liquid
Specific weight Of a substance Conductance Of a medium
Refractive index Of a medium Diffusion coefficient Of a medium
Fusion temperature Of a material Transmission factor Of a substance
Speed of light In a medium Poisson’s ratio Of a material
Curie temperature Of a ferrom. material Shear modulus Of a material
Thermoelectric coeff. Of a material Friction coefficient Of two materials

Coupling or interaction parameters
Thermoelectric coeffi-
cient

Of a material Friction coefficient Of two materials

Piezoelectric coeffi-
cient

Of a material Peltier coefficient Of two metals

Process parameters
Reynolds number Of a fluid flow Mach number Of a fluid flow
Nusselt number In heat transfer Efficiency Of a thermodyn. cycle

• Directly by its measurement process, e.g. length (metre), time interval
(chronometer), electric charge (electrometer), force (dynamometer), temper-
ature (thermometer), mass (inertial balance) and a few others;

• Indirectly i.e. in terms of other quantities already defined, e.g. work (force
× displacement), electric field vector (force/charge), density (charge/volume),
pressure (force/area), velocity (displacement/duration).

Physical variables can be classified according to at least two different criteria:

1. The role they play in a theory: we will call them configuration, source and
energy variables (see the following section);
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2. Their global or local nature. For example, mass, charge and force are global
variables, while mass density, charge density and pressure are local variables.

5.4 Configuration, Source and Energy Variables

The first criterion, i.e. the role which a physical variable plays in a theory, is not
rooted in the physical literature. It is somewhat similar to the classification of
people into functional classes according to the role they play in society: workers,
employees, self-employed workers, managers, and so forth.

In mechanics, variables can be divided into three classes:

1. Static and dynamic variables, such as, for example, force, impulse, moment of
force, torque, momentum, angular momentum and angular impulse.

2. Geometric and kinematic variables, such as, for example, Lagrangian coordi-
nates, angle of position, angle of rotation, Eulerian angles, position vector, arc
length, curvature, velocity, acceleration, angular velocity, angular acceleration,
period and frequency.

3. Energy variables, which include, for example, work, power, kinetic and poten-
tial energy, Lagrangian, Hamiltonian, dissipation function and action.

Static and dynamic variables are those variables which describe the equilib-
rium configuration and motion respectively. Hence they are used to describe the
‘source’ of a deformation or of motion. For this reason we can call them source
variables. Geometric and kinematic variables describe the configuration of a sys-
tem and can be called configuration variables.

It is remarkable that material parameters and physical constants appear only in
equations which link source variables with configuration variables, and these are
the constitutive equations. This is the case, for example, with mass, which links
momentum and velocity; the moment of inertia, which links angular momentum
and angular velocity; stiffness, which links force and elongation; and the damping
coefficient which links force and velocity.

Moreover, it is remarkable that the energy variables are obtained from the prod-
uct of a source variable and a configuration variable without the intervention of
physical constants or material parameters, as shown in Table 5.5. Later, when we
need to express the energy variables in terms of the configuration variables alone
or of the source variables alone, we must resort to the constitutive equations.

This grouping of physical variables into three classes, source, configuration
and energy variables, is not commonly done in field theories, such as, for exam-
ple, electromagnetism, irreversible thermodynamics and thermal conduction. We
propose to extend such a classification to all theories of the macrocosm.
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Table 5.5 Energy variables of mechanics

Kinetic
energy

T (p)
def
=

∫ p

0
v(p) · dp

Kinetic
co-energy

T ∗(v)
def
=

∫ v

0
p(v) · dv

Work W(t−, t+)
def
=

∫ t+

t−
F(t, r, v) · dtr=

∫ t+

t−
F(t, r, v) · v(t) dt =

∫ t+

t−
P(t) dt

Potential
energy

V(r)
def
=

∫ r0

r
F(r) · dsr Power P(t)

def
= lim

t+→ t−

W(t+, t−)
t+ − t−

Lagrangian L
def
= T ∗ − V Hamiltonian H

def
= T + V

Hamiltonian
action

AH(t−, t+)
def
=

∫ t+

t−
L(t) dt

Hamilton’s
principal
function

S (t)
def
=

∫ t

0
L(t′) dt′

5.4.1 Source Variables

Every physical field has its sources. So an electric charge is the source of an elec-
tric field, an electric current is the source of a magnetic field, mass is the source
of gravitational fields, force is the source of displacement, heat production is the
source of a thermal field and so forth.

The source of an electromagnetic field is an electric charge, both at rest or in
motion, i.e. electric charge content Qc and electric charge flow Qf . Hence also
the current I, which is the electric charge flowing in a time interval divided by its
duration, is a variable which describes the source. The current density J is also
used to describe a source. In short: it is natural to consider as source variables all
those variables obtained from the main source variable by forming the density, the
rate and the space derivatives.

Definition. We call source variables all variables which describe the
source of a field, the cause of a phenomenon and all variables linked
to them by the operations of sum, difference, division by a length, an
area, a volume or an interval; by a limit process and, hence, by time
and space derivatives; line, surface, volume and time integrals. These
relations must not contain physical constants.

What follows is a list of source variables for the main physical theories:

Mechanics of continua: All static and dynamic variables, i.e. volume force, impulse of vol-
ume force, surface force, momentum, impulse of surface force, pressure, stress vector, stress
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tensor, stress deviator, stress function, Airy’s function, bending moment, surface torque,
impulse of surface torque, couple stress tensor, traction; momentum content; momentum
density, momentum flow, momentum current=force, momentum current density; angular
momentum content, angular momentum density, angular momentum flow, angular momen-
tum current = torque, angular momentum current density;

Electromagnetism: Electric charge, electric charge content, electric charge density, electric
charge flow, electric current, electric current density, electric flux, electric displacement,
magnetic voltage, magnetic voltage impulse, magnetomotive force, magnetomotive force im-
pulse, magnetic field strength, magnetic scalar potential;

Gravitation: Gravitational mass, mass content, mass density, mass flow, mass current, mass
current density;

Thermodynamics: Entropy, entropy content, entropy density, entropy flow, entropy current,
entropy current density, entropy production, entropy source.

5.4.2 Configuration Variables

At the same time, all physical fields have variables which describe their configu-
ration, typically the field potentials. This is the case with, for example, the elec-
tric potential, gravitational potential, magnetic vector potential, position vector
for particle mechanics, displacement for deformation of solids, velocity for fluid
dynamics, and temperature which describes the thermal configuration of a body.

Definition. We call configuration variables all variables which describe
the configuration of a physical system, in particular the potential of
fields. Belonging to this class are all variables linked to a potential by
the operations of sum, difference, division by a length, an area, a vol-
ume or a time interval; by a limit process and, hence, by time deriva-
tives or space derivatives; or by integrals on lines, surfaces, volumes
and time intervals. These relations must not contain physical constants.

An important point is the following: the same variable may play a different
role in different physical theories. This is similar to a person who is a member
of various clubs, societies and companies: his role may differ depending on the
organization. So he could be an employee of a company, the treasurer of a sports
club or the president of a charity.

A physical variable which plays different roles is the mass. In particle mechan-
ics and in rigid body mechanics, mass is a physical parameter, such as the mass
of a proton, the mass of a star or the mass of a body. In contrast, in fluids, mass is
a source variable because one can consider the mass production and then the mass
source σm.

What follows is a list of configuration variables for the main physical theories.

Mechanics of continua: All geometric and kinematic variables, i.e. displacement, relative
displacement, displacement gradient, Burgers vector, dislocation density tensor, extension,
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strain, strain deviator, strain rate, strain rate deviator, bulk strain, velocity line integral,
velocity potential, angular velocity, angular acceleration, vortex strength, vorticity vector;

Electromagnetism: Electric potential, electric field strength, electric potential impulse, volt-
age, voltage impulse, voltage, voltage impulse; magnetic flux, magnetic vector potential,
magnetic induction, gauge function;

Gravitation: Acceleration of gravity, gravitational potential, gravitational potential differ-
ence, metric tensor, gravitational tensor, linear connexion, Riemann curvature tensor, Ricci
tensor;

Thermodynamics: Temperature, temperature difference, temperature gradient, indefinite time
integral of temperature (thermacy), thermodynamic forces.

5.4.3 Energy Variables

Definition. We call energy variables all variables obtained by multi-
plying a configuration variable by a source variable and all variables
linked to them, by the operations of sum, difference, division by a length,
an area, a volume or an interval; by time or space derivatives; or by
integrals on lines, surfaces, volumes and time intervals.

What follows is a list of energy variables:
Energy variables: Work, heat, power (energy current), energy current density, energy con-

tent, energy density, energy flow, kinetic energy, kinetic co-energy, potential energy, internal

energy light exposure, light exposure rate, Lagrangian, Hamiltonian, action, Lagrangian density,

Hamiltonian density, electric energy, electric energy density, magnetic energy, magnetic energy

density, Poynting vector, enthalpy, Helmholtz free energy, Gibbs free energy; Rayleigh dissipa-

tion function; absorbed dose, absorbed dose rate (Fig. 5.3).

configuration variables source variables

energy variables

Fig. 5.3 Classification of variables of a physical theory
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Remark. The terms configuration variables and source variables were introduced by the au-

thor14 and correspond to those previously introduced by Penfield and Haus15 with the names

geometric and force variables. We prefer the term configuration variables because variables like

velocity, angular velocity, vorticity, temperature, temperature gradients, potentials and magnetic

induction are hardly conceived of as geometric. The term configuration is borrowed from ana-

lytical mechanics and means the configuration of a mechanical system. Similarly, we prefer the

term source variables because it denotes variables like electric charges, electric currents, gravita-

tional masses, magnetic field strength and heat current, which are not usually considered forces.

Moreover, Hallen16 uses the term force with a meaning opposite to Penfield’s use of the same

term. A comparison between different nomenclatures is given in Table 5.6.

Table 5.6 The three kinds of variables of all physical theories: configuration, source and energy
variables

Present Configuration Source Energy

Hallen Force Source Mechanical

Penfield Geometric Force

5.5 Fundamental Problem of a Physical Theory

In every physical theory of the macrocosm,17 there is one or more variables which
describe the configuration of the system (e.g. the field potential) and one or more
variables which describe the source of the phenomenon (or of the field). The prob-
lem of finding the configuration of a system (or of a field) once the sources are
assigned will be called the fundamental problem of the theory. What follows is a
list of the fundamental problems of some physical theories:

Mechanics: given the forces acting on a system (or a body or particle), find the
configuration of the system at every instant.

Electrostatics: given the space distribution of electric charges, find the electric
potential at every point.

Magnetostatics: given the space distribution of electric currents, find the mag-
netic vector potential at every point.

Gravitostatics: given the space distribution of masses, find the gravitational
potential at every point.

14 Tonti [227, 228].
15 Penfield and Haus [175, p. 155].
16 Hallen [87, p. 1].
17 With the exception of reversible thermodynamics because it is the science of energy.
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Dynamics of deformable solids: given the forces acting on a solid, find the dis-
placements of all points at every instant.

Fluid dynamics: given the forces acting on a fluid, find the velocity at all points
and at every instant.

Thermal conduction: given the space distribution and intensities of heat
sources, find the temperature at all points at every instant.

The fundamental problem of a physical field can be stated, in more detail, as
follows:

• Assign the space and time distributions of the field sources in a region:

– Assign the shape and dimensions of the region.
– Assign the nature of the materials which fill the region.
– Assign the boundary conditions (which summarize the action of the external

sources on the field region).
– Assign the initial conditions (for time variable fields).

• Find the configuration of the field at every instant.

In the second part of the book, where we present the individual physical theo-
ries in more detail, we will also state their fundamental problem.

5.6 Set Functions

Among physical quantities there are some which refer to a system as a whole,
whereas others refer to points. In the first class we have the charge of a capacitor,
the kinetic energy of an airplane and the weight of a body, whereas in the second
class we have the temperature at a point, the density of air at a point and the
pressure at a point. Mathematics uses the term set functions and point functions
respectively.

Given a set A and a vector space V, a set function, also called a domain func-
tion, is a map which associates an element of the vector space V with every subset
of A . The minimum requirement, always satisfied in physics, is that the set func-
tion be additive. This means that if A1 and A2 are two disjoint subsets of A , if
v1 and v2 are the elements of the vector space V corresponding to the two subsets,
the to the subset A1 ∪A2 it associates the element v1 + v2.

Examples of set functions include the length of a rope, the area of a geograph-
ical region, the volume of a body, the number of passengers on a bus at a given
instant, the momentum of a car at a given instant or the heat needed to raise the
temperature of a boiler by 20◦.18

Henri Lebesgue wrote: “les grandeurs de la physique directement mesurables
apparissent d’ailleurs toujours comme des fonctions de domaine; . . . il peut s’agir

18 Lebesgue [131, p. 150].
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de domaines sur la droite, c’est a dire d’intervals, de domains plans ou de domains
a plus de trois dimensions . . . ”.19

5.7 Global Variables and Field Variables

The differential formulation of physical fields requires the use of field variables
because they make possible the use of partial derivatives. Those physical variables
which refer to extended space elements are global variables; they include line
integrals, fluxes and contents.

Most field variables arise as space densities of global variables. The introduc-
tion of densities and rates is prompted by the desire to obtain physical variables
which are independent of the extension of the space and time domains. In turn,
global variables are usually obtained by the integration of field variables on lines,
surfaces and volumes. For this reason they are commonly called integral vari-
ables.

There is a subclass of field variables which are not space densities of global
variables. Therefore, whereas pressure p(P), which is force/area, and electric
charge density ρ(P), which is charge/volume, are field variables of the density
kind, in contrast, temperature T (P) and electric potential φ(P) are field variables,
without being densities of another global variable. Table 5.7 shows the two kinds
of field variables.

The process of forming field variables from global variables can be divided into
two steps:

• We obtain mean densities and mean rates by dividing the global variable by the
extension of the space or time element to which the global variable is referred.

• We perform the limit process by making the extension of the space or time
element tend towards zero. In this way, we obtain the pointwise densities and
rates, i.e. field variables.

Note that while the first step gives mean values and can be done without par-
ticular care, the second step requires the existence of a limit. As we showed previ-
ously, the limit can be discontinuous through the separation surface between two
media; hence, the field variables obtained cannot be differentiable. The notions
of scalar, vector and tensor fields imply the notion of field variables. Field vari-
ables are completely independent of geometric attributes. While field variables are
necessary ingredients for the differential formulation of physical laws, global vari-
ables are the natural ingredients for an algebraic or finite or discrete formulation
of physical laws.

19 “Physical variables which are directly measurable always appear as domain functions; . . . this
may be a line domain (i.e. an interval), a plane domain or a domain of more than three dimensions
. . . ” Lebesgue [130, p. 20].
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Table 5.7 The two kinds of field variables
Field variables which are not
densities of global variables

Field variables which are
densities of global variables

Temperature T [P] Internal energy density u[
∼
V] U[

∼
V]

Electric potential φ[P] Mass density ρ[
∼
V] Mc[

∼
V]

Gravitational potential Ug[P] Momentum density p[
∼
V] P[

∼
V]

Phase function φ[P] Entropy source strength σs[
∼
V] S p[

∼
V]

Position vector r[P] Electric current density J [
∼
S] I[

∼
S]

Total displacement u[P] Pressure p[
∼
S] F[

∼
S]

Velocity potential φ[P] Magnetic flux density B[S] Φ[S]

Gauge function χ[P] Mass current density q[
∼
S] Mf [

∼
S]

Stream function ψ[
∼
P] Electric field strength E[L] V[L]

Airy’s stress function φ[
∼
P] Magnetic field strength H[

∼
L] F[

∼
L]

Scalar magnetic poten-
tial

φm[
∼
P] Acceleration of gravity g[L] ΔsUg[L]

(perhaps a few others) (definitely many others)

The formation of field variables such as the density of the variable domain im-
plies an assumption of regularity, namely continuity and differentiability, whereas
these conditions are not required for global variables. It follows that the range
of application of the differential formulation to physics is restricted to regions of
regularity, i.e. without material discontinuities and concentrated sources.

5.8 Global Variables

For three centuries the mathematical description of physics has been based on the
differential formulation, that is, total and partial derivatives occur that act on field
variables.

Let us pose the following question: since the mathematical formulation of
physics rests on physical variables, do they appear directly as functions of points
and instants? In other words: is the differential formulation the most natural form
for a mathematical description of physics?

Let us try to answer this question. Few physical variables arise directly as func-
tions of points and instants, whereas most of them arise in association with a
volume, a surface, a line or a time interval. Most physical variables used in the
differential formulation become functions of points and instants because they are
obtained from variables associated with extended space elements and with time
intervals when the corresponding densities and rates are calculated.
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To give some examples, the mass of a body is associated with a body (in a
material description) or with a volume (in a spatial description), the internal sur-
face force in continuum mechanics is associated with a surface, and voltage is
associated with a line. Internal energy, entropy, potential energy and kinetic en-
ergy are associated with a system (in a material description) or with a volume (in
a spatial description), and hence they are not functions of a point, but they are
functions of a time instant; the number of moles of a substance refers to a volume.

The displacement of a particle, impulse of a force, work and heat are associ-
ated with a time interval. The energy emitted by a hot body is associated with its
bounding surface and with a time interval. The radiation emitted by a specimen
of radioactive material depends on the volume of the specimen and on the time
interval considered.

The differential formulation uses mass density and not directly mass, pressure
and not directly the force normal to a plane surface, strain and not extension,
concentration and not the mole number, heat current density and not heat, and so
forth.

These considerations suggest giving a proper status, and hence a proper name,
to all physical variables which are not densities or rates.

Since most measured physical variables are global, in order to obtain the cor-
responding field functions we must evaluate their densities, such as lines, surfaces
and volume densities. Hence, by starting from a global physical variable, we cre-
ate a field function: the global variable, when needed, is reconstructed by a process
of integration.

It is important to remark that the formation of densities of global variables
hides their geometric and physical contents. Let us make a simple consideration:
all field functions refer to points. Hence, when we perform the limit process, start-
ing from a global variable, to obtain a density, i.e. a field function, we lose infor-
mation about the association of the variable with space and time elements.20 At
first glance this seems unimportant, but it is not. In fact, it is precisely the link
between global physical variables and space and time elements that will allow us
to obtain a new classification for physical variables.

Some readers may think that we are suggesting the abandonment of field func-
tions and the differential formulation of physics; far from it! We are simply stating
that global physical variables contain some geometric information that field vari-
ables do not contain: consequently, we suggest developing the algebraic formula-
tion before the differential formulation and not vice versa.

20 See p. 113.
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5.8.1 Extension of the Notion of Density

The most common notion of density is that obtained from a quantity associated
with volume: mass density, charge density, energy density, density of entropy,
density of momentum, probability density.

Less used is the concept of surface density, such as that of the population of
a territory, which is the ratio between the number of inhabitants and the area of
the territory. In electromagnetism, one has the surface density of charge (C/m2).
In the theory of liquid membranes, one considers the energy per unit area.

The global variables associated with a volume can be written as the product of
the volume density and the extension of the volume, and if this variable is different
from point to point, then we must write the integral on the volume of the product
ρ dV . A global variable relative to a surface will be written as the integral of the
productσ dS . Lastly, in the case of linear density, we may write the global variable
as an integral of the product λ dL:

Q[V] =
∫

V
ρ dV, Q[S] =

∫
S
σ dS , Q[L] =

∫
L
λ dL . (5.1)

The three quantities Q[V],Q[S],Q[L] are usually called integral quantities and as
such are automatically global quantities. In thermodynamics, variables associated
with volumes are called extensive. If the term extensive is conceived in a broader
sense as equivalent to additive not only on volumes but also on surfaces and lines,
then we can say that the integrals are extensive magnitudes. Quoting Tolman:21

If we regard the different kinds of quantities that are used by physicists, we find that they
fall with reasonable lack of ambiguity into two general classes, those having a certain
additive nature so that a given quantity can be regarded as being the sum of a number
of smaller quantities of the same kind and those which have no such additive properties.
We say that quantities of the first class have extensive magnitude, and that quantities not
having an additive nature have intensive magnitude.

We remark that in thermodynamics the additivity is limited to volumes, whereas
in this authoritative citation additivity is associated not only with volumes, but also
with surfaces, lines and time intervals.

The quantities ρ, σ, λ are respectively volume, surface and line densities.22

When we compute the flow of a vector through a surface or the line integral of a
vector along a line, we write

Φ[S] =
∫

S
q · dS =

∫
S
(q · n) dS =

∫
S

qn dS ,

Γ[L] =
∫

L
v · dL =

∫
L

(v · t) dL =
∫

L
vt dL .

(5.2)

21 Tolman [225, p. 239].
22 The French literature speaks about densité volumique, surfacique, linéique.
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The quantities in parentheses, which can be written as qn and vt, are respectively
the surface density and the line density. Considering as a special case that of uni-
form vector fields, as in the motion of a perfect fluid in a pipe, and choosing the
unit vectors n and t in the direction of the field lines, the terms in brackets are
reduced to the modules of the respective vectors.

These modules are respectively the surface and the line density of the global
quantities Φ[S] and Γ[L]. It becomes natural to extend the term density to the
respective vectors q and v. Hence the vectors used to calculate a flow or a line
integral may be called densities in a generalized sense.

According to this extension, the mass current density vector q can be seen as
a surface density; hence, it will be associated with surfaces. Similarly, in fluid
dynamics and in a spatial description, the velocity vector v is the line density of
its line integral and will be associated with lines.

5.8.2 Global Variables in Space

The fact that a physical variable can be described by a mathematical entity does
not authorize us to perform all possible mathematical operations on it: an opera-
tion which is mathematically meaningful can be physically meaningless. In math-
ematics, one can add two numbers, but in physics one cannot add two physical
quantities if they are not of the same kind and do not refer to the same unit of
measure.

This happens because a physical quantity belongs to a definite species, and
its value is referred to a definite unit of measure. Moreover, even if two physical
quantities are of the same species and are referred to the same unit of measure,
their sum can be meaningless: thus, the sum of two temperatures T1 and T2 or of
two time instants t1 and t2 is devoid of physical interest.23

In mathematics one can always calculate an indefinite integral on an integrable
function of one variable. In contrast, in physics one cannot perform mathematical
operations at will. If we perform a time integration on a physical variable, it can
be meaningless to perform subsequent time integrations. So the indefinite time
integral of the acceleration a(t) gives the velocity v(t); the indefinite time integral
of the velocity gives the position vector r(t), but the time integral of the position
vector is devoid of physical interest. It is meaningful to perform the indefinite
time integral of a force F(t) to obtain the momentum p(t), but the indefinite time
integral of momentum is devoid of physical interest. The ratio of a displacement
to the time interval with which it is associated is meaningful, but the product of
the displacement for the time interval is devoid of physical interest.

23 Lebesgue [131, p. 130].
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We stated previously that many physical variables are densities of other vari-
ables: this suggests the need to introduce a specific name for those variables which
are not densities of other variables.

Definition. We call a global variables in space any variable which is
not a line, surface or volume density of another variable.

These include position vector, displacement, momentum, force, mass, mass
flow, electric charge, voltage, magnetic flux, electric flux, heat, work, vortex flux,
entropy, entropy flow and entropy content. From this definition it follows that there
are global variables which are associated with points, such as temperature, electric
potential, chemical potential and velocity potential.

Integral Variables. Recall that integral variables are those arising by inte-
gration on lines, surfaces and volumes of field variables. In the differential for-
mulation we are led to introduce integral variables because we start from field
variables. Of course, integral variables are global variables, but there are global
variables which are not integral variables, and these are variables associated with
points (Fig. 5.4).

integral variables

global  variables

pressure,
mass density,
electric field strength,
stress tensor,
velocity, etc.

temperature,
electric potential,
velocity potential,
gravitational potential,
position vector, etc.

mass,
charge,
momentum,
force,
energy, etc.

field variables

Fig. 5.4 Relation between global, integral and field variables. A longer list of field variables
which are also global variables is given in Table 5.7

We use the term global instead of integral because it also includes variables
associated with points which are not densities or rates and, therefore, they are not
obtained from space or time integration of field variables. In Table 5.7 (p. 106) the
variables in the left column are global variables that are not integral variables.

In electromagnetism, the magnetic flux Φ is usually expressed as the surface
integral of the magnetic flux density B; hence, it is considered an integral vari-
able. What is curious is that from an experimental viewpoint we find it easier to
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measure the magnetic flux and to deduce the magnetic flux density, i.e. we follow
the opposite procedure to that used in the differential formulation.

If we consider the typical intensive variables of thermodynamics, i.e. tempera-
ture T , pressure p and mass density ρ, we see that only temperature is not a density,
and hence it is a global variable. This shows that the class of global variables is
larger than the class of extensive variables.

In many cases, global variables are those variables we measure, mainly be-
cause probes have a spatial extension. For example, it is easier to measure mass
and charge than their densities; it is easier to measure voltage than electric field
strength E; it is easier to measure a magnetic flux Φ, e.g. with a flip-flop coil,
than the magnetic flux density B. There are also global variables which we do not
measure directly: these include, for example, entropy, work, energy and action.24

Intensive, Extensive, Through and Across Variables. Other classifications of
physical variables exist, even if their field of interest is sometime limited to a
single theory. Table 5.8 shows these four kinds of variables.

Thus, in thermodynamics, variables are classified as intensive and extensive.
This classification is practically limited to thermodynamics.

In systems theory, there is another classification, limited to energy flows, which
distinguishes between through and across variables, as shown in Table 5.9. Across
variables are associated with lines endowed with an inner orientation, whereas
through variables are associated with surfaces with an outer orientation. Typical
variables of this kind are the voltage along a line and the current through a sur-
face.25

Global Variables and Computational Physics. We have just stated that global
variables, which refer to space elements endowed with extension, i.e. lines, sur-
faces and volumes, are set functions, whereas field functions are point functions.
We cannot perform derivatives on set functions; we can only perform algebraic
operations. For this reason global variables are the most natural variables used
in computational physics, where only algebraic operations are possible. This
approach is new in computational physics. In fact, it is customary to start with
differential equations and then perform a discretization process on them to obtain
algebraic equations.26

24 Many physicists believe that quantities which are not measurable should not be used in
physics. This statement is wrong, as expressed by many illustrious physicists. See Appendix C.
25 MacFarlane [146, p. 17].
26 The direct algebraic formulation of physical laws is the starting point of the cell method: see
Tonti [230–232, 234] and the papers quoted on the Web site discretephysics.dicar.units.it.



112 5 Analysis of Physical Variables

Table 5.8 Connection between various classifications used in physics and in engineering
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This table can be understood in reference to Fig. 8.9 at page 236

5.8.3 Continuity of Global Variables in Space

An analysis of global variables shows the following important property: global
variables are continuous through the interface of two different media. Hence, by
crossing a shock wave in fluids, the mass flow, the energy flow and the momentum
flow are continuous.27 Examples of this property are shown in Fig. 5.5. Whereas
global variables are continuous, their variations can be discontinuous through the
separation surface between two media. Even field variables, which are densities
and rates, are generally discontinuous. Thus, in the rebound of a ball against a
wall, the position vector (global variable in space and in time) is continuous,
whereas the velocity (its rate) is discontinuous; mass content (global variable in

27 Landau and Lifshitz [125, Sect. 81].
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Table 5.9 Conjugate physical variables: the product intensive × extensive gives an energy; the
product across × through gives a power

Type Variables Symbol Space
element

Intensive × extensive = energy
♥ Pressure −p Point
♠ Temperature T Point

Intensive variables � Chemical potential μ Point
� Electric potential φ Point
� Gravitational potential Ug Point

Across × through = power
♦ Voltage E Line

Across variables ♣ Velocity v Line
� Angular velocity ω̌ Line
♦ Electric current I Surface

Through variables ♣ Force F Surface
� Torque τ̌ Surface

Intensive × extensive =energy
♥ Volume V Volume
♠ Entropy S Volume

Extensive variables � Mole number n Volume
� Electric charge Q Volume
� Gravitational mass M Volume

space) is continuous, whereas mass density is discontinuous; temperature (global
variable in space) is continuous, whereas the temperature gradient is discontinu-
ous; electric potential (global variable in space) is continuous, whereas the electric
field strength is discontinuous.

5.8.4 Space Association

We have said that global variables in space are associated with space elements.
What do we mean by association? To explain this, let us consider as an example
the notions of flux and flow: whenever we talk about flux or flow, e.g. magnetic
flux Φ, energy flow Ef , entropy flow S f or mass flow Mf , we are referring to a
surface. If we wish to highlight this attribute of a variable, we will say that the
flux is associated with the surface.

Also, variables which are obtained by a line integral of a vector, such as the
voltage E, the magnetomotive force Fm, the line integral of the velocity Γ, the
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gravitational
       potential

electric
potential

temperature

U

T

a b c

d e

r

x

r
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r

position vector
ray vector

phase of
a wave

Q

R R

φ

f

Fig. 5.5 The global variables associated with points are continuous through the separation sur-
face of two media. (a) The gravitational potential is continuous passing from the exterior to the
interior of a massive sphere; (b) the electrical potential is continuous passing from the exterior
to the interior of a metallic sphere; (c) the phase of a plane wave is continuous through the
separation surface between two transparent media; (d) temperature is continuous through the
separation surface of different materials; (e) the ray vector in optics is continuous in refraction;
(f) the position vector is continuous in the rebound of a particle

line integral of a force W, since they involve a line in their definition, are said to
be associated with a line.

Similarly, the concept of the content of a variable, which is typical of spatial
descriptions, e.g. the mass content Mc, the energy content Ec, the entropy content
S c, the momentum content Pc, refers to a volume. We express this fact by saying
that these variables are associated with a volume.

There are also variables which are referred to points and that are not densities
of other variables: these include temperature T , electric potential φ and total dis-
placement u in continuum mechanics. We say that these variables are associated
with points.

To highlight this association, next to the physical variable we place its corre-
sponding space element enclosed within square brackets. Table 5.10 provides ex-
amples of this nomenclature. This association with the space element highlights a
characteristic aspect of the variable, a sort of DNA.

Table 5.10 Examples of associations of physical variables with space elements

Mc[V] mass content Fv [V] volume force V[V] potential energy
Q[S] heat T [S] internal surface force Φ[S] magnetic flux
E[L] voltage e[L] extension Γ[L] velocity line integral
T [P] temperature u [P] total displacement φ[P] electric potential
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As we will show in the second part of the book, which deals with single physi-
cal theories, some fluxes are associated with surfaces endowed with an inner ori-
entation, whereas other fluxes are associated with surfaces endowed with an outer
orientation. For example, we will show that the magnetic flux Φ and the vortex
flux W are associated with surfaces S endowed with inner orientations, while the
electric flux Ψ , the mass flow Mf , energy flow Ef , charge flow Qf , entropy flow

S f , momentum flow Pf and heat Q are associated with surfaces
∼
S endowed with

an outer orientation.
Similarly, the voltage E, the line integral of the velocity Γ and the work W of a

force in a force field are associated with lines L endowed with an inner orientation,
whereas the magnetomotive force Fm is associated with lines

∼
L with an outer

orientation.
Almost all contents – e.g. mass content Mc, energy content Ec, charge content

Qc, entropy content S c, momentum content Pc and angular momentum content Ľc

– are associated with volumes
∼
V with an outer orientation: only the hypothetical

magnetic charge Ǧ is associated with volumes V endowed with an inner orienta-
tion. With regard to the variables associated with points, some of them, such as

Table 5.11 Global variables in space

Inner orientation Outer orientation

P φ[P],U[P], φ[P], u[P] φ̌m[
∼
P], ψ̌[

∼
P]

L E[L], Γ[L],W[L] Fm[
∼
L]

S Φ[S],W[S] Mf [
∼
S], Ef[

∼
S],Qf[

∼
S], S f[

∼
S],Pf[

∼
S],Q[

∼
S]

V Ǧ[V] Mc[
∼
V], Ec[

∼
V],Qc[

∼
V], S c[

∼
V],Pc[

∼
V], Ľc[

∼
V]

the electric potential φ, the gravitational potential Ug, the velocity potential φ and
the total displacement u are associated with points P endowed with an inner ori-
entation, while others, such as, for example, the magnetic scalar potential φ̌m and

the stream function ψ̌, are associated with points
∼
P endowed with an outer orien-

tation. Hence we enrich the element enclosed in square brackets by also indicating
its type of orientation. Table 5.11 shows the variables we have mentioned.

We pose the following question: is the marriage between physics and geometry
so strict that the notion of inner and outer orientation is really necessary? Our
answer is a definite yes.

To prove this, let us consider a polygon which overlaps on itself and which
has a zero area,28 as shown in Fig. 5.6b. If we consider a circuit with the same
shape embedded in a uniform magnetic field, as in Fig. 5.6b, the magnetic flux
through the circuit is zero. This can be tested by switching off the magnetic field

28 Klein [114, p. 9].
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ba

B B

Fig. 5.6 (a) A polygon with non vanishing area; (b) a polygon with zero area

and measuring the voltage impulse at the terminals. Does this association of global
physical variables with oriented space elements suggest the introduction of a new
classification of global physical variables? The answer is affirmative, as we will
show in the book. We can state the following principle:

Association principle. In physical theories, in a spatial description,
global physical variables have a natural association with one of the
four space elements endowed with an inner or outer orientation, i.e. P,
L, S, V,

∼
P,
∼
L,
∼
S,
∼
V, whereas both, in the material and in the spatial de-

scription, the global physical variables are associated with one of the
two time elements endowed with an inner or outer orientation, i.e. I, T,
∼
I ,
∼
T.

How do we decide if a given physical variable is associated with a space ele-
ment endowed with an inner or outer orientation? The analysis of many physical
theories has witnessed the progressive emergence of the following empirical rule:

Empirical rule. Configuration variables are associated with space el-
ements endowed with an inner orientation, whereas source variables
and energy variables are associated with space elements endowed with
an outer orientation.

The author is unable to give a justification of this empirical rule which reveals
an unexpected marriage between physics and geometry. Table 5.12 provides an
intuitive insight into this association for four physical theories.

In physics, the distinction between the two kinds of orientation of a space el-
ement is not considered seriously. Nobody speaks of points endowed with inner
or outer orientations, of lines with outer orientations, of surfaces and volumes en-
dowed with inner orientations. In contrast, the distinction between inner and outer
orientation plays a pivotal role in the present analysis because it corresponds to
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Table 5.12 Analogies between four physical fields

thermal field

T

G

P

temperature T
refers to vertices
of the primal
cell complex

temperature
difference G
refers to edges
of the primal
cell complex

heat generation
rate P
refers to cells
of the dual
cell complex

heatcurrent F
refers to faces
of the dual
cell complex

electric field

f

y

fm

V

Q

electric potential f
refers to vertices
of the primal
cell complex

voltage V
refers to edges
of the primal
cell complex

electric charge Q
refers to cells
of the dual
cell complex

electric flux y
refers to faces
of the dual
cell complex

elastic field

u

h

F

T

total displacement u
refers to vertices
of the primal
cell complex

relative
displacement h
refers to edges
of the primal
cell complex

volume force Fv

refers to cells
of the dual
cell complex

surface force T
refers to faces
of the dual
cell complex

magnetic field

F

F

G Fm

magnetic flux F
refers to faces
of the primal
cell complex

hypotetical
magnetic charge G
refers to cells
of the primal
cell complex

scalar magnetic
potential fm
refers to vertices
of the dual
cell complex

magnetom. force F
refers to edges
of the dual
cell complex

the distinction between configuration and source variables which are mapped re-
spectively onto the left and right parts of the classification diagram of physical
variables.29 In turn, this distinction allows us to highlight the collocation of the
constitutive relations in the same classification diagram as a link between vari-

29 See Chap. 8.
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ables associated with space elements endowed with an inner orientation and space
elements endowed with an outer orientation.

5.9 Genesis of + and − Signs

The first time we encounter the + and− signs is in arithmetic, in the two operations
on numbers: addition and subtraction. In primary school we are taught to figure out
the difference between two numbers in which the first number is greater than the
number following it, e.g. 7−3. Then, in high school, we learn an important notion
whereby we consider the signs attached to the numbers and write (+7) + (−3). In
this way we introduce the relative numbers. With this introduction, we can alter
the order of the summands and write for example (−3)+ (+7). Hence, considering
the minus sign attached to the number allows us immediately to change the order
of the summands. This makes it possible to identify the numbers with the letters
and write the algebraic sum a + b, where a and b are two letters which can have
positive or negative values.

The result is the birth of literal calculus, which allows us to merge the two
operations of addition and subtraction in a single operation called algebraic sum.
The introduction of literal calculus in mathematics, and therefore its use in geom-
etry, physics and other quantitative sciences, was a wonderful invention because
it allowed relationships to be expressed between physical variables regardless of
the specific numerical values.30

5.10 Sign of Physical Variables

In everyday life, we often deal with complementary attributes such as, for example,
beautiful/ugly, good/bad and up/down (Table 5.13). These include some attributes
which, being quantitative, such as slow/fast, high/low, small/large and cold/warm,
can evolve and become physical variables.

Since physical variables arise to give a mathematical description to the quanti-
tative attributes of a physical system, the plus and minus signs in front of them can
be used to distinguish between two opposite states of the same attribute. Typical
is the use of the + and − signs to denote the two kinds of electric charge, vitreous
and resinous, or the temperature in Celsius, above and below the freezing point of
water. Since global physical variables are associated with space and time elements
endowed with an inner or outer orientation, once we select a preferred orientation
of the space or time element, it is possible and appropriate to invert the sign of the
variable when we invert the orientation of the associated element (Table 5.14).

30 Bashmakova and Smimova [9].
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Table 5.13 Examples of opposite attributes: the + sign is conventional

Minus (−) Plus (+) Minus (−) Plus (+) Minus (−) Plus (+)
Left Right Sink Source Male Female

Down Up Empty Filled Off On
Longitude west Longitude east Resinous Vitreous Low High

Outside Inside No Yes Repulsion Attraction
Destruction Production Bad Good Small Large

Latitude south Latitude north Compression Expansion Cold Warm
Left handed Right handed Weak Strong Black White

Table 5.14 Paradigm to find the association of a physical variable with its space and time ele-
ment. Filled circles denote space global variables, empty circles time global variables

Associated
with

Referred
to

Physical
variable G

Space
association

Volumes

Surfaces

Lines

Points

	

	

	

Volume density

Surface density

Line density

Not density

	

	

	

	

G[V] �

G[S] �

G[L] �

G[V]

G[S]

G[L]

G[P] �

G[T] �

G[T]

G[I] �

G(P)

G(t)

Time
association

Intervals

Instants
Rate

Not rate

	

	

	

This is what we commonly do with many, but not all, physical quantities. So
we can decide to consider positive the work given to a system, the force acting on
a bar when it acts as a traction, or a rotation when it is anticlockwise. This implies
that the work done by a system or a compressive force on a bar or a clockwise
rotation must to be considered negative.

For many physical variables we are not accustomed to using the sign: this is the
case of an area, a volume or a mass. The idea of negative areas, negative volumes
and negative masses seems absurd!

Thus, it is common to state that a negative mass does not exist. Why? Because
in speaking of negative mass we think that the sign is necessarily linked to the
attribute of attraction and repulsion. Since masses never repel each other, contrary
to electric charges, we conclude that a negative mass does not exist. This conclu-
sion presupposes that the term ‘negative’ refers to the properties of attraction and
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repulsion. But we will show shortly that there exist other attributes of the mass
and the positive or negative state when related to one of these attributes can be
fully meaningful.

The fact is that when a system has more than one attribute, we can assign the +
sign or the adjective positive, with reference to one of these attributes: if we make
reference to another attribute of the system, then we can associate the − sign or
the adjective negative with the system. Hence, if we do not specify the referenced
attribute, then the sign remains ambiguous.

Example 3. To show that the same object can be assigned a plus or minus sign according to

different attributes, let us consider two men, as shown in Fig. 5.7. We may refer to the attributes

a b

Fig. 5.7 Two different attributes of men: weight and height

weight or height. Referring to the attribute weight, we see that the man on the right has the sign

+, while referring to the attribute height the man on the left has the + sign. This shows that the

sign depends not only on the two opposite determinations of an attribute but, above all, requires

that the attribute to which it refers must be expressly specified.

Example 4. Let us consider a space region, say a building, oriented with outward normals: this

means that the interior of the building will be considered as the active region. A given number

of persons inside the building is then considered positive. If we change the outward normals into

inward normals, the interior of the building becomes the passive region. It follows that the same

number of persons becomes negative. To take a concrete case, let us consider the embassy of a

country B in nation A, as shown in Fig. 5.8. An embassy can be considered a hole in the host

nation. Let us suppose that two citizens of nation A, seeking political asylum, take refuge inside

the embassy of nation B. From the standpoint of nation B they are considered to be +2, while

from the standpoint of nation A they are considered to be −2. The sign changes depending on the

viewpoint or, put another way, the sign changes depending on which reference system is chosen,

a system or its complement. In this case, the attribute considered is the people’s nationality.

Example 5. If some woman’s ring falls into a manhole, she considers the ring lost, and as such

considers it negative capital. This is because we regard as lost that which is inside a region to

which we do not have access, in this case the manhole.
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+2 -2

nation

refugees
A

Fig. 5.8 The sign depends on the viewpoint: two refugees inside the embassy of nation B inside
nation A

Example 6. Let us consider a road connecting two cities, P and Q. If someone told you “I saw

a car travelling at a speed of −20 km/h,” our first thought is probably that the car was moving

. . . backwards! But the justification of the sign can be different: the person may have implicitly

taken a positive direction, say from P to Q, as the reference, and since the car moves from Q to

P at a speed of 20 km/h, he correctly states that its velocity was −20 km/h. The minus sign is the

result of the choice of a positive direction and of a comparison of the direction of motion of the

car with the direction chosen as positive.

This is a general property of signs: when we consider an attribute with two
complementary states, we may select one of the two states as the active one and the
other as the passive one. Other adjectives which can be used depending on circum-
stances are, for example, favourable/unfavourable, and opportune/inopportune. It
is random to consider the active, favourable and opportune as positive attributes.

Every time we detect a state coinciding with the active one, we can assign the
plus sign to it; otherwise the minus sign is assigned to it. Stated in this fashion, it
is obvious that by inverting the active state with the passive one, the sign of the
physical quantity is inverted. This property will be called the oddness principle.

In everyday life, we almost always use the absolute value of a magnitude such
as, for example, the length of a road, the height of a building, the area of an apart-
ment or the extension of agricultural land. In some cases, however, the absolute
value is not enough. Thus, if we tell a sailor to change the direction of his ship by
90◦, we must add the information to the right or to the left. If we order the operator
of a crane to move a load vertically, it is not enough to indicate how many metres;
we must say whether the movement is up or down. In all these cases, the content
of information required is greater than a simple number. To specify one of the two
aspects of a measure, we can use the + or − signs.
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5.11 Oddness Principle

As we have seen, every global variable is associated with a space and a time
element, and the corresponding density and rate inherits the same association.
Hence all variables, either global or local, have an association with a space and a
time element. In this association, the inner and outer orientations of the space and
time elements play a crucial role.

While it is fairly easy to determine which is the element of space or time to
which a physical variable is associated, it is less easy to determine the corre-
sponding type of orientation of the space or time element. To this end, based on
experimental evidence for many global variables, we introduce the following gen-
eral principle.

Oddness principle. Every global physical variable referring to an ori-
ented space or a time element reverses its sign when the orientation of
the space or the time element is reversed.

1. The line integral of a force along a line endowed with an inner orientation
changes sign when we invert the orientation of the line: hence W∗[−L] =
−W∗[L].31

2. The sign of the magnetic flux is reversed when we reverse the inner orientation
of the surface to which it is referred because the sign of the magnetic flux is
determined by the direction of the current which flows in a search coil; hence,
Φ[−S] = −Φ[S].

3. In continuum mechanics, one introduces the internal surface force T acting on
a piece of plane surface defined as the resultant force that the matter contained
on the positive side of the surface exerts on the matter of the negative side
through the surface element. Reversing the normal to the surface element, the
two sides change roles, and then the force changes its sign. It is customary to
introduce the stress vector t as the ratio of the surface force T to the area of
a plane element. This is one of the few cases where the oddness principle is
expressly stated in the literature and is written in the form T(−n) = −T(n) and

we write it in the form T[−∼S] = −T[
∼
S].32

4. The flow through a surface endowed with an outer orientation changes sign if

we reverse the outer orientation of the surface; hence, Qf [−∼S] = −Qf [
∼
S].

5. The electric flux collected on one face of a surface is opposite to the electric

flux on the opposite face; hence, Ψ [−∼S] = −Ψ [
∼
S].

31 We use the star on the letter W because the line integral in a force field is the virtual work.
32 This relation is an immediate consequence of the principle of action and reaction: see Milne-
Thomson [160, p. 630], Chadwick [39, p. 85]. In contrast, other authors deduce this property
from the equation of motion: see Billington and Tate [15, p. 67], Jaunzemis [106, p. 209].
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6. The displacement of a point changes into its opposite if we reverse the inner
orientation of the time interval to which it is referred; hence, u[−T] = −u[T].

7. The radius vector of a point P, usually defined as the vector connecting a fixed
origin O with the point P, changes sign when points are oriented as sources
instead of sinks: r[−P] = −r[P]. Thus, in planetary motion, because the force
of the Sun is attractive, it is conceivable to consider the radius vector of a planet
as the vector from the planet to the Sun, rather than the opposite.

The validity of this principle is needed in order for the form of the equations
expressing physical laws to be independent of the orientation of the space and
time elements. It is analogous to the principle according to which the equations
expressing physical laws must be independent of the coordinate system chosen,
and to the principle of relativity according to which the form of the equations
expressing physical laws must be independent of the reference system chosen.

For the majority of global physical variables the principle is evident, but in
a few cases it is not, as in the case of the mass, particle number and energy.
Table 5.11 (p. 124) presents the main global variables of physics, showing the
oddness principle with respect to the inner or outer orientation of the element of
space and time to which they are associated. All line integrals change sign with
the inversion of the orientation of the line; all surface integrals change sign with
the inversion of the orientation of the surface. Since flow refers to the motion of
something through a surface (e.g. matter, charge, energy), it changes sign under
a reversal of motion. A potential, defined as the line integral of a vector, changes
sign when the inner or outer orientation of the point is inverted. In fact, the line
integral of a vector from a fixed point to an arbitrary point implies that the point
is considered a sink, whereas that from an arbitrary point towards a fixed point
implies that the arbitrary point is considered a source.

As was stated about mass, it is easily seen that every content changes sign
under an inversion of the outer orientation of volumes.33

When dealing with the mathematical description of physical theories it is bet-
ter to start with global variables rather than field variables for at least two main
reasons:

1. They clearly show the space and time elements to which they refer.
2. They are often directly measurable.

The fact of making a mathematical description of physics starting with global
variables instead of field variables is a radical departure from the traditional de-
scription of physics, which uses the differential formulation from the very begin-
ning.

33 For mass and particle number, see p. 118; for the impulse of a force see p. 243.
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5.11.1 Global Variables in Time

By a careful examination of the time dependence of physical variables we are led
to introduce the notion of association of a physical variable with oriented time

elements, i.e. with one of the four elements I,T,
∼
I ,
∼
T. To do this, we start by

observing that physical variables are referred to an instant or an interval.
Many physical variables refer to instants, i.e. they are functions of instants:

this is the case with, for example, temperature, velocity, pressure, mass den-
sity, momentum, electric potential, electric field vector, electric current, force,
stress, strain and stream function. This is what we usually mean when we write
T (t), v(t), p(t), ρ(t), p(t), and so forth.

Other variables refer to intervals. This is the case, for example, with the dis-
placement of a particle, work given to a system, heat exchanged between two sys-
tems, an electric charge stored in a battery, the impulse given to a body, entropy
production, and flows of energy, mass, or entropy.

This suggests that global physical variables may be divided into two classes:
those associated with instants and those associated with intervals. This is indeed
the case, but we must make an important remark: among physical variables that
refer to instants, there are some which, nevertheless, require a time interval for
their definition and for their measure. This happens with those variables which
are rates of variables referred to intervals.

Example 7. As a first example, let us consider the position vector r of a particle and the velocity

v of the particle; both are functions of time instants. Despite this, to define (and measure) the

velocity, we need a small time interval, whereas to measure the position vector, we do not need

a time interval. In other words, velocity is attributed to an instant after calculating a rate, i.e.

displacement/(time interval) and a limit, wheres the position vector is attributed to an instant

directly. This shows that, although both variables refer to instants, the velocity needs a time

interval for its definition. We will say that velocity is associated with an interval of time, like the

displacement from which it derives.

Example 8. As a second example, let us consider the mass content Mc of a given volume at

a given instant and the power P emitted by an energy generator at a given instant. Both make

reference to instants. Despite this, to define (and measure) the power, we need a small time in-

terval to measure the work given by the generator, whereas the measure of the mass content does

not involve a time interval. Power is attributed to an instant after calculating a rate (work/time

interval) and a limit, whereas mass content is attributed to an instant directly. This shows that,

although both variables refer to instants, power needs a time interval for its definition. We will

say that power is associated with an interval of time, like the work from which it derives.

This distinction suggests the need to introduce the following definition.
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Definition. We call a global variable in time any variable which is not
the rate of another variable.

5.12 Time Association

A global variable in time which, by its own definition, involves an interval or an
instant is said to be associated with an interval or with an instant respectively.
Moreover, the rate of a global variable associated with an interval is said to inherit
the association with an interval. Therefore, since velocity is the rate of displace-
ment and the latter is associated with an interval, velocity inherits the association
with an interval. In an analogous way, since power is the rate of work and the lat-
ter is associated with an interval, we say that power inherits the association with
intervals. The same can be said of an electric current: since it is the rate of the
electric charge flow, it inherits the association with intervals.

The distinction between the notion of association with a time element on the
one hand and the notions of reference to a time element or of a function of a time
element on the other plays a pivotal role in the present classification of physical
variables.

In contrast, there are variables referring to instants which are not rates of other
variables: this is the case with the position vector r, the total displacement u of a
point in a continuum from a reference configuration, momentum P, magnetic flux
Φ, mass content Mc, entropy content S c, electric charge content Qc, velocity line
integral Γ, velocity potential φ, vorticity w, vortex flux W and a few others. These
variables not only refer to instants but are also associated with instants.34

Hence, we make a sharp distinction in the use of the terms referred to and
function of, on the one hand, and associated with on the other:

• Variables referred to an interval are automatically associated with that interval.
• Among variables referred to an instant we must distinguish between the fol-

lowing:

– Those which are rates of other variables associated with intervals are also
associated with intervals.

– Those which are not rates of other variables are associated with instants.

In a sense, the association takes into account the “genealogy” of the variable and
its measurement process.

34 The fact that velocity line integral is associated with time instants while velocity is associated
with time intervals is a consequence of a peculiar ambiguity of velocity in fluid dynamics, as we
will explain in Sect. 12.2, p. 356.
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Energy. Objections may be raised concerning the association of energy and tem-
perature to time intervals. To justify this, let us remark that kinetic and potential
energies can be composed to give the Lagrangian, and this function is integrated
on a time interval to give the action. Hence, the Lagrangian is an action rate. This
implies that all energies are rates of the action; hence, they inherit the association
with the interval, as does the action.

Temperature. With regard to temperature, let us remark that its integration in
time is justified by the following consideration: in a gas, the mean kinetic energy T
per molecule is proportional to the absolute temperature T via a universal constant,
Boltzmann’s constant kB:

T =
3
2

kB T . (5.3)

On account of this relation, if the time integration of energy is meaningful, then
the time integration of temperature also becomes meaningful. As a matter of fact,
some authors have considered the indefinite time integral of the thermodynamic
temperature, calling it thermacy.35

Volume Dilatation. Volume dilatation is the increase in volume per unit volume
and is measured from a reference configuration. Hence, it refers to an instant, like
the displacement of points from a reference position.36

Velocity. In continuum mechanics, velocity in a spatial (= Eulerian) description
has a double connotation: it is used to compute a line integral along a line; hence,
it is the line density of the line integral and is associated with dual time instants.
It is also used to perform the velocity gradient; hence, it is associated with points
and time intervals.37

As was done for space elements, we will highlight the association of a physical
variable with a time element by writing the physical variable followed by the time
element inside square brackets, as shown in the following examples.

1. Variables associated with time instants: position vector r [I]; strain ε [I]; mag-
netic flux Φ[I]; momentum p[I].

2. Variables associated with time intervals are of two kinds:

(a) Those which are directly associated with time intervals because they are
global variables over time: displacement u [T]; work W[T]; heat Q[T]; elec-
tric charge stored Qs[T]; impulse of a force J [T].

(b) Those which inherit an association with time intervals because they are rates
of global variables over time: force F [T]; velocity v [T]; power P[T]; elec-
tric current I[T].

35 See p. 389.
36 See the analysis of the displacement, p. 331.
37 See p. 356.
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A useful method to find the association of physical variables with time elements
is offered by the following criterion:

Criterion 1: Equilibrium. A physical variable whose measurement pre-
supposes that an equilibrium has been reached is associated with an
interval.

This is the case with

Temperature Thermal equilibrium
Force Mechanical equilibrium
Electric potential Electric equilibrium
Velocity Dynamic equilibrium
Electric current Steady state

Therefore, to measure a force, say with a dynamometer, we must wait for the
apparatus to reach mechanical equilibrium.38 To measure the velocity, say of a car
with a speedometer, we need to reach the dynamic equilibrium; in fact, during
a rapid acceleration of the car, the pointer on the speedometer moves up to the
moment when the motion is uniform. To measure an electric current, say with a
galvanometer, we must wait for the magnetic needle to reach equilibrium.

The equilibrium criterion applied to temperature T and to electric potential φ
shows us that they are associated with time intervals even though they refer to
time instants. In fact, to measure the temperature of a body, we must wait for a
time interval in order to reach thermal equilibrium between the thermometer bulb
and the body. Similarly, to measure the electric potential of a body, we need a
(very short) time interval to reach the electric equilibrium between the probe of
the voltmeter and the body. Hence, the notation T [T] and φ[T].

T

a b

T re

t

z

z

T

t

r

z

Fig. 5.9 (a) The time needed to reach equilibrium T e is distinct from the registration time T r.
(b) The registration time T r for the position of a particle must be very short

38 Redlich [191, p. 588].
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The time interval needed to reach equilibrium must not be confused with that
required for the registration of a signal. Thus, to register the position of a particle
by a photographic film, we need a short time interval to capture a number of pho-
tons to impress the film. This does not suggest that the position is associated with
a time interval. In fact, the shorter the exposure time, the more precise the deter-
mination of the particle position, as shown in Fig. 5.9b. To make this point clear,
let us consider the registration of the position of the pointer of a dynamometer to
measure the weight of a body, as shown in Fig. 5.9a. When we put the body on
the dynamometer, it starts to oscillate, and we must wait for the pointer to stop
oscillating. This is the interval T e needed to reach equilibrium. At this time we
need a time T r of registration by photography to expose the photographic film.
Both time intervals T e and T r can be reduced using a damped dynamometer and
fast photographic film; nevertheless, they remain distinct.

Another useful criterion to associate variables with time elements is the fol-
lowing:

Criterion 2: To decide whether a physical variable associated with in-
stants is global or not, we can see whether or not the product of the
variable for a time interval has a physical meaning.

Thus, the products of velocity v and force F for a time interval have a physical
meaning, and they give rise to displacement and impulse respectively. It follows
that velocity and force are time rates; hence, v [T] and F [T]. In contrast, the prod-
uct of momentum and a time interval is physically meaningless. It follows that
momentum is not a rate; hence, p [I].

The products of the kinetic co-energy T ∗ or the potential energy V and a time
interval have physical meaning, and they give rise to the kinetic and potential part
of the Hamiltonian action

AH =

∫ t+

t−
(T ∗ − V) dt . (5.4)

It follows that the Hamiltonian action is a global variable in time and the kinetic
and potential energies are its rates. We can write

AH[T] T ∗[T] V[T] . (5.5)

All kinds of energy must have the same behaviour of kinetic and potential
energies; otherwise, they would not be summable. Thus, internal energy U, en-
thalpy H, Helmholtz free energy F, Gibbs free energy G, the Lagrangian L and
the Hamiltonian H are time rates, and so they inherit an association with [T]:

U[T] H[T] F[T] G[T] L[T] . (5.6)
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5.12.1 Primal or Dual Time Elements?

In the preceding chapter we stated the fundamental distinction between a time
reversal and a reversal of motion.39 To decide between primal and dual time
elements, we use the oddness principle applied to time elements, as shown in
Table 5.15. Thus, the displacement of a particle makes sense when it is associated

Table 5.15 Procedure to find time association

A given variable
is associated with:

Time element Changes sign?
Instant No: −→ I Yes: −→ ∼

I

Interval No: −→ ∼
T Yes: −→ T

�



with a time interval; the same is true for the work on a system. Moreover, when
a reversal of motion is performed, both the displacement and the work change
signs: the work given to a system is changed into the work given by the system.
The oddness principle implies that the time interval is the one endowed with an
inner orientation. Hence, for the displacement η and the work W we can write

η [−T] = −η [T] and W [−T] = −W[T] . (5.7)

All flows are associated with primal time intervals. Thus, to measure a mass flow
M f from a tap, we can collect water in a container for a time interval; to measure
an electric charge flow Q f , say with an electrolytic cell, we need a time interval.
Moreover, a reversal of motion changes the sign of flows. Hence, flows are asso-
ciated with time intervals endowed with an inner orientation. This is the case with
work (= energy flow), mass flow, charge flow, entropy flow and heat:

W[T] = E f[T], M f[T], Q f[T], S f[T], Q[T] . (5.8)

The association with a time interval leads to the introduction of the corresponding
rates, i.e. velocity v, power P, mass current Φ, energy current Ie, electric current
I, entropy current Is and heat current Φ respectively. These variables inherit the
association with time intervals. Hence, we can write

P[T] Im[T] Ie[T] I[T] Is[T] Φ[T] . (5.9)

Since mass content M c, charge content Q c and entropy content S c are invariant
under a reversal of motion, it follows that they are associated with primal time

instants, i.e. M c ≡ M[I,
∼
V],Q c ≡ Q[I,

∼
V], S c ≡ S [I,

∼
V].

39 See p. 35.
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Remark. The present classification of global physical variables and densities or rates has

nothing to do with the traditional distinction of variables into two classes, fundamental and

derived. The last classification is based on the choice of a few physical variables (in the SI

system of units they are seven) to express all other variables as products of the fundamental

ones.

Of course, the definite time integral of a function is associated with a time
interval and the indefinite time integral is associated with a time instant. What is
not obvious is deciding whether the instant or the interval is primal or dual. To
decide this, we use the following criterion:

Criterion 3: If a function is invariant under a reversal of motion, its
definite time integral is associated with the dual time intervals

∼
T and

its indefinite time integral is associated with the dual time instants
∼
I .

In contrast, if the function changes sign under a reversal of motion, its
definite time integral is associated with the primal time intervals T and
its indefinite time integral is associated with the primal time instants I.

The best way to test these rules is to apply them to the main physical variables
for which a time integration is significant.

Radius Vector, Displacement and Velocity. The position vector, which gives the
position of a particle, does not change sign under a reversal of motion; hence, r[I].
Since the displacement u[T] changes sign under a reversal of motion, and since
the velocity v is the time rate of the displacement, it follows that velocity changes
sign under a reversal of motion v −→ −v, i.e. it inherits the association with T.
We will write v[T].

Force, Impulse and Momentum. To analyse the impulse J of a force, we must
know if J changes its sign after a reversal of motion. Let us consider the rebound
of a ball against a wall, as shown in Fig. 5.10.

The ball gives an impulse J to the wall. If we take a movie of the rebound
and then run the movie backwards in time, the velocities and the momentum are
reversed but the ball still gives the same impulse to the wall. This means that, while
the velocity and the momentum change sign under a reversal of the motion, the
impulse does not change sign. Since the impulse is associated with a time interval,
in accordance with the oddness principle, it cannot refer to an inner orientation;
otherwise, it would change sign. Then, by exclusion, it should refer to a time

interval endowed with an outer orientation: J[
∼
T].

What happens when we change the outer orientation of the time interval?
Coherently we must require that the impulse changes sign. How is this possible?
Well, we remark that the impulse that the ball gives to the wall is the opposite of
the impulse that the ball receives from the wall on account of the action and reac-
tion principle. Hence, to satisfy the oddness principle we must change the impulse
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given to the wall with the impulse received from the wall. We see that the action
and reaction principle becomes the key to give a physical meaning to the outer
orientation of time intervals.

This is analogous to refugees in an embassy: their number is positive or nega-
tive depending on the reference country, that of the embassy or that of the nation
that houses the embassy: this is an inversion of an outer orientation of volumes.

a b

J
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p+

J

p+

Jp

p+
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-p -
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Fig. 5.10 The rebounding of a ball against a wall shows that the impulse does not change sign
under a reversal of motion. (a) With forward motion the impulse given to the ball points to the
left. (b) With backward motion the impulse also points to the left

Since force is the rate of impulse, it does not change sign under a reversal of

motion, i.e. F[
∼
T]. To enforce this association of force with time intervals with

an outer orientation, we remark that the gravitational force, which is attractive,
remains attractive even when viewed in a movie running backwards in time.

It is easy to prove that a force, whether its nature is gravitational, electric, mag-
netic, elastic, nuclear, always has the same behaviour under a reversal of motion.
Indeed, if we start from the observation that the equilibrium of a body remains
unchanged for a reversal of motion, it follows that two forces of different natures
which are in equilibrium must have the same behaviour for a reversal of motion.
Thus, Millikan’s experience shows that an electric force which attracts an oil drop
upwards is balanced by the gravitational force which attracts the oil drop down-
wards. Since the gravitational force does not change sign for a reversal of motion,
the electric force does not changes its sign either. Hence, whatever their physical
nature, the forces are all associated with a dual time interval.

This indicates that the analysis we are conducting highlights the intrinsic char-
acteristics of physical variables, i.e. their association with space and time ele-
ments, which does not seem to be considered in the literature. This fact differs
from dimensional analysis, which assigns dimensions to each variable by taking
into account the choice of the fundamental variables; for this reason, it is not in-
trinsic.

The momentum p of a particle is the indefinite time integral of the force,40

40 See Chap. 9 for a more detailed presentation.
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p(t)
def
=

∫ t

0
F(t′) dt′ −→ p[

∼
I ], (5.10)

and must be associated with dual time instants
∼
I in order to satisfy the relation

between impulse and momentum:41

J(t−, t+) = p(t+) − p(t−) −→ J[
∼
T] . (5.11)

Work and Power. Since power satisfies the relation

P(t)
def
= F · v −→ R P(t) = R F(t) ·R v(t) = [+F(t)] · [−v(t)] = −P(t), (5.12)

it changes sign under a reversal of motion: the power absorbed by a system be-
comes power released by the system. We can say that power is time odd. It follows
that work is also time odd under a reversal of motion, i.e. W[T], as we just stated
in Eq. 5.7.

Heat and Temperature. Since the measurement of temperature requires thermal
equilibrium, according to Criterion 1 it is associated with time intervals, i.e. T [T].
A reversal of motion has no reason to change the temperature of a body; hence,
according to the oddness principle, it cannot be associated with primal intervals;

hence, it is associated with dual intervals, i.e. T [
∼
T].

A further argument is that the absolute temperature is the average kinetic en-
ergy per molecule according to the formula T = 3/2kBT : since energy is as-
sociated with dual time intervals, temperature is also associated with dual time

intervals; hence, T [
∼
T].

5.12.2 Global Variables in Space and Time

Definition. We call a global variable in space and time any variable
which is global both in space and in time.

Let us give some examples of variables which are global in space and time
(Table 5.16).

• Electric charge content Q c, i.e. the charge contained at an instant in a volume,
is global in space because it is not a density of another variable, and it is global

41 The global variables and equations of particle dynamics are displayed in the diagram in
Table 9.1 at p. 242.
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Table 5.16 Global variables in time associated with time intervals which are increments of other
global variables in time associated with instants

Displacement u(t−, t+) = +r (t+) − r (t−) Position vector
Mass flow M f (t−, t+) = +M c(t+) − M c(t−) Mass content
Charge flow Q f(t−, t+) = +Q c(t+) − Q c(t−) Charge content
Work W(t−, t+) = +T (t+) − T (t−) Kinetic energy
Work+heat W(t−, t+)+Q(t−, t+) = +U(t+) − U(t−) Internal energy
Impulse J(t−, t+) = +p (t+) − p (t−) Momentum
Action AH(t−, t+) = +S (t+) − S (t−) Hamilton’s principal

function

Table 5.17 The two kinds of field variables as functions of time
Field variables which are not

rates of other variables

associated with instants I or
∼
I

Field variables which are
rates of other variables

associated with intervals T or
∼
T

Mass density ρ(t) ρ[I] Velocity ♠ v(t) v[T]
Surface charge density σ(t) σ[I] Electric current density J (t) J [T]
Probability density ρ(t) ρ[I] Particle current density Jp(t) Jp[T]
Particle density n(t) n[I] Magnetic scalar potential φ̌m(t) φ̌m[T]
Burgers vector b̌(t) b̌[I] Mass current density q(t) Jm[T]
Concentration c(t) c[I] Angular velocity ω̌(t) ω̌[T]
Total displacement u(t) u[I] Magnetic field strength Ȟ(t) Ȟ[T]
Eikonal S (t) S [I] Volume dilatation Θ(t) Θ[T]
Charge density ρ(t) ρ[I] Volume dilatation rate θ(t) θ[T]
Position vector r(t) r[I] Entropy source strength σs(t) σs[T]
Electric displacement D(t) D[I] Heat source strength σq(t) σq[T]
Entropy density s(t) s[I] Energy current density Je(t) Je[T]
Strain tensor ε(t) ε[I] Entropy current density Js(t) Js[T]
Phase φ(t) φ[I]

Magnetic vector potential A(t) A[
∼
I ] Acceleration of gravity g(t) g[

∼
T]

Momentum density p(t) p[
∼
I ] Heat current density q(t) q[

∼
T]

Vorticity w̌(t) w̌[
∼
I ] Temperature T (t) T [

∼
T]

Angular momentum den-
sity

ľ(t) ľ[
∼
I ] Internal energy density u(t) u[

∼
T]

Magnetic flux density B̌(t) B̌[
∼
I ] Symmetric stress tensor σ(t) σ[

∼
T]

Velocity potential φ(t) φ[
∼
I ] Electric potential φ(t) φ[

∼
T]

Velocity ♠ v(t) v[
∼
I ] Angular acceleration α̌(t) α̌[

∼
T]

Chemical potential μ(t) μ[
∼
T]

Force F(t) F[
∼
T]

Electric field strength E(t) E[
∼
T]

The notation ǎ denotes a pseudoscalar, whereas ǎ denotes a pseudovector; see p. 145. For the
double connotation of velocity see p. 355
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in time because it is not a rate of another variable. The same goes for mass
content M c, entropy content S c and energy content E c, which are global in
space and time.

• Electric charge flow Q f , i.e. the charge which flowed during a time interval
through a surface, is global in space and time. The same goes for mass flow
M f , energy flow E f , entropy flow S f and momentum flow P f .

• Position vector r is a global variable in space and time because it is neither a
space density nor a time rate.

• Displacement u during a time interval of a point of a body, in a given time
interval, is global in space and time.

• Magnetic fluxΦ at an instant through a surface is a global variable in space and
time; in fact, it is neither a density nor a rate.

• The impulse of a volume force Jv is global in space and global in time.

5.13 Field Variables: Inherited Association

Once we realize that global variables are directly related to space and time ele-
ments, it is natural to consider their line, surface and volume densities and their
rates as indirectly related to the corresponding space and time elements. This re-
mark leads us to introduce the notion of inherited association as follows.

Definition. We say that densities and rates inherit an association with
the space and time elements to which the corresponding global vari-
ables refer.

Hence

• Mass density ρ inherits an association with volumes because the mass content

M c is associated with volumes
∼
V and time instants I. Hence,

from M c[I,
∼
V] it follows that ρ[I,

∼
V]. (5.13)

• Electric field strength E inherits from electric voltage E an association with
time intervals endowed with an outer orientation and with lines endowed with
an inner orientation. Hence,

from E[
∼
T,L] it follows that E[

∼
T,L]. (5.14)

• Heat current density q inherits an association with time intervals and surfaces
because it is the rate of heat and the surface density of the heat Q. Hence,

from Q[T,
∼
S] it follows that q [T,

∼
S]. (5.15)
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• Force, which is the time rate of impulse, inherits an association with dual time

intervals; hence, F[
∼
T].

The inherited association with the space-time elements enables the preservation
of the noteworthy information, which is commonly lost.

The space global variables which are associated with points, such as, for exam-
ple, temperature, electric potential, chemical potential, displacement and veloc-
ity potential, are automatically field variables. Nevertheless, most field variables
arise from those global variables which are associated with space elements en-
dowed with extension, i.e. lines, surfaces and volumes, by performing a two-step
process:

• Divide the global variable by the extension of the space element, i.e. length,
area, volume, to obtain a mean density.

• Perform a limit process on this mean density to obtain a density which is a
point function.

Hence, field variables are characterized by a double notation:

1. Traditional notation: the point P is placed inside round brackets; e.g. heat cur-
rent density is denoted q(t,P).

2. Additional notation: the inherited association with the temporal and the spatial
elements is highlighted by placing the corresponding elements within square

brackets, for example the heat current density will be referred to as q [T,
∼
S].

Notation. Usually to denote a function which depends on time and space variables, it is
common to use the notations f (x, t), i.e. the space variable may precede the time variable or vice
versa. In this book the time variable always precedes the space one. To justify this choice, we
note the following:

1. Firstly, the fundamental equations of thermal conduction and the wave equation are usually
written in the form

ρ c
∂T
∂t

− λ∇2 T = 0
1
v2

∂2φ

∂t2
− ∇2 φ = 0 . (5.16)

In both cases, the position of the time derivatives precedes the position of the space deriva-
tives. This suggests that we should consider the time variable as the first variable, i.e. f (t, x).

2. Secondly, when passing from a material description to a spatial description, we must add
space variables, i.e. from f (t) to f (t, x, y, z), and this leads to placing space variables after
time variables.

3. Thirdly, when space variables depend on time, the total derivative is commonly written

d f (t, x)
dt

=
∂ f
∂t
+
∂ f
∂x

dx
dt
+
∂ f
∂y

dy
dt
+
∂ f
∂z

dz
dt
, (5.17)

i.e. once more, the time variable precedes the space variables.
4. A fourth reason is that in the theory of relativity, the main invariant ds2 can be written in one

of two ways:

ds2 = c2 dt2 − ( dx2 + dy2 + dz2); ds2 = ( dx2 + dy2 + dz2) − c2 dt2 . (5.18)
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The first choice is preferable because it allows us to avoid the introduction of the imaginary
unit in relativity; see Misner et al. [161, p. 51].

We will adopt this notation and write expressions such as [I,P], [T,V] instead of [P, I], [V,T].

In Table 5.18 we have assembled a list of global physical variables with the
corresponding field functions. A comparison of the fourth and fifth columns in this
table reveals that the information content of field variables, using the space and
time elements inside the square brackets, is greater than the information content
inside the round brackets. In fact, when we perform the limit process, all variables
become functions of t and P, regardless of their origin. In Tables 5.17 and 5.18, we
have specially marked velocity because it has a double connotation in continuum
mechanics.42

5.14 How to Find the Space and Time Association

We give here the operative rules to find the space and time elements with which a
physical variable is associated.

Space Association. Given a physical variable Q, you have to decide, at first,
whether it is a global variable in space or not. Recall that a variable is called
global in space if it is not a line, surface or volume density of another variable.

• If the variable Q is global in space, then we use the definition of the variable
and take into account the measurement process (if it is a measurable quan-
tity). We must see if the variable makes reference to a volume, surface, line or
point. Following this detailed definition and the possible measurement process
we can find the correct space element. In these cases we will put, provision-
ally, the space element in square brackets as follows: Q[V],Q[S],Q[L],Q[P]
respectively. Now we must determine the orientation of the space element. To
this end, we pose the following question: does the sign of the variable change
when we reverse the inner orientation of the space element? If the variable
changes sign, then the variable is associated with an element endowed with an
inner orientation, and we will write Q[V],Q[S],Q[L],Q[P], depending on the
space element with which the variable Q is associated. In contrast, if the sign
does not change, then the variable is associated with an element endowed with

an outer orientation, and we will write Q[
∼
V],Q[

∼
S],Q[

∼
L],Q[

∼
P], depending on

the space element with which the variable Q is associated.
• If the variable Q is a density, then it inherits the association with the same

space element of the global variable of which it is a density. Hence, also in this

case, we will write Q[V],Q[S],Q[L] or Q[
∼
V],Q[

∼
S],Q[

∼
L] respectively.

42 As will be explained in Chap. 12, at p. 356.
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Table 5.18 Global variables and corresponding field functions

Global variable Corresponding field function
Associated with volumes

Mass content Mc[I,
∼
V] Mass density ρ[I,

∼
V] ρ(t,P)

Entropy content S c[I,
∼
V] Entropy density s[I,

∼
V] s(t,P)

Entropy production S p[T,
∼
V] Entropy source σs[T,

∼
V] σs(t,P)

strength

Impulse of volume force Jv[
∼
T,
∼
V] Volume force Fv [

∼
T,
∼
V] F(t,P)

Associated with surfaces

Magnetic flux Φ[
∼
I , S] Magnetic flux density B[

∼
I , S] B(t,P)

Electric flux Ψ [I,
∼
S] Electric displacement D[I,

∼
S] D(t,P)

Vortex flux W[
∼
I , S] Vorticity vector w[

∼
I , S] w(t,P)

Mass flow Mf [T,
∼
S] Mass current density q[T,

∼
S] q(t,P)

Electric charge flow Qf[T,
∼
S] Electric current J[T,

∼
S] J(t,P)

density

Entropy flow S f[T,
∼
S] Entropy current Js[T,

∼
S] Js(t,P)

density

Heat Q[T,
∼
S] Heat current density q[T,

∼
S] q(t,P)

Impulse of surface force Js[
∼
T,
∼
S] Internal surface force T[

∼
T,
∼
S] T(t,P)

Stress tensor σ[
∼
T,
∼
S] σ(t,P)

Pressure p[
∼
T,
∼
S] p(t,P)

Associated with lines

Relative displacement h[I,L] Strain tensor ε[I,L] ε(t,P)

Velocity line integral Γ[
∼
I ,L] Velocity ♠ v[

∼
I ,L] v(t,P)

Relative velocity e[T,L] Strain rate tensor d[T,L] d(t,P)

Magnetomotive force impulse E [
∼
T,L] Electric field strength E[

∼
T,L] E(t,P)

Voltage impulse E [T,
∼
L] Magnetic field H[T,

∼
L] H(t,P)

strength
Associated with points

Position vector r[I,P] Radius vector r[I,P] r(t,P)

Velocity potential φ[
∼
I ,P] Velocity potential φ[

∼
I ,P] φ(t,P)

Thermacy T [
∼
I ,P] Temperature T [

∼
T,P] T (t,P)

Displacement u[T,P] Velocity ♠ v[T,P] v(t,P)

Electric potential impulse ϕ[
∼
T,P] Electric potential φ[

∼
T,P] φ(t,P)

Scalar magnetic Scalar magnetic
potential impulse ϕm[T,

∼
P] potential φm[T,

∼
P] φm(t,P)
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Time Association. Given a physical variable Q, we must decide, firstly, whether
it is global in time or not. Recall that a variable is said to be global in time if it is
not the rate of another variable.

• If the variable is global in time using the definition of the variable and tak-
ing into account the way we measure it (if is a measurable quantity), then we
must see whether it makes reference to a time interval or to a time instant. In
these cases, we will put, provisionally, the time element in square brackets as
follows: Q[T],Q[I] respectively. Now we must determine the orientation of the
time element. To do this, we ask ourselves: does the sign of the variable change
when we perform a reversal of motion? If the sign changes, then the variable Q
is associated either with primal time intervals (inner orientation), hence Q[T],

or with dual time instants (outer orientation), hence Q[
∼
I ], depending on which

time element it is associated with. In contrast, if the sign does not change,
then the variable Q is associated either with primal time instants (inner orien-

tation), hence Q[I], or with dual time intervals (outer orientation), hence Q[
∼
T],

depending on which time element it is associated with.
• If the variable Q is a rate, then it inherits the association with the same time

element of the global variable of which it is the rate. Hence, we will write Q[T]

or Q[
∼
T] respectively.

Table 9.6 (p. 265) shows the time association of many energy variables. For a
description see Chaps. 9, 10, and 13, in particular p. 253.

5.15 Physical Variables Can Be Grouped into Families

Physical variables, which are linked to each other by the process of forming a rate
or a line, surface or volume density, will be considered as belonging to the same
family. In every family there is a variable which is the “head” of the family: this
is a global variable in space and time. In every family there is a field variable, i.e.
a variable which is obtained from the head variable by computing the density and
the rate, thereby eliminating the dependence on space and time extensions.

1. Mass and density belong to the same family: mass is the head and density is
the field variable:

mass m −→ mass density ρ.

2. Displacement and velocity belong to the same family: velocity is the rate of
displacement, hence the displacement is the head of the family:

displacement u −→ displacement rate = velocity v.
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3. The family of surface forces is as follows:

impulse of surface force Js −→ surface impulse rate = surface force T

surface impulse density −→ surface force density = stress vector t.

4. The electric current density J, the electric current I and the electric charge flow
Q f belong to the same family: the charge flow is the head and the electric
current density is the field variable:

electric charge flow Q f −→ electric charge flow rate = current I

electric charge flow density −→ electric current density J.

5. The family of voltages is

voltage impulse E −→ voltage E

electric impulse strength −→ electric field strength E.

6. Electric potential is a function of a point and an instant. Since it is physically
meaningful to perform a time integration on it, we obtain the electric potential
impulse:

electric potential impulse ϕ −→ electric potential φ.

7. Work, heat, energy flow, energy flow rate (= power transmitted) and energy
flow rate density belong to the same family. Which is the head? Since work
and heat are two forms of energy flow, the head of the family is energy flow:
Then we have

energy flow −→ energy flow rate = energy current=power P

energy flow density −→ energy current density (e.g. Poynting vector S)

These examples show that there are four kinds of families: one with four
members, two with two members and one with a single member, as shown
in Fig. 5.11.

space

density

density

rate
rate

time

Fig. 5.11 The four families of physical variables: some are composed of four members, some of
two members and some of a single member
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The identification of the head of the family is not always immediate. Thus,
one may think that electric potential and temperature are the heads of the corre-
sponding families, while they are rates. The corresponding heads are the electric
potential impulse and the time integral of temperature respectively. Lastly, the
temperature family is43

thermacy T −→ thermodynamic temperature T .

5.16 Identification Criteria

A general criterion for identifying the space and time elements associated with a
physical variable is offered by the adjectival modifiers preceding or following the
name of the variable, or by the name of the variable. We list here the more usual
ones.

1. Produced, stored, released, generated, dissipated, source, supply are typi-
cal names of variables associated with volumes endowed with an outer orien-
tation and time intervals endowed with an inner or outer orientation. Examples

include entropy production S p[T,
∼
V], entropy source strength σs[T,

∼
V] and mo-

mentum production, i.e. the impulse (of a force) J [
∼
T,
∼
V].

2. Content, amount, volume density, specific are typical names of variables as-
sociated with volumes endowed with an outer orientation and time instants
endowed with an inner or outer orientation. Examples include mass content

Mc[I,
∼
V] and momentum content Pc[

∼
I ,
∼
V].

3. Absorbed, emitted, transmitted, flow, current are typical of variables as-
sociated with surfaces endowed with an outer orientation and time intervals
endowed with an inner or outer orientation. Examples include entropy flow

S f[T,
∼
S] and mass flow M f[T,

∼
S].

4. Flux44 is typical of variables associated with surfaces endowed with an inner or
outer orientation and time instants endowed with an inner or outer orientation.
Examples include magnetic flux Φ[

∼
I , S], electric flux Ψ [I,

∼
S] and vortex flux

W[
∼
I , S].

5. Potential difference, voltage, strength, thermodynamic force are associated
with lines endowed with an inner or outer orientation and time intervals en-
dowed with an inner or outer orientation. Examples include voltage E[

∼
T,L],

magnetomotive force Fm[T,
∼
L] and temperature difference G[

∼
T,L].

6. Circulation denotes a physical variable associated with lines with an inner or
outer orientation and time instants endowed with an inner or outer orientation.

43 See p. 387.
44 Since the term flux is used with many different meanings, see p. 30 for the restricted meaning
we apply to this term.
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Examples include velocity line integral Γ[
∼
I ,L], optical path length s[I,L],

spatial phase difference Δsφ[
∼
I ,L] and line integral of the magnetic vector po-

tential a[
∼
I ,L].

7. Potential is associated with points endowed with an inner or outer orientation
and with time intervals endowed with an inner or outer orientation. Examples

include electric potential φ[
∼
T,P], gravitational potential Ug[

∼
T,P], magnetic

scalar potential φ̌m[T,
∼
P] and thermal potential≡ temperature T [

∼
T,P]. Kinetic

potential φ[
∼
I ,P] refers to time instants.

8. Function is associated with points endowed with an inner or outer orientation
and time instants endowed with an inner or outer orientation. Examples include

gauge function χ[
∼
I ,P], Hamilton’s principal function S [

∼
I ,P],45 eikonal func-

tion S [I,P], phase function φ[
∼
I ,P], velocity potential φ[

∼
I ,P], stream function

ψ[T,
∼
P] and Airy’s function φ[

∼
I ,
∼
P].

These notions allow us to construct a classification diagram of physical variables.
Global variables associated with volumes are additive on volumes; they are

commonly called extensive variables in thermodynamics. The class of intensive
variables has no precise definition. The usual presentation of intensive variables
is those which are not additive, like, for example, pressure, temperature and

density.46 It includes variables associated with points, like temperature T [
∼
T,P]

and electric potential φ[
∼
T,P]; others associated with volumes, like mass density

ρ[
∼
I ,
∼
V] and internal energy density u[

∼
T,
∼
V]; and still others associated with sur-

faces, like pressure p[
∼
T,
∼
S]. The absence of a definition of intensive variables47

may explain why they are of no use outside of thermodynamics.
From the preceding discussion we can see that many functions of points and

instants (field variables) arise from the need to compute ratios in order to make
possible the limit process. Physical variables associated with lines, surfaces and
volumes give rise, after the limit process on their mean densities, to point func-
tions. This implies a loss of information. Thus, in thermostatics, temperature, pres-
sure and density are considered intensive variables. When dealing with intensive
variables it is not noted that they may be associated with different space elements:
thus, temperature and electric potential are associated with points, pressure is as-
sociated with surfaces and density is associated with volumes (Table 5.18). Why
should we lose this information?

45 This is the indefinite time integral of the Lagrangian function along a path: see Lur’é, [144,
vol. II, p.705], Landau and Lifshitz [123, p. 138].
46 Lewis and Randal [137].
47 Redlich [191].
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5.16.1 Possible Ambiguities

The association of physical variables with space and time elements must be made
with care because we are led to associate many variables with points and instants.
It is important to note that this association pertains to global variables, and only
indirectly to densities.

Remark. In integrals, the space element, which is written at the bottom of the integral symbol,

is marked with an overline, or a tilde, according to whether the element is endowed with an inner

or outer orientation. This practice is never applied in physics or mathematics simply because, in

dealing with multiple integrals, there is not the custom of distinguishing between inner and outer

orientations.

1. We may think that pressure is associated with points and instants. This is in-
correct because pressure is not a global variable; rather, it is the density of a
surface force which, in turn, is the time rate of the surface impulse. The impulse

of the normal force acting on a surface
∼
S with normal n is

Js =

∫
∼
T

∫
∼
S
−p(t,P) n dS dt surface impulse. (5.19)

Hence, pressure, which is the density rate of the surface impulse, inherits an
association with surfaces and intervals. The intervals are those endowed with
an outer orientation. To stress this relation, we will write

Js[
∼
T,
∼
S] −→ T[

∼
T,
∼
S] −→ p [

∼
T,
∼
S]. (5.20)

All three of these variables belong to the same family, the family of surface
impulses. Note that surface impulse is the head of the family.

Remark. Some authors state that pressure coincides with energy density, and as consequence,

one can think that pressure is associated with volumes. This is not correct. In a material

description, pressure is equal to the increase in energy for unit volume, according to the

thermodynamic relation dU = −p dV. This presupposes a variation in the volume, possible

in a material description, while in a spatial description, the volume is fixed (control volume).

Pressure has the same dimensions of an energy density, but this is no reason to confuse the

two variables. In addition, the moment of a couple has the same dimensions of a work, but

they are two distinct variables. One argument to contrast this identification is that energy is

defined up to an arbitrary constant; hence, its density also depends on an arbitrary constant. In

contrast, pressure is a measurable quantity. The identification of pressure with energy density

is possible and convenient only in cases where there is no arbitrary constant, as is the case

with magnetic energy density, which vanishes when the magnetic field is zero.
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2. Similarly we may think that mass density ρ is associated with points. This is
incorrect because mass density is a mass content M c for unit volume and mass
content is associated with volumes and time instants. Since

Mc =

∫
Ṽ
ρ dV mass content, (5.21)

we will write
Mc[I,

∼
V] −→ ρ [I,

∼
V] (5.22)

and say that these two variables belong to the same family.
3. Let us consider the electric field E. It appears natural to consider it as being

associated with points and instants; this is incorrect. In fact, the vector E is not
a global variable: its line integral is the voltage V , which in turn is the time rate
of the voltage impulse

V =

∫
T̃

∫
L

E(t,P) · t dL dt voltage impulse. (5.23)

We will write
V [
∼
T,L] −→ V[

∼
T,L] −→ E[

∼
T,L], (5.24)

and we consider the three variables of the same family, the family of the voltage
impulse, which is the head of the family.

4. Let us consider the electric current density J; it appears natural to consider it as
being associated with points and instants. This is incorrect. In fact, the vector J
is not a global variable; it is the surface density of the electric current I, which
in turn is the time rate of the charge flow

Qf =

∫
T

∫
∼
S

J(t,P) ·n dS dt charge flow. (5.25)

We will write
Qf[T,

∼
S] −→ I[T,

∼
S] −→ J [T,

∼
S], (5.26)

and we consider that the three variables belong to the same family, the family
of charge flow, which is the head. With these notations we see that Ohm’s law,
which is a constitutive law

V(t) = R I(t), (5.27)

can be written as

voltage E[
∼
T,L] = R I[T,

∼
S] current (5.28)

or, using space and time global variables,

voltage impulse E [
∼
T,L] = R Q f[T,

∼
S] charge flow. (5.29)
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This shows that the time integral of the electric voltage is meaningful. Even
more, we see that Ohm’s law links a variable associated with a time interval
with an inner orientation with one associated with a time interval with an outer
orientation. As we will discuss later (p. 164), this shows that Ohm’s law de-
scribes an irreversible phenomenon.

5.17 Differential Formulation and Orientation

A differential formulation does not explicitly employ the concept of orientation of
the space element involved. To show this, we note that when we deduce integral
variables from field variables, the integration along lines, over surfaces and in
volumes does not specify the kind of orientation of the space element. Therefore,
we usually write line, surface and volume integrals with the notation

∫
L

∫
S

∫
V

instead of

∫
L

∫
S

∫
V

and

∫
∼
L

∫
∼
S

∫
∼
V

(5.30)

for inner and outer orientations respectively.
The fact that the magnetic flux Φ and the vortex flux W are associated with

a surface endowed with an inner orientation whereas the electric flux Ψ and the
electric current I are associated with a surface endowed with an outer orientation
does not appear in the formulas. Moreover, when the surfaces are endowed with
an inner orientation, to introduce the unit normal n, we must have recourse to the
screw rule, and this implies that the normal is a pseudovector, a fact that is not
commonly noted. In addition, the unit vector tangent to a line endowed with an
outer orientation is a pseudovector.

Notation. A pseudovector is a vector which by definition requires a direction of translation

to be associated with a direction of rotation. A typical example is the vector of angular velocity

of a cylinder around its axis, which is defined as a vector parallel to the axis of rotation whose

modulus is the angle of rotation for unit time and whose direction is associated with the direc-

tion of rotation by making use of the rule of the right-handed screw. The transformation law of

pseudovectors is similar to the transformation law of (polar) vectors except for the sign of the

determinant of the transition matrix48 from two sets of base vectors. Similarly, a pseudoscalar

is a scalar whose sign depends on the screw chosen. Following the notation used in the French

literature, which puts a curved arrow over pseudovectors,49 we will denote pseudovectors and

pseudoscalars by placing a check sign above the symbol: ň and ť respectively.50 This is the case

with the scalar magnetic potential φ̌m.

48 See Appendix B.
49 See for example Fleury and Mathieu [71, vol. 6], Brillouin [30], Fournet [73], Jouguet [110].
50 This symbol is used by Corson [43, p. 8].
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It follows that a more appropriate notation for integrals is

Φ=

∫
S

B̌ · ň dS
︸������������︷︷������������︸

magnetic f lux

, W=
∫

S
w̌ · ň dS

︸�������������︷︷�������������︸
vortex f lux

, Ψ =

∫
∼
S

D · n dS
︸������������︷︷������������︸

electric f lux

, I=
∫
∼
S

J ·n dS
︸����������︷︷����������︸

electric current

,

(5.31)

E=
∫

L
E · t dL

︸�����������︷︷�����������︸
electric voltage

, F=
∫
∼
L

Ȟ · ť dL
︸�����������︷︷�����������︸

magnetic voltage

, Ǧ=
∫

V
ρ̌m dV

︸����������︷︷����������︸
magnetic charge

, Q=
∫
∼
V
ρ dV

︸��������︷︷��������︸
electric charge

. (5.32)

To show that the differential formulation fails to take into serious consideration
orientation, let us consider the line integral along a line of a pseudovector, such as
magnetic field strength Ȟ. Such a line integral is called magnetomotive force.51 We
know that the line integral of the pseudovector Ȟ along a closed line is equal to the
current which crosses any surface which has the line as its boundary (Ampère’s
law). Since the current is a true scalar, we can deduce that the line integral is also
a true scalar. On the other hand, we know that the line integral of the pseudovector
Ȟ from a fixed point A to an arbitrary point P gives the scalar magnetic potential
at P, and this is a pseudoscalar φ̌m.52

Hence, we have found that the line integral of a pseudovector is sometimes a
scalar and sometimes a pseudoscalar! How can we overcome this contradiction?

We can do so as follows: for Ampère’s law we must use a line endowed with an
outer orientation, hence the unit tangent vector must be a pseudovector ť; whereas
for the calculus of the scalar magnetic potential we must use a line endowed with
an inner orientation and, hence, a unit tangent vector which is a true vector t. The
two line integrals are

F =
∫
∼
L

Ȟ · ť dL, φ̌m =

∫
L

Ȟ · t dL . (5.33)

Thus, the magnetomotive force is a scalar (as it must be taken into account that it
is equal to a current) and must be evaluated along a line endowed with an outer
orientation. In contrast, the scalar magnetic potential must be evaluated along a
line endowed with an inner orientation; hence, it is a pseudoscalar.53

The same observation can be made with regard to an integration in time where
we are not accustomed to distinguishing the integration on a primal or a dual time
interval (Table 5.19):

51 See p. 287.
52 Jouguet [110, vol. II; p. 31].
53 Fournet [73, p. 49].
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Table 5.19 Pseudovectors and pseudoscalars

Pseudovectors

Angular velocity ω̌ Angular momentum Ľ

Angular acceleration α̌ Magnetization M̌

Electric vector potential F̌ Torque τ̌

Magnetic flux density B̌ Magnetic field strength Ȟ

Vorticity w̌ Stream vector ψ̌

Burger’s vector b̌ Magnetic moment μ̌

Pseudoscalars

Scalar magnetic potential φ̌m Stream function φ̌

Magnetic charge Ǧ Airy’s function φ̌

Magnetic charge density ρ̌m

u=
∫

T
v dt

︸������︷︷������︸
displacement

, J=
∫
∼
T

F dt
︸������︷︷������︸

impulse o f a f orce

, Q=
∫

T
I dt

︸������︷︷������︸
electric charge

, AH =

∫
∼
T

L dt
︸��������︷︷��������︸

Hamiltonian action

.

(5.34)
The pseudoscalar nature of Airy’s function is linked to its definition; see [212].

5.18 What Vector Calculus Ignores

Not all operations on vectors, although meaningful from a mathematical point of
view, make sense from a physical point of view. Thus:

• It makes sense to sum the forces acting on different particles which form a
body, but it does not make sense to sum their velocities.

• In a fluid flow it make sense to compute the line integral of the velocity along
a line and to compute the flux of the mass current density vector through a
surface. It makes no sense to compute the line integral of the mass current
density vector along a line.

• It makes sense to calculate the line integral of a force along a line in a force
field, but it makes no sense to calculate the flux of force through a surface.

Vector calculus does not take into account the physical meaning of vectors, al-
though it would be appropriate to take account, at least, some geometrical features
such as the distinction between polar vectors and pseudovectors and the distinc-
tion between line vectors and surface vectors, as introduced by Maxwell.54

54 See the quotation of Maxwell on p. 12.
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5.18.1 Energy as a Potential of Constitutive Equations

In accordance with the definition of the potential energy of a system55 in a given
configuration, we must evaluate the work of the external forces to bring the system
from a reference configuration to the given configuration. This requires the use of
the relation between the forces and the configuration variables, i.e. the constitutive
equations.

Let us start by considering the simple case of an elastic spring which works
both in traction and in compression. If we denote by u the total displacement
vector from its reference configuration, the restoring force is always opposite to
it, i.e. F = −k u. The work is given to the elastic spring by an external force
Fext = −F and is

∫
k u · du = 1

2 k u2.
The reversible constitutive equations of physical theories have a common prop-

erty: they are usually linear and their operator, usually a matrix, is symmetric. In
the rare cases where they are non-linear, the derivative of the operator56 is sym-
metric. This implies some interesting mathematical properties:

• The equations express the stationarity of a functional, usually the potential en-
ergy, but in some cases the kinetic energy, as shown in Fig. 5.12. In general, the
stationary value is a minimum.

• The stationary property, combined with the property of adjointness of the op-
erators,57 gives rise to a reciprocity principle and to a variational principle for
the fundamental equation.58

Since the potential and kinetic energies, as well as their space densities, arise
by integration of the constitutive equations which link the source with the config-
uration variables, it follows that they play the role of potentials of the constitutive
equations, as shown in Fig. 5.13. If we introduce the variables

elastic potential energy kinetic energy kinetic co-energy

V(u)
def
=−

∫ η

0
Fk(u) duk, T (p)

def
=

∫ p

0
vk(p) dpk, T ∗(v)

def
=

∫ v

0
pk(v) dvk,

elastic energy density electric energy density magnetic energy density

ue
def
=

∫ ε

0

∑
h,k

σhk(ε) dεhk, ue
def
=

∫ E

0
Dk(E) dEk, um

def
=

∫ H

0
Bk(H) dHk,

(5.35)
then we can deduce the constitutive equations

55 See Chap. 9, p. 255.
56 See p. 429.
57 See Chap. 15.
58 Tonti [228].
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Fk = −
∂V(u)
∂u k

, vk =
∂T (p)
∂pk

, pk =
∂T ∗(v)
∂v k

,

σhk =
∂ue(ε)
∂εhk

, D k =
∂ue(E)
∂Ek

, B k =
∂um(H)
∂Hk

.

(5.36)

which are displayed in Table 5.12. The elastic energy density is also called the
strain energy function.59

5.19 Conjugated Variables

In physics and mathematics, it is common to speak about, for example, conjugated
variables, conjugated functions and conjugated quantities.

In physics and engineering, the term conjugate refers to one of the three quan-
tities action, energy or power. More precisely:

• Analytical mechanics and quantum mechanics call canonically conjugate those
pairs of variables whose product gives an action (energy × time).

• Thermodynamics calls conjugate variables those pairs of variables whose
product gives an energy. These conjugated variables are always linked by a
reversible constitutive relation.

• System theory and network theory call conjugate variables those pairs of vari-
ables whose product gives power (work/time). These conjugated variables are
always linked by an irreversible constitutive relation, as shown in Table 5.20
(p. 151).

With reference to Fig. 5.14, we observe that the product of two variables which
belong to the same level has the dimensions of an energy; the product of two
variables on the secondary diagonal has the dimension of power; the product of
two variables on the main diagonal has the dimension of action.

It is interesting to note that the product of two global variables which lie on the
same level has the dimensions of an action. Thus, while the scalar product of a
force to a displacement has the dimensions of an energy, the scalar product of an
impulse (time global variable of the force) and a displacement has the dimensions
of an action. In fact, since [u] = L and [J] = MLT−1, it follows that [J · u] =
ML2T−1.

In electromagnetism, the product of the impulse of the electromotive force
[E] = ML2T−2I−1 and the electric flux [Ψ ] = TI gives [EΨ ] = ML2T−1. Hence,
while the field functions which lie on the same level of a diagram are conjugated
with respect to energy, the corresponding global variables are conjugated with
respect to action.

59 Fung [77, pp. 285, 347].
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ue = 1
2 E2

DE D = E

[
∼T,L [] I, ∼S]

[
∼T, ∼V]

electric energy density
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T ∗= 1
2m υ2

v p= m v

[T] [
∼I]

[
∼T]

kinetic co-energy

particle dynamics

V = 1
2ku 2

u FF = −ku

[I] [T]
∼
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∼
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ω e = 1
2 E 2
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[
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m p

T = 1
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p

Fig. 5.12 Energy and energy densities as potentials of reversible constitutive equations

configuration variables constitutive equation source variables

energy variables

Fig. 5.13 The elementary unit of the diagram
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Table 5.20 Conjugate variables with respect to power are linked by irreversible constitutive
equations

�
�

�
�v

�
�

�
�F

[T,P] [
∼
T,P]

[PAR1]F = −h v� � � � � � � � � � � � � � � � � � � �

�
�

�
�ω̌

�
�

�
�Ť

[T, R] [
∼
T, R]

[ANA2]Ť = −h ω̌� � � � � � � � � � � � � � � � � � � �

�
�

�
�E

�
�

�
�J

[
∼
T, L] [T,

∼
S]

[ELE3]J = σE� � � � � � � � � � � � � � � � � � � �

�
�

�
�Q

�
�

�
�p

[T, L] [
∼
T,
∼
P]

[FLU9]Δp = −R Q� � � � � � � � � � � � � � � � � � � �

�
�

�
�γ

�
�

�
�τ

[T, L] [
∼
T,
∼
P]

[FLU9]τ = −μ γ� � � � � � � � � � � � � � � � � � � �

�
�

�
�g

�
�

�
�Js

[
∼
T, L] [T,

∼
S]

[TCO3]Js = −
λ

T
g� � � � � � � � � � � � � � � � � � � �

qk Qk

pk

υk = dqk / dt Qk = dqk / dt

υk

energy

power

action

energy

Fig. 5.14 The three kinds of conjugation, with respect to power, energy and action

Conjugate variables have the same tensorial order and opposite variance: if
one is covariant, then its conjugate is contravariant and vice versa. This assures
that their product is an invariant, as an action, an energy and a power must be.
Table 5.21 displays the main couples of conjugate variables of physical theories.

analytical mechanics

V =
∫

Qk dqk

︸������������︷︷������������︸
, T =

∫
vk dpk︸�����������︷︷�����������︸

, P = Qkv
k︸�����︷︷�����︸, AL =

∫
pk dqk

︸�������������︷︷�������������︸
.

potential energy kinetic energy power Lagrange action
(5.37)
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Table 5.21 Conjugate variables with respect to energy (and energy density)

Configuration variable Source variable Product

Electromagnetism
Impulse of electromotive
force

E Charge flow Qf L2 M T−2

Electric potential φ Electric charge content Qc L2 M T−2

Magnetic flux Φ Magnetomotive force im-
pulse

F L2 M T−2

Electric field strength E Electric displacement D L−1 M T−2

Magnetic vector potential A Electric current density J L−1 M T−2

Magnetic flux density B Magnetic field strength Ȟ L−1 M T−2

First electromotive tensor Fμν Second electromotive tensor Gμν L−1 M T−2

Electromotive four-
potential

Aα Four-current density Jα L−1 M T−2

Mechanics
Displacement u Force F L2 M T−2

Angular displacement α Torque τ̌ L2 M T−2

Generalized coordinates qk Generalized forces Qk L2 M T−2

Velocity v Momentum p L2 M T−2

Angular velocity ω̌ Angular momentum Ľ L2 M T−2

Time t Power P L2 M T−2

Strain tensor ε Stress tensor σ L−1 M T−2

Volume dilatation Θ Pressure p L−1 M T−2

Thermodynamics
Temperature T Entropy content S c L2 M T−2

Temperature integral T Entropy production S p L2 M T−2

Chemical potential μ Mole number n L2 M T−2

Gravitation
Gravitational potential Ug Mass M L2 M T−2

Acceleration of gravity g Gravitational flux density h L−1 M T−2

Global space variables are in boldface

5.20 Phase, Angular Frequency and Wave Vector

The phase ϕ of a wave is a relativistic invariant function.60 For this reason it is
natural to associate it with time instants and space points, i.e. ϕ[I,P]. To discrimi-
nate between primal and dual instants, let us recall the relation ϕ = ω t−k · r. The

60 Möller [163, p. 6], Rosser [194, p. 17], Jackson [102, Sect. 11.9].
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wave vector k has a modulus given by k = 2π/λ, where λ is the wavelength and
is orthogonal to the surfaces of equal phase and directed towards the increasing
values of the phase. In summary, k = −∇ϕ = (2π/λ) n. Now a reversal of motion
implies n → −n: think of the water waves generated by a falling stone when
they are filmed and then projected back. Hence the wave vector changes sign un-
der a reversal of motion, and this means that it is associated with dual instants.
In conclusion, k[

∼
I ]. Since its measurement presupposes the measure of a length

(the wavelength), it is associated with lines. Hence, k[
∼
I ,L]. This agrees with its

being a gradient of the phase. It follows that the phase, its mother variable, has

the following association: ϕ[
∼
I ,P]. The angular frequency ω = 2π ν is the time

derivative of the phase and, hence, has the association ω[
∼
T,P]. In summary:

ϕ = ω t − k · r ω = ∂tϕ k = −∇ϕ
ϕ[
∼
I ,P], ω[

∼
T,P], k[

∼
I ,L] .

(5.38)

These associations are in harmony with the relations p = � k and E = �ω, which
denote conservative relations because p inverts its sign under a reversal of motion,
whereas E does not.



Chapter 6
Analysis of Physical Equations

6.1 Introduction

Since physical variables are introduced to describe the quantitative attributes of
a system and of a field, the equations that link them describe the behaviour of a
phenomenon.

Before we start analysing the structures of equations used in physics, let us
summarize some of the commonest names applied to physical equations:

Constitutive equation Material equation Circuital equation
Phenomenological equation Topological equation Continuity equation
Interaction equation Coupling equation Defining equation
Balance equation Conservation equation Equation of state
Field equation Canonical equation Equation of constraint
Subsidiary equation Auxiliary equation Equation of variation
Compatibility equation Wave equation Equation of condition
Fundamental equation Equation of motion Equation of evolution

Since these terms developed in different periods of history and in different phys-
ical theories, it is natural that many of them are equivalent. In addition, the same
equation can be interpreted as belonging to one class or another, depending on
which aspect we want to highlight. We can subdivide the physical equations into
five main classes:

1. Defining equations define a new variable in terms of variables already known.
A defining equation can be explicit, like the one which introduces the Poynting

vector in electromagnetism, S
def
= E×Ȟ, or implicit, like the one that introduces

the stream function ψ in fluid dynamics, qx
def
= ∂yψ; qy

def
= −∂xψ.

E. Tonti, The Mathematical Structure of Classical and Relativistic Physics,
Modeling and Simulation in Science, Engineering and Technology,
DOI 10.1007/978-1-4614-7422-7__6, © Springer Science+Business Media New York 2013
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2. Topological equations link the value of a variable which is associated with a
space element, such as a line, a surface or a volume, with another variable as-
sociated with its boundary. As such they have a global character: when they are
applied to the neighbourhood of a point, they become local.1 They do not de-
pend on the nature of the medium; hence, they do not contain material parame-
ters. This class includes balance equations, continuity equations, conservation
equations, circuital equations and some equations of behaviour (see below).
The topological equations, when applied to regions across two different media,
give rise to jump conditions.

3. Equations of behaviour or equations of condition specify a particular be-
haviour of a phenomenon or a particular class of transformations. They do not
contain physical constants; they specify whole classes of transformations, mo-
tions or materials, by expressing the condition to which the physical variables
must obey, so that a given condition is fulfilled. Examples include incompress-
ible fluids (∇ · v = 0), stationary motion (∂tv = 0), isothermal transformations
(T = T0) and irrotational motion (∇ × v = 0).

4. Constitutive equations or material equations or equations of state link the
configuration variables with the source variables of the same theory. They
are characterized by the presence of physical parameters which depend on
the medium, with vacuum being considered a particular medium. Constitu-
tive equations have a local character, i.e. they link the values of variables near
every point. They are valid in a particular range of values, may be linear or
non-linear, may describe a local or non-local law, may describe a hereditary
link, and so forth. They have an empirical origin and are inferred from experi-
ment and, hence, are phenomenological equations. A constitutive equation can
be reversible, like Hooke’s law, or irreversible, like Ohm’s law.

5. Interaction equations or coupling equations link the configuration variables
of one physical theory with the source variables of another theory. They are
characterized by the presence of physical parameters which depend on the
medium, with vacuum being considered a particular medium. Interaction equa-
tions have a local character, i.e. they link the values of variables near every
point. An interaction equation can be reversible, as with piezoelectric effects,
or irreversible, as with thermoelasticity. In addition, these equations have an
empirical origin and are inferred from experiment and, hence, are phenomeno-
logical equations.

The topological equations become metric equations after the introduction of the
densities of global variables; this is a consequence of the fact that we divide global
variables for the extension of the corresponding space elements, and extension

1 We remember that those global variables which are associated with an extended space element,
such as a line, a surface or a volume, coincide with integral variables, i.e. are obtained by in-
tegration of the field functions. But there are also global variables associated with points, and
these cannot be integral variables; see pp. 106 and 110.
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Table 6.1 Various kinds of basic equations

Equations

Defining

Topological

Behaviour

Explicit

Implicit

Difference

Circuital

Balance

Without
material
parameters

Constitutive

Interaction

Phenomenological

Reversible

Irreversible

Reversible

Irreversible
Contain material

parameters

is a metric notion. The densities, however, are indispensable for the differen-
tial formulation. It is important to remark that the first three classes (defining,
topological and compatibility equations) do not depend on the material me-
dia, in contrast to the two last classes (constitutive and interaction equations),
which contain the physical parameters of the media. Table 6.1 shows the present
classification.

When we compose equations of these four classes, we obtain a
fundamental equation, such as equation of motion, equation of evolution, wave
equation, this is the case of the equations of Newton (for particle mechanics);
Laplace and Poisson (arising in many physical fields); Navier, Airy, Lagrange–
Sophie Germain (for solid mechanics); Euler and Navier–Stokes (for inviscid
and viscous fluid mechanics respectively); Fourier (for thermal conduction); Fick
(for diffusion); d’Alembert (for waves); Klein–Gordon (for relativistic quan-
tum mechanics); Einstein (for relativistic gravitation). Table 6.2 displays these
fundamental
equations.

This classification should be seen as an initial attempt to organize terms which
are of widespread use in the literature.

To introduce the subject, let us give some examples. For each of them we will
show how to decompose the fundamental equation into its primitive elements,
variables and equations.

Example 1. Damped oscillations. The fundamental equation of one-dimensional damped oscil-
lations is

m ẍ(t) = Fimp(t) − hẋ(t) − kx(t) . (6.1)

It is composed of the following physical quantities:
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Table 6.2 Fundamental equations of the main physical theories

Newton (particle mechanics) m
d2r
dt2
= F

Poisson (electrostatics) −ε ∇2 φ = ρ

Laplace (many theories) ∇2 φ = 0

d’Alembert (vibrations)
1
v2

∂2φ

∂t2
− k2∇2 φ = σ

Fourier (heat conduction) ρc
∂T
∂t

− k∇2 T = σq

Fick (diffusion)
∂c
∂t
− D∇2 c = σc

Maxwell

Non-homogeneous wave equations

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
c2

∂2φ

∂t2
− ∇2 φ =

1
ε0
ρ

1
c2

∂2A
∂t2

− ∇2 A = μ0J

Navier

(elasticity) ρ
∂2u
∂t2

− μ∇2u − (λ + μ) ∇ (∇ · u) = f

Navier–Stokes (fluid dynamics)

ρ

[
∂v
∂t
+∇

(
v2

2

)
+
(
∇ × v

)
× v

]
−(λ+μ)∇

(
∇ · v

)
−μ∇2v = f−∇p

Schrödinger

(quantum mechanics)
i�
∂ψ

∂t
+

(
�

2

2m

)
∇2 ψ = eVψ

Klein–Gordon

(relativistic
quantum mechanics)

1
c2

∂2ψ

∂t2
− ∇2 ψ −

(m0c
�

)2

ψ = 0

Einstein

(relativistic gravitation)
Rμν −

1
2

Rgμν =

(
8πG
c4

)
Tμν
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) Elongation Configuration variable (geometric)
ẋ(t) Velocity Configuration variable (kinematic)
ẍ(t) Acceleration Configuration variable (kinematic)
m Mass System parameter
h Damping coefficient System parameter
k Stiffness System parameter

Fimp(t) Impressed force Source variable

(6.2)

It is generated by assembling the following equations:2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v(t)
def
= ẋ(t) Definition of velocity

a(t)
def
= ẍ(t) Definition of acceleration

p(t)
def
=

∫ t

t0

F(t′) dt′ Definition of momentum, with v(t0) = 0

p(t)
mat
= m v(t) Constitutive equation

Fe(t)
mat
= −k x(t) Constitutive equation

Fd(t)
mat
= −h ẋ(t) Constitutive equation

(6.3)

Example 2. D’Alembert’s equation for one-dimensional longitudinal waves in a bar:

1
c2

∂2u(t, x)
∂t2

−
∂2u(t, x)
∂x2

= 0 . (6.4)

It is composed of the following quantities:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u(t, x) (Total) displacement Geometric variable
ε(t, x) Strain Geometric variable
v(t, x) Velocity Kinematic variable
p(t, x) Momentum / length Source variable
N(t, x) Traction Source variable

A Cross-sectional area System parameter
E Elastic modulus Material parameter
ρ Mass density Material parameter
c Sound velocity Material parameter

(6.5)

The fundamental equation of d’Alembert is the result of the assembly of the following equations:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂t p(t, x)
law
= ∂xN(t, x) Momentum balance

v(t, x)
def
= ∂tu(t, x) Definition of velocity

ε(t, x)
def
= ∂xu(t, x) Definition of strain

p(t, x)
mat
= A ρ v(t, x) Constitutive equation

N(t, x)
mat
= A E ε(t, x) Constitutive equation

c
def
=

√
E
ρ

Definition of sound velocity

(6.6)

2 In Chap. 9 we will show that the relation p = m v is not the definition of momentum but a
constitutive law, whereas momentum is, by definition, the indefinite time integral of force.
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6.2 Phenomenological Equations

The term phenomenological means a ‘description of observed phenomena, with-
out being prejudicially affected by what is believed to be an understanding of the
mechanism causing those phenomena’.3

Or, equivalently: ‘Theories expressed in terms of the field concept are called
phenomenological, because they represent the immediate phenomena of experi-
ence, not attempting to explain them in terms of corpuscles or other inferred quan-
tities.’4

When we declare that a law is phenomenological, we make reference to the
childhood of the law; later, in possession of a model of the phenomenon, the law
can be interpreted and becomes, as it were, an adult. Typically, phenomenological
equations are the constitutive and interaction ones. Examples are the gas law, be-
fore the kinetic model of Maxwell, and Balmer’s series in atomic spectra, before
the planetary model of Bohr’s atom.

6.3 Constitutive Equations

Constitutive equations, also called material equations, describe the behaviour of
a material, substance or medium. Examples include the equations of electric con-
duction (Ohm’s law), diffusion (Fick’s law), the elastic behaviour (Hooke’s law)
of a solid and the equation of the state of a gas.

Constitutive equations share some common features:

1. They link a configuration variable with a source variable; hence, they link a
physical variable associated with a space element endowed with an inner ori-
entation with another physical variable associated with a space element en-
dowed with an outer orientation. Moreover, the corresponding space elements
are dual: that corresponding to a line is a surface; that corresponding to a point
is a volume. The main properties are as follows:

2. They are local relations;
3. They contain material and system parameters;
4. They contain metric notions, such as lengths, areas, volumes and orthogonality.

All constitutive equations introduce physical parameters; in this sense they are
also defining equations for the physical parameters. Thus, for example, for an
elastic bar under traction, the stress is proportional to the strain, i.e. σ ∝ ε. This
is the statement of a constitutive law, which is valid for a class of materials, i.e.
linear elastic materials. When we change this proportionality into an equation, by
writing σ = E ε, we define the elastic modulus E (Table 6.3).

3 Post [185, p. 291].
4 Truesdell and Toupin [237, p. 227].
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Table 6.3 Constitutive equations in the case of affine behaviour of a ‘potential’. A is the area of
a plane section and d is the distance between two points P and Q

Irreversible

Heat conduction
(Fourier’s law)

Φ
mat
= −λ A

TQ − TP

d

Φ Heat current
λ Thermal conductivity
T Temperature

Electric conduction
(Ohm’s law)

I
mat
= −σ A

φQ − φP

d

I Electric current
σ Electric conductivity
φ Electric potential

Diffusion
(Fick’s law)

Φ
mat
= −D A

cQ − cP

d

Φ Mass current
D Diffusion coefficient
c Concentration

Fluids in
porous media
(Darcy’s law)

Φ
mat
= −

k
μ

A
pQ − pP

d

Φ Mass current
k Permeability
μ Viscosity
p Pressure

Viscosity
(Newton’s law)

T
mat
= μ A

vQ − vP

d

T Shear force
μ Viscosity
v Velocity

Reversible

Electrostatics
(no name)

Ψ
mat
= ε A

φQ − φP

d

Ψ Surface charge
ε Permittivity
φ Electric potential

Elasticity
(Hooke’s law)

N
mat
= E A

uQ − uP

d

N Traction
E Elastic modulus
u Longitudinal

displacement

6.3.1 Reversible and Irreversible Constitutive Equations

There are two kinds of constitutive equations: those expressing a reversible law
and those expressing an irreversible law. The criterion for distinguishing between
these two classes of constitutive equations is based on the behaviour of a reversal
of motion of the related physical variables: ‘Consider the equations that describe
time-dependent physical processes; if these equations are invariant with regard to
the algebraic sign of the time, the process is called a reversible process; otherwise
it is called an irreversible process.’5

Hence

• Reversible constitutive equations link a variable associated with a time element

with another associated with its dual time element, i.e. I ↔ ∼
T or

∼
I ↔ T.

5 Demirel [54, p. 6].
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• Irreversible constitutive equations link a variable associated with a time inter-

val with another associated with its dual time interval, i.e.
∼
T ↔ T.

To graphically distinguish the irreversible link from the reversible link, we will
shade the box grey and substitute the line connecting the boxes of the two variables
with a sequence of small bullets, as shown in Figs. 6.3 and 6.4.

The irreversible links are those which link a variable associated with T with an-
other associated with

∼
T. In fact, a reversal of motion changes the sign of those as-

sociated with T, whereas it maintains the sign of those associated with
∼
T. Table 6.4

(p. 166) shows many constitutive relations of these two kinds. Let us start by con-
sidering two typical constitutive laws.

Hooke’s law. Let us analyse the prototype of the constitutive equation:6 the
stretching of an elastic rod (left part of Fig. 6.1). Let L be the length of the spec-
imen, A its cross section and F the axial force acting on it. Hooke’s law can be
expressed as

s
def
= (L′ − L) −→ F

mat
= k s . (6.7)

The constant k is called the stiffness of the rod. This relation can be described by

the right part of Fig. 6.1.

Since F[
∼
T] and s[I], it follows that the reversal of motion does not change

the sign, either of F or of s. Hence, the relation describes a reversible link, as
is well known. If we examine several samples of the same material, we find that
each has its own stiffness. Great progress was made when in 1705 Jacob Bernoulli
discovered that the constant k is proportional to the cross-sectional area A of the
specimen and inversely proportional to its length L.7 At this point Hooke’s law
becomes

F
mat
=

(
E

A
L

)
s, (6.8)

where E, called the elastic modulus, is a constant depending only on the material,

not on the geometry of the specimen. The passage from the description of the
deformation of a structure as a whole to a point description made possible the
separation between size and shape (geometry) on the one hand and the material
(physics) on the other.8

6 This was the first constitutive equation in history; see Truesdell [237, p. 702].
7 Benvenuto [12, Ch. 8, Sect. 1].
8 This topic is well described in the book by Gordon and Wagley [81, Ch. 2].
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Fig. 6.1 Hooke’s law for a bar: a reversible link

The peculiar form of this relation suggests the need to introduce two quantities:
the surface density of the force called stress and the line density of the stretching
called strain, given respectively by

σ
def
=

F
A

ε
def
=

s
L
. (6.9)

Notice that the idea of introducing these two quantities is suggested by the consti-
tutive law because it assumes the very simple form

σ
mat
= E ε . (6.10)

Written in this form, Hooke’s law no longer depends on the geometric parame-

Fig. 6.2 Hooke’s law for simple traction: a reversible link

ters of the specimen but only on the nature of the material. This relation can be
represented in the elementary diagram of Fig. 6.2.

contains the geometry does not contain the geometry

F
mat
= k s σ

mat
= E ε

k: system parameter E: material constant

(6.11)

The simplicity of relation 6.10 is obtained by eliminating the geometry from the
original Eq. 6.8. With this process the constitutive equation leads to the introduc-
tion of line and surface densities of the physical quantities, which are associated
with lines and surfaces respectively.

In this process, it is assumed that the specimen is homogeneous, that it is sub-
jected to a uniform strain and uniform stress, so that the quotient s/L has the same
value for every part of the specimen, i.e. if l is the distance between two cross sec-
tions of the specimen, then we must have Δsl/l = s/L . In the same way, if a is the
area of a piece of the cross section and f the force acting on it, then we must have
f /a = F/A . Hence, we can say that the proportionality of the force to the area
and of the stretching to the length enables the introduction of densities and then
the reduction of a physical law to a form that is independent of geometric notions.
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However, while the elimination of geometry from physical laws is indispens-
able for the differential formulation, geometry is indispensable for the numerical
formulation!

Since space elements, with the exception of points, have an extension, we need
lengths, areas and volumes; usually they are obtained by integration, which is the
natural inverse of the process of differentiation. When we are interested in the nu-
merical solution of a field problem, the differential formulation can be avoided to
return later to an algebraic formulation: maintaining physical laws in their alge-
braic formulation and using global variables is enough.

Let us clarify this fundamental point. As stated previously, constitutive equa-
tions are tested under the hypothesis of a uniform field and homogeneous mate-
rial. Since fields, in general, are not uniform, we need to consider small regions
in which the field can be considered approximately uniform. How small should
this be? This depends on the tolerance required by the solution. Since the differ-
ential formulation requires exactness, i.e. ignores tolerance, we need to consider
infinitesimal regions as uniform. Then to obey the differential formulation, we
must introduce field functions and express constitutive laws as relations between
them.

It is at this stage that scalar-valued functions, vector-valued functions and
tensor-valued functions are introduced. When the differences between two points
and two instants become infinitesimal, the local validity of the constitutive equa-
tions becomes a pointwise validity. The ratios between two increments become
partial derivatives of field functions. When this happens, the field equations must
also be expressed by field functions and the equations become differential in na-
ture. In this way, balance equations lead to divergence, circuital equations lead
to curls, spatial differences give rise to gradients and time differences give rise to
time derivatives.

Ohm’s law. Given a wire, if we apply the voltage E between its two ends, a
current I flows in the conductor. Ohm’s law states that V = RI, where R is the
resistance of the wire. This law can be depicted as in Fig. 6.3. Introducing the

Fig. 6.3 Ohm’s law for a wire: an irreversible process

variables

E
def
=

V
L
, J

def
=

I
A
, σ

def
=

1
ρ

(6.12)
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we can write Ohm’s equation as follows:

V
mat
= R I J

mat
= σE

R: system parameter σ: material constant
contains the geometry, does not contain the geometry,

(6.13)

which is described in the elemental diagram in Fig. 6.4. It is important to note that

Fig. 6.4 Ohm’s law for a wire: an irreversible phenomenon

the two variables V, I and E, J, connected by a constitutive relation, are both as-
sociated with time intervals, but one is associated with the primal interval and the

other with the dual interval. In fact, V[
∼
T,L] and I[T,

∼
S]. This implies that the re-

versal of motion changes the sign of I but does not change the sign of V . It follows
that the relations V = R I and J = σE are not invariant under a reversal of mo-
tion, and this lack of invariance indicates that the relation describes an irreversible
process, as is well known.

These two examples show that constitutive equations can be organized in a
diagram formed by two (rounded) boxes containing two related physical variables
and a (rectangular) box containing a linking equation.

6.3.2 Interaction Equations

An interaction equation, also called a coupling equation, links the variables of
two distinct phenomena or fields.

Interaction equations are, in general, phenomenological in nature. Some of
them are reversible, and then describe conservative links, whereas others are ir-
reversible, and then describe dissipative links. We have listed some of them in
Table 6.5.

To reveal the reversible or irreversible nature of interaction equations, it is
enough to consider the behaviour of the two variables linked by an equation and
verify whether or not both variables change sign under a reversal of motion. Thus,

in the piezoelectric effect neither variable, σ[I,
∼
S] or p[

∼
T,
∼
S], changes sign under

a reversal of motion; hence, the piezoelectric effect is reversible. In contrast, in

the magneto-optic effect, the first variable, α[I,
∼
L], does not change sign but the

second variable, Fm[T,
∼
L], changes sign under a reversal of motion; hence, the

magneto-optic effect is irreversible.
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Table 6.4 Constitutive equations

Reversible links

�
�

	

ε

[I ,L]

�
�

	

E

[
∼
T ,L]

�
�

	

B̌

[
∼
I , S]

�
�

	

v

T

�
�

	

v

[
∼
I ,L]

�
�

	

σ

[
∼
T ,
∼
S]

�
�

	

D

[I ,
∼
S]

�
�

	

Ȟ

[T ,
∼
L]

�
�

	

p

∼
I

�
�

	

q

[T ,
∼
S]

Time even Time even

Time even Time even

Time odd Time odd

Time odd Time odd

Time odd Time odd

Time even Time odd

Time even Time odd

Time odd Time even

Time even Time odd

Time even Time odd

σ
mat
= E ε

Hooke

Elasticity

D
mat
= ε E

Electrostatics

Ȟ
mat
= 1

μ
B̌

Magnetism

p
mat
= m v

Particle dynamics

q
mat
= ρ v

Fluid dynamics

Strain Stress

Configuration
variables

Source
variables

Electric
field strength

Electric
displacement

Magnetic
flux density

Magnetic
field strength

Velocity Momentum

Velocity Mass current
density vector

Irreversible links

�
�

	

E

[
∼
T ,L]

�
�

	

g

[
∼
T ,L]

�
�

	

γ

[T ,L]

�
�

	

i

[
∼
T ,L]

�
�

	

g

[
∼
T ,L]

�
�

	

J

[T ,
∼
S]

�
�

	

Jm

[T ,
∼
S]

�
�

	

τ

[
∼
T ,

∼
S]

�
�

	

q

[T ,
∼
S]

�
�

	

q

[T ,
∼
S]

� � � � � � � � � � � � � � � � � � � � � �J
mat
= σ E

Electric conduction

Ohm

� � � � � � � � � � � � � � � � � � � � � �Jm
mat
= −D g

Diffusion

Fick

� � � � � � � � � � � � � � � � � � � � � �τ
mat
= μ γ

Fluid dynamics

Newton

� � � � � � � � � � � � � � � � � � � � � �q
mat
= −k i

Percolation

Darcy

� � � � � � � � � � � � � � � � � � � � � �q
mat
= −λ g

Fourier

Thermal conduction

Configuration
variables

Source
variables

Electric
field strength

Electric
current density

Chemical
potential
gradient

Mass
current density

Shear
strain rate

Shear
stress

Piezometric
gradient

Mass current
density vector

Temperature
gradient

Heat current
density
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Table 6.5 Some interaction equations

Effect Equation First term Second term Citation
Reversible

Piezoelectric σ = d p σ[I,
∼
S] p[

∼
T,
∼
S] Fleury-Mathieu

(Curie) d = piezoelectric
modulus

Surface charge
density

Pressure [71, v. 6,
Sect. 4.10]

Thermoelectric Δsφ = S ΔsT φ[
∼
T,P] T [

∼
T,P] Perucca

(Seebeck) Seebeck coefficient Electric
potential

Temperature [176, p. 534]

Irreversible

Thermomechanical ε = αl ΔtT ε[I,L] (ΔtT )[T,P] Fung
(Duhamel–
Neumann)

αl = linear
expansion

coefficient

Strain Temperature [77, Sect. 14.1]

Photoelectric E = �ω E[
∼
T,S ] ω[T] de Broglie

(Einstein) � = h/2π
h = Planck constant

Energy Angular
frequency

[46, p. 99]

Magneto-optic α = ρ Fm α[I,
∼
L] Fm[T,

∼
L] Bruhat

(Faraday) ρ = Verdet constant Angle of
rotation

Magnetic
voltage

[31, p. 559]

Magnetoelectric Jh = σ
k
h(H)Ek J[T,

∼
S] E[

∼
T,L] Landau–Lifshitz

(Hall effect) Conductivity tensor Current
density

Electric
vector

[124, Sect. 21]

With some hesitation we insert into the class of interaction equations the fol-
lowing expressions:

E = �ω, p = � k, E = c2 m, S = k ln P, (6.14)

which refer to the wave–particle duality (Einstein and de Broglie), mass–energy
conversion (Einstein) and the entropy-probability relation (Boltzmann) because
these expressions contain physical constants. The hesitation (of the author) arises
from the fact that they do not link different physical theories but different descrip-
tions of the same physical theory.

Despite this we can see that all four equations describe a reversible relation, as
can be observed comparing the behaviour of the variables of each relation under a
reversal of motion.9

9 See the list of physical variables on p. 485.
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6.4 Topological Equations

We will call topological equations those equations which express a relationship
between a variable associated with a space element and a variable associated with
its boundary. Denoting by M a space element, if A[M] is a physical variable asso-
ciated with it and B[∂M] is another variable associated with its boundary, then a
topological equation will have the form

B[∂M] = ± A[M] . (6.15)

Figure 6.5 shows the geometric ingredients for topological equations. Topological
equations share some common features:

• They are valid for any shape and extension of the space elements involved: this
is why they can be called topological equations;

• They are valid both on a large scale as well as on a small scale, i.e. they are
global equations;

• They are valid for any medium contained in a region, i.e. they do not contain
material or system parameters; hence, they are valid even across material dis-
continuities. This is why they are used to find jump conditions in the interfaces
between two media.

Fig. 6.5 Space and time elements and their boundaries
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Topological equations are the pillars of all physical fields. When topological equa-
tions are expressed in a differential setting, they are often mixed with metric no-
tions; hence, they lose their purely topological nature. To show this, let us consider
the process of forming the gradient of a function at a point. We must first select a
direction from the point, hence consider another point in that direction, then com-
pute the difference of the function between the two points, then compute the ratio
of this difference to the distance of the two points and, lastly, compute the limit.
This limit is the directional derivative. We must now search for the direction in
which this limit is at a maximum and introduce a vector whose modulus is the
maximum limit we have just found and whose direction is this privileged direc-
tion: this is the gradient of the function. Hence the gradient of a function starts
from the difference in the function between two points, a topological notion, but
later also requires metric notions, like those of direction and the distance between
two points.

Balance and circuital equations start with topological notions, like a volume
and its boundary, a surface and its boundary line. To reduce them to the differential
formulation, we must introduce metric notions – lengths, areas, volumes, angles,
scalar and vector products. Hence they become metrical equations.10 Since topo-
logical equations are valid on both large and small scales, they are not the cause
of the recourse to the differential formulation.

In a differential formulation, topological equations are expressed by first-order
differential operators such as the gradient, curl, divergence without the interven-
tion of physical constants. The connection between these differential operators and
the topological relation Eq. 6.15 becomes clear when we switch from differential
formulation to the integral formulation using the theorems of Leibniz, Stokes and
Gauss. We will not make use of these theorems in our book because we take the
global (� integral) variables as starting points and deduce the differential formu-
lation from them instead of the converse.

The following are topological equations mixed with metric notions:

v = ∇ φ
fluid dynamics

E = −∇ φ
electrostatics

g = ∇ T
heat conduction

B̌ = ∇ × A
electromagnetism

w̌ = ∇ × v
fluid dynamics

∇ × v = 0
irrotational motion

∇ · v = 0
fluid dynamics

∇ ·D = ρ
electromagnetism

∇ ·q = σ
heat conduction

(6.16)

10 Topological equations can be described by algebraic topology using cochains, also called
discrete forms, and the coboundary operator. In the differential setting, they can be described by
scalar- or vector-valued exterior differential forms and by an exterior differential.
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If in Eq. 6.15 we consider M not only a space element but also a space-time ele-
ment, we can also consider as topological equations, mixed with metric notions,
those which contain time derivatives, such as

E = −∇ φ − ∂tA,
electromagnetism

∇ × E + ∂tB̌ = 0,
electromagnetism

∂tρ + ∇ · q = 0 .
fluid dynamics

(6.17)

In some cases, topological equations express a physical law (e.g. equations of
continuity), and in some cases they express the behaviour of a process (e.g. ir-
rotational motion), while in still others they define a new physical variable (e.g.
temperature gradient).

It should be noted that the presence of physical constants in an equation im-
plies that it is not a purely topological equation. Hence the following equations
represent a mix of constitutive and topological equations:

q = −λ∇ T, ∇ ×
(

1
μ

B̌
)
= J, ∇ · (ρv) = 0. (6.18)

To analyse topological equations, we will consider in detail the various kinds of
space elements involved in Eq. 6.15.

6.4.1 Balance Equations

Let us consider a physical variable A[V] associated with a volume, endowed with
an inner or outer orientation, and let us consider also a physical variable B[∂V]
associated with the boundary of the volume. The relation

B[∂V] = ± A[V] topological equation (6.19)

In a balance equation the production of something in a region during a time inter-
val is equal to the sum of what comes out of the region and of what is stored in
the region in the same time interval. Denoting by Q a physical variable associated
with volumes (i.e. an extensive variable) we can write

Qproduced = ΔtQ
content + Qoutgoing . (6.20)

In particular, when there is no production, the balance reduces to a conservation
and can be written in one of the two forms

ΔtQ
content + Qoutgoing = 0 ΔtQ

content = Qingoing, (6.21)

which reduce to the form

∂tρ + div q = 0 ΔtU[
∼
T,
∼
V] = W[T, ∂

∼
S] + Q[T, ∂

∼
S], (6.22)
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typical of the mass and charge conservation in the differential formulation and of
the first principle of thermodynamics.

Example 3. In fluid dynamics, the statement that the mass stored inside a volume in a time
interval is equal to the mass flow entering the boundary of the volume in the same time interval
is a continuity equation, which is a topological equation. We can write

Mstored[T,
∼
V]

def
= Mc[Ī+,

∼
V] − Mc[Ī−,

∼
V] and Mout[T, ∂

∼
V] ≡ −Min[T,

∼
V], (6.23)

where Mout[T, ∂
∼
V] is the mass that flowed out through the boundary of the volume in the time

interval T. We can write the continuity equation as

Mc[Ī+,
∼
V] − Mc[Ī− ,

∼
V] + Mout[T, ∂

∼
V]

law
= 0 . (6.24)

To obtain the differential formulation, we must introduce field functions, and this obligates us to
use metric notions, as is evident from the following equations:

d
dt

∫
∼
V
ρ dV +

∫
∂
∼
V

q · n dS
law
= 0 −→ ∂t ρ + ∇ ·q law

= 0, (6.25)

where q is the mass current density vector q
def
= ρ v.

Example 4. A fundamental law of electromagnetism, the law of electrostatic induction,11 states
that if we consider a metallic shell which contains an electric charge Qc, then on the exterior part
of the shell exactly a charge Qc is induced. This surface charge is called electric flux and it is
denoted by the symbol Ψ . The surface charge so induced does not depend on the nature of the
metal or on the shape of the shell. This makes it possible to associate the surface charge to any
closed surface which encloses a charge Qc and, hence, to write

Ψ [∂V]
law
= Qc[V] . (6.26)

In this case, the charge Qc and the flux Ψ can both be measured,12 hence the equality expresses

a law, not the definition of one of the two physical variables.

6.4.2 Circuital Equations

Let us consider a physical variable A[S] associated with a surface, endowed with
an inner or outer orientation, and a physical variable B[∂S] associated with its
boundary. The relation

B[∂S] = ± A[S] topological equation (6.27)

is a topological equation.

11 Due to Faraday [65], but commonly called Gauss’s law, see Schelkunoff [201, p. 23].
12 See Chap. 10 for the experimental apparatus.
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Example 5. We may start with a physical variable B associated with the boundary of a surface
and use Eq. 6.27 to define the variable A associated with the surface. This happens when we start
from the velocity line integral Γ along the boundary of a surface to define the vortex flux W on
that surface. Hence,

putting Γ[L]
def
=

∫
L

v · t dL −→ W[S]
def
= Γ[∂S] . (6.28)

This relation is the origin of the vorticity vector w. The corresponding differential formulation

will be w̌ = ∇ × v.

Example 6. In contrast to the preceding example, sometimes we start with a physical variable A
associated with the surface to define a variable B associated with the boundary, and we use
Eq. 6.27 to define the variable. This is the case of the electric current I through a surface S by
which we define a variable F associated with its boundary. Hence,

I[S]
def
=

∫
S

J ·n dS −→ F[∂S]
def
= I[S] . (6.29)

The variable F so defined is called a magnetomotive force. Traditionally, we first define the

vector Ȟ and then the variable F as the integral of Ȟ along a line. Operating in this fashion,

Eq. 6.29 becomes a law, Ampère’s law, which is a topological law.13

For the differential formulation we are obligated to introduce field functions,
and this implies the use of metric notions, as is evident from the following equa-
tions: ∫

∂
∼
S

Ȟ · ť dL
law
=

∫
∼
S

J ·n dS −→ ∇ × Ȟ
law
= J . (6.30)

Example 7. In the electrostatic field, the integral of the electric field strength E along a line is
called the voltage. The electrostatic field has the property that its integral along any closed line
vanishes, i.e.

V
def
=

∫
L

E · t dL −→ V[∂S]
law
= 0 . (6.31)

The last statement is a law. When the integral of a vector field along all reducible closed lines

vanishes, we say that the field is irrotational. This property, the vanishing of the integral along

all closed lines, reducible or not, implies that the electrostatic field is not only irrotational but

also conservative.

Example 8. In the motion of a fluid, we use a vector q called a mass current density vector
(kg/s/m2). When the fluid is incompressible, like water, or the motion is isochoric, like air in an
air-conditioning system, i.e. ∂tρ = 0, the mass current Φ across a closed surface vanishes:

putting Φ[S] =
∫

S
q ·n dS −→ Φ[∂S] = 0 . (6.32)

This equation is not a law, but the statement of a particular behaviour of the fluid motion. The

vector field q(P) is said to be solenoidal, i.e. in the differential formulation ∇ · q = 0.

13 Pauli [174, pp. 20–21].
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Example 9. Thermal conduction makes use of a vector q describing the heat current density
(W/m2). In a steady thermal field, if through the boundary of the volume V there is an outgoing
heat current Φ, this means that the heat-generation rate P (in watts) inside the volume is

P[
∼
V]

def
= Φ[∂

∼
V] −→ Φ =

∫
∼
S

q ·n dS . (6.33)

This relation defines the heat-generation rate P.

6.4.3 Space Differences

Let us consider a line L, endowed with an inner or outer orientation, and its bound-
ary formed by the points P and Q: we will denote the set of the two points by ∂L.
Let us consider a physical variable A[L] associated with the line and a physical
variable B[P] associated with points.

Introducing the notation B[∂L]
def
= B(Q) - B(P) we can consider the relation

B[∂L] = A[L] topological equation . (6.34)

In some cases, this relation is used to define the variable A when the variable B
is known; in other cases, it serves to define the variable B when the variable A is
known.

Example 10. In electrostatics, the statement that the voltage E along a line is the difference
between the electric potentials of its end points is a topological relation. This equation defines
the electric potential φ:

V
def
= φ(P) − φ(Q) −→ V[L] . (6.35)

To introduce field functions, we are obligated to use metric notions, as is evident from the fol-
lowing forms: ∫

L
E · t dL

def
= φ− − φ+ −→ E = −∇ φ . (6.36)

Example 11. In the thermal field, a temperature difference G along a line connecting two points
P and Q is defined as the difference between the temperature at the second point and that at the
first point:

G
def
= T (Q) − T (P) −→ G[L] . (6.37)

This leads to the introduction of a vector g such that its integral along the line L is equal to the
temperature difference G; hence,

G =
∫

L
g · t dL −→ g = ∇ T . (6.38)

The vector g thus created is the temperature gradient.
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Example 12. In the motion of a fluid, it may happen that the velocity integral along all reducible
closed lines vanishes; in this case, the velocity field is said to be irrotational. By choosing a
fixed point as origin, any other point in the field can be associated with the line integral from the
origin to the point since this does not depend on the line joining the two points.

In this way, the line integral from the origin to the point is a scalar called the kinetic potential
and is denoted by φ. After doing this, the velocity integral associated with a line joining two
points P and Q can be written as the difference in the kinetic potential of two points, namely

Γ = φ(Q) − φ(P) −→ Γ[L] = φ[∂L] . (6.39)

In this case, the equation defines the potential from the integral associated with the line.

6.5 Invariance of Equations Under Inversion of Orientation

It is natural to request that all physical equations maintain their invariance in form
when we invert the orientation of the space element involved. For what concerns
the invariance under inversion of orientation of time elements, we must distinguish
topological equations from phenomenological equations.14 Some phenomenolog-
ical equations describe a reversible process, whereas other equations describe an
irreversible process:15 the equations that describe a reversible process are those
which are invariant in form when we change the orientation of the time element
involved.

Invariance of Topological Equations. In some cases, this is evident, in other
cases no. Let us consider the case of circuital equations (which are topologi-
cal equations), where the invariance is evident. Ampère’s circuital law states that
the magnetomotive force Fm along the boundary of a surface is equal to the in-
tensity of current I through the surface. By writing the law in global form, i.e.

Fm[∂
∼
S] = I[

∼
S], we see that by changing the direction of the normal to the surface,

i.e.
∼
S → −∼S and consequently ∂

∼
S → −∂∼S, the form invariance is ensured by

the fact that the variables change their sign if we change the outer orientation, i.e.

I[−∼S] = −I[
∼
S] and Fm[−∂∼S] = −Fm[∂

∼
S]. In this way, the equation Fm[∂

∼
S] = I[

∼
S]

is transformed into the equation −Fm[∂
∼
S] = −I[

∼
S], which respects the form in-

variance.
The property of invariance in form is not evident for those physical variables

which are associated with volumes and points. This is due to the fact that we are
not accustomed to considering volumes and points endowed with a sign. In fact,
while elementary geometry considers lengths, areas and volumes as always posi-
tive variables, analytical geometry, by introducing the concept of orientation of a
space element, gives a sign to these geometric quantities. This is an opportunity

14 See the next chapter.
15 See page 161.
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which is little used in geometry and, as a consequence, is rarely used in physics.
Since we have shown that the global physical variables are associated with space
elements, we can take the opportunity to give an orientation to space elements by
endowing their extensions wih a sign, i.e. speaking about negative lengths, areas
and volumes. It seems natural to extend this possibility to the global variables. So
when we accept that the volume of a region endowed with an outer orientation
can be either positive or negative, it seems natural to consider the mass contained
in the volume as having a sign as well. We mean that the sign of the mass can be
adapted to the sign of the volume whenever such a property can be useful for the
theory. This is not an obligation but a possibility offered to us.

The advantage of the systematic introduction of the sign of physical variables
in relation to the orientation of the associated space element is that it lends itself
beautifully to highlighting the invariance of physical equations with respect to the
change in orientation.

The change in sign may be justified by two complementary points of view.
For some variables the change in sign is simply a consequence of the definition
of the variable, and it has the result of maintaining the form invariance of the
equations expressing the laws of physics in which the variable is involved. For
other variables the sign reversal is not obvious, and it must be imposed in order to
maintain the invariance in the form of the equations expressing the laws of physics
in which the variable is involved.

Let us give two examples of balance equations (which are topological equa-
tions): the balance of mass and the balance of energy.

Example 13. Let us consider the mass balance inside a volume and a time interval. We can write

Mc(t+) − Mc(t−) + Mf (t−, t+) = 0, (6.40)

where we follow the convention that the mass flow Mf is positive when outgoing.
We now ask: what is the behaviour under a reversal of motion of the physical variables Mc

and Mf involved in the balance? Let us denote by Mc and Mf the two variables after the reversal
of motion. The sign of the mass content at each instant is the same, but the order of the two time
instants is inverted; the sign of the mass flow is inverted because the mass is now ingoing. It
follows that

Mc(t+) → Mc(t−) Mc(t−) → Mc(t+) Mf (t+, t−) → −Mf(t−, t+) . (6.41)

It follows that, by inverting the order of the two time instants, Eq. 6.40 becomes

Mc(t−) − Mc(t+) − Mf (t−, t+) = 0. (6.42)

This equation coincides with Eq. 6.40 multiplied by −1; hence, the relation Eq. 6.40 is invariant

in form under a reversal of motion.

We now ask: what is the behaviour of the physical variables Mc and Mf in-
volved in the balance if we change the outer orientation of volumes? We follow
two conventions: the mass is positive where it belongs to a region and the mass
flow is positive when it leaves that region. Let us denote by Mc and Mf the two
variables after inversion of the outer orientation.
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To change the outer space orientation of a volume means changing the point of
view referring the physical variables to the complementary of the volume instead
of to the volume. Since the mass content Mc within a region is outside the com-
plementary region, it is considered negative for the complement. Moreover, the
mass flow out of the region (i.e. positive) enters the complementary region and is
therefore considered negative with respect to the latter. In conclusion,

Mc → −Mc and Mf → −Mf . (6.43)

Equation 6.40 becomes

[−Mc(t+)] − [−Mc(t−)] + [−Mf (t−, t+)] = 0, (6.44)

which, again, is equal to Eq. 6.40 multiplied by −1. It follows that the inversion of
the sign of the mass content leads to the form invariance of the balance Eq. 6.40.

Example 14. In thermodynamics the first principle, expressing the energy balance, can be written
in the form

U(t+) −U(t−) = Q(t−, t+) +W(t−, t+). (6.45)

In this case the heat and the work are considered positive when entering the system. If we take

the outside of the system as our reference, the heat and the work are outgoing and hence become

negative: Q = −Q and W = −W. From the viewpoint of the exterior of the system, the internal

energy of the system is considered negative, hence U = −U. The result is that the first principle of

thermodynamics, a balance law, is invariant under inversion of the outer orientation of volumes,

like mass balance and the refugees in an embassy.

6.6 Defining Equations

Once we have defined some physical variable directly by its measuring process,
e.g. force and temperature, we introduce new variables by means of defining equa-
tions. New variables can be introduced by an explicit or implicit definition, as we
will see in the next section. The typical operations are as follows:

• The operation of computing the ratio of two variables. This operation is
largely used to form densities and rates. This is the case of mass density
(mass/volume), pressure (normal force/area), strain (increase in length/length),
velocity (displacement/duration) and power (work/duration).

• The operation of computing the product of two variables, such as work which
is force times displacement; the moment of a force, which is a force times a
distance; the moment of inertia of a particle with respect to an axis, which
is mass times the square of the distance from the axis; or the electric dipole
moment, which is charge times distance.
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• The operation of computing the sum or the difference of two variables. This is
the case of the Hamiltonian, which is the sum of the kinetic and potential ener-
gies, and the Lagrangian, which is the difference between the kinetic co-energy
and potential energy. A typical case are equations which define the space and
time increments of a variable. This is the case with displacement, which is the
difference between two radius vectors; voltage, which is the difference between
the electric potential at two space points; and temperature increase, which is the
difference between temperatures at two time instants.

• The operation of computing the derivative or the integral of a variable.

Some topological equations can be used as equations of definition. This is
the case with the first principle of thermodynamics, which can be used to define
heat;16 it is also the case with the process of defining a space difference which is
a topological equation.

6.7 Equations of Behaviour

This class contains the equations that prescribe a particular behaviour of a process,
of a transformation, of a material, of a flow, etc.

• The transformations of a gas: adiabatic, isothermal, isobaric, isochoric;
• The equations which prescribe the behaviour of a body or of a material: rigid

body, incompressible material, perfect fluid;
• The equations which prescribe the behaviour of scalar or a vector field: uniform

(in space), static, stationary, irrotational, solenoidal, constant (in time);
• The equations which prescribe a particular fluid flow: isochoric, irrotational,

stationary, barotropic.

Some authors17 consider equations which characterize a perfect fluid and a
rigid body, for example, as constitutive equations. The notion of rigid is an ideal
condition, which is only approximated by a body; it seems more appropriate to
say that the body behaves like a rigid body. For this reason we prefer to consider
the latter equations as equations of behaviour. Moreover these equations are not
specific to a material, i.e. they do not contain material parameters.

Remark. Although obvious, it is better to stress that in science all physical variables must

have a definition. More specifically, a physical variables must have an operative definition if it

is measurable or a definition which comes from a defining equation. We observe that among

16 Born [19]; Guggenheim [86, p. 41].
17 Truesdell and Toupin [237, p. 233].
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Table 6.6 Some defining equations

Ratios

Pressure p
def
=

Fn

A
Elastic modulus E

def
=
σ

ε

Resistance R
def
=

V
I

Electric current I
def
=

Qf

T
Mass density ρ

def
=

m
V

Frequency ν
def
=

1
T

Kinematic
viscosity

ν
def
=
μ

ρ
Wave number k

def
=

2 π
λ

Reynolds
number

Re
def
=
ρ u∞l
μ

Boltzmann’s
constant

kB
def
=

R
NA

Surface tension σ
def
=

E
A

Gravitational
mass

mg
def
=
w

g

Products

Angular
momentum

ĽA
def
= r × p

Moment
of a force

M̌A
def
= r × F

Poynting
vector

S
def
= E × Ȟ

Moment
of inertia

Ia
def
= mr2

Algebraic sums

Lagrangian L
def
= K∗ − V Hamiltonian H

def
= K + V

Heat Q
def
= ΔtU −W Enthalpy H

def
= U + p V

Free energy F
def
= U − T S Free enthalpy G

def
= H − T S

Derivatives

Velocity v
def
=

dr
dt

Acceleration a
def
=

dv
dt

Chemical
potential

μ
def
=
∂G
∂n

Angular velocity ω
def
=

dθ
dt

Integrals

Kinetic energy K(p)
def
=

∫ p

0
v(p)· dp Work W[L]

def
=

∫
L

F(r)·dr

Gravitational
potential

Ug(r)
def
=

∫
L

g(r)·dr
Velocity
line integral

Γ[L]
def
=

∫
L

v(r)· dr

Electric
potential

φ(r)
def
=

∫ ∞

r
E(r)· dr Magnetic flux Φ[S]

def
=

∫
S

B̌(r) · dŠ

Momentum p(t)
def
=

∫ t

0
F(t′) dt′ Impulse J[T ]

def
=

∫ T

0
F(t) dt
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Table 6.7 Examples of equations of behaviour

Adiabatic S = constant Barotropic p = p(ρ)
Isobaric p = constant Stationary ∂tφ = 0
Incompressible ρ = constant Inviscid μ = 0
Isothermal T = constant Uniform ∇φ = 0
Isochoric V = constant Irrotational ∇ × v = 0
Rigid |rh−rk | = constant Solenoidal ∇ · v = 0

physical variables only a few are directly measurable; most of them arise from a definition in

terms of other variables, as shown in Table 6.6. Many physicists state that in physics one must

use only measurable physical quantities. This is a bias, as can be seen in the opinions of eminent

physicists quoted in Appendix C, on p. 477 (Table 6.7).



Chapter 7
Algebraic Topology

7.1 Why Algebraic Topology?

Algebraic topology is closer to the discrete nature of physical variables, is sim-
pler than differential calculus, has an unexpected power to unify the mathematical
description of physics and leads directly to computational physics.

Since its foundation, which occurred more than three centuries ago, differential
calculus has formed the basis of the mathematical description of physics. In recent
decades a new mathematical tool has become very popular, the theory of exterior
differential forms, which is an enrichment of infinitesimal calculus.

Exterior Differential Forms. This mathematical formalism has the great advan-
tage of taking into account the geometric aspect which calculus ignores. The basic
idea is to associate appropriate exterior differential forms to the field functions,
thereby performing on them the operation of the exterior differential. This oper-
ation, which, starting from a form of p degrees, gives rise to a form of (p + 1)
degrees, expresses in a wonderfully unitary way the traditional operators gradi-
ent, curl and divergence. The theory of exterior differential forms has the merit of
highlighting the geometric background of physical variables and providing a de-
scription which is independent of the coordinate system used. Nevertheless, this
formalism makes use of the field functions and not of global variables, and for
this reason it must use the notion of derivative. This formalism is widely used in
electromagnetism.

Geometric Content of Physical Variables. Our aim is to show that it is pos-
sible to obtain a geometric description of physical theories which stems directly
from the operative definition of the variables, in particular from their measurement
procedure, at least for those quantities which are measurable.

We are so accustomed to using the differential formulation that we believe that
the description of physics by means of field functions and by coordinate systems
is the most convenient description for physics. However, the nature of physical

E. Tonti, The Mathematical Structure of Classical and Relativistic Physics,
Modeling and Simulation in Science, Engineering and Technology,
DOI 10.1007/978-1-4614-7422-7__7, © Springer Science+Business Media New York 2013
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quantities reveals that we mostly create and measure physical quantities referred
to space elements which have an extension such as the flow through a surface,
the mass contained in a volume, the energy of a system, the electromotive force
along a line, the work of a force along a line, the surface charge, and so forth, i.e.
physical variables which are not simply functions of the point. To arrive at a differ-
ential description, we need to introduce the densities of these physical quantities.
We are accustomed to using the functions of the field and then to deduce the cor-
responding global quantities, by integrating them on domains with one, two and
three dimensions. This has led to the introduction of the term integral variables.
But in physics we often measure integral variables more than field functions!

Why Do We Make Use of Infinitesimal Volumes and Infinitesimal Surfaces?
The most important equation in physics is the balance equation because all the
fundamental equations of physical theories have a balance equation as the start-
ing point. We compute the balance of mass, energy, electric charge, momentum,
angular momentum, entropy and number of particles. A balance equation links
a physical variable associated with a volume with a variable associated with its
boundary. For example, in electromagnetism, there are two circuital laws and two
balance laws, to which is added the balance of the electric charge (charge conser-
vation). The conservation of charge is a physical law independent of the Maxwell
equations. The sources of the electromagnetic field, i.e. charges and currents, must
satisfy the conservation of charge in advance. The result is that the charge conser-
vation becomes a compatibility condition for the equations of Mawell.

In fluid dynamics, the fundamental equations of Navier–Stokes are formed by
a momentum balance and a mass balance, and so on.

Why do we apply the circuital and balance laws to infinitesimal volumes and
infinitesimal circuits by introducing the densities, thereby obtaining differential
equations which contain the gradient, curl and divergence? Why do we introduce
densities and rates of these global physical variables? The answer is simple: we
are accustomed, from three centuries, to using the differential formulation. Dif-
ferential formalism is deeply rooted in our culture, and the only alternative to it
seems to be that of an integral formulation of physical laws. But the same integral
formulation is obtained from the differential one, and it is difficult to describe the
physics using integral relations.

The purpose of this book is to show that it is possible to avoid both the differen-
tial and the integral formulation using a formalism which is close to experimental
measurements and is local in nature, such as the differential formalism, without
carrying out the limit process. Moreover, it has the great advantage that it can be
used directly for a numerical formulation.

Algebraic Topology Instead of Differential Calculus and Differential Forms.
The question therefore arises: If we do not want to use the differential formulation,
is there a branch of mathematics which develops notions corresponding to those
of the differential formulation but is based on global variables instead of field
functions? The answer is yes; that branch is algebraic topology.
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Algebraic topology divides the region of space within which we operate into
many cells, thereby building a cell complex on which are introduced very simple
notions like chains and cochains. These terms sound unusual to the ears of physi-
cists and engineers, but they describe notions with which we are already familiar.
These notions allow us to express physical laws directly in global form, i.e. with-
out passing through a field’s functions, bypassing the differential forulation and,
in particular, without going through the exterior differential forms.

While the differential formulation requires that field functions satisfy differ-
entiability conditions which are foreign to physics, the corresponding notion of
discrete form does not need this restriction and as such is closer to the nature of
global variables.

Physics Is Based on Measurements, and These Imply Approximation. To
avoid the differential formulation as our starting point, we need to completely
revise our attitude. In our culture, formed by three centuries of differential formu-
lation of physical laws, we find the differential formulation so familiar that we are
led to think that it is natural for physics. However, we know very well that only in
a few elementary cases, with space regions of simple geometric shapes and under
particular boundary conditions, can one obtain a solution in closed form: hence the
“exact solution” promised by differential formulations is almost never achieved in
practice. Moreover, the great scientific and technological advancements achieved
in our day by numerical solutions to physical problems, which do not admit a
solution in closed form, suggest that this progress has arisen mainly because we
have found a way to obtain approximate solutions to our problems.

To our culture, modelled on mathematical analysis, the term approximate
sounds flawed. Nevertheless, the goal of a numerical simulation is agreement with
experimental measurements. Reducing the error of an approximate solution does
not mean making the error as small as we like, as a limit process requires; rather,
it means making the error smaller than a preassigned tolerance. We are well aware
that all measurements are affected by a tolerance because every measuring instru-
ment belongs to a given class of precision.

In measurements, an infinite precision, in the sense of a limit process of math-
ematics, is not attainable. The same positioning of the measuring probe in a field
implies a tolerance. The notion of precision in a measuring apparatus plays the
same role as the notion of tolerance in manufacturing and as the notion of error in
numerical analysis. In conclusion, one cannot deny the satisfaction of knowing the
“exact” solution of a physical problem when such a solution is available. What we
deny is the need to refer to an idealized exact solution when this is not available
in order to compare a numerical result with experimental facts.

The Same Field Can Be Described by Different Formalisms. The formalism
with which we can describe a physical theory is comparable to the clothes we
wear; some suit well, others have been shortened over the years, others are cheap
and comfortable, while still others are elegant and expensive. Just as a given outfit
must be appropriate for a given occasion, in a similar way a formalism must be
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adapted both to the problem that must be treated and to the level of the intended
reader. For example, electromagnetism can be described using the formalism of
vectors, quaternions, Clifford numbers, tensors or exterior differential forms. This
can be done in a three-dimensional space or in a four-dimensional space. Optics
can be described with the formalisms of geometrical optics, of ondulatory op-
tics or of quantum optics, three different “clothes” for three different occasions.
Another example is offered by quantum mechanics, for which there exist differ-
ent descriptions, the matrix description of Heisenberg, the wave description of
Schrödinger and the algebraic description of Dirac.

7.2 Topology and Algebraic Topology

Topology can be defined as the science which studies the properties of geomet-
ric figures which are preserved under continuous deformations without tearing or
overlaps. Since a deformation can be viewed as a transformation, the transfor-
mations considered by topology are continuous, invertible and with continuous
inverses; for such transformations Poincaré introduced the term homeomorphism.
Thus, briefly put, topology studies the properties of geometric figures which are
invariant under homeomorphisms.

The subject of topology deals with those properties of geometric figures which are un-
changed by topological mappings, that is, by mappings which are bijective (i.e. one-to-
one correspondences) and bicontinuous (i.e. continuous, with continuous inverses). Those
properties which remain unchanged under topological mappings are called the topolog-
ical properties of the figures. Two figures which can be mapped topologically onto each
other are said to be homeomorphic.1

Topology can be divided into two parts: one is the analytic topology, also called
point set topology or general topology; the other is algebraic topology, which ini-
tially was called combinatorial topology. The second part studies the topological
properties of manifolds by means of algebraic methods.2

One important class of manifolds is the class of differentiable manifolds. This
differentiable structure allows calculus to be performed on manifolds. Alge-
braic topology, in turn, is divided into two parts: homotopy and homology (see
Table 7.1). Homology theory studies the topological properties of spaces and
manifolds by means of algebraic methods applied to cell complexes. As a rep-
resentative of the algebraic method of homology theory one can take Euler’s fa-
mous formula for polyhedra, which states that regardless of the polyhedron, the
following rule is valid: faces-edges + vertices = 2.

1 See Seifert and Threlfall [210, p. 1]
2 Franz [74, p. 1], Hocking and Young [94, p. 218].
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Table 7.1 Partition of topology

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Analytic topology (= point set topology = general topology)

Algebraic topology (= combinatorial topology)

{
homology ← here

homotopy

7.3 Role of Cell Complexes

The algebraic formulation of physics, which rests on the fact that global physical
variables are associated with space and time elements, is described in a natural
way if we introduce cell complexes. To do this, we must define some notions and
some operations to be performed on the cells of the primal and dual complexes.

7.3.1 Faces of a p -Cell and Boundary

The faces of a cube are the six squares which bound the cube. Since a cube is a
three-dimensional element of space, its faces are two-dimensional elements. Al-
gebraic topology extends the term face of a p -cell to every (p − 1)-cell which
bounds the p -cell. Thus the faces of a 1-cell are the two terminal nodes, i.e. two
0-cells; the faces of a 2-cell are the edges (1-cells) that bound the 2-cell. Stated
in general, the faces of a p -cell are those (p − 1)-cells which are adjacent to the
p -cell (think of the faces of a cube): the set of all faces of a p -cell is called the
boundary of the p -cell.3

7.3.2 Cofaces of a p -Cell and Coboundary

Let us consider two rooms separated by a wall; the wall is the face common to
both rooms, and the two rooms can be called the cofaces of the wall.4

More generally, in a cell complex, given a p -cell, one can consider the (p+ 1)-
cells that have the given p -cell as a common face: these (p+1)-cells are called the
cofaces of the p -cell. Figure 7.1 shows the cofaces of p -cells in a Cartesian cell
complex. The set of cofaces of a p -cell is called the coboundary of the p -cell.

While the notion of face has meaning for a single cell, the notion of coface has
meaning only when the cell is considered as a member of a cell complex.

3 See Schwarz [206, p. 109].
4 The prefix ‘co-’ must be understood as an abbreviation of complementary, as in the terms
co-energy and co-tree used in network theory.
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boundary (6 faces)boundary (4 faces)

Fig. 7.1 Faces and cofaces of 0-, 1-, 2-, 3-cells respectively in a Cartesian complex

7.3.3 Incidence Numbers and Incidence Matrices

In the theory of oriented graphs used in planar network theory, one considers ori-
ented nodes, branches and meshes. In this setting, we introduce the notion of in-
cidence numbers between nodes and branches and between branches and meshes.
Incidence numbers have values 0, −1 and +1, and they tell us whether two p -cells
are mutually incident (number) and whether their mutual orientations are compat-
ible or not (sign). Incidence numbers can be collected to form incidence matrices.
The notion of incidence number can be extended both to a primal complex en-
dowed with an inner orientation and to a dual complex.

We can number the p -cells of a cell complex according to any criterion we
wish. After having numbered, i.e. labelled, the p -cells of a primal complex ac-
cording to a convenient criterion, and since all (n − p)-cells of the dual complex
correspond to a p -cell of the primal, it is natural to assign to every (n − p)-cell
of the dual complex the same number (label) of the p -cell of the primal complex.
Moreover, it follows that the number of p -cells of the primal complex, which we
will denote by Np, is also the number of (n− p)-cells of the dual. This is shown in
Fig. 7.1, where the numbers 2, 4 and 6 denote the number of faces of a primal cell
and the numbers of the cofaces of a dual cell.

We are now in a position to define the incidence number of a p -cell eh
p with a

(p–1)-cell ek
p−1: this is the relative integer qhk = [eh

p :ek
p−1] whose values are5

5 The lower index denotes the dimension of the cell, and we will write it in roman font, while the
upper index denotes the label of the cell, and we will write it in italics. The letter ‘e’ to denote a
cell is used by Massey.
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Table 7.2 Incidence numbers of a planar cell complex

p1 p2 p3

p6 p5 p4

l1 l2

l3

l4

l5

l6

l7 s1 s2

1-
ce

lls
(e

dg
es

)
l̄i

m
at

ri
x

G

0-cells (nodes) p̄ h

1 2 3 4 5 6
1 −1 +1 0 0 0 0
2 0 −1 +1 0 0 0
3 0 0 −1 +1 0 0
4 0 0 0 +1 −1 0
5 0 −1 0 0 +1 0
6 0 0 0 0 +1 −1
7 −1 0 0 0 0 +1

2-
ce

lls
(f

ac
es

)
s̄

j

m
at

ri
x

C

1-cells (edges) l̄ i

1 2 3 4 5 6 7
1 +1 0 0 0 +1 −1 −1
2 0 +1 +1 −1 −1 0 0

• +1 if ek
p−1 is a face of eh

p and the orientations of ek
p−1 and eh

p are compatible;

• −1 if ek
p−1 is a face of eh

p and the orientations of ek
p−1 and eh

p are not compatible;

• 0 if ek
p−1 is not a face of eh

p.

In the notation qhk, the first index refers to the cell of greater dimension.6

Tables 7.2 and 7.3 show the important fact that when the outer orientation of
a dual complex (dual 2-cells denoted by shaded areas) is induced by the inner
orientation of a primal one, then the incidence number between a p -cell and a
(p–1)-cell of the primal cell complex coincides with the incidence number between
the corresponding dual cells.

Thus, with reference to Table 7.2 since the incidence number between the pri-
mal edge l̄ 6 and the primal vertex p̄ 5 is +1, the incidence number between the
dual edge l̃ 6 and the dual face s̃ 5 is also +1 as shown in Table 7.3.

The incidence number between the primal edge l̄ 1 and primal point p̄ 2 is
+1; the incidence numbers between the corresponding dual elements, which are
respectively the dual line l̃ 1 and the dual surface s̃ 2, have the same incidence
number, i.e. +1.

This property is the consequence of the following three circumstances:

6 Alexandrov [4, p. 275], Franz [74, p. 30], Patterson [173, p. 103], Hocking and Young [94,
p. 223], Lefschetz [133, p. 49]. The reader should be aware that some authors use the opposite
convention for the order of indices.
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Table 7.3 Incidence numbers of dual of planar cell complex of Fig. 7.2

p̃1 p̃2

l̃1 l̃2

l̃3

l̃4

l̃5

l̃6

l̃7

s̃1
s̃2 s̃3

s̃4s̃5s̃6

D
ua

l2
-c

el
ls

s̃
j

∼ C
=

G
T

dual 1-cells l̃ i

1 2 3 4 5 6 7
1 −1 0 0 0 0 0 −1
2 +1 −1 0 0 −1 0 0
3 0 +1 −1 0 0 0 0
4 0 0 +1 +1 0 0 0
5 0 0 0 −1 +1 +1 0
6 0 0 0 0 0 −1 +1

D
ua

l1
-c

el
ls

l̃i

∼ G
=

C
T

Dual 0-cells p̃ k

1 2
1 +1 0
2 0 +1
3 0 +1
4 0 −1
5 +1 −1
6 −1 0
7 −1 0

1. Every (n − p)-cell of the dual complex intersects, belongs to or contains the
corresponding p-cell of the primal.

2. The labels of the (n − p)-cell of the dual complex were chosen to be equal to
the labels of the corresponding primal p-cells.

3. The outer orientation of a dual (n − p)-cell is the one induced by the inner
orientation of the corresponding primal p -cell.

In three-dimensional space there are three incidence matrices:

1. Matrix G of the incidence numbers between edges and nodes,
2. Matrix C of the incidence numbers between faces and edges,
3. Matrix D of the incidence numbers between cells and faces.

In two-dimensional space, we have only G and C, as can be seen in Tables 7.2 and
7.3.

As we will see, these matrices are the discrete version of the differential opera-
tors ‘grad’, ‘curl ’, ‘div ’, and this fact justifies the letters G, C, D chosen to denote
them.
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ph

li

gih gih = d̃hi

li

s j

cji
s j

vk

dkj

ṽh
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Fig. 7.3 Incidence numbers between cells of a cell complex and its dual

Figures 7.2 and 7.3 show the incidence numbers of a 3-cell complex and its
dual. As stated previously (p. 78), for historical reasons points are oriented as sinks
while volumes are oriented with outward normals.

Hence, the orientation of volumes is not the orientation induced by the inner

orientation of points but its opposite. It follows that
∼
D = −G

T
. In summary, we

have

G
def
= [gih],

∼
D

def
= [d̃hi], d̃hi

def
= [ṽh : s̃i] = −[l

i
: ph]

def
= −gih,

∼
D = −G

T
,

C
def
= [c ji],

∼
C

def
= [c̃i j], c̃i j

def
= [s̃i : l̃ j] = [s j : l

i
]

def
= c ji,

∼
C = C

T
,

D
def
= [dk j],

∼
G

def
= [g̃ jk], g̃ jk

def
= [l̃ j : p̃k] = [vk : s j]

def
= dk j,

∼
G = D

T
.
(7.1)
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Table 7.4 Incidence numbers of three-dimensional cell complex and its dual

�

�

�

	
ph

�

�

�

	
l

i

�

�

�

	
s j

�

�

�

	
vk

�

�

�

	
ṽh
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Primal complex K

0-cells = nodes

G = [gih]

1-cells = edges

C = [c ji]

2-cells = faces

D = [dk j]

3-cells = volumes

Dual complex K̃

3-cells = volumes

∼
D = [d̃hi] = −G

T

2-cells = faces

∼
C = [c̃i j] = C

T

1-cells = edges

∼
G = [g̃ jk] = D

T

0-cells = nodes

�

�

�

�

�

�

Table 7.4 shows the position of the incidence matrices in the classification diagram
of space elements (p. 84). Taking into account the use of incidence matrices in
electrical networks, we will see that they are useful when physical variables are
associated with the cells, i.e. when the notion of discrete form is introduced.

7.4 The Notion of a Chain

Let us consider the two-dimensional complex of Fig. 7.4a. Let us select arbitrarily
a reference orientation of its 1-cells, e.g.7

e1
1 = (p1, p2), e2

1 = (p1, p3), e3
1 = (p3, p2), e4

1 = (p2, p4) . (7.2)

With reference to Fig. 7.4b–d, with every oriented 1-cell eh
1 we can associate a

multiplicity or a weight, i.e. a relative integer nh. We have pictorially represented
the multiplicity drawing many copies of the 1-cells. The multiplicity nh associated
with the cell eh

1 is denoted by putting the number nh before the corresponding
cell as follows: nh eh

1. Each couple formed by a 1-cell eh
1 and the number +1 as

multiplicity is called an elementary 1-chain. A collection of oriented 1-cells, each
taken with a certain multiplicity, is called a 1-chain and is written as8

7 We follow Flanders [70, p. 63] using the boldface to denote cells and chains.
8 Hilton and Wylie [92, p. 56], Alexandrov [4, p. 285], Franz [74, p. 31], Hocking and Young
[94, p. 297].
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Fig. 7.4 One-dimensional chains: (a), (b), (c), (d) are different 1-chains on the same complex

c1 = +3e1
1 + 2e2

1 + 2e3
1 − 1e4

1 or, in general, c1 =
∑

h

f
nh eh

1. (7.3)

One can also write chains of Fig. 7.4b–d as algebraic vectors as follows:9

(−2,+1,+1,+1), (+3,+2,+2,−1), (+1, 0, 0,+1) . (7.4)

The notion of a 1-chain can be extended to a p -chain as follows:10

Definition. Given a cell complex K, endowed with an inner or outer

orientation, i.e. K or
∼
K, let us consider a collection of p -dimensional

cells eh
p, each being assigned a relative integer nh, called its multiplic-

ity. It is required that if the orientation of the cell is changed into its
opposite, then the integer nh changes sign, i.e.

nh(−eh
p) = (−nh) (eh

p) oddness condition. (7.5)

The collection thus obtained is called a p -dimensional chain with inte-
ger coefficients and will be denoted by cp. A p -chain can be represented
by the formal sum

cp = n1 e1
p + n2 e2

p . . . nN eN
p =

∑
h

f
nh eh

p . (7.6)

Each couple formed by a p-cell eh
p and the number +1 as multiplicity

is called an elementary chain. The integers nh are called coefficients
of the chain and denote the multiplicity (the weight) with which a cell
enters the chain. A chain can also be described by a column vector
[n1, n2, · · · nNp]

T.

9 Seifert and Threlfall [210, p. 61].
10 Seifert and Threlfall [210, p. 61], Franz [74, p. 31], Hilton and Wylie [92, p. 56], Hocking
and Young [94, p. 225], Paterson [173, p. 117], Alexandrov [2, p. 18], Alexandrov [4, p. 285],
Wallace [244, p. 105].
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Quoting Alexandroff:11

I would like to direct the attention of the reader to the fact that the concepts “polyhedron”,
“geometric complex” [cells complex] and “algebraic complex” [chain] belong to entirely
different logical categories: a polyhedron is a point set, thus a set whose elements are or-
dinary points of IRn; a geometric complex [cells complex] is a (finite) set whose elements
are simplexes [cells], and, indeed, simplexes [cells] in the naive geometric sense, that is
without orientation. An algebraic complex [chain] is not a set at all: it would be false to
say that an algebraic complex [chain] is a set of oriented simplexes [cells] since the essen-
tial thing about an algebraic complex [chain] is that the simplexes [cells] which appear in
it are provided with coefficients and, therefore in general, are to be counted with a certain
multiplicity. This distinction between the three concepts, which often appear side by side,
reflects the essential difference between the set-theoretic and the algebraic approaches to
topology.

While p -cells are point sets, i.e. topological entities, elementary p -chains are
algebraic entities; whereas point sets cannot be added, elementary p -chains can
be.12

Remark. Let us give an example of a formal sum:

a = 2 apples + 3 peaches,
b = 5 apples + 1 peach + 4 bananas,

a+b = (5+2) apples + (3+1) peaches + 4 bananas.
(7.7)

Chains of the same dimension can been added:13

cp =
∑

h

f
nh eh

p, dp =
∑

h

f
mh eh

p, cp + dp =
∑

h

f
(nh + mh) eh

p; (7.8)

hence, p-chains form an additive group.14 In particular, a p -chain all of whose
coefficients are vanishing is called a null p -chain and will be denoted by Θp.

Remark. It is possible to extend the notion of a p -chain as a function which to every oriented

p -cell assigns an element of a additive group.15 The handicap of this extension is that when the

coefficients belong to an arbitrary additive group, the intuitive geometric content is lost. If we

want to maintain a geometric content, as indeed we do, then the group must be that of integers,

i.e. Z.16

11 Alexandroff [2, p. 19]. The terms in square brackets were inserted by the present author. For
the oddness condition see Alexandroff [4, Chap. VII, Sect. 5.1], Hocking and Young [94, p.
297].
12 Alexandrov [2, p. 20].
13 Lefschetz [134, p. 19].
14 Hilton and Wylie [92, p. 57].
15 Hocking and Young [94, p. 225].
16 Hilton and Wylie [92, p. 58], Bourgin [24, p. 22], Wallace [245, p. 6].
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The introduction of a cell complex in the space allows us to select some
p -dimensional region formed by a set of p -cells. The algebraic entities which
describe them are p -chains.

7.4.1 Boundary of a Line, Surface and Volume

The boundary of a line is the set formed by its two ending points: if the line is
closed, like a ring, then it has no boundary. Similarly, the boundary of a surface
is a closed line: if the surface is closed, like the shell of an egg, then it has no
boundary. Hence the boundary of a surface is a closed line and the boundary of a
volume is a closed surface. In every case, the boundary of a manifold is a closed
manifold with one dimension less than the dimension of the manifold. This prim-
itive topological property plays an important role in the applications of algebraic
topology to physical fields; thus, it deserves particular consideration.

7.4.2 Boundary of a Chain

The notion of the boundary of a manifold of dimension p can be extended to a
p -chain. Let us denote by

cp =
∑

h

f
nh eh

p and cp−1 =
∑

k

f
mk ek

p−1 (7.9)

two chains of dimensions p and (p−1) respectively. With reference to Fig. 7.5,
let us consider the integer number nh associated with a cell eh

p and transfer this
integer to each bounding cell ek

p−1 of one dimension less, with the plus or minus
sign depending on whether the mutual incidence number is +1 or −1. When this
is done, every bounding cell receives the values from all its cofaces: we sum all
these values, obtaining an integer value which we associate with the bounding cell
ek

p−1. In this way, starting from a p -chain we arrive at a (p − 1)-chain.
In general we can define the boundary of a p -chain cp as the (p–1)-chain cp−1

whose coefficients mh are the sum of the coefficients nh multiplied by the incidence
numbers of the p -cells eh

p and the (p–1)-cells ek
p−1, i.e.

mk
def
=

∑
h

nh [eh
p : ek

p−1]︸�����︷︷�����︸
incidence number

. (7.10)

This (p − 1)-chain is written as
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Fig. 7.5 Pictorial view of boundary process

cp−1 = ∂ cp . (7.11)

The process of forming the boundary of a p -chain is called a boundary process,
and the operator ∂ is called a boundary operator. Figure 7.5 gives a pictorial view
of the process of transferring the coefficients nh of a p-chain from the p-cells to
the (p−1)-cells which form the boundary of the p-chain.17 We see that a bound-
ary operator is a linear mapping with integer coefficients between the group of
p -chains and that of (p–1)-chains, i.e. ∂ : Cp → Cp−1.

A closed line is a line without a boundary; its algebraic description is a closed
1-chain, i.e. a chain such that ∂ c1 = Θ0, where Θ0 denotes the null 0-chain. This
is called a 1-cycle. Similarly, a closed surface is a surface without a boundary. Its
algebraic description is a closed 2-chain, i.e. a 2-chain such that ∂ c2 = Θ1, where
Θ1 denotes the null 1-chain. This is called a 2-cycle.

7.4.3 The Boundary of a Boundary Is a Null Chain

With reference to Fig. 7.6, we can easily see that performing the boundary process
twice in sequence on an elementary p -chain we obtain a null (p−2)-chain. The
left part of Fig. 7.6 shows the boundary process starting with an elementary 2-
chain, in this case a 2-cell with assigned multiplicity n. The integer n is transferred
to the four edges with the plus or minus sign according to the mutual orientation
of the face with each edge. When we repeat the boundary process starting from
the elementary 1-chains of the boundary, the multiplicity ±n of the elementary
1-chain is transferred to each of its bounding nodes with the same or opposite
sign, depending on the mutual incidence edges/nodes. If for every node we add
the integers thus obtained, then we obtain the number 0. Hence, since each 0-cell
of the complex has a multiplicity 0, we have obtained a null 0-chain.

In the bottom part of Fig. 7.7 is shown a boundary process starting with an
elementary 3-chain, in this case a 3-cell with assigned multiplicity 1. The integer

17 This pictorial representation by means of fountains is introduced in this book to grasp imme-
diately the boundary process (and later also the coboundary process).



7.4 The Notion of a Chain 195

n

+1

+1

–1
–1

+n

–n

+n
–n

+n
–n

+n

–n

0
0

0
0–1

–1 –1

–1
+1

+1

+1
+1

boundary boundary of the boundary

once more

Fig. 7.6 The boundary of a boundary is a null chain. This pictorial view illustrating a process,
similar to fountains, which transfers the coefficient n of the 2-cell in the chain to the 1-cells that
form the edge, and from these, in turn, to the 0-cells that form the edge thereof

1 is transferred to the six faces with a plus or minus sign according to the mutual
orientation of the cell with each face. Here we have considered cells endowed with
an outer orientation. When we repeat the boundary process (right part of Fig. 7.7),
starting from the elementary 2-chains of the boundary, the multiplicity 1 of the
elementary 2-chain is transferred to each of its bounding edges with the same or
opposite sign, according to the mutual incidence faces/edges. If for every edge we
sum the integers thus arrived at, we obtain the number 0. Hence we have obtained
a null 1-chain.
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Let us now describe the process in mathematical terms. Let us consider the
boundary of the boundary of a p -chain:

∂∂cp =
∑

h

f
nh ∂eh

p = ∂
∑
h,k

f
nhqhk ek

(p−1)

∑
h,k

f
nhqhk ∂ek

(p−1) =
∑
h,k, j

f
nhqhkrk j e j

(p−2).

(7.12)
Now it has been shown (Figs. 7.6 and 7.7) that

∑
k qhkrk j ≡ 0, and then

∂ (∂cp) ≡ Θp−2, (7.13)

where Θp−2 is the null (p−2)-chain. This relation can be read as follows: the
boundary of the boundary of a chain vanishes.

The identity 7.13 may be expressed by the relations18

∑
k

[ei
p+1 :ek

p] [ek
p :eh

p−1] ≡ 0 . (7.14)

Referring to Fig. 7.3 and recalling Eq. 7.1, we may write
∑

i

[s j : li][li :ph] =
∑

i

c ji gih ≡ 0,
∑

j

[vk :s j][s j : li] =
∑

j

dk j c ji ≡ 0

(7.15)
or

C G ≡ 0, D C ≡ 0 , (7.16)

where 0 denotes the null matrix.

7.5 Notion of Discrete Form

The differential formulation of physical fields makes extensive use of the differ-
ential operators ‘grad’, ‘curl’ and ‘div’ and of their combinations, like ‘div grad’,
‘grad div’ and ‘curl curl’. These differential operators satisfy the two fundamental
identities of Eq. 7.42 (p. 207). We want to show that the three operators ‘grad’,
‘curl’ and ‘div’ have a common origin, i.e. are different versions of a single pro-
cess, known as a coboundary process, defined on new entities which generalize
the notion of field functions, known as discrete forms.

Remark. Algebraic topology uses the term cochains. Since this notion constitutes a discrete

version of exterior differential forms, in numerical applications19 they are called discrete dif-

ferential forms. The juxtaposition discrete differential forms sounds contradictory, like beautiful

18 Hocking and Young [94, p. 224].
19 Desbrun et al. [55, 56], Castillo et al. [35, 36], Stern et al. [219]
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ugly flower or good bad ice cream. For this reason we prefer to use the simplest locution, discrete

forms, as some authors do.20

The starting point for this unified view is, once more, the fundamental remark
that global physical variables have a natural association with space elements. If we
build a cell complex in a space region in which a field is defined, we have at our
disposal many space elements, say many nodes, edges, faces and cells. Therefore,
if we consider a physical variable Φ associated, for example, with surfaces, i.e.

Φ[S], then to every face si of the cell complex we can assign the amount φi
def
=

Φ[si] of the physical variable. In doing this we have constructed something that
generalizes a field function. In fact, while a field function, say u = f (P), associates
a value of a physical variable u with every point of the region, here we associate
the value of a physical variable Φ with every face of the complex. Whereas f (P)
is a point function, Φ[S] is a set function. This function in algebraic topology is
called a two-dimensional cochain or, 2-cochain for short. In numerical methods,
it is called a discrete 2-form.21 Franz [74, p. 144] uses the term complementary
instead of dual to avoid confusion with the algebraic duality concept (e.g. dual
modulus, dual mapping, dual basis).

Thus, the potential of a vector field, evaluated at all 0-cells, gives rise to a
discrete 0-form; the line integral of a vector, evaluated on the 1-cells of a complex,
gives rise to a discrete 1-form; the flux evaluated on all 2-cells gives rise to a
discrete 2-form and the contents, e.g. mass content, evaluated on all 3-cells, gives
rise to a discrete 3-form.

Notation. Chains are usually denoted by lower indices, discrete forms by upper indices. See

p. 299 in [94], p. 56 in [92], p. 31 in [61]. Dubrovin [58, p. 3] uses
∑ f where f means formal.

Definition. Given an oriented cell complex K, endowed with an inner

or outer orientation, hence K or
∼
K, and an additive and commutative

group G (e.g. a scalar, vector, matrix), a discrete p-form, cp, is a lin-
ear function on p -chains with integer coefficients with values in the
group G .

This means that a discrete p-form associates an element g ∈ G with every chain
cp in such a way that

additive︷�������������������������������︸︸�������������������������������︷
cp(cp + c′p) = cp(cp) + cp(c′p),

homogeneous︷�����������������︸︸�����������������︷
cp(n cp) = n cp(cp) .

20 Hirani [93], Frauendiener [75].
21 The prefix ‘co-’ means conjugate (p. 461 in [253]), which is synonymous with dual. In modern
mathematics, the passage to the dual is traditionally denoted by the prefix ‘co-’, e.g. vector and
covector.
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In particular, denoting by gh the element associated with the elementary chain eh
p, a

discrete form, on account of its linearity, is completely defined when all the values
gh are given. As for the function of one or more variables u = f (x1, x2), a linear
function can be written in the form u = a1x1 + a2x2, so instead of the notation
cp(cp), it is convenient to use the notation

(cp, cp) or 〈cp, cp〉 . (7.17)

We prefer the second notation, the one with angle brackets, because it complies
with the one used in the theory of spaces put in duality, as shown in Chap. 15.

In particular, the group G may be a vector space on real or complex numbers,
or it can be an algebra, like matrix and Clifford algebras.

A discrete p-form, cp, can also be represented by a row vector whose elements
are the values gk of the discrete form on the elementary chains

cp = [g1, g2, · · · gN] . (7.18)

Notation. There are many notations for cochains in books on algebraic topology (cp denotes

a cochain and dp a chain):
cp(dp) Dubrovin et al. [58, p. 32]), Hocking and Young [94, p. 300]
(cp, dp) Hilton and Wylie [92, p. 67]
cp · dp Hocking and Young [94, p. 300]
(dp, cp) Franz [74, p. 92]
(dp) cp Hilton and Wylie [92, p. 68]

7.5.1 Value of a Discrete Form on a Chain

It is useful to introduce the notion of the value of the discrete form cp =

[g1, g2, · · · gN] on the chain cp = [n1, n2, · · · nNp]
T as the element g ∈ G given

by the sum of the values of the discrete form on single cells, each multiplied by the
coefficient of the cell in the chain. In symbols:

g =

N∑
h=1

gh nh ≡ [g1 g2 · · · gN ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n1

n2

· · ·
nN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (7.19)

which can also be written as

g = 〈cp, cp〉 =
〈
cp,

∑
h

f
nheh

p

〉
=

∑
h

nh〈cp, eh
p〉 =

∑
h

nh gh . (7.20)

This property fits like a hand in a glove with the additivity of global variables.
Thus the line integral of a vector along a line is equal to the sum of the line
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integrals along the parts of the line; the flux associated with a surface is the sum of
the fluxes associated with the parts of the surface; the mass contained in a volume
is the sum of the masses of the parts of the volume; and so forth. In particular,
from the homogeneous property it follows that22

〈cp,−ek
p〉 = −〈cp, ek

p〉 = −gk oddness principle. (7.21)

This means that the inversion of the orientation of a p -cell (this is the meaning of
−ek

p) implies a change in sign of the value of the cochain associated with the cell.
This is the oddness principle of discrete forms of degree p, which corresponds to
the oddness principle of chains, shown by Eq. 7.5.

The cells and their labels used in algebraic topology correspond to the points
and their coordinates which are commonly used in physics. The role of field func-
tions in a differential setting is played by discrete forms in a discrete setting. In
passing from a discrete to a differential setting, the discrete p-forms on the pri-
mal complex become even differential p -forms,23 whereas the discrete p-forms
on the dual complex become odd differential forms, and for this reason they will
be called odd discrete p-forms.24 The elements of the group G are vectors instead
of scalars, and the corresponding differential form is a vector valued differential
form.

An Analogy. When we walk into a supermarket to purchase goods, such as fruit,
we find a number on each type of fruit and a price.

The analogy lies in the fact that the fruits correspond to the cells of a complex,
the shopping list of the day corresponds to a chain and the set of prices corresponds
to a discrete form.

Let us denote the fruits by e1, e2, · · · en.
The prices are the elements of a ‘discrete form’ p = [p1, p2, · · · pn] which we

can represent by a row vector. We can also write ph
def
= p(eh) in the same spirit of

the notation yh = f (xh) for a function of one variable.
Our shopping list of the day specifies the number of kilos of each fruit that

we want to buy. These can be collected in a vector s = [n1, n2, · · ·nn]T which we
represent as a column vector (s = ‘shopping’).

Referring to Table 7.5, we see that the number of kilos for every fruit on the
shopping list can be viewed as coefficients (weights) of a ‘chain’ s and the total
cost C of our shopping can be viewed as the value of the discrete form of prices
on the chain of the shopping list.

22 Hocking and Young [94, p. 298].
23 Franz [74, p. 45], Hilton and Wylie [92, p. 72].
24 Burke [32, p. 183].
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Table 7.5 Shopping in a supermarket provides an analogue of chains and cochains

Fruits Apples Oranges Bananas Pears Peaches

‘Cells’ e1 e2 e3 e4 e5

Prices p1 p2 p3 p4 p5

Cochain of prices: p = [p1, p2, p3, p4, p5]

‘Chain’ of day’s shopping list

s = 2e1 + 3e2 + 0 e3 + 6e4 + 0 e5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
3
0
6
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Day’s shopping list

2 kg apples n1 = 2

3 kg oranges n2 = 3

6 kg pears n4 = 6 Total cost: C =
5∑

h=1

nh ph

7.5.2 Coboundary of a Discrete p-Form

The coboundary process on a discrete p-form is a process which generates a dis-
crete (p + 1)-form. It is remarkable that this process plays a key role in physics
because balance, circuital equations and the equations forming a difference can be
expressed by the coboundary process performed on discrete forms of degree 3, 2
and 1 respectively. This process is analogous, in an algebraic setting, to exterior
differentiation on exterior differential forms and leads to typical operators such as
‘grad ’, ‘curl ’ and ‘div ’, along with time derivatives.25

In this way we have introduced the coboundary process in a geometric lan-
guage. This is much more intuitive than the corresponding analytical definition of
exterior differential on exterior differentiation forms.

7.5.3 Coboundary of a Discrete 0-Form

Let us refer to the first row of Table 7.6, and let us start by considering a physical
variable Φ associated with the points (0-cells) of a primal complex (in number of
N0). This fact gives rise to a discrete 0-form, φ 0 = [φ1, φ2, · · ·φN0 ]. Let us consider
the point ph, and let φh be the value associated with it (Table 7.7). The process we
are describing is performed in two steps:

1. Step 1. Transfer the value φh to every coface of the point ph (i.e. to every edge
li incident with the point ph) with a plus or minus sign according to whether
the mutual incidence is compatible or incompatible. Thus, considering points

25 Hilton and Wylie [92, p. 72].
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Table 7.6 The two steps of the coboundary process performed on primal cell complex

Inner orientation
First step

transfer to the cofaces
Second step

collect from the faces

from points to lines

+fh −fh +fh

−fh

+fh

−fh
h

+

−

ga = fi − fh

ga

−ga

+ga

+ga

−ga

From lines to surfaces

−ga

−gd

+gg

+gbm

m = −ga + gb + gg − gd

From surfaces to volumes

+
−

+

−
+

−

+
−

h

h = + + − + −

m

m

m

m

fi
fh

fh

fh

fi

a

aa

a d

d

b

b

g

g

g h

h

−

as sinks, the edge which arrives at the point has a compatible orientation;
hence, the incidence number is +1. We associate the value +φh with this edge.
This process is repeated for all cofaces of ph, i.e. for the entire coboundary
of ph. The same transfer to the coboundary is repeated for all points of the
complex.

2. Step 2. For every edge li of the complex (in number of N1) add the values
coming from its boundary. In this way, we obtain the quantity γi = +φi − φh.
Thus, we have formed a discrete 1-form, γ1 = [γ1, γ2, · · · , γN1 ].

Hence, starting with a discrete 0-form, φ 0, we have formed a discrete 1-form, γ1:

φ 0 = [φ1, φ2, · · ·φN0 ] −→ γ1 = [γ1, γ2, · · · , γN1 ] . (7.22)
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Table 7.7 The two steps of the coboundary process performed on dual cell complex

Outer orientation
First step

transfer to the cofaces
Second step

collect from the faces

from points to lines
−fh

−fh

+fh

+fh

+fh

−fh

h

−fh

+fi

From lines to surfaces

From surfaces to volumes

+

−

+

−
dk

dk = +

m = −ga + gb + gg − gd

m

+ − + e −a db g

g

h

a a 

g

d

−

b−

++ − m

m

m

ga = fi − fh

+gb

+gg
−ga

−ga

ga

−ga
+ga
+ga

−gd

m

fh

fi

fh

a

h

This is the coboundary process performed on a discrete 0-form and denoted by

γ1 = δ φ 0 . (7.23)

7.5.4 Coboundary of a Discrete 1-Form

Let us start by considering a physical variableΓ associated with the edges (1-cells)
of a primal complex. This gives rise to a discrete 1-form, Γ1 = [Γ1, Γ2, · · ·ΓN1 ].
Let us consider the edge li, and let Γi be the value associated with it. Always with
reference to Table 7.6, the process we are describing is performed in two steps as
follows:
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1. Step 1. We transfer the value Γi to every coface of the edge li, with the plus
or minus sign according to whether the mutual incidence is compatible or in-
compatible. Hence this process involves the whole coboundary of li. The same
transfer to the coboundary is repeated for all edges of the complex.

2. Step 2. For every coface sμ of the complex (in number of N2) add the values
coming from its boundary. In this way, we obtain the quantity ψμ = −Γi +Γ j +

Γγ − Γδ,26 i.e. we have formed a discrete 2-form, ψ2 = [ψ1, ψ2, · · · , ψN2 ].

Hence, starting with a discrete 1-form, Γ1, we have formed a discrete 2-form, ψ2:

Γ1 = [Γ1, Γ2, · · ·ΓN1 ] −→ ψ2 = [ψ1, ψ2, · · · , ψN2 ] . (7.24)

This is the coboundary process performed on a discrete 1-form and denoted by

ψ2 = δ Γ1 . (7.25)

7.5.5 Coboundary of a Discrete 2-Form

Let us now describe the coboundary process on a discrete 2-form. Let us start
by considering a physical variable Ψ associated with the faces (2-cells) of a
primal complex. This gives rise to a discrete 2-form, Ψ2 = [Ψ1, Ψ2, · · ·ΨN2 ].
Let us consider the face si, and let Ψi be the value associated with it. With
reference to Table 7.6, the process we are describing is performed in
two steps:

1. Step 1. Transfer the value Ψi to every coface (i.e. every 3-cell incident with the
face si) with a plus or minus sign according to whether the mutual incidence
is compatible or incompatible. Hence this process involves the entire cobound-
ary of si. The same transfer to the coboundary is repeated for all faces of the
complex.

2. Step 2. For every volume vk of the complex (in number of N3) add the values
coming from its boundary. In this way, we obtain the quantity ρk = +Ψi −
Ψ j + Ψγ − Ψδ + Ψε − Ψη.27 Thus, we have formed a discrete 3-form, ρ3 =

[ρ1, ρ2, · · · , ρN3 ].

Hence, starting with a discrete 2-form, Ψ2 we have formed a discrete 3-form, ρ3:

Ψ2 = [Ψ1, Ψ2, · · ·ΨN2 ] −→ ρ3 = [ρ1, ρ2, · · · , ρN3 ] . (7.26)

This is the coboundary process performed on a discrete 2-form and denoted by

ρ3 = δΨ2 . (7.27)

26 The signs in this sum depend on the mutual orientation of the face and its edges.
27 The signs in this sum depend on the mutual orientation of the cell with its faces.
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The coboundary process we have described using a primal complex can be
performed in the same way on a dual complex; in fact, what we need are the
incidence numbers, and these exist for an oriented complex which is endowed
with an inner or with outer orientation.

7.5.6 General Definition of Coboundary Process

Definition. Given a discrete p-form, cp, we may obtain a discrete (p +
1)-form, cp+1, by the following process. We associate with every (p+1)-
cell ek

p+1 the sum of the products of the quantities gh associated with its
faces, each multiplied by the corresponding incidence number. In this
way, with every (p + 1)-cell we associate the quantity

fk
def
=

∑
h

[ek
p+1 :eh

p]︸����︷︷����︸
incidence number

gh . (7.28)

We can write

gh = 〈cp, eh
p〉 fk = 〈cp+1, ek

p+1〉 . (7.29)

The discrete form thus obtained is denoted by

cp+1 = δ cp. (7.30)

This process is called the coboundary process and the operator δ which
describes it is called the coboundary operator.

Whereas the boundary process on a chain lowers the dimension of the chain by
one unit, the coboundary process on a discrete form raises the degree of the form
by one unit. This fact is easily verified by observing that in Eq. 7.10 the first index
of the incidence matrix is summed over, whereas in Eq. 7.28 the second index of
the incidence matrix is summed over.

7.5.7 Discrete Version of Stokes’ Theorem

We now show the relation between the boundary operator ∂ on chains and the
coboundary operator δ on discrete forms (= cochains). This relation is a simple
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Fig. 7.8 The simplest, one-dimensional, cell complex allows one to capture the algebraic root
of the generalized Stokes theorem

and wonderful mathematical identity which serves as the foundation of three clas-
sical identities – Gauss’s theorem, Stokes’s theorem and Leibniz’s theorem.

Introductory Consideration. Let us consider the simplest example of a one-
dimensional cell complex composed of two 1-cells e1

1, e
2
1 and, as a consequence,

of three 0-cells e1
0, e

2
0, e

3
0, as shown in Fig. 7.8.

Let us consider a 1-chain c1 = N1e1
1 + N2e2

1 and a 0-cochain c0 = [ϕ1, ϕ2, ϕ3].
Let us form the boundary of the 1-chain c1,

∂ c1 = (−N1) e1
0 + (+N1 − N2) e2

0 + (+N2) e3
0, (7.31)

and the coboundary of the 0-cochain c0,

δ c0 = [(ϕ2 − ϕ1), (ϕ3 − ϕ2)] . (7.32)

Let us find the value (here a real number) of the 0-cochain c0 on the boundary of
the 1-chain c1, i.e. the 0-chain ∂ c1,

〈c0, ∂ c1〉
def
= ϕ1 (−N1) + ϕ2 (+N1 − N2) + ϕ3 (+N2), (7.33)

and the value of the 1-cochain δ c0 on the 1-chain c1,

〈δ c0, c1〉
def
= (ϕ2 − ϕ1) N1 + (ϕ3 − ϕ2) N2

≡ ϕ1 (−N1) + ϕ2 (+N1 − N2) + ϕ3 (+N2)
= 〈c0, ∂ c1〉 .

(7.34)

Hence,
〈c0, ∂ c1〉 ≡ 〈δ c0, c1〉 (7.35)

Stated in words: the value of a 0-cochain on the boundary of a 1-chain is equal to
the value of the coboundary of the 0-cochain on the 1-chain.

After this introductory consideration, let us prove the same property for a
p -cochain on an arbitrary cell complex.
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Let us evaluate a discrete p-form, cp, on the boundary of a (p + 1)-chain cp+1:

cp(∂cp+1) = cp

⎛⎜⎜⎜⎜⎜⎝
∑

k

f
nk ∂ek

p+1

⎞⎟⎟⎟⎟⎟⎠ =
∑

k

nk cp

⎛⎜⎜⎜⎜⎜⎝
∑

h

f
[ek

p+1 :eh
p] eh

p

⎞⎟⎟⎟⎟⎟⎠ =
∑
h,k

nk [ek
p+1 :eh

p] gh

(7.36)
and, recalling Eq. 7.28,

(δcp)(cp+1) = (δcp)

⎛⎜⎜⎜⎜⎜⎝
∑

k

f
nk ek

p+1

⎞⎟⎟⎟⎟⎟⎠ =
∑

k

nk (δcp)(ek
p+1) =

∑
h,k

nk [ek
p+1 :eh

p] gh .

(7.37)
Hence,

cp(∂cp+1) ≡ (δcp)(cp+1) . (7.38)

It is much better to rewrite this identity in the equivalent form28

〈cp, ∂cp+1〉 ≡ 〈δcp, cp+1〉 . (7.39)

Theorem. The value of a discrete p-form on the p -dimensional boundary of a
(p+1)-dimensional chain is equal to the value of the coboundary of the discrete
p-form on a (p+1)-dimensional chain.29

This theorem is the algebraic form of Stokes’ theorem and is called a gen-
eralized or combinatorial form of Stokes’ theorem.30 This shows that Stokes’
theorem is an immediate consequence of the definition of the coboundary pro-
cess. This also shows that Stokes’ theorem is a purely topological relation31 and
that the various continuity and differentiability conditions usually required in its
proof depend on the fact that one uses field functions and derivatives. This is a
recurrent situation in physics: many differentiability requirements do not belong
to physical laws but are required by the differential apparatus used in their de-
scription.

This equality is the discrete form32 of the generalized Stokes theorem, which
includes Gauss’s theorem, the proper Stokes theorem and the theorem of Leibniz:

28 This notation is used by Teixeira and Chew [222] and by Desbrun et al. [56].
29 Hocking and Young [94, p. 301], Dubrovin et al. [58, p. 35], Franz [74, p. 46], Auchmann and
Kurz [7].
30 Franz [74, p. 43], Hocking and Young [94, p. 301].
31 Synge and Schild [221, p. 269].
32 Franz [74, p. 45].
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
V
∇ · u dV =

∫
∂V

u · d S (Gauss),

∫
S
(∇ × v) · d S =

∫
∂S

v · d L (Stokes),

∫
L
∇ φ · d L = φ(∂L) ≡ φ(B) − φ(A) (Leibnitz).

(7.40)

Note that the generalized Stokes theorem highlights the non-metric nature of the
theorem33 and also applies regardless of the assumptions of differentiability of the
vectors u, v or of the function φ.

Conversely, Eq. 7.39 can be used to define the coboundary operator.

7.5.8 The Coboundary of the Coboundary Vanishes

The notion of a coboundary operator which raises the degree of a discrete form
by one unit corresponds to the notion of an exterior differential which raises the
degree of an exterior differential form by one unit.34

From identity 7.38 and recalling Eq. 7.13, we obtain the important identity

δ(δcp)(cp+2) = (δcp)(∂ cp+2) = cp(∂ ∂ cp+2) = cp(Θp) = 0. (7.41)

This means that when the coboundary process is performed twice in sequence, it
gives rise to the null element of the group G . This is the algebraic root of many
differential identities.

As we will show, these relations are the discrete counterpart of the differential
identities:

curl (grad f ) ≡ 0, div (curl v) ≡ 0 . (7.42)

Remark. Physical laws in their original form, as inferred from experiments, naturally involve

global variables associated with spatial entities and not field functions. The formation of den-

sities and rates and the passage to a limit to form field functions deprive physical variables of

much of their physical content.

33 Synge and Schild [221, p. 269].
34 Hilton and Wylie [92, p. 72].
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7.5.9 Chains or Discrete Forms in Physics?

Some authors on algebraic topology consider chains with real coefficients instead
of integer coefficients, i.e. consider the group R instead of Z. In physics one is
tempted to consider these real coefficients as the values of a physical variable.35

For example, in thermal conduction, the temperatures at the nodes of a cell com-
plex are taken as coefficients of a 0-chain, so

T = T1e1 + T2e2 + · · · + TNeN =
∑

k

f
Tkek . (7.43)

In this way you do not have available the coboundary process, a fundamental
process in the description of physics as it summarizes the three operators gradient,
curl and divergence. The coboundary process is defined on the discrete forms and
not on the chains.

Moreover, what happens when we want to apply algebraic topology to contin-
uum mechanics? In this case, the physical variable associated with the nodes is not
a scalar but a vector, the displacement u, and the 0-chains would look like this:

u = u1e1 + u2e2 + · · · + uNeN =
∑

k

f
ukek, (7.44)

which is a strange object. It is much more natural to consider the coefficients of a
chain as integers giving the weights of the single cells and to make use of discrete
forms to describe the distribution of the physical variables on the cells.

The boundary process on chains distributes the weight of a p-cell to the
(p−1)-cells forming its faces, whereas the coboundary process collects the val-
ues associated with the p-cells forming the faces of a (p + 1)-cell. This process
is the equivalent of the integration of the field variables on lines, surfaces and
volumes.

For the description of physics it is natural to separate geometric entities, such
as points, lines, surfaces and volumes, from the many possible physical variables
associated with them. The additive nature of space elements disappears when the
coefficients of a chain are considered as values of a physical variable.

With reference to the use of chains or discrete forms in physics, Post stated:
‘Epistemologically it is better if the cohomology of fields is given a primal phys-
ical role than the homology of chains over which these fields are being inte-
grated.’36

Some authors justify the choice of chains instead of discrete forms due to the
fact that in finite-dimensional cell complexes one may establish a one-to-one map-
ping between p -chains and discrete p-forms with the same coefficient group G .

35 This was for years the choice of the present author.
36 Post [182, p. 517].
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Hilton and Wylie wrote: ‘This does not justify us in concealing the distinc-
tion between these two notions, for the correspondence depends on a choice of
basis of Cp. The situation in vector space theory is entirely analogous. Although
a finite-dimensional vector space is isomorphic to its dual, the elements of the
dual are linear functions and it is essential that the two spaces be not con-
fused.’37

Since a p -dimensional region can be covered by a p -chain with integer coeffi-
cients, it follows that discrete forms are a natural tool for describing set functions.

Henry Lebesgue wrote: “Si pourtant, on parle peu de ces fontions [les fonc-
tions d’ensemble], c’est que les mathématiciens n’ont pas encore créé l’Algèbre
et l’Analyse des fonctions de domaine.”38 The book by Lebesgue was written in
1928, and the notion of discrete form was introduced in subsequent years; we
see that the notion of discrete form and the corresponding theory, the theory of
cohomology, are the tools Lebesgue was talking about.

7.6 Coboundary Process in Two Dimensions

With reference to Fig. 7.9, let us consider, as a problem type, a two-dimensional
cell complex formed by four squares. The cell complex has 9 nodes, 12 edges
and 4 bidimensional cells, i.e. 9 P, 12 L, 4 S. The nodes, edges and faces are la-
belled according to an arbitrary rule. The corresponding dual complex is shown in
Fig. 7.9. On account of the one-to-one mapping of the edges of the primal com-
plex and those of the dual complex, and of the one-to-one mapping of the cells of
the dual complex with the nodes of the primal nodes, it is spontaneous to assign
to every element of the dual complex the same label as the corresponding element
of the primal complex. In this way, for example, the cell number 9 of the dual
complex corresponds to the node number 9 of the primal complex.

7.6.1 Coboundary Process on Primal Complex

At this point our purpose is to describe the coboundary process. Let us assign a
value of a scalar variable Φ with every node; in doing this, we have formed a
discrete 0-form, [ϕ1, ϕ2, · · · , ϕ9], on the primal cell complex. We now show how
to perform the coboundary process on this discrete 0-form to obtain a discrete
1-form. Referring to Fig. 7.10, this process is divided into two steps. The first step
is to transfer the values of ϕk from every node to all edges which are incident to the

37 Hilton and Wylie [92, p. 67].
38 Lebesgue [130, p. 293]. Thus, one talks less of set functions because mathematicians have not
invented algebra and analysis of set functions.
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Fig. 7.9 (Left) A cell complex; (right) its dual
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Fig. 7.10 Coboundary of a discrete 0-form in a two-dimensional complex

node, with a plus or minus sign according to the mutual incidence nodes/edges.
The second step is to sum, for every edge, the values coming from its bounding
nodes. If we denote by U the global variable associated with the edges of the
primal complex, for edge number 2 (Fig. 7.9), then we obtain, say, U2 = ϕ3 − ϕ2.
In general,
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Fig. 7.11 Coboundary process from a discrete 1-form to a discrete 2-form on dual complex

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1

U2

· · ·
U12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 +1 0 · · ·
0 −1 +1 · · ·
· · · · · · · · ·
0 0 −1 +1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1

ϕ2

· · ·
ϕ9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ or U = GΦ . (7.45)

Hence, we have obtained a discrete 1-form, [U1,U2, · · · ,U12], starting from the
discrete 0-form, [ϕ1, ϕ2, · · · , ϕ9], by the coboundary process. Denoting by Φ0 the
discrete 0-form and by U1 the discrete 1-form, using the language of algebraic
topology we can write U1 = δΦ0, where δ denotes the coboundary operator.

7.6.2 Coboundary Process on Dual Complex

Let us recall that, as far as physics is concerned, a discrete p-form arises when
we assign a value of a physical variable with every elementary p-chain. Hence p
is referred to the dimension of the cell, p = 0, 1, 2, 3. Referring to Fig. 7.9, let us
associate with every 1-cell of the dual complex a value of a physical variable V;
in doing this, we form a discrete 1-form, [V1,V2, · · · ,Vn], on the dual. Since the
orientation of the dual cells is the outer one, it follows that the p -form is odd (or
pseudo p -form). Performing the coboundary process on this discrete 1-form we
obtain a discrete 2-form, [P1, P2, · · · , Pm]. The two-step process can be described
as follows: first we transfer the value Vα associated with the 1-cell number α to
the two 2-cells adjacent to it; hence, for every 2-cell, say k, we sum all values
coming from its boundary, obtaining a value Pk. Thus, for example, we have P5 =

+V4 + V10 − V3 − V9.
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1

· · ·
V3

· · ·
V9

V10

· · ·
V12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.46)

Since the vertices are oriented as sinks while the 2-cells have outward normals,
as shown in Fig. 7.11, it follows that the incidence number between the 1-cell
number 3 and the 2-cell number 5 of the dual is the opposite of the incidence
number between the 1-cell number 3 and the 0-cell number 5 of the primal.

Hence, d̃kα = −gαk, i.e.
∼
D = −G

T
. Denoting by P2 the discrete 2-form and

by V1 the discrete 1-form we can write, in the language of algebraic topology,
P2 = δV1, where δ denotes the coboundary operator.

7.7 The Wonderful Role of the Coboundary Process in Physics

A physical law is a link between the variables that describe a phenomenon. The
field equations, when expressed in terms of the differential formulation, involve
space and time derivatives; thus, Faraday’s law, curl E = −∂B/∂t, links the curl of
the vector E with the partial derivative of the vector B. This implies that, to write
the field equations, we must perform a process on each variable. So we perform
the curl on E and the time derivative on B. The processes which we perform on
field variables include

1. The space or time derivative,
2. The gradient,
3. The curl,
4. The divergence.

If, instead of the differential formulation, we resort to an algebraic formulation
using global variables and discrete forms, then these four processes become a
single process, one of forming the coboundary of discrete forms. This unification
is the algebraic analogue of the process of performing the exterior differential on
exterior differential forms of various degrees.
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Fig. 7.12 The coboundary process in one dimension, here on the time axis, is the discrete ana-
logue of a derivative

7.7.1 Algebraic Analogue of Derivative

We recall that the derivative of a function is a process which can be divided into
three steps: (a) compute an increment; (b) compute the ratio of this increment for
the increment of the variable; (c) perform the limit process for the increment of
the variable going to zero. In a discrete setting, the fundamental process is that
of computing the increment. To this end, let us consider a one-dimensional cell
complex, similar to one we can build on the time axis and a function u(t). With
reference to Fig. 7.12, let us caryy out this two-step process:

1. Transfer the value uh of the function u(t) at the instant th to the two intervals
which have the given instant as common faces (these intervals are the cofaces
of the instant) with a plus or minus sign in accordance with the corresponding
incidence number.

2. For every 1-cell take the sum of the values coming from its bounding instants
(the faces).

Therefore, starting with the discrete 0-form, [u1, u2, . . . uN0 ], one obtains a dis-
crete 1-form, [v1, v2, . . . vN1 ], where N0 is the number of 0-cells (nodes) and N1

is the number of 1-cells (edges). This two-step process is the coboundary of the
discrete 0-form in one dimension and is the analogue of the differential of a func-
tion of one variable. Since the differential can be decomposed into the product of
the derivative and the differential of the independent variable, we can say that the
coboundary process performed on a discrete 0-form in one dimension is analogous
to the derivative.

7.7.2 Algebraic Analogue of Gradient

We recall that the gradient of a scalar-valued function φ(P) is a vector-valued
function u(P), obtained performing a process which can be divided into five steps:

1. Considering a point P of a field, evaluate the increments of the function φ along
various oriented directions going out from the point.

2. Evaluate the ratios of these increments to the corresponding distances.
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3. Evaluate the limit for these ratios when the distances go to zero.
4. Find the direction for which this limit is at a maximum and consider this a

privileged direction.
5. Introduce a vector with its origin at the point P, with the modulus equal to the

maximum ratio found, arranged along the privileged direction. Such a vector-
valued function u(P) is defined as the gradient of the scalar-valued function φ
at the point considered and will be denoted by u(P) = grad φ(P).

What is the corresponding notion in an algebraic setting? Introducing a cell
complex the function Φ(x) assigns the value φh to each node ph. This gives rise
to a discrete 0-form, Φ 0 = [φ1, φ2, . . . φN0 ]. We evaluate the increments of the
function along the edges li of the complex; this is done by adding the function’s
values corresponding to extreme points of each segment, with the plus or minus
sign according to the mutual incidence number between nodes and edges.

Let γi be the increment of the function along the edge li; the set of all γi gives
rise to a discrete 1-form, γ1 = [γ1, γ2, . . . γN1 ], which is the coboundary of the
discrete 0-form, φ 0 = [φ1, φ2, . . . φN0 ]:

φ(x, y, z) −→ u(x, y, z) = ∇φ(x, y, z),

φ 0 = [φ1, φ2, . . . φN0 ] −→ γ1 = δφ 0
(7.47)

Thus, in an algebraic context, an operation similar to the formation of the gradient
of a scalar field is the formation of a coboundary of a discrete 0-form starting from
a discrete 1-form.

7.7.3 Algebraic Analogue of the ‘Curl’

Recall that the curl of a vector-valued function u(P) is another vector-valued func-
tion v(P) obtained by performing a process that can be divided into five steps:

1. Considering a point P and taking a small plane surface centred at the point,
evaluate the line integral of the vector along the boundary of the surface.

2. Evaluate the ratios between such circulation and the area of the surface.
3. Perform the limit of this ratio when the surface shrinks to the point P.
4. Varying the direction of the plane surface, search for the direction for which

this limit is at a maximum and consider this a privileged direction.
5. Introduce a vector with its origin at the point P, with modulus equal to the

maximum ratio found, situated along the privileged direction and oriented in
such a way that the orientation of the closed line (the one used to evaluate the
circulation) and the vector form a clockwise screw. This vector is the curl of
the given vector field at the point considered and will be denoted by v(P) =
curl u(P).
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What is the corresponding notion in an algebraic setting? Let us evaluate the
line integral along each edge li of a cell complex, and let us denote by γi the
value of this line integral; the set of all these values gives rise to a discrete 1-
form, γ1 = [γ1, γ2, . . . γN1 ]. At this point, for each 1-cell li we transfer the value γi

thus evaluated to all cofaces of the 1-cell, each multiplied by the mutual incidence
number between the 1-cell and the coface. As a second step, for every 2-cell s j

we add all values thus transferred. Denoting by ψ j the sum thus obtained, we can
construct a discrete 2-form, ψ 2 = [ψ1, ψ2, . . . ψN2 ]. This discrete 2-form is the
coboundary of the discrete 1-form γ1, and we write ψ 2 = δγ1. Hence, we have the
following equivalence:

u(x, y, z) −→ v(x, y, z) = ∇ × u(x, y, z)

γ1 = [γ1, γ2, . . . γN1 ] −→ ψ 2 = δγ1.
(7.48)

Hence, in an algebraic setting, the analogue of curl of a vector field is coboundary
of the discrete 1-form of circulations that gives rise to a discrete 2-form.

7.7.4 Algebraic Analogue of Divergence

Recall that the divergence of a vector-valued function v(P) is a scalar-valued func-
tion ψ(P) obtained by performing a process which can be divided into three steps:

1. Considering a point P and taking a small space region centred at the point,
consider the flux of the vector across the boundary of such a region.

2. Evaluate the ratio between this flux and the volume of the small region.
3. Compute the limit of this ratio when the region contracts to the point P.

In this way, we obtain a scalar-valued function ψ(P), called the divergence of the
given vector-valued function, which will be denoted by ψ(P) = div v(P).

What is the corresponding notion in an algebraic setting? Let us denote by ψ j

the flux of the vector through every 2-cell s j of a cell complex. In this fashion
one obtains a discrete 2-form of fluxes ψ2 = [ψ1, ψ2, . . . ψN2 ]. The first step is
to transfer the flux associated with every 2-cell to its cofaces, each flux being
multiplied by the incidence number between the 2-cell and the coface. The second
step is to add the values of the fluxes thus transferred for every 3-cell vh. In this
way, we obtain a quantity dh for every cell vh. This gives rise to a discrete 3-form,
d3 = [d1, d2, . . . dN3 ]:

v(x, y, z) −→ w(x, y, z) = ∇ · v(x, y, z),

ψ 2 = [ψ1, ψ2, . . . ψN2 ] −→ d3 = δψ 2 .
(7.49)
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Hence, in an algebraic setting, the analogue of a divergence of a vector field, which
is described by the discrete 2-form of fluxes, is a discrete 3-form formed by the
coboundary of the discrete 2-form. In summary:

• A gradient arises from scalar quantities associated with points.
• A curl arises from scalar quantities associated with lines.
• A divergence arises from scalar quantities associated with surfaces.

7.8 Examples of Coboundary Process in Physics

Example 1. Let us consider a cell complex in a region in which there is an electric field; an
electric voltage is associated with every 1-cell of the complex. Since all 1-cells have a number
as a label, one can describe the distribution of the voltages with an array:

E1 def
= [e1 , e2, . . . eN1 ] ek are voltages, (7.50)

i.e. with an algebraic vector whose components are the voltages of the single 1-cells. This as-
sociation is a map from the 1-cells to the real numbers which are the values of the voltage.
Therefore, instead of writing the voltages as ek, one can write E[ek

1]. We use square brackets
instead of round ones because we have a set function:

ek
def
= E[ek

1] analogous to yk = f (xk) . (7.51)

This notation is analogous to that used in the theory of functions where yk is the value of the
function f in xk. One says that ek is the value of the map E on the 1-cell ek

1. Since voltages are
additive on lines, this map is easily extended from cells to chains. One can write

E[c1] = E

⎡⎢⎢⎢⎢⎢⎣
∑

k

f
nk ek

1

⎤⎥⎥⎥⎥⎥⎦ =
∑

k

nk E[ek
1] =

∑
k

nk ek . (7.52)

Hence, one can say that the map E assigns a real number to every 1-chain. This map is a discrete

1-form.

Example 2. Let us consider a cell complex in a region in which there is a magnetic field; with
every 2-cell of the complex is associated a magnetic flux. Since all 2-cells eh

2 have a number as a
label, we can describe the distribution of the magnetic fluxes with an algebraic vector:

Φ2 def
= [Φ1, Φ2, . . .ΦN2 ] Φi are magnetic fluxes. (7.53)

This association is a map from the 2-cells of the complex to the real numbers which are the
values of the magnetic flux. If we denote this map by Φ, then we can write Φi = Φ[eh

2] and say
that Φi is the value of Φ on the cell eh

2. The value of the map Φ on the 2-chain c2 is given by

Φ[c2] = Φ

⎡⎢⎢⎢⎢⎢⎣
∑

h

f
nheh

2

⎤⎥⎥⎥⎥⎥⎦ =
∑

h

nhΦ[eh
2] =

∑
h

nhΦh . (7.54)

This map is a discrete 2-form.
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In the following subsections, we will give two examples of the coboundary
process which we want to emphasize because they play a major role, respectively,
in electromagnetism and continuum mechanics.

7.8.1 Gauss’s Law of Electrostatics

Let us consider an electric field in a space region Ω. Since electric charges and
electric fluxes are source variables, they must be associated with space elements
endowed with an outer orientation.

Gauss’s law of electrostatics asserts that the electric flux Ψ associated with the
boundary ∂

∼
V of a volume

∼
V is equal to the electric charge contained in the volume.

This can be expressed in a formula as follows:

Ψ [∂
∼
V]

law
= Q[

∼
V] . (7.55)

Let us cover the whole region with a cell complex and its dual. Let ṽk be the kth
dual 3-cell and s̃i the ith dual 2-cell. Let us remark that, on account of the one-to-
one correspondence between the p -cells of the primal complex and the (p–1)-cells
of the dual complex, the number Ñ3 of the dual 3-cells is equal to the number N0

of the primal 0-cells; the number Ñ2 of the dual 2-cells is equal to the number N1

of the primal 1-cells. If we introduce the variables

Ψi
def
= Ψ [s̃i] Qk

def
= Q[ṽk], (7.56)

then we can describe the space distribution of the electric charges and electric
fluxes by a discrete 2-form Ψ2 and a discrete 3-form Q3 respectively, where

⎧⎪⎪⎨⎪⎪⎩
Ψ2 def
= [Ψ1, Ψ2, . . . ΨN1 ] −→ discrete 2-form of electric fluxes

Q3 def
= [Q1,Q2, . . .QN0 ] −→ discrete 3-form of electric charges .

(7.57)
Since

Ψ [∂ṽk] =
∑

i

[ṽk : s̃i]Ψ [s̃i] =
∑

i

d̃ki Ψi, (7.58)

Gauss’s law 7.55 can be written in the form∑
i

d̃ki Ψi = Qk . (7.59)

Using the coboundary operator in compact form we obtain

δΨ2 = Q3 . (7.60)

This is equivalent to the notation of the differential forms

dΨ (2) = Q(3) (7.61)
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Table 7.8 Various forms of Gauss’s law of electrostatics

Global notation: Ψ [∂
∼
V] = Q[

∼
V]

Integral notation:
∫
∂
∼
V

D · n dS =
∫
∼
V
ρ dV

Algebraic notation:
∑

i

d̃ki Ψi = Qk

Algebraic topology: coboundary operator: δΨ2 = Q3

Differential forms: exterior differential: dΨ (2) = Q(3)

Differential notation: divergence: ∇ ·D = ρ

and to the traditional differential formulation

∇ ·D = ρ . (7.62)

Table 7.8 shows different ways of expressing Gauss’s law of electrostatics.

7.8.2 Equilibrium Law of Continuum Mechanics

Let us consider the equilibrium of an element of volume subjected to its weight

and to internal surface forces. Let us denote by F[
∼
V] the resultant of the body

forces acting on a volume
∼
V of the continuum and by F[∂

∼
V] the resultant of the

internal surface forces acting on the boundary of the volume. The equilibrium
condition can be expressed as

T[∂
∼
V] + F[

∼
V] = 0 (global). (7.63)

Let us introduce a cell complex and its dual. Since forces are associated with an
outer orientation, we must impose the balance of forces on a dual 3-cell ṽk, and
the equilibrium Eq. 7.63 becomes

F[∂ṽk] + F[ṽk] = 0 . (7.64)

Setting

Fi
def
= F[s̃i] Fk

def
= F[ṽk], (7.65)

and since
F[∂ṽk] =

∑
i

d̃hi Fi, (7.66)
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Table 7.9 Various forms of equilibrium equation in continuum mechanics

(1) Global formulation: T[∂
∼
V] + F[

∼
V] = 0

(2) Integral formulation:
∫
∂
∼
V
τ · t dS +

∫
∼
V

f dV = 0

(3) Algebraic formulation (global):
∑

i

d̃ki Ti + Fk = 0

(4) Algebraic topology: coboundary operator: δT 2 + F3 = 0

(5) Differential forms: exterior differential: Dψ(2) + f (3) = 0

(6) Differential formulation: divergence: ∇i σ
i
k + fk = 0

(Divσ + f = 0)

the equilibrium Eq. 7.64 can be written as
∑

i

d̃hi Ti + Fk = 0 (global on a cell ṽk), (7.67)

where (i = 1, 2, . . .N2; k = 1, 2, . . .N3). Setting

T 2 def
= [T1,T1, · · ·TN2 ] F3 def

= [F1,F2, · · ·FN3 ] (7.68)

we can write
δT 2 + F3 = 0 . (7.69)

This is the discrete analogue of the equation

∇i σ
i
k + fk = 0 (differential) (7.70)

used in the differential setting. We remark that in the algebraic Eq. 7.67, the indices
are the labels of faces and cells of the dual complex respectively,39 whereas in the
differential formulation 7.70, k, i are coordinate indices.

Table 7.9 shows different forms of the equilibrium equation in statics of
continua.

As we have seen, the four operations – derivative, gradient, curl and divergence
– are particular embodiments of a single process, the coboundary process. If we
pause for a few moments to think that these four operations are ubiquitous in
physics, we are struck by the unifying role played by the coboundary process in
the topological equations which describe fundamental physical laws. We are also

39 Remember that Ñ2 = N1 and Ñ3 = N0.
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struck by the great unifying power of algebraic topology in the description of
physical fields. We are familiar with the great role played by differential calculus
in the description of field laws; now we see that an even greater role is played by
an algebraic-topological process, i.e. the coboundary process.

The given examples are part of a general result emerging from a comparative
analysis of physical theories, the coboundary principle, which states:

Coboundary Principle: in every physical theory there are elementary
physical laws which assert that a global physical variable associated
with a p -dimensional manifoldΩ is equal to a global physical variable
associated with its (p − 1)-dimensional boundary ∂Ω.



Chapter 8
Birth of Classification Diagrams

8.1 Classification Diagram of Physical Variables

As was shown in Sect. 4.7 (p. 84), the four space elements can be organized in
a diagram. The diagram is composed of two columns: on the left we have the
four space elements endowed with an inner orientation, whereas on the right we
have the four elements endowed with an outer orientation. The order of the space
elements in the right column is inverted with respect to the order of the elements
in the left column. This inversion is a natural consequence of considering a cell
complex and its dual.

On account of the association of global physical variables with oriented space
elements, the same classification diagram can be used to classify global physical
variables. In particular, since the configuration variables of all theories are asso-
ciated with space elements endowed with an inner orientation, as stated in the
association principle (p. 116), they find their place in the left column of the di-
agram. By the same principle, source variables, which are referred to the space
elements endowed with an outer orientation, find their place in the right column.

Let us give an example using arbitrary letters such as A, B to represent space
global variables which describe the configuration and C,D to represent the space
global variables which describe the sources. Hence, for a generic scalar physical
field such as electrostatics, stationary thermal conduction and stationary perfect
fluid motion, the association with space global physical variables and oriented
space elements can be expressed as follows:

A[P]: a global variable associated with points of a primal complex,

B[L]: a global variable associated with lines of a primal complex,

C[
∼
S]: a global variable associated with surfaces of a dual complex,

D[
∼
V]: a global variable associated with volumes of a dual complex.

E. Tonti, The Mathematical Structure of Classical and Relativistic Physics,
Modeling and Simulation in Science, Engineering and Technology,
DOI 10.1007/978-1-4614-7422-7__8, © Springer Science+Business Media New York 2013
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configuration variables
inner orientation

primal cell complex

source variables
outer orientation
dual cell complex

A

B

D

C

P

L

S

V

V
∼

S
~

L
~

P
~

P
V
~

L S
~

S L
~

V P
~

Fig. 8.1 Classification of space global variables

Hence, shifting the symbols of the oriented space elements outside the boxes
and inserting the corresponding space global variables A, B,C,D we obtain the
classification diagram shown in Fig. 8.1.

Let us consider the densities of these space global variables. As a result of
the position of the global variables in the classification diagram which we have
choosen for this example, we can say that since A is associated with points, it co-
incides with the corresponding density, i.e. it is both a global and a field variable
at the same time. The density of the scalar variable B, associated with lines, is a
vectorial variable b whose integral along a line gives the scalar variable B. The
density of the scalar variable C, associated with surfaces, is another vectorial vari-
able c whose flux across a surface gives the scalar variable C. The density of the
scalar variable D, associated with volumes, is a scalar d whose volume integral
gives the scalar variable D. We see that b is a line vector and c is a surface vector,
according to Maxwell’s nomenclature. In summary:

Configuration variables Source variables

Global variables A[P] B[L] C[
∼
S] D[

∼
V]

↓ ↓ ↓ ↓
Field variables A[P] b[L] c[

∼
S] d[

∼
V]

(8.1)

The corresponding classification diagram for the densities is shown in Fig. 8.2. In
this diagram the numbers 1, 3, 3, 1 in each column denote the number of families
of cells of the same dimension (p. 66). We see that the number of families of cells
coincides with the number of components of the local density variable. In other
words, in the box marked 3L we have a vector b with three components; in the

box marked 3
∼
S we have a vector c with three components; in the box marked 1P
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configuration variables
inner orientation

primal cell complex

source variables
outer orientation
dual cell complex

A

b

d

c

1P

3L

3S

1V

1V
~

3S
~

3L
~

1P
~

P
V
~

L S
~

S L
~

V P
~

Fig. 8.2 Corresponding classification of field variables

we have a scalar d, i.e. one component. Note that a vector has three components,
equal to the number of vectors of a local basis, which in turn is equal to the number
of coordinate lines of a coordinate system. Hence the number 3 in the symbols

3L and 3
∼
L denotes two things: the number of components of the vector and the

number of coordinate lines passing through the point. In a similar way, the number

3 in the symbol 3S and 3
∼
S denotes two things: the number of components of the

vector and the number of the coordinate surfaces passing through the point.
Since the differential formulation makes implicit use of the cell complex

formed by a coordinate system, for which the coordinate lines and coordinate
surfaces can be divided into families, it is reasonable to include the numbers 1, 3,
3, 1 in diagrams dealing with field functions.

The diagram of Fig. 8.2 can be completed by adding the relations between the
variables, as shown in Fig. 8.3. The link between A and b is a defining equation,

configuration variables
inner orientation

primal cell complex

source variables
outer orientation
dual cell complex

A

defining equation

b

d

balance equation

cconstitutive equation

1 P

3 L

1V
~

3S
~

Fig. 8.3 Classification of field variables enriched with corresponding relations
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x
x

y

x − dx x + dx

T−

T+

−
+

P
∼

P
∼

L
∼

P PL

a− a+

Fig. 8.4 Equilibrium of a string

the link between c and d is a balance equation, and the link between b and c is a
constitutive equation.

In this table we have represented only the upper part of the whole diagram
because the other boxes are empty.

8.2 Statics of Strings

In this section we give an example of classification of physical variables and equa-
tions of the statics of a string and show how to build a corresponding classification
diagram.

Let us consider the equilibrium of a tense string of length L, slightly deformed
from a straight horizontal configuration, as shown in Fig. 8.4. We describe the
most common case of a vertical load.

Configuration and Source Variables. The configuration variables are the ver-
tical displacement y, the incremental displacement Δy and its line density α =
Δy/Δx. The source variables are the vertical load Qy, its line density qy, the trac-
tion T and its components Tx, Ty.

Space Association. The variable y is associated with the points of the x-axis,
hence y[P]; α is associated with the segments of the x-axis, hence α[L]. Since
the balance of forces requires line elements with an outer orientation, and since
tension is applied to the two extremes of the dual line segment, it is associated with

the points of the dual, i.e. Tx[
∼
P], Ty[

∼
P]. Lastly, the body force qy dx is associated

with the dual segment, hence qy[
∼
L].

Fundamental Problem. The fundamental problem is to find the equilibrium con-
figuration, i.e. the shape of the string under the action of a vertical load.

Classification of Equations. Denoting by a the horizontal distance between its
extremes, we divide the string into small pieces. Let lk be the length of the generic
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piece. The points of the subdivision will be denoted by x0 = 0, x1, x2, . . . xn = a.
This is a primal subdivision.

Since the slope α is small, we can make the position tan(α) ≈ α. This is equiv-
alent to the approximation ds ≈ dx. The equilibrium is expressed by the equilib-
rium equations

−T−
x + T+x

law
= 0, −T−

y + T+y + qy dx
law
= 0 . (8.2)

The first equation states that the horizontal component of the tension is constant,
hence T+x = T−

x = Tx.
The slopes α− and α+ must be calculated at the extremities of the dual interval

using the following defining equations:

α+
def
=
y(x + dx) − y(x)

dx
α−

def
=
y(x) − y(x − dx)

dx
. (8.3)

The relation between Ty and α is1

Ty = Tx α . (8.4)

Combining Eqs. 8.2–8.4 we obtain the fundamental equation

Tx

[
y(x + dx) − y(x)

dx
− y(x) − y(x − dx)

dx

]
+ qy dx = 0 , (8.5)

which can be written in the usual form

Tx
d2y(x)

dx2
+ qy = 0 . (8.6)

In the differential formulation, the three equations which compose the fundamen-
tal equation are

α
def
=

dy(x)
dx

, Ty
mat
= Tx α,

dTy(x)

dx
+ qy

law
= 0 . (8.7)

The variables and the equations can be collocated in the diagram as shown in
Fig. 8.5.

1 The nature of this equation stems from the hypothesis that the string is perfectly flexible and
inextensible; the latter is similar to the condition of stiffness, which is a property of the material.
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qy

Ty

a =
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dx
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dx
= qy

Ty = Tx a

[P]

[L]

[
∼
L]

[P
~
]

configuration variables
space: primal complex

source variables
space: dual complex

y

a

Fig. 8.5 Differential formulation of statics of strings

8.3 A Time Diagram

Up to now we have shown how to arrange physical variables in a diagram which
classifies space elements. We now show how to obtain a diagram which includes
time elements. To this end, we start by considering particle dynamics. The phys-
ical variables of particle dynamics which are global in time are the radius vector
r, displacement u, momentum p and impulse J. They are global in time because
none of them needs to be integrated in time (p. 126).

Since displacement and force are associated with intervals, we can introduce
the corresponding rates, i.e. velocity v and force F respectively. These four global
variables and the corresponding rates are summarized as follows:

Configuration variables Source variables

Global variables r[I] u[T] p[
∼
I ] J[

∼
T]

↓ ↓ ↓ ↓
Field variables r[I] v[T] p[

∼
I ] F[

∼
T]

(8.8)

Figure 8.6 shows a classification diagram for particle dynamics for the field
variables and includes the most common constitutive equations and the relations
between the variables on the left side of the diagram (configuration variables)
and on the right side of the diagram (source variables). In this case there is no
space association because the particle P is the subject of this theory. In the next
section, the reader will see how to obtain a classification diagram which includes
the association of variables with both space and time elements.
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r

v

F

p

v =
def dr

dt
F  =

law dp

dt

Fe
mat
= − k r

p  =  mv
mat

Fd
mat
= − h v

constitutive equation

dissipative
constitutive
equation

constitutive equation

kinematic variables
time: primal complex

dynamic variables
time: dual complex

[I, ]

[T, ]

[
~
T, ]

[
~
I, ]

Fig. 8.6 Classification diagram for particle dynamics

8.4 How to Combine Space and Time

As we stated in the introduction (Chap. 1), each space element can be coupled in
two possible ways with a time element. These two combinations of space and time
elements give rise to two kinds of diagram: one for mechanical theories, where the
sources are forces, and another for field theories, where the sources are of different
nature, as shown in Fig. 3.3 (p. 7). Table 1.3 (p. 7) shows how to combine space
and time aspects in a single diagram. In the next section we will give an example
of a diagram of this type.

8.4.1 Transversal Vibrations of Strings

Returning to a taut string, we consider its motion by analysing its transversal vi-
brations. The corresponding diagram is [VIB]. The difference in passing from
statics to dynamics is that the sum of the forces is not zero but equal to the time

derivative of the momentum. Momentum is associated with dual instants, i.e. p[
∼
I ],

whereas velocity is associated with primal time intervals, i.e. v[T]. The relation
between momentum and velocity is a constitutive equation. From diagram [VIB]
we see that statics belongs to a vertical plane in the diagrams, while dynamics
belongs to a horizontal plane. This fact makes the diagram tridimensional.
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[VIB]

y(t, x) Transversal displacement
α(t, x) Slope
vy(t, x) Transversal velocity
ρ Linear density

qy(t, x) Transversal force / length
Tx Horizontal component of traction
Ty(t, x) Transversal component of traction
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Ref: Crawford F.S., Berkeley Physics Course: Waves, Mc Graw Hill, 1971.

VIB-7; http://discretephysics.dicar.units.it

http://discretephysics.dicar.units.it
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8.5 The Structure of the Diagrams

Each diagram is composed of many elementary units formed by two rounded
boxes on the same level, one containing a configuration variable (on the left) and
the other containing a corresponding source variable (on the right). The two boxes
may be connected by a rectangular box containing a constitutive equation.

The number of vertical boxes in a diagram is equal to the number of indepen-
dent variables plus one. Thus, in dealing with a one-dimensional field, like the
longitudinal traction or compression of a rod, the diagram reduces to two levels.

Each of these diagrams gathers together the physical variables and the equa-
tions connecting them, according to a criterion of a geometric nature. Each dia-
gram arises from the following features:

1. Global physical variables are associated with space and time elements.
2. This association is contained in the definition of each physical variable and is

reflected in its measurement process (when it is measurable).
3. The densities of space global variables and the rates of time global variables

inherit the association with space and time elements of the corresponding
space or time global variable.

4. Space and time elements must be oriented. There are two kinds of orientation,
inner and outer.

5. Each global physical variable changes sign when we invert the orientation of
the corresponding space or time element (oddness principle). This inversion
becomes a powerful criterion for deciding which is the orientation of the space
element with which a given global variable is associated.

6. The physical variables of each theory can be classified into three broad classes,
configuration, source and energy variables.

7. Configuration variables are associated with space elements endowed with an
inner orientation, whereas source and energy variables require an outer orien-
tation.

8. This association of physical variables with oriented space elements suggests
the opportunity to divide the working region into cells. In this way we con-
struct a cell complex. From this we can build up a dual cell complex.

9. If the cells of a primal complex are endowed with an inner orientation, then
those of the dual complex are automatically endowed with an outer orienta-
tion.

10. The association of global physical variables with space and time elements
leads to a consideration of the distribution of these variables on the various
cells of a cell complex and its dual.

11. It follows that configuration variables are associated with the cells of the pri-
mal complex, whereas source variables are associated with the cells of the
dual complex.

12. The basic equations of each physical theory include defining equations, topo-
logical equations and constitutive equations.
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13. Topological equations link configuration variables with configuration vari-
ables and source variables with source variables; hence, they are contained
in vertical links. When topological equations are reduced to differential equa-
tions, they are combined with metrical notions; in electromagnetism a net
separation between purely topological and metrical notions is possible. There
are four kinds of topological equations: equations forming spatial differences,
equations forming time differences, balance equations and circuital equations.

14. In a differential setting, topological equations are expressed by the operators
‘grad’, ‘curl’ and ‘div’ and the derivatives d/dx, d/dt or ∂/∂t.

15. Constitutive equations link configuration variables with source variables;
hence, they are contained in horizontal links.

The fact that in every theory there are adjoint differential operators, such as the
operators ‘div’ and ‘-grad’, is taken for granted. In contrast, in an algebraic setting,
when using balance and circuital relations in a finite form, these relations appear
as a consequence of the geometrical duality that pervades every field of physics.

8.6 What the Diagram Shows

The diagram demonstrates several properties. One of these is that physical pa-
rameters are contained only in constitutive laws. Another is that the formal dif-
ferential operators ‘-grad ’ and ‘div ’ are formally adjoint (Chap. 15) and give rise
to adjoint operators when the corresponding (homogeneous) boundary conditions
are assigned (Chap. 15). Moreover, the formal differential operator ‘curl ’ is self-
adjoint.

It is not a problem if some boxes of the diagram remain empty: this means
that in the given theory there are boxes for possible physical variables which are
not introduced because, in general, they are not interesting. Let us take the fol-
lowing example: we know that an electric charge can be neither produced nor de-
stroyed, i.e. it is conserved. We can introduce a physical variable electric charge
production, but this would be identically zero. Therefore, we have no interest in
introducing it.

8.6.1 Global Variables Versus Field Variables

We can pose the following question: why use global variables instead of the cor-
responding field variables, which are more familiar? The reason is that field vari-
ables, being point functions, do not make evident their relations with space ele-
ments endowed with extension (lines, surfaces and volumes). In contrast, global
variables allow us to find the correct association with the corresponding space
elements.
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The differential formulation of physics hides a lot of geometric features that,
in contrast, are obvious if you avoid premature recourse to the concept of limit.
Thus, the limit of a mean density reduces the density to a function of the point and
of the instant. This is exactly what the differential formulation requires in order to
perform space and time derivatives. In contrast, the global variables from which a
density originates can be associated with a volume (e.g. mass, charge, entropy), a
surface (e.g. surface force, flux) or a line (e.g. voltage, line integral).

8.6.2 Reversible and Irreversible Links

Constitutive equations are shown in horizontal links connecting a configuration
variable with a source variable. When a link connects the left with the right col-
umn in the front or in the rear, a constitutive equation describes a reversible phe-
nomenon. In contrast, when the link connects the left column in the front with
the right column in the rear (and there are no other connections), a constitutive
equation describes an irreversible phenomenon.

The distinction between these two classes of constitutive equations is shown
in Fig. 8.7. Reversible relations connect two variables whose product is an en-
ergy or an energy density; irreversible relations connect two variables whose
product is a power. Reversible relations give rise to variational formulations
(Chap. 15), whereas irreversible relations give rise to maximum or minimum prin-
ciples such as the principle of minimum heat and the principle of maximum entropy
production.

8.6.3 Topological Relations

Vertical links do not contain physical constants, and for this reason they do not
depend on the nature of the medium. Once the sources of a field are assigned, the
corresponding configuration must be obtained via the constitutive laws, and for
this reason they depend on the material.

Concerning the operators which appear in vertical columns, we have the fol-
lowing cases:

1. When a diagram uses global variables, these links are formed by the cobound-
ary operator.

2. When a diagram uses exterior differential forms, these links are formed by
the exterior differential.

3. When a diagram uses field functions, these links are formed by differential
operators, grad, curl, div. In the last case also metrical notions are involved.
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electrostatics [ELE1]
gravitation [GRA1]

heat conduction [TCO2]
network theory [ELE10]

magnetostatics [ELE2]

RLC circuits [ELE11] electromagmetism
[ELE3]

elastostatics [SOL9]
perfect fluid [FLU1]

acoustics in fluids [FLU5]
elastodynamics [SOL12]

viscous fluid motion
[FLU6], [FLU9]

particle dynamics [PAR1]

Fig. 8.7 Irreversible links are those which connect the boxes of primal time intervals with that
of dual time intervals and are represented by dotted lines. For the page of each diagram see the
index on p. xx put: For the page of each diagram see the List of Diagrams, p. xix

8.6.4 Scalar and Vectorial Theories

We will call scalar a physical theory when all its space global variables are scalars.
This is the case with electromagnetism; in fact, electric and magnetic fluxes, elec-
tric charge content and charge flows, and electromotive and magnetomotive forces
are all scalars. Other scalar theories are the (classical) gravitational field, heat con-
duction and diffusion.
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We will call vectorial a physical theory when all its global variables are vectors.
This is the case of mechanics of deformable solids, as shown in diagram [SOL12].
In fact displacement, relative displacement, force and momentum are vectors.

Fluid dynamics is a mixed theory because it is formed by a scalar theory (veloc-
ity potential, velocity line integral, mass content, mass flow), as shown in diagram
[FLU3], and a vectorial theory (velocity, relative velocity, force, momentum), as
shown in diagram [FLU7]. In fact, its main equations are the scalar equation of
mass conservation and the vectorial equation of momentum balance.

8.6.5 Exterior Differential Forms

Configuration variables are described by even forms and source variables by odd
forms. This is a consequence of the fact that configuration variables refer to space
elements endowed with an inner orientation, whereas source variables refer to
space elements endowed with an outer orientation (Chap. 14).

Moreover, there is a strict link between the degree of a differential form and the
dimension of the space element: a p -form refers to a p -dimensional element.

The coboundary operator on discrete forms becomes the exterior differential
on differential forms. Then we have the following correspondence:

Left side of diagram Right side of diagram
Configuration variables Source variables

Inner orientation Outer orientation
Even discrete forms Odd discrete forms

Even differential forms Odd differential forms

(8.9)

8.6.6 Material Parameters

The material constants of each physical theory are contained in constitutive equa-
tions (also called material equations) and, as such, are located in the horizontal
links of the diagrams, as Table 8.1 shows. The inclined links in the diagrams of
this table must be horizontal links when time is added to the diagram, as shown in
diagrams [PAR1], [ELE3], [TCO2] and [FLU9].

8.6.7 Configuration Variables are Material Dependent

Usually the space and time distribution of the source variables of a field is assigned
while the resultant configuration of the field depends on the material medium in
which the field is embedded.
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Table 8.1 Material parameters are contained in constitutive equations

Electrostatics [ELE1]

Configuration

φ

E
�

Medium
dependent

Source

ρ

D

�

Medium
independent

ε� �

Heat conduction [TCO1]

Configuration

T

g
�

Medium
dependent

Source

σu

q

�

Medium
independent

λ� � � � � � � � � � � � � � � � � �

Particle mechanics [PAR1]

Configuration

r

v
�

Medium
dependent

Source

F

p

�

Medium
independent

k

h

m� �

� �

� �
� �
� �

� �
� �
� �

Mechanics of fluids [FLU6]

Configuration

vh

Lhk

�

Medium
dependent

Source

fh

σhk

�

Medium
independent

μ, λ
ρ

� � � � � � � � � � � �

Magnetostatics [ELE2]

Configuration

A

B
�

Medium
dependent

Source

J

H

�

Medium
independent

μ� �

Mechanics deformable solids [SOL9]

Configuration

uh

εhk

�

Medium
dependent

Source

fh

σhk

�

Medium
independent

E, ν� �

Diffusion
Configuration

μ

g
�

Medium
dependent

Source

σ

J

�

Medium
independent

D� � � � � � � � � � � � � � � �

Viscous fluid motion [FLU9]

Configuration

v

γ
�

Medium
dependent

Source

G

τ

�

Medium
independent

μ� � � � � � � � � � � � � � � �
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H
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Fig. 8.8 The same source gives rise to different configurations depending on the material
medium

This can be easily grasped from Fig. 8.8. In the upper part is shown that the
same weight (source of deformation) acting on an elastic beam supported at both
ends produces different deformed configurations depending on the material of the
beam.

The middle part of Fig. 8.8 shows the electric field created by a charge Q
(source of the field). We can see that the electric displacement D (a source vari-
able) at a point is the same for any material medium. This follows from Gauss’s
law because the electric flux Ψ on a spherical surface located in the centre of the
charge is equal to the charge Q. In contrast, according to Coulomb’s law, the elec-
tric field strength E (a configuration variable) at the same point depends on the
material medium, and in particular attains its maximum value in vacuum.

In the bottom part of Fig. 8.8 we consider the magnetic field of a loop carrying a
current i (source variable). The magnetic field strength H (a source variable) in the
centre of the loop does not depend on the medium, as we can see from Ampere’s
law of currents; in contrast, the magnetic flux density B (a configuration variable)
depends on the material. The proof of this fact is given in Chap. 10.

8.6.8 Tensorial Nature of Field Functions

One of the beautiful features of a classification diagram is that it respects the
tensorial nature of the variables inside every box. If the configuration variable in
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scalars

vectors

pseudoscalars

pseudovectors

time odd

time even

scalars

vectors

pseudoscalars

pseudovectors

time even

time odd

mechanical theories field theories

particle mechanics, analytical mechanics
mechanics of solids, fluid dynamics

electromagnetism, gravitation
thermal conduction, diffusion
irreversible thermodynamics

Fig. 8.9 Behaviour of field functions under space and time transformations

the left columns at a given level is, say, covariant, then the corresponding source
variable at the same level is contravariant, and vice versa. As a consequence, the
scalar product of the two variables which lie on the same level is invariant, as
shown in the following equations:

covariance︷��������︸︸��������︷
ak = ah

∂xh

∂xk
,

contravariance︷��������︸︸��������︷
b

k
= bh ∂xk

∂xh
,

invariance︷��������︸︸��������︷
ahbh = akb

k
. (8.10)

This invariance is reflected in the fact that the energy and its density are invariant
with respect to a change in the coordinate system.

With reference to Fig. 8.9, the field functions of the diagram which belong to
the same level have the same tensorial nature. Counting from the top level, it can
be seen that the functions of the first level are scalars (sometimes called true
scalars), those of the second level are vectors (rarely called polar vectors), those
of the third level are pseudovectors, also called axial vectors, and those of the
fourth level are pseudoscalars, also called axial scalars.

Figure 8.10 shows that the number of components of the field variables in-
creases up to the centre of the diagram and then decreases.
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Fig. 8.10 Possible links between variables of a physical theory for one-, two-, three- and four-
dimensional cases

8.6.9 Composing the Equations

Each classification diagram contains variables in round boxes and arrows connect-
ing them, as in Fig. 8.12. The main configuration variable, i.e. the one from which
all configuration variables can be deduced, is usually the potential of the field, and
for this reason we will decide to use for it the term potential.

The main source variable, i.e. the one to which all other source variables are
linked, will be called simply the source.

The equation that links the potential with the source will be called fundamental
equation. The list of fundamental equations of physical theories can be found on
p. 158. The fundamental equation describes mathematically fundamental problem
of the theory (Fig. 8.11). To show how to compose the equation of a field (topo-
logical and constitutive) to obtain the fundamental equation, we must distinguish
between two kinds of source:

• Impressed sources can be assigned at will, for example heating devices in a
room or electric generators in an electric circuit.
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potential sourcefundamental equation

easy to write ...

... difficul to solve!

Fig. 8.11 The fundamental equation of a theory is that which links the potential with the source
of the field

• Induced sources are generated or modified by the same configuration of the
system or of the field. This is the case with the elastic restoring force, air drag,
viscous drag, the Lorentz force on a charged particle in a magnetic field, forces
acting on a beam that lies on an elastic foundation and others.

Hence, the source, in general, is the sum of impressed sources and induced
sources. For example, in particle dynamics the fundamental equation can be as
follows:

d
dt

[
m

dr
dt

]
= mg + f0sin(ωt)︸������������︷︷������������︸

impressed

+ qv × B − kr − hv︸����������������︷︷����������������︸ .

induced
(8.11)

With reference to Fig. 8.12, the fundamental equation is obtained by inserting
into the balance equation the variables situated along route A and route B. On
the right side of the balance equation is the total source σ, i.e. the sum of induced
sourcesσind and of the impressed sourcesσimp, i.e. those situated along the dashed
routes.

Example 1. In the diagram of particle dynamics, see diagram [PAR1], we compose the three

equations F = dp/dt, p = m v and v = dr/dt to obtain the left part of the fundamental equation

and the two equations Fe = −k r and Fd = −h dr/dt of the induced forces, to which we add the

impressed force Fimp, to obtain the right term of the fundamental equation.

potential source

induced
impressed

induced

routeA

routeB

f s

r

J

∂t r + ∇⋅ J = s

balance equation

Fig. 8.12 Paths which must be followed to compose fundamental equations
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Chapter 9
Particle Dynamics

9.1 Fundamental Problem

Particle mechanics deals only with the time variable, and for this reason the term
global means here global in time.

The fundamental problem of particle dynamics can be stated as follows:

• Given a particle,
• Given a time interval,
• Given the constraints,
• Given the initial position and the initial velocity of the particle,
• Given the force acting on the particle during the time interval,
• Find the position of the particle at every instant of the interval.

We present the main physical variables of particle dynamics in a new way,
stressing their operative definition, which for some variables differs from those
commonly given. So momentum is usually defined as the product of mass times
velocity, and force is defined as the time derivative of momentum. In contrast to
this approach, we will consider force as a primitive variable and define momen-
tum as the indefinite time integral of force. The relation momentum/velocity is
considered a constitutive equation. Moreover, we will distinguish kinetic energy
from kinetic co-energy, showing that kinetic energy enters into the Hamiltonian
whereas kinetic co-energy enters into the Lagrangian.

We will start by exploring the association between the physical variables of me-
chanics and the elements of the time axis. We will refer to the two cell complexes
on the time axis.1

1 See Table 9.2, p. 247.

E. Tonti, The Mathematical Structure of Classical and Relativistic Physics,
Modeling and Simulation in Science, Engineering and Technology,
DOI 10.1007/978-1-4614-7422-7__9, © Springer Science+Business Media New York 2013
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Table 9.1 Main variables of particle dynamics

Kind of variable Variable Global variable
Configuration r Radius vector r (Same)

v Velocity u Displacement
Source F Force J Impulse

p Momentum p (Same)
Energy P Power W Work

T Kinetic energy AH Action
V Potential energy AH Action

9.2 Source Variables

The source variables of particle dynamics are the static and dynamic variables, i.e.
force, impulse and momentum.

9.2.1 Force

Force is a primitive physical variable which is measured easily in statics. The
measuring device known as a dynamometer is essentially a spring that undergoes
elastic deformation, lengthening and shortening under the action of force. For
small forces a torsion balance can be used. All measurements of a force require
that equilibrium be reached; hence, a time interval is involved in the measurement
of force.2 It follows that force is associated with time intervals: F[T]. Since a
reversal of motion does not change the dynamometer indication, it follows that

the time interval is endowed with an outer orientation: F[
∼
T].

Unlike in statics, force is not easily measurable in dynamics. For example, the
force acting on an aircraft moving in the air cannot be measured directly in motion,
so it is measured in a wind tunnel by having a model of the aircraft at rest and the
air in motion. In dynamics, the primitive physical variable is the impulse.

9.2.2 Impulse

The impulse communicated to a particle during a time interval is the definite time
integral of the force acting on the particle during that time interval, i.e.

2 See p. 128.
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J(t−, t+)
def
=

∫ t+

t−
F(t) dt impulse. (9.1)

Time Association. It follows that an impulse is associated with a time interval.
As we saw when considering a rebound,3 it does not change sign under a reversal

of motion; hence, it is associated with dual time intervals, i.e. J[
∼
T]. From the

definition given by Eq. 9.1 it follows that the mean value of the force during a
time interval is the time rate of the impulse:

〈F [
∼
T]〉 = J [

∼
T]

T
F[
∼
T] = lim

T−→0

J [
∼
T]

T
. (9.2)

Hence, an impulse is global in time and force is its time rate. This fact confirms,
with dynamical considerations, that force is associated with dual time intervals
simply because it inherits this association from the impulse.

In Chap. 5 (p. 122) we laid out the oddness principle. We ask now: for this
principle to be valid with respect to impulses, inverting the outer orientation of

the dual time intervals, the impulse must change sign, i.e. J[−∼T] = −J[
∼
T]. Is this

true?
We know that the impulse transmitted to a wall by a ball bouncing on it is

opposite to the impulse which the wall gives the ball. Hence, to find the physical
meaning of the inversion of the outer orientation of a time interval, we can say that
we must invert the role from active to passive to the body on which the impulse is
impressed. With this meaning in mind the oddness principle is satisfied.

9.2.3 Momentum

The momentum of a particle in motion must be defined as the indefinite time
integral of the force acting on the particle, starting from rest, up to the instant t,
i.e.

p(t)
def
=

∫ t

(rest)
F(t′) dt′ −→ F(t) =

dp(t)
dt

. (9.3)

The notion of momentum, defined as an indefinite time integral of force, is
suitable for describing the flight of an object, be it the flight of, for example, a
javelin, ball or discus, as Fig. 9.1 shows. The conservation of momentum of an
isolated system is a consequence of the action and reaction principle.

Time Association. A stone falls under the action of gravity because it re-
ceives an impulse downward and its momentum increases. Under a reversal of

3 See p. 131.
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Fig. 9.1 The momentum imparted on a body is the time integral of force, starting from rest

motion the impulse of gravity is always downwards, but the stone goes upwards
and its momentum decreases. Going upwards the final momentum is smaller
than the initial one. The impulse must be the difference between the final mo-
mentum and the initial one, both in progressive motion and retrograde motion;
hence,

J = p+ − p− and J = p + − p − . (9.4)

Since the impulse has not changed its sign, i.e. J = J, it follows that the final
momentum in retrograde motion has the same value as the initial momentum in
progressive motion, but with the opposite sign. The same can be said of the initial
momentum in retrograde motion. Hence,

p + = −p − and p − = −p +. (9.5)

This shows that momentum changes sign with reversal of motion, i.e. p[
∼
I ].

9.2.4 Force from Momentum or Vice Versa?

It is commonly stated that force can be defined as the time derivative of momen-
tum. This presupposes that momentum is known before force. This contradicts the
fact that the notion of force arises in statics, where the notion of momentum does
not arise. We measure the force between two charged bodies (Coulomb’s law)
and between two masses (Newton’s law) with a torsion balance, i.e. with a static
procedure. We measure the viscous force acting on a body moving in a viscous
fluid (Stokes’ law); we measure the buoyancy force acting on a body in a fluid
(Archimedes’ principle); we measure the force of the air drag on a body in wind
tunnels. In all these cases we measure the force, not the momentum! Why, then,
should we define force as the time derivative of momentum if force is measured
directly? Hermann Weyl wrote:



9.2 Source Variables 245

Indeed Newton recognized that the force is composed additively (according to the
parallelogram law of vector addition) of individual forces exerted upon k by each of the
bodies k1 , k2, . . ., and that this occurs in such a manner that, for example, the force ex-
erted by k1 on k at a certain moment depends solely on the condition of these two bodies
(location and velocity) at that instant. This is the real meaning of the decomposition of
the one force into several component forces. Looking at these facts one cannot escape the
conclusion that the definition “force = time-derivative of momentum” does not reflect the
nature of force adequately but that the real state of affairs is the other way round: force is
the expression of an independent power that connects the bodies according to their inner
nature and their relative position and motion, and that power causes the change of mo-
mentum with time. Thus the living metaphysical interpretation conforms to the theoretical
construction. Through the basic mechanical law of motion, physics is given the task of
exploring the forces operating among bodies in their dependence on position, motion, and
inner condition. The latter will enter the laws of force by way of numbers characteristic
of the inner state of the reacting bodies, like the electrical charge in the case of Coulomb’s
law of electrostatic attraction and repulsion. Thus the concept of force becomes a source
of new measurable physical characteristics of matter.4

Jammer wrote:

Since Newton clearly distinguishes between definitions and axioms (or laws of motion),
it is obvious that the second law of motion was not intended by Newton as a definition of
force, although it is sometimes interpreted as such by modern writers on the foundations
of mechanics. Nor was it meant to be merely the statement of a method of measuring
forces. Force, for Newton, was a concept given a priori, intuitively, and ultimately in
analogy to human muscular force. Definition IV, therefore, is not to be interpreted as a
nominal definition, but as summarizing the characteristic property of forces to determine
accelerations. 5

Remark. We cannot accept the relation p = mv as the definition of momentum for (at least)
three reasons:

1. A definition cannot contain an unknown parameter (here the inertial mass);
2. If this were a definition, it would not change when passing from classical to relativistic me-

chanics, contrary to what actually happens;
3. The position of this relation in the diagram (p. 268) is the same as all other constitutive rela-

tions of physical theories, i.e. a horizontal link between configuration and source variables.

Can we accept the definition of voltage as the product of the resistance for current intensity,

i.e. V
def
= RI? Can we accept the definition of stress as the product of elastic modulus for strain,

i.e. σ
def
= Eε? Surely not! Because the physical constants R and E are evaluated from these two

relations, which come from experiments and are valid only for linear materials. So how can we
possibly consider the relation p = mv as the definition of momentum if it contains a parameter
of the particle?

To raise the intuitive notion of mass (quantity of matter or a measure of inertia) to the rank of

a physical quantity, like the intuitive notions of electrical resistance (R) and of material stiffness

(E), we must use a constitutive equation. This presupposes that the two physical variables that

are linked by the equations should already be defined.

4 Weyl [248, p. 148].
5 Jammer [104, p. 124].
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That being said, let us show how a ballistic pendulum can be used to measure
the momentum of a particle. The box of the ballistic pendulum has a large mass
compared with the mass of bullets.6 The device is calibrated by shooting simul-
taneously 1, 2, 3, . . .n identical bullets with the same velocity and measuring the
amplitude of the recoil for each n, as shown in Fig. 9.2. The physical variable
thus measured will be called the impulse. This is similar to what we do to define
force with a dynamometer. The scale thus constructed has an arbitrary unit which
depends on the mass of one of the bullets, its velocity and the characteristics of
the pendulum.

A similar procedure is used to measure electric charge by transforming an
electroscope into an electrometer: we insert 1, 2, 3, . . .n identical charges into a
Faraday sink placed on top of an electroscope. Also, in this case the calibration
depends on the charge considered and on the characteristic of the electroscope.

MM
m

0

sand
v

0 5

Fig. 9.2 Calibration of an impulsometer. We shoot n bullets in a box containing sand; the bullets
are captured and stopped. The maximum displacement is the measure of the impulse received
by the box, and this is equal to the momentum of the bullet before impact

From the definitions given we see that the momentum of a particle is the im-
pulse released by the particle when it is stopped:

p
def
= J (released stopping the particle) . (9.6)

It follows that the impulse released by a particle when its velocity is reduced
is the difference between the momenta of the particle at the two instants bounding
the time interval. Since we find it useful to consider the impulse supplied to a
particle instead of that released by the particle, we must write

J (t−, t+) = p (t+) − p (t−) with J [
∼
T] and p [

∼
I ], (9.7)

which is the classical relation used in impulsive motion.

6 Since, up to now, we have not introduced the measurement of mass, the latter is considered in
its intuitive notion as an amount of matter.
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9.3 Configuration Variables

Configuration variables are geometric and kinematic variables, and knowledge of
them provides the position and state of motion of a particle at every instant.

9.3.1 Radius Vector

In choosing a reference system, one may consider the position vector of a particle
as the vector connecting the origin O of the reference system with the particle
position P. The introduction of the radius vector enables us to write

u (t−, t+)
def
= r (t+) − r (t−) with u [T] and r [I]. (9.8)

The radius vector is a global variable associated with instants; hence, we
write r[I]. Since the radius vector does not change sign under a reversal of motion,
it is associated with primal instants, i.e. r[I].

Table 9.2 Association of mechanical variables with time elements

�t
Dual

time complex

S [Ĩ −] AH[
∼
T] S [Ĩ +]

Hamiltonian actionHamilton’s principal function

T [
∼
T],V[

∼
T], L[

∼
T],H[

∼
T]

Kinetic energy, potential energy, Lagrangian, Hamiltonian

Ĩ − ∼
T Ĩ +

p[Ĩ −] J[
∼
T] p[Ĩ +]Impulse

Momentum Momentum
F[
∼
T] Force

v(Ĩ −) (Δtv)[
∼
T] v(Ĩ +)

a[
∼
T] Acceleration

Primal
time complex

I − T I +

r[I −] r[I +]
Radius vector Radius vector

u[T] Displacement

v[T] Velocity

T (I −) T (I +)W[T] Work

P[T] Power
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The main reason for introducing a radius vector is the possibility of expressing
the displacement as a difference between two radius vectors. In this sense, the
radius vector is a kind of time potential of displacement: like every potential, it
may be changed by adding an arbitrary vector, and this is equivalent to a change
in the origin of the reference system.

Equation 9.7 shows that momentum plays the same role with respect to im-
pulses as radius vector plays with respect to displacement, as shown by Eq. 9.8.
This remarkable analogy is shown in Table 9.4. Momentum is associated with dual
instants and is a kind of time potential of an impulse. Consequently, an arbitrary
vector can be added to it, and this is the same as considering a reference system
in motion with respect to the first system.

9.3.2 Displacement

The displacement of a particle in a given time interval is a vector connecting the
initial position of the particle with its final position. As we have already said,
a reversal of motion changes a displacement into its opposite. This means that
displacement is associated with time intervals endowed with an inner orientation,
i.e. u[T].

9.3.3 Velocity

Since displacement is associated with a time interval, it is meaningful to compute
its time rate. In this way we obtain the mean velocity 〈v〉 and the instantaneous
velocity v, both of which are associated with an interval T:

〈v〉 [T]
def
=

u [T]
T

v[T] = lim
T−→0

u [T]
T

. (9.9)

Since we can write the displacement u in terms of the position vector r, the in-
stantaneous velocity can be written as

v(t) = lim
T−→0

r(t + T ) − r(t)
T

=
dr(t)

dt
. (9.10)

Hence, the instantaneous velocity is the rate of the displacement and the derivative
of the position vector. In a discrete setting, it is appropriate to consider the velocity

as referred to the middle instant of the interval T, i.e. to the dual time instant
∼
I .

To show this let us consider a uniformly accelerated motion whose formulae are
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v(t) = v(0) + a t, r(t) = r(0) + v(0) t +
1
2

a t2 (9.11)

and consider the mean velocity in an interval [t1, t2]. We have

〈v〉 =
r(t2) − r(t1)

t2 − t1
=

v(0) (t2 − t1) + 1
2 a (t2

2 − t2
1)

t2 − t1
= v(0) + a

( t2 + t1
2

)
, (9.12)

which is the velocity at the middle instant of the interval. Since every regular
motion in every short interval can be approximated by a uniformly accelerated
motion, it follows that velocity is approximately associated with the middle instant
of the interval. In a differential setting, we are obligated to compute the limit of
the velocity when tn−1 → tn to obtain the instantaneous velocity at tn; in doing so,
we lose the information that velocity is associated with dual time instants.

We point out the important fact that the instantaneous speed cannot in any way
be measured: it is the result of our idealization because it makes use of the limit
process. In a discrete setting, we consider only small intervals; hence, we have no
reason to compute the limit and will use only the mean velocity.

Under a reversal of motion the velocity changes sign; this follows from the
definition in Eq. 9.9 recalling that T is the duration of the interval T, i.e. it is the
absolute value of the extension of T and, as such, is always positive. Hence,7

from u[−T] = −u[T] it follows v[−T] = −v[T] . (9.13)

9.3.4 Acceleration

Mean acceleration 〈a〉 is defined as the time rate of the velocity variation, and the
instantaneous acceleration is the corresponding limit

〈a〉 (t−, t+)
def
=

v (t+) − v (t−)
t+ − t−

, a
(
t− + t+

2

)
= lim

(t+−t−)−→0

v (t+) − v (t−)
t+ − t−

.

(9.14)
We must stress that acceleration has no proper place in a classification dia-

gram because it is the result of the combination of the first time derivative of the
right column with the first time derivative of the left column, via the constitutive
equation p = m v, where m is a system parameter. To emphasize this fact, we re-
mark that in relativity, where the relation v −→ p is non-linear, the acceleration is
devoid of interest.

Acceleration is associated with dual time intervals, a[
∼
T], and must be evalu-

ated at primal time instants, a(I). It follows that acceleration is invariant under a

7 The fact that velocity changes sign under a reversal of motion is usually deduced in an incorrect
way, as discussed on p. 35.
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reversal of motion (p. 59). In fact, in the gravitational field, a stone going down-
wards or upwards (time reversed motion) always has its acceleration directed
downwards.

9.4 Constitutive Laws

We are now in a position to explore the constitutive laws of particle dynamics.

9.4.1 Momentum–Velocity Relation

Having given an operative definition of momentum, we ask now what the relation
v between momentum and velocity. To this end, let us consider our calibrated
ballistic pendulum. (p. 246). We can shoot the same bullet with various velocities
and measure the corresponding momenta.8 The data thus obtained can be mapped
in a diagram v − p, as shown in Fig. 9.3a. Measurements show that momentum is

p
ba

c
v

p

v

Fig. 9.3 (a) Diagram p − v in classical mechanics. (b) Corresponding diagram in relativistic
mechanics

proportional to velocity and has the same direction, i.e. p ∝ v. This leads us to
introduce a parameter m and to write

p(t)
mat
= m v(t). (9.15)

The parameter thus introduced as a proportionality constant between two variables
is called (inertial) mass.

Mass is a system parameter like the capacitance of a condenser, the inductance
of a coil, the thermal capacity of a body or the stiffness of a spring. To reinforce
this presentation, we observe that in relativity the momentum–velocity relation
must be substituted by

8 Recall that calibration of the pendulum was obtained by shooting multiples of a given mass
with the same velocity.
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p(t)
mat
= m0

v(t)√
1 −

(
v(t)
c

)2
, (9.16)

as shown in Fig. 9.3b, and this cannot be reconciled with the interpretation of the
momentum–velocity relation as a defining equation. The interpretation of rela-
tion 9.15 as a constitutive equation was given by Van Dantzig,9 who said:

Historically Newton’s law did not state that the force is the product of mass and accelera-
tion, but that it is the fluxion of the “impetus” (kinetic momentum), which is the product
of mass and velocity. Moreover, the relation between momentum and velocity p = mv is
a linking equation and implies metric.

Equation 9.15 is a constitutive equation10 which permits the definition of the
physical constant m.

Remark. It is not contradictory to state that the same equation expresses a law and defines

a physical constant. A constitutive law states that two physical quantities, already defined, are

proportional. The proportionality constant, whose value must be inferred from experiments, is

defined by the same equation. So when we state Hooke’s law F = k s for linear elastic materials,

we express a law, but at the same time we define the stiffness k of the elastic force. What is

contradictory is to state that Eq. 9.15 is, at the same time, a constitutive equation and a defining

equation!11

Remark. It is curious to recall that Newton and Euler defined mass as the product of volume

times mass density,12 thus considering density as a basic variable. This is in contrast with the

actual measurement of density, which is obtained by measuring mass and volume.

Ernst Mach wrote:

With regard to the concept of “mass”, it is to be observed that the formulation of Newton,
which defines mass to be the quantity of matter of a body as measured by the product of
its volume and density, is unfortunate. As we can only define density as the mass of unit
of volume, the circle is manifest.13

Relation 9.15 can be written in a discrete setting as

p[
∼
I ]

mat
= m v[T] reversible . (9.17)

In the velocity–momentum relation, a reversal of motion implies that both vari-
ables change sign; hence, in reversed motion the equation maintains the same
form it has in forward motion. This implies that the relation describes a reversible
process.

9 Van Dantzig [240, p. 78].
10 Preumont [189, p. 2].
11 As in Williams [251, p. 138].
12 Jammer [105, p. 66].
13 Mach [145, p. 194].
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9.4.2 Force–Radius Vector Relation

Force can depend on the position of a particle, on its velocity and on other field
variables. In the simple case of an elastic restoring force, we have the constitutive
relation

F[
∼
T]

mat
= −k r[I] reversible, (9.18)

where k is the stiffness of the elastic force. Every possible link between force and
position is a constitutive relation. In the relation force position, under a reversal
of motion both variables are unchanged, and hence this relation also describes a
reversible process.

9.4.3 Force–Velocity Relation

Let us consider a force–velocity relation, like that of viscous force:

F[
∼
T]

mat
= −h v[T] irreversible. (9.19)

Under a reversal of motion velocity changes sign while force does not. This im-
plies that in reverse motion force increases with velocity: since this does not hap-
pen in nature, we conclude that this relation describes an irreversible process.
Other irreversible laws are Newton’s law of viscous fluids, Ohm’s law of elec-
tric conduction, Fourier’s law of heat conduction, Fick’s law’s of diffusion and
Darcy’s law for water motion.

In conclusion, we can summarize the various definitions which can be found in
the literature about force and momentum in the following table:

Erroneous definition Correct definition

F
def
=

dp
dt

p(t)
def
=

∫ t

rest
F(t′) dt′

p
def
= m v p

mat
= m v

(9.20)

9.4.4 Classification of Forces

The notion of force precedes that of work, which in turn precedes that of energy.
We can distinguish between forces which depend only on time and on posi-
tion, F(t,P), giving rise to force fields, and forces which depend also on velocity
F(t,P, v). Among force fields there is a (large) subset of conservative forces (see
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Fig. 9.4 Classification of forces

later). Among velocity-dependent forces there is a (large) subset of dissipative
forces. Some forces oppose the motion of a body or particle, i.e. those for which
the power is negative, i.e. F · v < 0. This implies a dissipation of the total energy
(kinetic+ potential). Such are forces of friction, those which cause air drag, in par-
ticular viscous forces. A notable exception is the Lorentz force acting on a moving
charge in a magnetic field which is orthogonal to the velocity and, hence, does not
dissipate energy: from FL = qv × B̌ it follows that power is P = FL · v = 0. An-
other exception is the Coriolis apparent force in a rotating reference system: from
FC = −2mω̌ × vr it follows that P = FC · vr = 0. Figure 9.4 summarizes this
classification.

9.5 Energy Variables

Energy variables are the products of a source variable times a configuration vari-
able. All of them originate from the notion of the work of a force. First of all, recall
what is meant by energy: ‘the energy of a system may be defined as the capacity
it has of doing work, and is measured by the quantity of work it can do.’14

Every kind of energy is typically associated with a system S ; this is the case
with kinetic energy T [S ], potential energy V[S ], internal energy U[S ], entalpy
H[S ], Helmholtz free energy F[S ], Gibbs free energy G[S ] and electromag-
netic energy E[S ]. In a spatial description each of these kinds of energy gives
rise to a content and a flow.

9.5.1 Power, Work, Kinetic Energy

When speaking of work it is better to distinguish between the work of a single
force applied to a body in motion, in particular a single particle, and the work of
a force in a force field. So when we push a shopping cart or pull a trolley, we
exercise a single force which varies with time, place and speed. In an analogous
way, a car on the road is pushed by a single force and is opposed by the air drag.

14 Maxwell [154, p. 90].
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This leads us to introduce the notion of power defined as the scalar product of the

force for the velocity of its application point, i.e. P(t)
def
= F(t, r(t), v(t)) · v(t).

In contrast, when we consider a force field, we are led to consider the scalar

product of the force for a line element, without considering any motion: w∗
def
=

F(t,P) · dL. In these cases, there is no velocity or, consequently, power. This scalar
product must be called virtual work. It is common to denote an infinitesimal line
element by δr, even if a better notation would be dL. The symbol δr, called the
virtual displacement, arises from the need to distinguish it from the effective dis-
placement dr.

Single Force. We will consider first the case of a single force applied to a particle
in motion. From the power we can define two variables: the work as the definite
time integral of power and the kinetic energy as the indefinite time integral of
power, i.e.

Work

W(t−, t+)
def
=

∫ t+

t−
P(t) dt

︸�������������������������︷︷�������������������������︸
definite time integral

Kinetic energy

T (t)
def
=

∫ t

(rest)
P(t′) dt′

︸����������������������︷︷����������������������︸
indefinite time integral

(9.21)

These integrals can be evaluated only when the motion is known. From these
definition it follows that

T (t+) − T (t−) = W(t−, t+), from which
dT (t)

dt
= P(t) . (9.22)

Let us remark that the definition of kinetic energy as an indefinite time integral of
power coincides with the classical definition, as the following relation shows:

T (t)
def
=

∫ t

(rest)
P(t′) dt′ ≡

∫ t

(rest)
v ·F dt ≡

∫ p

0
v(p) · dp = T (p) . (9.23)

Moreover, the definition of work as a definite time integral of power is equivalent
to the traditional definition

W(t−, t+)
def
=

∫ t+

t−
P(t) dt ≡

∫ t+

t−
F · v dt ≡

∫ r2

r1

F(r) · dr . (9.24)

While work is an energy flow, power is an energy flow rate or energy current.
We stress the fact that force is a primitive quantity from which one can con-

struct two other physical variables, the work and the impulse, as shown in Fig. 9.5.

Force Field. Let us consider a field of forces. This means that to all points
of a space region is referred a force F(t,P). We will limit our consideration to
a static field of forces, i.e. those of the kind F(P) which are the most widely
used in physics. Such a field arises when we consider a particle of mass m in a
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force

work

impulse momentum

kinetic energy

Fig. 9.5 Force generates work and impulse

gravitational field, such as a stone in the gravitational field of the Earth or a planet
in the solar system. Another case is that of a particle with a small charge q in an
electric field.

In a field of forces one can consider two kinds of work: the (effective) work
performed on a particle in motion and the virtual work along a line

W(t−, t+)
def
=

∫ t+

t−
F · v dt ≡

∫ r2

r1

F · dr, W∗[L]
def
=

∫
L

F · dL ≡
∫

L
F · δr .

(9.25)
Virtual work will give rise to the notion of potential energy, as we will show
subsequently.

9.5.2 Potential Energy

While kinetic energy is a physical variable dealing with the motion of bodies,
potential energy is used in all physical theories. It is a concept so important that it
deserves a thorough examination and an explicit definition. In general, books on
physics introduce this notion starting from particular cases, usually springs and
gravity, without providing a general definition.

The adjective potential means that it has nothing to do with motion: potential
energy is an energy of position. Usually books say that potential energy is work
evaluated operating slowly, with zero acceleration and zero kinetic energy.15 This
is a subterfuge because one does not distinguish effective work, which presupposes
a displacement, from virtual work, which is merely thought and does not involve
time.

Configuration. Before introducing a definition of potential energy, we must anal-
yse the notion of a system’s configuration because the potential energy of a system
S is a physical variable associated with the configuration of the system. The con-
figuration of a system is the geometric description of the simultaneous position
of all the particles forming the system. For a detailed definition of the concept of
potential energy of a system it is better to distinguish between the term internal
configuration and the external position of the system in a force field. Thus, a jacket

15 See, for example, Lorrain et al. [143, p. 102].
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which can be placed on a chair or on a hanger: they are two different positions; in
addition, for each position, the jacket can be settled in many different ways, and
these are different configurations.

Definition. The potential energy of a system in a given configuration
is the energy stored in the system, which is equal to the work which
the forces acting from outside on the system must perform to bring the
system from a reference configuration to an actual configuration, under
the hypothesis that such work is independent of intermediate configura-
tions. In evaluating this work, velocity-dependent forces and dissipative
forces (such as friction) should not be taken into account.

Since each force acting from outside contrasts with a force exerted by a system
on the outside, the work that enters the system is opposite to that done by the
system; it follows that the potential energy of a system in a given configuration is
the work that the forces of the system must perform to bring the system from an
actual configuration to a reference configuration.

Virtual Work. In contrast with the notion of work of a single force applied to
a particle in motion, let us consider a static field of forces F(P). This is the case
with the force F = q E(P) acting on an electric particle in an electrostatic field or
the force F = m g(P) acting on a massive particle in a gravitational field. These
are two defining equations: one defines E and the other defines g. Let us con-
sider a line L with an inner orientation and the force at a given instant. The line
integral

W∗ def
=

∫
L

F(r) · dL virtual work (9.26)

recalls the notion of work, but it is very different. First of all, we do not have a
single force applied to a particle but rather a field of forces, i.e. a force applied
to every point of a region. Moreover, we do not have a particle which moves; we
are simply considering a line element dL usually denoted in mechanics by δr.
Even more than this, the time is fixed. Also, in the case where the field of forces
is variable in time, as happens in a variable electric field with F(t,P) = q E(t,P),
the time instant is fixed. The analogy with work suggests that δr should be called
a virtual displacement and the scalar product F · δr as infinitesimal virtual work.

We have w∗[
∼
T,L].

We will call virtual work the line integral of the force along a line in a force
field. It may be objected that this name is already used in mechanics and is not ex-
plicitly considered in physics. The fact is that in mechanics one considers only

the infinitesimal amount w∗
def
= F · δr, which is called virtual work instead of
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infinitesimal virtual work, which would be more appropriate.16 The notion of
virtual work as a line integral permits a simple definition of potential energy, as
we will see in the next section.

In electromagnetism the electromotive force is defined as the line integral of
the electric field E(t,P) at a fixed instant. Hence the electromotive force is the
virtual work for unit charge: E = W∗/q.17

Referring to a force field we see that force is associated with lines, such as

the vectors E and g. Hence, F[
∼
T,L]. Note that in physics, there are three types of

forces: volume forces, surface forces and line forces. As a result, there are three
types of work: volume work, surface work and line work, the last being a type of
virtual work.

9.5.3 Potential Energy of a Particle in a Force Field

When a particle is at rest at a point P in an electric or in a gravitational field, it
experiences a force. Taking into account that the force depends on the particle (its
charge, its mass), we can refer the force directly to the point, writing F(P). In this
way, we have a force field. Let us choose two points A and B of the region of
definition and evaluate the line integral

W∗(A,B,L)
def
=

∫ B

A
F(P) · dL . (9.27)

In general, the integral will depend on the line L connecting the two points.

Conservative Forces. The electrostatic and gravitational fields possess the prop-
erty that this line integral does not depend on the line connecting the two points;
in this case we say that the force field is conservative. In such a field let us choose
a position O of the particle as reference position. In general, O is chosen where
the field vanishes. For every point P of the field let us evaluate the line integral of
the vector F(P) along any line L connecting P with O, i.e.18

V(P)
def
=

∫ O

P
F(P) · t dL potential energy. (9.28)

Note that the line integral is taken from the actual point P to the fixed point O,

not vice versa. The function V(P) is called the potential energy of the particle at

16 Among the very few authors who use the term infinitesimal virtual work we mention Lanczos
[120, p. 80].
17 See page 267.
18 Williams [251, p. 187]; Luré [144, Vol. I; p. 188].
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the position P. One usually sets V(O) = 0. Since the reference configuration is
arbitrary, it follows that the potential energy is defined up to an arbitrary additive
constant.

Time Association. Since Eq. 9.28 does not involve time variations (differences or

derivatives) from W∗[
∼
T], it follows that V[

∼
T,P]. The relation F = −∇V shows that

F and V must have the same time association; hence, the potential energy is, like
force, associated with dual intervals.

The virtual work from a first point A to a second point B along a line connecting
them is19

W∗(AB) =
∫ B

A
F(P) · t dL =

∫ O

A
F(P) · t dL −

∫ O

B
F(P) · t dL = V(A) − V(B).

(9.29)
In a gravitational field the potential energy of a particle V(P) depends on the

mass and on the position of the particle. Since the force is proportional to the mass,
the potential energy is also proportional to the mass. Hence, we can introduce the

gravitational potential Ug(P)
def
= V(P)/m. In an electrostatic field, in the same

way, one can introduce the electric potential (Table 2.2, p. 29).
It is important to remark that potential energy exists also when a system is

subject to a mix of conservative and dissipative forces because only conservative
forces are involved.

Example 1. Let us consider two aeroplanes of equal weight moving side by side with the same

velocity but coming from two distinct airports. They have the same potential energy, but the

work done to bring them in that position is very different. This fact underlines that the potential

energy must be calculated by means of the virtual work and not by means of the effective work.

Energy Conservation. Let us consider a moving particle in a static force field.
The total force acting on the particle Ftotal can be decomposed into the force of the
field Ffield and the force depending on time and velocity Fothers:

∫ t+

t−
Ftot · v dt =

∫ B

A
Ffield · dr +

∫ t+

t−
Fothers · v dt . (9.30)

The first term on the right side of this equation coincides with the virtual work cal-
culated along the trajectory, which in turn is the difference between the potential
energies at the two points A and B in which the particle passes at the two instants
t− and t+:

T (t+) − T (t−) = V(A) − V(B) +
∫ t+

t−
Fothers · v dt . (9.31)

If there are no other forces, say velocity-dependent forces or friction forces, then
we obtain the principle of energy conservation:

19 Levi-Civita and Amaldi [135, Vol. II; p. 353].
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T (t+) + V(B) = T (t−) + V(A) . (9.32)

We remark that while kinetic energy depends on time, potential energy depends
on a point.

9.5.4 Potential Energy of a System

The potential energy due to the internal configuration will be called the internal
potential energy and will be denoted by V i; the potential energy due to its position
in a force field will be called the external potential energy and denoted by Ve.
The separation of the internal from the external potential energy of a system is
fundamental. Think of a pound of dynamite or a pound of butter located at the
same height in the gravitational field: they have the same external potential energy
while their internal potential energies are a bit different.

Figure 9.6 shows a system formed by two masses and a spring in different
configurations and different positions. We can take configuration (a) as the ref-
erence. In configuration (b), the spring is compressed and the internal potential
energy is increased. In configuration (c), the system is raised on the table with an
uncompressed spring, and only the external potential energy is increased. In con-
figuration (d) the system is raised on the table and the spring is compressed, and
we see an increase in the external and the internal potential energies.

The potential energy is an attribute of a physical system, V[S ]; in a discrete
system, such as a rigid body or a collection of rigid bodies, it depends on a finite
number of generalized coordinates which specify the position+configuration of
the system, i.e. V[q1, q2, . . . , qn].

In particular, the potential energy of a particle P in a field depends only on
the position of the particle in the field, hence it depends on the point V[P]. In a
continuous system or in a field, we can consider the potential energy enclosed in

each volume
∼
V; hence, V[

∼
V]. This is the case of the energy of deformation of a

deformable solid or of the electric energy in an electric field.
Since the total energy of a system is split into kinetic and potential energy,

E[S ] = T [S ] + V[S ], when we move to a spatial description, both the kinetic
and potential energies are split into content and flow:

Ec[
∼
V] = T c[

∼
V] + Vc[

∼
V] Ef[

∼
S] = T f[

∼
S] + V f [

∼
S] . (9.33)

The terms kinetic energy flow and potential energy flow are not commonly used,
yet if we consider the water of a river, as well as forming a mass flow, it is a flow of
kinetic energy and a flow of momentum, as is evident from the fact that bumping
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m m m m

m m m m

Vi > 0

Ve > 0

Vi = 0

Ve > 0

Vi > 0

Ve = 0

Vi = 0

Ve = 0

a b

c d

Fig. 9.6 System formed by two masses and a compressible spring

up against the blades of a water mill puts them in motion. Moreover, if the river is
sloping, there is also a flow of potential energy, as is clearly seen in the water of a
waterfall.

One might be tempted to say that the term energy flow is nothing more than
work and heat; but we must be careful. In a material description, energy flow
refers to the boundary of a system, and this is synonymous with work and heat.
But in a spatial description, energy flow refers simply to the motion of the system
through the boundary of a fixed control volume, as Fig. 5.1b (p. 91) shows. In this
case, the energy flow has nothing to do with work or heat because it exists even if
the system (here the set of fish) moves in uniform and rectilinear motion. See also
Fig. 9.7.

Let us consider some examples.

Example 9. An aeroplane of weight w flying at a height h has a gravitational potential energy of

V = w h. The effective work needed to bring the aeroplane to that position is much greater than

the potential energy acquired by the aeroplane. To evaluate the potential energy of the aeroplane,

we must ignore the air drag and the kinetic energy: this is equivalent to the evaluation of the

work of the gravitational force alone, the only conservative force.

Example 10. In a similar way, to calculate the potential energy of an ideal gas enclosed within

a cylinder with insulated walls and compressed by a piston, we must neglect the friction of

the piston with the inner wall of the cylinder. Moreover, if the compression is fast, we will

notice the formation of vortices and then the transformation of a fraction of the work into kinetic

energy at first and heat in the sequel. Hence the work needed to compress the gas is greater than

flow of mass and 
potential energy
(internal and external)

Fig. 9.7 When a bird escapes from its cage, there is not only a mass flow, but also a flow of
potential energy (internal and external)
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the potential energy acquired. For these reasons thermodynamics has created the ideal notion

of reversible transformation as a sequence of equilibrium states, i.e. a transformation that is

‘infinitely’ slow and without dissipation. In this way, the force acting on the piston becomes

conservative.

Example 11. To lift a suitcase from the floor to a chair, we must perform more work than the

gravitational potential energy gained by the suitcase, i.e. V = w h. In fact, innitially we must

apply a force greater than the weight w, and hence we must lift the bag slightly above the chair

and, lastly, reduce the force in order to set the bag on the chair.

Example 12. Dragging a case on a horizontal plane, we perform much work in overcoming the

forces of friction, but the work done by the conservative force, gravity, is zero, and therefore

the potential energy does not change. This applies to the motion of a car, a train or any other

body.

Space association. Let us look at the association of potential energy with space
elements. As the definition claims, potential energy is a property of a system,
V[S ], in particular of a particle, V[P]. If the system has a finite number of
degrees of freedom, then the potential energy is a function of these generalized
coordinates, V(q1, q2, . . . qn). In particular, the potential energy of a particle in a
field, say in the electric or in the gravitational field, is associated with the point in

which the particle lies; hence, for a particle V[
∼
T,P] −→ V[

∼
T,P].

When we pass from a material description to a spatial one, the potential energy
of a system splits into the potential energy content Vc inside a control volume,
and hence is associated with volumes, and the potential energy flow V f associated

with surfaces V[
∼
T,S ] −→ Vc[

∼
T,
∼
V],V f[

∼
T,
∼
S].

What kind of orientation of volumes is the potential energy associated with?
Since the potential energy content Vc is obviously invariant under space reflec-
tion, it follows that it cannot be associated with an inner orientation of a volume;20

hence, it is associated with volumes endowed with an outer orientation, i.e. V[
∼
V].

The potential energy flow V f , i.e. work and heat, is associated with surfaces en-

dowed with an outer orientation: W[
∼
S],Q[

∼
S].

The Minus Sign in the Potential Energy. We now explain why, in a field, F is
minus the gradient of V . In a field, like the electric and the gravitational fields, we
can consider the potential energy of a test particle in a given point of the field. The
external force needed to equilibrate the force of the field is opposite to the field
force: Fext = −F. The work needed from outside to bring the test particle from a
reference point to the given point is an integral of the external force taken along a
line from the reference point to the given point, i.e.

V(P)
def
=

∫ P

O
Fext · dL, hence Fext = ∇V(P) . (9.34)

From the last relation it follows that F = −Fext = −∇V(P).

20 Recall the oddness principle (p. 122).
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9.5.5 Kinetic Energy and Kinetic Co-energy

Although commonly ignored, there are in fact two kinetic energies: kinetic energy
T and kinetic co-energy T ∗ defined respectively as follows:

Kinetic energy Kinetic co-energy

T (p)
def
=

∫ p

0
v (p) · dp T ∗(v)

def
=

∫ v

0
p (v) · dv

(9.35)

The first is a function of momentum, the second of velocity.

Remark. At first sight, the fact of considering kinetic energy T as a function of momentum

p instead of velocity v contrasts with the common practice in mechanics. Nevertheless, we must

observe that the differential under the integral is in p and it dictates the independent variable of

the primitive. Once we take into account the classical relation p = mv, we can express kinetic

energy as a function of velocity, as usual.

The advantage of the definitions given by Eq. 9.35 is that they are independent
of the constitutive relation momentum–velocity. From these definitions it follows
that

vk =
∂T (p)
∂pk

, pk =
∂T ∗(v)
∂vk

. (9.36)

Kinetic energy and its dual are linked by the relation

T ∗(v) ≡ p(v) · v − T (p (v)), (9.37)

i.e. by a duality transform, also called the Legendre transform. In classical me-
chanics, the constitutive relation momentum–velocity can be written in the form
p = m v or its inverse v = p/m. Inserting these relations into Eq. 9.35 we obtain

T (p) =
1

2m
p2 T ∗(v)

def
=

1
2

m v2. (9.38)

In relativistic mechanics, the constitutive relation momentum–velocity can be
written as

p
mat
= m0 v

1√
1 −

(
v

c

)2
, v

mat
=

p
m0

1√
1 +

(
p

m0c

)2
. (9.39)
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Inserting these relations into Eq. 9.35 we obtain

T (p) = m0c2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
√

1 +

(
p

m0c

)2

− 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , T ∗(v) = m0c2

⎡⎢⎢⎢⎢⎢⎣1 −
√

1 −
(
v

c

)2
⎤⎥⎥⎥⎥⎥⎦ . (9.40)

If we consider two vector spaces, a three-dimensional space for velocities and
another three-dimensional space for momenta, then the momentum–velocity re-
lation can be viewed as describing a vector field in the velocity space while the
inverse velocity–momentum relation can be viewed as defining a vector field in
the momentum space. Since the two relations are the inverse of each other, we
may call one vector field the inverse of the other. In this view, the constitutive re-
lations 9.15 and 9.16 describe central vector fields and, hence, conservative vector
fields. If one field admits a potential, then its inverse also admits a potential, and
the two potentials are linked by the Legendre transform. It follows that kinetic en-
ergy is the potential of velocities in the momentum space, while kinetic co-energy
is the potential of momenta in the velocity space.

In classical mechanics, since the relation p = m v is linear, it follows that T =
p2/2m = 1/2mv2 = T ∗, i.e. kinetic co-energy is numerically equal to kinetic
energy and has the same physical dimension. It is for this reason that kinetic co-
energy is usually not considered (let alone defined!) in classical mechanics.

In relativistic mechanics, the momentum–velocity relation is non-linear, and
then the equality of T and T ∗ is not valid, as shown in Fig. 9.8 (right). As potential
energy is the potential of force, kinetic energy must therefore be viewed as the
potential of velocity in the momentum space: both are evaluated as line integrals.
We remark that energy conservation and the Hamiltonian function involve kinetic
energy T (p), while the Lagrangian involves kinetic co-energy T ∗(v).

pp

cvelocity velocity

m
om

en
tu

m

m
om

en
tu

m

T (p)T (p)

T *( )T *( )

Fig. 9.8 Kinetic energy and kinetic co-energy in classical (left) and in relativistic (right) cases

Historical Remark. The term co-energy, an abbreviation of complementary energy, is in

common use in system theory, a branch of theoretical engineering (MacFarlane [146, p. 23]).

Luré [144, Vol. II, p. 499] called associated kinetic energy our T (p) and kinetic energy our T ∗(v),

which he denoted by T̃ (v). Penfield and Haus [175, p. 162] clarified the role of kinetic co-energy

in a variational formulation. Sommerfeld [215, p. 266] denoted kinetic co-energy by T and,
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following Helmholtz, called it kinetic potential. Kinetic co-energy was used by Preumont [189,

p. 2]. A detailed treatment of kinetic co-energy can be found in Williams [251, p. 183], where it

is denoted by T ∗(v).

Table 9.3 summarizes the terminology used for kinetic energy and kinetic co-
energy.

Table 9.3 Notions of kinetic energy and kinetic co-energy in the literature

This book T (p)
def
=

∫ p

0
v(p) · dp T ∗(v)

def
=

∫ v

0
p(v) · dv

Kinetic energy Page Kinetic co-energy Page

MacFarlane Kinetic energy T (p) 23 Kinetic coenergy T ∗(v) 23

Williams Kinetic energy T (p) 183 Kinetic coenergy T ∗(v) 183
‘kinetic energy function’ ‘kinetic coenergy func-

tion’

Preumont Kinetic energy T (p) 2 Kinetic coenergy T ∗(v) 4

Penfield, Haus Kinetic energy W(p) 162 Kinetic coenergy W̃(v) 162

Luré Associated kinetic energy
T ′; T̃ (p)

138;
499

Kinetic energy T (v) 138;
501

Sommerfeld Kinetic energy T (v) 264 Kinetic potential K(v) 266
electrodynamics (named by Helmholtz)

9.5.6 Lagrangian and Hamiltonian

Lagrange’s function, commonly called the Lagrangian, is the difference between
the kinetic co-energy and the potential energy,21 whereas Hamilton’s function,
commonly called the Hamiltonian, is the sum of the kinetic energy and the poten-
tial energy, i.e.

L(t, r, v)
def
= T ∗(v) − V(t, r), H(t, r, p)

def
= T (p) + V(t, r) . (9.41)

Since the kinetic energy T (p) is the potential of the constitutive equation p =
mv and V(t, r) is the potential of the constitutive equation F = F(t, r), it follows
that the Hamiltonian can be conceived of as the overall potential of constitutive
equations. Then assigning the Hamiltonian is equivalent to assigning the source
of motion.

21 Williams [251, p. 214].
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Hamilton’s action AH is the definite time integral of the Lagrangian, whereas
Hamilton’s principal function S is the indefinite time integral of the Lagrangian.22

It follows that

AH(t−, t+) = S (t+) − S (t−) S [
∼
I ] −→ AH[

∼
T] . (9.42)

Since the kinetic energy and its dual are quadratic functions of momenta and
velocities respectively, they do not change sign under a reversal of motion. It fol-
lows that

AH
def
=

∫ t+

t−
L(t) dt −→ R AH =

∫ t−

t+
R L(t) R(dt) =

∫ t+

t−
L(t) dt = AH . (9.43)

Hence, the Hamiltonian action is associated with a physical system and time inter-

val endowed with an outer orientation, i.e. AH[
∼
T,S ]. It follows that Hamilton’s

principal function S is associated with dual time instants, i.e. S [
∼
I ,S ], as shown

in Table 2.1, p. 28.
In a spatial description, potential energy is associated with volumes endowed

with an outer orientation and with intervals endowed with an outer orientation:
V[
∼
T,
∼
V] (Tables 9.5 and 9.6).

Table 9.4 Classification diagram for particle dynamics

r[I]

u[T]

J[T~]

p[~I]

+

+I IT

I IT

t

kinematic variables
primal time complex

dynamic variables
dual time complex

u[T]
def
= r[I +] − r [I −]

radiusvector
primal instant

displacement
primal interval

J[T~] = p[~I+] − p[I−]

impulse
dual interval

momentum
dual instant

22 See p. 100. Nowadays we must use the letter W (IUPAP 1987), as do also Brillouin [30,
p. 168]; Yourgrau and Mandelstam [257, p. 52]. The inconvenience with this is that W also de-
notes work. To avoid this possible confusion, we use the letter S used by Landau and Lifshitz
[123, p. 138]; Sommerfeld [213, Sect. 44]; Goldstein [80, p. 274]; Luré [144, p. 705].
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Table 9.5 From field variables to global variables of particle mechanics

Configuration Configuration Source Source

Global variables Field variables Global variables

�
�

	

u

�
�

	

r

�
�

�
��[T]

[I]

�

�

�

	
v

�
�

	

r

�
�

�
��[T]

[I]

�
�

	

p

�

�

�

	
F

�
�
�
��

[
∼
I ]

[
∼
T]

�
�

	

p

�
�

	

J

�
�
�
��

[
∼
I ]

[
∼
T]

r Radius vector
u Displacement
v Velocity

F Force
J Impulse
p Momentum

u =
∫

T
v dt J =

∫
∼
T

F dt

Compare with diagram [PAR1]
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Table 9.6 A paradigm for the time association

A paradigm for the time association
Starting point: under reversal of motion

the displacement changes sign while the impulse do not.

u[T]

r[I]

v[T]

displacement

radius
vector

velocity
�

	

F[
∼
T]

force
J[
∼
T]

impulse

p[
∼
I ]

momentum

�

�

virtual work

W∗ def
=

∫ B

A
F · t dL −→ W∗[

∼
T]

work

W
def
=

∫ t+

t−
F · v dt −→ W[T]

kinetic energy

T
def
=

∫ p

0
v · dp −→ T [

∼
T]

kinetic co-energy

T ∗ def
=

∫ v

0
p · dv −→ T ∗[

∼
T]

potential energy

V(P)
def
=

∫ O

P
F · dL −→ V[

∼
T]

Hamiltonian action

AH
def
=

∫ t+

t−
L dt −→ AH[

∼
T]

LagrangianL
def
= T ∗ − VHamiltonian H

def
= T + V

electrostatics

E(P)
def
=

F(P)
q

−→ E[
∼
T]

φ(P)
def
=

V(P)
q

−→ φ[
∼
T]

gravitation

g(P)
def
=

F(P)
m

−→ g[
∼
T]

Ug(P)
def
=

V(P)
m

−→ Ug[
∼
T]

The following relations confirm the preceding time associations

F = −∇V

g = −∇Ug

E = −∇φ

φ(P) =
∫ ∞

P
E · dL

w∗ = F · δr
T + V = E

Ug(P) =
∫ ∞

P
g · dL

J(t−, t+) = p(t+) − p(t−)

W(t−, t+) = T (t+) − T (t−)
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�

�


r(t)




�

�


v(t)




�

�


F(t)




�

�


p(t)

v
def
=

dr
dt

dp
dt
= F

F = −∇V(r) 	

p
mat
= m v 	

�

�


�

�
�q k(t)


�

�
�ν k(t)


�

�
�Q k(t)


�

�
�pk(t)

ν k def
= q̇ k(t) ṗk −

∂T ∗

∂qk
= Qk

Qk = −
∂V
∂qk

�

pk =
∂T ∗

∂νk

ν k =
∂T
∂pk

Constitutive equation

Constitutive
equations

�

��
�
�

���

�
�
�

�
��

�

�
���










�

�����

�����


[I,P]

[T,P]

[
∼
T,P]

[
∼
I ,P]

[
∼
T,P]

[
∼
T,P]

[
∼
T,P]

[
∼
T,P]

[
∼
T,P]

V(q)Potential
energy

	 �
� 	

�

V(r)� 


 �

�

T ∗(v)� 


 �

�

T ∗(q, ν)Kinetic
co-energy

	 �
� 	

�

T (q, p)Kinetic
energy

	 �
� 	

�

Analytical mechanics of a particle
Lagrangian coordinates

[AME1]

Kinematic variables
Primal time complex

Dynamic variables
dual time complex

Energy variables
dual time complex

r = r(q(t)) Qh
def
= F · gk

v = ν kgk pk
def
= p · g k

g k(q)
def
=
∂r(q)
∂qk Base vectors

T (q, p)
def
=

∫ p

0
v · dp =

1
2 m

p · p = 1
2m

ahk(q) ph pk νk =
∂T (q, p)
∂pk

T ∗(q, ν)
def
=

∫ v

0
p · dv =

1
2

m v · v = 1
2

m ahk(q) νh νk pk =
∂T ∗(q, ν)
∂νk

Ref: Luré, L.: Mécanique analytique. Vols. I, II, Librairie Universitaire, Louvain (1968).

AME1-7; http://discretephysics.dicar.units.it

http://discretephysics.dicar.units.it
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�
�

�
�qh

�
�

�
�νh

�
�

�
�Qh

�
�

�
�ph

νh def
=

dqh

dt

dph

dt
−
∂T ∗(q, ν)
∂qh

= Qh

Qh = −
∂V(q)
∂qh

ph =
∂T ∗

∂νh

νh =
∂T
∂ph

Constitutive equation

Constitutive equations

Potential energy

V(q)	 �
� 	

�

Kinetic co-energy

T ∗(q, ν)	 �
� 	

�

T (q, p)
Kinetic energy

	 �
� 	

�

�

�

�

 ����

����


�
����������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��

��
��

��

�

L
eg

en
dr

e
tr

an
sf

or
m

[I,S ]

[T,S ]

[
∼
T,S ]

[
∼
I ,S ]

[
∼
T,S ]

[
∼
T,S ]

[
∼
T,S ]

Analytical mechanics
Lagrange’s and Hamilton’s equations for scleronomic systems

[AME2]

Kinematic variables
Primal time complex

Dynamic variables
Dual time complex

Energy variables
Dual time complex
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Chapter 10
Electromagnetism

10.1 Fundamental Problem

The fundamental problem of electromagnetism can be stated as follows:1

• Given a space region and a time interval,
• Given the nature of the materials that fill the region,
• Given the boundary conditions,
• Given the initial values of the configuration variables,
• Given the space and time distribution of charges and currents,
• Find the configuration of the field at every point and at every later instant.

10.2 From Field Variables to Global Variables

The usual treatment of electromagnetism is done in differential terms by means of
field functions.2 In this section, our goal will be to present the global variables of
electromagnetism. Although it is possible (and convenient) to bypass field vari-
ables by considering global variables from the start, we have decided to deduce
the global variables from the field variables to help readers familiar with field
functions.3

1 This chapter is an expanded version of the author’s paper [229]. A corresponding finite
formulation of electromagnetism, useful for numerical purposes, can be found in the papers
[230, 233, 234].
2 This chapter presupposes a reading of Chaps. 1–9. Recall that in this book the ‘check’ symbol
denotes the ‘pseudo’ nature of scalars and vectors (pseudoscalars and pseudovectors) as stated
on p. 145.
3 This unusual introduction to electromagnetic variables follows the presentation of Langevin
[127], Sommerfeld [215], [178].

E. Tonti, The Mathematical Structure of Classical and Relativistic Physics,
Modeling and Simulation in Science, Engineering and Technology,
DOI 10.1007/978-1-4614-7422-7__10, © Springer Science+Business Media New York 2013

273
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In accordance with the standard nomenclature,4 we will use the following
symbols and names for the field functions:

E electric field strength D electric displacement
B̌ magnetic flux density Ȟ magnetic field strength
ρ volume charge density J electric current density

(10.1)

Maxwell’s field equations are

homogeneous

⎧⎪⎪⎨⎪⎪⎩
div B̌ = 0

curl E + ∂t B̌ = 0
, inhomogeneous

⎧⎪⎪⎨⎪⎪⎩
div D = ρ

curl Ȟ − ∂t D = J
(10.2)

to which we must add the three constitutive equations5

D
mat
= ε E, Ȟ

mat
=

1
μ

B̌, J
mat
= σE (10.3)

which are valid for a material that is linear, homogeneous, isotropic and non-
hereditary. These six variables can be divided, initially, into two classes, con-
figuration and source variables. The sources of the electromagnetic field are the
electric charges at rest and in motion, i.e. charges and currents. In a differential
treatment, these source variables are the volume density of charge ρ and the cur-
rent density J. Since the variables D and Ȟ are related to them by differential
relations which do not contain physical parameters (Chap. 5), they are also source
variables. The four variables, ρ, J,D, Ȟ, are the protagonists of the second group
of Maxwell’s equations.

The two vectors E and B̌, which are the protagonists of the first group of
Maxwell’s equations, define the configuration of the electromagnetic field, i.e.
they are configuration variables.

To perform the classification in space and time, we need to find for each field
variable the corresponding global variable. To this end, we will apply the rules
explained in Chap. 5, i.e. we will ask ourselves if it is possible to compute a line,
space or volume integral of the field variable we are analysing. If the answer is af-
firmative, then, after integration, we have found a space global variable. Then we
will ask ourselves whether it is possible to perform a time integral of this space
global variable. In this case, after integration, we have obtained a time global vari-
able. In subsequent sections we will show how to obtain global variables directly
from physical measurements, i.e. without using field variables as the starting point.

4 See International Union of Pure and Applied Physics [101].
5 It seems improper to call material laws the relations D = εE and B = μH even in vacuo. But
this is equivalent to constitutive law: see Born and Wolf [18, p. 2].
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Let us consider the vector E, called the electric field strength (see IUPAP).
Note that it makes sense to compute the line integral of this quantity and that the
variable we obtain, which is global in space, is called the electromotive force and
will be denoted by E.6 Does it make sense to compute the time integral of E?
Yes, and this leads us to introduce the electromotive force impulse, which will be
denoted by E . Hence, this variable is global in space and time, and the vector E is
its corresponding time rate and line density.

Let us consider the vector B̌, called the magnetic flux density (see IUPAP). Let
us observe that it makes sense to compute the surface integral of this quantity, and
the variable we obtain, which is global in space, is called the magnetic flux and
will be denoted by Φ. Does it make sense to compute the time integral of Φ? No,
because the magnetic flux is already the time integral of the electromotive force
(weber = volt × second). Hence, the variable Φ is global in space and time, and
the vector B̌ is its corresponding surface density.

Let us consider the vector Ȟ, called the magnetic field strength (see IUPAP).
Let us observe that it makes sense to compute the line integral of this quantity,
and the variable we obtain, which is global in space, is called the magnetomotive
force. It will be denoted by Fm. Does it make sense to compute the time integral
of Fm? Yes, and this leads us to the magnetomotive force impulse, which will be
denoted (by us) by Fm. Hence, this variable is global in space and time, and the
vector Ȟ is its corresponding time rate and line density.

Let us consider the vector D, called the electric displacement (see IUPAP). Let
us observe that it makes sense to compute the surface integral of this quantity, and
the variable we obtain, which will be global in space, is called the electric flux and
will be denoted by Ψ . Does it make sense to perform the time integral of Ψ? No,
since Ψ is an electric charge. Hence, this variable is global in space and time and
D is only its corresponding surface density.

Let us consider the electric charge density ρ. Let us observe that it makes sense
to compute the volume integral of this quantity, and the variable we obtain, which
is global in space, is called electric charge content and will be denoted (by us) by
Qc. Does it make sense to compute the time integral of Qc? No. Hence, this vari-
able is global in space and time, and ρ is only its corresponding volume density.

Lastly, let us consider the vector J, called electric current density (see IUPAP).
We observe that it makes sense to perform its surface integral this quantity and the
variable obtained, which is global in space, is called em electric current I. Does
it make sense to perform the time integral of I? The answer is affirmative and
leads us to the electric charge flow. It will be denoted (by us) by Qf . Hence, this
variable is global in space and time and the vector J is its corresponding time rate
and surface density.

6 See p. 30.
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Thus, we have obtained the six variables E , Φ,Fm, Ψ,Q c,Q f which are global
in space and time. It is interesting, and will be useful, to note that each of the
mentioned space and space-time global variables has a corresponding measuring
device. The tensorial nature of all six of these variables is that of (true) scalars.
Table 10.1 summarizes the variables considered up to now. The second row of the
table specifies the time and space elements, i.e. the classification.

Table 10.1 Field variables of electromagnetism and corresponding global variables

Classification Configuration variable Source variable
Inner space orientation Outer space orientation

[
∼
T,L] [

∼
I , S] [T,

∼
L] [I,

∼
S] [T,

∼
S] [I,

∼
V]

Space-time
global variable

E Φ Fm Ψ Q f Q c

Electro-
motive
force

impulse

Magnetic
flux

Magneto-
motive
force

impulse

Electric
flux

Electric
charge
flow

Electric
charge
content

Space global
variable

E Fm I
Electro-
motive
force

Magneto-
motive
force

Electric
current

Field variable E B̌ Ȟ D J ρ
Electric

field
strength

Magnetic
flux

density

Magnetic
field

strength

Electric
displacement

vector

Electric
current
density

Electric
charge
density

10.3 Source Variables: Space and Time Classification

In the preceding section we deduced the global variables of electromagnetism
from field variables. This is not the best way to find global variables. A more
‘physical’ approach rests on the operational definition of the variables. To do this,
we will define each variable according to its measurement process.

This approach clearly shows the association of the physical variables with
space and time elements endowed with inner or outer orientation.

The source variables are the electric charge, electric flux, electric displacement,
electric charge flow, electric current, electric current density and magnetomotive
force.

10.3.1 Electric Charge Content

The main variable of electromagnetism is the electric charge Q. Since it is not a
density or a rate of another variable, it is a global variable in space and time. It is a
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true scalar despite the fact that a few authors consider it a pseudoscalar.7 Based on
a system description, it is associated with a particle, a body or a system, whereas
based on a spatial description it is split into two variables, i.e. charge content, Q c,
and charge flow, Q f . We know that an electric charge cannot be produced; hence,
there is no corresponding variable denoting charge production. A characteristic
feature of an electric charge is that it is a relativistic invariant. In fact, the value
of an electric charge contained in a given system measured from different inertial
reference systems is the same.8

Space Association. An electric charge can be distributed inside a volume, and
this gives rise to the electric charge density ρ as the charge per unit volume,

hence Q c[
∼
V].

Time Association. The charge content Q c is the amount of charge contained
inside a volume at a given instant, hence Q c[I]. Since it is assumed that an electric
charge does not change sign under a reversal of motion, the time instant cannot
be the dual, and hence it must be the primal, i.e. Q c[I]. In summary, we have the

following space and time association: Q c[I,
∼
V] −→ ρ[I,

∼
V].

10.3.2 Electric Flux

If we place a plane metal surface of arbitrary shape, e.g. a metallic disk, in an elec-
tric field, then two electric charges of opposite sign will be collected by induction
on both faces of the surface. This charge-displacing property is a consequence of
the force-exerting property.9 But while the forces of attraction/repulsion between
two charges depend on the medium (recall Coulomb’s law), the amount of charge
collected on the faces does not depend on the medium. This agrees with the nature
of source variables, as stated previously.

Remark. Be careful not to fall into the error of believing that force is always a source variable.

In fact, the sources of the electromagnetic field are the charges at rest or in motion, while forces

are configuration variables. The dependency on the medium underlines this fact. In contrast, in

mechanical theories, forces are sources. Despite this different role (source and configuration),

we will see that forces are always associated with dual intervals.

If we choose one of the two faces as preferred, the charge collected on it is
called the electric flux and is denoted by the letter Ψ .

7 This is the case with Post [183], Truesdell and Toupin [237, p. 682] and a few others. Nobody
measuring a charge with an electrometer need refer to the right-handed or left-handed screw!
Apart from this disagreement, the present author is a great admirer of Post.
8 Jackson [102, Sect. 11.9].
9 Rojansky [192, p. 230].
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Fig. 10.1 Measure of electric flux on element of surface with outer orientation. N is the normal,
which shows the space direction for which the charge collected on the surface is maximum. This
fact will be useful for introducing the electric displacement

Measurement Process. To measure the electric flux, it is convenient to use a
probe consisting of two small metal discs in contact, each of which is endowed
with an insulating handle.10 When they are placed in a point of the electric field,
two charges of opposite sign are collected on the two discs for electrostatic induc-
tion.11 The amount of the surface charge depends on where you place the discs
and on its space direction, as shown in Fig. 10.1. By placing the two plates in con-
tact, as shown in Fig. 10.1, and then removing them, the induced charges remain
trapped on the two plates and can be measured with an electrometer. Hence, we
have that the electric flux is a function of the position P of the plate, the area of
the surface, the space direction of the plate and the time instant, i.e. Ψ (t,P, n, A).

Space Association. The following experimental observations are essential for
classification and are usually overlooked in books on physics:

1. The charge collected on a metal surface does not depend on the material with
which the metal plate is made.12 This fact enables the electric flux to be directly
associated with the geometric surface, i.e. Ψ [S].

2. The electric flux does not depend on the medium in which the metal surface
is immersed. This fact can be seen by repeating the measurement after placing
oil instead of air in the region.13 This implies that the electric flux is a source
variable. We remark that, in contrast, the electric field strength E depends on
the medium.14

Since in the definition of the electric flux we have set a face as preferred, the
direction in which the flux will go through the surface is automatically set, from
the preferred face to the opposite one, which means that an outer orientation is

given. For this reason we will write Ψ [
∼
S]. This can be marked by means of a

10 Fouillé [72, p. 71], Fleury and Mathieu [71, p. 61], Maxwell [153, p. 47], Rojansky [192,
p. 230], Schelkunoff [201, p. 25], Jefimenko [107, pp. 80, 225], Pohl [178, p. 66], Hehl and
Obukhov [89, p. 133].
11 See the superb and detailed description by Schelkunoff [201, p. 25].
12 Langevin [126, p. 501].
13 Fleury and Mathieu [71, p. 85]. It is understood that the charge on the plates is unchanged.
14 See p. 234.
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normal n. It is evident that if we invert the normal, then the preferred face changes
into its opposite and the same happens for the sign of the electric charge. Hence,

Ψ (−n) = −Ψ (n) oddness principle of Ψ . (10.4)

This property is common to all flows and flow rates, i.e. currents, such as the

current of heat, mass, energy, entropy, probability and momentum (surface force),
and it is not commonly stressed, with the exception of the internal surface force in
the mechanics of continua, where it is written T(−n) = −T(n).

This is a further confirmation that source variables are associated with space
elements endowed with an outer orientation.

Time Association. Since an electric flux is an electric charge, it is associated with
primal time instants, i.e. Ψ [I]. Let us determine the orientation of the time ele-
ment. The sign of the electric charge collected on the two plates does not change
if we perform a reversal of motion; hence, the electric flux is invariant under a
reversal of motion. This means that the instant is primal, i.e. Ψ [I].

Surface Charge Density. σ is the surface density of Ψ and inherits from it the

space association, i.e. σ[
∼
S]. We will discuss the time association subsequently.

10.3.3 Birth of Electric Displacement

Uniform and Static Electric Field. Let us consider an electric field which is
uniform and static, such as that between the plates of a parallel plate capacitor
(Fig. 10.2). We stated above that the electric fluxΨ collected on a disc is a function
of the position P of the disc, of area A with a normal n, i.e. Ψ (P, n, A). In fact,
experiments show that

1. The electric flux collected on a face of unit normal n is proportional to the area
of the disc;

2. There is a preferred direction N for which the electric flux is maximum in
algebraic value and, as such, positive;

3. The electric flux in any other orientation given by the unit normal n equals this
maximum flux multiplied by the cosine of the angle α between n and N.

Property 1 leads us to factorize the electric flux as follows:

Ψ (n, A) = σ(n) A, (10.5)
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a
a b

Fig. 10.2 (a) In a uniform and static electric field, the electric flux associated with a flat surface
is invariant under space and time translation. (b) The direction of D is that of maximum σ

where σ(n) is the surface charge density which depends on the space orientation
of the surface element of area A.15

Property 2 states that there exists a special direction N for which

σ(N) = σmax . (10.6)

Property 3 states that

σ(n) = σmax cos(α) = σmax N · n
= (σmax N) ·n = D · n, (10.7)

where we have introduced the new variable

D
def
= σmax N (10.8)

called the electric displacement. Thus, we can write relation 10.5 in the form
Ψ (n, A) = D · n A. Hence, the electric displacement D is orthogonal to the face of
the maximum positive flux.16 The vector D inherits from Ψ the space association,

i.e. D[
∼
S]. For the time association we must analyse what happens in a non-static

field. Recall that the association with time elements also has meaning in statics
because it is involved in the process of measuring the physical variable.

Electric Field in General. Let us consider a generic electric field, i.e. one that
is neither uniform nor static. This time the electric flux is a function of the time
instant t too, i.e. Ψ (t,P, n, A). Since the field is no longer uniform, the flux is
no longer proportional to the area, and proportionality becomes increasingly true
when contracting the plane surface. This leads us to define

σ(t,P, n)
def
= lim

A→0

Ψ (t,P, n, A)
A

, (10.9)

where σ(t,P, n) = D(t,P) ·n; see Eq. 10.7. If we add time, it follows that

15 Here the term orientation refers to the space direction.
16 Rojansky [192, p. 230].
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Ψ =

∫
∼
S
σ(t,P, n) dS =

∫
∼
S

D(t,P) · n dS −→ D[
∼
S]. (10.10)

This shows, even more clearly, that D(t,P) inherits the space association with
∼
S

from Ψ .

Remark. Equation 10.10 is often taken as a definition of electric flux, which presupposes that

D is already defined. In contrast, it is better to start from Ψ because it is a measurable variable

and then to deduce D by Eq. 10.8.

Time Association. The electric flux Ψ is associated with the primal instants I,
and both σ and the vector D inherit the same association. In summary we have

Ψ [I,
∼
S] −→ σ[I,

∼
S] −→ D[I,

∼
S].

10.3.4 Critical Remarks

We must take into account that the electric flux collected on a small metallic disc,
considered as a probe, does not depend on the medium, whereas the force on a
small charge q, considered as a test charge, and hence the vector E, does depend
on the medium. Hence, the vectors E and D measure two different attributes of an
electric field, like strain and stress in continuum mechanics. Moreover, the electric
field strength is a configuration variable, whereas the electric displacement vector
is a source variable. This distinction does not depend on the medium; in particu-
lar, it is also valid in vacuum. Hence, the relation D = ε0E is a constitutive, not
defining, equation. The situation is similar to the equation p = mv of mechanics,
which is commonly considered a defining equation for momentum, whereas it is
a constitutive equation.17

We remark that is not natural to take the flux of E just as it is not natural to take
the flux of a force from which E derives.

10.3.5 Electric Charge Flow and Electric Current

Space Association. It is natural to associate the electric charge that flows through
a surface with a surface. Since the notion of going through a surface presup-
poses an outer orientation, the surface must be endowed with an outer orientation,

i.e. Q f[
∼
S].

Time Association. To evaluate the amount of electric charge flow, we need to
consider a lapse of time, that is a time interval. Since under a reversal of motion

17 See p. 250.
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the sign of an electric charge flow reverses, it follows that the time interval is
endowed with an inner orientation, i.e. Q f[T].

Electric Current. The electric current I is the rate of the electric charge flow Q f ;
hence, it inherits the association with the same time and space elements. In sum-

mary we have Q f [T,
∼
S] −→ I[T,

∼
S].

10.3.6 Birth of Electric Current Density Vector

Let us first consider a uniform and stationary flow of electric charge. Let us

consider an outer oriented surface element
∼
S and an electric charge Q f flowing

through it. Since the flow is uniform, Qf is proportional to the area A of the sur-
face element and depends on its space orientation, which is represented by the
unit normal n. Moreover, since the flow is also stationary, Qf is proportional to the
elapsed time interval T . This double proportionality leads us to write

Q f(T, n, A) = I(n, A)T = j(n) A T, (10.11)

where we have introduced the electric current density j(n), which depends on the
space orientation18 of the surface element. Changing this orientation we find the
orientation for which the electric current density reaches its maximum. Denoting
by N the oniy normal corresponding to this maximum, we write

jmax = j(N) . (10.12)

The current density j(n) can be expressed as the product of jmax with the cosine
of the angle α between n and N, hence

j(n) = jmax cos(α) = jmax(N · n) = ( jmaxN) · n. (10.13)

This suggests the need to introduce the vector

J
def
= jmaxN (10.14)

called an electric current density vector. We can rewrite Eq. 10.11 as

Q f(T, n, A) = J · n A T. (10.15)

Being a surface density, J inerits from Q f the association with a surface endowed

with an outer orientation, i.e. J[
∼
S]. The time association is discussed in what fol-

lows.

18 Here the term orientation refers to the direction in space.
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In a space region in which the electric charge flow is neither uniform in space
nor stationary in time, the decomposition which leads to Eq. 10.15 maintains its
validity for an infinitesimal time interval dt and an infinitesimal surface element
of area dS , whereas the vector J depends on the instant t and on the point P of the
region. Let us introduce the infinitesimal electric charge flow qf, defined as

qf(dt, n, dS ) = J(t,P) ·n dS dt . (10.16)

The electric charge flow across a surface
∼
S in a time interval T, which is a primal

interval, can be expressed in the form

t

∼
T− ∼

T+

I − I +
T

Qf =

∫
T

∫
∼
S

J(t,P) · n dS dt .
(10.17)

Hence, J inherits from Qf the space and time association. In summary, we have

Qf[T,
∼
S] −→ I[T,

∼
S] −→ J[T,

∼
S].

10.3.7 Electric Vector Potential

In the theory of antennas19, it is sometimes useful to introduce the electric pseu-
dovector potential F̌ in those regions where ρ = 0. Since div D = 0, the vector
D plays a role similar to that of the magnetic vector potential A for B̌ in diagram
[ELE2], i.e. D = curl F̌, see diagram [ELE4] (p. 313).20

Space Association. Since the electric flux Ψ is associated with surfaces endowed
with an outer orientation, and since the line integral of the electric pseudovector
F̌ along the boundary of a surface is equal to the electric flux associated with
the surface, as follows from the defining relation D = curl F̌, it follows that F̌ is

associated with lines endowed with an outer orientation, i.e. F̌[
∼
L]. We remark that

the line integral of a vector can be evaluated along a line endowed with an inner
orientation (the most common case) but also with lines endowed with an outer
orientation, such as in the magnetomotive force.

Time Association. Since there is no operational definition of the vector F̌, un-
like what has been done up to now, we will deduce the association by analysing
the equation that defines it. Since the defining relation D = curl F̌ does not in-

19 Milligan [159, p. 49].
20 These labels refers to the classification diagrams compiled at the end of the chapter. A com-
plete list of the classification diagrams and the corresponding pages can be found on p. xx.
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volve a rate or a time derivative, it follows that F̌ is associated with the primal

time instants, just as the electric flux; hence, we have F̌[I,
∼
L].

10.3.8 Magnetic Field Strength

Let us consider a solenoid carrying a current: we aim to characterize the intensity
of the magnetic field inside the solenoid. If we perform measurements using, say,
a Hall probe, then we discover that the magnetic field is approximately uniform
inside the solenoid and approximately null outside the solenoid. This indicates that
the field is almost entirely confined inside the solenoid. This is similar to what
happens in the electric field inside and outside a parallel plate capacitor. If we
increase the length of the solenoid and decreases its diameter, then the uniformity
of the field inside and its cancellation outside become more and more pronounced.
This leads us to consider a solenoid as a tube and then to assimilate it to a line.

Since with such a solenoid measurements are impossible, we return to an or-
dinary solenoid.21 Let us insert a magnetic needle in the solenoid. In the absence
of current, the magnetic needle assumes a south–north direction. Using a torsion
balance (Fig. 10.3b) we rotate the thread of the balance to bring it orthogonal to
the axis of the solenoid.

At this point, given a current i in the solenoid, the magnetic needle rotates,
tending to become parallel to the axis of the solenoid. This is contrasted by the
elastic couple generated by the torsion of the thread. Applying a torque we re-
port the magnetic needle in the initial position, a right angle with the axis of the
solenoid. The angle of rotation of the thread (to restore the orthogonality of the
needle to the coil axis) becomes a measure of the field intensity.

Denoting by N the number of turns of the whole coil, the concentration of the
coils is expressed by the ratio N/L. Experimentally one sees that taking a first coil
of length L1 with N1 turns and current i1 and then a second coil of length L2 with
N2 turns and current i2, the same torque (and therefore the same initial rotation of
the magnetic needle) is realized when the condition

N1i1
L1
=

N2i2
L2

(10.18)

is satisfied. Clearly, the equality of the rotation, and hence of the torque, indicates
the equality of the fields inside the two coils. It follows that the scalar

H
def
=

N i
L

(10.19)

is suitable for characterizing the intensity of the magnetic field.

21 The following description is in Pohl [179, p. 86].
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Fig. 10.3 Torsion balance to measure magnetic field strength. (a) what is significant for the
intensity of the magnetic field is the product of the current for the number of loops, hence (2i) N
= i (2N); (b) the operation of measurement of H

The scalar variable H is not an exhaustive characterization of the intensity of
the magnetic field because the current in the coil may have two opposite direc-
tions. Moreover, the axis of the solenoid has a space direction. These two features
require the introduction of a vector instead of a scalar. The line of action of the
vector is the axis of the solenoid; it remains to find its direction. To this end, we
must associate an inner orientation of the axis to the direction of the current flow-
ing in the solenoid, i.e. around the axis.

To determine the side to which the needle rotates, we should choose a direction
of the axis of the solenoid (as in the definition of the angular velocity vector in
a rotating body). This direction is given by the usual screw rule applied to the
direction of the current. Let ť be the unit pseudovector indicating the oriented
direction. This requires the use of the screw rule. In this way, one can introduce
a unit vector along the line which, on account of the use of the screw, is an axial
vector (≡ pseudovector) ť. This leads us to consider the pseudovector

Ȟ
def
=

N i
L

ť , (10.20)

which is called the magnetic field strength. The magnetic field strength is a phys-

ical variable associated with a line endowed with an outer orientation, i.e. Ȟ(
∼
L).

Since the electric current is associated with time intervals endowed with an
inner orientation, i.e. I[T], it follows that the magnetic field strength is also asso-

ciated with the same time element, hence Ȟ[T,
∼
L].
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10.3.9 Magnetomotive Force

This physical variable H defined by Eq. 10.20 can be thought of as the line density

of a global variable Fm
def
= Ni called the magnetomotive force because it resembles

the electromotive force which moves the current in a wire. In addition, the mag-

netomotive force, which is the space global variable of Ȟ(
∼
L), is associated with

lines endowed with an outer orientation, i.e. Fm(
∼
L).

If the magnetic field is not uniform, then this definition is generalized:22

Fm
def
=

∫
∼
L

Ȟ · ť dL . (10.21)

Hence, Fm inherits from Ȟ the space and time associations. In summary, Ȟ[T,
∼
L]

−→ Fm[T,
∼
L].

Remark. A parallel exists between D and Ȟ. The analogue of a capacitor with parallel flat

faces in electrostatics is a straight solenoid in magnetostatics. Just as in the interior region of a

capacitor with sufficiently large flat plates the electric field is essentially uniform, so in the inte-

rior of a sufficiently long straight solenoid the magnetic field is essentially uniform. A capacitor

with parallel and flat faces was the workhorse of Faraday just as the solenoid was the workhorse

of Ampère.

We list here a comparison of the four field vectors of electromagnetism.

Electric field Magnetic field

E =
Vmax

L
t D =

Ψmax

A
n Ȟ =

Fmax

L
ť B̌ =

Φmax

A
ň

Electromotive force/
length

Electric flux/
area

Magnetomotive force/
length

Magnetic flux/
area

(10.22)

Measurement of Magnetomotive Force. How can we measure the magneto-
motive force in a magnetic field? With reference to Fig. 10.4, let us consider the
magnetic field generated by a long straight wire carrying a current of intensity I.
Let us consider a small line segment L situated tangentially to the vector lines of
the magnetic field. Let us put around L a closely wound coil that will be called a
compensating coil. This causes us to measure the magnetomotive force Fm along
the line L as the opposite of the total current n i which causes the field inside the
compensating coil to vanish; hence, Fm = −n i.

22 Fleury and Mathieu [71, vol. 6; Sect. 9.8].
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Fig. 10.4 (a) Compensating coil for measuring Fm and Ȟ. (b) The sign of the current in the
compensating coil must be such that the magnetic field inside the coil vanishes. (c) This can be
tested with a Hall probe

An equivalent way of doing the test is to consider a small tube of supercon-
ducting material. The tube is crossed by a uniform current I′ = ni which makes
the internal field vanish. Experience tells us that the current needed to obtain this
result does not depend on the medium or on the nature of the wire of the compen-
sating coil.23 This agrees with the fact that this is a source variable.

Space Association. The direction of the current in a solenoid induces an outer ori-
entation on the line segment which we will denote by

∼
L. Hence, we can associate

Fm with this oriented line segment, i.e. Fm[
∼
L]. A further proof of the association

with lines endowed with an outer orientation is that the value of the magnetomo-
tive force depends on the direction of the current in the solenoid; hence, it changes
sign when we invert the direction of the current. Since in its definition there is no
intervention of the screw, it follows that passing from a right-handed to a left-
handed screw Fm does not change the sign, i.e. it is a true scalar. The Table 10.2
shows the tensorial nature of the variables of electromagnetism.

Time Association. As previously stated, the electric current I is the rate of elec-
tric charge flow Q f , the latter being associated with primal time intervals, Qf[T].
The magnetomotive force is essentially a current, hence Fm[T].

10.3.10 Scalar Magnetic Potential

Let us consider a region of space where there are no currents and which is simply
connected. From Ampère’s law the magnetomotive force along any closed line is
zero. It follows that we can associate to each point P a magnetic potential φ̌m(P)
defined as the line integral from the point P to a fixed point O of the region. The
line will be endowed with an inner orientation so that the unit tangent vector t is a

23 Langevin [127, p. 501], Fouillé [72, p. 224], Pohl [179, p. 66], Schelkunoff [201, p. 41], Hehl
and Obukhov [89, p. 137].
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Table 10.2 Tensorial nature of space-time global variables and of field variables of electromag-
netism

Configuration variable Source variable

Space-time Space-time

global variable Field variable global variable

(true) scalar (true) scalar

ϕ, χ φ, χ (True) scalar ρ Qc

E , a E,A (Polar) vector D, J Ψ,Qf

Qf
m, Φ J̌m, B̌ Pseudovector F̌, Ȟ Fm

Qc
m ρ̌m Pseudoscalar φ̌m ϕ̌m

polar vector. It is convenient to choose the point O far enough where the magnetic
field vanishes, or, as is commonly said, at ‘infinity’. Hence,

φ̌m(P)
def
=

∫ ∞

P
Ȟ · t dL from which Ȟ = −∇φ̌m . (10.23)

With reference to Fig. 10.5, in the case of a loop crossed by a current, choosing
for convenience, for example, a point P on the axis of the loop, the computation
of the integral Eq. 10.23 yields

φ̌m = −
I
2

[1 − cos(θ)] = −I
Ω̌

4π
, (10.24)

where Ω̌ is a solid angle.

Remark. In plane trigonometry, the angles are endowed with a sign depending on their an-

ticlockwise or clockwise orientation. In addition, in spherical trigonometry, we can consider

oriented solid angles. It is enough to give an inner or an outer orientation to the spherical surface

used to evaluate the solid angle. When endowed with an inner orientation the solid angle Ω is a

pseudoscalar; hence, we put a check on it, i.e. Ω̌. The solid angle, when endowed with an inner

orientation, is indispensable for giving to the relation of Eq. 10.24 invariance with respect to the

inversion of orientation.

Space Association. The physical variable φ̌m is associated with a point and de-

pends on its outer orientation, i.e. φ̌m[
∼
P]. In fact, with reference to Fig. 10.5, we

see that the sign of the magnetic potential due to a loop depends on the direction of
the current on the loop. This direction indicates an outer orientation of the point;
hence, φ̌m is a pseudoscalar.24

24 Jouguet [110, vol. II; p. 31].
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Fig. 10.5 The scalar magnetic potential at a point depends on the outer orientation of the point

Time Association. Since the magnetomotive force Fm is associated with primal
time intervals, it follows that the pseudoscalar magnetic potential inherits from it

the association with the primal time intervals, i.e. φ̌m[T,
∼
P].

10.4 Configuration Variables: Space and Time Classification

These are the electric field strength, the electromotive force, the electromotive
force impulse, the electric potential, the electric potential impulse, the magnetic
flux and the magnetic flux density.

10.4.1 Electric Field Strength

If we insert a small charge q in an electrostatic field, a charge so small that its
influence on the charges generating the field can be neglected, it experiences a
force that depends on the medium. Let us remark, as stated previously, that the
force here is not the source of the field because the source is the electric charge.
Experiments show that the force F is proportional to the charge, i.e. F ∝ q. This

leads to the introduction of the ratio E
def
= F/q, which is called the electric field

strength, which no longer depends on the test charge, just as the price of goods no
longer depends on the quantity of goods.

Space Association. If we perform a line integral of the electric field strength, then
we obtain another physical variable called the electromotive force. Hence, E is not
a global variable but a line density, and this implies that it must be associated with
lines endowed with an inner orientation, hence E[L], as is shown in more detail in
the next section.

Time Association. The force does not change sign under a reversal of motion, and
since the electric charge q is also invariant under a reversal of motion, it follows
that E is invariant under a reversal of motion, i.e. it is time even. Since the force
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is associated with dual time intervals, i.e. F[
∼
T], it follows that also E is associated

with dual time intervals, i.e. E[
∼
T]. In summary we have F[

∼
T] −→ E[

∼
T].

10.4.2 Electromotive Force and Its Impulse

Recall that in a field of force the line integral of the force along a line is the virtual
work; this has nothing to do with the actual work, which does not presuppose a
field of force but a single force and which needs an actual displacement of its point
of application. The actual work depends on the motion of the point of application
of the force, while the virtual work depends only on the line used to perform the
line integral. Performing the line integral of the electric field strength E

E
def
=

∫
L

E(t,P) · t dL (10.25)

we obtain the virtual work per unit charge.25 This physical variable is the electro-
motive force and the SI units are joule/coulomb = volt.

Space Association. The electromotive force E is associated with a line endowed
with an inner orientation, i.e. E[L]. Since the electromotive force is a configura-
tion variable, we have here a confirmation that configuration variables are associ-
ated with space elements endowed with an inner orientation.

Time Association. Since the electric field strength is associated with dual time
intervals, the electromotive force is also associated with dual time intervals, hence
E[
∼
T]. Since it makes sense to compute the definite time integral of a force, ob-

taining the impulse,26 it also makes sense to introduce the definite time integral of

electromotive force over a dual time interval
∼
T, which we call the electromotive

force impulse and which will be denoted by E .

E
def
=

∫
∼
T

∫
L

E(t,P) · t d L dt . (10.26)

The electromotive force impulse is a global variable in both time and space. It
can be seen that the electric field strength is a line density and the rate of E ; hence,
it inherits from it the space and time association that we have just obtained using

another method. In summary, we have E [
∼
T,L] −→ E[

∼
T,L] −→ E[

∼
T,L].

25 See p. 256 for the role of virtual work in field theories.
26 See p. 243.
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10.4.3 Electric Potential

The electrostatic field possesses the property that the electromotive force between
any couple of points A and B does not depend on the line connecting the two
points. This suggests that we should consider a reference point O and, for every
point P, the integral

φ(P)
def
=

∫ O

P
E · t dL (10.27)

and to call this the electric potential of the field at the point P. Note the order of
points: the initial point is the point P and the final point is the reference point O.
The electromotive force can be expressed as a potential difference,

E(t,A,B) = φ(t,A) − φ(t,B), (10.28)

in which we must pay attention to the order of the points.27 From this relation

follow φ[
∼
T,P] and E = −grad φ. The electric potential is not global in time: one

can introduce the electric potential impulse defined as

ϕ(t)
def
=

∫ t

0
φ(t′) dt′ , (10.29)

a time and space global variable not commonly used.

10.4.4 Magnetic Flux

To present the magnetic flux, we use the electromotive force impulse. Let us con-
sider a region which is the site of a magnetic field generated by an electromagnet.
To describe the configuration of the magnetic field at a point and at an instant, let
us consider a probe formed by a small coil in the form of a plane loop, as shown
in Fig. 10.6. Let us connect the two ends of the wire to a digital voltmeter. When
we switch off the field, a short pulse of current is generated in the loop. Register-
ing the electromotive force as a function of time during the shutdown we obtain a
curve like the one shown in the bottom part of Fig. 10.6. Experiments show that,
while the current in the loop is a function of time and depends on the resistance
of the wire, the time integral of the electromotive force during the shutdown, i.e.
the electromotive force impulse E , depends neither on the wire resistance nor on
the way the electromagnet is switched off. Moreover, the electromotive force im-
pulse also depends on the medium in which the flat coil is embedded, and this is a
confirmation that it is a configuration variable. Hence, the quantity

27 Olivieri and Ravelli [170, p. 21].
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Fig. 10.6 By removing the magnetic field a short pulse of current is induced in the coil (the
probe). This short pulse implies an electromotive force impulse at the terminal of the coil

E
def
=

∫ T

0
E(t) dt =

∫ T

0

∫
∂S

E · t dL dt (10.30)

evaluated along the loop ∂S characterizes locally the magnetic field. We remark
that the interval [0, T ] must cover the switching off of the magnetic field. With
regard to the sign of the electromotive force impulse, one must choose arbitrarily
a positive direction on the loop. If the current generated by the switching goes in
the chosen positive direction, then the electromotive force impulse is considered
positive; otherwise it is negative.

Space Association. What is significant for the classification is that in a region
of a uniform magnetic field like that inside a solenoid, the electromotive force im-
pulse thus registered is proportional to the area enclosed by the loop and does not
depend on the shape of the loops enclosing the same area. Moreover, experiments
show that the electromotive force impulse depends on the space orientation on the
flat coil. The proportionality to the area of the surface indicates that the electro-
motive force impulse is associated with the surface element S enclosed by the flat
coil. Hence, the electromotive force impulse is called the magnetic flux of the field
across the surface S and it is denoted by Φ.

As we have seen, in this experiment, there is nothing that goes ‘through’ the
surface of the loop. Instead it is the direction of the current in the coil, hence the
boundary of the surface, which determines the sign of the flow. From this fact it
follows that the magnetic flux is associated with a surface endowed with an inner
orientation, i.e. Φ[S]. The fact that this variable depends on the medium and is
associated with an inner orientation is a confirmation that it is a configuration
variable.

Time Association. The measure of the magnetic flux depends on the existing
magnetic field before it is turned off; it does not depend on the duration of the
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shutdown. If the magnetic field is turned on, then the induced electromotive force
impulse is opposite to that registered during the turning off, as shown in the bottom
part of Fig. 10.6.

Moreover, the reversal of motion implies that the electric current in the electro-
magnet is switched on and, hence, the electric current induced in the coil goes in
the opposite direction. This means that the current, the electromotive force and the
electromotive force impulse, i.e. the magnetic flux, change sign under a reversal of
motion; hence, the electromotive force impulse and the electric flux are associated
with dual time instants

∼
I , i.e. E [

∼
I ] and Φ[

∼
I ]. In global terms we can write

magnetic flux Φ[
∼
I , S]

def
= E [

∼
I , ∂S] turning off the field. (10.31)

10.4.5 Magnetic Flux Density

To introduce the magnetic flux density vector B̌, we proceed in the same way
as we did for the electric displacement D. First, we consider the magnetic flux

density b
def
= Φ/A whose dimensions are Wb/m2, i.e. tesla. The magnetic flux

density b depends on the point P of the region and on the space orientation of
the surface. This suggests the need to introduce a unit vector n orthogonal to
the surface element, hence b(P, n). Since the surface element is endowed with an
inner orientation, i.e. S, we make use of the screw rule to assign a direction normal
to the surface element. Hence, the vector n is a pseudovector and will be denoted
by ň.28

Let us observe that among the space directions sorting from P there will surely
be one, i.e. Ň, for which b assumes the maximum value. It is an experimental fact
that the value b(P, ň) for an arbitrary normal from P is linked to the value bmax by
the relation

b(P, ň) = bmax(P) cosα = bmax(P) (Ň · ň) = [bmax(P) Ň] · ň . (10.32)

This leads us to introduce the vector B̌, defined as

B̌(P)
def
= bmax(P) Ň (10.33)

called the magnetic flux density vector. Let us remark that, since Ň is a pseudovec-
tor, then B̌ is also pseudo. It is obvious that the magnetic flux Φ on a surface S can
be expressed in the form29

28 See p. 145.
29 Fournet [73, p. 48].
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Φ =

∫
S

B̌(P) · ň dS . (10.34)

This relationship is often taken as a definition of magnetic flux. In contrast, we
should take the relationship Eq. 10.33 as a definition of the vector B̌ because the
flux Φ is directly measured, whereas B̌ is evaluated as the density. The magnetic
flux is the overall magnitude associated with a surface, whereas the magnetic flux
density vector B̌(P) is a kind of ‘price’ whose advantage is that it is independent
of the area and of the space orientation of the plane surface element S.

The magnetic flux Φ is a quantity associated with a surface and is a domain
function, whereas B̌(P) is a point function and inherits from Φ the association

with S and
∼
I . In summary Φ[

∼
I , S] −→ B[

∼
I , S].

Figure 10.7 shows a parallel between the measures of E and of B̌.

10.4.6 Summary of Physical Variables of Electromagnetism

Table 10.1 on p. 276 shows the space-time global variables of electromagnetism,
the corresponding space global variables and field variables. Table 10.3 summa-
rizes the main global variables of electromagnetism and their link with field vari-
ables. In the integrals the inner or outer orientatin of the space element is shown.
Thus, the magnetic flux Φ is associated with a surface endowed with an inner
orientation, whereas the electric flux Ψ requires an outer orientation. The same is
true of the impulses of the electromotive force and magnetomotive forces which
are associated with lines: the former is referred to lines endowed with an inner ori-
entation, whereas the latter is referred to lines endowed with an outer orientation.

Mt

F

+
-

Mt

F

a b

P

Q

Fig. 10.7 (a) The electric field vector E measures the force acting on an electric charge. (b) The
magnetic induction vector B̌ measures the force acting on a linear element of current
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We stress that the behaviour of electromagnetic variables under a reversal of
motion and space reflection (parity) resulting from their position inside the classi-
fication diagram is in full agreement with the behaviour found in the literature.30

10.5 Field Laws

In the following subsections we will analyse the four equations of the electro-
magnetic field: Gauss’ law, Gauss’ law for magnetism, Faraday’s electromagnetic
induction law, the Ampère–Maxwell law. We want to write these equations in
global terms and then deduce them in differential form (see Tables 10.4–10.7).

Table 10.3 Global physical variables expressed as integrals. The global variable on the left side
all have the same physical dimension, that of the magnetic flux; those on the right also have the
same physical dimension, that of the charge

Configuration variables Source variables
Space: inner orientation Space: outer orientation

Time: outer orientation Time: inner orientation

Gauge
function χ Electric

charge production Qp =

∫
T

∫
∼
V
σ dV dt

Electric
potential impulseϕ =

∫
∼
T
φ dt Electric

charge content Qc =

∫
∼
V
ρ dV

(Nameless) a =
∫

L
A · t dL Electric

charge flow Qf =

∫
T

∫
∼
S

J · n dS dt

Electromotive
force

impulse
E =

∫
∼
T

∫
L

E · t dL dt Electric
flux Ψ =

∫
∼
S

D · n dS

Magnetic
flux Φ =

∫
S

B̌ · ň dS
Magnetomotive

force
impulse

Fm =

∫
T

∫
∼
L

Ȟ · ť dL dt

Magnetic
charge flow Gf =

∫
∼
T

∫
S

J̌m · ň dS dt (Nameless) f =
∫
∼
L

F̌m · ť dL

Magnetic
charge content Ǧc =

∫
V
ρ̌m dV Magnetic

potential impulse ϕ̌m =

∫
T
φ̌m dt

Magnetic
charge production Ǧp =

∫
∼
T

∫
V
σ̌m dV dt Dual gauge

function η̌

Global variables, SI unit: weber Global variables, SI unit: coulomb

30 See Jackson [102, Sect. 6.10].
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The global formulation has some advantages: it is more intuitive, it is closer to
a verbal formulation; it is also valid when the lines, surfaces and volumes cross
or contain different materials, in contrast to the differential formulation, which
obligates us to introduce jump conditions.

10.5.1 Gauss’s Law

Faraday discovered that if a charge Q is enclosed within a spherical metallic shell,
then an equal charge with the same sign appears on the surface of the sphere. He
verified that the external field is symmetrical even if the ball is not concentric with
the charge (Fig. 10.8). If the external surface charge is removed by momentarily
placing the shell in contact with the ground, then an equal surface charge, with
opposite sign with respect to the charge inside the case, is collected on the internal
surface and can be measured.31 The charge collected on the external surface of the
metal case

+
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+

+

+

+
-
-
-
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+

+
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+ +

+

+

+

+ -
-
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-

+

Fig. 10.8 The charge induced on the external surface of a metal shell is equal to the charge
contained inside the surface

• Does not depend on the medium surrounding the charge32;
• Does not depend on either the shape or the size of the metal.

This law, which is the electrostatic induction law, is the experimental starting point
of what is known today as Gauss’s law. We want to express in words and in global
terms Gauss’s law as follows: at every instant, the electric flux Ψ on the boundary
of a volume is equal to the electric charge Q contained in the volume.

Table 10.4 shows the preceding statement and the law written in a global for-
mulation. The differential form of the first law of electrostatics could be obtained
by introducing the densities of previously presented variables. This deduction is
also shown in Table 10.4.

31 Schelkunoff [201, p. 24].
32 Jordan and Balmain [109, p. 31].
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Table 10.4 From the verbal statement to the differential formulation of Gauss’s law

10.5.2 Gauss’s Law for Magnetism

Gauss’s law for magnetism is quickly established experimentally. Let us consider
a polyhedron, say a tetrahedron on whose faces are coils, as shown in Fig. 10.9
(right). Since the electromotive force impulse E along every edge of a coil is
opposite to that of the edge of the adjacent coil, the sum of all magnetic fluxes of
the faces, automatically vanishes.

Fig. 10.9 Devices to prove Gauss’ law: (left) for electrostatics; (right) for the magnetic field
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a b c d

Fig. 10.10 Gauss’s law for magnetism: (a) one possible way to form three loops with a single
wire; (b) and (c) two pairs of three loops; (d) the sum of two electromotive forces (hence of their
impulses) vanishes

This means that at every instant the magnetic flux Φ on the boundary of the
volume vanishes. You can do this experiment using the device shown in Fig. 10.10
(right).

We want to express in words and in global terms Gauss’s law for magnetism
as follows: at every instant the magnetic flux Φ on the boundary of a volume
vanishes.

This statement and the law written in global terms is shown in Table 10.5. The
differential form of Gauss’s law of magnetism could be obtained by introducing
the densities of previously presented variables. This deduction is also shown in
Table 10.5.

Table 10.5 From the verbal statement to the differential formulation of Gauss’s law of mag-
netism
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10.5.3 Faraday’s Electromagnetic Induction Law

Experiments tell us that a time variation of a magnetic field implies the birth of
an electric field. To describe this phenomenon, we must choose two physical vari-
ables, one for the magnetic field and another for the electric field. In line with the
viewpoint we have taken in this book, we will choose two global variables, i.e. the
magnetic flux Φ and the electromotive force E. We want to express in words and
in global terms Faraday’s electromagnetic induction law as follows: the impulse of
the electromotive force E along the boundary of a surface in a time interval plus
the time variation of the magnetic flux Φ in the time interval is equal to zero.

Table 10.6 summarizes this statement and the law written in global terms. The
differential form of Faraday’s electromagnetic induction law could be obtained by
introducing the densities of previously presented variables.

Table 10.6 From the verbal statement to the differential formulation of Faraday’s law
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10.5.4 Ampère–Maxwell Law

The electromagnetic field arises as an interaction between an electric and a mag-
netic field. Since the variation of a magnetic field generates an electric field, a
variation in an electric field generates a magnetic field. The passage of electric
charges across a surface and the time variation of the electric flux on the surface
generate an impulse of the magnetomotive force along the boundary of the sur-
face. We want to express in words and in global terms the Ampère–Maxwell law
as follows: the impulse of the magnetomotive force Fm on the boundary of a sur-
face during a time interval minus the time variation of the electric flux Ψ in the
time interval is equal to electric charge flow across the surface in the time interval.

Table 10.7 From the verbal statement to the differential formulation of Ampère’s law
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Fig. 10.11 Simplest devices for illustrating the four Maxwell equations (top) and the three con-
stitutive equations (bottom)

Table 10.7 summarizes this statement and the law written in global terms. The
differential form of the Ampère–Maxwell law could be obtained by introducing
the densities of previously presented variables (Fig. 10.11).

Table 10.8 shows different formulations of Maxwell’s equations.

10.6 Space-Time Representation of Maxwell’s Equations

The fact that physical variables are associated with space and time elements im-
plies that the field equations linking them involve space regions, such as squares,
cubes and hypercubes. Thus, a circuital equation can be referred to a square and
a balance equation can be referred to a cube. Moreover, a circuital equation in-
volving also time, like Ampère’s and Faraday’s laws, can be referred to a cube
obtained by extrusion of a square: the third dimension is the time axis. To put it
equivalently in words, these two circuital laws can be associated with a cube in
a three-dimensional space-time x, y, t. We want to show that the eight scalar field
equations can be associated with a cube in space-time, i.e. a hypercube.
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Table 10.8 Various descriptions of Maxwell’s equations

Algebraic formulation

Gauss magnetic

Faraday

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φ [
∼
I , ∂V] = 0

E [
∼
T, ∂S] + Φ [∂

∼
T, S] = 0

Gauss electric

Ampère–Maxwell

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ψ [I, ∂

∼
V] = Qc [I,

∼
V]

Fm [T, ∂
∼
S] − Ψ [∂T,

∼
S] = Qf [T,

∼
S]

Numerical formulation (for notation see Fig. 7.3, p. 189)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
j

d̄k j Φ[t̃n, s j] = 0

∑
i

c̄ ji E [τ̃n+1, li] +
{
Φ[t̃n+1, s j] −Φ[t̃n, s j]

}
= 0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
i

d̃hi Ψ [t̄n, s̃i] = Qc[t̄n, ṽh]
∑

j

c̃i j Fm[τn, l̃ j] −
{
Ψ [t̄n+1, s̃i] − Ψ [t̄n, s̃i]

}
= Qf[τn, s̃i]

Integral formulation
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫
∂V

B̌ · ň dS = 0

∫
∼
T

∫
∂S

E · t dL dt +

[∫
S

B̌ · ň dS

]t+

t−
= 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
∂
∼
V

D · n dS =

∫
∼
V
ρ dV

∫
T

∫
∂
∼
S

Ȟ · ť dL dt −
[∫

∼
S

D · n dS

]t+

t−
=

∫
T

∫
∼
S

J · n dS dt

Differential formulation ⎧⎪⎪⎨⎪⎪⎩
div B̌ = 0

curl E + ∂tB̌ = 0
⎧⎪⎪⎪⎨⎪⎪⎪⎩

div D = ρ

curl Ȟ − ∂tD = J
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10.6.1 Visualizing Space-Time

In physics it is convenient to consider time as a fourth coordinate, added to the
three space coordinates, and this becomes space-time. Space-time, which ap-
peared with the advent of relativity, involves metrical properties.

We start by posing a question: is it possible to visualize the fourth dimension?
The answer is that it is possible using the projection of space-time objects in three-
dimensional space. To understand what this means, let us observe that when we
draw a cube on a sheet of paper, we represent it by two squares whose homologous
vertices are connected by a straight line, as shown in Fig. 10.12. This means that
to ‘see’ a cube, which is an object of three-dimensional space, we project it in
two-dimensional space, as shown in Fig. 10.12. Note that the lateral faces of the
cube, which are squares, are projected into trapezoids in the perspective projection
and in parallelograms in the axonometric projection. Up to now we have shown a
static view.

Now let us consider a kinematic view, so we can visualize the fourth dimension.
A cube can be conceived of as being generated by the translation of a square or as
a contraction (or dilatation) of a square, as in Fig. 10.13.

By kinematic view we mean the registration of different positions of an object
at different time instants, as shown in Fig. 10.14. Thus, as a train approaches, its
shape expands, but as the train departs, its shape contracts; the rails can be taken
as time axes (Fig. 10.15).

a b c

1

1
1

2 2 2

3

3 3

4
4

4

1'

1'

1'2'
2'

2'

3'
3'

3'

4'

4'
4'

Fig. 10.12 Different projections of a cube in the plane: (a) central view; (b) lateral view; (c)
axonometric view

a b c

Fig. 10.13 Kinematic generation of a cube. (a) Perspective frontal view of cube. (b) Perspective
lateral view of cube. (c) Axonometric lateral view of cube
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time axis

backwardforward

Fig. 10.14 Kinematic views of back of a moving train. As the train approaches, its shape expands
and shrinks as it moves away. A reversal of motion changes an explosion into an implosion

t

x

t

t

y y

x x

t

t

t

t

Fig. 10.15 Geometric support for Faraday’s law in a two-dimensional space-time

Figure 10.16 shows how to build a square, a cube and a hypercube starting from
line segments, squares and cubes respectively. After these considerations we can
visualize a hypercube, i.e. a cube of a four-dimensional space, by its projection
in three-dimensional space. Figure 10.17 shows such a projection. Note that the
lateral cubes are projected into truncated pyramids.

a b c
t

x
y

x
x y

y

Fig. 10.16 (a) A square is formed by two segments. (b) A cube is formed from three squares.
(c) A hypercube is formed from one cube and three truncated pyramids

10.6.2 Geometric View of Maxwell’s Equations

The electromagnetic field is described by two scalar equations and two vector
equations, i.e. by eight scalar equations. Four of these scalar equations link the
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t t

Fig. 10.17 A hypercube of a four-dimensional space projected into a three-dimensional space
and represented in the two-dimensional space of the paper. The arrows on the time lines denote
the two possible outer orientations of the hypercube
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Fig. 10.18 Geometric interpretation of Gauss’s law of magnetism

configuration variables and four link the source variables. We now show that it
is possible to produce a beautiful representation of these two sets of equations
using a three-dimensional projection of a four-dimensional cube. To this end, let
us remark that the two laws of Gauss are static balance equations, while the two
circuital laws, those of Faraday and of Maxwell–Ampère, can be conceived as bal-
ance equations in three-dimensional space-time cubes, as shown in Figs. 10.18 and
10.19. These figures show only the balances for the first set of Maxwell’s equa-
tions. Those of the second set are similar and are not included for space reasons
only. Equation 10.35 shows the classical differential formulation of Maxwell’s
equations (left side) and the integral formulation (right). The terms shown in
Figs. 10.18 and 10.19 are the pieces which compose the integrals of Eq. 10.35:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
div B̌ = 0

curl E + ∂tB̌ = 0
−→

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫
∂V

B̌ · ň dS = 0

∫ t+

t−

∫
∂S

E · t dL dt +

[∫
S

B̌ · ň dS

]t+

t−
= 0

. (10.35)



306 10 Electromagnetism

t+
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Fig. 10.19 Geometric interpretation of Faraday’s law. This is one of the three equations, the one
relative to the z-axis

y

x

y

x

z z

Qc

Qf

“

“

E
F

Maxwell-Ampère
law Faraday law

electric Gauss law

magnetic Gauss law

Fig. 10.20 The eight scalar equations of the electromagnetic field are balance equations in space-
time, one for each of the cubes that compose the four-dimensional hypercube. The figure illus-
trates the three-dimensional projection of an ‘exploded’ hypercube of space-time

10.7 Algebraic Formulation

As far as physics is concerned, it appears natural in a discrete setting to use the
discrete form of degree p to describe the global variables associated with p -
dimensional manifolds (Fig. 10.20). It is enough to cover the space with a cell

complex K and its dual
∼
K and to approximate the p -dimensional manifolds with

p -dimensional chains. In this way, an amount of the global physical quantity is
associated with every p -chain, and then a discrete form of degree p is obtained.
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The association of an amount of a physical variable with every p -cell gives rise to
a set function which is the natural extension of point functions used in physics. In
Table 10.1 we present six global variables (in space) of electromagnetism and the
corresponding space elements. This leads us to the introduction of the six discrete
forms defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1(lα)
def
= Eα discrete 1-form of voltage,

Φ2(sβ)
def
= Φβ discrete 2-form of magnetic fluxes,

F1(l̃α)
def
= Fα discrete 1-form of magnetomotive force,

Ψ2(s̃β)
def
= Ψβ discrete 2-form of electric fluxes,

I2(s̃β)
def
= Iβ discrete 2-form of electric currents,

Q3(ṽh)
def
= Qh discrete 3-form of electric charge contents.

(10.36)

We may write Maxwell’s equations in the form
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δΦ2 = 0,

δE1 +
d
dt
Φ2 = 0,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δΨ2 = Q3,

δF1 =
d
dt
Ψ2 + I2.

(10.37)

When these equations are applied to the single cells of the two complexes, we
obtain a ‘local’ form of Maxwell’s equations in a discrete setting, i.e.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
α

dhα Φα = 0,

∑
β

cαβ Eβ +
d
dt
Φα = 0,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
α

d̃hα Ψα = Qh,

∑
β

c̃αβ Fβ =
d
dt
Ψα + Iα.

(10.38)

These equations can be used to obtain a numerical solution of electromagnetic
problems.33

10.8 Classification Diagrams of Electromagnetism

We now show how to combine a diagram of electrostatics with a diagram of mag-
netostatics to obtain a diagram of electromagnetism. Table 10.9 shows that it is
appropriate to shift the second and fourth columns backwards with respect to the
first and third rows and to shift vertically the first and third rows by half a space. In

33 See the papers dealing with the cell method for electromagnetism http://
discretephysics.dica.units.it/.

 http://discretephysics.dica.units.it/
 http://discretephysics.dica.units.it/
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Table 10.9 Classification diagram for field variables of electromagnetism: front: electrostatics;
rear: magnetostatics
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doing this, we assure that the space-time elements which lie in the same row have

the same dimension. Thus, [
∼
T,L] has dimension 2 (=1+1) just like [

∼
I , S] (0+2).34

The diagrams that follow show the classification of electromagnetic variables
and of the equations that link them. In the bottom part of each diagram is drawn
a small frame composed of 16 small circles connected by arrows. We have filled
the small circles that correspond to a physical variable used in electromagnetism
and we have draw in heavy lines the connections corresponding to an existing
equation, and it is shown (filled circles and heavy lines) which part of the frame is
interested by the diagram.

Diagrams [ELE1] of electrostatics and [ELE2] of magnetostatics can be com-
bined to give a diagram of the electromagnetic field [ELE3]: they are located re-
spectively in the front and back parts. The two fields are coupled by the time
derivatives, represented in the horizontal lines connecting the front with the back
part of the diagram.

Diagrams [ELE4] and [ELE5] give the tensorial version of [ELE1] and [ELE2]
respectively. Diagram [ELE6] gives the space-time version of diagram [ELE3].
Since electromagnetism is a relativistic theory, we see that the frame with 16

34 The connections among the cells give rise to a sort of ‘home’ which Bossavit [21, p. 122] was
the first to call a ‘Maxwell house’. The present book shows that this ‘house’ is not specific to
electromagnetism but is common to all classical physical theories.
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boxes is automatically adapted to relativity. Diagram [ELE7] shows how the
two-dimensional electric field can be cast in the language of complex variables.
Diagram [ELE8] shows how to describe the motion of a charged particle in an
electric and magnetic field respectively. Diagram [ELE9] shows how to combine
the variables of the electric field to obtain energy variables. Diagram [ELE10]
describes electric networks, while [ELE11] describes RLC circuits. Diagram
[ELE12] shows the link between the field and the global variables of electrostatics.
Diagram [ELE13] describes the motion of a charged particle in an electromagnetic
field. This diagram differs from all other diagrams in the book. Diagram [ELE14]
shows the link of the electric and magnetic fields with the theory of exterior
differential forms. In particular, it shows the difference between the algebraic and
metric duals of the second-order covariant tensors Ďi j and Bhk.

Table 10.10 summarizes the link between global variables and field variables
of electromagnetism.

Table 10.10 From field variables to global variables of electromagnetism
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Chapter 11
Mechanics of Deformable Solids

11.1 Introduction

We assume that the reader is familiar with the main variables of continuum
mechanics.1 We summarize these variables in Tables 11.3 (p. 329) and 11.5
(p. 336), dividing into two categories: source and configuration variables. Our aim
is to classify these physical variables on the basis of the oriented spatial and time
elements with which each variable is associated. This can be done by starting from
the global variables because the densities and the rates inherit the same association
of the global variables from which they originated. The first step in the classifi-
cation is to separate the source variables from the configuration variables. To this
end, it is appropriate to explicitly state the fundamental problem of the theory,
something which, in traditional expositions, is not usually done initially.

11.2 Fundamental Problem

The fundamental problem in the mechanics of deformable solids can be stated as
follows:

• Given a solid body,
• Given the shape and the nature of the materials which form the body,
• Given the constraints acting on the body,
• Given a time interval,
• Given the initial position and the initial velocity of each point of the body,
• Given the volume forces and the surface forces at the boundary,
• Find the position of each point of the body at every subsequent instant.

1 This chapter presupposes one’s having read Chaps. 1–9.

E. Tonti, The Mathematical Structure of Classical and Relativistic Physics,
Modeling and Simulation in Science, Engineering and Technology,
DOI 10.1007/978-1-4614-7422-7__11, © Springer Science+Business Media New York 2013
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The fundamental problem is mathematically expressed by the fundamental
equation which links source variables with configuration variables via topological
and constitutive equations. The founding fathers of the fundamental equations of
continuum mechanics are given in Table 11.1, while the corresponding equations
are compiled in Table 6.2 (p. 158) (Table 11.2).

Table 11.1 Fundamental equations of continuum mechanics

Continuum
mechanics

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

S olids

{
Perfect ≡ rigid Newton’s equation
Deformable Navier’s equation

Fluids

{
Perfect ≡ inviscid Euler’s equation
Viscous Navier–Stokes’ equations

11.3 Source Variables

The source variables used in continuum mechanics are listed in Table 11.3
(p. 329). Forces are the common sources of deformations. The global source vari-
ables are as follows:

1. Impulse of volume force Jv equivalent to the momentum production P p;
2. Impulse of surface force Js;
3. Momentum content P c.

The corresponding rates are the volume force Fv[
∼
T,
∼
V] and the surface force

F s[
∼
T,
∼
S] ≡ T[

∼
T,
∼
S]. The corresponding densities are the volume force for unit

volume f, the stress vector t and the momentum density p.2

11.3.1 Impulse of Volume Forces

Denoting by Fv the volume force, the corresponding impulse Jv during the time
interval (t−, t+) is

2 We use capital letters for global variables and lower-case letters for their densities. This is not
followed in the literature, where F is used to denote the volume force for unit mass; see Prager
[188, p. 46], Paterson [172, p. 102], Achenbach [1, p. 51], Batchelor [10, p. 15], Milne [160, p.
78]. Shames [209, p. 154] uses B for volume force for unit mass, whereas Chorin and Marsden
[41, p. 6] use B for volume force and b for volume force for unit mass.
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Table 11.2 From global variables to field functions in the mechanics of deformable solids

Jv[
∼
T,
∼
V] J s[

∼
T,
∼
S] Pc[

∼
I ,
∼
V]

Body force impulse Surface impulse Momentum
↓ ↓

Rate Rate

Fv[
∼
T,
∼
V] T[

∼
T,
∼
S]

Body force Surface force
↓ ↓

Density Density Density

f[
∼
T,
∼
V]

def
=

Fv

V
t[
∼
T,
∼
S]

def
=

T
A

p[
∼
I ,
∼
V]

def
=

Pc

V
Body force density Surface force density Momentum density

�

Jv(t−, t+)
def
=

∫ t+

t−
F v(t) dt −→ Jv[

∼
T,
∼
V], (11.1)

which is associated with a dual time interval and a dual volume.3

11.3.2 Impulse of Surface Forces

Denoting by Fs the surface force acting on a surface, the impulse Js of this force
during the time interval (t−, t+) is

Js(t−, t+)
def
=

∫ t+

t−
F s(t) dt −→ Js[

∼
T,
∼
S], (11.2)

which is associated with a dual interval and with the surface. We remark that in
the literature the surface force is often denoted by T.

11.3.3 Momentum

Let us consider, for example, a parachutist falling through the atmosphere. His
momentum at a given instant t is the time integral of the total force acting on
him, i.e. the sum of body and surface forces from the instant of his jump plus the

3 We showed on p. 242 that the impulse is associated with
∼
T. See also p. 131.
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momentum at the start P0 considering the velocity of the aeroplane:

P(t) = P0 +

∫ t

0

[
F v(t) + Fs(t)

]
dt −→ P[

∼
I ,B], (11.3)

where B denotes the body. It follows that P is associated with dual time instants
and with the body.4

11.3.4 Momentum Content, Flow and Production

When a body is in motion, all of its particles have a momentum: the sum of the
momenta of all particles is the momentum of the body. One theorem states that the
momentum of a body is equal to the product of the velocity of the centre of mass
for the mass of the whole body. This makes reference to a system description.

In a spatial description, let us consider a fixed control volume and the sum of
the momenta of all particles contained in the volume at a given instant; this is the
momentum content P c. Considering the momenta of the particles which leave the
control volume during a time interval, the sum of these momenta is the momentum
flow P f . The action of external forces on the particles contained inside the control
volume increase the momentum content, and this is the momentum production P p.

Space Association. The momentum content and momentum production are as-

sociated with
∼
V, the momentum flow with

∼
S, as is obvious.

Time Association. Since the operation of summing momenta does not change the

time association, the momentum content is referred to
∼
I , just like the momentum

of a particle. The momentum production and the momentum flow are associated

with a time interval, necessarily with a dual time interval, i.e.
∼
T.

In conclusion, we have P c[
∼
I ,
∼
V],P f[

∼
T,
∼
S],P p[

∼
T,
∼
V].

11.3.5 Stress Vector, Stress Tensor, Pressure

Since the stress vector t(n) referred to a plane areal element of normal n is the
ratio of the surface force T(n) and the area, it is associated with the same space

and time elements of the surface force, hence t[
∼
T,
∼
S]. The traditional condition

T(−n) = −T(n) is the expression of the oddness principle and is equivalent to the

condition T(−∼S) = −T(
∼
S).

Pressure is used in fluids where the internal surface forces are orthogonal to
the plane surface elements on which they act. Denoting by T the modulus of the

4 We showed on p. 243 that momentum is associated with
∼
I .
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Table 11.3 Source variables of continuum mechanics

Volume force Fv(V, t,P) Fv [
∼
T,
∼
V]

Force for unit volume f(t,P)
def
= Fv(V, t,P)/V f [

∼
T,
∼
V]

Mass content Mc(V, t,P) Mc [I,
∼
V]

Mass density ρ(t,P)
def
= Mc(V, t,P)/V ρ [I,

∼
V]

Momentum content Pc(V, t,P) P [
∼
I ,
∼
V]

Momentum density p(t,P)
def
= Pc(V, t,P)/V p [

∼
I ,
∼
V]

Surface force T(nA, t,P) T [
∼
T,
∼
S]

Stress vector t(n, t,P)
def
= T(nA, t,P)/A t [

∼
T,
∼
S]

Pressure p(t,P)
def
= Fn/A p[

∼
T,
∼
S]

Stress tensor
τ(t,P) τik

(t = n · τ) (tk = niτik)
τ [
∼
T,
∼
S]

Symmetric stress tensor
σ(t,P)

def
= 1

2 (τ + τT)

σhk
def
= 1

2 (τhk + τkh)
σ [
∼
T,
∼
S]

Mean normal stress σ(t,P) ≡ −p(t,P)
def
= 1

3 tr(σ) p [
∼
T,
∼
S]

Viscous stress (in fluids)
τ(t,P)

def
= σ − σ I

τhk
def
= σhk − σδhk

τ [
∼
T,
∼
S]

Deviator stress (in solids)
σ′(t,P)

def
= σ − σ I

σ′hk
def
= σhk − σδhk

σ′ [
∼
T,
∼
S]

Mass flow Mf (nA, T,P) Mf [T,
∼
S]

Mass current Φ(nA, t,P)
def
= Mf (nA, T,P)/T Φ [T,

∼
S]

Mass current density q(t,P) Φ =
∫

A
q · n dA q [T,

∼
S]

Stream pseudovector ψ̌(t,P) (q = ∇ × ψ̌) ψ̌ [T,
∼
L]

Stream function (pseudoscalar) ψ̌(t,P) ψ [T,
∼
L]
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normal force the pressure is the ratio p
def
= T/A, where A is the area of the surface

element. Hence, pressure has the same time and space association as the surface

force, i.e. p[
∼
T,
∼
S].

The stress tensor is a generalization of pressure and, as such, has the same

association with space and time elements of the pressure, hence τhk[
∼
T,
∼
S].

11.4 Configuration Variables

The configuration variables used in this chapter are listed in Table 11.5 (p. 336).
With reference to Figs. 11.1 and 11.2, the global configuration variables are as
follows.

Geometric variables:

1. The position vector R(P) of a particle P in the reference configuration at the
instant t = 0 with respect to a fixed coordinate system Oxyz;

2. The position vector r(t,P) of the particle P at an instant t;
3. The relative position G of the two points P and Q in the reference configuration.

Kinematic variables:

1. The total displacement u(t,P) of the particle P from its position in the
reference configuration;

2. The displacement Δtu of a particle P in an interval (shown in Fig. 11.2).
3. The relative displacement h(t,G) of the two particles P and Q at the instant t;

reference
configuration

P

Q

R(P)

R(Q) G

h(t, G)

displacement

u(t, Q)

r(t, Q)

r(t, P)

u(t, P)

actual
configuration

P

Q

G

O

x

z

Fig. 11.1 Two particles P and Q in the initial configuration occupy the positions P and Q. The
same particles, at a later instant, occupy the positions P′ and Q′. The vectors in thin lines are
position vectors, whereas those in thick lines are the displacements of the two particles P and Q

In what follows, we give a detailed definition of the configuration variables of
continuum mechanics.
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11.4.1 Initial Position Vector

Let us consider a reference configuration of a body. In this configuration, a point
P can be localized by the initial position vector R connecting the origin O of a
coordinate system with the point, hence R[P].

11.4.2 Relative Position Vector

This is the vector

G
def
= R[Q] − R[P] −→ G [L] (11.4)

and is associated with the line L endowed with an inner orientation, i.e. from P
to Q. Since it is associated with the reference configuration, G does not depend
on time.

11.4.3 Position Vector

This variable is used in both particle dynamics and continuum mechanics. With
reference to Fig. 11.2a, let us consider the motion of a particle P . At every in-
stant, the position of the particle is described by the position vector r; hence, it is
associated with the instant I. Is it a primal or a dual instant? Since r, by definition,
goes from the origin O to the point P in which the particle lies at the instant t, it
does not change sign under a reversal of motion; hence, it is associated with the
primal instants r [I,P].

In a spatial description, the position vector, as in Fig. 11.2b, is associated with a
point of a body, hence r [I,P]. It is appropriate, even if not imperative,5 to consider
R as the position vector at the initial instant (t = 0), i.e. to set R[P] = r[0,P].

11.4.4 Displacement

Let us pose the question: is displacement associated with an instant or an inter-
val? If you pose this question to different people, you will get different answers.
For some it is associated with an instant, for others with an interval. The ambiguity
arises because we often use the same term, displacement, to denote both the dis-
placement of a particle between two arbitrary instants and the displacement from

5 Hunter [98, p. 23].
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a reference position at a given instant. If the reference configuration is considered
the initial configuration of a motion, then this displacement can be called total
displacement. It follows that total displacement is associated only with the final
instant, whereas relative displacement between two arbitrary instants is associated
with the corresponding interval (Table 11.4).

This situation with displacement is similar to that of impulse: an impulse is
associated with a time interval, but if we consider an impulse given to a parti-
cle starting from rest, it becomes associated with instants and is properly called
momentum. Hence we have this analogy:

momentum p(t) =
∫ t

0
F(t′) dt′ impulse J(t−, t+) =

∫ t+

t−
F(t) dt,

total
displacement

u(t) =
∫ t

0
v(t′) dt′ displacement η(t−, t+) =

∫ t+

t−
v(t) dt.

(11.5)

(a) Particle Mechanics. Let us consider two instants, t− and t+: the displacement
η relative to the time interval (t−, t+) is the difference between the position at the
final and initial instants of a time interval

η (t−, t+)
def
= r (t+) − r (t−) −→ η [T]. (11.6)

Since the position vector r is associated with a primal instant I, the displacement
u is associated with a primal time interval T.

O

x

z
P(t+)

r(t+)

P(t−)

P(t−)

P(t+)r(t−)
r(t−, P)

u(t−, P)

u(t+ , P)

r(t+, P)

h(t−, t+) h(t−,t+ , P)

O

x

z

P

R

a b

Fig. 11.2 The displacement η in particle dynamics: (a) corresponds to the displacement η in
continuum mechanics (b), but in continuum mechanics there is also the total displacement u,
i.e. the displacement from an initial configuration, taken as the reference configuration, which
corresponds to the position vector r in particle mechanics

(b) Continuum Mechanics. In the deformation of a continuum, the total dis-
placement u of a particle is measured from its position in the reference configu-
ration to its current position at the instant (Fig. 11.1). We see that u in continuum
mechanics plays the same role as the position vector r in particle dynamics and is
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a function of the instant. This implies that it does not change sign under a reversal
of motion, and for this reason u is associated with a primal instant, i.e. u [I]:

u(t,P)
def
= r (t,P) − R (P) ≡ r (t,P) − r (0,P) −→ u [I,P] . (11.7)

The displacement η, defined by

η (t−, t+,P)
def
= u (t+,P) − u (t−,P) −→ η [T,P], (11.8)

is associated with primal intervals. This implies that it changes sign under a rever-
sal of motion.

Table 11.4 The term displacement and its meanings

Particle dynamics Continuum mechanics
�
�

�
�

Position vector

Displacement

R[P] Initial position vector
r[I,P] Position vector

u[I,P] Total displacement
η[T,P] Displacement

�

�

11.4.5 Relative Displacement

With reference to Fig. 11.1, there is also the relative displacement associated with
two points, P and Q, defined as the difference between the total displacements u
associated with the two points at the same instant, i.e.

h(t,P,Q)
def
= u(t,Q) − u(t,P) −→ h[I,L]. (11.9)

Hence, h is associated with primal instants like u. Since we must choose an order
of the points to compute the difference, i.e. PQ or QP, it follows that h(t,P,Q) =
−h(t,Q,P), i.e. the line must be endowed with an inner orientation.
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11.4.6 Displacement Gradient

In the neighbourhood of a point P, the displacement u can be approximated by an
affine function,6 i.e.

ui(x1, x2, x3) = ai + Hi j x j with ai,Hi j constants. (11.10)

In this approximation, the relative displacement h between a point P and a point
Q is given by

hi = ui(Q) − ui(P) = Hi j [x j(Q) − x j(P)] = Hi j G j or h = H G . (11.11)

The matrix H, which links the relative position G of two neigbouring points with
their relative displacement h, is called a displacement gradient matrix.

Since the relative displacement h is associated with primal time instants and
primal lines, h[I,L], it follows that the displacement gradient is also associated
with the same space and time elements: H[I,L]. The displacement gradient is the
line density of h.

11.4.7 Strain Tensor

The strain tensor ε is the symmetric part of the displacement gradient, whereas
the rotation tensor Ω is the skew-symmetric part of the displacement gradient.
The linear invariant of the displacement gradient is the volume dilatation Θ. See
Table 11.5.

Remark. We emphasize that at first glance one is tempted to associate the volume dilatation

to a volume, i.e. to put Θ[V], which is wrong. The fact that the volume dilatation comes from the

strain tensor, which is associated with lines, implies the inherited association with lines, hence

Θ[I,L]. As a second argument, we remark that considering the variation of a volume, we are in

a material description, not a spatial one. To see the space element with which Θ is associated,

we must switch to a spatial description. Now it appears natural that the trace of a tensor must

be associated with the same space element of the tensor, hence Θ[L]. A third argument is that

the constitutive relation p = −KΘ is reversible; hence, it links two variables which must have

the same behaviour under a reversal of motion and the same behaviour for a change in the inner

orientation of lines because the outer orientation of a surface coincides with the inner orientation

of a line crossing it. Since pressure is associated with [
∼
T,
∼
S], it follows that Θ must be associated

with [I,L].

6 See Appendix A at p. 457.
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11.4.8 Velocity

In continuum mechanics, velocity is the rate of displacement η and, at the same
time, the time derivative of the total displacement u:

v(t,P)
def
= lim

τ−→0

η(τ,P)
τ
=

du(t,P)
dt

−→ v[T,P]. (11.12)

Since velocity is the rate of displacement, it inherits the association with primal
time intervals: v[T,P].

11.5 Field Laws

The main equation in the mechanics of deformable solids is the equilibrium equa-
tion (in statics), which is a particular case of the momentum balance in dynamics.
Since the equation is similar to that used in fluid dynamics, we refer the reader to
Table 12.6 (p. 371).

Table 11.6 summarizes the classification of the main physical variables in con-
tinuum mechanics, showing their position in the diagram. Moreover, it shows the
link between the field variables and the global variables.

11.6 Rod Traction

As an example of classification, let us consider the traction of a rod. Let us con-
sider the deformation of a vertical rod under the action of its weight; this is a
one-dimensional model. To simplify the description, we consider a hanging rod,
like a stalactite, as shown in diagram [SOL0].

We divide the whole rod into equal pieces of thickness l forming a primal cell
complex in space and consider their midpoints; they give rise to a dual cell com-
plex because every cell is oriented with an outer orientation.

Let us consider the configuration variables. Because of the action of its weight,
the rod extends, and every normal section sh of the primal subdivision is shifted
by a quantity uh. Let Ph be the intersection of the normal section sh with the axis
of the rod. The longitudinal displacement is uh = uh(Ph). Under the dilatation
the thickness of every piece increases by the amount ηi = uh+1 − uh; this is the
extension of the piece. The variable ηi is associated with the 1-cell Li.

The two variables u[P] and η[L] are global variables which describe the
configuration of the deformed rod.

Let us consider the source variables. We must compute the equilibrium on
every piece of rod. To this end, we are tempted to apply the equilibrium condition
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Table 11.5 Configuration variables in the mechanics of deformable solids

Initial position vector R(P) Xh(P) R [P]

Position vector r(t,P) xh(t,P) r [I,P]

Total displacement
u(t,P)

def
= r(t,P) − R(P)

ηh(t,P)
def
= xh(t,P) − Xh(P)

u [I,P]

Displacement
η(T,P)

def
= u(t+,P) − u(t−,P)

ηi(T,P)
def
= ui(t+,P) − ui(t−,P)

u [T,P]

Relative position vector
G(L)

def
= R(Q) − R(P)

Gk(L)
def
= Xk(Q) − Xk(P)

G [L]

Relative displacement
h(t,L)

def
= u(t,Q) − u(t,P)

hk(t,L)
def
= uk(t,Q) − uk(t,P)

h [I,L]

Displacement gradient
H(t,P)

def
= Grad u du = H dR

Hhk(t,P)
def
=

∂uh

∂Xk
duh = Hhk dXk

H [I,L]

Strain tensor
ε(t,P)

def
= 1

2 (H + HT)

εhk(t,P)
def
= 1

2 (Hhk + Hkh)
ε [I,L]

Rotation tensor
Ω(t,P)

def
= 1

2 (H − HT)

Ωhk(t,P)
def
= 1

2 (Hhk − Hkh)
Ω [I,L]

Volume (or bulk or cubic)
dilatation

Θ(t,P)
def
= tr (H) = tr (ε) = ∇ · u Θ [I,L]

Strain deviator
ε′(t,P)

def
= ε − 1

3 Θ I

ε′hk(t,P)
def
= εhk − 1

3 Θδhk

ε′ [I,L]

Deformation gradient
F(t,P)

def
= Grad r dr = F dR

Fhk(t,P)
def
=

∂xh

∂Xk
dxh = Fhk dXk

F [I,L]
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Table 11.6 From field variables to global variables in continuum mechanics

Configuration Configuration Source Source

Global variables Field variables Global variables

�
�

	

η

�
�

	



�
�

	

u

�
�

	

h

�
�

�
��

�

�

�
�

�
��

[T,P]

[T,L]

[I,L]

[I,P]

�

�

�

	
v

�

�

�

	
L

�
�

	

u

�

�

�

	
H

�
�

�
��

�

�

�
�

�
��

[T,P]

[T,L]

[I,L]

[I,P]

�

�

�

	
p

�

�

�

	

�

�

�

	
fv

�

�

�

	
τ

�
�
�
��

�

�

�
�
�
��

[
∼
I ,
∼
V]

[
∼
I ,
∼
S]

[
∼
T,
∼
S]

[
∼
T,
∼
V]

�
�

	

P c

�
�

	



�
�

	

Jv

�
�

	

Js

�
�
�
��

�

�

�
�
�
��

[
∼
I ,
∼
V]

[
∼
I ,
∼
S]

[
∼
T,
∼
S]

[
∼
T,
∼
V]

u Total displacement
h Relative displacement
η Displacement
v Velocity

H Displacement gradient
L Velocity gradient
p Momentum density
fv Volume force

Jv Volume impulse
Pc Momentum content
τ Stress tensor
Js Surface impulse

u =
∫

T
v dt

P c =

∫
∼
V

p dV

h =
∫

L
H · t dL

Jv =

∫
∼
T

∫
∼
V

fv dV dt Js =

∫
∼
T

∫
∼
S
τ · n dS dt

Compare with diagrams [SOL12] and [FLU6]

on every piece of the primal complex; this is what is commonly done. However,
the equilibrium must be imposed on a dual piece because such a piece is endowed
with an outer orientation. In fact, the weight Wh is exerted on the piece from the
Earth, i.e. from outside, and this implies that the space element must be endowed
with an outer orientation. Moreover, the axial force Ni acting on the section si re-
quires an outer orientation of the face, and this is represented in diagram [SOL0]
by the white arrows crossing the faces.

The space global variables, which play the role of sources in this theory are, the

traction N[
∼
P] acting on a dual section si and the weight W[

∼
L] of a dual segment.

The two pieces, the primal and the dual, were made with equal thickness, which
we denote by l. If we divide the extension of the primal piece by its thickness,

then we obtain the strain εi
def
= ηi/l; dividing the weight of the dual piece by the

thickness we obtain the weight for unit length: wh
def
= Wh/l.
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We remark that, in a one-dimensional model, the axial force N is associated
with dual points; hence, it is at the same time a global variable and a field variable.

In contrast, in a three-dimensional model, N admits a density σ
def
= N/A′, where A′

is the area of the cross section of the rod contracted due to the lateral contraction.
These four global variables and the corresponding densities with their associa-

tions are summarized as follows:

Configuration variables Source variables

Global variables u[P] η[L] N[
∼
P] W[

∼
L]

↓ ↓ ↓ ↓
Field variables u[P] ε[L] N[

∼
P] w[

∼
L]

(11.13)

We can place all these variables and the equations which link them in the classi-
fication diagram shown in diagram 11.7; in the case of linear elastic materials, the
constitutive relation which links configuration with source variables is Hooke’s
law. Combining the three equations we obtain the fundamental equation shown in
the centre of Table 11.7.

Table 11.7 Diagram of discrete analysis of the deformation of a rod under axial loading

The corresponding diagram for the differential formulation is shown in dia-
gram [SOL0].
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11.7 Vibrations in One Dimension

Longitudinal Vibrations of a Rod. The diagram for the longitudinal vibrations
of a rod, [SOL10], can be obtained by a fusion of the diagram of rod traction in
[SOL0] with the diagram of particle dynamics in Fig. 8.6 (p. 227). The displace-
ment u of a section of the rod from its reference position depends on the two
variables t and z, hence u(t, z). As diagram [SOL10] shows, it is convenient to rep-
resent the velocity v(t, z) in a shifted position with respect to the column of u and
ε and the momentum p(t, z) in a shifted position with respect to the column of f
and σ. This shift is always made whenever time is used in the theory. In this way,
the space-time diagram looks like an axonometric view of a three-dimensional
frame or of a building. The advantage of this representation is that it gives sepa-
rate boxes for the equations containing only space or only time derivatives and, at
the same time, gives a clear representation of the equations containing both time
and space derivatives.

Transversal Vibrations of a String. We showed in diagram [VIB] (p. 228)
the composition of the diagram of transversal vibrations of strings starting from
the diagram of statics of strings (p. 228) and that of the dynamics of a particle,
diagram [PAR1] (p. 268).

11.8 Classification Diagrams of Deformable Solids

All diagrams refer to the theory of small displacements from a reference
configuration. We start with the simplest cases, the deformation of beams, which
is the most treated subject in the theory of the strength of materials. To these
simple cases are devoted the diagrams [SOL0]–[SOL5]. Diagram [SOL0] can
be compared with Fig. 4.25 (p. 79) in order to understand the need for the dual
cell complex in view of a discrete treatment of continuum mechanics. Diagrams
[SOL1]–[SOL3] deal with bending, torsion and beam shear. Diagram [SOL4]
refers to the classical theory of Bernoulli–Euler beams in which the plane sec-
tions which are normal to the axis of the beam remain plane and normal to the
deformed axis. Diagram [SOL5] refers to the more sophisticated theory of Tim-
oshenko, in which the plane sections which are normal to the axis of the beam
remain plane but no longer normal to the deformed axis.

Diagram [SOL6] deals with plane elasticity, while diagram [SOL7] deals with
the theory of plates under plane loads and diagram [SOL8] deals with plates under
normal loads.

Diagram [SOL9] deals with three-dimensional elastostatics, while diagram
[SOL12] deals with three-dimensional elastodynamics. Diagrams [SOL10] and
[SOL11] deal with longitudinal and torsional vibrations of rods. Diagram [SOL13]
deals with the statics of strings, whereas diagram [SOL14] deals with the transver-
sal vibrations of strings.
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Chapter 12
Mechanics of Fluids

12.1 Particles and Points

In mechanics, we often use the terms particle and point interchangeably.1 The
tendency to abuse the term point instead of particle is evidenced by the use of the
term material point. This custom may generate ambiguities in the description of
fluid dynamics as well as in the notion of work. For the present classification we
must carefully distinguish between these two notions; more precisely, we must
consider the following concepts:2

1. A reference system Oxyz with its fixed space points which we denote in
boldface, i.e. A,B,P,Q, . . . ;

2. A body B whose elements are called particles;
3. A particle P of the body that moves with respect to the reference system.

A particle P is in motion when it passes through different points of a reference
system. The mass and the charge of a particle can be denoted by m(P) and q(P).
A force acting on a particle will be denoted by F(t,P). Velocity and acceleration
are attributes of particles, i.e. v(t,P) and a(t,P).

Spatial Description. When we switch from a material description to a spatial
description, the velocity of a particle passing through a (fixed) point P at the in-
stant t can be referred directly to the point P at that instant. Hence, writing v(t,P)
does not mean that the point P has a velocity v at the instant t but that the particle
passing through the point P at the instant t has a velocity v.

1 This chapter presupposes a reading of Chaps. 1–9.
2 Chadwick [39, p. 50].

E. Tonti, The Mathematical Structure of Classical and Relativistic Physics,
Modeling and Simulation in Science, Engineering and Technology,
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12.2 Some Peculiarities of the Fluid Field

A first peculiarity lies in the fact that in some cases velocity is associated with

dual instants and primal lines, i.e. v[
∼
I ,L], as shown in diagrams [FLU3]–[FLU5]

whereas in other cases it is associated with primal time intervals and primal points,
i.e. v[T,P], as shown in diagrams [FLU6] and [FLU9]. This double association
of fluid velocity makes velocity unique among the approximately 180 physical
variables of many physical theories classified in this book. How to explain this
ambiguity?

Well, this double association seems to be the consequence of a double de-
scription used in fluid dynamics. When we consider a fluid particle in a material
(= Lagrangian) description, velocity v(t,P) is associated with a time interval,
hence v[T,P]. In the transition to a spatial (= Eulerian) description, we consider
the point P through which the particle P goes to the instant t and attribute its ve-
locity to that point. This shift particle → point implies a forgetting of the history
of the particle’s motion and to consider the velocity as a field vector applied to the
point P at the instant t instead of to the particle P . The association with time is
changed, and the velocity is associated with the instant considered.

However, since velocity, due to its physical meaning, must change sign under a
reversal of motion, it follows that the instant must be the dual. Hence, the passage
from a material to a spatial description implies not only the passage P → P but

also v[T] → v[
∼
I ].

Once the velocity has resulted in a vector field it is natural to compute the
integral along lines. The same thing happens with the electric field vector E, the
acceleration of gravity g and a force F in a force field. It follows that velocity

refers to lines, i.e. v[
∼
I ,L].

There is another feature of fluid motion which is linked to the transition from
one description to another. This feature can be grasped through the following ques-
tion: What is the meaning of the product ρv? We can see that there are two possible
answers to this question:

• It could be the momentum density, denoted by p = ρv. In this case, it is as-

sociated with volumes and time instants: p[
∼
I ,
∼
V]. The association with

∼
I is

required by the fact that momentum, like velocity, changes sign under a rever-

sal of motion; the association with
∼
V is due to the fact that we must consider

the momentum of the fluid contained in a volume.
• It could be the mass current density, denoted by q = ρv. In this case it is

associated with surfaces and time intervals: q [T,
∼
S]. The association with T

is required by the fact that mass current density, like velocity, changes sign
under a reversal of motion; the association with surfaces endowed with an outer
orientation is due to the fact that we must consider the mass current through a
surface.
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Table 12.1 The two possible associations of velocity in fluid dynamics

Velocity
(contravariant)

Momentum
density

(covariant)

�
�

	

v

�
�

	

pp = ρv �

[T,P] [
∼
I ,
∼
V]

Velocity
(covariant)

Mass current
density

(contravariant)

�
�

	

v

�
�

	

qq = ρv �

[
∼
I ,L] [T,

∼
S]

As we see, the variable ρv has two different interpretations; this ambiguity is
linked to the ambiguity of the velocity just discussed, as shown in diagram 12.1.

In the first case, the dual of [
∼
I ,
∼
V] is [T,P], hence v[T,P]. In the second case,

the dual of [T,
∼
S] is [

∼
I ,L], hence v[

∼
I ,L]. It is interesting to remark that while

momentum is a covariant vector, velocity must be a contravariant vector. In the
second case, since the mass current density is a contravariant vector, velocity must
be a covariant vector.

Since velocity is the rate of a displacement, that is a contravariant vector, it
follows that velocity is also a contravariant vector. To reduce velocity to being a
covariant vector, we must make use of the metric tensor vh = ghk v

k.
In the first case, where v[T,P], velocity is the time rate of a global variable in

time and is a global variable in space; in the second case, where v[
∼
I ,L], it is a

global variable in time and a line density in space.
When velocity is a covariant vector, as in diagram [FLU3], one can perform its

line integral along a line, like the vector E of electromagnetism; this shows that
velocity is associated with lines. The velocity line integral is homologous to volt-
age in electrostatics. Moreover, when a velocity line integral along all reducible
closed lines vanishes, one can introduce the velocity potential φ, and the homolo-
gous variable in electrostatics is the electric potential φ. We have in both theories

φ[
∼
I ,P]: compare diagram [FLU3] with diagram [ELE1].

12.3 Fundamental Problem

Let us consider a fluid at rest or in motion. The forces exerted on it from outside
generate a pressure at every point of the fluid; this may change its density and, if
the fluid is free to move, also generate a velocity at every point.

The fundamental problem of fluid mechanics can be stated as follows:

• Given a fluid,
• Given the shape and the dimension of the region in which it moves,
• Given a time interval,
• Given the type of fluid,
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• Given the boundary conditions,
• Given the initial velocity, pressure and density at every point,
• Given the volume forces,
• Find the velocity, pressure and density at every point of the region at every

subsequent instant.

12.4 Fluids and Flows

Let us start with a definition of fluid:3

Definition. A fluid is a continuum medium which has the property that
when it is in equilibrium, the stress at every point is one of compression.

It is essential to distinguish between the properties of a fluid and the properties
of a flow.4

12.4.1 Kinds of Fluids

Fluids can be classified as follows:

• A perfect or inviscid or non-viscous or ideal fluid is one for which the stress at
every point is one of compression also during motion; in Cartesian notation,
thk = −p(t, x)δhk.5 A perfect fluid can be compressible or incompressible: recall
that a fluid can be a gas or a liquid, and a perfect gas is surely compressible. Its
complementary class is that of viscous or real fluids.

• A Newtonian fluid is a viscous fluid for which the viscous stress tensor is a
linear function of the strain rate tensor.6 The complementary class is that of
non-Newtonian fluids.

• An incompressible fluid is one with constant density. The complementary class
is that of compressible fluids.

3 Lai et al. [117, p. 176], McLeod [155, p. 3].
4 Aris [6, p. 124].
5 Chorin and Marsden [41, p. 5], Aris [6, p. 105], McLeod [155, p. 7]. We remark that Meyer
[158, p. 64] distinguishes between perfect and ideal fluids: an ideal fluid is a perfect fluid in
isochoric motion.
6 Batchelor [10, p. 146], Yih [255, p. 31].
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Table 12.2 The many kinds of fluids and flows

Fluid
Liquid Gas
Perfect Viscous
Incompressible Compressible
Newtonian Non-Newtonian
Piezotropic Non-piezotropic

Flow
Steady Unsteady
Irrotational Rotational
Laminar Turbulent
Isochoric Non-isochoric
Barotropic Non-barotropic

• A piezotropic fluid is one for which the pressure depends only on the density.
The complementary class is that of non-piezotropic fluids for which the pres-
sure depends not only on the density but also on the temperature.

12.4.2 Kind of Flows

Fluid flows can be classified as follows (Table 12.2):

• A stationary or steady or permanent flow is one for which the velocity at every
point does not change with time. The complementary class is that of unsteady
flows.

• An irrotational flow is one for which the line integral of the velocity along any
reducible closed line vanishes. The complementary class is that of rotational
flows.

• A turbulent flow is an irregular condition of flow in which the various quanti-
ties show a random variation with time and space coordinates, so that statis-
tically distinct average values can be discerned.7 The complementary class is
that of laminar or regular flows.

• An isochoric flow is one for which the volume of a fluid body does not change
during the flow: div v = 0.8 An incompressible fluid undergoes only an iso-
choric flow, but a compressible fluid, like air, can also move without changing
its volume.

• A barotropic flow is one for which, during motion, the pressure depends only
on the density. A piezotropic fluid undergoes only barotropic flows but a non-
piezotropic fluid can also undergo a barotropic flow.

• A creeping flow is one for which the velocity is so small that one can neglect
its square by comparing it with the velocity itself.

7 Cebeci and Smith [38, p. 2].
8 Billington and Tate [15, p. 96].
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12.5 Variables Used in the Steady Motion of a Perfect Fluid

In this brief summary, we analyse the main variables of perfect fluid dynamics in
steady motion for the purpose of finding the space elements with which they are
associated.

The space global variables of the theory of perfect fluids are (diagram 12.2)
the velocity potential φ[P], velocity line integral Γ[L], vortex flux W[S], mass

production Mp[
∼
V], mass flow Mf [

∼
S] and line integral Ψ [

∼
L] of the stream vector

ψ̌[
∼
L]. These six global variables and the corresponding densities are as follows:

Configuration variables Source variables

Global variables φ[P] Γ[L] W[S] Mp[
∼
V] Mf [

∼
S] Ψ [

∼
L]

↓ ↓ ↓ ↓ ↓ ↓
Field variables φ[P] v[L] w̌[S] σm[

∼
V] q[

∼
S] ψ̌[

∼
L]

(12.1)

12.6 Source Variables

The source variables in fluid mechanics are essentially the following (diagram
12.3): volume forces, surface forces, mass content and mass density, mass flow,
mass current, mass current density, stream function, stream vector, momentum
content, momentum flow, momentum production.

Fig. 12.1 Perfect fluid motion: classification of space global variables
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Table 12.3 Perfect fluid motion: classification of field variables

Configuration variables
Inner orientation

Primal cell complex

Source variables
Outer orientation
Dual cell complex

�
�

�
�ϕ

�
�

�
�v

v = ∇ϕ

�
�

�
�w̌

w̌ = ∇ × v

�

�

�
�

�
�σ(m)

∇ ·q = 0

�
�

�
�q

q = ∇ × ψ̌

�
�

�
�ψ̌

�

�

q = ρ v �

1 P

3 L

3 S

1
∼
V

3
∼
S

3
∼
L

Velocity
potential

Velocity

Vorticity

Mass source

Mass flow
density rate

Stream
vector

12.6.1 Volume and Surface Forces and Their Impulses

The impulse of a volume force Jv is defined as the definite time integral of the
volume force Fv over a time interval. Hence, it is associated with time intervals
and with volumes. Since the force does not change sign under a reversal of motion

(Chap. 9), it follows that Fv[
∼
T,
∼
V]. In conclusion,

Jv [
∼
T,
∼
V] −→ Fv [

∼
T,
∼
V] .

The impulse of a surface force Js is defined as the definite time integral of the
surface force Fs over a time interval. Hence,

Js [
∼
T,
∼
S] −→ Fs [

∼
T,
∼
S] .

12.6.2 Mass Content and Mass Density

The mass content is the amount of mass contained in a fixed volume at a given
time instant. It is associated with volumes endowed with an outer orientation.
Since the mass content has no reason to change sign under a reversal of motion,
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Fig. 12.2 Definition of stream function in a plane fluid flow

the time instant is that of a primal time complex. From the mass content one
deduces the mass density ρ which inherited the same space and time associations.
Hence,

Mc[I,
∼
V] −→ ρ[I,

∼
V] .

12.6.3 Mass Flow, Mass Current and Mass Current Density

The mass flow Mf is the amount of mass that goes through a given surface in a
given interval. From this definition it follows that the mass flow is associated with
a surface endowed with an outer orientation, because the surface is crossed by
the mass, and with a time interval, the time during which the mass flows. Under
a reversal of motion, the flow changes sign; hence, the interval is one which is
endowed with an inner orientation. The mass current Φ is the mass flow rate; it
inherits the same space and time associations. The mass current density q is the
mass current for a unit area. In summary,

Mf [T,
∼
S] −→ Φ[T,

∼
S] −→ q[T,

∼
S] .

12.6.4 Stream Function

The mass conservation law, when applied to an incompressible fluid or to a com-
pressible fluid in a stationary flow, states that the total flow going out from any
closed surface which does not enclose sources or sinks vanishes. In this case, the
fluid flow is said to be solenoidal. If we divide a closed surface S into two parts,
S ′ and S ′′, by a closed line which belongs to the surface, the fluid flow entering
into S ′ is equal to the flow exiting S ′′.

Two-dimensional flow. The most useful application of this property concerns
two-dimensional fluid flows. In this case, the traces of the surface are lines, which
we represent by dotted lines in Fig. 12.2. Let us consider a fixed point O, taken
in any position inside a fluid. For every point P of the fluid we can consider the
lines going from O to P. We give an outer orientation to the lines (indicated by
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white arrows in the figure), so that all outer orientations are compatible. Due to
the solenoidal character of the flow, the mass current (i.e. mass flow rate) through
each line is the same. Since the mass current density is q = ρv, the mass current
that goes through each line is

Φ =

∫ P

O
q ·n dL (SI unit: kg/s). (12.2)

Since this mass current does not depend on a line, we can assign to every point P
a scalar variable,

ψ(P)
def
=

∫ P

O
q · n dL placing ψ(O) = 0, (12.3)

called a stream function.9

If we invert the outer orientation of the lines, as shown on the right side of
Fig. 12.2, the mass current changes sign; hence, the stream function changes sign.
If we compare the left with the right side of the figure, we see that the outer ori-
entation of the lines induces an outer orientation to the point P. It follows that
the point is endowed with a natural outer orientation which, in the plane, is rep-

resented by a curved arrow around it. Such a point is denoted by
∼
P. Hence, the

stream function changes sign under a reversal of the outer orientation of the point,

i.e. it is a pseudoscalar; we will write ψ̌[
∼
P]. Hence, in a two-dimensional fluid flow,

the stream function is associated with points, but in a three-dimensional motion,
we must consider the stream vector.

12.6.5 Stream Vector

In three dimensions, a solenoidal flow leads us to introduce a stream pseudovector
ψ̌ whose common definition is q = ∇ × ψ̌.10 This definition is equivalent to the
relation

Φ =

∫
∼
S

q · n dS =
∫
∂
∼
S
ψ̌ · ť dL . (12.4)

Since the mass current density vector q is associated with primal time intervals, it
follows that the stream vector is also associated with the same time element, hence
ψ̌[T,

∼
L]. The stream function ψ in the plane motion is the normal component of

the stream vector ψ̌.

9 For this physical interpretation of the stream function, which is usually presented by the purely
mathematical relations qx = ∂yψ, qy = −∂xψ, see Milne and Thomson [160, p. 476].
10 Kundu et al. [116, p. 99].
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12.6.6 Mass Production, Mass Source

In a nuclear reactor and in chemical reactions, we must consider the mass pro-
duction M p and the mass source σm. The mass production is associated with time
intervals, and, in particular, since it changes sign under a reversal of motion, it is
associated with primal time intervals. We have the following association:

M p[T,
∼
V] −→ σm[T,

∼
V] .

12.6.7 Momentum Content and Momentum Density

As explained in Chap. 9, the momentum p of a particle is, by definition, the indef-
inite time integral of the force F acting on the particle, starting from rest. Since
momentum changes sign under a reversal of motion, it is associated with a time
instant endowed with an outer orientation. The momentum of a body is the sum of
the momenta of all its particles. The momentum content P c is the momentum of
the fluid contained in a fixed volume at a given instant. Moreover, since momen-
tum is involved in a balance, it must be associated with volumes endowed with an
outer orientation. The corresponding momentum density p inherits the same space
and time associations. In conclusion,

P c[
∼
I ,
∼
V] −→ p[

∼
I ,
∼
V] .

12.6.8 Momentum Flow and Momentum Current

The momentum flow is the momentum that crosses a given surface in a given time
interval; it will be denoted by P f . It does not change sign under a reversal of mo-
tion like an impulse. Moreover, since momentum flow is involved in a balance, it
must be associated with surfaces endowed with an outer orientation. The momen-
tum current is, by definition, the rate of the momentum flow; hence it inherits the

same space and time associations, hence P f[
∼
T,
∼
S].

12.6.9 Momentum Production and Momentum Source

The momentum production P p is associated with a time interval and with a vol-
ume. The momentum production is an alternate name for the impulse of volume
force: P p ≡ J v. Since the impulse of volume forces does not change sign un-
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der a reversal of motion, it follows that the momentum production does the same.
Moreover, since momentum production is involved in a balance, it must be associ-
ated with volumes endowed with an outer orientation. The momentum production
rate is simply another name for volume force. Momentum source is another name
for momentum production density rate, which is another name for volume force
density f. In conclusion,

P p[
∼
T,
∼
V] ≡ J v[

∼
T,
∼
V] −→ F v[

∼
T,
∼
V] −→ f[

∼
T,
∼
V] .

12.7 Configuration Variables

The configuration variables in fluid dynamics are those linked to velocity
(Table 12.4): the velocity v, the line integral of velocity Γ, velocity potential φ,
vortex flux W, vorticity w, velocity gradient L, strain rate tensor D, and volume
dilatation rate θ.11

12.7.1 Line Integral of Velocity and Velocity Potential

As was stated previously, velocity has a double association with space and time
elements. When it is associated with lines, it behaves as a covariant vector. In this
case, we are led to consider the integral of the velocity along a line endowed with
an inner orientation, i.e.

Γ(t)
def
=

∫
L

v(t,P) · t dL −→ Γ[
∼
I ,L] . (12.5)

In this case, velocity is not a global variable in space but a line density, and it is

associated with dual time instants, i.e. v[
∼
I ,L]. The reason for this time association

is not clear to the author: it can be inferred from classification diagrams such as
[FLU3], [FLU4] or [FLU5].

Taking into account the one-to-one correspondence which exists between the
association of a physical variable with a space-time element and its position in a
classification diagram, it is natural to infer the association of the variable from its
location in the diagram.

When the velocity line integral along all reducible closed lines vanishes,12 the
field is called irrotational, and we write this condition in differential terms, i.e.

11 Recall the peculiar role of velocity in fluid dynamics, discussed in Sect. 12.2.
12 Recall that a closed line is said to be reducible when it can be contracted to a point by a
continuous deformation, without passing outside the fluid region. See Batchelor [10, p. 92].
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Table 12.4 Configuration variables in fluid dynamics

Velocity (contravariant) v(t,P)
def
=

dr(t,P)
dt

=
dη(t,P)

dt
vh(t,P) =

∂r
∂xh

v [T,P]

Relative velocity V(t,PQ)
def
= v(t,Q) − v(t,P) V [T,L]

Velocity gradient tensor
L(t,P)

def
= grad v(t,P) Lh

k
def
=

∂vh

∂xk

dv = L dr dvh = Lh
k dxk

L [T,L]

Strain rate tensor
(≡ rate of deformation)

D(t,P)
def
= 1

2 (L + LT) Dhk
def
= 1

2 (Lhk + Lhk) D [T,L]

Spin tensor W(t,P)
def
= 1

2 (L − LT) Whk
def
= 1

2 (Lhk − Lhk) W [T,L]

Cubic (or bulk or volume)
dilatation rate

θ(t,P)
def
= tr (L) = tr (D) = ∇ · v θ [T,L]

Deviator strain rate tensor
D′(t,P)

def
= D(t,P) − 1

3 θ(t,P) I

D′
hk

def
= Dhk − 1

3 θδhk

D′ [T,L]

Velocity (covariant) v(t,P) vh(t,P) v [
∼
I ,L]

Velocity line integral Γ
def
=

∫
L

v(t,P) · t dL Γ [
∼
I ,L]

Velocity potential
(≡ kinetic potential)

φ(t,P)
def
=

∫ P

O
v(t,P) · t dL φ [

∼
I ,P]

Vorticity w̌(t,P)
def
= curl v(t,P) w̌ [

∼
I , S]

Vortex flux W
def
=

∫
∂S

v · t dL =
∫

S
w̌ · ň dS W [

∼
I , S]

curl v = 0. In this case, we can choose an origin and evaluate the line integral
of velocity along a line starting at O and ending at any point P. To every point P
we can associate the line integral from O to P which does not depend on the line
connecting the two points. This is a scalar φ defined as

φ(t)
def
=

∫ P

O
v(t,P) · t dL −→ φ[

∼
I ,P] . (12.6)

To explain why the point must be endowed with an inner orientation, let us remark
that one can decide to compute the line integral from the point P to the origin O,
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as was done in early books.13 In this case, we would obtain

φ′(t)
def
=

∫ O

P
v(t,P) · t dL = −φ(t), (12.7)

Thus, the sign of the velocity potential changes when the direction of the lines
passing through P is reversed. This means that the point, instead of being oriented
as a sink, would be oriented as a source.

12.7.2 Vortex Flux and Vorticity

The vortex flux W across a surface can be defined as the line integral of the velocity
along the boundary of the surface, i.e.

W(t)
def
=

∫
∂S

v(t,P) · t dL −→ W[
∼
I ,−S] = −W[

∼
I , S]. (12.8)

Since the sign of the line integral depends on the direction chosen on the bound-
ary, the vortex flux is associated with surfaces endowed with an inner orientation,
hence W[S]. Thus, the vortex flux changes sign when the inner orientation of the
surface is changed (oddness principle). Since Γ is associated with dual time in-

stants, it follows that W is also associated with dual time instants, hence W[
∼
I , S].

The introduction of the vorticity pseudovector w̌ is analogous to the introduc-
tion of the magnetic flux density B̌ in the magnetic field.14 One obtains the relation

W(t) =
∫

S
w̌(t,P) · ň dS −→ w̌[

∼
I , S] . (12.9)

12.7.3 Relative Velocity and Velocity Gradient

When velocity is considered as being associated with points, it is the partial deriva-
tive of the position vector; hence, it behaves as a contravariant vector: v[T,P]. In
this case, we introduce the relative velocity:

V(t,PQ)
def
= v(t,Q) − v(t,P) −→ V[T,L] (12.10)

13 See for example Milne and Thomson [160, p. 53], Lamb [119, p. 17]. In the first case, one can
write v = ∇ φ, whereas with the old convention v = −∇ φ′.
14 See p. 293.
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Fig. 12.3 Velocity of two particles P and Q, which at the instant t are in the points P and Q.
Thick lines: velocities; thin lines: position vectors

Consider the motion of a fluid (Fig. 12.3). In the neighbourhood of each
point of the region in which the flow is regular (continuous and with continuous
variation), the velocity can be considered an affine function (Appendix A) of the
position vector, namely

⎧⎪⎪⎪⎨⎪⎪⎪⎩
vx = ax + Lxxx + Lxyy + Lxzz
vy = ay + Lyxx + Lyyy + Lyzz
vz = az + Lzxx + Lzyy + Lzzz

−→
v = a + L r

vh = ah + Lh
k xk .

(12.11)

The matrix L is called the velocity gradient at the point x, y, z considered.
Since velocity is, in general, dependent on time and space, the matrix is also

dependent on time and space. Hence, we must write L(t,P) ≡ L(t, r) ≡ L(t, x).
Its components Lh

k depend on space coordinates, and they change according to the
law of a mixed second-order tensor:

dvh(t, x) = Lh
k(t, x) dxk −→ Lh

k =
∂vh

∂xk
. (12.12)

While L is locally a matrix, its dependence on the coordinate system makes it a
second-order tensor and is called the velocity gradient tensor.15

12.7.4 Strain Rate Tensor and Volume Dilatation Rate

From the velocity gradient tensor one introduces the strain rate tensor ≡ rate of
deformation16

15 Chadwick [39, p. 65], Billington and Tate [15, p. 44], Jaunzemis [106, p. 207], Lai et al. [117,
p. 76].
16 Billington and Tate [15, p. 47], Prager [188, p. 64], Aris [6, p. 84], Hunter [98, p. 111], Chad-
wick [39, p. 74], Jaunzemis [106, p. 208].
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D
def
=

1
2

(L + LT) Dhk
def
=

1
2

(Lhk + Lhk), (12.13)

the spin tensor

W
def
=

1
2

(L − LT) Whk
def
=

1
2

(Lhk − Lhk) (12.14)

and the cubic (or bulk or volume) dilatation rate

θ(t,P)
def
= tr (L) = tr (D) = ∇ · v (12.15)

Space and Time Associations. Since the strain rate tensor and the spin tensor
are the symmetric and skew-symmetric parts of the velocity gradient tensor, they
maintain the same association: D [T,L],W [T,L]. The same thing happens for the
cubic dilatation rate: θ[T,L].

12.7.5 Global Form of Mass Balance

Temple wrote: ‘The fundamental equations of hydrodynamics should therefore be
first formulated in global form, for a finite, extended mass of fluid.’ Moreover, ‘To
emphasize this point we can employ the expression a fluid body, in contrast to
the familiar rigid body, to designate a mass of fluid which always consists of the
same particles, like the yolk of an egg oozing through a crack in the shell without
breaking its sac’.17

Mass content is associated with primal time instants because it does not change
sign under a reversal of motion. It follows that the mass balance must be computed
on primal time intervals.

Material Description. Let us consider a fluid body B as a ‘system’. Considering
two arbitrary instants the mass balance requires

M[I +,B] − M[I −,B]
law
= 0, (12.16)

that reduces to a mass conservation.

Spatial Description. Considering a fixed control volume
∼
V endowed with an

outer orientation, the mass conservation becomes: the increase in mass content in
a volume in a time interval plus the mass which flowed out across the boundary of
the volume is zero. Table 12.5 summarizes this law.

17 Temple [223, p. 3]. The expression fluid body is also used by Meyer [158, p. 3].
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Table 12.5 From verbal statement to differential formulation via global formulation

12.7.6 Global Form of Momentum Balance

Momentum is associated with dual time instants because it changes sign under
a reversal of motion. Moreover, momentum production (≡ impulse) is associated
with dual time intervals because it does not change sign under a reversal of motion.
It follows that the momentum balance must be computed on dual time intervals.

Material Description. Let us consider a fluid body B. The impulse communi-
cated to the body is conveniently divided into a volume impulse J v, like gravity,
and a surface impulse J s, like pressure and viscous impulses. Since the impulse is
associated with dual time intervals, the momentum balance becomes
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Table 12.6 From verbal statement to differential formulation via global formulation

P [̃I +,B] − P [̃I −,B]
law
= Jv[

∼
T,B] + Js[

∼
T, ∂B]. (12.17)

Spatial Description. Let us consider a fixed control volume
∼
V endowed with an

outer orientation. The momentum balance becomes: the increase in momentum
content in a volume in a time interval plus the momentum which flowed out across
the boundary of the volume is equal to the sum of the impulses of volume forces
and surface forces.

Table 12.6 summarizes this law. Note that while mass balance is computed on
primal time intervals, momentum balance must be computed on dual time inter-
vals. This distinction, which is not at all evident in the differential formulation,
may have a role to play in computational fluid dynamics.
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12.8 Constitutive Laws

The most widely used constitutive equations in continuum mechanics are as fol-
lows:18

Ideal Real

Incompressible σi j
mat
= −p δi j σi j

mat
= −p δi j + 2μDi j

Compressible σi j
mat
= −p δi j + λ θ δi j σi j

mat
= −p δi j + 2μDi j + λ θ δi j

(12.18)

12.9 Classification Diagrams of Fluid Dynamics

There are two classes of diagrams: those which have as the source variables

• The mass, such as [FLU1]–[FLU5];
• The force, such as [FLU6], [FLU8], [FLU9], [FLU11].

The diagrams of the first class are typical of a field theory, whereas those of the
second class are typical of a mechanical theory. The main difference between the
two classes is that in a field theory velocity is associated with lines and time in-
stants, whereas in a mechanical theory velocity is associated with points and time
intervals.

Diagram [FLU10] differs from the others because it shows the link with the
variables entering diagrams of the first kind (those with masses as source vari-
ables) and forces. Even if correct, the diagram needs an interpretation. It is similar
to the diagram [ELE13] of a charged particle in an electromagnetic field.

18 O’Neil [171, p. 55], Chorin and Marsden [41, p. 32].
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Chapter 13
Other Physical Theories

13.1 Equilibrium Thermodynamics

The thermodynamics of equilibrium, also called simply thermodynamics, is
entirely based on a material description.1 In fact, the subject of thermodynamics
is a thermodynamic system, and one of its main physical variables is the volume
V.2 The fact that in a material description the volume is a variable, like for exam-
ple pressure, temperature and entropy, implies that there is no reason to introduce
space elements. In truth, the consideration of space elements arises in a spatial
description, which deals with control volumes and control surfaces where these
elements do not change with time.

The thermodynamic variables, such as volume, mass, number of moles, en-
tropy and the various forms of energy (internal, enthalpy, Helmholtz and Gibbs
free energies), relate to the whole system and are additive on the subsystems; for
this reason they are called extensive variables. In contrast, variables such as tem-
perature, chemical potential, pressure and concentration are uniform in the system
and are called intensive variables.

In thermodynamics a so-called fundamental problem does not exist because the
distinction between source and configuration variables need not be introduced. For
these reasons the diagrams of thermodynamics differ from the usual diagrams of
this book.

Remark. It is important not to confuse fundamental equation, which we have used in

this book as expressing the fundamental problem, with the fundamental equation used in

thermodynamics, which gives the internal energy U as a function of the extensive parameters

such as entropy, volume and mole numbers, i.e. S ,V, N1, N2, · · ·Nr. See Callen [33, p. 31].

1 This chapter presupposes a previous reading of Chaps. 1–9.
2 We use the calligraphic letter V to avoid confusion with the control volume V of the spatial
description. See pp. 21 and 92.
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Diagrams [THE1], [THE2] and [THE3] show an ordered disposition of the
variables of thermodynamics, demonstrating Maxwell’s reciprocity relations,
which are the analogues of the ‘curl’ in field theories. Moreover, these diagrams
show the localization of the Legendre duality transform in the diagram which
can be compared with diagrams [PAR3] and [PAR4] of particle and analytical
mechanics.

13.2 Non-equilibrium Thermodynamics

Non-equilibrium thermodynamics, also called irreversible thermodynamics, is en-
tirely based on a spatial description. Here the temperature becomes a point func-
tion, like pressure, chemical potential and density, and hence they are not uniform
as in equilibrium thermodynamics. This association with points implies the con-
sideration of the space differences of these variables, and in this way one intro-
duces new variables associated with lines. The line densities of these variables are
the so-called thermodynamic forces, i.e. the gradients of temperature, of chemical
potential, and so forth. In non-equilibrium thermodynamics, it is possible to dis-
tinguish the configuration variables from the source variables, and the fundamen-
tal problem makes sense. Hence, for non-equilibrium thermodynamics we build a
classification diagram. The various productions, like entropy production and mo-
lar production, with their corresponding fluxes, are source variables. On the other
hand, temperature, chemical potentials and their gradients are configuration vari-
ables.

In non-equilibrium thermodynamics, additivity remains for those variables as-
sociated with volumes, and these can be called extensive, but additivity has a
meaning also for variables associated with surfaces and lines, even if calling them
extensive might generate confusion.

13.2.1 Internal Energy

Internal energy, as with every form of energy, is associated with
∼
T but is a function

of primal instants I. This is expressed by the two notations U[
∼
T] and U(I). This

is similar to velocity, which is associated with T but is a function of
∼
I . This is

expressed by the two notations v[T] and v(
∼
I ). The same holds for temperature,

T [
∼
T] and T (I), and for force, F[

∼
T] and F(I).
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Table 13.1 First principle of thermodynamics

13.3 Thermal Conduction

This is a physical theory which belongs to non-equilibrium thermodynamics. The
protagonists of thermal conduction are the two physical variables temperature and
heat. Heat is the source of the thermal field, while temperature describes the ther-
mal configuration of a system.

13.3.1 Fundamental Problem

The fundamental problem of thermal conduction can be stated as follows:

• Given a solid body,
• Given a time interval,
• Given the shapes and the nature of the materials which fill the region,
• Given the boundary conditions,
• Given the initial temperature at every point of the body,
• Given the distribution and the intensities of heat generators in space and in

time,
• Find the temperature at every point of the body at every subsequent instant.

13.3.2 Source Variables: Space and Time Classification

Heat. Heat is a particular form of energy transfer through a surface (usually the
boundary of a region) during a time interval. Since a reversal of motion changes
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the direction of heat (heat coming into a region is transformed into heat coming
out of the region), it follows that time is endowed with an inner orientation, hence

Q[T,
∼
S].3

Heat Current. Also called heat flow rate, or thermal flux, this is the rate of heat
crossing a surface in a time interval. The SUN commission of IUPAP say that
it must be denoted by Φ. It is associated with surfaces endowed with an outer

orientation and with primal time intervals, i.e. Φ[T,
∼
S].

Heat Current Density. Also called heat flow rate density, or heat flux,4 it must be
denoted, according to the SUN commission of IUPAP, by q. It is associated with

surfaces endowed with an outer orientation and with time intervals, i.e. q[T,
∼
S].

13.3.3 Configuration Variables: Space and Time Classifications

Temperature. Temperature is invariant under a reversal of motion; one of the
reasons for this is that the indication of a mercury thermometer does not change

with reversals of motion. Hence temperature can be associated with I or with
∼
T.

To decide which one is correct, we remark that the measurement of temperature
implies a time interval to reach thermal equilibrium between the body and the

thermometer bulb, hence T [
∼
T].

Another proof stems from the relation between heat and temperature. Denoting
by C the thermal capacity of a body, the constitutive relation

Q = C ΔtT (13.1)

is valid for both heating and cooling of the body. Hence it must be invariant under
a reversal of motion. We now show that, as a consequence, temperature does not
change sign under a reversal of motion. In fact,

since R Q = −Q then R (C ΔtT ) = −(CΔtT ) (13.2)

since R (ΔtT ) = −Δt(RT ) then R T = T . Hence, T is associated with dual time
intervals, T [

∼
T].5

A further proof lies in the fact that temperature is a measure of the internal
energy of a body; in particular, for a perfect gas the reversible constitutive equation

U = U0 +C T is valid. It follows that, since U[
∼
T], we have T [

∼
T].

3 We know that heat and work are two forms of energy flow. Thus, the use of the term heat flow
is equivalent to flow of energy flow. This is incorrect because in this expression the term flow is
repeated: heat is already a flow!
4 See p. 30 for a critique of the term flux in this context.
5 See p. 128.
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Thermacy. Since energy can be integrated in time to give action,6 temperature
can also be integrated in time: its indefinite time integral is called thermacy and

will be denoted by T [
∼
I ,P].7 The definite time integral, which we will call the

impulse of thermodynamic temperature, will be denoted by T . Moreover, since
temperature is not the density of another variable, it is associated with points,

hence T [
∼
T,P].

Temperature Gradient. The gradient of temperature, g = grad T , is associated
with lines endowed with an inner orientation and with dual time intervals, like
temperature, hence g[

∼
T,L].

Let us consider the conduction of heat in solids. The space global physical
variables are the temperature T [P], temperature difference between two points

G[L], heat current Φ[
∼
S] and heat generation rate P[

∼
V]. The corresponding field

variables are

Configuration variables Source variables

Global variables T [P] G[L] Φ[
∼
S] P[

∼
V]

↓ ↓ ↓ ↓
Field variables T [P] g[L] q[

∼
S] σq[

∼
V]

(13.3)

Table 13.2 shows how space global variables are organized in the diagram, and
the diagram 13.3 shows the corresponding densities.

Lastly, diagram 13.3 adds the relations between the variables: on the left is the
definition of temperature gradient g in terms of the temperature T ; on the right is
the balance equation which links the heat current density q with the heat source
σq. The horizontal link represents the Fourier constitutive relation, which links the
configuration variable g with the source variable q. Diagrams [TCO2] and [TCO3]
show unsteady heat conduction using an entropy or energy representation.8 Dia-
gram [TCO4] shows an algebraic formulation of steady thermal conduction, which
is useful for a numerical solution.9

13.4 Gravitational Field

The fundamental problem of gravitation can be stated as follows:

• Given the space and time distribution of masses,
• Given the initial position and initial velocity of the masses,

6 See p. 127.
7 Maugin and Berezowsky [151, p. 433], De Broglie [47, p. 95], Max von Laue [128].
8 Callen [33, p. 26].
9 Cell method, p. 111.
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Table 13.2 Steady thermal conduction: classification of space global variables

Table 13.3 Steady thermal conduction: classification of field variables

configuration variables
inner orientation

primal cell complex

source variables
outer orientation
dual cell complex

�
�

�
�T

g = ∇T

��
�

�
�g

�
�

�
�σq

∇ · q = σq

�

�
�

�
�q� � � � � � � � � � � � � � � � � � � � � � � � � �q = −λ g

1 [
∼
T,P]

3 [
∼
T,L]

1 [T,
∼
V]

3 [T,
∼
S]

temperature

temperature
gradient

heat
source

heat
current
density

• Find the gravitational potential at every point at all subsequent instants.

In the differential formulation, the fundamental equation links the mass density
ρ with the gravitational potential Ug. The equation is

− 1
4πG

∇2Ug = ρ. (13.4)

In general, as we have seen, in physical theories, one can distinguish quantities
which depend on the medium from those quantities which do not depend on it.
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Table 13.4 From field variables to global variables in thermal conduction

Configuration Configuration Source Source

Global variables Field variables Global variables
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S]

[T,
∼
S]

[T,
∼
V]

�
�
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�
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S p

�
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S f
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��

�

�

�
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�
��

[I,
∼
V]

[I,
∼
S]

[T,
∼
S]

[T,
∼
V]

T Thermodynamic temperature
T Thermacy
T Unnamed
G Unnamed

s Entropy density
g Temperature gradient
Js Entropy current
σs Entropy source

S p Entropy production
S c Entropy content
S f Entropy flow

T =
∫
∼
T

T dt G =
∫
∼
T

∫
L

g · t dL dt

S c =

∫
∼
V

s dV S p =

∫
T

∫
∼
V
σs dV dt S f =

∫
T

∫
∼
S

Js · n dS dt

Compare with diagram [TCO3]

This is the case with the vectors E and B of the electromagnetic field, which
depend on the medium, and with the vectors D and H, which do not. The same
happens in the mechanics of deformable solids with the deformation tensor ε,
which depends on the material, and with the stress σ, which does not depend
on it.

Gravity is a peculiar exception because the gravitational attraction between
two masses is not affected by the medium in which the masses are placed; this is
summarized in the gravitational constant G, which is a universal constant. Since
the acceleration of gravity g is the gradient of the gravitational potential, it is
associated with a line, as are all gradients since they stem from the difference
between the values of a function at two points.

Since there is no distinction between properties which depend on the medium
and properties which do not, the gravitational field does not suggest the need
to introduce a vector which describes the gravitational flux. Despite this, some
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authors10 call gravitational flux the flux of the vector g; this is improper because
the flux of a gradient should not be computed; this is associated with lines, not
surfaces. Similarly, in the electric field, it is improper to compute the flux of the
vector E, while it is natural to compute the flux of the vector D.11 The application
of a classification diagram to the gravitational field suggests the need to define a
gravitational flux density vector, which, in the absence of an official symbol, will
be denoted by h using the formula12

h
def
=

1
4πG

g . (13.5)

Diagram [GRA1] shows a classification diagram of the classical gravitational
field.

13.4.1 Relativistic Gravitation

The relativistic theory of gravitation, also called the general theory of relativity,
has as its source term the stress-energy-momentum tensor, which generalizes the
mass density ρ, and has as its main configuration variable the metric tensor gαβ,
called the gravitational potential, which generalizes the classical gravitational po-
tential Ug.

A more realistic description of the relativistic gravitational theory is that offered
by the tetrad theory of gravitation.13 The fact that the tetrads hA

α are associated with
space-time lines suggests that the graviton has spin 1 (not spin 2 as is commonly
asserted).14

13.5 Quantum Mechanics

The author has no particular knowledge on quantum mechanics; hence it would be
inappropriate to insert diagrams here related to this field of physics. Nonetheless,
the relativistic diagrams of particles of integer spin show some impressive analo-
gies with classical physical theories which, in the hands of theoretical physicists,
can be interpreted, justified or modified.

10 Kaufman [111, p. 179].
11 Which some authors do! See Jackson [103, Sect. 1.3], Lorrain et al. [143, p. 50], Akhiezer [5,
p. 17].
12 Melehy [157, p. 49], Mansfield and O’Sullivan [150, p. 90].
13 Treder [236].
14 This statement is in accordance with Treder [236, p. 82].
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The reader is encouraged to compare diagram [QME4] that deals with the
Proca equation for particles of spin 1 and non-zero rest mass, such as mesons,
with diagram [ELE6] on electromagnetism, whose associated particle is the pho-
ton, also of spin 1 but zero rest mass. Both particles are described by real vector
valued functions and are associated with space-time lines, i.e. with space-time
elements of dimension 1 (as the spin).

Another meaningful comparison is that between the Klein–Gordon equation,
see diagram [QME3], relative to particles of spin 0, and diagram [QME4] relative
to the Proca equation on particles of spin 1.

The diagram [QME3], which concerns the Klein–Gordon equation, shows that
the wave function of particles of spin 0 are associated with space-time points, i.e.
with space-time elements of dimension 0 (as the spin). This is in accordance with
Schönberg:15

Fields with spin 0 particles ought to be associated with the simplest three dimensional
affine objects, the point of space. The spin 1 fields should be associated with the straight
lines.

The same equation, decomposed into its space and time components, shown in
diagram [QME2], has a striking similarity with the acoustic equation in [FLU5].

Diagram [QME1] shows the analogy between classical particle mechanics and
Heisenberg’s matrix mechanics.

Diagram [QME5] shows the real physical variables that can be obtained from
the complex wave function ψ; they are five bilinear covariants, each being asso-
ciated with a space-time element.

The author has found that the paper by Schönberg, just cited, contains a de-
scription of quantum mechanics which agrees with the analysis given in this book.
Among the notions of interest there is the spherical orientation of points, which
coincides with our notion of source and sink.16 Schönberg states that ‘charge con-
jugation is thus related to the reversal of the spherical orientation’.

An interesting remark is that in four-dimensional diagrams, such as that of
electromagnetism, diagrams [ELE6], [GEN9], [GEN10], [GEN11] and [GEN12],
the boxes in the bottom part contain pseudoscalar and pseudovector functions;
these functions can describe pseudoscalar and pseudovector particles.

In conclusion, we stress that these few diagrams on quantum mechanics are
diagrams of trials and are offered here as a stimulus for theoretical physicists to
investigate their link with classical field theories.

∼ ∗ ∼

15 Schönberg [202, p. 326].
16 Schönberg [202, p. 323].
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Thermodynamics
Legendre’s transform

[THE1]

(S ,V,N) = thermodynamic configuration space

Fundamental equation

Equations of state

U = Internal energy

G = Gibbs function

Dual fundamental equation

Ref: Callen, H.B.: Thermodynamics. Wiley, New York, pp. 33, 100, 118 (1960)

THE1-8; http://discretephysics.dicar.units.it

http://discretephysics.dicar.units.it
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[THE2]

S = Entropy

Extensive
entropy variables

Intensive
entropy variables

Equations of state

Fundamental equation

Maxwell reciprocity relations

Gradient
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dNdS = v · dr ∇ × v = 0

Ref: Callen, H. B.: Thermodynamics. Wiley, New York, pp. 33, 118 (1960)
THE2-9; http://discretephysics.dicar.units.it

http://discretephysics.dicar.units.it
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[THE3]

U = Internal energy

Extensive
entropy variables

Intensive
entropy variables

Equations of state

Fundamental equation

Maxwell reciprocity relations

Associated with lines

Gradient

Curl

dr = [ dS , dV, dN] v = [T,−p, μ]

dU = T dS + (−p) dV + μ dNdU = v · dr ∇ × v = 0

Ref: Callen, H.B.: Thermodynamics. Wiley, New York, pp. 33, 118 (1960)
THE3-8; http://discretephysics.dicar.units.it

http://discretephysics.dicar.units.it
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( g
T
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∂t s + ∇ · J s = σ s

entropy balance
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Ref: Sommerfeld, A.: Thermodynamics and Statistical Mechanics, Vol. V. Academic, New York,
Ref: p. 152 (1952) for thermacy see: Maugin, G.A.: Towards an Analytical Mechanics of Dissipative

Materials, Rend. Sem. Mat. Univ. Pol. Torino, Vol. 58 (2), (2000) Callen,
Ref: H.B.: Thermodynamics. Wiley, New York, p. 36 (1960)
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1
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η̌γαβμ ∇γS A
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∇μǩAμ = τ̌A
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∇μT μ
B = KB
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∇νU μν
B = T μ
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U μν
B = η̌ ρσμν ∇ρΨ̌Bσ
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Ψ̌Bσ = ∇ση̌B
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U μν
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L μν αβ
B A S A

αβ
�

Constitutive equation

L μν αβ
B A = L αβ μν

A B

1 [P]

4 [L]

6 [S]

4 [V]

1 [H]

1 [H̃]

4 [Ṽ]

6 [̃S]

4 [L̃]

1 [P̃]

Relativistic gravitation [GRA2]
Tetrad theory

(ta
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pt)

Configuration variables Source variables

χA Killing’s vector

hA
α Tetrads

S A
αβ Name?

A, B Internal indices

KB Minkowsky’s force

T μ
B Stress-energy-momentum tensor

U μν
B Super potential

Greek indices Coordinate indices

Ref: Treder, H.J.: Gravitationstheorie und Äequivalenzprinzip. Akademie Verlag, Berlin, p. 76 (1971)
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Composing the equations, starting from balance equation:

∂

∂t

(
1

c2μ

∂ψ

∂t

)
+ ∇ ·

(
−1
μ
∇ψ

)
= −μψ

from which

Fundamental equation
Klein–Gordon

1
c2

∂2ψ

∂t2
− ∇2ψ = −μ2ψ

Spin zero particles
Klein–Gordon equation

Space formulation

[QME2]
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Constitutive equation

Constitutive equation

Constitutive
equation

μ
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Ref: De Broglie, L.: The Vigier Theory of Elementary Particles. Elsevier, Amsterdam, p. 33 (1963)
Ref: Wichmann, E.H.:Quantum Physics, Berkeley Physics Course,Vol.4. McGraw-Hill, New York,p. 205
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S = ψψ




�
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Vα = ψγαψ




�

�


Tαβ = iψ [γα γβ − γβ γα]ψ




�

�


Aμ = ψ i γμγ5ψ




�

�


P = iψγ5ψ

�

�

�

�

1 P

4 L

6 S

4 V

1 H

Scalar

Vector

Skew-symmetric
tensor

Pseudovector

Pseudoscalar

Pauli spin matrices

σ0
def
=

[
1 0
0 1

]
σ1

def
=

[
0 1
1 0

]

σ2
def
=

[
0 −i
i 0

]
σ3

def
=

[
1 0
0 −1

]

γ0
def
=

[
0 σ0

σ0 0

]
γk

def
=

[
0 σk

σk 0

]

γ5
def
= γ0 γ1 γ2 γ3

γ0 def
= . . . . γk def

= . . . .

Ref: de Broglie, L.: La theorie des particules de spin 1/2. Gauthier-Villars, Paris, p. 76 (1952)
(signature +—)

Ref: Berestetskii, V.B, Lifshitz, E.M. and Pitaevskii, L.P.: Relativistic Quantum Theory.
Pergamon, Oxford, p. 85 (1971) (signature +—)

Ref: Feynman, R.P.: Theory of Fundamental Processes. Benjamin, p. 115 (1962) (signature +—).

Ref: Rzewusky, J.: Field Theory, Part I, Classical Theory. Polish Scientific Publisher
p. 63 (1964) (signature —+) covariance and contravariance not respected.

Ref: Yilmaz, H.: Introduction to the Theory of Relativity and the Principles of Modern Physics.
Blaisdell, p. 121 (1965) (signature —+) covariance and contravariance not respected.

Ref: Sakurai, J.J.:Invariance Principles and Elementary Particles. Princeton University Press,Princeton,
p. 27 (1964)

ψ∗ Complex conjugate
ψ̃ Transposed (?)
ψ† = ψ̃∗ Adjoint
ψ = ψ†γ0 Pauli adjoint

Bilinear covariants

For Dirac theory

[QME5]
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pt)
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Part III
Advanced Analysis



Chapter 14
General Structure of the Diagrams

14.1 Introduction

In this chapter we analyse the general structure of a classification diagram.1

We start with diagram [GEN1], which shows the relation of exterior differen-
tial forms with the classification diagram. The physical variables associated with
space elements endowed with an inner orientation are described by multicov-
ectors and, hence, by even differential forms. In contrast, the physical variables
associated with space elements endowed with an outer orientation are described
by pseudo multicovectors and, hence, by odd differential forms.

Diagram [GEN2] shows the passage from the even differential forms to the
tensor notation up to the formation of the ‘standard column’, which is the one
employed in all classification diagrams. Diagram [GEN3] shows the analogous
passage from the odd differential forms to the pseudomultivector. Diagram [GEN4]
shows the relation between discrete forms on primal and dual complexes and
even and odd differential forms and from these to the standard columns. Diagram
[GEN5] shows the various notations for the standard columns of the two sides of
the diagram. Diagram [GEN6] shows a comparison between the standard columns
and the de Rham complexes. Diagram [GEN7] makes the same comparison using
the language of discrete forms. Diagrams [GEN8]–[GEN11] deal with space-time
and must be compared with diagrams [GEN1]–[GEN4]. Diagram [GEN12] shows
the standard diagrams in space of one, two, three and four dimensions.

Diagram 14.1 shows the strict link which exists between the de Rham theory
and the classification diagram presented in this book. We have added the affine
scalar and vector fields and the uniform scalar and vector fields which enjoy many
simple and beautiful mathematical properties (Appendix A).

1 This chapter presupposes previous reading of Chaps. 1–9. The tensorial notation which we will
use is summarized in Appendix B.

E. Tonti, The Mathematical Structure of Classical and Relativistic Physics,
Modeling and Simulation in Science, Engineering and Technology,
DOI 10.1007/978-1-4614-7422-7__14, © Springer Science+Business Media New York 2013
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Table 14.1 Link between present classification diagram and de Rham theory
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Even and odd differential forms in three dimensions [GEN1]
No metric, no connection

Remark: we put the degree of the form inside rounded brackets to distinguish them from discrete forms.

Multicovectors

α′ = 1α

β′p = 1 λi
p βi
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pλ
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q γi j
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j
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Classification diagram: from discrete forms to standard diagram
[GEN4]
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ř2




�

�


q̌1




�

�


p̌0

Discrete
3-form

Discrete
2-form

Discrete
1-form

Discrete
0-form

1 [
∼
V]

1 [
∼
S]

1 [
∼
L]

1 [
∼
P]

�

�

�
�

δ

�

�

�

�

δ

Primal cell complex
Discrete forms

Dual cell complex
Odd discrete forms

Tools:
Cohomology
Discrete forms
Coboundary operator

Discrete

Continuous



�

�


α(0)




�

�


β(1)




�

�


γ(2)




�

�


δ(3)

Differential
0-form

Differential
1-form

Differential
2-form

Differential
3-form

1P

3L

3S

1V




�

�


σ̌(3)




�

�


ρ̌(2)




�

�


θ̌(1)




�

�


π̌(0)

1 [
∼
V]

3 [
∼
S]

3 [
∼
L]

1 [
∼
P]

Differential
3-form

Differential
2-form

Differential
1-form

Differential
0-form

Differential forms Odd differential forms

Tools:
Exterior calculus
Exterior forms
Exterior differential

�

�

�
�

d

�

�

�

�
d

�
�

�
�a

�
�

�
�b




�

�


c




�

�


d




�

�


Ǎ
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Ď

b
=
∇a

Č
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ř2

� �
� �

q̌
1


 �

� 

δ
ř2
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The prototype of this diagram is that of electromagnetism; see diagram [ELE6].
It is also the diagram of the Klein–Gordon field for particles of spin 0; see diagram [QME3]
and of Proca equation for particles of spin 1; see diagram [QME4].

x0 = c t Greek index runs from 0 to 3 ds2 = gαβ dxα dxβ

GEN11-9; http://discretephysics.dicar.units.it
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Chapter 15
The Mathematical Structure

15.1 Introduction

In this chapter, we will show that for a mathematical description of physics it
is much better to start with algebra than with differential calculus. An algebraic
description has some advantages over the differential formulation:

1. The first advantage is that the algebraic description is enriched by the geo-
metric interpretation given by algebraic topology. The analogous description
in the differential formulation is that of exterior differential forms, which add a
geometric description to the traditional differential formulation.

2. A second advantage of an algebraic description is that it involves using global
variables, which are often the ones we measure directly.

3. A third advantage is that the global variables are not subjected to the regularity
requirements which the differential formulation imposes, such as the deriv-
ability of field functions. For example, temperature is continuous across the
separation surface of two material media, but its derivatives are not continu-
ous. Hence, the differential formulation cannot be applied to such a separation
surface where we must introduce the ‘jump conditions’ which are expressed by
algebraic equations.

4. A fourth advantage is that an algebraic formulation leads directly to a numerical
formulation of physical problems. In contrast, to apply a numerical analysis to
differential equations, we must discretize these equations, i.e. come back to
algebraic equations.

We want to show that it is more natural to describe physics starting from geo-
metric aspects, in particular from topological aspects, and then translate them into
algebraic terms and, finally, into differential terms, instead of proceeding along
the traditional road (Fig. 15.1).

Up to now the classification diagram has been made up of rounded boxes
containing physical variables and of rectangular boxes containing the equations

E. Tonti, The Mathematical Structure of Classical and Relativistic Physics,
Modeling and Simulation in Science, Engineering and Technology,
DOI 10.1007/978-1-4614-7422-7__15, © Springer Science+Business Media New York 2013
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Fig. 15.1 Three stages in description of physical theories

linking them. Now we can go a step further and consider each rounded box as
a vector space; it can be a finite-dimensional vector space or a function space,
depending on whether we use global variables or field functions. It follows that
when global variables are used, each rectangular box contains an algebraic oper-
ator, usually a matrix, while when field functions are used, each box contains a
differential operator. The use of vector spaces and operators makes it possible to
build up a mathematical model that can be applied to various physical theories.1

This mathematical model is made possible by the fact that despite the different
physical meaning of the variables which reside in the corresponding boxes of two
theories, despite their different tensorial natures, and hence the different number
of components, the equations that connect the vertical boxes have the same math-
ematical structure. In fact, we will show that the operators in the left and right
columns that lie on the same level are one adjoint of the other and that the con-
stitutive equations, when they are linear, are formed by symmetric operators. The
adjointness of the operators on the two sides and the symmetry of the constitutive
operator represent the necessary and sufficient condition for a variational formu-
lation of the fundamental problem. Herein resides the root of the Lagrangians,
which dominates all physical theories dealing with conservative phenomena.

To start the construction of the model, we must introduce some mathemati-
cal tools, such as the notion of pairs of vector spaces placed in duality by non-
degenerate bilinear forms and the notion of adjoint operators. To this we add the
link between a purely algebraic description and an algebraic topological descrip-
tion using the notions of discrete forms and coboundary operator. As we will
see, the rudiments of the cell complexes presented in Chap. 4 and the notions of
algebraic topology presented in Chap. 7 are enough to explain the reason for the
unitary structure underlying the theories of physics.

1 To make clear when the rounded boxes are considered vector spaces, we draw them as circles,
as shown in Table 15.5 (p. 441).
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15.1.1 Discovery of Adjointness

Let us consider two adjacent rooms (Fig. 15.2) within which there is heat gen-
eration through radiators. Suppose the ceiling, the floor and the side walls are
insulated so that heat can only pass horizontally: the two extreme walls are in
contact with two thermostats whose temperatures are 20◦ on the left and 5◦ on
the right. Let us denote by P1 and P2 the heat generation rates (in watt), which
we assume are assigned, and by T1 and T2 the unknown average temperatures (in
degrees Celsius) measured at the centres of the two rooms.

T1

-T1

T2

T1 T2

+T2+T1 -T2

G2

G2

G3

G3

G1

G1

Q2Q1

+Q2 -Q2-Q1

Q3

Q2Q1 Q3

P2P1

P2P1

+Q3

5°

5°

+5°-20°

20°

20°

dual complex
outer orientation

primal complex
inner orientation

Fig. 15.2 Heat flows horizontally only. The defining equations and the equation of balance per-
form the coboundary process on a one-dimensional cell complex and its dual

We number 1, 2 and 3 the three transverse walls crossed by the heat currents
Q1,Q2,Q3 (in watt) and G1,G2,G3 the temperature differences across the walls.
Let us denote by U the thermal transmittance of the walls and by A the area of the
walls. We can write the three relations as follows:

de f inition︷��������������︸︸��������������︷⎧⎪⎪⎪⎨⎪⎪⎪⎩
G1 = T1 − 20
G2 = T2 − T1

G3 = 5 − T2

,

constitutive equation︷���������������︸︸���������������︷⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q1 = −U A G1

Q2 = −U A G2

Q3 = −U A G3

,

balance︷���������������︸︸���������������︷{
P1 = Q2 − Q1

P2 = Q3 − Q2
. (15.1)

Recall that the balances must be made on dual cells endowed with an outer
orientation, in this case the rooms. The (mean) temperatures are those measured at
the centres of the cells, that is at the vertices of the primal complex, which have an
inner orientation (oriented as sinks). These equations can be organized in matrix
notation, as shown in Table 15.1. For the considerations that follow we should use
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the following matrices: G for the defining equation, M for the constitutive equation
and D for the balance equation.

Remark. The letter M, or the constitutive matrix, is suggested by the fact that it is the initial of

the words material and medium. The use of the letter C for the constitutive matrix would conflict

with the use of the same letter to denote the matrix corresponding to the curl of the differential

formulation. Recall the symbols G,C,D in Chap. 7.

Table 15.1 The balance matrix is the transpose of the definition matrix with a minus sign

�

�

�

	
T1, T2

�

�

�

	
G1,G2,G3

�

�

�

	
Q1,Q2,Q3

�

�

�

	
P1, P2

[
G1

G2

G3

]
def
=

[
+1 0
−1 +1
0 −1

] [
T1

T2

]
+

[
−20

0
+2

]

[
Q1

Q2

Q3

]
law
= −

[
UA 0 0
0 UA 0
0 0 UA

] [
G1

G2

G3

]

[
P1

P2

]
law
=

[
−1 +1 0
0 −1 +1

] [ Q1

Q2

Q3

]

�

�

�

Unknowns Assigned

Exact Defining equation Balance equation exact

Constitutive equation

Approximate

G D = −GT

M

Note the important fact that the two matrices D and G are transposed, apart
from the change in sign. The minus sign in the relation D = −GT depends on the
fact that an outer orientation of dual cells (outer normals, i.e. arrows coming out
of the volume) is the opposite of the orientation induced by an inner orientation
of the vertices of the primal complex (oriented as a sink, so the arrows are coming
into the vertex).

What we have described above is an application of the coboundary process.
Recall that the coboundary process allows us to switch from a discrete p-form to
a discrete (p + 1)-form, as mentioned in Chap. 7.

Let us consider the defining equation. Let us consider the discrete 0-form of the
nodal temperatures T 0 = [T1, T2] and apply to it the coboundary process, which
consists of two steps. The first step is to transfer the value associated with each
node (0-cell) to the two incident edges, applying the + or − sign depending on
the mutual incidence edges/nodes. Given the orientations shown in Fig. 15.2, the
value transferred to the left has a + sign while the value transferred to the right
has a − sign. The second step is to add, for each edge, the two values which derive
from the extreme nodes of the segment. In this way, we obtain the discrete 1-form
G1 = [G1,G2,G3] whose elements are given by the second equation in Eq. 15.1.
The result thus obtained can be expressed with the matrix G of the previous
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section, which describes the coboundary process performed on the discrete 0-
form T 0 of the temperatures and which gives rise to the discrete 1-form G1 of
the temperature differences. In the language of algebraic topology, we can write
G1 = δ T 0, where δ denotes the coboundary operator.

Let us consider the balance equation. The balance is also formed by two steps.
The first step consists in transferring the values of the heat currents Qk which
pass through each wall (0-cells of the dual complex) to the 1-cells (the rooms)
which form the coboundary of the walls, each multiplied by the incidence number
between the faces and the cells. The second step consists in adding, for each 1-
cell, the heat currents coming from its faces and making this sum equal to the rate
of heat generation within each 1-cell.

The reason of the transposition lies in the fact that the same incidence number
(apart from the sign) appears in the balance equation, where we pass from the faces
of a dual cell to the dual cell itself, and in the defining equation, where we pass
from the primal vertices to the primal edges. We are lead to introduce the discrete

1-form P1 def
= [P1, P2] and the discrete 0-form Q0 def

= [Q1,Q2.Q3].
Hence in the balance equation we pass from a discrete 0-form to a discrete

1-form, i.e. from a discrete form of lower dimension to one of higher dimension.
In the language of algebraic topology, we can write P1 = δQ0, where δ denotes
the coboundary operator. However, since the dimensions of the dual cells increase
in inverse order of the cells of the primal complex, we have d̃kα = −gαk, i.e.
∼
D = −GT, which is the adjointness property, as was already shown.2

The fact that this property of adjointness is systematic in the diagram and is
valid for all physical theories is so amazing that we pose the question: why is this
so? We will show in what follows that the reason must be found in the nature of
the coboundary process applied to the discrete forms of the primal and the dual
cell complexes.

To explain why, we will consider a simple one-dimensional problem which can
be treated in terms of algebraic equations.

15.1.2 Topological Equivalent of Algebraic Formulation

We now show how to give a geometric interpretation of the algebraic formulation
described previously. With reference to Fig. 15.3, the values (ϕ1, ϕ2, ϕ3, ϕ4) of the
set which is associated with the points of the primal complex give rise to a discrete
0-form ϕ0, whereas the values (u1, u2, u3) of the set which is associated with the
1-cells of the primal complex give rise to a discrete 1-form u1. The first relation of
Eq. 15.18 expresses the coboundary process performed on the discrete 0-form ϕ0,

2 See Eq. 7.1 on p. 189.
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Table 15.2 One dimensional, stationary, fluid flow

D1

Q2Q1

D2 D3

Q3

D4

D1 D2 D3 D4

Q4

Q2Q1 Q3 Q4

P2 P3P1

P2 P3P1

H2

H3
H1

H2 H3H1

Piezometric differences
between tanks⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

D1 =H1 − H0

D2 =H2 − H1

D3 =H3 − H2

D4 =H4 − H3

which, in matrix notation, can be written⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
D1

D2

D3

D4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
+1 0 0
−1 +1 0
0 −1 +1
0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
H1

H2

H3

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−H0

0
0
+H4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C
on

st
itu

tiv
e

eq
ua

tio
ns ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1=−λ
A
L

D1

Q2=−λ
A
L

D2

Q3=−λ
A
L

D3

Q4=−λ
A
L

D4

Fluid flow
between tanks

⎧⎪⎪⎨⎪⎪⎩
Q2 − Q1 =P1

Q3 − Q2 =P2

Q4 − Q3 =P3

⎡⎢⎢⎢⎢⎢⎣
−1 +1 0 0
0 −1 +1 0
0 0 −1 +1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Q1

Q2

Q3

Q4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
P1

P2

P3

⎤⎥⎥⎥⎥⎥⎦

Note that the two matrices are adjoint to one another: from here

D = G H +H Q = M D −GT Q = P
which give rise to the fundamental problem

−GT M G H = P +GT M H

u1 = δ ϕ0 , (15.2)

and can be written in the equivalent matrix notation:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
u1

u2

u3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 +1 0 0
0 −1 +1 0
0 0 −1 +1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1

ϕ2

ϕ3

ϕ4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ or u = Gϕ . (15.3)
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dual complex
coboundary process

primal complex
coboundary process

1 2 3 4
u1 u2 u3

-1 +1 +1 +1

1 2 3
1 2 3 4

-1

-1 -1

+1 -1 +1 -1 +1

Fig. 15.3 Coboundary process on primal and dual cell complexes in one dimension

Hence, the coboundary process between discrete 0-forms and discrete 1-forms
on the primal cell complex of Fig. 15.3, which is endowed with an inner orienta-
tion, is described by the matrix G (Chap. 7).

Still, with reference to Fig. 15.3, the set of values (v1, v2, v3) associated with the
0-cells of the dual complex give rise to a discrete 0-form v 0, whereas the set of
values (ψ1, ψ2, ψ3, ψ4) associated with the 1-cells of the dual complex give rise to
a discrete 1-form ψ1. The second relation of Eq. 15.18 between the two discrete
forms can be considered the coboundary process

ψ1 = δ v 0 . (15.4)

This relation can also be expressed in matrix form as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1

ψ2

ψ3

ψ4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0
+1 −1 0
0 +1 −1
0 0 +1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
v1

v2

v3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ or ψ = GTv . (15.5)

Hence, the matrix GT describes the coboundary process between the discrete
0-form and the discrete 1-form on the dual cell complex of Fig. 15.3. Thus, we see
that the same coboundary process performed on a primal or on a dual cell complex
is described by a matrix and by its transpose respectively.

The first bilinear form Eq. 15.20 can be written as

〈v, u〉2
def
=

3∑
h=1

vh uh =
[
v1 v2 v3

] ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
u1

u2

u3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
[
v1 v2 v3

] ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 +1 0 0
0 −1 +1 0
0 0 −1 +1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1

ϕ2

ϕ3

ϕ4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

(15.6)
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In addition, the second bilinear form Eq. 15.20 can be written as

〈ϕ , ψ〉1
def
=

4∑
k=1

ϕk ψk =
[
ϕ1 ϕ2 ϕ3 ϕ4

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1

ψ2

ψ3

ψ4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
[
ϕ1 ϕ2 ϕ3 ϕ4

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0
+1 −1 0
0 +1 −1
0 0 +1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
v1

v2

v3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

(15.7)
Hence, Eq. 15.21 can be written as

matrix notation operatorial notation

vT Gϕ ≡ ϕT GT v or 〈v, G ϕ〉2 ≡ 〈ϕ ,GT v〉1.
(15.8)

This shows that bilinear forms are connected with the coboundary process.
However, to help the reader who is more familiar with the differential approach,

we will do the reverse process: we will start from the differential formulation to
arrive at the algebraic formulation.

The algebraic description possesses the advantage of not having the condi-
tionings of the differential formulation, primarily those conditionings imposed
by the conditions of derivability. These conditions are specifically required by
the differential formulation to use the theorems which the differential formula-
tion provides. Algebraic topology makes use of global variables and therefore
does not use those field functions which are obtained by the density of global
variables.

Since we presume that our reader is more familiar with the traditional differen-
tial formulation of physical laws than with the algebraic-topological formulation,
we will start by showing how to pass from the differential formulation to the alge-
braic one and from this to the formulation offered by algebraic topology.

15.2 From Differential Operators to Algebraic Operators

The ‘discovery’ that global physical variables have a natural association with
space and time elements, endowed with an inner or outer orientation, leads us
to make use of cell complexes instead of coordinate systems to describe physi-
cal theories. The proper tools for this algebraic description are algebraic topology
and the notions of chains and discrete forms.3 This leads us to use algebra instead
of infinitesimal calculus. Since the physical literature has been modelled on the
differential formulation since Newton’s time, it is imperative to analyse the link
between algebraic operators and differential operators. This is the main purpose
of the following sections.

3 See Chap. 7.
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15.2.1 Differential Operators: Some Specifications

The traditional description of physical theories is based on the differential for-
mulation. For this reason the classification diagrams contained in this book were
written in the differential formulation. Hence the mathematical properties are con-
tained in the differential operators which appear in these equations. In common
language, expressions like

d
dx
,

∂

∂t
,

∂2

∂t2
, div, grad curl , ∇2, i � ∂ (15.9)

are called differential operators. This terminology conflicts with the terminology
of functional analysis, where one is interested in notions like, for example, ad-
jointness, eigenvalues, inverse of an operator and variational formulation. Properly
speaking, the expressions (15.9) are formal differential operators4 which become
differential operators only when the set of functions on which they must oper-
ate is assigned. This set is called the domain of the operator L and is denoted by
D(L). To define the domain, one must give additional conditions composed of the
following elements:

• The functional class, i.e. the regularity requirement of the functions and of its
derivatives, say C1[a, b],C2[a, b],C∞[Ω],C∞

0 [Ω], etc.
• The boundary conditions for boundary value problems and the initial condi-

tions for evolution problems.

The functional class is largely dictated by mathematical convenience and is not
imposed by physics, apart from a minimum of derivability conditions; for this
reason we will omit specifying it.5 The same formal differential operator gives
rise to many differential operators, one for every domain selected. In summary:

differential operator = formal differential operator + domain. (15.10)

The following relations are examples of differential operators:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1 =

{
d
dx

; x ∈ [a, b]; u(a) = 0

}
,

L2 =

{
d2

dx2
; x ∈ [a, b]; u(a) = 0; u(b) = 0

}
,

L3 =

{
∇2; x ∈ [Ω];

∂u
∂n

∣∣∣∣∣
∂Ω
= 0

}
.

(15.11)

4 Stone [220, p. 116, 123], Locker [141, p. iv, 26], Kato [112, p. 146], Dass and Sharma [45,
p. 346], Dunford and Schwartz [61], Goldberg [79]. Naimark [167, p. 3] uses the term linear
differential expression instead of linear formal differential operator.
5 ... as many authors do.
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Why should we add the domain? One reason is that while for a square n × n
matrix Q the eigenvalues λ1, λ2, ... , λn are the numbers λk for which the system

Q u = λ u (15.12)

admits non-zero solutions, such a requirement for the ‘operator’ ∇2 is meaning-
less because the eigenvalues depend on the shape of the domain and on the kind
of boundary conditions. Thus the normal modes of a membrane blocked on its
boundary depends on the shape of the boundary. The following two operators,
having the same formal differential operator but different additional conditions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L4 =

{
d2

dx2
; x ∈ [0, π]; u(0) = 0; u(π) = 0

}
,

L5 =

{
d2

dx2
; x ∈ [0, π]; u(0) = 0; u′(π) = 0

}
,

(15.13)

have different eigenvalues λn = −n2 and λn = −(n − 1/2)2 respectively. Hence,
the eigenvalues are different only because they have different boundary conditions
at π.

It would be meaningless to ask for the eigenvalues of the ‘operator’ d/ dx.
Moreover, in contrast to a common statement in books on quantum mechanics,
it is not true that the ‘operator’ i� d/ dx is Hermitian, simply because this prop-
erty depends on the kind of boundary conditions. Another reason is that it would
be meaningless to ask for the inverse of the ‘operator’ ∇2 or d2/ dx2. These are
meaningless statements simply because these ‘operators’ are only formal differ-
ential operators; these statements become meaningful only when the additional
conditions are taken into account, i.e. for a true differential operator.

Hence, if we want to extend the differential calculus concepts, which are rooted
in matrix calculus, we must consider the additional conditions as being an es-
sential part of a differential operator and, consequently, make a clear distinction
between a formal differential operator and a differential operator.

It is also important to make a clear distinction between the terms equation and
problem. While −ε∇2φ = ρ is an equation, the sets

⎧⎪⎪⎨⎪⎪⎩
−ε∇2φ = ρ in Ω

φ
∣∣∣
∂Ω
= assigned

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−ε∇2φ = ρ in Ω

∂φ

∂n

∣∣∣∣∣
∂Ω
= assigned

(15.14)

are the Dirichlet and the Neumann problems respectively. An equation contains a
formal differential operator, say L , whereas a problem has a differential operator,
say L. We will distinguish the two notions by writing
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{
problem
L u = v

}
=

{
equation
L u = v

}
+

{
additional conditions

initial/boundary/regularity

}
. (15.15)

We will denote a linear operator by the letter L and a non-linear operator by N.
The kernel of a linear operator will be denoted by K(L) and the range of a linear
and a non-linear operator by R(L) and R(N) respectively.

15.2.2 Algebraic Equivalent of Differential Formulation

Our aim is to show the link between the linear differential operators and the cor-
responding linear algebraic operators. To this end, the following integral identity
plays a pivotal role:6

∫ b

a
v(x) dϕ(x) ≡

[
v(b) ϕ(b) − v(a) ϕ(a)

]
−

∫ b

a
ϕ(x) dv(x) . (15.16)

Let us subdivide the interval [a, b] into subintervals, for example, in three
subintervals of equal length, as shown in Fig. 15.4. Let us number the subdivi-
sion points from 1 to 4 and the subintervals from 1 to 3. Equation 15.16 becomes

v1 (ϕ2 − ϕ1) + v2 (ϕ3 − ϕ2) + v3 (ϕ4 − ϕ3) ≡

[ϕ4v3 − ϕ1v1] − ϕ2 (v2 − v1) − ϕ3 (v3 − v2) .
(15.17)

Notice that the number of components of ϕ is four, whereas that of v is three:
this obligates us to approximate the expression v(a) ϕ(a) with ϕ1 v1 and v(b) ϕ(b)
with ϕ4 v3. The last formula suggests the need to introduce two new sets of
numbers:

dual complex

primal complex
a b

u1 u2 u3

v1 v2 v3
1 2 3 4

j4j3j2j1

Fig. 15.4 Primal and dual subdivision of an interval [a,b]

6 Lanczos [121, p. 152].
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u1

def
= ϕ2 − ϕ1

u2
def
= ϕ3 − ϕ2

u3
def
= ϕ4 − ϕ3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1
def
= 0 − v1

ψ2
def
= v1 − v2

ψ3
def
= v2 − v3

ψ4
def
= v3 − 0

(15.18)

so that Eq. 15.17 can be written as

3∑
h=1

vh uh ≡
4∑

k=1

ϕk ψk . (15.19)

This relation is the algebraic equivalent of the differential identity of Eq. 15.16.
This notation suggests the need to introduce an appropriate tool, the bilinear
forms, which will be explicitly presented shortly. Hence, when we introduce the
bilinear forms

〈v, u〉2
def
=

3∑
h=1

vh uh 〈ϕ , ψ〉1
def
=

4∑
k=1

ϕk ψk, (15.20)

Eq. 15.19 becomes

〈v, u〉2 ≡ 〈ϕ , ψ〉1 . (15.21)

This shows that the formula of integration by parts of Eq. 15.16 becomes the
equality of two bilinear forms in an algebraic setting. As we will see, in the sequel,
this equality plays a pivotal role in the mathematical structure of physical theories.

15.3 Physics Needs Couples of Vector Spaces

The analysis we have done so far, which has led to the construction of a classifica-
tion scheme for the variables and equations of physical theories of the macrocosm,
has demonstrated a truth: in all the theories examined, the configuration variables
must be distinguished from the sources variables. This distinction, based on phys-
ical content, is further strengthened by the observation that the two types of global
variable are associated with the space elements endowed with an inner and an
outer orientation respectively. The reason for this marked correspondence

Configuration variables ←→ Inner orientation
Source variables ←→ Outer orientation

remains mysterious to the present author.
This distinction, between configuration and source variables, is absent in tra-

ditional descriptions of physics, which, rather than two separate function spaces,
use a single function space.
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For example, functional analysis, when dealing with Poisson’s equation of elec-
trostatics −ε∇2φ = ρ, omits the physical constant ε and (implicitly!) introduces
the function f = ρ/ε. In this way, Poisson’s equation is reduced to −∇2φ = f ,
which links two functions, φ and f , of the same function space. This reduction of
equations describing physical laws to purely mathematical equations hides infor-
mation on the physical phenomenon described.

Furthermore, this single space is endowed with a scalar product (≡ inner prod-
uct), creating a Hilbert space. We will now show that it is possible and convenient
to maintain the two distinct spaces, equipping them with a tool similar to a scalar
product in a Hilbert space. This requires the introduction of a bilinear form be-
tween the two spaces; in this way, the two spaces are said to be ‘placed in duality’.
This bilinear forms plays the role of scalar products between the elements of the
two vector spaces, as shown in the left part of Fig. 15.5.

Fig. 15.5 Two couples of spaces placed in duality by non-degenerate bilinear forms. The for-
mulae on the right part will be explained later

Remark. It may seem strange to talk about a pair of vector spaces and of a ‘scalar product’

between entities of two different spaces; but just consider the fact that the first scalar product

of history, which is also the most used in physics, is that between a force and a displacement

which gives rise to work. Forces and displacements are members of two different communities,

they do not have the same physical dimensions and therefore cannot be added to one another:

how can they reasonably coexist in the same function space? This cannot be: it is better to

consider two vector spaces placed in duality by a bilinear form instead of a single vector space

endowed with a scalar product. The same remark is valid for all scalar products used in physics,

such as, for example, electric displacement D and electric field strength E in the electric field,

magnetic induction B̌ and magnetic field strength Ȟ in the magnetic field; stress σ and strain ε

in the mechanics of deformable solids, and momentum p and velocity v in particle mechanics.

Kinetic energy, which uses the scalar product of velocity by itself, seems to be an exception. But

we must remember that it comes from the scalar product v · dp and is reduced to the product

v · dv only after having linked the momentum and the velocity with the constitutive relation

p = mv.
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Another mathematical reason for maintaining the distinction between the two
sets of variables is that the source of a physical field can be a highly discontinuous
function, up to a distribution, like Dirac’s delta function, whereas the configura-
tion variable, typically a potential, is always continuous and derivable whenever
there are no material discontinuities. How can they reasonably coexist in the same
space?

A further mathematical reason for this distinction is that the variables of the
two spaces are conjugated, i.e. their product is an energy.7 They have an op-
posed tensorial variance: if one variable is covariant, then the corresponding con-
jugate variable is contravariant. Since the product of two conjugate variables gives
an energy, this assures the invariance of the energy with respect to a change in
coordinates.

We can say that these two function spaces, such as the spaces Φ and Ψ and
the spaces U and V of Fig. 15.5, correspond to the rounded boxes of each level of
the classification diagram. The two spaces of the same couple are isomorphic: this
means that it is possible to establish a one-to-one map between the elements of
the two spaces, which preserves the composition laws of the two spaces.

15.3.1 Bilinear Forms as Scalar Products

The notion of the scalar product of two geometric vectors, as used in physics, can
be generalized to algebraic vectors of an n-dimensional space:

vectorial︷����������������������������︸︸����������������������������︷
u · v = ux vx + uy vy + uz vz ⇒

operatorial︷︸︸︷
〈u, v〉 def

=

algebraic︷���︸︸���︷
n∑

k=1

uk vk =

matrix︷��������������������������︸︸��������������������������︷

[ u1 u2 ... un ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

...
vn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = uTv .

(15.22)
The scalar product is an application which associates a number to two vectors, and
this association is linear in both the first and second terms; hence, it is a bilinear
form. Let us recall some definitions involving the term bilinear:

• Bilinear map denotes three vector spaces8 with U,V and W, a bilinear map
w = B(u, v) is an application between the Cartesian product of the first two
spaces and the third space. Hence B : U × V �→ W.

• Bilinear form or bilinear functional9 is a particular bilinear map, in which the
third space is IR. In this case B : U × V �→ IR.

7 See p. 149.
8 Recall that the terms vector space and linear space are synonymous.
9 Halmos [88, p. 36].
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The extension of the notion of scalar product to a function space can be done
as follows. Let u(x) and v(x) belong to two isomorphic function spaces U and V.
We can use the notation

〈u, v〉 def
=

∫ b

a
u(x) v(x) dx with u ∈ U, v ∈ V (15.23)

and consider this relation as the definition of the scalar product of the two
functions. If u(x) and v(x) are two vector-valued functions which belong to
two isomorphic function spaces U and V, then a useful scalar product is the
following:

〈u, v〉 def
=

∫
V

u(x) · v(x) dV with u ∈ U, v ∈ V . (15.24)

Let us give the following definition:10

Definition. Given two vector spaces U and V over the reals, a bilinear
form B is an application which to every couple of elements u ∈ U and
v ∈ V associates a real number, i.e. U × V �→ IR, and which is linear in
both arguments:

B(u + u′, v) = B(u, v)+ B(u′, v),
B(u, v + v′) = B(u, v)+ B(u, v′),
B(λu, v) = B(u, λv) = λB(u, v) .

(15.25)

A bilinear form is called non-degenerate if

B(u, v) = 0 for all u ∈ U implies v = 0 and
B(u, v) = 0 for all v ∈ V implies u = 0

(15.26)

and the two spaces U and V are said to be placed in duality. The space
V is called dual of the space U and is denoted by U∗.

The notation we will use is 〈v, u〉 ≡ B(u, v), i.e. we take as the first elements in
the notation 〈v, u〉 the element of the second space.11

Remark. The reason for the order 〈v, u〉, instead of the more common one 〈u, v〉, is suggested

by the differential of a function v = f (u), which is a bilinear form dv = (∂ f /∂uk) duk ≡ 〈∇ f , du〉.
In physics, the source variable may depend on the configuration variable; for example, in solid

mechanics the force density f (source) depends on the displacement η (configuration), and this is

written as f(η). This implies that the elementary work of a force is written as w = f · dη ≡ 〈 f , dη〉;
hence, the source variable f precedes the configuration variable η.

10 Chevalley [40, p. 106], Schaefer [200, p. 123], Bourbaki [23, p. II.43].
11 As used by Kato [112, p. 12].
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Since the scalar product of two vectors is a real number, we see that the bilinear
form is an extension of the notion of scalar product. The only request we must add
is that the bilinear form must be non-degenerate. With this requirement it is possi-
ble and appropriate to extend the name scalar product to a non-degenerate bilinear
form. Two elements u ∈ U and v ∈ V for which 〈v, u〉 = 0 are called orthogonal.
With the notion of orthogonality the condition of being non-degenerate can be re-
stated as follows: only the null vector of one space can be orthogonal to all vectors
of the other space.

Table 15.3 gives a list of bilinear forms for various physical theories. What is
remarkable is that all these bilinear forms have the dimension of an energy, while
those dealing with space-time, i.e. with relativity, have the dimension of an action.
One can easily recognize that when dealing with finite-dimensional vector spaces,
two spaces can be placed in duality only if they have the same dimension. The
simplest counterexample is the case U2 and V1 on which the most general bilinear
form is 〈v, u〉 = au1v1 + bu2v1 ≡ (au1 + bu2) v1: all vectors such that au1 + bu2 = 0
are orthogonal to any vector v. For function spaces the condition is that the two
spaces U and V must be isomorphic.

The scalar product is the natural tool for introducing the notions of the trans-
pose of a matrix and the adjoint of a linear operator. We will introduce these
notions by distinguishing between two cases:

• When the operator works between two isomorphic spaces;
• When the two spaces are not isomorphic.

15.3.2 From Transposed Matrix to Adjoint Operator

We want to show that between the formal differential operators which lie on the
same level of the classification diagrams, such as ‘-grad’ and ‘div’, one is the
adjoint of the other. To this end, we summarize the notion of adjoint of an operator
starting from the familiar notion of transpose of a matrix.

Let us start with a square matrix L operating on the vectors of a single space
U endowed with a non-degenerate inner product (u, u′) or with two spaces of the
same dimension U and V placed in duality by a non-degenerate bilinear form
〈v, u〉. These two cases are represented in the left and right parts of Fig. 15.6. The
transpose of a matrix L is commonly defined as the matrix H obtained by in-
terchanging the rows and columns of the matrix. Taking this interchange as the
definition of the transpose is not a good idea: it is better to define the transposed
matrix H as the matrix which satisfies the relation

(L u, u′)
def
= (H u′, u)︸�������������������︷︷�������������������︸

when L : U �→ U
,

〈L u, u′〉 def
= 〈H u′, u〉︸��������������������︷︷��������������������︸

when L : U �→ V
. (15.27)



15.3 Physics Needs Couples of Vector Spaces 445

Table 15.3 Main bilinear forms
Field theories

Electrostatics
(energy)

〈ρ, φ〉 def
=

∫
V
ρ φ dV 〈D, E〉 def

=

∫
V

Dk Ek dV [ELE1]

Magnetostatics
(energy)

〈J, A〉 def
=

∫
V

Jk Ak dV 〈H, B〉 def
=

∫
V

1
2

Hhk Bhk dV [ELE2]

Electromagnetism
(action)

〈J, A〉 def
=

∫
H

JαAα dH 〈G, F〉 def
=

∫
H

1
2

GαβFαβ dH [ELE6]

Gravitation
(energy)

〈ρ,U〉 def
=

∫
V
ρU dV 〈g, h〉 def

=

∫
V

hk gk dV [GRA1]

Mechanical theories

Particle mechanics
(energy)

〈F, r〉 def
=

∫
T

Fk xk dt 〈p, v〉 def
=

∫
T

pk v
k dt [PAR1]

Acoustics in fluids
(energy)

〈σm, φ〉
def
=

∫
V
σφ dV 〈q, v〉 def

=

∫
V

qk v
k dV [FLU5]

Analytical dynamics
(energy)

〈Q, q〉 def
=

∫
T

Qi qi dt 〈p, v〉 def
=

∫
T

pi v
i dt [PAR3]

Relativistic dynamics
(action)

〈K, x〉 def
=

∫
T

Kα xα dτ 〈p, u〉 def
=

∫
T

pα uα dτ [PAR3]

Statics of continua
(energy)

〈 f , η〉 def
=

∫
V

fk η
k dV 〈σ, ε〉 def

=

∫
V
σhk ε

hk dV [SOL9]

Note: the last column indicates a reference diagram

This relation can also be written as

n∑
h,k=1

u′k Lkh uh =

n∑
h,k=1

uh Hhk u′k (15.28)

from which it follows that Hhk = Lkh, i.e. from the definition of Eq. 15.28 we
deduce that the transposed matrix has the rows exchanged with the columns of the
original matrix. The matrix H is denoted by LT. Hence the relation Eq. 15.28 can
also be written in the form

u′TL u = uTLTu′. (15.29)

15.3.3 Inhomogeneous Boundary Condition: Convex Set

A region Ω of IR2 or of IR3 is said to be convex if, for every pair of points within
the region, all points on the straight line segment which joins them is also within
the region. Denoting by P1 and P2 two points of Ω and by r1 and r2 their radius
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u
u

( )

L L∗
U ≡ V

U V

, u

L

L∗
u

u

, u

Fig. 15.6 (Left): linear operator L : U �→ U; (right) linear operator L between two isomorphic
spaces L : U �→ V

vectors from an origin O, and denoting by λ a real parameter with the condition
0 ≤ λ ≤ 1, the straight line segment has the equation r(λ) = (1 − λ)r1 + λr2. The
convexity of the region requires that r(λ) is the radius vector of a point P ∈ Ω.

What is beautiful is that the notion of convex set can be extended to a function
space with the same definition. Let us consider the domain of a differential op-
erator formed by the functions which satisfy inhomogeneous boundary or initial
conditions.

Let u1(x) and u2(x) be two functions of this set with the conditions u1(a) =
u2(a) = A and u1(b) = u2(b) = B. All the functions of the family u(x; λ) = (1 −
λ)u1(x)+λu2(x) satisfy the same inhomogeneous conditions. Since the family is a
linear function of λ with 0 ≤ λ ≤ 1, all these functions define a straight ‘segment’
in function space connecting the ‘points’ u1 and u2. Since all the ‘points’ of this
segment belong to the domain, we can say that the set of functions is convex
(Fig. 15.7).

15.3.4 Adjoint Operator

The notion of the transpose of a matrix can be generalized to a linear operator,
in particular to a linear differential operator. We remark that the linearity of a

a b

u

x

l = 0

l 
= 

1

u (x;l)

u1(x)

u2(x)

A

B
U

qu2

u1

u(l)

convex set

Fig. 15.7 Straight line segment connecting two elements in a function space
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differential operator implies the linearity of its formal part and the linearity of its
domain; this means that the initial or boundary conditions must be homogeneous.

The generalization runs as follows: let us consider, at first, a linear operator L
operating between two isomorphic vector spaces U and V placed in duality by a
non-degenerate bilinear form 〈v, u〉 called a scalar product, as shown in Fig. 15.6.
Hence, L : U �→ V. Let us consider the linear operator H : U �→ V, which satisfy
the equality

〈L u, u′〉 def
= 〈H u′, u〉 . (15.30)

The operator H is called the adjoint of the operator L and is denoted by L∗. The
equality Eq. 15.30 can be written as

〈Lu, u′〉 def
= 〈L∗u′, u〉 . (15.31)

This is the definition of adjoint of an operator when it operates between two iso-
morphic spaces. Equation 15.31 presupposes, obviously, that u′ ∈ D(L∗) and is
valid not for all elements of U but only for some subsets of U: the larger of these
subsets is the domain of the adjoint operator, i.e. u′ ∈ D(L∗) ⊆ U.12

Given a differential operator L, let us denote by L its formal part. Let us denote
by L∗ the adjoint operator and by L ∗ its formal part. One says that the two formal
differential operators L and L ∗ are formally adjoint.

Example 1. The adjoint of the linear operator L1 of Eq. 15.11 with respect to the bilinear form
Eq. 15.23 can be obtained with an integration by parts as follows:

∫ b

a

du(x)
dx

v(x) dx ≡
[
u(x) v(x)

]b

a
+

∫ b

a
− dv(x)

dx
u(x) dx. (15.32)

Since u(a) = 0, to eliminate the boundary term, the minimum requirement is to impose the
condition v(b) = 0. Hence, the adjoint is

L∗1
def
=

{
−

d
dx

; x ∈ [a, b]; v(b) = 0

}
. (15.33)

The formal differential operators L1 = d/dx and L ∗
1 = − d/dx are formally adjoint.

15.3.5 Further Extension of Notion of Adjoint Operator

In the preceding section, we considered linear operators working between two
isomorphic spaces placed in duality by a non-degenerate bilinear form. In this

12 One criticism to the definition of the transpose of a matrix (i.e. a matrix with rows exchanged
with columns) is that such a definition cannot be extended to other kinds of linear operators. Be
careful: the transpose of a matrix must be not called ‘adjoint’ because this term is already used
with a different meaning for matrices.



448 15 The Mathematical Structure

section, we present the notion of adjoint for linear operators working between
two spaces which are not isomorphic; hence, they cannot be placed in duality. An
example is the operator ‘grad’, which is applied to a scalar-valued function and
gives rise to a vector-valued function. Refer to the diagram of Fig. 15.5.

For a better understanding of this impossibility, let us return to matrix calculus
and let us consider a rectangular matrix, say m × n matrix. This works on vectors
of n components and produces vectors of m components, i.e. it works from a space
Un and a space Vm. The different dimensions of the spaces implies that they are
not isomorphic; hence, they cannot be placed in duality.

To introduce the notion of adjoint of a linear operator L : Φ �→ U when the two
spaces are not isomorphic, we introduce two other spaces Ψ and V so that Ψ can
be placed in duality with Φ and V with U, as shown in Fig. 15.5. This allows us
to introduce two non-degenerate bilinear forms 〈ψ, φ〉1 and 〈v, u〉2. The defining
relation of the adjoint is

〈v, L φ〉1
def
= 〈L∗v, φ〉2 . (15.34)

What is interesting is that the mathematical description of physical theories spon-
taneously shows couples of isomorphic spaces! These are the function spaces
which lie on the same level in the classification diagram. In the following sec-
tions, we will show that the relation expressed by Eq. 15.34 plays a pivotal role in
the mathematical description of physical theories.13

15.3.6 Role of Boundary Conditions

In the example shown in Sect. 15.1.1, we have assigned two boundary conditions,
the temperatures at the extremes. With reference to Table 15.4, let us examine now
the following three cases in which are assigned

1. The temperatures TA and TB,
2. The temperature TA and the heat QD going out on the right side, and
3. The heat QC entering the left side and the heat QD going out on the right side.

These three cases are the most simple algebraic, one-dimensional version of the
classical Dirichlet problem, mixed problem and Neumann’s problem for Poisson’s
equation used in field theories. In the third problem, the data must satisfy the
compatibility condition P1 + P2 = QD − QC and the temperature is defined up
to an additive constant. In the three cases, we consider the constitutive equation
Qi = −U A Di. Table 15.4 shows that in all these cases the matrix of the balance
problem is (minus) the transpose of the matrix of the definition problem.

13 For the notion of adjoint see Kato [112, p. 167].
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Table 15.4 Algebraic version of three kinds of boundary value problem

Example 2. We encourage the reader to perform the calculations of the temperatures T1 and T2

once P1 and P2 are assigned. As a check, we suggest the following values: P1 = 60 W; P2 =

30 W; TA = 20◦; TB = 5◦; U A = 2 W/◦C. The calculated values are T1 = 39◦; T2 = 28◦; Q1 =

−38 W; Q2 = −22 W; Q3 = +52 W.

15.3.7 Symmetric and Self-Adjoint Operators

When the operator L operates between two spaces U and V placed in duality, as
seen in Fig. 15.6, its adjoint L∗ has its domain in the same space U and its range
in the same space V. In this case it happens that the two operators coincide, i.e.
L = L∗. This means that the formal operators and the domains coincide: L = L ∗

and D(L) = D(L∗). When this happens, the operator L is said to be self-adjoint.
It happens more frequently that the domain of the adjoint contains the domain

of the operator, i.e. D(L) ⊆ D(L∗), always with the condition L = L ∗. In this
case, the operator L is said to be symmetric.14

14 Naimark [168, p. 13].
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15.3.8 Operators at the Same Level Are Mutually Adjoint

We want to show that the formal differential operators which describe the equa-
tions lying at the same level of the left and right columns of the classification
diagram are mutually adjoint. This property is made evident by performing an in-
tegration by parts. In the case of algebraic equations, one matrix is the transpose
of the other, as happens in the theory of electrical networks.

We refer to two diagrams, one of perfect fluid dynamics, [FLU1], and one of
electrostatics, [ELE1]. Diagram 15.5 shows the first two boxes of the left columns
of the two diagrams. In the same diagram, the last column on the right shows the
notation we will use for the operators. In this notation, the boxes are regarded as
spaces of functions. In diagram 15.5 the operator L operates between the spacesΦ
and U. In diagram 15.6, the operator B operates between the spaces V and Σ. We
have chosen the letter B, the first letter of the word ‘balance’, because, in general,
the equation B v = σ is a balance equation. Diagram 15.6 shows the last two boxes
of the right columns of the two diagrams.

Table 15.5 Configuration side of diagrams [FLU1] and [ELE1]

Fluid dynamics�
�

	

φ

�
�

	

v

v = ∇φ

�

Kinetic
potential

Velocity

Electrostatics�
�

	

φ

�
�

	

E

E = −∇φ

�

Electric
potential

Electric
field

In general
�

�
�φ


�

�
�u

u = L φ

�

Φ

U

The last column on the right shows the notation we will use.

Let us consider now the far right columns of the two diagrams 15.5 and 15.6.
We aim to show that the formal part of the differential operator B is the adjoint of
the formal part of the operator L, i.e. B = L∗.

Denoting by S1 and S2 the two parts of the boundary of the region V, such that
S1∪ S2 = ∂V, in electrostatics the main problems are

{
Ek = −∇k φ
φ = 0 on S1

,

{
∇k Dk = ρ
nk Dk = 0 on S2

, (15.35)
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Table 15.6 Source side of diagrams [FLU1] and [ELE1]

Fluid dynamics�
�

	

σ

�
�

	

q

∇ ·q = 0

�

Mass
source

Mass
current
density

Electrostatics�
�

	

ρ

�
�

	

D

∇ ·D = ρ
�

Electric
charge
density

Electric
displacement

In general
�

�
�σ


�

�
�v

B v = σ

�

Σ

V

The last column on the right shows the notation we will use.

which can also be written in vector form as
{

E = −∇φ
φ = 0 on S1

,

{
∇ ·D = ρ
n ·D = 0 on S2

. (15.36)

These two problems contain the linear operators

L
def
=

{
− ∇ ; φ

∣∣∣
S1
= 0

}
, B

def
=

{
∇ · ; (n ·D)

∣∣∣
S2
= 0

}
. (15.37)

A relation between these two operators can be found by performing an integration
by parts as follows:

∫
V
ρ φ dV =

∫
V

(∇k Dk) φ dV ≡
∫
∂V

(nk Dk) φ dS −
∫

V
Dk (∇kφ) dV =

∫
V

Dk Ek dV
��������������

(15.38)
in which the boundary term vanishes on account of the given boundary conditions.
It follows that the operators B and L adjoint to one another with respect to the
bilinear forms

〈ρ, φ〉 def
=

∫
V
ρ φ dV, 〈D, E〉 def

=

∫
V

D ·E dV . (15.39)

Hence, we have the property

B = L∗ and, a fortiori, B = L ∗ (15.40)

i.e. the operator of the balance equation is the adjoint of the operator of the defin-
ing equation. We have stressed the fact that the formal differential operators are
also adjoint because this property is valid even when the boundary conditions are
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not considered. We remark that the so-called operators -grad , curl , div are, more
properly, formal differential operators.

In the case of fluid dynamics, instead of E = −∇φ we have v = +∇φ, hence
instead of the Eq. 15.40 we have

B = −L∗ and, a fortiori B = −L ∗ . (15.41)

In this case, the two bilinear forms are

〈ρ, φ〉 def
= −

∫
V
σφ dV 〈q, v〉 def

=

∫
V

qk v
k dV ≡

∫
V

q · v dV . (15.42)

Hence we have shown that, at least in these two cases, the balance operator is the
adjoint of the definition operator, sometimes apart from the sign.

We can conclude that the formal operators div and -grad are adjoint to one
another. An analogous property is enjoyed by the two problems of statics of con-
tinua, which in Cartesian notation are

⎧⎪⎪⎪⎨⎪⎪⎪⎩
εhk =

1
2

(∂h ηk + ∂k ηh)

ηh = 0 on S1

,

⎧⎪⎪⎨⎪⎪⎩
−∂kσhk = fh

nkσhk = 0 on S2

. (15.43)

The two operators are adjoint to one another with respect to the two bilinear forms
〈 f , η〉 and 〈σ, ε〉 of Table 15.3 on p. 445. In fact,

〈 f , η〉 def
=

∫
V

fh ηh dV =

=

∫
V

(
− ∂kσhk

)
ηh dV ≡ −

∫
∂V
σhk ηh nk dS +

∫
V
σhk

(
∂kηh

)
dV ≡

≡
∫

V
σhk

1
2

(∂h ηk + ∂k ηh) dV =
∫

V
σhk εhk dV

def
= 〈σ , ε〉,

(15.44)
where the boundary term vanishes on account of the given boundary conditions.
Hence, also for the statics of continua, we have the relation Eq. 15.40.

15.3.9 Formal Operator ‘curl’ is Self-Adjoint

We refer to two diagrams, one of perfect fluid dynamics, [FLU2], and one of
magnetostatics, [ELE3]. The diagram 15.7 shows the first two boxes of the left
columns of the two diagrams, while the last column on the right shows the notation
we will use. In this notation, the boxes are regarded as spaces of functions and the
operator R as operating between the spaces U and T.
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Table 15.7 Configuration side of diagrams [FLU2] and [ELE3]

Fluid dynamics�
�

	

v

�
�

	

w

w = ∇ × v

�

Velocity

vorticity

Magnetostatics�
�

	

A

�
�

	

B̌

B̌ = ∇ × A

�

Magnetic
potential

Magnetic
flux

density

In general
�

�
�u


�

�
�τ

R u = τ

�

U

T

The last column on the right shows the notation we will use.

The diagram 15.8 shows the last two boxes of the right columns of the two
diagrams. We aim to show that the differential operator R is the adjoint of the op-
erator S and, at the same time, that the two formal differential operators coincide,
i.e. R = S. Denoting by S1 and S2 the two parts of the boundary of the region V,
such that S1∪ S2 = ∂V, the main problems of magnetostatics are15

{
Bk = ηhki∇kAi

Ai = 0 on S1,

{
ηpqr∇qHr = Jp

ηpqrnqHr = 0 on S2,
(15.45)

which can also be written in vector form as follows:

{
B̌ = ∇ × A
A = 0 on S1,

{
∇ × Ȟ = J
n × Ȟ = 0 on S2,

(15.46)

and they are formed with the two linear operators

R
def
=

{
∇× ; A

∣∣∣
S1
= 0

}
, S

def
=

{
∇× ; (n · J)

∣∣∣
S2
= 0

}
. (15.47)

Taking account of the assigned boundary conditions, the boundary term in the
following integration by parts vanishes, hence

15 The symbol ηhki denotes the Levi-Civita pseudotensor εhki/
√
g where εhki is the permutation

symbol and
√
g is the square root of the determinant of the metric tensor. See Appendix B.
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Table 15.8 Source side of diagrams [FLU2] and [ELE3]

Fluid dynamics�
�

	

q

�
�

	

ψ

∇ × ψ = q

�

Mass
current
density

Stream
vector

Electrostatics�
�

	

J

�
�

	

Ȟ

∇ × Ȟ = J

�

Electric
current
density

Magnetic
field
strength

In general
�

�
�v


�

�
�ψ

v = S ψ

�

V

Ψ

The last column on the right shows the notation we will use.

∫
V

J ·A dV ≡
∫

V
JpAp dV =

∫
V

(ηpqr∇qHr)Ap dV ≡
∫

V
(∇qη

pqrHr)Ap dV ≡

≡
∫

V
∇q(ηpqrHrAp) dV −

∫
V

(∇qη
pqrAp)Hr dV ≡

∫
∂V

nq(ηqrpHr Ap) dS+

+

∫
V

(ηrqp∇qAp)Hr dV ≡
∫
∂V

n · (Ȟ × A) dS +
∫

V
(∇ ×A) · Ȟ dV =

=

∫
∂V

A · (n × Ȟ) dS +
∫

V
B̌ · Ȟ dV =

∫
V

B̌ · Ȟ dV,

(15.48)

and it follows that the operators R and S are adjoint to one another with respect to
the bilinear forms

〈J, A〉 def
=

∫
V

J ·A dV, 〈B,H〉 def
=

∫
V

B̌ · Ȟ dV . (15.49)

Hence we have the property

S = R∗ and, a fortiori, S = R∗ , (15.50)

i.e. the operator of the dual balance equation is the adjoint of the operator of
the dual defining equation. We have stressed the fact that the formal differential
operators are also adjoint. We can conclude that the formal operator ‘curl ’ is
adjoint to itself, i.e. it is self-adjoint.

A great advantage of the introduction of the notion of formal differential op-
erator arises when we consider non-homogeneous boundary or initial conditions.
In fact, if the formal differential operator is linear, when we add homogeneous
boundary or initial conditions, the differential operator is also linear, while by
adding non-homogeneous boundary conditions we obtain a nonlinear operator.

Table [PDE] shows how the three kinds of partial differential equations, elliptic,
hyperbolic and parabolic are located in the classification diagram.
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15.4 The Three Kinds of Partial Differential Equations

Partial differential equations are divided into three classes: elliptic, hyperbolic and
parabolic. Diagram [PDE] shows how these three classes arise in a classification
diagram.

Elliptic equations

�
�

	

ψ

�
�

	

w

�
�

	

φ

�
�

	

u

��������������

���������������

�

�
�

	

ρ

�
�

	

z

�
�

	

σ

�
�

	

v

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �

�

�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�

�

± grad div

grad div

� �

� �
1 [
∼
T, P]

3 [
∼
T, L]

1 [
∼
I , P]

3 [
∼
I , L]

1 [T, P]

3 [T, L]

1 [I, P]

3 [I, L]

1 [I, V]

3 [I, S]

1 [T, V]

3 [T, S]

1 [
∼
I , V]

3 [
∼
I , S]

1 [
∼
T, V]

3 [
∼
T, S]

compare with [FLU1], [FLU3], [FLU4], [ELE1], [SOL0], [SOL1], [SOL12], [SOL13], [GRA1]

Hyperbolic equations

�
�

	

ψ

�

�

�

	

�
�

	

φ

�
�

	

u

∂t

��������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�

�
���

�

�
�

	

ρ

�

�

�

	

�
�

	

σ

�
�

	

v

∂t
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� �
� �
� �
� �
� �
� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�
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� �
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� �
� �
� �
� �
� �

� � � � � �
� � � � � �

� � � � � �
� � � � � �

� � � � � �
� � � � � �

� � � � � �
� � � � � �

� � � � � �

irreversible link

�
�
�
���

�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

± grad div

� �

1 [
∼
T, P]

1 [
∼
I , P]

3 [
∼
I , L]

1 [T, P]

1 [I, P]

3 [I, L]
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The three kinds of partial differential equations [PDE]

PDE-2; http://discretephysics.dicar.units.it



Appendix A
Affine Vector Fields

A.1 Affine Fields

Given a scalar function of one variable u = f (x), which we assume to be regular,
i.e. continuous and with continuous derivative, the tangent to its representative
curve at a point x0 is the straight line of the equation

u = f (x0) +
d f
dx

∣∣∣∣∣
x0

(x − x0) . (A.1)

In an analogous way, given a regular function of two variables u = f (x, y), the
tangent plane to its representative surface in the point of coordinates (x0, y0) has
the equation

u = f (x0, y0) +
∂ f
∂x

∣∣∣∣∣
(x0,y0)

(x − x0) +
∂ f
∂y

∣∣∣∣∣
(x0,y0)

(y − y0) . (A.2)

These functions are of the kind

u = a + b (x − x0),
u = a + b (x − x0) + c (y − y0),
u = a + b (x − x0) + c (y − y0) + d (z − z0)

(A.3)

and have a linear behaviour: they are called affine (scalar) functions.
The notion of affine function can be extended to a vector-valued function as

follows: denoted by v, a vector field, with O a point of the three-dimensional
region and with vO the vector in such a point, we will call an affine vector field
one that satisfies the following relation:

v = vO + H (r − rO), (A.4)
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458 A Affine Vector Fields

where we have denoted by r the position vector and by H a 3 × 3 matrix with
constant coefficients.

A.1.1 Affine Scalar Field

An affine scalar field is described in Cartesian coordinates by the equation

φ = a + hx x + hy y + hz z −→ φ = a + h · r, (A.5)

where a, hx, hy, hz are constants. The presence of the constant a permits us to say
that Eq. A.5 is an affine equation with a linear behaviour and not a linear equation.
In the sequel, it is appropriate to call this function a potential. In fact, in physical
theories such as electrostatics, the function φ indicates the electric potential, in
fluid dynamics the velocity potential, in gravitation the gravitational potential,
and so forth.

Every regular scalar field in a region can be approximated in the neighbour-
hood of a point with an affine scalar field.

The surfaces along which the function φ has a constant value, i.e. the equipo-
tential surfaces, are parallel planes (Fig. A.1). In particular, denoting by φP and φQ

the values of the function at two points arbitrarily chosen P and Q and consider-
ing the equipotential planes passing through P and Q, all the planes which match
the values φ = φP + k[φQ − φP], where k is a positive or a negative integer, are
equidistant.

P

Q
G

t

Fig. A.1 The gradient of an affine function is orthogonal to the equipotential planes

In fact, the line t which passes through the two points intersects these planes,
and the distance between two successive points of intersection is constant. In par-
ticular, when the point Q is placed on the perpendicular to the equipotential plane
passing through P, the distance between two successive intersections is minimal.

It is obvious that the difference uQ − uP is proportional to the length of the
segment (Q − P). Therefore, the ratio [uQ − uP]/||Q − P|| becomes significant
because it is the same for all the straight lines parallel to t. This ratio is called the
gradient in the direction t and is denoted by Gt. In particular, Gt is at its maximum
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when the straight line t is perpendicular to the equipotential planes, and it is the
same regardless of the point from which it is calculated. This suggests the need to
establish a representative vector of this maximum ratio: this vector, denoted by G,
goes towards the values where the potential increases and its modulus is equal to
the maximum value of Gt. The vector thus defined is called gradient of the affine
function φ. Since for a scalar-valued affine function the gradient is independent of
the point at which it is calculated, the vector field generated by the gradient vector
field is a uniform vector field.

Example 1. An example of affine scalar field is the gravitational potential near the ground (as-

sumed plane); another is the field of pressure of the atmosphere at low altitudes (the pressure

decreases linearly with altitude). A third is the field of temperatures at low altitudes.

An interesting property of affine scalar fields is the following:

Theorem A1: the value of an affine function in the middle point of a segment is the
average of the values of the function at the two extremes. This property is easily
proved.

A.1.2 Affine Vector Field

An affine vector field in Cartesian coordinates has the form
⎧⎪⎪⎪⎨⎪⎪⎪⎩
vx = ax + hxxx + hxyy + hxzz
vy = ay + hyxx + hyyy + hyzz
vz = az + hzxx + hzyy + hzzz

−→ v = a + H r . (A.6)

The matrix H, whose elements are hhk = ∂vh/∂xk, is called gradient of the vector v.
Every regular vector field in a region can be approximated in the neighbourhood
of a point with an affine vector field.

Example 2. An affine vector field is a vector field of the motion of a rigid body. At each instant
the velocity of a point P is given by the equation

⎡⎢⎢⎢⎢⎢⎢⎢⎣
vx

vy
vz

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

cx

cy
cz

⎤⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (A.7)

where cx, cy, cz are the velocity components of one of its points O; ωx, ωy, ωz are the components

of the angular velocity with respect to a Cartesian system with origin in the point O; and x, y, z

are the coordinates of P. From the rotation of a rigid body originates the term ‘rot’, which is the

European equivalent of the term ‘curl’.

Among the useful properties of affine vector fields we mention the following,
which are easily proved:1

1 For the proofs see, for example, Tonti and Nuzzo [235, p. 22].
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Theorem A2: the value of an affine vector-valued function in the midpoint of a
segment is the mean of the values of the affine vector-valued function at the two
extremes. This property is evident from Fig. A.2.

x
P

Q

vQ

vP

v

v v
v v

v
v

v

x
P

Q

M

vP

vQ

vM

a b

Fig. A.2 The variation of a vector field along a straigth line. (a) The tangential and the normal
components vary linearly; (b) The vector in the midpoint of a line segment is the mean of the
vectors at its ends

Theorem A3: the line integral of an affine vector field along a straight line seg-
ment is equal to the scalar product of the vector, evaluated in the midpoint of the
segment, for that vector which describes the oriented segment. In short,

∫ Q

P
v · t dL = v(M) · (Q − P) . (A.8)

Proof. Placing the x-axis along the line segment L and putting the origin in the
point P, since the points of the segment have y = 0, we have v · t = vx = a + bx.
The integral from 0 to L is (a+ bL/2)L. This is simply the product of the length L
for the component of the vector, evaluated in the midpoint of the segment, in the
direction of the line. �

Theorem A4: the circulation of a vector along the boundary of a plane surface
is proportional to the area of the surface 2

Γ
def
=

∫
∂S

v · t dL ∝ A . (A.9)

Proof. For simplicity we consider a plane affine field and a triangle. With ref-
erence to the left part of Fig. A.3, let us consider three points P,Q,R and three
vectors vP, vQ, vR. We aim to find the vector v at each point of the region using the
formulas of the affine field, i.e.

vx = a + bx + cy vy = d + ex + f y . (A.10)

2 See, for example, Tonti and Nuzzo [235, p. 154].
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Let us evaluate the circulation of the vector along the boundary of the triangle
PQR. Setting L1 = Q−P,L2 = R−Q,L3 = P−R and remarking that L1+L2+L3 =

0 we have

Γ = +
1
2

[vP · (L1 + L3) + vQ · (L1 + L2) + vR · (L2 + L3)]

= −
1
2

[vP ·L2 + vQ ·L3 + vR ·L1] .
(A.11)

Since vPx = a + bxP + cyP, vPy = d + exP + f yP and similarly for the other two
points, developing the calculations we obtain

−2Γ = (c − e)(xRyP − xQyP + xPyQ − xRyQ + xQyR − xPyR) . (A.12)

Denoting by A the area of the triangle we have

2A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 xP yP

1 xQ yQ

1 xR yR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 xP yP

0 (xQ − xP) (yQ − yP)
0 (xR − xQ) (yR − yQ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (xQyR − xPyR + xPyQ − xRyQ + xRyP − xQyP),

(A.13)

from which

−2Γ = (c − e)2A −→ Γ

A
= (e − c), (A.14)

which shows that for a triangle the ratio between the circulation and the area is
a constant, characteristic of the affine field. With reference to the right part of
Fig. A.3, let us now consider a polygon of arbitrary shape and divide it into tri-
angles. Considering two adjacent triangles the line integral along the edge of one
triangle is opposite to the same line integral along the edge of the adjacent trian-
gle. Since Γk = (e − c)Ak, it follows that Γ =

∫
k
Γk = (e − c)

∫
k

Ak = (e − c)A, as
the theorem states. �

P

Q

R

P

Q

S

T
R

Fig. A.3 The sum of the circulations along the boundary of every triangle is equal to the circu-
lation along the boundary of the entire polygon

As a particular case of this theorem follows that the circulation along the
boundary of different regions but with equal areas are equal, as shown in Fig.
A.4.
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Fig. A.4 In an affine vector field the circulations of the vector along the boundary of all triangles
of equal area are equal. In another words, the circulation of the vector along a closed line is
proportional to the area enclosed. The small filled circles denote the application points of vectors,
while the line segments, without arrows, denote the vectors

This proportionality suggests the need to calculate the ratio between the circu-
lation and the area obtaining a variable which depends on the space inclination
of the plane and does not depend on the point. This ratio can be called the curl
in the considered direction. With reference to a three-dimensional affine vector
field, such as that shown in Fig. A.5, by changing the space inclination, the ratio
changes. It is natural to consider as privileged the space inclination along which
this ratio is at its maximum.

Fig. A.5 The curl of an affine vector field (heavy lines) describes a uniform vector field

We can create a vector whose direction is perpendicular to the plane for which
we have the maximum value of this ratio, whose modulus is the value of this
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maximum ratio and whose direction is the one obtained by applying the screw
rule to the circuit along which the circulation is evaluated. This vector is called
the curl of the affine vector field. The field of the ‘curl’ of an affine vector field
is therefore a uniform vector field. In particular, the curl of an affine plane vector
field is orthogonal to the plane.

Recall that the centroid of a plane surface is the point of coordinates

xC
def
=

∑
i xiAi∑

i Ai
, yC

def
=

∑
i yiAi∑

i Ai
, xC

def
=

∫
S

x dS∫
S

dS
, yC

def
=

∫
S
y dS∫

S
dS

.

(A.15)

If the plane surface is a strip made of homogeneous material, then the centroid
coincides with the centre of mass.

Theorem A5: the flux of an affine vector field across a plane surface of area A
and unit normal n is equal to the scalar product of the vector evaluated in the
centroid of the plane surface for the vector n A which describes the surface.

Proof. With reference to Fig. A.6a, let us consider a plane surface element of area
A. Let us consider a Cartesian system of axes with the z-axis orthogonal to the
plane. Taking into account Eq. A.6, the flux Φ of the affine vector field on the
surface is

Φ =

∫
S

vP ·n dS =
∫

S
vz dS =

∫
S

az dS + hzx

∫
S

xP dS + hzy

∫
S
yP dS . (A.16)

Using the centroid given by Eq. A.15 we can write

Φ = az A + hzx xC A + hzy yC A = A vCz = vC · n A . � (A.17)

xx

z
z

y

y

v

n

v (C)

C

A

A

A
B

C

D

E

F

i

k
j

a b

Fig. A.6 (a) Flux across a plane surface. (b) Flux across boundary of a cube
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Theorem A6: the flux of the vector on a closed surface is proportional to the
volume enclosed by the surface3

Φ
def
=

∫
∂V

v · n dS ∝ V . (A.18)

Proof. With reference to Fig. A.6b, let us consider a cube of side a and the fluxes
across its six faces. Since every face is plane, we can use the result of Theorem A5
and compute the scalar products of the vectors in the centroids of the faces for the
vectors n A relative to every face. We have

Φ = a2 [vA · (−i) + vC · i + vC · (−j) + vD · j + vE · (−k) + vF ·k]
= a2 [(vC − vA) · i + (vD − vC) · j + (vE − vF ) · k]
= a3 [hxx + hyy + hzz],

(A.19)

where we have used Eq. A.6, so that

(vC − vA) · i = vBx − vAx = hxx(xC − xA) = a hxx (A.20)

and so forth. �
This proportionality suggests the need to compute the ratio between the flux

on a generic closed surface and the volume enclosed in the region. This ratio has
the same value at any point in the affine vector field: it is called a divergence of
the affine vector field. The divergence of an affine vector field is a uniform scalar
field.

In short, we have

gradient
(vector)

G =
φQ − φP

L
N

N is the unit vector in the direction of
maximum ratio (increment/distance)

curl
(vector)

C =
Γ[∂S]

A
N

N is the unit vector in the direction
orthogonal to the plane for which we
have the maximum ratio circulation/area

divergence
(scalar )

D =
Φ[∂V]

V

(A.21)

As we see, the proportionality is what suggests the need to introduce meaningful
ratios. In summary:

• In an affine scalar field, the variation of a function between two points of the
physical field is proportional to the length of the segment connecting the two
points.

3 Recall that V denotes the volume as a space region, while V denotes the volume as a measure
of the extension of the space region: it is an unfortunate coincidence of terminology that we try
to alleviate by using the symbol in bold. This ambiguity does not happen for lines and surfaces.
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• In an affine vector field,

– The circulation of a vector along a plane closed line is proportional to the
area enclosed by the line;

– The flux of a vector through a closed surface is proportional to the volume
of the region enclosed by the surface.

1. A first property of affine vector fields is that the line integral of the vector
along an oriented line segment joining two points of P and Q is equal to the
scalar product between the vector in the midpoint of the segment and the vector
representing the oriented line segment.

2. A second property is that the flux of the vector through an element of a plane
surface is equal to the scalar product of the vector in the centroid of the surface
element and the vector which describes the surface element.



Appendix B
Tensorial Notation

B.1 Summary of Tensorial Notation Used in This Book

Let us start by recalling the role of coordinate systems in geometry. Before the
introduction of Cartesian coordinates, geometry and algebra were two distinct dis-
ciplines. After the idea of Descartes to associate with every point a set of numbers
(two in the plane and three in space) and vice versa, every line and every surface in
space could be described analytically by functions giving the coordinates of their
points as functions of one parameter (for one-dimensional lines) or two parame-
ters (for two-dimensional surfaces). This was the birth of analytic geometry. The
role of a coordinate system is precisely to build a bridge between geometry and
analysis.

When in physics new entities called vectors, characterized by an oriented
direction in space, a magnitude and an application point, were introduced, it was
natural to seek an analytical representation of such entities. This is the case of dis-
placement, velocity, force, momentum and many others physical variables. Vector
calculus, making use of geometric objects, which are segments provided with an
arrow and a point of application, allows a purely geometrical description. We can
apply the parallelogram rule to compute the sum of two vectors which have the
same application point, and we can multiply a vector by a real number to ob-
tain another vector with the same application point. In short, vector calculus is an
extension of classical geometry.

Faced with the great utility of analytic geometry for physics, it is natural to
search for a corresponding analytical treatment of vector calculus. This requires
associating some kind of ‘coordinates’ with every vector. This is realized by
introducing a basis at every space point and considering the vector at every point
as a linear combination of the base vectors at the point. The coefficients of this
linear combination are called the components of the vector at the point.

The basis vectors at each point in space can, in principle, be chosen at will,
but it is spontaneous to choose vectors which are tangent to the coordinate lines

E. Tonti, The Mathematical Structure of Classical and Relativistic Physics,
Modeling and Simulation in Science, Engineering and Technology,
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passing through the point. We can choose base vectors of unit length; a basis so
obtained is called a physical basis. Another choice is that of the natural basis,
which we present subsequently.

Due to its geometrical nature, vector calculus does not require the use of coor-
dinate systems to express physical laws, i.e. it gives rise to an intrinsic formulation.
This is the case of the fundamental equation of motion for a particle, i.e. m a = F.

Nevertheless, performing calculations necessitates working with components
instead of with vectors themselves. This prompts us to inquire as to how compo-
nents are transformed in passing from one basis to another. The transformation
formulae are the subject of tensor analysis.

The aim of tensor analysis is to introduce notations and rules to write variables
and equations in a way which is independent of the coordinate system chosen and
of the basis chosen.

In dealing with tensors, some authors start with tensor calculus, others with
tensor algebra. Authors of the first group start with coordinate systems, while
those of the second group start with the basis in a vector space.1

In algebra, the starting point is vector spaces and base vectors, while in physics
the starting point is vector fields, hence coordinate systems, natural bases and
metric tensors. In algebra, one considers the transition from an old base e1, e3, e3

to a new base e′1, e
′
3, e

′
3, while in physics one considers the transition from an

old coordinate system x1, x2, x3 and its natural basis to a new coordinate system
x′1, x′2, x′3 and its natural basis.

In algebra, given two bases of a vector space, one can always link the vectors
of the two bases by a linear combination (recall that vector space is synonymous
with linear space):

e′h = λ
k
h ek, (B.1)

in which the coefficients λk
h are constants.

In physics, one is led to consider the transition from two coordinate systems

x′h = f h(xk) from which dx′h =
∂x′h

∂xk
dxk . (B.2)

Denoting by P(x) a point, we will denote by g k the natural base vectors ∂P/∂xk.
The transformation law of the base vectors is

g k(x)
def
=
∂P(x)
∂xk

, g′h(x) =
∂P(x)
∂x′h

=
∂P(x)
∂xk

∂xk(x′)
∂x′h

= gk(x)
∂xk(x′)
∂x′h

. (B.3)

1 From space coordinates: Levi-Civita [136, p. 2], Synge and Schild [221, p. 3], Laugwitz [129,
p. 94], Eisenhart [62, p. 1]. From basis in algebra: Willmore [252, p. 166], Lichnerowicz [138,
p. 8].
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Comparing Eq. B.3 with Eq. B.1 we see that the coefficients of the change in the
natural basis are

λk
h(x′)

def
=
∂xk(x′)
∂x′h

, (B.4)

and here the coefficients λk
h are no longer constants but functions of the new co-

ordinates. In particular, the infinitesimal vector dP can be written as dP(x) =
dxk gk(x).

Vectors which are transformed like base vectors are called covariant because
they vary in the same way. Under a change in basis, the components dx′h of the
infinitesimal vector dP change according to the relation

dx′h =
∂x′h(x)
∂xk

dxk = Λh
k(x) dxk, where we have set Λh

k(x)
def
=
∂x′h(x)
∂xk

,

(B.5)
that is, the differentials of the coordinates change in accordance with the inverse
transformation and for this reason are said to be contravariant.

A matrix for a change in basis whose elements are λk
h is called a transition

matrix.2 The two indices of the elements of the transition matrix can be written on
the same vertical3 simply because there is no reason to put them in two distinct
columns, like λ k

h or λk
h.

The determinant of the transition matrix, commonly denoted by Δ, plays a
special role in tensor calculus:

tensor algebra︷���������︸︸���������︷
Δ

def
= det(λk

h),

tensor calculus︷�������������������︸︸�������������������︷
Δ(x′)

def
= det(λk

h(x′)) . (B.6)

B.1.1 Generalized Kronecker Delta

As is well known, by definition δp
q = 1 for p = q and δp

q = 0 for p � q in every
basis. The transformation law for δp

q is the law of a mixed tensor, as can be seen
from the identity

δ′p
q =

∂x′p

∂x′q
≡ ∂x′p

∂xi

∂xi

∂x′q
≡ δ j

i

∂x′p

∂x j

∂xi

∂x′q
≡ δ

j
iΛ

p
j λ

i
q . (B.7)

2 Postnikov [180, vol. 1, p. 97], Godement [78, p. 206], Brillouin [30, p. 46].
3 This rule is followed by most authors: see Schouten [203, p. 1], Postnikov [180, p. 97], Lich-
nerowicz [138, p. 11], Brillouin [30, p. 25], Levi-Civita [136, p. 69], Weyl [247, p. 35]. Never-
theless, some authors put the indices in two distinct columns: see Laugwitz [129, p. 69], Schutz
[205, p. 61], Corson [43, p. 9], Hehl and Obukhov [89, p. 20].
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The Kronecker delta is a particular case of the generalized Kronecker delta
δ

p
h , δ

pq
hi , δ

pqr
hi j whose definition is4

δ
pqr
i jk

def
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+1 if i, j, k form an even permutation of p, q, r;
−1 if i, j, k form an odd permutation of p, q, r;

0 if two upper or lower indices are equal,
(B.8)

and similarly for δpq
hi and δp

h . Its transformation law is also one of mixed tensors.
We have

δ
pq
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h δ
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i δ
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∣∣∣∣∣∣∣∣∣∣
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h δ
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i δ
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j δ
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j δ
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∣∣∣∣∣∣∣∣∣∣
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h δ

qr
i j − δ

p
i δ

qr
h j + δ

p
j δ

qr
hi .

(B.9)

B.1.2 Permutation Symbol

This is defined as

εhi j
def
= δ123

hi j , εhi j def
= δ

hi j
123, εhi jk

def
= δ1234

hi jk , εhi jk def
= δ

hi jk
1234, (B.10)

εi jk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+1 if h, i, j are a cyclic permutation of 1, 2, 3;
−1 if h, i, j are a cyclic permutation of 2, 1, 3;

0 otherwise;
(B.11)

and similarly for εi jk. To maintain the same values, i.e. −1, 0, +1, in all coordinate
systems, the transformation law of these symbols is that of a tensor capacity and
tensor density respectively,5 i.e.

ε′pqr =
1
Δ
λh

p λ
i
qλ

j
rεhi j︸������������������︷︷������������������︸

tensor capacity

, ε′pqr = ΔΛ
p
h Λ

q
i Λ

r
jε

hi j

︸���������������������︷︷���������������������︸
tensor density

. (B.12)

Despite the use of the same letter ε, once with subscripts and once with super-
scripts, the two symbols are not the covariant and contravariant components of a
single object; hence the indices cannot be lowered or raised with the metric tensor.
Expressions like εpq

r , εp
qr, etc. have no meaning in tensor calculus.

Remark. Schouten [203, p. 29] uses two different letters for the covariant and contravariant

components: the letters e and E to stress that the indices cannot be raised and lowered with the

4 Synge [221, p. 242], Eriksen [63, p. 38].
5 Brillouin [30, Chap. III, Sect. 4].
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fundamental tensor. Synge [221, p. 250] uses the same letter ε as we do but advises that, in the

presence of a metric, the covariant and controvariant forms are not obtained from one another by

raising or lowering suffixes with the metric tensor. He advises that this is a violation of the rules

of tensor calculus, a violation commonly committed in the literature.

The term tensor capacity was introduced by Brillouin.6 It is well chosen be-
cause it refers to the volume considered as a recipe which can be filled with matter
which has a certain density. This can be seen from the fundamental relation7

M =
∫

V
ρ dV =

∫
V
ρ (
√
g dx1∧ dx2∧ dx3) =

∫
V

(ρ
√
g) ( dx1∧ dx2∧ dx3)

=

∫
V
ρ123 dx1∧ dx2∧ dx3 =

∫
V
ρ123 dτ. (B.13)

A tensor capacity is also called a relative tensor of weight −1, while a tensor
density is a relative tensor of weight +1.8

Levi-Civita Pseudotensor. The element of volume in general coordinates has the

form dV =
√
g dx1∧ dx2∧ dx3, where g

def
= det(ghk) is the determinant of the

metric tensor which obeys the transformation law
√
g′ = |Δ| √g . (B.14)

The permutation symbols and
√
g combine, giving rise to two other quantities:

η̌hi j def
=

1
√
g
εhi j, η̌hi j

def
=
√
g εhi j (B.15)

which are called the Levi-Civita pseudotensor.9 The law of transformation of the
Levi-Civita pseudotensor is as follows: denoted by sgn(Δ) ≡ Δ/|Δ| ≡ |Δ|/Δ, the
sign of the determinant of the transition matrix, it can be shown that

η̌′pqr = sgn(Δ)Λp
h Λ

q
i Λ

r
j η̌

hi j, η̌′pqr = sgn(Δ) λh
p λ

i
qλ

j
r η̌hi j . (B.16)

The first is a contravariant pseudotensor, while the second is a covariant pseu-
dotensor. This transformation law is similar to that of contravariant and covariant
6 Brillouin [30, Chap. III, Sect. 4].
7 Brillouin [30, p. 109]; Ingarden and Jamiolkowski [100, p. 44].
8 Schouten [204, p. 29].
9 The letter η is used by Synge and Schild [221, p. 249], Zund and Brown [258], Burke [32,
p. 182], Ingarden and Jamiolkowski [100], Von Westenholz [243, vol. I, p. 184].
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tensors respectively but differs by the factor sgn(Δ), which is ±1 and −1 when we
pass from a right-handed to a left-handed basis. For this reason they are called
pseudotensors.10 We will put a hacek over the letter η.11

B.1.3 Main Use of Levi-Civita Pseudotensor

The main use of the Levi-Civita pseudotensor is in the evaluation of the compo-
nents of the vector product of two vectors, i.e.

w̌ = u × v, w̌h = η̌hi juiv j, w̌h = η̌hi ju
iv j . (B.17)

The hacek over the letter w recalls the ‘pseudo’ nature of the vector, hence the
transformation law

w̌′p = sgn(Δ)Λp
h w̌

h, w̌′p = sgn(Δ) λh
p w̌h . (B.18)

B.1.4 Vector Components

In physics, one deals frequently with different coordinate systems and with differ-
ent basis vectors. There are three main sets of basis vectors:

• Natural basis vectors gk
def
=

∂P
∂xk

, from which ghk
def
= gh · gk;

• Reciprocal basis vectors gh, defined as gh def
= η̌hi jgi×g j, from which gh · gk = δ

h
k ;

• Physical basis vectors e(k)
def
=

gk√
gkk

:

vector basis vectors reciprocal
basis vectors

physical
basis vectors

↓ ↓ ↓ ↓
v = vh gh = vh gh = v(h) e(h)

↑ ↑ ↑
contravariant
components

covariant
components

physical
components

; (B.19)

10 Nowadays also called a twisted tensor. For the present author, the term twisted is inappropriate
when compared with its use in everyday life: just think of a twisted sentence. What changes here
is simply a sign in passing from a dextrorotatory coordinate system to a levorotatory one; nothing
is ‘twisted’!
11 As is done by Corson [43, pp. 8, 98].
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the v(k) are called physical components.12 The covariant, contravariant and physi-
cal components are given by

vh = v · gh, vh = v · gh, v(h) = v
h √ghh (not summed) . (B.20)

Table B.1 The six kinds of scalars

Densities

Density

S ′ = Δ S

Ordinary density

S ′ = |Δ| S

√
g, ρ123

Capacities

Ordinary capacity

S ′ =
1
|Δ|

S

Volume with
outer orientation

1
√
g
, dτ = dx1 dx2 dx3

Capacity

S ′ =
1
Δ

S

Volume with
inner orientation

Scalar

S ′ = S
Mass, electric charge, energy, work, heat
electric potential, gauge function, action

electromotive force, phase, entropy, pressure
magnetic flux, electric flux, temperature

particle number, charge flow, mass density

Pseudoscalar

S ′ =
|Δ|
Δ

S

Magnetic scalar potential
(magnetic charge)

B.2 Algebraic and Metric Duals

Given a second-order tensor, one may consider its dual (Table B.1). There are
two kinds of dual, the algebraic dual made with the permutation symbol and the
metric dual made with the Levi-Civita pseudotensor. Following Corson13 we will
place a breve (like a hacek but with a rounded bottom) over the letter to denote
the algebraic dual and a hacek to denote the metric dual. Thus, for the magnetic
induction tensor Bi j we have

algebraic dual︷���������︸︸���������︷
B̆ k def
= εki jBi j,

metric dual︷���������︸︸���������︷
B̌ k def
= η̌ki jBi j, hence B̌ k =

1
√
g

B̆ k . (B.21)

12 Truesdell [238, p. 347]; Spiegel [217, p. 172].
13 Corson [43, p. 6, 8].
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In tensor calculus, the most important dual is the metric dual, which is useful for
the vector product of two vectors and for the curl of a vector:

w̌ = curl v −→ w̌h = η̌ki j∂iv j ≡ η̌ki j∇iv j. (B.22)

The last equality is due to the symmetry of the Christoffel symbols entering the
covariant derivative.

Table B.2 Main formulae involving gradient, curl and divergence

Cartesian

General

Symbolic

Integral

Gradient

Gx = −∂xφ; . . .

Gk = −∂kφ

G = −∇φ ≡ −grad φ

G = lim
V→P

1
V

∫
∂V
φ n dS

Curl

Cx = ∂yuz − ∂zuy; . . .

Čm = η̌mhk∂kuk

C = ∇ × u ≡ curl u

C = lim
V→P

1
V

∫
∂V

n × u dS

Divergence

D = ∂xvx + ∂yvy + ∂zvz

D =
1
√
g
∂k(

√
g vk)

D = ∇ · v ≡ div v

D = lim
V→P

1
V

∫
∂V

v ·n dS

B.3 Bivectors

The notion of exterior product between two vectors is usually described in a purely
algebraic way which deprives the reader of its intuitive geometric meaning and
makes difficult its introduction in courses on experimental physics. Elie Cartan,
the creator of the theory of differential forms, wrote: ‘We call bivector the figure
formed by two vectors x, y kept in a certain order.’ Of course, ‘This definition does
not make sense before we define the equality of two bivectors’. 14

According to its general meaning, the term product of two objects denotes the
result of an operation performed on two objects. For extension of the term it also
denotes the operation itself. Thus, the scalar product of two vectors is a number;
the vector product of two vectors is another vector; the cartesian product of two
sets X and Y is another set formed by all pairs of elements (x, y), with x ∈ X and
y ∈ Y; the matrix product of two matrices P and Q is another matrix R resulting
from the successive application of the two matrices; and so forth.

Let us consider two vectors u and v in Euclidean space. Arranging the vectors
in sequence, as shown in Fig. B.1left, we may consider the oriented parallelograms
formed by them. There are two possible configuration according to whether u pre-
cedes v or v precedes u. Even if the parallelogram is the same, the two parallelo-
grams have different inner orientation. This is a first stage. Going one step further,

14 Cartan [34, p. 5].
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u

v

u

v

couples

Fig. B.1 Left: A bivector is a parallelogram with an inner orientation; right: a couple (mechan-
ics) can be described by a bivector

we will consider two parallelograms to be equivalent when they satisfy three prop-
erties: (1) they lie on the same plane or on parallel planes, (2) have equal areas, and
(3) have the same orientation. This suggests that all oriented parallelograms which
are equivalent to a given one may be regarded as the same object. This equivalence
class is called a bivector, and every parallelogram of this class is a representation
of the bivector.

The reader will certainly recall the notion of couple in mechanics: two forces
which are parallel, of equal modulus but with opposite orientations form a cou-
ple. They give rise to an oriented parallelogram, as shown in Fig. B.1 right. The
oriented area of this parallelogram is equal, up to a constant factor (due to the
different scales of lengths and forces), to the moment of the couple. All pairs of
forces which give rise to equivalent parallelograms constitute the same couple.
The couple is the equivalence class of all pairs of opposite forces with the same
moment. Commonly speaking, we say that two opposite forces form a couple even
if we are conscious that they only represent a couple. A couple is a more general
concept which gives us the freedom to choose a representative pair of opposite
forces among an infinity of them. In the same sense, one may say that an oriented
parallelogram is a bivector even if it is better to say that it represents a bivector.

B.3.1 Exterior Product of Two Vectors

Let us introduce the notion of the exterior product of two vectors. We may con-
sider an oriented parallelogram as being generated by the translation of the first
vector along the second one or by the translation of the second vector along the
first one, as shown in Fig. B.1. One can consider this operation, the generation of
an oriented parallelogram by the translation of one vector along another, as a new
kind of ‘product’ between vectors. The oriented parallelogram thus generated, i.e.
the bivector, is called the exterior product of two vectors. If u and v are the two
vectors and if we denote by b the bivector, we may introduce the symbol ∧, called
a wedge, to denote this kind of product and write (Fig. B.2)

b = u ∧ v −b = v ∧ u; (B.23)
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u

v v

u uu

v v

bivector  b bivector  -b

Fig. B.2 The exterior product of two vectors generates a bivector. Inverting the order of the two
vectors changes the sign of the bivector

hence, the exterior product is skew-symmetric. We may say that the bivector
b = u ∧ v is the entity which permits the algebraic description of an oriented
parallelogram and then of any oriented polygon equivalent to it.

Regarding the tendency to make a purely algebraic formulation of the geome-
try, we quote the words of Hilbert [91, Preface] (emphasis in the original):

In mathematics, as in any scientific research, we find two tendencies present. On the one
hand, the tendency toward abstraction seeks to crystallize the logical relations inherent
in the maze of material that is being studied, and to correlate the material in a system-
atic and orderly manner. On the other hand, the tendency toward intuitive understanding
fosters a more immediate grasp of the objects one studies, a live rapport with them, so to
speak, which stresses the concrete meaning of their relations.

As to geometry, in particular, the abstract tendency has here led to the magnificent sys-
tematic theories of Algebraic Geometry, of Riemannian Geometry, and of Topology; these
theories make extensive use of abstract reasoning and symbolic calculation in the sense
of algebra. Notwithstanding this, it is still as true today as it ever was that intuitive un-
derstanding plays a major role in geometry. And such concrete intuition is of great value
not only for the research worker, but also for anyone who wishes to study and appreciate
the results of research in geometry.



Appendix C
On Observable Quantities

Many physicists argue that physics should not use physical quantities which are
not directly measurable. Nothing is more absurd than this taboo.

The same authors then use the magnetic vector potential A, the entropy S , the
scalar magnetic potential ϕm, the stress potentials χhk in continuum mechanics,
the Airy function φ and the wave function ψ of quantum mechanics, which are not
measurable quantities. It is a misconception, mistakenly attributed to Heisenberg.

It is obvious that physics should start from measurable quantities, but in the
course of its treatment one is free to introduce quantities which are not directly
measurable but which can serve as bridges to other measurable quantities. Thus,
the magnetic vector potential A, defined up to the gradient of the (gauge) function
χ, is not measurable, but its ‘curl’ is the magnetic induction vector B, which is
measurable.

Similarly, the wave function ψ, defined up to a factor of phase exp(iφ), is not
measurable, but the product ψψ∗ integrated on a region of space gives the proba-
bility of finding a particle within that region, and it is a measurable quantity.

To remove this taboo, we quote the opinions of some authoritative physicists.

Louis de Broglie: ‘The quantities which physicists use in their reasoning are not
all observable and measurable. Certain of these serve only as intermediaries; they
come into the calculations but are eliminated when comparison is made with ex-
periment. We have attempted, by taking a purely phenomenological point of view,
to eject all the non-measurable quantities from physical theories. The doctrine of
energy and, more recently, the doctrine of quantal mechanics by Heisenberg are re-
markable examples of this kind of effort. But these attempts have never completely
succeeded; there always exist in the theories quantities which are non-measurable,
and for example, in wave mechanics the well-known wave function ψ belongs to
this category. Nevertheless the measurable quantities retain a basic importance for
it is through them that the indispensable experimental control of the consequences
of the theory is carried out.’ (de Broglie [48, Chap. 5])

E. Tonti, The Mathematical Structure of Classical and Relativistic Physics,
Modeling and Simulation in Science, Engineering and Technology,
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Richard Feynman: ‘It is not true that we can pursue science completely by using
only those concepts which are directly subject to experiment.’ (Feynman et al. [69,
vol. III, pp. 2–9])

Arnold Sommerferld: ‘Now we do not accept the “positivistic” standpoint, ac-
cording to which only observables may be employed in theoretical physics; but
instead are of the opinion that the introduction of not directly observable quanti-
ties is justified whenever the resulting conclusions agree with experiment (as in
the kinetic theory of gases). Nevertheless we demand that the concepts introduced
in a hypothesis may be based at least on an imaginary experiment, i.e. an obser-
vational method, even if it cannot be carried out in practice.’ (Sommerferld [215,
p. 72])

Max Born: ‘It is often said that it was a metaphysical idea which led Heisen-
berg to the principle of matrix mechanics, and this statement is used by the bel-
ievers in the power of pure reason as an example in their favour. Well, if you
were to ask Heisenberg, he would strongly oppose this view. As we worked tog-
ether I think I know what was going on in his mind. At that time we were all
convinced that the new mechanics must be based on new concepts having only
a loose connection with classical concepts, as expressed in Bohr’s postulate of
correspondence. Heisenberg felt that quantities which had no direct relation to
experiment ought to be eliminated. He wished to found the new mechanics as
directly as possible on experience. If this is a “metaphysical” principle, well, I
cannot contradict; I only wish to say that it is exactly the fundamental principle
of modern science as a whole, that which distinguishes it from scholasticism and
dogmatic systems of philosophy. But if it is taken (as many have taken it) to mean
the elimination of all non-observables from theory, it leads to nonsense. For in-
stance, Schrödinger’s wave function ψ is such a non-observable quantity, but it
was of course later accepted by Heisenberg as a useful concept. He stated not a
dogmatic, but a heuristic principle. He found by an act of scientific intuition the
spurious conceptions that have to be eliminated.’ (Born [28, p. 18])

Max Planck: ‘It is absolutely false, although it is often asserted, that the world
picture of physics contains, or may contain, directly observable magnitudes only.
On the contrary, directly observable magnitudes are not found at all in the world
picture. It contains symbols only.’ (Planck [177, p. 129])

Richard Tolman: ‘. . . the probability amplitudes ψ and φ will in general actu-
ally turn out to be complex numbers consisting of a real and imaginary part, and
are not themselves measurable but are to be regarded as summarizing the directly
observable properties of the system. For example, the squares of their absolute
magnitudes are real quantities equal to the probability densities which can be em-
pirically observed. This is in agreement with the idea that the equations of mathe-
matical physics are to provide a formalism for computation which leads to results
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capable of empirical determination even though the formalism itself contains sym-
bols which have no direct reference to observable physical quantities. . .This is
contrary to the apparently pleasing but somewhat unfortunate statement that the
equations of mathematical physics should contain only quantities which are sus-
ceptible of direct measurement.’ (Tolman [226, p. 192])



Appendix D
History of the Diagram

D.1 Historical Remarks

The classification diagram of physical variables presented in this book evolved
from a similar diagram originating in electrical networks. A network can be
described using a graph, and the theory of graphs is a subject of algebraic topol-
ogy. Since other physical theories make use of the notions of graph theory, such as
chemistry, biology, economics, operations research and sociology, it follows that
the use of graph theory makes it easy to grasp the similarities between the various
physical theories.

Electrical Networks. The story begins in the years 1944–1953, with Gabriel
Kron in the field of electrical circuit theory. It was followed in 1955–1959 by the
works of Paul Roth, who introduced the first notions of algebraic topology.1 Great
progress was made in the years 1966–1977 by Franklin Branin, Jr.2

Gabriel Kron, an engineer at General Electric, published many papers showing
the analogy between electric circuit theory and electromagnetic field, elasticity,
fluid dynamics, vibrations of polyatomic molecules and the Schrödinger equa-
tion. Unhappily, his target was always to reduce every one of these fields to a
cumbersome combination of RLC circuits.

Graph Theory. Paul Roth, a mathematician, realized the role of algebraic topol-
ogy in network analysis.3 Figure D.1 shows his diagram for an electrical circuit.4

Quoting Roth5

‘The electrical network problem comes up in several branches of physics and engineering.
In this presentation the mathematical aspects of the pure problem itself will be treated.

1 Roth [195, pp. 518–521].
2 Branin [29, pp. 453–487].
3 Branin [29, p. 454].
4 Grady and Polimeni [83, p. 64].
5 Roth [196, p. 1].

E. Tonti, The Mathematical Structure of Classical and Relativistic Physics,
Modeling and Simulation in Science, Engineering and Technology,
DOI 10.1007/978-1-4614-7422-7, © Springer Science+Business Media New York 2013

481



482 D History of the Diagram

The first comprehensive treatment of the electrical network problem is due to Kirchhoff in
1847. He argued for the existence of a solution to the problem in probably the first paper
to introduce the equivalent of incidence matrices. Maxwell systematized this approach
in 1892 and introduced the concept of potential, introducing what are now known as
Maxwell’s mesh and node methods for solving electrical networks. A complete proof
for the existence of a solution was given by Hermann Weyl, in 1923, for the case of a
purely resistive network when sources of electromotive force are placed in series with the
branches. In 1953 Kron introduced the method of tearing as another means of solving the
electrical network problem. In 1955 the author [Roth] gave a proof for what is probably
the most general case wherein the network is “ohmic” as well as a proof of the validity
of the method of tearing. In I966 Branin proposed a considerably more general algebraic
topological model for Maxwell’s electromagnetic equations.’

Fig. D.1 The Roth diagram of electrical circuits

Franklin Branin, an IBM engineer, made a crucial contribution when he dis-
covered the relationship between physical variables and space elements, as this
quote shows:6

‘There are several significant features of the evidently intimate relation between algebraic
topology, network theory, and the vector calculus which are worth noting. First, algebraic
topology deals with very simple but fundamental properties of the space in which physical
phenomena happen. Second, network theory is founded directly on the most elemental
principles of algebraic topology. Third, the very same principles inevitably come into
play in the derivation of the vector calculus, which starts by considering certain numerical
quantities associated with what amounts to a network of discrete points, lines, surface and
volume elements interconnected with each other.’

Branin, moreover, was the first to describe the electromagnetic field, introduc-
ing a cell complex in space and its dual, extending the duality which exists in graph
theory between a graph and its dual. This led him to make use of two cochain

6 Branin [29, p. 454].
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sequences7 instead of one chain sequence and one cochain sequence, as can be
seen by a comparison of Fig. D.2 with Fig. D.3.

Fig. D.2 1966: Branis uses Roth’s diagram formed by chains and cochains

Fig. D.3 1966: Branin’s diagram for electromagnetic field

The ubiquitous gradient operator arises in descriptions of physics because in all
physical theories we find it appropriate to compute the difference between the val-
ues of a scalar function between two points in space and to assign this difference

7 Recall that the term cochain can be replaced by discrete form; see the remark on p. 196.
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to the line connecting them. This process is well described by the coboundary
operator, which transforms a 0-cochain into a 1-cochain. In contrast, the gradi-
ent operator cannot be described by the boundary operator on chains because it
transforms a 1-chain into a 0-chain, that is it transfers the value associated with a
line to its bounding ends.

Roth’s diagrams considered only static and stationary fields, i.e. they did not
include time. Branin coupled the diagram of electrostatics with that of magneto-
statics, inserting the time derivatives as shown in Fig. D.3. The work of Branin
was the starting point of the investigations of the present author.

In the year 1981, Deschamps8 published a paper dealing with exterior differen-
tial forms in electromagnetism, proposing the diagram of Fig. D.4. The arrange-
ment of boxes is not as clear as in Roth’s diagram.

Fig. D.4 1981: Deschamps’ proposed diagram of electromagnetism

8 Deschamps [53].
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List of Physical Variables

In this list we use ‘C’ to denote a configuration variable, ‘S’ a source variable, ‘E’
an energy variable, S a system, P a particle, and R a rigid body.

Name Time-space dim SI unit
A

Acceleration (of a particle) a [
∼
T,P] C L T−2 m s−2

Acceleration of gravity g [
∼
T,L] C L T−2 m s−2

Action of a system

(Hamiltonian) AH [
∼
T,S ] E L2 M T−1 J s

Action of a system (Lagrangian) AL [
∼
T,S ] E L2 M T−1 J s

Airy stress function φ [T,
∼
P] S L M T−2 N s−2

Angle of rotation α [I,R] C 1 rad

Angular acceleration (rigid body) α [
∼
T,R] C T−2 rad s−2

Angular frequency ω [T] C T−1 rad s−1

Angular velocity (rigid body) ω [T,R] C T−1 rad s−1

Angular momentum (of a system) L [
∼
I ,S ] S L2 M T−1 kg m2 s−1

Angular momentum content Lc [
∼
I ,
∼
V] S L2 M T−1 kg m2 s−1

Angular momentum density l [
∼
I ,
∼
V] S L−1 M T−1 kg m−1 s−1

Angular momentum flow Lf [
∼
T,
∼
S] S L2 M T−1 kg m2 s−1

Angular momentum current
(= torque)

T [
∼
T,
∼
S] S L2 M T−2 kg m2 s−2
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Name Time-
space

dim SI unit

B

Bending moment (beams) M [
∼
T,
∼
S] S L2 M T−2 N m

Burgers vector (dislocations) b [I, S] C L m
C

Chemical potential μ [
∼
T,P] C L2 M T−2 mol−1 J mol−1

Concentration (molarity) c [I,
∼
V] C mol L−3 mol m−3

Couple stress tensor μ [
∼
T, S] S M T−2 N m−1

Cubic dilatation (bulk or

volume) Θ [T,
∼
V] C 1 –

Cubic dilatation rate θ [T,
∼
V] C T−1 s−1

D

Deformation gradient F [I,L] C 1 –
Displacement (incremental) η [T,P] C L m
Displacement (initial) u [I,P] C L m
Displacement (particle
dynamics) u [T,P] C L m
Displacement (relative) h [I,L] C L m
Displacement gradient tensor H [I,L] C 1 –

E
Eikonal S [I,P] C 1 –
Electric charge (of a system) Q [I,S ] S T I C

Electric charge content Q c [I,
∼
V] S T I C

Electric charge density ρ [I,
∼
V] S L−3 T I C m−3

Electric charge flow Q f [T,
∼
S] S I T C

Electric current I [T,
∼
S] S I A

Electric current density J [T,
∼
S] S L−2 I A m−2

Electric displacement D [I,
∼
S] S L−2 T I C m−2

Electric energy Ue [
∼
T,
∼
V] E L2 M T−2 J

Electric energy density ue [
∼
T,
∼
V] E L−1 M T−2 J m−3

Electric field strength E [
∼
T,L] C L M T−3 I−1 V m−1

Electric flux Ψ [I,
∼
S] S T I C

Electric flux density σ [I,
∼
S] S L−2 T I C m−2

Electric potential φ [
∼
T,P] C L2 M T−3 I−1 V

Electric potential impulse ϕ [
∼
T,P] C L2 M T−2 I−1 Wb

Electric vector potential F̌ [T,
∼
L] S L−1 T I C m−1

Electric voltage V [
∼
T,L] C L2 M T−3 I−1 V
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Name Time-
space

dim SI unit

Electromotive force E [
∼
T,L] C L2 M T−3 I−1 V

Electromotive force impulse E [
∼
T,L] C L2 M T−2 I−1 Wb

Energy (of a system) E [
∼
T,S ] E L2 M T−2 J

Energy content Ec [
∼
T,
∼
V] E L2 M T−2 J

Energy content density e [
∼
T,
∼
V] E L−1 M T−2 J m−3

Energy current (= power) Ie [T,
∼
S] E L2 M T−3 W

Energy current density Je [T,
∼
S] E M T−3 W m−2

Energy flow (= work, heat) Ef [
∼
T,
∼
S] E L2 M T−2 J

Enthalpy (of a system) H [
∼
T,S ] E L2 M T−2 J

Entropy (of a system) S [I,S ] S L2 M T−2Θ−1 J K−1

Entropy content S c[I,
∼
V] S L2 M T−2Θ−1 J K−1

Entropy current Is [T,
∼
S] S L2 M T−3Θ−1 W K−1

Entropy current density Js [T,
∼
S] S M T−3Θ−1 WK−1m−2

Entropy density s [I,
∼
V] S L−1 M T−2Θ−1 J K−1m−3

Entropy flow S f[T,
∼
S] S L2 M T−2Θ−1 J K−1

Entropy production (in a system) S p[T,S ] S L2 M T−2Θ−1 J K−1

Entropy source σs[T,
∼
V] S L−1 M T−3Θ−1 WK−1m−3

Extension e [I,L] C L m
F

Force (on a system) F [
∼
T,S ] S L M T−2 N

Force (line) Fl [
∼
T,L] S L M T−2 N

Force (surface) Fs [
∼
T,
∼
S] S L M T−2 N

Force (volume) Fv [
∼
T,
∼
V] S L M T−2 N

Force impulse (surface) Js [
∼
T,
∼
S] S L M T−1 N s

Force impulse (volume) Jv [
∼
T,
∼
V] S L M T−1 N s

Frequency f [
∼
T] C T−1 s−1

G

Gauge function

(electromagnetism) χ [
∼
I ,P] C L2 M T−2 I−1 Wb

Gibbs function (of a system) G [
∼
T,S ] E L2 M T−2 J

Gravitational potential Ug [
∼
T,P] C L2 T−2 J/kg

H

Hamilton principal function (system) W [
∼
I ,S ] E L2 M T−1 J s

Hamiltonian (of a system) H [
∼
T,S ] E L2 M T−2 J
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Name Time-
space

dim SI unit

Hamiltonian density H [
∼
T,
∼
V] E L−1 M T−2 J m−3

Heat (crossing a surface) Q [T,
∼
S] E L2 M T−2 J

Heat current Φ [T,
∼
S] E L2 M T−3 W

Heat current density Jq [T,
∼
S] E M T−3 W m−2

Heat production Qp[T,
∼
V] E L2 M T−2 J

Heat production rate P [T,
∼
V] E L2 M T−3 W

Heat source σq[T,
∼
V] E L−1 M T−3 W m−3

Helmholtz free energy (system) F [
∼
T,S ] E L2 M T−2 J

I

Impulse of a force (of a system) J [
∼
T,S ] S L M T−1 N s

Impulse of a volume force Jv[
∼
T,
∼
V] S L2 M T−1 N s

Impulse of a surface force Js[
∼
T,
∼
S] S L2 M T−1 N s

Internal energy (of a system) U [
∼
T,S ] E L2 M T−2 J

Internal energy content Uc[
∼
T,
∼
V] E L2 M T−2 J

Internal energy density u [
∼
T,
∼
V] E L−1 M T−2 J m−3

K

Kinetic co-energy (of a system) T ∗ [
∼
T,S ] E L2 M T−2 J

Kinetic energy (of a system) T [
∼
T,S ] E L2 M T−2 J

Kinetic energy density k[
∼
T,
∼
V] E L−1 M T−2 J m−3

L

Lagrangian (of a system) L [
∼
T,S ] E L2 M T−2 J

Lagrangian density L [
∼
T,
∼
V] E L−1 M T−2 J m−3

Linear strain ε [I,L] C 1 –
M

Magnetic charge (of a system) G [T,S ] C L2 M T−2 I−1 Wb

Magnetic charge density ǧ [T,
∼
V] C L−1 M T−3 I−1 Wb m−3

Magnetic current Im[T,
∼
S] C L2 M T−3 I−1 V

Magnetic current density Jm[T,
∼
S] C M T−3 I−1 V m−2

Magnetic energy density wm [
∼
T,
∼
V] E L−1 M T−2 J m−3

Magnetic field strength H [T,
∼
L] S L−1 I A m−1

Magnetic flux Φ [
∼
I , S] C L2 M T−2 I−1 Wb

Magnetic flux density B [
∼
I , S] C M T−2 I−1 Wb m−2

Magnetic scalar potential φm [T,
∼
P] S I A
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Name Time-
space

dim SI unit

Magnetic scalar potential impulse ϕm [T,
∼
P] S T I C

Magnetic vector potential A [
∼
I ,L] C L M T−2 I−1 Wb m−1

Magnetomotive force Fm [T,
∼
L] S I A

Magnetomotive force impulse Fm [T,
∼
L] S T I C

Mass (of a system) M [I,S ] P M kg

Mass content M c [I,
∼
V] S M kg

Mass current Im [T,
∼
S] S M T−1 kg s−1

Mass current density Jm [T,
∼
S] S L−2 M T−1 kg m−2 s−1

Mass density ρ [I,
∼
V] S L−3M kg m−3

Mass flow M f [T,
∼
S] S M kg

Mass production Mp [T,
∼
V] S M kg

Mass source σm [T,
∼
V] S L−3 M T−1 kg s−1 m−3

Moment of a force (on a system) M [
∼
T,S ] S L2 M T−2 N m

Momentum (of a system) P [
∼
I ,S ] S L M T−1 N s

Momentum content P c [
∼
I ,
∼
V] S L M T−1 N s

Momentum (of a particle) p [
∼
I ,P] S L M T−1 N s

Momentum current
(= surface force)

F s [
∼
T,
∼
S] S L M T−2 N

Momentum density p [
∼
I ,
∼
V] S L−2 M T−1 N s m−3

Momentum flow
(= surface impulse)

Js [
∼
T,
∼
S] S L M T−1 N s

Momentum production
(= volume impulse)

Jv[
∼
T,
∼
V] S L M T−1 N s

Momentum production rate
(= volume force)

Fv[
∼
T,
∼
V] S L M T−2 N

O

Optical path difference OPD [I,L] C L m
Optical ray length OPL [I,L] C L m

P

Particle content Nc [I,
∼
V] S 1 –

Particle content density n [I,
∼
V] S L−3 m−3

Particle current Ip [T,
∼
S] S T−1 s−1

Particle current density J p [T,
∼
S] S L−2 T−1 s−1 m−2

Particle flow Nf [T,
∼
S] S 1 –
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Name Time-
space

dim SI unit

Particle number (of a system) N [I,S ] S 1 –

Phase φ [
∼
I ,P] C 1 rad

Phase difference in space Δsφ [I,L] C 1 rad

Phase difference in time Δtφ [
∼
T,P] C 1 rad

Position vector r [I,P] C L m
Position vector (initial-) R [P] C L m

Potential energy (of a system) V [
∼
T,S ] E L2 M T−2 J

Potential energy content V [
∼
T,
∼
V] E L2 M T−2 J

Potential energy density v [
∼
T,
∼
V] E L−1 M T−2 J m−3

Power (= energy current) P [T,
∼
V] E L2 M T−3 W

Poynting vector S [T,
∼
S] E L2 M T−3 W

Pressure (force/area) p [
∼
T,
∼
S] S L−1 M T−2 N m−2

Pressure (work/volume increase) p [I,
∼
V] S L−1 M T−2 J m−3

Probability current density vector j [T,
∼
S] C L−2 T−1 s−1m−2

Probability density ρ [I,
∼
V] C L−3 m−3

R

Relative displacement vector h[I,L] C L m
Relative position vector G [L] C L m

S

Scalar magnetic potential φm [T,
∼
P] S I A

Scalar magnetic potential impulse ϕm [T,
∼
P] S I T C

Shear strain γ [T,L] C 1 –

Shear stress τ [
∼
T, S] S L−1 M T−2 N m−2

Spin tensor W [T,L] C T−1 s−1

Strain deviatoric ε′ [I,L] C 1 –
Strain rate tensor D [T,L] C T−1 s−1

Strain rate deviatoric D′ [T,L] C T−1 s−1

Strain tensor ε [I,L] C 1 –

Stream vector ψ [T,
∼
L] S L−1 M T−1 N s m−2

Stress deviator τ′ [
∼
T, S] S L−1 M T−2 N m−2

Stress tensor τ [
∼
T, S] S L−1 M T−2 N m−2

Stress tensor (symmetric) σ [
∼
T, S] S L−1 M T−2 N m−2
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Name Time-
space

dim SI unit

Stress vector (= traction) t [
∼
T,
∼
S] S L M T−2 N

Surface charge density σ [I,
∼
S] S L−2 T I C m−2

Surface force F s[
∼
T,
∼
S] S L M T−2 N

Surface force impulse J s [
∼
T,
∼
S] S L M T−1 N s

T

Temperature T [
∼
T,P] C Θ K

Temperature difference G [
∼
T,L] C Θ K

Temperature gradient g [
∼
T,L] C L−1Θ K m−1

Thermacy (= temperature integral) T [
∼
I ,P] C ΘT K s

Torque (surface) T [
∼
T,
∼
S] S L2 M T−2 N m

Torque (volume-) T [
∼
T,
∼
V] S L2 M T−2 N m

V

Velocity (of a particle) v [T,P] C L T−1 m s−1

Velocity ♠ (Chap. 12) v [
∼
I ,L] C L T−1 m s−1

Velocity ♠ (Chap. 12) v [T,P] C L T−1 m s−1

Velocity (relative) V [T,L] C L T−1 m s−1

Velocity circulation Γ [
∼
I ,L] C L2 T−1 m2 s−1

Velocity gradient tensor L [T,L] C T−1 s−1

Velocity potential φ [
∼
I ,P] C L2 T−1 m2 s−1

Virtual work W∗ [
∼
T,L] S L2 M T−2 J

Viscous force Fv [
∼
T,
∼
S] S L M T−2 N

Viscous stress deviator τ′ [
∼
T, S] S L−1 M T−2 N m−2

Viscous stress tensor τ [
∼
T, S] S L−1 M T−2 N m−2

Voltage V [
∼
T,L] C L2 M T−3 I−1 V

Voltage impulse V [
∼
T,L] C L2 M T−2 I−1 Wb

Volume dilatation Θ [I,
∼
V] C 1 -

Volume dilatation rate θ [T,L] C T−1 s−1

Volume force F[
∼
T,
∼
V] S L M T−2 N

Volume force density f[
∼
T,
∼
V] S L−2 M T−2 N m−3

Volume (force) impulse Jv[
∼
T,
∼
V] S L M T−1 N s

Vortex flux (= vortex strength) W [
∼
I , S] C L2 T−1 m2 s−1

Vorticity w [
∼
I , S] C T−1 s−1
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Name Time-
space

dim SI unit

W

Wave vector k [
∼
I ,L] C L−1 m−1

Work (given to or by a system) W [T,S ] E L2 M T−2 J

Work (of surface forces) W [T,
∼
S] E L2 M T−2 J

Work (of volume forces) W [T,
∼
V] E L2 M T−2 J



Appendix F
List of Symbols Used in This Book

A
A [Geometry] Area
A [Field theory] Action
AH [Mechanics] Hamiltonian action
AL [Mechanics] Lagrangian action
Aα [Electromagnetism] Four-dimensional electromagnetic vector poten-

tial
A [Electromagnetism] 1-form of magnetic vector potential
A [Electromagnetism] Magnetic vector potential
a [Geometry] Area of infinitesimal surface element
a [Electromagnetism] Line integral of magnetic vector potential A
a [Mechanics] Acceleration

B
B Body
B̌ [Electromagnetism] Magnetic flux density (pseudovector)
b̌ [Solid mechanics] Burgers vector (dislocations) (pseudovector)

C

C [Electromagnetism] Capacitance
C [Thermodynamics] Thermal capacity
Cp(K) p-dimensional chain space over cell complex K
C [Algebraic topology] Incidence matrix faces–edges of primal complex

= [rβα]
C̃ [Algebraic topology] Incidence matrix faces–edges of dual complex

= [rβα]
c [Relativistic formulation] Light speed
c [Thermodynamics] Specific heat
c [Fluid mechanics] Sound speed
cp [Algebraic topology] p-dimensional chain
cp [Algebraic topology] p-dimensional cochain ≡ discrete p-form
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D

D [Electromagnetism] Electric displacement
D [Algebraic topology] Incidence matrix volumes–faces of primal

complex= [dhα]

D̃ [Algebraic topology] Incidence matrix volumes–faces of dual
complex= [d̃hα]

d [Interactions] Piezoelectric modulus
d̄hα [Algebraic topology] Incidence numbers between primal cell v̄h and

primal face s̄α
d̃hα [Algebraic topology] Incidence numbers between dual cell ṽh and

dual face s̃α
D [Fluid dynamics] Strain rate tensor

E
E [Solid mechanics] Elastic modulus
E [Mechanics] Total energy
E [Electromagnetism] Voltage
E [Electromagnetism] Electromagnetic energy
Ec [Fluid mechanics] Energy content (spatial description)
Ef [Fluid mechanics] Energy flow (spatial description)
E [Electromagnetism] Impulse of electromotive force
E [Electromagnetism] Even 1-form of electric field intensity
E [Electromagnetism] Electric field strength
e [Electromagnetism] Electron charge
e [Solid mechanics] Extension
e [Fluid mechanics] Relative velocity
eh [Geometry] Base vector in a vector space
eh

p [Algebraic topology] hth p-dimensional cell
F

F [Thermodynamics] Helmholtz free energy
Fm [Electromagnetism] Magnetomotive force
Fn [Fluid mechanics] Force normal to a plane surface
Fαβ [Electromagnetism] First electromagnetic tensor in space-time
Fm [Electromagnetism] Impulse of magnetomotive force
F [Mechanics] Force
Fv [Fluid mechanics] Volume force ≡ momentum flow rate
Fs [Fluid mechanics] Surface force (also denoted by T)
Fe [Solid mechanics] Elastic restoring force
Fd [Solid mechanics] Viscous force
Fimp [Mechanics] Impressed force
F̌ [Electromagnetism] Electric pseudovector potential
F [Solid mechanics] Deformation gradient
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G
f [Mechanics] Force for unit volume

G [Thermodynamics] Gibbs free energy ≡ Gibbs function
G [Thermodynamics] Temperature difference
G [Fluid mechanics] Hydraulic pressure gradient
G [Gravitation] Gravitational constant
G [Solid mechanics] Shear modulus
G μν [Electromagnetism] Second electromagnetic tensor
Gf [Electromagnetism] Magnetic charge flow
Ǧ [Electromagnetism] Magnetic charge (pseudoscalar)
Ǧc [Electromagnetism] Magnetic charge content (pseudoscalar)
Ǧp [Electromagnetism] Magnetic charge production (pseudoscalar)
G [Algebraic topology] Additive group of discrete forms (= cochains)
G [Solid mechanics] Relative position vector
G [Algebraic topology] Incidence matrix edges–vertices (primal)
G̃ [Algebraic topology] Incidence matrix edges–vertices (dual)
g [Classical gravitation] Modulus of acceleration of gravity
g [Tensorial notation] Determinant of metric tensor
gk [Geometry] Covariant natural base vectors
gk [Geometry] Contravariant natural base vectors
ghk [Tensorial notation] Covariant form of metric tensor in three-

dimensional space
ghk [Tensorial notation] Contravariant form of metric tensor in three-

dimensional space
gμν [Relativity] Space-time metric tensor
ḡαh [Algebraic topology] Incidence number between an edge l̄α and a ver-

tex p̄h of primal complex
g̃αh [Algebraic topology] Incidence number between an edge l̃α and a ver-

tex p̃h of dual complex
g [Classical gravitation] Acceleration of gravity
g [Thermal conduction] Temperature gradient

H

H [Analytical mechanics] Hamiltonian function
H [Thermodynamics] Entalpy
H [Geometry] Hypervolume (extension)
Ȟ [Electromagnetism] 1-form of magnetic field intensity
H [Solid mechanics] Displacement gradient matrix
Ȟ [Electromagnetism] Magnetic field strength (pseudovector)
H [Algebraic topology] Hypercell
H [Space-time geometry] Hypervolume (inner orientation)
∼
H [Space-time geometry] Hypervolume (outer orientation)
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% H
h [Mechanics] Dumping coefficient
h [Quantum mechanics] Planck’s constant
� [Quantum mechanics] Planck’s constant/2π
h [Solid mechanics] Relative displacement
h [Gravitation] Gravitational flux density vector

I
I [Electromagnetism] Electric current
Ia [Mechanics] Moment of inertia
Ie [Field theories] Energy current
Is [Irreversible thermodynamics] Entropy current
Ǐm [Electromagnetism] Magnetic current
I [Time elements] Instant
I [Time elements] Primal instant
∼
I [Time elements] Dual instant
i [Fluid mechanics] Piezometric gradient

J
J [Solid mechanics] Second-order moment
Jμ [Electromagnetism] Four-dimensional electric current density
J [Solid mechanics] Moment of inertia
J̌ [Electromagnetism] 2-form of electric current density
J [Electromagnetism] Electric current density
J [Mechanics] Impulse
Js [Thermodynamics] Entropy current density
Je [Field theories] Energy current density
Jp [Quantum mechanics] Particle current density
Jv [Continuum mechanics] Impulse of volume force
Js [Solid mechanics] Impulse of surface force
J̌m [Electromagnetism] Magnetic current density (hypothetical) (pseu-

dovector)
K

K [Solid mechanics] Bulk modulus
Kμ [Relativistic mechanics] Four-dimensional force (Minkowsky)
K [Algebraic topology] Cell complex
K [Algebraic topology] Primal cell complex
∼
K [Algebraic topology] Dual cell complex
Kn [Algebraic topology] n-dimensional cell complex
k [Wave motion] Wave number
k [Elasticity] Stiffness
k [Elasticity] Angular stiffness
kB [Thermodynamics] Boltzmann’s constant
k [Wave motion] Wave vector
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L
L [Mechanics] Lagrangian function (Lagrangian)
L [Electromagnetism] Inductance
L [Geometry] Line without orientation
L [Geometry] Line with inner orientation
∼
L [Geometry] Line with outer orientation
Ľ [Mechanics] Angular momentum (pseudovector)
Ľf [Fluid mechanics] Angular momentum flow (pseudovector)
Ľc [Fluid mechanics] Angular momentum content (pseudovector)
L [Fluid mechanics] Velocity gradient tensor
l̄ k [Algebraic topology] kth primal 1-cell
l̃ k [Algebraic topology] kth dual 1-cell

M
M [Mechanics] Mass
M [Solid mechanics] Bending moment
Mf [Fluid mechanics] Mass flow (spatial description)
Mc [Fluid mechanics] Mass content (spatial description)
Mp [Fluid mechanics] Mass production
M [Mechanics] Moment of a force
M̌ [Electromagnetism] Magnetization (pseudovector)
M Matrix
m [Mechanics] Mass
m [Theory of beams] Couple/length
m [Theory of beams] Torsional couple/length
m0 [Relativistic mechanics] Rest mass of particle
mk [Algebraic topology] Multiplicity of cell ek

p−1
mik [Fluid mechanics] Couple stress tensor

N
N [Solid mechanics] Traction
N [Diffusion, chemistry] Particle number
N c [Diffusion, chemistry] Particles content
N f [Diffusion, chemistry] Particle flow
NA [Chemical physics] Avogadro’s number
n [Thermodynamics] Number of moles
nh [Algebraic topology] Multiplicity of cell eh

p in chain cp

n Unit vector normal to a surface (true vector = polar vector)
ň Unit vector normal to a surface (pseudovector)

P
P [Mechanics] Power
P [Thermal conduction] Heat-generation rate
P [Quantum mechanics] Probability
P c [Quantum mechanics] Probability content (spatial description)
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% P
Pf [Quantum mechanics] Probability flow (spatial description)
P Particle
P [Mechanics] Momentum
P f [Fluid mechanics] Momentum flow (spatial description)
P c [Fluid mechanics] Momentum content (spatial description)
P p [Fluid mechanics] Momentum production (spatial description)
P [Algebraic topology] Point without orientation
P [Algebraic topology] Point with inner orientation
∼
P [Algebraic topology] Point with outer orientation
p [Thermodynamics] Pressure
pth [Fluid mechanics] Thermodynamic pressure
pmech [Fluid mechanics] Mechanical pressure
pi [Analytical mechanics] Generalized momenta
pβ [Relativistic mechanics] Four-momentum
p [Mechanics] Momentum of a particle
p [Fluid mechanics] Momentum density
pk [Algebraic topology] kth primal 0-cell
p̃k [Algebraic topology] kth dual 0-cell

Q
Q [Thermodynamics] Heat
Q [Electromagnetism] Electric charge
Qc [Electromagnetism] Electric charge content (spatial description)
Qf [Electromagnetism] Electric charge flow (spatial description)
Qf

m [Electromagnetism] Magnetic charge flow (spatial description)
Qp [Electromagnetism] Electric charge production (hypothetical)
Qs [Electromagnetism] Electric charge stored
Qi [Analytical mechanics] Generalized forces
q [Electromagnetism] Small electric charge
q [Theory of beams] Force for unit length
qi [Analytical mechanics] Generalized coordinates
q [Thermal conduction] Heat current density
q [Fluid mechanics] Mass current density

R
R [Electromagnetism] Resistance
R [Thermodynamics] Universal gas constant
R [Relativistic gravitation] Linear invariant of Riemann tensor
Rμν [Relativistic gravitation] Contracted Riemann tensor
Ř [Electromagnetism] 3-form of electric charge density
R Symbol for reversal of motion
R Rigid body
Re [Fluid mechanics] Reynolds number
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% R
RH [Electromagnetism] Hall constant
R [Solid mechanics] Initial position vector
R̃ [Algebraic topology] Incidence matrix face–edge of dual complex
r̄αβ [Algebraic topology] Incidence number face–edge
r̃αβ [Algebraic topology] Incidence numbers between dual face s̃α and

dual edge l̃β
r [Solid mechanics] Position vector

S
S [Analytical mechanics] Hamilton’s principal function
S [Optics] Eikonal function
S [Thermodynamics] Entropy
S c [Thermodynamics] Entropy content (spatial description)
S f [Thermodynamics] Entropy flow (spatial description)
S p [Thermodynamics] Entropy production (spatial description)
Sa [Interactions] Seebeck coefficient
S [Electromagnetism] Poynting vector
S Surface without orientation in spatial description
S Surface without orientation in material description
S System (material description)
S Surface with inner orientation
∼
S Surface with outer orientation
s [Optics] optical path length
s [Thermodynamics] entropy density
sβ 2-cell of the primal complex
s̄α [Algebraic topology] 2-cell of primal complex
s̃α [Algebraic topology] 2-cell of dual complex

T

T [Mechanics] Kinetic energy;
T [Thermodynamics] Thermodynamic temperature
T [Wave motion] Period
T [Time elements] Duration of time interval
T ∗ [Mechanics] Kinetic co-energy
T e [Time elements] Duration of time interval to reach equilibrium
T r [Time elements] Duration of time interval needed for registration
Tn [Fluid mechanics] Force normal to plane surface
Tμν [Relativistic gravitation] Stress energy momentum tensor
T [Thermal conduction] Impulse of thermodynamic temperature
T [Thermal conduction] Thermacy
T [Continuum mechanics] Internal surface force (also denoted by F s)
T [Time elements] Interval without orientation
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% T
T [Continuum mechanics] Resultant of external surface forces acting on

boundary of volume
T [Continuum mechanics] Tension of string
T [Time elements] Interval with inner orientation
∼
T [Time elements] Interval with outer orientation
t [Continuum mechanics] Stress vector
t [Geometry] Unit tangent vector
ť [Geometry] Unit tangent pseudovector

U
U [Thermodynamics] Internal energy
Ug [Gravitation] Gravitational potential
U [Electromagnetism] Generalized potential
u [Thermodynamics] Internal energy density
uα [Relativistic mechanics] Four-velocity
ue [Electromagnetism] Electric energy density
u [Mechanics] Displacement
u [Solid mechanics] Incremental displacement
u∞ [Fluid dynamics] Asymptotic fluid velocity

V
V [Electromagnetism] Voltage
V [Mechanics] Potential energy
Vc [Mechanics] Potential energy content (spatial description)
V f [Mechanics] Potential energy flow (spatial description)
V [Space elements] Volume as measure of extension
V [Fluid mechanics] Relative velocity
V [Space elements] Volume without orientation (spatial description)
V [Space elements] Volume unoriented in material description
V Volume (as space region) with inner orientation
∼
V Volume (as space region) with outer orientation
v [Mechanics] Velocity
vk [Algebraic topology] kth primal 3-cell
ṽk [Algebraic topology] kth dual 3-cell;

X
xα [Relativistic mechanics] Space-time coordinate

Y
y [Solid mechanics] Transversal displacement

W
W [Mechanics] Work
W∗ [Mechanics] Virtual work
W [Fluid mechanics] Vortex flux
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% W
W [Mechanics] Weight
W [Fluid mechanics] Spin tensor
w [Mechanics] Weight for unit length or for unit volume
we [Continuum mechanics] Elastic energy density
we [Electromagnetism] Electric energy density
wm [Electromagnetism] Magnetic energy density
w̌ [Fluid mechanics] Vorticity pseudovector ≡ vortex flux density

Greek alphabet
α [Rigid body mechanics] Angle of rotation
α [Solid mechanics] Slope
αl [Thermoelasticity] Linear expansion coefficient
α̌ [Rigid body mechanics] Angular acceleration
Γ [Fluid mechanics] Velocity line integral
γ [Solid mechanics] Shear strain, shear angle
γ [Interaction] Gyromagnetic ratio
δ [Solid mechanics] Lengthening
δ [Algebraic topology] Coboundary operator
ε [Electromagnetism] Permittivity
ε0 [Electromagnetism] Vacuum permittivity
ε [Solid mechanics] Linear strain
εi j [Solid mechanics] Strain tensor
εhi j [Tensorial notation] Permutation symbol
ε [Solid mechanics] Symmetric strain tensor
ε’ [Solid mechanics] Strain deviator
η [Thermodynamics] Efficiency of thermodynamic circle
ηαβ [Relativity] Fundamental tensor in Cartesian coordinates in inertial

reference system
η̌hki [Tensorial notation] Levi-Civita pseudotensor =

√
g εhki

η [Continuum mechanics] Displacement
Θ [Solid mechanics] Volume dilatation ≡ cubic dilatation
Θp [Algebraic topology] Null p-chain
θ [Fluid mechanics] Cubic or volume dilatation rate
κ [Geometry] Curvature of plane line
Λh

k [Tensorial notation] Elements of inverse of transition matrix
λ [Thermal conduction] Thermal conductivity
λ [Wave motion] Wavelength
λ [Solid mechanics] Second Lamé constant
λk

h [Tensorial notation] Elements of transition matrix
μ [Thermodynamics] Chemical potential
μ [Fluid mechanics] Viscosity coefficient
μ [Electromagnetism] Permeability
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μ0 [Electromagnetism] Vacuum permeability
μ [Solid mechanics] Shear modulus ≡ G
μ̌ [Electromagnetism] Magnetic moment (pseudovector)
ν i [Analytical mechanics] Generalized velocities
ν [Wave motion] Frequency
ρ [Solid mechanics] Mass density
ρ [Electromagnetism] Charge density
ρ [Interactions] Verdet constant
ρ [Quantum mechanics] Probability density
ρ̌m [Electromagnetism] Magnetic charge density (pseudoscalar)
σ [Electromagnetism] Surface charge density; stress
σ [Electromagnetism] Electric conductivity
σ [Continuum mechanics] Stress
σ [Fluid mechanics] Surface tension
σq [Thermodynamics] Heat source = heat generation density rate
σs [Thermodynamics] Entropy source strength
σi j [Continuum mechanics] Symmetric stress tensor
σ′i j [Solid mechanics] Components of stress deviator
σ [Continuum mechanics] Symmetric stress tensor
σ′ [Solid mechanics] Stress deviator
τ [Solid mechanics] Tangential stress = shear stress
τ [Relativistic mechanics] Proper time
τ [Continuum mechanics] Stress tensor
τ [Continuum mechanics] Viscous stress
Φ [Electromagnetism] Magnetic flux
Φ [Thermal conduction] Heat current
Φ [Fluid mechanics] Mass current
φ [Electromagnetism] Electric potential
φ [Fluid mechanics] Velocity potential = kinetic potential
φ [Waves motion] Phase;
φ̌ [Solid mechanics] Airy stress function (pseudoscalar)
φ̌m [Electromagnetism] Pseudoscalar magnetic potential
ϕ [Electromagnetism] Electric potential impulse
ϕ̌m [Electromagnetism] Magnetic potential impulse (pseudoscalar)
χ [Electromagnetism] Gauge function;
χ̌

αβ
μν [Electromagnetism] Constitutive tensor of electromagnetism in space-

time
Ψ [Electromagnetism] Electric flux
Ψ [Quantum mechanics] Probability amplitude
Ψ [Fluid mechanics] Stream line integral
ψ [Fluid mechanics] Stream function
ψ̌ [Solid mechanics] Stream vector (pseudovector)
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Ω [Geometry] Finite space region
Ω [Solid mechanics] Rotation tensor
ω̌ [Mechanics] Angular velocity (pseudovector)

Mathematical Symbols
∧ Wedge ≡ exterior product
× Vector product ≡ cross product
· Scalar product ≡ dot product
⊗ Tensor product
R Operation of reversal of motion
D/Dt Total derivative = convected derivative
d Exterior differential (in exterior differential forms)
ds Infinitesimal space increment
dt Infinitesimal time increment
∂ [Algebraic topology] Boundary operator
∂ [Differential formulation] Partial derivative
∂∂ [Algebraic topology] Boundary of boundary
∂t Time partial derivative
∇ [Vector and tensor analysis] Nabla
∇ f [Vector and tensor analysis] Gradient (grad)
∇× [Vector and tensor analysis] Curl (≡ rot)
∇ · [Vector and tensor analysis] Divergence (div)
∇2 [Vector and tensor analysis] Laplacian
Δ [Tensorial notation] Determinant of transition matrix
Δs Space increment
Δt Time increment
δ [Algebraic topology] Coboundary operator
δ

j
i [Tensorial notation] Kronecker tensor

det (M) Determinant of M
sgn (Δ) Sign of determinant of transition matrix
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