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PREFACE.

(

The plan of the present volume will seem to the reader to be different from the plan of the preceding volumes. In the theories exposed in Volumes I and II, I have tried to respect, at least in its broad outlines, the traditional order. I have not

made here, and I must, in a few words, say why.

In electrodynamics, there is, strictly speaking, no traditional order; each author who has introduced new ideas into this part of the science has demonstrated them in a different way, often without much concern for relating them to

ideas expressed by those who had preceded him. I was therefore forced to build my book on a completely new plan. This plan

will perhaps shock the habits of mind of some readers; I have explained in one of the Chapters of the Work (Book XIV, Cliap. V)

the reasons that led me to adopt it.

Not being able to let myself be guided by tradition as in the

In the previous volumes, it has not been possible for me to indicate in such a precise manner the part played by each physicist in the constitution of the theories I expose. When I come across a theorem that has been formally stated by an author, I always take care to quote that author. But I have not always been able to mark in such a clear manner those whose ideas have inspired or penetrated my reasoning. I beg the reader not to see in this

VI
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omission, which I could have remedied only by too long historical discussions, the desire to attribute to me the discoveries of others. Besides, I will repair this omission in great part by quoting the names of those whose works have the most

a

influenced the direction of my research; it will also be for

i

I would like to express my admiration for those who have contributed the most, for the last twenty years, to the progress of electrodynamics; I named Mr. H. von Helmholtz and Mr. Cari Neumann.

Lille, ij February 1891.

TOME III.

MATHEMATICAL INTRODUCTION

TO ELECTRODYNAMICS.

CHAPTER ONE.

ft'

CURVILINEAR INTEGRALS (■).

§ 1 - Parameters that define the relative situation

of two linear elements.

In studying Electrodynamics and Electromagnetism, one constantly calls upon a certain number of propositions of Analytical Geometry little used outside the field of these sciences. We will gather here the most important of these

proposals.

Let x, y, z be the rectangular coordinates ( 2 ) of a point M

(-) See, on the subject of curvilinear integrals and surface integrals, Volume I of the Traité d'Analyse by M. É. Picard. In this beautiful work, the theory of these integrals is treated with great developments and by methods

often different from those presented here.

( 2 ) In all that follows, unless otherwise indicated, it will never be

uses non-rectangular coordinates.

I). - III.

I

2

MATHEMATICAL INTRODUCTION.

of a curve on which a direction of travel has been chosen. Let MM 7 be an element of this curve, coming from the point M, and having length ds. The point M / has coordinates

Let MT be the tangent at M to the considered curve, directed in the direction of travel which has been chosen on the curve. This half line MT makes, with the axes of coordinates Oœ, Oy, O*, angles a, [ü, y and we know that we have

cos a =

We often have to consider the system formed in space by two linear elements

MM] = ds, M'M; = ds'.

Such a system (fig. i) is obviously defined by the following parameters:

i° The lengths ds, ds' of the two elements ;

2 ° The distance r from the origin M of the first to the origin M 7 of the second ;

3° The three angles 9, 0', tu, which are themselves defined as follows:

0 is the smallest of the angles that the direction MMj of the element

1
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ds makes with the direction MM' of the line that joins the origin of the element ds to the origin of the element ds' ;

0' is the smallest of the angles that the direction M'M' of the element ds' makes with the same direction MM 7 ;

w is the smaller of the two angles between the directions MM,, M'M'.

The knowledge of the parameters r, ds , ds', 0, 0', w does not define unambiguously the system of the two elements MM,, M'M' ; the element MM, being arbitrarily placed in space, the knowledge of these parameters defines, for the element M'M', two possible positions, symmetrical with respect to the plane M,MM'. But, in a large number of cases, the function of the system of the two elements that we will have to consider will have the same value for these two distinct systems. In these cases, we can consider the system of two elements as completely defined by the knowledge of the parameters

ds, ds', r, 0, 0', ai.

The three angles 9, 9', co being, by definition, between o and tu, are defined by their cosines. We can therefore say, in the case we have just discussed, that a function of the system of two elements is defined when we know the parameters

ds, ds', r, cosO, cosO', costo.

These parameters, whose consideration returns at every moment in the following Chapters, are susceptible of several expressions that it is essential to know.

ÏP y

Let x, y, z be the coordinates of point M, and x', y ', z' the coordinates of point M'. We will have, in the first place,

( 2 ) r 2 = {x' - x) 2 -h (y -y0 2 -t-(X- Z Y'

Let a, (3, y be the angles of the direction MM, with the axes Ox, Oy, O z and a', [3', y' the angles of the direction M'M' with the axes Ox, Oy, O z.

same axes. We will have,

according to the equalities (1),

dx

cos a = -r~ ?

ds

0 dy

cos ^= ds'

O

O

in

. j

II

g- g , dx 9

cos a - } . >

ds

cos 3 '= -$7'

■ ds'

"CS l'es II

CD

O

O

MATHEMATICAL INTRODUCTION.

4

However, it is known that

COS O)

cos a cosa'-r- cos P cos -+- cos y

So we have

( 3 )

CO S (O

dx dx' dy dy'

dz dz'

ds ds 1

ds ds'

ds ds '

The line MM' makes with Ox, O y, Oz angles 1 , [x,

we have

COS

X

X

X

y -r

COS IJ. = - - )

cosv

/-

r

Gold

cosô = cosX cosa -+- cosfx cos(3 -+- cosv cosy> cos 6'= cosX cosa' cos [x cos [3' -f- cosv cos y

t

So we have

cosô

( 4 )

cos 6'

Equality (2) gives

x' - X

dx

-y d y ,

z - z dz

r

ds

-t /* ds

r ds

x r - x

dx '

ÿ

-h -


	.7 dy



z 1 - z dz*

r

ds'

r ds '

r ds'

dr

dr

x r - x

dx'

dx

9

r

dr

dr

y' - r

dy'

' dy ~


	

	?







r

dr

dr

t

dz'

dz


	1 ■ ? r



relations through which the equalities (4) become

cos 6 = - /

f dr

dx

dr

dy

dr

dz\

K dx

ds

H toy

ds 4

dz

ds J

dr

dx r

dr

dy'

dr

dz'

COSÔ =

dx'

ds'

^ toy'

ds' "*

dz'

ds'

or

( 5 )

COSÔ

dr

a j

dr


	ds '



cosü =

ds''

The set of equalities ( 4 ) and ( 5 ) gives

dr x'-x dx ' y'-y dy' z'-z dz' ds' ~ r ds' r ds' r ds'

v, and
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It is easy to deduce from this

5

d 2 r ds ds f

i

x

dx dx r

ds ds '

x

t

x

r

dy dÿ_

ds ds'

dz dz' ds ds'

x dx

y'-y

<ty_

z '- z dz\^

ds

r

ds

r ds J

x dx'

i

y-y

dy' ,

z '- z dz'\

ds' ^

r

ds' ''

r ds' i

If we take into account equalities (3) and (4), this equality of¬

comes

( 6 )

COSÔ COS0'

Costa

d 2 /

r

ds ds'

or, taking into account the equalities (5),

COSO) -

or dr ds to s'

The indefinite line MM' and the half-line MM, determine a first half-plane. The indefinite line MM' and the half line

M'M' determine a second half-plane.

Let e be the smallest of the dihedra formed by these two half-planes.  This angle being, by definition, qbetween o and -ir, is determined by its cosine.

By M, let us lead a parallel Mm' to M'M' (fi g . 2 ). In the

trihedron MM, m\ M', the angle £ is the dihedron opposite to the angle M, Mm' or tu; it is included between the faces M'MM,, or 9 and M'M m\, or

6'. Thus we have

( 8 )

COSü)

cos6 cos6'-t- sinô sinô' coss.

"MATHEMATICAL INTRODUCTION.

This equality shows us that, if a function depending on the relative position of the two elements ds and ds' depends, in a uniform way, on the parameters

0, 0', co,

it depends in a uniform way on the parameters

0, 0', s

and vice versa; moreover these angles 0, (f, w, s are all between o and n and, therefore, defined in a uniform way by their cosines.

The comparison of (6) and (8) gives

sin 0 sin6' cos

d 2 1

O ~

/*

ds ds 1

The various equations we have just written are of continual use in the study of electrodynamics.

We have seen that the knowledge of the angles 0, (f, w, or, what amounts to the same thing, of the angles 6, ff, e, did not define without ambiguity the relative direction of the two elements

' * 1

But we can find a system of angles that defines without am¬

biguity the relative direction of the two elements MM, M'M'.

Let us imagine a half-plane, limited by the line MM', and turning from left to right around this axis. Let this half-plane first coincide with the half-plane M 7 MM,. To coincide with the plane it will have to turn by an angle e, comprised between

o and 2 7r. The knowledge of the angles 0, O 7 , e defines without ambiguity the relative direction of the two elements MM,, M'M'.

If the angle e is between o and tc, we have

e.

If, on the contrary, the angle e is between tc and 2 tc, we have

CHAP. I.
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§ 2 .

The curvilinear integral. Definition. Fundamental theorem.

Let U, V, W be three uniform and continuous functions of

following variables

x,

dx

y

5

/S 3

J

dy

dz

ds ds ' ds '

d' l x


	i - - - î



' * - ?

4 "


	?



d n z

ds ,L

Let #, y, z be the coordinates of a variable point M of a curve AMB (fig . 3). Let s be the arc AM. We can

Fig. 3.

always imagine that the curve is represented by the equations

4

$ = /(*)"

y = g( s ):

I

z = h(s),

f §y h being finite, uniform and continuous functions of s, whose derivatives with respect to 5 up to order n exist, are uniform, and are finite and continuous functions of s, except at a finite number of points on the curve.

I
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With these relations, the quantities

will become uniform functions of s, which may be infinite or discontinuous at certain points or in certain regions of the AMB curve. It will be the same for the functions u(s), v(s), w(s), obtained by replacing the variables which appear in the functions U, V, W by their expressions in function of s.

Let

Let S be the length of the arc AMB. If the integral de¬

finish

the

1

|>(s) ©(s)

eO)<W's)

iu(s) 0(s)] ds

exists, we will represent it by the symbol

and we will say that this symbol represents a curvilinear integral taken along the AMB curve.

It should be noted that this symbol has no meaning, in general, if we do not suppose the arc AMB completely known it is only when we suppose this arc known that it takes a meaning, that of a definite integral, and to each different arc joining point A to point B corresponds a different meaning of this symbol, this meaning being translated by a different definite integral.

To define this integral, we have assumed the coordinates of a point of the AMB curve expressed by means of the arc s of this curve; but we could just as well have assumed them expressed by means of a parameter t variable in a continuous way along the AMB curve.

CHAP. I.
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Almost all properties of curvilinear integrals can be deduced from a fundamental proposition that we will prove.

Suppose that the three functions U, V, W depend only on x 1 y 1 z and, moreover, that we have

d F (x, y, z)

d.v

v _ to¥(x,y, z)

v - ---,

at

w= â¥p,y,z) '

ÔZ

F being, in all space, a uniform, finite and continuous function of x,y, z.

Let's consider any AMB curve, given by the equations

" =/(*)>

y = #( s )>

z = h (s).

If in F (x,y,z) we replace x,y,z by these uniform, finite and continuous functions of s, F (x,y,z) will be transformed into a uniform, finite and continuous function of s

F[/(s), £-(), M)l = ()-

The curvilinear integral

f ( U dx Y dy H- W dz)

"AAMB

will be equal, by definition, to

r s r dF df(s) (jF dg{s) t dF dh(s) 1 ^

J 0 Yàm ds + à g( s ) ds ^dh(s) ds J

or to

f S ^ds.

Jo ds

$>{s) being a uniform, finite and continuous function of s , this last quantity has the value

4"(S)- *(o).

10
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Let æ'oiJKoj be the coordinates of point A and z { the

coordinates of point B. We will have

and, therefore,

<ï>(o)= F(a? 0> ^o, z o),

*(S)= Fixuy^z,)

( U dx

Vf/j + Wà)= F(a?i,7i, z v )- F(x 0 ,y 0 , z 0 ).

AMIl

Thus the curvilinear integral considered depends exclusively on the origin and the end of the curve along which it is taken and not on the shape of this curve.

In this particular case, we can see that we can attribute a meaning to the symbol

(U dx -f- V dy -f- W dz ),

AM B

provided only that we know the two points A and B, without

that it is necessary to know the AMB curve. This direction is that of the difference

F(a?i)7i, z j ) F (Xo, j'o, "o)-

Let us suppose that the curve AMB is a closed curve; the point B coinciding with the point A., the coordinates x,,y lt z, are respectively identical to the coordinates x 0 ,y 0 ,z 0 . As, moreover, the function F(x f y,z) is a uniform, finite and continuous function of x,y, 5, one will have certainly

F ( 3 ? i, 71 * ) F ( xq , 70 , -o ) - o.

Thus, when U, V, W are the three partial derivatives of a

same uniform, finite and continuous function of x,y, z, 1 curvilinear integral

The "stretched to any closed curve, is equal to o.

Before proving the reciprocal of this proposition, a remark is necessary.

If, for any open curve AMB, whose origin A has coordinates x 0 , y 0} z 0 and whose end B has coordinates

CIIAP. 1.
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*

X\ a certain curvilinear integral checks the relation

F (ûc,y,z) being a uniform, finite and continuous function of x , y, z, we have, for any closed curve

\ÿ + Vtds) = o.

Conversely, consider a curvilinear integral such that, for any closed curve, we have

/ (U dx -h- V dy -i- W dz) = o,

and let's find the value of the integral

f ( ü dx -h V dy + W dz)= [AMB].

--'A M B

To obtain this value, we first notice that the AMB integral changes sign, without changing value, when we keep the AMB curve by reversing its direction of travel: a relation that can be written symbolically

AMB] -t- [BMA] = o.

J>

£

Indeed, the sum we have just written is none other than the value of the curvilinear integral considered along the particular closed curve AMBMA, and we know that this value is o.

Second, we note that the value of the curvilinear integral along any curve arc AMB depends only on the position of points A and B and the direction of travel of the curve arc, but not on the shape of the curve arc itself.

m

curve.

Indeed, let AMB, AM'B be two different arcs of curve joining point A to point B. The curve AM B M'A being a

closed curve, we have

A MB M'A] = o,

which can still be written

AMB][B M'A] = o.

[ 2
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But, according to the previous remark,

BM'A] + [AM'B] = o.

\

We have therefore, as we announced,

Having made these two remarks, let us choose arbitrarily ( Jig . 4) a point II, with coordinates a, (3, y. Let P (x, y, z) be another point of the plane. The integral

! ( U clx 4- V dy -+- W dz),

OiImp

taken along any curve IIMP joining point II to point P, will have a value independent of the shape of this curve and depending only on the position of points II and P.

Proud r,

A 1 & * T *

Moreover, the position of point II being supposed to be taken arbitrarily once and for all, we see that the value in question defines a uniform function of the coordinates x,y,z of point P.  Let us denote this value by F (x,y , z ).

If the functions U,V, W are finite quantities, it is easy to see that this quantity is finite. It is also easy to see that it is continuous. Let P 1 (x',y', z') be a point close to the point P. The function F (x',y',z') is the value of the curvilinear integral taken along any curve joining point II to point P'. Now, as such a curvature, we can take the curve I! MP followed by the line PP'. We can then easily see

CHAP. I.
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that

f (U

c/pp

dx

Vdy

W dz),

and the integral that binds the second member is obviously infinitely small with PP ; , which proves the stated theorem.

Having thus defined the uniform, finite and continuous function of x^y, x which we have denoted by F (x,y, z), let us arrive at the evaluation of [AMB].

If we notice that II AMB ( fi g. 5) is a line that leads

Fig. 5.

x

from point II to point B, we find

[IIAMB] = F z t ).

By the way,

IIAMB] = [nA]-+-[AMB]

and

[It A] = FO 0 ,y 0 , *<>)-

We therefore find

[AMB] = f (U dx -hV dy-hW dz) = F(x h y 1 ,zi)-F(x <h y 0 ,z 0 ).

d AMB

Thus: to say that Vintégrale curvilinear

/ (ü

dx

Vdy

W dz)

extended to any closed contour is equal to o, or

j r MATHEMATICAL INTRODUCTION.
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to say that the same integral extended to any curve is the difference of the values that a uniform, finite and continuous function of the coordinates takes at the two extremities of the curve, is to state two equivalent propositions.

Let us now look for the form that the quantities U, V, W must have in order for Ton to be able to state these two propositions.

We have

f (U clx -r V dy 4- W dz) - F(Xi,yi, i)- F(x<>,yo, *)-

"A MB

Let B' be a point located at an infinitely small distance ds from point l>.  Let a, [i, y be the cosines of the angles that the line Bl/ makes with O x, Or, O:. We will have, for coordinates of point B,

a ds, y\ -t- $ ds, 3i 4- Y ds.

We will therefore have

A.MBB

( U dx V dy -+- W dz) = F(j?i -h oc ds, y i

*

F(>o,jo, Vr

3 ds, z

I

Y ds)

Now the first member can be written

(U dx

V dy

W dz ) H- ( U ! a

Vip

W ! y ) ds

?

AM B

U 1} V,, W, being the values of U, V, W at a certain point of the line BB ; . We have then

i, dx 4- Vi dy 4- Wi dz = F(a?i-+- dx,y v -+- dy,z x -- dz)- Y(x u yi, z t ),

If we compare this result with the one we obtained at the beginning of this paragraph, we see that :

The necessary and sufficient condition for Vintégrale

CHAP. I.
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extended to any closed curve, equal to o, is

that the three quantities U, V, W are the partial derivatives

with respect to x, y, z of a same uniform, finite and continuous function of x, y, z.

This is the fundamental theorem on which the theory of curvilinear integrals is based.

Let us immediately give an application of this theorem.

The quantity

dr x'-x dx' y'-y dy'

ds' r ds' /' ds'

is a uniform, linear and continuous function of the coordinates x , y, z of a point of the curve s. So the integral

extended to any closed curve, is equal to o.

Now equality (6) gives us

cos fl cos A'

r

COS (O

r

d*r

ds ds'

We will therefore have

cos fl cos 6' , / cost" ,

ds = I - ds.

r cos fl i

the two integrals extending to the same closed curve.

A fortiori, if s and s' are any two closed curves, we have

cosfl cos 6' r

ds ds

■ -SS"

(ù

ds ds

This equality plays an important role in electrodynamics; it was demonstrated in 1847 by Mr. F.-E. Neumann (* ), in order to compare the results of his theory of induction with the theory given by W. Weber.

(*) F.-E. Neumann, Ueber ein allgemeines Princip der mathematischen Théorie inducirter elektrischer Strôme. Read at the Berlin Academy of Sciences, August 9, 1847.
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3 . - M. Bertrand's theorem.

The fundamental theorem that we have just proved will provide us with a proposition that we will often have to use. This proposition was given by M. J. Bertrand (*) during his beautiful research on Ampère's law.

This proposal is stated as follows:

If Vintégrale curvilinear

dx

ds

extended to a closed contour, is an infinitesimal of the second order whenever

f ds

is a first-order infinity, the function G is bound

neary and homogeneous

dx dy dz

Cil -J- 5 - 7 - *" -J as as ds

Let us consider, in fact, an infinitely small closed contour (fig. 6).  Let y. (i, vi, Ç) a fixed point, taken arbitrarily on this contour.

Fig. 6.

Let M {oc,y,z) be a variable point of this contour. Let M!(x,y,z) be a certain point suitably chosen between the two preceding ones

(') J. Bertrand, Sur la démonstration de la formule qui représente l'action élémentaire de deux courants {Comptes rendus, t. L.XXV, p. 733; 1872.)

C M A Pi I.
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on the line c|that joins them. We will have

'7

oc, y, z, ^, d 4 -, ~ ) ds

G

?

ds ds ds

L : dx dy dz . ,

r h S ? -j- ? 'J- ? ~y~ ) f/s

a .9 as as

(a/

)

t)

dr'

G ( cc'.y, z',~ , dr dz

' <Ys <Ys ds

(y

7 i)

d

-H

dv

</

d

-, G ( x',y

dz

1

O JT/ G (

dx dy ' c/s * ds* ds

dx dy dz ? r/s ? é/s ? ds

ds

The integral in the first member is, by hypothesis,

infinitely small, compared to

(/

7 0 > ( s '

0

The quantities (x r

<which appears in the second member is also infinitesimally small compared to ds. Therefore, the quantity

■ / G ('' r "

dx dy dz . ,

V; 1 -T~ 5 - 1 ~T I ds

ds ds ds

must be at least a second order infinity when

ds

is a first order infinity.

i

Let us imagine a closed contour cr and, on this contour, a fixed point M(£, r" Ç). Let M f ( OC | ^ y K , Z) be a variable point of this contour. I say that the integral

G

U, n, ç,

dx i dv\ dz\ dv ' dv dv

dv ,

extended to this contour, is necessarily equal to o.

Let us imagine, in fact, that we form a contour s homothetic of the previous one, the center of homothety being in u. and the homothety ratio having for value the quantity X which can grow beyond any limit.

L, I

The contour s is infinitely small.

If we notice that at the homologous points of two curves

D.

Ilf.

2

j g MATHEMATICAL INTRODUCTION.

the tangents to these two curves are parallel if we denote by M {x,y,z) the point t of the contour 5 homologous to the point of the contour <7; if ds and dn are the elements

counterparts of these two contours, we will have

Let's put

and we will have the two equalities

dx 1 dy 1 dz 1

A u

dz 1 dz 5 dz

dx dy dz

Us' ds 9 ds

According to this equality, the integral in the first member would be, contrary to what it should be, of the order of J ds.

We are thus obliged to admit that the integral

where (Ç, 7 |, is a fixed point of any firm contour to which the integral extends and (a?, y, z) a variable point

of the same contour, is equal to 0 .

According to the fundamental proposition demonstrated in paragraph

i

CHAP. I. - CURVILINEAR INTEGRALS. 19

above, it is necessary and sufficient that there exists a uniform, finite and continuous function of æ,y, z, such that we have

P (y Y dx dy dz\ _ dF dx dF dy dF dz

\ ds ds ' ds ) dx ds dy ds dz ds

Since the first member does not depend on æ r y, s, it must be

the same for the second. The quantities ^7 must therefore be

<ie simple functions, any functions for that matter, of £, Y}, Ç. We must therefore have

ri I t y dx dy dz

' ' ' ds ' ds * ds

dx

ds

rR (^,0

dz

ds'

and, consequently, £, tj, Ç being any,

G

v,y

3

dx dy dz ? ds 1 ds 7 ds

p (v,y, z)

QC

R(x,y,z)

dx

ds

dy

ds

dz - 1

ds

Mr. Bertrand's proposal is demonstrated as follows

20
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CHAPTER II

BLIND AND AMPERE THEOREMS (■).

§ 1 - Some definitions and lemmas of Geometry.

In this chapter we will examine a new general property of curvilinear integrals, but this study will be preceded by the statement of some definitions and 1 exposition

of some lemmas of General Geometry.

Let AB, CD ( fig . 7) be two half-lines which do not meet and are rectangular to each other.

Fig. 7. "A

Suppose that an observer, placed along AB and looking at point C, sees the half line CD going to his left; an observer, placed along CD and looking at point A, would then see the half line AB also going to his left. Under these conditions, the system of the two directions AB, CD forms a system whose direction of rotation is positive. Under the opposite conditions, the direction of rotation is negative.

(' ) Several parts of this chapter are taken, almost verbatim, from the remarkable work of Mr. Cari Neumann: Die elektrischen Krâfte. Leipzig,

1873.

*
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This definition extends to two half-lines that are not rectangular. The direction of rotation of the system of two half-lines AB, CD ( fig. 8) will be, by definition, the direction of rotation

of the system formed by the half-line AB, and by the half-line C d, projection of CD on a plane perpendicular to AB.

Consider a circle (fig* 9) and a half line AB, normal to the plane of this circle and coming from its center. The side of the plane

of this circle where the half-line AB is located is what we call the upper side of this plane. The circumference of this circle will be traversed in a positive direction, if the tangent MT, directed in the direction of travel, forms with AB a positively rotating system. We can see that if an observer, standing on the upper side of the plane, were to walk on the circumference, traversing it in a positive direction, he would have the area of the circle to his left.

A direction of travel being chosen on a circumference of a circle, it will always be possible to make this direction of travel become positive, by suitably choosing the upper face of the plane.

*
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The side of the plane which must then be chosen for the upper face is called the positive face. We can see that an obseivator which would lie along the tangent Ml to the circumference of the circle, in the chosen direction of travel, and which would look at the center of the

circle, would have on its left the positive side.

This definition can be extended to a very wide class of

closed curves.

Consider a closed curve that verifies the following restrictions

vantes :

i° In traversing the curve in the direction one has chosen, one never passes twice through the same point, and one cannot return to one's starting point without having traversed all the intermediate points.

2° Through the curve C, we can pass a surface S such that the curve C forms, on this surface, the contour of a closed and linearly connected area A.

These last words require some explanation.

The closed area A, with contour C, is said to be linearly connected, when any two points, M, M', belonging to the area A, can be joined by a line located entirely in the area A and not meeting the curve C.

3 ° At each point M, the area A admits one and only one tangent plane whose orientation varies in a continuous way when the point M moves on the area A.

4 ° Area A is a two-sided surface. This last word needs some definitions.

Let M be a point of area A; let MN be a half-line normal to this plane, and invariably related to this plane.

Let's move the point M to the surface of the area A. It leads with

it the tangent plane and the normal MN, which move with a continuous motion.

If, after a certain displacement on the area A, the point M returns to its primitive position, the tangent plane will also resume,

its primitive position. But, for the normal MN, two cases can occur:

Or the half line MN returns to its original position, which is

The area A is said to have two sides.
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Or, for certain suitably chosen displacements of the point M, the half-line MN will coincide, no longer with its original direction, but with the opposite direction. We say that Vaire A has only one side.

It has long been accepted, a priori, that any closed, linearly connected area necessarily has two sides. Moebius was the first to point out the paradoxical existence of surfaces with only one side.

A similar surface is easily made by taking a rectangular strip ABCD (jig . io) of paper, and gluing it together

the ends so that point A comes to point D, and point B to point C. We thus obtain the surface shown opposite

(fig- 1 0 *

It is easy to see that, if we make the point M follow the path MPQRSM, the half-line MN will come back along MN 7 .

Some minima still provide remarkable examples of single-sided areas.

We shall therefore assume that the area A is a two-sided area.  On the curve C (fig. 12), let us choose a direction of travel, and let us propose, with respect to this direction of travel, to define the

positive side of the area A.

Let us take, on the curve C, a point M, and, in this point, let us lead the tangent MT to this curve in the direction of the chosen path.  Let us take on the area A a point M', infinitely close to the point M, and, in M', let us lead the normal M 7 N to the area A in a direction such that the system of the two lines MT, M r N forms a system whose direction

of rotation is positive.

This done, if we move the point M' on the area A, we will be able to bring it successively to coincide with each point p of this area, since this area is linearly connected by hypothesis.

N'TRODUCTION

he point M ■right M 7 ?

occuDer u j

Cil AP. U.

7.5
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talion directly opposite pv,. Let us suppose that, when the point M' comes to p, following the path M'Qp, the straight line M'N comes to be placed along pv t . Conversely, the point p coming in M 7 following the path pQM', the straight line pv ( would come to be placed along M'N, and the straight line pv following the direction M'N, directly opposite to M'N.

This being the case, let us imagine that the point M / is made to follow the closed path M'PpQM'. We see that the straight line M/N would, after this path, come to lie along M'N, which is impossible, since the area is, by hypothesis, an area with two sides.

Secondly, it can be proved that the direction pv, thus determined on the normal in p, remains the same, whatever

the position of the point M on the curve C.

Let us suppose, in fact (fig. 13), that instead of choosing the initial¬

the system with a positive direction of rotation, formed by the tan gent MT and the normal M'N, the system with a positive direction of rotation was chosen.

positive rotation formed by the tangent nit and the normal ni n>

m

2 G
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In any way that we bring the point M to the point ja of the area A, the half-line M'N will take a determined direction ULV.

i

Now we can suppose that we bring the point M' to the point p. by the following route:

i° The point M goes to the point m by following the curve 0 , which is always possible, since any two points of the curve C are supposed to be always connected by this line. The point M/ comes at the same time to the point m' while remaining infinitely close to M.

The tangent MT coincides with the tangent mt. The line M'N remains rectangular with MT, and the system formed by these two lines keeps a positive direction of rotation. So M'N coincides with m'n.

i° We bring the point M'of m! to p.. M'N comes at pv; m'n, which coincides with M'N, also necessarily comes at pv. One thus obtains, for the half-normal at point p, the same direction pv, whether one has taken for starting point the point m or the point M.

We have thus defined, without any ambiguity, a certain side of the area A limited by the curve C. This side is called the positive side of Vaire A.

According to what we have just said, this positive side is always recognizable by the following characters:

i° An observer, lying along the tangent MT to curve C in the direction of travel of this curve and looking at the neighboring part of area A, has to his left the positive face of area A;

2° An observer, standing on the positive side of the area A, in the vicinity of the curve G, and looking at the neighboring parts of the curve G, marks, with his left hand, the direction of travel of this curve.

Let's consider three half-lines, OA, OB, OG {fig- i 4 )? from

from a same point O, and forming a perfectly defined trihedron.  They pierce at A, B, G a spherical surface having O for center. Let OMN be a half-line, inside the trihedron, piercing at M the surface of the sphere. Let ABC be a circle drawn on the surface of the sphere, and passing through the points A, B, G, this circle divides the sphere into two caps, one of which, MABC, contains the point M. Let us suppose that this circle ABC is traversed in the direction marked by the order of the letters. If MN marks the positive face of the ca
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If, on the other hand, as happens in Jig. i 4 , MN marks the negative side of the same cap, the OABG trihedron is said to have a positive direction of rotation. If, on the contrary, as it happens in Jig. i 4 , MN marks the negative face of the same cap, we say that the trihedron OABG has a negative direction of rotation.

Fig. i/,.

When the trihedron OABG has a positive direction of rotation, it is easy to see that, if an observer is placed along OA and looks at OB, the half-line OG is on his left.

We will assume, in accordance with usage, that the trihedron Ox, O y, Os, formed by the positive directions of the coordinate axes, has a negative direction of rotation.

We are going to look for analytical characters that allow us to recognize the sign of the direction of rotation of a trihedron or a pair of lines.

Let's first consider a trihedron.

If we suppose that the orientation of the three half-lines which form a trihedron is made to vary continuously, without these three half-lines ever being placed in the same plane, it is easy to see that the sign of the trihedron does not change.

will not change.

By a displacement of this kind, we can make the trihedron OABG trirectangular; then the two lines OA, OB coincide respectively with O x, Oy. OG will then be placed along Os if the trihedron OABG is negative, and along O z' if

this trihedron is positive.

With this in mind, let's adopt the following notations for the angles of

half-lines OA, OB, OG with axes :
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Ox

0 y

0 z

OA

*1

P.

' Yl

OB

a 2

Ï2

OC

"3

73 '

and consider the determinant

cosax

cos jBj

COS Y!

A -

cosa 2

cos {3 2

cosyî

cosa 3

cos 3 :i

C0SY3

This determinant varies continuously with the orientation of the half-lines OA, 013, OC; it becomes equal to o only if the three half-lines lie in the same plane.

Let us suppose the trihedron OABC positive; we can, no moment the three half-lines which compose it are in the same plane, bring it to coincide with the trihedron O xyz f . The

determinant A, without ever changing sign, will then coincide with the determinant

without

i

o

o i

o o

o

o

I

ï

which is negative, so it was originally negative.

Let's suppose, on the contrary, that the triedre OABC is negative; we could, without at any moment the three half-lines which compose it are in the same plane, bring it to coincide with I trihedron O xyz. The determinant À, without ever changing sign, will then coincide with the determinant

i o o

o i o

o o i

which is positive; it was thus primitively
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Thus the tnèdre OABC has a direction of rotation which is opposite to that of the determinant

29

the sign

cosa!

COS P !

cos

Tl

COS "2

COS jj 2

cos

Ï2

cosa 3

cos

cos

y 3

Now consider a pair of two lines PQ, P , Q / (, fig - i5). It is easy to see from the definitions given that

the direction of rotation of this couple is identical to the direction of rotation of the trihedron PQP'<jr, P q being a parallel led by the point P to the direction P'Q'.

Let


0 , jKo, Zq the coordinates of the point P,

BotIIo' 4 the coordinates of point P',

a, p, y the angles of the line PQ with the axes,

a, (b) y' are the angles of the line P'Q' with the axes; r is the distance PP'.

PQP


	' "



to that of the determinant

cosa cos p cosy

J r ■

zf'q - vo y 0 y 0 z0 z 6

r r r

cosa' cos [3' cosy' |

We can see that the sign of the direction of rotation of the
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two lines PQ, P'Q' is identical to the sign of the determinant

' x ' 0 - x 0 y' Q -y 0 -ô - -0

cosa cosp cos y

j cos a' cos P' cos y'

Let us now imagine a linearly connected plane area A,

bounded by a convex curve C (16 ). Let M (x, y, z)el

i dx y -t- dv, z -f- dz) two neighboring points of the curve C,

\ * * ^

Fig. 16.

T

following each other in the direction of travel. Let p(ç, 7), Ç) be a point inside the area A.

At p, let us raise the normal pv to the positive side of Faire A. It is easy to see that the normal pv forms a positive direction system with the tangent MT at M to the curve C.

Indeed, let us join pM. On this line let us take a point M', infinitely close to the point M. Tl will be inside the curve A, since Faire is supposed to be convex.

At M' let us lead a parallel M'N' to pv. This line M'N', being normal to the positive face of A, will form with MT a system whose direction of rotation will be positive.

It is obviously the same for the system pv, MT, the line pv and the line M'N being parallel, of the same direction and located on the same side of MT.

Let ", b , c be the director cosines of the normal pv. We will have, according to what precedes,

x - % y - v) z -Z,

abc

dx dy dz

ds ds ds


o
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or, by expanding the determinant,

According to the equalities (P) themselves, this becomes

A 2 ] [(x

D 2

(y

r. ) 2 -+- (

(x

6 )

o clx

ds

\ds J

dx'V 1

($)*"

(y

\ dy

o

dz \ 2 ds )

dz ~\ 2

I

or according to a known relationship,

A* 2

4 o 2 dsi

I

M

If therefore we designate by s a quantity equal to ms we can write the equalities (S),

a

b

c

(y - 7 ]Wi -{z - Ç) dy

28

?

(z - Ç ) dx -


	(x )dz



20

7

(x - X)dy -{yz


	ri)dx * -



20

i or a

i

By plotting these values in the

ity (a), we see
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that s necessarily has the value - i ? and we finally find the relations

/ %ao -- [(y- r i)d z - (^ V) dy

(y) <260 = - [(z - O doc (.t J) dz ] ?

( 2 c 0 = - [( oc - q ) dy ( y tq ) *

Let us form, for all the elements MM = of the curve C, the equalities analogous to the first of the equalities (y), and let us add them

member to member. We will have

%a

d )

y dz )

T i

£ f dy.

Now the quantities J dy-, /*■ which represent the projections

of the closed curve G on O y and on Oz are equal to o, and so we find the equality

which can be further transformed by noting that

is the area enclosed by the curve C.

To prove this equality, we have assumed the curve C to be convex. But it is easy to extend this demonstration to the case where the curve C is not convex.

Take, for example, the non-convex plane area A surrounded by

the curve ABGDA (Jig. 17). It is the excess of [Convex Pair A" surrounded by the curve AMCDA over Convex Pair A 2 surrounded by

CHAP. II.
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by the curve ABCMA. If ü, Q t , Q 2 are the values of the areas A, A,, A 2 , we have

£2 = - ü,.

The area A< a has the same positive face as the area A 5 a has therefore the same value for both areas, and we can write

aaQ<

The positive side of the area A 2 coincides with the negative side of the area A. The normal to the positive face of the area A 2 has therefore for directing cosine -", - 6, - c, and we have


	iaü 2 = / (z dy -y dz) -h / {zdy-ydz).



--AbC "Ama

Let us add, member to member, these two equalities, noting

and we will have

which is the formula already obtained for a convex curve.

Let x, y, z be the coordinates of a point which traverses a closed plane curve G, in a given direction; let Û be the area enclosed by this curve; let (N, x ), (N, y ), (N, z ) be the angles which the normal to the positive face makes with the axes

of this area. We have

2 £2 cos(N, X)

I ( zd r

'A

y dz ),

(0

2 £2 cos(N, y)

x dz

z dx ),

2 £2 cos (N

T y

J *

)

= jiydx

x dy).

These equalities will be used in the proof of the important theorem which is the subject of the following paragraph.

III.

n

O

D.
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§ 2. ^ Stokes' theorem.

Let us consider a closed, plane, infinitely small curve C, on which a direction of travel is given.

Let V(x,y, *),=)> W(x,y, z) be three functions of

t v ^ yes are uniform, finite and continuous, as well as their partial derivatives of the first order, in a domain inside which the curve G is located. We will transform the integral

f (U dx -t- Y dy -H. W dz).

I

Let u(Ç, t,, Ç) be a point inside the area bounded by the curve C.  We will have

U (x,y,z) = U($, ij, Ç)

and, therefore,

K)

(-" -?)^u(Ç,7),o

0

We have, according to the fundamental theorem on curvilinear integrals (Chap. I, § 2)

CHAP. II.

BLINDS AND DAMPERE THEOREMS.

35

We see that the previous equality can be written

(")

j](x,y,z)dx = - U(^ï], Ç) Jydx


	-/], Ç) f* zclx.



But we have, according to the fundamental property of curvilinear integrals,

f(r

from

dx

x dv )

/ d(xy) = o

dç.

and, according to the last equality (i),

fy

dx

x dy)

2 û cos( N j z).

It is easy to conclude from this

J f ydx c

Q cos(N, z ),

J ' xdy c

£2 cos(N, z ),

and also

zdx

Qcos(N,j),

xdz

ûcos(N,jk).

f

C

c

Equality (a) thus becomes

U(# ? jk? z ) dx

à

c

q| cos(N,*)^U(ê, v), Ç)

c 08 (N,jk)^U(|, " O].

By adding member by member this equality and two other analogous ones that we would obtain in the same way, we arrive at the iden

tite

f

from

z) dx

VO, 7 > *)<&-+■ Z)ds]

Q

d

( 2 )

cos(N,")^jU(Ç,tj, Ç) - cos(N,jk) cos(N, x) ^ V(£, 7 ), Ç) cosN, 7 ) 4 w(?,y ),0

d

U(


*)> ol



d

cos(N,s)^ V($, 7 ], Ç)J

C0S ( N '*)^ wu,tj,o]J.

This identity can be extended to any curve, if we
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can pass through this curve an area verifying all the necessary conditio ns so that we can define its positive side.  This extension is based on a lemma that we will establish.

Consider an area a with two sides ( Jig . 18). Let ABCDA be the boundary contour, with its direction of travel. Let us join the

Fig. xS.

point A to point C by two infinitely neighboring paths APC, AP C, which have no common point apart from points A and C, and include between them an infinitely narrow area b contained in make considered a.

If, to make considered a we subtract this infinitely narrow area b , it remains an area a' whose contour is either

ABCPAP'CDA, or ABCP'APCDA, depending on how

cated the letters P and P'. Let's suppose that these letters are placed

have been

so that the contour in question is traversed in the direction indicated by the first series of letters.

I say that the contour in question bounds not a single linearly related area, but two distinct linearly related areas, such that it is impossible to pass a point

from 1 to a point of 1 another by a path located entirely

on the total area a' considered and not meeting the contour.

To demonstrate this, I first note that any area

drawn inside a two-sided area is a two-sided area.

{fi

t - plotted inside it; let P and P'be two points of the line; let us suppose that 1 we start from point P with an orientation

Il 1 I 1 1 * A " "

<

the normal to do A', and that we arrive at point P' with

a

3 7
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orientation of normal to area A' which depends on the path traced on area A' which one has followed; it is to admit that, starting from point F of area A with a given orientation of normal to Do A, one would arrive at point P' of area A with a different orientation of normal to area A, according to the path, traced on Do A, which one would have followed; it is to admit, in other words, that, contrary to 1 hypothesis, area A would not be a two-sided area.

Fig. 19.

According to the proposition we have just established, Faire a!  (fig. 18), if it forms a single linearly connected area, must be, like the area a , a two-sided area; if we observe moreover that these two areas have in common a part of their contour and the direction of travel of this part of the contour, we see without difficulty that their positive sides coincide at every point.

Now let us take two infinitely close points P, P , on the paths CPA, AP'C. Let M be a point of Faire a ', that we can

let M' be a point of the area ci 1 that can be brought to the point P' by an infinitely small path located on the area a!~

The normal to the positive face of Faire a! in M forms a positively rotating system with the tangent in P to the path CPA; the normal to the positive face of the area a' in M' forms a positively rotating system with the tangent in P' to the path AP'C. Now the tangents at P and P' to the paths CPA, AP'C are substantially opposite. Thus the normals to the positive face of the area a' at M and at M' are substantially opposite. Moreover these normals coincide, according to what we have seen, with the normals at points M and M' to the positive face of a. Thus the nor
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males in M and M' at the positive face of a are substantially opposite.

On the other hand, from point M to point M', we can pass, according to the hypotheses made, by an infinitely small path MPP'M' traced on the area a! Thus, according to the assumptions made on the latter, the normals to the positive face of A at M and at M are approximately of the same direction, a result contradictory to the previous one.

Therefore, we cannot assume that the line ABCPAP'CDA forms the contour of a linearly related area a! Moreover, it cannot be decomposed into more than two closed curves and therefore cannot bound more than two linearly related areas.

We must necessarily assume that the following theorem is correct:

Given a linearly connected two-sided area a bounded by curve ABCDA, let us take two points A, C, on this curve; let us join them by a path APC, drawn on the given area, and not passing twice through the same point the two contours ABCPA, CPADG will each bound a linearly connected two-sided area, whose positive side will coincide with the positive side of area a.

Consider the integral

f (U dx 4- Vrf/+Wrf5),

extended to the contour ABCD. Let us denote it by

[ABCD].

We will have

ABCD] = [ABCJ + [CDA].

Let us note that we have obviously

CPA] 4 - [APC] = o,

and we will have

ABCD] = [ABC] 4 - [CPA] 4 - [APC] 4 - [CDA].

But we have

ABC] 4 - [CPA] = [ABCPA],

[ APC[ [CDA] = [APCDA].

So we have

[ABCDA] = [ABCPA] 4 - [APCDA].
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We can therefore add to the previous theorem the following proposition:

L } integral

J (U dx V dy -+- W dz),

taken along the contour ABCDA, is equal to the sum of the analogous integrals taken along the contours ABCPA,

ABCDA.

It was important to demonstrate the correctness of these theorems for areas with two sides, because they are not correct for areas with only one side; if we cut along AB the surface represented by Jig. 11, we do not separate it into two areas; we form a single area, applicable to the rectangle ABCD (Jig. io) which was used to form the surface.

We can, on each of the two contours ABCPA, APCDA, repeat similar demonstrations to the previous ones, then reason again in the same way on the areas into which we will have divided those enclosed by these two contours, and so on indefinitely.

We will thus be able to justify the following statement:

By two systems of suitably drawn lines, let us divide the area A (Jig. 20) into surface elements. Assume the contour y

Fig. 20.

of each of these elements traversed in a direction such that this element has the same positive face as Faire A. We will have

J* (U dx h- Y dy H- W dz) = 21 ( U dx -+- Ydy H- Wdz).

4 ""
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Having said this, let us note that each of the surface elements that we have just considered can be considered as a plane element located in the tangent plane to the surface A at a point of this element; let us apply the identity (2) to it; let us add member by member all these identities, and we will have demonstrated the following theorem:

Let x , y, z be the coordinates of a point which describes in a given direction a closed curve C, and U( x , y, z), V(x , y , 5), W (x,y, z) three finite, continuous and uniform functions of x,y, z, as well as their partial derivatives of the first order, in Vspace where the curve C is located

Through the curve C, passes an area A ci two sides; let diï an element of U area A; £, y;, Ç the coordinates of a point of

this element; N the direction of the normal to the positive face of area A at point (£, tj, Ç).

We have Videntity

h" otherwise grouping the terms which appear in the second member of this identity, we can still write it

i

l.<'lle identity is due to Stokes. It allows to transform a simple curvilinear integral, extended to a closed curve, into
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a double integral, extended to a closed area limited to this curve

closed. It plays a strong role analogous to Green's identity which

allows to transform a double integral, extended to a surface

closed, in a triple integral, extended to the space that this surface contains.

§ 3 - Ampere's theorem.

Long before Stokes had given this theorem in its general form, Ampère (' ), in his research on electrodynamics, had used particular propositions related to it. We shall deduce here from Stokes' theorem one of Ampère's most important propositions.

Let C and C'be two closed curves (Jig. 21), by which we

Fig. 21.

can pass two areas with two sides A and A! Let D and D' be two domains containing within them the areas A and A! Let M (ûCjJTj z) be a point of the domain D and M ' (x', y\ z') a point of the domain D'. Let r be the distance between the two points M and M'.

The distance r may vary between certain limits.  Let/(r) be a function of r which, for all values of r between these two limits, is uniform, finite and continuous, as well as its first order derivative, its second order derivative being

finished.

(1) Ampère, Mémoire sur la théorie mathématique des phénomènes électrodynamiques, uniquement déduite de l'expérience (Mémoires de VAcadémie des Sciences, t. VI, p. 175; 1827). See also Gauss, Werke, Bd. V, p. 606

and 625.
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Let us propose to transform the double curvilinear integral

dz dz ds ds'

ds' ds,

extended to all elements ds, ds ', of the two curves C and C r Let

should be an element of the area A;

N the normal to the positive face of the element due to' an element of the area A';

N' the normal to the positive force of the element due'.  According to equality (3), we have

Ç\ fs N doc' dx dy' dy ... dz aL . 7

i K (r >s s + ^ r) -à - -1*

ds ' ds

cos (N -) df{r) x( L toy

[cos(N, x)

cos(N, y) d -^ r ^

I v Ox

cos (N,jr)

cos

to f( r )

~| dx*

dz

J ds'

tof(r)

1 dy

dx

i

J ds'

tof(r)'

] dz'

ày .

J ds'

So if we put

l

7 !

COS( i

?


	N



dy

)

cos(N ,y)

V' = cos (N, x)

to f( r )

0

cos (N, z)

W' = cos( N, y)

tofjr)

Ox

cos(N, x)

d_J\r)

dz

tof(r)

Ox

tof(r)

dy

our double integral can be written

Q due f( U' dx' -+- V' dy' -+- W dz' ).

A new a

ication of equality ( 3 ) will give it the form

S. S

s

A'

cos(N', z)

cos( N', x)

éü'

^Tin

°y


	cos(N',



<2. 1 <

1_

atV

OY

dz'

-cos(N',

\ T

Z) -t

' dx'

atW

dW

~dx r ~

~ cos (N ,

*> w

due due'.
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Now, if we refer to the meaning of the functions U', V', W',

we find

. - T , , dW'

cos(N

, ,à\'

' ' dx'

d ® f

[cos(N,cr)cos(N', ; r)4-cos(N ) j)cos(N , ,7)^cos(N,^)cos(N',^)]^^

t

cos(N, a.')f "cos(N',

On the other hand,

d\f

d^f d*f


	; -h cos(N , y) J



àx ùx

t

cos(N', z )

dx ûx'

to*f

dy Ox* dz dx '

1 ÿ.

r dr

x

t

X

m

\

i df_ r dr

d\f

dr 2

(x'-x)(y' - y) fi df

(x f

x)(z r

2

\r dr

z) (_df_ r dr

*L\

dr 2 / ' dr 2

We have therefore

d\Y

c °s(N

dV'

cos(N',*) ^7

[cos(N, ir) cos (N', x)

cos (N, y) cos (N', y) H- cos (N, 2 ) cos (N', ^)]

x

X

t

X

r

1

r dr

d z / \

dr 2 /

1 fTI

r dr J

bcos(N,a?)cos(N', a?)^ g

cos(N, a?) cos(N', a?) cos N',y ^ ^

cos(N', 2 )

1 V

x ( - - 4 r dr

d 2 /

dr 2

and, therefore,

A W' , \ dV

cos(N',7) -^7 - C0S ( N > *) m

cos(N', z) - cos(N', J) :

cos(N', a?)

ets

dÿ

dU'

cos (N ,y) -7

[cos(N, a?) cos (N', a?) + cos (N,/) cos(N', y)-h cos(N, z) cos(N


	cos(N, a?)-- t- cos (N, y)- - + cos(N, a)



x fcostN', æ)-ÿ- + cos (N'" J)H- cos(N', z)

l df

r dr

dr 2

z

r

z'

-

z

r

dr

dr 2 /
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If Ton designates by r the direction which leads from the point (#, y, z) to the point (V, y, z') and if we notice that we have

cos(N, N') =

cos(N, x) cos(N', x

cos(N, r ) =

-.T x a? x

cos(JN ? x) r

cos ( N', r ) =

: C0S(N', X) - - r

COSU) =

dx dx dy dy f

we will have

ds ds ds ds

cos(N, y) cos(N'. y) -+- cos(N, z) cos(N', z)

cos(lN ,jk)

y -y

cos (N', z)

cos(N', r)

dz dz'

y zlL

r

cos(N', z) --- -,

ds ds'

I I f(r)cos(j)ds'ds

I I

(5)

S a sJoos ( n,

d\f

*

cos(N, r) cos(N', r)

i ÏL

r dr

Let's apply this important identity to the case where

/( O

I

r

This function will satisfy the conditions imposed if the two curves C and C and the two-sided areas A and A' passing through these two curves can be respectively enclosed within two domains D and D' which are entirely external to each other; for then the distance r from a point in the domain D to a point in the domain D' cannot become equal to o. This condition can be stated simply by saying that the two areas A and A' have

4 y

no common ground.

We will have

d/(r)

dr

" T* '

dîf ( r )

i

dr 2

/*3

i d f.+

d*J _ i

r dr

dr 2 r 3

i df

d*f _ 3

r dr

dr 2 r 3

and, therefore,
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We will therefore have

COS you

ds' ds

C'

d*

1

cos(N, r)cos(N', r) , " XKJAi V ' V ' dr*

cos(N, r) cos(N, r) - cos(N, N')

d

dr

dQ' dQ

Now the equalities (5) and (6) of Chap. I give

cos(N, r)

dr

cos(N', r)

i

dr

dN'

cos(N, /') cos(N', r ) - cos(N, N') d 2 /

r

dN dN'

Besides

d 2 1

r dr dr

d

1

r

d 2 r

d 2 r

dr 2 dN dN

dr dN dN'

dN dN'

So we arrive at the following identity:

If ds and ds' are the elements of two closed curves C and ÇJ; if due and due' are the elements of areas A, A', passing through these two curvesÿ if to is the angle of the two elements ds and ds'; if finally N and N' are the normals to the positive faces of the two

elements due and owed', we have

dQ. dO.'.

This important identity is due to Ampère.

Recall that it assumes that the two areas A, A! n have

no common ground.

The transformation, made possible by Stok.es' theory, of a curvilinear integral extended to a curve into a double integral extended to Faire which limits this curve, constitutes in Physics a method entirely analogous to that so fertilized method, made general by Green's identity, which consists in transforming an integral extended to a surface into an integral
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extended to the volume enclosed by this surface. Similarly, Ampère's transformation of a double curvilinear integral into a quadruple integral extended to two areas is analogous to the transformation of a sixfold integral extended to two volumes into a quadruple integral extended to the surfaces that bound these volumes. We know what role this transformation plays in Gauss' theory of capillarity.
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CHAPTER III.

ANGLE UNDER WHICH, FROM A GIVEN POINT, WE SEE A GIVEN AREA

Let us consider a plane curve, infinitely small, C. Let Q be the area enclosed in this plane curve. Let pi be any point in space (fig. 22 ). From the point p, with the unit of distance for

Fig. 22.

/

/

i

y

T

radius, let us describe a spherical surface. The cone having for summit the point pi and for directrix the curve C, draws on the surface

of this sphere a curve y.

The curve encloses an infinitely small spherical area < 0 .

We call the angle under which, from the point p, we see the positive side of the infinitely small area Ù, the surface w, affected by the sign -(- or by the sign -, according to whether the point p is on the positive side or on the negative side of the plane to which the area Q belongs.  Let M be a point of the area Q. Let r be the distance pM. Let us denote
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also by the symbol r the direction p.M. Let N be the normal to the positive face of Q. The angle y under which, from the point p., we see the positive face of O has the value, in magnitude and in sign,

12


	cos( r, N).



Besides

cos( r, N)

Gold

ôïi

So we have

(0

O

0 r

Jn

This definition can be extended to a two-sided area which¬

conch

Let due be any element of this area; let y be the angle under which, from the point ul, we see the positive face of due. U angle

w

/

challenge

From this, the following proposition immediately follows:

The angle under which, from the point p., we see the positive face of a

certain area, has the value

i

o

( >■ )

S .m

d it,

Vintegral extending to all due elements of the area A.

Kevcnoris to the case of an infinitely small plane area. It is easy to see that the angle under which, from the point p., we see the positive face of this area, varies in a continuous way when the position of the point [a varies in space in a continuous way, except if the

acement, comes to cross make plane Q.

point u, in its It is easy, in fact, to see that the angle in question tends towards 2iz if I point p. tends towards a point of making Q, remaining on the positive side of this area and towards - 2tz in the opposite case. The angle in question has therefore, when the point p. is on the positive side of Ü, a value which exceeds that which it takes when the point u is on the negative side of £î.

This proposition is easily extended to any area.
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Let A be any area; let M and M' be two infinitely neighboring points, one on the negative side of this area, the other on the positive side. The points of the area A infinitely close to M and M' form an element dÜ. Let 2 be the angle under which, from point p,

we see the element t/Q; let 2' be the angle under which we see the rest of the area A. We have

Now, when the point p passes from M to M', 2' varies continuously, while 2 suddenly increases by 4^1 o - thus increases suddenly by

Thus Vangle under which, from a point p, one sees the positive side of an area Advances in a continuous way when the point p moves in a continuous way without crossing the area A. It increases abruptly by 4^ if the point p crosses the area Ken passing from the negative side of this area to the positive side.

This angle is therefore a uniform function of the coordinates of the point p, but this uniform function is assigned a cut-off area, which is none other than the area A. We can make it identical to one of the determinations of a certain function of the coordinates of the point p, a function which is continuous in all space, but which is not uniform.

Let <y(x, y, z ) be the function considered so far. Let us consider the function

/(a?, J, z) = aO, y, s) H- 4Kit,

K being a positive, negative or zero integer. This function is not uniform; it has as many determinations as one can give of

values to K, i.e. an infinity.

We can always choose K so that this function varies

in a continuous way from one point to the other.

If the point p does not cross the area A, <r(#, y, z) varying in a continuous manner, it will suffice, for f(x,y,z) to vary in a continuous manner, that K keeps a constant value. Thus, if p returns to its starting point after describing a closed path that does not encounter the area A, the function f(x,y,z) will resume its primitive value.

When the point p crosses the area A

*

D. - III.

increases or

4

¥

f
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decreases by 4", depending on whether the transition is from the negative side to the

positive side or vice versa. For y } - s ) varies by a ma¬

It will be necessary and sufficient for K. to decrease by one each time the point p. passes from the negative side of Faire A to the positive side, and cju on the contrary lv increases by one when the point p. crosses the area A in the opposite direction.

If therefore the point jjl returns to its starting point after having described a closed path which crosses n times Vaire A from the negative face to the positive face, and n! times the same area from the positive face to the negative face, the function f{x, y, s), instead of returning to its primitive value, will have increased by

\

.4 (n - n) tt .

The angle <r(#, y , z) under which, from point p, the positive side of area A is seen, is indeed, by the very definition of the continuous, but not uniform, function f(x,y,z), one of the determinations of this function.

We will now establish that this function f(x,y,z ) is defined by the knowledge of the curve C alone, without the need to know the area A. We will achieve this in the following way.

Let us agree to study only the areas A passing through the curve C such that none of their parts form a closed surface. Given two such areas, A and A', we shall take it for granted that one can, by a continuous deformation, apply Faire A' on Faire A, and that, in this deformation, the positive face of A' becomes the positive face of A.

This being said, here is the fundamental proposition that we will demonstrate:

All the areas A that can be made to pass through a curve C are classified, with respect to each point p.(l; ; tj, t) of space, in two categories.

O

All areas A of the first category are viewed from point p. at the same angle <r(^, v), Ç).

All areas A of the second category are seen from the point p. at the same angle [<7(£, ï), s) + 4 7î l*

Let us consider, in fact, two areas A, A' (fig. 23) passing through the
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curve G. They form a closed surface surrounding a certain closed space E. Either the point [a is inside this closed space, or it is outside it.

i

Fig. a 3 .

A

&

ts

Let us first consider the case where the point [a is outside the space E; I say that the positive faces of the two surfaces A and A' are seen from the point ia under the same angle a-(l*, vj, Ç).

To prove this proposition, we may assume that the two surfaces A and A 1 have no points in common outside the curve G; for, if they had points in common other than those of the curve C, we need only consider a third surface A ", having no points in common with the two surfaces A and A', and show that each of the two surfaces A and A ' is seen from the point ia at the same angle as the surface A '.

The surface A has a face A i that faces the interior of the space E,

and a face A e which looks outside.

The surface A' has a face A'- which looks into the space E,

and a face A' e which looks outside.

The two surfaces A and A 1 having no common point, it is easy to see that the face A e coincides, in all its extent, with the positive face, or in all its extent with the negative face of the surface A, and to obtain analogous conclusions for each of the three faces A/, A^, A' .

If we deform the surface A so as to apply it to the surface A', the face A ; will become the face A^; the face A e will become the
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face A'-. The two faces Aj, A^. are therefore of the same sign, and the two faces A e , A^ of opposite signs; one of them is positive.

Let's assume that this is the face A e .

Let N/, N^, N-, N^ be the normals to the faces A, A e , A^, A e .

We will have between the directions of these normals and the directions N and N' of the normals to the positive faces of the areas A and A'

relationships

N = Ne s - N/,

n'=-n;= Ni.

Let < 7 , <t' be the angles under which, from point p., we see the positive faces of areas A, A! We shall have, by virtue of 1 equality ( 2 ),

G -

F

U =

therefore,

G - G

But the set of two areas A and A'forms a closed surface

at which the Gauss lemma point,

u, is external. We have therefore, according to the first

and, therefore, as we had announced,

<7 - G ,

Let us now consider the case where the point p. is inside the enclosed space between the surfaces A and Psi.

We will be able to repeat exactly what we said in the previous case, except for one point: we will have to apply the second lemma of Gauss and not the first. So we will have
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and, therefore,

<7 - <j' - 4TT.

The proposition we have stated is thus completely demonstrated.

This proposition shows us that, if Von makes any area pass through the curve C, the angle under which, from the point p, we see the positive face of this area, always coincides with one of the determinations of the function /"(ç, r t , Ç).

The function /(I-, r h Ç) is thus defined by the knowledge of the curve C and the point jjl.

This function is not uniform; but, as its different determinations differ from each other only by a multiple of 4 tc, a quantity independent of £, 7), Ç, the three partial derivatives

must be uniform functions of £, v-, Ç. We will propose to form these partial derivatives.

If we give the point p a translation (o#, oy, ùz) without moving the curve C, the angle under which, from the point p, we see the positive face of a certain area A passing by the curve C increases

from

eu = C) oç -+- ^ /(L '5" Ç) 07 1 + '5' Ç)

If we give the translation (8Ç, or,, 8Ç) to both the point p and the area A, the angle <r does not change.

Thus, if we give the translation (SÇ, 8r), oÇ) to the area A without moving the point p, the angle u undergoes a variation

8'
  
    Unknown 
    
  




  


in a continuous way along this conductor.

Under the assumptions made, we will have

;> t

°i x

(2)

} / r j[ X l

/{J, J', cls, ds 1 , r, cosO, cosO',costo,

oJ, oJ', ods, 0ds', or, 0 cosO, 0 cosO', 0 cosu>),

f (J, J,, ds. ds\, /'i, cosOj, cosO',, cos tu,,

oJ, oJ' n ocls, 0 cls\, o/'i, 0 cosO,, 0 cosO',, 0 coso),),

1" We will first show that the function f depends neither on J, nor on o.l.

To do this, let's first consider an element ds of resis s in pre¬

ds, through which a current of intensity .1 flows, and m sence of a circuit C' to which the element ds' belongs. An elementary modification " in the state of the system is characterized by the variations

"x T 'x 1 r 'N

OJ , 0 J , 0

î

0

J

N

0 /

1

0 cosO, 0 cosô', 8 COStü

parameters

J, J', ds, ds 1 , r, cosO cosO', costo.
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3

The induction, due to the elements of the circuit C', which accompanies this variation, puts in motion in the element ds a quantity

R. ds 89

C'

/(J, J', ds, ds ', r, cosO, cosO', cosoj,

oJ, 8J', ods, o ds', or, 8 cosO, 8 cosO', 8 cosoj )

Then let's take a new element ds, identical to the previous one,

but crossed by a current of identity j. Let us imagine that j varies from while '

I', ds, ds'.

î

r, cosO,

cosO', cos (jü

undergo the same variations

8J', ods, ods', gold, 3 cosO, 3 cosO',

o COS lü

cfue in the previous case.


	To this new modification corresponds a phenomenon of induction, due to the elements of the circuit C/, which puts in movement in the element ds a quantity of electricity or/ and one has



R&8gr = f (/, J', ds, ds', r, cosO, cosO', cosa>,

8 j, o J', ods, ods', or, o cosO, 3 cosO', 8 cosco).

Let's juxtapose the two elements ds that we have just considered.  Together they form a third element ds, through which a current of intensity J + j flows. When the quantities

J -h j, J', ds, ds', r, cosO, cosO', costo

vary from

8J

oj, 8J', ods, ods', or, 8 cosO, 8 cosO', 8cosn),

the induction due to the elements of the circuit G' sets in motion,

in this new element ds, a quantity with the value

which has evi

o q

Moreover the third element ds having for resistance

R

2

ds,
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we must have


	8g) ds = 2 /( J -+- j> JS ds, ds, r, cosô, cosô', cosio,



oJ +oj, oJ', o ds, ods', 8r, ScosO, 8 cosô', ocosto)

We must therefore have the identity

C'

c

/(J, JS ds, ds', r, cosO, cosô', cosio,

oJ, oJ', ô ds, ods', or, o cosO, 8 cosO', 8 cosio)

f (y, J', ds, ds', r, cosO, cosO', cosio,

8j, oJ', ods, ods', or, 8 cosO, 8 cosO', o cosio )

cosio).

The quantities cosO, cosB^ costo vary in any way, as well as ods', or, ocosO, ocosO , J o cosio when passing from one element ds' to another. The quantities J 7 , 8J 7 , r are only subject to vary in a continuous manner from one element to another of the same circuit. The previous identity can therefore only take place if we have separately, for each group (ds, ds'),

/(J, J', ds, ds', r, cosO, cosO', cosio,

oJ, oJ', ods, ods', or, o cosO, o cosO', o cosio)

f (y, J', ds, ds', r, cosO, cosô', cosio,

oj, oi', ods, ods', or, o cosO, o cosO', ô cosio)

= a /(J+y, J', ds, ds', r, cosO, cosO', cosio,

oJ -v- oj, SJ', ods, ods', or, o cosO, o cosO', o cosio).

Now, if we make in this identity

we find

oj = o,

/(J, J', ds, ds', r, cosO, cosO', cosio,

o J, oJ ', ods, ods', or, o cosO, o cosO', o cosio)


	f ( o, J', ds, ds', r, cosO, cosO', cosio,



o, oJ', ods, ods', or, o cosO, o cosO', 8 cosio).

This equality shows, as we had announced, that the function f depends neither on J, nor on 8 J.
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j

5

From now on, we can replace the equalities (2) with the

following

( 3 )

F (J', ds, ds', r, cos 0 , cos 0 ', cos 10

0 J', S ds , 8 ds', or, 0 cos 0, 0 cos 0', 0 cos w ),

Vi

O

We will now show that the function F is linked to the

and homogeneous with respect to the variations

8J', 0 ds', or, ocosO, 3 cosO', 8cosw.

Let us imagine, in fact, a first modification in which, for the group (ds, ds'), these quantities have the following values

i

8J', ods, ods', 87% 0 cosO, 8 cos 0 ', 8 cos00,

and similar values for ds, ds[ 2 , ....

One will then have

8fi' = F (J', ds, ds', r, cos 0 , cos 0 ', cos 10,

8J', 8ds, ods', or, 0 cosO, 8 cos 0 ', 3 cosu),

and this first modification will set in motion, in the element ds, a quantity of electricity o 3 given by

', ds, ds', r, cos0, cos0', cosw,

8J', ods, ods', or, 0 cosO, 8 cosO', 3 cosw).

Let's follow this modification with a second, finitely small modification in which the quantities

J', ds, ds', 7% cosO, cosô', cosw

are subject to variations

DJ', Dds, Dds', Dt% DcosÔ, DcosO', Dcosw.

We have, for this second amendment,

Df*'= F(J'-h 8J', ds-1- 8 ds, ds'+ 3 ds', r -1- 3 r, cos 0 + 8 cosô, cosO'

3 cos 0',

ÛCOSW.

DJ', Dds. Dds', D/% DcosÔ, D cosO', Dcosw).

cosw

ELECTRODYNAMICS.

g cosO', o cosu)

t p

infinitely small compared to the quantities

J', ds , cls', cosO, cosO', costo.

We will then have, neglecting the smallest infinitesimal of higher order,

D-jl' - F (J', cls, c/s', r, cosO, cosO', cosw

DJ', Dcfc, D c/s', D/*, DcosO, Dcosô', Dcostw).

This second modification puts in motion, in the element ds , a quantity of electricity and we have

( R S R ) ( ds -+- o ds ) D|j.',

or, by neglecting the smallest infinitesimals of higher order,
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Assume all quantities

oJ', G cls, ods', G cos 0

î

R ds F (J', cls, ds', r, cosO, cosO', cosco,

S ) J', D ds, D cls', Dr, D cosO, D cosO', D cosw ).

The set of two infinitesimally small modifications that we have just considered constitutes an infinitely small modification, in which the quantities

vary from

I', ds, ds'.

)

r, cosO, cosO,

COSO)

)

\y

= SJ'

4- DJ',

A ds ~


	0 ds



-f- t) ds ,

A d$' -

11

o;

H- Dds'j

A r =

■N


	gold



4- Dr,

AcosO =

: G COS 0

-h DcosO,

A cos 0' =

= G COS 0'

-+- DcosO',

A cos oj =

: G COS (JÜ

-4- Dcosco.

This modification sets in motion a quantity of electricity

A 3 =53 + D?.

I
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But we must have, according to equality (3),

Rds

A o

F (J 1 ', <&, eès', r, cosO, cosO', coso>,

AJ', A ds, Ads', A r, A cosO, A cosO', A cos u>)

We see that we have the identity

F (J' , ds, ds', r, cosO, cosO', costo,

oJ', 8 ds, 8 ds', or, 8 cosO, 8 cosO', 8 cos a")

F (J' , ds, ds', r, cosO, cosO', cosu"

J

DJ', D ds, D ds', Dr, DcosO, DcosO', Dcosa")

F (J', ds, ds', r, cosO, cosO', cosw

7

8 j'-t-DJ', 8 c/sh-D ds, 8 ds'- t-D ds', or-j-D/

7

8 cos 0 -i- D cosO, 8 cos O'-b Dcos 0 ', 8 cos co D cosw).

The variations imposed on ds, ds', cosQ, cosO', cosw are entirely arbitrary; the variations imposed on J' and r are only subject to letting these quantities vary in a continuous manner when passing from the element ds' to a neighboring element belonging to the same conductor.

The previous equality shows that the sum

F (J', ds, ds, r, cosô, cosO', cosw

7

SJ', 8 ds, 8 ds', or, 8 cos 0 , 6 cos 0 , o cos o" )

7

extended to the n elements dsds\, ds.,, . ... which, with 1 element ds, form the studied system, is a linear and homogeneous function

of (6n -h i) variations

8 J',

ods,

or,

ScosO,

ScosO',

0 COSOJ,

8 J i,

8 ds \,

or i,

ScosOj,

ScosOt,

SCOSOU,

" - *  * 


	" * *



W 9 -- y


	

	■ 7





	

	

	

	

	

	^























G ds .

Now the variations oJ 7 ,

3 ds 1 ,

or, ScosG, 3 cosO', Scoso) does not fi gu

that in the term

F (J', ds, ds', r, cos

0, cosô',

COS Wj

oJ', ods,

Zds', 3 r,

o cosO, 8 cosO', o cosw

■■
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This term must therefore be linear with respect to these variations and we must have

F(J', ds, ds', r, cos0, cosO', costu,

oJ', 8 ds, 0 ds', 8 r, 0 cos0, 0 cos0', 0 costu)

= ç> ( J% ds, ds', r, cosO, cosô', costu, 0 ds)

4 - A(J', ds, ds, r, cosO, cos0', costu) 3j'

-i- B( J', ds, ds', r, cos0, cosO', costu) 8 ds'

-+- G(J', ds, ds', r, cos0, cos0', costu) 8 cosO

4- C'( J', ds, ds', r, cos0, cos0', costu) â cosO'

4- D(J', ds, ds', r, cosô, cosO', costu) 8 costu

4 - E(J', ds, ds', r, cosO, cosO', costu) 8/',

which shows, as we had announced, that the function F is linear with respect to the six variations

8J', ods', gold, 8 cosO, 3 cosO', 8 costu.

3 ° We will prove that the six quantities

cp, B, G, G', D, E

are proportional to J', and that A does not depend on J'.

Let's consider a first element A'B ' =.ds\ through which a current of intensity J 7 flows. If the variables

J', ds', r, cosO, cosO', costu, ds,

for this element, vary from

ods', gold, 8 cosO, 8 cosO', 8 costu, 3 ds,

this element provides us with a quantity

ojx' = o (J', ds, ds', r, cosO, cosO', costu, 3 ds)

4 - A(J' ds, ds', r, cosO, cosO', costu) 8J'

-t- B( J' , ds ? ds\ r, cosO, cosO', costu ) o ds -t- C(J' , ds , ds\ r , cosO, cosO', costu)o cosO - G'(J' , ds , ds\ r , cosO, cosO^, cosü>)o cosO' -+- D(J' , ds, ds', r, cosO, cosO', cos tu) 8 cos tu -r- E(J ', ds, ds', r, cosO, cosO', costu)8/\

Suppose that a second element A'B', of the same length ds' as A I", is exactly juxtaposed to A 7 iï% and that a current of intensity passes through it.
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considered, A'B' remains constantly juxtaposed to A'B'. The parameters

J' l3 ds , ds', r, cosô, cos 6', costo,

that define the system AB, A'B', will vary from

8J',, 8 ds, 8 ds' , 8 r, 8cos0, 8 cosô', 8 costo.

The new element A'B' will therefore provide a quantity

8 [a, = cp (J' n ds, ds', r, cosô, cosô', costo, 8 ds)

-+- A(J' n ds, ds', r, cosô, cosô', costo) SJ,

-4- B(Ji, ds, ds', r, cosô, cosô', costo) 6 ds'

-+- G(J'j, ds, ds', r, cosô, cosô', costo) 8 cosô

-t- G'( J , , ds, ds , r, cosô, cosô', costo)8 cosô' H- D ( J , ds, ds', r, cosô, cosô', costo)8 costo -h E(j;, ds, ds', r , cosô, cosô', costo) 8/*.

But it is obvious that we can look at the set of two elements A'B', A'B' as forming a single element AI'W; the couple AB, A "B" is defined by the parameters

J'J j, ds, ds', r, cosô, cosô', costo;

in the considered modification, these parameters vary from

o ds, ods', or, 3 cosô, 8 cosô', ocosw,

and the considered element provides a term

or." = a> ( Jj-i- J,, ds, ds', r, cosô, cosô', cosw, 3 ds)

A(Jj_j_ J', ds, ds', r, cosô, cosô', cosa>)(oJ'-i- 8J,)


	4 - B(Ji Jj, ds, ds', r, cosÔ, cosô', cosw)o ds'



-4- c(Ji-t-j;, ds, ds', r, cosô, cosô', cosco)8 cosô 4- G'(Ji-t- J 1 , ds, ds', r, cosô, cosô', cosw)o cosO'

-4- j(Ji+ Ji, ds, ds', r, cosô, cosô', cosw)o cosw + E ( Ji-f- Ji ,ds, ds', r, cosô, cosô', cosw) or.

The amount of electricity set in motion by the induction

in the element ds, and therefore the quantity must

keep the same value, either if we consider the two elements A'B', A' B' as distinct, or if we consider their whole

BOOK XIII.
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as a single element. We must therefore have

whatever J', J', oJ, oJ'.

It then follows from the three equalities linear and homogeneous function of J 7 and oJ .

or/ is a 1

4

So:

The quantity A does not depend on J .

The quantities cp. B, C, C 7 , D, E are proportional to J 7 .  This allows us to write, instead of equality ( 4 ),

[ o[j/= -l- ds', cosô, cos0', cosoj, r, o ds)

■+- a. (ds, ds' , cosô, cosO', cosco, /*) oJ'

-+- 3'b(ds, ds', cosO, cosO', cosco, r)o ds'

-+- 3'c(ds, ds', cosO, cosO', cosco, r ) o cosO t- J' c'( ds, ds' , cosO, cosO', cosco, 7 ') o cosO'

-+- 3'd(ds, ds', cosO, cosô', cosco, /-) o cosco r- 3'e(ds, ds', cosO, cosO', cosco, /-) o/\

4° Let us now prove that the quantity 6 is independent of ds', while the quantities <1/, a , c, cd , e, are proportional to ds'.

To demonstrate this, let us take an element ds' = A 7 B 7 , whose characteristic parameters are

and vary from

J', ds', r, cosO, cosO', cosco oJ', ods', or, o cosO, ô cosO', o cosco;

it provides

a term

o;/ = J''|i(<r/A-, ds', cosO, cosO', cosco, r, ods)

-+- a(ds, ds', cosO, cosO', cosco, r) oJ'

-h 3' b (ds, ds', cosO, cosO', cosco, /-) o ds'

-+- ds ', cosO, cosO', cosoj, r jocosO

-+- J e' ds, ds', cosO, cosO', cosco. r)o cosO' - 3 d{ ds, ds', cosO, cosO', cosco, /-) o cosco -+- J'ei ds, ds', cosO, cosO', cosco, r)or.

followed by another element
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ment ds.

B'G', defined by the parameters

J,, ds[, ri, cosO,, cosOi, costo,,

which vary from

oJi, 8 ds \, orj, ocosôi, ocosO'., 8 costo,.

i

This element provides ^Sut/ with a term


f



°H-i

j;

ds i,

COS

cos

e;,

cos

you,

ri

o ds)

a(ds,

ds,

cos

cos

0 'i,

cos

<*> 1 ,

ri

) sj;

j;

b(ds,

ds\,

cos

Oi)

cos

9 ;,

cos

to,,

r 1

)'j ds\

j;

c(ds,

ds\,

cos

Oi,

cos

O'i,

cos

10 ,,

n

)o COS0,

j;

c'(ds,

ds,

cos

® 1 j

cos

"i,

cos

tO|,

n

)o COS0',

j;

d(ds,

ds\,

cos

° 1 >

cos

cos

to,,

r 1

)o costo.

j;

e(ds,

ds [,

cos

cos

Oi,

cos

to,,

r.

) Sr, .

8r

The quantities r, and J' differ infinitely little from r and J'.  Let us admit that cos9,, cos9', costo, differ infinitely little from cos9, cos9', costo; let us also admit that oJ', 8cos9,, 3cos9', ô costo,, or,, differ infinitely little from oJ', ocos9, ocos9', ocoso), or. We will have then, neglecting the infinitely small ones of higher order,

ô (Jt.i = J' 'b(ds, ds'. j, cos0, cos0', costo, r, 3 ds)

H- a(ds, ds i, cos0, cosO', costo, r) oJ f -+- J' b(ds, ds , cos0, cos0', costo, r) o ds\ -I- i'c(ds, ds \, cos0, cosO r , costo, r) o cos0 -i- J 'c'(ds, ds \, cos0, cos0', costo, r )3 cos0' -4- J'd(ds, ds\, cos0, cos0', costo, r) 8 costo

ê

-t- 3' e(ds, ds\, cosO, cos0', costo, r) or.

But it is obvious that one can, without altering the value of

look at the two elements A'B' and B'C' as forming a single element whose characteristic parameters are

J', ds'-hds\, r, cosO, cosO', costo,

and are subject to the variations

SJ', 8 rfs'+ 8 , 3r, 8cos0, 3 cos 6', o costo

III.

D.

6
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This single element must provide 2 op/ a term op/' equal to

a

012 .

/

Sa'. Now we have

'N //

OR

J'&(cfa, ds'-f- ds\, cosO, cosO', costo, r, o ds)

-h a(ds, ds '-h ds\, cosO, cosO', cosio, r) oJ'

-t- }' b(ds, ds' - i- ds\ , cosO, cosO', costo, r)(o ds' -h o ds) I- J'c(i/s, <A'-f- c/^i, cosO, cosO', costo, r)ocosO f- y c'{ds, ds - f- t&i, cosO, cosO', cosio, /-)o cosO'


	J'd(ds, ds'-1 - <7si, cosO, cosO', cosio, r) o cosio



t

or.

we

-+- J' e(ds, ds'-h ds\, cosO, cosO', cosio, r) or.

The three expressions obtained for Sp/, op.', op/m show that op/ is, as we had announced, a linear and homogeneous function of ds' and o ds' : the quantity b is thus independent of ds', and the quantities <|q ", c, c\ d, e are proportional to ds'. Instead of equality (5), we can write

Q[X

y ( ds , cosO, cosO', costo, r, o ds) J' ds

ai(ds , cosO, cosO', costo, /') ds r oJ'

$(ds, cosO, cosO', costo, r)J'o ds r *((ds, cosO, cosO', costo, r)J' ds'o cosO ds, cosO, cos 0', cos to, r)J' ds ' ô cos 0' o(dsj cosO, cosO', costo, r)J' ds o costo

( 6 )

/

t(ds, cosO, cosO', cosio, u)J' ds' or.

i

5° Let us now show that

y ds, cosO, cosO', cosio, r, o ds)

is proportional to ods.

We have obviously

'x /

OfJL = O,

when

X J X ï I Xt/ x

o ds - o, o ds - o, oJ - o, or - o,

o cosO = o, o cosO' = o, o cosoj - o.

Therefore, we can write

y(ds, cosO, cosO', cosio, r, o ds) = ds, cosO, cosO', cosio, r, o ds )o i/a - , ç not becoming infinite for

o ds = o.

y. ' r
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We have seen that \ 3p/ must be a linear function

G Gt

homogeneous (6/i

i) variations

ods', 8J', o cos0, 8 cosO', o ds\, SJ i, o cos 0i. 8 cos O,

O COSCO,

'N

o/'

SJj, ocosOj, 8 cosO \ j ocoswj, 8r i,


	
*



	

	M







" " *


	

	?







f I -

8 ds

It obviously follows that the quantity

{ds, cosO, cosO', cosco, r, 8 ds) J' ds'

must be independent of 3 ds , which requires that we have

d (8 ds)

£( ds , cosO, cos 0', cosco, r, 8 ds)ïds' = o.

This sum, extended to the n elements ds' which, together with the element ds, form the system under study, is decomposed into a number of integrals extended to lines along which J', cos0 and r vary in a continuous manner, while cos, 0', cosco, vary in a continuous or discontinuous manner.

The previous equality therefore requires that we have

d{8 ds)

{ds, cosO, cosO', cosco, r, 8 ds) J'

ds

-, ®{ds, cosô, r, 3 ds, J'),

cp being a uniform function of r, cos6 and J'.

( /y

The first number depending on it by it must be the same of the second one; it obviously results from it that we have

d (8 ds)

%{ds, cosO, cosO', cosco, r, 8 ds)

o.

The quantity q does not depend on 3 ds. We can write sim¬

plement

y {ds, cosO, cosO', cosco, r, 8 ds)

= $'{ds, cosO, cosO', COSCO, 7 ')

If we carry over this expression of in legality (6),
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8(j.'= a ( ds , cos G, cosO', costo, r) ds' oJ'

-+- [3 (ds, cosG, cosO', costo, r)J'o ds'


	
4 - P' ( ds, cos6, cosO', costo, /*)J' ds 'o ds h y ( ds, cosO, cosO', costo, ?')J'ds'o cosO 4 - '{'(ds, cosO, cosO', costo, r)J'ds'o cosO'



	
4 - o (ds, cosO, cosO', costo, r)J't/s'o costo _ 4 - $ (ds, cosO, cosO', costo, r)J'ds'or.





6 ° Finally we will prove that the quantity does not depend on ds, while the quantities a, (Ü, y, y', 3, £ are proportional to ds.

To prove this proposition, let us imagine two rectilinear elements ds = AB and ds< = BC, following each other in such a way as to form by their set an element AG ds-^. For the first of these elements, we have

ojjl' = a (ds, cosO, cosO', costo, /-) ds'oi'

-- 4 - p (ds, cosO, cosO', costo, r)J'3 ds'


	
4 - $'(ds, cosO, cosO', costo, r)J'ds'ù ds 4 - Y (ds, cosO, cosO', costo, r))'ds'o cosû 4 - '('(ds, cosO, cosO', costo, c)J't/s'o cosO'



	
4 - o (ds, cosO, cosO', costo, r)J'ds'o costo 4 - e (ds, cosO, cosO', costo, /')J'cfc'o/\





For the second, we have

or, = and (ds i, cosO, cosO', costo, r) ds' oJ'


	4 - p (dsi, cosO, cosO', costo, r) J'o ds'



-4- P'( dsi, cosO, cosO', cos to, r)i' ds' o ds i 4 - y (ds i, cosO, cosO', costo, r)J' ds'o cosO'

-+- y'( ds i, cosO, cosO', costo, r)i'ds'à cosO'

-r- o (dsi, cosO, cosO', cosoj, /' ^J'ds 'o costo i- s (ds i, cosO, cosO', costo, /-) 3'ds'or.

For the element d$. 2 , we have

f/s 2 = ds -+- dsi,

o ds 2 = o t/s 4- o ds i
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and, therefore,

Sjjig = a (ds 4- dsi, cos9, cosG', cosw, r ) ds' 8J'

-4- j3 (ds -H ds i} cos9, cosô', cosw, r) J'3 ds'

4- [3'(f/s -+- d$t, cosO, cosQ', cosw, r)J' ds'(o ds -+- 8 ds i ) (is + f/si, cos9, cos6', cosw, r)J'f/s'8 cos9 -+- Y (ds h- ds\, cosO, cosO', cosw, r) J'f/s'3 cosO'

4- 8 (ds 4- ds^ cosO, cosO', cosw, r)J'ds'o cosw .H- s (ds 4- dsi , cosO, cosô', cosw, r)Y ds'or.

The quantity of electricity set in motion by the induction, in each of the elements AB, BG, AC, is the same.

So we have

and, therefore,

It follows from the expressions given by op 7 , op', op^, that

Sut/ is a linear and homogeneous function of ds and o ds.

)e from this we deduce firstly that a, (3, y, y', ô, £ are proportional to ds \ secondly that

does not depend on ds. We can easily deduce, by a reasoning similar to the one we did earlier, that (3 7 does not depend on ds.

Let's now pose

a (, ds , cosO, cosO', cosw, r) =  (r, cosO, cosO', cosw) ds, P ( ds , cosO, cosO', cosw, r) = W ( r, cosO, cosO , cosw) ds, £'(<&, cosO, cosO', cosw, r) = W'(r, cosO, cosO', cosw),

Y ( ds , cosO, cosO', cosw, r) = 0 (r'cosO, cosO', cosw) ds , Y(ds, cosO, cosô', cosw, r ) = ©'(>', cosO, cosO', cosw) f/s, 8 (f/s, cosO, cosô', cosw, r) = Q (/', cosO, cosO', cosw) ds, e (f/s, cosô, cosô', cosw, r ) = R (r, cosO, cosô', cosw) f/s,

86
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and we can write, instead of the equation (i - >),

og' = <ï> oJ 'ds ds'+'PJ'ds 8 ds'-hW'i'ds'o ds

-j- ( R o/* -+- 0 6 cos 0 -+- &' o cos 0' -+- il o cos oj )J' ds

y 0 A new proposition, quite easy to establish, is this:

The two quantities O and are equal to each other*.

To demonstrate this, let us consider an element A'B' crossed by a current of infinitely small intensity j 1 . Let us consider a modification in which this element, without changing its position or orientation, lengthens so as to become A'B'L We then have

B'B" = ods'.

Let us assume that the intensity j' remains invariant, as well as the length and position of the element ds. JWe will then have

o,

or

o.

o cosO

o

y

o cosO' = o

y

O COSO.)

O

y

o ds

o

and, by

o jjl' - M r j'ds o ds'

We can look at this system as containing two elements: one A'B', whose characteristic parameters remain invariant, the other IV B", of length o ds, crossed by a current of intensity o, at the beginning of the infinitely small modification and of intensity j' at the end. This new way of conceiving the modification of which the system is the seat has the effect of replacing, in

oa

/

5

1

e

1 by the term

8 g" = <!> ds o ds j.

a ciuan

<

I

op/ must not depend on the way we conceive the infinitely small modification. < n must therefore
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With this result, we can replace equality (8) with the following

® ds o(J'rfs') -+- W'J'rfs'o ds

-i- (R 3/' + 0 o cosO -+- 0'o cosO'-h Q o costo) J 'ds ds 1 .

8 ° Among the conductors of the system, let us suppose that there is a closed conductor C^, whose elements we will designate by ds", ds" n ds" 2 , .... The other elements of the system will be designated by ds "', ds [, ds[, ....

We will then have

ff i > fft

0 J JL H- > 0 [JL .

We will suppose that the closed conductor G" is crossed by a current of intensity J", uniform and constant, so that we will have

On the conductor C" or A'M'B'N' ( Jig . 25), consider an arc A'M/B', along which there are no angular points, in

Fig. 25.

so that, along this arc, r, cos9, cos9 v , cosio will be continuous functions of s" and will admit derivatives.

Let's share this arc in elements

A'A"

ds"

M'M" = ds"

J


	-



7

B "B' = ds"

We will assume a modification defined as follows:

The element A'A!', without changing position or orientation, lengthens by a quantity A!'A"'- or , so that 1 we have

oJï

O

3

o ds\

ÙU, O/'i

o, ocos6x = o, ocosO'i

o

?

Ù COSCÜJ

o.
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The other elements of the arc A ,/ M , B ff , such that M 7 M ff , simply move forward by a length or on the arc s ", so that, for

them, we have

SJ"

ods"

O

J

O

}

or -.or,

S cosô

ds

dcosô *

~~dZ~ °"'

8 cos 6"

o coso)

d cos 6" ds"

to cos (o ds")

5 *

or

î

<>

or

The element B "B; , without changing its position or orientation, is

shortens by a length B "B v/ = or. For this element, we have

oJl

O

?

0

tf

<\

or

î

ÛT9

O

J

0 cosô

O,

8 cos ôj

O

J

C COS (Jt>2

O.

Finally, the elements of the circuit C" located on the arc B'N'A' remain invariable.

As for the element ds , it keeps an invariable length, so that

that

we have

8 ds

o.

Let's form

/

0 |Jt

tf

0[JL

2 >*

For the element A'A", we have

8fj.j , cos (fi, cosô,, costü!) J" ds or

For the element B" B', we have

"N //

OR,

cosô 2 , cosO'i, costo 2 ) J" ds or. ,

For any other element M'M" of the arc A'M'B', we have

^ U

or

R

dr

ds"

0

d cosO

ds

if

&

if

d cosô 1 ~ds"

tf

-h it

d cos (v ds")

J" ds ds

tf%

or.

Finally, for any element of the arc B'N'A', we have

ff

or

O.

i
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We have therefore

f

["£(>!, COS 0 j, COSQ'I, COSIüi) - <ï>(/' 2 , COS63, COS 0 'b COSU>i J" ds

'N

or

Y ds du

f (

^A'M'B' \

R

dr

ds"

0

d cos 0 ~~ds" '

0 "

d cos 0" ds"

d cos oj . , "

Q_ ) ris

ds"

2 d >

ttf

But it is obvious that the system of the current and the element ds undergoes a modification that does not change its electrodynamic definition and, consequently, that no induction must occur in the element ds through the conductor C ff . We must therefore have

O [JL

' = 2 ^

Ut

?

or

well

/ (

"'A'M'B'

R

dr

d?

"d cos0 d cos 0'

0 --=-h 0'

ds"

ds"

a to c °r | <*■

as

This

*(/■", cos 02j cos ôj, cos u>2 ) - <£(ri, cosOj, cosO'J, COSIO, ).

which must take place for an A'M'B' arc what¬

conch, not having an angular point, gives

r=£,

0

dr

t)<ï>

at cos0

, d <ï>

0 =-,

d cos0'

<)<!-

Q ir -,

d cosoj

We

a

so

(io)

£ T

ÔJJL

V'J'tfs'8 ds + QdsMYds')

/â& j,

dr

d&

d cosO

o COS 0

d<ï>

d cos0'

o cosO'

d<P

to cosu)

o coso" ) J 1 ds ds\

or, more briefly,

(io bis)

r\ f

or

W'J'ds'Sds-hdsB^PJ'ds')
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menl decreases by a length or at point A, so that this point comes to A t . If the element ds' remains stationary and if "T remains constant, we have


t



0[JL "

W J' ds or.

Suppose that the same element extends by a length bu at point B, so that this point comes at B,. We will have

r Vi

W f J f ds orW f dr

toW' d cos0

dW dcosO'

to x Y dcosa)

dr ds

d cosO

ds

to cosO'

ds

d cos to

ds

J' ds ds'

The first modification transports from A to B a quantity of 'eleclricilé o^, and the second a quantity of electricity

We

a

R ds

2 f

0|Jl

?

R ds Oi Vj -

If the two modifications take place simultaneously, the induction will transport from A to B, in the element ds, a quantity of elec


	*



tricilé

S 2 ^=:

May s this quantity must obviously be the same as if the element AB, without varying in length, had moved from AB to A, B i, moving by one length or in its own direction.  Thus we have

R ds 8 2 3

f

0[JL 2

with


/



d <ï> dr

at<P ecosQ

to ecosO'

to<P d coso)

dr ds

d cosO ds

J' ds ds* or.

d cosO' ds

to cos to ds

The various equalities that we have just obtained give us

V.I

J'

/'cM> dr

oM>

d cosO

|

0 cos 0'

£)4>

ô cos co

■ v 0 r Os

0 cosO

ds

0 cosO'

Bones

j 0 costo

ds

/OW Gold

1 A

c) v i'

d cosO

j

cW

d cos 0'

0W

f

d cos co

l 6 ^' ds

d cosO

Bones

0 cosO'

ds

0 costo

ds

ds'

ds'

8 u.
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or

J s<

W) ds' = o.

Assume that the elements ds 1 form a conductor li /- and J' are alone subject to variation by one

neary along

in a continuous manner. Whatever the shape of this conductor, we

must have

-^F) ds'= o

which requires that we have

W )ds

d

ds

-, G (J', r ),

Since G can also depend on cosQ and

d cosO

ds

dr

The first member not enclosing the second shall not

not contain this quantity either. It is easy to conclude from this that we must have

à

ds

V)

o

or

<ï>

W

G.

Consider a circuit C 7 and an element ds, C / being traversed by a constantly uniform current whose intensity varies from J'

to J

/

SJ'. We have

f

0 JJL

ds oJ' / ds'.

If the circuit C' is infinitely far from ds, we must have

"\ t

0 {JL

O

So, in this case,

<ï> ds' - 0

Now imagine the intensity invariant in C', but ds

varying from 0 ds. We have

V 8p'= 0

ds f W ds'.

J
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If C' is infinitely far from ds, we must have

2 ûp - O

and, therefore,

ids' - 0.

But

fj

(y

^ <ï> ds - fw ds'-- C J ds r

So we have, or

i

0

Jl

"

which is impossible.

d

II

O

0

that is

Let's transfer this result to equality (10), and we find

enfi

n

i

0[J.

 o( J' ds ds 1)

d

dr

<N

or

d

d cos 6

o COS0

<)<*>

d cosO

7 o cosô'

ê<ï>

d costo

o COS 10 IJ'*

or, more briefly,

(the) 8 p.' = 8 ( 4 " J' ds ds').

Let's look at this result for a moment.

He shows us, first of all, that the determination of the law of induction is reduced to the determination of a single function

of r, cos 9 , cos 9 ', cosw.

Second, equality (12) allows us to write

R ds = 0 ( J' ds'

Let's imagine a modification during which the resistance

P

R ds

of the element ds remains invariable; this modification puts in

movement, we have
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We see therefore that, in any modification of a system of currents, Vinduction sets in motion, in an element of given and invariable resistance, a quantity of electricity which depends only on the initial state and the final state of the system formed by the element and by the currents.

This proposition, admitted as a fundamental hypothesis in the case of an infinitely small modification, is thus demonstrated for any modification. This proposition plays the role of fundamental hypothesis in the theory of F.-E. Neumann, and in most other theories of electrodynamic induction.

In what follows, we will seek to determine the form of the <ï> function.

94
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CHAPTER II.

THE ELEMENTARY LAW OF INDUCTION IN LINEAR CIRCUITS (continued). - DETERMINATION OF THE FUNCTION <!>(/', cosô, cos6', cosw).

Let us now come to the propositions that will allow us to determine the function <!>(/', cos 9 , cos 9 ', cosw).

If we denote by C ds the electromotive force of induction that acts in the element ds, we will have, by definition,

C ds dt - R ds oQ,

dl being the time during which the charge oQ is set in motion. This equality can also be written

(12) of Chapter I, we can still write

If we put

C ds dt - ^ 0 (  J ' ds ds' ) e ds dl - 0 ( <ï> J 'ds ds').

we will have

the sum extending to all elements ds' of the system.

I

1 quantity C is what we will call the electromotive force

total induction power at a point of the element

e will be the elementary electromotive force of induction in little

This definition has been made, we will, in order to push the determinalion of the function <ï>, consider a system of conductors

t h
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We will assume that these con¬

We will suppose, moreover, that they are crossed by currents which vary while remaining uniform. We will suppose, moreover, that they are crossed by currents which vary while remaining uniform, so that at the instant t these currents have for intensities J, J', J' 7 , ... and that at the instant t + dt they have for

intensities J

cü

dt

dt, J'

dr

dt

dt , J

fl

CÜ

t!

dt

dl

ut/ o j - * * *

In this case, we have

e dt

ù{yds')

dY

<ï> ~ ds' dt

dt

Therefore, the electromotive force of induction at a point of the circuit C will have the value

P

U

cü_

dt

ds

c

dV_

dt

ds*

c

dY

dt

 cls"

\ * * *

C"

and the total electromotive force of induction in the circuit C will have the value

H

dJ

dt

ds ds i


	f f



dt " / c J c .

 ds' ds -t

dr

dt

ds" ds

C"

Obviously, these two quantities must be finite, regardless of the


	

	i a 1 * cU cl J /-\







whatever the values taken by -, -rr, - T -, .... An ar

dt dt'

dt

therefore immediately rivets to these consequences

1

0 U integral

f ds,

extended to any closed contour, is finite whatever the position of the element ds to which it refers;

2 ° The integral

n

i> cls ds'

extended either twice to the same closed circuit of finite dimensions, or and two closed circuits of finite dimensions, located at finite distances, must have a finite value.

Now let G ' be a stationary inductor circuit with a current that we will no longer assume is uniform. In 1 ele
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ds of the stationary circuit C, the force

tion has the value

electromotive force of induc

This force must obviously be of the order of ds , whatever the positions of the element ds and the circuit C'. The sum

must therefore be finite, whatever the two circuits C and C' are.  This sum can still be written


	is an arbitrary quantity that varies continuously on



C 4/ Lf

along the contour C'; the preceding quantity can only be finite by the following proposition:

U integral

is finite, whatever the contour C and whatever the position of U element ds' to which it refers.

To these proposals, we will add the following two:

i° The function $ changes sign, without changing magnitude, when Von reverses the direction of the element ds without changing the direction of Vélément ds'.

O

2 ° The function <ï> changes sign, without changing magnitude, when Von reverses the direction of Vélément ds' without changing anything about the direction of the element ds.

To prove the first proposition, consider the element

\B

ds, and first of all AB in the sense

itive of this element

t

Let's consider an elementary modification in which the elements of the

ds, ds', ds", ... which form the system remain invariable in shape and position, while the intensities J 7 , Y, ... of the currents flowing through cls', ds", ... vary by o.L, 8J ff , .... If R ds is the resistance of the element ds, the induction carries in
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the positive direction of this element, i.e. from A to B, a quantity of electricity BQ given by

R 8Q = 4>' ds' 8J'h- "ds" 8J" 4 -_

If BQ is the quantity of electricity transported by the induction in the element ds from A to B, we can as well say that the induction transports in the element ds, from B to A, a quantity of electricity - BQ. If we change the direction of the element ds, the quantity of electricity transported by the induction will have the value - BQ.

On the other hand, if we keep invariable the meaning of the elements ds', ds", ..., SJ', BJ f/ , ... will keep their size and their sign.  We will thus have


	R 8Q = 4>; ds'SJ'4- ds" 8J "4-...,



<ï>', , ... denoting what becomes ... when changing

the meaning of the element ds without changing the meaning of the elements ds', ds", ....

Equality

|

"t>W8J'4- <*"" ds" 3J "4-... = - ($; ds'8J'4- ds" 8J ff 4-...)

must therefore take place regardless of oj 7 , àJ", ..., which leads to the equalities

4 >" = - $'(,

and demonstrates the stated proposition.

To demonstrate that the sign changes without changing the absolute value when we reverse the direction of the element ds 1 without changing the direction of the element ds, we will consider an element A'B' which remains stationary, as well as the element ds, and which is, at any moment, traversed by a current. We have, for this element,

J'=o, 8J'=o

and, therefore

t

8

U

l

O.

But we can obviously, without changing the amount of electricity displaced in the element ds by the induction, look at this element as the juxtaposition of two elements AjB^, AgBj,,

D.

III.

7
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the first one is traversed from Aj to B t by a current whose intensity varies from J' to J'+ SJ'; the second one is traversed from B 2 to A' 2 by a current of

rant whose intensity also varies from J' to J' The first provides Sjji' with a term

SJ

t

Sjjt/j = "t>j oJ'<& ds'.

In the evaluation of the element ds' is assumed to be directed from A', to B'.

The second provides Z Bp/ a term

S(jl 2 = 4>' 2 BJ'afo ds'.

In the evaluation of <ï> 2 , the element ds' is assumed to be directed from B' to A 2 .

We see that we have

4"; -i- 4>' 2 = o,

which demonstrates the stated proposition.

Let us designate by

(ds, A'B')

the complete set

ds J 4" ds',

J A'B'

extended to all elements ds' of a closed or open line A'B'.

Let A'M'B'N' be the inductor circuit C' and AB the armature element ds.

We have obviously

(ds, G') = (ds, AM'B')-t-(cfr, B'N'A').

On the other hand, the function $ changing sign without changing

B

value when we reverse the meaning of the element ds, we can easily see that we have the identity

o =(ds, B'P'A!)+(ds, A'P'B').

So we have

(ds, G')= (ds, A M'B')-+-(*, B'P'A')


	(ds, A'P'B') -+-( ds, B'N'A')



or Link

(ds, G ') = (ds, A'M'B'P'A')-t-(cfc, B'P'A'N'B').
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Thus, if, by an auxiliary line joining two points of the

/

two other cir¬

T T', traversed in the same direction as it, one will have, whatever Vélément ds,

(ds, C') = (ds, r')-t -(ds, r;).

We can repeat the same operation on each of the two circuits T', T'; then on each of the four circuits thus obtained and so on indefinitely. We then arrive at the following proposition:

Through the circuit CI, we pass a surface with two sides; through two systems of lines, we decompose this surface into elements whose contours are infinitely small circuits y', y', y', that Von supposes all covered in the same

direction that the circuit CI . We have, whatever the position of Vélément ds,

( ds, G ) - ( ds, y ) -1~ ( ds, y , ) ■+■ ( ds, y j ) ~- - - - -

We have seen, a moment ago, that the integral

(ds, Cj

should be of the order of ds whatever the element ds and the closed and finite circuit C'. It is easy to conclude that the integrals

(ds, y')" ( ds > ï'i )> (*) Ta)>


	*



must be of the same order as the products

( ds, g ), ( ds, T, ), ( ds, ^2 )> ■ ■ >

0 -', cr', <y' 2 , ... being the areas embraced by the elementary circuits y', y', y!,, ..., on the surface which passes through the contour C'.  We thus arrive at the following proposition;

The complete set

j' <ï> ds',

extended to any infinitely small plane circuit, must be, whatever the position of the Vélément at which it is

i
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reports, an infinitesimal of the second order, when

is a first order infinity.

Based on this fact that the function  changes sign, without changing value, when we reverse the direction of the element ds, and reasoning as we did earlier, we will prove this proposition:

Through the contour C, we pass a surface with two sides.  By two systems of lines, we cut this surface into elements whose contours form infinitesimally small circuits y, y,v 2) that we assume are all described in the same direction as the contour C. We have, whatever the contour C and the element ds,

(C, cls') - ('(, ds 1 )- h(yi, ds 1 )- 1-(y?" ds')-±- We have seen that the integral

(C, ds')

should be finite whatever the element cls' and the finite contour G to which it refers. We therefore easily arrive at the following proposition:

extended to a closed, plane, infinitesimal contour, is a second order infinitesimal, when

is a first order infinity.

The preceding propositions provide the general form of the function , by means of the theorem of M. J. Bertrand (Introduction, Cliap. 1, § 3).

The function ( I J is a function of r, cosO, cosQ', cosw,

<1" = "(r, cosO, cosO', costü).

i
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law

tion allow to write

(4)

4> = F

, , , dx dy dz dx' dy' dz'

We have just seen that the integral

xj, , , , , dx dy dz dx' dy' dz'

Fl Ts , g-. -T' d7' dî

ds

should be a second order infinity, when

ds

is a first order infinity.  It is necessary and sufficient for this to have

4> = P

dx

ds

Q

dy

ds

R

dz ds '

P, Q, R being independent of

Based on this proposal that

4" ds'

must be an infinitesimal of the second order when

fds

infinitely small of the first order, one would demonstrate

i ^ t * -

is a

even that one must have

4>

P'

dx'

ds'

Q

,dy'

ds'

R'

dz'

P', Q', .R' being independent of ^> ^r* being linear and

homogeneous in and also linear and homogeneous in

W dz'

ds' ' ds

7 , must necessarily be of the form

4"

Aj

(0

A

A

31

dx dx' 1 ds ds'

dy dx' ds ds'

dz dx' ds ds'

A

12

21

A

22

A

32

dx dy' ds ds'

dy d/

ds ds'

dz dy' ds ds'

A

13

A

23

A

dx dz' ds ds'

dy dz' ds ds'

dz dz'

33

ds ds'
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the nine functions

Au, A12, A13,

A 2 i, A 22 , A 2 3,

A 31 , A 32 , A 33

depending only on the coordinates x, y, z of a point of the element ds and the coordinates x 7 , y 7 , z' of a point of the element ds'.

The result expressed by the equality ( 1 ) leads easily to the following proposition:

Consider two elements AB, A 7 B 7 . Through the point A, let us pass any three rectangular axes, Ax, A y, A z. Through the point A', let us pass three axes, respectively parallel to the previous ones AV, A 'y', AV. Let AB,, AB,, AB 3 be the projections of the element AB on the axes Ax, A y, A z. Let A 7 B', A 7 B' 2 , A'B'j be the projections of the element A 7 B 7 on the three axes AV, AV, AV. The cls function ds' relative to the system of the two

lements I ^ ^ ^ ' is equal to the sum of the functions ^dvd'y' relating to the various systems that Von obtains by grouping in all possible ways one of the elements AB,, AB,, AB 3 with one of the elements A 7 B', A 7 B',, A 7 Bj,.

With this first result, let's establish two lemmas:

Lemma I. - Consider two elements AB, A 7 B', of which one, AB, is located along the line AA 7 , while the other is normal to it. When we rotate this system around the dioid AA, the relative situation of the two elements will not change, so the same will be true of the function Let us give the system a rotation of half a circumference. The result obtained will be the same as if we had kept the element AB and reversed the direction of 1 element A 7 B 7 . Now a similar operation must clian the function O. Therefore the function <ï> relative to the system of our two elements does not change its value by changing its sign, which requires that it be e

ger the sign of

e a o.

Lemma IL - Consider two elements AB, A 7 B 7 , both normal to the line AA 7 and normal to each other. We have for the system of these two elements

0

■2

2

2
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Let us keep the element AB and replace the element A'B' by an identical element, but of opposite direction, A' B',. We will still have, for the system of these two elements,

If we observe that the function $ is, by hypothesis, a uniform function of the parameters

r, 0, 0', a),

we see that we must have

<ï>(AB, A'B') = (AB, A', B, ).

But the function <ï> relative to the system of two elements changes sign, without changing value, when we reverse the direction of one of the two elements. So we must also have

<ï>( AB, A'B')

<ï>(ab, a; b;).

These two equalities are compatible only if we have

:<ï>(AB, A'B'

o

4

Thus the function is equal to o for two elements perpendicular to each other and to the line that joins them.

Note that the proof of the first lemma assumes only that the function is defined by the situation of the two elements AB, A'B'; whereas the proof of the second lemma assumes that the function $ is defined in a uni¬

form

r, 0 , 0 ',

ü)

We have seen that this last hypothesis amounts to assuming that the system formed by the element AB with the element A' B' and the system formed by the element AB with 1 element AB, symmetrical to the plane BAA', are equivalent.

With these two lemmas demonstrated, let us consider two elements,

AB

ds, A'B'

(fig

For the direction of the axes A#, A!x', let us take the direction AA .


	1 1 * Ai/



BAA

JL AT 4 f

Let's take it as the direction of the axes As, A z .
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Let us take a normal to the plane BAA' on the side of this plane where the element A'B' is located. Let's take it as the direction of the axes A .y,

AV.

Fig. 26.

We will obviously have

AB 1 =

= ds cos G,

A'b; =

co

11

cosG',

AB 2 =

= 0,

A'B' =


	cls



sin G' cose,

ab 3 =

= ds sinG,

A'B' 3 =

<0

11

sin G' sin e,

the angle s being defined as in Chapter I of the Introduction.  According to the first lemma, we have

AB,, A'Bj ) = o,

4"(AB 1 ,A'B' 3 ) = o,

"t>(AB 3; a'b;) = 0 .

According to the second lemma, we have

4>(AB 3 ) B'B' 2 ) = 0 .

The proposition stated before the demonstration of these lemmas gives us

<P( AB, A'B') ds ds =  (ABj, A; B^ABt. Â 7 ^

-+- $(AB 3 , A'B'j)ÀB l. A'B ' 3

or

(AB, A'B') = ^(ABi, A'B'JcosG cosG'-h 4-(AB 3 , A'B' 3 ) sinG sinG'coss.

The relative situation of two elements directed according to the same

line, such as the elements ABj, A'B', depends only on the

length of each of these elements and the distance AA 1 . We can therefore pose

*(AB 1} A'Bi) = F(r).

The relative situation of two parallel elements, of the same
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sensj 6l perpendicular to the line which joins them cornie the elements AB 3 , AB' 3 , depends only on the length of each of these elements and the distance AA'. We can thus pose

(ÀB 3 ,A'BS) = (r).

Thus, we have

1

^ (ds 7 cls') = F(r) cosO cosO' + g( r ) sin6 sinO' cos s.

But we also have [^Introduction, Chap. I, equality (8)],

sin6 sin6' cose = cost*) - cosO cos6'.

So if we put

/(/-) = F(r) - g(r),

we will have

( 2 ) $ -f( r ) cosQ cos9'-i- g(r) coso>.

Therefore, we can see that the assumptions made in the previous chapter lead to the following expression for the elementary electromotive force of induction

e ds ds'dt - 0 j J , [,/( r ) cosô cosô'-t- g(r) cosw] ds ds' J,

9

expression which now depends only on the two unknown functions /(r) and g(r ) of the distance r.

io6
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CHAPTER III.

ELEMENTARY LAW OF INDUCTION (continued). - DETERMINATION

OF THE FUNCTIONS /(r) AND g(r).

The quantity <ï> is determined [Chap. Il, equality ( 2 )] by the equality

< ï> = /(/-) cosO cosO'-i- ^(u) COS (O.

It is now a question of determining the form of the two functions /(r) and g(r).

To do this, consider any feasible circuit to which the element ds ' belongs. Suppose that the element ds and this circuit remain stationary, but that the intensity of the current flowing through the circuit undergoes any variation. Let £ be the electromotive force of induction generated by this circuit in the element ds. We will have

|

the integral extending to the considered circuit.

oJ' is a uniform function of the coordinates of the element ds'.  We can assume that we have defined a quantity W(x,y,z)

which is in all space a continuous and uniform function of x ,

y , * which is equal to o at both ends of the conductor, m this one is open. We can then, designating by s an infinitely small constant, take

iy=zH(x',ÿ,z'),

z' being the coordinates of a point ds '. a [Introduction, Chap. I, equalities (3) and (4)],

designating
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by a?, y, s the coordinates of a point of the element ds ,

COS O)

cosO

X

t

cosO'

X

V

dx'

1

4y

dy

dz

dz'

ds'

ds

ds'

ds

\ds 7 '

x

dx

y z

dy

z - z

dz

ds

r

ds

r

ds '


	X



dx'

1 ""

y ■y

dy

z r - z

1 dz'

ds'

r

ds'

-JT

r

ds'

These equalities allow us to write

Cdt

dx

ds

ds S y ' ' z ^

/('-)

f(r)

/(>')

10

e&yH(^') ( y, 3')

/(<-)

/(<■)

/O)

dz

ds

dS J H ^' ^ ' S ' ) |

y(^)

/(>')

/

(x' -xy

(r)

dx'

1

,.2 +8

ds'

(x'~

-y (y-

■y) dy'

r

ds (

(x' -


	x) (z -



y

dz )

4

y

ds' j

(y' -y) (Z - x ) dx

r 2

ds'

(y to

-y) %

7 _ rr

r 2 "

( r )J

d

'ds'

(/

-y) ( ^

■*)

dz' )

r 2

ds' |

(z' - z) (x 1 -


	x) dx '



r t

ds'

(z' -y (y -y) dy'

r 2

ds

(*' T

dz )

ds' 1

cfo'

Let us suppose that the circuit remains, immobile, but that the element ds moves away, beyond any limit, in an arbitrary direction and with an arbitrary orientation. The quantity r will grow beyond any limit; the quantities

x

f

X

y

r

y

Z

r

r

r

dx

dy

dz

ds '

ds '

ds

will tend towards limits subject only to the relationships

x

x

y -y

Z

Z

\ 2

I

r

r

y

dx\ 2

ds

dy

ds

dz \ 2

ds

1.
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Now, under these conditions, the electromotive force of induction defined by the previous equalities must obviously tend to o. It obviously follows that the three integrals shown in

coefficients of

ds

ci Y dz - ,

ds, ~ds, ds must, under these conditions,

ds

tend to o.

This will have to take place, in particular, if the circuit considered is closed. We therefore arrive at the following proposal:

The complete set

a 7 )(r'- y) df

r 2 ds'

extended to any closed circuit, tends to o when the element ds moves away, beyond any limit, in any direction.

This theorem can still be stated as follows:

When the element ds moves away, beyond any limit, in any direction, the quantity

must have as limit the total differential of a finite function

P

continuous and uniform of x* , y', z'.

t

This quantity is of the form

Vuns (it last equality. It gives us, any reduction

CHAP. III.

DETERMINATION OF THE FUNCTIONS f(t') AND g(r)

tion made,

109

lim

A r )

(x '- X) 2

S

i r )

dH

tof

Êir)

dx'

H " 2 ') 2

y

O.

This must occur regardless of the direction in which the ds element has moved beyond any boundary.

If we assume

X - X

lim-- = o

lim

y

f

y

O

r

5

lim

1 ,

we will find

lim[^(r)l r =

00

O

If we assume

lim

x

X

I,

lim

y

!

y

O

r

)

lim

" t _


0 As



r

o

we find

lim [/0)]/

00

o

Thus, both functions f(r) and g{r) must tend to o when r grows beyond any limit.

If the element ds is part of the circuit, the quantity £ dt , given by the equality ( 1 ), must be of the order tds\ otherwise, an immobile current whose intensity varies would produce infinite induction currents in itself. Now, under these conditions, when the element ds becomes infinitely close to the element ds , we have

lim

lim

lim r -

0 ,

8:11

11

rv

H 1 "o

II

lim %

as

ds '

lim

dz '

ds ' ~

/y*

t âj

dx

lim ISZZ

r

dy

lim

z' - Z ■ -■-■ 1 ■*

r

~ cls'

~ ds '

r

clz ds '

dz

ds

dx

Suppose, for example, -7- = 1 , and we will easily see that the previous condition requires that we have

lim j rl/(r)H-^(r)] j r =o

I

A,

A being a finite quantity which can be o.

If the element ds is parallel to an element d-s of the circuit s' and

IO book xiii. - electrodynamic induction.

infinitely close to this element, the quantity Cdt , given by the equality (i)) must still be of 1 order of tds , otherwise, a current whose intensity varies would produce in a circuit infinitely

neighboring and parallel an infinite induction.

Now if the element ds' tends to the element <*■', we have ?

lim

dx!

dx

ds


	^ *| * w



As for the quantities Lim -simply subject to these conditions

lim/*

= o,

limÿ

ds

X "o

11

dz

lim -r-, ds

dz

ds

x - x

y

lim

df, lim -


	
z



	
y





they are

r

Let's assume

The quantity lim - - can have any value between - i and + i. Let us assume that this quantity is equal to o; it will be easy to see that the condition previously indicated requires that

we have

lim[r g(r)) r =o= 13,

B being a finite quantity, which can be o.

Thus, the two quantities r/(r) and rg(r) do not grow

beyond any limit when r tends to o.

Finally, the two functions f(r) and g (r) are finite, continuous and uniform for any value of r that is not infinitely

small.

Having acquired this information about the two functions f(r) and g( /■), we will admit, and these are the only two assumptions we will make in the course of this Chapter, that these two fonc¬

tions are of the form

f y /■ ) = A 0 -+- A ! r -+- A 2 r- H- ... -+ g{ r) = -f- !!,/--*- 13, r

P * *
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majs

/?i, n , p., v being four integers, positive, limited, any.

These hypotheses are more general than those which are usually made in research of this kind; Ampère, in the determination of the two functions of the distance which appear in his law of electrodynamic actions; (jauss, in the determination of the function of the distance which appears in the law of magnetic actions; (jauss, in the determination of

M

uni

distance contained in the law of induction between currents

forms, all assumed that the functions to be determined were of the form

A

U

and, when two functions to be determined appeared together in the formula, they assumed that the exponent n was identical for both.

It follows from these assumptions and the information obtained on f ( r ) and g(r) that we have

f( r )

r

P

1

r

Let's put

Pi

Pi

ai

a

i

B,

XB

?

B and \ being two new constants, and we will have

'/(>')

B

X

g{r)

B - --,

2

so that the function ( I> will become

( 2 )

"ï>

B /i

X

L cos 6 cos0'

i

X

r \r %r

2 /*


	cos co i,



the two quantities B and 1 being two constants which are just as important to us as the two quantities B and 1.

unknown here.

The expression of the elementary electromotive force of induction is then given by the following equality

(3) e ds ds' dt

BS

r j -(-

L r\ 2

COSÔ COS0'

I

X

cos w 1 ds ds f

I 12
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The constant X plays, in the current theories of Electrodynamics, a considerable role which was highlighted by Mr. H. von Helmholtz. We will give it the name of Helmholtz constant.

As for the constant B, we will name it the constant fon f

damental of electrodynamics.

From the results to which the determination of fl r) and g(r) led us, we can now deduce the following consequence:

If the element ds tends to follow the element di of the circuit', the integral

n y$>ds'

tends to a limit which is equal to the value that this integral takes when the element ds coincides with the element of.

This proposition is not self-evident; for, when the element ds coincides with the element f/o-, cos9, cosO'are infinitely close to o for all the elements ds' adjacent to the element f/s; it is no longer the same if the element ds is infinitely close to an element d<7 of the circuit', without being part of this circuit.

According to equality ( 2 ), we can write

 ds'- B

m

1

cos G cos G'

X

cos a) 1 ds.

Equality

cosO cosG'_costu

/-

à*r ds ds'

replaces this equality by

J '  ds' = B

COS thread

J -

to , , B C1


	ds



X)

fy d * r

J ds ds'

ds'

NJ a

is on a

.1

' ^ r dsds

; ds'

[' îi :

and

J

dr ds

dr dJ'

ds ds

r ds'

r=o,

J ü
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whether the current is open or closed. O 11 has therefore
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CHAPTER IV.

DETERMINATION OF THE SIGN OF THE INDUCTION CONSTANT.

So far we have not determined the two constants B and), which appear in our formulas. In the present chapter we shall deal with the determination of the constant B, or at least with the determination of the sign of this constant.

Following a notation that we have already used several laws, we will designate by the symbol

the double integral

extended once to contour c and once to contour c'.

We will point out, first of all, that if the contours c and c' are both closed, we can write

(c, c')

fS&

I

À

COSOJ

2 r

cosO cos G' ) ds ds'

In hert, we have

[Introduction, Cliap. I, equality (6)1,

cosO cos 8' = cosw

r

à- r Os Os'

So we have

).

COSU) -4

costu

ds ds

cos8 cos

"

!
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But

IF

at 2 r ds ds'

ds ds '

o

?

and the stated proposition is proved.

Let us consider a system of n circuits i, 2 , . . through which currents of intensity J t , J 2 , - . . , J n , flow in the positive direction, and let us consider the sum

72 , closed and

n

(*> 0 J?

( 1 , 2)J 1 J 2 +(i, 3)JjJ

i t 1

(0

(^Î l ) J2 Jl ■+■ (2 J 2 ) J |

( ^ 3 3 ^ J 2 J 3


	*



(2., /Z) J2 J/z

(n, i)J/*J 1 H- (^5 2)J /z J 2 - l- (/^ ? 3)J 3



(72, 72) J2

J

in which we obviously have by definition

(P> 9)

( <hP)

We propose to show that the quantity II is always

days positive, unless Von has

Ji -

J,

o


	*



J /2

O

We can obviously write

( P,P)

1 / dx

p

ds

p

(P j 9)

1

dx

p

P ''<!

ds

p

dx .i - H

d y P

dy'n

d& p

1 d** p

ds n ds .

ds'j,

ds p

ds' l}

ds p

ds p )

I fj bvy 1 j

dx q

H

dz"

h ~ ■ ■

dZq\

1 dS n dS n

ds q

dsp

ds q

ds p

dSq)

| VV1/ f J wv V j I

and it is easy to see that

n

V _

A ad 7

JJ' / dx dx'

ds ds

dy dy< dzd£

7 i j 7 F J j

ds ds

ds ds

2

distinct combinations of the elements of the system two by two.

On the element ds, let us distribute a fictitious fluid which has the linear density

u

J

dx

ds

We will have

1 JJ' dx dx' j T .

---- ds ds -

V 1 l VL ds ds'

/ " Ci V Ct d *

1 r ds ds .

ad r

r

i

1
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The second member is the potential of the fictitious fluid considered ? it is an essentially positive quantity. It is the same for the quan¬

tities

JJ' dy dy' r ds ds'

JJ' dz dz' r ds ds'

ds ds', ds ds'

and, consequently, of the quantity II.

Quantity II is a homogeneous and second degree form of

variables J,, J 2 , ..., J/*. The discriminant of this form is the following determinant:

0 , 0

(■> 2 )

(i> 3 ) ...

(1,

n)

D ( 2 , 1)

m " *

(2, 2)

" " "

( 2 , 3 ) ...


	

	

	

	■ #















( 2 ,

E I

n)

■ #

*

(n, 1)

{n, 2)

(ai, 3 ) ...

{n,

n )

Let us designate by

q

D (a,

1

b, . . . , A )

the determinant,

minor

of D,

obtained in

deleting

in

D the

(/? - q ) lines

other

that the lines a ,

b, .

' * ?

k and

the

lines

(n - q ), columns of the same rank.

Since form II is always positive, all quantities

g

D (ci, b, ..., À)

are positive.

This theorem is stated, but without a priori demonstration, in the works of M. H. von Helmholtz ( 1 ) and M. Brillouin (-).

This theorem will be used to determine the sign of the con slant B.

Let's imagine n circuits 1,2, invariant of form and

position, crossed by uniform currents whose intensities

C) Helmiioltz, L'eber die Dauer und den Verlauf der durch Stromsschwanhungen inlucirten elektrischen Strôme (Pogg. Ann, Bd. LXXXIII, p. 5 o 5; i 85 i. - IIelmholtz, Wissenschaftliche Abhandlungen, t. I, p. 4 2 9 ) ( 3 ) Brillouin, Intégration des équations différentielles auxquelles conduit

the study of induction phenomena in derivative circuits {Annals of

p

VEcole Normale supérieure , 2 nd series, t. X, p. 9; 1881).
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Ji, J 2 , vary with time. Let's say.

B

B

costo

r

COS OJ

r

dsi ds'i =

dsi dsj -

B(i, i),

B ( j )

Let us suppose that n t ,n 2 , n n are the electromotive forces extraneous to the induction contained in the circuits 1 , 2 , . . . , n. It is easy to see that Jj, J 2 , . . . , are linked by the equations

P

a 1

bed

di

rt2 dt

2

" *

Pn

dJ tl

dt

J U

O

j

R,, R 2 , ..., R" being the resistances of circuits r, 2 ,

The general integrals of these equations are of the form

the n- quantities

being determined by the initial conditions, and the n quantities a/ being the n roots of the algebraic equation

118
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This equation always has all its real roots. Let's take, in

Indeed, the transform in x

a

Pi - Ri

x P i2

P l

1 read

i P2 L

m m m

/? 2 R 2 # ...

k | - ■ 9 #

P 2 n


	

	"







" - "

P n

1

P/12 ■ - -

Pn - R n#

be written, in

posing

Pi _

Ct fj -- -rr- J Ctf j -

R/

P - -

r iJ


	■ ■ - *



/" i R j

a n - x a


	♦ LL\ n



1

R2 --. R" 1

1 #22 - x

m *  *  *


	

	éx 0 fl







"fi * * *

Cl n i &n' ! l


	

	&n fi







o

?

X

O

We find an equation of a well-known type which has, as Cauchy showed, all its real roots.

Equation (3), ordered with respect to a, can be written

i - n

n 0L n

n

D(i, 2, .. n)

R/i-I a re-l

R,

n

/ -i

D(i, 2,

I , l

i, ..., n)

ztB

"U.

i

) R 2 +D(2) RiR3.,.R^


	*



I

D(n) R,R 2 ...R , i _ 1

Ri R 2 ...R

If we observe that all quantities

q

L)(a, b,

are positive, we arrive at the following proposition:

The n quantities oc,, a 2 , ..., a w have the sign of B.

Assume that B is positive and return to the equalities ( 2 ); we see that, if the steady state given by the equalities

-Ii

*)i

R.

J

■*12

R.:


	?




  
    Unknown 
    
  




  













* "

J a

in

R"

was disturbed, even infinitely little, one would obtain, as a result of the induction, currents whose intensities, taken in ab

f
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This result is obviously unacceptable. This result is obviously inadmissible.

On the contrary, if the constant B is negative, the stationary state, once disturbed, will tend to recover; it will be stable.

The constant B is therefore negative.

The constant B being necessarily negative,

navant

we will pose golden

The quantity thus introduced is what we will call the fundamental constant of VElectrodynamics.

I 20
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CHAPTER V.

INDUCTION IN THE CLOSED CIRCUITS TRAVELLED

BY UNIFORM CURRENTS.

I


	

	Statement of the law of induction for closed currents







and uniform.

According to equality (3) of Chapter II, the elementary electromotive force of induction that the element ds' generates in the element ds is given by the equality

(■) e ds ds' dt = o j J' [/(/') cos9 cos0'-4- g(r) cosw] ds ds '[.

If we accept the assumptions made in Chapter III, it takes the form

e ds ds' dt

cos6 cosO'-+

ds ds'

The quantity defined by the equality

( 3 ) 7ji ds ds' - JJ'[/(/') cosO cosO' h- g(r) cosa> j ds ds

or by the equality

(i)

757 ds ds'

JJ'

I

A

2 r

cosO cosO'

i

A

2 /'

cosw l ds ds', /

is what we will call, for a reason that will be indicated later, the electrodynamic potential of the element ds' crossed by a current cl intensity V on the element ds crossed by a current of intensity J.

With this denomination, the result expressed by the equalities (i) or ( 2 ) can be stated as follows:

The electromotive force of induction e ds ds' generated by the element ds' in V is equal to the derivative with respect to

CHA.P. V.
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the electrodynamic potential of the element ds' crossed by the current which really crosses it on the element ds crossed by a current equal to V unit.

The total electromotive force of induction which acts in the element ds is the sum of the elementary electromotive forces generated by the various elements ds' which compose the system. If we denote this force by £ ds , we have

(5)

£ ds dt -- o 1 ds

L[/(r) cosG cosô'-t- g(r) coso>] ds' ,

or

( 6 )

o

ds cil

2V 2

ds

x

cosO cosô'

i

X

COSO)

2/

^ ds' 1 .

The quantity

or

J cfo'V J'[/( r) cosG cosO' + g(r) cosw] ds',


	J ds Y J' ( --- COS0 COS0'



l -f

X

2 r

-costo ) ds',

ir ]

is what we will call the electrodynamic potential of the system on Element ds crossed by a current of intensity J.

With this definition, the result contained in equalities (5) or (6) can be stated as follows:

The electromotive force of induction that acts in V element ds is equal to the derivative with respect to time of the electrodynamic potential of the whole system crossed by the currents that flow through it in reality on the element ds crossed by a current equal to V unit.

Let us assume that the induced conductor we are studying is a closed conductor, formed by elements ds t , ds 2 , ..., ds ".

Let us also suppose that we are assured, by some means, of the correctness of the following proposition: The current flowing through the conductor in question ( current due partly to Vinduction, partly to electromotive forces extraneous to Vinduction), is a uniform current.
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Let J be the intensity of this current.

Let R, c/s,, R 2 c/s 2 , ... be the resistances of the elements ds , ds 2 ,_

Let 7 ) i c/s,, r , 2 c/s 2 , ... be the electromotive forces extraneous to the induction they contain.

We will have

( 7 ) 1 -H Cl ) dsi _ (''rj 2 4 -C 2 )cfo 2 _ _ C ri ) ds n

Ri clsi Rg ds% R^ ds n

( 7) t ds i -f- 7) j ds 2 -H... - 4 - t; n ds n ) -i- ( Ci dsi -f- £% ds% 4 -... ds n )

_ ----- " --- ■ ■ ■ ---- 0

K j ds j i~ R 2 cls 2 l - - * H R fi ds fi

The quantity

R - R i dsi + R 2 ds . 2 -f-... 4 - R re ds n

is the total resistance of the considered circuit.

The quantity

H - 7)i ds 1 4 - t] 2 ds-i 4 -... 4 - 7), t ds ,j

is the total electromotive force not related to the induction acting in the circuit considered.

We will give the quantity

( 8 ) o = Ci dsi 4 - ds 2 4 - . 4 - C n ds n

the name of the integral electromotive force of induction which acts in the considered circuit.

The equality ( 7 ) can then be written

T _ H 4 ~

R '

form in which it teaches us that, in the event that we

we are placed, it is not necessary for us to know the

electromotive force of induction that acts in each element of

1 armature, but only the integral electromotive force of induction.

SsiicnL 11, ds\, n 2 r/s 2 , ..., FF n ds n the electrodjnamic potentials of the whole system, including the current under consideration, on the elements c/s,, c/s 2 , ..., ds n traversed respectively by currents equal to the unit. The quantity

(9) n = n, c/s,4- n 2 c/$ 2 4-...4-11 ds n

will be, by definition, the electrodynamic potential of the entire
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1 l'j

system (including the armature conductor) through which the currents that actually exist in it flow, on the armature conductor through which a current equal to this Vunity flows.

Now we have

ôi ds V

d

d

(IR ds i ), c 2 ds 2 = (n 2 ds 2 ),



î

O/d ds/i

d

clt

( TT " ds n )

Therefore, according to equalities (8) and (9),

(10)

£

due

dt

The integral electromotive force of induction generated in any closed circuit which is part of any electrodynamic system is equal to the derivative with respect to time of the electrodynamic potential of the whole system (including the armature conductor) traversed by the currents which actually flow through it on the armature conductor traversed by a current equal to the unit.

This statement was obtained as early as 1847 by F.-E. Neumann (' ) for the case where the currents forming the system are all closed and uniform.

It is now to this case that we will limit ourselves. We shall suppose that the system under study is formed by n closed conductors, without derivation, mobile or immobile, which we shall designate by the indices 1, 2, ..., n. We shall suppose that uniform currents, constant or variable, of intensity J 4 , J 2 , - - - , J/2, flow through them. We will admit total electromotive forces, foreign to induction, H t , Ho, ---, H". R t , Ro, - --, R" will be the resistances of these conductors.

We will pose

"=// 1:/( r) COS67 COS 6/

P *

r c/

U, [A

r) cos6/ cosOy

g(r) costo] chid$ f ' n g(r) cos a)] dsi dsj .

( 1 ) F.-E. Neumann, Ueber eirt allgemeines Princip der matliematischen Théorie inducirter elektrischer StrÔme . Read at the Berlin Academy of Sciences on August 9, 1847.
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The electrodynamic potential of the whole system on the circuit i crossed by a current equal to the unit will be

Pi,i L -t- P 2, j J 2 -+- - -. -+- P/-i,/J i- i Pi J" ■+■ P i+i,{ J(+i ■+■ - - - P n,i J">

whose derivative with respect to time will be

dP x

dt

T

1

dPz i T ~~dt

dp, dt 1

dPni t

h... -h ^ J*

t-Pu

Bones |

1

hP *'"d7

says

-P^dJ , p dJ n

at dt *

According to Neumann's law stated earlier, we must have the following equalities in our different circuits

*

a

If

s considered drivers are animated by movements

known, the quantities p and P will be determined functions

resistances and electromotive forces

of l\ if, in addition,

The system (i 2) will represent a system of n linear differential equations which will determine, according to t , the n intensities Ji,

TT

*2? - - j J /i -

s quantities pi and P/y are called coefficients of inducements
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The quantity pi is called the self-induction coefficient (') of the circuit i.

If we make the same assumptions about the quantities/(r) and g{r) as we did in Chapter III, we can, as we saw in Chapter IV, write indifferently

or

04 )

§ c î. - Induction by current variation in circuits

provided with bypass.

Let us assume, in particular, that our n circuits are immobile, undeformable and crossed by variable currents. The equations (12) are reduced to

If the resistances Ri, R27 - --> R/n as well as the electromotive forces H,, H 2 , ..., H", are constant, we are dealing with a system of n linear differential equations with constant coefficients, with constant second members, whose main properties we have already studied, in the previous chapter.

coefficient

tion to designate the quantity p L . Why this English name, since the invention of the formulas (12) was made almost simultaneously by two Germans, Mr. F.-E.

Neumann and W. Weber?
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We have, in this study, assumed that the various circuits were closed circuits with no branches; but an analogous study can be undertaken for closed circuits with any number of branches; this case has been studied in a very complete manner by M. H. von Helmholtz (<) and, more recently, by M. Marcel Brillouin ( J ).

Let's consider an inductor circuit made up of any number of wires, connected to each other in any way, and each of which has a uniform current flowing through it. Let A'B 7 be one of these wires and let J' be the current flowing from A' to B'. This system moves and deforms in any way in the presence of an element ds. If ds' represents an element of A'B 7 , this element generates in the element ds an electromotive force

e ds ds ', and we have

e ds ds 1

1

cos tu I y ds ds

The wire A 7 B' hears an electromotive force in the element ds

of induction equal to

o ds

2l 2 £

2 dt

]' ds

rte

cosb cos G' -+

i

X

-cosu) ) ds

■ir J

t

The known equality [Introduction, Chap. I, equality (6)]

cos0 cosQ' = costo

d~ r ds às r

allows to transform the expression of £ ds.

Let a, § be the angles of the direction ds with the lines that go from the element ds to the points A, B. We will have

The electromotive force generated at a point of the element ds

(*) H. von Helmholtz, Ueber die Dauer und den Verlauf der dure h Stromsschwankungen inducirten elektrischen Strôme (Pogg. Ann, Bd. LXXXIII,

p. 5 g5; i8j i.

Helmholtz, Wissenschaftliche Abhandlungen, t. 1, p. /j29).

( a ) M. Brillouin, Integration of the differential equations to which the study of induction phenomena in derivative circuits leads (Annales de l'1 École Normale supérieure, t. X, p. 9; 1881).
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1-27

through the entire inductor circuit will have the value, as shown

easily,

A 2 d

dt

ds

2

J

B*

r coscü

J K' ~

ds'

cosa

J '4

cos

y

m *

In this formula, the sign y > which appears in

B

2*7 ~

*/ x '

represents a summation that extends to all wire segments such as A'B' that make up the inductor.

In

cos a

2 J ''

the quantity V J' is the sum of the intensities of the currents that

pass through the vertex A!, these intensities being taken with the sign when they correspond to a derivation coming from point A', and with the sign - when they correspond to a derivation ending at point A'.

In

cos

p y j-,

the quantity \ J 7 has an analogous meaning, etc.

But, according to the well-known lemma of G. Kirchhoff, all these quantities "V J' are equal to o. The previous electromotive force is therefore reduced to

A 2 d

dt

ds

2

J

' f -- ds'

J y r

Let 1 be a segment of wire; let

P 1

A 2 r r cos 2 Jt "A r

10

ds ds

Let 2 be another segment of wire; let's say

P12

A 2

u

COStO 7 J


	ds 1 ds 2.
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Suppose that these two segments are part of a system formed by any number n of wires connected in any way and traversed by uniform currents of intensities J,, J 2 , . J". The electromotive force of induction acting in the

thread 1 will be

If V| is the value of the potential function at the origin of this segment and Y', its value at the end; if H, is the thermo-electric or hydro-electric electromotive force contained in the segment, the total electromotive force acting in segment 1 will be obtained by adding to the previous quantity the quantity

"(Vi -V' t ) + H t .

Let us designate by FL, R 2 , . . . , R" the resistances of the n wires which form the system and we will find the following equations, to determine the variations of the uniform currents in this system

(16)

(

Pi

Ji

dJ i

dt

dp,

dt

I'l2

dJ

à

dt


	

	m







■H J

i

P,"

di i

dt

h

d P

// I

dt

dPi

dt

P n 2

di<

dt

Jo

dP ,i2

dt

Pi

n

dhi

dt

m "

J

II

d? u ,

dt

RiJi

s(v;


	" i



Pu

II

dt


	*



J n

dp

n

dt

P n J n

V,)

Hi

?

)

(v;-v w )-h".

These equations have a number of n] and if k is the number of

vertices, the unknown functions are the n functions JC, .  } n and the k values of V at the vertices. To determine them it

<

t -

t

Ira join to the previous equations k equations of the form

Ü7)

J'

o

5

obtained by applying the lemma of G. Kirchhofl to each of the vertices.
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Let's assume

will become

in particular the immobile system; the

l

quation

s(l

(

clJ y

P'dï

i> d 3 %.


	VK ~di "



r/T

<-...+ Pm - Rl Ji = e (Vi -Vi) +

H"

(18) ! p

( Pn dt

t/Jo


	P St '



d\

= e(v; - V 2 ) -H

h 2 ,

m * * m.

I #***-"!

! P

A rtl dt

dJ 2


	F " 2 dF '



Pn d -\f R*J"-e(V; -v") +

?

H".

The general integral of these equations can be obtained as follows

following :

Let y,,y 2 , . . . , j n be the intensities of the currents that would flow through the wires 1, 2, n , if the electromotive forces 11,,

Ho, ..., H", which we assume to be constant, acted outside the

of any induction phenomenon;

J1 == J 1, J 2 = J 2 ! - ■ ) J n

is a particular integral of the system of previous equations.  The general integral will thus be

the n 2 constants A/, B/, " *., L<, depending on the initial conditions, while the n constants ot,, - - - ) are the roots of 1 equa

tion

The procedure followed in Chapter IV shows that all the roots of this equation are real and negative. Therefore, according to

D. - III. 9

i 3 o
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equations (19), the steady state, stable on a system without derivation, is also stable on a system with derivations

any.

Equations (16) show that, for a system with branches as for a system without branches, when all currents are uniform, the Helmholtz constant disappears from the laws of induction.
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CHAPTER VI.

INDUCTION BY ONLY MOVING THE CONDUCTORS.

Let us suppose that a system is formed by n closed circuits, variable in shape and position, but with constant currents flowing through them. The equations (12) of the previous chapter will then become

The intensities J,, J 2 , . . . , J n are then determined as a function of time by n linear algebraic equations.

These equations were discovered as early as 1845 by F.-E. Neumann (' ); they were then used by him in 1847 ( 2 ) to establish the general law of induction. They are of little more than historical interest. It is rare that one has to use these simplified equations.

Consider one of the circuits of any system of n closed and uniform currents, circuit 1, for example; the force

( 1 ) F.-E. Neumann, Die mathematischen Gesetze cler inducirten elektrischen Strôme (Memoirs of the Berlin Academy of Sciences, i 845).

( 2 ) F.-E. Neumann, Ueber ein Allgemeines Princip der mathematischen Théorie inducirter elektrischen Strôme, read at the Berlin Academy of Sciences, August 9, 1847.
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The induction electromotive force that develops there has the value

II

w

di y p d5

: p ' Ht + " Ht '■ -

jy di fl

~ V ' n ~dt

dt dt

dP\n j

' dt n

It is the sum of two other electromotive forces: one

And - pi

dh

dt

P12

dJ 2

dt

dJ n


	ln ~dt'



is the electromotive force that would be induced at time t in circuit 1 if the intensities underwent during time dt the variations that they must undergo, while all the circuits would remain invariable in shape and position.

The other

is the electromotive force that would be induced at time t in circuit 1 if the intensities remained invariant during time dt , while the circuits would remain animated by the motion that animates them in reality.

We can propose to study the properties of these two kinds of forces separately. In the present chapter, we will propose to study the electromotive forces of the second kind.

The force E" is the sum of a number of terms.

I

One, the term Jj, represents the electromotive force generated in circuit 1 by the effect of the deformation of this circuit.  It disappears, in the case very frequently realized in practice, and that we will suppose realized in the following demonstration, where the circuit 1 is undeformable.

The other terms are all of the same form as the quantity dY ,,

dt

The electromotive force generated in circuit 1 by the deformation of circuit 2 and the relative displacement of the two circuits 1 and 2. We can always, since this relative displacement intervenes alone, suppose, for the convenience of language, that circuit 1 is immobile.

Jo which represents, assuming that the circuit 1 is independent of

I
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Let u, v', ... be the velocities, at time t , of the various points of circuit 2 . Let us imagine another displacement of this circuit in which the velocities of the same points have the values Au, kv', ....  The mutual induction coefficient Pi2 of the two circuits 1 and 2

dt

will then experience in time -j- the variation 6 /P 12 that it previously experienced in time dt, so that the quantity

F"

12

dt

J

will be multiplied by A. Hence the following theorem:

When a circuit 2 , through which a current of unvarying intensity flows, moves and deforms in the presence of a stationary circuit 4 , it induces an electromotive force proportional to the speed at which it moves and deforms.

This proposition is often referred to as F.-E. Neumann's law. It is, in fact, as a fundamental hypothesis that it is found in the theory of F.-E. Neumann.

Here is a new theorem which applies to the case where the two circuits 1 and 2 move in the presence of each other, and deform in any way, circuit 2 being traversed by a current of constant intensity; if this intensity is variable, this theorem will have to be restricted to the part of the electromotive force induced by circuit 2 in circuit 1 which is due to the movement of the conductors alone.

We have seen that we can write (Chap. V, equality i 4 )

Let us suppose that, through the two curves Ci, C2 (fig- 27)' one can pass two one-sided areas , A 2 such that the curve Cj does not meet the area A 2 , nor the curve C 2 1 area Ai ; if dù { , dQ 2 are the elements of these two areas, and N 1? N 2 are the normals to their positive faces, we will have, according to Ampère's theorem [Introduction, Chap. II, equality ( 6 )]?
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Thus, in the U of equality

E n 12

dP 12 dt

J*,

we will be able to write

V"

-L* 1 2

d

~ J ' 2 ~di

s. s

with 2 r

O dN.dN,

rf£2i dii <>

Fig. 27.

%

\

We will interpret this expression.

Let's imagine that on either side of the surface A ( {Jig. 28) there are two surfaces A', A", distant from each other by one

Fig. 28

The element dù K of the surface A, is the projection on this surface of two elements dùdû\ of the surfaces A,, A". Let dù\ be the element which is on the positive side of A ( . On this element, let us place a quantity q of positive magnetic lluid, and on the element dQ[ a quantity q of negative magnetic lluidc, in such a way that

7

1

We will thus have constituted a magnetic sheet F t whose
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the magnetization will have in each point the direction of the normal N 1?


	

	p ï







and for intensity - -

e i

The components of this magnetization will be <^>i = - c°s(N I , x), llbi = - eos(Ni, y), Gj = - cos(Nj, z).

£ 1 £1 * Ej

The potential function of the magnetization thus formed is given by the general formula

the integration extending to the whole volume of the magnet. Now, the volume element of our magnet having the value

it is easy to see that we can write

From this, we deduce

On the surface A 2 let us constitute a magnetic sheet F 2 exactly as on the surface Ai we have constituted the magnetic sheet F". At each point of the sheet Fo, the magnetization intensity will have the following components

Moreover the volume element of the sheet F 2 can be taken equal to e 2 due. We see then that we can write the previous quantity

§
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which makes us recognize the magnetic potential ^ t2 of the mutual actions of the two sheets F), F 2 . We have therefore

( 3 )

r r cos

Jr I r

(JJ

ds i ds 2

Y,

C.^'C;

and

(

4 )

E"

5 t 2 T J"


	J-2 -A"



dt

If, instead of distributing on the positive side of sheet F, the

magnetic fluid with density ^, we had the density

with

Pi

3

i

y/2 £ i

if instead of distributing on the positive side of the sheet F 2 the magnetic fluid with density - > we had distributed it with density - >.

P'2

J

O

J 2 £ 2

we would have obtained two new sheets, F', F', whose potential would have been linked to that of the sheets F t , F 2 by the relation

<

Y'

1 1 2

the equality (4) would have become

SI 2



j 2 y 12

7

( 5 )

F"

1 2

d\

dt

Now the mutual actions of the two sheets F 7 i? perform, in the time dt } a work c/G, and Ton a

d&

dX\ % dt

dt y

so that the previous equality can be written

e;

"5

~dt

Thus, when two circuits, 1 and 2 , one of which, circuit 2 , ( st tt averse by a current of constant intensity J 2 , deform and move in any way, the circuit 2
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generates an electromotive induction force in circuit 1 that Von can calculate as follows:

Through the circuit 1 , a magnetic foil is passed, the positive side of which carries a distribution

-7 - I

Through the circuit 2 , a magnetic sheet of thickness e 2 , whose positive side

g* T

carries a surface distribution of density - -. We call fl £ 2

culates the work produced by the mutual actions of these two sheets in an infinitely small time; we divide by this infinitely small time, and we change the sign of the quotient.

It should be noted that this theorem assumes, as a restriction, that conductor 1 has no common point with sheet F 2 ,

nor the conductor 2 with the sheet F, Here is a third theorem cap

ital in the theory of the in¬

duction :

Let us imagine that ds t is an element of a circuit 1 , mobile in front of a conductor 2, closed, immobile, traversed by a current of constant intensity J 2 . The electromotive force generated in the element ds t by this conductor 2 has the value

Let A, B, (fig- 29) be the element ds t , which, at the end of time dt , has come to A'B'. It is easy to see that we will have, by designating by y the infinitely small contour A t B< B' A', A t , and by d t an element of this contour

d

dt

ds

1

J r costü

c."

ds 9 I dt

f f-r

OJ

cls% d<j

f i;Cos(B i B / 4 , ds%) ds 2

^ C2


	A [Ai / - cos(A! A',, dsi) ds^.



dc, r

we write all the equalities

Now let's assume that

s to which we give the dsn elements of a closed circuit I, and that we add them member by member; it is done
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cile to see that all the terms in A* A^, BiB, . . . will disappear, - and that we will finally be left with

It is this expression that we will try to interpret.

Fig. 29.

Through the current C 2 , let us pass a sheet F 2 , of thickness

2 "

or

.St J o

/

density of the magnetic fluid on the positive side of this sheet.  Let the magnetic potential function of this sheet be

the area of the small circuit y; i.e. "the normal

its positive side.

We will have

lufS-r

y >. "/ v J r '

Cü

thn di

We

dZ

cl, therefore, lient,

(7)

I*-i2 dl

A Q

1/2 ^

We

dZ
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The potential function 'Ço, being equal to

is, as we have seen in Chapter III of the Introduction, a definite quantity, at least to a multiple of 4 ^? T hrough knowledge of the current 2 , it is not necessary to specify which is the sheet F 2 . The knowledge of the current 2 is therefore sufficient to determine the family of surfaces

= const.

which are the magnetic level surfaces for any magnetic sheet such as F 2 passing through current 2, and which we will call the level surfaces of current 2; and also the orthogonal trajectories cT these surfaces, which we will call, according to an expression created by Faradaj, the lines of force of current 2.

The quantity

extended to a surface S with any two sides S is called the force flux , emanating from the sheet F 2 , which enters through the negative side of the surface S.

For two surfaces ending at the same contour, and such that one can be deformed in a continuous way until it is applied to the other without it ever meeting the sheet F,,

this quantity has the same value.

In order to demonstrate this proposition, we can always suppose that the two surfaces S15 S2 that we are considering have no point in common; because, if it were otherwise, we would take a third surface S3 finished at the same contour and having no point in common with the previous ones, and we would demonstrate that the flow of force has the same value for each of the two surfaces S2 , and for the surface S3 .

The surfaces S 1 , S 2 ending at the same contour, having no common point, form, by their whole, a closed surface.  If the positive side of the surface S, is inside this surface

J

BOOK XIII.

electrodynamic induction.

140

closed, the positive face of the surface S 2 will be external to it, so that we have

8l <> N *


	1



Wo

dQ

of Çî

Wt

dQ

5

the last integration extending to the entire closed surface.

Now we have

<N?S d N £

dQ

/// At? 2 dx dy dz,

quantity which is equal to o, because, according to the assumptions made, the closed surface in question does not contain any portion of the sheet

acting.

We have therefore, as we announced,

It is often said that the quantity

is proportional to the number of lines of force that enter the surface element dQ through its negative side. This expression can be justified as follows:

Let's imagine a surface 'Ç'o = const. On this surface <x( fig . 3 o) let's mark an infinite number of points, so that any element c/S of this surface contains a number v of points, pro¬

portional to the product

we will have

n being the direction of the normal to the surface <7 in the sense that is decreasing and k a positive infinitely large constant.

Through these points, let's draw lines of force, whose direction is always supposed to be the one where goes decreasing.

On any other surface S, these trajectories mark points; these points are distributed on the surface S in such a way that any due element of this surface contains a
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number v of these points; I say that this number v is still equal in absolute value to

N being the direction of the normal to the face of dÜ which has been chosen as positive.

Fig. 3o.

Indeed, the element dü is, in the sense given to this word in Electrostatics (T. I, p. 3 oa), Y corresponding element of a certain element dl> of the fundamental level surface. The two elements dü and dZ are obviously crossed by the same number v of lines of force. We have therefore, for the value of the number v,

But the fundamental property of the corresponding elements gives us this equality, which takes place in absolute value,

o
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as we had announced.

The number v is essentially positive; so is k

and due: is negative if the lines of force enter through the face

negative of the due element, and positive in the opposite case. The number v of lines of force that enter through the negative side of the due element has therefore the value

These preliminaries have been made,

Let's go back to equality (7).

is equal, according to what we have just said, to

v being the number of lines of force that enter through the negative face of the c/2 element. These lines of force have been cut by the element ds t in its motion. We can therefore, with easy-to-guess sign conventions, state the following theorem:

When a closed conductor 1 deforms and moves in front of an immobile and rigid conductor 2, through which a closed, uniform and constant current flows, an electromotive induction force is generated proportional to the number of lines of faith of the current 2 that, in its movement, the circuit 1 cuts per unit of time.

This law was stated as early as 1832 by Faraday (' ) who, moreover, did not know the precise mathematical meaning of the expression line of force.

Let us suppose that I one can choose the sheet F.. (ftg- 3 i) so that it is not encountered by the circuit C t . By this cir

( Faraday, Experimental researches in Electricity, Series II, §§ 231 cm

Sf

■"1*1
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When the conductor G, moves and deforms, it comes to a new position G,. When the conductor G, moves and deforms, it comes in a new position G,. Let f be the flux of force passing through any surface led by the circuit G ( , entering through the negative side of this surface; let f be the flux of force

Fig. 3i.

which crosses any surface led by the circuit C', entering by the negative face of this surface. If we observe that A, is a surface passing through the circuit C,, that the whole of A, and of the areas of the circuits there form a surface A', passing through the circuit C'. ; that the negative face of the areas of the circuits there becomes positive face in the surface A', we can easily see that the sum of the fluxes of force entering by the negative faces of the areas of the circuits there has for value (/- /').

In other words,

and equality (n) becomes

In the presence of a firm, immobile conductor 2 i, ti withi pur a uniform current whose intensity J 2 is inveu lubie, moves and deforms a closed conductor 1 ; it is assumed that, through conductor 1, a two-sided surface A can be passed, which moves and deforms with it without ever encountering the circuit 2 . The conductor 1 is subjected to
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From the current 2 an electromotive force d 1 induction equal to

to the product by

5V

7

of the derivative with respect to time of the

force flux of the current 2 entering through the negative side of the surface A,.

This last proposal is likely to be much more extensive than the previous one.

■

Let's imagine that circuits 1 and 2 change shape and position in any way, while remaining closed; that the current J 2 varies in any way, while remaining uniform. The current 2 will generate an electromotive force of induction in the contour 1 which will have the value

Now Ampere's theorem gives

So we have

(9) El2

51 d

dt

sf

x

à

41 M

51

d

y/

= J 2

r

r

dN

dil.

51 d

dt

y/

2

(K?2

<*Nj

Thus, in the most general case, the electromotive force of induction generated by a closed and uniform current 2 in a closed conductor 1 through which one can pass a two-sided surface A t that moves and deforms with it without ever meeting the circuit 2 is equal to the product

of the derivative with respect to time of the flow of

by

21

/

/

force of the current 2 entering through the negative side of the surface A,.

chap. vu. - Experimental study of induction.

4

SOME USEFUL PRINCIPLES FOR THE EXPERIMENTAL STUDY

OF THE INDUCTION.

1" - Fundamental principle on which the methods are based

to determine the induction coefficients.

We saw in Chapter Y what is meant by the word induction coefficient. If C* designates a closed circuit

any, the self-induction coefficient of this circuit is the integral

extended twice to the circuit G*; similarly, if C/, C j are any two closed circuits, the mutual cVinduction coefficient of these two circuits is the expression

in which one of the integrations extends to the Q circuit, the other to the Cy circuit.

These coefficients contain in their expression a constant, the fundamental constant of electrodynamics, the value of which must be requested from experience; but, if we disregard this constant, the induction coefficients appear as quantities whose analytical expression is entirely defined; so that the ratio of two induction coefficients could always be calculated if we knew exactly the shape and dimensions of the conductors to which these coefficients apply.

report.

But this calculation, always theoretically conceivable, is, in D. - III. 10

%
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It is therefore necessary to have experimental methods for comparing induction coefficients.

The methods employed all consist in making use of certain properties of induction phenomena in immobile circuits. The usual exposition of these methods assumes that the currents flowing through the conductors under consideration remain uniform during the whole duration of the induction. This assumption is nothing less than plausible. When the intensity of a current varies, it is very unlikely, in general, that the variations of this intensity will have the same value, at the same time, at all points of the circuit. It would therefore be unfortunate if the legitimacy of the methods of comparing induction coefficients could be thought to be subordinate to this inaccurate assumption. Therefore, although the indication of experimental methods for comparing two induction coefficients is, like the presentation of methods for comparing resistances or electromotive forces, outside the scope of our work, we shall indicate here the principle which allows us to justify them. This principle finds its application in the discussion of a host of other experimental methods in which induction phenomena are involved.

Let's imagine a system that, for simplicity, we will suppose formed of two circuits C ( , C 2 . The first one is crossed by a current whose intensity is J 4 at the time £, in a point of the element ds\ ; the second one is crossed by a current whose intensity is J 2 at the time t , in a point of the element ds 2 . Let R be the specific resistance at a point of the element ds . During the time dt, the induction puts in movement, in the element ds t , a quantity of electricity dQ t , and we have

COS CO

COS CO

Let's suppose that, up to the moment T, the system has been traversed by constant and uniform currents with intensities I, in the circuit C| and I 2 in the circuit C 2 ; let's suppose that from
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of time T' the system is still traversed by constant and uniform currents having for intensities I' in the circuit G, and I 2 in the circuit Co. Let us integrate the two members of the preceding equality between T and T 7 ; if Q, indicates the quantity of electricity

that, during this time, the induction puts in motion in the element ds, we will have

Q

1

IF"

2 R

(i;

ii

X

COS (O -r

X


	cos 0i cos G' t 1 ds\



(i;

1

&

X

COS (O

I

X

-- COS 0 ! COS 0 2

cl S

equality that can be written

Q

2l 2

1

2 Ri dsi

û?5l(Ij

II

J C COS

you

ds\

I

. r cos *>± -

OJ

ds

Q

the free electricity has, at time T, a linear density point of the element ds t; at time T', it has a density and we have

the elements ds t ;

pi in one

P

I 5

dO

dsi

(P

1

Pi ) -

If we assume that Velectrification of the wires is negligible at the beginning and at the end of the experiment, we can

ecnre

dQi

■ -m

ds 1

o

Hence this theorem:

If the currents flowing through a system of closed and immobile conductors not provided with a branch, initially constant and uniform, start to vary, to become constant and uniform again after a certain time, the quantity of electricity set in motion by Vinduction, during this time, has the same value at all points of the same conductor.

Let us write that the quantity of electricity set in motion by the induction in the elements d<7^ dd. of the circuit Ci has a value of
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XIII.

their unique Qi; we will have

Q

5 V 2

i


	Ri d<31



d<J i

I

l) f

-s S*

l) f

d S,

cos tu


	ds l +( i;



It) f

J S*

COS O)

COSü)

(Us j

di-i uf^*.]


	*



From these equalities we can easily deduce

or, if we denote by JL the resistance of the circuit C 1}

Jli Qi = /i(I] ID-t-PiaCL 12 )

Hence this theorem:

Under the conditions previously indicated, the induction sets in motion at each point of the circuit the same quantity of electricity as if the currents were to vary while remaining uniform throughout the phenomenon.

It is easy to show that this theorem remains true for any system of closed conductors, mobile or immobile, with or without branches.


	

	Determination of the quantity of electricity set in motion







by an instantaneous current.

Most experimental studies of induction phenomena lead to the following problem: Determine the quantity of electricity set in motion in a circuit, by

an induction current of very short duration. Let us indicate here the principle of the method to solve this problem.

We will see later that a wire carrying a current exerts certain actions on a magnet; these actions can be reduced to elementary actions exerted by each current element on each magnetic element; the action of a current element on a magnetic element is reduced to a force applied
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in the middle of the magnetic element and at a torque; the magnitude and direction of the force, the magnitude and direction of the axis of the torque, depend on the mutual position of the current element and the magnetic element; but, and this is the point which is important to us for the following, the magnitude of the force, the magnitude of the axis of the torque, are, all other things being equal, proportional to the length ds of the conductor element and to the intensity J of the current passing through it.

This being the case, let's consider a galvanometer, i.e. a wire through which a current can flow, placed in the vicinity of a magnet that can move around a vertical axis.

At time £, the wire is traversed by a current whose intensity is J at a point of the element ds. The actions of the current element ds on the magnetic element dv have, with respect to the axis around which the magnet moves, a moment

a J ds,

" depending on the magnetization of the element dv and its position with respect to the element ds; similarly, the actions of the current element ds on the magnetic element dv' have, with respect to the same axis, a moment

a' J ds.

The actions of the element ds on the whole magnet have, with respect to the same axis, a moment

(a + a' + ., .)J ds = AJ ds,

A depends on the magnetization of the magnet and the respective situation of the magnet and the element ds.

Finally, the actions of the entire current on the magnet have the following moment with respect to the axis around which the magnet moves

M = ( AJ ds.

S

that, until time T, no current flows through the conductor; the magnet is then in equilibrium under the action of terrestrial magnetism; between times T and T/, a variable current flows through the conductor; finally, after time T^, all current ceases again in the conductor.

Let's imagine
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If, as happens in many induction phenomena, and as we will assume in what follows, the two instants T and T 7 are extremely close, the actions exerted on the magnet by the current during this time will constitute what is called in Mechanics a percussion.

The moment of percussion with respect to the axis around which the magnet moves will be

T'

M dt

AJ ds dt,

If we notice that during the extremely short time (T'-T), the position of the magnet, with respect to the current, varies extremely little, so that the quantity A remains substantially invariable, we will have

If Q designates the quantity of electricity set in motion in the element ds during the considered time, we have

But, as we saw in the previous paragraph, the quantity Q has approximately the same value for all elements ds ;

if therefore we denote by G the quantity / A ds, i.e. the mo S

of all the forces that a current cV intensity equal to the unit, running through the frame of the galvanometer, exerts on the magnet placed in its equilibrium position, we have

GQ.

According to a known theorem of percussion theory, this <1 nautilus must be equal to the moment, with respect to the axis around which the magnet moves, of the initial momentum of the magnet. If therefore K- is the moment of inertia of the magnet, a the angle of
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the magnetic axis of this magnet with the magnetic meridian, one

will have

(0

From the moment T 7 , the magnet starts to move under the action of terrestrial magnetism; the equation of its motion is, by designating by OÏL its magnetic moment, by H the horizontal component of terrestrial magnetism

r n a

K 2 rLr = -OILH sin a.

cW

This equation, integrated by observing that, for t = T', a is approximately equal to o, gives

K

doc \ 2

dt

t

doc

dt

F

2 OÏL H (cos a

0

?

or else, by virtue of equality (î),

K 2

doc

dt

cosst

l)

G 2 Q

K 2

The magnet, subjected to the impulse due to the current, deviates from its equilibrium position by an angle #, then returns in the opposite direction;

we obtain Y angle of impulse a by expressing that^ becomes equal to o at the moment when a = a, which gives

1 0 ÏL H ( cos a

0

G2Q2

o.

But

cos a

i


	9 a



2 sin 2 2

So we have,

( 2 )

Q

y/OÏL H sin G 2

If we knew the value of the coefficient

2 K "G

y/OlL H

(and later we will meet a galvanometer, the compass of tangents, for which it is possible to detect the lavalei of this
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coefficient), one could, from the observation of the pulse angle, deduce the amount of electricity that the instantaneous current carried in the galvanometer.

Even if we assume that the value of the quantity

if, in two different circumstances, instantaneous currents have given the needle of the same galvanometer impulses a and a !, these currents have set in motion quantities of electricity Q and Q' linked by the relation

. a'

The use of the ballistic galvanometer thus makes it possible to compare the quantities of electricity set in motion by instantaneous currents.
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Let's imagine any line AB

S

. 32). Let's share

this line in infinitely small parts equal to each other

MN

NP

PQ


  
    Unknown 
    
  




  













"

D.

Let us take the points of divisions M, N, P, Q, ..., for centers of circles G, G, G\ C ff/ , ..., having all their plane normal to the curve AB, having all the same infinitely small radius.

Fig. 3a.

B

Suppose that all these circles are conductors among the same current of intensity J, walking in the

run

by

same direction in all these circles.

We

will have

obtained a system of currents, gifted, as

It is to a similar system that Ampère gave the name of electro-iynamic soletioide.

The line AB is Y axis of the solenoid.

When the line AB is a closed curve,

solenoid is closed.

When the solenoid is open t if 1 we assume an observer

on

says

that

the
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placed so as to see one end of the solenoid in front of him, and the parts of the solenoid, adjacent to that end, behind that end, he will see, in the extreme circle he is looking at, the current running either clockwise or counterclockwise.

The end of the solenoid where the observer sees the current flowing counterclockwise is called the southern pole of the solenoid for reasons we will discuss later. The other end is called the northern pole.

When, in the following, we have to take a direction of travel on the axis of the solenoid, we will take the direction of travel that coincides at each of the points M, N, P, Q, ... with the direction of the normal to the positive face of the circles C, C', G", C w , ....  In the case where the solenoid is open, this direction is that which goes from the northern pole to the southern pole.

We will not insist on the means by which a solenoid is practically realized, at least in an approximate way; they are described in all the Physics Treatises.

Let us place a solenoid S, formed by circles C, C', in the presence of a closed conductor y. In any modification of the system thus constituted, the solenoid S induces in the conductor y an electromotive force which has the value

(')

E

d ^

dt (

J P(C,y)+P(C',y)

by designating

P (CW, y)

the mutual induction coefficient of the two conductors G (,) and y.

Suppose that we make the same assumptions about the functions jf(r) and g (/') as we did in Chapter 111. We will then have

dy being an element of the conductor y, and dsi an element of the conductor C ('h

According to Ampere's theorem, if d% denotes an element of a two-sided area passing through the circuit y; if Q denotes the area infi
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ninient small of the circle C-^; if N designates the normal to the positive face of y, and l the direction of the positive path of the solenoid axis, we will have

P(C

U')

î

r)

and, therefore,

D denoting the infinitesimal distance of two of the circles C,

a longneur element dl of the solenoid contains a number

cU

D

of these circles. It is therefore easy to see that the previous quantity can be written

(3)

E

' QJ

2 dt f D

BA

d

dl

d r

M

dZ dl

Let (#, y, z ) be a point on the axis of the solenoid and let f {oc, y, z ) be the continuous, but not uniform, function which we have named (Introduction, Chap. III) Vangle under which from the point (x, y, z), we see the positive face of a two-sided surface 2 passing through the conductor y. The preceding equation can be written as

21 2 d i QJ 2 dt ) D

Let Xq, y 0 , s 0 , be the coordinates of point B; let x { , y ,,

^ 1 f

the coordinates of point A. At point B,f(x 0 , y 0 , z 0 ) is susceptible of an infinite number of determinations; let us arbitrarily take some

one that we will denote by <7 B .

From point B to point A, one can always pass through a path ba that does not pierce the two-sided surface led by the circuit y.  Let < 7 a be the perfectly determined quantity defined by the equality

If the solenoid is closed, c A will obviously be identical to <r B ;

otherwise, it will be 'generally different.

Now let's assume that the axis of the solenoid pierces n times the

two-sided surface S led by the current y through the side

BOOK XIII.
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negative to the positive side^ and n! times from the positive side to the negative side. According to what we said in Chapter III of 1 Introduction, we will have

and equality (4) becomes

.& 2 d iaj r

2 dt j D v

The quantity ^ = cp is called the power of the solenoid.

Let us assume, first of all, that the power of the solenoid remains constant in the modification under study. This condition will be fulfilled if the intensity of the current flowing through the solenoid remains invariant, and if, in addition, the small circles keep constant dimensions and remain at an invariable distance from each other.

of others.

The modification will then be reduced to deformations and displacements of the solenoid axis and the y-conductor.

Now, for an infinitely small displacement of this kind, it will always be possible to choose the surface passing through the conductor y, so that this infinitely small displacement does not vary the

number n and n'. We will then have

ai 2 QJ d f 2 D dt

(<I A - <JC).

In any modification of a system formed by a closed conductor and a solenoid of invariable power <p, the southern pole of the solenoid can be considered as generating an electromotive force of induction in the conductor

with the value of

( 7 )

E a

ai

s/


	?



d<; A

dt

and the

ml of solenoid

as generating in u

O

same conductor an electromotive force of induction having

for value

( 7 bis )

i

"
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If the solenoid is closed, <t a is, as we have seen, identical toff B . Formula (6) therefore gives

E = o.

Thus: if Von deforms and moves in any way in the presence of one of Vautre a closed conductor and a closed solenoid of invariable power, no induction phenomenon occurs in the conductor.

Let's now see what happens if we leave the solenoid axis and the closed conductor immobile, while varying the power of the solenoid, which is easily done by varying the intensity of the current flowing through a rigid solenoid.

In these circumstances, we will distinguish two cases:

i° Through the closed conductor, we can lead a two-sided surface that the solenoid does not meet.

In this case, we have

n = o, n 1 - o.

Formula (5) gives

(8) E= /I (a B> Â'

The southern pole of a rigid solenoid whose power varies can be seen as generating an elcclromotmce induction force in a stationary closed conductor

% cio

( 9 ) A= 7i' lA ^'

and the northern pole as generating an electi omoti ice induction force

If the solenoid is closed, cr A = cr B and equality (8) gives

E = o.

A rigid, closed solenoid of varying power generates no electromotive induction force in a closed conductor, provided that, through this conductor, one can make

pass a surface with two sides that the solenoid does not meet.

i
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2 ° These properties cease to be exact when it is not possible to pass through the closed conductor an area with two sides that does not meet the solenoid.

Let us assume, in particular, that the solenoid is closed. We will have v x - 7 g, and the formula (5) will give

A closed, rigid solenoid of varying power generates an electromotive force of induction in a closed, stationary conductor that is independent of the shape and size of the solenoid and the conductor, and depends only on the number of encounters of the solenoid with a two-sided surface passing through the conductor and the nature of these encounters.

The formula (io) leads to consequences that can be accurately verified experimentally.

Let us imagine a closed and rigid solenoid placed in the presence of a closed contour y which contains a ballistic galvanometer.

Suppose that at the beginning of the experiment no current flows through the solenoid and the circuit y. A battery current is introduced into the solenoid; while it is being established, an induction current flows through the circuit y; when the battery current in the solenoid has become constant, all current in the circuit containing the galvanometer has ceased.

In a similar experiment, the following three conditions are verified:

i° The system, formed by conductors i

s, is tra¬

poured by currents that are uniform at the beginning and at the end of the experiment.

2° The circuit containing the ballistic galvanometer contains no current at the beginning and end of the experiment.

3" The duration of the variable period is very short.

These conditions lead, as we saw in the previous chapter, to the following consequences:

i° The same quantity Q of electricity flows through every section of the ballistic galvanometer circuit during the entire variable period.

CIIAP. VIII,
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i5g

2 ° To calculate this quantity Q, we can reason as

IF

the currents were at all times uniform.

a i

of the previous theory.

Q.

Q

dQ

incentive that the induction current carries in the conductor y

during time dt] by p the self-induction coefficient of this

conductor; by R its resistance; by j the current flowing through it at time t,

:/0

i

R

' 51

= 4 tt ( n

do ,

n ) V dt

' dt

cl

dt

(Pj ) dt

Between the instants t 0 and t , the quantity of electricity transported by the induction will be

Q

R

4 k 5t /

7^ (n

n')(o

1

?o) + /H./i- Jo)

If the time t 0 coincides with the initial time of the variable period, the

blue, we will have

?0

O

J 0

O.

If the instant t K coincides with the final instant of the variable period, we have, by designating by 1 the intensity of the current generated by the battery in the solenoid

a qj

D '

J i

o.

The quantity sought will thus be given by the formula

Q

i

R

2 7r5t 2 (7l

n')

QJ

TT '

easy to compare with the indications of the ballistic galvanometer.

j6o
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CHAPTER IX.

DEVELOPMENT OF THE ELEMENTARY LAW OF INDUCTION.  SLIP LINES. - UNIPOLAR INDUCTION.


	

	Slippery contacts.







The elementary electromotive force of induction, edsds ', generated by the element ds' in the element ds, is given by the general relation

912

e ds ds' dt = -o

2

cos 6 cos 6 '

It is this equality (i) that we will discuss more fully than we have had to do so far.

i° Let us suppose, first of all, that the two elements ds and ds' are part of the circuit C and the other of the circuit C', both at the time t and at the time t + dt; that all the parameters which appear in our formula vary in a continuous way. We then have

dV

SJ' = dt ,

dt

o ds = u ds dt, o ds' = u' ds' dt,

a and u' being two finite quantities. The equality ( 2 ) becomes

^2 rfj'/i

X

1

X

e

■2

dt

cos u>

2 r

2/'

cosO cosO'

(2)

5 t 2 d / -+- X

J I-- cos Cü

1

X

■>.

dt

2 r

cosO cosO'

. A 2

y

1

x

COS U)

I

X

ir

ir

cosO cosO' f ( u

u!)

2 ° Suppose that the element ds is part of the armature circuit

"
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both at time t and at time (t

dt), but that the element

ds' is not part of the inductor circuit at time t and is

part at time (t

dt). Gela can be realized in the following way

next.

The conductor G ' contains at time t two parts AB, CD (fig. 33) intersecting at M, which slide over each other; at time

time (£ + dt), these two parts are in AB', CD'; they intersect in M'. The point which, at time t, is at M on the AB conductor is at M ( at time (t-hdt); the point which, at time t, is at M on the CD conductor is at M 2 at time (t--dt).  The two elements M, M', M'M 2 have been introduced in the circuit G' between the instants t and t -h dt.

Such an arrangement is easily achieved by forming one of the conductors by a channel full of mercury, the other by a wire dipped in this mercury.

Let As' be such an element. For this element, we have

the electromotive force generated by the element As' in the element ds has the value e ds ks', and we have

14- X I - TO

-cos a" 4-cos 6 cos 0

%r 2 r

neglecting infinitesimally small terms with respect to those that i preserve.

The quantity e ds As' is P 1 us here of the order of magnitude of ds As', but simply of the order of magnitude of ds. This does not em D. - lit. 11
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The sum of the electromotive induction forces generated in the element ds by the various elements of the conductor C' does not remain finite, because only a limited number of elements are ever introduced into the conductor (J between the instants t and

(t + dt).

3° Let us suppose that the element ds' is part of the circuit G as well at the instant t as at the instant (t--dl), but that the element A s is introduced into the circuit G between these two instants. We can admit that we have, for this element A s.

and the electromotive force of induction generated by the element ds' in the element As, reduced to its main term, will have the value

e ds As dt - -

cos to

cos 0 cos 9'

Ace ds.

The whole circuit G' generates, in the element A s, a force

total electromotive force C&s, and we have

(5)

C A s dt

As

-i

y

x

X

cos (o -i

cos8 cosO' 1 ds'

2 1

2 l

This electromotive force is not of the order of A s ; it is finite. Thus, any element introduced into the induced circuit between the instants t and (tdt) is, at the moment of its introduction, the seat of an induction electromotive force of finite magnitude.

If this finite electromotive force acted alone in the element A 5 , it would generate a current of infinite intensity. But it does not act alone in this element; even if (as we shall suppose) this element does not contain a thermo-electric or Irydo-electric electromotive force, it is necessary to take into account the electromotive force generated in this element by the electric charges distributed on the surface or inside the conducting wires. If, at the moment the potential function of

these charges has the value V at the origin of the element A s and Y' at the end, this new electromotive force has the value

t(V-V').

The current flowing through the element A s will be finite, if
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we have, to the nearest infinitesimal

?

iG3

or Link

s( V

V' ) dt

£ As dt

o

(6) s(V

Y')dt

A s

COSO)

ir

l


	cos6 cos 0' ds'.



fi

It is easy to understand how this finite difference in potential function will arise between the two infinitely close ends of the As element. If, indeed, it does not exist

not at the instant t, the element As will be traversed by a current of infinitesimal intensity, which, in an infinitely short time, will accumulate a finite quantity of positive electricity at one end of the element As, and a finite quantity of negative electricity at the other end, which immediately ensures the existence of the finite difference of potential function in the desired direction.

If, on the other hand, the element As is part of the circuit C at time t and is no longer part of it at time (t--dt), it is, at time t , the seat of a finite electromotive force; between the origin of this element and its extremity exists a potential level difference given by the equality

e(V

Y') dt

5V 2

A s

j 1 -> y

'c.' \ 2,1

1

I

COS CO

X

2 r

cos 9 cosô' ) ds'

Suppose that the conductor AB slides on the conductor CD

tfig- 3 4 )

c//),

Fig. 34.

is in M at time t and in M" at time (t -f- dt). We have

M' M = MM" = r dt,

v being the velocity of the motion of point M. According to the equalities

i6i
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previous, we have, to the nearest infinitesimal

£ ( Vm-"V M ) =

¥'.£■(

1

**

mm

1

Ci)

SV 2 f"/


	V / J



2 I ■ V

X

--- cosO cosQ' ) ds ',

-ir )

co sw

X

r

X

cos w

cos 9 cos G' I ds'.

i r

From this we deduce, first of all,

V M < = Vji'.

The potential function on the fixed conductor, at points infinitely close to the sliding contact, has the same value on both sides of the sliding contact.

We have, in addition,

*

Between the sliding contact and the infinitely close parts of the fixed conductor, a potential level difference is established which is proportional to the speed of the sliding contact and changes sign with this speed.

O

4° We have assumed that the parameters /-, cosco, cos B, cosB' vary, with t , in a continuous manner; this necessarily occurs for /', but not for the other three.

Let us suppose that a current arrives through a conductor AB {fig- 35),

A

A

*

i

F

I

i

I

i

*


  
    Unknown 
    
  




  















l

-

i

I

I

*

|

|

|

at time t , into another conductor with two branches, BM

CHAP. IX.

SLIDING CONTACTS. j 65

and bN, in which the intensities are positively counted in the BM and BN directions.

At time (/ -f- dt ), the conductor AB has come to A 7 B 7 .

The two branches into which the current is divided are now B'M and B'N.

Consider the conductor element BB'. At time t, the direction

of this element was the direction BB 7; at time (t dt), this same

element is counted in the B'B direction. It has therefore suddenly

changed direction. If we consider any other element ds, we see that the parameters

cos(BB', r), cos(BB', ds)

will have changed sign between time t and time (t + dt).

Let us suppose, first, that such a change occurs at a point of the inductor. Let ds' be the element BB 7; let J 0 be the intensity in the branch BM of which it is a part at the time t; let J be the intensity in the branch of which it was a part at the time (t + dt).

We will designate by 8^ and to 0 the values that these angles have at the time T; at the time (t -|- dt), they have the values 8 'H-tt, w 0 -f- 7 c. We will then have

oJ'= Jj- J 0 , o cos 6' = - acosôy, o cos co = - 2 cos to 0 ;

the other parameters undergo thousand or infinitesimal variations. The elementary electromotive force e ds ds' generated by the element ds' in the element ds has then a given value

e ds ds' dt = -- ( J 0

2

Ji)

[

X

À

%r

COSU> 0 -4

cos0 cos 0 q 1 ds ds r

2 /

As the electromotive force represented by equality (3),

it is no longer of the order of ds ds', but of the order of

ds ds' dt

5° Now suppose that the system in question is part of the induced circuit. By means of analogous notations, we will find that element BB 7 is the seat of an electromotive force

i66
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trice e ds ds ', given by the equality

( 8 )

e ds ds' dt = A 2 ( --- cosion - !-cos0 0 cosO' 1 J 1 ds ds 1

o.r

ir

Let u be the speed with which the sliding contact moves on MN. The electromotive force in question is directed in the direction of this movement and has the value

e ds ds' = A 2 u

i

X

cos0 0 cos6' ) J' ds'.

xr

By the way,

cosioq = - cos( u, ds'),

cos0 0 = - cos (u, r ).

Therefore, when the armature contains a contact AB whose point B slides on a conductor MN forming a shunt for a current that would be brought there by AB, if we designate by u the speed of displacement of the sliding contact B on MN, there exists between the point B and the point where the contact was immediately before a finite electromotive force of induction, directed in the opposite direction of the speed u, and given by the equality

cos( u, ds')

cosO'cos(ff, r)

the summation extending to all the elements of the inductor.

Since the current must always have a finite intensity, between points B and B' there must be a potential level difference

(V

Such as

ro) V-V'

51*

u

i

X

xr

cos (u, ds' )

X

X 1

cosO'cos (u, /-)

I'ds'

This difference in potential level between the point that the sliding contact has just left and the point where it is at the moment under consideration will necessarily be established, as we explained in

n° 3.

§ 2 - Unipolar induction.

These di vers9 expressions of the electromotive force will immediately allow us to explain a phenomenon that has given rise to long controversies, controversies that are far from being

We want to talk about the phenomenon of unipolar induction.

AA! and BB' ( Jig . 36) are two circular conductors having the same axis; C(7) is a current system which is of revolution

Fig. 36.

around the same axis (practically, it is replaced by a magnet).  On the two conductors AA!, BB' a third conductor is supported

y

MN conductor that can be rotated around the axis of the device.

We will search for the condition of electrical equilibrium on

the system formed by the conductors AA' , BB*, MN.

Let's take an element ds which is part of this conductor. It is the seat of an electromotive force of induction which has the value C ds ; when one passes from one end of this element to the other, the potential level varies from V to r . The condition of electrical equilibrium is obtained by writing that we have, for each element,

Cds -- s(V - V') == o.

m

|

Consider an element ds of the armature circuit that is not one of the elements swept by one of the contacts t and t -+■ dt. This element being rigid, we have

sliding between the moments

o ds = o.
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Thanks to the shape of the system, we also have

8 <p ds' = o

So we have

ds - o

and, therefore,

\

T

V'.

The potential function must, for Véquilibre, remain / constant along any element of the induced system.

In the vicinity of the sliding points M and N, elements are introduced into the system or are eliminated from it. Between the instants

t and (t

dt ), the moving conductor passes from MN to M'N'. The ele¬

The MM 7 element is introduced into the AM part of the AA' conductor and removed from the MA' part of the same conductor. The element

is

introduced into the 13N part of the BB' conductor and removed from the NB' part.

Let Ds,, be the element MM'. Let II

o

2

W

M

that the same function takes on the whole part M'A'M' of the circle AA' of the quantity

1 TT DS ° - ll o "77

z dt

Let R 0 be the radius of the circle AA' and £2 the angular velocity of the motion of MN. We have

Djq - Ft 0 12 dt

and

( 11 )

W

U

I

K 0 n 0 ii

1

Let Ds be the NN element Let II be the value that ^?vds> takes

orxjiic I element ds coincides with D^. Let R| be the radius of the circle BB . Between the point N and the points of the part N'B'B of the circle BB' there is a potential level difference

( 11 bis )

W

y

i

R, H ! 12

Rfii

CI1AI". IX. - SLIDING CONTACTS. 169

The equalities (i i) and (i i bis) provide the conditions of electrical equilibrium on the induced system.

But they give us

(12) U - Y = -(HjHj- R 0 n 0 )ü.

£

Thus, between the two circles AA' and BB', there is a difference in level proportional to the angular velocity of the movement of the driver MN and changing sign when this velocity changes direction.

Let's suppose that a communication other than MN, immobile, joins the two conductors AA' and BB'. The electrical equilibrium will no longer be possible on the system, which will then have a current flowing through it.

Let PQ (fig. 3y) be the immobile communication in question.  Before the existence of this communication, the system while

Fig. 37.

This perfect symmetry of form no longer exists after the addition of the PQ communication. This perfect symmetry of shape no longer exists after the addition of the PQ communication. The system only periodically reverts to the same shape with each revolution of the system. The induced current intensity, if the segment MN rotates by one

t
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uniform movement, will, after a sufficient time, re * V

periodically pass through the same value (').

But let's assume this induced current is small enough to be

It is possible to neglect the induction that this current exerts on itself in comparison with the induction exerted by the CO conductor.  Under these conditions, when MN rotates with a uniform motion, let's see what is the intensity of the uniform and periodic currents that flow through the system.

Let us assume that this periodic regime is established. A current of intensity J crosses MN from M to N. At point N, it splits into two currents: one, of intensity y, passes through NBQ; the other, of intensity /, through NB'Q. These two currents meet at Q for

form a current of intensity J running from Q to P. At P, this current splits into two currents: one, of intensity i , follows the path

PAM; the other, of intensity i', follows the path PA , M.

We have

J * * V

= * + "=;+/>

by virtue of Kirchhoflf's lemma.

Let

L the resistance of MN; m the resistance of NBQ; m f the resistance of NB'Q;

I J the resistance of QP;

L the resistance of PAQ; l' the resistance of PA'Q.

Let U (K) be the potential function at point K.

In the MN segment no electromotive induction force acts. We have therefore

e| U ( M ) - U ( N )]

L

(1) This proposition cannot be demonstrated; but it can be considered as an application of the principle which Laplace constantly uses in celestial mechanics, and in particular in the Theory of Tides: The state of a system of bodies 7 in which the primitive conditions of motion have disappeared because of the resistances it experiences, is periodic like the forces that animate it

(Laplace, Mécanique céleste> i re Partie, Livre IV, Chap. III, Art. 16).
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In N BQ there is an electromotive force of induction

so we have

2 R! n ! 12 ;

(à)

J

e[U(M)

2 Rj IR 12

or

In NB'Q no inductive electromotive force is produced.

tion. Therefore, we have

(c)

/

[U (N)

U(Q )1

m

t

In QP, we have

(d)

J

s[U(Q)

U(P)]

L'

In PAM, we have

(e)

ru (P)

U(M)]

aR 0 H 0 ^

In PA'M, we have

(/)

/

s[U(P) - U(M)]

l

The formulas ( b ) and (e) give

(g)

J

( m

ni) [U(N)

U ( Q )]

2m'Ri ITj 12

mm

The formulas (e) and ( f ) give

(h)

J

t(l

/')[U(P) - U(M)] + 2rR 0 n 0 i2

it

The formulas ( a ), ("?), (g'), ( h ) give

J

2 12 [( m -h m')l RqTIo

a

/')/n'Ri TU]

II' (m

m')

m ni (l

n

(L

L' ) ( m

ni ) ( l

we well

( 12 )

J

2 12

V tïl

-T-J, R 0 n 0 ---yRiR!

I -h l m -h m

II

mm

t

l

V

L

L'

or

m

n

7

The quantity

II'

mm

l

l'

m

m
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varies periodically with the position of the points M, N, the same is true of the quantities

V

l

V

?

m m

The period is equal to the duration of one revolution of the MN conductor.

In general, the two circles on which the points M, N move are constituted by two mercury cups of resistance

negligible. The quantities

H' mm'


	/ -t- 1' ' m m'



are therefore negligible compared to L and J .

Let co 0 be the electrodynamic potential of the CO conductor all

the whole circle PAMA^, traversed, in the direction of the movement of the point M, by a current equal to the unit; or op the electrodynamic potential of the conductor CC; the whole circle QBJNB 7 , traversed, in the direction of the movement of the point N, by a current equal to the unit. We will have

W 0 = 2 TZ R 0 II 0 ,

O)] = 2 TC 11 j II i.

Equality (12) will become

or, by designating by T the duration of a revolution

If the duration of the revolution is very small, and if the current is passed through a galvanometer, only its average intensity will be observed

3

/ 0 -hT

T

J dt *

U

According to the equality ( 1 3 ), this intensity has the value *

3

I

io 0 1 r

. - 4 - 1 / ïïT /

f 0 +T

V

1

l

7 Q dt

u,

I

I

t

j i

L.+T

m

t

m

m

t

Ll dt.
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Let's evaluate the i

We have

fn + T

l'

l

l

12 clt .

V

l

V

£2 dt

arc P A'M arc P A' M A

rfarc P A'M

arc PA'M

2 7T R

o

Ro

The integral in question therefore has the value

'=/"-+- T

i^3

-iïSi [ta-rA'M?];;;;

4

We can suppose that we take for epoch t 0 the moment when the point M leaves the point P in the direction PA. We then have

( arc P A' M )

t-t

0

2 TT R 0 ,

( arc P A' M )/=/ #+ t = o.

The integral we are looking for has therefore the value tî,

In the same way

So we have

, , N ~ _ 1 Wp - ( 1)1

(Ï4) ^ T L-f- L' *

The average intensity of the generated current is inversely proportional to the revolution time of the rotating conductor.

If we reverse the direction of motion of this conductor, w 0 and (Oj change sign without changing magnitude. Thus

The average intensity of the generated current changes sign without changing magnitude when the direction of rotation is reversed without changing the speed.

If we observe that we have

COq = 2 U R 0 Uo>

0) i -- 2 7T R | R 1 j

LI T = 2 7 Tj
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we see that the average electromotive force, which would give rise to the current Jï in a resistor (L + L'), would have the value

E = (R o n 0 - RiIMQ.

It is related to the difference in potential level that would exist between the two circles BB' and AA' if the PQ communication did not exist, by the following relation, which results from equality (12),

s(V - U) = E.

We will make use of the formula (14 ) for the particular case where the current of revolution CC' is a limited solenoid having the axis of the two circles. We will assume that the southern pole a of the solenoid ab faces upwards. It is easy to see that, if it were turned downwards, all the effects we are going to describe would change direction without changing magnitude. We will distinguish three cases:

i° The solenoid does not pierce the plane of either circle

{fig- 38 ).

Let us calculate w 0 and ta,.

Suppose that the MN driver turns from left to right.

Fig. 38.

B'

From any point on the solenoid, we see the positive side of the circle PAMA' and the negative side of the circle QBNB'.

Let W Q and *F be the absolute value of the angles at which
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PAMA' and QBNB

electrodynamic potential of the solenoid on the PAMA' circle will have the value, according to what has been said in the previous chapter,

if

^o&],

co" = - q>[V ùa - rir ob ],

V*

$ being the power of the solenoid.

Similarly, the electrodynamic potential of the solenoid on the circle QBNB' will have the value

tOi

Jt

Cl> [ \F

l a

w

\t>

The formula (i 4 ) will thus become

(i5)

3

5 t

"ï>

T L

L

-, [W

0 a

W

the

W

0 b

Seen,]

If the two circles are very small, the four quantities in square brackets will be very small, and Vintensity of the induced current will be approximately zero.

2° The solenoid ab pierces the plane of one of the two circles, for example the lower circle (fig. 39).

The direction ba then crosses once the plane of this circle by passing from the negative face to the positive face. We have
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and the formula (i4) becomes, in this case

1 (Ij

T TTï 7 [Woa

W lA + 47Tj.

If the two circles are very small, it becomes

The current flows from the lower circle to the upper circle in the rotating contact:

If the rotation is from left to right;

If the southern pole of the solenoid is pointing upwards ;

If the solenoid pierces the plane of the lower circle.

Reversing one of these conditions would reverse the meaning

of the current.

The intensity of the current is proportional to the power of the solenoid; it is inversely proportional to the duration of the revolution and the resistance of the conductors that join the two circles. It does not depend on other variables.

3 ° The solenoid pierces the planes of the two circles (fig. 40).
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and the formula (14.) becomes

^ f | j > f^Oa -t- Vob - 'Fl a - ^*1/" J If the two circles are very small, Vintensity of the induced current is very small.

It is thus seen that, in the case where the two circles are very small, the inductance current has no significant value unless one of the poles of the solenoid is between the two circles, and

7

the other outside the two circles. Hence the name of unipolar induction given by V. Weber to this class of phenomena. Weber to this class of phenomena.

Lenz, W. Weber, M. F.-E. Neumann, M. Felici have, on several occasions, verified experimentally the accuracy of the laws we have just established.

*

D.

III.

12
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COMPARISON OF THE ELEMENTARY LAW OF INDUCTION PROPOSED BY M. VON HELMHOLTZ WITH THE LAWS PROPOSED BY OTHER AUTHORS.

§ 1.

Enumeration of the various laws proposed for induction

electrodynamics.

We have seen that, if e ds ds is the electromotive force of induction generated in the conducting element ds by the current element of length ds' and intensity J', we have

( 1 ) e ds ds' dt

fV 2

'S

O

2

ï

A

COS 10

*}. r

1

\

cosO cosfj' ) y ds ds

2 r

This elementary law of induction was given explicitly by M. H. von Helmholtz in 1874 ( 1 ).

But other laws of induction had been previously proposed by other authors.

W. Weber 1 '-), who in 1846 was the first to propose an elementary law of induction, had arrived at the following formula, based on his ideas concerning the mutual action of moving electric particles

(' ) II. vox Helmholtz, Ueber die Theorie der Elektrodynamik. Drille Abhandlung: Die elektrodynamischen Kràfte in beivegten Leitern ( Borchardt's Journal far reine und angewandte Mathemalik. Bd. LXXVIII, p. 273; 1874.  Helmholtz wissenschaftliche Abhandlungen, t. I, p. 702).

( 1 ) XV. XVf.ber, Elektrodynamische Maassbestimmungen; i° Ifeft: Abhandlungen Leibnitzens Gesellschafts. Leipzig, 1846. A precise and correct exposition of the ideas of XV. XX r ebcr in F.-E. Neumann, Vorlesungen iiber

trische StrÔme Teubner, 1884 ). Maxwell's exposition ( Traité d'Électricité et de Magnétisme, t. II, p. 507 of the French translation) contains serious errors which were reproduced in Mascart and Joubcrt ( Leçons sur VÉlectricité

et le Magnétisme, t. I, p. G 85 ), and in Jamin et Bouty (Cours de Physique, t. IV, fase. II, p. 455 ). ,
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vants

e ds ds' dt

2l 2 k cosO cos 6' d 3

!

r

dt

[2 cos(c, ds') - 3cos6' cos(p, /-)]*> [2 cos (y', ds') - 3 cosO , cos(< ,, ) /■)] v'

J'

r

cosÔ > ds ds r dt

v being the speed aA r ec which the element ds moves, and v' the speed with which the element ds' moves.

F.-E. Neumann was mainly concerned with the integral law of induction exerted by a closed and uniform current on a closed conductor through which a uniform current flows. Nevertheless, according to M. Cari Neumann (M, a careful reading of certain passages ( 2 ) of his two Memoirs on Induction, written in 1845 and 1847) shows that F.-E. Neumann adopted as the elementary law of induction the law expressed by the following formula

e ds ds' dt

( 3 )

y^^dsds dt


	dt



^dr

X

I

dt

cosw

X

'11

cos6 cosO' ) ds ds dt

%r

In this formula, R is the following quantity

(

4 )

R

If 2 / 3

, - cosO cos U - cosco ., /-- \ 2 ' '

so that, as we shall soon see, R ds ds' designates the repulsive force that is exerted, according to Ampère's law, between the two elements ds and ds', each of them being traversed by a current of intensity equal to unity. As for the factor X, M. F.-E. Neumann hesitated between the values -1-1 and - 1.

Mr. Cari Neumann ( 3 ) proposed, on his side, an elementary law of

(' ) Carl Neumann , Die elektrischen Krafte. Darlegung und Erweiterung der von A. Ampère, F. Neumann, W- Weber, G. Kirchhoÿ, entwickelten mathematischen Theorien. Erster Theil: Die durch die Arbeiten von A. Ampère und F. Neumann angebahnte Richtung, pp. 219-222. Leipzig, 1873.

( 2 ) F.-E. Neumann, Die mathematischen Gesetze der inducirlen elektrischen Strome. Schri/ten der Berliner Akademie der Wissenschaften, für 1845; Berlin, 1846 (end of § 1). - Ueber ein allgemeines Princip der mathematischen Théorie inducirten elektrischer Strome. Read at the Berlin Academy of Sciences on August 9, 1847. Berlin, 1848 (the first three paragraphs of § 4 ).

( 3 ) C. Neumann, Die elektrischen Krafte , p. 218. - Ueber die den Krâften

\

elektrodynamischen Ursprungs zuzuschreibenden Elementargesetze (Abhandlungen der Kôniglichen Sàchsischen Akademie der Wissenschaften. Math.  Phys. Classe, Bd. X).

i8o
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induction, represented by the formula

e ds ds' dt

( 5 )

fj

J'R -r ds ds f dt dt

2V 2 d t cos 0 di

,\

ds'

dt

J' ds ds' dt

51 2 cos 8 cos 0' dV

dt

ds ds ' dt,

formula which can still be written

e ds ds 1 dt

31 2 cosco

(5 b is )

2

cosO cos 0' dr

~di

r 2

ds ds ' dt

3 l 2 cosO d

x r dt

(J' cosO') ds ds f dt .

Mr. H. von Helmholtz (*) has shown that by removing one of the assumptions on which Mr. Cari Neumann's deduction is based, we find the more general form

( 6 )

e ds ds' dt

i- c ° SM -c° s8co ll' ± ds ds 1 dt

%

dt

31 2 cosO d

dt

(J' cos 0 'ds ) ds dt

1 + ^ ^ L (cosO cos0'-cosco) ds ds' dt

x dt r

In the case of 1

x y this formula becomes

( 7 )

e ds ds ' dt

3l 2 cos co

J*

x

cosO cosO' dr

7 ~dt

ds ds' dt

3 l 2 cosO d

dt

(J' cosO' ds) ds dt ,

that does not use the term

differs from the form (5 bis) adopted by Mr.

Neumann than by

5 V 2 cos 0 cos 0 ' T , d ds f , ,


	j --- ds dt



x

r

dt

R. Clausius ( 2 ), in his turn, gave an elementary law of induction,

(! ) H. von Helmholtz, loc. cit., § 20: Das Inductionsgesetz unler Voraussetzung ausschliesslicher Giiltigkeit des Ampèreschen Gezetzes, equation (86).

( 3 ) R. Clausius, Die mechanische Wàrmetheorie, 2 nd edition, Bd. II. Mechanische Behandlung der Electricitat, chap. X: Anwendung des neuen elektro dynamischen Grundgesetzes au/ die zwischen linearen Stràmen und Leitern slattjindcndcn ponderomotorischen und electromotorischen Krafte, p. 298.
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deduced from his ideas on the fundamental law of electrodynamics, and represented by the following formula

t

e ds ds' dt

9(2 fj


	ds ds' dt ^



dt

J

COS ÜJ

v' cos(p, ds)

r

ds ds' dt

In this formula, v and v' are the velocities of the elements ds and ds'; p. is a constant whose value is unknown. It should be noted that the electromotive force given by Glausius' formula, unlike the electromotive forces proposed by other authors, depends not only on the change in relative position of the two elements ds and ds' with respect to each other, but on their absolute motion in space.

Without examining here the theories that have provided these multiple forms of the law of induction, let us compare the consequences of these various formulas.


	

	Application of these various laws to induction by single variation







intensity.

Let us first consider the case where an inducing current is held stationary in the presence of an equally stationary induced element. We find, from the various laws indicated, the following values for the electromotive force induced in this element:

i° Helmholtz's law (formula (i)); F.-E. Neumann's law (formula ( 3 )); Cari Neumann-IIelmholtz's law (formula (6)) :

( 9 )

E ds

3l 2

2

ds

COSOJ


	cos 0 cos 0'^ ds'.



2 r

dt

2° Weber's law [formula (2)]; Cari Neumann's law [formula ( 5 )

(10)

E ds

5 t 2

ds

cos 0 cosO' dV r dt

ds '.

3 ° Clausius' law [formula (8)]:

(11)

E ds

5 V 2

ds

2

cos tu dV

dt

ds'

2l 2

I*

*. f 1 ' è

COSUJ

ds'

Let's start by studying the latter. Let's suppose that the inductor presents at point P an angular point (Jig- 40 * When we pass through this

182

APPENDIX TO BOOK XIII.

point, the angle u> jumps from the value to' to the value o". We will then have

. d cosio 7 ,

J - - as

r os

J

COSOJ, COSOJ

1

j:

COSIO

ff

COSO)

r

0

P

0

1 r cos

~J ~

OJ

dy

ds

ds',

p being the distance from point P to the element ds.

Either the conductor is closed; or, if it is open, the intensity of the

1

À

current is zero at both ends, so we have

J

COS U)

r

o

o

and formula (ii) can be written

E ds

2

ds

2

S O)

dv

dt

ds

cosio c/.J '

ds'

ds'

2

l x

dsi

. COSIO

ff

COS 0)

P

P

Let's assume that the field current is uniform, in which case

and calculate the integral electromotive force induced in a closed conductcui. This force will have the value

cosio di f r dt

ds ds '

r

o

2
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while Elijah's value must be

l v

3 V 2 JJ cos

OJ

(iy_

dt

ds ds '

Glausius' law is therefore only acceptable if we have

The formula (n) then becomes

E ds

We will now notice that formula (9) contains as special cases formulas (10) and (12). It is enough, to deduce formula (10), to give to X the value - 1, and to deduce formula (12), to give to X the value 1.

If we remember [Introduction, Chap. I, equality (6)] that

cosu" cos8cos0'_ d 2 r r r às ds 1

we will see that the three expressions (9), (10) and (12) of E ds become equivalent in the particular case where the inductor is a closed and uniform current. All the proposed laws thus lead to the same result for the induction between closed, uniform and stationary currents.


	

	Comparison of these various elementary laws with the law







integral induction.

We will now discuss these laws for the case where there is motion of the conductors. First, we will introduce into Clausius' law given by formula (8) the hypothesis p = o, without which we know it would be unacceptable. The formula which expresses

this law will then become

e ds ds' dt

(13)


	ds ds' dt ^ ( J '



2 dt \ r

3C 2

J

t

to vcos(v } ds r ) 0 v cos( ds ) 1 c f s c ls di

%

ds

r

ds f

r

Let's assume that the inductor is closed and uniform, that the armature is f and me, and let's see under which conditions the integral electromotive force of induction given by the formulas (2), ( 3 ), ( 5 ), (6), (i 3 ) will have the value
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This has been accepted as certain since the work of M. F.-E. Neumann and W. Weber.

i° Clausius' law .

Let P be a point where, on the armature, there is a slip line. At this point, the velocity p varies discontinuously; the geometric quantity which represents it suddenly changes from p 4 to p 2; the angle tu changes from toj to ü>2. At this point new elements A s\, às% are introduced. We have

to p cos (V)ds')

âs

ds

p 2 cos(po, ds 1 ) - C] cos( c l7 ds')

r

(V ds

d

dt

/ COStü

r

ds

7 ds a -

_. eosco dt ,

D-7- ds

ds

r t I /

J - [ COSüq --

dt

A s

COS Ui.7

r

\

A dt

Let P' be a point where the inductor has a sliding line

ment. We will have

n

p' cos(p\

r

ds

v [ 2 cos ( e' 2 , ds ) - v\ cos ( , ds )

r

and

ds

, d

dt

Çy costo

ds

d_

dt

Ç f y - t0

d d

ds ds'

J

d

J

costo

ds'

dt

r

ds 1

\s\ r costo;

dt J r

A $2 /*COSU> 2

dt J r


	ds



The formula (i 3 ) therefore gives

C dt

912

'V

0

2

(r ff-*

V " J * J *

SK

2

J

rr CO SW

back

ds

d os'

~cl 7

f

cj ">


	jw a^



2

ds '-h As

9^2

2

c* 2

2

J

2 f ^ ds' h Ai-; c/i h- Ai-; y c _2î^l c i s \

' <// f

COS ( P 2 , <&')

ds - Pj r//

COS( Pi, )

/*

J

d

cos( P

f

-2 1

c/.s

/ / | cos ( p 11 ds ) ,

v\ dt I - - - ds

r
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This result differs significantly from the one presented to us by equality (i 4 ). For these results to agree, it is necessary and sufficient :

That the inductor and armature do not have slip lines, which dispels the last three terms of the second member5

Let the inductor and armature be inextensible, which makes the second term of the second member disappear.

Therefore, in order for Clausius' law to be consistent with the law of undue *

teur

and uniform, it is necessary and sufficient

made of wires

sliding contacts .

2 0 Weber's Law.

Let dl and dl be the path elements traveled, during the time dl , by a point of each of the elements ds and ds\ The equality (2) can be written

e ds ds ' dt

3 l 2 t __ dr àr d] f

r ds ds 1 dt

2 r

2/

to ' 2 r ds' dl

à ' 2 r às r dV

dr di

ds' dl J dt

dr. dl

ds dV 1 dt

dr ) T ,


	J' ds ds dt.  2 ds



We will then have

C

3 l 2 di'

di f f 1

dt 1 J . r

dr to1

ds ds

7 ds ds'

( 15 )

21 2 J'

i

à 2 /

i dr dr\ àr dl

-2

ds

f

3 t 2 J'

i.i i

with 2 r

toTdï'

2 ds' dl'J ds dt \ dr ùr \ dr dl'

ds ds'

2 ds' dl' 1 ds dt

ds ds

We will transform this expression.

We will mark the position of a point on the armature not by the arc s which corresponds to it at time t , but by the arc a which would correspond to it at an arbitrarily chosen time we will similarly mark the position of a point on the inductor not by the arc s' which corresponds to it at time t , but by the arc a' which would correspond to it at time t 0 .

Let f/a, d<j' be the lengths of the elements ds , ds' at time to. We

will be able to write

C

% 2 di'

dt

( [5 bis)

IF 2 I

U?

f fp-( r

7 <J da 1 '

ds ds'

ds ds'

% 2 3 '

d 2 r

1

dr

àr\

i dl

at

d<j' dl

2

da'

di j

' dt

da

with 2 r

1

dr

dr\

dV

at

da' d l

2

dz'

di')

dt

da

d<J d?

f/a f/a'.
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i m

Consider the quantity

It can be written as

ff

r r i d*r

X X' Mà

dr dl

dl da dt

da dd .

à ( i dr àr\ dl

dl V r da dd / dt

da da 1

dr à /1 àr\ dl , di* dl \ r da) dt

da dd .

By the way,

So we have

(c(>)

d ( 1 dr

i

à 2 ;

dl V r da

r d<r d/

f f fl ^1X1

X X v>■ ^

ï dr d/

r 2 d<x d/

i d/' dr \ dr dl

à

dl i dr df

2r 2 dd dl J da dt

dada

dl

dl \r da dd j dt

da dd

r d 2 r

ï dr dr \ dr dl

<7 G '

r da dl

2 r 2 da dZ 7 da'

dada

Now consider the quantity

ï d 2 a* d/ 1 o?/

r da dZ dd dt


	dadd



We can write

ï dr d/' dl

r dl dd dt

The quantity

d /1 dr dr dl da \ r dZ da' dt

ï d 2 /

r da dd

i dr dr \ dr Al r 2 da da' j dZ ^7/

ï dr dr d 2 Z

r da' dZ da d/

i dr dr dl

r dl dd dt

varies continuously along the circuit except at the points where the conductor has sliding contacts. Let's assume that it has in P

a contact

dl\

dt] o

sliding. The quantities ^ y go from values f^\ y

dl dt

urs

dr

Tl

\

<M

dt

dl]

i
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We will therefore have

and

( 17 )

/

f

K J"■ '

d 2 r di

dsdl ds' dt

ch ch

t

'<U\

\ì"

at

1 tos

7 ds'

dr

0

ds

7 ds 1

1 tor to?

to?* dl

r 0of

r 2 toe de' 1 dl dt

of dd

a i dr àr

r dl d<j'

of dt

de de f

x d 2 /

t dr àr\ ôr dl

e *- 0"

r of dl

r 2 de dl / àe f dt

from 1

0

dr

Tl

1

à 2 1

1 dr dr

dr dl

r de de'

ir 2 de de' J dl dt

r r 1 tor dr

r dl da'

d 2 1

da dt

ds ch'

Finally, let's consider the quantity

CfJ

at 2 r dr dl

de de' dl dt

de de *

We can write

1 d 2 r àr dl r de de' dl dt

dr

0

ds

; ds'

à f 1 àr àr dl

1 to 2 r

1 àr àr dl

àe' V r àe àl dt

r toe to the

r 2 from' tol 7 toe dt

The quantity

1 tor tor dl r from tol dt

varying continuously along the contour s', we have

and

( 18 )

<7 "-'(T

1 to 2 r tor dl

r àeàe' dl dt

of de'.

r to 2 r

ï to 2 /

-'G

r àeàe'

à 2 /

1 àr àr\ dl àr

r 'àe' àl r 2 àe' àl I dt àe

of de'.

ï àr àr

dr dl

2/' 2 toe from J tol dt

1 àr àr\ dl àr 2 ~ 2 àe' àl ) dt àe

of de

of de
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The equalities (16). (17), (18) give

(' 9 )

-if a

O 2 1

i dr dr\ tor cil

di f dl

to / 1 dr gold

,dl\r di di J clt

*ir 2 di f àl I ài dt

cil , , , ( dl

didi -

didi r

c\

1 "_- 1

dr

-, ds'

J ds

dr

0

ds

7 ds'

1 dr dr d 2 l

1 <J f

r

ài' àidt

di ds*

We also have

(16 bis )

( 17 bis )

1 d 2 r

1 dr dr\ dr dl '

r 2 da' dV 1 di dt

di di f

d

i dr dr \ dV

dV \ r ài ài r J dt

didi r

i to 2 r

(T ^ < 7 '

i dr dr \ dr dV

\r

i

"o

b

2 r ' 1

: da

dr

) toi

dt

i

d 2 r

}

dr

dr\

dr

dl'

r

"5

b

2 r 2

Ol

dlj

da'

dt

i

d 2 r

i

Gold

dr x

\ ^ r

dl'

r

dada'

2 7-2

Oi

da' j

f dl'

dt

di di

ch ch'

di di '.

Let P' be a point where the inductor has a sliding contact. In this

dr

dl;

|,0,nt ' 37 ct dt

pass values

dr

dT

and

o

and

dl

clt

î

So if we notice that

dl

dt

to the values

o

4

I

i d 2 r dr dV

to /1 dr dr clV

r OiOi dV clt

di \ r d<j àl' clt

r

à 2 ?

i dr dr \ dr dl

r Oi'Ol

r 2 da dl / da dt

i dr dr d 2 l

r da dl di'dl

we find the equality

18 b is )

i to 2 r r OiOi

î dr dr \ 2 r 2 da da'/

Gold cil Ol dt

di di f

i Or Or xr 2 da' Ol

i Or Or r da dl

d 2 l

da ôt

i dr /dr r Os \d/'

ch di 1
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Equalities (16 bis), (ly bis), (18 bis) give

(19 bis)

m

a

d 2 r

d<j â(j f

à

1 dr dr \ àr cil

2 r 2 da f àV / ôg dt

dadd

1 tor to7

dV

atV V r ôg d<j f l dt

ch da'

\

dV

dt )

\

IB

1 dr ldr r às \ àT

àr àr à~V

ds

1

\

dr

dt

0

r 1 tor

) r ds

ds ôl d<y' dt

d (j d<y'.
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dr

dî'h

ds

Let us consider the armature's sliding contact P (fig. 42). It is in P at time i. At 1 instant (t -+- dt ), this sliding contact is in II. The two points

Fig. 42.

of the conductor which were in contact at time t are, at time (t -H dt), at P 0 and P A . We have

PPo=c^o, PPi = ^i, P 0 n = A.y 0 , nP!=As,.

Let us express that the two contours PPoïT, PPiII have the same projection on the line r. We will have

and, therefore,

, . (dl\ (àr\ tdl\ (dr\ [às 0 /dr\ As t { àr\ ]

||^ \di)o\dl)o \dt) 1 \àl)i~'\dt \ds )o dt \ds )i\'

In the same way

(20a )
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By virtue of equalities (19), (19 bis), (20), (20 bis), equality (1

5

1 *

If 2

1 dr to 7

: U ' y U r U, *

r

7 ds ds f


	J'



A s

o

1


	J'



dt j s , r Asi

dt A s

.1

r 1

" / r

as', r 1

"A /-

1 d/' dr \

d/ V r da du' / rfr

d<s dv

1 dï ' dr \ é//' r d<r da' /

r/d c/a

d/

0

ds


	r/.s '



I i

t Gold

dr

r '

0 ds

I

/dr N

i d / 1

r

\s'j

0 ds

T

/ dr N

1 ^

r/s

r/s

t

i ds

ds

3 V 2

J'

2

dr dr d 2 /'

dr dr d 2 /

ds d/' ds' dt

ds dl ds dt

events

t" "

It is easy to see that this

( 21 )

î t

ut still write

/

r

d

->

dt

J

■ft


	S * ,s'



c/s f/.v'

<

31 *

J'

\

i / d/' dr d 2 /'

r V ds d/' ds'd£

--h

dr d/* d 2 /

ds' d/ ds d?

n j i i*

iH *

From this equality, it follows that Weber's law is not general, when Vinductor and Vinduit are mobile } with the F.-E. Neumann .

3° F.-E. Neumann's law. -

in

According to formula (3) we have

C

J

( 22 )

SI* r/J'

dr

11 ds'

dt

2

1 -t- X i -

-COS (.0 2 r 2 /

X

cosO cosO' 1 </s ds

t

"r t

According to the equality ( 4 )

R


	
2/3 A A'



	
cos!) COSI) -COS 10





2

/

Now we have [Introduction, Chap. I, equalities ( 5 ) and (7)]

d/

Bones

cosO'

Gold

Bones

ï

COS W

dr d/

d 2 /

\

ds ds'

ds ds'
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It is therefore easy to see that we can write

or even

Let's study the quantity

( 23 )

U

R

R

dr

R dsds dt

1

î

d 2 r 2 ds tos f y

r

4

1 i dr 2 to-r 2

dr ds ds'

?

v

i l

dr % to 2 r 2 dr

dr ds ds' dt

?

which can still be written

(23 bis)

/ C* 9

We have identically

1 i dr 2 to-r 2

1 JL at 2 r 2, dr 2

da da' dt

d<j dv f .

at I dr 2 dr 2

à

I i v

dr 2

*2

da da'

da

da'

da'

dt d<r ;

rf / dr 2 dr 2

da <h r'

We have therefore, according to the equalities (23) and (23 bis)

( 24 )

u

dr

R -7- t/o f/o'

dt

2 20

'' (j (7'

d I

/ . i dr %

1

dr 2

do- '

\ dt

do'

d |

( dr 2

1

dr 2

do'

\ t/*

da

f/ |

/ I

d/- 2

j.

dr 2

dt

\ do

da'

t/a t/a r

t/a t/a

t/a d? .

But we have

( 25 )

and

(25

(

K

G "- (7

1 i

t/r 2 dr 2

t/£ do

f/s t/s'

d

i i t/r 2 dr 2

1

\

do' \ dt do

1 r 1 dr

4 J. r tos

ds ds'

dr

dt

1 f 1

A! r

-i *J s

Ô1

1

1

d/

4 J ■ r ds '

dr'

ds' V dt

dr

dt

ds -b

1

1 r 1 gold

4 J s r to s

1 dr! dr

dt

ds '

1

f/s'

0

t/s

/ 0
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Let r

duit

and also

So

dt the distance from point O to the element d$ f . We have, on

Similarly, on the inductor

The equalities ( 25 ) and (25 bis ) become

dv da

By virtue of equalities (26) and (26a), equality (24) becomes

d / ï dr ôt

dt V r ô'i ch'

which can still be written

the equality (22 1, where we can give a X

COMPARISON OF VARIOUS LAWS OF iNDUCTION.

arbitrary value, for example the value -i, becomes

3 l 2 d /,, Ç r cos 0 cos6'

i dt ( JJ, r

\ S S

The elementary law of Vinduction given by M. F.-E. Neumann thus leads in all circumstances to the integral law of Vinduction between closed and uniform currents given by the same author ( 1 ).

4 ° Law of M . Cari Neumann . - According to equality (5), the law of M. Cari Neumann gives

t*

dV r r dt J ,


	y S S



cosO cosO'

ds ds' - J

'ff

R ~ds ds' dt

%r

j'

d

cosO di

S V s

dt

ds ds

or, according to formula (27),

C

^ d

dt

(28)

r

a 2

f

\

r /j,

r UM "

cos0 cos 6' , ,,


	ds ds



cosO dr'

dt

ds ds'

The quantity

cosO dr r dt

varies continuously along the contour s', except at the points where this contour has sliding contacts. Let us assume that the contour s' pre¬

in P'a sliding contact where

goes from the value

We have

to the value

But we know that

(' ) It is obviously by mistake that M. C. Neumann (Die elektrischen Kràfte, p. 227) states this proposition that the elementary law of M. F.-E. Neumann agrees with his integral law only in the case where the inductor has

no slippery contact.

D. - III. l3
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The formula (28) thus becomes

P

O

3 t 2 d_ dt

c,os0 cosO'

(29)

('■SS-

ds ds'

St

J'f As

cosOf, COsO

r cos0ü 0 / r

ds

r

. C cosfKcosO , A $\ / - L -- c/s

Comparing this formula with the formula (14 )? 011 arrives at the result

next :

For the elementary law of Vinduction given by Cari Neumann to agree with the integral law of induction between closed and uniform currents given by F.-E. Neumann, it is necessary and sufficient that Vinductor has no sliding contacts ( 1 ).

5° Law of M. Cari Neumann, modified by M. H. von Helmlioltz .

Formula (6) gives

1 C

2t 2 dV

f

%

:V



dt

cosô cosO'

ds ds'

S

R ÿ ^s rfs' dt

J'

3 o )

ds

i'

d /cosO d/r

dt

ds ds '

j; J, r r cosO_c

2 X X r

cosO cosO' 7 o ds'


	ds -T-



dt

3l 2 i

2

X d

dt

/

j'

cos 0 cos0

/

cos CO

ds ds* i.

If we observe that we have

co

s 0

cos

0'

ds ds f

r

s

S s'

CO S (U

r

ds ds

t

and if we take into account equalities (28) and (29), equality ( 3 o) will give

St 2 d

2

It.

J

\

fl

cosO cosO f

ds ds f

r

"/As;

2

cos 0 a cosO

I ■ 0 "'~ ds

\ dt

\

s

r

cosO'. cosO

ds

r

s

IJ

cosO cosO'

ds

8 ds'

r

o d ifi

This equality, compared to equality ( 1 4 ), shows that, for the law

H. von Helmlioltz agrees with; closed and uniform currents

given by M . F.-E. Neumann, it is formed of inextensible wires that are not

It is necessary and sufficient

(' ) Mr. Cari Neumann erroneously states (Die elektnschen hriifte, p. 227) that the elementary law of Tinduction that he proposes agrees in all respects with the integral law of induction between closed and uniform currents

given by Mr. F.-E. Neumann.
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CHAPTER ONE.

INTERNAL ENERGY OF A LINEAR CURRENT SYSTEM.

§ 1 - Fundamental theorems on the internal energy of a system

of linear currents.

When an electrified system does not contain any currents, the expression of the internal energy of this system is known. If we denote this internal energy by U, we have

(>)

EU

AND

W

e

due)

Y being the internal energy of the system in the neutral state;

Wthe electrostatic potential ;

q one of the electric charges that the system carries;

0 a quantity which depends on the nature of the body where the

charge q and its temperature;

finally the sign V extending to all the electric charges of the system.

This expression is no longer demonstrated for the case where the system contains currents. However, we will admit that the variation of internal energy of a system containing currents is equal to the variation of the quantity U calculated by the

BOOK

ELECTRODYNAMIC FORCES.

the previous formula, whenever the conductors in the curves remain stationary and the electric flow through each element of these conductors is

remains unchanged in size and direction.

This hypothesis forms the starting point for the study of the amount of heat released by a thermo-electric or hydro-electric current (t. I, p. 552.).

This assumption leads to the following consequence:

The internal energy of a system that contains currents has

for expression

( 2 ) EU =EY + W+2( 0 - T ^)'7 +- EU '>

the quantity U 7 remaining constant if the various conductors that make up the system remain stationary and if the various currents that flow through these conductors remain constant.

First of all, the very way in which the quantity U' is introduced shows that the quantity U' must reduce to zero if all

currents contained in the system come to an end.

The quantity U', like the quantity U, must depend exclusively on the quantities that it is necessary and sufficient to know at any instant for the state of the system to be known at any instant. We can therefore state the following proposition:

The quantity does not depend on the derivatives with respect to time of the coordinates of the various material points of the system, nor on the derivatives with respect to time of the intensities of the currents that flow through the system.

This proposition leads to a first fundamental remark on the nature of the quantity U 7 .

Among the parameters that define the system are not only the shape and position of the conductors that comprise it.

In this case, not only are the intensities of the currents flowing through the conductors determined, but also the physical and chemical state of the conductors and the free electrical charges they carry. Now the preceding proposition leads to this consequence:

The quantity U 7 depends only on the shape and position of the conductors that make up the system and the intensities of the currents that flow through them.

INTERNAL ENERGY OF THE CURRENTS.
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Let a, (3, ..~k be the parameters which, together with the shape and position of the conductors, and the intensity of the currents which pass through them, complete the determination of the state of the system, i.e. its physical and chemical properties and the distribution of free electricity. According to what we have said about the quantity U', this quantity must not vary if the parameters a, P, ... vary alone, so that we must have

whatever the values of the variables on which the state of the system depends, and whatever the values of cfa, dfi, ..., cCk.

We must therefore have, whatever the values of the variables on which the state of the system depends

which demonstrates the stated proposition.

This demonstration would no longer be valid if the function U' depended on the derivatives with respect to time of the coordinates and the intensities J one could no longer say, in fact, that the equality

takes place whatever the values of the variables on which the state of the system depends; it would only take place in the case where the derivatives with respect to time of the coordinates and the intensities would be supposed equal to o.

What we have just said about the internal energy of an electrified system through which currents flow is sufficient to ensure the legitimacy of the reasoning contained in the following chapters.  It is therefore as a matter of pure curiosity that we will push

further study of the quantity U / .

§ 2._More complete determination of the quantity U .

The determination of the quantity LJ 7 would not be possible without the following hypothesis:

l

igB
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The quantity U 7 is of the form

U' = ^ © ds ds

/ j i

7

ds and ds' being any two of the elements that make up the system, and cp a (quantity that depends on the mutual position of the two elements ds and ds' and the intensities J and J' of the currents that flow in these two elements.

The sign indicates a summation that extends to all

distinct combinations that can be formed by taking two by two the elements of the various conductors of the system.

The first proposition we will demonstrate is the following:

The quantity cp is proportional to the product JJ' of the intensities J and J' of the currents flowing through the elements ds and ds 1 .

Let J 4 and J 2 be two quantities such that

J | I - J 2 *

j

Let's look at the element ds either as a single element through which a current of intensity J flows, or as the set of two juxtaposed elements, one, ds t through which a current of intensity J| flows, the other ds% through which a current of intensity J 2 flows. The value of LF must obviously remain the same in these two ways of seeing. However, the substitution of the second way of looking at things for the first has the effect of substituting in U' the set of terms

ds

©(.!,, J') (L, j') ds'

7

to the single term

ds y o ( J 2 , . 1 ') ds'.

We must therefore have, in any way, co

system

[<?(J

1

J 2 ) J )


	<p ( J 2, J')] ds' - O.



Let C be the conductor of which the element ds is a part; C 2 , --- L/i the conductors that form the rest of the system. We have

5

Ç ©(J/ JJ) ds'i -+- Ç cp ( J , J ) ds'., -i-... Ç cp(J,J n)ds n .

d Ct Jc n

"y <p(j, j')*'

CIIAP. i.

INTERNAL ENERGY OF THE CURRENTS.

The previous equality becomes

r 99

c,

[?(J

J 2 , j; )- ? (j l5 j; )_ cp(j 2 , j; )j ds\

(3)

f [?(Ji

J 2 , J 2 ) 9(J'2> 3 2 )] ds'%

m #

\

\

c

[<?(l+l, J")- K)-<p(j 2 , j;j] ds' n

O

n

Let's suppose that we let the circuit C f its shape, but that the circuits Co> -. C n are infinitely distant. The first term of the previous sum will keep its value. The others will become equal to o. Since the previous equality must remain, we will have

surely

(4)

[?(Ji + L ) - '?( Ji> L)- ?(L, J 2 )] ds\

O

Let us then bring the circuit C 2 back to its primitive position. Equality (3) will give us

X h<

fj' {

9 ( J 2? J 1 )] ds 1

J J

21 ^ 2 ) îp ( J 1 j J 2 ) ( ^2 ? ^ 2 )] ds 2

O,

or because of equality (4),

(5)

f t?( j

1


b> L ) ^(Jlj *^2 } ( J 2 " J2 )] 2



O

The set of equalities (4) and (5) prove the following proposition

vante :

U integral

J [?o

1

J 2 ,J'

\

;

cp(Jj, J')- ?(J 2 , J')] ds\

extended to any closed curve, to which Vélément ds belongs or does not belong, is equal to o.

This proposal requires that we have

( 6 )

ç(Ji ■+■ L" L)-)

X-<P(y,
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x', y', z' being the coordinates of a point of the element ds' and <ï> a uniform function of J 7 , x',y\ z '; this function which can also depend on the parameters relative to the element ds.

But we have

d , , dx' <?4> dÿ d4> dz' dY

ds' i x % .y i ^ ) ÿ x < rfg 1 _+ " fiÿ rfg' dz' ds' dY ds'

dY

Since the first member of equality (6) does not depend on -p, the same must be true for the second. So we have

<ï> does not depend on L.

This being the case, let us consider an element ds' in the system through which a current of zero intensity flows. We must obtain the same expression for U', whether we consider this element as being in the system or not. This obviously leads to this consequence:

The complete set

extended to any closed curve, is equal to o.  We deduce, by virtue of equality (6),

or

( j being a quantity independent of the position of the element ds'.  C can depend on the shape of the circuit to which the element ds belongs.

Let's put

We will have

CUAP. I
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-J. O I

The equality (6) can be written

(6 bis)

cp(J

1

J*, J')

-S') to

and we have

z ') ds = o,

integration extending to any contour. This condition requires that we have

i

î

à

Bones

^ ( J11 se i y j )?

œ,J', z being the coordinates of a point of the element ds and W a uniform function of J l5 J 2 , x, jk, z.

Equality (6) then becomes

o(J

()2W d)i

?(Jlj J ')- ?( J 2, J')

d^W dh

0*W dx

dJ i Os' ds

dJ " Os' ds

Ox Os' ds

d*W dy

dz

dy Os' ds

dz ds' ds

The first member not depending on it must be

ds ' ds

the same for the second. So we have

dli ds'

o

ôJTàs'

o

î

which proves that the second me depends on J, and on J 2 .

This being the case, let us pose

of 1

î t

e g

ality (6) is in

y(j.j')

to f(J, J')

Equality (6) gives us

/(J

i

J 2 , j') = /(J 1 ,J'),

regardless of J 2 ; therefore, the quantity

/(LL)

d "p(J, J')

atJ

is independent of J. Similarly, we would show that

d "p(J,J')

dj'

him
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is independent of J 7 , which would give

(S) <p( J, J') = AJJ'-f- BJ -4- CJ'+ D,

A, B, C, D being four quantities independent of .1 and J'.  From this equality (8), we deduce

®(Ji H- J 2 , J'.) - J') - ?( J 2, J') = - (GJ'-t- D;.

The second member of Legality (6) being, as we have proved, independent of J', we see that we have

C =o.

It would be proved in the same way that we have

B - o

and, therefore,

*

( 9 ) cp(J, J')= AJJ'h- D.

Let's face it, there is no current flowing through the element. The value of U 7 must not be altered, either if we consider this element as part of the system, or if we consider it as not belonging to it. The first way of looking at it increases the value of U 7 by

D \ ds'.

We must therefore have

U - o

e', therefore,

lio) - <p(J, J') = AJ J'.

C. Q. F. D.

Let us then prove this second proposition:

The quantity A changes sign, without changing magnitude, when the direction of travel of one of the elements is reversed

ds, ds .

Suppose we reverse the direction of travel of the element ds.

The quantity A becomes A 7 , their of U' must not clia

The quantity J changes into nger. We must therefore have

J. La va

A J' ds' = -

A'J' ds',

CHAP. I.
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whatever the positions of the elements ds' and the intensities J 7 . This can only happen, in general, if we have, as

we announced it,

A = -A'.

Having demonstrated this proposition, let's imagine a system made up of n circuits i, 2 , . . . , n. Let's suppose that, in circuit 1 , the intensity varies. The internal energy of the system will undergo.the variation

AJ[ ds\

A. J 2 ds ^ "k


	-



This variation must be of the order of the quantities 3J,; being any continuous functions of the arc s, easily the following proposition:

these quantities we deduce

U integral

AJ' ds

J

extended to any circuit, to which U element ds belongs or does not belong, is finite.

We will admit that the quantity A is expressed as a uniform function of r, 0, 9\ os and, consequently, of r, cosO', cos9, costo; we will be able to follow then, to determine the quantity

A (r, cosO, cos0', costo),

the path that was followed, in Chapters II and III of Book XIII, to

determine the function cp(r, cosO, cos If, cosw).

Following the reasoning given in Chapter II of Book XIII,

*

we will establish that we have

(u) A =/'(r) cosO cosô'4- g (r) costo,

which will give us, for the value of the internal energy of a system which contains any linear currents,

COS0 COS0'-H

g' ( r) costo] ds ds r ,

f (f') and being two unknown functions of the distance /.
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2 U(

To this result we will add the following proposal:

The form of the functions f'(r ) and g' {r) can be determined by following a procedure similar to that which, in Chapter 111 of Book XIII, allowed us to determine the form of the functions f(r ) and g(r).

Let's take again our system formed by circuits 1, 2, ..., n. If the current varies in circuit 1, the internal energy of the system will vary from

/"J. *. X AJ i ds\

If the circuits 2 , . n are infinitely distant from circuit 1 , this variation must be reduced, whatever the quantities

o J |, at

f 0Jj dsi J AJ', ds \,

-fi "-fi

which requires that we have

Ç8 Jj dsi Ç AJj ds' z

j 2


	---'-* ■--#*(



f 8J1 ds x f AJ ' n d$' n J x J n

o

?


	*



1

o

whatever the quantities oJ ( , provided that the circuits 2 , . . . , n are infinitely far from circuit 1 . From this we can easily deduce that, if the element ds t moves away beyond any limit, the quantities

/ A J j ds '. 2 , 2

4 -

, / A J " ds n

Jn

must tend to o, whatever the quantities J!,,

A new application of the reasoning used at the beginning of Chapter III of Book XIII will then show that the two functions f'{r ) and g'(r') must tend to o when r grows

beyond any limit and become infinite as--when r tends to o.

OR AP. I.
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To this result, let us add the following assumptions:

The two functions f'{r) and g (r) are of the form

and reasoning similar to that used in Chapter III of Book XIII will give us

cosO cos 6'

B r and V being two unknown constants.

The expression of the internal energy of a system containing linear conductors through which currents flow will be

20Ô
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CHAPTER II.

THE DF, JOULE LAW IN CURRENTS OF VARIABLE INTENSITY.

Joule's law gives the heat release produced by the passage of a permanent and constant current through a homogeneous wire, all points of which are at the same temperature, which allows electricity to pass through without undergoing any change of physical or chemical state and which is immobile. Sir W. Thomson and M. H., von Helmholtz completed this law by taking into account the case where the wire is not homogeneous and does not have the same temperature everywhere, and the other case where there can be changes in the temperature.

of state (t. I, p. 553).

The law as supplemented is as follows:

If an element ds of the wire is the seat of an electromotive force £ ds , and if it is crossed by a current of intensity J, it is, during the time dt, the seat of a heat release dQ such that we have

E t/Q

£~ T

dC

<)T

J ds dt.

the amount of heat released by the system during

the kid

has the value

(O

E t/3 - dt

£

T ~ | J ds,

summation extending to all elements of the system.

This law will first be extended to a system of stationary conductors through which any current flows.

We will look for the consequences by assuming that the temperature is the same at all points. This assumption is only intended to shorten the calculations; it is not essential to the development of the theory.
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Let's find the value of

ds dt.

The element ds contains a hydroelectric electromotive force 7) ds. Let © and ©' be the values of the © function at its two extremities. Let Y and Y' be the values of the potential function at the same points. The electromotive force C 1 ds, foreign to the induction, of which the element is the seat, has the value

C ds

7 ] ds

[(sV-t-0)

OA

n

0 ')].

The electromotive force of induction, in the same element, has

for the value d' ds , and we have

P//

O

ds dt

0 J ' ds ds' ),

<î> designating the quantity

f (r) cos6 cos0*H- g(r) costo

and the sign ^ extending to all elements ds' of the system other than ds.

The drivers being immobile, we have

%

Ô

(<£ Y ds ds ') = dt ds y [f( r) cosO cos G'

£-(/-) Costa] ^ ds'

So we finally have

dt

HL

V

T

dr\

tiT

(eV-f-0) - (sV'-b 0')


	T 1



{of

d&'\~

ds

ds '

\ôôf

dT )_

J

1

dtS J ds

dï

[f{r) cosO cosO' h- g{r ) coswj ds r .

On the other hand, since the system is immobile, the exerted forces that are applied to it do no work, and

ries

we

a

E SU,

U being the internal energy.

On this internal energy, we will suppose that 1 nothing is known but what is expressed by the equality [Chapter I, equality ( 2 )]

EU

Er

W

0

T

à@


	mm ■ h I ■



dT

9

EU',

U' having the properties defined in § 1 of Chapter I.
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The changes of state that occur in the vary the quantity 0. Let

e font

the variation that the quantity would undergo

as a result of these changes of state, if all the electric charges remained immobile; or

the variation that the same quantity would undergo if the electric charges were moved without change of state of the conductors. We will have

It is by means of this approximation (vol. I, p. 5a8) that we established the theory of electrolysis and (vol. I, p. 542) the proposition that serves as our starting point in this Chapter.

This being said, the theory of hydroelectric currents tells us that

The system being immobile, we have

"y 7

We have obviously

Finally, the following equality has been praised

01 IA P. II.

JOULE'S LAW.
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This equality gives us the expression of the variation that the quantity U / undergoes when the intensities vary in any way, the conductors remaining stationary.

This equality (3) can still be written

(4)

E8U'

o

/*) cosô cosG -+- g(r) cosco] W ds ds'

î

2

all combinations of the various elements

If we

of the system two by two.

This equality (4) assumes that the conductors are immobile, and since U 7 does not depend on the velocities of the various points of the system, it is easy to see that we can deduce from this

EU

VJ cosG cosG' -f- g(r) costü] JJ' ds ds '-H C,

C being a quantity independent of the intensities J of the currents flowing through the system.

But the quantity U' must cancel when all the currents' intensities become equal to o. So we have

G

o

and, therefore,

(5)

EU'

VJ r f( r ) cosO cosO' -t- g(r) costo] JJ' ds ds'

Thus, in order to determine the quantity U 7 , instead of making directly on this quantity the hypotheses that we made in § 2 of the preceding Chapter, we can make use of the laws of induction joined to Joule's law. We then obtain, as in the previous chapter, an expression of the form . ,

cos0 cosG'

h g' ( r) cos to J J J ' ds ds' ;

but the new method A r goes further than the one exposed in the previous chapter, in that it shows that we have

and that it thus brings the determination of the functions of the dis
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the determination of the functions of the distance fjwhich appear in the law

of the induction.

If we accept the assumptions that we used to determine these, we find

(6)

EU

i

A

cos 0 cos G'

i

À

\

CO

*2 r

2 r

sw i

J J ' ds ds .

CHA1\ III. - the law of electuodvnamics.

CHAPTER III.

LA. FUNDAMENTAL LAW OF ELECTRODYNAMICS.

We will now extend Joule's law to linear conductors that deform and move.

We will admit that we still have in this case

Let d(3 be the work of the external forces. We have

Let's first calculate

We have, as we saw in the previous chapter,

g(r) cos or ds ds'L

On the other hand, let us calculate ESU.
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We have

El]

EV

w

" t;;:' i q

<4 )

V JJ'[/( /■) cosO cosô'

ç( r) cos co] ds ds

The variation of V can be divided into two parts

Sr = Dr

AV

DT being the variation that V would undergo if the various conductors that

constitute the system were moving without changing state, and AV the complementary part of oV.

The variation of W can also be written

oW

clt

z(V

V')

ds

J ds,

DW being the variation that W would undergo if the conductors were moving, each of them carrying the electric charges that it carries, without any of these charges leaving the material particle on which it is located.

Since the quantity 0 depends on the arrangement of the material particles surrounding the charge q, we have

00 = 1 *0 -h A0,

D0 being the variation that would be undergone by the elTet of the displacement of the material particles if none of these changed caliber.  We have then

It is contained to neglect the term

O O

Cil AP. 11 [

So we have

THE LAW OF ELECTRODYNAMICS

2l3

esu

dt

ï) _ T Û ) J ds

dT

(5)

0)

(îV' + 0')

T

d&

dT

of'

JT

J ds

E Dr

DW

A 0

toT )

cosO cos6 '-h g(r) costo] ds ds'.

The set of equalities ( 2 ), (3) and (5) gives

8

mv

dG

e

e Dr

DW

D ( 0

T d0

t ot)2

( 6 )

3^^ JJ r /') cos6 cos0'-i- g{r) cosw] ds ds'

j'X ° j J , [y( 7 ') cos ® cosQ'h- g(r) coswj ds ds'.

Let us examine the consequences of this equality (6).

According to a known theorem on displacements without changes of state, we have

E Dr

d&i,

d&i being the work of the inner forces, both given and

friction, in the system in the neutral state.

The quantity -DW represents the work of the electrostatic forces given by Coulomb's law.

The quantity

D f 0

from

T dT 1 q

represents the work of the forces that are exerted at small distances between neutral and electrified material particles, forces whose existence is consistent with the hypothesis put forward by Helmholtz to explain the differences in potential level.

The sum

d&

EDr

DW

D 0

T-L

due) ^

is therefore the work of all the forces, both external and internal, that would be applied to the system if there were no electric current in it.
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Equality (6) teaches us, therefore, that the presence of electric currents has the effect of giving rise to forces in the system whose elementary work has the expression

d

rr

JJ '[/( /-) cos 6 cosô'-t

g{r) cos 10] ds ds'

because it is only on this condition that the second member of the equality (6) will represent the work of all the active forces of which the system is the seat.

Let's develop the expression of d'z.

Let's assume the system is made of n elements

ds x , ds 2, ..., ds".

We will have

= Jl

ds x

(j 2 <

ï\l2 ds^-h J 3 c ï > 1 3 d$%- f - * * ~ r ~ J Ai ^ 1 Ai

dSfi )

J 2

1 * * *

ds*>

*4


	

	

	" -











(

" * * 4 *

J3 ^23 d S 3


	

	

	J Ai ^2 Ai











d s fi j

-h J n 1

i

■ # " * % * * t j - -

J "

~l,n ds a )

by posing, to shorten,

<ï> = [/('■) cosô COSÔ'-H g(r) costo].

We deduce from this

CHAP. III.

the DK law of electrodynamics

6 .

2l5

On the other hand, we have, for the element c/s,,

Ji o j J'[ J ( r ) cosO cosO' -+- g(r) cos to] clsi ds'

ÆSSBm *

J ■! ^ i *

J i o ds i ( J 2 4*12 ds 2 -J-

Ji ds j [<ï>io 8 (J* dsy ) -h  13 8(J 3 d$z)

a *

J n ^ i ii ds n )

r I ) 1 n 0 ( J n ds n )]

Ji ds i ( J2 ds% o<ï> 12

j3 ds3 Q C I> i3 - - "h j n ds n

Similarly, for the element ds 2 ,

J

2

8 | J / [ t /( r ) cosO cosO' -+- ff(r) costo] ds 2 ds r |

J *î ^ o ■> ds

J2 0 ds 2 (^ J 1^21 ds i -r" J 3 v±jF 23

j! d$\ [* 21 S(J 2 ds 2 ) ~t~ ^23 Ô ( J 3 ds% )

J 2 ds 2 (Jl ds j 0^21 J 3 ds^ ^ 2 3


	
" "



	
*



	

	*







J/j 52 n dSfi ) ^2/7 ^ ( J n ds n )]

J a ds n 0^ 2 a)

The elements ds^, .. ds n provide analogous equalities

If Ton now observes that

J j ds 1 £ i2 ^ ( J 2 ds 2 )

f I ) 13 0

ds 3 ) -t- .

J o ds 2 f < ï > 21 6 ( J1 ds i ) ~H f I^2 3 rj ( J 3 ds 3 )

^ 1 n Cj ( J n ds n )]

^2/* Ô (^ 11 dSji)\


	

	" B J *'





	

	+





	
*





J n d$n[*fen\ 3 (J j ds) H- Q n 2 ô(Jg ds%) H- . . + 1 ^(J/z-i ds t z-1)]

0 ( J1 ds 1 ) ( ^ 12 J 2 ds 2 0 ( J 2 ds 2 ) ( c ï> 21J1 ds 1

<ï > 13 J 3 <*


	
*



	
1 * 2 3 J 3 ^ s 3





\ # * "

<*>!" ds n )

^ 2 " J // )

0 ^ Jer/s/^)( ds

1

^ 2 J ï) é /"9 *>


	*



^ x /i , " - 1J n -1 /î- 1 ) ?

it is easy to see that we can write the following equality:

8jj'[/(r)eos6 cos0'-+- g(r) cosœ] ds cls' j

0 J 1 ds\ ) (^12 ^2 ds 2

ô(J 2 ds . 2 )(^21 Ji ds 1

^13 J 3 ^


	
*



	
1*23 J 3 ds





... "4

( t > 1 n J n ds n )

^2 n ^ fi dsn )


	*



( 9 )

r

\

0 ( J n ds n )(&niJi ds 1

Ji 0 ds 1 (^12^2 ds 2 J9Û ds%(*& 21'li ds 1

4 ) ;î2 ds<)

... "4

^13 J 3 ds


	

	a







23 J 3 d S

-. . -h

J n dSfi) ^1 n J/i ds f i ) f ^ 2 n J n dS fi )


	*



J n û ds \ dsi

J, ds i(J2 ds% 0*^12 J 2 ds%( J, ds 1 o r I J 2i

^,,212 ds

9 a

3 i/s 3 Ô "i >[3

3 ds§ 0 ( t > 23

I


	*



f~ 1 J/î-i dsn -1 )

d- J/2

J" dsn 6^271 )

a ■

J" rfs a (Ji c/Sl 34", 4l + J 2 ^2 o4> /i2 +...+J"-i "s rt _ 1 o ra) , l _,)
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( 8 ) and ( 9 ) give

dx

J j cls j ( 0 4 * 1 2 J 2 ^ 2

84>

1 3 -' 3

J !i ds 3 -
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rt'ui J n dsn)

J 2 cl s ^ (
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3 "T

® ^ 1 n J n ds ti )

(10)

J 2 cl S 2 ( 0 ï 2 | J 1 C-ls 1

8 <ï>

2 3 0 3

J*" dS ■

3

0 ^ *2 il J n ds fi )

J n ds n (o n] Ji dsi -h J 2 c/i'2

J 1 6 ds 1 ( ^ 12 J 2 ds 2

^ 13 J 3 d S

3

J^o ds% (521^1 ds 1
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3
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But we have

(n)

L

ds^ ( J 2 ds%

°*J2

"+■ J 3

ds 3

0^13 "î" - - - H"

J II

ds n

o c ï "i")


	4 - J,



4 i f

ds%(dsy

8 2|

■+■ J 3

ds 3
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J fl

ds ^

S<ï> 2 ")
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Ai, Al -1 )

2 [ Ji

cls j ( J 2 ds 2

0^"12

. I

T J 3

ds : j
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hi

ds fi

8 *i")

-f- J 2

cls % {

J 3

ds 3

0 * 1*23 4 " - - - ~H

3 ,i

ds ,1

8 *,")

\

J n ds ^ (

J Ai-1 ^^/i-1 ^ < ï > // t /î-1 )]-

We also have, on the other hand

?

J ! 0 ( J2 ^2^12

ds > f I

3 ^13
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J 11 cls n *^1 ri )

J 2 0 ds 2 ^ J1 ds j ^ 21 ■ l J 3 ds :i !■> -

3

" *

J 7 j ds n c b.2 n )

1 *

( 12 )

"0 dSfi ( J ! ds !$",

2 ds 2 1 /( 2
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J/i- 1 ds n -i n n -i)

Jj [ J 2 ^ 12 Q ( ds [ dS'2 ) J 3 13 0 ( d s j ds% )


	-



J n 4* 1 n 0 ( ds j dsn )]

J,r

J s *23 3 ( ds.y ds 3 )
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J u ^ 2 n Q ( ds% dsn )]

-h J n ~\ l

J n ^/a- 1 ,// ^ ( clsn - 1

By means of the equalities ( 10 ), ( 11 ), ( 12 ), we have

dx

Ji[J8(i*Ai cls 2 ) -h J3 S(^13 ds\ ds%)


	*



ds\ d$")j

(i 3 )

J,[

J 3 8 ("ï >23 ds t ds 3 )


	*



-I fi 0 ( ^2 Al ds% ^ft)]
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If therefore we designate by D a differential taken by supposing constant the intensities of the currents which traverse the various elements, we will have, in place of equality (i3),

dx

D[

J1 ds 1 f 19 J2 ds% - 4 - 13 J 3 ds


	4 -



^in ^ n d$u )

J ^ cls% (

23 J 3 d S


	*



ï 2 /* J n ds h )

04 '

J"- 1 ds n -\ (

" - 1 , " J n ds n

D

JJ'l/X r ) cos 9 cos0'-+- r) cos w] ds ds'.

Let's put

(he)

n

JJ '[/( /- ) cosO cos 0' -+- g( r) cos 10 ] ds ds'

and the equality ( i4) will lead us to the following proposition;

fi

between linear conductors

any two currents, through which any two currents flow, have the quantity II as their potential, i.e. the work

fi

in

challenge

dijff

of the quantity II, taken assuming the intensities con¬

stants.

/ _ m

This is the fundamental law of electrodynamics, deduced from the fundamental law of induction and Joule's generalized law. H. von Helmholtz and Sir W. Thomson had indicated, in the form of an outline, that the first principle of Thermodynamics, joined to Joule's law, should form the link between Electrodynamics and the laws of Induction. The above can be considered as their idea put in a precise form.

The law of electrodynamics, as we have just stated it, was first given by Gauss (' ), whose demonstration was not published until long after his death, and then by Pai

Mr. F.-E. Neumann ( 2 ).

From the hypothesis that the mutual actions of the currents admit

(*) Gauss, Werke, Bd. V, p. 608.

(') F.-E. Neumann, Ueber ein allgemeines Princip der mathematischen Théorie inducirter elektrischer Strôme. Read at the Beilin Academy of Sciences

August 9, 1849.
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is a potential, we can easily find the form of this potential by following a procedure similar to that which allowed us, in § II of Chapter I, to establish the form of the internal reality of a system of currents. We have indicated this demonstration elsewhere ( 1 ).

(') P* DuiieMj Applications de la Thermodynamique aux actions qui s'exentent entre les courants électriques (Acta Societatis Scientiarum FennicŒy t. XXI; 1887).
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CHAPTER IV.

EXAMINATION OF SOME PARADOXES.

We have arrived at the fundamental law of the electromagnetic forces exerted by linear currents: These forces admit for potential the electrodynamic potential of the system.

When we examine closely the path we have followed to link, through Thermodynamics, this law to the fundamental law of rinduition, we encounter strange and paradoxical difficulties that it is important to clarify before pushing further the study of

electrod^namic forces.

The examination of these paradoxes will lead us to bring to light certain fundamental ideas which do not seem to us to have been clearly seen until now; it is these ideas which explain and justify the order that we have followed in the study of the actions

exerted by the currents.

The formula (i 5 ) of the previous chapter shows us that we have

n =-EU'.

Let d&i be the work of all the forces inside the system other than the electrodynamic forces. We have

A = - EDr-DW-^?D(0-T^.

Let us designate by DU the differential of 1 internal energy, taken by considering as invariable the chemical and physical state of the various bodies, the electric charges which they carry, the intensities of the currents which cross them, and by making vary only the parameters which define their form and their mutual position.
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When there are no currents in the system, we have

which expresses this fundamental theorem, on which the whole study of Electrostatics and Magnetism is based:

When the various bodies that make up a system move without changing state, the internal energy of the system experiences a variation equal, to the nearest sign, to the quotient of the work done by the forces inside the system and the mechanical equivalent of the heat.

But, when the system contains currents, we have

EDU

d&t-h EDU',

or

bi

in

EDU

ri t

d u #

The variation of the internal energy, taken as

Only the parameters that define the position of the di #

to the body of the system, multiplied by the mechanical equivalent of the heat and changed of sign, is no longer equal to the sum of the work of the forces inside the system. It is equal to the excess of the work of the electrodynamic forces over the work of the other forces inside the system.

The theorem on displacements without change of state does not apply to electric currents.

In fact, this theorem results from the application of the first principle 4

cipe of Thermodynamics to a displacement without change of state. The first condition for this theorem to be valid is therefore that we can impose on the system in question, without contradicting its definition, displacements without change of state, i.e. displacements during which we leave in¬

variables :

i° The physical and chemical state of each of the elements ',

2° The distribution of electrical charges on each of them;

3° The intensity of the current flowing through each of them.

It follows from Faraday's law that, if a current flows through an electrolyte, this electrolyte experiences a change of state proportional in magnitude to the intensity of the current and the time during which the system is studied.
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Therefore, it will only be possible to observe a displacement without change of state, in a system containing currents, if none of the conductors of the system is electrolyzable.

The current brings to any point of the element ds, during the time dt , a quantity of electricity

dq

dJ

ds

dt.

The electrical distribution cannot therefore remain invariant on

the various drivers that if

. d J

ds

is zero at all points, i.e.

if the currents are uniform.

We

its to look for displacements without change of state among the only uniform currents passing through

non-electrolyzable conductors. But these displacements cannot be arbitrary. They must be such that the electromotive induction forces generated by these displacements maintain uniform and constant currents in the conductors.

Thus, it is not surprising that the theorem on displacements without change of state is not applicable to a system containing currents, if the existence of a displacement without change of state in such a system is contradictory.  On the other hand, according to what we have just said, to state the impossibility of a displacement without change of state in a system containing currents is contradictory.

man

It is possible to maintain, without thermo-electric or hydroelectric electromotive force, constant and uniform currents by means of the movement of such a system. The seemingly paradoxical proposal that we had encountered is therefore equivalent to this proposal, which is not at all surprising and which is consistent with experience: "It is impossible, by the mere movement of metal wires, to make a device that generates annual costs

constant.

b: However, one can look at some modifications of a system containing currents as having pom cern without change of state, and that in the following way.

We

In these conditions, the changes of state experienced by the conductors are very short. Under these conditions, the changes of state experienced by the conductors

'±'22

BOOK XIV.

KLECTUOOVNAMIQUBS FORCES

In this way, a very rapid displacement of any system can be considered as a displacement without change of state, provided only that the intensities remain invariant. So that a very rapid displacement of any system can be considered as a displacement without change of state, provided that the intensities remain invariable.

So let us consider an infinitesimal displacement of any system, this displacement being supposed to be produced in an infinitesimal time dt of the second order.

Let dSi be the work of all the forces inside the system.  For such a displacement, we have

which can still be written

dsi rfs,,)]

dsi <*")]


	

	

	

	" - " * i















ds n _ |

But this equality must not take place for any displacement. It must take place only for displacements which leave J,, J 2 , . . . , J" with the finite values that these intensities have at the beginning of the displacement.

Let r M ds { be the electromotive force other than the induction contained in the element rf.v,. Let R, ds\ be the resistance of this element.  O 11 a

H j J1 ds 1 dt == y" 1 d$ 1 dt - î- J 2 0(^12 ^1 ds 2 )

-h J 3 0 ( 4^3 ds 1 ds% ) -h,, -1- J n 0(4*1^ ds\ ds n ) \

J, must keep a finite value; r tl has a finite value; dt is infinitely small of higher order. We must therefore have

J 2 0 ( ^12 ds | ds 0 ) H- J 3 0(^13 ds | ds% ^ -j-... h- J n 0 ( j ds 1 ds n ) - o

Moreover, this condition is sufficient for J to be invariant. We will have, indeed, if it is fulfilled,

d{ r l( ds | )

ÏFt

h

rf(R! ds 1) dt

dt ,

Kj ds.
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a

and the second member is infinitely small of the same order as cil.  So 1 equality (16) takes place, not for any displacement but for any displacement such that cjue we have

J 2 0 ( *^12 dsi dsx) + J 3 0 ( $ 13 clS[ dsi ) -h . ,

) ^ ( ^21 ds<% ds\ ) -+- J 3 0 ( $ 23 ds 2 ds-j ) -h . , .

J

° fl

o($

■+■ J

o($2

ds | dsn )

ds*) ds fi )

O,

O,


	

	I







Ji ds n dsi ) -h J2 o ( f t> n 2 ds" du2, )

J"_i o ( ds n ds n - 1 )


	î



o.

n

*/ *

\ y o ^ ***?

v; ?

This being the case, there must be some way to ensure that the

system, such that for any displacement of the system ,

the various drivers of the

d&i

EDV

DW

... 00 ' T dT

T- JlJ 2 o(<ï> 12 ^ 1 rfs 2 )-l-J 1 J 3 o( 4 > 1 3 fl? 5 1 £/s 3 ) + . .-i-J, J rt o("ï> 1 " c/Si ds u )

"+" J 2 J 3 D ( $23 ds% ds%)


	a "



^2

ds ! ds n )

i

^n~î rj

J ,fl "5/4-1

H-Xi [J o 0 ^^ 2 ) "H J 3 § (^13 ^ 53 ) - 4 - ... -+- J 7i 0 ( $


	X2 [J 1 Û ($21 ^2 r/i'i) -h J3 0($23 dSv dS'A -f



m

l J

.. * - J - 1 j fl

d$x ds a )]

ds 2 c/a,/)]


	-



-t- \ n [J 10 ( < î , /i i ds n ds 1 ) J 2 0 (<£ ,j 2 ds n ds,)

J"-1 ° ( c t > /i,/f-1 û^S/i ds n - 1)]

This equality (18) represents all that is required, in the present case, to apply the first principle of Thermodynamics to a displacement without change of state. This application only tells us that the quantities ) M , ). 2 ; - - ., \ t are representative of the shape of the conductors, without letting us know the value of these quantities. If we take

oen

(19)

À |

J x

î

a 2

J.

2,

" *

)

'fl

J n ?

equality will become

dG,

EDï

DW

2,B

0

T

ôT

JjJ2o($i2 ds\ ds 2 ) - J1J 3 0 ($13 ds\ ds$)


	
J2 J3 0 ($23 ds<% ds 3)



	
*





" I *

Ji J fi d ($i/t ds\ dsfi)

J 2 ds^dsfi)

J/i-1 J/i Q (^","-1 ds n ds n - j)

This equality (20) is then fully

agree with the equality

-iiIsl
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lity (i3), which gives the fundamental law of electrodynamics.  Thus the fundamental law of electrodynamics agrees with the properties of displacements without changes of state; but these latter properties are not sufficient to determine the law of electrodynamics; they would be compatible with an infinite number of other laws, for one could give the coefficients , À 2 , an infinite number of determinations other than those resulting from the

equalities (19).

A new paradox will now solicit our attention.

Let's try to apply the theorems that constitute the theory of thermodynamic potential to systems that contain currents.

The internal thermodynamic potential of a system which does not contain any current is, keeping the notations used in the previous chapters,

S being the entropy of the system supposed to be in the neutral state.

The internal thermodynamic potential of a system that contains currents must be, according to this, of the following form:

1 21)

f

E ( V

T2)

W

Qq

t

1 *

cJ 7

a' being a function of the parameters that define the state of the system, equal to o when all the intensities are equal to o.

By doing on & the reasoning and assumptions we made on CJ' in Chapter I, we will see that is of the form

< rx )

JJ" V J J' p-Il cosO cosO'

1 h - y 1 , ,,

-cosu) as ,

2 r

B" and y being two constants.

The general formula

EU

y

T

üT

will give us

EV

W

( 2 3 )

C 1

T

i)Q

ÜT

IJ

tf
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'\lz~K

I ■>. r

cosO cosO'

1

/

U

cos t") ds ds'
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Comparing with the expression of EU found in Chapter I, we see that we have

]1 then follows from the law of P Induction joined to Joule's law, as we saw in Chapter II, that we have

which gives

I

COS0 COS0' -+ #■

cos co ds ds T .

Let us imagine a system of closed, immobile, non-electrolyzable conductors through which uniform currents flow; under these conditions, we can pose

C being a constant.

If C|, c-2, ..., c n are the n closed conductors and if we pose, according to a notation that we have often used,

cos9;cos 9 j

E±i CO s J A, *,,

we will have

31*

[> c t )J?

(^1) ) J 1 ^2

( > Cfi ) J1 J n

I

^2 5 ^2 ) J ?

2


	

	i







(^ 2 , c n )3 2 J n

This equality (24), together with the reasoning given in BookXIII, Chapter IV, tells us that the second term of the expression of $ is always negative, unless the intensities of all the currents are equal to o. We therefore arrive at this conclusion:

In a system of firm, immobile, non

D. - III. *5

->. ' i . fi
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The internal thermodynamic potential is maximum when the intensities of all the currents are equal to o.

On the other hand, we have seen in Chapter IV, Book XIII that, in such a system, V state where all intensities are equal

is a stable equilibrium state.

So we arrive at this consequence:

A system of closed, immobile, non-electrolyzable conductors, through which uniform currents flow, is in equilibrium

when its thermodynamic potential is maximum.

This proposal is in contradiction with this fundamental principle of the thermodynamic potential theory:

The stable equilibrium states of a stationary system are those that minimize its internal thermodynamic potential.

The contradiction between the Law of Induction and the Law of Induction can be demonstrated in a slightly different way.

theory of thermodynamic potential.

In a system of closed, immobile, non-electrifiable conductors, crossed by uniform currents, the internal thermodynamic potential experiences, during the time dt, a variation

4 )

i

Gold

i

5 V 2

-i

< 1 5 )

dl i

dt

dh

dt

[(Ci, C, ) "J i ■' ( C i, C 2 ) J 2 ~~^ ( Cl,

[(c 2 , c,)J^ (c 2 , e 2 )J 2


	*



( c 2 > c n ) J/i]

é/J fl

dt

[(^/iî ^2)^2

-+- ( Cn, C,i) J "J.

Let R,, R 2 , ..., R" be the resistances of n circuits c K , c 2 , ... c n

We will have

I IL J

1

2 | dJ 1 dJ%


	( Cl, Cl ) -J2 - ( C 2 , Cl )



dt

( 26 )

*) J O
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1
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( Cn,Cl ) dt J
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Computing the equalities ( 25 ) and (2 6), we find

or, denoting by d~ the uncompensated work done in the system during time dt ,

d x = (R| J? H- R 2 j| -4-. . .-h R "j a)dt.

So we come to this conclusion:

In a system of closed, uniform, immobile, non-electrolyzable conductors, negative uncompensated work occurs at each instant.

I ^

This proposition contradicts the Carnot Clausius principle, which states that any uncompensated Iravail is essentially positive.

Where do these various contradictions between the laws of

1 Electrodynamicjue and Induction on the one hand and the consequences of Carnot's principle on the other hand?

These theories, which form the consequences of Carnot's principle, are based on the postulate of Clausius and on the postulate of Sir W. Thomson, whose generality is no longer disputed by anyone. Thomson's postulatum, the generality of which is no longer disputed by anyone. But these two postulates are not sufficient to demonstrate the theorems in question. The proof of these theorems employs, moreover, certain notions, such as the notion of reversible transformation, and these notions have meaning only for systems verifying the following condition:

*

Given the system, we can always find one enclosure and one only, of a given temperature, so that, the system being placed in this enclosure, we can determine a system of forces which maintains it in equilibrium, that is to say which maintains indefinitely invariable values to the parameters which define the state of the system.

It is easy to see that

UC CCllC

a system through which currents flow.

The parameters that define such a system are:

i° Those which determine the shape and position of the various con¬

ductors;

2 0 Those who determine the electrical distribution;

29.8 BOOK XIV. - ELECTRODYNAMIC FORCES.

3 ° Those that determine the physical and chemical state of each element;

4 ° The current intensities.

Can all these parameters be kept invariable in a uniform temperature enclosure?

In order to keep the former invariant, it is necessary to assume the

stationary drivers.

To keep the second ones invariant, we must assume uniform currents.

To keep the thirds invariant, it is necessary to assume that the

non-electrolyzable conductors.

We are then in the presence of a system of closed, immobile, non-electrolyzable circuits, situated in an enclosure of uniform temperature and traversed by uniform currents.  The laws of Induction teach us that the intensities of these currents vary with time according to the laws established in Book XIII, Chapter I V. The parameters of the fourth class cannot therefore be invariant when the parameters of the first three classes are.

Thus, the consequences of Carnot's principle are not applicable to systems containing electric currents.  The notions of entropy, of uncompensated work, of thermodynamic potential, have no more sense for such systems.

The above shows how many precautions must be taken before applying a theorem of Thermodynamics to systems containing currents.
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CHAPTER V.

REASONS WHICH MADE ADOPT THE ORDER FOLLOWED IN THIS VOLUME.

The order followed in the present volume differs significantly from the order in which electrodynamics is presented in most books dealing with this science (*).

The latter, in fact, is more or less close to the historical order; now, the laws of forces exerted by electric currents were discovered, if not in their entire generality, at least in the case of closed and uniform currents, long before the laws of Induction.

The laws of electrodynamics, restricted to closed and uniform currents, were definitively established in 1826, when Ampère published his great Memorandum entitled: Theory of electrodynamic phenomena, solely deduced from experience, a Memorandum which contained the results of research

carried out during five years.

The phenomena of induction were only discovered by Faraday in 1831 ( 2 ). In 1834, Lenz ( 3 ) formulated the law that links the direction of induction exerted by the movement of conductors to the direction of the electrodynamic action they exert. But it was not until i845 that the theory of induction phenomena began to be formulated in a precise manner, at least for

closed and uniform currents.

It was, in fact, on October 27, i 845 that Mr. F.-E. Neumann read

(' ) See the Appendix to Book XIV.

( 2 ) Faraday, Experimental Researches in Eleclricity , series I.

( 3 ) Lenz, Ueber die Bestimmung der Richtung der durch electrodynamische Vertheilung erregten Strôme ( Poggendorff's Annalen, t. XXXI, p. q83; i834).

i3o
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to the Berlin Academy of Sciences his important Memoir: Die mcitliematischen Gesetze cler inducirten elektrischen Strome, where, with the help of Ampère's researches on Electrodynamics and by extending Lenz's law by means of a series of hvpotheses, he reached the precise statement of the law of Induction by the only movement of conductors.

On August 9, 1847, Mr. F.-E. Ne umann read at the Berlin Academy a new Memorandum entitled: Ueber ein allgemeines Princip der mathematischen Théorie inducirter elektrischer Strome, in which, by transforming by the introduction of the electrodynamic potential the results obtained in the preceding Memorandum, he finally arrived at the general statement of the law of Induction between closed and uniform currents.

In the meantime, in 1846, W. Weber published, in the Me¬

of his Electrodynamische Maasbestimmungen; he expounded his theory on the reduction of electrodynamic forces to actions that would be exerted between electric particles and would depend on their motion; this theory gave him, it is true, the power to reduce electrodynamic forces to the actions of electric particles.

also, the law of electrodynamic induction between closed and uniform currents.

On July 3, 1847" M- Helmhollz read at the Physical Society

In his famous memoir Ueber die Erhaltutig der Kraft, he developed the idea that Joule's law, together with the principle of conservation of energy, allowed to deduce the law of Induction from the law of Electrodynamics.

In 1848, W. Thomson published a similar idea in the Ph ilosophical Transactions.

Many authors, having to explain the theory of electric currents, begin by establishing the laws of electrodyna

In this

Be

inique; then, in accordance with the idea of Mr. Helmhollz, they make use of Joule's law and the principle of conservation of energy to derive the law of Induction.

\<>What we have said in the previous chapter will allow us to prove that this reversal in the course we have taken was imposed on us, not by the desire to innovate, but by important theoretical reasons.

The truth is that the 1 Llectrodynamic Laws have never been established.

I>U PLAN DK THIS VOLUME.
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Let us imagine, however, that we have arrived directly, in some way, at the fundamental law of electrodynamics, which is the following:

The electrodynamic forces admit for potential the

quantity

(0

n

5 t 2

JJ'

i X

i

X

cos (o

it'

1 r

cosÛ cosO' ) ds ds\

and we propose, following the usual way, to base on this proposition the theory of electric currents.

The first point we will have to examine is the following:

What is the internal energy of a system of linear conductors through which electric currents flow?

Reasoning as in Chapter I, we can always establish that this internal energy U is given by the equality

( 2 ) EU = Er-rW + ^(e -t ^!)? + eu',

with

(3)

U'

B'

i - i - X' j

JJ' I -cosw

X'

\

2 r

-y r

-cosO cosO' ) ds ds ,

far, it

must necessarily

B' and)/ being two constants.

But, to be able to push more to know the relations which bind the constants B' and 2 t- on the one hand, and the constants A and )/ on the other hand. Now, it is here that serious

difficulties arise.

The first idea that comes to mind is to apply the theorem of displacements without change of state, which, in the other branches of Electricity and Magnetism, relates 1 internal energy to the potential of the internal forces. We are therefore inclined to admit that the work done by the mechanical actions inside the system is equal to the variation changed in sign of the quantity ELF, this variation being taken by looking at J and J 7 as

constants.
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This starting point immediately gives

or

Once these results are obtained, let us use Joule's law, which will give us, by designating by r t ds Ja electromotive force extraneous to induction and by C ds the electromotive force of induction contained in the clamp ds

J ds dt

C J ds dt

E SU -+- dG e ,

d& e representing the work of external forces.

Let c/c?'- be the work of the internal non-electrodynamic forces; let d&'f be the work of the internal electrodynamic forces. We will have

*

Moreover, the theories prior to Electrodynamics give

We will thus have, by virtue of the equalities (a), ( 5 ), (6), (7),

(8) V C3dsdt= - E8U'- dG" t .

Now, according to the equalities (3) and ( 4 ),

I -4- X

-COS O)

i r

cosO cosO

A

COSU)

cosô cosO'
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According to equalities (9) and (10), equality (8) becomes

00

2 [

C

5 V 2

iiy Lz

x mbbà \ x ;

X

I

cosw


	cos0 cos0'^ ds



2 i '

dt

o

This equality (11) is absolutely incompatible with the equality

( 12 ) C ds

2l 2 d

-2

dt

( 1 X

X

COSU)

2 r

-- cos 0 cos 0' ) di' ds'

2 /■ /

which expresses, as we know, the true law of Induction.

( -n sees only one way to satisfy the equality (1 1), it is to pose

03 )

C

ds

51*

ds

X

COSü)


	cosO cos O'') C ~ ds



2 r

According to this formula ( 1 3 ) :

i u There would be no induction by the movement of the conductors alone.

2 0 The electromotive force of induction by variation of intensity would have the magnitude given by the theory of Neu¬

mann, but an opposite sign, so that

the

ec/ui

'e

on immobile linear conductors would be an unstable equilibrium.

These are the consequences which would naturally be reached by following the path we have indicated; which, for example, M. H. von Helmholtz should have reached, if, in accordance with the complete analogy he admits between electromagnetic potential and magnetic potential ( 1 ), he had established between electromagnetic potential and electromagnetic internal energy the relationship which exists between magnetic potential and magnetic internal energy.

But physicists have naturally left aside this path which would have led them to absurd results. The modification they have made consists in supposing, not very explicitly, that the relations (4)i in accordance with the theorem of displacements without changes of state, must be replaced by the îela

(' ) Helmholtz, Ueber die Erhaltung der Kraft, p.
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tions, which we now know to be accurate,

(14)

B'

SI 2

2Ë ?

X' = TO,

or, in other words, that one must have

(i5)

E AU = - dts'i -r- d&

?

AU representing the variation that U undergoes, when we vary only the parameters that fix the geometrical shape of the system.

system.

(equality establishes a profound difference between the relation that links internal energy to the work of electrodynamic actions and the relation that links this same internal energy to the work of gravitational, capillary, electrostatic, magnetic, etc. actions.

When we follow the theory that we have just exposed in the previous Chapters, this equality appears as the final consequence of a series of very natural hypotheses and very clear deductions, so that it only constitutes a paradox, easy, moreover, to explain in the current state of Thermodynamics.

Taken, on the contrary, as the starting point of a theory, it seems very improbable, and must have seemed so at a time when the obscurity surrounding the principles of thermodynamics made their explanation almost impossible. Also M. Helmholtz, Sir W. Thomson, and the physicists who, after them, followed the same path, concealed the implausibility of the starting point under the brevity and obscurity of the exposition; a method so dangerous that some physicists, in trying to reproduce their reasoning, obtain a value of the electromotive force of induction precisely opposite in sign to the true value of this force given by Neumann's law.

P of "no great inconvenience from the logical point of view, to admit, to pillory, and to take as a starting point the paradoxical proposition expressed by equality (i5), proposition whose

rhermodynamics shows the possibility, but which it 11e proves

not the need.

Let us nevertheless admit this proposal.  Joule's law will still give us 1

? ' ecr

ile (5);

t
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form this one^ we will be able to continue to usEigG the cgs- liLés ( 6 ) and ( 7 ), which will give us again 1

7 r

eg

( 8 )

C

J ds dt

E8U'- d&":

But, while in this equality (8), - dis] will retain the value given by equality (10), equality (9) will, by virtue of equalities (i4), have to be replaced by the equality

E SU'

5 V 2
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2 r

cos 6 cos 6' ) ds ds f

2 r
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	cosO COS0'^ ds



2r
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By virtue of equalities (i o) and (16), equality (8) becomes

)

£ ds dt

2V 2


	8 1 ds
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X

COS ü)

2 r

cosÔ cosfl' 1 J' ds'

2 /

J

It is clear that this equality (17) is verified if we replace £ ds dt by

5 V 2

S ds

X 1

X

X

cos tu

cosO cos0' 1 J' ds'

2 /■

2 r

which represents its true value; but it is not perfectly clear that this is the only way to verify the equality (17). so that this equality alone is not sufficient to determine completely the law of electrodynamic induction; in particular, if, in an element or in a group of elements, we have J = o, we can, at each point of this element or of this group, give an arbitrary value to £.

Thus, when we want to pass from the law of electrodynamics to the law of induction, using Joule's law and the principle of conservation as a means of passage

of energy, we are faced with two

t

nner is particularly serious:

i° We are obliged to accept, as a fundamental principle, a relation in which electrodynamic actions behave, with respect to the internal energy of a system, in a way that is precisely the opposite of the other actions studied in the various parts of Physics; so that this relation is

a36

BOOK XIV.

ELECTRODYNAMIC FORCES

This relationship is exactly the opposite of the one whose existence we would naturally be inclined to admit, by way of analogy. Thermodynamics can show the possibility of the relation which must be admitted, but it cannot prove the necessity of it, nor even establish the impossibility of the inverse relation; the latter, however, must be rejected in spite of the reasons of analogy. The results thus provided by Thermodynamics satisfy the mind when the relation in question is presented as a consequence of a logical theory and when it is only a question of explaining what is paradoxical about it; they no longer satisfy it if the relation in question is to become the very foundation of the theory.

2° We obtain, between the electromotive forces of induction which act in the various elements of the system, a single relation, which is not sufficient to determine the value of each of these forces in isolation.

These are the reasons that should make us abandon the order followed by M. von Helmholtz and follow the reverse order. Nevertheless, the most important idea of M. von Helmholtz's theory remains: the possibility of linking the law of induction, the law of electrodynamics and Joule's law by the principle of equivalence of heat and work.

I

i

CHAPTER VI.

RELATIONS BETWEEN THE LAW OF ELECTRODYNAMICS AND THE LAW

OF INDUCTION. NEUMANN'S LAW. LENZ'S LAW.

Let us imagine that we have a system of currents 1 , 2 , ..., n and that we move and deform one of them, for example conductor 1.  If conductor 1 is open at both ends, the intensity is equal to o at both ends; if it is closed, it varies continuously from one point to another. It is easy to see that all possible displacements and deformations of conductor 1 can be reduced as a special case to the following type:

Suppose that we move a segment AMB that appears

Fig. 43.

holding to any PAMBP circuit {fig. 43 ). Let us assume that

%
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the ends of the considered segment do not remain fixed, but slide on the immobile parts of the circuit. Let's assume furthermore that this moving part of the circuit contains sliding lines, one for example, in M.

Let's imagine that we bring this segment AMB in a position infinitely close to A'M'B' and let's try to determine the work of the electrodynamic actions during this displacement.

Let us designate by

(G, C')

the mutual electrodynamic potential of two conductors or two conductor segments, C and C 7 , through which certain currents flow.

The work of the electrodynamic actions is determined by the following general law:

When the various conductors that form any current system are moved relative to each other, the electrodynamic actions that these various conductors exert on each other perform work dx such that Von has

(i) dz= - D \ JJ'[/(/')cos0cos6'-+-^(/-)cosw] ds ds',

the symbol D indicating a differential taken by considering the intensities J, J' as constants.

Let us apply this law to the case at hand. Let us imagine that,

during the movement, we maintain invariable the intensities in

At each point the stationary or displaced drivers.  We will have

d y "'[/( /*) cosO cosO

t

g{r) cosoj] ds ds'

(P A'M'B'P, PA'M'B'P) -(PAMBP, PAMBP) (PA'M'B'P, 2 )-(PAMBP, 2 )

. * -

-+ (PA'M'B'P, ") - (PjVMBP, n),
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which can still be written

D \ JJ'[/(r) cos0 cos 6' + g(r) cosu)] ds ds'

= (GAP, AA') + (GAP, A'M'B') h- (GAP, B'B) - (GAP, AMB) -+-( 2, AA') + ( 2 , A'M'B') h - ( 2 , B'B) -( 2, AMB)


	( ", AA'j + ( n, A'M'B'; -+- ( n, B'B) - ( n, AMB)



h-(AA'M'B'B, AA'M'B'B) - (AMB, AMB).

Let's suppose that at any point of the AMB conductor the current intensity is reversed without changing its magnitude.

Let us designate this new state of the AMB conductor by the symbol BMA. We will have, in a general way,

(C, BMA) - - (G, AMB).

It is also easy to see that

(G, AA') -+- (C, A'M'B ) '-+- (C, B'B) h- (G, BMA) - (C, AA'M'B'BMA)

We will thus have

D ^ Sy[f(r) cos0 cos0'

JMI

g(r) cosu>] ds ds

(AMBPA, AA'M'B'BMA)

(

2, AA'M B'BMA)

f~.* - -

H( n, AA'M'B'BMA)

-+- ( AA'M'B'BMA, AA'M'B'BMA).

But, while the first n terms are infinitesimals of the first order, the last one, electrodynamic potential of the AA'M'B'BA circuit on itself, is an infinitesimal of the second order

order.

If we designate by S the set of currents 1 , 2 , in their initial state, we have

$ v

4
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The work done by the internal electrodynamic actions of a system when a conductor segment AMB belonging to this system is keyed or moved in any way is equal to the electrodynamic potential of the system in its primitive state (including the conductor subjected to

to the movement),

on a closed current formed in the manner

following :

i° The segment

O

in its initial position, traversed by the current that initially flows through it /

2 0 The path B B' to point B, traversed from B to B 'by a

current equal to that of the current arriving in the

B by AM B ;

3 ° The segment B'M'A' is traversed by a current whose intensity has, at each point, the same value as at the corresponding point on the BMA key, but with an opposite sign;

4 ° The reversed path A' A from point A, traversed from A' to A

by a current whose intensity equals that of the current that leaves

from A to AM B.

This fundamental proposition was given by F.-E. Neumann (M for the case of uniform currents.

The equality (2) can be put in another form.  Let us divide the segment AM in n elements (fig- 44 )

A a ! - ds\, r x l a 2 = ds>, ..., Xn-i M = ds n .

Let's divide the MB segment into p elements

M pi = ch i, pi 3 2 = d( t 2 , . . . , P/j-i B = dvp.

In the movement of the AM driver,

Point A comes in ,

" a 1 " oc j,

"oc% ï) oc",

1 )} a Ai - 11

m " m; .

( 1 ) I-E. Neumann, Die mathematischen Gesetze der inducirten elektrischen Strome Memoirs of the Berlin Academy, i845 ).
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In the movement of the MB driver,

The point M comes in N' 1;

" p. " p;,

" pj " B'"
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the values of the intensities in the elements

ds J, ds%* ... , dSfu d @ij d& 2 , - - - i d^p.

Or finally

the electrodynamic potential of the primitive system on the element ds traversed, in the positive direction, by a current equal to unity. We can easily see that we have

(S, AMBB'M'A'A)

= [i/Si]- 1-2 [<tfs 2 I/j [ds n ] -t- Ji[ di^ ]J-2 [di % ]-h-.. + Jp[d<r p ]


	
Jp[ 8 c]-Jp[Da]- J p[dcr'p] - ...- h[d<_ ]- Ji [da']~- J t [ Ar]



	
I" [As] -- I" [ds -. - la [ ds\ ] Ii [ ds\ ) - Ii [Ds]-Ii[ 8 s].





If we notice that

I *= Ji,

the equality (2) can be written

ox = - Il | [ds] - [dsi ] j - Ji ] - [rfffi ] (


	I, j [ ds' % ] - [ ds -2 ] { - Jj j [ d^'z ] - [ d<j 2 ] j



-I, j[D.] + [ &]|-J,j[D.] + [ 8,]]


	J1 j [ A s J -t- [ A <r ] |.



This equality highlights some remarkable relationships between the law of electrodynamic actions and the law of induction.

If the system undergoes the displacement we have just imagined, all intensities remaining constant, circuit 1 will be the seat of certain electromotive induction forces which will be :

In the element
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In the element
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dt

j [ of p

)>

Ds

" ^ - 0 a § % ■ * 0 m 9

EDs =

§

1

dt

[D*],

))

OS.

£§s =

[

dt

[8 "L

))

As

HA s =

1

dt

[

"

D CT.

E'D<r =

X

dt

)>

0(7

^ - ■ * " -

C r So- =

ï

dt

[ Scr ],

))

Acr..

H Acr -

1

dt

[ A<J j

So, for the whole circuit 1

dtJ £ds = [[<&',] -[£foi]j h- jfrfiri] - [<fai]j

| [ds ' 2 ] - [ ds % ] J j [ds', ] - [ da % ] J

..

j [ ds n ] [ ds/i j [ H- | [ d<sp ] \dvp j j

-+- [ D.î ] -+- [os ] -+- [ As] -f- [ Do-] -+- [ Sot ]+ [ Aa].

Let's compare equalities ( 3 ) and ( 4 ). If the deformed circuit were traversed by a current of intensity equal to unity, the electrodynamic actions exerted on this circuit by the system as a whole, in its primitive state, including the conductor subjected to the movement, would perform a work d 2 r whose value can be deduced from equality ( 3 ); it is easy to see that

(5) dt f £ ds = - d%.

We thus arrive at this proposition, stated in 1847 by F.-E. Neumann for the case of uniform currents:

If, in a system formed by conductors through which any kind of current flows, one of these conductors is deformed and displaced, leaving the others unchanged and maintaining the intensity of the current flowing through each element unchanged, the displaced conductor becomes the seat of electromotive induction forces. Let us consider those forces which are
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due to the movement of the conductor alone. The sum of these forces is obtained by dividing by the duration of the displacement the work that would be done by the electrodynamic actions exerted by the whole system, taken in its current state (including the armature), on a conductor identical to the armature crossed by a current equal to Vunity, and by changing the sign of the quotient.

This proposition provides a first relation between electrodynamic actions and induction. It reduces to an electrodynamics problem the calculation of the integral electromotive force of induction generated in a conductor by the movement of this conductor alone.

A second relationship can be deduced from this.

Let's suppose that the electromotive forces of induction that we have just studied are used to produce a uniform current in the armature circuit; they would generate a current of intensity

R being the armature resistance.  According to the equality ( 5 ), we have

i

R ~dt'

On the other hand, the actions exerted by the whole system, including the armature, on a conductor identical to the armature through which a current of intensity J flows, would perform, if the deformation considered were imposed on this conductor, a work which, according to equality (3), would have the value

d& = J d^s.

We would therefore have

I ( d3t

R ~dT'

equality which proves that d% is essentially negative and allows us to state the following proposition:

If, in a system formed by conductors through which any kind of current flows, one of the conductors is deformed and moved, leaving the other conductors unchanged and leaving Lin
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tensity of the current flowing through each element, Vinduit is the

J

&

fi

If these

a

form

fa

certain intensity J.

on an identical conductor Vinduit crossed by a conforming of intensity J would carry out a negative work

This is the reason for the deformation of the system, and consequently for this deformation.

in

defo

see

G

H W

of his work on the theory of Induction.

(' ) Lenz, Ueber die Bestimmung der Richtung der durch electrodynamische Vertheilung erregten Strôme ( Poggendorff's Annalen, t. XXI, p. 483;

l834 )*

946
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CHAPTER VII.

DEFINITION OF THE ACTION EXERTED ON A CURRENT ELEMENT.

We have seen that the fundamental law of electrodynamics is the following:

When we move the various conductors that form any system of currents relative to each other, the electrodynamic actions that these various conductors exert on each other perform a work d-z such that Von has

( i) dx - - D) cosO cos0'+ g(r) cosoj] ds ds',

the symbol D indicating a differential taken by considering the intensities J, V as constants.

This law defines the work done by the electrodynamic actions in any deformation of the system, and, therefore, it determines the electrodynamic actions as completely as may be necessary, for in any matter the electrodynamic actions are never introduced except by their elementary work, real or virtual.

An element of current can never move in isolation; it must always, in its movement, be part of a realizable current along which the intensity varies in a continuous way.  The expression of Jorce applied to a current element has therefore, by itself, no meaning; it must be the object of a definition which can be given in the following way:

= ds (fig. 45 f a current element, through which A

Let AB be

in B by a current, of intensity (J

1 di a ds

ds) at point A and in

/

lensilé (J

1 d J

ds

d.

v I at point B. In an infinite deformation
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With any small element in the system, this element comes at A , B Its end A describes the path AA' and its end B the path BB'.

Suppose that Ton can apply to the element AB = ds a system of forces F having the following property:

In any displacement of Vélément AB, the forces F perform work equal to the electrodynamic potential of the given system, at V instant t, on an infinitely small closed circuit composed as follows:

i° The element AB, traversed from A to B by a current of intensity J in the middle M of this element, of intensity (J -

2 ds

ds

at point A and intensity (J

1 di

2 ds

ds ) at point B ;

\ r _

2 ° The path BB' from point B, traversed from B to B 'by a

current intensity ( J -f- 2 ds

3° The element B'A', through which a current flows from B' to A!

ds) at point B', of intensity J in the middle

intensity (J

1 d J

2 ds

M' of the element, of intensity (J

i di

i ds

\

dsj at point kl ;

\ " - /

4° The reversed path Al A from point A, traversed from Al to A

by a current of intensity (J

1 day

--rds.

2 ds ]

We will see, at the end of this Chapter, that there is such a system of forces F and we will learn, in the next Chapter, to

determine it.

We will say that the set of forces F represents the action
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electrodynamic exerted, on Vélément AB = ds , by the whole system.

This definition is not entirely arbitrary. It is justified by the following considerations:

i° Let us imagine that, through points A and B, we have passed two segments of conducting wire a a/ and [if {fi g. 4b) I imagine that the element AB is not invariably connected by its ends A and B to the neighboring parts AP and BQ of the conductor wire to which it

belongs, but that these ends A and B can freely slide, one on aa' and the other on The phenomenon is obviously not incompatible with the properties of currents.  When the element AB comes to A'B', it is conceivable that the

current, instead of arriving in A with the intensity (j -

<U

ds

ds

\ of

to go to M with the intensity J and finally to go to B with the intensity

J

-j- ds ), follows the path AA with intensity J

2 ds ] 1 .

1 dS

-1

1

then enters the element A / B 7 , passes to M/ with the intensity J, and finally walks from B r to B with the intensity (.1

1 dJ

-i ds

. The inten¬

the circuit to which the AB element belongs and the transformation considered can be conceived as

1

< r, if we refer to the theorem demonstrated at the beginning of the previous chapter, we will easily see that the work done in the considered modification by the electrodynamic actions is precisely equal to the work done by what we have called the forces applied to the element AB.
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Thus, if you move a single element of a conductor in any feasible way, the work done

by the electrodynamic actions is reduced to the work of the forces applied to the element.

2 ° Let us now suppose that any finite segment AM 13 {fig. 47) belonging to a circus is depicted in the same way.

Fig. 47

PAMBP. According to equality (3) of the previous chapter, the work done by the electrodynamic actions has the value

(0
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Now the work of the actions applied to the element ds K has for

v

aleu

i

The work of the actions applied to the element ds 2 has the value

The work of the actions applied to the element ds" has for va¬

their

But we have

and also

fi "i] -+- [ a i i] = o,

So we have

If we denote by é/©,, c/@ 2 , îlectrodynamics applied to each of the elements ds^ , d<7- 2 ,

d% p the work of the actions
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d<T p , we will also have

d® i

d®



d®

p

h ir*',i

[ d$ i ]

h | [c&r'j] - [d^i ]

(3)

J-|[p]-[p1!

l>

Ji

\

di i da i d<J t 2

mn;i

j

^ fÜüfi) [BB t ]

Let's neglect the infinitely small quantities of the second order

dli

dsi

dsi

2

dl/i

d $ p

d s /i

2

dii

dsi

2

di p

d(J p

dv p

2

[aa; ],

[MM',],

[mn;],

[BB'J;

let us note in addition that

\ n - "i

and the equalities (i), ( 2 ) and (3) will give us

dx - ( diD\ "H d(. 5)2 H - ... 4 " d(s >h d® 1 -H d®^ ... 1 d®p )


	I t f [ AA^ ] - [ 8 s] - [Ds] | - | [BB; ] +- [ 8 <t] - [Dct] j



-h h [ [mn; ] - [ mm; ] - [ as] - [ a*] j ;

which can still be written, using the notations of the previous chapter,

dx - ( d<£) 1 -4- d& 2 d& n -+- d®i -h d® 2 -j-... -t - d® p )

= -I 1 (S, A A'A, A) - J/;(S, J,(S, MM] M'N, M).

Now the three quantities

(S, A A'A, A), (S, BB',B'B), (S, MM] M'N] M),

which are the values of the electrodynamic potential of the system on three infinitesimally small closed circuits, are infinitesimals of the second order, which allows to write

( 4 ) dx = d&i -+- d & 2 ®-... .h- d§ n - 1 - d® ! -h d®z®-...-® d® p .
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(4)

The key work of electrodynamic actions, in any displacement of a conductor, is equal to the sum of the work done by the electrodynamic forces applied to the various elements of the conductor.

The definition of key electrodynamic forces applied to a current element is thus justified.

11 It is now necessary to show that there are forces that meet this definition and to indicate how they can be calculated.

Any change in a current AB - ds element can be broken down:

i° In a dilatation ods of the element, dilatation during which the direction and the middle of the element remain fixed;

2 ° In three rotations SX, Su, Sv, around three axes rectangu¬.

laires M x,

, Ms, led by the middle M of the element;

3" In three translations ox , 3j r , 3s, parallel to these three axes.

Each of these elementary modifications defines a small contour analogous to the ABIFA/A contour of fi g. e\5 which was used to define the forces F applied to the element.  Let T S ds be the electrodynamic potential of the system on the small contour ABBA'A corresponding to the dilation.

Let L SX, M Su, N Sv be the electrodynamic potentials of the system on the small ABB A/A contours corresponding to each rotation.

Let X ox, Yqr, Z oz be the electrodynamic potentials of the system on the small contours A B B'A'A corresponding to the translati ons.

We will prove:

î " That we will obtain a system of forces possessing the properties that we have attributed to the F forces, if we take

Two equal voltages ci T applied at both ends

*

a


	

	/ J S







the element ;

A couple whose axis has for

L, M, N ;

Duc force, applied to the middle of Vélément, having for components X, Y, Z.

2 "That it is impossible to obtain any other system pos¬

sedant the key properties F forces.

CHAP. VII.

DEFINITION OF ACTION ON AN ITEM. 2(f)3

The proof of this proposition is based on the following lemma

vant :

Let AB, A'B', h!'W ( Jig . 48 ) be three positions of an element

of current, such that one can pass from one to the other by

infinitely small translations, infinitely small rotations, and infinitely small dilations with respect to ds. We have

(S, A B B'A'A) -4- (S, A' B' B "A "A) -f- (S, A "B "B AA") = o

It is easy, in fact, to see that the sum which forms the first member of this equality is reduced to the difference of two electrodjnamic potentials:

i° The electrodynamic potential of the system on the small circuit B B' [V B through which a current of in tensity flows

dS ds

Go to

ds

2 0 The eleclrodynamic potential of the system on the small circuit A A' A" A p arcuated by a current of intensity fj -

di ds ds

Now, in the first place, each of these two potentials is an infinitesimal of the second order with respect to ds.

Secondly, the difference between them must be infinitesimally small compared to the value of each of them.

In fact, the BB'B^B circuit is obtained by the following operations

vantes :

i° The various elements of the circuit AA'A ff A are made to vary by infinitesimally small amounts with respect to their value;

2 ° The current flowing through the circuit A A'A" A is varied infinitesimally;

3° An infinitely small displacement is imposed on this circuit.

"V

This difference is therefore infinitely small of the third order.

25 '
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Each of the three quantities

(S, ABB'A'A), (S, A'B'B "A "A'), (S, A" B" B AA")

being infinitely small of the second order, we can see that we can write

(S, ABB'A'A)-+-(S, A'B'B "A "A') + (S, A" B "B A A")

o.

This proposition obviously extends to the case where we consider any finite number of positions infinitely close to the element AB.

Let us now imagine, once this proposition is established, that we move the element AB to any infinitely close position A'B\ Let us propose to determine the value of

(S, ABB'VA).

According to the previous lemma, this quantity is the sum of the analogous quantities relating to the simple modifications into which the considered modification can be supposed to be decomposed.  We must therefore have

(S, ABB'AA'A) = T 8 ds

Law

l\l S[Jl-r N 8v

occ

Y OJ -4- Z 03.

This equality then shows us:

i" That ^ he forces defined by the quantities T, L, M, N, X, Y, Z perform, in any displacement of the element AB, work equal to the quantity (S, A B B'A'A) ;

2 ° That these forces are the only ones that enjoy this property ( 1 ).

The forces in question are therefore electrodynamic actions applied to the current element AB = ds. Their definition is now complete. It only remains to calculate the value of the seven quantities

T,

L, M, IN,

X, Y

î

Z.

This will be the subject of the next chapter.

By not considering as distinct from this system of forces another system that Ton would obtain by composing the first forces according to the known rules of the statics of solids.
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CHAPTER VIII.

CALCULATION OF THE ELECTRODYNAMIC ACTIONS EXERTED

ON A CURRENT ELEMENT.

We will now propose to calculate the electrodynamic voltage T, the electrodynamic torque (L, M, N) and the electrodynamic force (X, Y, Z).

i" Voltage.

Let us imagine that the element AB = ds, without changing its position, lengthens by a quantity 3 ds, so that its ends come to A'B' (fig. 49), its middle O remaining immobile. The

Fig- 49

The AA'B'BA contour is formed here by two lines which are merged and traversed in opposite directions by currents whose intensity at the same point differs only by infinitesimal quantities of the second order. It is easy to see that the electromagnetic potential P of the

of the third order. 'As we have moreover

p = - TSrfs,

and that ods is only an infinitesimal of the secondoid, one

system on this circuit is an infinitesimal at least
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here is that

(i) T = o.

There is no electrodynamic voltage in a current-carrying jil.

2 ° Couple.

Let AB = ds (Jig. 5o) be the element on which the action takes place.  Let Q be its center. Let J be the intensity at the point Q of the current which

runs from A to B. At point A, this current has the following intensity

J

\

at point B, its intensity is (J

1 dJ

"HH

2 ds

ds

Let us assume that this element is related to a system of rectangular coordinates OA, ü, ()Z, and let us designate by L, M, N the components along OX, OY, OZ of the axis of the torque which loads this element, the reduction of the forces being made, as we have assumed, at the point O.

Through point Q let us lead a parallel QZ, to OZ. Let us rotate the element AB by an angle ch. around QZ,, so as to bring it to A'B'. The actions exerted on the element AB perform, under these conditions, a work N<^a. This work is equal to the electrodynamic potential of the current considered on a fictitious circuit composed as follows:

i" The element A' B' traversed from A' to

B'

by

a current
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with intensity

r ctt

2 ds

ds) at point A', J at point Q,

T t dJ

J ~^2ds

dsJ at point B';

2 0 The element B'B is flowing from B' to B by a current of intensity

sity 1 J

1 £?

2 ds

dsj;

3° The element BA through which a current flows from B to A has the following value

1 dJ


	-7- ds) at point B, J at point Q, ( J



intensity t J

1 di

2 ds

ds

at point A ;

4° The A.A!

from A to A' by a current of intensity

sity 1 J

1 d3

2 ds

ds

Let us denote by 10 the angle of AB with the acting element ds', and

by r the distance from Q to the middle of ds'.

We have

( t" -- f (r) cosQ cos0'-4- g (r) cosoj

with

COsO cos0'=: COS (x)

0 2

r

Bones Bones

Let M (r) be a function defined by the equation

( 2 )

d r rfM<"~|

clr [_ dr J


	rf{r),



and put

(D

N (r) = g(r) 1 rfM(r) r dr

We will have

d)

at 2 M ( r )

 = -- - -h

Bones Bones

-N (r) cos tu.

The third element BA will provide the potential that we want to

Let's calculate a term

0 2 M (r)

Bones Bones

N(/')cosw Y ds',

the integration extending to one of the DC currents that make up the system and the summation to all these currents.

For the element A! B; , N (r) cosw must be replaced by

0

â%

N(/') cos w] da. ;

D.

III.

n

N (r) coso>
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	2 r >8



d® M( /-) J - A 1 ,

-r- should be replaced by

ds ds

to 2 M ( r ) ds to s'

d fd 2 M(r)

ÙOL

ds ds

da

The element A.'B' then provides the potential that we want to calculate.

a term whose value is

J ds

s/f

<M(r)

ds ds

d <9 2 M(/') . , r/ . at T j

-- f/a-J-N(/*)cosw-f- - N (/') coscoaa

dsds da

da

1 J ' ds'.

The sum of the two terms supplied to the potential by the elements A'B' and BA has then the value

ds da

s/r

d to 2 M ( r )

da ds ds '

d

da

N (r) cos eu J' ds r .

Let's calculate the quantities

at d 2 M ( r )

da ds to s'

d

da

N ( r) cosio.

Let x, y, z be the coordinates of the midpoint O of the element ds, and x', y', z' the coordinates of the midpoint of the element ds'.

We have

at

ds

x

T dx

r

ds

y - y' dy

' dz

r

ds

r

ds

and

d M (r) d M (r) tor rfM(r)

ds

di

ds

M(r) x - x

■ - i " 'w ■ m

dr L /*

dx

ds

y-y dy

z d z

r

ds

ds

-. dz

The quantity ~ represents the cosine of the angle that AB lail

with the axis of z\ in the considered rotation, this angle does not vary. 11 is the same of r, x , y, x , y f , z*. We have therefore

d d M( r) dM(r)

da

Bones

dr

x

dx x' 0 lTs

r

da

y

ù±

r f ds

r

da

and, therefore.

d 0- M(r) da ds Os'

d I ( /' ) x - x , dx

d -r-- - d

df

ds

d

d IN I ( r y

<it

zï. A

r ds

ds

da

Bones

da
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As the quantity r does not vary, we have

^ TVT / \ T". / . Ô COS to

j- JN (/') cos tu = N(r)- 01 a du

The projection of the closed circuit AA'B B on the direction of the element ds' must be equal to o. Now the elements AA' and B'B, which are parallel and of the same direction, make a certain angle CD| with the element ds'. If we denote by d<r the length of any of these two elements, the sum of their projections on ds' will have the value

2 COS you d<3.

Moreover the sum of the projections on the element ds' of the de

11 X

elements A'B' and BA is

to cos to

Ool

d% ds.

So we have

to cos

OJ

dot

2 COS (jl)|

ds

d ot ds

But de is the arc that corresponds to the angle at the center da. dan

s a

ds .

circle which has radius ~ sin (ds, z). Thus we have

ds

i


	
ds dot sin ( ds , z )



	
v





and

to cosüj dot

coso)| sin ( ds y z )

From all these calculations, it follows that the two elements A; B 7 and BA provide the potential we want to evaluate with the term

J ds dot

\ d M ( r ) x - x r , dx

at d r -7- ° Us

Ô

ds'

d M ( r ) y

ds

dot

y' \ dy

-- 0 -T ds

ds'

dot

N ( r) cos (jl>i sin (ds

?

rds'

Let us now calculate the terms supplied at the same potential by the elements AA' and B'B.
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2C0

The element AA' has the length

dv = - ds doi sin (ds , z).

2

The distance from point A to the middle of the element ds 1 is

t dr 7

p = r -- ds.

1 2 bones

The distance from the middle of the element AA; to the middle of the element ds f has the value

^ 1 tor ,

R - r -- ds

2 ds

1 di

2 dv

The element AA' makes an angle with the element ds'. It is crossed by A

in A' by a current of intensity (J potential the following term

b

1 dJ

2 ds

ds ). It therefore provides the

-N

2

1 dJ

2 <:/s

< $7 ) f/s f/a sin ( ds , 5)

Z/i

d 2 M( R )

t)(T

If we also put

R'

l dr

r

2 ds

ds

1

dr

N ( R) cos an 1 y ds f

2 da

dv ,

The B'B element will provide a term


	( J H- - -p </s ) ds da sin ( ds , 3) 2 V 2 ds



g? 2 M ( B ; )

Jct f/s'

N (R') cos tu

1

J' g/s'.

The sum of these two terms, reduced to the principal infinitesimals, has the value

J ds dot. sin

. V r[à*M(r

,n <*,=) >J

)

N( r ) cos on

ds '.

1 - . to 2 M ( r )

1j a ( | u d 1 îtite - , can be rem

c ) 2 M ( p )

? av ^dT

Let ç, ri, Ç be the coordinates of point A.

we will have

d°- M(o) <) rrfVK'o) ? arH

0 I

d M ( 0 ) r, - y

1 #/

g/r,

<h ds' Os [ dp p

g/7 ' ds*

do p

c/a

0 1

f

r z'i

c/Ç

' Os'

do p

</a
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?-6 r

Moreover, we have

È =

x I

dx

2

ds

Tj =

y~

1

2

ds

ç =

I

dz

z -

2

ds

ds

J

ds

The element B'B being perpendicular to the z axis, we have

dÇ

d<j

o

The previous formulas give

d\

i

where dx

da 7

d<7

2

da ds

3î*>

dr j

I

to dy

dot T - ds .

d <j

2

ÔOL ds

1 w y *

CV7

If r we finally notice that

da = - sin (ds, z) ds da.

we find without difficulty that we have, to the smallest infinities of the third order,

sin (ds, z)

d!M( P> d" ds

d (7 ds r

1 d

d M ( r ) x - x

r ~| 0 dx

à

t

d M ( r ) y - y f

d dy )

( ds'

dr r

J dy. ds

1 ds'

dr r

dy ds ^

da ds.

"

The two elements AA', BB' therefore provide the potential we want to calculate with the term

J as d<x

à

M ( r) x -

à

dx

ds 1

dr r J

doc

ds

d

rû?M(r) y-y ]

d

dy

ds'

|_ dr u J

da

ds

N (r) cos(i>i sin (ds, z) > J' ds'.

This term (6) is equal in absolute value to the term (5), but of opposite sign. The sum of these two terms must be equal to - Nda, so we see that we have

N = o.
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A similar reasoning would give

L = o,

M = o.

The electrodynamic torque is zero. The action of any current system on any current element is reduced to a single force, applied to the middle of the element.

I

It is this force whose components we will now calculate.

i

3° Force.

Let X, Y, Z be the components of the force acting on the element cls = AB ( fig. 5i) and applied in its middle Q. If

Fig. 01.

Y

we move the element ÀB in such a way that each of its points describes a path of length dx, parallel to the x axis, the virtual work of the electrodynamic actions will have the value Xdx. This work is equal to the sign to the electrodynamic potential of the system acting on a closed circuit composed as follows:
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2 ° The element B'B, traversed from B' to B by a current of intensity

sity I J

1 dJ

2 ds

dsj;

3° The element BA, traversed from B to A by a current whose in /

tensity is J in the middle Q of AB, ( J

in A;

-f- ds ) in B and ( J

2 CIS

i dJ

-i ds

ds

4° The element A'A, traversed from A' to A by a current of intensity

if

ity (J

1 d J

2 ds

ds I.

Let r be the distance from point Q to the middle of the element ds'] and letco be the angle of the element AB with the element ds'.

The third element, the BA element, provides the sought-after potential with a term that has the value

J ds

2 /[

at 2 M ( r )

ds ds'

N (r) cos o j J r ds f .

Similarly, I first element, A' B', provides the term

J ds

^ d % M (r)

\s to s'

d

d M( r ) dr

ds ds

t

dï

dx

dx

N ( r) cos a)

à

dx

[N (r) coswjé/.r [ J' ds'.

If Ton notices that the angle to does not vary when the element AB comes in A'B', the sum of these two terms will have the value

( 7 ) J ds dx

\ d*

) ds ds'

d M (r) dr

dr

dx

costo

dN(r) toi

dr

dx

y ds'

The element AA' has length dx. It is crossed by a neck ds). Let us denote by p the distance from the midpoint of the

intensity (J

i di

ds

\ ,

place of AA' in the middle of ds 1 ] by the angle that AA makes with ds'

The element AA' provides the sought-after potential with the term

dx ( J

i dS

2 ds

ds

dx ds'

N(p) cosw! 1 J' ds'

The distance from the middle of element B'B to the middle of 1 element

-ds. This element makes with the element ds' an angle

ds

of the angle (D|). It is crossed from B' to B by a

ds' is i p

2Ü i
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current intensity (J


	^ ds I. It provides the



potential sought

the tarnished

dx ( J

1 dJ

2 ds

2 /[

dx 3

d* M(p')

Ox us

d 2

N(p) cos(üj i 3 ' ds

1 d3\y r

2 ds i J ( dxds'

d M ( p) dr

to s

dp

d N f p) dr

ds

Ip

ds

COSWj f

The sum of the terms supplied to the potential by the two elements AA, B'B is, restricting to the principal infinitesimals.

J ds dx

( 8 )

i d 2 f c/M(r) dr

dJ

ds

ds dx

| dx ds

at 2 M ( r ) dx ds'

d7

ds

d N ( r ) dr

dr

ds

costoj f J'ds 1

(r ) costojJ J'

The sum of the quantities ( 7 ) and ( 8 ) gives the potential that we want to calculate.

If Ton notices that

(J2

dM(r) dr 1

d s


	M ( r \



d ' 2

d M ( r )

to s ds'

L dr dx

ds ds' dx

dx ds f

dr

ds J

J

we can see that this potential is reduced to

J ds dx

m

CO SCO

dN(r) at 1

dr

dx

cos 10

dN(r) dr

1

dr

ds

y ds r

dj

ds

ds dx

Zf

d 2 M ( r )

dx ds'

N(r) cosoim y ds'.

Let's notice now that we have

cosu>

1

dx'

and we will have, for value of our potential

?

dr

CO

' dr

dsdx

ds

2/1

- dx

d 2 M ('/-')

ds' ds

I'ds'

dx ds'

This quantity must be equal to

X dx.
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R 1 therefore has the first of the following three equalities:

2 () )

I

X

J ds

2 /

d N(r) / <9/

-;- ( COSü)

dr

d*M(r)

dx

dx f dr ds f ds

J / ds f

Ox Os

f

N(r)

dx'

ds'

ds',

Y

J ds

(9)

dS

ds

ds

2 /

2 /[

N ( r ) / dr

-v--- COSU) -

ar \ dy

d* MO)

dy dr ds ds

V ds'

dy ds

fN (r)

</i'

r J' <&',

Z

J

a? N(r) / ()/

COSIO

dr

Y

d 2 M(r)

d^ 6/6''

d

dz 1 dr ds r to s

J' ds'

d z?

N(r) -- | J' ds 1 .

The other two are established in a similar manner, mules determine the electrodynamic action of any current system on any current element.  Let us now suppose that we have

f( r )

31* i

X

2

2 r

g( r )

St 2 r

X

ii

The equality ( 2 ) will be verified if we take

M(r)

3t 2 1

X

r.

*2

'2

and equality (3) gives

N ( r )

3t 2

2 r

If we then notice that

to % r dx ds'

1 dx' r ds'


	4 - ( x - x' )



d r

d7

our formulas ( 9 ) will become

/

X =

3t 2

2

J ds

rds'

OH.

3t* di

2 ds

ds

X

(x

x')

d r

ds'

3

dx'

X d7

r

r ds',

Y

Z

1

\
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CHAPTER IX.

COMPARISON OF THE PREVIOUS LAWS WITH THE LAWS OF ELECTRODYNAMICS PROPOSED BY OTHER AUTHORS.


	

	Grassmann's law.







The action of any current on a current element is reduced to a force applied to the middle of the element, and whose components are given by the formulas [Chap. VIII, equalities ( i o) | :

as

J ds

■jl

COS CO

at 1 r

Ox

a 2 d J

ds

I

X

1

( x

i

dx f ^ r ds* Os

x )

d 1 r

d7

y ds f

dx r

3

X ds'

2

r

r ds\

X 2

2

cos (.0

0 I

r

¥

X

%

1 ' di dy _r

ds' Os

(y- y')

d r

Bones

y ds'

3

dy

X ds'

■>

r

I'ds'

"

c\ 2

J ds

2

^2 e/J

x ds

OJ

. i 0 r

~ôz

ï

X

2

(Z

i

d£ Ô _r ds' ds

I'ds'

')

d I

r

ds'

3 - X dz' 2 ds'

J' ds'.

Let's assume, first of all, that the current flowing through the

!■>

r

dx f

*j)

ôx

" ds'

Bone J

d r

at

df

ds'

f]

ds J

0 r

dz'

ô'-\

r

i

ôz

ds'

Bone J
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What is the magnitude and direction of the force r by the formulas (3)?

Let's multiply the first of the equalities (3) by the second, by

~ the third, by > and let's add the results member by member

results obtained; we find

dx

ds

dy

K f

ds

K

dz

ds

5t 2 | ^ r

-- J ds J ds

2 \ ox ds

3l 2 T 7 , / rfa?


	J ace J ace... ,



2 V as ds

à

i

■ d y

dy ds '

dy dy

ds ds '

cos CO

?

d

dz dz' \ r

ds ds 1 / ds

we also have

COS CO =

dx dx '

dy dy'

d ^

ds ds

ds ds'

ds d s '

ô -r

^ r dx

à- ,

r dy

d ? dz

I

ds

dx ds

dy ds

dz ds

We therefore find

y dx dy " dz

x + ' s + 1 t. = °'

which shows that the force in question is normal to the Element ds on which it acts.

Let X, p., v be the director cosines of the normal to the plane formed by the line r and the element ds'. We have

Now the equalities (3) give

.2t 2 J ds J' ds' 2 r

5 ds J' ds'
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■Æq

So we have

vî; = o.

The force in question is located in the plane of the line r and Vélément ds'.

The direction of the force (ç, 7), Ç) is therefore known to us; it is located in the plane of the line r and the element ds ', and normal to the projection d 7 of the element ds on this plane.

Let us now look for the magnitude F of this force. We will count it positively when the following condition is met:

A force F', in the same direction as the force F, applied to the end of d< 7 , forms with the straight line M^, normal to r and c/o-, a negatively rotating system, the trihedron (r, M y, d<?) being itself assumed to be negatively rotating (Jig- 02).

Fig. 5 a

îT

/ \

/ *

F'

dC/

ds

M

ds '

$

Suppose that <ï> represents, in magnitude and sign, the projection of F onto MM 7 . We have

F sin(< 5 fo, /').

But, in the trihedron ( ds , de, /'), following rectangle "7,

we

have

sinfcfo, r)

sin (ds, drs) sin(afa, r).

Let us designate by ut. the angle c/7) that 1 element ds makes with the plane of r and ds ' r , this angle being counted positively when the element ds is on the same side of the plane (r, ds) as the normal jp, and negatively in the opposite case. Legality of¬

will come

sin(<3?T, r)

sin 0 if n {Jt.
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We have thus
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To calculate , let us assume Ox directed along MM', and make use of the first of the formulas (a). We will have

4 " = £,

and also

^ 7' 1 dx' Or

~0x / -2 ' ds' Os' '

which will give

5t 2 J ds J' ds' [ Or 0r\ % % J ds J' ds' . Q .

4 > = - - cos eu -+- -- r-r =---sino sinO cose

2 r 1 \ Os Os J, x r l

21 2 J dsi' ds'

sin 0' sin [x cos z.

This is the magnitude of the force of which the formulas ( 3 ) represent the components.

The force whose components are given by the equalities (2), and which represents the action of any realizable current on an element of uniform current c/5, can thus be regarded as the resultant of actions that any element ds' of the current acting would exert on the element ds , each of these forces being, in magnitude, represented by the formula (4), and in direction given by the rules we have indicated.

As early as 1825, Ampère (' ) had given these formulas as equivalent, for the actions of a closed and uniform current, on an element of current to the formulas which represent Ampère's law.

In the posthumous papers of Gauss (-), we find the formulas ( 3 ) as representing the mutual action of two current elements.

(*) Ampère, Mémoire sur la théorie mathématique des phénomènes électrodynamiques uniquement déduite de l'expérience (Mémoires de VAcadémie

of Sciences, vol. VI, |>.

170 .

Collection of Memoirs published by the Society

French Physics, t. III, p. 123) (*) Gauss, Werke, H cl. V, p. (io^.
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In i 843 , Hermann Grassmann had, in his turn, indicated that 1 action of a closed and uniform current on an element of

uniform current could be decomposed into elementary actions such as the one we have just defined.

In 1870, M. Reynard ( 2 ) reproduced these formulas which he believed to be new.

The result we have just obtained can therefore be stated as I

Grassmann's law represents exactly Vaction of any current on a uniform current element.

Now suppose that the current element ds on which

the circuit is not uniform, and let's see if Grassmann's law still applies.

For Grassmann's law to be applicable, it is necessary and sufficient that the force (X, Y, Z), given by the equalities (1), reduces to the force (X,,Y,,Z,), given by the equalities (2); that we have, therefore,

r

So we have

(' ) H. Grassmann, N eue Théorie der Elektrodynamik ( P 0 ggendorff's Annalen, t. LXIV, p. 17; 1845 ).

( 2 ) Reynard, Ann. de Chimie et de Physique, 4 e série, t. XIX, p. 272; 1870.
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Let us assume, in the first place, that the current acting closed and uni¬

form. We will then have

/ T , d x - x' i tos' T

ds' - J

at x - x

ds'

ds'

o

and, therefore,

X

d

2

(x - x')

3

dx'

X dï

ds'

r

y ds'

Thus, for Grassmann's law to be applicable to the action of any closed and uniform current on a non-uniform current element, the integral

i

r 0 r

I (x - x') - ds',

âs

extended to any closed curve, would be equal to o, which cannot be, because the quantity under the sign J is not of the form

o f( x' t Therefore :

Grassmann's law is not applicable to the action of a closed and uniform current on a non-uniform current element; a fortiori, it is inapplicable to the action of any current on a non-uniform current element.

Equality
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273 open,

Either the acting current is closed, or, if it is

1 intensity is equal to o at both ends. We have therefore, under all circumstances,

and

j'îz£V = 0

0



r

-X,

-( X -

2

■ x')

d r

3 >

dx'

ds f

ds' '

2

r

f I d/'

3


	






rfJ'\ X - X*

;■ ds'

2

ds'

r

y ds

ds'

By transferring this result into the first of the equalities (1), we find the first of the equalities

( 5 )

X

Xi -T

.X 2 d.i

2 ds

\dsfdty

ds

v 2 l 2 di ,

/ Y = Y, h- ds

\

2 ds

" " dS

h - Li j -H - ~r ds

2 aces

/(;£*■

3 - X <r/J'

2 rfs'

3 -X </J'

a?

x

ds ',

r

r

2

rfs'

û?s',

3

2

x dr

ds'


	ds'.



In a moment, we will see the interest that these new formulas present.

9

-

Ampere's law.

Let's take the expression of X

We

a

So we have

à , ,

d x r

dx 1

d r

to L ( ■

~ ds''

ds

d r

=


	r d



dx

T -

(x

t

X )

d 2

X )

[

/'

ds ds' '

à

1

1

COS co

da?

dx' ^ r ds' ds

D.

III.

d*

1

CO S (O

a?

/-

ds ds'

a 7

d

ds'

(x'

A

)

/-

ds

iS

f.
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and

X,

2

(J 2 I

J dfr

5 V 2

2

J */ 3?

COSü)

-h r

r

p2

ds ds

P

*

, 1 "

d (. x' - x)

r

ds

x

f

a?

r

J'W

J' ds 9

An integration by parts gives

fè

d

d (x f - x) ~

_ Bones _j

i'ds' i'{x' x) f

1 tos

0

f

x dr dV , ,

r as

às ds

But

So we have

i'(x'-x)

à~

r

1

to Jos

o.

X,

( 6 )

Y

1

31*

J ds

to* I

cos (jj r

r

x

->

r

2

ds ds

x

y ds f

31 *

J ds

r x f -

J r2

or dr di f

ds ds'

ds f .

?

iu | -- **

These equalities will lead us to many conclusions.  Let us first consider the formulas

(7)

£2

<2

Z

=2

If 2

*

2

5V 2

<) 2 cosw r

r

2

ds c9s'

c) 2

1

cos tu /

/ I"

r

(95 ôs f

( 9 2 cos tu r

r

/*

2

(95 < 95 '

X

f

X

r

JJ 1 ds ds',

7 £ Ji'ds ds'.

r

JJ' ds ds'

r

They represent the components of a force applied to element ds, directed from element ds' to element ds along the line that joins the middles of these two elements, and having
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'.>.7 5

for size

( 8 )

R

1

t)2 1

cosw r

+- r ---■ /JJ' ds ds

2

ds ds

This force is obviously subject to the principle of Vegalité between Vaction and reaction. This is the one that has been proposed

by Ampère to represent the mutual action of two current elements (*).

Equalities (6) then lead to the following result;

The Ampère law and Grassmcuin's law are equivalent to represent the action of a uniform current on any current element.

If we compare this theorem with the one we have previously obtained, we will arrive at the following result:

Ampere's law always represents exactly the action of a uniform current on a uniform current element.

In general, it cannot exactly represent the action of a uniform current on any current element, nor, a fortiori, the action of any current on any current element.

Equalities ( 5 ) and (6) lead us to a new important result.

Consider the quantities

y

Ç3

( 9 )

l *)3


	51 *



cos to

X

r

t dr x !

2 r ds

%ï(3

r

d- r

ds tos f

OC |. (I J j 7 f

J -rr-r cls as

X

JJ' cls cls'

cls

21 2 1 tor x '- x 1f dJ _ 7 ,

J -ds ds

2 r ds '

ds

A ) x r - x di dV

4

r cls ds

j ds ds j


  
    Unknown 
    
  




  
















-

?

Cs -.

They represent the components of a force applied to the object.

(' ) For Ampère's work, see the Collection de Mémoires relatifs à la Physique 9 published by the Société française de Physique, t. II and III. See also VAppendix to Book XIV.
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element ds. directed from the element ds' to the element ds following the

/ O

line that joins the middles of the two elements and has gran(1 e u r

(10)

R

Ql 2

d ' 2

COS (0 1 I t TI 7 7 t

. -1 r r -- /JJ as as

2

,2

ôs ds f

5t 2 i dr.dV . i 'àr di , , ,

J t/s ds -- J ~ ds ds

2 r tos ds

-2

r ds' ds

3 t 2 (3 - X) t/J t/J' 7 , ,

-:-- - -r- ds ds .

4 ace as

It is therefore always possible to reduce the shares between

/<

each of which

is directed along the junction line of the elements between the

ifi

between the action

and the reaction.

If the Helmholtz constant is equal to ci 3 , and only in

In this case, Vexpression of this force does not contain a term independent of the distance.

If the two acting elements are traversed by key uniform currents, this force is reduced, whatever it is, to the force given by Ampere's law.

Formulas (9) and (10) show us that, in the general case where each of the two elements belongs to a non-uniform current, the expression of their mutual action contains a term

independent of the distance between the two elements

512 ( *1

4

X) dj dr

ds ds*

ds d s .

This is a paradoxical result which has its correspondent in the theory of electrodynamic actions proposed by M. H. von llelmholtz. This paradox would become an absurdity if the mutual action of two current elements were to be regarded as a physical reality; but the mutual action of two current elements must be considered as a pure abstraction. It is therefore not surprising that the formulas by which it would be possible to represent the mutual action of two current elements bear the trace of the physical impossibility "implied in the very notion of this action.
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The only action that makes sense, from a physical point of view, is the action exerted on any current element by a current whose intensity varies in a continuous way from one point to the other of the conductor, and is cancelled at both ends of the latter in the case where it is open. Consequently, it is necessary and sufficient, in order that the paradox presented by the elementary action independent of distance should not constitute an absurdity, that the action of a realizable current on a current element should contain only terms which tend towards o when the distance of the current from the element increases beyond any limit. The formulas (i) make this fact clear.

3 . - Gauss' theorem.

We have seen that the actions

rnamics could

always be reduced to elementary actions such that each of them is directed along the line that joins the two elements

and verifies the law of equality between action and reaction. But we have seen that in general this action contains a term independent of the distance of the two elements.

There is, a priori, no reason to reject a similar form of elementary action. Nevertheless, it might be more convenient and more in keeping with the habits of mind adopted in the other parts of Physics to reduce electrodynamic actions to an elementary action verifying the law of equality between action and reaction and vanishing when the

two elements are infinitely different. One is thus led to de¬

The problem we are faced with can be stated as follows, given the result obtained above:

Knowing that the action of any current on any element of current can be decomposed into forces, each of which comes from an element of the acting circuit and is directed along the line that joins the middle of this element to the middle of the element subjected to the action, can we find more than one expression for this force?

2;8
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Gauss (') has already answered this question in the negative; Gauss's answer can be justified by the following demonstration ( 2 ) :

Let

l- ds ds '.

ds ds'

1

% ds ds'

the components of the action exerted by the element ds' on the element ds in a first force law.

Let

cY-i dsds', rj i d s ds', here ds ds

the components of the same action if we adopt a second law of force.

Let / be the length of the acting current which we will assume to be closed. We must have

"

equalities which express that the two laws lead to the same result when used to compute a closed current on a current clemency. The theory of curvilinear integrals shows that these equalities are equivalent to the following

= N-i ds' d$ ( x\yz = g t ds'-t-dG(x',y,

v, (b <5 being three uniform, finite and continuous functions of the va

the J', x, z and the

d d signing a di

total e in relation to these four variables. *

If, in both laws, the action of the element on the element ds is directed along the line which joins these

i

C) Gauss, Werke, Ud. V, p. 0 u 8 . 2

( ) I*. Dr il em, Su/' la loi cV Ampère ( Journal de Physique , 2 e scr VÎ t. V ;
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ments,

we will have

(/ -y)% (z 1 -2)3'= ",

(*' - z ) 3G -

(x 1 -

1

H

II

C

(x' -x)$ <y -y) = o

and

(/ -y)%>i-

■ ( 5 ' - ")STi = o,

(*' -z) Æi -

-(x'~


	x)%i = 0,



(x' 1

i

<y -y)& i - o;

we will have, consequently, by virtue of the equalities (a),

(y -y) d §(y, x

,y, "') ■{z'~

-z) d(j(y,x',/, z') = o,

( z' - z) d$ (J', x',

y, z ') (x' - x)d§ (J', x',y,z') = 0,

(x'-x)dij(y, x'

, y, z ) (/ -y) d§ (J', x',y,z') = o.

Let's put

F(J', ar', y, z') - - (y -y), 5( J '>

&,y, z ) -c*'

y, y, z r ),

G(J', y' , z') =

= (z'~

-z)S{ y,

æ',y, z') - (x' -

y, y, z'),

a

H,

II

~ {x' -

-x)G(y,

y, y, z') - (y

y, y, z 1 ).

The previous equalities can be written

<5 ( J ') æ \ÿi z ') d f - § (J',®',/,

^(J', oc',y\ z') dz' - 5(J' S x',y,

x',y\ z')dx '- x',y',

z') dz' = d¥ (J', x',y', z'). z') dx' - dQ{l', x',y, z'), z')dy=dn(y, x',y,z').

Let us examine the first of these equalities. The first member contains neither a term in dx *, nor a term di '. The function F therefore depends neither on F, nor on x'. Moreover, this equality can be

replaced by the following

P r dF

we see that the functions Çj and $ do not depend either on x , or on V . By reasoning in the same way about the other equalities, we arrive at

to the following results:

§ is a function of the single variable x Cj is a function of the single variable ^ is a function of the single variable z 1 .

Now let's write the necessary and sufficient conditions

-).8o
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so that the first members of the equalities (( 3 ) are total differentials! We will have

that give

We see then that the quantities cf, Ç, § are constant quantities, and, if we refer to the equalities (oc), we find

o\; = ,,

rj = rjl,

■3S" =

Thus, there is only one way to reduce the action exerted by any realizable current on any current element to actions each of which is exerted between two current elements and is directed along the line that

joins these two elements. This unique reduction mode is then necessarily represented by the equality (io).

§ 4 . - M. Le Cordier's theorem.

Here is another question, analogous to the previous one, and which can be solved in a similar way.

We have seen that the mutual actions of two currents could be replaced by forces applied to the middle of each current element, and that, if the currents were deformable in any way, these forces were completely determined. But, if, instead of supposing the currents to be deformable in some way, we suppose them to be ri
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gides, it is permissible to believe that Ton could, in another way, decompose the forces which are exerted between these currents into forces applied to the middle of each element. To this question one can, with M. Le Gordier (' ), make the following answer:

If we give ourselves two currents, even if they are assumed to be rigid, there is, in general, no more than one way to decompose the action of a current on Vautre into forces applied to the middle of each of the elements of the latter.

Let us suppose ( 2 ), in fact, that the action of the current s' on the current s can, in two different ways, be decomposed into forces applied to the middle of each element ds. One of the determinations of the force applied to the middle of the element ds will be deduced from the other one by the application to the considered element ds of a force whose components would have the value

X ds, Y ds, Z ds.

Let us consider all the forces of this kind applied to the current to which the element ds belongs. They balance themselves on the supposedly rigid conductor through which this current flows.  Let us assume that this conductor is closed and let us designate its length by l.  We must have

( 1 ) Paul Le Cordier, Théorie des actions électrodynamiques les plus générales qui peuvent être observées ( Journal de Liouville, 3 e série, t. X, p. g 5 ;

l884 ) *

( 2 ) P. Duhem, Applications de la Thermodynamique aux actions qui s'exent entre les courants électriques (Acta Societatis Scientiarum Fennicœ , t- XVI; 1887).
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J varies continuously with s and returns to the same value for 5 = 0, s = /. The previous equalities will therefore only take place, in general, whatever the current on which the action is exercised, if we have

! X ds - cl -T( J, x, y, z ),

Y ds - d(j( 5 , x,y, 3),

Z ds = d l 5 (J, x,y, z)

and

( (yZ - zY) ds = d ^ ( 3 ,x,y,z),

(S) < (zX - xZ) ds = d 011 ( J, x,y, z),

\ (xY - yX) ds = d DT: ( 3 , x, y, z).

Taking into account the equalities (y), the equalities (0) become

yd[)( 3 , x,y, z)- z d tj(J, x, y, 3)= d £ ( 3 ,x,y,z), z d 3 ( J, x. y, z) - x d§ ( J, x, y, z)= d Dïl ( J, x,y, z),

/O ^ V

x d y (J, x,y , 3) - y d J (J, x,y, 3) = d  (J, x,y, z),

or, by putting

F (J, x, y, z) = y /) ( J, x,y, z)- z (j(J, x,y, z)- 4^ (J, x,y, z),

G(J, x,y,z)= z$(J,x,y,z)-x$(J, x,y, z) - 3 TL (J, x,y,z),

fy

H(J, x,y, z) = x<j(J, r,y, ~)-}'3 z)- X (J, x,y, 3),

5 dy - y dz=dF,

J dz - dx - dCi ,

Ç dx - rf dy = d\ I.

These equalities are the equalities ([ 3 ). We have seen that they lead to

$ = const., (] = const., }y = const.,

and, therefore, by virtue of the equalities (y),

I

X = o, Y = o, Z - o,

this

which

enunciated.

§ 5.

Theorem of M. H. von Helmholtz.

One last problem can be treated by the same methods

of two currents is
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the formula

If

JJ

I

2 /'

X i - X

cos 10 - - - cosO cosO' I ds ds'

2 !'

If the two currents are uniform, in which case the two intensities J and J 7 must be treated as constants in the integration, it is known that one can choose the quantity \ arbitrarily, which allows one to give an infinite number of different forms to the

quantity under the sign JJ - But it may be that the determinations

for this quantity are not all the determinations of which it is susceptible. We will propose to find all these determinations.

Either

JJ' / / cp(/', cosO, cosO', cosoj) ds ds 1

one of the forms of the electrodynamic potential. Any other form will be represented by the formula

-IA cp(>, cos 6 , cosO', cos 10)4- cosO, cosO', cosw)] ds ds',

with this raw condition we have, for two closed circuits which¬

conches

U)

II

cosO, cosO', costo) ds ds' = o

Consider the integral J cosf), cosO', cosoj) ds extended to

circuit s. This integral must be finite. Through the circuit s , let us pass a surface with two sides and, by two systems of lines, let us cut the area of this surface into infinitely small areas. The previous integral will be the sum of the analogous integrals extended to the contours of these infinitely small areas, according to a demonstration often indicated. The preceding integral must therefore be an infinitesimal of the second order when the contour to which it extends is an infinitesimal of the first order. From then on, according to M. Bertrand's theorem, the function ^ must be li It would also be shown that it must be

neary in

ds ds ds

,. . dx dy dz

fineaire en -n > > -,- -

ds ds ds


84
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It is therefore necessary that Ton has

cosO, cosO', cosw)

A

11

dx dx f ds ds

A ! *■

12

dy dx J 21 ds d7

A

A

dz dx !

31

ds ds r

^32

dx dy r ds ds '

dy_ <ty_

ds ds'

dz dy' ds ds'

dx dz' 13 ds ds'

dy dz' 23 ds ds'

A

33

dz dz' ds ds' '

the quantities A ij being functions of oc, y, z, oc',y', z'. It is easy to deduce, by a reasoning similar to the one given at the end of Chapter II (Book XIII), that must be of the following form


}(/', cosG, cosO', cosco)



F(/-) cosG cosG'+ G (r) costo

/ dx

dx

H d y d y'

dz dz' \

\ ds

ds'

ds ds f

ds ds 1 )

g(r)

dv

x ) 37 +(r

f

X

x)

ds dx f

d7

y) ds +

)

d

+(z '

)

ds dz!_ ds

We must therefore have, for the following equality

currents

t

r f{r \<h ds'

g(r) (x T

dy dy r dz dz'

ds d s '

d s ds '

x

( x

-O-Z+iy-r)

dx 1

x) dF^ y '

dy_

ds

dy

ds'

H

f

z)

)

d "j

ds

dz f


	5 ?



This requires that we have

.. dx'

f{r) M

-Yg{r

) (x' X)

{x* -

J

1 *

'/J

V

1

(/ -y\% 1 ' ds'

d y r

™ £

-f* g 1 r

)(/ y)

(x r . dx 1


	x) ds' -*■



(y dv'

-y>-ds r

f , ,h '

-+-g (f)


(*'--)



(x f . dx '


	x) dï+



(/ * ' ds f

_ t

)

y

(

)

)

ds' h

dy

ds'

f

ds'=

(S

)

ds'


	oc, y t z) being an x , y, z riah.



ds ds' - o.

to V(x,}

ù y

O

uniform and continuous

I. Let's divide the necessary and sufficient conditions so that from
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similar equalities can exist. We will find, all reduction made,

/I

d f(r)

r dr

1 \

8^

-(y . dz'~

rt-sï J

1 ds' =

= o,

/I

i

r dr

"'(r)]

[ ( * x) <U

I 1

ds' =

= o,

/I

~ i d f( 7')

r dr

g( r )

-(a?' i_i

ds' =

= o.

These equalities must have

place whatever

or the

closed current s', we

must have

K - *)dy-( y -y)dz']

= d F (J', x' ,

7', -2'),

1 .0' - x) dz' - (s' -


	z ) dx' ]



=r/G(J', x

y\ *'),

[(/■

-y ) dx ' - (x r -


	x) df]



= d(y,x',

These equalities are of the form (( 3 ). Thus we have

i d / ( r ) a d r

i d f(r) r dr

i d f( r ) r dr

consl.,

const..,

const.

For these equalities to take place,

it is necessary and sufficient that we have

i d f{r)

(?) /- ~dr ë{ r ) = °*

This is the necessary and sufficient consideration for equality to take place.

If we observe that we have

I
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it will be easy to see that we can write

cosO , cosO', costo)

dr dr

rf(r)

ds ds' dr dr

[/(>')

2 or

(>')]

djr_ ds ds f

ds ds

l

cl dV

a? [rf('■ )] -

or, finally, by posing,

Mr)

<L(r, cosO, cosO', costo)

d 2 éïl ( 7 ' ) ds ds'

Thus, having a form of the electrodynamic potential of two closed and uniform currents, we will obtain all the others by adding to the first one a quantity of the form

dl(/') being any uniform, finite and continuous function of r.

This theorem was stated by M. H. von Helmholtz (*).

(') II. von Helmholtz, U cher elle Bewegungsgleichungen der Elektricitat fur ruhende leilende Kôrper ( Borchardt's Journal, Bd. LXXII, p. 7^; 1S70. - Helmholtz, Abhandlungen, t. I, p. 565 ).

CHAP. X.

MUTUAL ACTIONS OF UNIFORM CURRENTS.

287

CHAPTER X.

FORCES THAT THE CLOSED AND UNIFORM CURRENTS EXERT

ON EACH OTHER.

§ 1.

General theorems.

In Chapter III, we arrived at this fundamental consequence:

The electrodynamic forces acting in a system of linear currents have the following potential

(0

n

J J'[y(;') cos8 cos8'-+- g(r) cosw] ds ds',

the intensities J and J' must be kept constant in the differentiation of this quantity

If we make the assumptions about the functions/(r) and g(r) that we made in Book XIII, Chapter III, assumptions from which we

deduces that

A r )

3l 2 1

X

2

2 r

g( r )

a 2 1

x

2 7

we can easily deduce from the previous law the following proposition:

The mutual actions of any two currents C and QJ admit for potential the quantity

(2) n(C,C')

St 2

2

JJ'

X

cos 9 cosO'

2/'

T - . cos lu ) ds ds'. 2 r )

When the currents C and C' are closed and uniform, we know that we can take arbitrarily the value of the constant
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In particular, one can make ~k - i or J - -i. This leads to the following consequence:

The mutual actions of two closed and uniform currents G and C' admit a potential for which we can take arbitrarily one of the two forms

( 3 )

n(C, G') =


	jj



2

n(C, G') -

912

JJ

2

//

I JC'

'ff-r

m / r* - / /'/ 9

cosô cos6'

ds ds'

CO

ds ds'.

The first of these two forms is the one used by W. Weber; the second was constantly used by M. F.-E. Neumann.

The law of mutual actions of closed and uniform currents can be stated in another way. We saw in Chapter IX [equality (8)] that the mutual actions of two closed and uniform currents were the same as if any two current elements exerted a repulsion on each other of the magnitude

( 4 )

R

/ COS 10

2

2

r

to- r ds ds f

JJ ds ds .

This force R can be put in several different forms We have [Introduction, Chap. I, equalities (6) and (7)]?

cos tu

cosO cosO'

dr dr

d- r ds ds' 7 d 2 r

CO S (.0

ds ds'

r

ds to s '

The formula ( 4 ) can also be written

R

SV 2 1

2 r 2

COS tü

r

d 2 r ds ds'

dr to r

2 -- -- )Jdsi'ds', Os Os

equality to which we can then give the various forms

( > )

R

2l 2 1 / Gold 0/

2 r 2 V Os Os 1

2/

0 -r Os Os

,J J ds J ' ds',

(<")

H

^ 2 - | COS CO

7*2

3

cosO cosO ' ) j ds y ds',

( 7 )

I



t

I

,2

sinO sinO'coss


	cosO cosO' ) J ds y ds 2
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We can give the quantity R a last form.  We have

_ i. -1 dr i | dr dr ds ds a ds ds' \ r ds ds 1

The equality ( 5 ) can thus be written

à-\J r % r ds ds f

These various forms (4), (5), (6), (7) and (8) of the elementary law of electrodynamic actions between closed and uniform currents were given, in 1826, by Ampère. In his research, Ampère made use of the last one.

Ampère's law is now of little more than historical interest. Most of the results obtained by Ampère can be obtained more immediately by means of the expression of the mutual potential of two currents given by the formulas ( 3 ) and, in particular, by the expression given by the last of these two formulas, that used by F.-E. Neumann.

According to Ampère's law, two parallel current elements, of the same direction and perpendicular to the same line, exert an attractive action on each other with the following magnitude

( 8 )

R

2.2V 2 J ds J 'ds'

5 V 2

J ds J 'ds'

Ampère chose the unit to which he related the intensities, so that this force was represented in size by

J ds J ' ds'

----- - y

A *

i.e. in such a way that the constant takes the value 1. The unit of intensity thus chosen is called the electrodynamic unit. Closely related to Ampere's formula, it is now, like Ampere's formula, only of historical interest.

Let's go back to the expression

3 t 2 _ T , C C cosw . 7 ,

( 9 ) n(C, c ) = -- JJ / / -ds

2 */C

1

which represents the potential of the mutual actions of the two closed and uniform currents C and C'. Ampere's theorem shows us

D. - III.

*9
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immediately that, if A and A! are areas of two dimensions passing through

by the contours C and ( 7 , we will have

n(C, C')

5t 2

JJ'

à

r

A O A' toN dN'

dü dQ!

We will interpret this expression as we did in Chapter VI of the previous book.

Let us lead two surfaces infinitely close to the surface A, one A on the positive side, the other A 2 on the negative side. Let e be the distance between the two surfaces A t , A 2 . On the surface A, let us distribute some fluid ma¬

austral gnetic with uniform surface density

IF J

¥ V p

3 - - bur

On the surface A 2 , let us distribute the boreal magnetic fluid with the same density. We will thus constitute a magnetic sheet which we will say equivalent to the current C.

We see then that the mutual electrodynamic potential of two currents C and C' is identical to the mutual magnetic potential of the two sheets F and F' which are respectively equivalent to them, which leads to the following consequence:

The electrodynamic forces that act between two closed conductors, through which uniform currents flow, are identical to the forces that act between the two magnetic sheets respectively equivalent to these two currents.

This beautiful theorem is due to Ampère.

Transfoimations similar to those made in Chapter VI of the previous book will give us the following theorems:

When a conductor f of constant intensity J, is closed, immensity J',

crossed by a current

îforms and

in front of a

carried out

/<

The number of lines of force that the conductor G ' exerts on the conductor C is proportional to the number of lines of force of the conductor ( 7 that the conductor C cuts in its movement.

When two closed conductors C and C', carrying uniform and constant currents J and F, are

and get out of the way.

form in some way, the work

f

J
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their mutual electrodynamic actions is obtained by multi

folding by - J' the derivative with respect to time of the flow of

force of the current G that enters through the negative side of an area limited to the conductor G.

2 .

Action of a closed and uniform current on a solenoid (').

Let J be the intensity of the current flowing through the solenoid S; let C be a closed circuit through which a current of intensity J 7 flows. Suppose that Q is the area of one of the small circles that make up the solenoid and that D is the distance between two of these circles, so that

<ï>

a a

,/r "

is the power of this solenoid.

Through the conductor C, let us pass a two-sided surface, which the axis of the solenoid pierces n times passing from the nega m

n 1 time from the positive side to the negative side.

Let <t a be one of the values, at the southern pole of the solenoid, of the function f(x,y, z) defined in Chapter 111 of the Introduction. Consider a path ab from point A to point B without encountering the surface led by the contour C. Let us assume

an = cr a

a b

df(æ , y, z)

(LL

lash

According to what we saw in Chapter IX of the previous book, the mutual electrodynamic potential of the closed current and the solenoid will have the value

00

n(S, C)

% é

I'[sa

CJB

4 ^ (n

*')]

(*) The theory of the forces exerted by solenoids is due to Savary [Mémoire sur l'application du calcul aux phénomènes électrodynamiques (Journal de Physique, t. XCVI, p. 1; February 1823)] and to Ampère [Mémoire sur la theone mathématique des phénomènes électrodynamiques, uniquement cleduite de l'expérience {Mémoires de l'Académie des Sciences, t.VI, p. 175)]. See volumes II and III of the Collection de Mémoires relatifs à la Physique, published by the Société française de Physique.
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Let us imagine that we give the solenoid an infinitesimally small displacement. The actions that the firm current exerts on the solenoid will do work c/S, and we will have

say

on(S, G)

if


	J' o [(Ta



<TB

4 tt ( n

"')]

2

We can always assume that the surface passing through the circuit G is conducted in such a way that the number of encounters of the solenoid with this surface does not vary in the infinitely small displacement considered. We will thus have

d(B

SV

= J'(o<TA - OTb).

Let 7), Ç be the coordinates of the southern pole A of the solenoid, and !-', r/, "Q the coordinates of the northern pole B. We will have

ota

tof(l 7j , O gj

à\

to Al *), O

dn

. d/(Ç,r" Ç) .

0 y s>

or.

i

OOb

to fa.

y f f

J J

d

î / ;>r/


	oç



S v>

dr/

O - r


	Û 7 J



to f(

' w

J '1 ï

tot'

O >,

OC -

The actions of a closed current on a solenoid are therefore reduced to a force applied to the southern pole of the solenoid,

with the following components

X

Y

Z

If

4>J'

tof(

i -o" O

y/y

SV

 r

to A

S, ^ 0

sJ 2

SV


	i'



àf{

y/y

T O

à?

and to a force applied to the boreal pole, a force whose com¬

posantes

X'

Y'

Z'

SV

^J'

to fa', V, O

sj%

SV

1 1

■àf(?, r/, O

y/y

4 J J

SV

J'

*/a\ v, a

J 2

<

Now we have calculated [Introduction, Chap. III, equality (i°)]i
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tonus allow us to write

/(S,n,0

These results can be stated as follows:

Let us imagine that a solenoid carries, at its southern pole, a positive quantity of a certain fictitious fluid which, like the electric and magnetic fluids, can be affected by sign, and, at its northern pole, a quantity (- f ï > ) of the same fluid.

A closed and uniform current will exert, on a solenoid, the same action as if each element of the current exerted on a mass <ï> of fictitious fluid a force applied to the point (£, 7j, Ç), where this mass is located, a force having for compo¬

santes

We will say that these formulas represent the law of Biot and Savart for Vaction of a current on a solenoid pole.

Ampère, relying on considerations that have been rendered valueless by the progress of electrodynamics, stated that the action of a current element ds on a solenoid pole was given in magnitude and direction by the for
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mules (i 3 ), but that it was applied to the point (x, y, z) coinciding with a point of element ds and assumed to be invariably related to the solenoid, and not to the point (£, r,, Ç).

It is easy to see that Ampere's law and Biotet Savart's law lead to the same result when one wants to calculate the action of a closed and uniform current on a solenoid pole, and that one can, therefore, substitute one for the other (M.

Indeed, the force given by the formulas (i 3 ) and applied to the point (x, y, z) as Ampère wants, can be replaced by a force of the same magnitude and direction applied to the point (i, 7), Ç), that is to say by the Biot and Savart force, and by a couple whose axis will have as components

\ ds ~

= z(*i ~y)~

-H(Ç z),

(j i ds = E(Ç -z) -za ~ æ )>

v ds =

= H(È - x) - S(t) -y )-

All calculations done, these formulas become

ds ,

ds,

When we calculate the action of a closed and uniform current on a solenoid pole, all these elementary couples will be composed of a single couple having as components

L = / À ds, M - / u. ds, N = / v ds,

Jq J c J c

that is, according to the equalities (i4),

L = o, M = o, N = o.

Ampere's law and Biot and Savart's law lead to the same result when we calculate the action of a closed and uniform current on one pole of a solenoid.

< 1 " This demonstration is due to Ampère ( Collection de Mémoires publiés par la Société de Physique, t. III, p. i 32 ).
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f

Let's study the force whose components are given

equalities (i3).

We have

So Vaction of a current element on a solenoid pole is normal to Vcurrent element.

We also have

Therefore, the action of a current element on a solenoid pole is normal to the line that joins the current element to the solenoid pole.

Let's take as x-axis (Jig. 53) the line that joins the current element to the pole P 5 as y-axis a line normal to OP,

located in the plane of OP and ds , on the side of OP where ds is located; for z-axis a line forming, with the previous ones, a negative trirectangular trihedron.

The force F, counted positively parallel to OZ, will have the value, according to the formulas ( 1 3 ),

sin(r, ds),
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the straight line r being supposed to be directed from the pole current element. We have then

31 ^ t, sin(r, as).  - <ï>J'-- ds

to the

Thus a closed and uniform current acts on a solenoid as if every element of the current exerted a certain force on a fictitious fluid mass.

This force is applied to the pole of the solenoid (Biot and Sac art's law) or to a point invariably linked to the pole, but coinciding with a point of Ampere's faith current).

Carried to the solenoid pole, it forms, together with the element ds, a cl system with positive direction of rotation.

Its size is

sin(/', ds)

Here straight r is directed from the current element to the pole.

Let's make some applications of the law we have just stated.

i° A rectilinear current MM' (fig. 54) is placed horizontally¬

ment.

A horizontal solenoid AB is mobile around a vertical axis OZ passing through its middle O and through the rectilinear current inde

0


	l - Let XOX' be a parallel to MX 1; let OY be a perpendicular to the plane ZOX, directed to the left of XOX'.



Each element ds of the current exerts on the pole A a force given by the previous law and, consequently, apnt, followingOY,

CIIAP. X. MUTUAL ACTIONS OF UNIFORM CURRENTS. ony

a positive component. All these forces will be composed into one whose component, along OY, will be positive. In the same way, all the forces acting on the B pole will be composed of one equal and directly opposite to the previous one.

It is obvious, by reason of symmetry, that the solenoid AB is in equilibrium when OA or OB is along OY.  What we have just said shows that it is in stable equilibrium if OA is along OY, and in unstable equilibrium if OB is along OY.  So we arrive at the following result:

A horizontal solenoid being movable about a vertical axis, if Von places an indefinite rectilinear current above it, the solenoid will cross itself with the current so that its southern pole is to the left of the current.

2 ° Let us consider (fig. 55) a plane, indefinite current, formed of two rectilinear parts MN, NM', making an angle 2 a between them.

Fig. 55.

\st

On the extension of the bisector of this angle is a southern pole of solenoid A. Let's find out what is the action of the current on the pole.

All the elements mm'= ds of the current exert on the pole A an action normal to the plane of the figure and directed in front of this plane. All these actions being of the same direction, we will have their resultant by adding them together.

The action of mm' on pole A has the value, according to the form

-->-9$

mule (i3),
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F

21 sin (a - 0) ,

-i 4" J --- t-^- mm ,

/ - 2

V- A m

H being the angle m AN.

In the mAN triangle, we have

A m

p sma

sin (a

0 )

?

o denoting the distance AN.

In the triangle A mm', we have

Am

mm

sin (a

0 )

c?0.

So we have

sin(a

0 )

mm

Am

t

sin(a - 0 ) p sin a

dQ,

which gives

F

2t <!> J' sin (a - 0)

✓

2 P

rfO.

sin a

The NM' branch of the current then provides an action

S

A t!>J'

J /% A

f sin(a 0

0) dO

The MN branch gives an equal action. The action sought has thus for value

G

aSl <ï>J'

/a P sin a

sin( a

0) dQ .

o

O

r

J if

^0

sin(a

0)c/0

t

cos a.

We have therefore, noting that

i

cosa

sina

a

tan g - ?

2

( i Ci)

G

23t I'

v/

2

P


	tanc 2



In the particular case where the current is straight, we have simple

menl

TZ
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and

( ! 7 )

G

a IF <ï>J'

s/

2 P

In 1 study of Electromagnetism, we will see the importance

of these results.


	

	Mutual actions of two solenoids.







ffiüPl ■ ' *

Consider two solenoids, one S or AB, the other S , or A / B ;

Let

"ï"

SV QJ

SV G'J'

/

D

<P'

the powers of these two solenoids.

Let C be one of the elementary currents of the first solenoid.

Let C' be one of the elementary currents of the second. The mutual potential of these two currents has the value

()2 1 JJ' -_

The mutual potential of the two solenoids has then the value

If 2

n(S, S')=- JJ'

r

dNtoN'

£2£2'.

S S '

As in a similar case, in Book XIII,

iter VIII,

this expression can be written

n(S, S') = < £

B

d* r

dldV

dl dV,

dl and dl 1 being the elements of the solenoid axes.  The integration is done immediately and gives

(. 8 )

II (S, S') = ^"l>

BB'

AB'

BA

This formula leads to the following consequences:

The poles of the same name of two solenoids repel each other; the

ooo BOOK XIV. - ELECTRODYNAMIC FORCES.

These actions are proportional to the product of the powers of the two solenoids and in inverse proportion to the square of the distance between the two poles.

In other words, the mutual actions of two electrodynamic solenoids are identical to those of two magnetic solenoids of the same shape, carrying at their ends quantities of magnetic Jluid respectively equal in magnitude and sign to the quantities of fictitious fluid that Von has agreed to place at the ends of the two solenoids.


	'



§ 4 - Absolute electrodynamometer.

So far we have studied the electrodynamic forces developed by the action of a closed current on another closed current.  The various elements of a closed and uniform current also exert on each other actions which have for potential

n(C,C) = - % J2 f f^ds'.

4 J c Je r

We will apply this formula to the principle of the absolute electrodynamometer (').

Fig. 56.

A current, carried from a distance by a wire AB (fig. 56), flows through an almost closed circuit BB'B", B" being very close to B.

( 1 ) W. Weber, Electrodynamisclie Maassbestimmungen. Hcft i; 1846.
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Self

From there it goes away by a wire B "C to traverse another circuit

almost closed GC'C". It returns from there by a wire C "DE which is constantly very close to CB" and B A.

The only moving part of the circuit is the part B "CC'C "D; again I circuit CGC" is assumed to be rigid.

If y and y denote two portions of a circuit, and if we pose, to abbreviate,

St 2

2

(y> y')

Ç Ç CO S GO

u y t/ y' '

ds ds

will easily see that the

variable part of II

reduce


	. ' ît a



[ (AB '

CC'C")+(BB'B", CC'C") 4-(B "G,GG'C")+(BC, GG'C")-h(DE

-H AB,

B "C)-t-(BB'B",

B "C) -i- - (B "C.

,B'C)4

-(DE, B'

'C)


	(AB,



C "D)-t-(BB'B",

G "D) +- - (G "D. 2

(DE, G" D) -t (DE, G"

D) + (B

However, we

a noticeably

(AB, CC'C") -+ (DE,

CG'G") =

: O,

(B" G, GG'G") -+ (G "D,

GG'G") =

: o,

(AB, B "C) +

(AB,

C" D)

(BB'B", B "C) +

(BB'B

;",G "D) =

: o,

(DE, B "C) +

(DE,

G" D; =

: O,

(B "G, B "C) (G "D,

C "D) = -(B'G, G" D ).

The variable part of IÏ(C, C) is therefore reduced to

ibfc, C)

J 2 (BB'B", CG'G")

The elementary work produced by the electrodynamic actions in a deformation of the system is

09)

& 2

2

J 2 8(BB'B", CC'G")

If we give the two almost closed circuits BB'B", GC'C", which, practically, are two coils, a simple and well determined geometrical form, we can calculate the quantity

8 (BB'B", GG'G").

If the actions in question are balanced by con

3o2
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such as a bifilar suspension (Weber electrodynamometer) or a weight (Joule electrodynamometer), we will have obtained an instrument which, thanks to the formula ( 19 )? will allow us to experimentally determine the product

3V2J2.

We refer to the Treaties for a detailed description of electrodynamometers.

i
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ACTION OF A CLOSED AND UNIFORM CURRENT ON AN ELEMENT

OF UNIFORM CURRENT.

1 .

General theorems.

Let be a closed circuit C, traversed by a uniform current of intensity J 7 , acting on an element AB = cls, traversed from A to B by a uniform current of intensity J.

We know that the action of the closed circuit C on the element ds reduces to a single force applied to the element c/s. According to the definition of this force, when the element AB moves so as to come to A'B', this force performs work equal to the electrodynamic potential of the current C on a current of intensity J flowing through the circuit AB B'A; A.

If we refer to a demonstration given in Book XIII, Chapter VI, we see that: the work produced by Vaction of a

.closed and unified

uni

/<

force of the current f>

cut in its movement.  We have seen Book XIV

IX, equations (2)] that the

The force in question had the following components

X

A 2

-J ds

cos w

(I)

Y

A 2

cos w

1

l

Z

A 2


	J ds



costo

d r

clx'

to r

dx

ds'

ds

to r

cl/

to r

at

cls'

ds

j

to r

clz'

d r

dz

cls'

ds

J' ds',

J' ds,

y cis' ,
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expressions to which Ampere's law and Grassinann's law also lead.

Note that we have

let's put

à

d - _

à

r

dx

i

r dy

r

dz

ds

dx

ds

dy ds

at

cl s '

dx

dx'

dy dy'

dz

dz'

costo =

ds

as'.

| v |

ds ds f

ds

cls' '

( 2 )

r*/

A

B

C

d ?

d r

dy'

dy ds 1

~ dz

ds'

^ r dx'

to r

dz'

àz ds'

dx

ds' t

à- } ,

r dy %/

to r

d.r'

dx ds'

at

cls'

ds',

ds',

r ds',

and the formulas (i) will take the very elegant form

J'J ds.

These formulas give the immediate demonstration of several important propositions.

i u From the formulas ( 3 ), we immediately deduce

The action that a closed and uniform current exerts on a uniform current element is normal to the element on which it is exerted.

This proposition, in addition to its intrinsic importance, is of great historical interest. Ampère had based the demonstration of the law of electrodynamic actions on a number of hypotheses and on three experimental laws. M. Bertrand showed that, of these three laws, only two were necessary to establish the law of electrodynamic actions.
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of Ampère's law. Now the law we have just stated is one of the two experimental laws of Ampère that M. Bertrand has preserved (M.

2 ° The equalities (3) give us again

A.X- 4 - BY + CZ = o.

If we give, with Ampère, the name of director of the action of the firm current to the straight line whose directing cosines are proportional to A, B, C, we see that Vaction exerted by a firm and uniform current on a current element

uniform is normal to the director at the point where the element is located.

A

3° Let's consider the determinant

X Y Z !

clx dy dz

*- - -^ É

ds ds ds

and, therefore, is essentially positive. Thus:

The trirectangular trie dre formed by the action that a closed current exerts on a current element, the current element and the director, has a negative direction of rotation.

4° Let us examine more closely the properties of the director. Stokes' theorem gives us, by designating by N the normal to 1 element of an area passing through the circuit G,


	2 %) dz ds ' J



(*) See VAppendix to Book XIV.  D. - III.

20
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But

by the way

So we have

We also have

A

r

P

d 2

àydÿ

d 2 r

-m ' 1 i

ôy dx'

d 2 r

d 2

I

r

dydy'

r

dy 2

at 2 V

ds dz r

ds 2 '

d^~

à*~~

d 2 r

r

7"

da? 2

dy 2

' ds 2

d 2 d 2

I

r

r

O.

dz dz r

dx 2

dx dx

d 2 r

do? 3

d* r

dz dx'

at 2 i

r

dx dz r

The previous equality thus provides the first of the formulas

A

B

C

à

dx

d

dy

d

d

dy

dx , cos(N,ar)4

d y


	^->cos(N,^)-+



d r

dz 1

dy

COS(N,Ü?) H

d y


	^cos(N,/)h



to r

H ^ /

05

d y

fai cos(N,^)h

dy

h X/ cos ( N >7)H

r

Qj

Kn ^5 1 "

j cos( N, <s) I due,


cos (N, z) | dii,



j cos(N, z) \da

We immediately deduce

^AJ'

✓

51

✓

; bj'

St

n/

= G J'

-i

d

dx


	à 1 - -



y-^da,

t/

-i

dN

d

at

<* d ~

S4j

/

"ONE

<9

if ^ rJ'4^,

y/

i

dN

or, if we denote by t? the function polen

magnetic
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of the sheet equivalent to the current C,

(4)

%

&ç

dx

% BJ' = dp

✓"

dy '


	C.T - -



dp


	

	*







dz

1

These formulas (4) then lead to the following consequence:

The director at a point of Vaction of a closed and uniform current coincides in direction and sense with the tangent to the line of force of the current led by this point.

Action of a solenoid on a uniform current element.

According to the equations (3) and (4), the action of a closed and uniform current on an element of a current has the following components

/

X

( 5 )

Y

/

%

sf

\

J ds

Z

3 ds

/

dp

dy

dp

dz

dz

ds

dy

ds

dp

dz

dp

dx

dx

ds

dz

ds

dp

dx

dp

dy

dy

ds

dx

ds

w

/

\

\

?

\

Suppose that the current C is a small circle of area Q.

We will have

P

-St


	J'



✓

d - Q

dN '

and the previous formulas will become

/

X

5t 2


	J'£2J ds



(5 bis)

Y

-St 2

J'QJ ds

2

Z

.St 2


	J'£2 J ds



à

( to 'r

dy _

d r

dz

dS

\ dz

ds

dy

ds

à

dz

d r

dx

to N

\ dx

f

ds

dy

ds

<L 1

(d r

1 - dx

l

to r

dy

ÊS

i

\

/

\

/

dN

dy ds

dx ds
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If we write analogous equalities for the various circles

r" T' <3i

which compose a solenoid AB, of power

QJ' 5V

--jr --, three

v/

integrations will provide us with the three components of the action that this solenoid exerts on a uniform current element. We

We will then see that :

The action of a solcnoidc sim a uniform current element

can be broken down into two others:

i° An action emanating from the southern pole of the solenoid, this one

is a force applied to the current element and having as components

2 ° An action emanating from the boreal pole of the solenoid / this one is a force applied to Vélément and having for components

If we compare these equalities (6) and (6 bis ) with the equalities (i3) of the previous chapter, we arrive at this proposition which dispenses us from further study of the action of a solenoid in the case of a

a current element :

The action of a solenoid pole on a cost element is a force equal and directly opposite to that which represents, according to Ampere's law, the action of a current element on a solenoid pole.

ON AMPERE'S LAW.

3oq
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ON AMPERE'S LAW.

The order in which we have set out the laws of Induction and Electrodynamics differs greatly from the order usually followed in works dealing with these sciences. We have given, in Chapter V of Book XIV, the reasons which imposed on our choice the plan we have adopted. Nevertheless, we think that our lessons would be seriously lacking if they did not make known, at least in their broad outlines, the classical theories by which one arrives directly at the laws of electrodynamic actions between closed and uniform currents. The present Appendix is devoted to a very brief exposition of these theories.

§ 1 - Ampère's law; Ampère's demonstration.

The various works by which Ampère came to formulate the law of the action that a closed and uniform current exerts on an element of uniform current are summarized in the great Memoir that he published in 1826 (!). Ampère's demonstration is based on six hypotheses and on

three experimental laws.

First assumption. - Let be a uniform current C which acts on a uniform current element ds'. Let's decompose by thinking the current C in elements ds\, ds%, .... The action of the current C on the element ds' is the resultant of elementary actions exerted by the elements ds\, ds %, ... on Element ds '.

Second hypothesis. - The action that Vélément, ds exerts on the ele¬

ds' is a force, applied at a point of the element ds and directed along the line joining a point of the element ds to a point of

( 1 ) Ampère, Théorie mathématique des phénomènes electrodynamiques, uniquement déduite de l'expérience ( Mémoires de l'Academie des Sciences,

1826 ).

3io
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Vélément ds'. Uactîon of Vélément ds r on Vêlement ds is equal and directly opposite to the previous one.

Third hypothesis. - Vaction of Element ds on Element ds' depends only on the intensities J and J' of the currents flowing through the elements ds and ds ', on the length and on the relative situation of these two elements.

From this assumption, it is easy to deduce that Ja force exerted by the element ds on the element ds 1 is proportional to the product JJ\

Let us consider a first element ds\ 9 crossed by a current of intensity Jj. It exerts on the element ds' a repulsive force that we will represent by t /(J 1 , J 7 ).

To the element d$i let us add an element ds% of the same length, through which a current of intensity J 2 * will exert on the element ds' a repulsive action whose expression will differ from the previous one only by the exchange of the quantities J lr J 2 . This action will have the value /(J 2 , J').

The set of two elements ds i9 ds% thus exerts on the element ds a repulsive force whose value is

/But this set can be considered as a single element, of the same length as each of the two preceding ones, placed like each of the two preceding ones and traversed by a current of intensity (J 1 - 4 -J 2 ). The action of this element on the element ds' must therefore have the value

/(Ji + Jat, J')

We have, therefore, the identity

/( Ji, J') = /(Ji + J*, J'X

identity which shows that the action of the element ds on the element ds' is proportional to J. It would also be shown that it is proportional to y and, consequently, to the product JJ'.

The preceding hypothesis also proves that the action exerted by the ele¬

ds' is proportional to the product dsds'.

Let us imagine, in fact, that a first element ds , crossed by a current of intensity J, exerts on the element ds' , crossed by a current of intensity J', a repulsion that we will represent by /(ds^ds')*

Let us extend the element dsi by an infinitely small length ds%. Let us suppose that the element ds t is also crossed by a current of intensity J- 11 will exert on the element ds a repulsive action whose direction will be

approximately the same as the previous one and whose value will be approximately f{ds 2 , ds').

The set of two elements ds i} ds 2 exerts on the element ds' a repulsive force whose value is

J(ds 1 , ds' ) -+* /( ds 2 , ds )

ON AMPERE'S LAW. 3ll

But, on the other hand, the two elements together can be considered

as a single element, of length (dsi~h ds 2 ), of the same intensity,

of the same position as each of the elements ds , ds 2 . Its repulsive action on the element ds' can thus be written

f(dsi -+- ds 2 , ds').

We have, therefore, the identity

f(ds u ds') -+- f{ds 2 , ds') = f(dsi -+- ds 2 , ds '),

identity which shows that the action of the element ds on the element ds' is proportional to ds; we would likewise show that this action is proportional to ds', and, consequently, to the product dsds'.'

The propositions we have just demonstrated lead to the following conclusion: The action that the element ds, traversed by a uniform current of intensity J, exerts on an element ds', traversed by a uniform current of intensity J', action counted positively when it is repulsive, has the value

(i) F = JJ'4" dsds',

depending only on the relative situation of the two elements ds, ds', and not on their length.

Fourth hypothesis (*). - The two elements MMj = dsi, MM 2 = ds- 2 , coming from the same point M, having the same length, carried by currents of the same intensity, exert the same action on the element M'Mi = ds', if they are symmetrical to each other with respect to the plane

mm'm;.

If we then refer to the considerations outlined above (Introduction, Ghap. I, § I), we see that this assumption leads to the following consequence:

The function <ï> is a uniform function of the four variables

r, cos0, cos0', cosco,

( 2 ) 4> = cp {r, cosô, cos0', cosco).

First experimental law (principle of sinuous currents). - When a closed and uniform current flows through the contour of a two-sided area, whose dimensions are infinitely small, the action of

(' ) This hypothesis, or at least a particular case of this hypothesis, sufficient for the demonstration, is indicated by Ampère ( Théorie mathématique ..., reprinted by A. Hermann, p. 20 ) as a theorem; but the demonstration of this theorem implies another hypothesis about the mutual action of two rectangular currents. The hypothetical character of this proposition is obvious if one observes that one would obtain an error by stating the same proposition after having replaced the current element M'M^ by a magnetic element M'M.
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of this current on any current element is infinitesimally small as the product of the length of the element that is acted upon by the area covered by the acting circuit.

It is unnecessary to recall here the classical experiment by which Ampère demonstrated this proposition.

With this proposition in mind, let's consider two elements AB = ds and

For the direction of the axes Ax, Ax', let us take the line AA'. In the half-plane BAA', let us take the normal to the line AA' and take it as the direction of the axes A z, A ' z'. Let us take the normal to the plane BAA', on the side of this plane where the element A'B' is located. Let us take it as the direction of the axes

Aj, a y.

Let ABj, AB 3 be the projections of AB onto Ax and onto A z.

The area ABjB being infinitely small compared to ds, the action of a uniform current of intensity J, flowing through the circuit ABjBA, on the element ds', flowed by a current of intensity J', is infinitely small compared to JJ ' ds ds' . The action of the two elements AB t and B t B, reduced to quantities of the order of JJ ' dsds', is equivalent to the action of the element AB on the element ds'. The element B t B can itself be replaced by the element

AB

It would be proved, by analogous reasoning, that instead of determining the action of any element on the element A'B', one can determine the actions of the same element on the elements A'Bj, A'B' 2 , A'B 3 and com¬

These last actions have been put together.

We are thus brought back to evaluate the action of each of the two elements

AB t = ds cosO,

AB 3 = ds sin 0,

on each of the three elements

A'Bj = ds' cosO',

A'B 2 = ds' sin 0' sin e,

A'B 3 = ds' sinO' cose.

By reasoning as in Book XIII, Chapter II, we will prove that

ON THE AMPERE LOÏ.

we can neglect

The action of AB t on A'B' 2 ,

The action of ABi on A'B' 3 ,

The action of AB 3 on A'B'j,

%

The action of AB 3 on A'B 2 .

If we then denote the repulsive action of ABi on A'B^ by

J J '/(r ) AB - !. A 7 !;,

and the repulsive action of AB 3 on A'B 3 by

JJVCOÂBl.Â 7 ^,

we will have

( 3 ) F = JJ' ds ds'[f(r) cos 0 cos 0 '-f- g{r) sin0 sin0' coss],

or again, noting that we have [Introduction, Ghap. I, equality (8)]

sin0 sin0' coss = cosu> - cosO cosO',

and by posing

Hr) = f(r) - g(r),

(3a ) F = JJ' ds ds' [h(r) cos 0 cos8'-h g(r) costo].

Second experimental law. - Vaction that any closed and uniform current exerts on a current element is normal to this element.

Let ds be an element of the acting circuit. Let ds' be the element on which the action is exercised.

The element ds exerts on the element ds' an action' whose component following ds' has the value

F cos 0 '.

The entire circuit acting will therefore exert on the element ds' an action whose component following the element ds' will have the value

F cos 0 ',

or, according to the equality ( 3 ),

/[/(

g(r) sin0 sin0' coss] cos0' ds.

For the previous proposition to be correct, it is necessary and sufficient that this quantity is equal to o.

Now we have [Introduction, Ghap. I, equalities ( 5 ) and (g)]

cosO

dr ds 9

cosO'

dr

à?'

d 2 r

sin0 sinô' coss

dsàs'
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Therefore, for the previous proposition to be correct, it is necessary and sufficient that the integral

dr dr d 2 r

Tsdi' + r g(r) ïTm

extended to any closed curve, is equal to o.  This equality can also be written as follows

i

If we observe that, as we travel through the circuit s, the two quantities r

and ( - ) vary continuously, we arrive at the following conclusion )

vante :

For the previous equality to take place, it is necessary and sufficient that the quantity

/< r ) <

is the total differential of a uniform and continuous function of r and

dr

ds'

This condition is translated by the equality

According to this equality (4), equality (3) becomes

(5) F

JJ' ds ds' I g(r) sinO sinO' coss -I- - -j- [/'^(r)] cos0 cosO'

ià Gif

\

Fifth hypothesis.

The function g (r) is of the form

g(r)

A

Y*fb

A being a constant and n a positive integer.

Equality (5) then takes the form

( 6 )

F

A J J' ds ds'

r

ri

sinO sinO' coss

n

i

cosO cos0'

Third experimental law. - In two similar electrodynamic systems, the actions which exert on two elements ho

ON AMPERE'S LAW.
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mologues are the same, if the intensities of the currents flowing through the various conductors are the same.

Let be two similar electrodynamic systems S and Si, the similarity ratio of the second to the first being k.

In the first S, the element ds' bears, on behalf of the element ds , a repulsive action given by the formula (6).

In the second, S t , let us consider the two elements dsi, ds\, homologs of ds, ds '; the element ds\ undergoes, on behalf of the element ds\, a repulsive force Fi given by the formula

(7) F i But we have

The formula (7), compared to the formula (6), gives

Fi - k*-~ n F.

The elementary actions undergone by an element ds\ of the system Si thus form a system similar to that of the elementary actions which act on the homologous element ds' of the system S, the similarity ratio

being k 2 ~ n .

Now these two systems must have equal resultants to each other.  We must therefore have

k^-n = x

or

n = 1 .


  
    Unknown 
    
  




  




















This relation, carried in the formula (6), gives

^ KM' ds ds' / . A . A , 1 " a A

(8) F= --- / sm6 sin0 coss - -cosôcosu J.

Sixth hypothesis. - Two parallel current elements, of the same direction, perpendicular to the line that joins them, attract each other.

In this case, we have

COS 0 = 0, COS0 f =O,

sin 0 = i, sin0' = i, coss = i.

Formula (8) must give a negative value for F. The constant A must therefore have a negative value.

If we put


	A = %*,
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formula (8) becomes

31 2 JJ ds ds A

---( cos 9 cos 0

2 /* 2

2 sin0 sin0' coss).

This is, as we have seen [Book XIV, Chap. X, equality (7)], one of the forms of Ampère's law.

§ 2 - Ampère's law; demonstration by M* J. [Bertrand.

Ampère's demonstration is based on the use of three experimental laws. M. J. Bertrand (*) has shown that the second experimental law invoked by Ampère implied the first one, the principle of sinuous currents, so that this first experimental law should no longer be kept as a principle.

The demonstration given by Mr. J. Bertrand is the following:

Ampère's first four hypotheses lead to equalities (1) and (2), i.e. the following proposition:

The repulsive action of the element ds on the element ds r is given by the formula

F = ds ds' <p(r, cos 9 , cos 0 r , cosco).

The equalities [Introduction, Chap. I, equalities (5) and

COS0

COS0'

dr ds 9

dr

cosco

dr dr ds às f

à 2 r ds às f

allow to put this equality in the form

00

F

dr dr to 2 1

U'dsds'tylr,™ .

T 'às ds ds ds )

Let us now invoke the second of the experimental laws taken, by Ampère, as principles. We have seen that this law was expressed by the

following condition: The sum V FcosO', extended to all elements ds

of a closed and uniform current, is equal to o.

By virtue of equality (9), this condition can still be stated as follows:

{' ) J. Bertrand, Sur la démonstration de la formule qui représente P action élémentaire de deux courants ( Comptes rendus, t. LXXV, p. 733; 1872). - Démonstration des théorèmes relatif aux actions électrodynamiques ( Journal de Physique , i re série, t. III, p. 297; 187^). - Leçons sur la théorie mathématique de VÉlectricité, profées au Collège de France, p. 166. Paris, 1890.
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The complete set

*

r

dr dr to 3 r

dr

' ds * às' * ds às' J às'

ds

?

extended to any closed curve, is equal to o.

The quantities r and -r-, certainly vary in a continuous way when

dr

one traverses a curve s, while the quantities -, and

d 3 r ds ds

can

vary in any discontinuous way in the case where this curve has angular points. For the previous statement not to be an error, it is necessary and sufficient that we have

. dr dr d 3 r \ dr

V ^ r ' às* ds'' dsds' ) ds' ds

(ia)

atW

dr

5 ds f J dr

dW r

dr

at

ds

à>

' à?

d

dr

ds'

à 2 r às' ds

dsj

w(r, - f ) being a uniform and continuous function of variables r ,

dr d- r

and not depending on the variables atsds r

The second member of the identity (12) is linear and homogeneous in

dr

F

dr

at

and

d 2 r

tos tos


	. The same must surely be true of the



ier. So the function

tion

^ ( 7 ? às ? às ' 7 ds às'

dr di

to % r

dr d 2 r

is linear and homogeneous in - > ^ ^

The law of equality of action and reaction, which constitutes Ampère's second hypothesis, immediately leads to this consequence: the fonc _ " <■ _ . _ l.-vn^An e* ot o? T.a fnnr_

*

4"

Thus we must have

dr d 3 r

ds 1 ' ds ds 1

A

dr dr às ds'

B

d 3 t

ds ds

n

the two quantities A and B being independent of the variables

dr

ds

dr

tos

to 3 r ds tos'

and, therefore, do not

depending only on the fourth variable which can be

l
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depend on , the variable r. Thus we have

= A(/*)

dr dr

d$ d$'

B(r)

d 2 r ds to s*

or, according to equality (u),

(ï 3 )

F

JJ' ds ds

Gum we have

dr

ds

cosô,

' U(r)

dr dr ds ds'

d 2 r 1

dr

ds'

COS0',

d 2 r ds às f

sin0 sinO' cose

5

if we put

A (r)

/(**)>

B(r)

1

7 '

g( r )

?

equality (12) will reproduce equality

(3) F = JJ' ds ds'[f(r ) cosô cosô'-H £■(/') sinô sinô' cose].

Now it is easy to see that this equality ( 3 ) is exactly equivalent to the principle of sinuous currents.

We have already seen that the principle of sinuous currents, together with Ampère's first three hypotheses, leads to equality ( 3 ). Let us now prove that, from equality ( 3 ), we can deduce the principle of sinuous currents.

Let us choose any rectangular coordinate system.  Let (ce, y, z) be a point of the element ds and (cc', y', z ') a point of the element ds'. A closed circuit s will exert on the element ds' a force whose

three components will be

Xds'= JJ' ds' Ç [/(r) cosô cosô'-H g(r) sinô sinô' cossj X ^ - ds,

ty

Y ds = U r ds J [/(r) cosO cosO' -h ff(r) sinO sinO' cose] Z ds' = JJ' ds' J [/(r) cosô cosO -h g(r) sinô sinô'cose] equalities that can be written

dr

dr

ds

ds*

dr

dr

ds

ds*

dr

dr

ds

Bones*

on the law of motherhood.

Let (£, t), Ç) be a fixed point taken on the circuit s; let p be the distance from this point to the point (x', y', z').

Suppose that the circuit s is the contour of a convex area whose dimensions are infinitely small of the first order. It is easy to see that we can, by altering only X, Y, Z by infinitesimally small quantities of the second order, replace the equalities (14) by the following ones:

dr

The two quantities r and -, varying in a continuous way along the

curve s , we have for any closed curve

and the previous equalities become

X = o, Y = o, Z = o.

It is enough to alter the three quantities X, Y, Z by infinitesimally small quantities of the same order as the area covered by the closed circuit to make them equal to o. These quantities X, Y, Z are therefore infinitesimally small quantities of the same order as this area, which is the principle of sinuous currents.

Thus, the first four hypotheses and the second experimental law invoked by Ampère lead to the principle of sinuous currents. It follows that we can do without the latter to establish Ampère's law.

Indeed, in the demonstration of Ampère's law, the principle of sinuous currents is only used to establish equality (3) and we have just seen that this equality (3) could be established without invoking the principle of

sinuous currents.

g 3. Of the true meaning that should be attributed to the principle

sinuous currents.

To the demonstrations of the propositions that we have just established, Mr. J. Bertrand (*) joins the following considerations:

"I would like to add a remark concerning the probability of

(1) j. Bertrand, Démonstration des théorèmes relatifs aux actions electrodynamiques (Journal de Physique, t is série, t. III, p. 000, 1874 )*
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Fundamental assumption, so natural in itself, accepted by Ampère: Faction of two elements is directed along the line that joins them.

"Let us suppose that Ampère, who experimentally discovered the first and second laws, had first verified and stated the second law, and that, by reasoning alone, as we have done, he had deduced the first law; he could have said: if the action of two elements is, as seems probable to me, directed along the straight line that joins them, it is necessary that a sinuous conductor should exert the same action as a rectilinear conductor following the same direction. Wouldn't experience, coming afterwards to confirm this prediction, have been considered with reason as a very strong proof in favor of the hypothesis which leads to it? Does the order in which the truths were discovered and the time at which their mutual dependence was pointed out change anything in their probability?"

In reality, if we look at things closely, Ampère's classic experiment on the action of sinuous currents could not have the scope that M. J. Bertrand attributes to it in the passage we have just quoted.

Let's keep Ampère's first hypothesis; let's leave aside the second, and modify the third in the following way:

The magnitude and direction of the Vaction exerted by Element ds on Element ds' depend only on the intensities of the currents flowing through these two elements, their lengths and their relative location.

We shall see that these two hypotheses, the least questionable of all the principles on which Ampère's theory is based, lead to the law relating to sinuous currents; so that the experimental verification of this law verifies only the two hypotheses in question.

Let us consider an element ds 1 , of given position with respect to the axes OX, OY, OZ. The components of the action of the element ds on the element ds* can be put, by virtue of the two preceding hypotheses, in the following form:

= JJ' ds ds r ,

Y ds - JJ' W ds ds f ,

Z ds = JJ'X dsds\

the three quantities <ï>, W, X being, for a given direction of the element ds\ functions of the elements which fix the relative situation of the two elements ds } ds\

From these equalities, we immediately deduce the following result:

The three functions <ï>, W, X change sign , without changing their absolute go , when we reverse the direction of travel of the element ds without changing the direction of travel of Vélément ds r .

To this theorem, let us join these two obvious propositions:

i° The action of a closed and uniform current on a given element

SL'U IA ampèkk law.

any one of them is the product of ds' by a finite quantity, so that it must be the same of the three quantities

where the integrations extend 2° The integrals

I 3 " ds,

t/

to the closed current .

extended to an infinitely small closed contour, vary in a continuous way y when this contour deforms and moves in a continuous way.

By the reasoning similar to the one exposed on pages 98-9^ we will arrive at the following conclusion:

are infinitesimally small of the second order } when Vintégrale

1

is infinitely small of the first order.

This proposition, as we can easily see, is nothing other than the principle of sinuous currents.

§ 4 - Of the electrodynamic potential.

Let's assume that two closed conductors are present.

The mutual repulsive action of an element ds of the first conductor and an element ds' of the second conductor, is, by designating by J, J' the intensities of the currents which cross them,

(9)

But we have

F

31*

2

'2

(cosô cosQ' - asinG sin0' coss)

sin0 sin 0' coss

costu

cosO COS0'.

*)n can therefore write

F

a ,- 3 J'dsds '/3 0 a,


	I - COS0 cosO



COSIÜ

.2 \ >2

If, in a modification, the distance r increases by or, this action mu

tive work is being done by the

F or,

D.

III.

21
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and the mutual actions of the two drivers perform a work

( 15 )

dG = 3^jj

m ( \

cosO cos0'- cosu> ) or ds ds '.

We have shown in a very general way [Appendix to Book XIII, equality (27)] that this equality can be written

(16)


	JJ



-in

cos 0 cos0' ds ds'

j

which can still be written [Introduction, Chap. I, equality (10)]

(16 bis)

d$ = - JJ

costo ds ds'.

According to equalities (16) and (16 bis), the mutual actions of two closed and uniform currents of invariable intensities admit a potential, which can be represented and will be represented by one of two key expressions

(17)

n

jj

(17a )

n

if*

jj

II

II

cos 9 cosff

r

ds ds',

COS (jl)

ds ds '.

This fundamental theot ème was, for the first time, demonstrated by F.-E. Neumann ( 1 j.

This theorem, as we have seen, contains the solution to all the problems that the experimental study of uniform currents can pose. We may therefore wonder whether it is not possible to obtain it directly without going through Ampère's law. We can, in fact, give

the following demonstration, which is based on five hypotheses and on an experimental law.

First hypothesis.

The mutual actions of two currents

closed and uniform whose intensities are kept constant admit a potential *

Second hypothesis. - This potential is of the form

n

W

12 j

fa quantity 12 depends on the intensities Jj, J 2 of the currents that flow through the elements ds[, dso. of the lengths of these elements, and the power of the currents.

( ) K-E. Neumann, Ueber eut allgemeines Princip der ni ath en) a t ischen Theorie uiducirter elekt nscher Stràme, read at T Academy of Ilerlin, August 9

18 '
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which fix their relative situation; the sign 2 is assumed to be

extend to all combinations obtained by taking one element of the first circuit and one element of the second.


	The quantity X F 12 does not change if Von replaces the clemency ds^ by Vêlement ds' 2 , symmetrical of ds 2 with respect to



to a plane containing V element dsi and a point of V element ds%.

Reasoning, similar to that which we explained at the beginning of § 1, will prove that W 1% is of the form

Third hypothesis.

\F

12

^ 12 J 1 J 2 ds | ds 2 j

<ï>i2 depending only on the mutual position of the two elements ds u ds 2.

Considerations similar to those in the previous paragraph lead us to the

will show that the quantity j ds i is infinitely small of the second

order, when J ds : is i n f

quantity J  12 ds 2 is infinitesimally small of second order, when Ç ds 2

is infinitely small of the first order.

Reasoning then as we did on pages 102 to io5, we

we will see that

(18)

W a

Ji J 2 ds[ c/s 2 [FO) cos 0! cos 0 2 -+- G(r) cosco].

Fourth hvpothesis. - The two functions F(r) and G(r) are of the

form

F (r)

A

r

a

7

GO)

B

*11

7

n being an integer and positive, and A and B, two constants These equalities give to equality (18) the form

(19)

12

J1J 2 ds j ds^

j>n

(A cos61 cos 0 2 -+- B cos 10).

ox,

Experimental law: The third experimental law invoked by Ampere. - Consider two closed conductors Cj, C 2 , through which uniform currents of intensities J 1? J 2 . Let us give to the various points {&,y, z), ... of the conductor C 2 a system of virtual displacements

The actions of the driver Cj on the driver C 2 perform a virtual work

(20)

d&

Ji J2 0

II

A cosfii cos 0 2 H- B costo

n

ds\ ds 2.

Let's consider two conductors C',, C' 2 , similar to the conductors
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Let K be the ratio of the second system to the first. Let K be the ratio of similarity of the second system to the first. Let us give the point (#', y\ z ), homologous, on the conductor C^, to the point (x y y, z) of the conductor C2, a displacement

virtual

'N r

OX

K Sit?,

c\ /

or

K Sr,

oz'

K 8z.

The virtual work, carried out by the actions of the conductor C t on the conductor C 2 , will have the value

( 21 )

d$' =

JjJ

*//

A cosOj cosO',

B cosu)'

r

n

ds\ ds'..

11 is easy to see that we have

COS 01 = COS 61,

cos0', mJ


	cosG 2 ,



cos w' = COSCO,

r' ~

= Kr,

ds\ = K ds 1,

ds ' 2 - K ds t ,

8 cos 0 j =

■ 0 cosO] ,

0 COS0 2 =

= 8 cos0 2 ,

0 COSf)' =


	8 cos co



CS f

or =

= K or,

8 ds\ - K 8 dsi,

0 d $[ 2 = K 8 ds<>

"-J

?

so that equality (21), compared to equality (20), gives

dG' = K (2 -' l) dG.

But, the action undergone by an element of the conductors G',, C' 2 being supposed to be equal to the action undergone by the homologous element of the conductors C 4 , C" we must obviously have

dG' = K dG.

So we have

n = 1

and the formula (19) becomes

w 12 = -- 1 h fh 1 . -1 ( a cos6, cos 0 2 -+■ B cosw).

The mutual electrodynamic potential of two closed and unshaped currents has, therefore, the value

n

JJ

'ff

A cos 0 cos 0 ' -t- B cosw

ds ds '.

r

If Ton observes that we have [Introduction, Chap. I, equality(io)]

ff

cosO cosO'

ds ds

-//"

U)

ds ds',

we see that we can write at will

(22 1

II

( A

B) J.l

t

cosO cosO'

r

ds ds

or

( 22 bts )

II

(A

b)

ti >

ds ds '.

I

Fifth hypothesis

If we then pose
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The constant (A + B) is negative.

3 i 5

A

B

% 2

-i

the equalities (22) and (22 bis ) give back the equalities (17) and (17 bis)

5 .

On the determination of the function of the distance which appears in Ampere's formula.

The formula of the electrodynamic actions being put in the form

( 5 ) F = JJ' ds ds' \ g(r ) sinQ sin0' cos s

i d

j- [/'£■(/')] cos 6 cos 9 '

?

Ampère assumes that the function g(r) is of the form

gin

A

r

n

A being a constant, and n, a positive integer. This hypothesis seems very arbitrary. It can be replaced by an experimental law that is easy to verify, as shown by M. J. Bertrand (*).

Equalities, often invoked,

cos6

dr

ds

cos6'

dr ds 1 '

sin 9 sin0' cos

d 2 r ds ds' '

transform the formula ( 5 ) into

( 23 )

F

JJ' ds ds' ] rg(r)

d 2 r ds ds'

d

drdr

Sd? -

Consider a function tj/(r) defined by the equality

")

We will then have

dty(r)

dr

_rg(r)} 2

rg( r )

4 ['-#('■)]

dp

dr

\ 2

dty d 2 ty

2 dr dr 2 '

and the equality (23) will become

F

JJ' ds ds

,dty ( dty d 2 r d 2 ty dr dr \ dr ds ds' " + " dr 2 ds ds'

(' ) J. Bertrand, Démonstration des théorèmes relatifs aux actions electrodynamiques ( Journal de Physique, i re série, t. III, p. 335; 1874).
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( 25 )

F

JJ' ds ds

,dty d 2 <\i

dr ds ds'

The work, carried out by the mutual actions of two closed and uniform currents in any displacement of these currents, will have the value

d

JJ

'//

dty d 2 ty

dr ds ds

7 or ds d$! .

Reasoning about this double integral exactly as on page 191, we reasoned about the integral

l f* dr 2 d 2 r 2

JJ -dFàïàï' Srdsds ''

which is a particular form of it obtained by posing rivetons to this result:

r 2 , we are

The elementary work between two closed and uniform currents has

for value

dG

i ir tr/

dr

cos0 cos 0' ds ds f

or, by virtue of equality (24)

?

d(B

^ JJ' 8 Tf rg(r) cosô cos 0 ' ds d$ r .

_ /

In other words, two closed, uniform and constant currents exert on each other actions which admit for potential the

9 * f

quantity

(26)

n

-JJ J S cos ^ cos ^ d s ds'

This leads us to the following general question:

Knowing that the mutual actions of two closed currents, uni-form and constant, admit a potential of the form

(27)

n

J r// [F ( r) cosO cosO'

G(r) cosw ] ds ds\

determine the form of the functions F(r) and G(r).

The experimental law that Mr. J. Bertrand proposes to take as a principle to solve this question is the following:

The action of a closed solenoid on any current element is equal to o.

tf'V v

-fc 1
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This proposal can, as one can easily see, be replaced by the following one:

The mutual electrodynamic potential of a closed solenoid and a closed, infinitesimally small current not surrounding the solenoid axis is equal to o.

Let us adopt this proposition and see what conditions it imposes on functions F(r) and G(r).

Consider two functions, cp(r) and defined by the equalities

( 28 )

1

-?o)

dr

: "

o

( 29 )

G ( r ) - - ?(>') =

The equality (27) can be written

n

jj' Çj | <^( / ') c ° sw

?(r)

COSO)

do r) cp( dr j

cosO cosO'ms ds'

But we have

COSO)

cos0 cos 9 '- sin0 sin0' cose

to- r ds ds'

cosQ

d_r

ds

cosO'

dr

ds'

so that the previous equality can be written

n

jj

'//K

) COSO)

o(r)

d 2 r

d cp ( r ) dr dr

ds ds'

dr

ds ds'

ds ds'

If we put

d 4 >(r) dr

?(**),

this equality will become

n

JJ

'//k

) COSO)

<1 >(r) to s to s'

ds ds'

?

or simply

( 3 o)

n

13 'f f -H'-) cosmdsds '

Sup])Let 5 and s' be two infinitesimally small closed currents; let £2, ü' be the areas of two surfaces led by these currents; let N. N' be the normals to the positive faces of these areas.
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We will have [Introduction, Chap. II, equality ( 5 )]

(30

cos to ds ds r

i d h r dr

i

of h

r dr

d*if

dr 1

d~ ^

~dr^

cos (N, N' )iiiï

/

cos(N, r) cos(N', /^QQ'.

Suppose that the area Ü is that of an infinitely small current belonging to a solenoid: let D be the distance between two rings of the solenoid; let

i

the power of the solenoid; or l the director of the solenoid. The

<ï>

QJ

1)

electrodynamic potential of this solenoid on the small closed current s will have the value, according to the equalities ( 3 o) and ( 3 i),

n

(3-i) <

i d if r dr

d?

i

dr 2

cos( l, N')

/

t dif r dr

d-if dr 2

cos( /, r) cos( N

dl

We have, moreover

?

cos(f, r)

dr

dl'

cos(N', rï

dr

dN'

cos(/, N')

dr dr

àl dN'

d 2 r

r -

to N' àlà

The previous equality becomes

( 33 )

n

d>J

' a S

d / 2 r

dr \ r Tr) to there N 7

*1 dif dr dr

r dr dl dN

dl

According to the accepted experimental law, it is necessary and sufficient that the curve l is closed for this quantity to be equal to o; in other words

terms, the quantity under the sign j must be of the form

to l dr .

df W V' dN'^ '

W being a uniform and continuous function of r and

dr

dN'

This condition is equivalent to the following

d

d/

d l . "ty

-- [ê (

dr

à

dr

dN 7

2 dty dr r dr dN*'

\

dare it

( 34 i

0

d<l

W

dr '

t

and this

about ampere's law

î will become the new equality

329

r* 2

d*e

dr 1

2 0

r 1

By adding to the two

4 M.

latest news

d@

members the quantity %r ~r~ -> we can write this

d

di

d 0

dr

d ,

2 - ( r@). dr

In this form, it integrates a first time, and gives the equality

d&

dr

2 r@ -+- C

G being a constant.

This equality, in turn, can be written

t dQ r' L dr

0

G

or

d

dr

0

G

We deduce from this

0

G

4 r

C'r-,

G' being a new constant.

If, in the equality ( 34 ), we transfer this value of 0, we find

dty

dr

G

4 r*

G'r

This equality shows us that ^ must be of the form

(he)

*

A

Br 2 + C,

A, B, G being three constants.

Thus, if the electrodynamic potential of two closed currents must be of the form (27), the experimental law we have just invoked will require, by virtue of equalities (28), (29) and ( 35 ), that we have

( 36 )

G{r)

A

B r 2

G

( 37 )

F(r)

r. ?( r )

dv(r)

dr

being an arbitrary function of r.

In other words, the most general form of the electrodynamic potential of two closed and uniform currents, which is compatible with the

1
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experimental law that we have invoked, is the following:

Iï = JJ' | JJ cos lù ds ds f

-H f f[^p (cosw - COS0 cosO') -+■ COS0 cosO'l rfscfc'j.

Let us return to the question that served as a starting point for these considerations.

We assume that Ton has shown that the shape of the mutual electrodynamic potential of two closed and uniform currents is

r ff(r) cos6 cos0' ds ds f .

What form should the function g(r) take so that Faction of a

closed solenoid on any current element is equal to o?

Formula (26) is deduced from formula (27) by making

Therefore, the equalities ( 36 ) and (87) become

?( r ) = - (A H- Cr - 4 - B;* 3 ),

1 / x A _


	r g(r)= -a Br 2 .



a r

If, therefore, to the fifth hypothesis and the third experimental law invoked by Ampere, we substitute this experimental law that a closed solenoid is without action on any current element, we arrive at this conclusion; the function g(r) is of the form

If Ton then invokes the following hypothesis:

The mutual action of any two current elements tends to o when their distance increases beyond any limit>.

we will be forced to take for g(r) the form

and Ton will find Ampere's law.

The formula ( 38 ) allows us to modify the demonstration of the laws of FElectrodynamics explained in the previous paragraph

ON AMPERE'S LAW.
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similar to that which M. J. Bertrand subjected to Ampère's demonstration.

Let us no longer invoke, as in the previous paragraph, the hypothesis that the

A B

two, functions F(r) and G(r) are of the form -, -_; let us not invoke

n

y II

5

neither, the experimental law of the actions which are exerted between similar conductors. Instead of this law, let us invoke this one: The action of a closed solenoid on any current element is equal to o.

The result, for the electrodynamic potential of any two closed and uniform currents, is the form ( 38 ).

Now we have

cp(r)

(cosü)

cos6 cos0 ')

d^{r)

dr

cosô COS0'

?(0

d 2 /

ds às r

do(r) dr dr

dr

ds Os

J [ . . . dr

so that the quantity

//[

') ,

(^COStO

cos0 cos0')

d cp ( /' ) dr

cosO cos 0' ds ds'

is equal to o, whatever the function y(r) is.

The choice of the function c ?(r) which appears in equality ( 38 ) being in

different, we can take

?(r)

and the equality ( 38 ) gives then

(A

Br 3 +G),

( 39 )

n

jj

'/f

A

2Br 2 I cosO cos0' ds ds

This formula, compared to formula (26), shows us that the

closed and uniform q u

with a strong sense of equality

( 5 ) F

JJ' ds ds' j g(r) sinO sinB'coss + ~ ~ [r g(r)] cos 0 cos 0 ' j,

where the function g(i') is of the form

2 A

4 B r

If, like M. J. Bertrand, one makes the hypothesis that this force must tend towards the other when the two elements move away beyond any limit, this force becomes identical to the elementary force admitted by Ampère.

APPENDIX TO BOOK XIV.

ON AMPERE'S LAW.

'> 'J..

J JA

We can therefore see that Ton can leave aside the hypothesis that the actions of two closed and uniform currents are decomposed into elementary actions subject to the rule of equality of action and reaction; not

to invoke the law either,

to verify that a closed and unified current is

form exerts on any current element an action normal to this element, and replace these hypotheses of Ampère by the much less contestable hypothesis that the mutual actions of two closed, uniform and constant currents admit of a potential. To determine the form of this potential, one can follow the methods indicated either by Ampère or by M. J. Bertrand, to determine the form of the elementary action.

BOOK XV.

ELECTROMAGNETIC ACTIONS. EXERCISES

BY THE UNIFORM CURRENTS.

CHAPTER ONE.

ELEMENTARY LAW OF ELECTROMAGNETIC INDUCTION

Between magnets and currents certain forces are exerted which were discovered by OErstedt, and studied by Biot and Savart, Laplace, Ampère and Savary. Soft iron, placed in the presence of currents, becomes magnetic. When a magnet is moved, or when its magnetization is modified in the presence of a conductor, an induction current flows through this conductor. The three classes of phenomena gathered under these titles: Electromagnetic forces, Magnetization by currents, Electromagnetic induction, constitute the part of Physics which has received the

Ëlectromag

We will study this part of Physics following a similar path to the one we followed in the study of 1 Llei trodynamics. To this end, we will begin by establishing the

laws of electromagnetic induction.

First, let us state the fundamental hypotheses according to which

we will base this study on.

First, a system consisting of a magnet and a current

will be assumed to be defined, from the point of view of 1 Electromagnetism, when we know :

i° The shape of the volume occupied by 1 magnet;

I
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2 ° The magnitude and direction of the magnetization at each point in this space;

3° The shape of the conductor through which the current flows;


  
    Unknown 
    
  




  






















4" The current intensity at each point of the curve

he

?

5° The relative situation of the conductor and the magnet.

The nature, the properties, the position of each of the material elements which form either the conductor or the magnet, do not intervene in this definition. A modification that alters the latter variables without altering the former is, from the point of view of Electromagnetism, equivalent to the absence of any modification.

Secondly, let us imagine a system containing and linear conductors. Let AB = ds be an element of one of these conductors. Let e ds be the electromotive and thermoelectric force acting in this element; let V be the potential level at point A; let V' be the potential level at point B; let £ ds be the electromotive force of electrodynamic induction acting in the element ds\ or B ds the resistance of the element ds\ or J the intensity of the current in A at the instant t

If there were no electromagnetic induction, we would have

RJ ds

e (Y

V')+-0

0

e ds

£ ds.

In reality, if the system contains magnets whose magnetization or situation with respect to the element AB is varied, this equality is no longer exact and must be replaced by the following

KJ ds

(V

V' ) -+- 0

0

/

e ds

£

ds h- (£ ds.

The quantity ds is what we call the force e

omagnetic in the ds element

d* induction

o motor

It is about

the expression of this electromotive force Let's assume the various magnets that make up the s

hnents whose volumes are respectively dv , dv 1 ,

ff

i *

We will say that Xrelative state of the magnetic element dv and the current element ds is determined when the following parameters are known:

i

The length ds of the current element:

CHAP. 1.
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2 ° The volume dv of the magnetic element;

3° The parameters a, [3, ... that determine the shape of the surface that bounds the element dv and the orientation of this surface with respect to the element ds;

4° The intensity J of the current flowing through the element ds;

5° The magnetization intensity Oit at a point of the element dv ;

6° The distance r from a point A of the element ds to a point A' of the element dv ;

7° The angle ( r , ds ) that the half line ds makes with the half line AA' ;

8° The angle (/', dl) that the direction of the magnetization of the element dv makes with the same half line AA';

9 ° The angle e, relative to the half-plane formed by the directions /-, ds and the half-plane formed by the directions /', c//, this angle being defined as in Chapter I of the Introduction.

We recall that the parameters r, (r, ds ), (r, dl ), e define, without any ambiguity, the relative situation of the two elements ds , dl.

This being said, let clt be an element of time; we will admit that we have

(£ ds dt = ov h- ov' -r- Ov" - 4 -...,

the quantity ov (A) depending only on the parameters which fix, at Vinstant t , the relative state of the current element ds and of the element dv^ k \ and on the variations that these parameters undergo during the time dt.

We will give the quantity

= e(ds, dv {k) )

the name of elementary tromagnetic electromotive force generated by Vélément mag the current element ds.

The fundamental hypothesis that we have just used to determine the form of the quantity

of netic induction dv^

to do will

we

e(ds, dvd c ),

which is the same thing,

of the ov^ quantity

*
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i u It follows, in the first place, from the hypothesis made, that one u

ov = f[cls, dv, x, p, . . ., J, Oïl, r, (r, ds), (r, dl), e,

o ds, o dv, ox, 8p, ..., oJ, 8011 , or,

o (r, ds), o (r, dl), oe].

We will prove that this quantity is a linear and homogeneous function of

ods, o dv, ox, o(3," oJ, 8011, or,

o(r,ds), o (r, dl), oe.

Consider a first time element dt t . During this time element,

ds, dv, x, {i, J, OR, r ,

(r,ds), ( r, dl), e

vary from

Si ds, o, dv. Ota, o, p, ..., o, J, 8 t 011, o,/-,

°i(r, ds), o t (r,dl), Oje,

and we have, for this element of time,

ôv i -fVds, dv, a, p, ..., J, OU, r,

(r, ds),. (r, dl), e,

o, ds, ot dv, 8ja, ot p. ..o, J, o £ Oit, o 2 r,

o, (/-, ds ), Oj (/*, dl), 8t e].

In this same time dt K , the induction of the element dv in the element ds puts in motion a quantity of electricity

lit being the resistance of 1 element ds at the beginning of the time dt.

Following the time dt , let us take a new time element t// 2 .  During this time element,

ds, dv, x, p, J, 011, r,

(r, ds), (r, dl), e

undergo new variations

^2 ds, o-i dv, o 2 x, o 2 p, ..., o 2 J, S 2 011-, o 2 r,

o 2 (r, ds), o 2 (r,dl . o 2 e,
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el Ton a, for this new element of time,

ov 2

§1 ds, dv -h 0 ! dv, a

If a, 8

Oj 8,..., J -f- 0l J, OÏL

o i OÏL,

t~ o [ e

r + ô, r, (r, ds) -h S t (r, ds), ( r, dl) -h ^(r, dl), e o 2 ds, o 2 dv, o 2 a, o 2 p, ..., o 2 J, o 2 011, S 2 r, o 2 (>, ds), o 2 (/', dl), o 2 e]

this

® v 2 - f_ds, dv, et, fi, ..., J, OÏL, r,

(r, ds), (r, dl), e,

o 2 ds, o 2 dv, S 2 a, S 2 13, ... , o 2 J, o 2 OÏL, o 2 r,

o 2 (/-, ds), o 2 (r, dl), o 2 el.

In this same time dt 2 , the induction of the element dv in the element ds puts in motion a quantity of electricity

Ro being the resistance of the element ds at the beginning of the time dt>.  As R 2 differs infinitesimally little from R, we can write

Let us now consider 1 time element dt 3 , formed by the set of the two, elements dt K and dt>,

*

dt g - dL | -| dt'2*

During this time dt 3 , the parameters

4

ds, dv, a, p, J, OÏL, r,

(r, ds), ( r, dl), e

are subject to variations

(S] ds

S 2 ds), (Sj dv -h o 2 dv), (o^ + Ojja), (o^

o 2 8 )

7


	

	

	J











(S,J

S 2 J), (SjOÏL -+■ 3 2 OÏL), (S 1 r+S 2 r), [o a (r, ds)-h n 2 (r, ds)\,

[^(r, dl) -h S 2 (r, dl)\, (o,e-+-S 2 e).

D.

III.

22
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For this same time dt 3 , we have ov 3 - / j ( ds, dv, a, S, ... , J, 311 , r,

The quantity of electricity that the induction of the element dv puts in motion in the element ds, during this time dt A , has the value

8 3 Q = é~ Sv s * L\ 1

f

IVBut the element dv puts in motion, by induction, in the element ds during the time dt%, a quantity of decline ite which < if the sum of the quantity of electricity put in motion during the time dt ,, and the quantity of electricity put in motion during the time dt". So we have

o 3 Q - ôi Q Ô2 Q

or

OV3 - OV j OV 2 If we refer to the expressions of ov,, ov 2 , ov 3 , we find the following equality:

f ! ds, dv, a, 3, . . . , J, 311 , r, ( ds ), ( r, dt ), c,

( O! (ls

( -2 O

( 0 1 P


	o-î ds ), ( 01 clv + ûg dv ), ( Oj a -H et ),



8,B), ..., (8, J + 8 2 J), (8 t 311 -4- 8 2 3 TL),

I

(8! r -- 3 S /- ), ! 0 ! (r, ds) -4- o 2 (r, ds)], | 8, (r, dl) 4 - 3, (r, dt)], (0 , e -h o 2 e) (

/[ds, dv, a, P,-J, 311, r,(r, ds), (r, dl), e ,

8[ ds, 8, dv, Si a, 3( 3, .-.,8 l J,S 1 311-, 8 t r,

o, (r, ds ), 0 i(r, dl), o,e]

/"[ ds, dv, cl, p, . . ., J, 3Ï1, r, ( r, ds), ( r, dl), c, o 2 ds, o., dv, ct-ict., c 2 [3, .. -, 3 2 J, 8 2 3T1-, 0 2 r,

o 2 f r, ds ), 0 2 (r, dl), o 2 e]

This equality proves the stated proposition, and, by couse

quent, allows to write

OV - 1 0 ds -+- V 0 dv

A 8 a

B 33


	*



H 8 J

0 o( r, ds ) -+ 0 ' 8 ( /*,

1 -12 8 e,

M 8311 -4- Gold
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S, 1, A, B, . H, M, P, 0, 0 7 , Q being uniform (onctions of the parameters

ds, dv , a, p, J, OÏL, r, cos (r, ds), cos (>', dl), e.

We will now prove that the quantities

2 , r, H, M, P, 0 , 0 ', it

are independent of a, ( 3 , . . . ) that the quantities

2, H, M, P. 0, it

are proportional to dv; finally, that the quantity

r

does not depend on dv.

To do this, we will consider a modification of the element dv , in which the surface that limits this element remains similar to itself and keeps an invariable orientation with respect to the lines r and ds. In this modification, the parameters a, (3, ...) will remain invariable, and we will have

8v = 2 3 ds -+- r 8 dv h- H SJ -h M 801L P 3/'


	0o(r, ds) -+- 0' o ( dl > ■+■ il Se.



Let us divide the element dv into n other elements, all equal to each other and equal to the same element, whose volume, shape and orientation with respect to the lines r and ds have been chosen once and for all. Let du be the common volume of all these elements.  Let us suppose that, in the modification, they expand while keeping their shape, their arrangement and remaining all equal between them. Let

ù of the increase in volume of each of them.

For one of them, from , the quantity analogous to ov has a value of

their

SX

a S ds

u 8 of

u SJ

u 3 OÏL

o 8r

l

0 S( r, ds ) -i- S ( dl)

o) this.

The quantity ov must obviously be the sum of the quantities analogous to oX relative to the various elements of the into which the element dv has been divided. Now, for all these elements of the, the parameters have approximately the same initial value and undergo approximately the same variation. The sum of the quantities o\ is thus reduced to
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n times one of them, and we have

ov

n<j o ds

72 0

o says

n 7 ) ôJ

n [j.

3 Says

n p or

7 i 0 S(r, ds) -h 7 i 0 ' o(/', rf/) -H 7 ito oe.

If we notice that

8

7 i 8 of ,

this equality will become

OV

71 C 6 ds -J- O 8 dv H- 71 7) 8 J -H 72 [J. 8 DI O

Tip 3r

7 i 0 8 ( 7 % ds) -h 7 i 0 '3(r, dl)

71 OJ

8e.

By identifying the two expressions of ov? we find

S = 71 <7,

H = 71 Y),

M 72 [JL,

P - 71 pp,

0 = 72 O,

0 ' = n 0 ',

il = 72 0),

Y = U.

The element of having a size, a shape, an orientation which are no longer arbitrary, and which do not depend on the size, the shape, the orientation of the element dv, we see that

O * *

the quantities

 r n Pi w, u

are independent of the parameters

ci, p, - . -, dv,

relative to the element dv. Moreover the number n is proportional to the volume of the element dv. Thus the proposition that we had stated is demonstrated: the eight functions

Z, H, M, P, e, 6', Q, Y

are independent of a, [3, . . . The first seven are proportional to dv\ the last one is independent of dv.

We can then write

ov - f dv o ds -t- g o dv -+- h dv oJ -f- k dv , ît}R. -t- l dv o/*

ni dv o ( r, ds > n dv o ( r, dl ) -i- p dv oe

A oa B -H.. -,
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Quantities

fi e?) h, k, l, ni, n, p

being functions of

cls, J, OÏL, /*, (r, ds), ( r,dl ), e.

3° We will now show that we have identically

A = o, B = o, ....

Let us imagine that a magnetic element dv remains invariant in magnetization, volume and position in the presence of an invariant current element, while the parameters that define the shape undergo infinitely small variations oa, Sj3, .... We have then, for this element dv,

ôv = A ox -4- R o3 -4-. . .

We must show that this quantity is infinitely small compared to the products

dv Sa, clv o(J, ....

For this, we note that the change of form of the element dv can be produced in the following way:

fter dividing this element dv into an infinite number n of elements of the, without changing the size, the shape, the magnetization of any of them, we change in a suitable way the position of N of them. This number N is infinitely large in itself, but infinitely small compared to n.

The quantity ov, relative to the primitive element dv, will be the sum of the n analogous quantities yes relative to the n elements of the into which it has been divided. As, moreover, for the (n - N) elements of the remained invariant, the quantity ow is identically null, Sv is the sum of the N quantities Suj relative to the displaced elements.

For each of these elements, we have

ohj - - l du or -h m du o( r, ds) -h n du ô ( r, dl ) -H p du oe.

If we notice that the variations in the second member are, in general, of the order of oa, o|3, ..., we can easily see that yes is of the order of

of the oa,

(

3 W
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and the sum of the ovs quantities of the order of

N of 8a,

infinitely small quantity compared to

n of the oa

dv 8a,

This is what we set out to demonstrate.

We can therefore reduce the general expression of ôv to

or = f dv 8 ds

g 6 dv

h dv 8J

k dv 8D1L

Idv or

-+- m dv 8 (r, ds) n dv 6 ( r, dl ) -hp dv oe.

4° A new property of this quantity ov is the following: The quantity Sv does not depend separately on the quantities 3TL, dv, oDïl-, oc/e, but only on the quantities

xn

8xn

Ole dv, Die 3 dv

dv 8Dlu

The proof of this property is based on a new hypothesis that we will state.

Let us imagine a magnet which, instead of being homogeneous, is continuously heterogeneous. Each particle dv of this magnet is made up of n magnetic particles, of magnetization intensity DIL, of volume du, which together represent a volume Xdv, and of non-magnetic particles which together represent a volume

(j - )>) dv.

We will admit that such an element is equivalent to a homogeneous element of volume dv and magnetization intensity XOIl.

m

It is moreover certain that the quantity ov relative to this complex element is the sum of the analogous quantities ov relative to the particles of which it is composed. Now, the quantity ov being zero, by hypothesis, for any non-magnetic element, we see ([ue the quantity ov relative to the complex element must be equal to the sum of the n quantities ov relative to the n magnetic elements of the. These n quantities ov (releasing infinitely little from each other, their sum is equal to n times one of them; or to the quantity ov relative to an element of magnetization intensity DU and volume n of - Xdv.

We must therefore obtain the same value for ov, whether we consider an element of volume dv and magnetization intensity
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X, 0 ÏL, or that we consider an element of volume \dv and in

This


	*



and allows to write

ov

F 0)1- dv o ds -+- G ô ( OlL dv ) -+- Il 0IL dv 3J K OÏL' dv or 4

4- M01L dv S(r, ds)

4- N OÏL dv ô ( r, dl ) -+- P OÏL dv 8e,

8 Since v must be a linear and homogeneous function of dv and o dv, the quantities F, G, H, L, M, N, P cannot depend on dv; and, since they can only depend on OÏL by depending on OlLdV, we see that they are independent of OÏL. They are

functions of J, ds, r, (r, ds), (r, dl), e.

5 ° We will see that the quantity ov depends neither on J nor on oJ.

Let's imagine a crossing by a

i ?

first element A. { Bj - ds, of resistance H current whose intensity J varies by ÔJ. For this

first element, we have

OV

K (J ) OÏL dv o ds -r- G ( J ) o ( OÏL dv ) -H H ( J ) OÏL' dv o J

-h M ( J ) OÏL dvo(r, ds)

-t- L( J )01L dv or -t+ N(J )01L dv o (r, dl) H- P (J )0IL dv oe

=- ov(J, oJ).

To this first element, let's attach a second one A 2 B 2 , of the same length ds, of the same resistance, through which a current of p. oJ varies. So, for this second element,

£

OV

F(X J)01L dv ods -h G(X J ) S(01L dv) -+■ H(X J)01L dvp oJ

4 - M (X J )OÏL dv 0 ( r, ds)


	4 - L(X J)OÏL dv or 44-N(XJ)01L dv o(r, dl)+- P(XJ)01L dv oe



ov(X J, p. oJ ).

The set of two elements AiBi, A 2 B 2 can be considered as forming a single element A 3 B 3 , of length ds, of resistance R 3 = -R, through which a current of intensity (i-i-X,)J flows, this intensity varying from (1 H- p.)oJ. For this new element, we have

8v 3

F f( 1

L[(i

N[(i

8v [(.

X)J]01L dv 0 ds

G [( 1

X)J1 8(0L dv)

H [(1 - 1 - X ) J] OÏL dv(i

p)3J

X) J101L dv 8r

M[(i

X)J]01L dv o(r, ds)

X ) J ] OÏL dv 3(r, dl)

P[(i

X ) J ] 0IL dv oe

X)J, (1

p) 8JJ.
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Q / /

The induction of the element dv causes me to move, in A, B, a quantity of electricity

T

Ki

ov t ;

in the element A 2 B 2 , a quantity of electricity

r

Ri

ov. 2 ;

in the element A 3 B 3 , a quantity of electricity

K:t

OV 3.

Now, the latter is obviously the sum of the first two. We have therefore, in all circumstances,

OV ( J, 0 J ) -I- OV ( X J , U, oJ )

2 OV [( I

X ) J, ( 1 - 4 - u) 8J j.

Let's do in particular A

O, [JL

o. We find

<the

<1

8v( J, 8J ) = ôv(o, O).

The second member is independent of J and SJ, and so is the first, as we had announced. We have

<N

OV

F Ole dv O ds - G 0 ( OU dv ) -+- L Ole dv h

4 - M OlL dv 0 ( r, ds )

011 dv 0 (r d!)-h POU dv oe.

s quantities F,

7

4

N, P being functions

(/-, ds), (r, d/), e.

6 ° Let us prove inlin that ov is a linear and homogeneous function

f/s and 0

m agi no ns d

consecutive menls AB, BC; these two iiients are assumed to be identical to each other; each of them has

1

on

length or,y, and this length varies

n the first one, the quantity ov has a value

ov

1

ds ) OlL dv 0 ds

s ) 0 ""

L

0 /

Al (

Hb P(

L dv 0 /*, ds ) -h N ( ds ) p°)1L dv 0 ( r y dl )

on the second

d, the q

f

%

has a v

ov.

■ m ^

nimen

eu

ov..

1
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The induction coming from the element dv carries from A to B,

ai amount of electricity

R being the common resistance of the two elements AB, BC. It carries from B to G a quantity of electricity

approximately equal to the previous one. We can therefore say that it transports from A to G a quantity of electricity

But, on the other hand, the element AC is an element of length 2 ds whose length varies from 2 S ds. For this element, we have

0V3 = 2 F (2 ds )Ole dv 0 ds - 1- G(2 ds) 0 011 dv - 1- L( 2 ds )011 dv or

-h M(2 f/s )011 dv S(r, ds) -h N(2 ds)DK,dv 8(r, dl)

-h P(2 <:/s)OI 1 dv oe.

The resistance of this new element is 2R. The quantity of electricity transported from A to G has therefore the value

The comparison of the two expressions of oQ ( gives

OV 3 = 2 OV] .

By identifying the two members, we find

F ( 2 ds ) = F (ds),

G(2 ds) = 2 G (ds),

L(2 ds) = 2 L (ds),

M(2 ds) = 2M(t/s),

N(2 ds ) = 2 N( ds),

P(2 ds) = 2 P(ds).

The function F is therefore independent of ds. The functions G, L, M, N, P are proportional to ds. The stated proposition
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is thus demonstrated, and we can write

ov - 2 [7-, (7', ds), (r, dl), e) 3 TL dv 0 ds

-t-M[r, (r, ds), (r, dl), e] ds 0( OÏL' dv )


	4 - P[r, (r, ds), (r, dl), e ] 3 TL dv ds or



-+- 0 [r, (r, ds), (r, dl), e] D 1 L dv ds o(r, ds)


	0 '[r, (r, ds), (r, dl), (?]D 1 Xj dv ds 8 (r, dl)



-+- 12 [ r, (r, ds), ( r, dl), e] OÏL dv ds 8 e ;

ov thus depends on six unknown functions of r, (r, ds), (r, dl), e. We will reduce the number of these unknown functions to unity.

7 0 Let's start by reducing the five M-functions to one,

P, 0, 0', Q.

Let us imagine that a closed curve (Jig- 58 ) is taken as director of a channel surface of very small section 10. Let us fill in

Fig. 58.

*

this channel surface by a magnetic substance having at any point the same intensity of magnetization OïL, directed as the tangent to the directing curve. We thus obtain a closed mu g ne tiq lie solenoid.

Let us imagine that this solenoid experiences the m

An element AB, of length dl ü , of this solenoid, has 0 dl, so as to come to AB'.

A small element Ci), of length df, of this solenoid, is shortened from 0 dl so as to come to C' I).

n next :
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Any element MN, of length dl , located on the solenoid between

1!

H and G, moves in its own direction by a length S dl, so as to come to M'N 7 .

The elements of the DPA region do not undergo any variation.  Finally, the magnetization keeps the 3TL intensity at all points and remains tangent to the director.

Let us consider a current element ds, and let us calculate the various quantities ôv for this element, supposed invariable of size and position.

Only one of the parameters that define the system of elements AB and ds varies; it is the parameter dv that varies from

t

8 dv - (.00 dl.

We have therefore, for the set of elements AB and ds,

ov 0 = M[r 0 , (r 0 ,ds), (t' 0 ,dl 0 ), e 0 ] ds tu o dl.

Similarly, for the set of elements CD and ds, we have

8vj =-M[r t , (ri, ds), (r^dlt), and] DXb dsto ddl.

For the set of elements MN and ds, we have

which gives

OV

o ds o ( DTL dv ) ^

o

?


	o



J

"\

07*

dr

dl

8 dl

a / i x d(r,ds) " , where ( r, ds ) =--o dl,

8 ( r, dl) -

dl

d ( r, dl)

dl

o dl.

*> ^ 7 7

oe - - ; o dl,

dl

P [r, (r, ds), ( r,

, e ]

dr dl

0 0, (/', ds), (r, dl), e] j-^

0'[r, (r,ds), (r, dl). e]

£2[r, (r, ds), ( r,dl ), e]

from

dl

DTLto ds dl 8 dl.
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Now the modification we have just defined does not alter the variables that define, from the point of view of rÉleclromagnetism, the system formed by the solenoid and the conducting element; according to what was said at the beginning of this Chapter, it is equivalent to the absence of any modification and, consequently, should not give rise to any induction in the element ds. We must therefore have

'N >

OV 0 -~f- OV

1

OV

o.

or, by removing the factor D\l dsoj ùd/,

j.

i

O

1

<

M [/-",

(f'o,

ds),

(>'0,

dl 0 ),

-M.tr,,

(r.,

ds),

O'i,

dh),

e i]

P[r,

ds ),

(r,

dl ),

e ]

H- 0 [ 7%

ds),

(r,

dl ),

e]

-h 0 [r,

(r,

ds ),

dl ),

e]

-+- û K

(r,

ds),

(>-

dl ),

e i

dr

dï

to (/-, ds)

dï

d ( /*, dl)

dl

from

dï

\


	dl



o.

This equality, which must take place regardless of the form of the

ABMNCD curve, we must have

P

c*M

dï

0

OM

( y. )

/

d ( r, ds )


	1



0 ' =

d{r, dl)

o -

d \1 of

These equalities already reduce the number of unknown functions in the expression of ov to two.

We will now reduce these unknown functions to

8°

one, by proving that the two functions M and - are

n

tics.

a

Consider a closed conductor placed in the presence of a stationary magnetic dv t Jig- 091. An element of this conductor extends by ods, so as to come in AB'.

n

11
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nd element OD - cls\ shortens by ods? so as to come in C'D. Any MN element of the BMC arc moves bySrfs in its own direction. Inlin the elements of the DPA arc remain

P

For the system formed by the conductor element AB and the

ov 0

we have

2 [r", (r 0> ds 0 ), (/-o, dl), e 0 J DU dv ods

For the system formed by the elements CD and c/c, we have

ÔVi

2[ri, (r'i,dsi), (t\,dl), ei J OÏL dv o ds.

For the system formed by the element

and the element c/c, we have

r\ dr " or - - o ds,

o cos(r, ds)

ds

0 ( r, ds ) ^ .


	ods,



ds '

o cos(/', dl)

o cos ( ds,dl )

d ( r, dl) ds

of * .


	o ds, ds



ods

?

which gives

ov

\

(

di

P [r, ( r , ds), (r, dl ), e ] ^

© [>, (r, ds), (r, dl), e] ~

' ,, -, d ( r, dl)

-h&'[r, (r, ds), (r, dl), e] -^

Q [r, (r, ds), ( r , dl), e]

from

ds

011 dv ds o ds
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Finally for the element dv and any element of the arc DPA, we have

3v - o.

This modification does not alter the variables that define, from the electromagnetic point of view, the system formed by the current and the magnetic element; it is therefore equivalent, as we saw at the beginning of the Chapter, to the absence of any modification, and, consequently, should not give rise to any induction phenomenon. If the conductor is homogeneous and has the same temperature at all points, no current can flow through it. We must therefore have, in each element,

s (V - \')dt -+- §v = o

and, therefore, for the entire driver,

e dt

(V-V')

Ov

0

Now, along any closed conductor, we have

V (v

V)

O

This leaves

ov

o

ï

which becomes, by removing the factor OÏL dvùds,

S[/* 0 , (/'o, ds 0 ), (r," dl), e]

F ^ J ? ( ^ l - ds 1 ), ( / 1 ,

' ^ 1

Gold

!' I ( r, they ), (r, dl ), e\ -j

0 | r, (/-, ds ), (/-, dl), e]

0 'f/-, (/', ds ), (r, dl), e ]

o

f r, (r, ds ), (r, / ), e\

at

to (r. ds )

^-*■ -m

at

at (r , dl) ds

Oe

at

}

*

\

to have

=_ o

(this equality must take place whatever the arc ABMNCD. We

( 3 )

I

OZ

Gold

OZ

OZ

at ( r, ds)

0 ( r, dl )

a

0

0'
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M

(p)

from

ous

wind

(jue by a constant. It is easy to see that this con¬

This is the value o.

Let us consider, in fact, a magnetic element and a current element infinitely distant from each other; let us express that a change in the magnetic moment of the former produces no induction in the latter. We will find the condition

M [>, (/-, </s), (/', dl ), e]

o.

Let us express that the magnetic element produces no induction in 1 conductor element when the latter changes length. We will find the condition

2 [oc, (/-, ds), O, dl), e]

o.

These equalities show us that the constant by which M differs from 2 can only be o. We have therefore, as we have¬

vions announcement.

M

This equality, together with the equalities (a), leaves in the expression of ov only one unknown function of r, (r, ds), (r, dl) and e , the function M. It allows to write

8v

\ IV T

M o ( OÏL dv ds) - OÏL- dv ds - or

07

OÏL dv ds

OM

à( r, ds )

o (r, ds) -(- OÏL dv ds

to M

toi r, dl)

o(r,

, , dM ^

OÏL dv ds -- te,

<I

or simply

(0

-N

OV

8 j M [r, (r, ds), (r, dl), e ] OÏL' dv ds j

This formula leads to a fundamental result. Consider a conducting element of resistance R, placed in the presence of a magnet.  In time dt, the induction exerted by the magnet on the element ds displaces a quantity of electricity

8Q

OV

[

R

R

o \ ds

M [/', (/*, ds), (r, dl), e] OÏL dv

l

Suppose that between instants t 0 and t t the resistance of 1 element
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the induction of the magnet during this time a quantity of

v

J

:era pen

Q

JL )

R(

ds

M [r, ( /-, ds ), ( r, dl ), e] JIL dv

! - !

/ -

Thus, in a

of invar resistance

the induction of a magnetic system of electricity which

the state

s a

and

state

of the system formed by the magnet and the conductive element.

The relative position of the two elements ds and dl is unambiguously known when we give ourselves the variables /-, (/-, ds), (r, dl), e. Moreover, the position of the two elements is unambiguously known when we give ourselves, with respect to a system of rectangular axes, the parameters

O

î")

X

y

î

dx

ds

ds

dz

i ~~r~ ?

'r

Ç ?

from

i ?

C,

d( i

Tl

dC

dl

The variables r, (r, dsj. (r, dl), e are thus uni

of these parameters, and the same is true of the quantity of the

M [/-, ( r, ds ), ( /-, dl), e J.

We will show that this quantity is a linear function and

homogeneous of

ds

dy

ds '

ds

and "lu e

linear and

d'

dr,

d'

dl ' di ' dl

To show that the function M is linear and

. dx dy dz

a ds '

' ds'

that

a

the position remains fixed, but in a finite listance circuit, a

ue G, of which

has a

; u r

of which
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This proposal will immediately lead to this one:

U integral

extended to any closed circuit, is finite.

If we observe that the quantity M must change sign without changing magnitude when the direction of the element ds is reversed, and if we reproduce a reasoning analogous to those which we

we have exposed in Book XIN, Chapter II, we arrive at the announced conclusion:

The quantity

l\i [ r, ( r. ds), (r, dl ), e ]

is a linear and homogeneous function of

dx d v dz ds ' ds ds

Let us now express that a closed magnetic solenoid A that experiences the same power variation along its length generates a finite induction electromotive force in any conducting element, and we will arrive at the following proposition:

The complete set

f M dl,

-A

extended to any closed circuit, is finite.

Since the quantity M must change sign without changing magnitude when the direction of the element d! is reversed, we see that :

The quantity

M [r,(r, ds),(r, dl), e]

is a linear and homogeneous function of

d\ dr { dZ

dl' dl' dl '
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CHAPTER II.

LAW OF ELECTROMAGNETIC INDUCTION IN A CONDUCTOR

WITH A UNIFORM CURRENT.

We will further investigate the law of electromagnetic induction in a particular case: we will suppose that a system of magnets is placed in the presence of a firm conductor and forms with it a certain set; this set is modified in such a way that the induction of the magnet on the conductor, joined to the other electromotive forces which the conductor contains, generates in the conductor a uniform current (').

Let dv, dv\ dv", ... be the various volume elements of the magnetic system. Let ds be an element of the conductor. Let Rds be the resistance of this element. Let £ be the set of other forces

1 - 1 ^ 4 * f

Let eniin j be the intensity, at time t , of the current flowing through the armature. Let eniin j be the intensity, at time t , of the current flowing through the armature. We have

R / ds dt = o ( M DÏL dv ds )

ofM'DiV dv' ds)

o ( M" DTL" dv" ds )


	*



& ds dt.

By hypothesis, the induced current is uniform; therefore j has the same value for all elements ds . So if we add member by member all the equalities analogous to the previous one,

noting that

/

R ds

(' ) It should be noted that this hypothesis does not imply any restriction on the form of the system composed of the magnet and the conductor, nor on the variations which occur in the various parts of this system; for * it is always possible to imagine that, in the armature, electromotive forces, foreign to the induction developed by the magnet, ensure the uniformity of the current.
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	the induction in a uniform current. is the resistance of the closed conductor, we find



This equality shows us that, in the circumstances in which we have placed ourselves, it is sufficient for us to know the expression of the quantities

the integrals all extend to the closed conductor.

We will show that these integrals can be determined by making use of the following assumption:

When a variable magnetic element is placed in the presence of a closed conductor and these two bodies move relative to each other in such a way that a uniform current flows through the induced conductor, the electromotive action produced by the magnetic element can be replaced by electromotive actions emanating from its two poles.

4P

Before making use of this hypothesis, we will clarify its meaning.

Let's take the expression of the mutual magnetic potential of two magnets.

Let dv = dx dy dz and dv'= dx' dy' dz' be two magnetic elements belonging respectively to two magnets located at a finite distance from each other. Let

<V

?

b, iii>, 0 the components of the magnetization at a point of the element dv ;

JK otë/, 2! the components of the magnetization at a point of the element dv' ;


	the distance from a point of the element dv to a point of the element



dd .tr

The mutual actions of the two magnets A and B admit a
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potential (l. Il, p. 4 ^)? qni is the sum of all terms such that

obtained by combining each of the elements dx dy dz of body A

with each of the elements dx! dy' dz' of body B.

Suppose that within the element dx dy dz we take two points M, M ( , such that the straight line MM, is parallel to the direction of the magnetization at a point of the element dx dy dz and has the same direction. Let dl be the infinitesimally small, but arbitrary, length between these two points. Let's say

3ïl dx dy dz

OÏL being the intensity of magnetization at a point of the element and p an infinitely small quantity, of the same order as the product of two of the dimensions of the element. Let us assign the point M the coefficient j in t - ij, and the point M the coefficient p, which we will express by saying that we place at the point M a quantity p of boreal magnetic fluid, and at the point M, a quantity p of austral magnetic fluid. Let us operate in the same way on the element dx'dy'dz'.  Finally, let us suppose that two quantities of magnetic fluid, marked in size and sign by p and p', repel each other with a

! orc e

iV

and we will easily see that the mutual actions of the two magnets will admit the same potential as the one we have just

to recall the form.

If, to abbreviate, we agree to call the two magnetic masses p and - p of the element dv, arranged as we
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We can say that the mutual action of two magnets is equivalent to the mutual action of the poles of their various elements.

The set of a magnetic mass p. placed at point M and a current element AB = ds is defined by: i° The mass p ;

2° The length ds of the element AB ;

3 ° The intensity J of the current flowing through it ;

4° The length r of the line AM ;

5 ° The angle (/', ds) of the two half-lines AM, AB; the latter

is itself completely defined by its cosine.

Among these parameters, only the last four are variable.  Let's imagine that the various magnetic elements that make up a certain magnet have been replaced by their poles. Let M, M ? M', M', M', ... these poles, necessarily in even number. Let us suppose that this magnet is placed in the presence of a current element ds.

It induces there, at the instant Z, an electromagnetic force ( 25 . If we can write

<£ dl - OTZ -h OT01 -+- 0 Tâs' Sdi -f- . . . ,

o vsk depends only on the parameters that define the system formed by the pole Ma and 1 current element ds and the vanations of these parameters in time dt , we will say that the Vaimant electromotive action is equivalent to the set of

electromotive actions emanating from its various poles.

But, for the moment at least, we do not want to make such a general hypothesis. We want to suppose only that the preceding hypothesis leads to exact results in the particular case where the induced current is supposed to be uniform; we want to suppose, in other words, not the exactness of the preceding equality, but only the exactness

of equality

(i) dt^€ =

signs indicating summations that extend to a closed and uniform current.

To discuss the consequences of this hypothesis, we must first specify the form that a quantity such as

OüTi

^ r om

t

om

i

...)

?

j
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than Ôcî. We shall reach this point by following a path entirely analogous to the one we used in the previous chapter to determine the form of ov.

i° Reasoning exactly as we did for 8v in the previous chapter, we will prove that yes is a linear and homogeneous function of 8j, ods, or, o cos (r, ds ).

2° As for 8v, we will prove that om is independent of J and SJ.

3 ° As for ov, we will prove that the coefficient of 8 ds does not depend on ds, while the rest of 8 tü is proportional to ds.

4 ° From this fact, if two magnetic masses u and ut/ are attached to each other at the point M, they must act on the element ds as a single magnetic mass ut/) placed at the point M, we deduce

easily that yes must be proportional to ut.

So we have

"

0775 = [j. [ u o ds -i- p ds or + cos ( r, ds )J,

<7, p, 0 being functions of /■ and cos(/q ds).

5 ° Let's take now ( Jig . 6o) a closed conductor, inva

Fig. 6o.

of shape and position, placed in the presence of a magnetic element invariable in position, shape and magnetization.

Instead of assuming this conductor to be immobile, we can always, by thought, apply the following modification to it:

L

element

Vlï

ds

o

in AB' ;

lengthens

of ods, in order to come
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JD 9

The CD - dsi element shortens by ùds, so as to come in C'D ;

Any element MN, located between B and C, moves by a length Ùds in its own direction, so as to come to M'N';

Any element of the DPA arc remains invariant.

We have seen that, in a similar transformation, one can de¬

had to have

<E

o.

Let M and M' be the two poles of the magnetic element.  According to the equality (i), the previous equality will become

o -j


r



O.

At point M there is a magnetic mass - a. It is then easy to see that we have

07ü

I

!-■ - <To - <1

fM;

0

d cos( r , ds )

bones

ds \ o ds *

At point M' there is a magnetic mass p.. Therefore we have

otat

0

at cos (r', ds)

ds

1 ds | o

ds

We must therefore have

0

0

H' [' £

p i r

i + / ?

J o L

0

cos(r\ rfs;

ds

ds

dr

ds

o to J2i 1 *'

</5 J

O

Let d/ be the direction MM'. This equality can be written

à

dl

n

dr

ds

0

to cos( r 7 ds)

ds

ds

o

The direction cLL being any direction of 1 space,

on

sees that the quantity

ffo- S'i

XK

0

d cos (

O, ds) l

tos J

ds

must have a value independent of the position of the point M in
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space. As it obviously cancels when the point M is at the infi ni, we see that we have

*t>

1 "T

r'r.?

Jo l tos

0

0 cos(/\ ds )

ùs

ds

o

?

which gives

dy

d/


	?



6

à

O cos ( ds )

and allows to write

N

0777

"s v

ijr o

i j

I

cr[/', c >s(r, "$)] ds:.

This form of otu being found, let's see what equality (i) will give us, assuming that the magnet is reduced to a single magnetic element dv having for poles the points

e

tM'.

In this case,

/ ^

( fjl15

0777


	

	

	)











is reduced to

0777

f

0777

Now we have

0777

%

0.0

cos(/', ds,

-> f

0777

jj .0 J crf/'', cos(r', c/s)] ds,

integrations extending to the closed conductor. Moreover

J ff| r' cos (/-', ds) ] ds = C x[ r, cos (/-, ds)\ ds

dl

d_

Tl

I i[/*, cos(r, d

So we have

0777

"N /

0737

UO

^ dl - j'a f /-, cos ( r, ds )] ds |.

(

1

if r we notice that

l J

i dl

.te dv

and that, the masses p. being supposed invariable,

u o dl - o (;)ll dv),
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we see that the previous equality becomes

OüJ


t



ow

5 ■ frc- * "/<" [ /', cos(r, efc)] ds |.

-o | D1L dvf M [r, (r, ds), (r, dl ), e] ds

)

o l 0)1 dv °

3Gi

This transforms equality (i), by virtue of equality (i) of the previous chapter, into

dl

J ff[r, cos(r, ds)]ds

l

\

In particular, assume that OR dv remains invariant, and

we will get the equality

Quantity.

r, cos( r, ds ) 1 ds

r, cos(/-, ds )] ds.

may not be a uniform function of the position of point M. But the value that the quantity

o f ff[r, cos(r, ds)\ds,

when moving and deforming the closed curve to which the element ds belongs without moving the point M, is a uniform function of the coordinates of the point M, because it represents the product by dt of the sum of the electromotive forces induced in the closed curve by a magnetic mass equal to the unit placed

-in M.

Let dl be an element of a closed curve invariant in shape and position, while ds is an element of a closed curve

variable. We can write
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or even

?

cos(/\ ds )]ds | dl.

/■, cos(/', ds)] ds

being, as we have just seen, a uniform function of the position of the point M on the closed curve to which the element cil belongs. we have

If dl denotes an element of any closed curve, but invariant, and ds an element of any closed curve, susceptible of all variations which do not require the breaking of the first closed curve, we have

(3) o / / M [/-, (/-, ds),( /-, dl), e] ds dl = o,

integrations extending to the two closed curves.

We saw in the previous chapter that the function

M [/',(/', ds). ( /-, dl ), e j

t * t p 9 * p i doc dz

was a uniform function of the variables x, y, s, -ri > - > and

J 1 7 ds ds ds

(ju'il was linear and homogeneous with respect to the last three.  We can therefore pose

M[r,(/', ds), (r, dl), e] dl - U

dx

ds

\

r dv

4/

ds

W

dz

ds

the three functions U, V, W being uniform functions of

1 , | i dv dz

z, and not depending on - 7 -, -j-i

The condition ( 3 ) will then take the following form:

If the closed line s deforms in any way without intersecting the line l, we have

36"
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On curve s (fi g . G i ), let us take any two points, A, C, and deform the arc ABC so as to bring it into the neighboring position AB C without meeting curve l.

But we have

We have, moreover, at point A as well as at point C,
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3Gi

Our condition thus becomes

r c (clx ^

.A (*°

U

dy

ds

3V

c

OX

dV

ds

Ù J

dV

ds

dz

ds

oW I ds

s rfW. ,

os -- as = o.

we also have

dV _

dU dx

to the dy

at

dz

ds

i

"O

VJ

S

II

1

dy ds

H dz

ds 7

oU =

-L

to .

at

<\


	

	

	0 X -\











Ox

T

o>

l_

oz,

and two other similar equalities for each of the functions V and YV. If we take into account these relations, we can easily find that the previous equality becomes

n r /aw

J A LW"

to^

dz ,

\ dz / ds

/au

\a/

av\

dx J

R. A. 2" s"

( [

§x ds

X c [(^ a\^

dx j

v dx

' ds 1

/av

[àz

aw\

ày)

dz~ ds _

3 y ds

m avvx

ày)

i dy (

ds

'a\v

V dx

at

~ Oz J

i-1

£ >2

oz ds

The three quantities ox, oy, oz are three arbitrary functions of s.  They are subject only to the following conditions: i° For points Al and C, we have

y. 0 In the displacement which has components Ix, ùy. àz , the element ds does not meet the curve l.

The previous equality could not therefore take place if we did not have, at each point which does not belong to the curve /,

dy

ds

dz

0

dy j ds

dv _ du dx Ox dz / ds
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The quantities in brackets do not depend on

Therefore, if we do

dx dy dz ds 7 ds ' ds

dx

ds

o

?

ds

o

?

ds

i,

we obtain the first two equalities

U, V, W being in all space, except at the infinitely close points of the curve /, finite, continuous and uniform functions of x,y, z , which verify the equalities ( 4 )- We know then, according to a proposition indicated in the Introduction (p. 65 ), that we have

dïffl dx dx ds

d^> dy dy ds

ggP dz ds '

being a constant, A being defined by the equality

i

and being a finite, continuous and uniform function of the coordinates of a point of the element ds.

Let's put

M[r, (/', ds), (r, dl), e ]

*

Atz

A -h ©.

i

ï

and let's see what we know about the cp function.
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X,

^ J

n,

c,

dx

dy

dz

cls '

ds '

ds '

d\

di)

dï

dl '

dl *

dl '

2° The function cp, like the two functions M and A, is a

l ' '

linear and homogeneous function of

extended to any two closed circuits, is equal to o.

To complete the determination of the form of the co function, we

i ]

*

is necessary to make use of the following assumption:

The function depends on the relative position of the two elements ds and cil only by the parameters

r, ( r,ds ), (r,dl), ( ds,cll );

it is a uniform function of it.

We made a similar assumption (see p. 71) about the functions similar to M or cp that we had to consider
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' f

in Electrodynamics. In Electromagnetism, we have made a similar assumption about the function M. It is easy to see

that this assumption cannot be accurate for both the function and the

tion

and for the cp function. Indeed, if it is exact for the

function co, we have

i *

M

15

4

A -h o |>, cos(/-, ds ), cos /■, dl), cos (ds, c

Moreover, we have [Introduction, Chap. 111, equality (8)1,

A

sin ( r, ds) sinf /-, dl) sin e

r 2

and also [Introduction, Chap. I, equality ( 8 ) 1 ,

cos {ds, dl) = cos( /*, ds) cos( r, dl) -4- sin (r, ds) sin( /■,

COS 3

But

sm e

/

1

COS 2 s

4

Thus, we see that M cannot be a uniform function of r, (/-, ds),

(r, dl ), ( ds , dl).

Once the preceding hypothesis is admitted for the function co, the determination of this function is completed by the reasoning which we used to prove the theorem of M. 11 . von Helmholtz (Book XIV, Chap. IX, § o). If we denote by F (r) a uniform function of the variable r, we will have

o

d* F (>)

ds dl

and

M

§ A

/. T

l| *

d ' 2 F (V) ds d l

When we have to calculate

M ds

for a closed conductor, the term

d 2 F(r)

ds dl

ds

will give a result equal to o. We can therefore delete this term,

J68
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ecnre

M

4 TC

and state the following result:

When we want to have the sum of the electromotive forces

(£ induced by a magnetic element in a conductor

closed, which is sufficient for the determination of the induced current in the case oh it is assured that it is uniform, it is sufficient to write

l

? / eg

(6)

dt

e

£) - o I 3HI dv

4 71

A ds

We will make use of this equality in the next chapter*.

CHAP. III.

CONSEQUENCES OF THE PREVIOUS LAW.

CHAPTER III.

ELECTROMAGNETIC INDUCTION IN CLOSED CURRENTS

AND UNIFORMS (continued).

GROUND INDUCTION.

É


	

	General theorems.







We have just seen that, if we denote by C the electromotive force of induction generated by a magnetic element of magnetic moment 31 L dv, located at the point (£, 7), Ç), od had

§ being a constant and A being defined by the equality

x - i

y - T <

j

m

dx

dy

dz

A = -

ds

ds

ds

r 3

d\

dt]

dl

dl

dl

dl 1

We can give this equality (i) several forms which will be useful later.

Let A, B, C be the components of the Ampere director for the conductor considered at the point (£,7), Ç). We will have [Book XIV,

Ghap. XI, equality (2)]

and the equality (2) will easily give

D. - III.

3 4

3jo
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Let X, G

the components of the magnetization at

y;, Ç) of the element "fu. We will have

A

</?

d?

ni> = or

dl

and, therefore,

(i)

% c

4 TC

DR. di

7

A ds

4

4 TC

( A 

T'

so that equality (i) can be written

( 5 )

£ dt

Ê.

4 TT

Bil!> -J- CG

8 [( X A -- lil) B

C)|.

Through the conductor through which the current flows, let us pass a

area with two sides; let dü' be an element of this area; let N be the normal to the positive lace of the due element. We will have (Introduction, Chap. III),

A ds

d

r Tl

d

S^ :

t

We can therefore write


	3 R. dv f A ds \n J



Q O

4 TT O

d

A

r

dl

Suppose that i? is the magnetic potential function of the element dv at the point where the element dQ is located, and the equality pre¬

no

((>)

and the ex

( 6 b is )

nera

no longer only the whole of it. In this


	,)ïl dv f*à. ds =



A c

. zX dÜ'.

4^ J

■b.

4î: U

► UN

extends immediately to the case where

f we consider

have a ma

gnetic, but

a magnet for everything

case, we have

± y .m do A * =

$ i

S W diï 'i

4 71 t/

4tï i

O ONE '

denoting the function The electromotive force of induction

of the entire magnet.

eng

by a
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in a closed circuit has the value

This expression of the electromotive force of induction will highlight an important fact.

Let us imagine that around the axis dl of the magnetic element dv we draw a small circle of area Q whose plane is normal to dl , and whose dl forms the positive normal. Let us let a current of such intensity flow through this circle that

OIL dv -

The magnetic element dv can then be seen as an equivalent elementary magnetic sheet, in the sense that we have

r

given to this word in Electrodymanics, to the small current, i? could, as we have done in Electrodynamics, be named the potential function of this small current.

This small current generates, in the closed conductor we are considering, an electromotive force of induction and Ion a

[Book XIII, Chap. VI, equality (9)]

Comparing (y) and (8), we find

hence the following theorem:

To determine the electromotive force of induction that a magnetic element dv generates in a closed circuit C, we replace Vélément dv by the small current C / which is equivalent to it in the electrodynamic sense of the word. We determine the electromotive force generated by this small circuit in

the circuit C, and multiply this by the quantity

1


	\f%



4it 5V

The two electromotive forces in question have the same direction

I

1
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é

or in the opposite direction, depending on whether the constant is negative or positive.

This theorem reduces the study of electromagnetic induction to the study of electrodynamic induction, and therefore dispenses with further developments. We will content ourselves with

to indicate a last form of the law of electromagnetic induction

This form applies only to the case where the inductor magnet is invariant in shape, position and magnetization.

If the element 3 TL dv is invariant in shape, position and magnetization, we can assume that the equivalent current O is invariant in shape, position and intensity. Therefore, if d(B is the work done during the time dt by the actions of the current C' on the conductor C crossed by a current equal to the unit, we will have

C dt - - d&.

Now, according to the formulas (5 bis) (Book XIV, Chap. XI), the current C'exerts on each element ds of the current C a force whose components are

X

Sjd'

d

r dy

dl \ dz ds

à- ,

r d

dy ds

Y

-- J ûÀ

2 al

àx ds

à

r d,x

d

So we have

C dt

Z

ïjû

2 dl


	2



2 d/

r dx

ds

r dy

ds

dx ds

dy ds

ds.

Sx

i

dz

\ àx ds

à

r dx

dz ds

oy

ds

d.v ds

oz

ds,

ox, oy, Zz being the components of the displacement of a point of
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the element ds. We deduce from this

or even

( 10 ) Cdt = - dÇ>,

d$> denoting the work done in the displacement of the circuit G, assuming that each of the elements of the circuit C is subjected to a force having the following components

(ïi)

X

Y

Z

45 d

y- OÏL' dv 4 TC 01

45 à


	Oit dv -



4 TT 01

45 IW , at

, ■ 1 o dv

4 71

dl

i

( d r d y

à~

r

dz

\ dz ds

~ày

ds

( ^ r dz

d r

dx

\ dx ds

dz

ds

1d rdx

i

d r

dy

\ds

dx

ds

ds

ds

5

ds.

We can replace the action of the OlLofa element by the action of

È'

two masses: one of austral fluid, the other of boreal fluid, having for common value p., and located at a distance dl one from the other

the other, on the direction of the magnetic axis.

The previous forces will then be replaced by forces exerted by each magnetic mass p.(£,V|,Ç) on each element ds(x,y,z') of the conductor C, each of which will have

for components
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If we compare these equalities (12) with those which give the components of the action exerted by a solenoid pole, of power u, on the element ds traversed by a current equal to unity, we see that the former are equal to the products of the latter by

t/a iü 4tc 51

We can then state the following theorem:

To determine the electromotive force of induction generated by an immobile magnet of shape, position and magnetization on a closed conductor which deforms and moves, we imagine that each magnetic mass u. of Vaimant exerts on each element ds of the conductor a force having for magnitude

F

J(5 sin(r, ds) ,

ïï ** -73-

and directed as the action of a solenoid pole on a current element; we calculate the work produced by these forces in the elementary displacement of the conductor; we divide this work by the duration of the displacement, and we change the sign of the quotient.

We have already had occasion to make use of the various propositions indicated in this paragraph, in examining the various methods based on Induction for the study of the distribution

of magnetism (Book VII, Chap. IV, § 3 ).

These were induction phenomena by displacement of the armature. We shall have occasion, in the present Book (Chap. VII) to study an example of induction by variation of magnetization.  We will indicate a last application of formula (7), by studying a phenomenon discovered by Faraday (*) and of which Weber ( 2 ) made magnificent use; we want to speak of the induction generated by the Earth in a mobile conductor.

(!) Faraday, Experimental Researches in Eleçtricity , 2 nd series, § 171 to § 180; i83a.

W . Weber, Ueber die . I nwendung der magnetischen Induction zur Messung der Inclination mit dem Magnetomeier Gotiingen, Abhandlungen, t. V, p. 3; i8ji ).

I
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Induction by the Earth.

Let's look for the electromotive force of induction generated by the Earth in a plane conductor.

If we denote by the magnetic potential function of the terrestrial action, by dQ an element of the frame plane, by N the positive normal to the frame plane, this electromotive force is given by the formula

(7)

■

dt

4 .

0

4 t:

dN

dii

Now we have

d-Ç

dN

cos( N, x) -t- - cos(JN, y) -t- - cos (N, z )

dx

Oy

p

If F is the earth magnetic force,

F cos(F, x )

F cos(F, y)

F cos(F, s)

dx

at

dz

î

We have therefore, by designating by Q the area of the frame,

£ dt

1

4 TC

FQ8 cos(F, N),

or, if we denote by R the resistance of the frame, and by c/Q the quantity of electricity that the induction carries in the frame during the time dt

(* 4 )

dQ

§ Fü

4 TT R

0 cos(F, N).

Let i be the magnetic inclination; we have

H

F cos",

H being the horizontal component of the magnetic action

ter¬

restricted.

Let V be the vertical line directed upwards (Jîg- 61), B the angle, inferior to ic, of the vertical half-plane passing through N and bounding the
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frame, with the half-plane formed by the northern part VOF of the magnetic meridian.

Fig. 62.

In the OVNF trihedron, we have

cos(F, V) - - sint.

cos NV

sin(F, V)

cos6

cost

ï

and, therefore,

cos(F, N)

sin i cos (N, V) -h cosî sin ( N, V) cos 6

Equality (i4) can therefore still be written

(i5) ofQ = - -pjj- [0 sin (N, V) cos 0 - tangi 8 cos(N, V)].

Let's make some applications of formulas (i 4 ) and (i 5 ) to the case where the frame rotates around an axis located in its plane.

Let's assume first that Vaxe coincides in direction with the terrestrial magnetic action; we will have constantly

cos(F, N i o,

ocosfF, N) - o.

| ^ * 0 '

Formula (i 4 ) then shows us that no induction will occur in the frame.

Secondly, let us suppose that the axis of rotation is vertical; we will constantly have

sin(N,V) - 1 , 0 sin(N, V) = o,

cos(N,V) = o, ocos(N,V)-o.
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The formula (i 5 ) will give us

do

4 it R

8 cosO

Suppose that the plane of the frame is first perpendicular to the plane of the magnetic meridian, the earth's magnetic action being

directed to the positive side. The ini value turns the frame by a right angle. The value

of G will be o. Let's do

TT

of G will be - 2

The induction will therefore set in motion a total quantity

of electricity

( 16 )

Q

iS H Li

b 71 R

Let us suppose that Vaxis of rotation is horizontal and perpendicular to the plane of the magnetic meridian; we have then constantly

co s 6

i

3 cosos

o

Suppose that the plane of the frame is first vertical, the normal to the positive face being directed as the declination needle; we will have

cos (N, Y) = cosi,

sin(N, V) = sin i.

Let's rotate the frame by a right angle, so that the normal to the positive side points to the zenith; we will have

cos (N, V )

i,

sin(N.V)

o.

During this movement of the frame, 1 induction will have quantity of electricity

de

s a

(- 7 )

Q

üj Hû

Zït R~ tangï.

Finally, let us suppose that Vaxis of rotation is horizontal and located in the plane of the magnetic meridian; we then have constantly

cosô - o, 3 cosO = o.

Let us assume the plane of the frame to be vertical at first. The initial value of cos (N, V) is o. We rotate the frame by a right angle, so that the normal to the positive face points to the zenith.

/

I
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The final value of cos(N,V) is 1. The induction puts in motion a quantity of electricity

(18 )

Q

HQ ~l\

/.

tang 1 .

4 Tt

We note that

(19)

Q 2

Qi

Q

Q

tangi

1

The use of the ballistic galvanometer allows to determine the

ratios or - ; hence a very precise method to determine

rr Qi

Qs.

the magnetic inclination.

CHAP. IV.

INTERNAL ENERGY AND JOULE'S LAW.

CHAPTER IV.

INTERNAL ENERGY OF A SYSTEM THAT CONTAINS CURRENTS

UNIFORMS AND MAGNETS.

H

i 1

OF THE LAW OF JOULE.

§ 1 .

P

Internal energy of a system that contains currents

uniforms and magnets.

Let us consider a system which admits a thermodynamic potential §. Let us assume that the parameters defining the state of the system are chosen in such a way that, when the temperature T varies alone, the external forces do no work. Let E be the mechanical equivalent of heat. The internal energy U of this system is given by the relation [Book IV, Chap. I, equality (io)]

(i)

EU

§

T

d§

dT

We have found [Book IX, Chap. I, § 2 ] the expression of the internal thermodynamic potential of a system containing magnets and immobile electric charges, but no currents.  This expression is the following

(2)

S

E(r

TS)

3

w

Qq

3ÏU)dv.

In this expression,

T and S are the internal energy and the entropy of the system brought back to the electric neutral state and to the magnetic neutral state 5 5T is the magnetic potential;

W is the electrostatic potential;

q is the electric charge at a point of the element of volume dv

31 U is the magnetization intensity at the same point;

is a quantity that depends on the nature of the matter around it

of this point and the temperature;

J

38o
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-^(DIL) is a function of OÏL which also depends on the nature of the material at the point to which it refers and the temperature.

The internal energy of the system in question has a value U, which, according to equality (i), is given by the relation

The expression, given by this equality (3), of the internal energy of a system that does not contain currents cannot obviously be taken as an expression of the internal energy of a system that contains currents. However, we shall retain this hypothesis, already made in Book XIV, Chapter I, for systems that do not contain magnets: The variation of the internal energy of a system containing currents is equal to the variation of the quantity U calculated by the preceding formula, whenever the conductors through which the currents flow remain immobile and the electric flux which passes through each element of this conductor remains invariable in magnitude and direction; to which assumption we shall now add the following restriction: The magnets of the system must remain invariant of shape and position, and Vintensity of magnetization at each of their points must remain invariant of magnitude and direction.

H

The internal energy of a system containing currents is given by the following equality

the quantity U 7 becoming equal to o when the intensities of all currents fall to o.

The hypoîliesis that we have just indicated will allow us, by reproducing a reasoning already used in Book XIV, Chapter I, to demonstrate the following proposition:

The quantity U' depends solely on the shape and size of the
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of the conductors that make up the system; the intensities

the currents flowing through them; the shape and position of the magnets; the size and direction of the magnet

talion at every point.

Once we have proved this proposition, we will make the following hypothesis about the cjuanlity U' :

The quantity EU' is of the form

( 5 )

EU' = $(0?$, ds') -t- W(ds, dv),

ds and ds' being any two of the elements of the conductors that make up the system; <ï> a quantity that depends on the mutual position of the two elements ds and ds', the intensities J and J' of the currents flowing in these elements, and the first

uant a summation that extends to all the

distinct combinations that can be formed with the elements of the various conductors of the system taken two by two;

dv being a volume element of a magnet; 'F a quantity that depends on the shape and mutual position of the two

sign

elements ds, dv; the intensity J of the current flowing through the element ds; the intensity of magnetization at a point of the element dv; the direction of this magnetization; and the second

sign indicating a summation that extends to all

combinations that can be formed by taking an element con¬

ductor and a magnetic element.

The form of the quantity $ was determined in Book XIV, Gha pitres I, II. We saw that Ton had

( 6 )

(ds, ds' )

51 *

X

COS0 cos 6

T

X

COSlt)

2 r

ir

ds ds'

It remains for us to determine the form of the quantity W(ds, dv).  By reasoning analogous to that which we used in Chapter I of this Book, we can easily prove that

Y

we have

( 7 )


F(cfc, dv) = b[r, ( r, ds), (r, dl), e] J dsSIL dv,
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dl being the direction of the magnetic axis of the element dv and DU

the magnetization intensity of this element.

We will then make the hypothesis that, in the calculation of the internal energy of a system containing only closed and uniform currents, a magnetic element is equivalent to two magnetic masses located in its two blades, the precise meaning of this hypothesis being indicated by what has been said in Chapter II.

Assumptions and reasoning similar to those used in Chapter II will then give us the result

following

^[/-, (/*, ds), (r, dl), e\ -

to* /'(/-) Os dl '

jj)' being a constant, and/ (r) a uniform and continuous function of the variable r.

This result completes the determination of the form of the internal energy of a system which contains closed and uniform currents. In this case, we can write, according to equality (8),

( () ) ^ W( ds, dv) = ^ ^ OÏL dv J J" A ds.

The sign Z that appears in the second member of this equality indicates a summation that extends to all the distinct combinations that can be formed by taking a magnetic element dv with a closed conductor C.

The set of equalities ( 4 )? ( 5 ), (6) and (9) gives us the result we wanted to obtain, namely the expression of the internal energy of a system containing magnets and closed and uniform linear currents. This energy U is given by

the following equality

El'

AV

JJ' ds ds'

f
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vj

The extension of the di

îto summation signs

that

ren

this formula has been clarified in this paragraph

S 2.

Extension of Joule's law to a system that contains

magnets.

We have seen that, in a system without magnets, the amount of heat dQ released during the time dl is given by the following equality

£ being one of the electromotive forces contained in the system and J the intensity of the current in the element, seat of this electromotive force. It is to this equality that we agreed (Book VI, Chap. II, § I and Book XIV, Chap. II) to keep the name of Joule's law.

This equality (i i) cannot be extended in a general way and without modification to systems containing magnets. We shall see that applying it to such systems could lead to unacceptable consequences.

Let's imagine a system containing only magnets and no conductor through which currents flow. The magnets in this system are immobile, but their magnetization varies. Equality (n), applied to an infinitely small modification of this system would give

dQ - o.

But, on the other hand, we have what gives, according to the equality (io),

Now we can be sure on an example that the quantity dQ, defined by this equality (12), is not equal to o in general.

Let's assume, for example, that the system consists of two magnets, one

permanent magnet d and a piece of soft iron 2 . Let X 2 , '1&2? ©2 the components of the magnetization at a point ( x 2 , y 2, ^2) of the soft iron 2 .

384
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Let Ü| be the magnetic potential function of the permanent magnet; let Ü2 1 & be the magnetic potential function of the soft iron piece. We will have

3-7

at ( V

2)

dx

cl 1'

it

Y

0

T)

T

,T)

dT

dv

to$%{ 3 TL2? T )

d£)IL 9

T

T)

dÛ\U dT

0OÏL e> dv* .

We have, by the way,

o,m 2

1,2 0 X 2 'i) 1 d 2 8-ifeî -+- ©2 38

or

On the other hand, the equations of the magnetic equilibrium on soft iron are

l

d .T 2 ( OÏL 2 > T )

ojVi >2 - ~

d(t),+ Ü 2 )

Ô 1 V 2

d 0 \i 2

tox 2

I

d$t(D TL *, T)

i )!>2 = d(Ü 1-4-tDj)

i)fl a

àO IL 2

ày 2

I

defont s, T)

<0

Ôït 2

dOTVa

^2 - ~

ÔZ 2

Equality (13) then becomes

In this form, we see that the quantity e/Q is not zero in general, and, consequently, that equality (1) cannot be extended, without restriction or modification, to systems containing magnets.

We will therefore make the following assumption:

Joule's law applies to a system that contains both electric currents and magnets, provided that the magnets all maintain an invariable magnetization.

O *

With this restriction, Joule's law no longer gives rise to the contradictory consequences mentioned above.
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§ 3 - Determination of the constant 4}'.

The hypothesis that we have just stated will be used to determine the value that should be attributed to the constant jp'. In order to determine this value, it will suffice to apply Joule's law to the following example:

A magnetic element OlWu, invariant of state, position and magnetization, is in the presence of a circuit C, invariant of shape and position, through which a uniform current of variable intensity J flows.

The amount of heat c/Q that this system releases during the time dt can be calculated from the expression (io) of the internal energy of the system. We find thus

' E dQ = - E 8ï - 8W - 8 ^ - T ?

H- p J ~ dt - OÏL dv ^ dt f A dt ,

^ dt 4 TT . dt J

p being the self-induction coefficient of the circuit.

The current being uniform, the electrical distribution is invariable on the system. Moreover the system is immobile. We have

so

8\V = o,

oq = o.

As we have always done when applying Joule's law, we neglect the quantity

8(0

T

à&

atT

So we simply

(i4)

E dQ

. dJ T

E8r-*-/>J -,-dl


	3TL dv dt I A ds



dt

The circuit is not the seat of any electromotive force of electromagnetic induction 5 it is the seat of an electromotive force of electrodynamic induction CJ and of an electromotive force

hydroelectric C".

D.

III.
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If we observe that the force C 1 does not depend on the lemperature, we see that we have

C - T

dC

dT

dC

In fact, we have

C = p

dJ

dt

If we neglect 80, we have

J dt C- T

dC"

E oi

Equality (i) therefore gives

(i5)

EdO

E 8ï

pft idl

If we compare the equalities (i 4 ) ( I ^), we find

jfy' - o.

This value of the constant reported in the equality (io),

gives it the form

EU

AND + \Y

3

0

T

d@

dT

\

9

(16)

j r# ( dïl.

T)

l

T

d^(3TL-,T)

0 T

ch

COS0 cosO'

2 r

ï -h X

2 r

CQSü) l JJ' ds ds .

U internal energy of a system renft

The expression of the internal energy of a system containing electric currents and magnets does not contain any term depending on the relative situation of the currents and magnets; this can be stated, if one wishes, in the following way: In the expression of the internal energy of a system containing electric currents and magnets, there is no term

electromagnetic.

At the time (school year 1889-1890) when we were teaching this paradoxical proposition at the Faculty of Sciences of Lille, Mr. E. Yascb v ( 1 ) published it in his important Treatise

of Electricity and Magnetism.

(i) E. Vaschy, Traité d'Électricité et de 1890).

I, p. 3 18 (Paris,
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§4, How Pou must, in Electromagnetism, define the bodies

perfectly soft magnetic.

In studying magnetization by influence (Book IX, Chapters I and II), we assumed that the bodies studied were part of a system admitting an internal thermodynamic potential and we defined perfectly soft magnetic bodies as carrying at each instant a magnetic distribution that made the internal thermodynamic potential minimum.

We have seen (Book XIV, Chap. IV) that the notion of internal thermodynamic potential cannot be extended to a system containing currents. Therefore, we cannot consider the definition we have just mentioned as being able to indicate what is meant by a perfectly soft magnetic body in a system containing both magnets and currents.

Let's go back to the systems that do not contain currents.

Let us imagine that such a system becomes immobile and that the magnetization of the perfectly soft bodies it contains undergoes only an infinitely small variation, while the magnetization of the other bodies remains invariable. We have seen, in § 2, that, under these conditions, the system gives off a quantity of heat dÇ) given by the equality

This equality expresses a general property of perfectly soft bodies, which follows immediately from their definition.

Conversely, this property can be taken as a new definition of perfectly soft bodies in a system which contains no current. We can say that a magnetic body, forming part of a system which contains no current, is a perfectly soft body if any variation in magnetization of this body generates in the system a release of heat given by the equality (i 3 ). We shall show that this new definition, which we know to be a consequence of the first, in turn entails the first as a consequence, so that it is equivalent to it.

f

é

m

388

BOOK XV.

MAGNETS AND UNIFORM CURRENTS.

In fact, if, in a system that contains no current, the magnetization undergoes any variation on any body 2 , the system is the seat of a heat release dQ , which can be calculated by starting from the equality ( 3 ), and whose value is given by the equality

This equality does not

be Oal> 2 ,

can be compatible with the equality (i 3 ), which oi)ho, 3 a 2 , only if we have, at any point of the body 2,

t d&(31L,,T) " _ Wi+'OO

dïi- 2 cm 2 °' 2 ox%.

i d DIL 2 , T) -1- D 2 )

01L 2 toD\U 2 _ o "JK 2

1 dcf 2 (31L 2 , T ) o _ <*(Üi-t-© 2 )

OÏL 2 00IL 2 ° 2 " dz 2

However, these equalities are precisely those which ensure the minimum of the internal thermodynamic potential.

We therefore have two definitions of the soft body, which are equivalent for systems that do not contain any current. But the second definition has a great advantage over the first: it can be extended to systems containing both currents and magnets.

We can always, without hypothesis, write the amount of heat that an infinitely small change gives off in a system that contains both electric currents and magnets

in the form of

(18) EdQ = 2 ( t - T 5 f) J ^'+- Erf Q'>

being a certain amount of heat.

We have, in § 2 , made the hypothesis that the quantity d(f was
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~m p

equal to o when all the magnetic bodies of the system kept an invariable magnetization.

We will now admit the following definition:

We will say that the bodies on which Vaimantation has varied, in a system containing magnets and currents, are perfectly soft bodies, if the quantity of heat dCf is given by the formula

Applied to systems that do not contain current, this definition coincides with the second of the equivalent definitions that can be given, within such systems, for perfectly soft magnetic bodies.
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CHAPTER Y.

DEMAGNETIZING HEAT.

The expression, obtained in Chapter IV, of the internal energy of a system containing magnets and closed and uniform currents allows us to give the theoretical explanation of an experiment that many physicists have repeated.

Here is what this experiment consists of:

A current of a given intensity J flows through a coil which is placed in a calorimeter. After a short time t, the circuit is opened.

The current fades away. The calorimeter shows a heat release which has the value

RJ 2 f -H Q,

R being the resistance of the spiral.

The same experiment is repeated with the spiral containing a piece of soft iron. We observe a release of heat

RJ2* + Q

What is the meaning to be attributed to the difference

xL= Q'-Q

of these two heat releases?

In each of these two circumstances, the heat release is the sign-changed variation of the internal energy. It is therefore easy to find that we have

<a

12Q = J 2 ,

2
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p being the self-induction coefficient of the circuit, and

the last two terms refer to the magnetization taken by the soft iron inside the coil. We thus have

The magnetic potential g* of the magnet is an essentially positive quantity. The same is true of the quantity éf(OÎL). The quantity T -Ig -- is, for soft iron, quite small compared to the

previous. The quantity ^ is therefore positive.

It is extremely interesting to obtain a precise experimental verification of the formula (i); indeed, one will thus verify, in an almost immediate way, that the constant %' is equal to o, and that the expression of the internal energy of a system of currents and magnets does not contain an electromagnetic term.

Let us assume that the coil is long enough; we shall see in Chapter VII that the electrodynamic field, inside this coil and at a sufficient distance from its extremities, can be considered as substantially uniform; the direction of this field is the direction of the axis of the coil. Let 'Ç be the potential function of the currents which form this coil. We shall see in the next chapter that a piece of soft iron, placed in this field, magnetizes as in a magnetic field whose potential function would be

for value at each point

4 7T %

Suppose that the soft iron has the shape of an ellipsoid with one of its axes, taken as the x-axis, directed like the field.

According to the known laws of magnetization (Book IX, Chap. IV), this ellipsoid magnetizes uniformly in the same direction as the field. Let 31 L be its magnetization intensity; let us assume

d§( Al ) '

rf( 3 TL)

F(DTL)

3Q2
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and we will have, as components of its magnetization. cil.

equality ( 5 ) 1 ,

(2)

<JId

0 )î>

dp

4u5V h-2XF(OIL) dx

F(3Tb)

o

e

O

?

X being a constant that depends on the shape of the ellipsoid.

Moreover, if we denote by ü the magnetic potential function of this ellipsoid, we will have

c/v>

dV

dx

dXD

dy

G - \ dv àz '

or, by noticing that the laws of magnetization give

cHo

F ( OÏL )

dXD

dx

4 7T 3i dx J }

27

JL 2

F ( OTL )

dv

§sji Ç

8

à-Ç

L -r- dv dx

The equalities ( 2 ), which give JL = OÏL, allow to transform this equality into

27

aXF(OlL)

OÏL 2

/*■

If we denote by a , b, c the three half-axes of our

we will find

dv = | tc abc

and

(3)

27


	TC



3

OÏL 2 .

We

also has

(

4)

.f (OÏL)

rp Ô ,f(OÏL) dT

dv

4

3

it abc $ ( OÏL)

T

à

to'ï

According to these equalities ( 3 ) and ( 4 ), equality (1) becomes

(5)

4

3

c abc

2 X OÏL 2 -t- J'(OTL) -T

à

atT

Suppose that, according to the Poisson theory, we remit

places the magnetizing function

by a coefficient of magnetism
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tation k independent of the magnetization intensity. Then we have [Book IX, Ghap. II, equality (27)]

d §{ Oïl) _ Oïl 2 dk

_ %¥ dT'

and equality ( 5 ) will become

But, if we have

denotes by M the magnetic moment of the ellipsoid,

and the previous equality becomes

1 dk

F FF/

The coefficient depends on the shape of the ellipsoid; if, leaving fixed the two half-axes b and c, we make the half-axis # grow beyond any limit, this coefficient tends to o. Now, 1 ellipsoid tends at the same time to the shape of an elliptic cylinder

indefinite.

If one assimilates a very long elliptical cylinder to a very elongated ellipsoid, one sees that, for an elliptical cylinder of length L,

of section w, we will have to take

L ,

a = ~ y O) = TC OC y,

2

and equality (6) becomes

/1 1 dk \ M 2

( 7 ) \k~~7d Fr/ 4 7

N - 7CÜ) LJ

O

The amount of heat ^ is proportional to the channel of the magnetic moment of Vaiguille and due invei se to its

volume.
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This law has been verified experimentally by M. Joule ( 1 ), by M. Edlund ( 2 ) and especially by Cazin ( 3 ). Here are the numbers obtained by Cazin by operating on three needles of the same substance, of the same section, but of different lengths, and magnetized differently. According to the previous theory, the quotient

should have the same value for all these needles:

L.

3.2

é

3.4

2.4 * m

M.

74,9

0,068

40,2

0,020

121,0

0,1 38

65 ,i

0,046

5 o ,6

0,041 5

M 2

M 2

11 *

82700

258 oo

80700

253 oo

106000

3 1200

92000

26900

))

25700

Except for the observation marked with an *, the difference

maximum between two values found for

M* 9 L

does not reach the

This agreement must be considered as satisfactory in these experiments, which offer many causes of error. As for the anomaly presented by the observation marked with an *, it is easily explained; this observation refers to a case where the needle was magnetized in a particularly intense manner; for such a magnetization, the approximation obtained by replacing the magnetizing function F( 3 K,), by a constant magnetization coefficient, is insufficient.

(*) Joule, On the calorific effects of magneto-electricity and on the niecha nical value of heat [Philosophical Magazine , t. XXIII, pp. 263, 347, 4 ^ (i 8/|3 )].

( 2 ) Edlund, Undersokning ont galvaniska induktionsstrômars Vàrmentveck

ling ocli donnas fôrhallande till det dervid fôrbrukade mekaniska Arbeiet [Stockholm, Ofversigt> t. XXI, p. 79; 1864. - Poggendorff's Annalen, t. CXXIII,

p. 2 o 5 (1864)].

( 3 ) Cazin, Mémoire sur les effets thermiques du magnétisme [ Annales de Chimie et de Physique , 5 ® série, t. VI, p. (1875)].
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CHAPTER VI.

MAGNETIZATION BY THE CURRENTS.

Let us follow the consequences of the electromagnetic definition of perfectly soft bodies given in Chapter IV. We shall see that it is easy to deduce the laws of magnetic distribution on these bodies.

Let's consider a system that, to fix ideas, we will suppose formed by a permanent magnet 1, a piece of soft iron 2 and a closed and immobile conductor C, crossed by a uniform and constant current of intensity J. Let's suppose that the magnetization of the piece of soft iron undergoes a certain variation and let's express that the system gives off a quantity of heat c/Q given by the equality

The first member has the value

E8U.

Let us neglect, as we have agreed to do, the quantum; let us notice that the uniformity of the current

0

T

tity 'V q o

requires that we have, in every respect,

<9T

hq = o, and also

8W

o;

4

let us name tü), 0 2 the magnetic potential functions of the
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bodies 1 and 2; we will have [Chap. IV, equality (16)]

On the other hand, the circuit is the seat of two electromotive forces:

i° A hydroelectric electromotive force e, whose value is such that

e J dt = - E o(ï - T2);

2° An electromagnetic induction force : this one has a value e' such that

e'J dt

$

4

| J 3ÎL dvf A

OS

If A, B, C are the components of the direction of the current at a point of the element dv, this last equality can

[Chap. 111, equality ( 5 )],

to be written

e'J dt

%

f.

||-jY(Ao*i,2

B o)!

02

G o 3 2 ) dv-i

On the other hand, if t? designates the magnetic potential function of any sheet equivalent from the point of view of VElectrodynamics to our closed current, or, in other words, the potential function of our current, we will have [Book XIV, Chap. XI, equalities (/,)],

X . . &ç

-j= AJ =

V 2

ùx

II

s

K ^

dV

at


	GJ dy



\

y/2 toz

We will therefore have

e'J dt
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and, consequently



equality (i) will become

f\


(*>1-4 ü 2 )



of Ç

CA 90

J 1

4 TT 51

F,(i)H- a )J

/

Ü 2 )

^11)2

47t5V c >y 2

F 2 (3IL 2 )_

II

~d('O l +

1

WÎ

CL/

"G

L

O "

4 TT21 ÔZ2

F 2 ( 0IU 2 j_

OaJlyo dv%

01 ) 1)9 dv 2

"N

0

dv

2

O

This equality must have Place whatever the quantities Sjt> 2 , 8 i) 1)2, §©2) which gives

aÇQii+jgi) _ fj/î wl , d(V) i -h l Ot) (H?]

ày% 4^31 ^72J '

d(Üi -M0 2 ) _ ig/â _

ds" 4 ^^ dz 2

■ P- 1

These equations give the laws of magnetization of soft iron by currents.

If we compare them to the equalities (17) of the previous chapter which give the laws of magnetization by magnets, we can easily see that they can be interpreted in the following way:

Let us consider the magnetic sheet which is equivalent, from the point of view of VÉlectrodynamics, to the closed and uniform current that Von considers. Let us multiply the components of the magnetization at each point of this sheet by

_ ijjv/2

4

I
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We will obtain a new magnetic sheet. The current in question will influence the magnetization of a piece of soft iron in the same way as this last sheet.

This statement assumes that a magnetic sheet not meeting the magnet can be passed through the current, but the equalities (3), which this statement translates with this restriction, remain true without restriction. However, it is understood that the current and the magnet have nothing in common.

If the form and the intensity of the current are given, the three partial derivatives of its potential function are given; the problem of the magnetization of a piece of soft iron by currents of given form and given intensity is thus purely and simply reduced to the problem of magnetization by permanent magnets; all the properties demonstrated for the latter can be carried over to this one. In particular, we can state the following proposition:

On a perfectly soft magnetic body placed in the presence of closed and uniform currents of given intensity, the magnetization takes a perfectly determined distribution, and this distribution is stable.

In the case, on the contrary, where the intensity of the currents is susceptible to variation, the magnetization of the 1st soft becomes the object of a new theory. It is to this theory that the following question belongs:

A number of closed conductors are brought into contact with a piece of soft iron. The conductors contain no electromotive force extraneous to the induction. Initially, there is no current flowing through the conductors and the perfectly soft body, by virtue of the equalities ( 3 ), is not magnetized.  Is such a state stable? In other words, can it happen that currents arise in the conductors of a semitransparent body?

remaining immobile?

Let us suppose that at the end of time t , the conductors C ( , C 2 , ..., C" are crossed by currents of intensity J,, J 2 , ..., J w .  What is, at time t, the electromotive force acting in the

I

/
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This force is the sum of two others: one, e l5 is due to

induction é

e; the other, e' v is due to the induction

electrodjnamic We have

d

clt

( P i J

P12J2


	■+■ P m^n)}



p K being the

induction coefficient mu coefficients are independent of time On the other hand, we have

of the circuit C l7 and P u the tual of the circuit Cj and the circuit i. These

1

A A

Lu dt

011 dv

A ds,

C (

A ds being independent of time.

Cl

If Rj is the resistance of the circuit C l5 we have

R t J

1

and

e,.

We will have, therefore, for the whole system,

(RiJ?

R 2 J| -+

dt

0

( 4 )

1

/?! J 1

A C 4 k J

2

2


	i



Pn H" 2

P1 - 1

r ij 0 i^j

OÏL dv

^Ji J A ds

J

A ds


	■



J

We also have

Ayfldv

LTZ ,y c

( Jl f

ds

J

A ds

c.

4

t/2 r

*51 I

C/V£>

1)1

Wt _

dx

~dx

àVi _

1 Garlic

at

dy


  
    Unknown 
    
  




  





















?i

&Ç 2

H ^

dz

dz

'Çïj, ^2, ..., W designating the equivalent functions, from the point of view of the Elec

C,, G 2 j .. -, C/ï*

c

A ds

Cn

J/i
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à 9 "

dx

dy

Wn

dz

?

of the sheets

to the currents
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We will have, according to the equations ( 3 ),

"

jE} s/l /d'Qx dVi d-Ç n _àXD X_

JHE1F àx ) dx ^ F (OÏL)'

i? \/l (à t?! _ àV "È.

d y ) faith \,ÿ

§s/l ( <Wi ,  2 , à-Qn \ _ G '

4 tt 5 V V dz + dz ~ r '"~ >r Oz J~ dz F( 31 l.')

We will therefore have

Let us denote by g the magnetic potential of the soft iron piece. We have

and, therefore,

Each of the terms of the second member is negative, while the first member is necessarily positive. It can be seen that this equality (5) is impossible; no uniform current can flow through the conductors, and magnetic bodies do not magnetize.

CH AP. VII.

PROBLEM OF G. KIRCIIIIOFF.

jOI

CHAPTER VII.

DETERMINATION OF THE MAGNETIZATION COEFFICIENTS.

METHOD OF G. KIRCHHOFF.

§ 1 - Electrodynamic field of an annular coil.

G. Kirchhoff (*) has treated in detail a problem in which both the theory of magnetization by currents and the laws of induction by variation of magnetization are used; we shall study this problem here, which has, in addition, the interest of providing one of the best methods for the experimental determination of the magnetization coefficient of a piece of soft iron.

Through an axis ZZ' [Jîg . 63 ) let us pass a plane; in this plane,

Fiç. 63.

let's draw a curve L not meeting the axis and surrounding a

(*) G. Kirchhoff, Zur Théorie des in einem Eisenkôrper inducirten Magnetismus ( Poggendorff's Annalen: Ergânzungsband , t. V; 1870. - Kirchhojf's Abhandlungen } p. 223).

D. - III. 26

1

I

*
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area S. If the plane rotates around the axis ZZ 7 , the curve L, playing the role of meridian, will generate a ring. We will assume that this ring is made of a homogeneous soft iron.

In the primitively considered plane, let us draw a second closed curve L 7 , surrounding the curve L and not meeting

the axis; let S 7 be the area it encloses.

Through the axis ZZ 7 let us pass n' planes, each one of which forms with those which are close to it the same angle

We will assume the number n' of these planes to be very large, and therefore the angle AO 7 to be very small.

When the mobile plane considered, in its movement, coincides successively with each of these planes, the curve L 7 occupies positions L 7 , L' 2 , . . . , L' t . Let us suppose that each

of these positions materially realized by a conducting wire; we will obtain an annular coil of u[ turns of wire.

We will assume that these turns of wire are all traversed by the same uniform current of intensity J 7 ; the direction in which this current is positively counted will be defined as follows:

We will assume that the angle 0 , which defines the position of any half-plane ZOX 7 passing through ZZ 7 with respect to a certain fixed plane ZOX, is increasing as the line OX 7 rotates around OZ from left to right. We will then take the positive direction of the curve L 7 in such a way that the direction in which the angle 0 increases is the direction in which the turns of the coil

M

are crossed from their negative side to their positive side.

The coil magnetizes the ring of soft 1st that it contains; we

We will propose to determine this magnetization, which will require the determination of the potential function of the coil.

Let V be this potential function; we know that it will only be

, . 

not a uniform function of the coordinates, but that-r- >-r ~>

dx ùy



d

^1 m _


	will be uniform functions of the coordinates; we will



seek to determine these functions.

To the Cartesian coordinates x, y of the projection of a point

1
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XOY

p,8 of the same point. We will have

polar coordinates

(2)

x

y

p cos 6, p sinO.

Instead of determining we will determine

àx ôy àz dp due

dX? àz '

lities

?

the latter quantities being linked to the former by ga

( 3 )

dX?

dX?

cosû

dX?

sin 0

dp

at

at

dX?

/d<?

sin6 -

dX?

due "

= - P

\ tox

at

dX?

dX?

at

at

m

cosû

Let us consider the turn of the wire; let dS' be an element of the area it covers; let N' be the normal to the positive face of this area, the turn of the wire L' will have, at a point (p, 0 , z ), an eleclrodynamic potential function which has the value

Ui

51

✓

LJ'

2

S

d r

toN[

dS\,

r being the distance from a point of the element dS[ to the point (p, 8, s).  Let (p', 8', z) be a point of the element dS. We will have

pi d§.

If we notice that 8^ has the same value for all points of the surface S' x , we can write

or, by putting

( 4 )

|

l
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dUi _ 31 T>

~~ y/â ^P '

dU t 51 , d^Vj

dO " /â d0', ' dU, SI 1t d 2 Yi


	

	J - *







dz toz d0i

In fact, we have

y - U i "H U 2 h- - - - ■+■ u n

and, therefore,

( fiÇ _ 51 / d 2 V t d "V a , <? 2 V"\

I dp " fi J \ dp d0' t " + " dp d0' 2 r " ' dp dV n ) '

] dt? 51,,/^Vi d 2 V 2 , üVn_\

(5) j 36 - 71 v^o^i ^odo; de^y'

f <*?-_ 51 r/üXl , <>"v a , , ^v"\

^ _ y/ï \d 2 d 0 i d^d0 2 * _r " àz dft' n J

If we take the curve U in any position defined by the angle 9 ', and if, for this curve, we form the function V defined by the equality (4), this function will coincide successively with V,, Vo, . . ., Y n when the curve \J will come to occupy the positions L j, L 2 ) - - i f/j-

According to equality (i), the first of the equalities ( 5 ) can be written

dt? 31 /i'J'/ t) 2 Vi ^ 2 Va a ' 2V,t ^ AQ'

dp ~ \fx ' 27r [àpW dp d0' 2 ' dpdO^/

If the angle A 9 ' is very small, this equality can be transformed into the first of the equalities

the other two are demonstrated in a similar way.

According to equality ( 4 ), the function V is the potential function
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ordinary surface layer distributed over the surface S; and

having for densitc in each point Ja quantity The derivatives

of this potential function can undergo a discontinuity if the point (o, 9, z) crosses the surface S', or, which amounts to the same thing, if the surface S r , while moving, is crossed by the point (p, 9, z). This remark is fundamental for the transformation that we are going to make to the equalities (6).

Before doing this transformation, we will distinguish the case where the point (p, 9, s) is outside the annular coil from the case where it is inside this coil.

i° The point (p, 9, z) is outside the annular coil.  When 9 ! varies from o to aie, the curve L' describes the annular coil; the point (p, 9, s) does not hit the surface S' at any time;

i i / - t üV dW dV ■ . i) - i * i

the derivatives -r- " -r- vary continuously with the po op 00 oz 1

sition of the curve S', and the equalities (6) give

A tightly wound ring coil has no effect on the points outside it.

2 ° The point (p, 9, z) is inside the annular coil.  In this case, when 9 r varies from o to 2 tt, the surface meets the point (p, 9 , z) and is crossed by it from the positive face to the face

negative.

A little before this meeting, the point (p, 9, z ) is located on the positive side of the surface S ; moreover, an increase c?9 of the angle 9 increases by p û? 9 its normal distance to the surface S ; . We have thus

dV _ dV

~ ? ôn'

N being the normal to the positive face of the surface S.

A little after the meeting, the point (p, 9, z ) is located on the negative side of the surface S r ; moreover, an increase ^9 of the angle 9 decreases by p o?9 its normal distance to the surface S . We have thus

âV _ dV àd ~ ~~ P àN J ' '
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N' being the normal to the negative face of the surface S'. When 9' increases from o to an, there is a moment when -ttt undergoes 1 sudden increase

"JO

(dY

p A

dY

dN'

The function V is the ordinary potential function of a surface distribution spread over the surface S'. If we denote by rr the density of this distribution, we have

dY

eN

dV

dN'

\ 7T0'

Here,

that

-, or, which amounts to the same thing, <7 = - - The variation brus P

. dY ,

at an instant between the instant when 9' starts from

o and the instant when 9' takes the value 2 tc has thus for value 4^. We

dY dY

would easily see that - and -r- do not

\

Equalities (6) then give

undergo no discontinuity.

( 8 )

\

àç

dp

dO

&ç

ôz

o,

a

✓

o.n' J

'2

O.

Inside a coil with tight turns, the electrodynamic action is, at each point, normal to the meridian plane of this point; it is directed in such a way as to form with the z-axis a negative rotation torque (using the conventions adopted for the direction of the current); its magnitude is

% an'}'

( 9 )

F

✓

P

p being the distance of the point from the axis.

Consider a circle with 7JZJ as its axis and passing through the point Let A be the very small arc of this circle between

the planes of two successive turns of the coil. We will have
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so that the equality ( 9 ) can be written

This new expression of the force F is made interesting by the following consequence:

Let us imagine that the distance from the axis ZZ' to the coil increases more and more, without the surface S' changing, nor A. In the end, we will have an unlimited cylindrical coil, of which S' will be the section and whose planar turns, very close together, will be at a distance A from each other. We can see that inside such a coil, the electrodynamic field is uniform, directed like the generators of the coil, and having an intensity defined by the equality ( 10 ).

This conclusion, exact for an unlimited coil, is true approximately for a very limited cylindrical coil

_ g £ 0

long, provided that we do not consider points too close to the ends. We have made use of this result in Chapter V.

s 2 . - Magnetization of the soft iron core.

Let's now look for the magnetization taken by the soft iron ring which is placed in 1 ame of the ring coil.

According to the equalities (3) of the previous chapter, the components X, 0 of the magnetization are given by the relations

I

1

X> -


	F (OÏL)



l)b -


	F (OÏL)



0 =


	F (01b)



dXD

45 sl'i

dx

4 TC JSC

dx J

d-O

àO\

at

ày J

dXD

W),

4 tc J2V

à*)

F( 01 o) being the magnetizing function and Ü the magnetic potential function of the ring.

Let us consider the tangent to the parallel which passes through the point (p, 9, z ) of the magnet, this tangent being led in the direction in which 9 is increasing; let us also consider the radius of this parallel

which goes from the center to the point (p, 9, z). Let 5 be the compo

4 o8
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health, along the first line, of the magnetization at the point (p, 9,-s); or the component of the magnetization along the second line.  Instead of determining, at each point of the magnet, the quantities X, iJi>, G, we can determine the quantities <SR., S, 0. We will obviously have

Æ

( X = Jl cosf) - S sin 0,

( J2 ) '

( o)l) = $1 sinO -+- G cosO.

These equalities, compared to equalities (ii), equalities (3), and equalities analogous to (3) that can be written for the function Ü,

give

We know that these equations cannot be verified in more than one way. But we will show that they are verified if we pose

so that we will be sure to have thus obtained the magnetization of our soft iron ring.

Let us assume, in fact, that the magnetization is given by the equations (i 4 )* Let us consider a cl element S' of the curve S 1 . This element, rotating around the axis ZZ', generates an infinitely loose torus. If the magnetization is given by the equalities (i4)j this torus is a closed magnetic solenoid whose magnetic potential function
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is equal to o at any point; the same is true of the magnetic potential function of the soft iron ring, which is the sum of the magnetic potential functions of these elementary cores.  Thus, if the magnetization is given by the equalities ( 1 4 ) 7 we have

Ü = o,

and the equalities (i3) are verified. The equalities (i4) thus show us the very simple laws according to which the soft iron torus is magnetized. The magnetization is, at each point, tangent to the parallel which passes through this point; it is inversely proportional to the distance of this point from the V axis.

§ 3 . - Induction produced in an external coil.

The soft iron core and the coil B' we have just studied are both placed in the core of a second annular coil B"; this second annular coil is formed of n" equidistant turns; each of these turns is formed by a plane line L" surrounding an area S".

This coil is connected to a ballistic galvanometer; R is the total resistance of the circuit.

w

Let us examine the following induction phenomenon:

At the beginning of the experiment, a current of intensity J flows through the first coil B' ; the soft iron is magnetized ; no current flows through the second coil B v .

The first reel is opened; after a very short time,

no current flows through this coil B' or the second coil BG The soft iron is demagnetized.

Between these two times, the coil B" has been traversed by an induction current which has set in motion a quantity of electricity Q. We can calculate this quantity.

At a time when the soft iron has a given magnetization, let us replace each magnetic element by the small current G to which it is equivalent. Let B be the current system thus defined.

Let P(f), P'(), P"() be the electrodynamic potentials of the systems B, B ; , B^, as they are at 1 instant £, on the circuit B

covered by a current equal to the unit.

At the time t , the electromotive force of induction in the box

4 io

bine B" is

work xv.
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C

dP"(t) dP'(t) %s/idP

~ I ~W ' * * /-W " *

dt

dt

4 7i 21 dt

In time dt, the system B v is crossed by a quantity of electricity dQ which has the value

dO

R

dP"(t) dP'(t) ÿs/idPU)

" T~ ^ ^ f ' * /-w t

dt

dt

4 7r 3V

The quantity Q that we want to calculate has therefore the value

Q

i

R

P"(M

P'(*i)

P" ( to )

P'(fo)

4? \A $ y/â

4 TC 5V

P(<l)

P(*o)

At the beginning of the experiment, the coil B /; is only crossed by at least

no current. We have therefore

P "(t 0 )

O.

At the end of the experiment, the coils B', B f/ are not crossed by any current; it is the same of the system B, since the magnet is demagnetized. We thus have

P 'Ui)

o

?

P'Oi)

O

î

P ( h )

o

and, consequently

J

(J 5 )

O

i

R

L4

§ \A ". .

P(M

1 K -A

P'("o)

Let's determine P(if 0 ) and P^C)*.

Let be the potential function of the coil B 7/ traversed by a current equal to the unit; by reproducing the demonstration which gave the equalities ( 8 ), we will find that we have, in any point inside the coil B",

(iG)

I

WP

dp

di®

from

at

o

J

21

tt

-='in ,

v/a

o.

Consider the small circuit C equivalent to a magnetic element 011 / dv of the magnet. Let w be its area, n the normal to its face

'
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positive and j the intensity of the current flowing through it at time t. The electrodynamic potential of this small current on the coil B" through which a current equal to unity flows will be, at time t ,

P(t)

21 drg).

s/Z dnJL °

î

%

or, as - / w is precisely equal to OÏL dv, that the nor

m


/



ale n coincides with the di

n of the magnetization,

So we have

p(t) = \ dx

" 0#


	it!)



dy

. P(<)= J v ' U dx

H * ^

dy

dW

dz

dv.

dz

?

the integration extending to the whole magnet.

At the moment the magnetization is given by the formulas (i4).  It is easy to see that

X - -h 1)1) -

dx

°y

dz

i

.0 5 ~âb

We can also write

dv

p dS dfà.

So we have

2 TT

PO.)

0

(r } s 00

dS d§.

If we make use of the equalities (i4) ( 16 ) if we perform the in¬

The following table shows the relationship between the two groups

(17)

P(M

s/Z $%n'ri'}' Q

s

F ( QIL )

' P

with

( 18 )

OÏL

% n'V

21Z P

F (OÏL)

Let's calculate

The electrodynamic potential of one of the turns of the TV coil, i.e. turn L, on the coil will be

Pi('to)

21

75

s

difp

y dS'
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So we have

d\V

1 (

tJN

P

realities (16')

).

d^>

21

dN ~

1/2

"'( 0 )=Sl

n" J

£>0

tf

P

dS'

S' p

The quantities p' 2 {t 0 ), - - -, p'n{to) have the same value. Their

sum has therefore the value

( T 9)

P'Oo)

%*-n'n "y

dS'

s' p

Let's put in the equality (10) the results of the equalities (17)

and (19), and we have

n'n" J'

K

(20)

Q = 2l 2

dS'

s' p

§ /g

4 T.%

S

4 TT F ( OÏL ) dS

P

3TL being defined by the equality (18).

This formula (20) takes a simpler form if we assume that the coil B' is exactly applied to the soft iron ring. The two surfaces S and S' are then identical and we have

n'n" ï

R

( 21 )

Q

51 *

1

s

4 it

45 /

-\ 2 2

F(3TL)

dS

j p

In the limits where the magnetizing function F(3TL) can be replaced by a constant magnetization coefficient k, this equality becomes

n'n" y

R

( 22 )

Q

5 i 2

4 ' 4iï3l '

S' p

We will soon see (Chap. XII) that

4 ) fl

4 U 21 =

The previous equality will then become

1.

Q

^ n'n" 2l 2 - - (1

47t/c) C

dS s p

(23)
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The compass of tangents, used as a ballistic galvanometer, makes it possible, as we shall soon see, to determine We thus obtain a means of determining experimentally (i H- 4 Ttk).

If we want to take into account the variation of the magnetizing function with the magnetization, we can, by virtue of equality (18), write the equality (ai)

X being the function, related to F (OR*), which is used to reduce to a problem of partial differential equations the problem of magnetization by influence (see Book IX, Chap. II).

If the soft iron ring is a ring with a very small section and a very large radius, p will have approximately the same value /* for all the points of this ring, and the previous equality

will become

%

or, by making

y/y

4tt31

This formula allows, by a series of experiments carried out with different values of the intensity F, to determine the function X and, therefore, the magnetizing function F (OÏL).
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CHAPTER VIII.

*

ELECTROMAGNETIC FORCES BETWEEN MAGNETS AND CURRENTS

UNIFORMS.

§ 1 Fundamental law of electromagnetic forces.

Let's consider a system that, to simplify the writings, we will suppose formed by a single magnetic element dv and a single closed conductor O crossed by a current of intensity J.

This system is subject to the action of certain external forces.

Let us suppose that it undergoes a certain displacement during which the magnetization of the magnetic element and the intensity of the current both remain invariable. During this displacement, the external forces do work d(B e ', the living force of the

system increases by î I he system releases a quantity of

heat <a?Q, and we have

E ~ = - E SU d& e .

On the other hand, if d(ôi denotes the work of the internal forces, we have

Finally, under the present conditions, Joule's law is applicable to the system, and we have

So we finally have
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Let's calculate the quantities that appear in the second

member of this equality.

Ch

we denote by p

the self-induction coefficient of the circuit, we have

(a)

ESU

ESr

oW

ï\

O

0

TiË'u

dT )

J 2 dp

dt

dl.

The currents being uniform, we have, at any point, ùq = o. We have agreed to neglect 8(0 -

We have therefore

/

o

0

rr

t 5 t'?

O.

Given any quantity A, we will denote by SA the total Variation of this quantity; by AA the part of this variation which depends only on the change of form and position of the system; by DA the part of this variation which depends only on the change of state; so that we will have, in general,

SA

AA

DA.

The currents being uniform, we will have

DW

o

7

SW

AW,

so that equality (2) becomes

( 3 )

E d\J

EoV

J 2 dp 2 dt

dt.

Let e be the hydroelectric electromotive force acting in the

circuit; we will have

ei dt

ED(r

T S).

Let é be the electromotive force of induction; we have

e J dl

dt

® OÏL dv J dt ,, / A ds

4 TZ

dt

We will therefore have

£

T 1J dt

Ci)

OT

e

f

T % U dl

01

E Dl

J 2

dp

dt

dt

± 4 rc

OÏL dv S dt I A ds
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The equalities ( 3 ) and ( 4 ), carried over into equality (i),

the following equality:

( 5 )

cUZi

E AV

AW

J 2 dp dt

dt

4 TC

^ OÏL dv J dt / A ds

dt

Let us interpret this equality ( 5 ) :

E AT represents the work of the internal forces acting in the system in the neutral state:

O 7

AW represents the work of the electrostatic forces given by Coulomb's law;

\ re P r ® sente I e work of electrodjnamic actions ;

Equality ( 5 ) shows us that, in a system formed by a magnetic element and a closed and uniform current, in order to have the complete system of internal forces, it is necessary to add to the forces already known by the other parts of Physics forces whose elementary work has the expression

0 IL dv J dt

This result was obtained by considering only one magnetic element and one closed and uniform current. An analogous reasoning could have been applied to a system formed by any number of magnets and any number of closed and uniform currents, and the following result would have been obtained without difficulty:

In a system formed by magnets and closed and uniform currents, in addition to the forces known by the other parts of Physics, electromagnetic forces are exerted whose elementary work, in any displacement of the system, has the expression

(6) dZ = - A g OÏL dv J o J A ds.

the sign v indicating a summation that

à

combinations that Von can form by taking a magnetic and a closed current .
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We can still say that these fo for potential quantity

(7)

i 5

/

Jj TT

0)1 dv J / A ds

î

provided that only those terms are taken into account in the variation of this quantity which do not depend on the changes in the intensity of the currents, nor on the change in the size of Vaimantation, nor on its changes in orientation by

is related to the axes invariably linked to U magnetic element.

Let us return to 1 expression, given by equality (16) of Chapter IV,

of 1 internal energy of a system containing magnets and closed and uniform currents

EU

Er

w

-y

0

\

dQ

T 5 t)?

( 8 )

J ,#(311, T) - T | di>

*î V (i= 2 . jéud \ 2 F

1

cosO COS0'

I

X

2 7

cos oj ) J J' ds ds r .

but

We observe that, among the terms that form the second member, the electrostatic potential and the magnetic potential appear with their sign; the electrodynamic potential appears,


	As for the electromagnetic potential, it is not among these terms.



This paradoxical result is explained like the paradoxes of the same kind, which were studied in Book XIV, Chapter IV. It should therefore not surprise us. It should only serve to remind us of the precautions that must always be taken when applying Thermodynamics to systems containing electric currents. It shows, with evidence, how dangerous simple reasoning by analogy would be in such cases.

case.

§ 2 .

Relationship between electromagnetic forces and induction

ele ctromagnetic

The law of electromagnetic forces presents, with the law of electromagnetic induction, relations similar to those that

D.

111 .

27

4i8
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the law of electrodynamic forces with the law of electrodynamic induction, relations that have been studied in

Book XIV, Chapter VL

Let's consider a system formed by a magnet and a single closed circuit. Let's assume that the magnet is invariable in shape, position and magnetization; the armature circuit, on the contrary, is deformable and mobile.

The magnet will generate an electromotive force of electromagnetic induction which will have the value

C

A. Q

4 x

4

DU. dv

d_

dt

A ds.

Let R be the resistance of the circuit. If the electromotive force in question were acting alone, it would generate a current having

for intensity

J

§

d

4

s S 3 -'*'s ' 4 *

On this current, the magnet would exert certain electromagnetic forces whose work, in the considered displacement of the armature, would have the value

A. j dt Q DU dv -, 4 tt kj dt

A ds,

or, by replacing S by its value,

d(s

W

I 6 TT 2 H

K S DXi dv dif^ dS ) dt '

This work is certainly negative.

This result can be stated as follows:

If we deform and move a conductor fern

A

fo

A

considered, it would give rise to a certain current.  In the considered displacement, the actions of Vannant on this current would perform a negative work. In other words, they would hinder the displacement. This is the extension of Lenz's law to electromagnetic induction.
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Equality

c =rS ■''*"/ A *

I

can be stated as follows:

% 9

To calculate the electromotive force that a magnet invariant in shape, position and magnetization induces in a closed moving conductor, suppose that this conductor is traversed by a current of intensity equal to unity; calculate the work produced, during an elementary displacement of the conductor, by the actions of the magnet on this current; divide it by the duration of the elementary displacement, and change the sign of the quotient . This is the extension of Neumann's law to electromagnetic induction.

§ 3 - Relationship between electromagnetic forces and the forces of

electrodynamics.

The electromagnetic forces between magnets and closed and uniform currents have the following potential

-- ^ Oïl dv J Ç A ds.

From this we immediately deduce a consequence that singularly shortens the study of electromagnetic actions.

Let us surround the magnetic axis of the element dv of a small circuit, of area Q ; , through which a current JP flows in the positive direction with respect to this magnetic axis, such that we have

J'Q'= OÏL dv.

V*

This will be the elementary current equivalent, from the point of view of electrodynamics, to the magnetic element Oïl dv.

The electrodynamic potential of this small current and the current

closed considered has the value


	J'Q 1 J f = - OÏL dv3 f b. ds.



a J fi d

*
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If we compare this expression with expression (7), we can easily arrive at the following proposition:

To obtain the geometric quantities that represent the mutual actions of a closed current and a magnetic element, it is sufficient to multiply by

\J%%

4tt51

the geometrical quantities that represent the mutual actions of the considered closed current and the current equivalent, from the point of view of VÉlectrody namique, to the magnetic element.

This proposal reduces all problems related to electromagnetic actions to problems related to electrodynamic actions, and therefore provides the solution of the former when the latter are solved.

§ 4 - Remarks on the generality of the laws of Electromagnetism.

In order to establish, in Chapter VI, the laws of magnetization by currents, we assumed that the magnets and conductors were held immobile; in order to study, in the present chapter, the laws of electromagnetic forces, we assumed that the magnets were endowed with an invariable magnetism and that the currents were of constant intensity. This method of demonstration raises a doubt in the mind which it is important to clarify: would not the laws of magnetization by currents be different in a system animated by motion than in a stationary system? Wouldn't the electromagnetic actions exerted between a magnet whose magnetization varies and a current whose intensity changes be different from the electromagnetic actions exerted between a permanent magnet and an invariable current?

We will show that this doubt is unfounded; that the restrictions brought to our demonstrations were intended to facilitate the calculations, but that the results obtained are independent of these restrictions.

Consider a system containing currents, magnets
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permanent 1, perfectly smooth bodies 2. The internal energy

of this system is given by the equality (8). The amount of heat

released by this system during the time dt is given by the equality

E "fQ

E 8U d& e - 8 ' ' mv

2

or, by neglecting, according to the established practice

s issues of

of this kind, the term

0

T

à&

df I'

( 9 )

j E<fQ =T

E<SV

8\V

3 L 2

8

i

X

-cosO cosO'-t ir .

X

a r

to i JJ 'ds ds

,T)

T

âtf(dlL,T)

dr

dv

8

viv

Secondly, since magnetization varies only on perfectly soft bodies, we must have

( 10 )

E c?Q

(*

c

T ^ 1J tf/-+-T8

d I

d#(OÏL,T)

dT

dv

Moreover, the laws of electromagnetic induction give

C

EDV

5 l 2

D

(ii)

21 1

20

X

cos 6 cosO'

i

2 r

2 r


	cos to \ JJ 'ds ds'



X

cosQ cos 0

t

2 T

T -K X

-cosco ,

2 V }

\ JJ 'ds ds

4 j n _ . /*. , $

4 TC

0)L dv J ô / A ds

AC

4 TC lij

8 OÏL J

A "fs

Finally we have

(12)

d&i - 8 2|

mu

= O.

The equalities (y), (io), (n), (12) give

/

E ai

AW

3 t 2

8

1

X


	cosô cosô -+



X

cosü) 1 U'ds ds'

a r

2 r

03 )

4

I

1

011 <fuJo jkds - D ?/

"j^fOlL, T_) gjn

$

4


	C 8011



Tt LJ

dv J

A ds

o.

1
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This identity must take place whatever the modification undergone by the system during the time dt. Now, the terms of the first two lines depend only on the variations of the parameters which fix the geometrical situation of the various parts of the system and the terms of the last line depend only on the variations of the other parameters. The identity (i 3 ) is therefore split into two others which are

EAY

AW+ A^*

iV 2

(i 4 )

A

2 r.

X

cosO cosô'

X

cos eu I JJ'ds ds'

1 r

%

4 TT

OÏL dv J û / A ds -h dQi = o

î

(i5)

^11 WR, * + *

aJlt 4u

Qsoil

dç J I A c/s

o.

Equality (i 4 ) gives back the laws of electrodynamic and electromagnetic forces as we found them in the above, and the identity (i 5 ) gives back the laws of magnetization by currents as we established them in Chapter VI.

CHAP. IX. - DYNAMO-ELECTRIC MACHINES. 4?.3

CHAPTER IX.

FUNDAMENTAL PROPERTIES OF ELECTRIC DYNAMO MACHINES.

It is not the purpose of this book to deal with the

L /

machines based on the laws of electrodynamics and electromagnetism. The description of these machines and of the various particularities of their operation is a matter for the engineer.  The phenomena of which the dynamo-electric or magneto-electric machines are the seat are in general too complicated to be able to give rise to a rigorous theory; one must be satisfied, to study them, with semi-theoretical and semi empirical formulas.

However, the operation of these machines, whatever their particular disposition, is subject to certain general and simple laws, and it is to the establishment of these laws that the present Chapter will be devoted. These laws result immediately from the

principles established in the previous chapters.

We will give the name of dynamo-electric system to a system formed by pieces of soft iron and firm conductors susceptible to be traversed by uniform currents.

We will call a system formed by permanent magnets and firm conductors through which uniform currents can flow a magneto-electric system.

Finally, a mixed system will be a system containing both

soft irons and permanent magnets.

For such systems, we can write an equality that leads to

to important consequences.

During the time dt, the amount of heat d^ released by the system must be given by the equality (io) of the previous chapter,

ip. r""oi " , B v 1 f; : . ' '.■ .3 i ' ■ V - .. .. - , *

4 24
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and also by the equality ( 9 ) of the same Chapter. Let's put

(0

n

2 (~

X

cost) cos6'

X

COS (0 ) J i r ds ds

2r

These equalities will give me

Let us first assume that the system does not contain a thermo-electric or hydro-electric cell. The electromotive forces will not depend explicitly on the temperature. Moreover, E oT = - dz, where dz is the work of friction inside the system. Moreover, if R is the resistance of the wire segment where the electromotive force C acts, we will have

C - RJ.

The equality ( 2 ) will become, in this case,

This equality (3) will allow us to demonstrate some interesting propositions.

Let's imagine a system formed only by soft irons and conductors. At time t 0 , we suppose that the soft irons are demagnetized, the conductors are not moving, and the system is in a neutral and immobile state. Can it happen that at time t { the conductors are flowing with currents, the soft irons are magnetized, the system is electrified and moving?

To answer this question, let us integrate the two members of equality (3) between £" and t { , noting that, at time ï 0 , we have

We will have

n-w-
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The first member is essentially positive, unless all currents are equal to o, and all conductors are stationary.

If all currents are not equal to o, it is certainly negative.

A

If all conductors are not in the neutral state, W is certainly positive.

If not all sweet irons are unloved,

is certainly positive.

So there are only two ways to satisfy the above equation:

Or all the bodies of the system remain at rest, deprived of currents, electric charges, magnetization.

Or J dJh e is positive.

Thus, if we consider a dynamo-electric system without battery, which is initially immobile, in a neutral state, demagnetized and deprived of currents, it will persist indefinitely in this state, unless we set it in motion by applying external forces capable of producing positive work.

A dynamo-electric machine does not start by itself, but only by the action of a foreign motor.

Let us now design a dynamo-electric, magneto-electric or mixed machine, in motion and started at time t Q , and integrate the two members of equality (3) between time t 0 and a later time t. We will have

The quantity
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cannot exceed the positive quantity

Oïl;T)dv- n

It is therefore a quantity that admits an upper limit.

Let's assume that from time t 0 the motor has stopped

to provide work to the system, we will then have J d& e = o. We see

'0

so that, whatever 1 ,, the quantity

cannot exceed a certain limit, which requires that all intensities J tend towards o when t K increases beyond any limit and that the living force of the system also tends towards o. Thus, a dynamo-electric, or magneto-electric, or mixed machine, being primed, if we stop supplying it with positive external work, it will de-prime.

p

Let us imagine a dynamo-electric, magneto-electric or mixed system, which serves as an intermediary between a motor supplying, in time dt, an external work d^3 and a machine tool using a work d^3'; let us designate by dzf the work absorbed by the friction against the bodies outside the system.

We will have

d& e ^ d5 - (B 1 - d%".

and equality (3), integrated between t 0 and £, will give

4

If the machine does not defuse, the first term of the second member grows beyond any limit with t K and the second always remains above a certain limit. The first member must therefore grow beyond any limit with t K . If the transmission, instead of being electrical, were established by mechanical means, this first member would be identically zero. There is a considerable difference between electrical and mechanical transmissions.
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Let us imagine a dynamo-electric, or magneto-electric, or mixed system, which periodically returns to the same state with the same living force. We can ask ourselves a priori if, during the duration of a period, such a system will set in motion, by induction, a quantity of electricity different from o; if the electrodynamic or electromagnetic forces will perform a work different from o. It is easy to see that this can be so, because the quantity of electricity put in motion, in each conductive element, during an infinitely small time; the work done by the electrodynamic or electromagnetic forces, during an infinitely small time, are deduced from the differentiation of uniform and continuous functions of the state of the system, but they are not the total differentials of it. In fact, by studying the in¬

duction uni

we have only seen an ironing system

periodically by the same shape could put in motion, during a period, a quantity of electricity different from o. In Chapter XI, the study of electromagnetic rotations will put the

even

in evidence for the forces

mamics or

electromagnetic.

Let us therefore consider a system which, at the end of each period of time 9, returns to the same state with the same living force. If the system consists of a dynamo-electric machine similar to those used in industry, the period 9 will be the duration of one revolution of the coil; if it contains two similar machines rotating with different angular speeds, we can suppose that these two speeds are commensurable and take for 9 a common multiple of the durations of revolution in each of the two coils.

In equality (5), let us

t

1

t

0

0

We will then have

W

0(i>lL f T)rfp

n

mv

2

y=o,

J<0

and 1

'é

(5) will become

t

dà

dt

from to

dt

dx

dt

n

dt

dt

2 r

Wdt.

j '28
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The quantity

0

foH-0

6

dt

is the average value of motor work per unit of time

The quantity

0 '

d%'

dt

dt

O

is the average value of work transmitted per unit of time

The quantity

0 "

t

e

rf3r" . d-z ,

--- says ~T" - dt

dt dt

0

is the average value of the work done by the resistors not¬

sives.

With these notations, we can write

(")

@ - 0 ' 0 "

i 2 /

1 f)

RJ *dt

When a dynamo-electric, or magneto-electric, or mixed system, used to transmit the work of a motor to a machine tool, is in regular operation, the amount of work it borrows from the motor is greater than the amount of work it uses to operate the tool and overcome passive resistances. These quantities of work are equal, if the transmission is carried out by mechanical means.

The output of the machine is the amount of

P

0

According to equality (6), we have

0

If

I

-'1 o

RJ 2 dl

0

When the transmission is done by mechanical means,

we have

P

i

0 "

"

0

The efficiency of a mechanical transmission tends towards i when
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same

the friction becomes infinitely low. In the

Under these conditions, the efficiency of an electrical transmission tends to the limit, below unity,

1

iU

/ o -h 0

RJ 2 dt

0

An electrical transmission is therefore comparable, from the point of view of efficiency, to a mechanical transmission in which friction would absorb on average, during the unit of time, a work

e"

1

,11

f 0 -nO

RJ-c// 1 .

An electric transmission would therefore be less advantageous than a mechanical transmission, if the friction of both transmissions absorbed on the average the same work per unit time. But it may be that, by substituting an ■electric transmission for a mechanical one, the work 0" absorbed by friction during the unit of time is decreased by one

amount greater than

m.

RJ 2 ^.

The substitution of the first transmission for the second will then be

advantage use.

The quantity

2 /

l o

0

RJ *dt

had a

simple meaning. We have seen, in fact, that 1 on

RJ 2 dt

G- T Sï IJrf(

Moreover, the amount of heat released by the system in time dt has the value

dQ

É 2

r

O


J dt



î 'f --!%**

If we observe that the quantity f - - - - dv resumes at 1 in
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At the time (/" -b B) the same value as at the time £ 0 , we see that the quantity of heat Q released by the system during the period 9 will be given by the equality

Let us now consider a system containing hydroelectric electromotive forces. If Tj is one of these forces, the first member of equality (i) will have the value

We will have moreover


	EST = 2 ( 7 >- t 5t) 5dt Equality (3) will therefore be replaced by the following



If the batteries in the system are arranged in such a way that cjue ^ r, J dt is positive, it will be seen that the system will not only be able to prime itself, but even prime itself by

performing a certain job.

By applying the previous equality to a system that periodically reverts to the same electrodynamic and magnetic state

tic, we find

In this case, it is no longer necessary to provide the system with more work than it can do. On the contrary, it can do more work than it is given. The work thus rendered is always less than

J /.-t-0

7) J dt,

i.e. the uncompensated work generated by the reactions
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chemical which the batteries are the seat during the time 8 . It cannot reach this limit without the machine defusing.

It is easy to see that the amount of heat Q generated in the system during the time t is given by the equality

RJ 2 dt

which can still be written

This last expression shows that the amount of heat released in the system during a certain time is the sum of the amount of heat that would be released by the chemical reaction produced in the batteries during the same time and

Al

the heat equivalent to the work produced by the external forces .

These two equalities give an account of the experiments made by various authors, and in particular by Favre (*), on the calorific phenomena which occur in a system composed of a battery and an electric motor.

(' ) P.-A. Favre, Recherches sur les courants hydro-électriques (troisième Partie). Relation between the heat expended by a current which produces mechanical work and the heat generated by the chemical action which develops this current (Comptes rendus, t. XLV, p. 56; 1857 ).
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CHAPTER X.

ACTION OF A CLOSED AND UNIFORM CURRENT ON A MAGNET.

§ 1 - Action of a closed and uniform current on a magnet.

Experience of Biot and Savart.

The proposition demonstrated at the end of § 3 of Chapter VIII

immediately provides us with the law of the action exerted by a closed and uniform current on a magnet. If we observe that the pe t V V 1

he plane current equivalent to a magnetic element is comparable to an infinitely short solenoid whose poles coincide with the poles of the same name of the magnetic element, and if we refer to the equalities (i3) (Book XIV, Chap. X), which define the action of a closed and uniform current on a solenoid pole, we arrive without difficulty at the following consequence:

A closed and uniform current cVintensity J acts on a magnet as if each current element ds, placed at the point {x, y, z), exerts on each magnetic mass p., placed at the point (ç, r,, ^), a force having as components

One can, as Biot wanted, suppose this force applied to the point (£, r,, Ç) where the mass p. is located, or, as Ampere wanted, to the point (x, y , z) where the element ds is located, this last point being supposed invariably linked to the magnet.
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This law is generally known as the law of La-

We know that it can still be stated as follows:

A closed and uniform brood acts on a magnet as if each element ds of the current exerts on each magnetic mass p. a force normal to the current element, nor w

male at the junction line of Velement ds and mass [a, directed to the left of Vobserver placed in current Velement and looking at mass jx, and having the magnitude

üj , sin(/*, ds)


	(J-J-- as.



4 TI /' The point çV application of this force can be taken coinciding either with the mass tx, or with Vélément ds.

The developments given in Book XIV, Chapter X, provide us with some consequences of this law, which can be verified experimentally.

i° A horizontal magnetic element, mobile around a vertical axis, subjected to the action of a rectilinear current, indefinite, meeting the axis, will put itself in cross with the current; the southern pole will be on the right of the current if the constant J) is positive, and on the left if the constant il) is negative.

It is known that, in these conditions, a small magnetized needle is placed in a cross with the current, and that its southern pole is placed to the left of the current. This is the famous experiment of OErstedt (' ), made in 1820, the starting point of all the research that has constituted electrodynamics and electromagnetism.  OErstedt's experiment is thus a first experimental verification of the previous laws and, moreover, it establishes this capital fact:

The constant J) is negative.

2 0 Let us imagine an indefinite current, located in a vertical plane, flowing through the two sides MN, NlW (fig> 64) of an angle 2 a;

( 1 ) OErstedt, Expérimenta circa effectum conflictus electnci in acum niagneticum; Hafniae, 1820 ( Collection de Mémoires publies par la Société française de Physique, t. II, p. 1 ).

*
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1

on the extension of the bisector is a southern pole of magnet A; p is the distance AN.

Fig. 64.

The current exerts a horizontal force G on the magnet pole, directed in front of the plane of the current and having the magnitude

§ p J

2 k p

tan g

t

From this result, we can deduce a formula that can be verified experimentally.

The plane of the current (Jig.6 5) is perpendicular to the magnetic meridian uv directed to the left of the stream.

Fig. 65

1 " ^

liîl U,

ï *

s u r

extension of the bisector of the angle

is the

int where a wire

cocoon comes to support a small ai
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previous law. These forces tend to orient BA along pv. The

Earth magnetism exerts a similar action. p.v is therefore the equilibrium position of B A.

Let's move BA away from p.v. by an angle of 9 to the west. A torque will tend to bring BA back along [i.v. Let's calculate the moment of this couple.

The action of the current provides at this moment a term

$ J /. " - A

27T p tan " ^ S1Il0 >

l being the distance between the two poles. The action of terrestrial magnetism provides a term

[ilü sin0,

H being the horizontal component of the terrestrial magnetic force.

If we designate by M the magnetic moment pt./ of the magnet, we see that the torque to be calculated will have the moment

M - - - tangsinB.

\ 27T p ° 2/

After moving the magnet away from its equilibrium position, let it oscillate. Let I be its moment of inertia with respect to the suspension wire. The number n of oscillations per second will have the value

On the same magnet, let us act successively, at different distances, conductors forming different angles, crossed by currents of different intensity.

Let n , n f , n n , ... be the numbers of oscillations found in different experiments. According to the formula ( 2 ), we have

n "2 - n' 2

n ' 2 - n' 2

I have

77 g P

t

J a


	tang P 2



J" cc


	tang 0 2



tf

y *

7 tan s ï

"
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and, in the particular case where the currents have the same intensity,

i a

tansr

!t

X

r

p

i a


tang



2

i a


	tang P 2



f

I CL


	tan^p 2



This relationship is easily verified experimentally.

Biot and Savart ( * ), operating on a rectilinear current, had first verified the equality

i

i

and concluded that the action of a rectilinear current on a magnet pole is in inverse proportion to the distance of the current from the pole. Laplace ( 2 ) showed that this law was consistent with an action inversely proportional to the square of the distance exerted by each current element on a magnet pole.

Later, Biol and Savart ( 3 ), while studying the action of an angular current, believed to deduce from their experiments the relation

i .

n

"2

n

'2

P

n

sin a

a

i * ,

-, sin a

P

n

'2

n

i .

-- sin a

P

i .


	sina



P

But Savary ( 4 ) showed that, in Ampère's ideas, this relationship

(*) Biot and Savart, Memoir on the action of a straight wire on a magnet,

read at the Academy of Sciences on October 3, 1820 and not published (see Biot, Précis élémentaire de Physique, t.-Il, p. 70/J; 18 ^ 3 , and Collection de Mémoires publiés par la Société française de Physique, t. II, p. 80).

(-) Laplace did not publish anything on this subject; we only know of his participation in the discovery of the laws of Electromagnetism through the testimony of Biot.

( 3 ) Biot and Savart, Mémoire sur l'action d'un fil oblique sur un aimant, communicated to the Académie on December 18, 1820 and not published {see Biot, Précis élémentaire de Physique, t. II, p. 704; 1823, and Collection de Mémoires publiés par la Société française de Physique, t. II, p. 80).

( 4 ) F. Savary, Mémoire sur l'application du calcul trodynamiques {Journal de Physique, t. XCVI, p. 1; February de Mémoires publiés par la Société française de Physique . t. II, p. 36 ^).

to elec , - Collection
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The relationship (3), with which the later experiments of Biot and Savart agreed, was to be used instead.

§ ~* - Application. - Compass of tangents.

As an application of the formulas that represent the action of a current on a magnetic element, we will indicate the fundamental principle of the compass of tangents.

A circular frame ( Jig . 66), placed in the plane of the magnetic meridian, is traversed by a current of intensity J. A very

small magnet AB is suspended in the center of this frame by a cocoon wire. Let us assume that the magnet BA is deflected by an angle 8 to the east of the magnetic meridian, which we assume at the same time to be the left of the current. Let us determine the torque which tends to make

grow this angle 9.

If M is the magnetic moment of the magnet and H is the horizontal component of the earth's magnetism, the action of the earth's magnetism provides this couple with a term


	HMsinO.



Each element ds of the current exerts on the mass p, concentrated at pole A, a force normal to the plane of the frame, directed towards

the left and having for value

Here r is approximately equal to the radius R of the frame and sin(r, ds) to
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the unity. All these forces, all the analogous forces acting on the B pole, thus provide the couple with a contingent

MJ 2 R

cosO.

The searched torque has the value

M f H sinO

4) J_ R

cos'oV

and the equilibrium condition of the system is expressed by the equality

y- J

4 TC

RH

2 7C

tangO

If one has been careful to determine, at the place where the observation is made,

*

the value of the horizontal component of the terrestrial magnetism, the reading of the tangent of the deviation will allow to determine the value of the product


	£j. '



4 TT

When used as a ballistic galvanometer, the tangent compass can also be used to determine the amount of electricity carried by an induction current of very short duration.

Let us imagine that at the time t - o, the frame is not traversed by any current and that the needle is at rest along the magnetic meridian. We throw a variable current into the frame which lasts an extremely short time, from t = o to t - x. During this very short time, 9 varies only slightly. The action of the current on the magnet is therefore comparable to a percussion whose moment with respect to the suspension axis is

Q being the quantity of electricity that we want to evaluate. This percussion gives the needle an initial angular velocity w 0 , such that

I being the moment of inertia of the needle with respect to the suspension axis.
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From the time t the needle is only subjected to the action of the terrestrial magnetism, whose moment with respect to the axis of

suspension is

MH sinQ.

The angular velocity will thus change sign, passing byo , at the moment when 9 will take the value 0 defined by the equality

0

I wJî

2 MH

sin 9 c?0

o

These equalities give

( 4 )

A

4 7T

Q

R . 0


	sin -



7T 2

H

M

I,

relationship which allows, as we announced, to determine the

undermine

A

4 71

Q

§ 3.

Action of the Earth on a closed current.

The preceding results were derived immediately, by means of the rule established in Chapter VIII, from the results obtained in the study of the action of closed currents on each other.

Here is another result that we will draw almost without intermediary from those we have already established.

The mutual potential of a magnet and a closed current is

value

r

45

4

OR dv J

A ds.


	d*



Equality (6) of Chapter III allows us to give it the form

V being the potential function of the magnet and due an element d a

area with two sides passing through the current.

If the magnet considered is the T.erre, if the frame is flat, if F is

the earth's magnetic force, this quantity can be written, as we saw in Chapter III, Section 8.2,


	AfûJ cos(F, N).



4tt
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	f r\



This potential is identical to that of the Earth on a magnetized needle having its magnetic axis directed along the positive normal to the frame and for magnetic moment

Under Earth Faction, the normal to the frame will orient itself like this needle, as Ampere discovered.
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CHAPTER XI.

ACTION OF A MAGNET ON A UNIFORM CURRENT ELEMENT.

ELECTROMAGNETIC ROTATIONS.

The action of a magnet on a uniform current element is defined exactly as in Book XIV, Chapter VU, we defined the action of a current on a current element. The actions which a current exerts on a conductor element AB, traversed by a uniform current of intensity J, are such that, in any elementary displacement which brings Vélément to A'B', they perform work equal to the electromagnetic potential of Vaimant on the closed conductor AB B'A'A traversed, in the direction of the letters, by a current of intensity J.

This definition would make it possible to calculate the shares in question.  But we can dispense with this calculation. Let IT be the electromagnetic potential of one of the elements of the magnet on the small circuit considered. Let P be the electrodynamic potential of the current equivalent to the magnetic element on the same circuit. We know

Now II is the work of the actions exerted by the magnetic element on the element AB when this one comes in A^B , P is the work of the actions exerted by the current equivalent to 1 magnetic element on the element AB.

The geometric quantities that represent the piemies tions are thus obtained by multiplying by

_ jpy/a

1\tz%

the geometric quantities that represent the seconds.
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The latter were studied in Book XIV, Chapter XI.  The results contained in this Chapter allow us to state the following proposition:

A magnet acts on a conductor element ds : crossed by a uniform current of intensity J, as if each magnetic mass u. of Vaimant generated a force applied to the middle of Vélément and having for components

x, y, z are the coordinates of a point of the element ds; and 7], Ç, the coordinates of the mass p..

We will consider only one problem related to the actions that a magnet exerts on a segment of conductor through which a uniform current flows: this is the problem of electromagnetic rotations (■ ).

Let's imagine the following device:

Two circular cells, G and G' (Fig. 67), full of mercury, have the same axis and are placed one above the other. A moving wire MM 7 connects them to each other. A magnet AB is arranged along the axis of the instrument.

A current of intensity J arrives in the cuvette G, splits into two branches which join to run through the wire Ml VL; it splits again into two branches in the cuvette G 7 and finally returns to the battery.

Experience shows that, under certain circumstances, the moving wire MM 7 takes on a rotational motion around the axis of the device. Let's calculate the moment of the torque that tends to make it rotate from left to right.

Let us suppose that the lil rotates, in this direction, by an angle MOM 1 = c?a {fig. 68), so as to come to i\L|M,. Let L be the

(*) Electromagnetic vibrations were discovered by Faraday in 1822 (Faraday, Experimental lîesearc/ies in Electricity, t. II, p. 127 .
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moment of the torque that tends to make it turn. The work produced is L da.

Fig. 67

MM

Those

i° The actions exerted by the magnet AB;

2 0 Actions taken by the current including

MM

part

Fig. 68.

The former are proportional to the current intensity J, the latter to the square of this intensity. If the current intensity is low, the second ones can be neglected in comparison with the first ones.

Under these conditions, it follows without difficulty from the definition posed

I
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at the beginning of this Chapter that Lrfa is equal to the electromagnetic potential of the magnet AB on the circuit MM'M , ( M 1 M, crossed, in the direction of the letters, by a current of intensity J. We see, by reason of symmetry, that L will keep the same magnitude during the whole duration of the rotation.

If the wire turns through a finite angle MOm = a, so as to come from MM' to mm! (fig. 69), it will be easy to see that the work produced

Fig. 6g.

La is equal to the electromagnetic p^ ntiel of the magnet on the circuit MM'm'mM traversed, in the direction of the letters, by a current of intensity J.

Let us suppose, in particular, that the wire has completed a whole revolution (fig. 70). The work produced has then the value of 2 tcL.

11 is always equal to the potential of the magnet on the circuit

MM'G'm'mGM.

But MM', mm' coincide here and are traversed by the
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Equal shades and opposite directions. The potential in question is therefore reduced to the sum of the potential of the magnet on the contour G traversed from right to left by a current of intensity J, and on the contour G; traversed from left to right by the same current.

Let ds and ds be two elements of the circuits G and G^ traversed from left to right. We will have

Let us assume, in particular, that the magnet is a very fine needle, comparable to a magnetic solenoid. If p. is the mass

that we can imagine at the southern end A of this solenoid, we will have

011 dv = [j. dl

and

Let f{x,y> z) be the non-uniform functions that

represent the angle under which, from a given point, we see the positive side of surfaces passing through the contours G and G'. The previous equality will become

We will assume that the southern pole of the solenoid is pointing upwards. If it were otherwise, the effects we are about to describe would be reversed. Then, as in the study of Unipolar Induction (Book XIII, Chap. IX), to which we will refer for the details of the calculations, we will distinguish three cases:

i° The magnetic solenoid does not pierce either Vun or Vautre of the planes of the two circles G and G'. It is, for example, located all

between these two planes.

Let ?andf' be the absolute values of the angles under which, from a point of the magnetic solenoid, we see the circles G and G ; .  It is easy to see that, in the present case, we have

L = - J p(W a + W' a -W b - n).

O TC ê

If, as it often happens in practice, the two bowls
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have a very small radius, L will be negligible and the wire will not turn.

2 ° The magnetic solenoid AB pierces the plane of one of the two circles, for example the lower circle.

We will have

l = - J t x(w"-Hw;-w ô +w , 6 - t -4Tr).

O 7T"

If the two cells are very small, this value reduces to

This value is positive as (- $)■ The wire turns from left to right.

O

3° The magnetic solenoid AB pierces the planes of the two

circles .

We will then have

l= 8t: 2

If both bowls are very small, this value is very small and the wire does not turn.

If the current flowing through the system were kept constant, the torque that tends to make the moving wire rotate would have a moment that is substantially constant, and, therefore, in the absence of friction, the wire would take on a unified rotational motion.

accelerated.

This is no longer the case if the current is maintained by means of a constant electromotive force. In these conditions, the movement of the wire generates, by a phenomenon of electromagnetic unipolar induction, absolutely analogous to the electrodynamic unipolar induction that we studied in Chapter IX of Book XIII, a counter-current which must be kept in check.

account.

Let's take the second case, for example.

At a time when the current flowing through the moving wire has for intensity .1. the torque that tends to make it turn from left to right

has for moment

&

2TÎ

J [JL

L
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fëThe electromotive induction force generates

of M 7

a current

to
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directed

Chap. IX, equality (17)],

and having for average intensity [Book XIII

1

3

€) [J.

7" p w

4 TT K

)

ü> being the angular velocity of the (il, and R the resistance of the device.  If E is the electromotive force of the battery, the average intensity of

current

will be

J

R

E

4 TT

[JL O)

and the average value of the torque will be

L

i5 J H

1 ~

R

E

Ê 4 TT

IJLOJ

i) being negative, we see that this value of the torque moment decreases as the speed increases. At the moment

where the angular velocity reaches the

value

on

1 ttE

to

I

A)

the torque becomes zero, and the motion of the wire becomes a uniform rotational motion.

The previous experiment can be given another form which we must insist on for a moment. In this new form, the magnet is mobile and crossed by the current.

The magnet, placed vertically (fig- 71), has at its ends two points P, P', by which it rests in small cups.  It is thus able to move around a vertical axis.  The current, coming from the pile O, enters in M in a first annular basin filled with mercury. It exits at C to enter the magnet following the GDA path. It comes out of the magnet at E to go, by the wire EF, into a second annular basin lcnrn nlmnf" rlp mpppurP Tl pn comes out at M 7 Dour return to the

pile.

The moving part of the device is both the magnet AB and the conductor segment CDEF.

The actions to which this moving part is subjected are: i° The actions of the magnet on itself;
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2° The actions of the closed and uniform current contained in the device on the magnet;

3 ° The actions of the magnet on the CDEF current segment; 4 ° The actions of the closed and uniform current contained in the device on the CDEF current segment.

The first of these actions admits a potential, the magnetic potential of the magnet, which remains invariable during the whole duration of the movement. They therefore do not do any work

and can be left out.

The seconds admit a potential: the eleclroma potential

< " O

of the current on the magnet. At each revolution, this linkage takes the same value. The average work done by two actions during one revolution of the moving part of the device being zero, these actions cannot tend to give a uniform direction of rotation to the moving part of the device. This results in

is the same for the fourths.

The phenomenon of rotation observed is thus said to the actions of the third category, which can be studied as in the previous experiment.
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Thus 1 expenence gr question word in cvkIgiicGj as the previous one, the rotation of a segment of current under Faction of a magnet, only 1 acting magnet, being invariably connected to the segment of moving conductor, is set in motion with it.

This experiment of rotation of a segment of current under the action of a magnet has been given the name of rotation of a magnet by a current. This misnomer is related to inaccurate interpretations that have been given to the experiment in question.  We will say a few words about these interpretations.

The mutual actions of a closed and uniform current and a magnet, the actions of a magnet on a segment of current, large or small, are quantities that really exist; they can be observed and measured; on the contrary, one cannot observe the action of an element of current on a magnet: such an action has no real existence; it is only a mathematical fiction that serves as an intermediary for calculating the Faction of a closed and uniform current on a magnet

It follows that there is no need to discuss which is the true law of Faction of a uniform current element on a magnet; all the laws which will lead to the same result when applied to the calculation of Faction of a closed and uniform current on a magnet are equally correct.

This idea had not yet entered the minds of Ampère and Biot; it would have prevented a very lively discussion between these two physicists.

Ampère and Biot (*) both admitted that the action of a conductor element ds , through which a uniform current of intensity J flows, on a magnet pole p located at distance r, is a force normal to the direction of r and ds , directed to the left of the object.

servator placed along the ds element and looking at the

a, and

with the value of

A

4 TC

l X

sin(r.A)

r>2

But

(' ) Ampère, Théorie mathématique des phénomènes electrodynamiques , ùquement déduite de l'expérience ( Collection de Mémoires publies par la 'iciété française de Physique, t. III, pp. 1S2 et suiv.).

D.

III.
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Ampère, relying on the principle of equality between action and reaction, which serves as a starting point for his research in electrodynamics, claimed that the point of application of this force coincided with a point of the element ds.

We have seen (Book XIV, Chap. XI) that these two laws give the same result when applied to the calculation of the action exerted by a closed and uniform current on a magnet; therefore, according to what we have just said, they are both equally good.

But Ampère was not of this opinion.

He tried, which we now see to be meaningless, to decide by experiment between Biot's way of seeing and his own. He thought he had found in the so-called phenomena of rotation of a magnet by a current, discovered by Faraday, the decisive experiment he was looking for.

The actions of the external current segment M'OM on the magnet having, according to him, their point of application outside the magnet, can make the magnet turn around its axis, while, according to Biot, the points of application being inside the magnet itself, the magnet, if it is thin, cannot turn around

its axis.

Ampère believed that he had ruined Biot's way of seeing, not realizing that, in any experiment, the magnet is subjected to the action of a closed and uniform current and that, consequently, any experiment that was explained by his law should also be explained by Biot's law and vice versa.

Sir YV. Thomson, for his part, provided an inaccurate interpretation of the phenomena in question. This interpretation is reproduced today in most treatises on electricity ( 1 ).

Consider a closed current C and a magnetic element OlWe. Their electromagnetic potential is

~ J 011 dv f A ds.

4 * J r

( 1 ! Maxwell, Traité d'Electricité et de Magnétisme, trans. by Scligmann-Lui, t. Il, pp. 15 1 et i ô-i. - Mascart and Joubeut, Traité d'Electricité et de Magnétisme,

t. I j p. ^91*
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Let

dl the direction of the magnetic axis of the element; llf the magnetic mass defined by

D\b dv - j xdl;

f{x,y, z) the non-uniform function defined in Chapter HT of the Introduction ;

%

The potential in question can be written as

We see that it has the same value as if the mutual actions of a closed current and a magnetic mass ia (£, rj, Ç) had as potential the quantity

= TZ. *)> O 4 TT

This quantity is not a uniform function of the coordinates 7], Ç, of the mass [a.

Suppose that we make the mass ja describe a closed path piercing n times from the negative face to the positive face and n! times from the positive face to the negative face an area with two sides passing by the contour C. It will have increased by

Jj pi J ( n - n').

This fact is, according to Sir W. Thomson, the explanation of the phenomena of rotation of a magnet by a current.

Let's consider a magnet AB (fig. 72) which serves partly as a vehicle for a

closed current C.

Fig. 72.

Consider a magnetic mass M of this magnet.

If the magnet makes a revolution from left to right around

452 BOOK XV. - MAGNETS AND UNIFORM CURRENTS.

of its axis, this mass will cross once the surface led by the current closed, passing from the negative face to the positive face.  The actions of the current on this mass will have effected a tiu

It is thus the origin of a couple tending to move from left to right and having for moment

turn the air

It is these pairs that, according to Sir W. Thomson, make the magnet turn.

11 It is true that, if a magnet moves in the presence of a closed current, so as to return to its primitive position, certain parts of the magnet may well, at each revolution, pass through a two-sided surface carried by the current; but Sir W. Thomson forgets that these parts will always contain as much positive fluid as negative fluid. Near a mass of positive fluid, whose potential on the current will have increased by

p.J (n - n'),

will be an equal mass of negative fluid whose potential will have increased by


	ty [jlJ (n - n' ) ;



so that the total potential of the magnet on the current will not vary.

When a magnet starts from a certain position and then returns to it, the total work of the actions of a closed current on this magnet is equal to o. The actions of a closed current cannot therefore, as Sir W. Thomson, produce a displacement of a magnet along a closed path.

CHAPTER XII.

RELATIONSHIP BETWEEN THE TWO FUNDAMENTAL CONSTANTS OF ELECTRODYNAMICS AND ELECTROMAGNETISM.

Before the theory indicated in the present Book, the laws of Electromagnetism were obtained as a consequence of the analogy, admitted in principle, of magnetic solenoids and electrodynamic solenoids. The experiments of OErstedt and of Biot and Savart only made known the action of an indefinite rectilinear current on a magnet pole. As Ampère so sagaciously pointed out, and whatever some treatises may say, it is impossible to deduce from this the law of the action of any closed current on a magnet pole, and even less the action of a closed current on a pole.

of a magnet pole on a current element.

The only method that allowed us to constitute Electromagnetism was that of Ampère: to show, as a consequence of Electrodynamics, the analogy that exists between the laws of action of two electrodynamic solenoids, and the laws, studied by Coulomb, of two magnetic solenoids; between the laws of the action of a rectilinear current on an electrodynamic solenoid, and the laws, studied by OErstedt, Biot and Savart, of the action of a rectilinear current on a magnet, and then, inferring from this that the electrodynamic solenoids should be in all circumstances analogous to the magnetic solenoids, to carry over to the latter all the propositions on the mutual actions of the currents and electrodynamic solenoids that 1 Electrodynamics teaches us.

This method is the one used to establish the theory of electromagnetic phenomena in the writings of Ampere and Savary.

Quite different is the one we have followed in the present work.

454

BOOK XV,

MAGNETS AND UNIFORM CURRENTS.

The laws of electrodynamics on the one hand, and the laws of eletromagnetism on the other, have been established independently of each other, by similar methods, but each of which can stand on its own. The development of these theories has brought to light the analogy of magnetic solenoids and electrodynamic solenoids, of magnetic sheets and of closed and uniform currents, but nowhere has this analogy been demonstrated.

was taken as the starting point for theone .

Let's summarize the analogies we have established:

E lectrodynam icj ue

vant :

Let OÏL de, OÏL ' dv' be the moments of two, magnetic elements¬

tics; BA

dl and B'A

dV the axes of these two elements

7

around dl and dV let's draw two small contours G and G', of areas Ü and Q', having dl and dV as positive normals; let's suppose that these small circles are flowed by currents of intensity J and J 7 such that

31

3t

kQj

OÏL de,

ÜJ = 011' dv'

The electrodynamic forces by which the two small currents G and G' act on each other are identical to the mutual magnetic actions of the two elements OÏL do, OÏL r de'.

It is to recall this analogy that we said that the small current G was equivalent, from the point of view of Velectrodynamics, to the magnetic element 0 IL dv , if we had

(*)

St

v/-J

ÜJ

OÏL' dv.

2 0 All the propositions we have established in Electromagnetism can be summarized as follows:

Let's consider a magnetic element OÏL dv and a small neck C, built as in the previous case, but traversed by a

J


	Q 3 = OÏL dv.



4 TC
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The magnetic element 3f)l dv and the current C: i° will produce the same electromotive force of induction in any closed conductor under all circumstances;

2° Will affect in the same way the magnetization of a piece of soft iron;

3 ° Will exercise the same actions on a current element

uniform ;

4 ° Will be subjected to the same actions by any closed and uniform current.

All these analogies can be summarized by saying that the small current G is equivalent, from the point of view of Electromagnetism, to the magnetic element OÏL dv, if Ton has

{<x) - £2J - Oïl dv.

The two intensities J and J of the equivalent current, from the electrodynamic point of view, and of the equivalent current, from the electromagnetic point of view, are left completely independent of each other.

the other by the previous theories.

It is experience, the OErstedt experiment for example, which teaches us that these two intensities have the same sign, the constant % being negative. But this result is itself only a first step towards this fundamental proposition that nothing in the previous theories allowed to foresee:

The current that is equivalent to a magnetic element from the point of view of T electrodynamics is also equivalent to it from the point of view of V electromctgïietisine.

This proposition requires that the equalities (t) and (a) determine the same value for J, the other for J, which entails that

other proposal.

Between the two fundamental constants of T Electrodyna¬

and T Electromagnetism exists the relation

This relationship, as we have said, cannot be predicted by the previous theory. It is to the experiment that we must ask for the
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verification. Here is a way to perform this audit with the desired accuracy.

Let's throw the same current, whose intensity J does not need to be known to us, into both an electrodynamometer and a compass of tangents. The indications of the electrodynamometer will determine the quantity

a

J 2

'i

The indications of the compass of the tangents will determine us

the quantity

P

4 TT

J.

If the relation ( 3 ) is correct, we should have

" - p*.

Once this last equality has been verified, it will suffice to refer to OErstedt's experiment, according to which the quantity (ii) is negative, to be sure of the accuracy of the relation ( 3 ).

The experiment we have just described has never been carried out explicitly for the purpose we have just indicated, because physicists have always admitted, without even mentioning their hypothesis ('), the correctness of the relation ( 3 ).

But, if it has never been done explicitly, it has certainly been done implicitly a great number of times; every time a physicist, admitting a priori the exactitude of the relation ( 3 ), has used at the same time an electrodynamometer and a compass of tangents to determine the intensity of a

(' ) We must exclude Messrs Mascart and Joubert and Mr. Paul Le Cordier. Mr. Maseurt and Mr. Joubert express themselves in this respect with the greatest clarity: "A closed current, they say, and a sheet, equivalent with respect to any magnetic system, are they equivalent with respect to another current? Thus, the current C, and the sheet S, of the same contour are equivalent with respect to the magnetic system M a; let us suppose that this magnetic system is a sheet S,; the reciprocal action which is exerted between S, and S, is identical to that which is exerted between S, and the current,; but is the latter the same as that which is exerted between the two currents C, and C,? The affirmative seems probable; but this is only an induction, and it would be easy to find examples for which the same mode of reasoning would lead to manifestly erroneous consequences. Thus, under suitably chosen conditions, it may be that the actions exerted on

CHAP. XII.
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If he has observed the agreement of these instruments, he has implicitly made the experiment in question.

The correctness of the relation ( 3 ) cannot therefore be doubted. The two fundamental constants of Electrodynamics and Electromagnetism cease, by this relation, to be independent. These two branches of Physics depend, in reality, only on one fundamental constant.

It is not possible to conclude from this that the piece of soft iron and the magnet would still be equivalent with respect to another piece of soft iron. It is therefore as an experimental result and not as a necessary deduction from theory, that we admit the following theorem of Àmpère: "The reciprocal action of two closed currents is identical to that of the two magnetic sheets respectively equivalent to each of them" (Mascart and Joubert, Traité d'Élec tricité et de Magnétisme, t. I, p. 49^) M. Le Cordier expresses himself in a similar manner ( Paul Le Cordier, Actions mécaniques produites par les aimants et par le magnétisme terrestre Mémoire présenté à l'Académie des Sciences le i 6 avril i883. Journal de Mathématiques pures et appliquées, 3 e série, t. X, pp. n3 et 281; 1 884)-
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ELECTRICAL UNITS.

An exposition of the principles governing the choice of electrical units may seem somewhat out of place in the present work, both because of its elementary character and because of the number of similar expositions found in the various treatises; so it was not our first intention to stop at an examination of these principles. But the attentive reading of the Treatises and Manuals spread in the teaching revealed to us how much these principles, quite simple in appearance, were in general ignored. The most serious errors mar the pages that many

authors dedicate to electrical units.

Some believe that electrostatic units can only be used in static electricity and electromagnetic units in the study of electricity.

rants.

f

Most of them, in accordance with this idea, write the formulas of Electrostatics in the electrostatic system of units, making the constant e of Coulomb's laws equal to i; then, in the same book, without warning of the serious change of conventions they adopt, they write

jp f

the formulas of Electrodynamics and Electromagnetism in the

® 5

§ * /*-

electromagnetic system of units, making i the constant of Electrodynamics.

This has led to numerous confusions; for example, the one that consists in confusing, in the electromagnetic system of units, a potential level difference and an electromotive force, whereas the latter is the product of the former by the constant t.

It goes further; some Treatises and some widespread Manuals teach that the electromagnetic system of units is defined by the choice of the unit of magnetic pole; that, in this system only, two magnetic poles equal respectively to the unit, separated by the unit of distance, repel each other with a force equal to the unit. And we see, in the Tables where these Treatises record the di

of the main electrical units, the magnetic pole appears with different dimensions in the electrostatic system and in the electromagnetic system!
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It is by reading such errors that we thought it necessary to attach to our Lessons an appendix where the principles that determine the choice of electrical units would be briefly explained.

§ 1 - On magnetism.

In elementary geometry, we prove the following theorem:

The number that represents the volume of a prism is proportional to the product of the number that represents the area of the base of the prism by the number that represents its height.

This theorem is independent of the choice of units of volume, area and length.

If we designate by Y, B, H the three numbers which represent the volume of the prism, the surface of its base and its height, we can write

V = ÆBH,

k being a positive coefficient whose value is perfectly determined when the units of length, surface and volume are chosen, whose value changes when one at least of these three units is changed.

One could explain Geometry in its entirety by leaving the units of length, surface and volume independent; all the formulas which express relations between these three kinds of quantities would then contain the coefficient k.

The geometers found more convenient to rid their formulas of the presence of this coefficient, by establishing between the units of length, surface and volume a relation such as the coefficient k became equal to the unit; it was enough for them for that to take for unit of volume the volume of the prism which has for base 1 unit of surface and for height

the unit of length.

These principles, which have guided geometers in the choice of the units to which they relate the quantities of different species that they have to consider, are known to everyone. These are the same principles that have guided physicists in the choice of units to which they relate the quantities of different species that they consider in the study of electricity. We shall examine, in the present chapter, how they have

applied these principles. , .

We will admit, in what follows, that we have treated the Geometry

and Mechanics before dealing with electricity; that one has, consequently, fixed the units to which the quantities of different species considered in these Sciences are related; it is known that the various conventions admitted in Geometry and Mechanics bring the choice of all the geometrical and mechanical units down to the choice of the three basic mental units of length, time and mass.

In the study of magnetism, all quantities of different species
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that we have to consider are defined from a fundamental quantity, the quantity of magnetism or magnetic mass. When we know the units of length, mass and time on the one hand, and the unit of quantity of magnetism on the other, the definition of the various quantities (magnetization intensity, magnetic moment, magnetic potential function, etc.) that we consider in the study of magnetism determines the unit to which each of these quantities must be related.

On the other hand, the very way in which the quantity of magnetism has been defined immediately links the choice of the unit of quantity of magnetism to the choice of the fundamental units of length, mass and time. It follows, in fact, from this definition that a unit of magnetic mass is the magnetic mass which, placed at a unit distance from a mass equal to it, repels it with a force equal to unit.

This unit of magnetic mass therefore depends only on the fundamental units of length, mass and time. It is easy to see how it depends on them.

Let us take two magnetic masses equal to each other and well defined, m and m t , placed at a well defined distance r; they exert a well defined action f on each other.

Let us choose a first system of units of length, mass and time; the three quantities m, r, y will be measured by well determined numbers p., p, o between which, according to the laws of Coulomb and Gauss, one will have the relation

(0

o

1


	■



■ ■ ^

<

Let us take a second system of fundamental units, which is deduced from the first by multiplying the previous unit of length by L, the pre . The

The previous unit of time by T, the previous unit of mass by three quantities m , r,f will be measured by new well determined numbers p/, p', o' between which we will have the relation

( s )

u'*

o

à

i

0'*

1

Now we will obviously have

Lo\

According to the definition of force given in Mechanics, we can easily see

(read the

MLT-V.

Equalities (i) and ( 2 ) then give

MLT-2

£1 l _ 2 tq 4

l x

M LT-*u'

or
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Thus, when we multiply by M the mass taken for unit, by L the length taken for unit, by T the time taken for unit, the number which represents a determined magnetic mass is divided by

MLT-*;

in other words, the new unit of magnetic mass is obtained by multiplying the previous unit by this same number

I

i 1

M 2 L'T- 1 .


  
    Unknown 
    
  




  





















■

G is what we can express by saying that the dimensions of the quantity of magnetism are

1 3

M 2 L 2 T -i.

Since nothing is more arbitrary in the choice of magnetic units than the fundamental units of length, time and mass, it is not surprising that the formulas of magnetism no longer contain any proportionality coefficient that can be varied by the choice of units.

§ 2 .

There is, in the study of electricity, a quantity whose unit

can be chosen arbitrarily.

The main species of magnitudes that we have to consider in the study

r f

of 1 Electrostatics, Galvanism, Electrodynamics and Electromagnetism are: the quantity of electricity, the electrostatic potential function, the intensity of a current, the resistance of a conductor, the electromotive force, the capacity of a conductor.

There is nothing in the definition of the quantity of electricity that obliges one unit of quantity to be an electric charge rather than another. The choice of the unit of quantity of electricity is therefore arbitrary.

The quantity of electricity is, moreover, the only electrical quantity whose unit is arbitrary; once one has chosen this unit and the fundamental units of length, mass and time, the units to which the other electrical quantities must be related are completely determined.

The electrostatic potential function at a point M is defined by the equality

V

2

<7

q being the electric charge at point A in space, r the distance AM, and the summation extending to all acting charges. It follows from this definition that an electric charge equal to unity will generate at point M a potential function equal to unity, if AM is the unit of length.
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The intensity of a linear current is the quantity of electricity that the current carries during the unit of time, through a section of the conductor, in the direction chosen as positive. The unit of intensity is therefore the intensity of the current which, in unit of time } carries through the section of the conductor an amount of electricity equal to it

Vunity ... ^ ■

Joule's law immediately gives the definition of the unit of resistance. In a homogeneous metallic conductor of resistance R, a current of intensity J, flowing during the time gives off a quantity of

heat

Q = Î RJÏ * E being the mechanical equivalent of heat. This eXpansion is equivalent to a work

G = RJ 2 *.

V

From this formula, we see that Vunity of resistance is the resistance of a homogeneous metallic conductor in which a current of intensity equal to the unit produces, during the unit of time, an echo J'ement equivalent to the unit of work.

The intensity J of the current, which an electromotive force £ generates in

a circuit of resistance R, has the value, according to the definition of the electromotive force,


	J



According to this formula, the unit of electromotive force is the force

1 7 17 * t

which generates a current of intensity equal to the umtc

in a circuit of resistance equal to Vunity.

The capacitance of a metallic conductor under certain conditions is, by definition, the quantity of electricity that must be distributed in equilibrium on this conductor so that the electromotive force that exists between this conductor thus charged and the earth (i.e. a body of the same nature as the conductor, brought to the potential level o), is

unit ( 1 ).

According to this definition, a conductor will have a capacitance equal to 1 unit if there is an electromotive force equal to 1 unit throughout the conductor.

y **

and a conductor and of the same nature at the potential level o.

(' ) In the Treatises, capacity is often defined incorrectly as the quantity of electricity necessary to raise the conductor to the potential level i. In reality, if V is the potential level of a conductor, the electromotive force "L, which exists between this conductor and the earth, has

for value

y

C

£ V,

c being the coefficient of Coulomb's electrostatic law. Thus, according to the challenge

ELECTRICAL UNITS.

The enumeration that we have just made shows that, when we know, on the one hand, the units of length, time and mass, and, on the other hand, 1 unit of quantity of electricity, all the other electrical units are determined. There is thus only arbitrariness, in the study of the electiicite, the choice of 1 unit of electric charge.

3.

There are, in the formulas of electricity, two coefficients depending on the choice of the fundamental units.

The mutual action of two material particles, carrying electric charges q and q' and located at a distance r from each other, is, according to Coulomb's laws, a repulsive force having for magnitude

F

Æ .

.2 >

e is a positive coefficient that depends on the fundamental units of length, time, mass and electric charge.

This coefficient is found in all the formulas of Electrostatics; thus the electrostatic potential of a system of conductors has the value

(3)

W

sb

r

q , q' being any two charges of the system, r the distance between them, and I sign extending to all combinations such that < ^- ,

distinct from each other. This expression of the electrostatic potential dominates all of Electrostatics.

Between two points of a homogeneous metallic conductor where the potential function has values V and V', there is an electromotive force

C = e(V-V').

This formula is the starting point of the whole study of stationary currents.

*

The study of electrodynamic induction and electrodyna

nition we have given, the capacitance is the quantity of electricity necessary to bring the conductor to the potential level - ? and not to the potential level i. Our definition therefore coincides with that of the Treaties only in the electrostatic system where s ~ i. The definition of the Treaties would have no disadvantage if Ton were to stick to it. But, ordinarily, the Treaties, having given this definition, reason as if they had given the one we have adopted. Hence,

errors and contradictions.
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is entirely reduced to the consideration of the electrodynamic potential; this potential has the following expression

(4)

n

5t 2

-j.

JJ'

i

X

COS0 COsO'

1

X

i r

cosu)} ds ds ';

ds and ds are two conductive elements, through which currents J and J' flow; r is their distance; 0, 0', tu are the three angles that fix their respective orientation; the sign extends to all the combinations that one

can be formed by taking two by two the elements of the system.

X is the Helmholtz constant; it is a numerical constant, absolutely independent of the choice of fundamental units.

5L2

is a coefficient that depends on the choice of the fundamental units of length, time, mass and electric charge.

t

This coefficient is found in all formulas of EIectrodynamics; it is also found in all formulas of EIectromagnetism.

Indeed, the study of electromagnetic induction, magnetization by currents, and electromagnetic forces, is deduced entirely from the consideration of the electromagnetic potential of a magnetic element DWdv and a closed current. This potential has the value

9
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r

I

f)HL dvi r A ds,

A having a meaning that we have often had to recall in the previous chapters.

Now, we have seen, in Book XV, Chapter XII, that one had

%

A

4 Tt

sf

2

The electromagnetic potential can therefore be written

(4 bis)

%

d-i


	;)ïl dvS I A ds,



3i

which introduces the coefficient - in all the formulas of the Elcctro

✓

2

magnetism.

The study of electricity therefore leads to the consideration of two coefficients that depend on the fundamental units of length, time, mass and electric charge; this is the fundamental coefficient of the Electrosla

*

and the fundamental coefficient of rElcctromagnélisinc

'J

I
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The ratio of the fundamental coefficient of the Electro dynamics to the fundamental coefficient of the Electrostatics is independent of the units of mass and electric charge.

Each of the two fundamental coefficients of Electrostatics and

Electrodynamics depends on the fundamental units of length and time,

of mass and electric charge. Let's find out how it depends on these units.

Let us suppose that after having adopted a first system of fundamental units, one adopts a second one which is deduced from the first one by multiplying 1 unit of length by L, the unit of time by T, the unit of mass by M, the unit of quantity of electricity by Q.

This change of units will change the value of the number which represents a given concrete quantity. We will designate by a letter without index the number which represents a concrete quantity in the first system of units and by a letter affected of the index 1 the number which represents the same concrete quantity in the second system of units.

Let us consider, for example, the electrostatic potential of a given system. It will be defined, in the first system of units, by the formula

and in the second system of units, by the formula

(3 "j

We will obviously have

r 1

A potential being a quantity without penalty that we have

W

of the same kind as a job,

= ML 2 T~ 2 .

we will see

It follows from formulas (3 ) and (3 ff ) that we have


	= ML 3 T~ 2 Q- 2 .



£ i

Thus, if we multiply the unit of length by L, the unit of time by T, the unit of mass by M, the unit of electric charge by Q, the number that represents the fundamental coefficient of electrostatics is divided by

ML3T- 2 Q- 2 .

D. - III. 3o
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In other words, when the unit of electric charge is left independent of the mechanical units, the fundamental coefficient of V Electrostatics has the following dimensions

ML 3 T-2Q-2.

■

Let us now consider the electrodynamic potential of a current system.

In the first system of units, it is represented by the formula

(4')

n

5i 2

2 ( l

X

cos6 cosQ'

i

X

J V

Ü> i - ds ds'

In the second system of units, it is represented by the formula

(4 ff ) n

3V?

i

2 ( !

X

cos0 cos6'

X \ Jj J r , , , ,

cos ut ) - ds\ ds ,.

n

We have obviously

ds

d$i

ds'

ds\

r i

L

The intensity of a current being I ratio of a quantity of electricity to a time, we obviously have

J

f

J'

i'

j ,

QT

Finally we have

n

IL

ML 2 T- 2

It follows from formulas (4') and (4*) that we have

( 6 )

c\ o -*1

LMQ

Thus, if we multiply the unit of length by L, the unit of time by T, the unit of mass by M, the unit of electric charge by Q, the number which represents the fundamental coefficient of the EIectrodynamics is divided

by

LMQ

In other words, when we let the unit of electric charge be independent of the mechanical units, the fundamental coefficient of VÉlectrodynamics has the following dimensions

LMQ- 2 .

The coinp araison of equalities (5) and (6) leads to a result remai

ELECTRICAL UNITS.

the comparison in fact gives

L2T-2.

The ratio of the fundamental coefficient of VÉlectrostatique to the

2

The fundamental coefficient of electrodynamics does not depend on the choice of the units of mass and electric charge; it depends only on the choice of the units of length and time.

Let's put

(7)

The preceding equality shows that, if, in a change of units, the unit of length is multiplied by L e( the unit of time by T, the number which represents p is divided by LT- 1 . The quantity p is thus the ratio of a length to a time.

The quantity p is a quantity of the same kind as a speed.

Mr. H. von Helmholtz gave this quantity p the name of characteristic speed of electricity.

5.

The various systems of electrical units.

Let us assume that the fundamental mechanical units, i.e. the units of length, time and mass, have been chosen once and for all. The ratio of the fundamental coefficients of Electrostatics and Electromagnetism has then a perfectly determined value, on which the choice of 1 unit of electric charge can exert no influence.

But, by the choice of the unit of electric charge, left arbitrary until now, one can make the fundamental coefficient of electrostatics or the fundamental coefficient of electrodynamics take the positive value that one wants. Only, as the ratio of these two coefficients has a determined value, when one of these two coefficients has been given an arbitrarily chosen value, the value of the other coefficient will no longer be arbitrary; it will be entirely determined.

It is for reasons of convenience that we attribute this or that

nts. Similar

The reasons for this are not absolute, and the choice to be made has been made, according to the authors, in various ways, to which various systems of electrical units correspond. We distinguish three main ones: the system

value to either of the above.

coe

4 08
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electrostatic system, the electrodynamic system and the e

-o

magne tic.

i° Electrostatic system. - In the electrostatic system, one seeks, by a suitable choice of 1 unit of electric charge, to remove from the formulas the coefficient e by giving it the value i.

It is easy to see which electric charge to take as a unit

when you want to achieve this goal.

If, in fact, the unit of electric charge has been chosen so that s takes the value x, if the electric charges are related to this unit, the formula which expresses the repulsive action of the two electric charges

is written

F

C !1

r 2

iter

This formula shows that the unit of electric charge is undermined, in the electrostatic system, by the condition of repelling with the unit of force an equal charge placed at the unit of distance.

With this choice of the unit of charge, the coefficient e takes the value i, and according to the equality ( 7 ), the fundamental coefficient

% 2

of the Ëlectro

The electrodynamic potential of a system of currents then becomes, according to the equality ( 4 ),

n

r

1

X

cosO COSÔ'-i-

1 -i- X

cosü) ) JJ' ds ds'.

-ir

x r

The electromagnetic potential becomes, according to equality (4 bis),


	

	OÏL clv J 1 A ds.







v

-x° Electrodynamic system. - According to Ampère's formula, two uniform current elements repel each other with a force which has the value, using the usual notations, of

R

^ JJ ' ds ds'

A 2-1 cos 00

2

3 x


	cosO cosO'



-x

Vmpère wanted the mutual action of two elements of current

parallels between

and perpendicular to the line that joins them was represented by

sented by the formula

R

JJ ' ds ds'

r 2

As we have, in this case,

cosO

o,

cosO'--- o,

cosu"

I

7

one must take

A*=i,
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and, therefore, by virtue of the relation ( 7 ),

2I> 2 .

The formula that expresses the repulsive action of two electric charges

then becomes

F - 2 0*21

t

9

1 it

?

so that the unit of electric charge is determined, in the electrodynamic system, by the condition of exerting on an equal charge, placed at the unit of distance, a force represented by the same number as 2 e 2 .

The electrodynamic system, used in the writings of Ampère and his contemporaries, has been completely abandoned today.

3 ° Electromagnetic system. - Consider two solenoids; in the first one, the circular currents have an area £2, an intensity J, they are separated by a distance D; in the second one, the currents have an area £2', an intensity J', a distance D'. These solenoids have respectively for power

<ï>

£2 J D

d>'

£2 J D'

The repulsive action between the southern pole of the first solenoid and the southern pole of the second, placed at the distance r from each other, is given by the formula

of the other, is re

F

If 2 d>"î>'

In the electromagnetic system, we propose to choose the unit of electric charge, so that this formula takes the same form as that which gives the action of two poles of magnets, that is to say the form

F

r

ï

We therefore arbitrarily take, in this system, the value 1 for

of the fundamental coefficient -- of the electrodynamics, which makes available

2

this coefficient in all the formulas of electrodynamics.

The fundamental coefficient of electrodynamics having the value t, the fundamental coefficient of electrostatics is determined; it has, according to

equality (7), the value

£

The formula which gives the repulsive action of two electric charges q and q', placed at the distance r from each other, becomes, in this system

F

V

2 A

sb

2
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Thus Vanity of electric charge is determined, in the electromagnetic system, by the condition of exerting there on an equal charge, placed at Vanity of distance, a force represented by the same number as c 2 .

In this system, the electrostatic potential has the expression

equality ( 3),

W

99

The electrodynamic potential has the expression, according to equality (4),

n

2 JJ ' (h-,

cosO cosO'

a r

cos a" l ds ds r .

The electromagnetic potential (4 bis),

for expression, according to Féga

ff =

/

011 clv J / A ds.

§ 6 .

Ratio of the corresponding units in the two systems

electrostatic and electromagnetic.

Let us take a certain arbitrary unit of electric charge corresponding to a certain value z of the fundamental coefficient of Electrostatics. Two charges which, measured with this unit, are represented by the numbers q and q', placed at the distance r, will exert a repulsive force on each other represented by the formula

(*)

F

99

Let c be the number which measures, by means of this arbitrary unit, the charge serving as unit in the electrostatic system. Two such charges, placed at the unit of distance, must repel each other with the unit of force. If therefore, in formula (a), we make

we must find

which gives

( 3 )

9

9

F

h

£ C 2 .

Let C be the number which measures, by means of the same arbitrary unit, the charge serving as unit in the electromagnetic system. Two such charges, placed at a distance of 1 unit, must repel each other with a force represented by the number c 2 . If therefore, in formula (a), we make

9

C,

q'- C,

I.

we must find
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which gives

(T) p 2 = sC 2 .

The comparison of the formulas ((3) and (y) gives

G _

c

Thus the charge that serves as the unit in the electromagnetic system is p times larger than the charge that serves as the unit in the electrostatic system.

As a result, the same electric charge is represented by a number p times smaller in the electromagnetic system than in the electrostatic system.

This first result obtained, reasonings, too easy to be developed, lead to the following propositions:

The potential function that serves as the unit in the electromagnetic system is p times larger than the potential function that serves as the unit in the electrostatic system.

The intensity that serves as a unit in the electromagnetic system is p times greater than the intensity that serves as a unit in the electrostatic system.

The resistance that serves as a unit in the electromagnetic system is p 2 times smaller than the resistance that serves as a unit in the electrostatic system.

The electromotive force that serves as the unit in the electromagnetic system is p times smaller than the electromotive force that serves as the unit in

the electrostatic system.

The capacitance that serves as the unit in the electromagnetic system is p 2 times larger than the capacitance that serves as the unit in the electrostatic system.

We see that the knowledge of the quantity p is sufficient to determine the number that measures a certain electrical quantity in 1 of the two systems, when we know the number that measures this same quantity

in the other system.

§ 7 Determination of the characteristic speed of electricity ;

it comes down to the determination of the ohm.

Let us suppose that we have chosen any system of electrical units: either the electrostatic system or the electromagnetic system,

or any other system that is deemed convenient.

In order to translate all the formulas of 1 electricity into numbers, it is necessary to

Two fundamental constants must be known: the Helmholtz constant,
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A, and the velocity of electricity v. The first of these two constants disappears from all the formulas that refer only to closed and uniform currents. Therefore, if we do not want to deal with non-uniform currents, the constant p is the only one whose value we need to know.

The experimental determination of the characteristic speed of electricity is therefore a problem of capital importance in physics.

Here is one of the methods, that of Sir W. Thomson (!), which allow to determine p.

Let's imagine a homogeneous and metallic part AB of a circuit through which a current flows whose intensity, evaluated in any system of units, has the value J; the resistance of this portion of wire AB has the value R in the same system of units: an absolute electrometer makes known the number

a = e(V A -V B )*,

Va and Vb being the potential levels in A and B {see Book III, Chap. IV,

§")■

f

On the other hand, part of the AB wire forms either the frame of a tangent compass or the coils of an electrodynamometer. If the instrument used is a compass of tangents, its indications make known the number

p = -4j = 4U

4 ^ y2

If the instrument used is an electrodynamometer, its

know the number

The equalities we have just written give

indications are

But Ohm's law gives

or

(' ) Sir W. Thomson, fieport of the liritish Association for 1869, p. 4 -Vt

I
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So, finally, we have

5

v 2

82

a

R

5V 2

The two numbers P and a being given directly by the instruments used, one sees that the determination of v is brought back

ee to determine the

nation of the number which represents, in the system of units employed, the

value of

R

SV 2

-i

for the AB wire.

The resistance comparison methods will easily give the va 2 R

their value of - 5 - for the wire AB, when the value of the same quantity for any other wire is known. The determination of the characteristic speed of electricity is thus reduced to the following problem:

Determine for a homogeneous wire, chosen arbitrarily D

the value of the ratio - - in the adopted system of units.

If the system of units adopted is the electromagnetic system - is

equal to the unit, and the problem

can then be stated as follows

following :

Determine y in electromagnetic units, the resistance of an arbitrarily chosen metal wire.

The problem to which the determination of the characteristic speed of electricity is thus reduced is called the problem of determining the ohm.

§ 8 .

Determination of the 'ohm.

The first method to determine the -=- ratio for a

2

wire is due to G. Kirchhoff ( 1 ). A great number of others have been given since then, which you will find explained in the Treatises. Our intention being only to indicate how it is possible to solve the problem of the

( 1 ) G. Kirchhoff, Bestimmung der Constanten, von welcher die Intensitàt elektrischer Strôme abhàngt {Poggendorff's Annalen, t. LXXVI; 1849.

G . Kirchhoff's Abhandlungen, p. 118).
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problem of the determination of the ohm, we will indicate here a single method, due to Weber, allowing to reach this determination.

Let us take, as in Chapter III, a plane frame, movable about a vertical axis situated in its plane and connected to a compass of tangents. Let us assume that the plane of the frame is perpendicular to the plane of the magnetic meridian, and let us take for positive face the one that looks north. Let's rotate the frame by a right angle.

The terrestrial induction sets in motion, in the circuit, a quantity of electricity [Book XIII, Chap. III, equality ( 16 )]

^ HO

7* R '

O being Make of the frame, H the horizontal component of the terrestrial magnetism and R the total resistance of the circuit.

The tangent compass acts here as a ballistic galvanometer; the needle is deflected by an impulse angle of 0 .

We have [Book XV, Chap. X, equality (4)]

p being the radius of the tangent compass frame, I the moment of inertia of the needle and M its magnetic moment.

We pull from there

R rc O

= n


	p sin 2 2



The quantities in the second member are all measurable. The experiment in question thus makes it possible to determine the value of ---for the

"


	_



2

wire that forms the rotating frame, the compass frame and the connecting line.

§ 9 - On the value of v.

If we take, on the one hand, the results of one of the many methods of determining the ohm; on the other hand, the results obtained either by the method indicated by W. Thomson for determining p, or by one of the methods indicated by Messrs. Weber, Kohlrausch and Maxwell, we shall obtain the characteristic speed of electricity.

The various methods just mentioned gave the following values for v, which are evaluated in centimeters per second:

Weber and Kohlrausch method. v = 3ioj4 °' 105

Maxwell's method. v = 288000 . io 5

Method of Sir W. Thomson.. v = 282000 . io 5

I
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Maxwell made this

di .ff

values found for the characteristic velocity of Velectricity and the values s found for the speed of light in vacuum is of the order of experimental errors.

Here are, in fact, the values found for the speed V of light in vacuum:

Method of M. Fizeau. V

Astronomical methods. V

Foucault's method. V

314000.10 5

308000.10 5

298360.10 5

We can therefore consider as probable the following proposition:

The characteristic speed of electricity is equal to the speed of light in a vacuum.

10 .

Dimensions of electrical units

Practical system.

C.G.S. System

In each of the systems of units that have been defined in § o, the unit of electric charge, and, consequently, all the other electric units, depend exclusively on the fundamental units of length, time, and mass; but they do not depend on them in the same way in the electrostatic system and in the electromagnetic system. In other words, they do not have the same dimensions in the two systems.

We will determine these dimensions here:

i° Electrostatic system.

The definition of the unit of electric charge in the electrostatic system is exactly the same as the definition of the unit of quantity of magnetism. The dimensions of the quantity of magnetism, found in § 1, are therefore the dimensions of the electric charge in the electrostatic system.

Thus, the electric charge has the following dimensions in the electrochemical system

static

?

L^'M'^T- 1

function

fo

The ~ M * T-f.

The intensity, ratio of a quantity of electricity to a time, has for dimen

sions

L2M2T-2

%
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The resistance , ratio of an electromotive force to an intensity, has for

dimensions

L-iT.

The capacity, ratio of a quantity of electricity to an electromotive force, has the following dimensions

L.

2 0 Electromagnetic system.

In the electromagnetic system, the mutual action of two charges

electrical is written

F

v

2

sb

-2

Let us multiply the unit of length by L, the unit of time by T, the unit of mass by M. The quantities which were represented by the numbers F, q, q' 1 r are now represented by the numbers F lt V\, gq, q\, r t , and we have

/ 1

which, compared to the previous one, gives

Now we have

v


	= LT" 1



v x

= MLT-2.

The previous formula thus becomes

and, therefore,

Thus, if we multiply the unit of length by L, the unit of time by T, the unit of mass by M, the number that represents an electric charge

II

in the electromagnetic system is divided by M 2 L 2 .

In other words, the dimensions of the electric charge in the electromagnetic system are

1 1

M 2 L 2 .
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The potential junction, ratio of an electric charge to a length, has the following dimensions

1 _ 1

M 2 L 2

The intensity, ratio of an electric charge to a

s, has as dimen

sions

M 2 L 2 T

î

To know the dimensions of the resistance, it is enough to remember that the product of a resistance by the square of an intensity and by a time represents a work. It is then easy to find that the dimensions of the resistance are

LT- 1 .

The electromotive force, product of a resistance by an intensity, has

for dimensions

1 3

M 2 L 2 T- 2 .

The capacity, ratio of an electric charge to an electromotive force has the following dimensions

î

L -1 T 2 .

These formulas specify how the various units, either electrostatic or electromagnetic, depend on the fundamental units of length, time and mass.

It is known that the physicists agreed to adopt a system of fundamental units called system C.G.S.; in this system, the unit of length is the centimeter, that is to say the hundredth part of the length of the meter of the Archives placed in the melting ice; the unit of time is the sexagesimal second of average time; the unit of mass is the gram, that is to say the

thousandth part of the mass of the kilogram of the Archives.

To this system corresponds a C.G.S. system of electrical units, that is

electrostatic or electromagnetic. ,

The electromagnetic units thus determined are not of a practical magnitude; so physicists have substituted another system of fundamental units called the practical system for the C.G.S. system. The practical fundamental units are obtained by multiplying the

fundamental units C.G.S. by certain powers of 10.

Vun üé of practical length is worth .o* C.G.S. units; it is approximately the

quarter of the earth meridian.

The practical unit of time is still the second.

The practical unit of mass is io- 11 C.G.S. units, it is the hundred-millionth part of a milligram. ,

According to the dimensions of the various electrical quantities in the system

electromagnetic, one arrives without difficulty at the following results:

In the electromagnetic system, the practical unit of electric charge is io* 1 C.G.S. units.

♦
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The practical unit of potential Junction is 10" 10 C.G.S. units.

did not give it a specific name.

The practical unit of intensity is 10-1 C.G.S. units.

name of ampere.

The practical unit of resistance is 10 9 C.G.S. units. It is the resistance that offers, in the melting ice, a column of mercury of one square millimeter of section and 106 centimeters of

length approximately.

The practical unit of electromotive force is ro 8 units C.G.S. It is called volt, short for Volta. It is approximately the force

electromotive force of a Daniell element.

The practical unit of capacity is 10" 9 C.G.S. units.
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CHAPTER ONE.

THE INDUCTION OF A MAGNETIC ELEMENT ON A CONDUCTIVE ELEMENT CANNOT BE CONSIDERED AS EMANATING FROM ITS TWO POLES.

In Chapter I of Book XV we made the following assumption:

\

The electromagnetic induction force (&ds), generated by a number of magnetic elements dv, dv ', ... in a conducting element ds, is given by Legality

(£ ds dt - ov 8v'-+-..

8v w depending only on the parameters that fix the relative state of the two elements ds, cW {) and the variations that these parameters experience during the time dt.

This hypothesis leads, by virtue of the reasoning set out in Chapter I of Book XV, to the following expression of ov :

(r) Sv = S j M [r, (r, ds), (r, dl), e] OÏL dv ds j

*

[Book XV, Chap. I, equality (i)].

In this equality, OÏL is the intensity of magnetization at a point of the element dv; dl is the direction of this magnetization; M is

48o
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a finite (except for r - o), continuous and uniform function of the highlighted parameters.

In Chapter II, we made a new assumption, which is the following:

When a variable magnetic element is placed in the presence of a closed conductor and these two bodies move relative to each other so that the induced conductor has a uniform current flowing through it, the electromotive action produced by the magnetic element can be replaced by electromotive actions emanating from its two

p o

the.

This hypothesis, whose meaning we have specified, leads to the following result (Book XV, Chap. II)

being a constant;

A being defined by the equality

k .y - 7 ] * -Z

r

r

V

dx

dy

dz

ds

ds

ds

d\

dt)

dZ

dl

dl

cl'l

and F(r) being a uniform, finite and continuous function of the distance r of the two elements ds, dl , except for r = o.

We have seen that this expression of M is sufficient for the study of the actions that occur in a system composed of magnets and linear, closed and uniform currents. We must now go further and examine the properties of systems formed by any magnets and currents, starting with systems formed by any magnets and linear currents.

We are led, by the habits which have reigned until now in the study of magnetism and electromagnetism, to admit this fundamental hypothesis:

JS action

electromotive force ov exerted pat

a magnetic element
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dv on any conductor element

ds can be considered as the difference of two electromotive actions emanating from its two poles.

This proposition, whose precise meaning follows from what was said at the beginning of Chapter II of Book XV, would be translated analytically in the following way:

We must have an equality of the form

(-* 1 r, (r, ds), (r, dl), e] =

W being a function unambiguously defined when the relative situation of the conducting element ds and a pole of the element dl is known.

From the fact that the relative situation of the conducting element ds and a point of the element dl depends only on the two parameters r and (r, ds), it follows that x}? is a uniform function

of r and

dr

ds

The equalities ( 2 ) and (4) give

Let us replace A by its value and express that the product of the first member by dl is the total differential of a function

?

*1

7

§ r to f x - \ dy y - '(\ dx d / z - Ç dx _ x - \ dz \1

4! \ r 3__ ~ds ~ ds) à£\ r 3 ds r 3 ds ) J '

% [ d / y-r\ dz z - ï, dy\ _ à f x - \ dy _ y-r x dx\l = ^

4 ^ d * ds ) \ ^ ds rZ ds 'i

%Y d/i-Çdx x - Ç dz\ _ à/ y--r\ dz *-Z d y ]_ 0

r3 ds ' dr] ^ r 3 ds ri ds

These relations must take place whatever the orientation of the ds element. If we make

48-2
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we have

The three quantities

49

d

X -

j =

4 it

at

r %

49

d

y-

f\

4 TC

%

r a

49

d

z -

K =

4^

%

r %

o,

O)

o.

obviously depend on If. So we cannot have any of the three identities

to x - _ to y - Y] _ d_ z - Ç _

7*3 (Jjj r :i ' d% /' 3 '

and the previous equalities would require that we had

$ = o.

Experiments with magnets and closed, uniform currents show that the constant % is not equal to

to o. This consequence is therefore unacceptable.

Thus, if we admit that electromagnetic induction exists, if we admit that the laws of this induction must agree with the very simple hypotheses which were made in Chapters I and II of the preceding book, hypotheses which, moreover, it seems very difficult not to make, we are obliged to grant that the electromotive force of induction, generated in any conducting element by any magnetic element cannot be considered as the difference of two electromotive forces generated by two equal magnetic masses of opposite signs concentrated at the two poles of the magnetic element, each of these forces being proportional in magnitude to the mass from which it emanates and depending only on the position of this mass with respect to the conducting element and the

variations of this position.

In other words, Vaction of a magnetic element cannot, in general, be equivalent to Vaction of two equal magnetic masses of opposite sign.
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CHAPTER I

ELECTROMAGNETIC INDUCTION IN LINEAR CONDUCTORS. MAGNETIZATION BY LINEAR CURRENTS.

§ 1 - Electromagnetic induction in linear conductors.

The previous chapter showed us that it was impossible to extend to electromagnetic induction in any conductor the hypothesis that we used to establish the laws of electromagnetic induction in closed conductors through which uniform currents flow.

But the study of these last laws leads us to a consequence which can be extended to the induction exerted by magnets in any conductors, and the extension of this consequence will become the fundamental hypothesis on which the general theory of electromagnetic induction will be based.

Consider a magnetic element of moment DTüdv. Let BA or dl be its magnetic axis. Let us draw a plane perpendicular to the axis dl\ in this plane, let us trace a small circuit C embracing an area Q whose positive normal is dl. Let us suppose that this circuit is traversed by a current whose intensity J' is given by the relation

= OïLdv.

w

By extension of what we have seen in the study of closed and uniform currents, we admit that

The electromotive force of induction in any linear current is the same under all circumstances.

This assumption immediately reduces the study of the elementary law of electromagnetic induction to a problem of electrodynamic induction.
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Let II (C, ds) be the electrodynamic potential of the current G on the element ds traversed by a current equal to unity. We will have

(2) 8v = Sn(G, ds).

Let's calculate the second member. Since the circuit C is traversed by a uniform current, if we designate by ds an element of

this circuit, we can write

/ *> v

Now we have

n (C, ds) =

rds

cosf ds, ds')

r

cos (ds,ds') , r I (dx dx' dy dy' dz dz'\ ,

-" J c r \dJ dP ds' ds' ) -

Let Ç, 7 \, Ç be the coordinates of a point of the area Ü, or, what amounts to the same thing, of a point of the magnetic element. Stokes' theorem gives

dx dx dy dy' ds ds' ' ds ds'

dz dz' ds ds'

cos( dl , x)

cos ( dl, y)

cos {dl, z)

*

Using relations (i) and (4), equality (3) becomes

3 H dv ds

cos {dl, x)

cos {dl, y)

II(C, ds)
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If <À>, 0 are the components of the magnetization intensity

tion 011-, we will have

X

011 cos (dl, x),

OÏL- cos ( cil, y),

OÏL cos (dl, z),

and the previous potential, to which we will give the name, which will be justified later, of electromagnetic potential of the magnetic element dv on the conductive element ds crossed by a current equal to the unit, will take the form

/

n ( c, ds)

%

v/


	dv ds



<Jv9

( 5 )

/

à- ,

r dy

d r

dz

ds

dr )

ds

y

r dz

to r

dx

ds

ds

r dx

d r

dy

di ) ds

d\

ds

It can be given another form. If we put

A

r 2

x

y

r i

K

r

r

dx

ds

d\

dl

dy

m ■

ds

dr\

dl

dz

ds

dl

we will have

( 6 )

n (G, ds)

% /

A OÏL dvds.

According to this last expression, we have

(7)

ov

%

✓


	o(lsdK'dvds)



This equality gives the elementary law of electromagnetic induction. It fits well, as it should, in the

rlnrmpp an Book XV\ Chapter II ?

<N

ov

8 \ 01b dv ds \y~ a

I 4^

0 2 F(

dsôl
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It is enough, to make these two forms coincide, to take

F(r)

const.

5

t

:l note that

$

4

5 V

7


	

	Internal energy of a system of magnets and linear currents.







We have seen [Book XV, Chap. IV, equalities (4), (5), (6),

(7)] c I relates the internal energy of a system of arbitrary linear currents and magnets was of the following form

EU

Er + ^y

w

e-T

f ( DU, T )

T

dtf(Dlb,T)

atT



5V 2

--- COS0 COS0' -i- 1 - COSIO

ii'ds ds'

-xr

-i r

(/', ds), (r, dl), e]idsD\dv.

We shall continue to admit, in systems containing any currents, the definition of perfectly soft bodies that we gave in Li vre XV, Chapter IV, § 4. We shall use it to determine the function W.

Let's imagine a magnetic element D\L/dv invariable in position and magnetization placed in the presence of a conductor invariable in shape and position, crossed by a non uniform current of variable intensity.

Let e ds be the ordinary electromotive force; e' the electrodynamic induction electromotive force acting in the element ds ; as there is no electromagnetic induction, as there is no variation of magnetization in the system, the proposition which serves as a definition for perfectly soft bodies gives

e J ds.

Now we have

eJ ds - _ N 2 d_ x dt


	TS) dW



~dt h ~dt

i


	cosO cos0'-+



COSU)

J dsi' ds'.
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d_

dt

0

T

d&

The previous equality is therefore reduced to

3TL dvJ ^F[r, (r, ds), (r, dl)

5

,di

e-rds J dt

o.

Now J is only subject to vary in a continuous way along the conductor and to cancel itself at both ends if it is

open; these restrictions are also the only restrictions on -■

The preceding equality cannot therefore take place in general, if one

->

n had

'Ffr, (r, ds), (r, dl), e ]

0.

The internal energy of a system containing any currents and magnets is then given by the equality

EU

Er4-^ +w

0

rri,

T dT 1 q

( 8 )

-/[*

Dïl, T )

T

dg(31U, T)

dT

dv

X


	COS0 cos 0 f



I

X

costi> 1 ii' ds ds'.

2 /

s 3 . - Magnetization by any linear current.

We will make use of this equality to determine the laws of magnetization of soft iron by any linear currents.

Let's assume a system that contains . i° A permanent magnet 1 ;

2 0 A piece of soft iron 2}

30 Any conductor G, through which any current flows. . "

We assume all these bodies to be immobile; the magnetization of the 1st

soft varies "

Each element ds of the conductor contains an electro
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ordinary driving force eds\ an electromagnetic induction force e" ds.

According to the electromagnetic definition of perfectly soft bodies, we should have

cos 0 cosO

i

X

11

cos w ) JJ' ds ds '.

From equality (5),

Finally, according to usage, we neglect

On the other hand, if we pose

i i

i ? 2 (oil 2 ) = ÿiü

we will have

Let t), (ç 2 , j 2 , Ç 2 ), ^ 2 (^ 2 ? ^ 2 , £ 2 ) be the potential functions
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will give

( ^2) 'Oa? Ç

E8U

Eoï

oW

ô

0

rp toQ

1 - l q

dT

T

to* Â ( DK 2, T )

3)

àÇ 2

( <J\o2 ÛoAflg H - l)e) 2 ^ l)l)

1

tor ) 2

àDlU àT

Ü) n d(XDi

-- oiPo 2 -f--

d^TL o d v 3

*Ç

Ü 2 K 0 . ,


	OC/2 | 6ÏP2



£> O

I

Fj(OI'La)

By means of equalities (10), (11), (12) and (13), equality (9) cle

comes

d(Ü

1

0 2 )

21

/ d

d\ 2

y 2

d(t>lH- tD,)

toT)2

y 2

diXDi-hXDo)

%

s/'i

r dy dÇ 2 ds

à- ,

r dz

d- ,

r dz

dr l2 ds

J ds

oilo*]

F 2 ( 3 IL '2 )

Ooit)<>

àç 2 ds dÇ 2 ds

J ds

'lfî >9

/

F 2 ( t)FL 2 )

Sift

^2

^ r dx

to- r

r dy

\

d i]2 ds rl; 2 ds

J ds

©

f 2 (0 \W)

0

dv

This equality must take place regardless of the variations

3 2 , of the components of the magnetization at point ç 2 , v) 2 ,

0or£>2j ^

Ç 2 , of the perfectly soft body; we see that we must have (by deleting the useless indices) at any point (£, f\, 'Ç) of a perfectly soft body

oAa

F (OTL)

d(XD

1

©")

%

à- ,

r dy

d- ,

r dz

\

(i4)

F(3ÎL)

O.

F(OÎL)

à\

/'2

d(t 5 i + t 5 ,)

%

dr)

/ 2

d(tDi + tD t )_

%

S

✓

'àÇ

ds

di\

ds

d r

dz

d r

dx

à\

ds

~ à%

ds

d r

dx

d r

dy

dy]

ds

à\

ds

J ds

J ds

î

N

J ds

These are the fundamental laws of magnetization of a piece of soft iron under the action of any linear current that n a

with him no common point.
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Let's put

and write them down

(. 6 )

The three quantities <£, â are not, in general, the three partial derivatives of the same function of £, r\, Ç. For this to be the case, in fact, we would have to have

âl

à& _

atK

d'i]

w~

k to®.

àn)

àk

By means of the relation

d - à- d~ r r r

c /£' 2 Ô 7 ] 2

these equations can be written
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ELECTROMAGNETIC INDUCTION AND MAGNETIZATION.

When J is constant, i.e. when the current is closed and uniform, these equations are satisfied, as expected from the properties of closed and uniform currents.  We will see that they cannot be satisfied in general.

J being only subject to vary in a continuous way along the conductor, one can define a function J(#,y, s), continuous in all space and take the value of this function as the value of J at any point of a conductor. It is then easy to see that the first of the previous equations requires that we have

i"

d 2 r

dj

dy dz

d 2 r

dt dz

dx

di

dq dx dy

d 2

j

di- dz dy

à 2

r

di

of dx dz

d 2

di

d\ dy dx

5

î

These equations can only be verified if we have, at any point in space,

di <)J


	= O, - = O, - = O,



dx dy dz

that is, at any point of any conductor,

which expresses that the current is uniform.

This leads to the following proposition:

Unlike what happens in Vaimantation by the

f
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magnets or by

unified

7 are not the orthogonal trajectories of the same

soft iron magnetized by non-uniform currents, the lines cVaimcintation, whose tangent ci for director cosines -,

Tÿpr' are not the orthogonal trajectories of the same family of surfaces.

Except for this point, the theory of magnetization by any currents presents the greatest analogy with the theory of magnetization by magnets.

Let us take, for example, the case where the magnetizing function F(3flL) reduces to a constant magnetization coefficient k.

By means of the fundamental relation, quite easy to check on the equalities (i 5),

Ü 7 )

d<$

d-ri

at

o,

the equalities (16) give

6>1)V

à 7 )

atZ

A (A ü

AO,).

is it is known that at any point of the soft iron

08 )

AO o

1 71

~à[

atri

at

We have therefore, in all points of the soft iron,

( 1 9 )

d

6 * 7 )

atQ

at

Thus, when a perfectly soft body with a constant magnetization coefficient is subjected to the action of any currents, it takes on a magnetization which is, at each instant, the same as that of the current,

The

J /

alion

(18) and (19) show that the function Ü 2 verifies -n of The place both inside the soft iron and at

1 outside. 11 remains to find out under which condition it is subject

to the superlace of the soft iron.
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Now equations (16) give

X cos(N<-, x)

ofb COS (Nj, y)

cos (N/, z)

dÜ 2

toN i

(E* COS (N;, X)

^cos(N i -, j) H- a cos

4 [X cos(N/, x)

iPo cos (N/, y)

O

cos (N/, z)]

( io)

î ~ k

L d^t

( 5 ? cos (N/, x)

S cos (N/, y)

a cos

(N/, z)

d-0 2 . . dO*

dN e + ( 1+ ^ 7tA ) ^ - 0

which is the condition we are looking for.
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CHAPTER III.

FORCES THAT ACT BETWEEN A LINEAR CURRENT

AND A MAGNET.

g 1. - Action of a linear current on a magnet.

Given the law of electromagnetic induction and the expression of the internal energy of a system containing any linear currents and magnets, it will suffice to reproduce more or less verbatim the reasoning given in Book XV, Chapter VIII, to arrive at the following result:

When any linear current and a magnet are moved in the presence of each other, the mutual actions of these two bodies perform work equal to the sign

m

the variation is taken assuming Vaimantation invariable in magnitude and invariably linked, as direction, to the substance that forms the magnet.

The quantity

A OÏL dv J ds

represents the general form of the electromagnetic potential of a magnet and a linear conductor.

The form of this potential tells us immediately that the mutual actions of a magnetic element and any current are the same as the mutual actions of this current.

f
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of the small current equivalent, by hypothesis, to the magnetic element in the study of the induction phenomena.

Let's look for the action that any current exerts, according to the previous law, on a magnetic element.

This action is reduced to a force, with components X, Y, Z, applied to the middle m(£, r\, Ç) of the magnetic element and a torque whose axis has components L, M, N. Let us calculate these quantities X, Y, Z, L, M, N.

To determine X, let us give the magnetic element a translation 8!j. The electromagnetic potential of the current on the element will vary §11, and we will have

XBx

8n.

So it all comes down to calculating §11.

However, we have

We also have

8n

A

A

1/2

OÏL dv 8 / JA ds.

dy dX,

dz d'T]

d

1

ds dl ds dl J

dz d\ ds dl

d

1

r

dx dH, ds dl ) di\

dx d t\ ds d l

dy d

d

1

r

ds dl dl

We see then that if \ increases by §£, all the other parameters

remaining constant, we will have

SA

I

dz dt\ ds dl

dx dXl ds dl

dy d\ ds dl

d 2

dy dÇ\ r

ds dl

dz d

dl

02

ds dl 1 dl d-r\

1

O 2

dx dr\ \ r

Ts dl) dl dl

ùt.

496

BOOK XVI.

MAGNETS AND CURRENTS OF ANY KIND

This result gives us the first of three equalities

dz di\ ds dl

dx dÇ ds dl

dy <K

ds dl

d 2 r

d 2 1

r

dz d\

ds dl J d£ ài\

d 2 dx dir}\ r

dy d%

ds dl ds dl ) d£ dÇ

J ds *

Y

dx d'C ds dl

d 2 dy dT\ r

dz d^ ^. _

ds dl ds dl/dijdç,

dz d\ ds dl

d^

i

r

dr t

dy d%

dx di\

d 2 r

ds dl ds dl J di] d£_

J ds

Z

r

7 à* dy dç \ r

dz di]

ds dl ds dl J dÇ d£

-

/ dx

i

VJ* !

dz

dj\

^ i

d 2 r

-H

/dy d\

dx di] \

r

\ ds

lash

ds

dl j

dt, dr t

\ ds dl

ds dl J

à? J

J dsi

the other two are established in a similar way.

Let us now calculate the three quantities L, M, IV. Suppose that the element dl undergoes a rotation 8v around niL. The seven

quantities

d r

d 1 r

to the

r

à\ '

dt] '

àï '

doc

dy

ds '

dz

ds *

ds ;

d \

dl

remain invariant. We then have

■>
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We then have

°di

-s dr. 0 _i

dl

dr\

dl

d\

dl

ov

ov.

3a

dz

ds

à

3v

1

r

dl

dy " dr\ dx *d\ . "

Ts°di- j -d; 0 Ti u ' K

We thus obtain the last of the three equalities

L

Jt

V

DTldv

d

r

r

dy df]

dz d Ç

d

1

r

\ d s dl ds dl

dl

(2) 1

M

5V

= DU dv

-2

r fdz d l dr, \ ds dl

dx d~\ ds dl J

à

r dl

to- j

r dl

01 dl

\

\

N

%

V f

= DIL dv

9.

d

\

/

dx d\ dl \ ds dl

dy df] ds dl

dl dl

â T-dï

dr dl

Oc, dl ' dr]

The first two are established in a similar way.

dx

ds

J ds.

dy

ds

J ds

d

ds

J ds.

î.

Action of a magnetic element on a current element

whatever.

The action of a magnetic element AB on a conductor element MN = ds , through which a current flows from M to N

whose intensity is J in M and (J

£ /J

ds

ds) in N, is defined as

the action of any current on any current element. According to this definition, the work of the actions in question, in a displacement that brings the element MN to M'N', is equal to the electromagnetic potential of the element AB on a neck

MNN'M

letters, and

having :

In MN, an intensity that varies from J to f J

dJ

ds

ds

In NN', an intensity (J

\

(ü

ds

ds

D.

III.

32

1

■q8
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In

an intensity that varies from fj

çü

ds

ds);

In M'M, an intensity J.

It is easy to show that this action can be reduced to a force applied to the center O (x, y, z) of the element MN. We will propose to calculate the X, Y, Z components of this force.

Let A (d?) be the value of the quantity A for the system formed by the element AB and any conducting element of.

To calculate X, we give the element MN a translation ùx parallel to Ox. The two lines MM/, NN' are then parallel to Ox, of the same direction, and equal to o#.

According to the previous definition, we have

5 T (\

vt>x

ALdI Idv Ia(MN )Jds

1/2 L

A(NN') ( J

(A/ j y \ 'V


	ds ) ox as



A(N'M') 3ds

A (M'M) J 8a? j

If we notice that we have significantly

A(NN') + A(M'M)

o

we see that this equality can be written

Xox

IF

(3)

3TL dv J [A(MN )ds A(NN')8a?-t-A(N'M ')ds 4 - A(M'

1

9L d T

OÏL dv 4 A (NN') ds

✓

ds

We will denote by <r the angle under which, from the middle m of the magnetic element AB, we see the positive face of the circuit MNN'M'M. We will have

(4)

drs

dl

A(MN)cfo 4- A(NN') 8a? -+- A(N'M') ds-+- A(M'M)8a?

Let N be the normal to the positive face in question. Let r be the direction O m. We will have

cos(N, r) if n(ds, ox)

ds ox
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Ol


	we have



cos (N, r) = cos (N, x) cos (r, x)

cos (N, y) cos (r, y) -+- cos (N, z) cos (r, z)

On the other hand, it is easy to see that

cos (N, x)

O

?

cos(N,jk)

cos ( ds, OZ) sin (ds, OX)

dz

ds

sin (ds, OX) '

cos (N, z)

cos (ds, OY) sin (ds, OX)

(fy

ds

sin (ds, OX)

So we have

cos (N, r)

ôr d

dr dy

sin (ds, OX) ds dz Us

and, therefore,

(5)

da

dî

d

d

i

r dy

dl \ dz ds

à

r dz

dy ds

ds o#

On the other hand, we have

A(NN')

or

( 6 )

A(NN')

So if we put

to to

r

r

dx

dy

dz

d\

dt\

dl

dl

dl

i

O

0

to - , Y

r aç

dy dl

d- ,

r dî) dz dl

(7)

X

Y

Z

Xi -+- x 2 ,

Yi +

Y

2 >

Z

1

z 2 ,

the equalities (3), (4), (5) and (6) will demonstrate the first forms
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mules from each of the two groups:

k 3. Transformation of the previous formulas. - Comparison

of the law found with the laws of Ampère and Biot.

Let us examine the law of action of a magnetic element on a uniform current element, expressed by the formulas (8)

and (9).

The force which has X, Y, Z components keeps the same value, whether the conductor element on which it is exerted is crossed by a uniform current or by a non-uniform current. It can be decomposed into two forces, each of which emanates from one of the poles of the magnetic element. Each of these two forces is given by Ampère's law [Book XV, Chap. VI, equality (1)].

The force whose components are Xo, Yj, Z^ is different from o only if the conductor element on which it acts is crossed by a non-uniform current. It cannot be considered as the resultant of actions exercised separately by the poles

of the element.
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The two identities

which it is easy to verify, show that this force is at right angles to the axis of the magnetic element and to the straight line that joins the magnetic element to the conducting element.

The determinant

x - \ y - f\ z - 'c,

x 2 y 2 z 2

d\ d'f] dÇ

I dl dl dî

is reduced, quite calculated, to

The force in question therefore has, with respect to the axis of the magnetic element (Introduction, Ghap. II), a direction of rotation of the same

. di

sign that -r -

To find the magnitude of the force whose direction is thus perfectly determined, we will take for origin the middle O of ds 5 for x-axis the line v\ for z-axis the normal to / situated in the plane of r and dl , and on the same side of r as dl.  It is easy to see that, in this case, the force we are looking for reduces to

to its Y 2 component.

But, in this case,

5oa
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The size of the force is therefore

F

A 7 dJ , sin(r, "f/) D1L dv - as

v/

ds

Thus, Vaction of a magnetic element on any current element consists of:

i° Two forces, emanating from each of the two poles of the magnetic element; these forces are given by Ampère's law;

2° A force, normal to the magnetic axis of Vélément, at the junction line of the magnetic element and the current element, directed to the left of an observer located along the axis of the magnetic element and looking at the current element; this force has the magnitude

(io)

F

% sin ( r, dl)

T

DK dv

dJ

ds

ds

All these forces are applied in the middle of the

current.

Let us now examine the law, given by formulas (i) and (a), for the action of any current on a magnetic element, and compare it with the laws which were proposed, for the same action, by Ampère on the one hand and by Biot on the other.

According to Ampère, a current element ds, whose center has coordinates ( x , y, z ), exerts on a magnetic mass a,

located at point (£, ■/), Ç), a force whose point of application is

in ( x , y , z ), and whose components have the value [Book XV, Ghap. X, equality (i)l

i

cX?

/

x J ds

(H)

3

A


/



r [JL J ds

2
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l

v/

= [JL J ds

2

d r dz

| -<

dy

dï) ds .

ds

~r dx

d r

dz

ds

' to 'ï

ds

à- ,

r dy

d r

dx

dt ds

àr\

ds

Let's transport this force in such a way that its point of applica

I
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5 " li O It will then be necessary to add to this force nn

couple whose axis will have as components

■c

[?r(£

Z )

& ( r i-y)]>

01L

-- [&(£ -*)-X(Ç

*)]>

0L

'

[OC- (Y) - y) - ({■_

*)i,

or, by replacing OC-, fj,

& by their values

(

-t

% _ . d dr

~ /l [X}dS ds df'

( 12 ) <

01L

21 T 7 d dr

= y^ ids és^

' 0L

2t _ j d dr


	jï 1 **



Each magnetic element is subjected to the action of two forces such as the one given by the equalities (i i), applied in its two poles, and of two couples such as the one determined by the equalities (12).

By combining these actions, they can be reduced to a force applied to the middle of the magnetic element and to a

couple.

The force has the following components

Xds

3 t

/

J ds

( [ 3)

fi)ds

%

s/


	01 \jdv J ds



2

3 ds

\

~ OÏL dv J ds

v h dl

à |

dz

à- ,

r dy

dl

\ dr t

ds

OÇ ds

à (

( d r

dx

à- ,

r dz

dl

ds

àq ds

l (

(d X r

\ - ■ ■ -p

dy

Ô 'r±

dz ds

of] ds

As for

04)

fi ds = (Jffi h $2

) ds,

Billions =

= (Jttt J

h

s ) ds.

thread ds = (Ht| {- ÎI 2

) ds,

£ t ds, Mids, li ds being the components of the torque axis obtained in the composition of the forces represented by the equations
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lities (i i), and iTo ds, itl 2 ds, 2 ds being the components of Tax

of the couple obtained by the composition of the couples given by the equalities (12).

We will have

m ' ds

w

lities (11)

3

?

of the aegis

11 5 )

£1 ds

itli ds

îlti ds

% /

Oïl clv J ds

°_r (dy dr\

à

ds dl

%

y/

= 3tL-dvJds

v ?' /dz dl\ drj \ ds dl

%


	011 dv J ds



2

° r / rf,r

dz dÇ\ ds dl /

dx ds dl

dy dr\ 0 £ "fi ds

dr, dl

à- ,

r dy

0% dl

à- ,,

r aç

^ r dl ; (JC

\

?

On the other hand, from the formulas (12) we can easily deduce

06 )

£<>ds

5v

s/

St

OÏL dv J <r/s

() 2 0 /

lîlg =-- 01 L dv J ds

ds dl d% d 2 di'

y/

■2

Os dl dri

It 2 ds

3^ 0% Gold


	7 = JIL rfr J ds g



1/2 ds d/ dÇ

The equalities ( 1 3 ), (i 4 ), (i 5 ), (16) express, according to Ampère's law, the action of any current on a magnetic element. Let us compare them with the equalities (1) and (2) which express the true law of this action.

Equality
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allows us to give the first of the equalities (i) the form

X

51

✓


	011 d\



2

But we have

dy

H

d\

i

/

dr

i

ds \ 0<j 0Ç dl àri 0£ dl

d

at 2 r d

O 2

i

ds

0 ç dt] dl d2 ~r dx

r dt\

Gold; 2 dl

dX,

dl \ Or] 0£ ds

d'f)

dî

Gold] 2 ds

O 2 - ,

__£_ 5 T

0£ 0-; Os _r " OwOrj flfs

rj2

d*

i

r

^ 1

0 2 T

dt; àri

l

dx 2 ? d 2 r

dx toy 7

i

d 2 - ,

r ofÇ

<2 r//

r

d 2 - 7 d 2 - 7

/* dy * dz

^ 7 ]

e/.s

The previous equality can therefore be written

Now, either the current is closed; or, if it is open, the intensity is equal to o at both ends. So we have

5 o 6
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and the previous relations provide the first of the equalities

X

%

f


	OÏL dv



OÇ ds

' dr\

Y

5 V

v/


	011 dv



d r

dx

dt ds

ds

Z

5 t

/


	011 rfe



ds

ds

ds

M

m

dÇ

~dl

d r d

d\

dy dl

These equalities (17) can be written

X

3 V

/

OÏL rfc

d/

Bones

ds

ds

JT "?s,

(18)

Y

\ ÏL dv

d

d £

ds d/

6 ?

T

r dÇ 1 d J

dr d/

ds

ds,

Z

^ OÏL dv

\

v/

û?7)
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0

r

d;

dv dl

di

ds

ds

3 ds.

di

dz dl dy dl J ds

di

dz dl J ds

di

dx dl / ds

These equalities (18) show that the force that any current exerts on a magnetic element coincides with the faith 'ce given by the cVAmpere law in the case where the current is closed and uniform and only in this case.

If we compare formulas (2) and (i5), we see that

( > 9 )

it is necessary and sufficient that we have

( 20 )

/*-

ds


	o



?

L =

f Æ, ds,

M =

J & lj ds,

N =

f Ht ds.

that a current

e neck

given magpie

f iîl 2 1

is - 0 ,

on an Ampèrc law element, it

f tt 2 ds = o.
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Now we have, according to the equalities (16),
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iT 2 ds

d dr '"

St

dl dÇ

o

3 OÏL dv

d / dr\ cü

dl ld£

is

ds

In fact, in all circumstances,

J

d dr\ 1

dl d!~

o.

o

The equalities (20) thus become

d ( dr\ cl J

dl \ d% / ds to (dr\di_

dl] / ds to / dr\ di

ds

0

ds

o,

dl \dÇ/ ds

ds

o.

They teach us that the torque generated by the action of any current on a magnetic element is given by Ampere's law when the current is closed and uniform and only in this case.

Ampere's law is therefore exclusively applicable to the action of a closed and uniform current on a magnetic element.

Biot has given a law which differs from Ampère's in that the force , io, given by the equalities (11), is applied to the point (£, 7), Ç) and not to the point (x, y, z). In Biot's law, the action of a current element on a magnetic element is reduced to a force applied to the middle of the magnetic element and to a torque. As in Ampère's law, the force has as its components the quantities 3G ds, ds, % ds, given by the equalities (i3), but the components of the axis of the torque reduce to the quantities $ \ ds, ds, W, ds, given by the equalities (i 5 ).

The equalities (19) then teach us this result:

The torque exerted by any current on a magnetic element is always given exactly by the law of

Biot.

Equality (18) tells us that the force exerted by any current on a magnetic element is only reduced to the
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.force given by Biot's law only in the case where the current is closed and uniform.

The set of equalities (18) and (19) shows us that, in order to obtain the action that any current exerts on a magnetic element, it is necessary to add to the forces given by Biot's law a force exerted by each current element in the middle of each magnetic element and having as components

<\ I'm not sure what to do.

~ OÏL dv - ds y % ds

d dZ,

à- ,

r ar\

at

dl

dz dl

to r

d\

d- .

r aÇ

dz

dl

dx cil

d r

of

d ~r d%

dx

"dl

dy dl

?

?

This force has the same magnitude as the force whose components are given by the equalities (9), but it is opposite to it in direction.

We can therefore state the following law:

The action of any current on any magnet can always be seen as resulting :

1 0 Of the forces that each current element ds exerts on each magnetic mass p. Each of these forces, as Biot intended, is applied to the magnetic mass ;jl , normal to the plane of r and ds, directed to the left of an observer located in the element ds and looking at the magnetic mass; it has the magnitude

( 22 )

F

SV sin(r, ds)

2

,2

ij. J ds.

/<

/<

applied to the middle of Element D : normal to the plane of r and dl , directed to the right of this plane for an observer located along dl and looking at the element ds\ it has the magnitude

sin(r, dl)
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This last force cannot be broken down into actions exerted separately on each pole.

Thus, in this law, as in the law stated by Biot for closed and uniform currents, the actions exerted by a current element on a magnetic element are reduced to three forces which are respectively equal and of opposite direction to the three forces to which the action of the magnetic element on the current element is reducible. But these forces, while being respectively equal and of opposite direction, do not have the same points of application. The forces exerted on the magnetic element have, as points of application, the poles of this element and its middle; the forces exerted on the current element are applied to the middle of this element. The set of six forces in question thus forms three elementary couples, according to the expression of Biot and Ampère.

Can we, as happens in Ampère's law of closed and uniform currents, decompose the action of any current on a magnetic element into actions exerted by each current element ds on the magnetic element, in such a way that these actions are equal and directly opposite to the actions of the magnetic element on the current element? In other words, can we in the statement of the preceding law, assume that all the forces exerted by the element ds have as their point of application the middle of the element ds?

Let us make this hypothesis. We will easily find that the action of any current on a magnetic element will be reduced to a force applied to the middle of the magnetic element and having as components the quantities X, Y, Z, given by the equalities (i), and to a torque whose axis will have as components

J IO

BOOK XVI.

MAGNETS AND CURRENTS OF ANY KIND

equalities (16) and _C 3 , Jït 3 , ^3 by the following equalities

( 2 î )

£3 ds =

= [H(* -O -Z (y - 7 )] ds,

iïl 3 ds =

= [Z (a? -£ ) -3 (z ~

-O] ds"

HI 3 ds = C S (J


	H (x - £ )] ds.



The hypothesis made can therefore only lead to exact results if we have

( 25 )

f (m

£3 )ds

o,

IÏI3) ds

o

)

ÎH3 ) ds

o.

Equalities (21) and (24) give

£3 ds

5 V , l7 , r dJ to Or _ dv I 7 \ j ■*> ds y

ds 01 Oi

iîta ds

5 t . rdl 0 Or - 31 L dv I - - - ds,

y/

ds 01 0v\

îla ds

% , C d d dr J

r OÏL dv I --- - ds.

s/

ds dl dÇ

But we have

àJ à àr às dl d\

ds

J

d dr

dl toq

r $2 dj

0

j dl tos

ds

In fact, in all circumstances,

J

à àr dl

T=o

Jo

So we have

( 26 )

£3 ds =

. * y/2

0 IL dvj

r j jl

1 dlàs

àr , % ds '

Xïl 3 ds =

51

v 2

OÏL dv J

1 (Jl ds

"If ds,

drj

îl 3 ds _ 5t

OÏL- dvj

f, *

tor , - ds.

v/2

01 Bone

01

By comparing these equalities (26) with the equalities (16), it is easy to see that the equalities ( 25 ) are always satisfied.

Therefore, the action of any current on a

CEIAP. III. - FORCES BETWEEN A LINEAR CURRENT AND A MAGNET. 5ll

Any magnet can always be considered as resulting :

1 ^ e f orces that each current element ds exerts on

each magnetic mass ja. Each of these forces, as Ampère intended, is applied at a point coincident with the middle of the element ds, normal to the plane of r and ds, directed to the left of an observer located in the element ds and looking at the mass [a; it has the magnitude

2° The forces that each current element ds exerts on each magnetic element 31 L dv. Each of these forces is also applied at a point coinciding with the middle of the element ds, normal to the plane of r and dl, directed to the right of an observer situated along dl and looking at the element ds; it has the magnitude

sin ( dl) r %

OÏL dv

According to this statement, the action of any current on a magnetic element is the same as if the action of each current element on the magnetic element were reduced to a force equal and directly opposite to the action of the magnetic element on the current element.

SUK THE APPLICATION OF OHM'S LAW TO LINEAR CURRENTS.

The considerations set out on page 411 of Volume I should be completed as follows:

We have ( foc. cit., line 3 )

or

But equality (7) ( t. I, p. 4 ° 3 ) shows that e/i any point on the surface of a conductor through which a uniform current flows, the flux lines are tangent to the surface.

On the other hand, it can be shown (t. I, p. 41 5 ) that at any point of a homogeneous conductor, the lines of flux coincide with the trajectories orthogonal to the surfaces of equal potential level.

It is thus seen that the surfaces of equal level, traced inside a homogeneous conductor traversed by uniform currents, normally intersect the surface of the conductor .

Hence this first consequence:

The straight section A is a level surface.

The various infinitely adjacent straight sections being substantially parallel, we find this second consequence:

dV

The quantity - has approximately the same value at all points of the area A. The previous equality becomes

J

A dV

JR ds

The quantity ~ refers to a point of the plane A, any point, but

inside the conductor. The line s being tangent to the surface of the conductor, this quantity has the same value (t. I, p. 91), at a point of the plane A

D.
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outside the conductor and infinitely close to its surface; this is the meaning that must be attributed to it in the formula ( 3 ) (t. I, p. £n).

NOTE B.

follows THE THEORY OF THERMO-ELECTRIC CURRENTS.

If we want to apply the general equations of electrical equilibrium [t, I, p. 4^9, equations (4)] to a conductor whose temperature varies from one point to another, but which is, at all points, formed of the same metal, we must pose

d0 d0 d&

If one observes in addition that one has [t. I, p.

363 , equality (16)]

H =

the quoted equations become

à&

df '

dV

dx

Thus, between the various unequally hot parts of the same metal, there is no difference in potential level.

This proposal, in conformity with certain ideas of Clausius ( 1 ), seems to be contradicted by experience. Indeed, M. Pellat has shown that there is a difference in potential level between two plates made of the same metal and heated to different temperatures ( 2 ).

This phenomenon, says M. Pellat, had never been observed to my knowledge, because it should not be confused with the one predicted by Sir W. Thomson and whose existence he showed by experiment. The Thomson effect is none other than the Peltier effect between two unequally hot parts of the same metal made dissimilar by an inequality of temperature. There is the same difference between the Thomson effect and the phenomenon we are dealing with as between the Peltier effect and the phenomenon studied so far between two dissimilar metals. "

In a recent work ( 3 ), M. H. Poincaré opposes this contradiction

1 ) II. Clausius, Sut' Inapplication de la Théorie mécanique de la chaleur aux phénomènes thermo-électriques ( Mémoires sur la Théorie mécanique de ta chu leur , trad. par F. Folie, t. IL p. 162 ).

( 3 ) IL Pellat, Difference of potential of the electric layers which cover two metals in contact Annales de Chimie et de Physique , 5 " série, t. XXIV,

p. 83 ; 1881).

I II. Poincaré, Thermodynamics, pp. 38 1 ctsuiv. Paris, 1892.
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has theone of the thermo-electric phenomena that we have developed. One could however, and M. Poincaré himself points out this loophole, avoid this objection by observing that the preceding proposition

Qttivmn rtn a I ^ r, 1_ * 1

It is clear that the values taken for the same metal, "a distance

a

surf

equal between them. The experiment of Mr. Pellat proves, on the contrary, that the values taken by the same quantities on the terminal surfaces are unequal. Between these two conclusions, there is no contradiction.

But another important observation must be made in the explanation of Mr. Pellat's experiment.

What do we mean when we talk about two conductors formed by the same metal heated to different temperatures? We mean that the parameters that define the material forming a conductor all have the same value for these two conductors, except for the temperature, which does not have the same value for each of them.

However, the parameters that define the nature and state of a conductor are not chosen in an arbitrary way. Most of the properties of the internal thermodynamic potential, and in particular those on which the demonstration of the fundamental equation

H

d© dT '

assume that the choice of these parameters is subject to a certain law (i).

These parameters are chosen in such a way that, if they remain constant while the temperature experiences some variation

)

no external work is done and no live force is taken by the system.

If, for example, it is a question of defining a body of a given chemical nature, taken in a given molecular state, it will be necessary to add to the temperature, as a variable parameter, its specific volume.

What does this expression mean: two conductors made of the same metal and heated to a different temperature? It will mean that these two conductors are not only formed of a metal of the same nature, taken in the same molecular state, but also that in each of them this

■t

metal has the same density. In other words, it means that the expansion accompanying the temperature variations of the metal takes place under constant volume.

If, on the other hand, the various conductors are subjected to a constant and uniform pressure, two conductors made of the same kind of metal, heated to different temperatures, cannot be said to be of the same metal.

If a conductor is formed at all its points by a metal of the same

( ■ ) See Tome I, p. 34i. See also P. Duhem, Sur les équations générales de la Thermodynamique ( Annales de l'École Normale supérieure, 3 e série, t.VII,

p. 23 i; 1891).
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If it is brought to a variable temperature from one point to another and if it is subjected to a uniform and constant pressure P, it will no longer be necessary, in equations ( 4 ) and ( 5 ) (t. I, pp. 489-49°) P° ser

d0 d0 toQ

dx = °' dÿ = °' dl = ° ;

but, denoting by p(P, T) the specific volume of the metal under pressure P, at temperature T,

d® d® dv d® d® do d® d® do

dx do àx ' ày do dy , àz do àz

or, by designating by o 0 the specific volume of the metal under the pressure P, at the temperature of melting ice; by "(P, T) the coefficient of expansion of the metal under the constant pressure P, at the temperature T,

We can see that at two points of this conductor where the temperature has different values T and T'the potential function will have different values V and V', linked by the relation

c >0 [ o( P, T), T ] g ( p T ) dT __ Q

do

In the theories contained in Chapters VIII, IX and X of Book V, we have always understood the word "metal" in the sense we have just described. If we wish to apply these theories to experiments carried out under constant and uniform pressure, we must agree to neglect the dilatation of metals.

If one does not want to make a similar approximation, one must take up these theories again on new grounds, which, moreover, is done without any difficulty, as we shall see.

Inside a metal whose nature remains the same, but whose temperature varies from one point to another, the two functions we have designated (t. I, p. 490 P° r H(a?,7, z, t) and ÿ(x,y, z,t) become simple functions of o and T. If the external pressure is kept uniform and constant, 0 becomes a simple function of T, and the same is true of the functions H(x,y, z,T) and l)(x,y , -s,T), which we may then denote by h'( T) and ij'(T). From this starting point, we can develop a theory of thermoelectric currents in all similar to the one we have outlined. The two functions h' T), ij}'(T) will play in the
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the same role as the two functions A(T), $(T) in the second theory.

will have the value

(2)

ff

p'b _

1 a ~

_ [Aa(T) -A&(T)1T

E

Nothing will therefore be changed thermoelectric currents.

We will have [t. I, p. 363 , equality (16)]

relations that link the Peltier effect and the

a; (T)

d8a(?a,T)

dT

or

Aa( T )

h' b { T)

)

" }

H(T) =

d® a

_ à® a

àv a

dT

àv a

dT '

d®b

à® b

dv b

dT

àvb

dT '

à® b (Vb,T)

dT

or finally, by designating by w 0 , ( 3 (P,T) the quantities analogous to p 0 and

a(P, T), relative to the metal ô,

(3)

and, therefore,

(4) '

Ai(T)

1

S Iuj



11

d® a

' T 7 ~

OV a

K( T):

I

® H

II

à®b

w 0 -

OVb

486, equality (i 3 )]

■

D * ®a~ ®b

a E

dV b a

d@ a

dT

£ \

dT

"(P,T),

P(P,T).

d@b

dT

The comparison of the equalities (2) and ( 4 ) gives

(Ü) Pa A (T)

sT d D*(T)

E

dT

T P d®a f p rp^

t>o - a(P, T )

E

dp

a

"-£ffK p . T >

This is the relation which must replace the relation of M. Lorentz [t. I, p. 486, equality ( 14)]*.

This modification to the relation of M. Lorentz will modify relation (18) (t. I, p. 5 io) which will become

C

S [D£(Ti)-D*(T 0 )]

Ti

Wo

T,

à®b

dvb

B(P, T) dT

( 6 )
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The equality (sî) (t. I, p. 617) is general. Within a metal of the same nature at all its points and subjected to a uniform pressure, one must pose not only

but

We will then have, for the coefficient of the calorific effect which is added to the Joule effect, the value

or

The coefficient of Xeffect Thomson thus defined will keep, in the new theory of the thermoelectric currents the relations which had, in the old theory, the coefficient of the effect Thomson otherwise defined.

This shows how the whole theory of thermoelectric currents can be taken up again, taking into account the dilatation of metals. Only the proposals in which the differences in potential level at the contact are mentioned will be altered.

One last remark: M. Poincaré (*) objects to the theory that we have exposed the difficulties raised by the consideration of open currents.

Since, in all this theory, we have only ever considered conductors in electrical equilibrium, or conductors flowing with closed and uniform currents, we do not think that this objection is well founded.

NOTE C.

ON AN EXPERIMENT by ANTOINE-CÉSAR BECQUEREL.

The principles developed in the previous Note allow us to solve another difficulty presented by the theory of thermoelectric currents.  We will briefly explain this solution.

1 ) H. Poincaré, Thermodynamics, p. 390.
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A demonstration, similar to that which we have exposed in Volume I,

page 490, will allow us to state the following law:

*

If a metallic conductor, everywhere of the same nature, is subjected to

a uniform pressure, this conductor cannot be the seat of currents

sensitive, regardless of the temperature distribution on that system.

We have reported (t. I, p. 492) a famous experiment of Antoine Gésar Becquerel which contradicts this law, and we have indicated that, according to

Mr. Magnus, this experiment had to be explained by the work hardening of the platinum wire used to perform it.

Gaugain ( 1 ) and M. Leroux ( 2 ) have shown, by a series of experiments, that this interpretation of M. Magnus could not be accepted. They have

proves

1 O

Q

1 work hardening if it had occurred, the production of the phenomenon was not prevented;

That by undoing the knot without annealing the metal, which could only increase the work hardening, the thermoelectric effect disappeared;

3 ° That the formation of a spiral was never sufficient to produce the phenomenon, provided that there was no contact between two different spirals;

4 ° That the effect observed by A.-G. Becquerel occurred whenever two very unevenly heated regions of the circuit were brought into contact.

It must therefore be recognized that the experiments of À.-C. Becquerel are in contradiction with the previous law.

If we refer to the hypotheses on which the demonstration of the preceding law is based, we shall find without difficulty the explanation of this disagreement. We relied on the proposition that the two functions H (x,y,z, T) and r *)(a?, JK, T) were, within the metal, simple functions of T, h r ( T) andjÇ'(T). This proposition itself was subordinated to this other one: there is, at every point inside the metal, the same pressure P. It would be enough, moreover, if the pressure P, without being constant, were a simple function of T, for the demonstration to hold. But this last proposition will become false in general if the metal, hindered by obstacles, undergoes an unequal dilatation. This is what can only happen when, as in the experiment of A.-C. Becquerel's experiment, two parts of the circuit, brought to notably unequal temperatures, are in direct contact.

( J ) Gaugain, Mémoire sur les courants thernio-electriques (Annales de Chimie

et de Physique , 3 e série, t. LXVI, p. 8i; 1862).

( 2 ) Leroux, Recherches sur les courants thermo-eleclriques (Annales de Chimie et de Physique, 4 e série, t. X, p. 201; 1867).
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NOTE D.

ON THE VARIATION OF THE ELECTROMOTIVE FORCE OF A BATTERY

WITH THE PRESSURE IT BEARS.

This variation is related to the increase of volume ov that the undergoes by the effect of the reaction which occurs there, while it is crossed by the quantity of electricity J dt\ This relation is expressed by Legality [t. I, p. 548, equality (1 5 )]

ov.

We believe we were the first to indicate this relationship. It was first published in our work on the thermodynamic potential ( l ).

Recently, M. H. Gilbault ( 2 ) proposed to submit this relationship to the control of the experiment. Here is the table which summarizes the results of his research. The electromotive forces are evaluated in ten-thousandths

of volts; pressures in hundreds of atmospheres :

ï.

II.

III.

IV.

V.

VI.

VII.

VIII.

IX.

Batteries

Daniell (8 °/ 0 ZnSO 4 ; 24 % CuSO*).

Daniell (20 °/ n ZnSO*; CuSO 4 in saturation).  Daniell (27.66 °/ 0 Zn SO 4 ; CuSO' to saturation).

Warren de la Rue (1 °/ 0 ZnCl a ).

Warren de la Rue ( 4 o °/ 0 ZnCP).

Planted accumulator (8.8 °/ 0 S 0 4 H 3 ).

Volta..

Bunsen.

Pi le to eaz..

dC

dP

calculated.

observed.


	
7,18



	
4 - 6





H- 5,17


	4 - 5



-+- 2,2

-+- 2

-+- 6,62

^ " i

~ 5,04


	
5



	
12,7



	
1 2





-586

-600

-383

-4o5

-+865

-1-845

The experiments of Mr. Gilbault provide, as we can see, a nice confirmation of the thermodynamic theory of the battery.

NOTE Ë.

ON THE THEORY OF THE DIELECTRIC PLATE CAPACITOR.

Mr. II. Lorberg, professor at the University of Bonn, was kind enough to point out an error and an omission which crept into the

(') P. Duuem, Le potentiel thermodynamique et .ses applications , p. 117.  Paris; 1886.

(' ) H. Gilbault, Variation of the electromotive force of batteries with pressure ( Comptes rendus . t. CXIIL p. 465; 1891). - Étude sur la variation de la force électromotrice des piles avec la pression ( La lumière électrique, t. XLII, pp. 7 et 65; 1891 ).
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theone of the dielectric plate capacitor (t. II, pp. 355 - 362 ). We will here repair both.

The two constants Dj and Vj, introduced by the equalities (n) (p. 358), are linked by the equality ( 9 bis) (p. 35 9 ). It is not possible, in general, to arrange the ratio of these constants in such a way that equality (io bis) is ^rified at any point of the surfaces Sg, S 3 . The proposed solution is therefore, in & ener al, unacceptable. But it becomes acceptable if the ratio

to W

dv '

dN 3

has the same value at any point P of the surfaces Sj, S 3 . This is what happens in the two particular cases treated on pages 35 9 and following.

In Volume II, page 36i, line 4. the formula

should be replaced by the following

y being the load which, distributed over the conductor 1 , brings it to the potential level 1 . If we denote by C the capacity of this conductor, we have

eC = y.

The three formulas that follow the one we have just discussed must also be corrected by introducing the factor y in the second member.

A similar correction must be made to some formulas on pages 364 and 365. It is so easy that the reader will have no trouble finding it.

END OF THE THIRD VOLUME.
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