
    
      [image: First Edition.]
    

  The Ruby Programming Language

David Flanagan


Yukihiro Matsumoto


Editor
Mike Loukides

Copyright © 2008 David Flanagan

O’Reilly books may be purchased for educational, business, or
      sales promotional use. Online editions are also available for most
      titles (http://safari.oreilly.com). For
      more information, contact our corporate/institutional sales department:
      (800) 998-9938 or corporate@oreilly.com.


Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly
      logo are registered trademarks of O’Reilly Media, Inc. The
      Ruby Programming Language, the image of
      Horned Sungem hummingbirds, and related trade
      dress are trademarks of O’Reilly Media, Inc.
Java™ and all Java-based trademarks are registered trademarks of
      Sun Microsystems, Inc., in the United States and other countries.
      O’Reilly Media, Inc. is independent of Sun Microsystems.
Many of the designations uses by manufacturers and sellers to
      distinguish their products are claimed as trademarks. Where those
      designations appear in this book, and O’Reilly Media, Inc. was aware of
      a trademark claim, the designations have been printed in caps or initial
      caps.


While every precaution has been taken in the preparation of this
      book, the publisher and authors assume no responsibility for errors or
      omissions, or for damages resulting from the use of the information
      contained herein. The drawings on the chapter title pages were drawn by
      why the lucky stiff and are licensed under the
      Creative Commons Attribution-ShareAlike 3.0 License. To view a copy of
      this license, visit http://creativecommons.org/licenses/by-sa/3.0/legalcode
      or send a letter to Creative Commons, 171 2nd Street, Suite 300, San
      Francisco, California, 94105, USA.


This book uses RepKover™, a durable and flexible lay-flat
      binding.


[image: ]


O'Reilly Media



A Note Regarding Supplemental Files



Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596516178/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface



This book is an updated and expanded version of Ruby in a
    Nutshell (O’Reilly) by Yukihiro Matsumoto, who is better known as Matz. It
    is loosely modeled after the classic The C Programming
    Language (Prentice Hall) by Brian Kernighan and Dennis Ritchie,
    and aims to document the Ruby language comprehensively but without the
    formality of a language specification. It is written for experienced
    programmers who are new to Ruby, and for current Ruby programmers who want
    to take their understanding and mastery of the language to the next
    level.
You’ll find a guide to the structure and organization of this book
    in Chapter 1.
Acknowledgments



David Flanagan



Before anything else, I must thank Matz for the beautiful
        language he has designed, for his help understanding that language,
        and for the Nutshell that this book grew out
        of.
Thanks also to:
	why the lucky stiff for the delightful
            drawings that grace these pages (you’ll find them on the chapter
            title pages) and, of course, for his own book on Ruby,
            why’s (poignant) guide to Ruby, which you can
            find online at http://poignantguide.net/ruby/.

	My technical reviewers: David A. Black, director of Ruby
            Power and Light, LLC (http://www.rubypal.com); Charles Oliver Nutter of
            the JRuby team (http://www.jruby.org) at Sun Microsystems; Shyouhei
            Urabe, the maintainer of the Ruby 1.8.6 branch; and Ken Cooper.
            Their comments helped improve the quality and clarity of the book.
            Any errors that remain are, of course, my own.

	My editor, Mike Loukides, for asking and persistently
            encouraging me to write this book, and for his patience while I
            did so.



Finally, of course, my love and thanks to my family.
—David Flanagan
http://www.davidflanagan.com
January 2008


Yukihiro Matsumoto



In addition to the people listed by David (except myself), I
        appreciate the help from community members all around the world,
        especially from Japan: Koichi Sasada, Nobuyoshi Nakada, Akira Tanaka, Shugo
        Maeda, Usaku Nakamura, and Shyouhei Urabe to name a few (not in any
        particular order).
And finally, I thank my family, who hopefully forgive their
        husband and father for dedicating time to Ruby
        development.
—Yukihiro Matsumoto
January 2008




Conventions Used in This Book



The following typographical conventions are used in this
      book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
            file extensions.

	Constant
          width
	Used for program listings, as well as within paragraphs to
            refer to program elements such as variable or function names,
            datatypes, environment variables, statements, and keywords.

	Constant width
          bold
	Shows commands or other text that should be typed literally
            by the user.

	Constant width
          italic
	Shows text that should be replaced with user-supplied values
            or by values determined by context.




Using Code Examples



This book is here to help you get your job done. In general, you
      may use the code in this book in your programs and documentation. You do
      not need to contact us for permission unless you’re reproducing a
      significant portion of the code. For example, writing a program that
      uses several chunks of code from this book does not require permission.
      Selling or distributing a CD-ROM of examples from O’Reilly books does
      require permission. Answering a question by citing this book and quoting
      example code does not require permission. Incorporating a significant
      amount of example code from this book into your product’s documentation
      does require permission.
We appreciate, but do not require, attribution. An attribution
      usually includes the title, author, publisher, and ISBN. For example:
      “The Ruby Programming Language by David Flanagan
      and Yukihiro Matsumoto. Copyright 2008 David Flanagan and Yukihiro
      Matsumoto, 978-0-596-51617-8.”
If you feel your use of code examples falls outside fair use or
      the permission given above, feel free to contact us at permissions@oreilly.com.

How to Contact Us



Please address comments and questions concerning this book to the
      publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707 829-0104 (fax)

We have a web page for this book, where we list errata, examples,
      and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/9780596516178

To comment or ask technical questions about this book, send email
      to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource
      Centers, and the O’Reilly Network,
      see our web site at:
	http://www.oreilly.com


Safari® Enabled



Note
When you see a Safari® Enabled icon on the cover of your
        favorite technology book, that means the book is available online
        through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a
      virtual library that lets you easily search thousands of top tech books,
      cut and paste code samples, download chapters, and find quick answers
      when you need the most accurate, current information. Try it for free at
      http://safari.oreilly.com.

Chapter 1. Introduction



[image: image with no caption]

Ruby is a dynamic programming language with a complex but expressive
    grammar and a core class library with a rich and powerful API. Ruby draws
    inspiration from Lisp, Smalltalk, and Perl, but uses a grammar that is
    easy for C and Java™ programmers to learn. Ruby is a pure object-oriented
    language, but it is also suitable for procedural and functional
    programming styles. It includes powerful metaprogramming capabilities and
    can be used to create domain-specific languages or DSLs.
Matz on Ruby
Yukihiro Matsumoto, known as Matz to the English-speaking Ruby community, is
      the creator of Ruby and the author of Ruby in a
      Nutshell (O’Reilly) (which has been updated and expanded into
      the present book). He says:
I knew many languages before I created Ruby, but I was
        never fully satisfied with them. They were uglier, tougher, more
        complex, or more simple than I expected. I wanted to create my own
        language that satisfied me, as a programmer. I knew a lot about the
        language’s target audience: myself. To my surprise, many programmers
        all over the world feel very much like I do. They feel happy when they
        discover and program in Ruby.
Throughout the development of the Ruby language, I've
        focused my energies on making programming faster and easier. All
        features in Ruby, including object-oriented features, are designed to work
        as ordinary programmers (e.g., me) expect them to work. Most
        programmers feel it is elegant, easy to use, and a pleasure to
        program.


Matz’s guiding philosophy for the design of Ruby is summarized in
      an oft-quoted remark of
      his:
 Ruby is designed to make programmers
        happy.



A Tour of Ruby



This section is a guided, but meandering, tour through some of the
      most interesting features of Ruby. Everything discussed here will be
      documented in detail later in the book, but this first look will give
      you the flavor of the language.
Ruby Is Object-Oriented



We’ll begin with the fact that Ruby is a
        completely object-oriented language. Every value
        is an object, even simple numeric literals and the values true, false, and nil (nil is a special value that indicates the
        absence of value; it is Ruby’s version of null). Here we invoke a method named class on these values. Comments begin
        with # in Ruby, and
        the => arrows in the comments indicate the value returned by the
        commented code (this is a convention used throughout this
        book):
1.class      # => Fixnum: the number 1 is a Fixnum
0.0.class    # => Float: floating-point numbers have class Float
true.class   # => TrueClass: true is a the singleton instance of TrueClass
false.class  # => FalseClass
nil.class    # => NilClass

In many languages, function and method invocations require
        parentheses, but there are no parentheses in any of the
        code above. In Ruby, parentheses are usually optional and they are
        commonly omitted, especially when the method being invoked takes no
        arguments. The fact that the parentheses are omitted in the method
        invocations here makes them look like references to named fields or
        named variables of the object. This is intentional, but the fact is,
        Ruby is very strict about encapsulation of its objects; there is no
        access to the internal state of an object from outside the object. Any
        such access must be mediated by an accessor method, such as the class method shown above.

Blocks and Iterators



The fact that we can invoke methods on integers isn’t just an
        esoteric aspect of Ruby. It is actually something that Ruby
        programmers do with some frequency:
3.times { print "Ruby! " }   # Prints "Ruby! Ruby! Ruby! "
1.upto(9) {|x| print x }     # Prints "123456789"

times and upto are methods implemented by integer objects. They are a special kind
        of method known as an iterator, and they behave
        like loops. The code within curly braces—known as a block—is associated with the
        method invocation and serves as the body of the loop. The use of
        iterators and blocks is another notable feature of Ruby; although the
        language does support an ordinary while loop,
        it is more common to perform loops with constructs that are actually
        method calls.
Integers are not the only values that have iterator
        methods. Arrays (and similar “enumerable” objects) define an
        iterator named each, which invokes
        the associated block once for each element in the array. Each
        invocation of the block is passed a single element from the
        array:
a = [3, 2, 1]     # This is an array literal
a[3] = a[2] - 1   # Use square brackets to query and set array elements
a.each do |elt|   # each is an iterator. The block has a parameter elt
  print elt+1     # Prints "4321"
end               # This block was delimited with do/end instead of {}

Various other useful iterators are defined on top of each:
a = [1,2,3,4]                # Start with an array
b = a.map {|x| x*x }         # Square elements: b is [1,4,9,16]
c = a.select {|x| x%2==0 }   # Select even elements: c is [2,4]
a.inject do |sum,x|          # Compute the sum of the elements => 10
  sum + x 
end

Hashes, like arrays, are a fundamental data structure in Ruby. As their name
        implies, they are based on the hashtable data structure and serve to
        map arbitrary key objects to value objects. (To put this another way,
        we can say that a hash associates arbitrary value objects with key
        objects.) Hashes use square brackets, like arrays do, to query and set
        values in the hash. Instead of using an integer index, they expect key
        objects within the square brackets. Like the Array class, the Hash class also defines an each iterator method. This method invokes
        the associated block of code once for each key/value pair in the hash,
        and (this is where it differs from Array) passes both the key and the value as
        parameters to the block:
h = {                         # A hash that maps number names to digits
  :one => 1,                  # The "arrows" show mappings: key=>value
  :two => 2                   # The colons indicate Symbol literals
}  
h[:one]                       # => 1.  Access a value by key
h[:three] = 3                 # Add a new key/value pair to the hash
h.each do |key,value|         # Iterate through the key/value pairs
  print "#{value}:#{key}; "   # Note variables substituted into string 
end                           # Prints "1:one; 2:two; 3:three; "

Ruby’s hashes can use any object as a key, but Symbol objects are the most commonly used. Symbols are immutable,
        interned strings. They can be compared by identity rather than by
        textual content (because two distinct Symbol objects will never have
        the same content).
The ability to associate a block of code with a method
        invocation is a fundamental and very powerful feature of Ruby.
        Although its most obvious use is for loop-like constructs, it is also
        useful for methods that only invoke the block once. For
        example:
File.open("data.txt") do |f| # Open named file and pass stream to block
  line = f.readline          # Use the stream to read from the file
end                          # Stream automatically closed at block end

t = Thread.new do       # Run this block in a new thread
  File.read("data.txt") # Read a file in the background
end                     # File contents available as thread value

As an aside, notice that the Hash.each example previously included this
        interesting line of code:
print "#{value}:#{key}; "    # Note variables substituted into string 

Double-quoted strings can include arbitrary Ruby expressions
        delimited by #{ and }. The value of the expression within these
        delimiters is converted to a string (by calling its to_s method, which is supported by all
        objects). The resulting string is then used to replace the expression
        text and its delimiters in the string literal. This substitution of
        expression values into strings is usually called string
        interpolation.

Expressions and Operators in Ruby



Ruby’s syntax is expression-oriented. Control structures such as if that would be called statements in other
        languages are actually expressions in Ruby. They have values like
        other simpler expressions do, and we can write code like this:
minimum = if x < y then x else y end

Although all “statements” in Ruby are actually expressions, they
        do not all return meaningful values. while loops and
        method definitions, for example, are expressions that normally return
        the value nil.
As in most languages, expressions in Ruby are usually built out
        of values and operators. For the most part, Ruby’s operators will be
        familiar to anyone who knows C, Java, JavaScript, or any similar
        programming language. Here are examples of some commonplace and some more unusual Ruby
        operators:
1 + 2                    # => 3: addition
1 * 2                    # => 2: multiplication
1 + 2 == 3               # => true: == tests equality
2 ** 1024                # 2 to the power 1024: Ruby has arbitrary size ints
"Ruby" + " rocks!"       # => "Ruby rocks!": string concatenation
"Ruby! " * 3             # => "Ruby! Ruby! Ruby! ": string repetition
"%d %s" % [3, "rubies"]  # => "3 rubies": Python-style, printf formatting
max = x > y ? x : y      # The conditional operator

Many of Ruby’s operators are implemented as methods, and classes
        can define (or redefine) these methods however they want. (They can’t
        define completely new operators, however; there is only a fixed set of
        recognized operators.) As examples, notice that the + and * operators behave differently for integers
        and strings. And you can define these operators any way you want in
        your own classes. The << operator is
        another good example. The integer classes Fixnum and
        Bignum use this operator for the
        bitwise left-shift operation, following the C programming language. At
        the same time (following C++), other classes—such as strings, arrays,
        and streams—use this operator for an append operation. If you create a
        new class that can have values appended to it in some way, it is a
        very good idea to define <<.
One of the most powerful operators to override is []. The
        Array and Hash classes use
        this operator to access array elements by index and hash values by
        key. But you can define [] in your
        classes for any purpose you want. You can even define it as a method
        that expects multiple arguments, comma-separated between the square
        brackets. (The Array class accepts
        an index and a length between the square brackets to indicate
        a subarray or “slice” of the array.) And if you want to
        allow square brackets to be used on the lefthand side of an assignment
        expression, you can define the corresponding []= operator. The
        value on the righthand side of the assignment will be passed as the
        final argument to the method that implements this operator.

Methods



Methods are defined with the def
        keyword. The return value of a method is the value of the last
        expression evaluated in its body:
def square(x)   # Define a method named square with one parameter x
  x*x           # Return x squared
end             # End of the method

When a method, like the one above, is defined outside of a class
        or a module, it is effectively a global function rather than a method
        to be invoked on an object. (Technically, however, a method like this
        becomes a private method of the Object class.)
        Methods can also be defined on individual objects by prefixing the
        name of the method with the object on which it is defined. Methods
        like these are known as singletonmethods, and they are how
        Ruby defines class methods:
def Math.square(x)  # Define a class method of the Math module
  x*x
end

The Math module is part
        of the core Ruby library, and this code adds a new method to it. This
        is a key feature of Ruby—classes and modules are “open” and can be
        modified and extended at runtime.
Method parameters may have default values specified, and methods
        may accept arbitrary numbers of
        arguments.

Assignment



The (nonoverridable) =
        operator in Ruby assigns a value to a variable:
x = 1

Assignment can be combined with other operators such as + and -:
x += 1          # Increment x: note Ruby does not have ++.
y -= 1          # Decrement y: no -- operator, either.

Ruby supports parallel assignment, allowing more than one value and
        more than one variable in assignment expressions:
x, y = 1, 2     # Same as x = 1; y = 2
a, b = b, a     # Swap the value of two variables
x,y,z = [1,2,3] # Array elements automatically assigned to variables

Methods in Ruby are allowed to return more than one value, and
        parallel assignment is helpful in conjunction with such methods. For
        example:
# Define a method to convert Cartesian (x,y) coordinates to Polar
def polar(x,y)
  theta = Math.atan2(y,x)   # Compute the angle
  r = Math.hypot(x,y)       # Compute the distance
  [r, theta]                # The last expression is the return value
end

# Here's how we use this method with parallel assignment
distance, angle = polar(2,2)

Methods that end with an equals sign (=) are special because Ruby allows them to be invoked using
        assignment syntax. If an object o
        has a method named x=, then the
        following two lines of code do
        the very same thing:
o.x=(1)         # Normal method invocation syntax
o.x = 1         # Method invocation through assignment


Punctuation Suffixes and Prefixes



We saw previously that methods whose names end with = can be invoked by
        assignment expressions. Ruby methods can also end with a question mark
        or an exclamation point. A question mark is used to mark
        predicates—methods that return a Boolean value. For example, the
        Array and Hash classes both define methods named empty? that
        test whether the data structure has any elements. An exclamation mark
        at the end of a method name is used to indicate that caution is
        required with the use of the method. A number of core Ruby classes
        define pairs of methods with the same name, except that one ends with
        an exclamation mark and one does not. Usually, the method without the
        exclamation mark returns a modified copy of the object it is invoked
        on, and the one with the exclamation mark is a mutator method that
        alters the object in place. The Array class, for example, defines methods
        sort and sort!.
In addition to these punctuation characters at the end of method
        names, you’ll notice punctuation characters at the start of Ruby
        variable names: global variables are prefixed with $, instance variables are prefixed with
        @, and class variables are prefixed
        with @@. These prefixes can take a
        little getting used to, but after a while you may come to appreciate
        the fact that the prefix tells you the scope of the variable. The
        prefixes are required in order to disambiguate Ruby’s very flexible
        grammar. One way to think of variable prefixes is that they are one
        price we pay for being able to omit parentheses around method
        invocations.

Regexp and Range



We mentioned arrays and hashes earlier as fundamental data
        structures in Ruby. We demonstrated the use of numbers and strings as
        well. Two other datatypes are worth mentioning here. A Regexp (regular expression) object describes
        a textual pattern and has methods for determining whether a given
        string matches that pattern or not. And a Range represents the values (usually
        integers) between two endpoints. Regular expressions and ranges have a literal
        syntax in Ruby:
/[Rr]uby/        # Matches "Ruby" or "ruby"
/\d{5}/          # Matches 5 consecutive digits
1..3             # All x where 1 <= x <= 3
1...3            # All x where 1 <= x < 3

Regexp and Range objects define the normal == operator for testing equality. In addition, they also define the
        === operator for testing matching
        and membership. Ruby’s case
        statement (like the switch
        statement of C or Java) matches its expression against each of the
        possible cases using ===, so this
        operator is often called the case equality
        operator. It leads to conditional tests like these:
# Determine US generation name based on birth year
# Case expression tests ranges with ===
generation = case birthyear
             when 1946..1963: "Baby Boomer"
             when 1964..1976: "Generation X"
             when 1978..2000: "Generation Y"
             else nil
             end

# A method to ask the user to confirm something
def are_you_sure?                  # Define a method. Note question mark!
  while true                       # Loop until we explicitly return
    print "Are you sure? [y/n]: "  # Ask the user a question
    response = gets                # Get her answer
    case response                  # Begin case conditional
    when /^[yY]/                   # If response begins with y or Y
      return true                  # Return true from the method
    when /^[nN]/, /^$/             # If response begins with n,N or is empty
      return false                 # Return false
    end
  end
end


Classes and Modules



A class is a collection of related methods that operate on the
        state of an object. An object’s state is held by its instance variables: variables whose names begin
        with @ and whose values
        are specific to that particular object. The following code defines an
        example class named Sequence and
        demonstrates how to write iterator methods and define operators:
#
# This class represents a sequence of numbers characterized by the three
# parameters from, to, and by. The numbers x in the sequence obey the
# following two constraints:
#
#    from <= x <= to
#    x = from + n*by, where n is an integer
# 
class Sequence
  # This is an enumerable class; it defines an each iterator below.
  include Enumerable   # Include the methods of this module in this class

  # The initialize method is special; it is automatically invoked to
  # initialize newly created instances of the class
  def initialize(from, to, by)
    # Just save our parameters into instance variables for later use
    @from, @to, @by = from, to, by  # Note parallel assignment and @ prefix
  end

  # This is the iterator required by the Enumerable module
  def each
    x = @from       # Start at the starting point
    while x <= @to  # While we haven't reached the end
      yield x       # Pass x to the block associated with the iterator
      x += @by      # Increment x
    end
  end

  # Define the length method (following arrays) to return the number of
  # values in the sequence
  def length
    return 0 if @from > @to       # Note if used as a statement modifier 
    Integer((@to-@from)/@by) + 1  # Compute and return length of sequence
  end

  # Define another name for the same method.
  # It is common for methods to have multiple names in Ruby
  alias size length  # size is now a synonym for length

  # Override the array-access operator to give random access to the sequence
  def[](index)
    return nil if index < 0 # Return nil for negative indexes
    v = @from + index*@by   # Compute the value
    if v <= @to             # If it is part of the sequence
      v                     # Return it
    else                    # Otherwise...
      nil                   # Return nil
    end
  end

  # Override arithmetic operators to return new Sequence objects
  def *(factor)
    Sequence.new(@from*factor, @to*factor, @by*factor)
  end

  def +(offset)
    Sequence.new(@from+offset, @to+offset, @by)
  end
end

Here is some code that uses this Sequence class:
s = Sequence.new(1, 10, 2)  # From 1 to 10 by 2's
s.each {|x| print x }       # Prints "13579"
print s[s.size-1]           # Prints 9
t = (s+1)*2                 # From 4 to 22 by 4's

The key feature of our Sequence class is its each iterator. If we are only interested in
        the iterator method, there is no need to define the whole class.
        Instead, we can simply write an iterator method that accepts the
        from, to, and by parameters. Instead of making this a
        global function, let’s define it in a module of its own:
module Sequences                   # Begin a new module
  def self.fromtoby(from, to, by)  # A singleton method of the module
    x = from
    while x <= to
      yield x
      x += by
    end
  end
end

With the iterator defined this way, we write code like
        this:
Sequences.fromtoby(1, 10, 2) {|x| print x }  # Prints "13579"

An iterator like this makes it unnecessary to create a Sequence object to iterate a sequence of numbers. But the name of the
        method is quite long, and its invocation syntax is unsatisfying. What
        we really want is a way to iterate numeric Range objects by steps other than 1. One of
        the amazing features of Ruby is that its classes, even the built-in
        core classes, are open: any program can add methods
        to them. So we really can define a new iterator method for
        ranges:
class Range                  # Open an existing class for additions
  def by(step)               # Define an iterator named by
    x = self.begin           # Start at one endpoint of the range
    if exclude_end?          # For ... ranges that exclude the end
      while x < self.end     # Test with the < operator
        yield x
        x += step
      end
    else                     # Otherwise, for .. ranges that include the end
      while x <= self.end    # Test with <= operator
        yield x
        x += step
      end
    end
  end                        # End of method definition
end                          # End of class modification

# Examples
(0..10).by(2) {|x| print x}  # Prints "0246810"
(0...10).by(2) {|x| print x} # Prints "02468"

This by method is convenient
        but unnecessary; the Range class
        already defines an iterator named step that serves the same purpose. The core
        Ruby API is a rich one, and it is worth taking the time to study the
        platform (see Chapter 9) so you don’t end up spending time writing methods that have
        already been implemented for you!

Ruby Surprises



Every language has features that trip
        up programmers who are new to the language. Here we describe two of
        Ruby’s surprising features.
Ruby’s strings are mutable, which may be surprising to Java
        programmers in particular. The []= operator allows
        you to alter the characters of a string or to insert, delete, and
        replace substrings. The <<
        operator allows you to append to a string, and the String class defines various other methods
        that alter strings in place. Because strings are mutable, string
        literals in a program are not unique objects. If you include a string
        literal within a loop, it evaluates to a new object on each iteration
        of the loop. Call the freeze method
        on a string (or on any object) to prevent any future modifications to
        that object.
Ruby’s conditionals and loops (such as if and while) evaluate conditional expressions to
        determine which branch to evaluate or whether to continue looping.
        Conditional expressions often evaluate to true or false, but this is not required. The value
        of nil is treated the same as
        false, and any other
        value is the same as true. This is likely to surprise C
        programmers who expect 0 to work
        like false, and JavaScript
        programmers who expect the empty string "" to be the same as false.



Try Ruby



We hope our tour of Ruby’s key features has piqued your interest
      and you are eager to try Ruby out. To do that, you’ll need a Ruby
      interpreter, and you’ll also want to know how to use three tools—irb, ri,
      and gem—that are bundled with the interpreter. This
      section explains how to get and use them.
The Ruby Interpreter



The official web site for Ruby is http://www.ruby-lang.org. If Ruby is not already
        installed on your computer, you
        can follow the download link on the ruby-lang.org home page for instructions on downloading and installing the
        standard C-based reference implementation of Ruby.
Once you have Ruby installed, you can invoke the Ruby
        interpreter with the ruby command:
% ruby -e 'puts "hello world!"'
hello world!

The -e command-line option
        causes the interpreter to execute a single specified
        line of Ruby code. More commonly, you’d place your Ruby program in a
        file and tell the interpreter to invoke it:
% ruby hello.rb
hello world!

Other Ruby Implementations
In the absence of a formal specification for the Ruby
language, the Ruby interpreter from ruby-lang.org is the reference
          implementation that defines the language. It is sometimes known
          as MRI, or “Matz’s Ruby Implementation.” For Ruby 1.9,
          the original MRI interpreter was merged with YARV (“Yet Another Ruby Virtual machine”) to produce
          a new reference implementation that performs internal compilation to
          bytecode and then executes that bytecode on a virtual
          machine.
The reference implementation is not the only one available,
          however. At the time of this writing, there is one alternative
          implementation (JRuby) released and several other implementations
          under development:
	JRuby
	JRuby is a Java-based implementation of Ruby,
                available from http://jruby.org. At the
                time of this writing, the current release is JRuby 1.1, which
                is compatible with Ruby 1.8. A 1.9-compatible release of JRuby
                may be available by the time you read this. JRuby is open
                source software, developed primarily at Sun
                Microsystems.

	IronRuby
	IronRuby is Microsoft’s implementation of Ruby for their
                .NET framework and DLR (Dynamic Language Runtime). The source
                code for IronRuby is available under the Microsoft Permissive
                License. At the time of this writing, IronRuby is not yet at a
                1.0 release level. The project home page is http://www.ironruby.net.

	Rubinius
	Rubinius is an open source project that describes itself
                as “an alternative Ruby implementation written largely in
                Ruby. The Rubinius virtual machine, named shotgun, is based
                loosely on the Smalltalk-80 VM architecture.” At the time of
                this writing, Rubinius is not at version 1.0. The home page
                for the Rubinius project is http://rubini.us.

	Cardinal
	Cardinal is a Ruby implementation intended to run on the
                Parrot VM (which aims to power Perl 6 and a number of other
                dynamic languages). At the time of this writing, neither
                Parrot nor Cardinal have released a 1.0 version. Cardinal does
                not have its own home page; it is hosted as part of the open
                source Parrot project at http://www.parrotcode.org.





Displaying Output



In order to try out Ruby features, you need a way to display output
        so that your test programs can print their results. The puts function—used
        in the “hello world” code earlier—is one way to do this. Loosely
        speaking, puts prints a string of
        text to the console and appends a newline (unless the string already
        ends with one). If passed an object that is not a string, puts calls the to_s method of that object and prints the
        string returned by that method. print does more or
        less the same thing, but it does not append a newline. For example, type the following two-line program in a
        text editor and save it in a file named count.rb:
9.downto(1) {|n| print n }   # No newline between numbers
puts " blastoff!"            # End with a newline

Now run the program with your Ruby interpreter:
% ruby count.rb

It should produce the following output:
987654321 blastoff!

You may find the function p
        to be a useful alternative to puts.
        Not only is it shorter to type, but it converts objects to strings
        with the inspect method,
        which sometimes returns more
        programmer-friendly representations than to_s does. When printing an array, for
        example, p outputs it using array
        literal notation, whereas puts
        simply prints each element of the array on a line by itself.

Interactive Ruby with irb



irb (short for “interactive Ruby”) is
        a Ruby shell. Type any Ruby expression at its prompt and it will
        evaluate it and display its value for you. This is often the easiest
        way to try out the language features you read about in this book. Here
        is an example irb session, with
        annotations:
$ irb --simple-prompt       # Start irb from the terminal
>> 2**3                     # Try exponentiation
=> 8                        # This is the result
>> "Ruby! " * 3             # Try string repetition
=> "Ruby! Ruby! Ruby! "     # The result
>> 1.upto(3){|x| puts x }   # Try an iterator
1                           # Three lines of output 
2                           # Because we called puts 3 times
3
=> 1                        # The return value of 1.upto(3)
>> quit                     # Exit irb
$                           # Back to the terminal prompt

This example session shows you all you need to know about
        irb to make productive use of it while exploring
        Ruby. It does have a number of other important features, however,
        including subshells (type “irb” at the prompt to start a subshell) and
        configurability.

Viewing Ruby Documentation with ri



Another critical Ruby tool is the
        ri[1] documentation viewer. Invoke ri
        on the command line followed by the name of a Ruby class,
        module, or method, and ri will display
        documentation for you. You may specify a method name without a
        qualifying class or module name, but this will just show you a list of
        all methods by that name (unless the method is unique). Normally, you
        can separate a class or module name from a method name with a period.
        If a class defines a class method and an instance method by the same
        name, you must instead use :: to refer to the class method or # to
        refer to the instance method. Here are some example invocations of
        ri:
ri Array
ri Array.sort
ri Hash#each
ri Math::sqrt

This documentation displayed by ri is
        extracted from specially formatted comments in Ruby source code. See
        Documentation comments for details.

Ruby Package Management with gem



Ruby’s package management system is known as RubyGems, and packages or modules distributed using RubyGems are
        called “gems.” RubyGems makes it easy to install Ruby software and can
        automatically manage complex dependencies between packages.
The frontend script for RubyGems is gem,
        and it’s distributed with Ruby 1.9 just as irb and
        ri are. In Ruby 1.8, you must install it separately—see http://rubygems.org. Once the gem
        program is installed, you might use it like this:
# gem install rails
Successfully installed activesupport-1.4.4
Successfully installed activerecord-1.15.5
Successfully installed actionpack-1.13.5
Successfully installed actionmailer-1.3.5
Successfully installed actionwebservice-1.2.5
Successfully installed rails-1.2.5
6 gems installed
Installing ri documentation for activesupport-1.4.4...
Installing ri documentation for activerecord-1.15.5...
...etc...

As you can see, the gem
        install command installs the most recent version of the gem you request
        and also installs any gems that the requested gem requires.
        gem has other useful subcommands as well. Some
        examples:
gem list               # List installed gems
gem enviroment         # Display RubyGems configuration information
gem update rails       # Update a named gem
gem update             # Update all installed gems
gem update --system    # Update RubyGems itself
gem uninstall rails    # Remove an installed gem

In Ruby 1.8, the gems you install cannot be automatically loaded
        by Ruby’s require
        method. (See Loading and Requiring Modules for more about loading modules
        of Ruby code with the require
        method.) If you’re writing a program that will be using modules
        installed as gems, you must first require the rubygems module. Some Ruby 1.8 distributions
        are preconfigured with the RubyGems
        library, but you may need to download and install this manually.
        Loading this rubygems module alters
        the require method itself so that
        it searches the set of installed gems before it searches the standard
        library. You can also automatically enable RubyGems support by running
        Ruby with the -rubygems
        command-line option. And if you add -rubygems to the
        RUBYOPT environment
        variable, then the RubyGems
        library will be loaded on every
        invocation of Ruby.
The rubygems module is part
        of the standard library in Ruby 1.9, but it is no longer required to
        load gems. Ruby 1.9 knows how to find installed gems on its own, and
        you do not have to put require
        'rubygems' in your programs that use gems.
When you load a gem with require (in either 1.8 or 1.9), it loads the
        most recent installed version of the gem you specify. If you have more
        specific version requirements, you can use the gem method before calling require. This finds a version of the gem
        matching the version constraints you specify and “activates” it, so
        that a subsequent require will load
        that version:
require 'rubygems'               # Not necessary in Ruby 1.9
gem 'RedCloth', '> 2.0', '< 4.0' # Activate RedCloth version 2.x or 3.x
require 'RedCloth'               # And now load it

You’ll find more about require and gems in The Load Path. Complete coverage of RubyGems, the
        gem program, and the rubygems module are beyond the scope of this
        book. The gem command is
        self-documenting—start by running gem
        help. For details on the gem method, try ri
        gem. And for complete details, see the documentation at
        http://rubygems.org.

More Ruby Tutorials



This chapter began with a tutorial introduction to the Ruby
        language. You can try out the code snippets of that tutorial using
        irb. If you want more tutorials before diving
        into the language more formally, there are two good ones available by
        following links on the http://www.ruby-lang.org home
        page. One irb-based tutorial is called “Ruby in
        Twenty Minutes.”[*] Another tutorial, called “Try Ruby!”, is interesting because it works in your web browser and
        does not require you to have Ruby or irb
        installed on your system.[†]

Ruby Resources



The Ruby web site (http://www.ruby-lang.org) is
        the place to find links to other Ruby resources, such as online
        documentation, libraries, mailing lists, blogs, IRC channels, user
        groups, and conferences. Try the “Documentation,” “Libraries,” and
        “Community” links on the home
        page.



[1] Opinions differ as to what “ri” stands for. It has been
            called “Ruby Index,” “Ruby Information,” and “Ruby
            Interactive.”

[*] At the time of this writing, the direct URL for this
            tutorial is http://www.ruby-lang.org/en/documentation/quickstart/.

[†] If you can’t find the “Try Ruby!” link on the Ruby home
            page, try this URL: http://tryruby.hobix.com.



About This Book



As its title implies, this book covers the Ruby programming
      language and aspires to do so comprehensively and accessibly. This
      edition of the book covers language versions 1.8 and 1.9. Ruby blurs the
      distinction between language and platform, and so our coverage of the
      language includes a detailed overview of the core Ruby API. But this
      book is not an API reference and does not cover the core classes
      comprehensively. Also, this is not a book about Ruby frameworks (like
      Rails), nor a book about Ruby tools (like rake and
      gem).
This chapter concludes with a heavily commented extended example
      demonstrating a nontrivial Ruby program. The chapters that follow cover
      Ruby from the bottom up:
	Chapter 2 covers the lexical and syntactic
          structure of Ruby, including basic issues like character set, case
          sensitivity, and reserved words.

	Chapter 3 explains the kinds of
          data—numbers, strings, ranges, arrays, and so on—that Ruby programs
          can manipulate, and it covers the basic features of all Ruby
          objects.

	Chapter 4 covers primary expressions in
          Ruby—literals, variable references, method
          invocations, and assignments—and it explains the operators used to
          combine primary expressions into compound expressions.

	Chapter 5 explains conditionals, loops
          (including blocks and iterator methods), exceptions, and the other
          Ruby expressions that would be called statements or control
          structures in other languages.

	Chapter 6 formally documents Ruby’s method
          definition and invocation syntax, and it also covers the invocable
          objects known as procs and lambdas. This chapter includes an
          explanation of closures and an exploration of functional programming
          techniques in Ruby.

	Chapter 7 explains how to define classes and
          modules in Ruby. Classes are fundamental to object-oriented
          programming, and this chapter also covers topics such as
          inheritance, method visibility, mixin modules, and the method name
          resolution algorithm.

	Chapter 8 covers Ruby’s APIs that allow a
          program to inspect and manipulate itself, and then demonstrates
          metaprogramming techniques that use those APIs to make
          programming easier. The chapter includes an example of
          domain-specific language.

	Chapter 9 demonstrates the most important
          classes and methods of the core Ruby platform with simple code
          fragments. This is not a reference but a detailed overview of the
          core classes. Topics include text processing, numeric computation,
          collections (such as arrays and hashes), input/output, networking,
          and threads. After reading this chapter, you’ll understand the
          breadth of the Ruby platform, and you’ll be able to use the
          ri tool or an online reference to explore the
          platform in depth.

	Chapter 10 covers the top-level Ruby
          programming environment, including global variables and global
          functions, command-line arguments supported by the Ruby interpreter,
          and Ruby’s security mechanism.



How to Read This Book



It is easy to program in Ruby, but Ruby is not a simple
        language. Because this book documents Ruby comprehensively, it is not
        a simple book (though we hope that you find it easy to read and
        understand). It is intended for experienced programmers who want to
        master Ruby and are willing to read carefully and thoughtfully to
        achieve that goal.
Like all similar programming books, this book contains forward
        and backward references throughout. Programming languages are not
        linear systems, and it is impossible to document them linearly. As you
        can see from the chapter outline, this book takes a bottom-up approach
        to Ruby: it starts with the simplest elements of Ruby’s grammar and
        moves on to document successively higher-level syntactic
        structures—from tokens to values to expressions and control structures
        to methods and classes. This is a classic approach to documenting
        programming languages, but it does not avoid the problem of forward
        references.
The book is intended to be read in the order it is written, but
        some advanced topics are best skimmed or skipped on the first reading;
        they will make much more sense when you come back to them after having
        read the chapters that follow. On the other hand, don’t let every
        forward reference scare you off. Many of them are simply informative,
        letting you know that more details will be presented later. The
        reference does not necessarily imply that those future details are
        required to understand the current material.


A Sudoku Solver in Ruby



This chapter concludes with a nontrivial Ruby application to give
      you a better idea of what Ruby programs actually look like. We’ve
      chosen a Sudoku[*] solver as a good short to medium-length program that
      demonstrates a number of features of Ruby. Don’t expect to understand
      every detail of Example 1-1, but do read through the
      code; it is very thoroughly commented, and you should have little
      difficulty following along.
Example 1-1. A Sudoku solver in Ruby
#
# This module defines a Sudoku::Puzzle class to represent a 9x9
# Sudoku puzzle and also defines exception classes raised for 
# invalid input and over-constrained puzzles. This module also defines 
# the method Sudoku.solve to solve a puzzle. The solve method uses
# the Sudoku.scan method, which is also defined here.
# 
# Use this module to solve Sudoku puzzles with code like this:
#
#  require 'sudoku'
#  puts Sudoku.solve(Sudoku::Puzzle.new(ARGF.readlines))
#
module Sudoku

  #
  # The Sudoku::Puzzle class represents the state of a 9x9 Sudoku puzzle.
  # 
  # Some definitions and terminology used in this implementation: 
  #
  # - Each element of a puzzle is called a "cell".
  # - Rows and columns are numbered from 0 to 8, and the coordinates [0,0]
  #   refer to the cell in the upper-left corner of the puzzle.
  # - The nine 3x3 subgrids are known as "boxes" and are also numbered from
  #   0 to 8, ordered from left to right and top to bottom. The box in
  #   the upper-left is box 0. The box in the upper-right is box 2. The
  #   box in the middle is box 4. The box in the lower-right is box 8.
  # 
  # Create a new puzzle with Sudoku::Puzzle.new, specifying the initial
  # state as a string or as an array of strings. The string(s) should use
  # the characters 1 through 9 for the given values, and '.' for cells
  # whose value is unspecified. Whitespace in the input is ignored.
  #
  # Read and write access to individual cells of the puzzle is through the
  # [] and []= operators, which expect two-dimensional [row,column] indexing.
  # These methods use numbers (not characters) 0 to 9 for cell contents.
  # 0 represents an unknown value.
  # 
  # The has_duplicates? predicate returns true if the puzzle is invalid
  # because any row, column, or box includes the same digit twice.
  #
  # The each_unknown method is an iterator that loops through the cells of
  # the puzzle and invokes the associated block once for each cell whose
  # value is unknown.
  #
  # The possible method returns an array of integers in the range 1..9.
  # The elements of the array are the only values allowed in the specified
  # cell. If this array is empty, then the puzzle is over-specified and 
  # cannot be solved. If the array has only one element, then that element
  # must be the value for that cell of the puzzle.
  #
  class Puzzle

    # These constants are used for translating between the external 
    # string representation of a puzzle and the internal representation.
    ASCII = ".123456789"
    BIN = "\000\001\002\003\004\005\006\007\010\011"

    # This is the initialization method for the class. It is automatically
    # invoked on new Puzzle instances created with Puzzle.new. Pass the input
    # puzzle as an array of lines or as a single string. Use ASCII digits 1
    # to 9 and use the '.' character for unknown cells. Whitespace, 
    # including newlines, will be stripped.
    def initialize(lines)
      if (lines.respond_to? :join)  # If argument looks like an array of lines
        s = lines.join              # Then join them into a single string
      else                          # Otherwise, assume we have a string
        s = lines.dup               # And make a private copy of it
      end

      # Remove whitespace (including newlines) from the data
      # The '!' in gsub! indicates that this is a mutator method that
      # alters the string directly rather than making a copy.
      s.gsub!(/\s/, "")  # /\s/ is a Regexp that matches any whitespace

      # Raise an exception if the input is the wrong size.
      # Note that we use unless instead of if, and use it in modifier form.
      raise Invalid, "Grid is the wrong size" unless s.size == 81
      
      # Check for invalid characters, and save the location of the first.
      # Note that we assign and test the value assigned at the same time.
      if i = s.index(/[^123456789\.]/)
        # Include the invalid character in the error message.
        # Note the Ruby expression inside #{} in string literal.
        raise Invalid, "Illegal character #{s[i,1]} in puzzle"
      end

      # The following two lines convert our string of ASCII characters
      # to an array of integers, using two powerful String methods.
      # The resulting array is stored in the instance variable @grid
      # The number 0 is used to represent an unknown value.
      s.tr!(ASCII, BIN)      # Translate ASCII characters into bytes
      @grid = s.unpack('c*') # Now unpack the bytes into an array of numbers

      # Make sure that the rows, columns, and boxes have no duplicates.
      raise Invalid, "Initial puzzle has duplicates" if has_duplicates?
    end

    # Return the state of the puzzle as a string of 9 lines with 9 
    # characters (plus newline) each.  
    def to_s
      # This method is implemented with a single line of Ruby magic that
      # reverses the steps in the initialize() method. Writing dense code
      # like this is probably not good coding style, but it demonstrates
      # the power and expressiveness of the language.
      #
      # Broken down, the line below works like this:
      # (0..8).collect invokes the code in curly braces 9 times--once
      # for each row--and collects the return value of that code into an
      # array. The code in curly braces takes a subarray of the grid
      # representing a single row and packs its numbers into a string.
      # The join() method joins the elements of the array into a single
      # string with newlines between them. Finally, the tr() method
      # translates the binary string representation into ASCII digits.
      (0..8).collect{|r| @grid[r*9,9].pack('c9')}.join("\n").tr(BIN,ASCII)
    end

    # Return a duplicate of this Puzzle object.
    # This method overrides Object.dup to copy the @grid array.
    def dup
      copy = super       # Make a shallow copy by calling Object.dup
      @grid = @grid.dup  # Make a new copy of the internal data 
      copy               # Return the copied object
    end

    # We override the array access operator to allow access to the 
    # individual cells of a puzzle. Puzzles are two-dimensional,
    # and must be indexed with row and column coordinates.
    def [](row, col)
      # Convert two-dimensional (row,col) coordinates into a one-dimensional
      # array index and get and return the cell value at that index
      @grid[row*9 + col]
    end

    # This method allows the array access operator to be used on the 
    # lefthand side of an assignment operation. It sets the value of 
    # the cell at (row, col) to newvalue.
    def []=(row, col, newvalue)
      # Raise an exception unless the new value is in the range 0 to 9.
      unless (0..9).include? newvalue
        raise Invalid, "illegal cell value" 
      end
      # Set the appropriate element of the internal array to the value.
      @grid[row*9 + col] = newvalue
    end

    # This array maps from one-dimensional grid index to box number.
    # It is used in the method below. The name BoxOfIndex begins with a 
    # capital letter, so this is a constant. Also, the array has been
    # frozen, so it cannot be modified.
    BoxOfIndex = [
      0,0,0,1,1,1,2,2,2,0,0,0,1,1,1,2,2,2,0,0,0,1,1,1,2,2,2,
      3,3,3,4,4,4,5,5,5,3,3,3,4,4,4,5,5,5,3,3,3,4,4,4,5,5,5,
      6,6,6,7,7,7,8,8,8,6,6,6,7,7,7,8,8,8,6,6,6,7,7,7,8,8,8
    ].freeze

    # This method defines a custom looping construct (an "iterator") for
    # Sudoku puzzles.  For each cell whose value is unknown, this method
    # passes ("yields") the row number, column number, and box number to the 
    # block associated with this iterator.
    def each_unknown
      0.upto 8 do |row|             # For each row
        0.upto 8 do |col|           # For each column
          index = row*9+col         # Cell index for (row,col)
          next if @grid[index] != 0 # Move on if we know the cell's value 
          box = BoxOfIndex[index]   # Figure out the box for this cell
          yield row, col, box       # Invoke the associated block
        end
      end
    end

    # Returns true if any row, column, or box has duplicates.
    # Otherwise returns false. Duplicates in rows, columns, or boxes are not
    # allowed in Sudoku, so a return value of true means an invalid puzzle.
    def has_duplicates?
      # uniq! returns nil if all the elements in an array are unique.
      # So if uniq! returns something then the board has duplicates.
      0.upto(8) {|row| return true if rowdigits(row).uniq! }
      0.upto(8) {|col| return true if coldigits(col).uniq! }
      0.upto(8) {|box| return true if boxdigits(box).uniq! }
      
      false  # If all the tests have passed, then the board has no duplicates
    end

    # This array holds a set of all Sudoku digits. Used below.
    AllDigits = [1, 2, 3, 4, 5, 6, 7, 8, 9].freeze

    # Return an array of all values that could be placed in the cell 
    # at (row,col) without creating a duplicate in the row, column, or box.
    # Note that the + operator on arrays does concatenation but that the - 
    # operator performs a set difference operation.
    def possible(row, col, box)
      AllDigits - (rowdigits(row) + coldigits(col) + boxdigits(box))
    end

    private  # All methods after this line are private to the class

    # Return an array of all known values in the specified row.
    def rowdigits(row)
      # Extract the subarray that represents the row and remove all zeros.
      # Array subtraction is set difference, with duplicate removal.
      @grid[row*9,9] - [0]
    end

    # Return an array of all known values in the specified column.
    def coldigits(col)
      result = []                # Start with an empty array
      col.step(80, 9) {|i|       # Loop from col by nines up to 80
        v = @grid[i]             # Get value of cell at that index
        result << v if (v != 0)  # Add it to the array if non-zero
      }
      result                     # Return the array
    end

    # Map box number to the index of the upper-left corner of the box.
    BoxToIndex = [0, 3, 6, 27, 30, 33, 54, 57, 60].freeze

    # Return an array of all the known values in the specified box.
    def boxdigits(b)
      # Convert box number to index of upper-left corner of the box.
      i = BoxToIndex[b]
      # Return an array of values, with 0 elements removed.
      [
        @grid[i],    @grid[i+1],  @grid[i+2],
        @grid[i+9],  @grid[i+10], @grid[i+11],
        @grid[i+18], @grid[i+19], @grid[i+20]
      ] - [0]
    end
  end  # This is the end of the Puzzle class

  # An exception of this class indicates invalid input,
  class Invalid < StandardError
  end

  # An exception of this class indicates that a puzzle is over-constrained
  # and that no solution is possible.
  class Impossible < StandardError
  end

  #
  # This method scans a Puzzle, looking for unknown cells that have only
  # a single possible value. If it finds any, it sets their value. Since
  # setting a cell alters the possible values for other cells, it 
  # continues scanning until it has scanned the entire puzzle without 
  # finding any cells whose value it can set.
  #
  # This method returns three values. If it solves the puzzle, all three 
  # values are nil. Otherwise, the first two values returned are the row and
  # column of a cell whose value is still unknown. The third value is the
  # set of values possible at that row and column. This is a minimal set of
  # possible values: there is no unknown cell in the puzzle that has fewer
  # possible values. This complex return value enables a useful heuristic 
  # in the solve() method: that method can guess at values for cells where
  # the guess is most likely to be correct.
  # 
  # This method raises Impossible if it finds a cell for which there are
  # no possible values. This can happen if the puzzle is over-constrained,
  # or if the solve() method below has made an incorrect guess.
  #
  # This method mutates the specified Puzzle object in place.
  # If has_duplicates? is false on entry, then it will be false on exit.
  #
  def Sudoku.scan(puzzle)
    unchanged = false  # This is our loop variable

    # Loop until we've scanned the whole board without making a change.
    until unchanged 
      unchanged = true      # Assume no cells will be changed this time
      rmin,cmin,pmin = nil  # Track cell with minimal possible set
      min = 10              # More than the maximal number of possibilities

      # Loop through cells whose value is unknown.
      puzzle.each_unknown do |row, col, box|
        # Find the set of values that could go in this cell
        p = puzzle.possible(row, col, box)
        
        # Branch based on the size of the set p. 
        # We care about 3 cases: p.size==0, p.size==1, and p.size > 1.
        case p.size
        when 0  # No possible values means the puzzle is over-constrained
          raise Impossible
        when 1  # We've found a unique value, so set it in the grid
          puzzle[row,col] = p[0] # Set that position on the grid to the value
          unchanged = false      # Note that we've made a change
        else    # For any other number of possibilities
          # Keep track of the smallest set of possibilities.
          # But don't bother if we're going to repeat this loop.
          if unchanged && p.size < min
            min = p.size                    # Current smallest size
            rmin, cmin, pmin = row, col, p  # Note parallel assignment
          end
        end
      end
    end
      
    # Return the cell with the minimal set of possibilities.
    # Note multiple return values.
    return rmin, cmin, pmin
  end

  # Solve a Sudoku puzzle using simple logic, if possible, but fall back
  # on brute-force when necessary. This is a recursive method. It either
  # returns a solution or raises an exception. The solution is returned
  # as a new Puzzle object with no unknown cells. This method does not 
  # modify the Puzzle it is passed. Note that this method cannot detect
  # an under-constrained puzzle.
  def Sudoku.solve(puzzle)
    # Make a private copy of the puzzle that we can modify.
    puzzle = puzzle.dup

    # Use logic to fill in as much of the puzzle as we can.
    # This method mutates the puzzle we give it, but always leaves it valid.
    # It returns a row, a column, and set of possible values at that cell.
    # Note parallel assignment of these return values to three variables.
    r,c,p = scan(puzzle)

    # If we solved it with logic, return the solved puzzle.
    return puzzle if r == nil
    
    # Otherwise, try each of the values in p for cell [r,c].
    # Since we're picking from a set of possible values, the guess leaves
    # the puzzle in a valid state. The guess will either lead to a solution
    # or to an impossible puzzle. We'll know we have an impossible
    # puzzle if a recursive call to scan throws an exception. If this happens
    # we need to try another guess, or re-raise an exception if we've tried
    # all the options we've got.
    p.each do |guess|        # For each value in the set of possible values
      puzzle[r,c] = guess    # Guess the value
      
      begin
        # Now try (recursively) to solve the modified puzzle.
        # This recursive invocation will call scan() again to apply logic
        # to the modified board, and will then guess another cell if needed.
        # Remember that solve() will either return a valid solution or 
        # raise an exception.  
        return solve(puzzle)  # If it returns, we just return the solution
      rescue Impossible
        next                  # If it raises an exception, try the next guess
      end
    end

    # If we get here, then none of our guesses worked out
    # so we must have guessed wrong sometime earlier.
    raise Impossible
  end
end



Example 1-1 is 345 lines long. Because the
      example was written for this introductory chapter, it has particularly
      verbose comments. Strip away the comments and the blank lines and you’re
      left with just 129 lines of code, which is pretty good for an
      object-oriented Sudoku solver that does not rely on a simple brute-force
      algorithm. We hope that this example demonstrates the power and
      expressiveness of Ruby.


[*] Sudoku is a logic puzzle that takes the form of a 9×9 grid
          of numbers and blank squares. The task is to fill each blank with a
          digit 1 to 9 so that no row or column or 3×3 subgrid includes the
          same digit twice. Sudoku has been popular in Japan for some time,
          but it gained sudden popularity in the English-speaking world in
          2004 and 2005. If you are unfamiliar with Sudoku, try reading the
          Wikipedia entry (http://en.wikipedia.org/wiki/Sudoku) and try an
          online puzzle (http://websudoku.com/).



Chapter 2. The Structure and Execution of Ruby Programs



[image: image with no caption]

This chapter explains the structure of Ruby programs. It starts
    with the lexical structure, covering tokens and the characters that
    comprise them. Next, it covers the syntactic structure of a Ruby program,
    explaining how expressions, control structures, methods, classes, and so
    on are written as a series of tokens. Finally, the chapter describes files
    of Ruby code, explaining how Ruby programs can be split across multiple
    files and how the Ruby interpreter executes a file of Ruby code.
Lexical Structure



The Ruby interpreter parses a program as a sequence of tokens. Tokens include comments,
      literals, punctuation, identifiers, and keywords. This section
      introduces these types of tokens and also includes important information
      about the characters that comprise the tokens and the whitespace that
      separates the tokens.
Comments



Comments in Ruby begin with a # character and
        continue to the end of the line. The Ruby interpreter ignores the
        # character and any text that
        follows it (but does not ignore the newline character, which is
        meaningful whitespace and may serve as a statement terminator). If a
        # character appears within a string
        or regular expression literal (see Chapter 3), then
        it is simply part of the string or regular expression and does not
        introduce a comment:
# This entire line is a comment
x = "#This is a string"               # And this is a comment
y = /#This is a regular expression/   # Here's another comment

Multiline comments are usually written simply by beginning each line with a
        separate # character:
#
# This class represents a Complex number
# Despite its name, it is not complex at all.
#

Note that Ruby has no equivalent of the C-style /*...*/
        comment. There is no way to embed a comment in the middle of a line of
        code.
Embedded documents



Ruby supports another style of multiline comment known as
          an embedded document. These start on a line
          that begins =begin and
          continue until (and include) a line that begins =end. Any text that appears after =begin or =end is part of the comment and is also
          ignored, but that extra text must be separated from the =begin and =end by at least one space.
Embedded documents are a convenient way to comment out long
          blocks of code without prefixing each line with a # character:
=begin Someone needs to fix the broken code below!
    Any code here is commented out
=end

Note that embedded documents only work if the = signs are the first characters of each line:
# =begin This used to begin a comment. Now it is itself commented out!
    The code that goes here is no longer commented out
# =end

As their name implies, embedded documents can be used to
          include long blocks of documentation within a program, or to embed
          source code of another language (such as HTML or SQL) within a Ruby
          program. Embedded documents are usually intended to be used by some
          kind of postprocessing tool that is run over the Ruby source code,
          and it is typical to follow =begin with an identifier that indicates
          which tool the comment is
          intended for.

Documentation comments



Ruby programs can include embedded API documentation as specially
          formatted comments that precede method, class, and module
          definitions. You can browse this documentation using the
          ri tool described earlier in Viewing Ruby Documentation with ri. The
          rdoc tool extracts documentation comments from Ruby source and
          formats them as HTML or prepares them for display by
          ri. Documentation of the
          rdoc tool is beyond the scope of this book; see
          the file lib/rdoc/README in the
          Ruby source code for details.
Documentation comments must come immediately before the
          module, class, or method whose
          API they document. They are usually written as multiline comments
          where each line begins with #,
          but they can also be written as embedded documents that start
          =begin rdoc. (The
          rdoc tool will not process these comments if
          you leave out the “rdoc”.)
The following example comment demonstrates the most important
          formatting elements of the markup grammar used in Ruby’s
          documentation comments; a detailed description of the grammar is
          available in the README file
          mentioned previously:
#
# Rdoc comments use a simple markup grammar like those used in wikis.
# 
# Separate paragraphs with a blank line.
# 
# = Headings
# 
# Headings begin with an equals sign
# 
# == Sub-Headings
# The line above produces a subheading.
# === Sub-Sub-Heading
# And so on.
# 
# = Examples
# 
#   Indented lines are displayed verbatim in code font.
#     Be careful not to indent your headings and lists, though.
# 
# = Lists and Fonts
# 
# List items begin with * or -. Indicate fonts with punctuation or HTML:
# * _italic_ or <i>multi-word italic</i>
# * *bold* or <b>multi-word bold</b>
# * +code+ or <tt>multi-word code</tt>
# 
# 1. Numbered lists begin with numbers.
# 99. Any number will do; they don't have to be sequential.
# 1. There is no way to do nested lists.
# 
# The terms of a description list are bracketed:
# [item 1]  This is a description of item 1
# [item 2]  This is a description of item 2
# 



Literals



Literals are values that appear directly in Ruby source code. They
        include numbers, strings of text, and regular expressions. (Other literals, such
        as array and hash values, are not individual tokens but are more
        complex expressions.) Ruby number and string literal syntax is
        actually quite complicated, and is covered in detail in Chapter 3. For now, an example suffices to illustrate
        what Ruby literals look like:
1                      # An integer literal
1.0                    # A floating-point literal
'one'                  # A string literal
"two"                  # Another string literal
/three/                # A regular expression literal


Punctuation



Ruby uses punctuation characters for a number of purposes. Most Ruby
        operators are written using punctuation characters, such as + for addition, * for multiplication, and || for the Boolean OR operation. See Operators for a complete list of Ruby operators. Punctuation characters also serve to delimit
        string, regular expression, array, and hash literals, and to group and
        separate expressions, method arguments, and array indexes. We’ll see
        miscellaneous other uses of punctuation scattered throughout Ruby
        syntax.

Identifiers



An identifier is simply a name. Ruby uses identifiers to name
        variables, methods, classes, and so forth. Ruby identifiers consist of
        letters, numbers, and underscore characters, but they may not begin
        with a number. Identifiers may not include whitespace or nonprinting characters, and they may not
        include punctuation characters except as described here.
Identifiers that begin with a capital letter A–Z are constants,
        and the Ruby interpreter will issue a warning (but not an error) if
        you alter the value of such an identifier. Class and module names must
        begin with initial capital letters. The following are
        identifiers:
i
x2
old_value
_internal    # Identifiers may begin with underscores
PI           # Constant

By convention, multiword identifiers that are not constants are
        written with underscores like_this,
        whereas multiword constants are written LikeThis or LIKE_THIS.
Case sensitivity



Ruby is a case-sensitive language. Lowercase letters and uppercase letters are
          distinct. The keyword end, for
          example, is completely different from the keyword END.

Unicode characters in identifiers



Ruby’s rules for forming identifiers are defined in terms of ASCII characters
          that are not allowed. In general, all characters outside of the
          ASCII character set are valid in identifiers, including characters
          that appear to be punctuation. In a UTF-8 encoded file, for example, the following
          Ruby code is valid:
def ×(x,y)  # The name of this method is the Unicode multiplication sign
  x*y       # The body of this method multiplies its arguments
end         

Similarly, a Japanese programmer writing a program encoded
          in SJIS or EUC can include Kanji characters in her identifiers. See Specifying Program Encoding for more about writing Ruby programs
          using encodings other than ASCII.
The special rules about forming identifiers are based on ASCII
          characters and are not enforced for characters outside of that set.
          An identifier may not begin with an ASCII digit, for example, but it
          may begin with a digit from a non-Latin alphabet. Similarly, an
          identifier must begin with an ASCII capital letter in order to be
          considered a constant. The identifier Å, for example, is not a constant.
Two identifiers are the same only if they are represented by
          the same sequence of bytes. Some character sets, such as Unicode,
          have more than one codepoint that represents the same character. No
          Unicode normalization is performed in Ruby, and two distinct
          codepoints are treated as distinct characters, even if they have the
          same meaning or are represented by the same font glyph.

Punctuation in identifiers



Punctuation characters may appear at the start and end of Ruby
          identifiers. They have the following meanings:
	$	Global variables are prefixed with a dollar
                  sign. Following Perl’s example, Ruby defines a number of
                  global variables that include other punctuation characters,
                  such as $_ and $-K. See Chapter 10
                  for a list of these special globals.
	@	Instance variables are prefixed with a single
                  at sign, and class variables are prefixed with two at signs.
                  Instance variables and class variables are explained in
                  Chapter 7.
	?	As a helpful convention, methods that return
                  Boolean values often have names that end with a question
                  mark.
	!	Method names may end with an exclamation point
                  to indicate that they should be used cautiously. This naming
                  convention is often to distinguish mutator methods that
                  alter the object on which they are invoked from variants
                  that return a modified copy of the original object.
	=	Methods whose names end with an equals sign
                  can be invoked by placing the method name, without the
                  equals sign, on the left side of an assignment operator.
                  (You can read more about this in Assigning to Attributes and Array Elements and Accessors and Attributes.)


Here are some example identifiers that contain leading or
          trailing punctuation characters:
$files          # A global variable
@data           # An instance variable
@@counter       # A class variable
empty?          # A Boolean-valued method or predicate
sort!           # An in-place alternative to the regular sort method
timeout=        # A method invoked by assignment

A number of Ruby’s operators are implemented as methods, so
          that classes can redefine them for their own purposes. It is
          therefore possible to use certain operators as method names as well.
          In this context, the punctuation character or characters of the
          operator are treated as identifiers rather than operators. See Operators for more about Ruby’s operators.


Keywords



The following keywords have special meaning in Ruby and are
        treated specially by the Ruby parser:
__LINE__      case         ensure       not          then
__ENCODING__  class        false        or           true
__FILE__      def          for          redo         undef
BEGIN         defined?     if           rescue       unless
END           do           in           retry        until
alias         else         module       return       when
and           elsif        next         self         while
begin         end          nil          super        yield
break

In addition to those keywords, there are three keyword-like
        tokens that are treated specially by the Ruby parser when they appear
        at the beginning of a line:
=begin    =end      __END__

As we’ve seen, =begin and
        =end at the beginning of a line
        delimit multiline comments. And the token __END__ marks the end of the program (and
        the beginning of a data section) if it appears on a line by itself
        with no leading or trailing whitespace.
In most languages, these words would be called “reserved words”
        and they would be never allowed as identifiers. The Ruby
        parser is flexible and does not complain if you prefix these keywords
        with @, @@, or $ prefixes and use them as instance, class, or global variable
        names. Also, you can use these keywords as method names, with the
        caveat that the method must always be explicitly invoked through an
        object. Note, however, that using these keywords in identifiers will
        result in confusing code. The best practice is to treat these keywords
        as reserved.
Many important features of the Ruby language are actually
        implemented as methods of the Kernel, Module, Class, and Object classes. It is good practice,
        therefore, to treat the following identifiers as reserved words as
        well:
# These are methods that appear to be statements or keywords
at_exit        catch          private        require
attr           include        proc           throw
attr_accessor  lambda         protected
attr_reader    load           public
attr_writer    loop           raise

# These are commonly used global functions
Array          chomp!         gsub!          select
Float          chop           iterator?      sleep
Integer        chop!          load           split
String         eval           open           sprintf
URI            exec           p              srand
abort          exit           print          sub
autoload       exit!          printf         sub!
autoload?      fail           putc           syscall
binding        fork           puts           system
block_given?   format         rand           test
callcc         getc           readline       trap
caller         gets           readlines      warn
chomp          gsub           scan

# These are commonly used object methods
allocate       freeze         kind_of?       superclass
clone          frozen?        method         taint
display        hash           methods        tainted?
dup            id             new            to_a
enum_for       inherited      nil?           to_enum
eql?           inspect        object_id      to_s
equal?         instance_of?   respond_to?    untaint
extend         is_a?          send           


Whitespace



Spaces, tabs, and newlines are not tokens themselves but are used to
        separate tokens that would otherwise merge into a single token. Aside
        from this basic token-separating function, most whitespace is ignored
        by the Ruby interpreter and is simply used to format programs so that
        they are easy to read and understand. Not all whitespace is ignored,
        however. Some is required, and some whitespace is actually forbidden.
        Ruby’s grammar is expressive but complex, and there are a few cases in
        which inserting or removing whitespace can change the meaning of a
        program. Although these cases do not often arise, it is important to
        know about them.
Newlines as statement terminators



The most common form of whitespace dependency has to do with
          newlines as statement terminators. In languages like C and Java,
          every statement must be terminated with a semicolon. You can use semicolons to terminate
          statements in Ruby, too, but this is only required if you put more
          than one statement on the same line. Convention dictates that
          semicolons be omitted elsewhere.
Without explicit semicolons, the Ruby interpreter must figure
          out on its own where statements end. If the Ruby code on a line is a
          syntactically complete statement, Ruby uses the newline as the
          statement terminator. If the statement is not complete, then Ruby
          continues parsing the statement on the next line. (In Ruby 1.9,
          there is one exception, which is described later in
          this section.)
This is no problem if all your statements fit on a single
          line. When they don’t, however, you must take care that you break
          the line in such a way that the Ruby interpreter cannot interpret
          the first line as a statement of its own. This is where the
          whitespace dependency lies: your program may behave differently
          depending on where you insert a newline. For example, the following
          code adds x and y and assigns the sum to total:
total = x +     # Incomplete expression, parsing continues
  y

But this code assigns x to
          total, and then evaluates
          y, doing nothing with it:
total = x  # This is a complete expression
  + y      # A useless but complete expression

As another example, consider the return
          and break statements.
          These statements may optionally be followed by an expression that
          provides a return value. A newline between the keyword and the
          expression will terminate the statement before the
          expression.
You can safely insert a newline without fear of prematurely
          terminating your statement after an operator or after a period or
          comma in a method invocation, array literal, or hash literal.
You can also escape a line break with a backslash, which prevents Ruby from automatically
          terminating the statement:
var total = first_long_variable_name + second_long_variable_name \
  + third_long_variable_name # Note no statement terminator above

In Ruby 1.9, the statement terminator rules change slightly.
          If the first nonspace character on a line is a period, then the line
          is considered a continuation line, and the newline before it is not
          a statement terminator. Lines that start with periods are useful for
          the long method chains sometimes used with “fluent APIs,” in which
          each method invocation returns an object on which additional
          invocations can be made. For example:
animals = Array.new
  .push("dog")   # Does not work in Ruby 1.8
  .push("cow")
  .push("cat")
  .sort


Spaces and method invocations



Ruby’s grammar allows the parentheses around method invocations to be omitted in
          certain circumstances. This allows Ruby methods to be used as if
          they were statements, which is an important part of Ruby’s elegance.
          Unfortunately, however, it opens up a pernicious whitespace
          dependency. Consider the following two lines, which differ only by a
          single space:
f(3+2)+1
f (3+2)+1

The first line passes the value 5 to the function f and then adds 1 to the result. Since the second line has
          a space after the function name, Ruby assumes that the parentheses
          around the method call have been omitted. The parentheses that
          appear after the space are used to group a subexpression, but the
          entire expression (3+2)+1 is used
          as the method argument. If warnings are enabled (with -w), Ruby issues a warning whenever it
          sees ambiguous code like this.
The solution to this whitespace dependency is
          straightforward:
	Never put a space between a method name and the opening
              parenthesis.

	If the first argument to a method begins with an open
              parenthesis, always use parentheses in the method invocation.
              For example, write f((3+2)+1).

	Always run the Ruby interpreter with the -w option so it will warn you if you
              forget either of the rules above!







Syntactic Structure



So far, we’ve discussed the tokens of a Ruby program and the
      characters that make them up. Now we move on to briefly describe how
      those lexical tokens combine into the larger syntactic structures of a
      Ruby program. This section describes the syntax of Ruby programs, from
      the simplest expressions to the largest modules. This section is, in
      effect, a roadmap to the chapters that follow.
The basic unit of syntax in Ruby is the
      expression. The Ruby interpreter evaluates expressions,
      producing values. The simplest expressions are primary
      expressions, which represent values directly. Number and
      string literals, described earlier in this chapter, are primary
      expressions. Other primary expressions include certain keywords such as
      true, false, nil,
      and self. Variable references are
      also primary expressions; they evaluate to the value of the
      variable.
More complex values can be written as compound expressions:
[1,2,3]                # An Array literal
{1=>"one", 2=>"two"}   # A Hash literal
1..3                   # A Range literal

Operators are used to perform computations on values, and compound
      expressions are built by combining simpler subexpressions with
      operators:
1         # A primary expression
x         # Another primary expression
x = 1     # An assignment expression
x = x + 1 # An expression with two operators

Chapter 4 covers operators and expressions,
      including variables and assignment expressions.
Expressions can be combined with Ruby’s keywords to create
      statements, such as the if statement for conditionally executing code
      and the while statement for
      repeatedly executing code:
if x < 10 then   # If this expression is true
  x = x + 1      # Then execute this statement
end              # Marks the end of the conditional

while x < 10 do  # While this expression is true...
  print x        # Execute this statement
  x = x + 1      # Then execute this statement
end              # Marks the end of the loop

In Ruby, these statements are technically expressions, but there
      is still a useful distinction between expressions that affect the
      control flow of a program and those that do not. Chapter 5 explains Ruby’s control structures.
In all but the most trivial programs, we usually need to group
      expressions and statements into parameterized units so that they can be
      executed repeatedly and operate on varying inputs. You may know these
      parameterized units as functions, procedures, or subroutines. Since Ruby
      is an object-oriented language, they are called
      methods. Methods, along with related structures
      called procs and lambdas, are
      the topic of Chapter 6.
Finally, groups of methods that are designed to interoperate can
      be combined into classes, and groups of related
      classes and methods that are independent of those classes can be
      organized into modules. Classes and modules are the
      topic of Chapter 7.
Block Structure in Ruby



Ruby programs have a block structure. Module, class, and method definitions, and most of Ruby’s
        statements, include blocks of nested code. These blocks are delimited
        by keywords or punctuation and, by convention, are indented two spaces
        relative to the delimiters. There are two kinds of blocks in Ruby
        programs. One kind is formally called a “block.” These blocks are the
        chunks of code associated with or passed to iterator methods:
3.times { print "Ruby! " }

In this code, the curly braces and the code inside them are the block associated with
        the iterator method invocation 3.times. Formal blocks of this kind may be
        delimited with curly braces, or
        they may be delimited with the keywords do and end:
1.upto(10) do |x|
  print x
end

do and end delimiters are usually used when the block is written on more than
        one line. Note the two-space indentation of the code within the block.
        Blocks are covered in Blocks.
To avoid ambiguity with these true blocks, we can call the other
        kind of block a body (in practice, however, the
        term “block” is often used for both). A body is just the list of
        statements that comprise the body of a class definition, a method
        definition, a while loop, or
        whatever. Bodies are never delimited with curly braces in
        Ruby—keywords usually serve as the delimiters instead. The specific
        syntax for statement bodies, method bodies, and class and module
        bodies are documented in Chapters 5, 6, and 7.
Bodies and blocks can be nested within each other, and Ruby
        programs typically have several levels of nested code, made readable
        by their relative indentation. Here is a schematic example:
module Stats                          # A module
  class Dataset                       # A class in the module
    def initialize(filename)          # A method in the class
      IO.foreach(filename) do |line|  # A block in the method
        if line[0,1] == "#"           # An if statement in the block
          next                        # A simple statement in the if
        end                           # End the if body
      end                             # End the block
    end                               # End the method body
  end                                 # End the class body
end                                   # End the module body



File Structure



There are only a few rules about how a file of Ruby code must
      be structured. These rules are related to the deployment of Ruby
      programs and are not directly relevant to the language itself.
First, if a Ruby program contains a “shebang” comment, to tell the (Unix-like) operating system how to execute
      it, that comment must appear on the first line.
Second, if a Ruby program contains a “coding” comment (as described in Specifying Program Encoding), that
      comment must appear on the first line or on the second line if the first
      line is a shebang.
Third, if a file contains a line that consists of the single token
      __END__ with no whitespace before or after, then the Ruby interpreter
      stops processing the file at that point. The remainder of the file may
      contain arbitrary data that the program can read using the IO stream object DATA. (See Chapter 10 and Input/Output for more about this global
      constant.)
Ruby programs are not required to fit in a single file. Many
      programs load additional Ruby code from external libraries, for example.
      Programs use require to load code
      from another file. require searches
      for specified modules of code against a search path, and prevents any
      given module from being loaded more than once. See Loading and Requiring Modules for details.
The following code illustrates each of these points of Ruby file
      structure:
#!/usr/bin/ruby -w          shebang comment
# -*- coding: utf-8 -*-     coding comment
require 'socket'            load networking library

  ...                       program code goes here

__END__                     mark end of code
  ...                       program data goes here


Program Encoding



At the lowest level, a Ruby program is simply a sequence of
      characters. Ruby’s lexical rules are defined using characters of the ASCII character set. Comments begin with the # character (ASCII
      code 35), for example, and allowed whitespace characters are horizontal
      tab (ASCII 9), newline (10), vertical tab (11), form feed (12), carriage
      return (13), and space (32). All Ruby keywords are written using ASCII
      characters, and all operators and other punctuation are drawn from the
      ASCII character set.
By default, the Ruby interpreter assumes that Ruby source code is
      encoded in ASCII. This is not required, however; the interpreter can also
      process files that use other encodings, as long as those encodings can
      represent the full set of ASCII characters. In order for the Ruby
      interpreter to be able to interpret the bytes of a source file as
      characters, it must know what encoding to use. Ruby files can identify
      their own encodings or you can tell the interpreter how they are
      encoded. Doing so is explained shortly.
The Ruby interpreter is actually quite flexible about the
      characters that appear in a Ruby program. Certain ASCII characters have
      specific meanings, and certain ASCII characters are not allowed in
      identifiers, but beyond that, a Ruby program may contain any characters
      allowed by the encoding. We explained earlier that identifiers may
      contain characters outside of the ASCII character set. The same is true
      for comments and string and regular expression literals: they may
      contain any characters other than the delimiter character that marks the
      end of the comment or literal. In ASCII-encoded files, strings may
      include arbitrary bytes, including those that represent nonprinting
      control characters. (Using raw bytes like this is not recommended,
      however; Ruby string literals support escape sequences so that arbitrary
      characters can be included by numeric code instead.) If the file is
      written using the UTF-8 encoding, then comments, strings, and regular
      expressions may include arbitrary Unicode characters. If the file is
      encoded using the Japanese SJIS or EUC encodings, then strings may
      include Kanji characters.
Specifying Program Encoding



By default, the Ruby interpreter assumes that programs are
        encoded in ASCII. In Ruby 1.8, you can specify a different encoding with the -K command-line
        option. To run a Ruby program that includes Unicode characters
        encoded in UTF-8, invoke the interpreter with the -Ku option. Programs that include Japanese
        characters in EUC-JP or SJIS encodings can be run with the -Ke and -Ks options.
Ruby 1.9 also supports the -K
        option, but it is no longer the preferred way to specify the encoding
        of a program file. Rather than have the user of a script specify the
        encoding when they invoke Ruby, the author of the script can specify
        the encoding of the script by placing a special “coding comment” at
        the start of the file.[2] For example:
# coding: utf-8

The comment must be written entirely in ASCII, and must include
        the string coding followed by a
        colon or equals sign and the name of the desired encoding (which
        cannot include spaces or punctuation other than hyphen and
        underscore). Whitespace is allowed on either side of the colon or
        equals sign, and the string coding
        may have any prefix, such as en to
        spell encoding. The entire comment,
        including coding and the encoding
        name, is case-insensitive and can be written with upper- or lowercase
        letters.
Encoding comments are usually written so that they also inform a
        text editor of the file encoding. Emacs users might write:
# -*- coding: utf-8 -*-

And vi users can write:
# vi: set fileencoding=utf-8 :

An encoding comment like this one is usually only valid on the
        first line of the file. It may appear on the second line, however, if
        the first line is a shebang comment (which makes a script executable
        on Unix-like operating systems):
#!/usr/bin/ruby -w
# coding: utf-8

Encoding names are not case-sensitive and may be written in
        uppercase, lowercase, or a mix. Ruby 1.9 supports at least the
        following source encodings: ASCII-8BIT (also known as BINARY),
        US-ASCII (7-bit ASCII), the European encodings ISO-8859-1 through
        ISO-8859-15, the Unicode encoding UTF-8, and the Japanese encodings
        SHIFT_JIS (also known as SJIS) and EUC-JP. Your build or distribution
        of Ruby may support additional encodings as well.
As a special case, UTF-8-encoded files identify their encoding
        if the first three bytes of the file are 0xEF 0xBB 0xBF. These bytes
        are known as the BOM or “Byte Order Mark” and are optional in
        UTF-8-encoded files. (Certain Windows programs add these bytes when
        saving Unicode files.)
In Ruby 1.9, the language keyword __ENCODING__ (there are two underscores at
        the beginning and at the end) evaluates to the source
        encoding of the currently executing code. The resulting value is an
        Encoding object. (See The Encoding class for more on the Encoding class.)

Source, External, and Internal Encodings



In Ruby 1.9, it is important to understand the difference between the
        source encoding of a single Ruby file and the
        default external and default
        internal encodings of the entire Ruby process. The source
        encoding is what we described earlier: it tells the Ruby interpreter
        how to read characters in a script. Source encodings are typically set
        with coding comments. A Ruby program may consist of more than one
        file, and different files may have different source encodings. The
        source encoding of a file affects the encoding of the string literals
        in that file. For more about the encoding of strings, see String Encodings and Multibyte Characters.
The default external encoding is something different: this is
        the encoding that Ruby uses by default when reading from files and
        streams. The default external encoding is global to the Ruby process
        and does not change from file to file. Normally, the default external
        encoding is set based on the locale that your computer is configured
        to. But you can also explicitly specify the default external encoding
        with command-line options, as we’ll describe shortly. The default
        external encoding does not affect the encoding of string literals, but
        it is quite important for I/O, as we’ll see in Streams and Encodings.
When a Ruby program reads text from a file or network socket, it
        normally leaves the text in its native encoding. If you prefer to have
        all text automatically transcoded to a single common encoding, you can
        specify a default internal encoding using the command-line options
        described below. See Streams and Encodings for more
        details.
We described the -K
        interpreter option earlier as a way to set the source encoding. In
        fact, what this option really does is set the default external
        encoding of the process and then uses that encoding as the default
        source encoding.
In Ruby 1.9, the -K option
        exists for compatibility with Ruby 1.8 but is not the preferred way to
        set the default external encoding. Two new options, -E and --encoding, allow
        you to set both the default external and the default internal encoding
        and to specify an encoding by its full name rather than by a
        one-character abbreviation. For example:
ruby -E utf-8            # Default external encoding name follows -E
ruby -Eutf-8             # The space is optional
ruby -E utf-8:binary     # Specify external and internal encodings
ruby -E :sjis            # Specify default internal encoding only
ruby --encoding utf-8    # --encoding is just like -E
ruby --encoding=utf-8    # Or use an equals sign with --encoding

The -U (for Unicode) option
        specifies a default internal encoding of UTF-8. It is a shortcut for
        -E:utf-8. See Invoking the Ruby Interpreter for complete details on these
        interpreter command-line options.
You can query the default external and default internal
        encodings with Encoding.default_external and Encoding.default_internal. These  class methods return an Encoding object. Use Encoding.locale_charmap to obtain the name
        (as  a string) of the character encoding derived from the
        locale. This method is always based on the locale setting and ignores
        command-line options that override the default external
        encoding.



[2] Ruby follows Python’s conventions in this; see http://www.python.org/dev/peps/pep-0263/.



Program Execution



Ruby is a scripting language. This means that Ruby programs are
      simply lists, or scripts, of statements to be executed. By default,
      these statements are executed sequentially, in the order they appear.
      Ruby’s control structures (described in Chapter 5)
      alter this default execution order and allow statements to be executed
      conditionally or repeatedly, for example.
Programmers who are used to traditional static compiled languages like C or Java may find this slightly
      confusing. There is no special main
      method in Ruby from which execution begins. The Ruby interpreter
      is given a script of statements to execute, and it begins executing at
      the first line and continues to the last line.
(Actually, that last statement is not quite true. The Ruby
      interpreter first scans the file for BEGIN statements,
      and executes the code in their bodies. Then it goes back to line 1 and
      starts executing sequentially. See BEGIN and END for more
      on BEGIN.)
Another difference between Ruby and compiled languages has to do
      with module, class, and method definitions. In compiled languages, these
      are syntactic structures that are processed by the compiler. In Ruby,
      they are statements like any other. When the Ruby interpreter encounters
      a class definition, it executes it, causing a new class to come into
      existence. Similarly, when the Ruby interpreter encounters a method
      definition, it executes it,
      causing a new method to be defined. Later in the program, the
      interpreter will probably encounter and execute a method invocation
      expression for the method, and this invocation will cause the statements in
      the method body to be executed.
The Ruby interpreter is invoked from the command line and given a
      script to execute. Very simple one-line scripts are sometimes written
      directly on the command line. More commonly, however, the name of the
      file containing the script is specified. The Ruby interpreter reads the
      file and executes the script. It first executes any BEGIN blocks. Then it starts at the first line
      of the file and continues until one of the following happens:
	It executes a statement that causes the Ruby program to
          terminate.

	It reaches the end of the file.

	It reads a line that marks the logical end of the file with
          the token __END__.



Before it quits, the Ruby interpreter typically (unless the
      exit! method was called) executes the
      bodies of any END statements it has
      encountered and any other “shutdown hook” code registered with the
      at_exit function.

Chapter 3. Datatypes and Objects



[image: image with no caption]

In order to understand a programming language, you have to
    know what kinds of data it can manipulate and what it can do with that
    data. This chapter is about the values manipulated by Ruby programs. It
    begins with comprehensive coverage of numeric and textual values. Next, it
    explains arrays and hashes—two important data structures that are a
    fundamental part of Ruby. The chapter then moves on to explain ranges,
    symbols, and the special values true,
    false, and nil. All Ruby values are objects, and this
    chapter concludes with detailed coverage of the features that all objects
    share.
The classes described in this chapter are the fundamental datatypes
    of the Ruby language. This chapter explains the basic behavior of those
    types: how literal values are written in a program, how integer and
    floating-point arithmetic work, how textual data is encoded, how values
    can serve as hash keys, and so on. Although we cover numbers, strings,
    arrays, and hashes here, this chapter makes no attempt to explain the APIs
    defined by those types. Instead, Chapter 9 demonstrates
    those APIs by example, and it also covers many other important (but
    nonfundamental) classes.
Numbers



Ruby includes five built-in classes for representing numbers,
      and the standard library includes three more numeric classes that are
      sometimes useful. Figure 3-1 shows the class
      hierarchy.
[image: Numeric class hierarchy]

Figure 3-1. Numeric class hierarchy


All number objects in Ruby are instances of Numeric. All integers are instances of
      Integer. If an
      integer value fits within 31 bits (on most implementations), it is an
      instance of Fixnum. Otherwise, it is a Bignum.
      Bignum objects represent integers of
      arbitrary size, and if the result of an operation on Fixnum operands is too big to fit in a
      Fixnum, that result is transparently
      converted to a Bignum. Similarly, if
      the result of an operation on Bignum
      objects falls within the range of Fixnum, then the result is a Fixnum. Real numbers are
      approximated in Ruby with the Float
      class, which uses the native floating-point representation of the
      platform.
The Complex class
      represents complex numbers, of course.  BigDecimal represents
      real numbers with arbitrary precision, using a decimal representation
      rather than a binary representation. And Rational represents
      rational numbers: one integer divided by another. In Ruby 1.8 these
      classes are in the standard library. In Ruby 1.9, Complex and Rational are built-in.
All numeric objects are immutable; there are no methods that
      allow you to change the value held by the object. If you pass a
      reference to a numeric object to a method, you need not worry that the
      method will modify the object. Fixnum
      objects are commonly used, and Ruby implementations typically treat them
      as immediate values rather than as references. Because numbers are
      immutable, however, there is really no way to tell the
      difference.
Integer Literals



An integer literal is simply a sequence of digits:
0
123
12345678901234567890

If the integer values fit within the range of the Fixnum class, the
        value is a Fixnum. Otherwise, it is a Bignum, which supports integers of any size.
        Underscores may be inserted into integer literals (though not at the
        beginning or end), and this feature is sometimes used as a thousands
        separator:
1_000_000_000     # One billion (or 1,000 million in the UK)

If an integer literal begins with zero and has more than one
        digit, then it is interpreted in some base other than base 10. Numbers
        beginning with 0x or 0X are hexadecimal (base 16) and use the
        letters a through f (or A
        through F) as digits for 10 through 15. Numbers beginning 0b or 0B
        are binary (base 2) and may only include digits 0 and 1.
        Numbers beginning with 0 and no
        subsequent letter are octal (base 8) and should consist of digits between 0 and 7.
        Examples:
0377           # Octal representation of 255
0b1111_1111    # Binary representation of 255
0xFF           # Hexadecimal representation of 255

To represent a negative number, simply begin an integer literal
        with a minus sign. Literals may also begin with a plus sign, although
        this never changes the meaning of the literal.

Floating-Point Literals



A floating-point literal is an optional sign followed by one or more decimal
        digits, a decimal point (the .
        character), one or more additional digits, and an optional exponent.
        An exponent begins with the letter e or E,
        and is followed by an optional sign and one or more decimal digits. As
        with integer literals, underscores may be used within floating-point literals. Unlike integer
        literals, it is not possible to express floating-point values in any
        radix other than base 10. Here are some examples of floating-point
        literals:
0.0      
-3.14
6.02e23       # This means 6.02 × 1023
1_000_000.01  # One million and a little bit more

Ruby requires that digits appear before and after the decimal
        point. You cannot simply write .1,
        for example; you must explicitly write 0.1. This is necessary to avoid ambiguity in
        Ruby’s complex grammar. Ruby differs from many other languages in this
        way.

Arithmetic in Ruby



All numeric types in Ruby define standard +, –, *,
        and / operators for addition, subtraction, multiplication, and
        division. When an integer result is too large for a Fixnum, Ruby automatically converts to a Bignum, and as a
        result, integer arithmetic in Ruby never overflows as it does in many
        other languages. Floating-point numbers (at least on platforms that
        use the standard IEEE-754 floating-point representation) overflow to
        special positive or negative infinity values, and underflow to
        zero.
The division operator depends on the class of the operands:
        if both operands are integers, then truncating integer
        division is performed. If either operand is a Float, then floating-point division is
        performed. There are also three division methods: div performs integer division, fdiv performs floating-point division, and
        quo returns a Rational when possible, and otherwise
        returns a Float (this requires the
        “rational” module in Ruby 1.8):
[5/2, 5.0/2, 5/2.0]                 # => [2, 2.5, 2.5]
[5.0.div(2), 5.0.fdiv(2), 5.quo(2)] # => [2, 2.5, Rational(5,2)]

Integer division by zero causes a ZeroDivisionError to be thrown. Floating-point division by zero does not
        cause an error; it simply returns the value Infinity. The case of 0.0/0.0 is special; on
        most modern hardware, and with most operating systems, it evaluates to
        another special floating-point
        value known as NaN, or Not-a-Number.
The modulo (%) operator
         (and the synonymous modulo method) compute the  remainder after integer division. They can also be used
        with Float and Rational operands. The divmod method returns both quotient and
        modulo :
x = 5%2           # => 1: quotient is 2, with 1 left over
q,r = 10.divmod 3 # => [3,1]: quotient is 3, remainder is 1

Ruby uses the ** operator
         for exponentiation. Exponents need not be
        integers:
x**4          # This is the same thing as x*x*x*x
x**-1         # The same thing as 1/x
x**(1/3.0)    # The cube root of x. Use Math.cbrt in Ruby 1.9
x**(1/4)      # Oops! Integer division means this is x**0, which is always 1
x**(1.0/4.0)  # This is the fourth-root of x

When multiple exponentiations are combined into a single
        expression, they are evaluated from right to left. Thus, 4**3**2 is the same as 4**9, not 64**2.
Exponentiation can result in very large values. Remember that
        integers can become arbitrarily large, but Float objects cannot represent numbers
        larger than Float::MAX. Thus, the expression
        10**1000 yields an exact integer
        result, but the expression
        9.9**1000 overflows to the Float value Infinity.
Fixnum and Bignum values support the standard bit-manipulation operators—~, &,
        |, ^, >>, and <<—that are common in C, Java, and
        many other languages. (See Operators for details.)
        In addition, integer values can also be indexed like arrays to query
        (but not set) individual bits.
        The index 0 returns the least significant bit:
even = (x[0] == 0)  # A number is even if the least-significant bit is 0

Division, Modulo, and Negative Numbers
When one (but not both) of the operands is negative,
          Ruby performs the integer division and modulo
          operations differently than languages like C, C++, and Java do (but
          the same as the languages Python and Tcl). Consider the quotient
          -7/3. Ruby rounds toward negative
          infinity and returns –3. C and
          related languages round toward zero instead and return –2. In Ruby, -a/b equals a/-b but may not equal -(a/b).
Ruby’s definition of the modulo operation also differs from
          that of C and Java. In Ruby, –7%3
          is 2. In C and Java, the result
          is -1 instead. The magnitude of
          the result differs, because the quotient differed. But the sign of
          the result differs, too. In Ruby, the sign of the result is always
          the sign of the second operand. In C and Java, the sign of the
          result is always the sign of the first operand. (Ruby’s  remainder method
          behaves like the C modulo operator.)


Binary Floating-Point and Rounding Errors



Most computer hardware and most computer languages (including Ruby)
        approximate real numbers using a floating-point representation
        like Ruby’s Float class.
        For hardware efficiency, most floating-point representations are
        binary representations, which can exactly represent fractions like
        1/2, 1/4, and 1/1024. Unfortunately, the fractions we use
        most commonly (especially when performing financial calculations) are
        1/10, 1/100, 1/1000, and so on. Binary floating-point
        representations cannot exactly represent numbers as simple as 0.1.
Float objects have plenty of
        precision and can approximate 0.1
        very well, but the fact that this number cannot be represented exactly
        leads to problems. Consider the following simple Ruby expression:
0.4 - 0.3 == 0.1    # Evaluates to false in most implementations

Because of rounding error, the difference between the
        approximations of 0.4 and 0.3 is not quite the same as the
        approximation of 0.1. This problem
        is not specific to Ruby: C, Java, JavaScript, and all languages that
        use IEEE-754 floating-point numbers suffer from it as well.
One solution to this problem is to use a decimal representation
        of real numbers rather than a binary representation. The BigDecimal class from Ruby’s standard
        library is one such representation. Arithmetic on BigDecimal objects is many times slower than
        arithmetic on Float values. It is
        fast enough for typical financial calculations, but not for scientific
        number crunching. Decimal Arithmetic includes a short
        example of the use of the BigDecimal library.



Text



Text is represented in Ruby by objects of the String class. Strings are mutable objects, and the String class defines a powerful set of
      operators and methods for extracting substrings, inserting and deleting
      text, searching, replacing, and so on. Ruby provides a number of ways to
      express string literals in your programs, and some of them support a
      powerful string interpolation syntax by which the values of arbitrary
      Ruby expressions can be substituted into string literals. The sections
      that follow explain string and character literals and string operators.
      The full string API is covered in Strings.
Textual patterns are represented in Ruby as Regexp objects,
      and Ruby defines a syntax for including regular expressions literally in
      your programs. The code /[a-z]\d+/,
      for example, represents a single lowercase letter followed by one or
      more digits. Regular expressions are a commonly used feature of Ruby,
      but regexps are not a fundamental datatype in the way that numbers,
      strings, and arrays are. See Regular Expressions for
      documentation of regular expression syntax and the Regexp API.
Text in Ruby 1.8 and Ruby 1.9
The biggest change between Ruby 1.8 and Ruby 1.9 is that 1.9 offers
        comprehensive built-in support for Unicode and other multibyte text
        representations. The ramifications of this change are extensive and
        will be mentioned throughout this section, especially in String Encodings and Multibyte Characters.

String Literals



Ruby provides quite a few ways to embed strings literally into your
        programs.
Single-quoted string literals



The simplest string literals are enclosed in single quotes (the
          apostrophe character). The text within the quote marks is the value
          of the string:
'This is a simple Ruby string literal'

If you need to place an apostrophe within a single-quoted string literal, precede it
          with a backslash so that the Ruby interpreter does not think that it
          terminates the string:
'Won\'t you read O\'Reilly\'s book?'

The backslash also works to escape another backslash, so that
          the second backslash is not itself interpreted as an escape
          character. Here are some situations in which you need to use a
          double backslash:
'This string literal ends with a single backslash: \\'
'This is a backslash-quote: \\\''
'Two backslashes: \\\\'

In single-quoted strings, a backslash is not special if the
          character that follows it is anything other than a quote or a
          backslash. Most of the time, therefore, backslashes need not be
          doubled (although they can be) in string literals. For example, the
          following two string literals are equal:
'a\b' == 'a\\b'

Single-quoted strings may extend over multiple lines, and the
          resulting string literal includes the newline characters. It is not
          possible to escape the newlines with a backslash:
'This is a long string literal \
that includes a backslash and a newline'

If you want to break a long single-quoted string literal
          across multiple lines without embedding newlines in it, simply break
          it into multiple adjacent string literals; the Ruby interpreter will
          concatenate them during the parsing process. Remember, though, that
          you must escape the newlines (see Chapter 2)
          between the literals so that Ruby does not interpret the newline as
          a statement terminator:
message = 
'These three literals are '\
'concatenated into one by the interpreter. '\
'The resulting string contains no newlines.'


Double-quoted string literals



String literals delimited by double quotation marks are much more flexible than
          single-quoted literals. Double-quoted literals support quite a few
          backslash escape sequences, such as \n for newline,
          \t for tab, and \" for a quotation
          mark that does not terminate the string:
"\t\"This quote begins with a tab and ends with a newline\"\n"
"\\"  # A single backslash

In Ruby 1.9, the \u escape
          embeds arbitrary Unicode characters, specified by their codepoint, into
          a double-quoted string. This escape sequence is complex enough that
          we’ll describe it in its own section (see Unicode escapes). Many of the other
          backslash escape sequences are obscure and are used for encoding
          binary data into strings. The complete list of escape sequences is
          shown in Table 3-1.
More powerfully, double-quoted string literals may also
          include arbitrary Ruby expressions. When the string is
          created, the expression is evaluated, converted to a string, and
          inserted into the string in place of the expression text itself.
          This substitution of an expression with its value is known in Ruby
          as “string interpolation.” Expressions within double-quoted strings
          begin with the # character and are enclosed within curly braces:
"360 degrees=#{2*Math::PI} radians" # "360 degrees=6.28318530717959 radians"

When the expression to be interpolated into the string literal
          is simply a reference to a global, instance, or class variable, then
          the curly braces may be omitted:
$salutation = 'hello'     # Define a global variable
"#$salutation world"      # Use it in a double-quoted string

Use a backslash to escape the # character if you do not want it to be
          treated specially. Note that this only needs to be done if the
          character after # is {, $,
          or @:
"My phone #: 555-1234"                # No escape needed
"Use \#{ to interpolate expressions"  # Escape #{ with backslash

String Interpolation with sprintf
C programmers may be happy to know that Ruby also supports
            printf and sprintf[3] functions for interpolating formatted values into
            strings:
sprintf("pi is about %.4f", Math::PI) # Returns "pi is about 3.1416"

The advantage of this style of interpolation is that the
            format string can specify options, such as the number of decimal
            places to display in a Float.
            In true Ruby style, there is even an operator form of the sprintf method: simply use a % operator between a format string and
            the arguments to be interpolated into it:
"pi is about %.4f" % Math::PI # Same as example above
"%s: %f" % ["pi", Math::PI]   # Array on righthand side for multiple args


Double-quoted string literals may span multiple lines, and
          line terminators become part of the string literal, unless escaped
          with a backslash:
"This string literal
has two lines \
but is written on three"

You may prefer to explicitly encode the line terminators in
          your strings—in order to enforce network CRLF (Carriage Return Line
          Feed) line terminators, as used in the HTTP protocol, for example.
          To do this, write all your string literals on a single line and
          explicitly include the line endings with the \r and \n escape sequences. Remember that
          adjacent string literals are automatically concatenated, but if they
          are written on separate lines, the newline between
          them must be escaped:
"This string has three lines.\r\n" \
"It is written as three adjacent literals\r\n" \
"separated by escaped newlines\r\n"

Table 3-1. Backslash escapes in double-quoted strings
	Escape sequence	Meaning
	\
                  x	A backslash before any character
                  x is equivalent to the character
                  x by itself, unless
                  x is a line terminator or one of
                  the special characters abcefnrstuvxCM01234567. This
                  syntax is useful to escape the special meaning of the
                  \, #, and " characters. 

	\a	The BEL character (ASCII code 7). Rings the
                  console bell. Equivalent to \C-g or \007. 

	\b	The Backspace character (ASCII code 8).
                  Equivalent to \C-h or
                  \010. 

	\e	The ESC character (ASCII code 27). Equivalent
                  to \033. 

	\f	The Form Feed character (ASCII code 12).
                  Equivalent to \C-l and
                  \014. 

	\n	The Newline character (ASCII code 10).
                  Equivalent to \C-j and
                  \012. 

	\r	The Carriage Return character (ASCII code 13).
                  Equivalent to \C-m and
                  \015. 

	\s	The Space character (ASCII code 32).
                  

	\t	The TAB character (ASCII code 9). Equivalent
                  to \C-i and \011. 

	\u
                  nnnn	The Unicode codepoint
                  nnnn, where each
                  n is one hexadecimal digit.
                  Leading zeros may not be dropped; all four digits are
                  required in this form of the \u escape. Supported in Ruby 1.9
                  and later. 

	\u{
                  hexdigits }	The Unicode codepoint(s) specified by
                  hexdigits. See the description of
                  this escape in the main text. Ruby 1.9 and later.
                  

	\v	The vertical tab character (ASCII code 11).
                  Equivalent to \C-k and
                  \013. 

	\
                  nnn	The byte nnn, where
                  nnn is three octal digits between
                  000 and 377. 

	\
                  nn	Same as \0nn,
                  where nn is two octal digits
                  between 00 and 77. 

	\
                  n	Same as \00n,
                  where n is an octal digit between
                  0 and 7. 

	\x
                  nn	The byte nn, where
                  nn is two hexadecimal digits
                  between 00 and FF. (Both lowercase and uppercase letters are
                  allowed as hexadecimal digits.) 

	\x
                  n	Same as \x0n,
                  where n is a hexadecimal digit
                  between 0 and F (or f). 

	\c
                  x	Shorthand for \C-x.
                  

	\C-
                  x	The character whose character code is formed by
                  zeroing the sixth and seventh bits of
                  x, retaining the high-order bit
                  and the five low bits. x can be
                  any character, but this sequence is usually used to
                  represent control characters Control-A through Control-Z
                  (ASCII codes 1 through 26). Because of the layout of the
                  ASCII table, you can use either lowercase or uppercase
                  letters for x. Note that \cx is
                  shorthand. x can be any single
                  character or an escape other than \C \u, \x, or \nnn.
                  

	\M-
                  x	The character whose character code is formed by
                  setting the high bit of the code of
                  x. This is used to represent
                  “meta” characters, which are not technically part of the
                  ASCII character set. x can be any
                  single character or an escape other than \M \u, \x, or \nnn.
                  \M can be combined with
                  \C as in \M-\C-A. 

	\
                  eol	A backslash before a line terminator escapes
                  the terminator. Neither the backslash nor the terminator
                  appear in the string. 





Unicode escapes



In Ruby 1.9, double-quoted strings can include arbitrary Unicode
          characters with \u escapes. In
          its simplest form, \u is followed
          by exactly four hexadecimal digits (letters can be upper- or
          lowercase), which represent a Unicode codepoint between 0000 and
          FFFF. For example:
"\u00D7"       # => "×": leading zeros cannot be dropped
"\u20ac"       # => "€": lowercase letters are okay

A second form of the \u
          escape is followed by an open curly brace, one to six hexadecimal digits, and a
          close curly brace. The digits between the braces can represent any
          Unicode codepoint between 0 and 10FFFF, and leading zeros can be
          dropped in this form:
"\u{A5}"      # => "¥": same as "\u00A5"
"\u{3C0}"     # Greek lowercase pi: same as "\u03C0"
"\u{10ffff}"  # The largest Unicode codepoint

Finally, the \u{} form of
          this escape allows multiple codepoints to be embedded within a
          single escape. Simply place multiple runs of one to six hexadecimal
          digits, separated by a single space or tab character, within the
          curly braces. Spaces are not allowed after the opening curly brace
          or before the closing brace:
money = "\u{20AC A3 A5}"  # => "€£¥"

Note that spaces within the curly braces do not encode spaces
          in the string itself. You can, however, encode the ASCII space
          character with Unicode codepoint 20:
money = "\u{20AC 20 A3 20 A5}"  # => "€ £ ¥"

Strings that use the \u
          escape are encoded using the Unicode UTF-8 encoding. (See String Encodings and Multibyte Characters for more on
          the encoding of strings.)
\u escapes are usually, but
          not always, legal in strings. If the source file uses an encoding
          other than UTF-8, and a string contains multibyte characters in that
          encoding (literal characters, not characters created with escapes),
          then it is not legal to use \u in
          that string—it is just not possible for one string to encode
          characters in two different encodings. You can always use \u if the source encoding (see Specifying Program Encoding) is UTF-8. And you can always use
          \u in a string that only contains
          ASCII characters.
\u escapes may appear in
          double-quoted strings, and also in other forms of quoted text
          (described shortly) such as regular expressions, characters
          literals, %- and %Q-delimited strings, %W-delimited arrays, here documents, and
          backquote-delimited command strings. Java programmers should note
          that Ruby’s \u escape can only
          appear in quoted text, not in program identifiers.

Arbitrary delimiters for string literals



When working with text that contains apostrophes and quotation
          marks, it is awkward to use it as single- and double-quoted string
          literals. Ruby supports a generalized quoting syntax for string
          literals (and, as we’ll see later, for regular expression and array
          literals as well). The sequence %q begins a string literal that follows single-quoted
          string rules, and the sequence %Q
          (or just %) introduces a literal that follows double-quoted string
          rules. The first character following q or Q
          is the delimiter character, and the string literal continues until a
          matching (unescaped) delimiter is found. If the opening delimiter is (, [,
          {, or <, then the matching delimiter is
          ), ], },
          or >. (Note that the backtick
          ` and apostrophe ' are not a matched pair.) Otherwise, the
          closing delimiter is the same as the opening delimiter. Here are
          some examples:
%q(Don't worry about escaping ' characters!)
%Q|"How are you?", he said|
%-This string literal ends with a newline\n-  # Q omitted in this one

If you find that you need to escape the delimiter character,
          you can use a backslash (even in the stricter %q form) or just choose a different
          delimiter:
%q_This string literal contains \_underscores\__
%Q!Just use a _different_ delimiter\!!

If you use paired delimiters, you don’t need to escape those
          delimiters in your literals, as long as they appear in properly
          nested pairs:
# XML uses paired angle brackets:
%<<book><title>Ruby in a Nutshell</title></book>>  # This works
# Expressions use paired, nested parens:
%((1+(2*3)) = #{(1+(2*3))})                        # This works, too
%(A mismatched paren \( must be escaped)           # Escape needed here


Here documents



For long string literals, there may be no single character
          delimiter that can be used without worrying about remembering to
          escape characters within the literal. Ruby’s solution to this
          problem is to allow you to specify an arbitrary sequence of
          characters to serve as the delimiter for the string. This kind of
          literal is borrowed from Unix shell syntax and is historically known
          as a here document. (Because the document is
          right here in the source code rather than in an external
          file.)
Here documents begin with << or <<-. These are followed immediately
          (no space is allowed, to prevent ambiguity with the left-shift
          operator) by an identifier or string that specifies the ending
          delimiter. The text of the string literal begins on the next line
          and continues until the text of the delimiter appears on a line by
          itself. For example:
document = <<HERE        # This is how we begin a here document
This is a string literal.
It has two lines and abruptly ends...
HERE

The Ruby interpreter gets the contents of a string literal by
          reading a line at a time from its input. This does not mean,
          however, that the << must
          be the last thing on its own line. In fact, after reading the
          content of a here document, the Ruby interpreter goes back to the
          line it was on and continues parsing it. The following Ruby code,
          for example, creates a string
          by concatenating two here documents (and the newlines that terminate
          them) and a regular single-quoted string:
greeting = <<HERE + <<THERE + "World"
Hello
HERE
There
THERE

The <<HERE on line 1
          causes the interpreter to read lines 2 and 3. And the <<THERE causes the interpreter to
          read lines 4 and 5. After these lines have been read, the three
          string literals are concatenated into one.
The ending delimiter of a here document really must appear on
          a line by itself: no comment may follow the delimiter. If the here
          document begins with <<,
          then the delimiter must start at the beginning of the line. If the
          literal begins with <<-
          instead, then the delimiter may have whitespace in front of it. The
          newline at the beginning of a here document is not part of the
          literal, but the newline at the end of the document is. Therefore,
          every here document ends with a line terminator, except for an empty
          here document, which is the same as "":
empty = <<END
END

If you use an unquoted identifier as the terminator, as in the
          previous examples, then the here document behaves like a
          double-quoted string for the purposes of interpreting backslash
          escapes and the # character. If
          you want to be very, very literal, allowing no escape characters
          whatsoever, place the delimiter in single quotes. Doing this also
          allows you to use spaces in
          your delimiter:
document = <<'THIS IS THE END, MY ONLY FRIEND, THE END'
    .
    . lots and lots of text goes here
    . with no escaping at all.
    .
THIS IS THE END, MY ONLY FRIEND, THE END

The single quotes around the delimiter hint that this string
          literal is like a single-quoted string. In fact, this kind of here
          document is even stricter. Because the single quote is not a
          delimiter, there is never a need to escape a single quote with a
          backslash. And because the backslash is never needed as an escape
          character, there is never a need to escape the backslash itself. In
          this kind of here document, therefore, backslashes are simply part
          of the string literal.
You may also use a double-quoted string literal as the
          delimiter for a here document. This is the same as using a single
          identifier, except that it allows spaces within the
          delimiter:
document = <<-"# # #"    # This is the only place we can put a comment
<html><head><title>#{title}</title></head>
<body>
<h1>#{title}</h1>
#{body}
</body>
</html>
               # # #

Note that there is no way to include a comment within a here
          document except on the first line after the << token and before the start of the
          literal. Of all the # characters
          in this code, one introduces a comment, three interpolate
          expressions into the literal,
          and the rest are the delimiter.

Backtick command execution



Ruby supports another syntax involving quotes and strings.
          When text is enclosed in backquotes (the ` character, also known as backticks),
          that text is treated as a double-quoted string literal. The value of
          that literal is passed to the specially named Kernel.` method. This method executes the
          text as an operating system shell command and returns the command’s output as a
          string.
Consider the following Ruby code:
`ls`

On a Unix system, these four characters yield a string that
          lists the names of the files in the current directory. This is
          highly platform-dependent, of course. A rough equivalent in Windows
          might be `dir`.
Ruby supports a generalized quote syntax you can use in place
          of backticks. This is like the %Q
          syntax introduced earlier, but uses %x (for execute)
          instead:
%x[ls]

Note that the text within the backticks (or following %x) is processed like a double-quoted
          literal, which means that arbitrary Ruby expressions can be
          interpolated into the string. For example:
if windows
  listcmd = 'dir'
else
  listcmd = 'ls'
end
listing = `#{listcmd}`

In a case like this, however, it is simpler just to invoke the
          backtick method directly:
listing = Kernel.`(listcmd)  # irb doesn't support this legal syntax


String literals and mutability



Strings are mutable in Ruby. Therefore, the Ruby interpreter
          cannot use the same object to represent two identical string
          literals. (If you are a Java programmer, you may find this
          surprising.) Each time Ruby encounters a string literal, it creates
          a new object. If you include a literal within the body of a loop,
          Ruby will create a new object for each iteration. You can
          demonstrate this for yourself as follows:
10.times { puts "test".object_id }

For efficiency, you should avoid using literals within
          loops.

The String.new method



In addition to all the string literal options described earlier, you
          can also create new strings with the String.new method. With no arguments, this
          method returns a newly created string with no characters. With a
          single string argument, it creates and returns a new String object that represents the same
          text as the argument object.


Character Literals



Single characters can be included literally in a Ruby program by
        preceding the character with a question mark. No quotation marks of
        any kind are used:
?A   # Character literal for the ASCII character A
?"   # Character literal for the double-quote character
??   # Character literal for the question mark character

Although Ruby has a character literal syntax, it does not have a
        special class to represent single characters. Also, the interpretation
        of character literals has changed between Ruby 1.8 and Ruby 1.9. In Ruby 1.8, character literals evaluate to
        the integer encoding of the specified character. ?A, for example, is the same as 65 because
        the ASCII encoding for the capital letter A is the integer 65. In Ruby
        1.8, the character literal syntax only works with ASCII and
        single-byte characters.
In Ruby 1.9 and later, characters are simply strings of length
        1. That is, the literal ?A is the
        same as the literal 'A', and there
        is really no need for this character literal syntax in new code. In
        Ruby 1.9, the character literal syntax works with multibyte characters
        and can also be used with the \u
        Unicode escape (though not with the multicodepoint form \u{a b c}):
?\u20AC == ?€    # => true: Ruby 1.9 only
?€ == "\u20AC"   # => true

The character literal syntax can actually be used with any of
        the character escapes listed earlier in Table 3-1:
?\t      # Character literal for the TAB character
?\C-x    # Character literal for Ctrl-X
?\111    # Literal for character whose encoding is 0111 (octal)


String Operators



The String class
        defines several useful operators for manipulating
        strings of text. The + operator
        concatenates two strings and returns the result as a new String object:
planet = "Earth"
"Hello" + " " + planet    # Produces "Hello Earth"

Java programmers should note that the + operator does not convert its righthand operand to a string; you must do that
        yourself:
"Hello planet #" + planet_number.to_s  # to_s converts to a string

Of course, in Ruby, string interpolation is usually simpler than
        string concatenation with +. With
        string interpolation, the call to to_s is done automatically:
"Hello planet ##{planet_number}"

The << operator
        appends its second operand to its first, and should be
        familiar to C++ programmers.
        This operator is very different from +; it alters the lefthand operand rather
        than creating and returning a new object:
greeting = "Hello"
greeting << " " << "World"
puts greeting   # Outputs "Hello World"

Like +, the << operator does no type conversion on
        the righthand operand. If the righthand operand is an integer,
        however, it is taken to be a character code, and the corresponding
        character is appended. In Ruby 1.8, only integers between 0 and 255 are
        allowed. In Ruby 1.9, any integer that represents a valid codepoint in
        the string’s encoding can be used:
alphabet = "A"
alphabet << ?B   # Alphabet is now "AB"
alphabet << 67   # And now it is "ABC"
alphabet << 256  # Error in Ruby 1.8: codes must be >=0 and < 256

The * operator expects an
        integer as its righthand operand. It returns a String that repeats the text specified on
        the lefthand side the number of times specified by the righthand
        side:
ellipsis = '.'*3    # Evaluates to '...'

If the lefthand side is a string literal, any interpolation is
        performed just once before the repetition is done. This means that the
        following too-clever code does not do what you might want it
        to:
a = 0;
"#{a=a+1} " * 3   # Returns "1 1 1 ", not "1 2 3 "

String defines all the
        standard comparison operators. == and !=
        compare strings for equality and inequality. Two strings are equal
        if—and only if—they have the same length and all characters are
        equal. <, <=, >, and >= compare the relative order of strings
        by comparing the character codes of the characters that make up a
        string. If one string is a prefix of another, the shorter string is
        less than the longer string. Comparison is based strictly on character codes. No
        normalization is done, and natural language collation order (if it
        differs from the numeric sequence of character codes) is
        ignored.
String comparison is case-sensitive.[*] Remember that in ASCII, the uppercase letters all have
        lower codes than the lowercase letters. This means, for example, that
        "Z" < "a".
        For case-insensitive comparison of ASCII characters, use the casecmp method (see
        Strings) or convert your strings to the same case
        with downcase or upcase methods before comparing them. (Keep
        in mind that Ruby’s knowledge of upper- and lowercase letters is
        limited to the ASCII character set.)

Accessing Characters and Substrings



Perhaps the most important operator supported by String is the square-bracket array-index operator [], which is used for extracting or altering
        portions of a string. This operator is quite flexible and can be used
        with a number of different operand types. It can also be used on the
        lefthand side of an assignment, as a way of altering string
        content.
In Ruby 1.8, a string is like an array of bytes or 8-bit
        character codes. The length of this array is given by the length or size method, and you get or set elements of the array simply by
        specifying the character number within square brackets:
s = 'hello';   # Ruby 1.8
s[0]           # 104: the ASCII character code for the first character 'h'
s[s.length-1]  # 111: the character code of the last character 'o'
s[-1]          # 111: another way of accessing the last character
s[-2]          # 108: the second-to-last character
s[-s.length]   # 104: another way of accessing the first character
s[s.length]    # nil: there is no character at that index

Notice that negative array indexes specify a 1-based position from the end of the string.
        Also notice that Ruby does not throw an exception if you try to access
        a character beyond the end of the string; it simply returns nil instead.
Ruby 1.9 returns single-character strings rather than character
        codes when you index a single character. Keep in mind that when
        working with multibyte strings, with characters encoded using variable
        numbers of bytes, random access to characters is less efficient than
        access to the underlying bytes:
s = 'hello';   # Ruby 1.9
s[0]           # 'h': the first character of the string, as a string
s[s.length-1]  # 'o': the last character 'o'
s[-1]          # 'o': another way of accessing the last character
s[-2]          # 'l': the second-to-last character
s[-s.length]   # 'h': another way of accessing the first character
s[s.length]    # nil: there is no character at that index

To alter individual characters of a string, simply use brackets
        on the lefthand side of an assignment expression. In Ruby 1.8, the
        righthand side may be an ASCII character code or a string. In Ruby
        1.9, the righthand side must be a string. You can use character
        literals in either version of the language:
s[0] = ?H        # Replace first character with a capital H
s[-1] = ?O       # Replace last character with a capital O
s[s.length] = ?! # ERROR! Can't assign beyond the end of the string

The righthand side of an assignment statement like this need not
        be a character code: it may be any string, including a multicharacter
        string or the empty string. Again, this works in both Ruby 1.8 and
        Ruby 1.9:
s = "hello"      # Begin with a greeting
s[-1] = ""       # Delete the last character; s is now "hell"
s[-1] = "p!"     # Change new last character and add one; s is now "help!"

More often than not, you want to retrieve substrings from a
        string rather than individual character codes. To do this, use two
        comma-separated operands between the square brackets. The first
        operand specifies an index (which may be negative), and the second
        specifies a length (which must be nonnegative). The result is the
        substring that begins at the specified index and continues for the
        specified number of characters:
s = "hello"
s[0,2]          # "he"
s[-1,1]         # "o": returns a string, not the character code ?o
s[0,0]          # "": a zero-length substring is always empty
s[0,10]         # "hello": returns all the characters that are available
s[s.length,1]   # "": there is an empty string immediately beyond the end
s[s.length+1,1] # nil: it is an error to read past that
s[0,-1]         # nil: negative lengths don't make any sense

If you assign a string to a string indexed like this, you
        replace the specified substring with the new string. If the righthand
        side is the empty string, this is a deletion, and if the lefthand side
        has zero-length, this is an insertion:
s = "hello"
s[0,1] = "H"              # Replace first letter with a capital letter
s[s.length,0] = " world"  # Append by assigning beyond the end of the string
s[5,0] = ","              # Insert a comma, without deleting anything
s[5,6] = ""               # Delete with no insertion; s == "Hellod"

Another way to extract, insert, delete, or replace a substring
        is by indexing a string with a Range object.
        We’ll explain ranges in detail in Ranges later. For
        our purposes here, a Range is two
        integers separated by dots. When a Range is used to index a string, the return
        value is the substring whose characters fall within the Range:
s = "hello"
s[2..3]           # "ll": characters 2 and 3
s[-3..-1]         # "llo": negative indexes work, too
s[0..0]           # "h": this Range includes one character index
s[0...0]          # "": this Range is empty
s[2..1]           # "": this Range is also empty
s[7..10]          # nil: this Range is outside the string bounds
s[-2..-1] = "p!"     # Replacement: s becomes "help!"
s[0...0] = "Please " # Insertion: s becomes "Please help!"
s[6..10] = ""        # Deletion: s becomes "Please!"

Don’t confuse string indexing with two comma-separated integers
        with this form that uses a single Range object. Although both involve two
        integers, there is an important difference: the form with the comma
        specifies an index and a length; the form that uses a Range object specifies two indexes.
It is also possible to index a string with a string. When you do
        this, the return value is the first substring of the target string
        that matches the index string, or nil, if no match is found. This form of
        string indexing is really only useful on the lefthand side of an
        assignment statement when you want to replace the matched string with
        some other string:
s = "hello"       # Start with the word "hello"
while(s["l"])     # While the string contains the substring "l"
  s["l"] = "L";   # Replace first occurrence of "l" with "L"
end               # Now we have "heLLo"

Finally, you can index a string using a regular expression.
        (Regular expression objects are covered in Regular Expressions.) The result is the first substring of the string
        that matches the pattern, and again, this form of string indexing is
        most useful when used on the lefthand side of an assignment:
s[/[aeiou]/] = '*'      # Replace first vowel with an asterisk


Iterating Strings



In Ruby 1.8, the String class
        defines an each method
        that iterates a string line-by-line. The String class includes the methods of
        the Enumerable module,
        and they can be used to process the lines of a string. You can use the
        each_byte iterator in Ruby 1.8 to
        iterate through the bytes of a string, but there is little advantage
        to using each_byte over the
        [] operator because random access
        to bytes is as quick as sequential access in 1.8.
The situation is quite different in Ruby 1.9, which removes the each
        method, and in which the String
        class is no longer Enumerable. In
        place of each, Ruby 1.9 defines
        three clearly named string iterators: each_byte iterates sequentially through the
        individual bytes that comprise a string; each_char iterates the characters; and
        each_line iterates the lines. If
        you want to process a string character-by-character, it may be more
        efficient to use each_char than to
        use the [] operator and character
        indexes:
s = "¥1000"
s.each_char {|x| print "#{x} " }         # Prints "¥ 1 0 0 0". Ruby 1.9 
0.upto(s.size-1) {|i| print "#{s[i]} "}  # Inefficient with multibyte chars


String Encodings and Multibyte Characters



Strings are fundamentally different in Ruby 1.8 and Ruby
        1.9:
	In Ruby 1.8, strings are a sequence of bytes. When strings
            are used to represent text (instead of binary data), each byte of
            the string is assumed to represent a single ASCII character. In
            1.8, the individual elements of a string are not characters, but
            numbers—the actual byte value or character encoding.

	In Ruby 1.9, on the other hand, strings are true sequences
            of characters, and those characters need not be confined to the
            ASCII character set. In 1.9, the individual elements of a string
            are characters—represented as strings of length 1—rather than
            integer character codes. Every string has an encoding that
            specifies the correspondence between the bytes in the string and
            the characters those bytes represent. Encodings such as the UTF-8
            encoding of Unicode characters use variable numbers of bytes for
            each character, and there is no longer a 1-to-1 (nor even a
            2-to-1) correspondence
            between bytes and characters.



The subsections that follow explain the encoding-related
        features of strings in Ruby 1.9, and also demonstrate rudimentary
        support for multibyte characters in Ruby 1.8 using the jcode library.
Multibyte characters in Ruby 1.9



The String class has been rewritten in Ruby 1.9 to be aware of and
          properly handle multibyte characters. Although multibyte support is
          the biggest change in Ruby 1.9, it is not a highly visible change:
          code that uses multibyte strings just works. It is worth
          understanding why it works, however, and this section explains the
          details.
If a string contains multibyte characters, then the number of
          bytes does not correspond to the number of characters. In Ruby 1.9,
          the length and
          size methods return the number of
          characters in a string, and the new bytesize method
          returns the number of bytes. The [] and []= operators allow you to query and set
          the characters of a string, and the new methods getbyte and  setbyte allow you
          to query and set individual bytes (though you should not often need
          to do this):
# -*- coding: utf-8 -*-   # Specify Unicode UTF-8 characters

# This is a string literal containing a multibyte multiplication character
s = "2×2=4"

# The string contains 6 bytes which encode 5 characters
s.bytesize                                     # => 6
s.bytesize.times {|i| print s.getbyte(i), " "} # Prints "50 195 151 50 61 52"
s.length                                       # => 5
s.length.times { |i| print s[i], " "}          # Prints "2 × 2 = 4"
s.setbyte(5, s.getbyte(5)+1);                  # s is now "2×2=5"

Note that the first line in this code is a coding comment that sets the source encoding (see Specifying Program Encoding) to UTF-8. Without this comment, the
          Ruby interpreter would not know how to decode the sequence of bytes
          in the string literal into a sequence of characters.
When a string contains characters encoded with varying numbers
          of bytes, it is no longer possible to map directly from character
          index to byte offset in the string. In the string above, for
          example, the second character begins at the second byte. But the
          third character begins at the fourth byte. This means that you
          cannot assume that random access to arbitrary characters within a
          string is a fast operation. When you use the [] operator, as
          we did in the code above, to access a character or substring within
          a multibyte string, the Ruby implementation must internally iterate
          sequentially through the string to find the desired character index.
          In general, therefore, you should try to do your string processing
          using sequential algorithms when possible. That is: use the each_char iterator when possible instead
          of repeated calls to the []
          operator. On the other hand, it is usually not necessary to worry
          too much about this. Ruby implementations optimize the cases that
          can be optimized, and if a string consists entirely of 1-byte
          characters, random access to those characters will be efficient. If
          you want to attempt your own optimizations, you can use the instance
          method ascii_only? to determine
          whether a string consists entirely of 7-bit ASCII characters.
The Ruby 1.9 String class
          defines an encoding
          method that returns the encoding of a string (the return
          value is an Encoding object,
          which is described below):
# -*- coding: utf-8 -*-
s = "2×2=4"     # Note multibyte multiplication character
s.encoding      # => <Encoding: UTF-8>

The encoding of string literals is always the same as the
          source encoding of the file, except that literals that contain
          \u escapes are always encoded in
          UTF-8, regardless of the source encoding.
ASCII and BINARY encodings
The “ASCII-8BIT” encoding shown earlier is Ruby 1.9’s
            name for the legacy encoding used by Ruby 1.8; it is the ASCII
            character set with no restrictions on the use of nonprinting and
            control characters. In this encoding, one byte always equals one
            character, and strings can hold binary data or character
            data.
Certain Ruby 1.9 methods require you to specify an encoding name (or Encoding
            object—see below). You can specify this ASCII encoding as
            “ASCII-8BIT” or by its alias “BINARY”. This may seem surprising,
            but it’s true: as far as Ruby is concerned, a sequence of bytes with no encoding
            (“BINARY”) is the same as a sequence of 8-bit ASCII
            characters.
Ruby 1.9 also supports an encoding named “US-ASCII”, which
            is true 7-bit ASCII; it differs from ASCII-8BIT in that it does
            not allow any bytes with their 8th bit set. The encoding name
            “ASCII” is an alias for “US-ASCII”.

Certain string operations, such as concatenation and pattern
          matching, require that two strings (or a string and a regular
          expression) have compatible encodings. If you concatenate an ASCII
          string with a UTF-8 string, for example, you obtain a UTF-8 string.
          It is not possible, however, to concatenate a UTF-8 string and an
          SJIS string: the encodings are not compatible, and an exception will
          be raised. You can test whether two strings (or a string and a
          regular expression) have compatible encodings by using the class
          method Encoding.compatible?.
          If the encodings of the two arguments are compatible,
          it returns the one that is the superset of the other. If the
          encodings are incompatible, it returns nil.
You can explicitly set the encoding of a string with force_encoding. This is useful if you have
          a string of bytes (read from an I/O stream, perhaps) and want to
          tell Ruby how they should be interpreted as characters. Or, if you
          have a string of multibyte characters, but you want to index
          individual bytes with []:
text = stream.readline.force_encoding("utf-8")
bytes = text.dup.force_encoding("binary")

force_encoding
          does not make a copy of its receiver; it modifies the
          encoding of the string and returns the string. This method does not
          do any character conversion—the underlying bytes of the string are
          not changed, only Ruby’s interpretation of them is changed. The
          argument to force_encoding can be
          the name of an encoding or an Encoding object.
force_encoding does no
          validation; it does not check that the underlying bytes of the
          string represent a valid sequence of characters in the specified
          encoding. Use valid_encoding? to
          perform validation. This  instance method takes no arguments and checks whether
          the bytes of a string can be interpreted as a valid sequence of
          characters using the string’s encoding:
s = "\xa4".force_encoding("utf-8")  # This is not a valid UTF-8 string
s.valid_encoding?                   # => false

The encode method
          (and the mutating encode! variant) of a string is quite
          different from force_encoding. It
          returns a string that represents the same sequence of characters as
          its receiver, but using a different encoding. In order to change the
          encoding of—or transcode—a string like this,
          the encode method must alter the
          underlying bytes that make up the string. Here is an example:
# -*- coding: utf-8 -*-
euro1 = "\u20AC"                     # Start with the Unicode Euro character
puts euro1                           # Prints "€"
euro1.encoding                       # => <Encoding:UTF-8>
euro1.bytesize                       # => 3

euro2 = euro1.encode("iso-8859-15")  # Transcode to Latin-15
puts euro2.inspect                   # Prints "\xA4"
euro2.encoding                       # => <Encoding:iso-8859-15>
euro2.bytesize                       # => 1

euro3 = euro2.encode("utf-8")        # Transcode back to UTF-8
euro1 == euro3                       # => true

Note that you should not often need to use the encode method. The most common time to
          transcode strings is before writing them to a file or sending them
          across a network connection. And, as we’ll see in Streams and Encodings, Ruby’s I/O stream classes support the
          automatic transcoding of text when it is written out.
If the string that you are calling encode on consists of unencoded bytes, you
          need to specify the encoding by which to interpret those bytes
          before transcoding them to another encoding. Do this by passing two
          arguments to encode. The first
          argument is the desired encoding, and the second argument is the
          current encoding of the string. For example:
# Interpret a byte as an iso-8859-15 codepoint, and transcode to UTF-8
byte = "\xA4"
char = byte.encode("utf-8", "iso-8859-15")

That is, the following two lines of code have the same
          effect:
text = bytes.encode(to, from)
text = bytes.dup.force_encoding(from).encode(to)

If you call encode with no
          arguments, it transcodes its receiver to the default internal
          encoding, if one has been set with the -E or -U interpreter options (see Encoding Options). This allows library modules (for
          example) to transcode their public string constants to a common
          encoding for interoperability.
Character encodings differ not only in their mapping from
          bytes to characters, but in the set of characters that they can
          represent. Unicode (also known as UCS—the Universal Character Set) tries to
          allow all characters, but character encodings not based on Unicode
          can only represent a subset of characters. It is not possible,
          therefore, to transcode all UTF-8 strings to EUC-JP (for example);
          Unicode characters that are neither Latin nor Japanese cannot be
          translated.
If the encode or encode! method encounters a character that
          it cannot transcode, it raises an exception:
"\u20AC".encode("iso-8859-1") # No euro sign in Latin-1, so raise exception

encode and encode! accept a hash of transcoding
          options as their final argument. At the time of this writing, the
          only defined option name is :invalid, and the only defined value for
          that key is :ignore. “ri
          String.encode” will give details when more options are
          implemented.

The Encoding class



The Encoding class of
          Ruby 1.9 represents a character encoding. Encoding objects act as opaque identifiers
          for an encoding and do not have many methods of their own.
          The name method
          returns the name of an encoding. to_s is a synonym for name, and inspect converts an Encoding object to a string in a more
          verbose way than name
          does.
Ruby defines a constant for each of the built-in encodings it
          supports, and these are the easiest way to specify a hardcoded
          encoding in your program. The predefined constants include at least
          the following:
Encoding::ASCII_8BIT     # Also ::BINARY
Encoding::UTF_8          # UTF-8-encoded Unicode characters
Encoding::EUC_JP         # EUC-encoded Japanese
Encoding::SHIFT_JIS      # Japanese: also ::SJIS, ::WINDOWS_31J, ::CP932

Note that because these are constants, they must be written in
          uppercase, and hyphens in the encoding names must be converted to
          underscores. Ruby 1.9 also supports the US-ASCII encoding, the
          European encodings ISO-8859-1 through ISO-8859-15, and the Unicode
          UTF-16 and UTF-32 encodings in big-endian and little-endian
          variants.
If you have an encoding name as a string and want to obtain
          the corresponding Encoding object, use the Encoding.find factory method: 
encoding = Encoding.find("utf-8")

Using Encoding.find
          causes the named encoding to be dynamically loaded, if
          necessary. Encoding.find accepts
          encoding names that are in either upper- or lowercase. Call the
          name method of an Encoding to obtain the name of the
          encoding as a string.
Encoding.list returns an
          array of all available encoding objects. Encoding.name_list returns an array of the names (as strings) of all
          available encodings. Many encodings have more than one name in
          common use, and Encoding.aliases returns a hash that maps encoding aliases to the
          official encoding names for which they are synonyms. The array
          returned by Encoding.name_list
          includes the aliases in the Encoding.aliases hash.
Use Encoding.default_external and Encoding.default_internal to obtain the Encoding objects that represent the
          default external and default internal encodings (see Source, External, and Internal Encodings). To obtain the encoding for
          the current locale, call Encoding.locale_charmap and pass the
          resulting string to Encoding.find.
Most methods that expect an Encoding object will also accept a
          case-insensitive encoding name (such as ascii, binary, utf-8, euc-jp, or sjis) in place of an Encoding object.

Multibyte characters in Ruby 1.8



Normally, Ruby 1.8 treats all strings as sequences of 8-bit bytes. There is
          rudimentary support for multibyte characters (using the UTF-8, EUC,
          or SJIS encodings) in the jcode
          module of the standard library.
To use this library, require the jcode module, and set the global $KCODE variable to the encoding that your
          multibyte characters use. (Alternatively, use the -K command-line option when you start the Ruby interpreter.) The
          jcode library defines a new
          jlength method for String objects: it returns the length of
          the string in characters rather than in bytes. The existing 1.8
          length and size methods are unchanged—they return the
          string length in bytes.
The jcode library does not
          modify the array indexing operator on strings, and does not allow
          random access to the characters that comprise a multibyte string.
          But it does define a new iterator named each_char, which works like the standard
          each_byte but passes each
          character of the string (as a string instead of as a character code)
          to the block of code you supply:
$KCODE = "u"        # Specify Unicode UTF-8, or start Ruby with -Ku option
require "jcode"     # Load multibyte character support

mb = "2\303\2272=4" # This is "2×2=4" with a Unicode multiplication sign
mb.length           # => 6: there are 6 bytes in this string
mb.jlength          # => 5: but only 5 characters
mb.mbchar?          # => 1: position of the first multibyte char, or nil
mb.each_byte do |c| # Iterate through the bytes of the string.
  print c, " "      # c is Fixnum
end                 # Outputs "50 195 151 50 61 52 "
mb.each_char do |c| # Iterate through the characters of the string
  print c, " "      # c is a String with jlength 1 and variable length
end                 # Outputs "2 × 2 = 4 "

The jcode library also
          modifies several existing String
          methods, such as chop, delete, and tr, to work with multibyte strings.




[3] Use ri to learn more: ri Kernel.sprintf

[*] In Ruby 1.8, setting the deprecated global variable $= to true makes the ==, <, and related comparison operators
            perform case-insensitive comparisons. You should not do this,
            however; setting this variable produces a warning message, even if
            the Ruby interpreter is invoked without the -w flag. And in Ruby 1.9, $= is no longer supported.



Arrays



An array is a sequence of values that allows values to be accessed
      by their position, or index, in the sequence. In Ruby,
      the first value in an array has index 0. The size
      and length methods return the number of elements in an array. The last
      element of the array is at index size-1. Negative index values count from the
      end of the array, so the last element of an array can also be accessed
      with an index of –1. The
      second-to-last has an index of –2,
      and so on. If you attempt to read an element beyond the end of an array
      (with an index >= size) or before
      the beginning of an array (with an index < -size), Ruby simply returns nil and does not throw an exception.
Ruby’s arrays are untyped and mutable. The elements of an array
      need not all be of the same class, and they can be changed at any time.
      Furthermore, arrays are dynamically resizeable; you can append elements
      to them and they grow as needed. If you assign a value to an element
      beyond the end of the array, the array is automatically extended with
      nil elements. (It is an error,
      however, to assign a value to an element before the beginning of an
      array.)
An array literal is a comma-separated list of values, enclosed in
      square brackets:
[1, 2, 3]         # An array that holds three Fixnum objects
[-10...0, 0..10,] # An array of two ranges; trailing commas are allowed
[[1,2],[3,4],[5]] # An array of nested arrays
[x+y, x-y, x*y]   # Array elements can be arbitrary expressions
[]                # The empty array has size 0

Ruby includes a special-case syntax for expressing array literals
      whose elements are short strings without spaces:
words = %w[this is a test]  # Same as: ['this', 'is', 'a', 'test']
open = %w| ( [ { < |        # Same as: ['(', '[', '{', '<']
white = %W(\s \t \r \n)     # Same as: ["\s", "\t", "\r", "\n"]

%w and %W introduce an array literal, much like
      %q and %Q introduce a String literal. In
      particular, the delimiter rules for %w and %W
      are the same as for %q and %Q. Within the delimiters, no quotation marks
      are required around the array element strings, and no commas are
      required between the elements. Array elements are delimited by whitespace.
You can also create arrays with the Array.new constructor, and this provides
      options for programmatically initializing the array elements:
empty = Array.new       # []: returns a new empty array
nils = Array.new(3)     # [nil, nil, nil]: new array with 3 nil elements
zeros = Array.new(4, 0) # [0, 0, 0, 0]: new array with 4 0 elements
copy = Array.new(nils)  # Make a new copy of an existing array
count = Array.new(3) {|i| i+1}  # [1,2,3]: 3 elements computed from index

To obtain the value of an array element, use a single integer
      within square brackets:
a = [0, 1, 4, 9, 16]   # Array holds the squares of the indexes
a[0]        # First element is 0
a[-1]       # Last element is 16
a[-2]       # Second to last element is 9
a[a.size-1] # Another way to query the last element
a[-a.size]  # Another way to query the first element
a[8]        # Querying beyond the end returns nil
a[-8]       # Querying before the start returns nil, too

All of the expressions above, except for the last, can also be
      used on the lefthand side of an assignment:
a[0] = "zero"   # a is ["zero", 1, 4, 9, 16]
a[-1] = 1..16   # a is ["zero", 1, 4, 9, 1..16]
a[8] = 64       # a is ["zero", 1, 4, 9, 1..16, nil, nil, nil, 64]
a[-10] = 100    # Error: can't assign before the start of an array

Like strings, arrays can also be indexed with two integers that
      represent a starting index and a number of elements, or a Range object. In either case, the expression
      returns the specified subarray:
a = ('a'..'e').to_a   # Range converted to ['a', 'b', 'c', 'd', 'e']
a[0,0]                # []: this subarray has zero elements
a[1,1]                # ['b']: a one-element array
a[-2,2]               # ['d','e']: the last two elements of the array
a[0..2]               # ['a', 'b', 'c']: the first three elements
a[-2..-1]             # ['d','e']: the last two elements of the array
a[0...-1]             # ['a', 'b', 'c', 'd']: all but the last element

When used on the lefthand side of an assignment, a subarray can be
      replaced by the elements of the array on the righthand side. This basic
      operation works for insertions and deletions as well:
a[0,2] = ['A', 'B']      # a becomes ['A', 'B', 'c', 'd', 'e']
a[2...5]=['C', 'D', 'E'] # a becomes ['A', 'B', 'C', 'D', 'E']
a[0,0] = [1,2,3]         # Insert elements at the beginning of a
a[0..2] = []             # Delete those elements
a[-1,1] = ['Z']          # Replace last element with another
a[-1,1] = 'Z'            # For single elements, the array is optional
a[-2,2] = nil  # Delete last 2 elements in 1.8; replace with nil in 1.9

In addition to the square bracket operator for indexing an array,
      the Array class defines a number of
      other useful operators. Use + to
      concatenate two arrays:
a = [1, 2, 3] + [4, 5]    # [1, 2, 3, 4, 5]
a = a + [[6, 7, 8]]       # [1, 2, 3, 4, 5, [6, 7, 8]]
a = a + 9                 # Error: righthand side must be an array

The + operator creates a new
      array that contains the elements of both its operands. Use << to append an element to the end of an
      existing array, and use concat to
      append the elements of an array:
a = []         # Start with an empty array
a << 1         # a is [1]
a << 2 << 3    # a is [1, 2, 3]
a << [4,5,6]   # a is [1, 2, 3, [4, 5, 6]]
a.concat [7,8] # a is [1, 2, 3, [4, 5, 6], 7, 8]


The - operator subtracts one
      array from another. It begins by making a copy of its lefthand array,
      and then removes any elements from that copy if they appear anywhere in
      the righthand array:
['a', 'b', 'c', 'b', 'a'] - ['b', 'c', 'd']    # ['a', 'a']

Like the String class, Array also uses the multiplication operator
      for repetition:
a = [0] * 8    # [0, 0, 0, 0, 0, 0, 0, 0]

The Array class borrows the
      Boolean operators | and
      & and uses them for union and
      intersection. | concatenates its
      arguments and then removes all duplicate elements from the result.
      & returns an array that holds
      elements that appear in both of the operand arrays. The returned array
      does not contain any duplicate elements:
a = [1, 1, 2, 2, 3, 3, 4]
b = [5, 5, 4, 4, 3, 3, 2]
a | b    # [1, 2, 3, 4, 5]: duplicates are removed
b | a    # [5, 4, 3, 2, 1]: elements are the same, but order is different
a & b    # [2, 3, 4]
b & a    # [4, 3, 2]

Note that these operators are not transitive: a|b is not the same as b|a, for example. If you ignore the ordering
      of the elements, however, and consider the arrays to be unordered sets,
      then these operators make more sense. Note also that the algorithm by
      which union and intersection are performed is not specified, and there
      are no guarantees about the order of the elements in the returned
      arrays.
The Array class defines quite a
      few useful methods. The only one we’ll discuss here is the each iterator, used for looping through the
      elements of an array:
a = ('A'..'Z').to_a    # Begin with an array of letters
a.each {|x| print x }  # Print the alphabet, one letter at a time

Other Array methods you may
      want to look up include clear,
      compact!, delete_if, each_index, empty?, fill, flatten!, include?, index, join, pop,
      push, reverse, reverse_each, rindex, shift, sort, sort!, uniq!, and unshift.
We’ll see arrays again when we consider parallel assignment in
      Parallel Assignment and method invocation in Chapter 6. And we’ll explore the Array API in detail in Arrays.

Hashes



A hash is a data structure that maintains a set of objects known
      as keys, and associates a value with
      each key. Hashes are also known as maps because they map keys to
      values. They are sometimes called associative arrays because they
      associate values with each of the keys, and can be thought of as arrays
      in which the array index can be any object instead of an integer. An
      example makes this clearer:
# This hash will map the names of digits to the digits themselves
numbers = Hash.new     # Create a new, empty, hash object
numbers["one"] = 1     # Map the String "one" to the Fixnum 1
numbers["two"] = 2     # Note that we are using array notation here
numbers["three"] = 3

sum = numbers["one"] + numbers["two"]  # Retrieve values like this

This introduction to hashes documents Ruby’s hash literal syntax
      and explains the requirements for an object to be used as a hash key.
      More information on the API defined by the Hash class is provided in Hashes.
Hash Literals



A hash literal is written as a comma-separated list of key/value
        pairs, enclosed within curly braces. Keys and values are separated
        with a two-character “arrow”: =>. The Hash object created earlier could also be
        created with the following literal:
numbers = { "one" => 1, "two" => 2, "three" => 3 }

In general, Symbol objects
        work more efficiently as hash keys than strings do:
numbers = { :one => 1, :two => 2, :three => 3 }

Symbols are immutable interned strings, written as
        colon-prefixed identifiers; they are explained in more detail in Symbols later in this chapter.
Ruby 1.8 allows commas in place of arrows, but this deprecated syntax is no
        longer supported in Ruby 1.9:
numbers = { :one, 1, :two, 2, :three, 3 } # Same, but harder to read

Both Ruby 1.8 and Ruby 1.9 allow a single trailing comma at the
        end of the key/value list:
numbers = { :one => 1, :two => 2, } # Extra comma ignored

Ruby 1.9 supports a very useful and succinct hash literal syntax
        when the keys are symbols. In this case, the colon moves to the end of
        the hash key and replaces the arrow:[*]
numbers = { one: 1, two: 2, three: 3 }

Note that there may not be any space between the hash key
        identifier and the colon.

Hash Codes, Equality, and Mutable Keys



Ruby’s hashes are implemented, unsurprisingly, with a data
        structure known as a hash table. Objects
        used as keys in a hash must have a method named hash that returns a Fixnum hashcode
        for the key. If two keys are equal, they must have the same
        hashcode. Unequal keys may also have the same hashcode, but hash
        tables are most efficient when duplicate hashcodes are rare.
The Hash class compares keys
        for equality with the eql? method. For
        most Ruby classes, eql? works like
        the == operator (see Object Equality for details). If you define a new class that
        overrides the eql? method, you must
        also override the hash method, or
        else instances of your class will not work as keys in a hash. (We’ll
        see examples of writing a hash
        method in Chapter 7.)
If you define a class and do not override eql?, then instances of that class are
        compared for object identity when used as hash keys. Two distinct
        instances of your class are distinct hash keys even if they represent
        the same content. In this case, the default hash method is appropriate: it returns the
        unique object_id of the
        object.
Note that mutable objects are problematic as hash keys. Changing
        the content of an object typically changes its hashcode. If you use an
        object as a key and then alter that object, the internal hash table
        becomes corrupted, and the hash no longer works correctly.
Because strings are mutable but commonly used hash keys, Ruby
        treats them as a special case and makes private copies of all strings
        used as keys. This is the only special case, however; you must be very
        cautious when using any other mutable object as a hash key. Consider
        making a private copy or calling the freeze method.
        If you must use mutable hash keys, call the rehash method of the Hash every time you mutate a key.



[*] The result is a syntax much like that used by JavaScript
            objects.



Ranges



A Range object
      represents the values
      between a start value and an end value. Range literals are written by
      placing two or three dots between the start and end value. If two dots are used, then the range is inclusive and the end value is part
      of the range. If three dots are used, then the range is exclusive and the end value is not
      part of the range:
1..10      # The integers 1 through 10, including 10
1.0...10.0 # The numbers between 1.0 and 10.0, excluding 10.0 itself

Test whether a value is included in a range with the include? method (but see below for a discussion of alternatives):
cold_war = 1945..1989
cold_war.include? birthdate.year

Implicit in the definition of a range is the notion of ordering.
      If a range is the values between two endpoints, there obviously must be
      some way to compare values to those endpoints. In Ruby, this is done
      with the comparison operator <=>,
      which compares its two operands and evaluates to –1, 0, or
      1, depending on their relative order
      (or equality). Classes such as numbers and strings that have an ordering
      define the <=> operator. A
      value can only be used as a range endpoint if it responds to this
      operator. The endpoints of a range and the values “in” the range are
      typically all of the same class. Technically, however, any value that is
      compatible with the <=>
      operators of the range endpoints can be considered a member of the
      range.
The primary purpose for ranges is comparison: to be able to
      determine whether a value is in or out of the range. An important
      secondary purpose is iteration: if the class of the endpoints of a range
      defines a succ method (for
      successor), then there is a discrete set of range members, and they can
      be iterated with each, step, and Enumerable methods. Consider the range
      'a'..'c', for example:
r = 'a'..'c'
r.each {|l| print "[#{l}]"}     # Prints "[a][b][c]"
r.step(2) { |l| print "[#{l}]"} # Prints "[a][c]"
r.to_a                          # => ['a','b','c']: Enumerable defines to_a

The reason this works is that the String class defines a succ method and 'a'.succ is 'b' and 'b'.succ is 'c'. Ranges that can be iterated like this
      are discrete ranges. Ranges whose
      endpoints do not define a succ method
      cannot be iterated, and so they can be called continuous. Note that ranges with
      integer endpoints are discrete, but floating-point numbers as endpoints
      are continuous.
Ranges with integer endpoints are the most commonly used in
      typical Ruby programs. Because they are discrete, integer ranges can be
      used to index strings and arrays. They are also a convenient way to
      represent an enumerable collection of ascending values.
Notice that the code assigns a range literal to a variable, and
      then invokes methods on the range through the variable. If you want to
      invoke a method directly on a range literal, you must parenthesize the
      literal, or the method invocation is actually on the endpoint of the
      range rather than on the Range object
      itself:
1..3.to_a    # Tries to call to_a on the number 3
(1..3).to_a  # => [1,2,3]

Testing Membership in a Range



The Range class defines methods for determining whether an arbitrary
        value is a member of (i.e., is included in) a range. Before going into
        detail on these methods, it is necessary to explain that range
        membership can be defined in two different ways that are related to
        the difference between continuous and discrete ranges. A value
        x is a member of the range begin..end by the first definition
        if:
begin <= x <= end

And x is a member of the
        range begin...end (with three dots)
        if:
begin <= x < end

All range endpoint values must implement the <=> operator, so this definition of membership works for any Range object and does not require the
        endpoints to implement the succ
        method. We’ll call this the continuous membership test.
The second definition of membership—discrete
        membership—does depend on succ. It
        treats a Range begin..end as a set that includes begin, begin.succ, begin.succ.succ, and so on. By this
        definition, range membership is set membership, and a value x is included in a range only if it is a
        value returned by one of the succ
        invocations. Note that testing for discrete membership is potentially
        a much more expensive operation
        than testing for continuous membership.
With that as background, we can describe the Range methods for testing membership. Ruby
        1.8 supports two methods, include?
        and member?. They are synonyms, and both use the continuous membership
        test:
r = 0...100      # The range of integers 0 through 99
r.member? 50     # => true: 50 is a member of the range
r.include? 100   # => false: 100 is excluded from the range
r.include? 99.9  # => true: 99.9 is less than 100

The situation is different in Ruby 1.9. That version of the
        language introduces a new method, cover?, which
        works like include? and member? do in Ruby 1.8: it always uses the
        continuous membership test. include? and member? are still synonyms in Ruby 1.9. If
        the endpoints of the range are numbers, these methods use the
        continuous membership test, just as they did in Ruby 1.8. If the
        endpoints are not numeric, however, they instead use the discrete
        membership test. We can illustrate these changes with a discrete range
        of strings (you may want to use ri to understand
        how String.succ works):
triples = "AAA".."ZZZ"
triples.include? "ABC"        # true; fast in 1.8 and slow in 1.9
triples.include? "ABCD"       # true in 1.8, false in 1.9
triples.cover?   "ABCD"       # true and fast in 1.9
triples.to_a.include? "ABCD"  # false and slow in 1.8 and 1.9

In practice, most ranges have numeric endpoints, and the
        Range API changes between Ruby 1.8
        and 1.9 have little impact.


Symbols



A typical implementation of a Ruby interpreter maintains a symbol
      table in which it stores the names of all the classes, methods, and
      variables it knows about. This allows such an interpreter to avoid most
      string comparisons: it refers to method names (for example) by their
      position in this symbol table. This turns a relatively expensive string
      operation into a relatively cheap integer operation.
These symbols are not purely internal to the interpreter; they can
      also be used by Ruby programs. A Symbol object refers to a symbol. A symbol
      literal is written by prefixing an identifier or string with a
      colon:
:symbol                   # A Symbol literal
:"symbol"                 # The same literal
:'another long symbol'    # Quotes are useful for symbols with spaces
s = "string"
sym = :"#{s}"             # The Symbol :string

Symbols also have a %s
      literal syntax that allows arbitrary delimiters in the same way
      that %q and %Q can be used for string literals:
%s["]     # Same as :'"'

Symbols are often used to refer to method names in reflective
      code. For example, suppose we want
      to know if some object has an each
      method:
o.respond_to? :each

Here’s another example. It tests whether a given object responds
      to a specified method, and, if so, invokes that method:
name = :size
if o.respond_to? name
  o.send(name)
end

You can convert a String to a
      Symbol using the intern or to_sym methods. And you can convert a Symbol back into a String with the to_s method or its alias id2name:
str = "string"     # Begin with a string
sym = str.intern   # Convert to a symbol
sym = str.to_sym   # Another way to do the same thing
str = sym.to_s     # Convert back to a string
str = sym.id2name  # Another way to do it

Two strings may hold the same content and yet be completely
      distinct objects. This is never the case with symbols. Two strings with
      the same content will both convert to exactly the same Symbol object. Two distinct Symbol objects will always have different
      content.
Whenever you write code that uses strings not for their textual
      content but as a kind of unique identifier, consider using symbols
      instead. Rather than writing a method that expects an argument to be
      either the string “AM” or “PM”, for example, you could write it to
      expect the symbol :AM or the symbol
      :PM. Comparing two Symbol objects for equality is much faster
      than comparing two strings for equality. For this reason, symbols are
      generally preferred to strings as hash keys.
In Ruby 1.9, the Symbol class defines a
      number of String methods, such as
      length, size, the comparison operators, and even the
      [] and =~ operators. This makes symbols somewhat
      interchangeable with strings and allows their use as a kind of immutable
      (and not garbage-collected) string.

True, False, and Nil



We saw in Keywords that true, false, and nil are keywords in Ruby. true and false are the two Boolean values, and they
      represent truth and falsehood, yes and no, on and off. nil is a special value reserved to indicate
      the absence of value.
Each of these keywords evaluates to a special object. true evaluates to an object that is a
      singleton instance of TrueClass.
      Likewise, false and nil are singleton instances of FalseClass and NilClass. Note that there is no Boolean class in Ruby. TrueClass and FalseClass both have Object as their superclass.
If you want to check whether a value is nil, you can simply compare it to nil, or use the method nil?:
o == nil   # Is o nil?
o.nil?     # Another way to test

Note that true, false, and nil refer to objects, not numbers. false and nil are not the same thing as 0, and true
      is not the same thing as 1. When Ruby
      requires a Boolean value, nil behaves
      like false, and any value other than
      nil or false behaves like true.

Objects



Ruby is a very pure object-oriented language: all values are
      objects, and there is no distinction between primitive types and object types as there are in many
      other languages. In Ruby, all objects inherit from a class named
      Object and share the methods defined
      by that class. This section explains the common features of all objects
      in Ruby. It is dense in parts, but it’s required reading; the
      information here is fundamental.
Object References



When we work with objects in Ruby, we are really working with
        object references. It is not the
        object itself we manipulate but a reference to it.[*] When we assign a value to a variable, we are not copying an object “into” that variable; we
        are merely storing a reference to an object into that variable. Some
        code makes this clear:
s = "Ruby" # Create a String object. Store a reference to it in s.
t = s      # Copy the reference to t. s and t both refer to the same object.
t[-1] = "" # Modify the object through the reference in t.
print s    # Access the modified object through s. Prints "Rub". 
t = "Java" # t now refers to a different object.
print s,t  # Prints "RubJava".

When you pass an object to a method in Ruby, it is an object
        reference that is passed to the method. It is not the object itself,
        and it is not a reference to the reference to the object. Another way
        to say this is that method arguments are passed by
        value rather than by reference, but
        that the values passed are object references.
Because object references are passed to methods, methods can use
        those references to modify the underlying object. These modifications
        are then visible when the method returns.
Immediate values



We’ve said that all values in Ruby are objects and all objects
          are manipulated by reference. In the reference implementation,
          however, Fixnum and
          Symbol objects are actually
          “immediate values” rather than references. Neither of these classes
          have mutator methods, so
          Fixnum and Symbol objects are immutable, which means
          that there is really no way to tell that they are manipulated by
          value rather than by reference.
The existence of immediate values should be considered an
          implementation detail. The only practical difference between
          immediate values and reference values is that immediate values
          cannot have singleton methods defined on them. (Singleton methods
          are explained in Defining Singleton Methods.)


Object Lifetime



The built-in Ruby classes described in this chapter have literal
        syntaxes, and instances of these classes are created simply by
        including their values literally in your code. Objects of other
        classes need to be explicitly created, and this is most often done
        with a method named new:
myObject = myClass.new

new is a method of the
        Class class. It allocates memory to
        hold the new object, then it initializes the state of that newly
        allocated “empty” object by invoking its initialize method. The arguments to new
        are passed directly on to initialize. Most classes define an initialize method to perform whatever
        initialization is necessary for instances.
The new and initialize methods provide the default
        technique for creating new classes, but classes may also define other
        methods, known as “factory methods,” that return instances. We’ll
        learn more about new, initialize, and factory methods in Object Creation and Initialization.
Ruby objects never need to be explicitly deallocated, as they do
        in languages like C and C++. Ruby uses a technique called
        garbage collection to automatically destroy objects that are no longer needed.
        An object becomes a candidate for garbage collection when it is
        unreachable—when there are no remaining references to the object
        except from other unreachable objects.
The fact that Ruby uses garbage collection means that Ruby
        programs are less susceptible to memory leaks than programs written in
        languages that require objects and memory to be explicitly deallocated
        and freed. But garbage collection does not mean that memory leaks are
        impossible: any code that creates long-lived references to objects
        that would otherwise be short-lived can be a source of memory leaks.
        Consider a hash used as a cache. If the cache is not pruned using some
        kind of least-recently-used algorithm, then cached objects will
        remain reachable as long as the hash itself is reachable. If the hash
        is referenced through a global variable, then it will be reachable as
        long as the Ruby interpreter is running.

Object Identity



Every object has an object identifier, a Fixnum, that you can obtain with the object_id method. The value returned by this
        method is constant and unique for the lifetime of the object. While
        the object is accessible, it will always have the same ID, and no
        other object will share that ID.
The method id is a deprecated synonym for object_id. Ruby 1.8 issues a warning if you use it, and it has been removed in
        Ruby 1.9.
__id__ is a valid synonym for
        object_id. It exists as a fallback,
        so you can access an object’s ID even if the object_id method has been undefined or
        overridden.
The Object class implements
        the hash method to simply return an
        object’s ID.

Object Class and Object Type



There are several ways to determine the class of an object in Ruby. The simplest
        is simply to ask for it:
o = "test"  # This is a value
o.class     # Returns an object representing the String class

If you are interested in the class hierarchy of an object, you
        can ask any class what its superclass is:
o.class                       # String: o is a String object
o.class.superclass            # Object: superclass of String is Object
o.class.superclass.superclass # nil: Object has no superclass

In Ruby 1.9, Object is no
        longer the true root of the class hierarchy:
# Ruby 1.9 only
Object.superclass             # BasicObject: Object has a superclass in 1.9
BasicObject.superclass        # nil: BasicObject has no superclass

See Subclassing and Inheritance for more on BasicObject.
So a particularly straightforward way to check the class of an
        object is by direct comparison:
o.class == String       # true if o is a String

The instance_of?
        method does the same thing and is a little more
        elegant:
o.instance_of? String   # true if o is a String

Usually when we test the class of an object, we would also like
        to know if the object is an instance of any subclass of that class. To
        test this, use the is_a?
        method, or its synonym kind_of?:
x = 1                    # This is the value we're working with
x.instance_of? Fixnum    # true: is an instance of Fixnum
x.instance_of? Numeric   # false: instance_of? doesn't check inheritance
x.is_a? Fixnum           # true: x is a Fixnum
x.is_a? Integer          # true: x is an Integer
x.is_a? Numeric          # true: x is a Numeric
x.is_a? Comparable       # true: works with mixin modules, too
x.is_a? Object           # true for any value of x

The Class class defines
        the === operator in
        such a way that it can be used in place of is_a?:
Numeric === x            # true: x is_a Numeric 

This idiom is unique to Ruby and is probably less readable than
        using the more traditional
        is_a? method.
Every object has a well-defined class in Ruby, and that class
        never changes during the lifetime of the object. An object’s
        type, on the other hand, is more fluid. The type
        of an object is related to its class, but the class is only part of an
        object’s type. When we talk about the type of an object, we mean the
        set of behaviors that characterize the object. Another way to put it
        is that the type of an object is the set of methods it can respond to.
        (This definition becomes recursive because it is not just the name of
        the methods that matter, but also the types of arguments that those
        methods can accept.)
In Ruby programming, we often don’t care about the class of an
        object, we just want to know whether we can invoke some method on it.
        Consider, for example, the <<
        operator. Arrays, strings, files, and other I/O-related classes define
        this as an append operator. If we are writing a method that produces
        textual output, we might write it generically to use this operator.
        Then our method can be invoked with any argument that implements
        <<. We don’t care about the
        class of the argument, just that we can append to it. We can test for
        this with the respond_to?
        method:
o.respond_to? :"<<"  # true if o has an << operator

The shortcoming of this approach is that it only checks the name
        of a method, not the arguments for that method. For example, Fixnum and Bignum implement << as a left-shift operator and expect
        the argument to be a number instead of a string. Integer objects
        appear to be “appendable” when we use a respond_to? test, but they produce an error when our code appends a
        string. There is no general solution to this problem, but an ad-hoc
        remedy, in this case, is to explicitly rule out Numeric objects with the is_a? method:
o.respond_to? :"<<" and not o.is_a? Numeric 

Another example of the type-versus-class distinction is
        the StringIO class (from
        Ruby’s standard library). StringIO
        enables reading from and writing to string objects as if they were
        IO objects. StringIO mimics the IO API—StringIO objects define the same methods
        that IO objects do. But StringIO is not a subclass of IO. If you write a method that expects a
        stream argument, and test the class of the argument with is_a? IO, then your method won’t work with
        StringIO arguments.
Focusing on types rather than classes leads to a programming
        style known in Ruby as “duck typing.” We’ll see duck typing examples in
        Chapter 7.

Object Equality



Ruby has a surprising number of ways to compare objects for
        equality, and it is important to
        understand how they work, so you know when to use each method.
The equal? method



The equal? method is
          defined by Object to test
          whether two values refer to exactly the same object. For any two
          distinct objects, this method always returns false:
a = "Ruby"       # One reference to one String object
b = c = "Ruby"   # Two references to another String object
a.equal?(b)      # false: a and b are different objects
b.equal?(c)      # true: b and c refer to the same object

By convention, subclasses never override the equal? method.
Another way to determine if two objects are, in fact, the same
          object is to check their object_id:
a.object_id == b.object_id   # Works like a.equal?(b)


The == operator



The == operator is the most common way to test for equality. In the
          Object class, it is simply a
          synonym for equal?, and it tests
          whether two object references are identical. Most classes redefine
          this operator to allow distinct instances to be tested for
          equality:
a = "Ruby"    # One String object
b = "Ruby"    # A different String object with the same content
a.equal?(b)   # false: a and b do not refer to the same object
a == b        # true: but these two distinct objects have equal values

Note that the single equals sign in this code is the
          assignment operator. It takes two equals signs to test for equality
          in Ruby (this is a convention that Ruby shares with many other
          programming languages).
Most standard Ruby classes define the == operator to implement a reasonable
          definition of equality. This includes the Array and Hash classes. Two arrays are equal
          according to == if they have the
          same number of elements, and if their corresponding elements are all
          equal according to ==. Two hashes
          are == if they contain the same
          number of key/value pairs, and if the keys and values are themselves
          equal. (Values are compared with the == operator, but hash keys are compared
          with the eql? method, described
          later in this chapter.)
Equality for Java Programmers
If you are a Java programmer, you are used to using the == operator to test if two objects are
            the same object, and you are used to using the equals method to test whether two
            distinct objects have the same value. Ruby’s convention is just
            about the opposite of Java’s.

The Numeric classes
          perform simple type conversions in their == operators, so that (for example) the
          Fixnum 1 and the Float 1.0 compare as equal. The == operator of classes, such as String and Array, normally requires both operands to
          be of the same class. If the righthand operand defines a to_str or to_ary conversion function (see Object Conversion), then these operators invoke the == operator defined by the righthand
          operand, and let that object decide whether it is equal to the
          lefthand string or array. Thus, it is possible (though not common)
          to define classes with string-like or array-like comparison behavior.
!= (“not-equal”)
          is used in Ruby to test for inequality. When Ruby sees
          !=, it simply uses the == operator and then inverts the result.
          This means that a class only needs to define the == operator to define its own notion of
          equality. Ruby gives you the !=
          operator for free. In Ruby 1.9, however, classes can explicitly
          define their own !=
          operators.

The eql? method



The eql? method is defined by Object as a synonym for equal?. Classes that override it typically
          use it as a strict version of ==
          that does no type conversion. For example:
1 == 1.0    # true: Fixnum and Float objects can be ==
1.eql?(1.0) # false: but they are never eql!

The Hash class uses eql? to check
          whether two hash keys are equal. If two objects are eql?, their hash methods must also return the same
          value. Typically, if you create a class and define the == operator, you can simply write a
          hash method and define eql? to use ==.

The === operator



The === operator is commonly called the “case equality” operator and
          is used to test whether the target value of a case statement matches any of the when clauses of that statement. (The
          case statement is a multiway
          branch and is explained in Chapter 5.)
Object defines a default
          === operator so that it invokes
          the == operator. For many
          classes, therefore, case equality is the same as == equality. But certain key classes
          define === differently, and in
          these cases it is more of a membership or matching operator.
          Range defines === to test whether a value falls within
          the range. Regexp defines
          === to test whether a string
          matches the regular expression. And Class defines === to test whether an object is an
          instance of that class. In Ruby 1.9, Symbol
          defines === to return true if the righthand operand is the same
          symbol as the left or if it is a string holding the same text.
          Examples:
(1..10) === 5    # true: 5 is in the range 1..10
/\d+/ === "123"  # true: the string matches the regular expression
String === "s"   # true: "s" is an instance of the class String
:s === "s"       # true in Ruby 1.9

It is uncommon to see the === operator used explicitly like this.
          More commonly, its use is simply implicit in a case statement.

The =~ operator



The =~ operator is
          defined by String and
          Regexp (and Symbol in Ruby 1.9) to perform pattern matching, and it isn’t really an
          equality operator at all. But it does have an equals sign in it, so
          it is listed here for completeness. Object defines a no-op version of =~ that always returns false. You can define this operator in
          your own class, if that class defines some kind of pattern-matching
          operation or has a notion of approximate equality, for example.
          !~ is defined as the inverse of
          =~. It is definable in Ruby 1.9
          but not in Ruby 1.8.


Object Order



Practically every class
        can define a useful == method for
        testing its instances for equality. Some classes can also define an
        ordering. That is: for any two instances of such a class, the two
        instances must be equal, or one instance must be “less than” the
        other. Numbers are the most obvious classes for which such an ordering
        is defined. Strings are also ordered, according to the numeric
        ordering of the character codes that comprise the strings. (With the
        ASCII text, this is a rough kind of case-sensitive alphabetical
        order.) If a class defines an ordering, then instances of the class
        can be compared and sorted.
In Ruby, classes define an ordering by implementing
        the <=> operator.
        This operator should return –1 if
        its left operand is less than its right operand, 0 if the two operands are equal, and
        1 if the left operand is greater
        than the right operand. If the two operands cannot be meaningfully
        compared (if the right operand is of a different class, for example), then the operator should
        return nil:
1 <=> 5     # -1
5 <=> 5     # 0
9 <=> 5     # 1
"1" <=> 5   # nil: integers and strings are not comparable

The <=> operator is all
        that is needed to compare values. But it isn’t particularly intuitive.
        So classes that define this operator typically also include the
        Comparable module as a mixin. (Modules and mixins are covered in Modules As Mixins.) The Comparable mixin defines the following
        operators in terms of <=>:
	<	Less than
	<=	Less than or equal
	==	Equal
	>=	Greater than or equal
	>	Greater than


Comparable does not define
        the != operator; Ruby automatically defines that operator as the negation
        of the == operator. In addition to
        these comparison operators, Comparable also defines a useful
        comparison method named between?:
1.between?(0,10)  # true: 0 <= 1 <= 10

If the <=> operator
        returns nil, all the comparison operators derived from it return
        false. The special Float value NaN is an example:
nan = 0.0/0.0;     # zero divided by zero is not-a-number
nan < 0            # false: it is not less than zero
nan > 0            # false: it is not greater than zero
nan == 0           # false: it is not equal to zero
nan == nan         # false: it is not even equal to itself!
nan.equal?(nan)    # this is true, of course

Note that defining <=>
        and including the Comparable module
        defines a == operator for your
        class. Some classes define their own == operator, typically when they can
        implement this more efficiently than an equality test based on
        <=>. It is possible to define
        classes that implement different notions of equality in their == and <=> operators. A class might do
        case-sensitive string comparisons for the == operator, for example, but then do
        case-insensitive comparisons for <=>, so that instances of the class
        would sort more naturally. In general, though, it is best if <=> returns 0 if and only if == returns true.

Object Conversion



Many Ruby classes define methods that return a
        representation of the object as a value of a different class. The
        to_s method, for obtaining a String representation of an object, is
        probably the most commonly implemented and best known of these
        methods. The subsections that follow describe various categories of
        conversions.
Explicit conversions



Classes define explicit conversion methods for use by application
          code that needs to convert a value to another representation. The
          most common methods in this category are to_s, to_i, to_f, and to_a to convert to String, Integer, Float, and Array, respectively. Ruby 1.9 adds to_c and to_r methods to convert to Complex and Rational.
Built-in methods do not typically invoke these methods for
          you. If you invoke a method that expects a String and pass an object of some other
          kind, that method is not expected to convert the argument with
          to_s. (Values interpolated into
          double-quoted strings, however, are automatically converted with
          to_s.)
to_s is easily the most
          important of the conversion methods because string representations
          of objects are so commonly used in user interfaces. An important
          alternative to to_s is the
          inspect method. to_s is generally intended to return a
          human-readable representation of the object, suitable for end users.
          inspect, on the other hand, is
          intended for debugging use, and should return a representation that
          is helpful to Ruby developers. The default inspect method, inherited from Object, simply calls to_s.

Implicit conversions



Sometimes a class has strong characteristics of some other class.
          The Ruby Exception class
          represents an error or unexpected condition in a program and
          encapsulates an error message. In Ruby 1.8, Exception
          objects are not merely convertible to strings; they are string-like
          objects and can be treated as if they were strings in many
          contexts.[*] For example:
# Ruby 1.8 only
e = Exception.new("not really an exception")
msg = "Error: " + e  # String concatenation with an Exception

Because Exception objects
          are string-like, they can be used with the string
          concatenation operator. This does not work with most other Ruby
          classes. The reason that Exception objects can behave like
          String objects is that, in Ruby
          1.8, Exception implements the
          implicit conversion method to_str, and the + operator defined by String invokes this method on its
          righthand operand.
Other implicit conversion methods are to_int for objects that want to be
          integer-like, to_ary for objects
          that want to be array-like, and to_hash for objects that want to be
          hash-like. Unfortunately, the circumstances under which these
          implicit conversion methods are called are not well documented.
          Among the built-in classes, these implicit conversion methods are
          not commonly implemented, either.
We noted earlier in passing that the == operator can perform a weak kind of
          type conversion when testing for equality. The == operators defined by String, Array, and Hash check to see if the righthand operand
          is of the same class as the lefthand operand. If so, they compare
          them. If not, they check to see if the righthand operand has a
          to_str, to_ary, or to_hash method. They don’t invoke this
          method, but if it exists, they invoke the == method of the righthand operand and
          allow it to decide whether it is equal to the lefthand
          operand.
In Ruby 1.9, the built-in classes String, Array, Hash, Regexp, and IO all define a class method named
          try_convert. These methods
          convert their argument if it defines an appropriate implicit
          conversion method, or they return nil otherwise. Array.try_convert(o) returns o.to_ary if o defines that method; otherwise, it
          returns nil. These try_convert methods are convenient if you want to
          write methods that allow implicit conversions on their
          arguments.

Conversion functions



The Kernel module defines four conversion methods that behave as global
          conversion functions. These functions—Array, Float, Integer, and String—have the same names as the classes
          that they convert to, and they are unusual in that they begin with a
          capital letter.
The Array function
          attempts to convert its argument to an array by
          calling to_ary. If that method is
          not defined or returns nil, it
          tries the to_a method. If
          to_a is not defined or returns
          nil, the Array function simply returns a new array
          containing the argument as its single element.
The Float function
          converts Numeric arguments
          to Float objects directly. For
          any non-Numeric value, it calls
          the to_f method.
The Integer function
          converts its argument to a Fixnum or Bignum. If the argument is a Numeric value, it is converted directly.
          Floating-point values are truncated rather than rounded. If the
          argument is a string, it looks for a radix indicator (a leading
          0 for octal, 0x for hexadecimal, or 0b for binary) and converts the string
          accordingly. Unlike String.to_i
          it does not allow nonnumeric trailing characters. For any other kind
          of argument, the Integer function
          first attempts conversion with to_int and then with to_i.
Finally, the String
          function converts its argument to a string simply by calling its
          to_s method.

Arithmetic operator type coercions



Numeric types define a conversion method named coerce. The
          intent of this method is to convert the argument to the same type as
          the numeric object on which the method is invoked, or to convert
          both objects to some more general compatible type. The coerce method always returns an array that
          holds two numeric values of the same type. The first element of the
          array is the converted value of the argument to coerce. The second element of the returned
          array is the value (converted, if necessary) on which coerce was invoked:
1.1.coerce(1)      # [1.0, 1.1]: coerce Fixnum to Float
require "rational" # Use Rational numbers
r = Rational(1,3)  # One third as a Rational number
r.coerce(2)        # [Rational(2,1), Rational(1,3)]: Fixnum to Rational

The coerce method is used
          by the arithmetic operators. The + operator defined by Fixnum
          doesn’t know about Rational
          numbers, for example, and if its righthand operand is a Rational value, it doesn’t know how to add
          it. coerce provides the solution.
          Numeric operators are written so that if they don’t know the type of
          the righthand operand, they invoke the coerce method of the righthand operand,
          passing the lefthand operand as an argument. Returning to our
          example of adding a Fixnum and a
          Rational, the coerce method of Rational returns an array of two Rational values. Now the + operator defined by Fixnum can simply invoke + on the values in the array.

Boolean type conversions



Boolean values deserve a special mention in the context of type conversion. Ruby is very strict with
          its Boolean values: true and
          false have to_s methods, which return “true” and “false” but define no other
          conversion methods. And there is no to_b method to convert other values to
          Booleans.
In some languages, false is
          the same thing as 0, or can be
          converted to and from 0. In Ruby,
          the values true and false are their own distinct objects, and
          there are no implicit conversions that convert other values to
          true or false. This is only half the story,
          however. Ruby’s Boolean operators and its conditional and looping
          constructs that use Boolean expressions can work with values other
          than true and false. The rule is simple: in Boolean
          expressions, any value other than false or nil behaves like (but is not converted to) true. nil, on the other hand behaves like
          false.
Suppose you want to test whether the variable x is nil or not. In some languages, you must
          explicitly write a comparison expression that evaluates to true or false:
if x != nil   # Expression "x != nil" returns true or false to the if
  puts x      # Print x if it is defined
end

This code works in Ruby, but it is more common simply to take
          advantage of the fact that all values other than nil and false behave like true:
if x       # If x is non-nil
  puts x   # Then print it
end

It is important to remember that values like 0, 0.0,
          and the empty string "" behave
          like true in Ruby, which is
          surprising if you are used to languages like C or JavaScript.


Copying Objects



The Object class defines
        two closely related methods for copying objects. Both clone and dup return a shallow copy of the object on
        which they are invoked. If the copied object includes internal state
        that refers to other objects, only the object references are copied,
        not the referenced objects themselves.
If the object being copied defines an initialize_copy method, then clone and
        dup simply allocate a new, empty
        instance of the class and invoke the initialize_copy method on this empty
        instance. The object to be copied is passed as an argument, and this
        “copy constructor” can initialize the copy however it desires. For
        example, the initialize_copy method could
        recursively copy the internal data of an object so that the resulting
        object is not a simple shallow copy of the original.
Classes can also override the clone and dup methods directly to produce any kind of
        copy they desire.
There are two important differences between the clone and dup methods defined by Object. First, clone copies both the frozen and tainted
        state (defined shortly) of an object, whereas dup only copies the tainted state; calling
        dup on a frozen object returns an
        unfrozen copy. Second, clone copies
        any singleton methods of the object, whereas dup does not.

Marshaling Objects



You can save the state of an object by passing it to the class
        method Marshal.dump.[*] If you pass an I/O stream object as the second
        argument, Marshal.dump writes the
        state of the object (and, recursively, any objects it references) to
        that stream. Otherwise, it simply returns the encoded state as a
        binary string.
To restore a marshaled object, pass a string or an I/O stream
        containing the object to Marshal.load.
Marshaling an object is a very simple way to save its state for
        later use, and these methods can be used to provide an automatic file
        format for Ruby programs. Note, however, that the binary format used
        by Marshal.dump and Marshal.load is version-dependent, and newer
        versions of Ruby are not guaranteed to be able to read marshaled
        objects written by older versions of Ruby.
Another use for Marshal.dump
        and Marshal.load is to create deep copies of objects:
def deepcopy(o)
  Marshal.load(Marshal.dump(o))
end

Note that files and I/O streams, as well as Method and Binding objects, are too dynamic to be
        marshaled; there would be no reliable way to restore their
        state.
YAML (“YAML Ain’t Markup Language”) is a commonly used alternative to the Marshal module that
        dumps objects to (and loads objects from) a human-readable text
        format. It is in the standard library, and you must require 'yaml' to use it.

Freezing Objects



Any object may be frozen by
        calling its freeze method. A
        frozen object becomes immutable—none of its internal state may
        be changed, and an attempt to call any of its mutator methods
        fails:
s = "ice"      # Strings are mutable objects
s.freeze       # Make this string immutable
s.frozen?      # true: it has been frozen
s.upcase!      # TypeError: can't modify frozen string
s[0] = "ni"    # TypeError: can't modify frozen string

Freezing a class object prevents the addition of any methods to
        that class.
You can check whether an object is frozen with the frozen? method. Once frozen, there is no way
        to “thaw” an object. If you copy a frozen object with
        clone, the copy will also be
        frozen. If you copy a frozen object with dup, however, the copy will not be
        frozen.

Tainted and Untrusted Objects



Web applications must often keep track of data derived from untrusted
        user input to avoid SQL injection attacks and similar security risks.
        Ruby provides a simple solution to this problem: any object may be
        marked as tainted by calling its taint method. Once an object is tainted, any
        objects derived from it will also be tainted. The taint of an object
        can be tested with the tainted?
        method:
s = "untrusted"   # Objects are normally untainted
s.taint           # Mark this untrusted object as tainted
s.tainted?        # true: it is tainted
s.upcase.tainted? # true: derived objects are tainted
s[3,4].tainted?   # true: substrings are tainted

User input—such as command-line arguments, environment
        variables, and strings read with gets—are automatically tainted. When the
        global variable $SAFE is set to a
        value greater than zero, Ruby restricts various built-in methods so
        that they will not work with tainted data. Copies of tainted objects
        made with clone and dup remain tainted. A tainted object may be
        untainted with the untaint method.
        You should only do this, of course, if you have examined the object
        and are convinced that it presents no security risks.
In Ruby 1.9, objects can be untrusted in addition to being
        tainted. The methods untrusted?, untrust, and trust check and set the trustedness of an
        object. Untrusted code creates untrusted, tainted objects and is not
        allowed to modify trusted objects. See Security for
        details on taint, trust, and $SAFE.
        



[*] If you are familiar with C or C++, you can think of a
            reference as a pointer: the address of the object in memory. Ruby
            does not use pointers, however. References in Ruby are opaque and
            internal to the implementation. There is no way to take the
            address of a value, dereference a value, or do pointer
            arithmetic.

[*] Doing so is discouraged, however, and Ruby 1.9 no longer
              allows the implicit conversion of Exception to String.

[*] The word “marshal” and its variants are sometimes spelled
            with two ls: marshall, marshalled, etc. If you spell the word this
            way, you’ll need to remember that the name of the Ruby class has
            only a single l.



Chapter 4. Expressions and Operators



[image: image with no caption]

An expression is a chunk of Ruby code that the Ruby interpreter can evaluate
    to produce a value. Here are some sample expressions:
2                  # A numeric literal
x                  # A local variable reference
Math.sqrt(2)       # A method invocation
x = Math.sqrt(2)   # Assignment
x*x                # Multiplication with the * operator

As you can see, primary expressions—such as literals, variable references,
    and method invocations—can be combined into larger expressions with
    operators, such as the assignment operator and the multiplication
    operator.
Many programming languages distinguish between low-level expressions
    and higher-level statements, such as conditionals and
    loops. In these languages, statements control the flow of a program, but
    they do not have values. They are executed, rather than evaluated. In
    Ruby, there is no clear distinction between statements and expressions;
    everything in Ruby, including class and method definitions, can be
    evaluated as an expression and will return a value. It is still useful,
    however, to distinguish syntax typically used as expressions from syntax
    typically used as statements. Ruby expressions that affect flow-of-control
    are documented in Chapter 5. Ruby expressions that define
    methods and classes are covered in Chapters 6 and 7.
This chapter covers the simpler, more traditional sort of
    expressions. The simplest expressions are literal values, which we already
    documented in Chapter 3. This chapter explains variable
    and constant references, method invocations, assignment, and compound expressions created by combining
    smaller expressions with operators.
Literals and Keyword Literals



Literals are values such as 1.0,
      'hello world', and [] that are embedded directly into your
      program text. We introduced them in Chapter 2 and
      documented them in detail in Chapter 3.
It is worth noting that many literals, such as numbers, are
      primary expressions—the simplest possible expressions not composed of
      simpler expressions. Other literals, such as array and hash literals and
      double-quoted strings that use interpolation, include subexpressions and
      are therefore not primary expressions.
Certain Ruby keywords are primary expressions and can be
      considered keyword literals or specialized forms
      of variable reference:
	nil	Evaluates to the nil value, of class NilClass.
	true	Evaluates to the singleton instance of class
              TrueClass, an object that
              represents the Boolean value true.
	false	Evaluates to the singleton instance of class
              FalseClass, an object that
              represents the Boolean value false.
	self	Evaluates to the current object. (See Chapter 7 for more about self.)
	__FILE__	Evaluates to a string that names the file that the
              Ruby interpreter is executing. This can be useful in error
              messages.
	__LINE__	Evaluates to an integer that specifies the line
              number within __FILE__ of the
              current line of code.
	__ENCODING__	Evaluates to an Encoding object that specifies the
              encoding of the current file. (Ruby 1.9 only.)




Variable References



A variable is simply a name for a value. Variables are created and
      values assigned to them by assignment expressions, which are covered
      later in this chapter. When the name of a variable appears in a program
      anywhere other than the lefthand side of an assignment, it is a variable
      reference expression and evaluates to the value of the variable:
one = 1.0     # This is an assignment expression
one           # This variable reference expression evaluates to 1.0

As explained in Chapter 2, there are four kinds
      of variables in Ruby, and lexical rules govern their names. Variables
      that begin with $ are global variables, visible throughout a Ruby program.
      Variables that begin with @ and @@ are instance variables and class variables,
      used in object-oriented programming and explained in Chapter 7. And variables whose names begin with an underscore
      or a lowercase letter are local variables, defined only within the
      current method or block. (See Blocks and Variable Scope for more
      about the scope of local variables.)
Variables always have simple, unqualified names. If a . or :: appears in an expression, then that expression is either a
      reference to a constant or a method invocation. For example, Math::PI is a reference to a constant, and the
      expression item.price is an
      invocation of the method named price
      on the value held by the variable item.
The Ruby interpreter predefines a number of global variables when
      it starts up. See Chapter 10 for a list of these
      variables.
Uninitialized Variables



In general, you should always assign a value to, or
        initialize, your variables before using them in
        expressions. In some circumstances, however, Ruby will allow you to
        use variables that have not yet been initialized. The rules are
        different for different kinds of variables:
	Class variables
	Class variables must always have a value assigned to them before
              they are used. Ruby raises a NameError if you refer to a class
              variable to which no value has been assigned.

	Instance variables
	If you refer to an uninitialized instance variable, Ruby
              returns nil. It is considered
              bad programming to rely on this behavior, however. Ruby will
              issue a warning about the uninitialized variable if you run it
              with the -w option.

	Global variables
	Uninitialized global variables are like uninitialized instance
              variables: they evaluate to nil, but cause a warning when Ruby is
              run with the -w flag.

	Local variables
	This case is more complicated than the others because local
              variables don’t have a punctuation character as a prefix. This
              means that local variable references look just like method
              invocation expressions. If the Ruby interpreter has seen an
              assignment to a local
              variable, it knows it is a variable and not a method, and it can
              return the value of the variable. If there has been no
              assignment, then Ruby treats the expression as a method
              invocation. If no method by that name exists, Ruby raises
              a NameError.
In general, therefore, attempting to use a local variable
              before it has been initialized results in an error. There is one
              quirk—a variable comes into existence when the Ruby interpreter
              sees an assignment expression for that variable. This is the
              case even if that assignment is not actually executed. A
              variable that exists but has not been assigned a value is given
              the default value nil. For
              example:
a = 0.0 if false    # This assignment is never executed
print a             # Prints nil: the variable exists but is not assigned
print b             # NameError: no variable or method named b exists






Constant References



A constant in Ruby is like a variable, except that its value is
      supposed to remain constant for the duration of a program. The Ruby
      interpreter does not actually enforce the constancy of constants, but it
      does issue a warning if a program changes the value of a constant.
      Lexically, the names of constants look like the names of local
      variables, except that they begin with a capital letter. By convention,
      most constants are written in all uppercase with underscores to separate words, LIKE_THIS. Ruby class and module names are
      also constants, but they are conventionally written using initial
      capital letters and camel case, LikeThis.
Although constants look like local variables with capital letters,
      they have the visibility of global variables: they can be used anywhere
      in a Ruby program without regard to scope. Unlike global variables,
      however, constants can be defined by classes and modules and can therefore have qualified
      names.
A constant reference is an expression that evaluates to the value
      of the named constant. The simplest constant references are primary
      expressions—they consist simply of the name of the constant:
CM_PER_INCH = 2.54  # Define a constant.
CM_PER_INCH         # Refer to the constant. Evaluates to 2.54.

In addition to simple references like this one, constant
      references can also be compound expressions. In this case, :: is used to separate the name of the
      constant from the class or module in which it is defined. The lefthand
      side of the :: may be an arbitrary
      expression that evaluates to a class or module object. (Usually,
      however, this expression is a simple constant reference that just names
      the class or module.) The righthand side of the :: is the name of a constant defined by the
      class or module. For example:
Conversions::CM_PER_INCH # Constant defined in the Conversions module
modules[0]::NAME         # Constant defined by an element of an array

Modules may be nested, which means that constants may be defined
      in nested namespaces like this:
Conversions::Area::HECTARES_PER_ACRE

The lefthand side of the :: may
      be omitted, in which case the constant is looked up in the global
      scope:
::ARGV      # The global constant ARGV

Note that there is not actually a “global scope” for constants.
      Like global functions, global constants are defined (and looked up)
      within the Object class. The expression ::ARGV, therefore, is simply shorthand for
      Object::ARGV.
When a constant reference expression is qualified with a ::, Ruby knows exactly where to look up the
      specified constant. When there is no qualifying ::, however, the Ruby interpreter must search
      for an appropriate definition of the constant. It searches the lexically
      enclosing scope as well as the inheritance hierarchy of the enclosing
      class or module. Complete details are in Constant Lookup.
When Ruby evaluates a constant reference expression, it returns
      the value of the constant, or it raises a NameError exception if no constant by that
      name could be found. Note that constants do not exist until a value is
      actually assigned to them. This is unlike variables that can come into
      existence when the interpreter sees, but does not execute, an
      assignment.
The Ruby interpreter predefines some constants when it starts up.
      See Chapter 10 for a list.

Method Invocations



A method invocation expression has four parts:
	An arbitrary expression whose value is the object on which the
          method is invoked. This expression is followed by . or :: to separate it from the method name that follows. The
          expression and separator are optional; if omitted, the method is
          invoked on self.

	The name of the method being invoked. This is the only
          required piece of a method invocation expression.

	The argument values being passed to the method. The list of
          arguments may be enclosed in parentheses, but these
          are usually optional. (Optional and required parentheses are
          discussed in detail in Methods and Parentheses.) If there is
          more than one argument, they are separated from each other with
          commas. The number and type of arguments required depend on the
          method definition. Some methods expect no arguments.

	An optional block of code delimited by curly braces or by a
          do/end pair. The method may
          invoke this code using the yield keyword.
          This ability to associate arbitrary code with any method invocation
          is the basis for Ruby’s powerful iterator methods. We’ll learn much
          more about blocks associated with method invocations in Iterators and Enumerable Objects and Blocks.



A method name is usually separated from the object on which it is
      invoked with a .. :: is also allowed, but it is rarely used
      because it can make method invocations look more like constant reference
      expressions.
When the Ruby interpreter has the name of a method and an object
      on which it is to be invoked, it finds the appropriate definition of
      that named method using a process known as “method lookup” or “method name resolution.” The details are not important here, but they are explained
      thoroughly in Method Lookup.
The value of a method invocation expression is the value of the
      last evaluated expression in the body of the method. We’ll have more to
      say about method definitions, method invocations, and method return
      values in Chapter 6. Here, however, are some examples
      of method invocations:
puts "hello world"  # "puts" invoked on self, with one string arg
Math.sqrt(2)        # "sqrt" invoked on object Math with one arg
message.length      # "length" invoked on object message; no args
a.each {|x| p x }   # "each" invoked on object a, with an associated block

Invoking Global Functions
Look again at this method invocation shown earlier:
puts "hello world"

This is an invocation of the Kernel method puts. Methods defined by Kernel are global functions, as are any methods defined at the
        top-level, outside of any classes. Global functions are defined as
        private methods of the Object
        class. We’ll learn about private methods in Chapter 7. For now, you just need to know that private
        methods are not allowed to be explicitly invoked on a receiver
        object—they are always implicitly invoked on self. self is always defined, and no matter what
        its value is, that value is an Object. Because global functions are methods
        of Object, these methods can always
        be invoked (implicitly) in any context, regardless of the value of
        self.

One of the method invocation examples shown earlier was message.length. You may be tempted to think of
      it as a variable reference expression, evaluating to the value of the
      variable length in the object
      message. This is not the case,
      however. Ruby has a very pure object-oriented programming model: Ruby
      objects may encapsulate any number of internal instance variables, but
      they expose only methods to the outside world. Because the length method expects no arguments and is
      invoked without optional parentheses, it looks like a variable
      reference. In fact, this is intentional. Methods like these are called
      attribute accessor methods, and we say that the message object has a length attribute.[4] As we’ll see, it is possible for the message object to define a method named
      length=. If this method expects a
      single argument, then it is an attribute setter method and Ruby invokes
      it in response to assignment. If such a method is defined, then these
      two lines of code would both invoke the same method:
message.length=(3)    # Traditional method invocation
message.length = 3    # Method invocation masquerading as assignment

Now consider the following line of code, assuming that the
      variable a holds an array:
a[0]

You might again think that this is a special kind of variable
      reference expression, where the variable in question is actually an
      array element. Again, however, this is method invocation. The Ruby
      interpreter converts the array access into this:
a.[](0)

The array access becomes an invocation of the method named
      [] on the array, with the array index
      as its argument. This array access syntax is not limited to arrays. Any
      object is allowed to define a method named []. When the object is “indexed” with square
      brackets, any values within the brackets will be passed to the method.
      If the [] method is written to expect
      three arguments, then you should put three comma-separated expressions within the square
      brackets.
Assignment to arrays is also done via method invocation. If the
      object o defines a method named []=, then the expression o[x]=y becomes o.[]=(x,y), and the expression o[x,y]=z becomes o.[]=(x,y,z).
We’ll see later in this chapter that many of Ruby’s operators are
      defined as methods, and expressions like x+y are evaluated as x.+(y), where the method name is +. The fact that many of Ruby’s operators are
      defined as methods means that you can redefine these operators in your
      own classes.
Now let’s consider this very simple expression:
x

If a variable named x exists
      (that is, if the Ruby interpreter has seen an assignment to x), then this is a variable reference
      expression. If no such variable exists, then this is an invocation of
      the method x, with no arguments, on
      self.
The Ruby-reserved word super is
      a special kind of method invocation expression. This keyword is used
      when creating a subclass of another class. By itself, super passes the arguments of the current
      method to the method with the same name in the superclass. It can also
      be used as if it were actually the name of a method and can be followed
      by an arbitrary argument list. The super keyword is covered in detail in Augmenting Behavior by Chaining.


[4] This is not to say that every no-argument method is an
          attribute accessor. The sort
          method of an array, for example, has no arguments, but it cannot be
          said to return an attribute value.



Assignments



An assignment expression specifies one or more values for
      one or more lvalues. lvalue is the term for
      something that can appear on the lefthand side of an assignment
      operator. (Values on the righthand side of an assignment operator are
      sometimes called rvalues by contrast.)
      Variables, constants, attributes, and array elements are lvalues in
      Ruby. The rules for and the meaning of assignment expressions are
      somewhat different for different kinds of lvalues, and each kind is
      described in detail in this section.
There are three different forms of assignment expressions in Ruby.
      Simple assignment involves one lvalue, the = operator, and one rvalue. For
      example:
x = 1     # Set the lvalue x to the value 1

Abbreviated assignment is a shorthand expression that updates the value of a
      variable by applying some other operation (such as addition) to the
      current value of the variable. Abbreviated assignment uses assignment
      operators like += and *= that combine binary operators with an
      equals sign:
x += 1    # Set the lvalue x to the value x + 1

Finally, parallel assignment is any assignment expression that has more
      than one lvalue or more than one rvalue. Here is a simple
      example:
x,y,z = 1,2,3   # Set x to 1, y to 2 and z to 3

Parallel assignment is more complicated when the number of lvalues
      is not the same as the number of rvalues or when there is an array on
      the right. Complete details follow.
The value of an assignment expression is the value (or an array of
      the values) assigned. Also, the assignment operator is
      “right-associative”—if multiple assignments appear in a single
      expression, they are evaluated from right to left. This means that the
      assignment can be chained to assign the same value to multiple
      variables:
x = y = 0   # Set x and y to 0

Note that this is not a case of parallel assignment—it is two
      simple assignments, chained together: y is assigned the value 0, and then x is assigned the value (also 0) of that first assignment.
Assignment and Side Effects
More important than the value of an assignment expression is the
        fact that assignments set the value of a variable (or other lvalue)
        and thereby affect program state. This effect on program state is
        called a side effect of the
        assignment.
Many expressions have no side effects and do not affect program
        state. They are idempotent. This means that the
        expression may be evaluated over and over again and will return the
        same value each time. And it means that evaluating the expression has
        no effect on the value of other expressions. Here are some expressions
        without side effects:
x + y
Math.sqrt(2)

It is important to understand that assignments are not
        idempotent:
x = 1       # Affects the value of other expressions that use x
x += 1      # Returns a different value each time it is evaluated

Some methods, such as Math.sqrt, are idempotent: they can be
        invoked without side effects. Other methods are not, and this largely
        depends on whether those methods perform assignments to nonlocal
        variables.

Assigning to Variables



When we think of assignment, we usually think of
        variables, and indeed, these are the most common lvalues in
        assignment expressions. Recall that Ruby has four kinds of variables:
        local variables, global variables, instance variables, and class variables. These are
        distinguished from each other by the first character in the variable
        name. Assignment works the same for all four kinds of variables, so we
        do not need to distinguish between the types of variables here.
Keep in mind that the instance variables of Ruby’s objects are
        never visible outside of the object, and variable names are never
        qualified with an object name. Consider this assignment:
point.x, point.y = 1, 2

The lvalues in this expression are not variables; they are
        attributes, and are explained shortly.
Assignment to a variable works as you would expect: the variable
        is simply set to the specified value. The only wrinkle has to do with
        variable declaration and an ambiguity between local variable names and
        method names. Ruby has no syntax to explicitly declare a variable:
        variables simply come into existence when they are assigned. Also,
        local variable names and method names look the same—there is no prefix
        like $ to distinguish them. Thus, a
        simple expression such as x could
        refer to a local variable named x
        or a method of self named x. To resolve this ambiguity, Ruby treats an
        identifier as a local variable if it has seen any previous assignment
        to the variable. It does this even if that assignment was never
        executed. The following code demonstrates:
class Ambiguous
  def x; 1; end # A method named "x". Always returns 1

  def test
    puts x      # No variable has been seen; refers to method above: prints 1

    # The line below is never evaluated, because of the "if false" clause. But
    # the parser sees it and treats x as a variable for the rest of the method.
    x = 0 if false

    puts x    # x is a variable, but has never been assigned to: prints nil

    x = 2     # This assignment does get evaluated
    puts x    # So now this line prints 2
  end
end


Assigning to Constants



Constants are different from variables in an obvious way: their
        values are intended to remain constant throughout the execution of a
        program. Therefore, there are some special rules for assignment to
        constants:
	Assignment to a constant that already exists causes Ruby to
            issue a warning. Ruby does execute the assignment, however, which
            means that constants are not really constant.

	Assignment to constants is not allowed within the body of a
            method. Ruby assumes that methods are intended to be invoked more
            than once; if you could assign to a constant in a method, that
            method would issue warnings on every invocation after the first.
            So, this is simply not allowed.



Unlike variables, constants do not come into existence until the
        Ruby interpreter actually
        executes the assignment expression. A nonevaluated expression like the
        following does
        not create a constant:
N = 100 if false

Note that this means a constant is never in an uninitialized
        state. If a constant exists, then it has a value assigned to it. A
        constant will only have the value nil if that is actually the value it was
        given.

Assigning to Attributes and Array Elements



Assignment to an attribute or array element is actually Ruby shorthand for method
        invocation. Suppose an object o has
        a method named m=: the method name
        has an equals sign as its last character. Then o.m can be used as an lvalue in an
        assignment expression. Suppose, furthermore, that the value v is assigned:
o.m = v

The Ruby interpreter converts this assignment to the following
        method invocation:
o.m=(v)  # If we omit the parens and add a space, this looks like assignment!

That is, it passes the value v to the method m=. That method can do whatever it wants
        with the value. Typically, it will check that the value is of the
        desired type and within the desired range, and it will then store it
        in an instance variable of the object. Methods like m= are usually accompanied by a method
        m, which simply returns the value
        most recently passed to m=. We say
        that m= is a
        setter method and m is a
        getter method. When an object has this pair of methods, we say that it
        has an attribute m. Attributes are
        sometimes called “properties” in other languages. We’ll learn more
        about attributes in Ruby in Accessors and Attributes.
Assigning values to array elements is also done by method
        invocation. If an object o defines
        a method named []= (the method name
        is just those three punctuation characters) that expects two
        arguments, then the expression o[x] =
        y is actually executed as:
o.[]=(x,y)

If an object has a []=
        method that expects three arguments, then it can be indexed
        with two values between the square brackets. The following two
        expressions are equivalent in this case:
o[x,y] = z
o.[]=(x,y,z)


Abbreviated Assignment



Abbreviated assignment is a form of assignment that combines assignment with some
        other operation. It is used most commonly to increment
        variables:
x += 1

+= is not a real Ruby operator, and the expression above is
        simply an abbreviation for:
x = x + 1

Abbreviated assignment cannot be combined with parallel
        assignment: it only works when there is a single lvalue on the left
        and a single value on the right. It should not be used when the lvalue
        is a constant because it will reassign the constant and cause a
        warning. Abbreviated assignment can, however, be used when the lvalue
        is an attribute. The following two expressions are equivalent:
o.m += 1
o.m=(o.m()+1)

Abbreviated assignment even works when the lvalue is an array element. These two expressions are
        equivalent:
o[x] -= 2
o.[]=(x, o.[](x) - 2)

Note that this code uses -=
        instead of +=. As you might expect,
        the -= pseudooperator subtracts its
        rvalue from its lvalue.
In addition to += and
        -=, there are 11 other
        pseudooperators that can be used for abbreviated assignment. They are listed
        in Table 4-1. Note that these are
        not true operators themselves, they are simply shorthand for
        expressions that use other operators. The meanings of those other
        operators are described in detail later in this chapter. Also, as
        we’ll see later, many of these other operators are defined as methods.
        If a class defines a method named +, for example, then that changes the
        meaning of abbreviated assignment with += for all instances of that class.
Table 4-1. Abbreviated assignment pseudooperators
	Assignment	Expansion
	x += y	x = x + y
	x -= y	x = x - y
	x *= y	x = x * y
	x /= y	x = x / y
	x %= y	x = x % y
	x **= y	x = x ** y
	x &&=
                y	x = x &&
                y
	x ||= y	x = x || y
	x &= y	x = x &
                y
	x |= y	x = x | y
	x ^= y	x = x ^ y
	x <<=
                y	x = x <<
                y
	x >>=
                y	x = x >>
                y



The ||= Idiom
As noted at the beginning of this section, the most common use
          of abbreviated assignment is to increment a variable with +=. Variables are also commonly
          decremented with -=. The other
          pseudooperators are much less commonly used. One idiom is worth
          knowing about, however. Suppose you are writing a method that
          computes some values, appends them to an array, and returns the
          array. You want to allow the user to specify the array that the
          results should be appended to. But if the user does not specify the
          array, you want to create a new, empty array. You might use this
          line:
results ||= []

Think about this for a moment. It expands to:
results = results || []

If you know the || operator
          from other languages, or if you’ve read ahead to learn about
          || in Ruby, then you know that
          the righthand side of this assignment evaluates to the value of
          results, unless that is nil or false. In that case, it evaluates to a
          new, empty array. This means that the abbreviated assignment shown
          here leaves results unchanged, unless it is nil or false, in which case it assigns a new
          array.
The abbreviated assignment operator ||= actually behaves slightly differently
          than the expansion shown here. If the lvalue of ||= is not nil or false, no assignment is actually
          performed. If the lvalue is an attribute or array element, the
          setter method that performs assignment is not invoked.


Parallel Assignment



Parallel assignment is any assignment expression that has more
        than one lvalue, more than one rvalue, or both. Multiple lvalues and
        multiple rvalues are separated from each other with commas. lvalues
        and rvalues may be prefixed with *,
        which is sometimes called the splat operator,
        though it is not a true operator. The meaning of * is explained later in this section.
Most parallel assignment expressions are straightforward, and it
        is obvious what they mean. There are some complicated cases, however,
        and the following subsections explain all the possibilities.
Same number of lvalues and rvalues



Parallel assignment is at its simplest when there are the same
          number of lvalues and rvalues:
x, y, z = 1, 2, 3   # x=1; y=2; z=3

In this case, the first rvalue is assigned to the first
          lvalue; the second rvalue is assigned to the second lvalue; and so
          on.
These assignments are effectively performed in parallel, not
          sequentially. For example, the following two lines are not the
          same:
x,y = y,x     # Parallel: swap the value of two variables
x = y; y = x  # Sequential: both variables have same value


One lvalue, multiple rvalues



When there is a single lvalue and more than one rvalue, Ruby
          creates an array to hold the rvalues and assigns that array to the
          lvalue:
x = 1, 2, 3      # x = [1,2,3]

You can place an * before
          the lvalue without changing the meaning or the return value of this
          assignment.
If you want to prevent the multiple rvalues from being
          combined into a single array, follow the lvalue with a comma. Even
          with no lvalue after that comma, this makes Ruby behave as if there
          were multiple lvalues:
x, = 1, 2, 3     # x = 1; other values are discarded


Multiple lvalues, single array rvalue



When there are multiple lvalues and only a single rvalue, Ruby
          attempts to expand the rvalue into a list of values to assign. If
          the rvalue is an array, Ruby expands the array so that each element
          becomes its own rvalue. If the rvalue is not an array but implements
          a to_ary method, Ruby invokes
          that method and then expands the array it returns:
x, y, z = [1, 2, 3]  # Same as x,y,z = 1,2,3

The parallel assignment has been transformed so that there are
          multiple lvalues and zero (if the expanded array was empty) or more
          rvalues. If the number of lvalues and rvalues are the same, then
          assignment occurs as described earlier in Same number of lvalues and rvalues. If the numbers are different, then
          assignment occurs as described next in Different numbers of lvalues and rvalues.
We can use the trailing-comma trick described above to
          transform an ordinary nonparallel assignment into a parallel
          assignment that automatically unpacks an array on the right:
x = [1,2]    # x becomes [1,2]: this is not parallel assignment
x, = [1,2]   # x becomes 1: the trailing comma makes it parallel


Different numbers of lvalues and rvalues



If there are more lvalues than rvalues, and no splat operator
          is involved, then the first rvalue is assigned to the first lvalue,
          the second rvalue is assigned to the second lvalue, and so on, until
          all the rvalues have been assigned. Next, each of the remaining
          lvalues is assigned nil,
          overwriting any existing value for that lvalue:
x, y, z = 1, 2  # x=1; y=2; z=nil

If there are more rvalues than lvalues, and no splat operator
          is involved, then rvalues are assigned—in order—to each of the
          lvalues, and the remaining rvalues are discarded:
x, y = 1, 2, 3 # x=1; y=2; 3 is not assigned anywhere


The splat operator



When an rvalue is preceded by an asterisk, it means that that
          value is an array (or an array-like object) and that its elements
          should each be rvalues. The array elements replace the array in the
          original rvalue list, and assignment proceeds as described
          above:
x, y, z = 1, *[2,3]  # Same as x,y,z = 1,2,3

In Ruby 1.8, a splat may only appear before the last rvalue in an assignment.
          In Ruby 1.9, the list of rvalues in a parallel assignment may have
          any number of splats, and they may appear at any position in the
          list. It is not legal, however, in either version of the language,
          to attempt a “double splat” on a nested array:
x,y = **[[1,2]]   # SyntaxError!

Array, range and hash rvalues can be splatted. In general, any
          rvalue that defines a to_a method
          can be prefixed with a splat. Any Enumerable object, including enumerators
          (see Enumerators) can be splatted, for example.
          When a splat is applied to an object that does not define a to_a method, no expansion is performed and
          the splat evaluates to the object itself.
When an lvalue is preceded by an asterisk, it means that all
          extra rvalues should be placed into an array and assigned to this
          lvalue. The value assigned to that lvalue is always an array, and it
          may have zero, one, or more elements:
x,*y = 1, 2, 3  # x=1; y=[2,3]
x,*y = 1, 2     # x=1; y=[2]
x,*y = 1        # x=1; y=[]

In Ruby 1.8, a splat may only precede the last lvalue in the
          list. In Ruby 1.9, the lefthand side of a parallel assignment may
          include one splat operator, but it may appear at any position in the
          list:
# Ruby 1.9 only
*x,y = 1, 2, 3  # x=[1,2]; y=3
*x,y = 1, 2     # x=[1]; y=2
*x,y = 1        # x=[]; y=1

Note that splats may appear on both sides of a parallel
          assignment expression:
x, y, *z = 1, *[2,3,4]  # x=1; y=2; z=[3,4].

Finally, recall that earlier we described two simple cases of
          parallel assignment in which there is a single lvalue or a single
          rvalue. Note that both of these cases behave as if there is a splat
          before the single lvalue or rvalue. Explicitly including a splat in
          these cases has no additional effect.

Parentheses in parallel assignment



One of the least-understood features of parallel assignment is
          that the lefthand side can use parentheses for “subassignment.” If a
          group of two or more lvalues is enclosed in parentheses, then it is
          initially treated as a single lvalue. Once the corresponding rvalue
          has been determined, the rules of parallel assignment are applied
          recursively—that rvalue is assigned to the group of lvalues that was
          in parentheses. Consider the following assignment:
x,(y,z) = a, b

This is effectively two assignments executed at the same
          time:
x = a
y,z = b

But note that the second assignment is itself a parallel
          assignment. Because we used parentheses on the lefthand side, a
          recursive parallel assignment is performed. In order for it to work,
          b must be a splattable object
          such as an array or enumerator.
Here are some concrete examples that should make this clearer.
          Note that parentheses on the left act to “unpack” one level of
          nested array on the right:
x,y,z = 1,[2,3]             # No parens: x=1;y=[2,3];z=nil
x,(y,z) = 1,[2,3]           # Parens: x=1;y=2;z=3

a,b,c,d = [1,[2,[3,4]]]     # No parens: a=1;b=[2,[3,4]];c=d=nil
a,(b,(c,d)) = [1,[2,[3,4]]] # Parens: a=1;b=2;c=3;d=4


The value of parallel assignment



The return value of a parallel assignment expression is the
          array of rvalues (after being augmented by any splat
          operators).
Parallel Assignment and Method Invocation
As an aside, note that if a parallel assignment is prefixed
            with the name of a method, the Ruby interpreter will interpret the
            commas as method argument separators rather than as lvalue and
            rvalue separators. If you want to test the return value of a
            parallel assignment, you might write the following code to print
            it out:
puts x,y=1,2

This doesn’t do what you want, however; Ruby thinks you’re
            invoking the puts method with
            three arguments: x, y=1, and 2. Next, you might try putting the
            parallel assignment within parentheses for grouping:
puts (x,y=1,2)

This doesn’t work, either; the parentheses are interpreted
            as part of the method invocation (though Ruby complains about the
            space between the method name and the opening parenthesis). To
            actually accomplish what you want, you must use nested
            parentheses:
puts((x,y=1,2))

This is one of those strange corner cases in the Ruby
            grammar that comes as part of the expressiveness of the grammar.
            Fortunately, the need for syntax like this rarely arises.




Operators



An operator is a token
      in the Ruby language that represents an operation (such as addition or
      comparison) to be performed on one or more operands. The operands are
      expressions, and operators allow us to combine these operand expressions
      into larger expressions. The numeric literal 2 and the operator +, for example, can be combined into the
      expression 2+2. And the following
      expression combines a numeric literal, a method invocation expression,
      and a variable reference expression with the multiplication operator and
      the less-than operator:
2 * Math.sqrt(2) < limit

Table 4-2 later in this section summarizes
      each of Ruby’s operators, and the sections that follow describe each one
      in detail. To fully understand operators, however, you need to
      understand operator arity, precedence, and associativity.
The arity of an operator is the number of
      operands it operates on. Unary operators expect a single operand. Binary
      operators expect two operands. Ternary operators (there is only one of these) expect three operands. The arity of each
      operator is listed in column N of Table 4-2. Note
      that the operators + and – have both unary and binary forms.
The precedence of an operator specifies how “tightly” an operator is bound
      to its operands, and affects the order of evaluation of an expression.
      Consider this expression, for example:
1 + 2 * 3     # => 7

The multiplication operator has higher precedence than the
      addition operator, so the multiplication is performed first and the
      expression evaluates to 7. Table 4-2 is arranged
      in order from high-precedence operators to low-precedence operators.
      Note that there are both high- and low-precedence operators for Boolean
      AND, OR, and NOT operations.
Operator precedence only specifies the default order of evaluation
      for an expression. You can always use parentheses to group
      subexpressions and specify your own order of evaluation. For
      example:
(1 + 2) * 3   # => 9

The associativity of an operator specifies
      the order of evaluation when the same operator (or operators with the
      same precedence) appear sequentially in an expression. Column A of Table 4-2 specifies the associativity of each operator.
      The value “L” means that expressions are evaluated from left to right.
      The value “R” means that expressions are evaluated from right to left.
      And the value “N” means that the operator is
      nonassociative and cannot be used multiple times in
      an expression without parentheses to specify the evaluation
      order.
Most arithmetic operators are left-associative, which means that
      10-5-2 is evaluated as (10-5)-2 instead of 10-(5-2). Exponentiation, on the other hand,
      is right-associative, so 2**3**4 is
      evaluated as 2**(3**4). Assignment is
      another right-associative operator. In the expression a=b=0, the value 0 is first assigned to the variable b. Then the value of that expression (also
      0) is assigned to the variable
      a.
Ruby implements a number of its operators as methods, allowing
      classes to define new meanings for those operators. Column M of Table 4-2 specifies which operators are methods.
      Operators marked with a “Y” are implemented with methods and may be
      redefined, and operators marked
      with an “N” may not. In general, classes may define their own
      arithmetic, ordering, and equality operators, but they may not redefine
      the various Boolean operators. We categorize operators in this chapter
      according to their most common purpose for the standard Ruby classes.
      Other classes may define different meanings for the operators. The
      + operator, for example, performs
      numeric addition and is categorized as an arithmetic operator. But it is
      also used to concatenate strings and arrays. A method-based operator is
      invoked as a method of its lefthand operand (or its only operand, in the
      case of unary operators). The righthand operand is passed as an argument
      to the method. You can look up a class’s definition of any method-based
      operator as you would look up any other method of a class. For example,
      use ri to look up the definition of the * operator for strings:
ri 'String.*'

To define unary + and unary
      – operators, use method names
      +@ and -@ to avoid ambiguity with the binary
      operators that use the same symbols. The != and !~
      operators are defined as the negation of the == and =~
      operators. In Ruby 1.9, you can redefine != and
      !~. In earlier versions of the
      language, you cannot. Ruby 1.9 also allows the unary !
      operator to be redefined.
Table 4-2. Ruby operators, by precedence (high to low), with arity (N),
        associativity (A), and definability (M)
	Operator(s)	N	A	M	Operation
	! ~ +	1	R	Y	Boolean NOT, bitwise complement, unary
              plus[a]
	**	2	R	Y	Exponentiation
	-	1	R	Y	Unary minus (define with -@)
	* / %	2	L	Y	Multiplication, division, modulo
              (remainder)
	+ -	2	L	Y	Addition (or concatenation), subtraction
	<<
              >>	2	L	Y	 Bitwise shift-left (or append), bitwise
              shift-right
	&	2	L	Y	Bitwise AND
	| ^	2	L	Y	Bitwise OR, bitwise XOR
	< <= >=
              >	2	L	Y	Ordering
	== === != =~ !~
              <=>	2	N	Y	Equality, pattern matching, comparison[b]
	&&	2	L	N	Boolean AND
	||	2	L	N	Boolean OR
	.. ...	2	N	N	Range creation and Boolean flip-flops
	?:	3	R	N	Conditional
	rescue	2	L	N	Exception-handling modifier
	=
**= *= /= %= += -=
<<= >>=
&&= &= ||= |= ^=

	2	R	N	Assignment
	defined?	1	N	N	Test variable definition and type
	not	1	R	N	Boolean NOT (low precedence)
	and or	2	L	N	Boolean AND, Boolean OR (low precedence)
	if unless while
              until	2	N	N	Conditional and loop modifiers
	[a] ! may not be
                  redefined prior to Ruby 1.9. Define unary plus with +@.

[b] != and !~ may not be redefined prior to
                  Ruby 1.9.





Unary + and –



The unary minus operator changes the sign of its numeric argument.
        The unary plus is allowed, but it has no effect on numeric operands—it
        simply returns the value of its operand. It is provided for symmetry
        with unary minus, and can, of course, be redefined. Note that unary
        minus has slightly lower precedence than unary plus; this is described
        in the next section on the **
        operator.
The names of these unary operators as methods are -@ and +@. Use these names when redefining the
        operators, invoking the operators as methods, or looking up
        documentation for the operators. These special names are necessary to
        disambiguate the unary plus and minus operators from binary plus and
        minus.

Exponentiation: **



** performs exponentiation,
        raising its first argument to the power of the second.
        Note that you can compute roots of a number by using a fractional
        number as the second operand. For example, the cube root of x is x**(1.0/3.0). Similarly, x**-y is the same as 1/(x**y). The ** operator is right-associative, so
        x**y**z is the same thing as
        x**(y**z).
        Finally, note that ** has higher
        precedence than the unary minus operator, so -1**0.5 is the same thing as -(1**0.5). If you really want to take the
        square root of -1, you must use
        parentheses: (-1)**0.5. (The
        imaginary result is not-a-number, and the expression evaluates to
        NaN.)

Arithmetic: +, –, *, /, and %



The operators +, –, *, and
        / perform addition, subtraction, multiplication, and division on all
        Numeric classes. Integer division
        returns an integer result and discards any remainder. The remainder
        can be computed with the modulo operator %. Integer division by zero raises ZeroDivisionError. Floating-point division
        by zero returns plus or minus Infinity. Floating-point division of zero by
        zero returns NaN. See Arithmetic in Ruby for further details on Ruby’s integer and
        floating-point arithmetic.
The String class uses the
        + operator for string
        concatenation, the * operator for
        string repetition, and the %
        operator for sprintf argument
        substitution into a string.
The Array class uses + for array concatenation and – for array subtraction. Array uses the * operator in different ways, depending on
        the class of the second operand. When an array is “multiplied” by a
        number, the result is a new array that repeats the contents of the
        operand array the specified number of times. But when an array is
        multiplied by a string, the result is the same as calling the join method of the array and passing that
        string as the argument.

Shift and Append: << and >>



The Fixnum and Bignum classes define the <<
        and >> operators to shift the
        bits of the lefthand argument to the left and to the right. The
        righthand argument is the number of positions to shift the bits, and
        negative values result in a shift in the opposite direction: a
        left-shift of –2 is the same as a
        right-shift of 2. High-order bits
        are never “shifted off” when a Fixnum is shifted left. If the result of a
        shift does not fit in a Fixnum, a
        Bignum value is returned. Right
        shifts, however, always discard the low-order bits of the
        argument.
Shifting a number left by 1
        bit is the same as multiplication by 2. Shifting a number right by 1 bit is the same as integer division by
        2. Here are some examples that
        express numbers in binary notation and then convert their results back
        to binary form:
(0b1011 << 1).to_s(2)   # => "10110"   11 << 1 => 22
(0b10110 >> 2).to_s(2)  # => "101"     22 >> 2 => 5

The << operator is also
        used as an append operator, and it’s probably more common in this
        form. The String, Array, and IO classes define it in this way, as do a
        number of other “appendable” classes from the standard library, such
        as Queue and Logger:
message = "hello"        # A string
messages = []            # An empty array
message << " world"      # Append to the string
messages << message      # Append message to the array
STDOUT << message        # Print the message to standard output stream


Complement, Union, Intersection: ~, &, |, and ^



Fixnum and Bignum define these operators to perform
        bitwise NOT, AND, OR, and XOR operations. ~ is a high-precedence unary operator, and the others are medium-precedence binary operators.
~ changes each 0 bit of its integer operand to a 1, and each 1 bit to a 0, producing the binary 1s-complement of a number. For any integer
        x, ~x is the same as -x-1.
& is the bitwise AND
        operator for two numbers. The bits of the result are set to 1 only if the corresponding bit in each
        operand is set to 1. For
        example:
(0b1010 & 0b1100).to_s(2)  # => "1000"

| is the bitwise OR operator
        for two integers. A bit in the result is 1 if either corresponding bit in the
        operands is 1. For example:
(0b1010 | 0b1100).to_s(2)  # => "1110"

^ is the bitwise XOR
        (exclusive-OR) for integers. A bit in the result is 1 if one (but not both) of the corresponding
        bits in the operands is 1. For
        example:
(0b1010 ^ 0b1100).to_s(2)  # => "110"

Other classes use these operators as well, usually in ways that
        are compatible with their logical AND, OR, and NOT meanings. Arrays use & and | for set intersection and union operations.
        When & is applied to two
        arrays, it returns a new array that contains only those elements that
        appear in the lefthand array AND the righthand array. When | is applied to two arrays, it returns a new
        array that contains any elements that appear in either the lefthand
        array OR the righthand array. See Arrays as sets for
        details and examples.
TrueClass, FalseClass, and NilClass define &, |,
        and ^ (but not ~), so that they can be used as Boolean
        operators. Note, however, that this is rarely the correct thing to do.
        The Boolean operators &&
        and || (described later in Boolean Operators: &&, ||, !, and, or, not) are intended for Boolean operands, and
        are more efficient because they do not evaluate their righthand
        operand unless its value will affect the result of the
        operation.

Comparison: <, <=, >, >=, and <=>



Some classes define a natural order for their values. Numbers
        are ordered by magnitude; strings are ordered alphabetically; dates
        are ordered chronologically. The less-than (<), less-than-or-equal-to (<=), greater-than-or-equal-to (>=), and greater-than (>) operators make assertions about the
        relative order of two values. They evaluate to true if the assertion is true, and they
        evaluate to false otherwise. (And
        they typically raise an exception if their arguments are of
        incomparable types.)
Classes may define the comparison operators individually. It is
        easier and more common, however, for a class to define the single
        <=> operator. This is a
        general-purpose comparison operator, and its return value indicates
        the relative order of the two operands. If the lefthand operand is
        less than the righthand operand, then <=> returns –1. If the lefthand operand is greater, it
        returns +1. If the two operands are
        equal, the operator returns 0. And
        if the two operands are not comparable, it returns nil.[*] Once the <=>
        operator is defined, a class may simply include the module Comparable,
        which defines the other
        comparison operators (including the == operator) in terms of <=>.
The Module class deserves special mention: it implements the comparison
        operators to indicate subclass relationships (Module is the superclass of Class). For classes A and B,
        A < B is true if A
        is a subclass or descendant of B.
        In this case, “less than” means “is more specialized than” or “is a
        narrower type than.” As a mnemonic, note that (as we’ll learn in Chapter 7) the <
        character is also used when declaring a subclass:
# Declare class A as a subclass of B
class A < B
end

Module defines > to work like < with its operands reversed. And it
        defines <= and >= so that they also return true if the two operands are the same class.
        The most interesting things about these Module comparison operators is that Module only defines a partial ordering on
        its values. Consider the classes String and Numeric. Both are subclasses of Object, and neither one is a subclass of the
        other. In this case, when the two operands are unrelated, the
        comparison operators return nil
        instead of true or false:
String < Object        # true: String is more specialized than Object
Object > Numeric       # true: Object is more general than Numeric
Numeric < Integer      # false: Numeric is not more specialized than Integer
String < Numeric       # nil: String and Numeric are not related

If a class defines a total ordering on its values, and a < b is not true, then you can be sure
        that a >= b
        is true. But when a class, like Module, defines only a partial ordering, you
        must not make this assumption.

Equality: ==, !=, =~, !~, and ===



== is the equality operator. It determines whether two values
        are equal, according to the lefthand operand’s definition of “equal.”
        The != operator is simply the
        inverse of ==: it calls == and then returns the opposite. You can
        redefine != in Ruby 1.9 but not in
        Ruby 1.8. See Object Equality for a more detailed
        discussion of object equality in Ruby.
=~ is the pattern-matching
        operator. Object defines this
        operator so that it always returns false. String redefines it so that it
        expects a Regexp as its righthand
        argument. And Regexp redefines the
        operator so that it expects a String as its righthand argument. Both of
        these operators return nil if the
        string does not match the pattern. If the string does match the
        pattern, the operators return the integer index at which the match
        begins. (Note that in Boolean expressions, nil works like false and any integer works like true.)
The !~ operator is the
        inverse of =~: it calls =~ and returns true if =~ returned nil or false if =~ returned an integer. You can redefine
        !~ in Ruby 1.9 but not in Ruby
        1.8.
The === operator is the
        case-equality operator. It is used implicitly by case statements (see Chapter 5). Its explicit use is much less common than
        ==. Range, Class, and Regexp define this operator as a kind of
        membership or pattern-matching operator. Other classes inherit
        Object’s definition, which simply
        invokes the == operator instead.
        See Object Equality. Note that there is no !== operator; if you want to negate ===, you must do it yourself.

Boolean Operators: &&, ||, !, and, or, not



Ruby’s Boolean operators are built into the language and are not based
        on methods: classes, for example, cannot define their own && method. The reason for this is
        that Boolean operators can be applied to any value and must behave
        consistently for any kind of operand. Ruby defines special true and false values but does not have a Boolean
        type. For the purposes of all Boolean operators, the values false and nil are considered false. And every other
        value, including true, 0, NaN,
        "", [], and {}, is considered true. Note that ! is an exception; you can redefine this
        operator in Ruby 1.9 (but not in Ruby 1.8). Note also that you can
        define methods named and, or, and not, but these methods are ordinary methods
        and do not alter the behavior of the operators with the same
        name.
Another reason that Ruby’s Boolean operators are a core part of
        the language rather than redefinable methods is that the binary
        operators are “short-circuiting.” If the value of the operation is
        completely determined by the lefthand operand, then the righthand
        operand is ignored and is never even evaluated. If the righthand
        operand is an expression with side effects (such as assignment, or an
        invocation of a method with side effects), then that side effect may
        or may not occur, based on the value of the lefthand operand.
&& is a Boolean AND
        operator. It returns a true value if both its left operand AND its
        right operand are true values. Otherwise, it returns a false value.
        Note that this description says “a true value” and “a false value”
        instead of “the true value” and
        “the false value.” && is often used in conjunction with
        comparison operators, such as ==
        and <, in expressions like
        this:
x == 0 && y > 1

The comparison and equality operators actually evaluate to the
        values true and false, and in this case, the && operator is operating on actual
        Boolean values. But this is not always the case. The operator can also
        be used like this:
x && y

In this case, x and y can be anything. The value of the
        expression is either the value of x
        or it is the value of y. If both
        x and y are true values, then the value of the
        expression is the value of y. If
        x is a false value, then the value
        of the expression is x. Otherwise,
        y must be a false value, and the
        value of the expression is y.
Here’s how the &&
        operator actually works. First, it evaluates its lefthand operand. If
        this operand is nil or false, then it returns that value and skips
        the righthand operand altogether. Otherwise, the lefthand operand is a
        true value and the overall value of the && operator depends on the value of
        the righthand operand. In this case, the operator evaluates its
        righthand operand and returns that value.
The fact that && may
        skip its righthand operand can be used to advantage in your code.
        Consider this expression:
x && print(x.to_s)

This code prints the value of x as a string, but only if x is not nil or false.[*]
The || operator returns the
        Boolean OR of its operands. It returns a true value if either of its
        operands is a true value. If both operands are false values, then it
        returns a false value. Like &&, the || operator ignores its righthand operand if
        its value has no impact on the value of the operation. The || operator works like this: first, it
        evaluates its lefthand operand. If this is any value other than
        nil or false, it simply returns that value.
        Otherwise, it evaluates its righthand operand and returns that
        value.
|| can be used as a
        conjunction to join multiple comparison or equality
        expressions:
x < 0 || y < 0 || z < 0   # Are any of the coordinates negative?

In this case, the operands to || will be actual true or false values, and the result will also be
        true or false. But || is not restricted to working with
        true and false. One idiomatic use of || is to return the first non-nil value in a series of
        alternatives:
# If the argument x is nil, then get its value from a hash of user preferences
# or from a constant default value.
x = x || preferences[:x] || Defaults::X

Note that && has
        higher precedence than ||. Consider
        this expression:
1 || 2 && nil     # => 1

The && is performed
        first, and the value of this expression is 1. If the || was performed first, however, the value
        would be nil:
(1 || 2) && nil   # => nil

The ! operator performs a
        unary Boolean NOT. If the operand is nil or false, then the ! operator returns true. Otherwise, ! returns false.
The ! operator is at the
        highest precedence. This means that if you want to compute the logical
        inverse of an expression that itself uses operators, you must use
        parentheses:
!(a && b)

Incidentally, one of the principles of Boolean logic allows the
        expression above to be rewritten as:
!a || !b

The and, or, and not operators are low-precedence versions of
        &&, ||, and !. One reason to use these variants is
        simply that their names are English and this can make your code easier
        to read. Try reading this line of code, for example:
if x > 0 and y > 0 and not defined? d then d = Math.sqrt(x*x + y*y) end

Another reason for these alternate versions of the Boolean
        operators is the fact that they have lower precedence than the
        assignment operator. This means that you can write a Boolean
        expression such as the following that assigns values to variables
        until it encounters a false
        value:
if a = f(x) and b = f(y) and c = f(z) then d = g(a,b,c) end

This expression simply would not work if written with && instead of and.
You should note that and and
        or have the same precedence (and
        not is just slightly higher).
        Because and and or have the same precedence, and && and || have different precedences, the following
        two expressions compute different values:
x || y && nil        # && is performed first   => x
x or y and nil       # evaluated left-to-right => nil 


Ranges and Flip-Flops: .. and ...



We’ve seen .. and ... before in Ranges where they were
        described as part of the Range
        literal syntax. When the start and end points of a range are
        themselves integer literals, as in 1..10, the Ruby interpreter creates a
        literal Range object while parsing.
        But if the start and end point expressions are anything more
        complicated than integer literals, as in x..2*x, then it is not really accurate to
        call this a Range literal. Instead,
        it is a range creation expression. It follows, therefore, that
        .. and ... are operators rather than just range
        literal syntax.
The .. and ... operators are not method-based and
        cannot be redefined. They have relatively low precedence, which means
        that they can usually be used without putting parentheses around the
        left or right operands:
x+1..x*x

The value of these operators is a Range object. x..y is the same as:
Range.new(x,y)

And x...y is the same
        as:
Range.new(x,y,true)

Boolean flip-flops



When the .. and ... operators are used in a conditional, such as an if statement, or in a loop, such as a
          while loop (see Chapter 5 for more about conditionals and loops), they do
          not create Range objects.
          Instead, they create a special kind of Boolean expression called a
          flip-flop. A flip-flop expression evaluates to
          true or false, just as comparison and equality
          expressions do. The extraordinarily unusual thing about a flip-flop
          expression, however, is that
          its value depends on the value of previous evaluations. This means
          that a flip-flop expression has state associated with it; it must
          remember information about previous evaluations. Because it has
          state, you would expect a flip-flop to be an object of some sort.
          But it isn’t—it’s a Ruby expression, and the Ruby interpreter stores
          the state (just a single Boolean value) it requires in its internal
          parsed representation of the expression.
With that background in mind, consider the flip-flop in the
          following code. Note that the first .. in the code creates a Range object. The second one creates the
          flip-flop expression:
(1..10).each {|x| print x if x==3..x==5 }

The flip-flop consists of two Boolean expressions joined with
          the .. operator, in the context
          of a conditional or loop. A flip-flop expression is false unless and until the lefthand
          expression evaluates to true.
          Once that expression has become true, the expression “flips” into a
          persistent true state. It remains
          in that state, and subsequent evaluations return true until the righthand expression
          evaluates to true. When that
          happens, the flip-flop “flops” back to a persistent false state. Subsequent evaluations of the
          expression return false until the
          lefthand expression becomes true
          again.
In the code example, the flip-flop is evaluated repeatedly,
          for values of x from 1 to 10. It starts off in the false state, and evaluates to false when x is 1
          and 2. When x==3, the flip-flop
          flips to true and returns
          true. It continues to return
          true when x is 4
          and 5. When x==5, however, the flip-flop flops back to
          false, and returns false for the remaining values of x. The result is that this code prints
          345.
Flip-flops can be written with either .. or .... The difference is that when a
          .. flip-flop flips to true, it returns true but also tests its righthand
          expression to see if it should flop its internal state back to
          false. The ... form waits for its next evaluation
          before testing the righthand expression. Consider these two
          lines:
# Prints "3". Flips and flops back when x==3
(1..10).each {|x| print x if x==3..x>=3 }  
# Prints "34". Flips when x == 3 and flops when x==4
(1..10).each {|x| print x if x==3...x>=3 } # Prints "34"

Flip-flops are a fairly obscure feature of Ruby and are
          probably best avoided in your code. They are not unique to Ruby,
          however. Ruby inherits this feature from Perl, which in turn
          inherits them from the Unix text-processing tools
          sed and awk.[*] Flip-flops were originally intended for matching the
          lines of a text file between a start pattern and an end pattern.
          This continues to be a useful way to use them. The following simple
          Ruby program demonstrates a flip-flop. It reads a text file
          line-by-line and prints any line that contains the text “TODO”. It
          then continues printing lines until it reads a blank line:
ARGF.each do |line|   # For each line of standard in or of named files
  print line if line=~/TODO/..line=~/^$/ # Print lines when flip-flop is true
end

It is difficult to formally describe the precise behavior of a
          flip-flop. It is easier to understand flip-flops by studying code
          that behaves in an equivalent way. The following function behaves
          like the flip-flop x==3..x==5. It
          hardcodes the lefthand and righthand conditions into the function
          itself, and it uses a global variable to store the state of the
          flip-flop:
$state = false            # Global storage for flip-flop state
def flipflop(x)           # Test value of x against flip-flop
  if !$state              # If saved state is false
    result = (x == 3)     # Result is value of lefthand operand
    if result             # If that result is true
      $state = !(x == 5)  # Then saved state is not of the righthand operand
    end
    result                # Return result
  else                    # Otherwise, if saved state is true
    $state = !(x == 5)    # Then save the inverse of the righthand operand
    true                  # And return true without testing lefthand
  end
end

With this flip-flop function defined, we can write the
          following code, which prints 345
          just like our earlier example:
(1..10).each {|x| print x if flipflop(x) }

The following function simulates the behavior of the three-dot
          flip-flop x==3...x>=3:
$state2 = false
def flipflop2(x)
  if !$state2
    $state2 = (x == 3)
  else
    $state2 = !(x >= 3)
    true
  end
end

# Now try it out
(1..10).each {|x| print x if x==3...x>=3 }  # Prints "34" 
(1..10).each {|x| print x if flipflop2(x) } # Prints "34" 



Conditional: ?:



The ?: operator is known
        as the conditional operator. It is the only ternary operator (three
        operands) in Ruby. The first operand appears before the question mark.
        The second operand appears between the question mark and the colon.
        And the third operand appears
        after the colon.
The ?: operator always
        evaluates its first operand. If the first operand is anything other
        than false or nil, the value of the expression is the
        value of the second operand. Otherwise, if the first operand is
        false or nil, then the value of the expression is the
        value of the third operand. In either case, one of the operands is
        never evaluated (which matters if it includes side effects like
        assignment). Here is an example use of this operator:
"You have #{n} #{n==1 ? 'message' : 'messages'}"

As you can see, the ?:
        operator acts like a compact if/then/else
        statement. (Ruby’s if conditional
        is described in Chapter 5.) The first operand is the
        condition that is being tested, like the expression after the if. The second operand is like the code that
        follows the then. And the third
        operand is like the code that follows the else. The difference between the ?: operator and the if statement, of course, is that the
        if statement allows arbitrary
        amounts of code in its then and
        else clauses, whereas the ?: operator allows only single
        expressions.
The ?: operator has fairly
        low precedence, which means that it is usually not necessary to put
        parentheses around the operands. If the first operand uses the
        defined? operator, or if the second
        and third operands perform assignments, then parentheses are
        necessary. Remember that Ruby allows method names to end with a
        question mark. If the first operand of the ?: operator ends with an identifier, you
        must put parentheses around the first operand or include a
        disambiguating space between that operand and the question mark. If
        you don’t do this, the Ruby interpreter thinks that the question mark
        of the operator is part of the previous identifier. For
        example:
x==3?y:z      # This is legal
3==x?y:z      # Syntax error: x? is interpreted as a method name
(3==x)?y:z    # Okay: parentheses fix the problem
3==x ?y:z     # Spaces also resolve the problem

The question mark must appear on the same line as the first
        argument. In Ruby 1.8, the colon must appear on the same line as the
        second argument. In Ruby 1.9, however, a newline is allowed before the
        colon. You must follow the colon by a space in this case, however, so
        it doesn’t appear to introduce a symbol literal.
Table 4-2 (earlier in this chapter) says
        that the ?: operator is
        right-associative. If the operator is used twice in the same
        expression, the rightmost one is grouped:
a ? b : c ? d : e    # This expression...
a ? b : (c ? d : e)  # is evaluated like this..
(a ? b : c) ? d : e  # NOT like this

This kind of ambiguity is actually fairly rare with the ?: operator. The following expression uses
        three conditional operators to compute the maximum value of three
        variables. No parentheses are required (although spaces are required
        before the question marks), as
        there is only one possible way to parse the statement:
max = x>y ? x>z ? x : z : y>z ? y : z
max = x>y ? (x>z ? x : z) : (y>z ? y : z)  # With explicit parentheses


Assignment Operators



You’ve already read about assignment expressions in Assignments. It is worth noting here a few points about
        the assignment operators used in those expressions. First, the value
        of an assignment expression is the value (or an array of the values)
        that appears on the righthand side of the assignment operator. Second,
        assignment operators are right-associative. Points one and two
        together are what make expressions like this one work:
x = y = z = 0      # Assign zero to variables x, y, and z
x = (y = (z = 0))  # This equivalent expression shows order of evaluation

Third, note that assignment has very low precedence.
        Precedence rules mean that just about anything that follows an
        assignment operator will be evaluated before the assignment is performed. The main
        exceptions are the and, or, and not operators.
Finally, note that although assignment operators cannot be
        defined as methods, the compound assignment operators like += use redefinable operators like +. Redefining the + operator does not affect the assignment
        performed by the += operator, but
        it does affect the addition performed by that operator.

The defined? Operator



defined? is a unary operator that tests whether its operand is
        defined or not. Normally, using an undefined variable or method raises
        an exception. When the expression on the right of the defined? operator uses an undefined variable
        or method (including operators defined as methods), defined? simply returns nil. Similarly, defined? returns nil if the operand is an expression that
        uses yield or super in an inappropriate context (i.e.,
        when there is no block to yield to, or no superclass method to
        invoke). It is important to
        understand that the expression that is the operand to defined? is not actually evaluated; it is
        simply checked to see whether it could be
        evaluated without error. Here is a typical use of the defined? operator:
# Compute f(x), but only if f and x are both defined
y = f(x) if defined? f(x)

If the operand is defined, the defined? operator returns a string. The
        content of this returned string is usually unimportant; what matters
        is that it is a true value—neither nil nor false. It is possible, however, to inspect
        the value returned by this operator to learn something about the type
        of the expression on the righthand side. Table 4-3 lists the possible return values of this
        operator.
Table 4-3. Return values of the defined? operator
	Operand expression type	Return value
	Reference to defined local variable	"local-variable"
	Reference to defined block local variable (Ruby 1.8
                only)	"local-variable(in-block)"
	Reference to defined global variable	"global-variable"
	Special regular expression global variables, $&, $+, $`, $', and $1 to $9, when defined following a
                successful match (Ruby 1.8 only)	Name of variable, as a string
	Reference to defined constant	"constant"
	Reference to defined instance variable	"instance-variable"
	Reference to defined class variable	"class variable"
                (note no hyphen)
	nil	"nil" (note this is
                a string)
	true, false	"true", "false"
	self	"self"
	yield when there is
                a block to yield to (see also Kernel method block_given?)	"yield"
	super when in
                context where it is allowed	"super"
	Assignment (assignment is not actually
                performed)	"assignment"
	Method invocation, including operators defined as
                methods (method is not actually invoked and need not have
                correct number of arguments; see also Object.respond_to?)	"method"
	Any other valid expression, including literals and
                built-in operators	"expression"
	Any expression that uses an undefined variable or
                method name, or that uses yield or super where they are not
                allowed	nil



The defined? operator has
        very low precedence. If you want to test whether two variables are defined, use and instead of &&:
defined? a and defined? b    # This works
defined? a && defined? b     # Evaluated as: defined?((a && defined? b))


Statement Modifiers



rescue, if, unless, while, and until are conditional, looping, and exception-handling statements
        that affect the flow-of-control of a Ruby program. They can also be
        used as statement modifiers, in code like this:
print x if x

In this modifier form, they can be considered operators in which
        the value of the righthand expression affects the execution of the
        lefthand expression. (Or, in the case of the rescue modifier, the exception status of the
        lefthand expression affects the execution of the righthand
        operand.)
It is not particularly useful to describe these keywords as
        operators. They are documented, in both their statement and expression
        modifier form, in Chapter 5. The keywords are listed
        in Table 4-2 simply to show their precedence
        relative to other operators.
        Note that they all have very low precedence, but that the rescue statement modifier has higher
        precedence than assignment.

Nonoperators



Most of Ruby’s operators are written using punctuation characters.
        Ruby’s grammar also uses a number of punctuation characters that are
        not operators. Although we’ve seen (or will see) much of this nonoperator punctuation elsewhere in
        this book, let’s review it here:
	()
	Parentheses are an optional part of method definition and
              invocation syntax. It is better to think of method invocation as
              a special kind of expression than to think of () as a method-invocation operator.
              Parentheses are also used for grouping to affect the order of
              evaluation of subexpressions.

	[]
	Square brackets are used in array literals and for
              querying and setting array and hash values. In that context,
              they are syntactic sugar for method invocation and behave
              somewhat like redefinable operators with arbitrary arity. See
              Method Invocations and Assigning to Attributes and Array Elements.

	{}
	Curly braces are an alternative to do/end in blocks, and are also used in
              hash literals. In neither case do they act as operators.

	. and ::
	. and :: are used in qualified names, separating the name of a
              method from the object on which it is invoked, or the name of a
              constant from the module in which it is defined. These are not
              operators because the righthand side is not a value but an
              identifier.

	;, ,, and =>
	These punctuation characters are separators rather than operators. The
              semicolon (;) is used to
              separate statements on the same line; the comma (,) is used to separate method
              arguments and the elements of array and hash literals; and the
              arrow (=>) is used to
              separate hash keys from hash values in hash literals.

	:
	A colon is used to prefix symbol literals and is also
              used in Ruby 1.9 hash syntax.

	*, &, and <
	These punctuation characters are operators in some
              contexts, but they are also used in ways that are not operators.
              Putting * before an array in
              an assignment or method invocation expression expands or unpacks
              the array into its individual elements. Although it is sometimes
              known as the splat operator, it is not really an operator;
              *a cannot stand alone as an
              expression.
& can be used in a
              method declaration before the name of the last method argument,
              and this causes any block passed to the method to be assigned to
              that argument. (See Chapter 6.) It can also be
              used in method invocation to pass a proc to a method as if it
              were a block.
< is used in class
              definitions to specify the superclass of class.






[*] Some implementations of this operator may return any value
            less than 0 or any value
            greater than 0, instead of
            –1 and +1. If you implement <=>, your implementation should
            return –1, 0, or +1. But if you use <=>, you should test for values
            less than or greater than zero, rather than assuming that the
            result will always be –1,
            0, or +1.

[*] Just because an expression can be written this way doesn’t
            mean that it should be. In Chapter 5, we’ll see
            that this expression is better written as:
print(x.to_s) if x 

[*] .. creates an
              awk-style flip-flop, and ... creates a
              sed-style flip-flop.



Chapter 5. Statements and Control Structures



[image: image with no caption]

Consider the following Ruby program. It adds two numbers passed to
    it on the command line and prints
    the sum:
x = ARGV[0].to_f  # Convert first argument to a number
y = ARGV[1].to_f  # Convert second argument to a number
sum = x + y       # Add the arguments
puts sum          # Print the sum

This is a simple program that consists primarily of variable
    assignment and method invocations. What makes it particularly simple is
    its purely sequential execution. The four lines of code are executed one
    after the other without branching or repetition. It is a rare program that
    can be this simple. This chapter introduces Ruby’s control structures,
    which alter the sequential execution, or flow-of-control, of a program. We
    cover:
	Conditionals

	Loops

	Iterators and blocks

	Flow-altering statements like return and break

	Exceptions

	The special-case BEGIN and END statements

	The esoteric control structures known as
        fibers and
        continuations



Conditionals



The most common control structure, in any programming language, is
      the conditional. This is a way
      of telling the computer to conditionally execute some code: to execute
      it only if some condition is satisfied. The condition is an
      expression—if it evaluates to any value other than false or nil, then the condition is satisfied.
Ruby has a rich vocabulary for expressing conditionals. The syntax
      choices are described in the
      subsections that follow. When writing Ruby code, you can choose the one
      that seems most elegant for the task at hand.
if



The most straightforward of the conditionals is if. In its simplest form, it looks like
        this:
if expression
  code
end

The code between if and end is executed if (and only if) the
        expression evaluates to something other
        than false or nil. The code
        must be separated from the expression with
        a newline or semicolon or the keyword then.[5] Here are two ways to write the same simple
        conditional:
# If x is less than 10, increment it
if x < 10                     # newline separator
  x += 1
end
if x < 10 then x += 1 end     # then separator

You can also use then as the
        separator token, and follow it with a newline. Doing so makes your
        code robust; it will work even if the newline is subsequently
        removed:
if x < 10 then
  x += 1
end

Programmers who are used to C, or languages whose syntax is
        derived from C, should note two important things about Ruby’s if statement:
	Parentheses are not required (and typically not used) around the
            conditional expression. The
            newline, semicolon, or then
            keyword serves to delimit the expression instead.

	The end keyword is
            required, even when the code to be conditionally executed consists
            of a single statement. The modifier form of if, described
            below, provides a way to write simple conditionals without the
            end keyword.



else



An if statement may include an else clause to specify code to be executed
          if the condition is not
          true:
if expression
  code
else
  code
end

The code between the if and else is executed if
          expression evaluates to anything other
          than false or nil. Otherwise (if
          expression is false or nil), the code
          between the else and end is executed. As in the simple form of
          if, the
          expression must be separated from the
          code that follows it by a newline, a
          semicolon, or the keyword then.
          The else and end keywords fully delimit the second
          chunk of code, and no newlines or additional delimiters are
          required.
Here is an example of a conditional that includes an else clause:
if data         # If the array exists
  data << x     #   then append a value to it.
else            # Otherwise...
  data = [x]    #   create a new array that holds the value.
end             # This is the end of the conditional.


elsif



If you want to test more than one condition within a conditional,
          you can add one or more elsif
          clauses between an if and an
          else. elsif is a shortened form of “else if.”
          Note that there is only one e in elsif. A conditional using elsif looks like this:
if expression1
  code1
elsif expression2
  code2
      .
      .
      .
elsif expressionN
  codeN
else
  code
end

If expression1 evaluates to
          anything other than false or
          nil, then
          code1 is executed. Otherwise,
          expression2 is evaluated. If it is
          anything other than false or
          nil, then
          code2 is executed. This process continues
          until an expression evaluates to something other than false or nil, or until all elsif clauses have been tested. If the
          expression associated with the last elsif clause is false or nil, and the elsif clause is followed by an else clause, then the code between
          else and end is executed. If no else clause is present, then no code is
          executed at all.
elsif is like if: the expression must be separated from
          the code by a newline, a semicolon, or a then keyword. Here is an example of a
          multiway conditional using elsif:
if x == 1
  name = "one"
elsif x == 2
  name = "two"
elsif x == 3 then name = "three"
elsif x == 4; name = "four"
else
  name = "many"
end


Return value



In most languages, the if conditional
          is a statement. In Ruby, however, everything is an expression, even
          the control structures that are commonly called statements. The
          return value of an if “statement”
          (i.e., the value that results from evaluating an if expression) is the value of the last
          expression in the code that was executed, or nil if no block of code was
          executed.
The fact that if statements
          return a value means that, for example, the multiway conditional shown previously can be
          elegantly rewritten as follows:
name = if    x == 1 then "one"
       elsif x == 2 then "two"
       elsif x == 3 then "three"
       elsif x == 4 then "four"
       else              "many"
       end



if As a Modifier



When if is used in its
        normal statement form, Ruby’s grammar requires that it be terminated
        with the end keyword. For simple,
        single-line conditionals, this is somewhat awkward. This is just a
        parsing problem, and the solution is to use the if keyword itself as the delimiter that
        separates the code to be executed from the conditional expression. Instead of writing:
if expression then code end

we can simply write:
code if expression
When used in this form, if is
        known as a statement (or expression) modifier. If
        you’re a Perl programmer, you may be accustomed to this syntax. If
        not, please note that the code to execute comes first, and the
        expression follows. For example:
puts message if message    # Output message, if it is defined

This syntax places more emphasis on the code to be executed, and
        less emphasis on the condition under which it will be executed. Using
        this syntax can make your code more readable when the condition is a
        trivial one or when the condition is almost always true.
Even though the condition is written last, it is evaluated
        first. If it evaluates to anything other than false or nil, then the code is evaluated, and its
        value is used as the return value of the modified expression.
        Otherwise, the code is not executed, and the return value of the
        modified expression is nil.
        Obviously, this syntax does not allow any kind of else clause.
To use if as a modifier, it
        must follow the modified statement or expression immediately, with no
        intervening line break. Inserting a newline into the previous example
        turns it into an unmodified method invocation followed by an
        incomplete if statement:
puts message        # Unconditional
if message          # Incomplete!

The if modifier has very low
        precedence and binds more loosely than the assignment operator. Be
        sure you know just what expression you are modifying when you use it.
        For example, the following two lines of code are different:
y = x.invert if x.respond_to? :invert
y = (x.invert if x.respond_to? :invert)

In the first line, the modifier applies to the assignment
        expression. If x does not have a
        method named invert, then nothing
        happens at all, and the value of y
        is not modified. In the second line, the if modifier applies only to the method call.
        If x does not have an invert method, then the modified expression
        evaluates to nil, and this is the
        value that is assigned to y.
An if modifier binds to the
        single nearest expression. If you want to modify more than one
        expression, you can use parentheses or a begin statement for grouping. But this
        approach is problematic because readers don’t know that the code is
        part of a conditional until they reach the bottom. Also, using an
        if modifier in this way gives up
        the conciseness that is the primary benefit of this syntax. When more
        than one line of code is involved, you should typically use a
        traditional if statement rather
        than an if modifier. Compare the
        following three side-by-side alternatives:
if expression     begin                (
  line1             line1                line1
  line2             line2                line2
end               end if expression    ) end if expression

Note that an expression modified with an if clause is itself an expression that can
        be modified. It is therefore possible to attach multiple if modifiers to an expression:
# Output message if message exists and the output method is defined
puts message if message if defined? puts

Repeating an if modifier like
        this is hard to read, however, and it makes more sense to combine the
        two conditions into a single expression:
puts message if message and defined? puts


unless



unless, as a statement or a modifier, is the opposite of if: it executes code only if an associated
        expression evaluates to false or
        nil. Its syntax is just like
        if, except that elsif clauses are not allowed:
# single-way unless statement
unless condition
  code
end

# two-way unless statement
unless condition
  code
else
  code
end

# unless modifier
code unless condition

The unless statement, like
        the if statement, requires that the
        condition and the code are separated by a newline, a semicolon, or the
        then keyword. Also like if, unless statements are expressions and return
        the value of the code they execute, or nil if they execute nothing:
# Call the to_s method on object o, unless o is nil
s = unless o.nil?                        # newline separator
  o.to_s
end
s = unless o.nil? then o.to_s end        # then separator

For single-line conditionals like this, the modifier form of
        unless is usually clearer:
s = o.to_s unless o.nil?

Ruby has no equivalent of the elsif clause for an unless conditional. You can still write a
        multiway unless statement, however,
        if you’re willing to be a little more verbose:
unless x == 0
  puts "x is not 0"
else
  unless y == 0
    puts "y is not 0"
  else
    unless z == 0
      puts "z is not 0"
    else
      puts "all are 0"
    end
  end
end


case



The case statement is a multiway conditional. There are two forms of this
        statement. The simple (and infrequently used) form is nothing more
        than an alternative syntax for if/elsif/else. These two side-by-side
        expressions are equivalent:
name = case                           name = if    x == 1 then "one"
       when x == 1 then "one"                elsif x == 2 then "two"
       when x == 2 then "two"                elsif x == 3 then "three"
       when x == 3 then "three"              elsif x == 4 then "four"
       when x == 4 then "four"               else "many"
       else "many"                           end
       end

As you can see from this code, the case statement returns a value, just as the
        if statement does. As with the
        if statement, the then keyword following the when clauses can be replaced with a newline
        or semicolon:[*]
case 
when x == 1
  "one"
when x == 2 
  "two"
when x == 3
  "three"
end

The case statement tests each
        of its when expressions in the
        order they are written until it finds one that evaluates to true. If it finds one, it evaluates the
        statements that come between that when and the following when, else, or end. The last expression evaluated becomes
        the return value of the case
        statement. Once a when clause that
        evaluates to true has been found,
        no other when clauses are
        considered.
The else clause of a case statement
        is optional, but if it appears, it must come at the end of the
        statement, after all when clauses.
        If no when clause is true, and there is an else clause, then the code between else and end is executed. The value of the last
        expression evaluated in this code becomes the value of the case statement. If no when clause is true and there is no else clause, then no code is executed and
        the value of the case statement is
        nil.
A when clause within a
        case statement may have more than one (comma-separated) expression
        associated with it. If any one of these expressions evaluates to
        true, then the code associated with
        that when is executed. In this
        simple form of the case statement,
        the commas aren’t particularly useful and act just like the || operator:
case
when x == 1, y == 0 then  "x is one or y is zero"  # Obscure syntax
when x == 2 || y == 1 then "x is two or y is one"  # Easier to understand
end

All the case examples we’ve
        seen so far demonstrate the simpler, less common form of the
        statement. case is really more
        powerful than this. Notice that in most of the examples, the left side
        of each when clause expression is
        the same. In the common form of case, we factor this repeated lefthand
        expression of the when clause and
        associate it with the case
        itself:
name = case x
       when 1             # Just the value to compare to x
         "one"
       when 2 then "two"  # Then keyword instead of newline
       when 3; "three"    # Semicolon instead of newline
       else "many"        # Optional else clause at end
       end

In this form of the case
        statement, the expression associated with the case is evaluated once, and then it’s
        compared to the values obtained by evaluating the when expression. The comparisons are
        performed in the order in which the when clauses are written, and the code
        associated with the first matching when is executed. If no match is found, the
        code associated with the else
        clause (if there is one) is executed. The return value of this form of
        the case statement is the same as
        the return value of the simpler form: the value of the last expression
        evaluated, or nil if no when or else matches.
The important thing to understand about the case statement is how the values of the
        when clauses are compared to the
        expression that follows the case
        keyword. This comparison is done using the === operator.
        This operator is invoked on the value of the when expression and is passed the value of
        the case expression. Therefore, the
        case statement above is equivalent
        to the following (except that x is
        only evaluated once in the code above):
name = case
       when 1 === x then "one"
       when 2 === x then "two"
       when 3 === x then "three"
       else "many"
       end

=== is the case
        equality operator. For many classes, such as the Fixnum class used earlier, the === operator behaves just the same as
        ==. But certain classes define this
        operator in interesting ways. The Class class defines === so that it tests whether the righthand
        operand is an instance of the class named by the lefthand operand.
        Range defines this operator to test
        whether the value on the right falls within the range on the left.
        Regexp defines it so that it tests
        whether the text on the right matches the pattern on the left. In Ruby
        1.9,Symbol defines
        === so that it tests for symbol or
        string equality. With these definitions of case equality, we are able
        to write interesting case
        statements like the following:
# Take different actions depending on the class of x
puts case x
     when String then "string"
     when Numeric then "number"
     when TrueClass, FalseClass then "boolean"
     else "other"
     end

# Compute 2006 U.S. income tax using case and Range objects
tax = case income
      when 0..7550
        income * 0.1
      when 7550..30650
        755 + (income-7550)*0.15
      when 30650..74200
        4220 + (income-30655)*0.25
      when 74200..154800
        15107.5 + (income-74201)*0.28
      when 154800..336550
        37675.5 + (income-154800)*0.33
      else
        97653 + (income-336550)*0.35
      end

# Get user's input and process it, ignoring comments and exiting
# when the user enters the word "quit"
while line=gets.chomp do  # Loop, asking the user for input each time
  case line
  when /^\s*#/            # If input looks like a comment...
      next                #   skip to the next line.
  when /^quit$/i          # If input is "quit" (case insensitive)...
    break                 #   exit the loop.
  else                    # Otherwise...
    puts line.reverse     #   reverse the user's input and print it.
  end
end

A when clause can have more
        than one expression associated with it. Multiple expressions are
        separated by commas, and the ===
        operator is invoked on each one. That is, it is possible to trigger
        the same block of code with more than one value:
def hasValue?(x)         # Define a method named hasValue?
  case x                 # Multiway conditional based on value of x
  when nil, [], "", 0    # if nil===x || []===x || ""===x || 0===x then
    false                #   method return value is false
  else                   # Otherwise
    true                 #   method return value is true
  end
end

case versus switch
Java programmers and others accustomed to C-derived language syntax
          are familiar with a multiway conditional switch statement, which is similar to
          Ruby’s case statement. There are,
          however, a number of important differences:
	In Java and related languages, the name of the statement
              is switch and its clauses are
              labeled with case and
              default. Ruby uses case as the name of the statement, and
              when and else for the clauses.

	The switch statement of
              other languages simply transfers control to the start of the
              appropriate case. From there, control continues and can “fall
              through” to other cases, until it reaches the end of the
              switch statement or
              encounters a break or
              return statement. This
              fall-through behavior allows multiple case clauses to refer to the same
              block of code. In Ruby, this same purpose is served by allowing
              multiple comma-separated expressions to be associated with each
              when clause. Ruby’s case statement never allows
              fall-through.

	In Java and most compiled languages with C-like syntax,
              the expressions associated with each case label must be compile-time
              constants rather than arbitrary runtime expressions. This often
              allows the compiler to implement the switch statement using a very fast
              lookup table. There is no such restriction on Ruby’s case statement, and its performance is
              equivalent to using an if
              statement with repeated elsif
              clauses.





The ?: Operator



The conditional operator ?:, described earlier in Conditional: ?:, behaves much like an if statement, with ? replacing then and : replacing else. It provides a succinct way to express
        conditionals:
def how_many_messages(n) # Handle singular/plural 
  "You have " + n.to_s + (n==1 ? " message." : " messages.")
end





[5] Ruby 1.8 also allows a colon, but this syntax is no longer
            legal in 1.9.

[*] Ruby 1.8 also allows a colon in place of then, as it does for the if statement. But this syntax is no
            longer allowed in Ruby 1.9.



Loops



This section documents Ruby’s simple looping statements:
      while, until, and for. Ruby also includes the ability to define
      custom looping constructs known as iterators.
      Iterators (see Iterators and Enumerable Objects) are probably more commonly
      used than Ruby’s built-in looping statements; they are documented later
      in this chapter.
while and until



Ruby’s basic looping statements are while and until. They execute a chunk of code
        while a certain condition is true, or
        until the condition becomes true. For
        example:
x = 10               # Initialize a loop counter variable
while x >= 0 do      # Loop while x is greater than or equal to 0
  puts x             #   Print out the value of x
  x = x - 1          #   Subtract 1 from x
end                  # The loop ends here

# Count back up to 10 using an until loop
x = 0                # Start at 0 (instead of -1)
until x > 10 do      # Loop until x is greater than 10
  puts x
  x = x + 1
end                  # Loop ends here

The loop condition is the Boolean expression that appears
        between the while or until and do keywords. The
        loop body is the Ruby code that appears between the do and the end keyword. The while loop evaluates its condition. If the
        value is anything other than false
        or nil, it executes its body, and
        then loops to evaluate its condition again. In this way, the body is
        executed repeatedly, zero or more times, while the condition remains true (or, more
        strictly, non-false and
        non-nil).
The until loop is the
        reverse. The condition is tested and the body is executed if the
        condition evaluates to false or
        nil. This means that the body is
        executed zero or more times while the condition is false or nil. Note that any until loop can be converted to a while simply by negating the condition. Most
        programmers are familiar with while
        loops, but many have not used until
        loops before. For this reason, you may want to use while loops except when until truly improves the clarity of your
        code.
The do keyword in a while or until loop is like the then keyword in an if statement: it may be omitted altogether
        as long as a newline (or semicolon) appears between the loop condition
        and the loop body.[*]

while and until As Modifiers



If the body of a loop is a single Ruby expression, you can express
        that loop in a particularly compact form by using while or until as a modifier after the expression.
        For example:
x = 0                          # Initialize loop variable
puts x = x + 1 while x < 10    # Output and increment in a single expression

This modifier syntax uses the while keyword itself to separate the loop
        body from the loop condition, and avoids the need for the do (or newline) and end keywords. Contrast this code with the
        more traditional while loop written
        on a single line:
x = 0
while x < 10 do puts x = x + 1 end

until can be used as a
        modifier just as while can
        be:
a = [1,2,3]                 # Initialize an array
puts a.pop until a.empty?   # Pop elements from array until empty

Note that when while and
        until are used as modifiers, they
        must appear on the same line as the loop body that they modify. If
        there is a newline between the loop body and the while or until keyword, the Ruby interpreter will
        treat the loop body as an unmodified expression and the while or until as the beginning of a regular
        loop.
When while and until are used as modifiers for a single
        Ruby expression, the loop condition is tested first, even though it is
        written after the loop body. The loop body is executed zero or more
        times, just as if it were formatted as a regular while or until loop.
There is a special-case exception to this rule. When the
        expression being evaluated is a compound expression delimited by
        begin and end keywords, then the body is executed
        first before the condition is tested:
x = 10              # Initialize loop variable
begin               # Start a compound expression: executed at least once
  puts x            #   output x
  x = x - 1         #   decrement x
end until x == 0    # End compound expression and modify it with a loop

This results in a construct much like the do/while loop of C, C++, and Java. Despite
        its similarity to the do/while loop
        of other languages, this special-case behavior of loop modifiers with
        the begin statement is
        counterintuitive and its use is discouraged. Future releases of Ruby may forbid the
        use of while and until modifiers with begin/end.
Note that if you group multiple statements with parentheses and
        apply an until modifier to that
        grouped expression, you do not get this special case behavior:
x = 0               # Initialize loop variable
(                   # Start a compound expression: may be executed 0 times
  puts x            #   output x
  x = x - 1         #   decrement x
) until x == 0      # End compound expression and modify it with a loop


The for/in Loop



The for loop, or for/in loop,
        iterates through the elements of an enumerable object (such as an
        array). On each iteration, it assigns an element to a specified loop
        variable and then executes the body of the loop. A for loop looks like this:
for var in collection do
  body
end

var is a variable or a
        comma-separated list of variables.
        collection is any object that has an each iterator method. Arrays and hashes
        define the each method, and many
        other Ruby objects do, too. The for/in loop calls the each method of the specified object. As that
        iterator yields values, the for
        loop assigns each value (or each set of values) to the specified
        variable (or variables) and then executes the code in
        body. As with the while and until loops, the do keyword is optional and may be replaced
        with a newline or semicolon.
Here are some sample for
        loops:
# Print the elements in an array
array = [1,2,3,4,5]
for element in array 
  puts element
end

# Print the keys and values in a hash
hash = {:a=>1, :b=>2, :c=>3}
for key,value in hash
  puts "#{key} => #{value}"
end

The loop variable or variables of a for loop are not local to the loop; they
        remain defined even after the loop exits. Similarly, new variables
        defined within the body of the loop continue to exist after the loop
        exits.
The fact that the for loop
        depends on the each iterator method
        implies that for loops are much
        like iterators. For example, the for loop shown above for enumerating the
        keys and values of a hash could also be written with an explicit use
        of the each iterator:
hash = {:a=>1, :b=>2, :c=>3}
hash.each do |key,value|
  puts "#{key} => #{value}"
end

The only difference between the for version of the loop and the each version is that the block of code that
        follows an iterator does define a new variable scope. Details are in
        the discussion of iterators later in this chapter.



[*] In Ruby 1.8, a colon may be used in place of the do keyword. This is no longer allowed in
            Ruby 1.9.



Iterators and Enumerable Objects



Although while, until, and for loops are a core part of the Ruby
      language, it is probably more common to write loops using special
      methods known as iterators. Iterators are one of
      the most noteworthy features of Ruby, and examples such as the following
      are common in introductory Ruby tutorials:
3.times { puts "thank you!" }  # Express gratitude three times
data.each {|x| puts x }        # Print each element x of data
[1,2,3].map {|x| x*x }         # Compute squares of array elements
factorial = 1                  # Compute the factorial of n
2.upto(n) {|x| factorial *= x }

The times, each, map,
      and upto methods are all iterators, and they interact with the
      block of code that follows them. The complex
      control structure behind this is yield. The yield statement temporarily returns control
      from the iterator method to the method that invoked the iterator.
      Specifically, control flow goes from the iterator to the block of code
      associated with the invocation of the iterator. When the end of the
      block is reached, the iterator method regains control and execution
      resumes at the first statement following the yield. In order to implement some kind of
      looping construct, an iterator method will typically invoke the yield statement multiple times. Figure 5-1 illustrates
      this complex flow of control. Blocks and yield are described in detail in Blocks below; for now, we focus on the iteration itself
      rather than the control structure that enables it.
[image: An iterator yielding to its invoking method]

Figure 5-1. An iterator yielding to its invoking method

As you can see from the previous examples, blocks may be
      parameterized. Vertical bars at the start of a block are like
      parentheses in a method definition—they hold a list of parameter names.
      The yield statement is like a method
      invocation; it is followed by zero or more expressions whose values are
      assigned to the block parameters.
Iterators that Don’t Iterate
We use the term iterator in this book to
        mean any method that uses the yield
        statement. They do not actually have to serve an iteration or looping
        function.[*] The tap method
        defined (in Ruby 1.9 and 1.8.7) by the Object class is an example. It invokes the
        associated block once, passing the receiver as the only argument. Then
        it returns the receiver. It is handy for “tapping into” a method
        chain, as in the following code which uses tap to output debugging messages:
chars = "hello world".tap {|x| puts "original object: #{x.inspect}"}
  .each_char         .tap {|x| puts "each_char returns: #{x.inspect}"}
  .to_a              .tap {|x| puts "to_a returns: #{x.inspect}"}
  .map {|c| c.succ } .tap {|x| puts "map returns: #{x.inspect}" }
  .sort              .tap {|x| puts "sort returns: #{x.inspect}"}

Another common function for iterators is automatic resource
        deallocation. The File.open method
        can be used as an iterator, for example. It opens the named file,
        creating a File object to represent
        it. If no block is associated with the invocation, it simply returns
        the File object and leaves the
        responsibility for closing the file with the calling code. If there is
        a block associated with the File.open call, however, it passes the new
        File object to that block and then
        automatically closes the file when the block returns. This ensures
        that files will always be closed and frees programmers from this
        housekeeping detail. In this case, when a block is associated with the
        call to File.open, the return value
        of method is not a File object but
        whatever value the block returned.

Numeric Iterators



The core Ruby API provides a number of standard iterators. The
        Kernel method loop behaves like an infinite loop, running its associated block
        repeatedly until the block executes a return, break, or other statement that exits from
        the loop.
The Integer class defines three commonly used iterators. The
        upto method invokes its associated block once for each integer
        between the integer on which it is invoked and the integer which is
        passed as an argument. For example:
4.upto(6) {|x| print x}   # => prints "456"

As you can see, upto yields
        each integer to the associated block, and it includes both the
        starting point and the end point in the iteration. In general,
        n.upto(m) runs its block m-n+1 times.
The downto method is just like upto
        but iterates from a larger number down to a smaller number.
When the Integer.times method
        is invoked on the integer n, it
        invokes its block n times, passing
        values 0 through n-1 on successive iterations. For
        example:
3.times {|x| print x }    # => prints "012"

In general, n.times is
        equivalent to 0.upto(n-1).
If you want to do a numeric iteration using floating-point
        numbers, you can use the more complex step method defined by the Numeric class. The following iterator, for example, starts at 0 and iterates in steps of 0.1 until it reaches Math::PI:
0.step(Math::PI, 0.1) {|x| puts Math.sin(x) }


Enumerable Objects



Array, Hash, Range, and a number of other classes define an each iterator that passes each element of
        the collection to the associated block. This is perhaps the most
        commonly used iterator in Ruby; as we saw earlier, the for loop only works for iterating over
        objects that have each methods.
        Examples of each iterators:
[1,2,3].each {|x| print x }   # => prints "123"
(1..3).each  {|x| print x }   # => prints "123" Same as 1.upto(3)

The each iterator is not only
        for traditional “data structure” classes. Ruby’s IO class defines an each iterator that yields lines of text read
        from the Input/Output object. Thus,
        you can process the lines of a file in Ruby with code like
        this:
File.open(filename) do |f|       # Open named file, pass as f
  f.each {|line| print line }    # Print each line in f
end                              # End block and close file

Most classes that define an each method also include the Enumerable module, which defines a number of
        more specialized iterators that are implemented on top of the each method. One such useful iterator is
        each_with_index, which allows us to
        add line numbering to the previous example:
File.open(filename) do |f|
  f.each_with_index do |line,number|
    print "#{number}: #{line}"
  end
end

Some of the most commonly used Enumerable iterators are the
        rhyming methods collect, select, reject, and inject. The collect method (also known as map) executes its associated block for each
        element of the enumerable object, and collects the return values of
        the blocks into an array:
squares = [1,2,3].collect {|x| x*x}   # => [1,4,9]

The select method invokes the
        associated block for each element in the enumerable object, and
        returns an array of elements for which the block returns a value other
        than false or nil. For example:
evens = (1..10).select {|x| x%2 == 0} # => [2,4,6,8,10]

The reject method is simply
        the opposite of select; it returns
        an array of elements for which the block returns nil or false. For example:
odds = (1..10).reject {|x| x%2 == 0}  # => [1,3,5,7,9]

The inject method is a little
        more complicated than the others. It invokes the associated block with
        two arguments. The first argument is an accumulated value of some sort
        from previous iterations. The second argument is the next element of
        the enumerable object. The return value of the block becomes the first
        block argument for the next iteration, or becomes the return value of
        the iterator after the last iteration. The initial value of the
        accumulator variable is either the argument to inject, if there is one, or the first
        element of the enumerable object. (In this case, the block is invoked
        just once for the first two elements.) Examples make inject more clear:
data = [2, 5, 3, 4]
sum = data.inject {|sum, x| sum + x }      # => 14    (2+5+3+4)
floatprod = data.inject(1.0) {|p,x| p*x }  # => 120.0 (1.0*2*5*3*4)
max = data.inject {|m,x| m>x ? m : x }     # => 5     (largest element)

See Enumerable Objects for further details on the
        Enumerable module and its
        iterators.

Writing Custom Iterators



The defining feature of an iterator method is that it invokes a
        block of code associated with the method invocation. You do this with
        the yield statement. The following method is a trivial iterator that just
        invokes its block twice:
def twice
  yield
  yield
end

To pass argument values to the block, follow the yield statement with a comma-separated list of expressions. As with
        method invocation, the argument values may optionally be enclosed in
        parentheses. The following simple iterator shows a use of yield:
# This method expects a block. It generates n values of the form
# m*i + c, for i from 0..n-1, and yields them, one at a time, 
# to the associated block.
def sequence(n, m, c)
  i = 0
  while(i < n)      # Loop n times
    yield m*i + c   # Invoke the block, and pass a value to it
    i += 1          # Increment i each time
  end
end

# Here is an invocation of that method, with a block.
# It prints the values 1, 6, and 11
sequence(3, 5, 1) {|y| puts y }

Nomenclature: yield and Iterators
Depending on your programming background, you may find the
          terms “yield” and “iterator” confusing. The sequence method shown earlier is a fairly
          clear example of why yield has
          the name it does. After computing each number in the sequence, the
          method yields control (and yields the computed number) to the block,
          so that the block can work with it. It is not always this clear,
          however; in some code it may seem as if it is the block that is
          yielding a result back to the method that invoked it.
A method such as sequence
          that expects a block and invokes it multiple times is called an
          iterator because it looks and behaves like a
          loop. This may be confusing if you are used to languages like Java
          in which iterators are objects. In Java, the client code that uses
          the iterator is in control and “pulls” values from the iterator when
          it needs them. In Ruby, the iterator method is in control and
          “pushes” values to the block that wants them.
This nomenclature issue is related to the distinction between
          “internal iterators” and “external iterators,” which is discussed
          later in this section.

Here is another example of a Ruby iterator; it passes two
        arguments to its block. It is worth noticing that the implementation
        of this iterator uses another iterator internally:
# Generate n points evenly spaced around the circumference of a 
# circle of radius r centered at (0,0). Yield the x and y coordinates
# of each point to the associated block.
def circle(r,n)
  n.times do |i|    # Notice that this method is implemented with a block
    angle = Math::PI * 2 * i / n
    yield r*Math.cos(angle), r*Math.sin(angle)
  end
end

# This invocation of the iterator prints:
# (1.00, 0.00) (0.00, 1.00) (-1.00, 0.00) (-0.00, -1.00)
circle(1,4) {|x,y| printf "(%.2f, %.2f) ", x, y }

Using the yield keyword
        really is a lot like invoking a method. (See Chapter 6 for complete details on method invocation.)
        Parentheses around the arguments are optional. You can use * to expand an array into individual
        arguments. yield even allows you to
        pass a hash literal without the curly braces around it. Unlike a
        method invocation, however, a
        yield expression may not be
        followed by a block. You cannot pass a block to a block.
If a method is invoked without a block, it is an error for that
        method to yield, because there is
        nothing to yield to. Sometimes you want to write a method that yields
        to a block if one is provided but takes some default action (other
        than raising an error) if invoked with no block. To do this, use
        block_given? to determine whether
        there is a block associated with the invocation. block_given?, and its synonym iterator?, are Kernel methods, so they act like global
        functions. Here is an example:
# Return an array with n elements of the form m*i+c
# If a block is given, also yield each element to the block
def sequence(n, m, c)
  i, s = 0, []                  # Initialize variables
  while(i < n)                  # Loop n times
    y = m*i + c                 # Compute value
    yield y if block_given?     # Yield, if block
    s << y                      # Store the value
    i += 1
  end
  s                             # Return the array of values
end


Enumerators



An enumerator is an Enumerable object
        whose purpose is to enumerate some other object. To use enumerators in
        Ruby 1.8, you must require
        'enumerator'. In Ruby 1.9 (and also 1.8.7), enumerators are
        built-in and no require is
        necessary. (As we’ll see later, the built-in enumerators have
        substantially more functionality than that provided by the enumerator library.)
Enumerators are of class Enumerable::Enumerator. Although this class
        can be instantiated directly with new, this is not how enumerators are
        typically created. Instead, use to_enum or its synonym enum_for, which are methods of Object. With no arguments, to_enum returns an enumerator whose each method simply calls the each method of the target object. Suppose
        you have an array and a method that expects an enumerable object. You
        don’t want to pass the array object itself, because it is mutable, and
        you don’t trust the method not to modify it. Instead of making a
        defensive deep copy of the array, just call to_enum on it, and pass the resulting
        enumerator instead of the array itself. In effect, you’re creating an
        enumerable but immutable proxy object for your array:
# Call this method with an Enumerator instead of a mutable array.
# This is a useful defensive strategy to avoid bugs.
process(data.to_enum)  # Instead of just process(data)

You can also pass arguments to to_enum, although the enum_for synonym seems more natural in this
        case. The first argument should be a symbol that identifies an
        iterator method. The each method of
        the resulting Enumerator will
        invoke the named method of the original object. Any remaining
        arguments to enum_for will be
        passed to that named method. In Ruby 1.9, the String class is not Enumerable, but it defines three iterator
        methods: each_char, each_byte, and each_line. Suppose we want to use an
        Enumerable method, such as map, and we want it to be based on the
        each_char iterator. We do this by
        creating an enumerator:
s = "hello"
s.enum_for(:each_char).map {|c| c.succ }  # => ["i", "f", "m", "m", "p"]

In Ruby 1.9 (and 1.8.7), it is usually not even necessary to use
        to_enum or enum_for explicitly as we did in the
        previous examples. This is because the built-in iterator methods of
        Ruby 1.9 (which include the numeric iterators times, upto, downto, and step, as well as each and related methods of Enumerable) automatically return an
        enumerator when invoked with no block. So, to pass an array enumerator
        to a method rather than the array itself, you can simply call the
        each method:
process(data.each_char)  # Instead of just process(data)

This syntax is even more natural if we use the chars alias in place of each_char. To map the characters of a string
        to an array of characters, for example, just use .chars.map:
"hello".chars.map {|c| c.succ }  # => ["i", "f", "m", "m", "p"]

Here are some other examples that rely on enumerator objects
        returned by iterator methods. Note that it is not just iterator
        methods defined by Enumerable that
        can return enumerator objects; numeric iterators like times and upto do the same:
enumerator = 3.times             # An enumerator object
enumerator.each {|x| print x }   # Prints "012"

# downto returns an enumerator with a select method
10.downto(1).select {|x| x%2==0}  # => [10,8,6,4,2]

# each_byte iterator returns an enumerator with a to_a method
"hello".each_byte.to_a            # => [104, 101, 108, 108, 111]

You can duplicate this behavior in your own iterator methods by
        returning self.to_enum when no
        block is supplied. Here, for example, is a version of the twice iterator shown earlier that can return
        an enumerator if no block is provided:
def twice
  if block_given?
    yield
    yield
  else
    self.to_enum(:twice)    
  end
end

In Ruby 1.9, enumerator objects define a with_index method that is not available in the Ruby 1.8 enumerator
        module. with_index simply returns a
        new enumerator that adds an index parameter to the iteration. For
        example, the following returns an enumerator that yields the
        characters of a string and their index within the string:
enumerator = s.each_char.with_index

Finally, keep in mind that enumerators, in both Ruby 1.8 and
        1.9, are Enumerable objects that can be used with the
        for loop. For example:
for line, number in text.each_line.with_index
  print "#{number+1}: #{line}"
end


External Iterators



Our discussion of enumerators has focused on their use as Enumerable proxy objects. In Ruby 1.9, (and
        1.8.7, though the implementation is not as efficient) however,
        enumerators have another very important use: they are
        external iterators. You can use an enumerator to
        loop through the elements of a collection by repeatedly calling the
        next method. When there are no more
        elements, this method raises a StopIteration exception:
iterator = 9.downto(1)             # An enumerator as external iterator
begin                              # So we can use rescue below
  print iterator.next while true   # Call the next method repeatedly
rescue StopIteration               # When there are no more values
  puts "...blastoff!"              # An expected, nonexceptional condition
end

Internal versus External Iterators
The “gang of four” define and contrast internal and external
          iterators quite clearly in their design patterns book:[*]
A fundamental issue is deciding which party controls the
            iteration, the iterator or the client that uses the iterator. When
            the client controls the iteration, the iterator is called an
            external iterator, and when the
            iterator controls it, the iterator is an internal
            iterator. Clients that use an external iterator must
            advance the traversal and request the next element explicitly from
            the iterator. In contrast, the client hands an internal iterator
            an operation to perform, and the iterator applies that operation
            to every element....
External iterators are more flexible than internal
            iterators. It’s easy to compare two collections for equality with
            an external iterator, for example, but it’s practically impossible
            with internal iterators…. But on the other hand, internal
            iterators are easier to use, because they define the iteration
            logic for you.


In Ruby, iterator methods like each are internal iterators; they control
          the iteration and “push” values to the block of code associated with
          the method invocation. Enumerators have an each method for internal iteration, but in
          Ruby 1.9 and later, they also work as external iterators—client code
          can sequentially “pull” values from an enumerator with next.

External iterators are quite simple to use: just call next each time you want another element.
        When there are no more elements left, next will raise a StopIteration exception. This may seem
        unusual—an exception is raised for an expected termination condition
        rather than an unexpected and exceptional event. (StopIteration is a descendant of StandardError and IndexError; note that it is one of the only
        exception classes that does not have the word “error” in its name.)
        Ruby follows Python in this external iteration technique. By treating
        loop termination as an exception, it makes your looping logic
        extremely simple; there is no need to check the return value of
        next for a special end-of-iteration
        value, and there is no need to call some kind of next? predicate before calling next.
To simplify looping with external iterators, the Kernel.loop method
        includes (in Ruby 1.9) an implicit rescue clause and exits cleanly when
        StopIteration is raised. Thus, the
        countdown code shown earlier could more easily be written like
        this:
iterator = 9.downto(1)
loop do                 # Loop until StopIteration is raised
  print iterator.next   # Print next item
end
puts "...blastoff!"

Many external iterators can be restarted by calling the rewind method. Note, however, that rewind is not effective for all enumerators.
        If an enumerator is based on an object like a File which reads lines sequentially, calling
        rewind will not restart the
        iteration from the beginning. In general, if new invocations of
        each on the underlying Enumerable object do
        not restart the iteration from the beginning, then calling rewind will not restart it either.
Once an external iteration has started (i.e., after next has been called for the first time), an
        enumerator cannot be cloned or duplicated. It is typically possible to
        clone an enumerator before next is
        called, or after StopIteration has
        been raised or rewind is
        called.
Normally, enumerators with next methods are created from Enumerable objects that have an each method. If, for some reason, you define
        a class that provides a next method
        for external iteration instead of an each method for internal iteration, you can
        easily implement each in terms of
        next. In fact, turning an
        externally iterable class that implements next into an Enumerable class is as simple as mixing in
        (with include—see Modules) a module like this:
module Iterable
  include Enumerable          # Define iterators on top of each
  def each                    # And define each on top of next
    loop { yield self.next }
  end
end

Another way to use an external iterator is to pass it to an
        internal iterator method like this one:
def iterate(iterator)
  loop { yield iterator.next }
end

iterate(9.downto(1)) {|x| print x }

The earlier quote from Design Patterns
        alluded to one of the key features of external iterators: they solve
        the parallel iteration problem. Suppose you have two Enumerable collections
        and need to iterate their elements in pairs: the first elements of
        each collection, then the second elements, and so on. Without an
        external iterator, you must convert one of the collections to an array
        (with the to_a method defined by
        Enumerable) so
        that you can access its elements while iterating the other collection
        with each.
Example 5-1 shows the
        implementation of three iterator methods. All three accept an
        arbitrary number of Enumerable
        objects and iterate them in different ways. One is a simple sequential
        iteration using only internal iterators; the other two are parallel
        iterations and can only be done
        using the external iteration features of Ruby 1.9.
Example 5-1. Parallel iteration with external iterators
# Call the each method of each collection in turn.
# This is not a parallel iteration and does not require enumerators.
def sequence(*enumerables, &block)
  enumerables.each do |enumerable|
    enumerable.each(&block)
  end
end

# Iterate the specified collections, interleaving their elements.
# This can't be done efficiently without external iterators.
# Note the use of the uncommon else clause in begin/rescue.
def interleave(*enumerables)
  # Convert enumerable collections to an array of enumerators.
  enumerators = enumerables.map {|e| e.to_enum }
  # Loop until we don't have any more enumerators.
  until enumerators.empty?
    begin
      e = enumerators.shift   # Take the first enumerator
      yield e.next            # Get its next and pass to the block
    rescue StopIteration      # If no more elements, do nothing
    else                      # If no exception occurred
      enumerators << e        # Put the enumerator back
    end
  end
end

# Iterate the specified collections, yielding tuples of values,
# one value from each of the collections. See also Enumerable.zip.
def bundle(*enumerables)
  enumerators = enumerables.map {|e| e.to_enum }
  loop { yield enumerators.map {|e| e.next} }
end

# Examples of how these iterator methods work
a,b,c = [1,2,3], 4..6, 'a'..'e'
sequence(a,b,c) {|x| print x}   # prints "123456abcde"
interleave(a,b,c) {|x| print x} # prints "14a25b36cde"
bundle(a,b,c) {|x| print x}     # '[1, 4, "a"][2, 5, "b"][3, 6, "c"]'



The bundle method of Example 5-1 is similar to the Enumerable.zip method. In Ruby 1.8, zip must first convert its Enumerable arguments to arrays and then use
        those arrays while iterating through the Enumerable object it is
        called on. In Ruby 1.9, however, the zip method can use external iterators. This
        makes it (typically) more efficient in space and time, and also allows
        it to work with unbounded collections that could not be converted into
        an array of finite size.

Iteration and Concurrent Modification



In general, Ruby’s core collection of classes iterate over
        live objects rather than private copies or “snapshots” of those
        objects, and they make no attempt to detect or prevent concurrent
        modification to the collection while it is being iterated. If you call
        the each method of an array, for
        example, and the block associated with that invocation calls the
        shift method of the same array, the
        results of the iteration may be surprising:
a = [1,2,3,4,5]
a.each {|x| puts "#{x},#{a.shift}" }  # prints "1,1\n3,2\n5,3"

You may see similarly surprising behavior if one thread modifies
        a collection while another thread is iterating it. One way to avoid
        this is to make a defensive copy of the collection before iterating
        it. The following code, for example, adds a method each_in_snapshot to the Enumerable module:
module Enumerable
  def each_in_snapshot &block
    snapshot = self.dup    # Make a private copy of the Enumerable object
    snapshot.each &block   # And iterate on the copy
  end
end




[*] Within the Japanese Ruby community, the term “iterator” has
            fallen out of use because it implies an iteration that is not
            actually required. A phrase like “method that expects an
            associated block” is verbose but more precise.

[*] Design Patterns: Elements of Reusable
              Object-Oriented Software, by Gamma, Helm, Johnson,
              and Vlissides (Addison-Wesley).



Blocks



The use of blocks is fundamental to the use of iterators. In
      the previous section, we focused on iterators as a kind of looping
      construct. Blocks were implicit to our discussion but were not the
      subject of it. Now we turn our attention to the block themselves. The
      subsections that follow explain:
	The syntax for associating a block with a method
          invocation

	The “return value” of a block

	The scope of variables in blocks

	The difference between block parameters and method
          parameters



Block Syntax



Blocks may not stand alone; they are only legal following a method
        invocation. You can, however, place a block after any method
        invocation; if the method is not an iterator and never invokes the
        block with yield, the block will be
        silently ignored. Blocks are delimited with curly braces or with
        do and end keywords. The opening curly brace
        or the do keyword must
        be on the same line as the method invocation, or else Ruby interprets
        the line terminator as a statement terminator and invokes the method
        without the block:
# Print the numbers 1 to 10
1.upto(10) {|x| puts x }   # Invocation and block on one line with braces
1.upto(10) do |x|          # Block delimited with do/end
  puts x
end
1.upto(10)                 # No block specified
 {|x| puts x }             # Syntax error: block not after an invocation

One common convention is to use curly braces when a block fits
        on a single line, and to use do and
        end when the block extends over
        multiple lines.This is not completely a matter of convention, however;
        the Ruby parser binds { tightly to
        the token that precedes it. If you omit the parentheses around method
        arguments and use curly brace delimiters for a block, then the block
        will be associated with the last method argument rather than the
        method itself, which is probably not what you want. To avoid this
        case, put parentheses around the
        arguments or delimit the block with do and end:
1.upto(3) {|x| puts x }    # Parens and curly braces work
1.upto 3 do |x| puts x end # No parens, block delimited with do/end
1.upto 3 {|x| puts x }     # Syntax Error: trying to pass a block to 3!

Blocks can be parameterized, just as methods can. Block
        parameters are separated with commas and delimited with a pair of
        vertical bar (|) characters, but
        they are otherwise much like method parameters (see Block Parameters in Ruby 1.9 for details):
# The Hash.each iterator passes two arguments to its block
hash.each do |key, value|   # For each (key,value) pair in the hash
  puts "#{key}: #{value}"   # Print the key and the value
end                         # End of the block

It is a common convention to write the block parameters on the
        same line as the method invocation and the opening brace or do keyword, but this is not required by the
        syntax.

The Value of a Block



In the iterator examples shown so far in this chapter, the iterator method has
        yielded values to its associated block but has ignored the value
        returned by the block. This is not always the case, however. Consider
        the Array.sort method. If you
        associate a block with an invocation of this method, it will yield
        pairs of elements to the block, and it is the block’s job to sort
        them. The block’s return value (–1,
        0, or 1) indicates the ordering of the two
        arguments. The “return value” of the block is available to the
        iterator method as the value of the yield
        statement.
The “return value” of a block is simply the value of the last
        expression evaluated in the block. So, to sort an array of words from
        longest to shortest, we could write:
# The block takes two words and "returns" their relative order
words.sort! {|x,y| y.length <=> x.length}

We’ve been placing the phrase “return value” in quotes for a
        very important reason: you should not normally use the return keyword to return from a block. A return inside a block causes the containing
        method (not the iterator method that yields to the block, but the
        method that the block is part of) to return. There are, of course,
        times when this is exactly what you want to do. But don’t use return if you just want to return from a
        block to the method that called yield. If you need to force a block to
        return to the invoking method before it reaches the last expression,
        or if you want to return more than one value, you can use next instead of return. (return, next, and the related statement break are explained in detail in Altering Control Flow.) Here is an example that uses
        next to return from the
        block:
array.collect do |x|
  next 0 if x == nil  # Return prematurely if x is nil
  next x, x*x         # Return two values
end

Note that it is not particularly common to use next in this way, and the code above is
        easily rewritten without it:
array.collect do |x|
  if x == nil
    0
  else
    [x, x*x]
  end
end


Blocks and Variable Scope



Blocks define a new variable scope: variables created within a
        block exist only within that block and are undefined outside of the
        block. Be cautious, however; the local variables in a method are
        available to any blocks within that method. So if a block assigns a
        value to a variable that is already defined outside of the block, this
        does not create a new block-local variable but instead assigns a new
        value to the already-existing variable. Sometimes, this is exactly the
        behavior we want:
total = 0   
data.each {|x| total += x }  # Sum the elements of the data array
puts total                   # Print out that sum

Sometimes, however, we do not want to alter variables in the
        enclosing scope, but we do so inadvertently. This problem is a
        particular concern for block parameters in Ruby 1.8. In Ruby 1.8, if a block parameter shares the
        name of an existing variable, then invocations of the block simply
        assign a value to that existing variable rather than creating a new
        block-local variable. The following code, for example, is problematic
        because it uses the same identifier i as the block parameter for two nested
        blocks:
1.upto(10) do |i|         # 10 rows
  1.upto(10) do |i|       # Each has 10 columns
    print "#{i} "         # Print column number
  end
  print " ==> Row #{i}\n" # Try to print row number, but get column number
end

Ruby 1.9 is different: block parameters are always local to their block, and
        invocations of the block never assign values to existing variables. If
        Ruby 1.9 is invoked with the -w flag, it will warn you if a block
        parameter has the same name as an existing variable. This helps you
        avoid writing code that runs differently in 1.8 and 1.9.
Ruby 1.9 is different in another important way, too. Block
        syntax has been extended to allow you to declare block-local variables
        that are guaranteed to be local, even if a variable by the same name
        already exists in the enclosing scope. To do this, follow the list of
        block parameters with a semicolon and a comma-separated list of block
        local variables. Here is an example:
x = y = 0            # local variables
1.upto(4) do |x;y|   # x and y are local to block
                     # x and y "shadow" the outer variables
  y = x + 1          # Use y as a scratch variable
  puts y*y           # Prints 4, 9, 16, 25
end
[x,y]                # => [0,0]: block does not alter these

In this code, x is a block
        parameter: it gets a value when the block is invoked with yield.
        y is a block-local variable. It
        does not receive any value from a yield invocation, but it has the value
        nil until the block actually
        assigns some other value to it. The point of declaring these
        block-local variables is to guarantee that you will not inadvertently
        clobber the value of some existing variable. (This might happen if a
        block is cut-and-pasted from one method to another, for example.) If
        you invoke Ruby 1.9 with the -w
        option, it will warn you if a block-local variable shadows an existing
        variable.
Blocks can have more than one parameter and more than one local
        variable, of course. Here is a block with two parameters and three
        local variables:
hash.each {|key,value; i,j,k| ... }


Passing Arguments to a Block



We’ve said previously that the parameters to a block are much
        like the parameters to a method. They are not strictly the same,
        however. The argument values that follow a yield keyword are assigned to block
        parameters following rules that are closer to the rules for variable
        assignment than to the rules for method invocation. Thus, when an
        iterator executes yield k,v to
        invoke a block declared with parameters |key,
        value|, it is equivalent to this assignment
        statement:
key,value = k,v

The Hash.each_pair iterator
        yields a key/value pair like this:[*]
{:one=>1}.each_pair {|key,value| ... } # key=:one, value=1

In Ruby 1.8, it is even more clear that block invocation uses
        variable assignment. Recall that in Ruby 1.8 parameters are only local
        to the block if they are not already in use as local variables of the
        containing method. If they are already local variables, then they are
        simply assigned to. In fact, Ruby 1.8 allows any kind of variable to
        be used as a block parameter, including global variables and instance
        variables:
{:one=>1}.each_pair {|$key, @value| ... } # No longer works in Ruby 1.9

This iterator sets the global variable $key to :one and sets the instance variable @value to 1. As already noted, Ruby 1.9
        makes block parameters local to the block. This also means that block
        parameters can no longer be global or instance variables.
The Hash.each iterator yields
        key/value pairs as two elements of a single array. It is very common,
        however, to see code like this:
hash.each {|k,v| ... }  # key and value assigned to params k and v

This also works by parallel assignment. The yielded value, a two-element
        array, is assigned to the
        variables k and v:
k,v = [key, value]

By the rules of parallel assignment (see Parallel Assignment), a single array on the right is
        expanded to and its elements assigned to the multiple variables on the
        left.
Block invocation does not work exactly like parallel assignment.
        Imagine an iterator that passes two values to its block. By the rules
        of parallel assignment, we might expect to be able to declare a block
        with a single parameter and have the two values automatically filled
        into an array for us. But it does not work that way:
def two; yield 1,2; end  # An iterator that yields two values
two {|x| p x }     # Ruby 1.8: warns and prints [1,2],
two {|x| p x }     # Ruby 1.9: prints 1, no warning
two {|*x| p x }    # Either version: prints [1,2]; no warning
two {|x,| p x }    # Either version: prints 1; no warning

In Ruby 1.8, multiple arguments are packed into an array when
        there is a single block parameter, but this is deprecated and
        generates a warning message. In Ruby 1.9, the first value yielded is
        assigned to the block parameter and the second value is silently
        discarded. If we want multiple yielded values to be packed into an
        array and assigned to a single block parameter, we must explicitly
        indicate this by prefixing the parameter with an *, exactly as we’d do in a method
        declaration. (See Chapter 6 for a thorough discussion
        of method parameters and method declaration.) Also note that we can
        explicitly discard the second
        yielded value by declaring a block parameter list that ends with a
        comma, as if to say: “There is another parameter, but it is unused and
        I can’t be bothered to pick a name for it.”
Although block invocation does not behave like parallel
        assignment in this case, it does not behave like method invocation,
        either. If we declare a method with one argument and then pass two
        arguments to it, Ruby doesn’t just print a warning, it raises an
        error.
The yield statement allows
        bare hashes as the last argument value, just as method invocations
        (see Hashes for Named Arguments) do. That is, if the last argument to
        yield is a hash literal, you may
        omit the curly braces. Because it is not common for iterators to yield
        hashes, we have to contrive an example to demonstrate this:
def hashiter; yield :a=>1, :b=>2; end  # Note no curly braces
hashiter {|hash| puts hash[:a] }       # Prints 1


Block Parameters in Ruby 1.9



In Ruby 1.8, only the last block parameter may have an * prefix. Ruby 1.9 lifts this restriction
        and allows any one block parameter, regardless of its position in the
        list, to have an * prefix:
def five; yield 1,2,3,4,5; end     # Yield 5 values
five do |head, *body, tail|        # Extra values go into body array
  print head, body, tail           # Prints "1[2,3,4]5"
end

In Ruby 1.9 block parameters can have default values just like
        method parameters can. Suppose, for example, that you want to iterate
        the values of an object o but you don’t know if
        o is an array or a hash. You could use a block like
        this:
o.each {|key=nil,value| puts value}

If the each iterator yields a single value,
        it is assigned to the second block parameter. If
        each yields a pair of values, they are assigned to
        both parameters.
In Ruby 1.9, the final block parameter may be prefixed with
        & to indicate that it is to
        receive any block associated with the invocation of the block. Recall,
        however, that a yield invocation
        may not have a block associated with it. We’ll learn in Chapter 6 that a block can be converted into a Proc, and blocks can be
        associated with Proc invocations.
        The following code example should make sense once you have read Chapter 6:
# This Proc expects a block 
printer = lambda {|&b| puts b.call } # Print value returned by b
printer.call { "hi" }                # Pass a block to the block!




[*] The Ruby 1.8 each_pair
            yields two separate values to the block. In Ruby 1.9, the each_pair iterator is a synonym for
            each and passes a single array
            argument, as will be explained shortly. The code shown here,
            however, works correctly in both versions.



Altering Control Flow



In addition to conditionals, loops, and iterators, Ruby
      supports a number of statements that alter the flow-of-control in a Ruby program. These statements
      are:
	return
	Causes a method to exit and return a value to its
            caller.

	break
	Causes a loop (or iterator) to exit.

	next
	Causes a loop (or iterator) to skip the rest of the current
            iteration and move on to the next iteration.

	redo
	Restarts a loop or iterator from the beginning.

	retry
	Restarts an iterator, reevaluating the entire expression. The
            retry keyword can also be used
            in exception handling, as we’ll see later in the chapter.

	throw/catch
	A very general control structure that is named like
            and works like an exception propagation and handling mechanism.
            throw and catch are not Ruby’s primary exception
            mechanism (that would be raise
            and rescue, described later in
            this chapter). Instead, they are used as a kind of multilevel or
            labeled break.



The subsections that follow describe each of these statements in
      detail.
return



The return statement causes
        the enclosing method to return to its caller. If you know C, Java, or
        a related language, you probably already have an intuitive
        understanding of the return
        statement. Don’t skip this section, however, because the behavior of
        return within a block may not be
        intuitive to you.
return may optionally be
        followed by an expression, or a comma-separated list of expressions.
        If there is no expression, then the return value of the method is
        nil. If there is one expression,
        then the value of that expression becomes the return value of the
        method. If there is more than one expression after the return keyword, then the return value of the
        method is an array containing the values of those expressions.
Note that most methods do not require the return statement. When flow-of-control
        reaches the end of a method, the method automatically returns to its
        caller. The return value in this case is the value of the last
        expression in the method. Most Ruby programmers omit return when it is not necessary. Instead of
        writing return x as the last line
        of a method, they would simply write x.
return is useful if you want
        to return from a method prematurely, or if you want to return more
        than one value. For example:
# Return two copies of x, if x is not nil
def double(x)
  return nil if x == nil   # Return prematurely
  return x, x.dup          # Return multiple values
end

When first learning about Ruby blocks, it is natural to think of
        them as some kind of nested function or mini-method. And if you think
        of them this way, you might expect return simply to cause the block to return
        to the iterator that yielded to it. But blocks are not methods, and
        the return keyword does not work
        this way. In fact, return is
        remarkably consistent; it always causes the enclosing method to
        return, regardless of how deeply
        nested within blocks it is.[*]
Note that the enclosing method is not the same thing as the
        invoking method. When the return
        statement is used in a block, it does not just cause the block to
        return. And it does not just cause the iterator that invokes the block
        to return. return always causes the
        enclosing method to return. The enclosing method, also called the
        lexically enclosing method, is the method that
        the block appears inside of when you look at the source code. Figure 5-2 illustrates the behavior of the return statement in a block.
[image: The return statement in a block]

Figure 5-2. The return statement in a block

The following code defines a method that uses return to return from inside a block:
# Return the index of the first occurrence of target within array or nil
# Note that this code just duplicates the Array.index method
def find(array, target)
  array.each_with_index do |element,index|
    return index if (element == target)  # return from find
  end
  nil  # If we didn't find the element, return nil
end

The return statement in this
        code does not just cause the block to return to the iterator that
        invoked it. And it does not just cause the each_with_index iterator to return. It
        causes the find method to return a
        value to its caller.

break



When used within a loop, the break statement transfers control out of the
        loop to the first expression following the loop. Readers who know C, Java, or a similar language will
        already be familiar with the use of break in a loop:
while(line = gets.chop)     # A loop starts here
  break if line == "quit"   # If this break statement is executed...
  puts eval(line)
end
puts "Good bye"             # ...then control is transferred here

When used in a block, break
        transfers control out of the block, out of the iterator that invoked
        the block, and to the first expression following the invocation of the
        iterator. For example:
f.each do |line|             # Iterate over the lines in file f
  break if line == "quit\n"  # If this break statement is executed...
  puts eval(line)
end
puts "Good bye"              # ...then control is transferred here

As you can see, using break
        inside a block is lexically the same as using it inside a loop. If you
        consider the call stack, however, break in a block is more complicated because
        it forces the iterator method that the block is associated with to
        return. Figure 5-3
        illustrates this.
[image: The break statement in a block]

Figure 5-3. The break statement in a block

Note that unlike return,
        break never causes the lexically
        enclosing method to return. break
        can only appear within a lexically enclosing loop or within a block.
        Using it in any other context causes a LocalJumpError.
break with a value



Recall that all syntactic constructs in Ruby are expressions,
          and all can have a value. The break statement can specify a value for
          the loop or iterator it is breaking out of. The break keyword may be followed by an
          expression or a comma-separated list of expressions. If break is used with no expression, then the
          value of the loop expression, or the return value of the iterator
          method, is nil. If break is used with a single expression,
          then the value of that expression becomes the value of the loop
          expression or the return value of the iterator. And if break is used with multiple expressions,
          then the values of those expressions are placed into an array, and
          that array becomes the value of the loop expression or the return
          value of the iterator.
By contrast, a while loop
          that terminates normally with no break always has a value of nil. The return value of an iterator that
          terminates normally is defined by the iterator method. Many
          iterators, such as times and
          each, simply return the object on
          which they were invoked.


next



The next statement causes a loop or iterator to end the current iteration
        and begin the next. C and Java programmers know this control structure
        by the name continue. Here
        is next in a loop:
while(line = gets.chop)     # A loop starts here
  next if line[0,1] == "#"  # If this line is a comment, go on to the next
  puts eval(line)
  # Control goes here when the next statement is executed
end

When next is used within a
        block, it causes the block to exit immediately, returning control to
        the iterator method, which may then begin a new iteration by invoking
        the block again:
f.each do |line|              # Iterate over the lines in file f
  next if line[0,1] == "#"    # If this line is a comment, go to the next
  puts eval(line)
  # Control goes here when the next statement is executed
end

Using next in a block is
        lexically the same as using it in a while, until, or for/in loop. When you consider the calling
        sequence, however, the block case is more complicated, as Figure 5-4 illustrates.
[image: The next statement in a block]

Figure 5-4. The next statement in a block

next, break, and return
It is instructive to contrast Figure 5-4
          with Figures 5-2 and 5-3. The next statement
          causes a block to return to the iterator method that invoked it. The
          break statement causes the block
          to return to its iterator and the iterator to return to the
          enclosing method. And the return
          statement causes the block to return to the iterator, the iterator
          to return to the enclosing method, and the enclosing method to
          return to its caller.

next may only be used within
        a loop or a block; it raises a LocalJumpError when used in any other
        context.
next and block value



Like the return and
          break keywords, next may be used alone, or it may be
          followed by an expression or a comma-separated list of expressions.
          When next is used in a loop, any
          values following next are
          ignored. In a block, however, the expression or expressions become
          the “return value” of the yield
          statement that invoked the block. If next is not followed by an expression,
          then the value of the yield is
          nil. If next is followed by one expression, then
          the value of that expression becomes the value of the yield. And if next is followed by a list of expressions,
          then the value of the yield is an
          array of the value of those expressions.
In our earlier discussion of the return statement, we were careful to
          explain that blocks are not functions, and that the return statement does not make a block
          return to the iterator that invoked it. As you can see, this is
          exactly what the next statement
          does. Here is code where you might use it in this way:
squareroots = data.collect do |x|
  next 0 if x < 0  # Return 0 for negative values
  Math.sqrt(x)
end

Normally, the value of a yield expression is the value of the last
          expression in the block. As with the return statement, it is not often
          necessary to explicitly use next
          to specify a value. This code could also have been written like
          this, for example:
squareroots = data.collect do |x|
  if (x < 0) then 0 else Math.sqrt(x) end
end



redo



The redo statement restarts the current iteration of a loop or iterator. This is
        not the same thing as next.
        next transfers control to the end
        of a loop or block so that the next iteration can begin, whereas
        redo transfers control back to the
        top of the loop or block so that the iteration can start over. If you
        come to Ruby from C-like languages, then redo is probably a new control structure for
        you.
redo transfers control to the
        first expression in the body of the loop or in a block. It does not
        retest the loop condition, and it does not fetch the next element from
        an iterator. The following while
        loop would normally terminate after three iterations, but a redo statement makes it iterate four
        times:
i = 0
while(i < 3)   # Prints "0123" instead of "012"
  # Control returns here when redo is executed
  print i
  i += 1
  redo if i == 3
end

redo is not a commonly used
        statement, and many examples, like this one, are contrived. One use,
        however, is to recover from input errors when prompting a user for
        input. The following code uses redo
        within a block for this purpose:
puts "Please enter the first word you think of"
words = %w(apple banana cherry)   # shorthand for ["apple", "banana", "cherry"]
response = words.collect do |word|
  # Control returns here when redo is executed
  print word + "> "               # Prompt the user
  response = gets.chop            # Get a response
  if response.size == 0           # If user entered nothing
    word.upcase!                  # Emphasize the prompt with uppercase
    redo                          # And skip to the top of the block
  end
  response                        # Return the response
end


retry



The retry statement
        is normally used in a rescue clause to reexecute a block of code
        that raised an exception. This is described in retry in a rescue clause. In Ruby 1.8, however, retry has another
        use: it restarts an iterator-based iteration (or any method
        invocation) from the beginning. This use of the retry statement is extremely rare, and it
        has been removed from the language in Ruby 1.9. It should, therefore,
        be considered a deprecated language feature and should not be used
        in new code.
In a block, the retry
        statement does not just redo the current invocation of the block; it
        causes the block and the iterator method to exit and then reevaluates
        the iterator expression to restart the iteration. Consider the
        following code:
n = 10
n.times do |x|   # Iterate n times from 0 to n–1
  print x        # Print iteration number
  if x == 9      # If we've reached 9
    n -= 1       # Decrement n (we won't reach 9 the next time!)
    retry        # Restart the iteration
  end
end

The code uses retry to
        restart the iterator, but it is careful to avoid an infinite loop. On
        the first invocation, it prints the numbers 0123456789 and then restarts. On the second
        invocation, it prints the numbers 012345678 and does not restart.
The magic of the retry
        statement is that it does not retry the iterator in exactly the same
        way each time. It completely reevaluates the iterator expression,
        which means that the arguments to the iterator (and even the object on
        which it is invoked) may be different each time the iterator is
        retried. If you are not used to highly dynamic languages like Ruby,
        this reevaluation may seem counterintuitive to you.
The retry statement is not
        restricted to use in blocks; it always just reevaluates the nearest
        containing method invocation. This means that it can be used (prior to
        Ruby 1.9) to write iterators like the following that works like
        a while loop:
# This method behaves like a while loop: if x is non-nil and non-false,
# invoke the block and then retry to restart the loop and test the
# condition again. This method is slightly different than a true while loop: 
# you can use C-style curly braces to delimit the loop body. And
# variables used only within the body of the loop remain local to the block.
def repeat_while(x)
  if x     # If the condition was not nil or false
    yield  # Run the body of the loop
    retry  # Retry and re-evaluate loop condition
  end
end


throw and catch



throw and catch are Kernel methods that define a control structure that can be thought of
        as a multilevel break. throw doesn’t just break out of the current
        loop or block but can actually transfer out any number of levels,
        causing the block defined with a catch to exit. The catch need not even be in the same method as
        the throw. It can be in the calling
        method, or somewhere even further up the call stack.
Languages like Java and JavaScript allow loops to be named or
        labeled with an arbitrary prefix. When this is done, a control
        structure known as a “labeled break” causes the named loop to exit. Ruby’s
        catch method defines a labeled
        block of code, and Ruby’s throw
        method causes that block to exit. But throw and catch are much more general than a labeled
        break. For one, it can be used with any kind of statement and
        is not restricted to loops. More profoundly, a throw can propagate up the call stack to
        cause a block in an invoking method to exit.
If you are familiar with languages like Java and JavaScript,
        then you probably recognize throw
        and catch as the keywords those
        languages use for raising and handling exceptions. Ruby does
        exceptions differently, using raise
        and rescue, which we’ll learn about
        later in this chapter. But the parallel to exceptions is intentional.
        Calling throw is very much like
        raising an exception. And the way a throw propagates out through the lexical
        scope and then up the call stack is very much the same as the way an
        exception propagates out and up. (We’ll see much more about exception
        propagation later in the chapter.) Despite the similarity to
        exceptions, it is best to consider throw and catch as a general-purpose (if perhaps
        infrequently used) control structure rather than an exception
        mechanism. If you want to signal an error or exceptional condition,
        use raise instead of throw.
The following code demonstrates how throw and catch can be used to “break out” of nested
        loops:
for matrix in data do             # Process a deeply nested data structure.
  catch :missing_data do          # Label this statement so we can break out.
    for row in matrix do
      for value in row do
        throw :missing_data unless value # Break out of two loops at once.
        # Otherwise, do some actual data processing here.
      end
    end
  end
  # We end up here after the nested loops finish processing each matrix.
  # We also get here if :missing_data is thrown.
end

Note that the catch method
        takes a symbol argument and a block. It executes the block and returns
        when the block exits or when the specified symbol is thrown. throw also expects a symbol as its argument
        and causes the corresponding catch
        invocation to return. If no catch
        call matches the symbol passed to throw, then a NameError exception is raised. Both catch and throw can be invoked with string arguments
        instead of symbols. These are converted internally to symbols.
One of the features of throw
        and catch is that they work even
        when the throw and catch are in different methods. We could
        refactor this code to put the innermost loop into a separate method,
        and the control flow would still work correctly.
If throw is never called, a
        catch invocation returns the value
        of the last expression in its block. If throw is called, then the return value of
        the corresponding catch is, by
        default, nil. You can, however,
        specify an arbitrary return value for catch by passing a second argument to
        throw. The return value of catch can help you distinguish normal
        completion of the block from abnormal completion with throw, and this allows you to write code
        that does any special processing necessary to respond to the throw.
throw and catch are not commonly used in practice. If
        you find yourself using catch and
        throw within the same method,
        consider refactoring the catch into
        a separate method definition and replacing the throw with a return.



[*] We’ll see an exception when we consider lambdas in Return in blocks, procs, and lambdas. A lambda is a kind of a function created from a block, and
            the behavior of return within a
            lambda is different from its behavior in an ordinary block.



Exceptions and Exception Handling



An exception is an object that represents some kind of exceptional
      condition; it indicates that something has gone wrong. This could be a
      programming error—attempting to divide by zero, attempting to invoke a
      method on an object that does not define the method, or passing an
      invalid argument to a method. Or it could be the result from some kind
      of external condition—making a network request when the network is down,
      or trying to create an object when the system is out of memory.
When one of these errors or conditions occurs, an exception is
      raised (or thrown). By
      default, Ruby programs terminate when an exception occurs. But it is
      possible to declare exception handlers. An exception handler is a block
      of code that is executed if an exception occurs during the execution of
      some other block of code. In this sense, exceptions are a kind of control
      statement. Raising an exception transfers the flow-of-control to
      exception handling code. This is like using the break statement to exit from a loop. As we’ll
      see, though, exceptions are quite different from the break statement; they may transfer control out
      of many enclosing blocks and even up the call stack in order to reach
      the exception handler.
Ruby uses the Kernel method
      raise to raise exceptions, and uses a
      rescue clause to handle exceptions.
      Exceptions raised by raise are
      instances of the Exception class
      or one of its many subclasses. The throw and catch methods described earlier in this
      chapter are not intended to signal and handle exceptions, but a symbol
      thrown by throw propagates in the
      same way that an exception raised by raise does. Exception objects, exception
      propagation, the raise method, and
      the rescue clause are described in
      detail in the subsections that follow.
Exception Classes and Exception Objects



Exception objects are instances of the Exception class or one of its subclasses.
        Numerous subclasses exist. These subclasses do not typically define
        new methods or new behavior, but they allow exceptions to be
        categorized by type. The class hierarchy is illustrated in Figure 5-5.
Object
 +--Exception
     +--NoMemoryError
     +--ScriptError
     |   +--LoadError
     |   +--NotImplementedError
     |   +--SyntaxError
     +--SecurityError         # Was a StandardError in 1.8
     +--SignalException
     |   +--Interrupt
     +--SystemExit
     +--SystemStackError      # Was a StandardError in 1.8
     +--StandardError
         +--ArgumentError
         +--FiberError        # New in 1.9
         +--IOError
         |   +--EOFError
         +--IndexError
         |   +--KeyError      # New in 1.9
         |   +--StopIteration # New in 1.9
         +--LocalJumpError
         +--NameError
         |   +--NoMethodError
         +--RangeError
         |   +--FloatDomainError
         +--RegexpError
         +--RuntimeError
         +--SystemCallError
         +--ThreadError
         +--TypeError
         +--ZeroDivisionError


Figure 5-5. The Ruby Exception Class Hierarchy


You don’t need to be familiar with each of these exception
        subclasses. Their names tell you what they are used for. It is
        important to note that most of these subclasses extend a class known
        as StandardError. These are the
        “normal” exceptions that typical Ruby programs try to handle. The
        other exceptions represent lower-level, more serious, or less
        recoverable conditions, and normal Ruby programs do not typically
        attempt to handle them.
If you use ri to find documentation for
        these exception classes, you’ll find that most of them are
        undocumented. This is in part because most of them add no new methods
        to those defined by the base Exception class. The important thing to know
        about a given exception class is when it can be raised. This is
        typically documented by the methods that raise the exception rather
        than by the exception class itself.
The methods of exception objects



The Exception
          class defines two methods that return details about the
          exception. The message method
          returns a string that may provide human-readable details about what
          went wrong. If a Ruby program exits with an unhandled exception,
          this message will typically be displayed to the end user, but the
          primary purpose of this message is to aid a programmer in diagnosing
          the problem.
The other important method of exception objects is backtrace. This method returns an array of
          strings that represents the call stack at the point that the
          exception was raised. Each element of the array is a string of the
          form:
filename : linenumber in methodname
The first element of the array specifies the position at which
          the exception was raised; the second element specifies the position
          at which the method that raised the exception was called; the third
          element specifies the position at which that method was called; and
          so on. (The Kernel method
          caller returns a stack trace in
          this same format; you can try it out in irb.)
          Exception objects are typically created by the raise method. When this is done, the
          raise method sets the stack trace
          of the exception appropriately. If you create your own exception
          object, you can set the stack trace to whatever you want with the
          set_backtrace method.

Creating exception objects



Exception objects are typically created by the raise method, as we’ll see below. However,
          you can create your own objects with the normal new method, or with another class method
          named exception. Both accept a
          single optional string argument. If specified, the string becomes
          the value of the message
          method.

Defining new exception classes



If you are defining a module of Ruby code, it is often appropriate to define your own
          subclass of StandardError for
          exceptions that are specific to your module. This may be a trivial,
          one-line subclass:
class MyError < StandardError; end



Raising Exceptions with raise



The Kernel method raise raises an exception. fail is a synonym that is sometimes used
        when the expectation is that the exception will cause the program to
        exit. There are several ways to invoke raise:
	If raise is called with
            no arguments, it creates a new RuntimeError object (with no message)
            and raises it. Or, if raise is
            used with no arguments inside a rescue clause, it simply re-raises the
            exception that was being handled.

	If raise is called with a
            single Exception object as its
            argument, it raises that exception. Despite its simplicity,
            this is not actually a common way to use raise.

	If raise is called with a
            single string argument, it creates a new RuntimeError exception object, with the specified
            string as its message, and raises that exception. This is a very
            common way to use raise.

	If the first argument to raise is an object that has an exception method, then raise invokes that method and raises the
            Exception object that it
            returns. The Exception class
            defines an exception method, so
            you can specify the class object for any kind of exception as the
            first argument to raise.
raise accepts a string as
            its optional second argument. If a string is specified, it is
            passed to the exception method
            of the first argument. This string is intended for use as the
            exception message.
raise also accepts an
            optional third argument. An array of strings may be specified
            here, and they will be used as the backtrace for the exception
            object. If this third argument is not specified, raise sets the backtrace of the
            exception itself (using the Kernel method caller).



The following code defines a simple method that raises an
        exception if invoked with a parameter whose value is invalid:
def factorial(n)                 # Define a factorial method with argument n
  raise "bad argument" if n < 1  # Raise an exception for bad n
  return 1 if n == 1             # factorial(1) is 1
  n * factorial(n-1)             # Compute other factorials recursively
end

This method invokes raise
        with a single string argument. These are some equivalent ways to raise
        the same exception:
raise RuntimeError, "bad argument" if n < 1
raise RuntimeError.new("bad argument") if n < 1
raise RuntimeError.exception("bad argument") if n < 1

In this example, an exception of class ArgumentError is probably more appropriate
        than RuntimeError:
raise ArgumentError if n < 1

And a more detailed error message would be helpful:
raise ArgumentError, "Expected argument >= 1. Got #{n}" if n < 1

The intent of the exception we’re raising here is to point out a
        problem with the invocation of the factorial method, not with the code inside
        the method. The exception raised by the code here will have a
        backtrace whose first element identifies where raise was called. The second element of the
        array will actually identify the code that called factorial with the bad argument. If we want
        to point directly to the problem code, we can provide a custom stack
        trace as the third argument to raise with the Kernel method caller:
if n < 1
  raise ArgumentError, "Expected argument >= 1. Got #{n}", caller
end

Note that the factorial
        method checks whether its argument is in the correct range, but it
        does not check whether it is of the right type. We might add more
        careful error-checking by adding the following as the first line of
        the method:
raise TypeError, "Integer argument expected" if not n.is_a? Integer

On the other hand, notice what happens if we pass a string
        argument to the factorial method as it is written
        above. Ruby compares the argument n
        to the integer 1 with the < operator. If the argument is a string,
        the comparison makes no sense, and it fails by raising a TypeError. If the argument is an instance of
        some class that does not define the < operator, then we get a NoMethodError instead.
The point here is that exceptions can occur even if we do not
        call raise in our own code. It is
        important, therefore, to know how to handle exceptions, even if we
        never raise them ourselves. Handling exceptions is covered in the next
        section.

Handling Exceptions with rescue



raise is a Kernel method. A rescue clause, by
        contrast, is a fundamental part of the Ruby language. rescue is not a statement in its own right,
        but rather a clause that can be attached to other Ruby statements.
        Most commonly, a rescue clause is
        attached to a begin statement. The
        begin statement exists simply to
        delimit the block of code within which exceptions are to be handled. A
        begin statement with a rescue clause looks like this:
begin
  # Any number of Ruby statements go here.
  # Usually, they are executed without exceptions and
  # execution continues after the end statement.
rescue
  # This is the rescue clause; exception-handling code goes here.
  # If an exception is raised by the code above, or propagates up
  # from one of the methods called above, then execution jumps here.
end

Naming the exception object



In a rescue
          clause, the global variable $! refers
          to the Exception object that is
          being handled. The exclamation mark is a mnemonic: an exception is
          kind of like an exclamation.
          If your program includes the line:
require 'English'

then you can use the global variable $ERROR_INFO
          instead.
A better alternative to $!
          or $ERROR_INFO is to specify a
          variable name for the exception object in the rescue clause itself:
rescue => ex

The statements of this rescue clause can now use the variable
          ex to refer to the Exception object that
          describes the exception. For example:
begin                                # Handle exceptions in this block
  x = factorial(-1)                  # Note illegal argument
rescue => ex                         # Store exception in variable ex
  puts "#{ex.class}: #{ex.message}"  # Handle exception by printing message
end                                  # End the begin/rescue block

Note that a rescue clause
          does not define a new variable scope, and a variable named in the
          rescue clause is visible even
          after the end of the rescue
          clause. If you use a variable in a rescue clause, then an exception object
          may be visible after the rescue is complete, even when $! is no longer set.

Handling exceptions by type



The rescue clauses shown
          here handle any exception that is a StandardError (or
          subclass) and ignore any Exception object that is not a StandardError. If you want to handle
          nonstandard exceptions outside the StandardError hierarchy, or if you want to
          handle only specific types of exceptions, you must include one or
          more exception classes in the rescue clause. Here’s how you would write
          a rescue clause that would handle
          any kind of exception:
rescue Exception

Here’s how you would write a rescue clause to handle an ArgumentError
          and assign the exception object to the variable e:
rescue ArgumentError => e

Recall that the factorial
          method we defined earlier can raise ArgumentError or TypeError.
          Here’s how we would write a rescue clause to handle exceptions of
          either of these types and assign the exception object to the
          variable error:
rescue ArgumentError, TypeError => error

Here, finally, we see the syntax of the rescue clause at its most general. The
          rescue keyword is followed by
          zero or more comma-separated expressions, each of which must
          evaluate to a class object that represents the Exception class or a subclass. These
          expressions are optionally
          followed by => and a variable
          name.
Now suppose we want to handle both ArgumentError and TypeError, but we want to handle these two
          exceptions in different ways. We might use a case statement to run different code based
          on the class of the exception object. It is more elegant, however,
          to simply use multiple rescue
          clauses. A begin statement can
          have zero or more of them:
begin
  x = factorial(1)
rescue ArgumentError => ex
  puts "Try again with a value >= 1"
rescue TypeError => ex
  puts "Try again with an integer"
end

Note that the Ruby interpreter attempts to match exceptions to
          rescue clauses in the order they
          are written. Therefore, you should list your most specific exception
          subclasses first and follow these with more general types. If you
          want to handle EOFError differently than IOError, for example, be sure to put the
          rescue clause for EOFError first or the
          IOError code will handle it. If
          you want a “catch-all” rescue
          clause that handles any exception not handled by previous clauses,
          use rescue Exception as the last
          rescue
          clause.

Propagation of exceptions



Now that we’ve introduced rescue clauses, we can explain in more
          detail the propagation of exceptions. When an exception is raised,
          control is immediately transferred outward and upward until a
          suitable rescue clause is found
          to handle the exception. When the raise method executes, the Ruby
          interpreter looks to see whether the containing block has a rescue clause associated with it. If not
          (or if the rescue clause is not
          declared to handle that kind of exception), then the interpreter
          looks at the containing block of the containing block. If there is
          no suitable rescue clause
          anywhere in the method that called raise, then the method itself
          exits.
When a method exits because of an exception, it is not the
          same thing as a normal return. The method does not have a return
          value, and the exception object continues propagating from the site
          of the method invocation. The exception propagates outward through
          the enclosing blocks, looking for a rescue clause declared to handle it. And
          if no such clause is found, then this method returns to
          its caller. This continues up the call stack.
          If no exception handler is ever located, then the Ruby interpreter
          prints the exception message and backtrace and exits. For a concrete
          example, consider the following code:
def explode        # This method raises a RuntimeError 10% of the time
  raise "bam!" if rand(10) == 0
end

def risky   
  begin            # This block
    10.times do    # contains another block
      explode      # that might raise an exception.
    end            # No rescue clause here, so propagate out.
  rescue TypeError # This rescue clause cannot handle a RuntimeError..
    puts $!        # so skip it and propagate out.
  end              
  "hello"          # This is the normal return value, if no exception occurs.
end                # No rescue clause here, so propagate up to caller.

def defuse
  begin                     # The following code may fail with an exception.
    puts risky              # Try to invoke and print the return value.
  rescue RuntimeError => e  # If we get an exception
    puts e.message          # print the error message instead.
  end                       
end

defuse

An exception is raised in the method explode. That method has no rescue clause, so the exception propagates
          out to its caller, a method named risky. risky has a rescue clause, but it is only declared to
          handle TypeError exceptions, not
          RuntimeError exceptions. The exception propagates
          out through the lexical blocks of risky and then propagates up to the
          caller, a method named defuse.
          defuse has a rescue clause for RuntimeError exceptions, so control is
          transferred to this rescue clause
          and the exception stops
          propagating.
Note that this code includes the use of an iterator (the
          Integer.times method) with an
          associated block. For simplicity, we said that the exception simply
          propagated outward through this lexical block. The truth is that
          blocks behave more like method invocations for the purposes of
          exception propagation. The exception propagates from the block up to
          the iterator that invoked the block. Predefined looping iterators
          like Integer.times do no exception
          handling of their own, so the exception propagates up the call stack
          from the times iterator to the
          risky method that invoked
          it.

Exceptions during exception handling



If an exception occurs during the execution of a rescue clause, the exception that was
          originally being handled is discarded, and the new exception
          propagates from the point at which it was raised. Note that this new
          exception cannot be handled by rescue clauses that follow the one in
          which it occurred.

retry in a rescue clause



When the retry
          statement is used within a rescue clause, it reruns the block of code
          to which the rescue is attached.
          When an exception is caused by a transient failure, such as an
          overloaded server, it might make sense to handle the exception by
          simply trying again. Many other exceptions, however, reflect
          programming errors (TypeError,
          ZeroDivisionError) or nontransient
          failures (EOFError or NoMemoryError). retry is not a suitable handling technique
          for these exceptions.
Here is a simple example that uses retry in an attempt to wait for a network
          failure to be resolved. It tries to read the contents of a URL, and
          retries upon failure. It never tries more than four times in all,
          and it uses “exponential backoff” to increase the wait time between
          attempts:
require 'open-uri'

tries = 0       # How many times have we tried to read the URL
begin           # This is where a retry begins
  tries += 1    # Try to print out the contents of a URL
  open('http://www.example.com/') {|f| puts f.readlines }
rescue OpenURI::HTTPError => e  # If we get an HTTP error
  puts e.message                # Print the error message
  if (tries < 4)                # If we haven't tried 4 times yet...
    sleep(2**tries)             # Wait for 2, 4, or 8 seconds
    retry                       # And then try again!
  end
end



The else Clause



A begin statement may
        include an else clause after its
        rescue clauses. You might guess
        that the else clause is a catch-all
        rescue: that it handles any
        exception that does not match a previous rescue clause. This is not what else is for. The else clause is an alternative to the
        rescue clauses; it is used if none
        of the rescue clauses are needed.
        That is, the code in an else clause
        is executed if the code in the body of the begin statement runs to completion without
        exceptions.
Putting code in an else
        clause is a lot like simply tacking it on to the end of the begin clause. The only difference is that
        when you use an else clause, any
        exceptions raised by that clause are not handled by the rescue statements.
The use of an else clause is
        not particularly common in Ruby, but they can be stylistically useful
        to emphasize the difference between normal completion of a block of
        code and exceptional completion of a block of code.
Note that it does not make sense to use an else clause without one or more rescue clauses. The Ruby interpreter allows
        it but issues a warning. No rescue
        clause may appear after an else
        clause.
Finally, note that the code in an else clause is only executed if the code in
        the begin clause runs to completion
        and “falls off” the end. If an exception occurs, then the else clause will obviously not be executed.
        But break, return, next, and similar statements in the begin clause may also prevent the execution
        of the else clause.

The ensure Clause



A begin statement may have one final clause. The optional ensure clause, if it appears, must come
        after all rescue and else clauses. It may also be used by itself
        without any rescue or else clauses.
The ensure clause contains
        code that always runs, no matter what happens with the code following
        begin:
	If that code runs to completion, then control jumps to the
            else clause—if there is one—and
            then to the ensure
            clause.

	If the code executes a return statement, then the execution
            skips the else clause and jumps
            directly to the ensure clause
            before returning.

	If the code following begin raises an exception, then control
            jumps to the appropriate rescue
            clause, and then to the ensure
            clause.

	If there is no rescue
            clause, or if no rescue clause
            can handle the exception, then control jumps directly to the
            ensure clause. The code in the
            ensure clause is executed
            before the exception propagates out to containing blocks or up the
            call stack.



The purpose of the ensure
        clause is to ensure that housekeeping details such as closing files,
        disconnecting database connections, and committing or aborting
        transactions get taken care of. It is a powerful control structure,
        and you should use it whenever you allocate a resource (such as a file
        handle or database connection) to ensure that proper deallocation or
        cleanup occurs.
Note that ensure clauses
        complicate the propagation of exceptions. In our earlier explanation,
        we omitted any discussion of ensure
        clauses. When an exception propagates, it does not simply jump
        magically from the point where it is raised to the point where it is
        handled. There really is a propagation process. The Ruby interpreter
        searches out through containing blocks and up through the call stack.
        At each begin statement, it looks
        for a rescue clause that can handle
        the exception. And it looks for associated ensure clauses, and executes all of them
        that it passes through.
An ensure clause can cancel
        the propagation of an exception by initiating some other transfer of
        control. If an ensure clause raises
        a new exception, then that new exception propagates in place of the
        original. If an ensure clause
        includes a return statement, then
        exception propagation stops, and the containing method returns.
        Control statements such as break
        and next have similar effects:
        exception propagation is abandoned, and the specified control transfer
        takes place.
An ensure clause also
        complicates the idea of a method return value. Although ensure clauses are usually used to ensure
        that code will run even if an exception occurs, they also work to
        ensure that code will be run before a method returns. If the body of a
        begin statement includes a return statement, the code in the ensure clause will be run before the method
        can actually return to its caller. Furthermore, if an ensure clause contains a return statement of its own, it will change
        the return value of the method. The following code, for example,
        returns the value 2:
begin
  return 1     # Skip to the ensure clause before returning to caller
ensure
  return 2     # Replace the return value with this new value
end

Note that an ensure clause
        does not alter the return value of a method unless it explicitly uses
        a return statement. The following
        method, for example, returns 1, not
        2:
def test
  begin return 1 ensure 2 end
end

If a begin statement does not
        propagate an exception, then the value of the statement is the value
        of the last expression evaluated in the begin, rescue, or else clauses. The code in the ensure clause is guaranteed to run, but it
        does not affect the value of the begin statement.

rescue with Method, Class, and Module Definitions



Throughout this discussion of exception handling, we have
        described the rescue, else, and ensure keywords as clauses of a begin statement. In fact, they can also be
        used as clauses of the def
        statement (defines a method), the class statement (defines a class), and the
        module statement (defines a
        module). Method definitions are covered in Chapter 6;
        class and module definitions are covered in Chapter 7.
The following code is a sketch of a method definition with
        rescue, else, and ensure clauses:
def method_name(x)
  # The body of the method goes here.
  # Usually, the method body runs to completion without exceptions
  # and returns to its caller normally.
rescue 
  # Exception-handling code goes here.
  # If an exception is raised within the body of the method, or if
  # one of the methods it calls raises an exception, then control
  # jumps to this block.
else
  # If no exceptions occur in the body of the method
  # then the code in this clause is executed.
ensure
  # The code in this clause is executed no matter what happens in the
  # body of the method. It is run if the method runs to completion, if 
  # it throws an exception, or if it executes a return statement.
end


rescue As a Statement Modifier



In addition to its use as a clause, rescue can also be used as a statement
        modifier. Any statement can be followed by the keyword rescue and another statement. If the first
        statement raises an exception, the second statement is executed
        instead. For example:
# Compute factorial of x, or use 0 if the method raises an exception
y = factorial(x) rescue 0

This is equivalent to:
y = begin
      factorial(x)
    rescue
      0
    end

The advantage of the statement modifier syntax is that the
        begin and end keywords are not required. When used in
        this way, rescue must be used
        alone, with no exception class names and no variable name. A rescue modifier handles any StandardError exception but does not handle exceptions
        of other types. Unlike if and
        while modifiers, the rescue modifier has higher precedence (see
        Table 4-2 in the previous chapter) than
        assignment operators. This means that it applies only to the righthand
        side of an assignment (like the example above) rather than to the
        assignment expression as a whole.


BEGIN and END



BEGIN and ENDare reserved words in Ruby that
      declare code to be executed at the very beginning and very end of a Ruby
      program. (Note that BEGIN and
      END in capital letters are completely
      different from begin and end in lowercase.) If there is more than one
      BEGIN statement in a program, they
      are executed in the order in which the interpreter encounters them. If
      there is more than one END statement,
      they are executed in the reverse of the order in which they are
      encountered—that is, the first one is executed last. These statements
      are not commonly used in Ruby. They are inherited from Perl, which in
      turn inherited them from the awk text-processing language.
BEGIN and END must be followed by an open curly brace,
      any amount of Ruby code, and a close curly brace. The curly braces are
      required; do and end are not allowed here. For example:
BEGIN {
  # Global initialization code goes here
}

END {
  # Global shutdown code goes here
}

The BEGIN and END statements are different from each other
      in subtle ways. BEGIN statements are
      executed before anything else, including any surrounding code. This
      means that they define a local variable scope that is completely
      separate from the surrounding code. It only really makes sense to put
      BEGIN statements in top-level code; a
      BEGIN within a conditional or loop
      will be executed without regard for the conditions that surround it.
      Consider this code:
if (false) 
  BEGIN {
    puts "if";                   # This will be printed
    a = 4;                       # This variable only defined here
  }
else
  BEGIN { puts "else" }          # Also printed
end

10.times {BEGIN { puts "loop" }} # Only printed once

The code associated with all three BEGIN statements will be executed once, and
      only once, regardless of the context in which it appears. Variables
      defined within BEGIN blocks will not
      be visible outside the block, and no variables outside the block will
      have been defined yet.
END statements are different.
      They are executed during normal program execution, so they share local
      variables with the surrounding code. If an END statement is within a conditional that is
      not executed, then the code associated with it is never registered for
      execution at program termination. If an END statement is within a loop and is executed
      more than once, then the code associated with it is still only
      registered once:
a = 4;
if (true) 
  END {                        # This END is executed
    puts "if";                 # This code is registered
    puts a                     # The variable is visible; prints "4"
  }
else
  END { puts "else" }          # This is not executed
end
10.times {END { puts "loop" }} # Only executed once

The Kernel method at_exit provides an alternative to the END statement; it registers a block of code to
      be executed just before the interpreter exits. As with END blocks, the code associated with the first
      at_exit call will be executed last.
      If the at_exit method is called
      multiple times within a loop, then the block associated with it will be
      executed multiple times when the interpreter exits.

Threads, Fibers, and Continuations



This section introduces threads, which are Ruby’s control
      structure for concurrent execution, and also two more esoteric control
      structures, called fibers and continuations.
Threads for Concurrency



A thread of execution is a sequence of Ruby statements that run (or appear to
        run) in parallel with the main sequence of statements that the
        interpreter is running. Threads are represented by Thread objects, but they can also be thought
        of as control structures for concurrency. Concurrent programming in
        Ruby is covered in detail in Threads and Concurrency. This section
        is just a simple overview that shows how to create threads.
Ruby’s use of blocks makes it very easy to create new threads.
        Simply call Thread.new
        and associate a block with it. A new thread of execution
        will be created and will start running the code in the block.
        Meanwhile, the original thread will return from the Thread.new call and will continue with the
        following statement. The newly created thread will exit when the block
        exits. The return value of the block becomes available through the
        value method of the Thread object. (If you call this method
        before the thread has completed, the caller will block until the
        thread returns a value.)
The following code shows how you might use threads to read the
        contents of multiple files in parallel:
# This method expects an array of filenames.
# It returns an array of strings holding the content of the named files.
# The method creates one thread for each named file.
def readfiles(filenames)
  # Create an array of threads from the array of filenames.
  # Each thread starts reading a file.
  threads = filenames.map do |f|
    Thread.new { File.read(f) }
  end

  # Now create an array of file contents by calling the value
  # method of each thread. This method blocks, if necessary,
  # until the thread exits with a value.
  threads.map {|t| t.value }
end

See Threads and Concurrency for much more about threads and
        concurrency in Ruby.

Fibers for Coroutines



Ruby 1.9 introduces a control structure known as a
        fiber and represented by an object of class
        Fiber. The name “fiber” has been
        used elsewhere for a kind of lightweight thread, but Ruby’s fibers are
        better described as coroutines or, more accurately, semicoroutines.
        The most common use for coroutines is to implement
        generators: objects that can compute a partial
        result, yield the result back to the caller, and save the state of the
        computation so that the caller can resume that computation to obtain
        the next result. In Ruby, the Fiber
        class is used to enable the automatic conversion of internal
        iterators, such as the each method,
        into enumerators or external iterators.
Note that fibers are an advanced and relatively obscure control
        structure; the majority of Ruby programmers will never need to use the
        Fiber class directly. If you have
        never programed with coroutines or generators before, you may find
        them difficult to understand at
        first. If so, study the examples carefully and try out some examples
        of your own.
A fiber has a body of code like a thread does. Create a fiber
        with Fiber.new, and associate a block with it to specify the code that
        the fiber is to run. Unlike a thread, the body of a fiber does not
        start executing right away. To run a fiber, call the resume method of the Fiber object that represents it. The first
        time resume is called on a fiber,
        control is transferred to the beginning of the fiber body. That fiber
        then runs until it reaches the end of the body, or until it executes
        the class method Fiber.yield. The
        Fiber.yield method transfers
        control back to the caller and makes the call to resume return. It also saves the state of
        the fiber, so that the next call to resume makes the fiber pick up where it left
        off. Here is a simple example:
f = Fiber.new {              # Line  1: Create a new fiber
  puts "Fiber says Hello"    # Line  2:
  Fiber.yield                # Line  3: goto line 9 
  puts "Fiber says Goodbye"  # Line  4:
}                            # Line  5: goto line 11
                             # Line  6:
puts "Caller says Hello"     # Line  7:
f.resume                     # Line  8: goto line 2
puts "Caller says Goodbye"   # Line  9:
f.resume                     # Line 10: goto line 4
                             # Line 11:

The body of the fiber does not run when it is first created, so
        this code creates a fiber but does not produce any output until it
        reaches line 7. The resume and
        Fiber.yield calls then transfer
        control back and forth so that the messages from the fiber and the
        caller are interleaved. The code produces the following output:
Caller says Hello
Fiber says Hello
Caller says Goodbye
Fiber says Goodbye

It is worth noting here that the “yielding” performed by
        Fiber.yield is completely different
        than the yielding performed by the yield statement. Fiber.yield yields control from the current
        fiber back to the caller that invoked it. The yield statement, on the other hand, yields
        control from an iterator method to the block associated with the
        method.
Fiber arguments and return values



Fibers and their callers can exchange data through the arguments and return
          values of resume and yield. The arguments to the first call to
          resume are passed to the block
          associated with the fiber: they become the values of the block
          parameters. On subsequent
          calls, the arguments to resume
          become the return value of Fiber.yield. Conversely, any arguments to Fiber.yield become the return value of
          resume. And when the block exits,
          the value of the last expression evaluated also becomes the return
          value of resume. The following
          code demonstrates this:
f = Fiber.new do |message|
  puts "Caller said: #{message}"
  message2 = Fiber.yield("Hello")    # "Hello" returned by first resume
  puts "Caller said: #{message2}"
  "Fine"                             # "Fine" returned by second resume
end

response = f.resume("Hello")         # "Hello" passed to block 
puts "Fiber said: #{response}"
response2 = f.resume("How are you?") # "How are you?" returned by Fiber.yield
puts "Fiber said: #{response2}"

The caller passes two messages to the fiber, and the fiber
          returns two responses to the caller. It prints:
Caller said: Hello
Fiber said: Hello
Caller said: How are you?
Fiber said: Fine

In the caller’s code, the messages are always arguments to
          resume, and the responses are
          always the return value of that method. In the body of the fiber,
          all messages but the first are received as the return value of
          Fiber.yield, and all responses
          but the last are passed as arguments to Fiber.yield. The first message is received
          through block parameters, and the last response is the return value
          of the block itself.

Implementing generators with fibers



The fiber examples shown so far have not been terribly
          realistic. Here we demonstrate some more typical uses. First, we
          write a Fibonacci number generator—a Fiber object that returns successive
          members of the Fibonacci sequence on each call to resume:
# Return a Fiber to compute Fibonacci numbers
def fibonacci_generator(x0,y0)   # Base the sequence on x0,y0
  Fiber.new do
    x,y = x0, y0                 # Initialize x and y
    loop do                      # This fiber runs forever
      Fiber.yield y              # Yield the next number in the sequence
      x,y = y,x+y                # Update x and y
    end
  end
end

g = fibonacci_generator(0,1)     # Create a generator 
10.times { print g.resume, " " } # And use it

The code above prints the first 10 Fibonacci numbers:
1 1 2 3 5 8 13 21 34 55

Because Fiber is a
          confusing control structure, we might prefer to hide its API when
          writing generators. Here is another version of a Fibonacci number
          generator. It defines its own class and implements the same next and rewind API that enumerators do:
class FibonacciGenerator
  def initialize
    @x,@y = 0,1
    @fiber = Fiber.new do
      loop do 
        @x,@y = @y, @x+@y
        Fiber.yield @x
      end
    end
  end

  def next           # Return the next Fibonacci number
    @fiber.resume
  end

  def rewind         # Restart the sequence
    @x,@y = 0,1
  end
end

g = FibonacciGenerator.new      # Create a generator
10.times { print g.next, " " }  # Print first 10 numbers
g.rewind; puts                  # Start over, on a new line
10.times { print g.next, " " }  # Print the first 10 again

Note that we can make this FibonacciGenerator class Enumerable by including the Enumerable module and adding the following
          each method (which we first used
          in External Iterators):
def each
   loop { yield self.next }
end

Conversely, suppose we have an Enumerable object and want to make an
          enumerator-style generator out of it. We can use this class:
class Generator
  def initialize(enumerable)
    @enumerable = enumerable  # Remember the enumerable object
    create_fiber              # Create a fiber to enumerate it
  end

  def next                    # Return the next element
    @fiber.resume             # by resuming the fiber
  end

  def rewind                  # Start the enumeration over
    create_fiber              # by creating a new fiber
  end

  private
  def create_fiber            # Create the fiber that does the enumeration
    @fiber = Fiber.new do     # Create a new fiber
      @enumerable.each do |x| # Use the each method
        Fiber.yield(x)        # But pause during enumeration to return values
      end              
      raise StopIteration     # Raise this when we're out of values
    end
  end
end

g = Generator.new(1..10)  # Create a generator from an Enumerable like this
loop { print g.next }     # And use it like an enumerator like this
g.rewind                  # Start over like this
g = (1..10).to_enum       # The to_enum method does the same thing
loop { print g.next }

Although it is useful to study the implementation of this
          Generator class, the class itself
          doesn’t provide any functionality over that provided by the to_enum method.

Advanced fiber features



The fiber module in the standard library enables additional, more
          powerful features of the fibers. To use these features, you
          must:
require 'fiber'

However, you should avoid using these additional features
          wherever possible, because:
	They are not supported by all implementations. JRuby, for
              example, cannot support
              them on current Java VMs.

	They are so powerful that misusing them can crash the Ruby
              VM.



The core features of the Fiber class implement semicoroutines.
          These are not true coroutines because there is a fundamental
          asymmetry between the caller and the fiber: the caller uses resume and the fiber uses yield. If you require the fiber library, however, the Fiber class gets a transfer method that allows any fiber to
          transfer control to any other fiber. Here is an example in which two
          fibers use the transfer method to
          pass control (and values) back and forth:
require 'fiber'

f = g = nil

f = Fiber.new {|x|        # 1: 
  puts "f1: #{x}"         # 2: print "f1: 1"
  x = g.transfer(x+1)     # 3: pass 2 to line 8
  puts "f2: #{x}"         # 4: print "f2: 3"
  x = g.transfer(x+1)     # 5: return 4 to line 10
  puts "f3: #{x}"         # 6: print "f3: 5"
  x + 1                   # 7: return 6 to line 13
}
g = Fiber.new {|x|        # 8:
  puts "g1: #{x}"         # 9: print "g1: 2"
  x = f.transfer(x+1)     #10: return 3 to line 3
  puts "g2: #{x}"         #11: print "g2: 4"
  x = f.transfer(x+1)     #12: return 5 to line 5
}
puts f.transfer(1)        #13: pass 1 to line 1

This code produces the following output:
f1: 1
g1: 2
f2: 3
g2: 4
f3: 5
6

You will probably never need to use this transfer method, but its existence helps
          explain the name “fiber.” Fibers can be thought of as independent
          paths of execution within a single thread of execution. Unlike
          threads, however, there is no scheduler to transfer control among
          fibers; fibers must explicitly schedule themselves with transfer.
In addition to the transfer
          method, the fiber library also
          defines an instance method alive?, to determine if the body of a
          fiber is still running, and a class method current, to return the Fiber object that currently has
          control.


Continuations



A continuation is another  complex and obscure control
        structure that most programmers will never need to use. A continuation
        takes the form of the Kernel method
        callcc and the Continuation object. Continuations are part
        of the core platform in Ruby 1.8, but they have been replaced by
        fibers and moved to the standard library in Ruby 1.9. To use them in
        Ruby 1.9, you must explicitly require them with:
require 'continuation'

Implementation difficulties prevent other implementations of
        Ruby (such as JRuby, the
        Java-based implementation) from supporting continuations. Because they
        are no longer well supported, continuations should be considered a
        curiosity, and new Ruby code should not use them. If you have Ruby 1.8
        code that relies on continuations, you may be able to convert it to
        use fibers in Ruby 1.9.
The Kernel method callcc executes its block, passing a newly
        created Continuation object as the
        only argument. The Continuation
        object has a call method, which
        makes the callcc invocation return
        to its caller. The value passed to call becomes the return value of the
        callcc invocation. In this sense,
        callcc is like catch, and the call method of
        the Continuation object is like
        throw.
Continuations are different, however, because the Continuation object can be saved into a
        variable outside of the callcc
        block. The call method of this
        object may be called repeatedly, and causes control to jump to the
        first statement following the callcc invocation.
The following code demonstrates how continuations can be used to
        define a method that works like the goto statement in the BASIC programming
        language:
# Global hash for mapping line numbers (or symbols) to continuations
$lines = {}  

# Create a continuation and map it to the specified line number
def line(symbol)
  callcc  {|c| $lines[symbol] = c }
end

# Look up the continuation associated with the number, and jump there
def goto(symbol)
  $lines[symbol].call
end

# Now we can pretend we're programming in BASIC
i = 0
line 10              # Declare this spot to be line 10
puts i += 1
goto 10 if i < 5     # Jump back to line 10 if the condition is met

line 20              # Declare this spot to be line 20
puts i -= 1
goto 20 if i > 0



Chapter 6. Methods, Procs, Lambdas, and Closures



[image: image with no caption]

A method is a named block of parameterized code associated with one or
    more objects. A method invocation specifies the method name, the object on which it is to be invoked
    (sometimes called the receiver), and zero or more
    argument values that are assigned to the named method parameters. The
    value of the last expression evaluated in the method becomes the value of
    the method invocation expression.
Many languages distinguish between functions, which have no
    associated object, and methods, which are invoked on a receiver object.
    Because Ruby is a purely object-oriented language, all methods are true
    methods and are associated with at least one object. We have not covered
    class definitions in Ruby yet, so the example methods defined in this
    chapter look like global functions with no associated object. In fact,
    Ruby implicitly defines and invokes them as private methods of the
    Object class.
Methods are a fundamental part of Ruby’s syntax, but they are not
    values that Ruby programs can operate on. That is, Ruby’s methods are not
    objects in the way that strings, numbers, and arrays are. It is possible,
    however, to obtain a Method object that
    represents a given method, and we can invoke methods indirectly through
    Method objects.
Methods are not Ruby’s only form of parameterized executable code.
    Blocks, which we introduced in Blocks, are executable
    chunks of code and may have parameters. Unlike methods, blocks do not have
    names, and they can only be invoked indirectly through an iterator
    method.
Blocks, like methods, are not objects that Ruby can manipulate. But
    it’s possible to create an object that represents a block, and this is
    actually done with some frequency in Ruby programs. A Proc object represents a block. Like a Method object, we can execute the code of a
    block through the Proc that represents
    it. There are two varieties of Proc
    objects, called procs and
    lambdas, which have slightly different behavior. Both
    procs and lambdas are functions rather than methods invoked on an object.
    An important feature of procs and lambdas is that they are
    closures: they retain access to the local variables
    that were in scope when they were defined, even when the proc or lambda is
    invoked from a different scope.
Methods have a rich and fairly complex syntax in Ruby, and the first
    four sections of this chapter are dedicated to them. We begin by
    explaining how to define simple methods, and then follow this introductory
    section with three more advanced sections covering methods names, method
    parentheses, and method parameters. Note that method invocation is a kind
    of expression, covered earlier in Method Invocations.
    Further details on method invocation are provided throughout the first
    four sections of this chapter.
After covering methods, we turn our attention to procs and lambdas,
    explaining how to create and invoke them, and also detailing the somewhat
    subtle differences between them. A separate section covers the use of
    procs and lambdas as closures. This is followed by a section on the
    Method object, which actually behaves
    much like a lambda. The chapter ends
    with an advanced exploration of functional programming in Ruby.
Defining Simple Methods



You’ve seen many method invocations in examples throughout this book,
      and method invocation syntax was described in detail in Method Invocations. Now we turn to the syntax for defining
      methods. This section explains method definition basics. It is followed
      by three more sections that cover method names, method parentheses, and
      method arguments in more detail. These additional sections explain more
      advanced material and are relevant
      to both method definition and method invocation.
Methods are defined with the def keyword. This is followed by the method name and an optional list
      of parameter names in parentheses. The Ruby code that constitutes the
      method body follows the parameter list, and the end of the method is
      marked with the end keyword.
      Parameter names can be used as variables within the method body, and the
      values of these named parameters come from the arguments to a method
      invocation. Here is an example method:
# Define a method named 'factorial' with a single parameter 'n'
def factorial(n)
  if n < 1                # Test the argument value for validity
    raise "argument must be > 0"
  elsif n == 1            # If the argument is 1
    1                     # then the value of the method invocation is 1
  else                    # Otherwise, the factorial of n is n times
    n * factorial(n-1)    # the factorial of n-1
  end
end

This code defines a method named factorial. The method has a single parameter
      named n. The identifier n is used as a variable within the body of the
      method. This is a recursive method, so the body of the method includes
      an invocation of the method. The invocation is simply the name of the
      method followed by the argument value in parentheses.
Method Return Value



Methods may terminate normally or abnormally. Abnormal termination
        occurs when the method raises an exception. The factorial method shown earlier terminates
        abnormally if we pass it an argument less than 1. If a method terminates normally, then the
        value of the method invocation expression is the value of the last
        expression evaluated within the method body. In the factorial method, that last expression will
        either be 1 or n*factorial(n-1).
The return keyword is used to
        force a return prior to the end of the method. If an expression
        follows the return keyword, then
        the value of that expression is returned. If no expression follows,
        then the return value is nil. In
        the following variant of the factorial method, the return keyword is required:
def factorial(n)
  raise "bad argument" if n < 1
  return 1 if n == 1
  n * factorial(n-1)
end

We could also use return on
        the last line of this method body to emphasize that this expression is
        the method’s return value. In common practice, however, return is omitted where it is not required.
Ruby methods may return more than one value. To do this, use an
        explicit return statement, and
        separate the values to be returned with commas:
# Convert the Cartesian point (x,y) to polar (magnitude, angle) coordinates
def polar(x,y)
  return Math.hypot(y,x), Math.atan2(y,x)
end

When there is more than one return value, the values are
        collected into an array, and the array becomes the single return value
        of the method. Instead of using the return statement with multiple values, we
        can simply create an array of values ourselves:
# Convert polar coordinates to Cartesian coordinates
def cartesian(magnitude, angle)
  [magnitude*Math.cos(angle), magnitude*Math.sin(angle)]
end

Methods of this form are typically intended for use with
        parallel assignment (see Parallel Assignment) so
        that each return value is assigned to a separate variable:
distance, theta = polar(x,y)
x,y = cartesian(distance,theta)


Methods and Exception Handling



A def statement that defines a method may include exception-handling
        code in the form of rescue,
        else, and ensure clauses, just as a begin
        statement can. These exception-handling clauses go after the end of
        the method body but before the end
        of the def statement. In short
        methods, it can be particularly tidy to associate your rescue clauses with the def statement. This also means you don’t
        have to use a begin statement and
        the extra level of indentation that comes with it. See rescue with Method, Class, and Module Definitions for further details.

Invoking a Method on an Object



Methods are always invoked on an object. (This object is
        sometimes called the receiver
        in a reference to an object-oriented paradigm in which methods are
        called “messages” and are “sent to” receiver objects.) Within the body
        of a method, the keyword self
        refers to the object on which the method was invoked. If we don’t
        specify an object when invoking a method, then the method is
        implicitly invoked on self.
You’ll learn how to define methods for classes of objects in
        Chapter 7. Notice, however, that you’ve already seen
        examples of invoking methods on objects, in code like this:
first = text.index(pattern)

Like most object-oriented languages, Ruby uses . to separate the object from the method to
        be invoked on it. This code passes the value of the variable pattern to the method named index of the object stored in the variable
        text, and stores the return value
        in the variable first.

Defining Singleton Methods



The methods we’ve defined so far are all global methods. If we place a
        def statement like the ones shown
        earlier inside a class statement,
        then the methods that are defined are instance methods of the class;
        these methods are defined on all objects that are instances of the
        class. (Classes and instance methods are explained in Chapter 7.)
It is also possible, however, to use the def statement to define a method on a single
        specified object. Simply follow the def keyword with an expression that
        evaluates to an object. This expression should be followed by a period
        and the name of the method to be defined. The resulting method is
        known as a singleton method because it is available only on a single
        object:
o = "message"    # A string is an object
def o.printme    # Define a singleton method for this object
  puts self
end
o.printme        # Invoke the singleton 

Class methods (covered in Chapter 7) such as
        Math.sin and File.delete are actually singleton methods.
        Math is a constant that refers to a
        Module object, and File is a constant that refers to a Class object. These two objects have
        singleton methods named sin and
        delete, respectively.
Ruby implementations typically treat Fixnum and Symbol values as immediate values rather
        than as true object references. (See Immediate values.) For this reason, singleton methods may
        not be defined on Fixnum and
        Symbol objects. For consistency,
        singletons are also prohibited on other Numeric objects.

Undefining Methods



Methods are defined with the def statement and may be undefined with
        the undef
        statement:
def sum(x,y); x+y; end      # Define a method
puts sum(1,2)               # Use it
undef sum                   # And undefine it

In this code, the def
        statement defines a global method, and undef undefines it. undef also works within classes (which are
        the subject of Chapter 7) to undefine the instance
        methods of the class. Interestingly, undef can be used to undefine inherited
        methods, without affecting the definition of the method in the class
        from which it is inherited. Suppose class A defines a method m, and class B is a subclass of A and therefore inherits m. (Subclasses and inheritance are also
        explained in Chapter 7.) If you don’t want to allow
        instances of class B to be able to
        invoke m, you can use undef m within the body of the
        subclass.
undef is not a commonly used
        statement. In practice, it is much more common to redefine a method
        with a new def statement than it is
        to undefine or delete the method.
Note that the undef statement
        must be followed by a single identifier that specifies the method
        name. It cannot be used to undefine a singleton method in the way that
        def can be used to define such a
        method.
Within a class or module, you can also use undef_method (a private method of Module) to undefine methods. Pass a symbol
        representing the name of the method to be undefined.



Method Names



By convention, method names begin with a lowercase letter.
      (Method names can begin with a capital letter, but that makes them look
      like constants.) When a method name is longer than one word, the usual
      convention is to separate the words with underscores like_this rather than using mixed case
      likeThis.
Method Name Resolution
This section describes the names you give to methods when you
        define them. A related topic is method name resolution: how does the
        Ruby interpreter find the definition of the method named in a method
        invocation expression? The answer to that question must wait until
        we’ve discussed classes in Ruby. It is covered in Method Lookup.

Method names may (but are not required to) end with an equals
      sign, a question mark, or an exclamation point. An equals sign suffix signifies that
      the method is a setter that can be invoked using
      assignment syntax. Setter methods are described in Assigning to Attributes and Array Elements and additional examples are provided in
      Accessors and Attributes. The question mark and
      exclamation point suffixes have no special meaning to the Ruby
      interpreter, but they are allowed because they enable two
      extraordinarily useful naming conventions.
The first convention is that any method whose name ends with a
      question mark returns a value that answers the question posed by the
      method invocation. The empty? method
      of an array, for example, returns true if the array has no elements. Methods
      like these are called predicates. Predicates typically return one of the Boolean values
      true or false, but this is not required, as any value
      other than false or nil works like true when a Boolean value is required. (The
      Numeric method nonzero?, for example, returns nil if the number it is invoked on is zero,
      and just returns the number otherwise.)
The second convention is that any method whose name ends with an
      exclamation mark should be used with caution. The Array object, for
      example, has a sort method that makes
      a copy of the array, and then sorts that copy. It also has a sort! method that sorts the array in place.
      The exclamation mark indicates that you need to be more careful when
      using that version of the method.
Often, methods that end with an exclamation mark are mutators, which alter the
      internal state of an object. But this is not always the case; there are
      many mutators that do not end with an exclamation mark, and a number of
      nonmutators that do. Mutating methods (such as Array.fill) that do not have a nonmutating
      variant do not typically have an exclamation point.
Consider the global function exit: it makes the Ruby program stop running
      in a controlled way. There is also a variant named exit! that aborts the program immediately
      without running any END blocks or
      shutdown hooks registered with at_exit. exit! isn’t a mutator; it’s the “dangerous”
      variant of the exit method and is
      flagged with ! to remind a programmer
      using it to be careful.
Operator Methods



Many of Ruby’s operators, such as +, *, and
        even the array index operator [],
        are implemented with methods that you can define in your own classes.
        You define an operator by defining a method with the same “name” as
        the operator. (The only exceptions are the unary plus and minus
        operators, which use method names +@ and -@.) Ruby allows you to do this even
        though the method name is all punctuation. You might end up with a
        method definition like this:
def +(other)               # Define binary plus operator: x+y is x.+(y)
  self.concatenate(other)
end       

Table 4-2 in Chapter 4 specifies which of Ruby’s operators are
        defined as methods. These operators are the only punctuation-based
        method names that you can use: you can’t invent new operators or
        define methods whose names consist of other sequences of punctuation
        characters. There are additional examples of defining method-based
        operators in Defining Operators.
Methods that define a unary operator are passed no arguments.
        Methods that define binary operators are passed one argument and
        should operate on self and the
        argument. The array access operators [] and []= are special because they can be invoked
        with any number of arguments. For []=, the last argument is always the value
        being assigned.

Method Aliases



It is not uncommon for methods in Ruby to have more than one name. The
        language has a keyword alias that
        serves to define a new name for an existing method. Use
        it like this:
alias aka also_known_as   # alias new_name existing_name

After executing this statement, the identifier aka will refer to the same method thats
        also_known_as does.
Method aliasing is one of the things that makes Ruby an
        expressive and natural language. When there are multiple names for a
        method, you can choose the one that seems most natural in your code.
        The Range class, for example, defines a method for testing whether a
        value falls within the range. You can call this method with the name
        include? or with the name member?. If you are treating a range as a
        kind of set, the name member? may
        be the most natural choice.
A more practical reason for aliasing methods is to insert new
        functionality into a method. The
        following is a common idiom for augmenting existing methods:
def hello                       # A nice simple method
  puts "Hello World"            # Suppose we want to augment it...
end

alias original_hello hello      # Give the method a backup name

def hello                       # Now we define a new method with the old name
  puts "Your attention please"  # That does some stuff
  original_hello                # Then calls the original method
  puts "This has been a test"   # Then does some more stuff
end

In this code, we’re working on global methods. It is more common
        to use alias with the instance
        methods of a class. (We’ll learn about this in Chapter 7.) In this situation, alias must be used within the class whose method is to be renamed. Classes
        in Ruby can be “reopened” (again, this is discussed in Chapter 7)—which means that your code can take an existing
        class, ‘open’ it with a class
        statement, and then use alias as
        shown in the example to augment or alter the existing methods of that
        class. This is called “alias chaining” and is covered in detail in
        Alias Chaining.
Aliasing Is Not Overloading
A Ruby method may have two names, but two methods cannot share
          a single name. In statically typed languages, methods can be
          distinguished by the number and type of their arguments, and two or
          more methods may share the same name as long as they expect
          different numbers or types of arguments. This kind of overloading is
          not possible in Ruby.
On the other hand, method overloading is not really necessary
          in Ruby. Methods can accept arguments of any class and can be
          written to do different things based on the type of the arguments
          they are passed. Also (as we’ll see later), Ruby’s method arguments
          can be declared with default values, and these arguments may be
          omitted form method invocations. This allows a single method to be
          invoked with differing numbers of arguments.



Methods and Parentheses



Ruby allows parentheses to be omitted from most method
      invocations. In simple cases, this results in clean-looking code. In
      complex cases, however, it causes syntactic ambiguities and confusing
      corner cases. We’ll consider these in the sections that follow.
Optional Parentheses



Parentheses are omitted from method invocations in many common Ruby
        idioms. The following two lines of code, for example, are
        equivalent:
puts "Hello World"
puts("Hello World")

In the first line, puts looks
        like a keyword, statement, or command built in to the language. The
        equivalent second line demonstrates that it is simply the invocation
        of a global method, with the parentheses omitted. Although the second
        form is clearer, the first form is more concise, more commonly used,
        and arguably more natural.
Next, consider this code:
greeting = "Hello"
size = greeting.length

If you are accustomed to other object-oriented languages, you
        may think that length is a
        property, field, or variable of string objects. Ruby is strongly
        object oriented, however, and its objects are fully encapsulated; the
        only way to interact with them is by invoking their methods. In this
        code, greeting.length is a method
        invocation. The length method
        expects no arguments and is invoked without parentheses. The following code is equivalent:
size = greeting.length()

Including the optional parentheses emphasizes that a
        method invocation is occurring. Omitting the parentheses in
        method invocations with no arguments gives the illusion of property
        access, and is a very common practice.
Parentheses are very commonly omitted when there are zero or one
        arguments to the invoked method. Although it is less common, the
        parentheses may be omitted even when there are multiple arguments, as
        in the following code:
x = 3              # x is a number
x.between? 1,5     # same as x.between?(1,5)

Parentheses may also be omitted around the parameter list in
        method definitions, though it is hard to argue that this makes your
        code clearer or more readable. The following code, for example,
        defines a method that returns the sum of its arguments:
def sum x, y
  x+y
end


Required Parentheses



Some code is ambiguous if the parentheses are omitted, and here
        Ruby requires that you include them. The most common case is nested
        method invocations of the form f g x, y. In Ruby, invocations of that
        form mean f(g(x,y)). Ruby 1.8 issues a warning, however, because the code could also
        be interpreted as f(g(x),y). The
        warning has been removed in Ruby 1.9. The following code, using the
        sum method defined above, prints
        4, but issues a warning in Ruby
        1.8:
puts sum 2, 2

To remove the warning, rewrite the code with parentheses around
        the arguments:
puts sum(2,2)

Note that using parentheses around the outer method invocation
        does not resolve the ambiguity:
puts(sum 2,2)   # Does this mean puts(sum(2,2)) or puts(sum(2), 2)?

An expression involving nested function calls is only ambiguous
        when there is more than one argument. The Ruby interpreter can only
        interpret the following code in one way:
puts factorial x   # This can only mean puts(factorial(x))

Despite the lack of ambiguity here, Ruby 1.8 still issues a
        warning if you omit the parentheses around the x.
Sometimes omitting parentheses is a true syntax error rather than a simple warning. The following
        expressions, for example, are completely ambiguous without
        parentheses, and Ruby doesn’t even attempt to guess what you
        mean:
puts 4, sum 2,2   # Error: does the second comma go with the 1st or 2nd method?
[sum 2,2]         # Error: two array elements or one?

There is another wrinkle that arises from the fact that
        parentheses are optional. When you do use
        parentheses in a method invocation, the opening parenthesis
        must immediately follow the method name, with no
        intervening space. This is because parentheses do double-duty: they
        can be used around an argument list in a method invocation, and they
        can be used for grouping expressions. Consider the following two
        expressions, which differ only by a single space:
square(2+2)*2    # square(4)*2 = 16*2 = 32
square (2+2)*2   # square(4*2) = square(8) = 64

In the first expression, the parentheses represent method
        invocation. In the second, they represent expression grouping. To
        reduce the potential for confusion, you should always use parentheses
        around a method invocation if any of the arguments use parentheses. The second expression would
        be written more clearly as:
square((2+2)*2)

We’ll end this discussion of parentheses with one final twist.
        Recall that the following expression is ambiguous and causes a
        warning:
puts(sum 2,2)   # Does this mean puts(sum(2,2)) or puts(sum(2), 2)?

The best way to resolve this ambiguity is to put parentheses
        around the arguments to the sum
        method. Another way is to add a space between puts and the opening parenthesis:
puts (sum 2,2)   

Adding the space converts the method invocation parentheses into
        expression grouping parentheses. Because these parentheses group a
        subexpression, the comma can no longer be interpreted as an argument
        delimiter for the puts
        invocation.


Method Arguments



Simple method declarations include a comma-separated list of
      argument names (in optional parentheses) after the method name. But
      there is much more to Ruby’s method arguments. The subsections that
      follow explain:
	How to declare an argument that has a default value, so that
          the argument can be omitted when the method is invoked

	How to declare a method that accepts any number of
          arguments

	How to simulate named method arguments with special syntax for
          passing a hash to a method

	How to declare a method so that the block associated with an
          invocation of the method is treated as a method argument



Parameter Defaults



When you define a method, you can specify default values for some or all
        of the parameters. If you do
        this, then your method may be invoked with fewer argument values than
        the declared number of parameters. If arguments are omitted, then the
        default value of the parameter is used in its place. Specify a default
        value by following the parameter name with an equals sign and a
        value:
def prefix(s, len=1)
  s[0,len]
end

This method declares two parameters, but the second one has a
        default. This means that we can invoke it with either one argument or
        two:
prefix("Ruby", 3)    # => "Rub"
prefix("Ruby")       # => "R"

Argument defaults need not be constants: they may be arbitrary
        expressions, and can refer to instance variables and to previous
        parameters in the parameter list. For example:
# Return the last character of s or the substring from index to the end
def suffix(s, index=s.size-1)
  s[index, s.size-index]
end

Parameter defaults are evaluated when a method is invoked rather
        than when it is parsed. In the following method, the default value
        [] produces a new empty array on
        each invocation, rather than reusing a single array created when the
        method is defined:
# Append the value x to the array a, return a.
# If no array is specified, start with an empty one.
def append(x, a=[])
  a << x
end

In Ruby 1.8, method parameters with default values must appear
        after all ordinary parameters in the parameter list. Ruby 1.9 relaxes
        this restriction and allows ordinary parameters to appear after
        parameters with defaults. It still requires all parameters with
        defaults to be adjacent in the parameter list—you can’t declare two
        parameters with default values with an ordinary parameter between
        them, for example. When a method has more than one parameter with a
        default value, and you invoke the method with an argument for some,
        but not all, of these parameters, they are filled in from left to
        right. Suppose a method has two parameters, and both of those
        parameters have defaults. You can invoke this method with zero, one,
        or two arguments. If you specify one argument, it is assigned to the
        first parameter and the second parameter uses its default value. There
        is no way, however, to specify a value for the second parameter and
        use the default value of the first parameter.

Variable-Length Argument Lists and Arrays



Sometimes we want to write methods that can accept an
        arbitrary number of arguments. To do this, we put an * before one of the method’s parameters. Within the body of the
        method, this parameter will refer to an array that contains the zero
        or more arguments passed at that
        position. For example:
# Return the largest of the one or more arguments passed
def max(first, *rest)
  # Assume that the required first argument is the largest
  max = first
  # Now loop through each of the optional arguments looking for bigger ones
  rest.each {|x| max = x if x > max }
  # Return the largest one we found
  max
end

The max method requires at least one argument, but it may accept any
        number of additional arguments. The first argument is available
        through the first parameter. Any
        additional arguments are stored in the rest array. We can invoke max like this:
max(1)       # first=1, rest=[]   
max(1,2)     # first=1, rest=[2]  
max(1,2,3)   # first=1, rest=[2,3]

Note that in Ruby, all Enumerable objects automatically have a max method, so the method defined here is
        not particularly useful.
No more than one parameter may be prefixed with an *. In Ruby 1.8, this parameter must appear
        after all ordinary parameters and after all parameters with defaults
        specified. It should be the last parameter of the method, unless the
        method also has a parameter with an & prefix (see below). In Ruby 1.9, a
        parameter with an * prefix must
        still appear after any parameters with defaults specified, but it may
        be followed by additional ordinary parameters. It must also still
        appear before any &-prefixed
        parameter.
Passing arrays to methods



We’ve seen how * can
          be used in a method declaration to cause multiple
          arguments to be gathered or coalesced into a single array. It can
          also be used in a method invocation to scatter, expand, or explode
          the elements of an array (or range or enumerator) so that each
          element becomes a separate method argument. The * is sometimes called the splat operator,
          although it is not a true operator. We’ve seen it used before in the
          discussion of parallel assignment in Parallel Assignment.
Suppose we wanted to find the maximum value in an array (and
          that we didn’t know that Ruby arrays have a built-in max method!). We could pass the elements
          of the array to the max method
          (defined earlier) like this:
data = [3, 2, 1]
m = max(*data)   # first = 3, rest=[2,1] => 3

Consider what happens without the *:
m = max(data)   # first = [3,2,1], rest=[] => [3,2,1]

In this case, we’re passing an array as the first and only
          argument, and our max method
          returns that first argument without performing any comparisons on
          it.
The * can also be used with
          methods that return arrays to expand those arrays for use in another
          method invocation. Consider the polar and cartesian methods defined earlier in this chapter:
# Convert the point (x,y) to Polar coordinates, then back to Cartesian
x,y = cartesian(*polar(x, y))

In Ruby 1.9, enumerators are splattable objects. To find the
          largest letter in a string, for example, we could write:
max(*"hello world".each_char)  # => 'w'



Mapping Arguments to Parameters



When a method definition includes parameters with default values or a
        parameter prefixed with an *, the
        assignment of argument values to parameters during method invocation
        gets a little bit tricky.
In Ruby 1.8, the position of the special parameters is restricted so
        that argument values are assigned to parameters from left to right.
        The first arguments are assigned to the ordinary parameters. If there
        are any remaining arguments, they are assigned to the parameters that
        have defaults. And if there are still more arguments, they are
        assigned to the array argument.
Ruby 1.9 has to be more clever about the way it maps arguments to
        parameters because the order of the parameters is no longer
        constrained. Suppose we have a method that is declared with o ordinary parameters, d parameters with default values, and one
        array parameter prefixed with *,
        and that these parameters appear in some arbitrary order. Now assume
        that we invoke this method with a
        arguments.
If a is less than o, an ArgumentError is raised; we have not
        supplied the minimum required
        number of arguments.
If a is greater than or equal
        to o and less than or equal to
        o+d, then the leftmost a–o parameters with defaults will have
        arguments assigned to them. The remaining (to the right) o+d–a parameters with defaults will not have
        arguments assigned to them, and will just use their default
        values.
If a is greater than o+d, then the array parameter whose name is
        prefixed with an * will have
        a–o–d arguments stored in it;
        otherwise, it will be empty.
Once these calculations are performed, the arguments are mapped
        to parameters from left to right, assigning the appropriate number of
        arguments to each parameter.

Hashes for Named Arguments



When a method requires more than two or three arguments, it can be
        difficult for the programmer invoking the method to remember the
        proper order for those arguments. Some languages allow you to write
        method invocations that explicitly specify a parameter name for each
        argument that is passed. Ruby does not support this method invocation
        syntax, but it can be approximated if you write a method that expects
        a hash as its argument or as one of its arguments:
# This method returns an array a of n numbers. For any index i, 0 <= i < n,
# the value of element a[i] is m*i+c. Arguments n, m, and c are passed
# as keys in a hash, so that it is not necessary to remember their order.
def sequence(args)
  # Extract the arguments from the hash.
  # Note the use of the || operator to specify defaults used
  # if the hash does not define a key that we are interested in.
  n = args[:n] || 0
  m = args[:m] || 1
  c = args[:c] || 0

  a = []                      # Start with an empty array
  n.times {|i| a << m*i+c }   # Calculate the value of each array element
  a                           # Return the array
end

You might invoke this method with a hash literal argument like
        this:
sequence({:n=>3, :m=>5})      # => [0, 5, 10]

In order to better support this style of programming, Ruby
        allows you to omit the curly braces around the hash literal if it is
        the last argument to the method (or if the only argument that follows
        it is a block argument, prefixed with &). A hash without braces is sometimes
        called a bare hash, and when we use one it looks
        like we are passing separate named arguments, which we can reorder however we like:
sequence(:m=>3, :n=>5)        # => [0, 3, 6, 9, 12]

As with other ruby methods, we can omit the parentheses,
        too:
# Ruby 1.9 hash syntax
sequence c:1, m:3, n:5        # => [1, 4, 7, 10, 13]

If you omit the parentheses, then you must
        omit the curly braces. If curly braces follow the method name outside
        of parentheses, Ruby thinks you’re passing a block to the
        method:
sequence {:m=>3, :n=>5}       # Syntax error!


Block Arguments



Recall from Iterators and Enumerable Objects that a block is a
        chunk of Ruby code associated with a method invocation, and that an
        iterator is a method that expects a block. Any method invocation may
        be followed by a block, and any method that has a block associated
        with it may invoke the code in that block with the yield statement. To refresh your memory, the following code is a
        block-oriented variant on the sequence method developed earlier in the
        chapter:
# Generate a sequence of n numbers m*i + c and pass them to the block
def sequence2(n, m, c) 
  i = 0
  while(i < n)         # loop n times
    yield i*m + c      # pass next element of the sequence to the block
    i += 1
  end
end

# Here is how you might use this version of the method
sequence2(5, 2, 2) {|x| puts x }  # Print numbers 2, 4, 6, 8, 10

One of the features of blocks is their anonymity. They are not
        passed to the method in a traditional sense, they have no name, and
        they are invoked with a keyword rather than with a method. If you
        prefer more explicit control over a block (so that you can pass it on
        to some other method, for example), add a final argument to your
        method, and prefix the argument name with an ampersand.[*] If you do this, then that argument will refer to the
        block—if any—that is passed to the method. The value of the argument
        will be a Proc object, and instead
        of using yield, you
        invoke the call method of
        the Proc:
def sequence3(n, m, c, &b) # Explicit argument to get block as a Proc
  i = 0
  while(i < n)
    b.call(i*m + c)        # Invoke the Proc with its call method
    i += 1
  end
end

# Note that the block is still passed outside of the parentheses
sequence3(5, 2, 2) {|x| puts x }

Notice that using the ampersand in this way changes only the
        method definition. The method invocation remains the same. We end up
        with the block argument being declared inside the parentheses of the
        method definition, but the block itself is still specified outside the
        parentheses of the method invocation.
Passing Proc Objects Explicitly
If you create your own Proc
          object (we’ll see how to do this later in the chapter) and want to
          pass it explicitly to a method, you can do this as you would pass
          any other value—a Proc is an
          object like any other. In this case, you should not use an ampersand
          in the method definition:
# This version expects an explicitly-created Proc object, not a block
def sequence4(n, m, c, b)  # No ampersand used for argument b
  i = 0
  while(i < n)
    b.call(i*m + c)        # Proc is called explicitly
    i += 1
  end
end

p = Proc.new {|x| puts x }  # Explicitly create a Proc object 
sequence4(5, 2, 2, p)       # And pass it as an ordinary argument


Twice before in this chapter, we’ve said that a special kind of
        parameter must be the last one in the parameter list. Block arguments
        prefixed with ampersands must really be the last
        one. Because blocks are passed unusually in method invocations, named
        block arguments are different and do not interfere with array or hash
        parameters in which the brackets and braces have been omitted. The
        following two methods are legal, for example:
def sequence5(args, &b) # Pass arguments as a hash and follow with a block
  n, m, c = args[:n], args[:m], args[:c]
  i = 0
  while(i < n)
    b.call(i*m + c)
    i += 1
  end
end

# Expects one or more arguments, followed by a block
def max(first, *rest, &block) 
  max = first
  rest.each {|x| max = x if x > max }
  block.call(max)
  max
end

These methods work fine, but notice that you can avoid the
        complexity of these cases by simply leaving your blocks anonymous and
        calling them with yield.
It is also worth noting that the yield statement still works in a method
        defined with an & parameter.
        Even if the block has been converted to a Proc object and passed as an argument, it
        can still be invoked as an anonymous block, as if the block argument
        was not there.
Using & in method invocation



We saw earlier that you can use * in a method definition to specify that
          multiple arguments should be packed into an array, and that you can
          use * in a method invocation to
          specify that an array should be unpacked so that its elements become
          separate arguments. & can also be used in definitions and invocations. We’ve
          just seen that & in a method
          definition allows an ordinary block associated with a method
          invocation to be used as a named Proc object inside the method. When
          & is used before a Proc object in a method invocation, it
          treats the Proc as if it was an
          ordinary block following the invocation.
Consider the following code which sums the contents of two
          arrays:
a, b = [1,2,3], [4,5]                     # Start with some data.
sum = a.inject(0) {|total,x| total+x }    # => 6. Sum elements of a.
sum = b.inject(sum) {|total,x| total+x }  # => 15. Add the elements of b in.

We described the inject
          iterator earlier in Enumerable Objects. If you
          don’t remember, you can look up its documentation with ri Enumerable.inject. The important thing
          to notice about this example is that the two blocks are identical.
          Rather than having the Ruby interpreter parse the same block twice,
          we can create a Proc to represent
          the block, and use the single Proc object twice:
a, b = [1,2,3], [4,5]                     # Start with some data.
summation = Proc.new {|total,x| total+x } # A Proc object for summations.
sum = a.inject(0, &summation)             # => 6
sum = b.inject(sum, &summation)           # => 15

If you use & in a
          method invocation, it must appear before the last argument in the
          invocation. Blocks can be associated with any method call, even when
          the method is not expecting a block, and never uses yield. In the same way, any method
          invocation may have an &
          argument as its last argument.
In a method invocation an & typically appears before a Proc object. But it is actually allowed
          before any object with a to_proc
          method. The Method class (covered
          later in this chapter) has such a method, so Method objects can be passed to iterators
          just as Proc objects can.
In Ruby 1.9, the Symbol
          class defines a to_proc method,
          allowing symbols to be prefixed with & and passed to iterators. When a
          symbol is passed like this, it is assumed to be the name of a
          method. The Proc object returned
          by the to_proc method invokes the
          named method of its first argument, passing any remaining arguments
          to that named method. The canonical case is this: given an array of
          strings, create a new array of those strings, converted to
          uppercase. Symbol.to_proc allows
          us to accomplish this elegantly as follows:
words = ['and', 'but', 'car']     # An array of words
uppercase = words.map &:upcase    # Convert to uppercase with String.upcase
upper = words.map {|w| w.upcase } # This is the equivalent code with a block





[*] We use the term “block argument” instead of “block
            parameter” for method parameters prefixed with &. This is because the phrase “block
            parameter” refers to the parameter list (such as |x|) of the block itself.



Procs and Lambdas



Blocks are syntactic structures in
      Ruby; they are not objects, and cannot be manipulated as objects. It is
      possible, however, to create an object that represents a block.
      Depending on how the object is created, it is called a
      proc or a lambda. Procs have
      block-like behavior and lambdas have method-like behavior. Both,
      however, are instances of class Proc.
The subsections that follow explain:
	How to create Proc objects
          in both proc and lambda forms

	How to invoke Proc
          objects

	How to determine how many arguments a Proc expects

	How to determine if two Proc objects are the same

	How procs and lambdas differ from each other



Creating Procs



We’ve already seen one way to create a Proc object: by associating a block with a
        method that is defined with an ampersand-prefixed block argument.
        There is nothing preventing such a method from returning the Proc object for use outside the
        method:
# This method creates a proc from a block
def makeproc(&p)  # Convert associated block to a Proc and store in p
  p               # Return the Proc object
end

With a makeproc method
        like this defined, we can create a Proc object for ourselves:
adder = makeproc {|x,y| x+y }

The variable adder now refers
        to a Proc object. Proc objects created in this way are procs,
        not lambdas. All Proc objects have
        a call method that, when invoked,
        runs the code contained by the block from which the proc was created.
        For example:
sum = adder.call(2,2)  # => 4

In addition to being invoked, Proc objects can be passed to methods,
        stored in data structures and otherwise manipulated like any other
        Ruby object.
As well as creating procs by method invocation, there are three
        methods that create Proc objects
        (both procs and lambdas) in Ruby. These methods are commonly used, and
        it is not actually necessary to define a makeproc method like the one shown earlier.
        In addition to these Proc-creation
        methods, Ruby 1.9 also supports a new literal syntax for defining
        lambdas. The subsections that follow discuss the methods Proc.new, lambda, and proc, and also explain the Ruby 1.9 lambda
        literal syntax.
Proc.new



We’ve already seen Proc.new used
          in some of the previous examples in this chapter. This is the normal
          new method that most classes
          support, and it’s the most obvious way to create a new instance of
          the Proc class. Proc.new expects no arguments, and returns
          a Proc object that is a proc (not
          a lambda). When you invoke Proc.new with an associated block, it
          returns a proc that represents the block. For example:
p = Proc.new {|x,y| x+y }

If Proc.new is invoked
          without a block from within a method that does have an associated
          block, then it returns a proc representing the block associated with
          the containing method. Using Proc.new in this way provides an
          alternative to using an ampersand-prefixed block argument in a
          method definition. The following two methods are equivalent, for
          example:
def invoke(&b)     def invoke
  b.call             Proc.new.call
end                end


Kernel.lambda



Another technique for creating Proc
          objects is with the lambda
          method. lambda is a method of the
          Kernel module, so it behaves like
          a global function. As its name suggests, the Proc object returned by this method is a
          lambda rather than a proc. lambda
          expects no arguments, but there must be a block associated with the
          invocation:
is_positive = lambda {|x| x > 0 }

Lambda History
Lambdas and the lambda
            method are so named in reference to lambda
            calculus, a branch of mathematical logic that has been
            applied to functional programming languages. Lisp also uses the
            term “lambda” to refer to functions that can be manipulated as
            objects.


Kernel.proc



In Ruby 1.8, the global proc method is a synonym for lambda.
          Despite its name, it returns a lambda, not a proc. Ruby 1.9 fixes
          this; in that version of the language, proc is a synonym for Proc.new.
Because of this ambiguity, you should never use proc in Ruby 1.8 code. The behavior of
          your code might change if the interpreter was upgraded to a newer
          version. If you are using Ruby 1.9 code and are confident that it
          will never be run with a Ruby 1.8 interpreter, you can safely use
          proc as a more elegant shorthand
          for Proc.new.

Lambda Literals



Ruby 1.9 supports an entirely new syntax for defining lambdas as
          literals. We’ll begin with a Ruby 1.8 lambda, created with the
          lambda method:
succ = lambda {|x| x+1}

In Ruby 1.9, we can convert this to a literal as
          follows:
	Replace the method name lambda with the punctuation ->.

	Move the list of arguments outside of and just before the
              curly braces.

	Change the argument list delimiters from || to ().



With these changes, we get a Ruby 1.9 lambda literal:
succ = ->(x){ x+1 }

succ now holds a Proc object, which we can use just like
          any other:
succ.call(2)    # => 3

The introduction of this syntax into Ruby was controversial,
          and it takes some getting used to. Note that the arrow characters
          -> are different from those used in hash literals. If you
          squint at the arrow, you may be able to convince yourself that the
          greater-than sign is the Greek letter lambda (λ) with its right-hand
          leg chopped off, turned into a hyphen and moved to the left!
As with blocks in Ruby 1.9, the argument list of a lambda
          literal may include the declaration of block-local variables that
          are guaranteed not to overwrite variables with the same name in the
          enclosing scope. Simply follow the parameter list with a semicolon
          and a list of local variables:
# This lambda takes 2 args and declares 3 local vars
f = ->(x,y; i,j,k) { ... }

Lambda literals can be declared with argument defaults, just
          as methods can:
zoom = ->(x,y,factor=2) { [x*factor, y*factor] }

The parentheses around the argument list of a lambda literal
          are only required if the argument list includes a semicolon and
          block-local variable names. Otherwise parentheses may be omitted,
          resulting in a more compact syntax:
succ = ->x { x+1 }
zoom = ->x,y,factor=2 { [x*factor, y*factor] }

If the argument list of a lambda literal has parentheses
          around it, there must not be a space between the -> and the open parenthesis.
Lambda parameters and local variables are optional, of course,
          and a lambda literal can omit this altogether. The minimal lambda,
          which takes no arguments and returns nil, is the following:
->{}

One benefit of this new syntax is its succinctness. It can be
          helpful when you want to pass a lambda as an argument to a method or
          to another lambda:
def compose(f,g)            # Compose 2 lambdas 
  ->(x) { f.call(g.call(x)) }
end
succOfSquare = compose(->x{x+1}, ->x{x*x})
succOfSquare.call(4)        # => 17: Computes (4*4)+1

Lambda literals create Proc
          objects and are not the same thing as blocks. If you want to pass a
          lambda literal to a method that expects a block, prefix the literal
          with &, just as you would
          with any other Proc object. Here
          is how we might sort an array of numbers into descending order using
          both a block and a lambda literal:
data.sort {|a,b| b-a }   # The block version
data.sort &->(a,b){ b-a } # The lambda literal version

In this case, as you can see, regular block syntax is
          simpler.


Invoking Procs and Lambdas



Procs and lambdas are objects, not methods, and they cannot
        be invoked in the same way that methods are. If p refers to a Proc object, you cannot invoke p as a method. But because p is an object, you can invoke a method of
        p. We’ve already mentioned that the
        Proc class defines a method named
        call. Invoking this method executes
        the code in the original block. The arguments you pass to the call method become arguments to the block,
        and the return value of the block becomes the return value of the
        call method:
f = Proc.new {|x,y| 1.0/(1.0/x + 1.0/y) }
z = f.call(x,y)

The Proc class also defines
        the array access operator to work the same way as call. This means that you can invoke a proc
        or lambda using a syntax that is like method invocation, where parentheses have been
        replaced with square brackets. The proc invocation above, for example, could be
        replaced with this code:
z = f[x,y]

Ruby 1.9 offers an additional way to invoke a Proc object; as an alternative to square
        brackets, you can use parentheses prefixed with a period:
z = f.(x,y)

.() looks like a method
        invocation missing the method name. This is not an operator that can
        be defined, but rather is syntactic-sugar that invokes the call method. It can be used with any object
        that defines a call method and is
        not limited to Proc objects.
Ruby 1.9 adds a curry method
        to the Proc class. Calling
          this method returns a curried version of a proc or
        lambda. When a curried proc or lambda is invoked with insufficient
        arguments it returns a new Proc
        object (also curried) with the given arguments applied. Currying is a
        common technique in the functional programming paradigm:
product = ->(x,y){ x*y }  # Define a lambda
triple = product.curry[3] # Curry it, then specify the first argument
[triple[10],triple[20]]   # => [30,60]: 
lambda {|w,x,y,z| w+x+y+z}.curry[1][2,3][4] # => 10
        

The Arity of a Proc



The arity of a proc or lambda is the number of arguments it expects.
        (The word is derived from the “ary” suffix of unary, binary, ternary,
        etc.) Proc objects have an arity method that returns the number of
        arguments they expect. For example:
lambda{||}.arity        # => 0. No arguments expected
lambda{|x| x}.arity     # => 1. One argument expected
lambda{|x,y| x+y}.arity # => 2. Two arguments expected

The notion of arity gets confusing when a Proc accepts an arbitrary number of
        arguments in an *-prefixed final
        argument. When a Proc allows
        optional arguments, the arity
        method returns a negative number of the form -n-1. A return value of this form indicates
        that the Proc requires n arguments, but it may optionally take
        additional arguments as well. -n-1
        is known as the one’s-complement of n, and you can invert it with the ~ operator. So if arity returns a negative number m, then ~m (or -m-1) gives you the number of required
        arguments:
lambda {|*args|}.arity        # => -1.  ~-1 = -(-1)-1 = 0 arguments required
lambda {|first, *rest|}.arity # => -2.  ~-2 = -(-2)-1 = 1 argument required

There is one final wrinkle to the arity method. In Ruby 1.8, a Proc declared without any argument clause at
        all (that is, without any ||
        characters) may be invoked with any number of arguments (and these
        arguments are ignored). The arity
        method returns –1 to indicate that there are no
        required arguments. This has changed in Ruby 1.9: a Proc declared like this has an arity of
        0. If it is a lambda, then it is an
        error to invoke it with any arguments:
puts lambda {}.arity  # –1 in Ruby 1.8; 0 in Ruby 1.9


Proc Equality



The Proc class
        defines an == method
        to determine whether two Proc objects are equal. It is important to
        understand, however, that merely having the same source code is not
        enough to make two procs or lambdas equal to each other:
lambda {|x| x*x } == lambda {|x| x*x }  # => false

The == method only returns
        true if one Proc is a clone or duplicate of the
        other:
p = lambda {|x| x*x }
q = p.dup
p == q                      # => true: the two procs are equal
p.object_id == q.object_id  # => false: they are not the same object


How Lambdas Differ from Procs



A proc is the object form of a block, and it behaves like a
        block. A lambda has slightly modified behavior and behaves more like a
        method than a block. Calling a proc is like yielding to a block,
        whereas calling a lambda is like invoking a method. In Ruby 1.9, you
        can determine whether a Proc object
        is a proc or a lambda with the instance method lambda?. This predicate returns true for lambdas and false for procs. The subsections that follow
        explain the differences between procs and lambdas in detail.
Return in blocks, procs, and lambdas



Recall from Chapter 5 that the return statement returns from the
          lexically enclosing method, even when the statement is contained
          within a block. The return
          statement in a block does not just return from the block to the
          invoking iterator, it returns from the method that invoked the
          iterator. For example:
def test
  puts "entering method"
  1.times { puts "entering block"; return }  # Makes test method return
  puts "exiting method"  # This line is never executed
end
test

A proc is like a block, so if you call a proc that executes a
          return statement, it attempts to
          return from the method that encloses the block that was converted to
          the proc. For example:
def test
  puts "entering method"
  p = Proc.new { puts "entering proc"; return } 
  p.call                 # Invoking the proc makes method return
  puts "exiting method"  # This line is never executed
end
test

Using a return statement in
          a proc is tricky, however, because procs are often passed around
          between methods. By the time a proc is invoked, the lexically
          enclosing method may already have returned:
def procBuilder(message)            # Create and return a proc
  Proc.new { puts message; return } # return returns from procBuilder
  # but procBuilder has already returned here!
end

def test
  puts "entering method"
  p = procBuilder("entering proc")
  p.call                 # Prints "entering proc" and raises LocalJumpError!
  puts "exiting method"  # This line is never executed
end
test

By converting a block into an object, we are able to pass that
          object around and use it “out of context.” If we do this, we run the
          risk of returning from a method that has already returned, as was
          the case here. When this happens, Ruby raises a LocalJumpError.
The fix for this contrived example is to remove the
          unnecessary return statement, of
          course. But a return statement is
          not always unnecessary, and another fix is to use a lambda instead
          of a proc. As we said earlier, lambdas work more like methods than
          blocks. A return statement in a
          lambda, therefore, returns from the lambda itself, not from the
          method that surrounds the creation site of the lambda:
def test
  puts "entering method"
  p = lambda { puts "entering lambda"; return } 
  p.call                 # Invoking the lambda does not make the method return
  puts "exiting method"  # This line *is* executed now
end
test

The fact that return in a
          lambda only returns from the lambda itself means that we never have
          to worry about LocalJumpError:
def lambdaBuilder(message)        # Create and return a lambda
  lambda { puts message; return } # return returns from the lambda
end

def test
  puts "entering method"
  l = lambdaBuilder("entering lambda")
  l.call                 # Prints "entering lambda" 
  puts "exiting method"  # This line is executed
end
test


Break in blocks, procs and lambdas



Figure 5-3 illustrated the behavior of the break statement in a block; it causes the
          block to return to its iterator and the iterator to return to the
          method that invoked it. Because procs work like blocks, we expect
          break to do the same thing in a
          proc. We can’t easily test this, however. When we create a proc with
          Proc.new, Proc.new is the iterator that break would return from. And by the time
          we can invoke the proc object, the iterator has already returned. So
          it never makes sense to have a top-level break statement in a proc
          created with Proc.new:
def test
  puts "entering test method"
  proc = Proc.new { puts "entering proc"; break }
  proc.call                    # LocalJumpError: iterator has already returned
  puts "exiting test method"
end
test

If we create a proc object with an & argument to the iterator method,
          then we can invoke it and make the iterator return:
def iterator(&proc)
  puts "entering iterator"
  proc.call  # invoke the proc
  puts "exiting iterator"   # Never executed if the proc breaks
end

def test
  iterator { puts "entering proc"; break }
end
test

Lambdas are method-like, so putting a break statement at the top-level of a
          lambda, without an enclosing loop or iteration to break out of,
          doesn’t actually make any sense! We might expect the following code
          to fail because there is nothing to break out of in the lambda. In
          fact, the top-level break just
          acts like a return:
def test
  puts "entering test method"
  lambda = lambda { puts "entering lambda"; break; puts "exiting lambda" }
  lambda.call  
  puts "exiting test method"
end
test


Other control-flow statements



A top-level next statement
          works the same in a block, proc, or lambda: it causes the yield statement or call method that invoked the block, proc,
          or lambda to return. If next is
          followed by an expression, then the value of that expression becomes
          the return value of the block, proc, or
          lambda.
redo also works the same in procs and lambdas: it transfers
          control back to the beginning of the proc or lambda.
retry is never allowed in
          procs or lambdas: using it always results in a LocalJumpError.
raise behaves the same in
          blocks, procs, and lambdas. Exceptions always propagate up the call
          stack. If a block, proc, or lambda raises an exception and there is
          no local rescue clause, the
          exception first propagates to the method that invoked the block with
          yield or that invoked the proc or
          lambda with call.

Argument passing to procs and lambdas



Invoking a block with yield
          is similar to, but not the same as, invoking a method. There are
          differences in the way argument values in the invocation are
          assigned to the argument variables declared in the block or method.
          The yield statement uses
          yield semantics, whereas method invocation uses
          invocation semantics. Yield semantics are
          similar to parallel assignment and are described in Passing Arguments to a Block. As you might expect, invoking a proc uses yield semantics
          and invoking a lambda uses invocation semantics:
p = Proc.new {|x,y| print x,y }
p.call(1)       # x,y=1:     nil used for missing rvalue:  Prints 1nil
p.call(1,2)     # x,y=1,2:   2 lvalues, 2 rvalues:         Prints 12
p.call(1,2,3)   # x,y=1,2,3: extra rvalue discarded:       Prints 12
p.call([1,2])   # x,y=[1,2]: array automatically unpacked: Prints 12

This code demonstrates that the call method of a proc handles the
          arguments it receives
          flexibly: silently discarding extras, silently adding nil for omitted arguments, and even
          unpacking arrays. (Or, not demonstrated here, packing multiple
          arguments into a single array when the proc expects only a single
          argument.)
Lambdas are not flexible in this way; like methods, they must
          be invoked with precisely the number of arguments they are declared
          with:
l = lambda {|x,y| print x,y }
l.call(1,2)     # This works
l.call(1)       # Wrong number of arguments
l.call(1,2,3)   # Wrong number of arguments
l.call([1,2])   # Wrong number of arguments
l.call(*[1,2])  # Works: explicit splat to unpack the array




Closures



In Ruby, procs and lambdas are
      closures. The term “closure” comes from the early
      days of computer science; it refers to an object that is both an
      invocable function and a variable binding for that function. When you
      create a proc or a lambda, the resulting Proc object holds not just the executable
      block but also bindings for all the variables used by the block.
You already know that blocks can use local variables and method
      arguments that are defined outside the block. In the following code, for
      example, the block associated with the collect iterator uses the method argument
      n:
# multiply each element of the data array by n
def multiply(data, n)
  data.collect {|x| x*n }
end

puts multiply([1,2,3], 2)   # Prints 2,4,6

What is more interesting, and possibly even surprising, is that if
      the block were turned into a proc or lambda, it could access n even after the method to which it is an
      argument had returned. The following code demonstrates:
# Return a lambda that retains or "closes over" the argument n
def multiplier(n) 
  lambda {|data| data.collect{|x| x*n } }
end
doubler = multiplier(2)     # Get a lambda that knows how to double
puts doubler.call([1,2,3])  # Prints 2,4,6

The multiplier method returns a
      lambda. Because this lambda is used outside of the scope in which it is
      defined, we call it a closure; it encapsulates or “closes over” (or just
      retains) the binding for the method argument n.
Closures and Shared Variables



It is important to understand that a closure does not just retain the
        value of the variables it refers to—it retains the actual variables
        and extends their lifetime. Another way to say this is that the
        variables used in a lambda or proc are not statically bound when the
        lambda or proc is created. Instead, the bindings are dynamic, and the
        values of the variables are
        looked up when the lambda or proc is executed.
As an example, the following code defines a method that returns
        two lambdas. Because the lambdas are defined in the same scope, they
        share access to the variables in that scope. When one lambda alters
        the value of a shared variable, the new value is available to the
        other lambda:
# Return a pair of lambdas that share access to a local variable.
def accessor_pair(initialValue=nil)
  value = initialValue  # A local variable shared by the returned lambdas.
  getter = lambda { value }          # Return value of local variable.
  setter = lambda {|x| value = x }   # Change value of local variable.
  return getter,setter               # Return pair of lambdas to caller.
end

getX, setX = accessor_pair(0) # Create accessor lambdas for initial value 0.
puts getX[]        # Prints 0. Note square brackets instead of call.
setX[10]           # Change the value through one closure.
puts getX[]        # Prints 10. The change is visible through the other.

The fact that lambdas created in the same scope share access to
        variables can be a feature or a source of bugs. Any time you have a
        method that returns more than one closure, you should pay particular
        attention to the variables they use. Consider the following
        code:
# Return an array of lambdas that multiply by the arguments
def multipliers(*args)
  x = nil
  args.map {|x| lambda {|y| x*y }}
end

double,triple = multipliers(2,3)
puts double.call(2)    # Prints 6 in Ruby 1.8

This multipliers method uses
        the map iterator and a block to
        return an array of lambdas (created inside the block). In Ruby 1.8,
        block arguments are not always local to the block (see Blocks and Variable Scope), and so all of the lambdas that are
        created end up sharing access to x,
        which is a local variable of the multipliers method. As noted above, closures
        don't capture the current value of the variable: they capture the
        variable itself. Each of the lambdas created here share the variable
        x. That variable has only one
        value, and all of the returned lambdas use that same value. That is
        why the lambda we name double ends
        up tripling its argument instead of doubling it.
In this particular code, the issue goes away in Ruby 1.9 because
        block arguments are always block-local in that version of the
        language. Still, you can get yourself in trouble any time you create
        lambdas within a loop and use loop variables (such as an array index)
        within the lambda.

Closures and Bindings



The Proc class defines
        a method named binding. Calling this method on a proc or
        lambda returns a Binding object
        that represents the bindings in effect for that closure.
More About Bindings
We’ve been discussing the bindings of a closure as if they
          were simply a mapping from variable names to variable values. In
          fact, bindings involve more
          than just variables. They hold all the information necessary to
          execute a method, such as the value of self, and the block, if any, that would be
          invoked by a yield.

A Binding object doesn’t have
        interesting methods of its own, but it can be used as the second
        argument to the global eval
        function (see Evaluating Strings and Blocks), providing a context in which to evaluate a string of Ruby code.
        In Ruby 1.9, Binding
        has its own eval method, which you
        may prefer to use. (Use ri to learn
        more about Kernel.eval and Binding.eval.)
The use of a Binding object
        and the eval method gives us a back
        door through which we can manipulate the behavior of a closure. Take
        another look at this code from earlier:
# Return a lambda that retains or "closes over" the argument n
def multiplier(n) 
  lambda {|data| data.collect{|x| x*n } }
end
doubler = multiplier(2)     # Get a lambda that knows how to double
puts doubler.call([1,2,3])  # Prints 2,4,6

Now suppose we want to alter the behavior of doubler:
eval("n=3", doubler.binding) # Or doubler.binding.eval("n=3") in Ruby 1.9
puts doubler.call([1,2,3])   # Now this prints 3,6,9!

As a shortcut, the eval
        method allows you to pass a Proc
        object directly instead of passing the Binding object of the Proc. So we could replace the eval invocation above with:
eval("n=3", doubler)

Bindings are not only a feature of closures. The Kernel.binding method returns a Binding object that
        represents the bindings in effect at whatever point you happen to call
        it.


Method Objects



Ruby’s methods and blocks are executable language constructs,
      but they are not objects. Procs and lambdas are object versions of
      blocks; they can be executed and also manipulated as data. Ruby has
      powerful metaprogramming (or reflection)
      capabilities, and methods can actually be represented as instances of
      the Method class. (Metaprogramming is
      covered in Chapter 8, but Method objects are introduced here.) You
      should note that invoking a method through a Method object is less efficient than invoking
      it directly. Method objects are not
      typically used as often as lambdas and procs.
The Object class defines a
      method named method. Pass it a method
      name, as a string or a symbol, and it returns a Method object representing the named method of
      the receiver (or throws a NameError
      if there is no such method). For example:
m = 0.method(:succ)  # A Method representing the succ method of Fixnum 0

In Ruby 1.9, you can also use public_method  to obtain a Method
      object. It works like method does but
      ignores protected and private methods (see Method Visibility: Public, Protected, Private).
The Method class is not a
      subclass of Proc, but it behaves much
      like it. Method objects are invoked
      with the call method (or the [] operator), just as Proc objects are. And Method defines an arity method just like the arity method of Proc. To invoke the Method m:
puts m.call    # Same as puts 0.succ. Or use puts m[].

Invoking a method through a Method object does not change the invocation
      semantics, nor does it alter the meaning of control-flow statements such
      as return and break. The call method of a Method object uses method-invocation
      semantics, not yield semantics. Method objects, therefore, behave more like
      lambdas than like procs.
Method objects work very much
      like Proc objects and can usually be
      used in place of them. When a true Proc is required, you can use Method.to_proc to convert a Method to a Proc. This is why Method objects can be prefixed with an
      ampersand and passed to a method in place of a block. For
      example:
def square(x); x*x; end
puts (1..10).map(&method(:square))

Defining Methods with Procs
In addition to obtaining a Method object that represents a method and
        converting it to a Proc, we can
        also go in the other direction. The define_method method (of Module) expects a Symbol as an argument, and creates a method
        with that name using the associated block as the method body. Instead
        of using a block, you can also pass a Proc or a Method object as the second argument.

One important difference between Method objects and Proc objects is that Method objects are not closures. Ruby’s
      methods are intended to be completely self-contained, and they never
      have access to local variables outside of their own scope. The only
      binding retained by a Method object,
      therefore, is the value of self—the
      object on which the method is to be invoked.
In Ruby 1.9, the Method class
      defines three methods that are not available in 1.8: name returns the name of the method as a
      string; owner returns the class in
      which the method was defined; and receiver returns the object to which the
      method is bound. For any method object m, m.receiver.class must be equal to or a
      subclass of m.owner.
Unbound Method Objects



In addition to the Method class,
        Ruby also defines an UnboundMethod
        class. As its name suggests, an UnboundMethod object represents a method,
        without a binding to the object on which it is to be invoked. Because
        an UnboundMethod is unbound, it
        cannot be invoked, and the
        UnboundMethod class does not define
        a call or [] method.
To obtain an UnboundMethod
        object, use the instance_method
        method of any class or module:
unbound_plus = Fixnum.instance_method("+")

In Ruby 1.9, you can also use public_instance_method  to obtain an UnboundMethod object. It works like instance_method does, but it ignores
        protected and private methods (see Method Visibility: Public, Protected, Private).
In order to invoke an unbound method, you must first bind it to
        an object using the bind
        method:
plus_2 = unbound_plus.bind(2)   # Bind the method to the object 2

The bind method returns a Method
        object, which can be invoked with its call method:
sum = plus_2.call(2)    # => 4

Another way to obtain an UnboundMethod object is with the unbind method of the Method class:
plus_3 = plus_2.unbind.bind(3)

In Ruby 1.9, UnboundMethod
        has name and owner methods that work just as they do for
        the Method class.


Functional Programming



Ruby is not a functional programming language in the way that
      languages like Lisp and Haskell are, but Ruby’s blocks, procs, and
      lambdas lend themselves nicely to a functional programming style. Any
      time you use a block with an Enumerable iterator like map or inject, you’re programming in a functional
      style. Here are examples using the map and inject iterators:
# Compute the average and standard deviation of an array of numbers
mean = a.inject {|x,y| x+y } / a.size
sumOfSquares = a.map{|x| (x-mean)**2 }.inject{|x,y| x+y }
standardDeviation = Math.sqrt(sumOfSquares/(a.size-1))

If the functional programming style is attractive to you, it is
      easy to add features to Ruby’s built-in classes to facilitate functional
      programming. The rest of this chapter explores some possibilities for
      working with functions. The code in this section is dense and is
      presented as a mind-expanding exploration, not as a prescription for
      good programming style. In
      particular, redefining operators as heavily as the code in the next
      section does is likely to result in programs that are difficult for
      others to read and maintain!
This is advanced material and the code that follows assumes
      familiarity with Chapter 7. You may, therefore, want to
      skip the rest of this chapter the first time through the book.
Applying a Function to an Enumerable



mapand inject are two of
        the most important iterators defined by Enumerable. Each
        expects a block. If we are to write programs in a function-centric
        way, we might like methods on our functions that allow us to apply
        those functions to a specified Enumerable object:
# This module defines methods and operators for functional programming.
module Functional

  # Apply this function to each element of the specified Enumerable,
  # returning an array of results. This is the reverse of Enumerable.map.
  # Use | as an operator alias. Read "|" as "over" or "applied over".
  # 
  # Example:
  #   a = [[1,2],[3,4]]
  #   sum = lambda {|x,y| x+y}
  #   sums = sum|a   # => [3,7]
  def apply(enum)
    enum.map &self
  end
  alias | apply

  # Use this function to "reduce" an enumerable to a single quantity.
  # This is the inverse of Enumerable.inject.
  # Use <= as an operator alias.
  # Mnemonic: <= looks like a needle for injections
  # Example:
  #   data = [1,2,3,4]
  #   sum = lambda {|x,y| x+y}
  #   total = sum<=data   # => 10
  def reduce(enum)
    enum.inject &self
  end
  alias <= reduce
end

# Add these functional programming methods to Proc and Method classes.
class Proc; include Functional; end
class Method; include Functional; end

Notice that we define methods in a module named Functional, and then we include this module
        into both the Proc and Method classes. In this way, apply and reduce work for both proc and method
        objects. Most of the methods that follow also define methods in this
        Functional module, so that they
        work for both Proc and Method.
With apply and reduce defined as above, we could refactor
        our statistical computations as follows:
sum = lambda {|x,y| x+y }        # A function to add two numbers
mean = (sum<=a)/a.size           # Or sum.reduce(a) or a.inject(&sum)
deviation = lambda {|x| x-mean } # Function to compute difference from mean
square = lambda {|x| x*x }       # Function to square a number
standardDeviation = Math.sqrt((sum<=square|(deviation|a))/(a.size-1))

Notice that the last line is succinct but that all the
        nonstandard operators make it hard to read. Also notice that the
        | operator is left-associative,
        even when we define it ourselves. The syntax, therefore, for applying
        multiple functions to an Enumerable
        requires parentheses. That is, we must write square|(deviation|a) instead of square|deviation|a.

Composing Functions



If we have two functions f and
        g, we sometimes want to define a
        new function h which is f(g()), or f composed with
        g. We can write a method that performs function composition automatically, as
        follows:
module Functional
  # Return a new lambda that computes self[f[args]].
  # Use * as an operator alias for compose.
  # Examples, using the * alias for this method.
  # 
  # f = lambda {|x| x*x }
  # g = lambda {|x| x+1 }
  # (f*g)[2]   # => 9
  # (g*f)[2]   # => 5
  # 
  # def polar(x,y)
  #   [Math.hypot(y,x), Math.atan2(y,x)]
  # end
  # def cartesian(magnitude, angle)
  #   [magnitude*Math.cos(angle), magnitude*Math.sin(angle)]
  # end
  # p,c = method :polar, method :cartesian
  # (c*p)[3,4]  # => [3,4]
  # 
  def compose(f)
    if self.respond_to?(:arity) && self.arity == 1
      lambda {|*args| self[f[*args]] }
    else
      lambda {|*args| self[*f[*args]] }
    end
  end

  # * is the natural operator for function composition.
  alias * compose
end

The example code in the comment demonstrates the use of compose with Method objects as well as lambdas. We can
        use this new * function composition
        operator to slightly simplify our computation of standard deviation.
        Using the same definitions of the lambdas sum, square, and deviation, the computation becomes:
standardDeviation = Math.sqrt((sum<=square*deviation|a)/(a.size-1))

The difference is that we compose square and deviation into a single function before
        applying it to the array a.

Partially Applying Functions



In functional programming, partial
        application is the process of taking a function and a partial set of
        argument values and producing a new function that is equivalent to the
        original function with the specified arguments fixed. This is similar
        to, but not quite the same as currying with the Proc.curry method. For example:
product = lambda {|x, y| x*y }       # A function of two arguments
double = lambda {|x| product(2,x) }  # Apply one argument

Partial application can be simplified with appropriate methods
        (and operators) in our Functional
        module:
module Functional
  #
  # Return a lambda equivalent to this one with one or more initial 
  # arguments applied. When only a single argument
  # is being specified, the >> alias may be simpler to use.
  # Example:
  #   product = lambda {|x,y| x*y}
  #   doubler = product >> 2
  #
  def apply_head(*first)
    lambda {|*rest| self[*first.concat(rest)]}
  end

  #
  # Return a lambda equivalent to this one with one or more final arguments
  # applied. When only a single argument is being specified,
  # the << alias may be simpler.
  # Example:
  #  difference = lambda {|x,y| x-y }
  #  decrement = difference << 1
  #
  def apply_tail(*last)
    lambda {|*rest| self[*rest.concat(last)]}
  end

  # Here are operator alternatives for these methods. The angle brackets
  # point to the side on which the argument is shifted in.
  alias >> apply_head    # g = f >> 2 -- set first arg to 2
  alias << apply_tail    # g = f << 2 -- set last arg to 2
end

Using these methods and operators, we can define our double function simply as product>>2. We
        can use partial application to make our standard deviation computation
        somewhat more abstract, by building our deviation function from a more
        general-purpose difference
        function:
difference = lambda {|x,y| x-y }  # Compute difference of two numbers
deviation = difference<<mean      # Apply second argument


Memoizing Functions



Memoization is a functional programming term for caching the results of a
        function invocation. If a function always returns the same value when
        passed the same arguments, if there is reason to believe that the same
        arguments will be used repeatedly, and if the computation it performs
        is somewhat expensive, then memoization may be a useful optimization.
        We can automate memoization for Proc and Method objects with the following
        method:
module Functional
  #
  # Return a new lambda that caches the results of this function and 
  # only calls the function when new arguments are supplied.
  #
  def memoize
    cache = {}  # An empty cache. The lambda captures this in its closure.
    lambda {|*args|
      # notice that the hash key is the entire array of arguments!
      unless cache.has_key?(args)  # If no cached result for these args
        cache[args] = self[*args]  # Compute and cache the result
      end
      cache[args]                  # Return result from cache
    }
  end
  # A (probably unnecessary) unary + operator for memoization
  # Mnemonic: the + operator means "improved"
  alias +@ memoize        # cached_f = +f
end

Here’s how we might use the memoize method or the unary +
        operator:
# A memoized recursive factorial function
factorial = lambda {|x| return 1 if x==0; x*factorial[x-1]; }.memoize
# Or, using the unary operator syntax
factorial = +lambda {|x| return 1 if x==0; x*factorial[x-1]; }

Note that the factorial
        function here is a recursive function. It calls the memoized version
        of itself, which produces optimal caching. It would not work as well
        if you defined a recursive nonmemoized version of the function and
        then defined a distinct memoized version of that:
factorial = lambda {|x| return 1 if x==0; x*factorial[x-1]; }
cached_factorial = +factorial # Recursive calls aren't cached!


Symbols, Methods, and Procs



There is a close relationship between the Symbol, Method, and Proc classes. We’ve already seen the
        method method, which takes a
        Symbol argument and returns a
        Method object.
Ruby 1.9 adds a useful to_proc
        method to the Symbol class.
        This method allows a symbol to be prefixed with & and passed as a block to an iterator.
        The symbol is assumed to name a method. When the Proc created with this to_proc method is invoked, it calls the
        named method of its first argument, passing any remaining arguments to
        that named method. Here’s how you might use it:
# Increment an array of integers with the Fixnum.succ method
[1,2,3].map(&:succ)  # => [2,3,4]

Without Symbol.to_proc, we’d
        have to be slightly more verbose:
[1,2,3].map {|n| n.succ }

Symbol.to_proc was originally
        devised as an extension for Ruby 1.8, and it is typically implemented
        like this:
class Symbol
  def to_proc
    lambda {|receiver, *args| receiver.send(self, *args)}
  end
end

This implementation uses the send method (see Invoking Methods) to invoke a method named by a
        symbol. We could also do it like this:
class Symbol
  def to_proc
    lambda {|receiver, *args| receiver.method(self)[*args]}
  end
end

In addition to to_proc, we
        can define some related and possibly useful utilities. Let’s start
        with the Module class:
class Module
  # Access instance methods with array notation. Returns UnboundMethod,
  alias [] instance_method
end

Here, we’re simply defining a shorthand for the instance_method method of the Module class. Recall
        that that method returns an UnboundMethod object, that cannot be invoked
        until bound to a particular instance of its class. Here’s an example
        using this new notation (notice the appeal of indexing a class with
        the names of its methods!):
String[:reverse].bind("hello").call   # => "olleh"

Binding an unbound method can also be made simpler with a bit of
        the same syntactic sugar:
class UnboundMethod
  # Allow [] as an alternative to bind.  
  alias [] bind
end

With this alias in place, and using the existing [] alias for calling a method, this code
        becomes:
String[:reverse]["hello"][]   # => "olleh"

The first pair of brackets indexes the method, the second pair
        binds it, and the third pair calls it.
Next, if we’re going to use the [] operator for looking up the instance
        methods of a class, how about using []= for defining instance methods:
class Module
  # Define a instance method with name sym and body f.
  # Example: String[:backwards] = lambda { reverse }
  def []=(sym, f)
    self.instance_eval { define_method(sym, f) }
  end
end

The definition of this []=
        operator may be confusing—this is advanced Ruby. define_method is a private method of
        Module. We use instance_eval (a public method of Object) to run a block (including the
        invocation of a private method) as if it were inside the module on
        which the method is being defined. We’ll see instance_eval and define_method again in Chapter 8.
Let’s use this new []=
        operator to define a new Enumerable.average method:
Enumerable[:average] = lambda do
  sum, n = 0.0, 0
  self.each {|x| sum += x; n += 1 }
  if n == 0
    nil
  else
    sum/n
  end
end

We’ve used the [] and
        []= operators here to get and set
        instance methods of a class or module. We can do something similar for
        the singleton methods of an object (which include the class methods of
        a class or module). Any object can have a singleton method, but it
        doesn’t make sense to define an []
        operator on the Object class, as so
        many subclasses define that operator. For singleton methods,
        therefore, we could take the opposite approach and define operators on
        the Symbol class:
#
# Add [] and []= operators to the Symbol class for accessing and setting
# singleton methods of objects. Read : as "method" and [] as "of".
# So :m[o] reads "method m of o".
#
class Symbol
  # Return the Method of obj named by this symbol. This may be a singleton
  # method of obj (such as a class method) or an instance method defined
  # by obj.class or inherited from a superclass.
  # Examples:
  #   creator = :new[Object]  # Class method Object.new
  #   doubler = :*[2]         # * method of Fixnum 2
  #
  def [](obj)
    obj.method(self)
  end
  
  # Define a singleton method on object o, using Proc or Method f as its body.
  # This symbol is used as the name of the method.
  # Examples:
  #
  #  :singleton[o] = lambda { puts "this is a singleton method of o" }
  #  :class_method[String] = lambda { puts "this is a class method" }
  # 
  # Note that you can't create instance methods this way. See Module.[]=
  #
  def []=(o,f)
    # We can't use self in the block below, as it is evaluated in the 
    # context of a different object. So we have to assign self to a variable.
    sym = self
    # This is the object we define singleton methods on.
    eigenclass = (class << o; self end)
    # define_method is private, so we have to use instance_eval to execute it.
    eigenclass.instance_eval { define_method(sym, f) }
  end
end

With this Symbol.[] method
        defined, along with the Functional
        module described previously, we
        can write clever (and unreadable) code like this:
dashes = :*['-']       # Method * of '-'
puts dashes[10]        # Prints "----------"

y = (:+[1]*:*[2])[x]   # Another way to write y = 2*x + 1

The definition of []= for
        Symbol is like that of []= for Module, in that it uses instance_eval to invoke the define_method method. The difference is that
        singleton methods are not defined within a class, as instance methods
        are, but in the eigenclass of the object. We’ll
        encounter the eigenclass again in Chapter 7.


Chapter 7. Classes and Modules



[image: image with no caption]

Ruby is an object-oriented language in a very pure sense: every
    value in Ruby is (or at least behaves like) an object. Every object is an
    instance of a class. A class defines a set of methods that an object
    responds to. Classes may extend or subclass other classes, and inherit or
    override the methods of their superclass. Classes can also include—or
    inherit methods from—modules.
Ruby’s objects are strictly encapsulated: their state can be
    accessed only through the methods they define. The instance variables
    manipulated by those methods cannot be directly accessed from outside of
    the object. It is possible to define getter and setter accessor methods
    that appear to access object state directly. These pairs of accessor
    methods are known as attributes and are distinct from
    instance variables. The methods defined by a class may have “public,”
    “protected,” or “private” visibility, which affects how and where they may
    be invoked.
In contrast to the strict encapsulation of object state, Ruby’s
    classes are very open. Any Ruby program can add methods to existing
    classes, and it is even possible to add “singleton methods” to individual
    objects.
Much of Ruby’s OO architecture is part of the core language. Other
    parts, such as the creation of attributes and the declaration of method
    visibility, are done with methods rather than true language keywords. This
    chapter begins with an extended tutorial that demonstrates how to define a
    class and add methods to it. This tutorial is followed by sections on more
    advanced topics, including:
	Method visibility

	Subclassing and inheritance

	Object creation and initialization

	Modules, both as namespaces and as includable “mixins”

	Singleton methods and the eigenclass

	The method name resolution algorithm

	The constant name resolution algorithm



Defining a Simple Class



We begin our coverage of classes with an extended tutorial
      that develops a class named Point to
      represent a geometric point with X and Y coordinates. The subsections
      that follow demonstrate how to:
	Define a new class

	Create instances of that class

	Write an initializer method for the class

	Add attribute accessor methods to the class

	Define operators for the class

	Define an iterator method and make the class Enumerable

	Override important Object
          methods such as to_s, ==, hash, and <=>

	Define class methods, class variables, class instance
          variables, and constants



Creating the Class



Classes are created in Ruby with the class
        keyword:
class Point
end

Like most Ruby constructs, a class definition is delimited with
        an end. In addition to defining a
        new class, the class keyword
        creates a new constant to refer to the class. The class name and the
        constant name are the same, so all class names must begin with a
        capital letter.
Within the body of a class,
        but outside of any instance methods defined by the class, the self keyword refers to the class being
        defined.
Like most statements in Ruby, class is an expression. The value of a
        class expression is the value of
        the last expression within the class body. Typically, the last expression
        within a class is a def statement
        that defines a method. The value of a def statement is always nil.

Instantiating a Point



Even though we haven’t put anything in our Point class yet, we can still instantiate
        it:
p = Point.new

The constant Point holds a
        class object that represents our new class. All class objects have a
        method named new that creates a new
        instance.
We can’t do anything very interesting with the newly created
        Point object we’ve stored in the
        local variable p, because we
        haven’t yet defined any methods for the class. We can, however, ask
        the new object what kind of object it is:
p.class       # => Point
p.is_a? Point # => true


Initializing a Point



When we create new Point
        objects, we want to initialize them with two numbers that represent
        their X and Y coordinates. In many object-oriented languages, this is
        done with a “constructor.” In Ruby, it is done with an
        initialize method:
class Point
  def initialize(x,y)
    @x, @y = x, y
  end
end

This is only three new lines of code, but there are a couple of
        important things to point out here. We explained the def keyword in detail in Chapter 6. But that chapter focused on defining global
        functions that could be used from anywhere. When def is used like this with an unqualified
        method name inside of a class
        definition, it defines an instance method for the
        class. An instance method is a method that is invoked on an instance
        of the class. When an instance method is called, the value of self is an instance of the class in which
        the method is defined.
The next point to understand is that the initialize method has a special purpose in
        Ruby. The new method of the class
        object creates a new instance object, and then it automatically invokes the initialize method on that instance. Whatever
        arguments you passed to new are
        passed on to initialize. Because
        our initialize method expects two
        arguments, we must now supply two values when we invoke Point.new:
p = Point.new(0,0)

In addition to being automatically invoked by Point.new, the initialize method is automatically made
        private. An object can call initialize on itself, but you cannot
        explicitly call initialize on
        p to reinitialize its state.
Now, let’s look at the body of the initialize method. It takes the two values
        we’ve passed it, stored in local variables x and y,
        and assigns them to instance variables @x and @y. Instance variables always begin with
        @, and they always “belong to”
        whatever object self refers to.
        Each instance of our Point class
        has its own copy of these two variables, which hold its own X and Y
        coordinates.
Instance Variable Encapsulation
The instance variables of an object can only be accessed by the instance
          methods of that object. Code that is not inside an instance method
          cannot read or set the value of an instance variable (unless it uses
          one of the reflective techniques that are described in Chapter 8).

Finally, a caution for programmers who are used to Java and
        related languages. In statically typed languages, you must declare
        your variables, including instance variables. You know that Ruby
        variables don’t need to be declared, but you might still feel that you
        have to write something like this:
# Incorrect code!
class Point
  @x = 0   # Create instance variable @x and assign a default. WRONG!
  @y = 0   # Create instance variable @y and assign a default. WRONG!

  def initialize(x,y)
    @x, @y = x, y   # Now initialize previously created @x and @y.
  end
end

This code does not do at all what a Java programmer expects.
        Instance variables are always resolved in the context of self. When the initialize method is invoked, self holds an instance of the Point class. But the code outside of that
        method is executed as part of the definition of the Point class. When those first two
        assignments are executed, self
        refers to the Point class itself,
        not to an instance of the class. The @x and @y
        variables inside the initialize
        method are completely different from those outside it.

Defining a to_s Method



Just about any class you define should have a to_s instance method to return a string representation of the
        object. This ability proves invaluable when debugging. Here’s how we
        might do this for Point:
class Point
  def initialize(x,y)
    @x, @y = x, y
  end

  def to_s        # Return a String that represents this point
    "(#@x,#@y)"   # Just interpolate the instance variables into a string
  end
end

With this new method defined, we can create points and print
        them out:
p = Point.new(1,2)   # Create a new Point object
puts p               # Displays "(1,2)"


Accessors and Attributes



Our Point class
        uses two instance variables. As we’ve noted, however, the value
        of these variables are only accessible to other instance methods. If
        we want users of the Point class to
        be able to use the X and Y coordinates of a point, we’ve got to
        provide accessor methods that return the value of the
        variables:
class Point
  def initialize(x,y)
    @x, @y = x, y
  end

  def x           # The accessor (or getter) method for @x
    @x
  end

  def y           # The accessor method for @y
    @y
  end
end

With these methods defined, we can write code like this:
p = Point.new(1,2)
q = Point.new(p.x*2, p.y*3)

The expressions p.x and
        p.y may look like variable
        references, but they are, in fact, method invocations without
        parentheses.
If we wanted our Point class
        to be mutable (which is probably not a good idea), we would also add
        setter methods to set the value of the instance variables:
class MutablePoint
  def initialize(x,y); @x, @y = x, y; end

  def x; @x; end       # The getter method for @x
  def y; @y; end       # The getter method for @y

  def x=(value)        # The setter method for @x
    @x = value
  end

  def y=(value)        # The setter method for @y
    @y = value
  end
end

Recall that assignment expressions can be used to invoke setter
        methods like these. So with these methods defined, we can
        write:
p = Point.new(1,1)
p.x = 0
p.y = 0

Using Setters Inside a Class
Once you’ve defined a setter method like x= for your class, you might be tempted to
          use it within other instance methods of your class. That is, instead
          of writing @x=2, you might write
          x=2, intending to invoke x=(2) implicitly on self. It doesn’t work, of course; x=2 simply creates a new local
          variable.
This is a not-uncommon mistake for novices who are just
          learning about setter methods and assignment in Ruby. The rule is
          that assignment expressions will only invoke a setter method when
          invoked through an object. If you want to use a setter from within
          the class that defines it, invoke it explicitly through self. For example: self.x=2.

This combination of instance variable with trivial getter and
        setter methods is so common that Ruby provides a way to automate it.
        The attr_reader and attr_accessor methods are defined by the Module class. All
        classes are modules, (the Class
        class is a subclass of Module) so
        you can invoke these methods inside any class definition. Both methods
        take any number of symbols naming attributes. attr_reader creates trivial getter methods
        for the instance variables with the same name. attr_accessor creates getter and setter
        methods. (The infrequently used attr_writer creates setter methods only.)
        Thus, if we were defining a mutable Point class, we could write:
class Point
  attr_accessor :x, :y # Define accessor methods for our instance variables
end

And if we were defining an immutable version of the class, we’d
        write:
class Point
  attr_reader :x, :y  # Define reader methods for our instance variables
end

Each of these methods can accept an attribute name or names as a
        string rather than as a symbol. The accepted style is to use symbols,
        but we can also write code like this:
attr_reader "x", "y"

attr is a similar method with
        a shorter name  but with behavior that differs in Ruby 1.8 and Ruby
        1.9. In 1.8, attr can define only a
        single attribute at a time. With a single symbol argument, it defines
        a getter method. If the symbol is followed by the value true, then it defines a setter method as
        well:
attr :x        # Define a trivial getter method x for @x
attr :y, true  # Define getter and setter methods for @y

In Ruby 1.9, attr can be used
        as it is in 1.8, or it can be used as a synonym for attr_reader.
The attr, attr_reader, and attr_accessor methods create instance
        methods for us. This is an example of
        metaprogramming, and the ability to do it is a powerful feature of Ruby.
        There are more examples of metaprogramming in Chapter 8.
        Note that attr and its related
        methods are invoked within a class
        definition but outside of any method definitions. They are only
        executed once, when the class is being defined. There are no
        efficiency concerns here: the getter and setter methods they create
        are just as fast as handcoded ones. Remember that these methods are
        only able to create trivial getters and setters that map directly to
        the value of an instance variable with the same name. If you need more
        complicated accessors, such as setters that set a differently named
        variable, or getters that return a value computed from two different
        variables, then you’ll have to define those yourself.

Defining Operators



We’d like the + operator
        to perform vector addition of two Point objects, the * operator to multiply a Point by a scalar, and the unary – operator to do the equivalent of
        multiplying by –1. Method-based
        operators such as + are simply
        methods with punctuation for names. Because there are unary and binary
        forms of the – operator, Ruby uses
        the method name –@ for unary minus.
        Here is a version of the Point
        class with mathematical operators defined:
class Point
  attr_reader :x, :y   # Define accessor methods for our instance variables

  def initialize(x,y)
    @x,@y = x, y
  end

  def +(other)         # Define + to do vector addition
    Point.new(@x + other.x, @y + other.y)
  end

  def -@               # Define unary minus to negate both coordinates
    Point.new(-@x, -@y)
  end

  def *(scalar)        # Define * to perform scalar multiplication
    Point.new(@x*scalar, @y*scalar)
  end
end

Take a look at the body of the + method. It is able to use the @x instance variable of self—the object that the method is invoked
        on. But it cannot access @x in the
        other Point object. Ruby simply
        does not have a syntax for this; all instance variable references
        implicitly use self. Our + method, therefore, is dependent on the
        x and y getter methods. (We’ll see later that it
        is possible to restrict the visibility of methods so that objects of
        the same class can use each other’s methods, but code outside the
        class cannot use them.)
Type Checking and Duck Typing
Our + method does not do
          any type checking; it simply assumes that it has been passed a
          suitable object. It is fairly common in Ruby programming to be loose
          about the definition of “suitable.” In the case of our + method, any object that has methods
          named x and y will do, as long as those methods expect
          no arguments and return a number of some sort. We don’t care if the
          argument actually is a point, as long as it
          looks and behaves like a point. This approach is sometimes called
          “duck typing,” after the adage “if it walks like a duck and quacks
          like a duck, it must be a duck.”
If we pass an object to +
          that is not suitable, Ruby will raise an exception. Attempting to
          add 3 to a point, for example,
          results in this error message:
NoMethodError: undefined method `x' for 3:Fixnum
        from ./point.rb:37:in `+'

Translated, this tells us that the Fixnum 3 does not have a method named x, and that this error arose in the
          + method of the Point class. This is all the information
          we need to figure out the source of the problem, but it is somewhat
          obscure. Checking the class of method arguments may make it easier
          to debug code that uses that method. Here is a version of the method
          with class verification:
def +(other)
  raise TypeError, "Point argument expected" unless other.is_a? Point
  Point.new(@x + other.x, @y + other.y)
end

Here is a looser version of type checking that provides
          improved error messages but still allows duck typing:
def +(other)
  raise TypeError, "Point-like argument expected" unless
    other.respond_to? :x and other.respond_to? :y
  Point.new(@x + other.x, @y + other.y)
end

Note that this version of the method still assumes that the
          x and y methods return numbers. We’d get an
          obscure error message if one of these methods returned a string, for
          example.
Another approach to type checking occurs after the fact. We
          can simply handle any exceptions that occur during execution of the
          method and raise a more appropriate exception of our own:
def +(other)         # Assume that other looks like a Point
  Point.new(@x + other.x, @y + other.y)
rescue               # If anything goes wrong above
  raise TypeError,   # Then raise our own exception
    "Point addition with an argument that does not quack like a Point!"
end


Note that our * method
        expects a numeric operand, not a Point. If p is point, then we can write p*2. As our class is written, however, we
        cannot write 2*p. That second
        expression invokes the * method of the Integer class, which doesn’t know how to
        work with Point objects. Because
        the Integer class doesn’t know how
        to multiply by a Point, it asks the
        point for help by calling its coerce method. (See Arithmetic operator type coercions for more details.) If we want the expression
        2*p to return the same result as
        p*2, we can define a coerce method:
# If we try passing a Point to the * method of an Integer, it will call
# this method on the Point and then will try to multiply the elements of 
# the array. Instead of doing type conversion, we switch the order of
# the operands, so that we invoke the * method defined above.
def coerce(other)
  [self, other]
end


Array and Hash Access with [ ]



Ruby uses square brackets for array and hash access, and allows any
        class to define a [] method and use
        these brackets itself. Let’s define a [] method for our class to allow Point objects to be treated as read-only
        arrays of length 2, or as read-only
        hashes with keys :x and :y:
# Define [] method to allow a Point to look like an array or
# a hash with keys :x and :y
def [](index)
  case index
  when 0, -2: @x         # Index 0 (or -2) is the X coordinate
  when 1, -1: @y         # Index 1 (or -1) is the Y coordinate
  when :x, "x": @x       # Hash keys as symbol or string for X
  when :y, "y": @y       # Hash keys as symbol or string for Y
  else nil               # Arrays and hashes just return nil on bad indexes
  end
end


Enumerating Coordinates



If a Point object can behave
        like an array with two elements, then perhaps we ought to be able to
        iterate through those elements as we can with a true array. Here is a
        definition of the each iterator for
        our Point class. Because a Point always has exactly two elements, our
        iterator doesn’t have to loop; it can simply call yield
        twice:
# This iterator passes the X coordinate to the associated block, and then
# passes the Y coordinate, and then returns. It allows us to enumerate
# a point as if it were an array with two elements. This each method is
# required by the Enumerable module.
def each
  yield @x
  yield @y
end

With this iterator defined, we can write code like this:
p = Point.new(1,2)
p.each {|x| print x }   # Prints "12"

More importantly, defining the each iterator allows us to mix in the
        methods of the Enumerable module,
        all of which are defined in terms of each. Our class gains over 20 iterators by
        adding a single line:
include Enumerable

If we do this, then we can write interesting code like
        this:
# Is the point P at the origin?
p.all? {|x| x == 0 } # True if the block is true for all elements


Point Equality



As our class is currently defined, two distinct Point instances are never equal to each
        other, even if their X and Y coordinates are the same. To remedy this,
        we must provide an implementation of the == operator. (You
        may want to reread Object Equality in Chapter 3 to refresh your memory about Ruby’s various
        notions of equality.)
Here is an == method for
        Point:
def ==(o)               # Is self == o?
  if o.is_a? Point      # If o is a Point object
    @x==o.x && @y==o.y  # then compare the fields.
  else                  # If o is not a Point
    false               # then, by definition, self != o.
  end
end

Duck Typing and Equality
The + operator we defined earlier did no type checking at all: it
          works with any argument object with x and y
          methods that return numbers. This == method is implemented differently;
          instead of allowing duck typing, it requires that the argument is a
          Point. This is an implementation
          choice. The implementation of ==
          above chooses to define equality so that an object cannot be
          equal to a Point unless it is
          itself a Point.
Implementations may be stricter or more liberal than this. The
          implementation above uses the is_a? predicate to test the class of the
          argument. This allows an instance of a subclass of Point to be equal to a Point. A stricter implementation would use
          instance_of? to disallow subclass
          instances. Similarly, the implementation above uses == to compare the X and Y coordinates. For
          numbers, the == operator allows
          type conversion, which means that the point (1,1) is equal to (1.0,1.0). This is probably as it should
          be, but a stricter definition of equality could use eql? to compare the coordinates.
A more liberal definition of equality would support duck
          typing. Some caution is required, however. Our == method should not raise a NoMethodError if the argument object does
          not have x and y methods. Instead, it should simply
          return false:
def ==(o)                  # Is self == o?
  @x == o.x && @y == o.y   # Assume o has proper x and y methods
rescue                     # If that assumption fails
  false                    # Then self != o
end


Recall from Object Equality that Ruby objects also
        define an eql? method for testing
        equality. By default, the eql?
        method, like the == operator, tests
        object identity rather than equality of object content. Often, we want
        eql? to work just like the == operator, and we can accomplish this with
        an alias:
class Point
  alias eql? ==
end

On the other hand, there are two reasons we might want eql? to be different from ==. First, some classes define eql? to perform a stricter comparison than
        ==. In Numeric and its subclasses, for example,
        == allows type conversion and
        eql? does not. If we believe that
        the users of our Point class might
        want to be able to compare instances in two different ways, then we
        might follow this example. Because points are just two numbers, it
        would make sense to follow the example set by Numeric here. Our eql? method would look much like the
        == method, but it would use
        eql? to compare point coordinates
        instead of ==:
def eql?(o)             
  if o.instance_of? Point      
    @x.eql?(o.x) && @y.eql?(o.y)
  else
    false
  end
end

As an aside, note that this is the right approach for any
        classes that implement collections (sets, lists, trees) of arbitrary
        objects. The == operator should
        compare the members of the collection using their == operators, and the eql? method should compare the members using their eql? methods.
The second reason to implement an eql? method that is different from the == operator is if you want instances of your
        class to behave specially when used as a hash key. The Hash class uses eql? to compare hash keys (but not values).
        If you leave eql? undefined, then
        hashes will compare instances of your class by object identity. This
        means that if you associate a value with a key p, you will only be able to retrieve that
        value with the exact same object p.
        An object q won’t work, even if
        p == q. Mutable objects do not work
        well as hash keys, but leaving eql?
        undefined neatly sidesteps the problem. (See Hash Codes, Equality, and Mutable Keys for more on hashes and mutable keys.)
Because eql? is used for
        hashes, you must never implement this method by itself. If you define
        an eql? method, you must also
        define a hash method to compute a
        hashcode for your object. If two objects are equal according to
        eql?, then their hash methods must
        return the same value. (Two unequal objects may return the same
        hashcode, but you should avoid this to the extent possible.)
Implementing optimal hash
        methods can be very tricky. Fortunately, there is a simple way to
        compute perfectly adequate hashcodes for just about any class: simply
        combine the hashcodes of all the objects referenced by your class.
        (More precisely: combine the hashcodes of all the objects compared by
        your eql? method.) The trick is to
        combine the hashcodes in the proper way. The following hash method is not a
        good one:
def hash
  @x.hash + @y.hash
end

The problem with this method is that it returns the same
        hashcode for the point (1,0) as it
        does for the point (0,1). This is
        legal, but it leads to poor performance when points are used as hash
        keys. Instead, we should mix things up a bit:
def hash
  code = 17
  code = 37*code + @x.hash
  code = 37*code + @y.hash
  # Add lines like this for each significant instance variable
  code  # Return the resulting code
end

This general-purpose hashcode recipe should be suitable for most
        Ruby classes. It, and its constants 17 and 37, are adapted from the book
        Effective Java by Joshua Bloch (Prentice
        Hall).

Ordering Points



Suppose we wish to define an ordering for Point objects so that we can compare them
        and sort them. There are a number of ways to order points, but we’ll
        chose to arrange them based on their distance from the origin. This
        distance (or magnitude) is computed by the Pythagorean theorem: the
        square root of the sum of the squares of the X and Y
        coordinates.
To define this ordering for Point objects, we need only define the
        <=> operator (see Comparison: <, <=, >, >=, and <=>) and include the Comparable module. Doing this mixes in
        implementations of the equality and relational operators that are
        based on our implementation of the general <=> operator we defined. The <=> operator should compare self to the object it is passed. If self is less than that object (closer to the
        origin, in this case), it should return –1. If the two objects are equal, it should
        return 0. And if self is greater than the argument object,
        the method should return 1. (The
        method should return nil if the
        argument object and self are of
        incomparable types.) The following code is our implementation of
        <=>. There are two things to note about it. First, it doesn’t
        bother with the Math.sqrt method
        and instead simply compares the sum of the squares of the coordinates.
        Second, after computing the sums of the squares, it simply delegates
        to the <=> operator of the
        Float class:
include Comparable   # Mix in methods from the Comparable module.

# Define an ordering for points based on their distance from the origin.
# This method is required by the Comparable module.
def <=>(other)
  return nil unless other.instance_of? Point
  @x**2 + @y**2 <=> other.x**2 + other.y**2
end

Note that the Comparable
        module defines an == method that
        uses our definition of <=>.
        Our distance-based comparison operator results in an == method that considers the points (1,0) and (0,1) to be equal. Because our Point class explicitly defines its own
        == method, however, the == method of Comparable is never invoked. Ideally, the
        == and <=> operators should have consistent
        definitions of equality. This was not possible in our Point class, and we end up with operators
        that allow the following:
p,q = Point.new(1,0), Point.new(0,1)
p == q        # => false: p is not equal to q
p < q         # => false: p is not less than q
p > q         # => false: p is not greater than q

Finally, It is worth noting here that the Enumerable module defines several methods,
        such as sort, min, and max, that only work if the objects being
        enumerated define the <=>
        operator.

A Mutable Point



The Point class we’ve been
        developing is immutable: once a point object has
        been created, there is no public API to change the X and Y coordinates
        of that point. This is probably as it should be. But let’s detour and
        investigate some methods we might add if we wanted points to be mutable.
First of all, we’d need x=
        and y= setter methods to allow the
        X and Y coordinates to be set directly. We could define these methods
        explicitly, or simply change our attr_reader line to attr_accessor:
attr_accessor :x, :y

Next, we’d like an alternative to the + operator for when we want to add the
        coordinates of point q to the
        coordinates of point p, and modify
        point p rather than creating and
        returning a new Point object. We’ll
        call this method add!, with the
        exclamation mark indicating that it alters the internal state of the
        object on which it is invoked:
def add!(p)          # Add p to self, return modified self
  @x += p.x
  @y += p.y
  self
end

When defining a mutator method, we normally only add an
        exclamation mark to the name if there is a nonmutating version of the
        same method. In this case, the name add! makes sense if we also define an
        add method that returns a new
        object, rather than altering its receiver. A nonmutating version of a
        mutator method is often written simply by creating a copy of self and invoking the mutator on the copied
        object:
def add(p)           # A nonmutating version of add!
  q = self.dup       # Make a copy of self
  q.add!(p)          # Invoke the mutating method on the copy
end

In this trivial example, our add method works just like the + operator we’ve already defined, and it’s
        not really necessary. So if we don’t define a nonmutating add, we should consider dropping the
        exclamation mark from add! and
        allowing the name of the method itself (“add” instead of “plus”) to
        indicate that it is a mutator.

Quick and Easy Mutable Classes



If you want a mutable Point
        class, one way to create it is with Struct. Struct is a core Ruby class that generates
        other classes. These generated classes have accessor methods for the
        named fields you specify. There are two ways to create a new class
        with Struct.new:
Struct.new("Point", :x, :y)  # Creates new class Struct::Point
Point = Struct.new(:x, :y)   # Creates new class, assigns to Point

Naming Anonymous Classes
The second line in the code relies on a curious fact about
          Ruby classes: if you assign an unnamed class object to a constant,
          the name of that constant becomes the name of a class. You can
          observe this same behavior if you use the Class.new constructor:
C = Class.new   # A new class with no body, assigned to a constant
c = C.new       # Create an instance of the class
c.class.to_s    # => "C": constant name becomes class name


Once a class has been created with Struct.new, you can use it like any other
        class. Its new method will expect
        values for each of the named fields you specify, and its instance
        methods provide read and write accessors for those fields:
p = Point.new(1,2)   # => #<struct Point x=1, y=2>
p.x                  # => 1 
p.y                  # => 2
p.x = 3              # => 3
p.x                  # => 3

Structs also define the []
        and []= operators for array and
        hash-style indexing, and even provide each and each_pair iterators for looping through the
        values held in an instance of the struct:
p[:x] = 4             # => 4: same as p.x =
p[:x]                 # => 4: same as p.x
p[1]                  # => 2: same as p.y
p.each {|c| print c}  # prints "42"
p.each_pair {|n,c| print n,c }   # prints "x4y2"

Struct-based classes have a working == operator, can be used as hash keys
        (though caution is necessary because they are mutable), and even
        define a helpful to_s
        method:
q = Point.new(4,2)
q == p        # => true
h = {q => 1}  # Create a hash using q as a key
h[p]          # => 1: extract value using p as key
q.to_s        # => "#<struct Point x=4, y=2>"

A Point class defined as a
        struct does not have point-specific methods like add! or the <=> operator defined earlier in this
        chapter. There is no reason we can’t add them, though. Ruby class
        definitions are not static. Any class (including classes defined with
        Struct.new) can be “opened” and
        have methods added to it. Here’s a Point class initially defined as a Struct, with point-specific methods
        added:
Point = Struct.new(:x, :y)   # Create new class, assign to Point
class Point                  # Open Point class for new methods
  def add!(other)            # Define an add! method
    self.x += other.x
    self.y += other.y
    self
  end

  include Comparable         # Include a module for the class
  def <=>(other)             # Define the <=> operator
    return nil unless other.instance_of? Point
    self.x**2 + self.y**2 <=> other.x**2 + other.y**2
  end
end

As noted at the beginning of this section, the Struct class is designed to create mutable
        classes. With just a bit of work, however, we can make a Struct-based class immutable:
Point = Struct.new(:x, :y)  # Define mutable class
class Point                 # Open the class
  undef x=,y=,[]=           # Undefine mutator methods
end


A Class Method



Let’s take another approach to adding Point objects together. Instead of invoking
        an instance method of one point and passing another point to that
        method, let’s write a method named sum that takes any number of Point objects, adds them together, and
        returns a new Point. This method is
        not an instance method invoked on a Point object. Rather, it is a class method, invoked
        through the Point class itself. We
        might invoke the sum method like
        this:
total = Point.sum(p1, p2, p3)  # p1, p2 and p3 are Point objects

Keep in mind that the expression Point refers to a Class object that represents our point
        class. To define a class method for the Point class, what we are really doing is
        defining a singleton method of the Point object. (We covered singleton methods
        in Defining Singleton Methods.) To define a singleton method,
        use the def statement as usual, but
        specify the object on which the method is to be defined as well as the
        name of the method. Our class method sum is defined like this:
class Point
  attr_reader :x, :y     # Define accessor methods for our instance variables

  def Point.sum(*points) # Return the sum of an arbitrary number of points
    x = y = 0
    points.each {|p| x += p.x; y += p.y }
    Point.new(x,y)
  end

  # ...the rest of class omitted here...
end

This definition of the class method names the class explicitly,
        and mirrors the syntax used to invoke the method. Class methods can
        also be defined using self instead
        of the class name. Thus, this method could also be written like
        this:
def self.sum(*points)  # Return the sum of an arbitrary number of points
  x = y = 0
  points.each {|p| x += p.x; y += p.y }
  Point.new(x,y)
end

Using self instead of Point makes the
        code slightly less clear, but it’s an application of the DRY (Don’t
        Repeat Yourself) principle. If you use self instead of the class name, you can
        change the name of a class without having to edit the definition of
        its class methods.
There is yet another technique for defining class methods.
        Though it is less clear than the previously shown technique, it can be
        handy when defining multiple class methods, and you are likely to see
        it used in existing code:
# Open up the Point object so we can add methods to it
class << Point      # Syntax for adding methods to a single object
  def sum(*points)  # This is the class method Point.sum
    x = y = 0
    points.each {|p| x += p.x; y += p.y }
    Point.new(x,y)
  end

  # Other class methods can be defined here
end

This technique can also be used inside the class definition,
        where we can use self instead of
        repeating the class name:
class Point
  # Instance methods go here

  class << self
    # Class methods go here
  end
end

We’ll learn more about this syntax in Singleton Methods and the Eigenclass.

Constants



Many classes can benefit from the definition of some associated
        constants. Here are some constants that might be useful for our
        Point class:
class Point
  def initialize(x,y)  # Initialize method
    @x,@y = x, y 
  end

  ORIGIN = Point.new(0,0)
  UNIT_X = Point.new(1,0)
  UNIT_Y = Point.new(0,1)

  # Rest of class definition goes here
end

Inside the class definition, these constants can be referred to
        by their unqualified names. Outside the definition, they must be
        prefixed by the name of the class, of course:
Point::UNIT_X + Point::UNIT_Y   # => (1,1)

Note that because our constants in this example refer to
        instances of the class, we cannot define the constants until after
        we’ve defined the initialize
        method of the class. Also, keep in mind that it is perfectly
        legal to define constants in the Point class from outside the class:
Point::NEGATIVE_UNIT_X = Point.new(-1,0)


Class Variables



Class variables are visible to, and shared by, the class
        methods and the instance methods of a class, and also by the class
        definition itself. Like instance variables, class variables are
        encapsulated; they can be used by the implementation of a class, but
        they are not visible to the users of a class. Class variables have
        names that begin with @@.
There is no real need to use class variables in our Point class, but for the purposes of this
        tutorial, let’s suppose that we want to collect data about the number
        of Point objects that are created
        and their average coordinates. Here’s how we might write the
        code:
class Point
  # Initialize our class variables in the class definition itself
  @@n = 0              # How many points have been created
  @@totalX = 0         # The sum of all X coordinates
  @@totalY = 0         # The sum of all Y coordinates

  def initialize(x,y)  # Initialize method
    @x,@y = x, y       # Sets initial values for instance variables

    # Use the class variables in this instance method to collect data
    @@n += 1           # Keep track of how many Points have been created
    @@totalX += x      # Add these coordinates to the totals
    @@totalY += y
  end

  # A class method to report the data we collected
  def self.report
    # Here we use the class variables in a class method
    puts "Number of points created: #@@n"
    puts "Average X coordinate: #{@@totalX.to_f/@@n}"
    puts "Average Y coordinate: #{@@totalY.to_f/@@n}"
  end
end

The thing to notice about this code is that class variables are
        used in instance methods, class methods, and in the class definition
        itself, outside of any method. Class variables are fundamentally
        different than instance variables. We’ve seen that instance variables
        are always evaluated in reference to self. That is why an instance variable
        reference in a class definition or class method is completely
        different from an instance variable reference in an instance method.
        Class variables, on the other hand, are always evaluated in reference
        to the class object created by the enclosing class definition statement.

Class Instance Variables



Classes are objects and can have instance variables just as
        other objects can. The instance
        variables of a class—often called class instance variables—are not the
        same as class variables. But they are similar enough that they can
        often be used instead of class variables.
An instance variable used inside a class definition but outside an instance
        method definition is a class instance variable. Like class variables,
        class instance variables are associated with the class rather than
        with any particular instance of the class. A disadvantage of class instance variables
        is that they cannot be used within instance methods as class variables
        can. Another disadvantage is the potential for confusing them with
        ordinary instance variables. Without the distinctive punctuation
        prefixes, it may be more difficult to remember whether a variable is
        associated with instances or with the class object.
One of the most important advantages of class instance variables
        over class variables has to do with the confusing behavior of class
        variables when subclassing an existing class. We’ll return to this
        point later in the chapter.
Let’s port our statistics-gathering version of the Point class to use class instance variables
        instead of class variables. The only difficulty is that because class
        instance variables cannot be used from instance methods, we must move
        the statistics gathering code out of the initialize method
        (which is an instance method) and into the new class method used to create
        points:
class Point
  # Initialize our class instance variables in the class definition itself
  @n = 0              # How many points have been created
  @totalX = 0         # The sum of all X coordinates
  @totalY = 0         # The sum of all Y coordinates

  def initialize(x,y) # Initialize method 
    @x,@y = x, y      # Sets initial values for instance variables
  end

  def self.new(x,y)   # Class method to create new Point objects
    # Use the class instance variables in this class method to collect data
    @n += 1           # Keep track of how many Points have been created
    @totalX += x      # Add these coordinates to the totals
    @totalY += y

    super             # Invoke the real definition of new to create a Point
                      # More about super later in the chapter
  end

  # A class method to report the data we collected
  def self.report
    # Here we use the class instance variables in a class method
    puts "Number of points created: #@n"
    puts "Average X coordinate: #{@totalX.to_f/@n}"
    puts "Average Y coordinate: #{@totalY.to_f/@n}"
  end
end

Because class instance variables are just instance variables of
        class objects, we can use attr,
        attr_reader, and attr_accessor to create accessor methods for
        them. The trick, however, is to invoke these metaprogramming methods
        in the right context. Recall that one way to define class methods uses
        the syntax class << self.
        This same syntax allows us to define attribute accessor methods for
        class instance variables:
class << self
  attr_accessor :n, :totalX, :totalY
end

With these accessors defined, we can refer to our raw data as
        Point.n, Point.totalX, and Point.totalY.



Method Visibility: Public, Protected, Private



Instance
      methods may be public,
      private, or protected. If
      you’ve programmed with other object-oriented languages, you may already
      be familiar with these terms. Pay attention anyway, because these words
      have a somewhat different meaning in Ruby than they do in other
      languages.
Methods are normally public unless they are explicitly declared to
      be private or protected. One exception is the initialize method, which is always implicitly private. Another exception is
      any “global” method declared outside of a class definition—those methods are
      defined as private instance methods of Object. A public method can be invoked from
      anywhere—there are no restrictions on its use.
A private method is internal to the implementation of a class, and
      it can only be called by other instance methods of the class (or, as
      we’ll see later, its subclasses). Private methods are implicitly invoked
      on self, and may not be explicitly
      invoked on an object. If m is a
      private method, then you must invoke it in functional style as m. You cannot write o.m or even self.m.
A protected method is like a private method in that it can only be
      invoked from within the implementation of a class or its subclasses. It
      differs from a private method in that it may be explicitly invoked on
      any instance of the class, and it is not restricted to implicit
      invocation on self. A protected
      method can be used, for example, to define an accessor that allows
      instances of a class to share internal state with each other, but does
      not allow users of the class to access that state.
Protected methods are the least commonly defined and also the most
      difficult to understand. The rule
      about when a protected method can be invoked can be more formally
      described as follows: a protected method defined by a class C may be invoked on an object o by a method in an object p if and only if the classes of o and p are
      both subclasses of, or equal to, the class C.
Method visibility is declared with three methods named public, private, and protected. These are instance methods of
      the Module class. All classes are
      modules, and inside a class definition (but outside method definitions),
      self refers to the class being
      defined. Thus, public, private, and protected may be used bare as if they were
      keywords of the language. In fact, however, they are method invocations
      on self. There are two ways to invoke
      these methods. With no arguments, they specify that all subsequent
      method definitions will have the specified visibility. A class might use
      them like this:
class Point
  # public methods go here

  # The following methods are protected
  protected

  # protected methods go here

  # The following methods are private
  private

  # private methods go here
end

The methods may also be invoked with the names of one or more
      methods (as symbols or strings) as arguments. When invoked like this,
      they alter the visibility of the named methods. In this usage, the
      visibility declaration must come after the definition of the method. One
      approach is to declare all private and protected methods at once, at the
      end of a class. Another approach is to declare the visibility of each
      private or protected method immediately after it is defined. Here, for
      example, is a class with a private utility method and a protected
      accessor method:
class Widget
  def x                       # Accessor method for @x
    @x
  end
  protected :x                # Make it protected

  def utility_method          # Define a method
    nil
  end
  private :utility_method     # And make it private
end

Remember that public, private, and protected apply only to methods in Ruby.
      Instance and class variables are encapsulated and effectively private,
      and constants are effectively public. There is no way to make an
      instance variable accessible from outside a class (except by defining an
      accessor method, of course). And there is no way to define a constant
      that is inaccessible to outside use.
Occasionally, it is useful to specify that a class method should
      be private. If your class defines factory methods, for example, you
      might want to make the new method
      private. To do this, use the private_class_method method, specifying one or
      more method names as symbols:
private_class_method :new

You can make a private class method public again with public_class_method. Neither method can be
      invoked without arguments in the way that public, protected, and private can be.
Ruby is, by design, a very open language. The ability to specify
      that some methods are private and protected encourages good programming
      style, and prevents inadvertent use of methods that are not part of the
      public API of a class. It is important to understand, however, that
      Ruby’s metaprogramming capabilities make it trivial to invoke
      private and protected methods and even to access encapsulated instance
      variables. To invoke the private utility method defined in the previous
      code, you can use the send method, or
      you can use instance_eval
      to evaluate a block in the context of the object:
w = Widget.new                      # Create a Widget
w.send :utility_method              # Invoke private method!
w.instance_eval { utility_method }  # Another way to invoke it
w.instance_eval { @x }              # Read instance variable of w

If you want to invoke a method by name, but you don’t want to
      inadvertently invoke a private method that you don’t know about, you can
      (in Ruby 1.9) use public_send instead
      of send. It works like send, but does not invoke private methods when
      called with an explicit receiver. public_send is covered in Chapter 8, as are send and
      instance_eval.

Subclassing and Inheritance



Most object-oriented programming languages, including Ruby,
      provide a subclassing mechanism that allows us to
      create new classes whose behavior is based on, but modified from, the
      behavior of an existing class. We’ll begin this discussion of
      subclassing with definitions of basic terminology. If you’ve programmed
      in Java, C++, or a similar language, you are probably already familiar
      with these terms.
When we define a class, we may specify that it
      extends—or inherits
      from—another class, known as the
      superclass. If we define a class Ruby that extends a class Gem, we say that Ruby is a subclass
      of Gem, and that
      Gem is the
      superclass of Ruby. If you do not specify a superclass when
      you define a class, then your class implicitly extends Object. A class may have any number of
      subclasses, and every class has a single superclass except Object, which has none.
The fact that classes may have multiple subclasses but only a
      single superclass means that they can be arranged in a tree structure,
      which we call the Ruby class hierarchy. The Object class is the root of this hierarchy,
      and every class inherits directly or indirectly from it. The descendants of a class are the
      subclasses of the class plus the subclasses of the subclasses, and so on
      recursively. The ancestors of a class are the superclass, plus the superclass of the
      superclass, and so on up to Object.
      Figure 5-5 in Chapter 5
      illustrates the portion of the Ruby class hierarchy that includes
      Exception and all of its descendants.
      In that figure, you can see that the ancestors of EOFError are IOError, StandardError, Exception, and Object.
BasicObject in Ruby 1.9
In Ruby 1.9, Object
        is no longer the root of the class hierarchy. A new class
        named BasicObject serves that
        purpose, and Object is a subclass
        of BasicObject. BasicObject is a very simple class, with
        almost no methods of its own, and it is useful as the superclass of
        delegating wrapper classes (like the one shown in Example 8-5 in Chapter 8).
When you create a class in Ruby 1.9, you still extend Object unless you explicitly specify the
        superclass, and most programmers will never need to use or extend
        BasicObject. Methods such as
        ==, equal?, instance_eval, and __send__ are normally considered to be
        Object methods even though they are
        actually defined by BasicObject.

The syntax for extending a class is simple. Just add a < character and the name of the superclass
      to your class statement. For
      example:
class Point3D < Point    # Define class Point3D as a subclass of Point
end

We’ll flesh out this three-dimensional Point class in the subsections that follow,
      showing how methods are inherited from the superclass, and how to
      override or augment the inherited methods to define new behavior for the
      subclass.
Subclassing a Struct
Earlier in this chapter, we saw how to use Struct.new to automatically generate simple
        classes. It is also possible to subclass a struct-based class, so that
        methods other than the automatically generated ones can be
        added:
class Point3D < Struct.new("Point3D", :x, :y, :z)
  # Superclass struct gives us accessor methods, ==, to_s, etc.
  # Add point-specific methods here
end


Inheriting Methods



The Point3D class we have defined is a trivial subclass of Point. It declares itself an extension of Point, but there is no class body, so it
        adds nothing to that class. A Point3D object is effectively the same thing
        as a Point object. One of the only
        observable differences is in the value returned by the class method:
p2 = Point.new(1,2)
p3 = Point3D.new(1,2)
print p2.to_s, p2.class   # prints "(1,2)Point"
print p3.to_s, p3.class   # prints "(1,2)Point3D"

The value returned by the class method is different, but what’s more
        striking about this example is what is the same. Our Point3D object has inherited the to_s method defined by Point. It has also inherited the initialize method—this is what allows us to
        create a Point3D object with the
        same new call that we use to create
        a Point object.[*] There is another example of method inheritance in this
        code: both Point and Point3D inherit the class method from Object.

Overriding Methods



When we define a new class, we add new behavior to it by
        defining new methods. Just as importantly, however, we can customize
        the inherited behavior of the class by redefining inherited methods.
For example, the Object class
        defines a to_s method to convert an
        object to a string in a very generic way:
o = Object.new
puts o.to_s      # Prints something like "#<Object:0xb7f7fce4>"

When we defined a to_s method
        in the Point class, we were overriding the to_s method inherited from Object.
One of the important things to understand about object-oriented
        programming and subclassing is that when methods are invoked, they are
        looked up dynamically so that the appropriate definition or
        redefinition of the method is found. That is, method invocations are
        not bound statically at the time they are parsed, but rather, are
        looked up at the time they are executed. Here is an example to
        demonstrate this important point:
# Greet the World
class WorldGreeter
  def greet                      # Display a greeting
    puts "#{greeting} #{who}"
  end

  def greeting                   # What greeting to use
    "Hello"
  end

  def who                        # Who to greet
    "World"
  end
end

# Greet the world in Spanish
class SpanishWorldGreeter < WorldGreeter
  def greeting                   # Override the greeting
    "Hola"
  end
end

# We call a method defined in WorldGreeter, which calls the overridden
# version of greeting in SpanishWorldGreeter, and prints "Hola World"
SpanishWorldGreeter.new.greet

If you’ve done object-oriented programming before, the behavior
        of this program is probably obvious and trivial to you. But if you’re
        new to it, it may be profound. We call the greet method inherited from WorldGreeter. This greet method calls the greeting method. At the
        time that greet was defined, the
        greeting method returned “Hello”.
        But we’ve subclassed WorldGreeter,
        and the object we’re calling greet
        on has a new definition of greeting. When we invoke greeting, Ruby looks up the appropriate
        definition of that method for the object it is being invoked on, and
        we end up with a proper Spanish greeting rather than an English one.
        This runtime lookup of the appropriate definition of a method is
        called method name resolution, and is described
        in detail in Method Lookup at the end of this
        chapter.
Notice that it is also perfectly reasonable to define an
        abstract class that invokes certain undefined
        “abstract” methods, which are left for subclasses to define. The
        opposite of abstract is concrete. A class that
        extends an abstract class is concrete if it defines all of the
        abstract methods of its ancestors. For example:
# This class is abstract; it doesn't define greeting or who
# No special syntax is required: any class that invokes methods that are
# intended for a subclass to implement is abstract.
class AbstractGreeter
  def greet
    puts "#{greeting} #{who}"
  end
end

# A concrete subclass
class WorldGreeter < AbstractGreeter
  def greeting; "Hello"; end
  def who; "World"; end
end

WorldGreeter.new.greet  # Displays "Hello World"

Overriding private methods



Private methods cannot be invoked from outside the class that defines
          them. But they are inherited by subclasses. This means that
          subclasses can invoke them and can override them.
Be careful when you subclass a class that you did not write
          yourself. Classes often use private methods as internal helper
          methods. They are not part of the public API of the class and are
          not intended to be visible. If you haven’t read the source code of
          the class, you won’t even know the names of the private methods it
          defines for its own use. If you happen to define a method (whatever
          its visibility) in your subclass that has the same name as a private
          method in the superclass, you will have inadvertently overridden the
          superclass’s internal utility method, and this will almost certainly
          cause unintended behavior.
The upshot is that, in Ruby, you should only subclass when you
          are familiar with the implementation of the superclass. If you only
          want to depend on the public API of a class and not on its
          implementation, then you should extend the functionality of the
          class by encapsulating and delegating to it, not by inheriting from
          it.


Augmenting Behavior by Chaining



Sometimes when we override a method, we
        don’t want to replace it altogether, we just want to augment its
        behavior by adding some new code. In order to do this, we need a way
        to invoke the overridden method from the overriding method. This is
        known as chaining, and it is accomplished
        with the keyword super.
super works like a special method invocation: it invokes a method
        with the same name as the current one, in the superclass of the
        current class. (Note that the superclass need not define that method
        itself—it can inherit it from one of its ancestors.) You may specify
        arguments for super just as you
        would for a normal method invocation. One common and important place
        for method chaining is the initialize method of a class. Here is how we
        might write the initialize method
        of our Point3D class:
class Point3D < Point
  def initialize(x,y,z)
    # Pass our first two arguments along to the superclass initialize method
    super(x,y)
    # And deal with the third argument ourself
    @z = z
  end
end

If you use super as a bare
        keyword—with no arguments and no parentheses—then all of the arguments
        that were passed to the current method are passed to the superclass
        method. Note, however, that it’s the current values of the method
        parameters that are passed to the superclass method. If the method has
        modified the values in its parameter variables, then the modified
        values are passed to the invocation of the superclass method.
As with normal method invocations, the parentheses around
        super arguments are optional.
        Because a bare super has special
        meaning, however, you must explicitly use a pair of empty parentheses
        if you want to pass zero arguments from a method that itself has one
        or more arguments.

Inheritance of Class Methods



Class methods may be inherited and overridden just as instance methods
        can be. If our Point class defines
        a class method sum,
        then our Point3D subclass inherits
        that method. That is, if Point3D
        does not define its own class method named sum, then the expression Point3D.sum invokes the same method as the
        expression Point.sum.
As a stylistic matter, it is preferable to invoke class methods
        through the class object on which they are defined. A code maintainer
        seeing an expression Point3D.sum
        would go looking for a definition of the sum method in the Point3D class, and he might have a hard time
        finding it in the Point class. When
        invoking a class method with an explicit receiver, you should avoid
        relying on inheritance—always invoke the class method through the
        class that defines it.[*]
Within the body of a class method, you may invoke the other
        class methods of the class without an explicit receiver—they are
        invoked implicitly on self, and the
        value of self in a class method is
        the class on which it was invoked. It is here, inside the body of a
        class method, that the inheritance of class methods is useful: it
        allows you to implicitly invoke
        a class method even when that class method is defined by a
        superclass.
Finally, note that class methods can use super just as instance methods can to invoke
        the same-named method in the superclass.

Inheritance and Instance Variables



Instance variables often appear to be inherited in Ruby. Consider this
        code, for example:
class Point3D < Point
  def initialize(x,y,z)
    super(x,y)
    @z = z
  end

  def to_s
    "(#@x, #@y, #@z)"  # Variables @x and @y inherited?
  end
end

The to_s method in Point3D references the @x and @y
        variables from the superclass Point. This code works as you probably
        expect it to:
Point3D.new(1,2,3).to_s  # => "(1, 2, 3)"

Because this code behaves as expected, you may be tempted to say
        that these variables are inherited. That is not how Ruby works,
        though. All Ruby objects have a set of instance variables. These are
        not defined by the object’s class—they are simply created when a value
        is assigned to them. Because instance variables are not defined by a
        class, they are unrelated to subclassing and the inheritance
        mechanism.
In this code, Point3D defines
        an initialize method that chains to the initialize method of its superclass.
        The chained method assigns values to the variables @x and @y, which makes those variables come into
        existence for a particular instance of Point3D.
Programmers coming from Java—or from other strongly typed
        languages in which a class defines a set of fields for its
        instances—may find that this takes some getting used to. Really,
        though, it is quite simple: Ruby’s instance variables are not
        inherited and have nothing to do with the inheritance mechanism. The
        reason that they sometimes appear to be inherited is that instance
        variables are created by the methods that first assign values to them,
        and those methods are often inherited or
        chained.
There is an important corollary. Because instance variables have
        nothing to do with inheritance, it follows that an instance variable
        used by a subclass cannot “shadow” an instance variable in the
        superclass. If a subclass uses an instance variable with the same name
        as a variable used by one of its ancestors, it will overwrite the
        value of its ancestor’s variable. This can be done intentionally, to
        alter the behavior of the ancestor, or it can be done inadvertently.
        In the latter case, it is almost certain to cause bugs. As with the
        inheritance of private methods described earlier, this is another
        reason why it is only safe to extend Ruby classes when you are
        familiar with (and in control of) the implementation of the superclass.
Finally, recall that class instance variables are simply
        instance variables of the Class
        object that represents a class. As such, they are not inherited.
        Furthermore, the Point and Point3D objects (we’re talking about the
        Class objects themselves, not the
        classes they represent) are both just instances of Class. There is no relationship between
        them, and no way that one could inherit variables from the
        other.

Inheritance and Class Variables



Class variables are shared by a class and all of its subclasses.
        If a class A defines a variable
        @@a, then subclass B can use that variable. Although this may
        appear, superficially, to be inheritance, it is actually something
        different.
The difference becomes clear when we think about setting the
        value of a class variable. If a subclass assigns a value to a class
        variable already in use by a superclass, it does not create its own
        private copy of the class variable, but instead alters the value seen
        by the superclass. It also alters the shared value seen by all other
        subclasses of the superclass. Ruby 1.8 prints a warning about this if you run it with
        -w. Ruby 1.9 does not issue this
        warning.
If a class uses class variables, then any subclass can alter the
        behavior of the class and all its descendants by changing the value of
        the shared class variable. This is a strong argument for the use of
        class instance variables instead of class variables.
The following code demonstrates the sharing of class variables.
        It outputs 123:
class A
  @@value = 1                   # A class variable
  def A.value; @@value; end     # An accessor method for it
end
print A.value                   # Display value of A's class variable
class B < A; @@value = 2; end   # Subclass alters shared class variable
print A.value                   # Superclass sees altered value
class C < A; @@value = 3; end   # Another alters shared variable again
print B.value                   # 1st subclass sees value from 2nd subclass


Inheritance of Constants



Constants are inherited and can be overridden, much like instance methods can. There is, however, a
        very important difference between the inheritance of methods and the
        inheritance of constants.
Our Point3D class can use the
        ORIGIN constant defined by its Point
        superclass, for example. Although the clearest style is to qualify
        constants with their defining class, Point3D could also refer to this constant
        with an unqualified ORIGIN or even
        as Point3D::ORIGIN.
Where inheritance of constants becomes interesting is when a
        class like Point3D redefines a constant. A
        three-dimensional point class probably wants a constant named ORIGIN to refer to a three-dimensional
        point, so Point3D is likely to
        include a line like this:
ORIGIN = Point3D.new(0,0,0)

As you know, Ruby issues a warning when a constant is redefined.
        In this case, however, this is a newly created constant. We now have
        two constants Point::ORIGIN and
        Point3D::ORIGIN.
The important difference between constants and methods is that
        constants are looked up in the lexical scope of the place they are
        used before they are looked up in the inheritance hierarchy (Constant Lookup has details). This means that if Point3D inherits methods that use the
        constant ORIGIN, the behavior of
        those inherited methods will not change when Point3D defines its own version of ORIGIN.



[*] If you’re a Java programmer, this may be surprising to you.
            Java classes define special constructor methods for
            initialization, and those methods are not inherited. In Ruby,
            initialize is an ordinary
            method and is inherited like any other.

[*] The Class.new method is
            an exception—it is inherited by and invoked on just about every
            new class we define.



Object Creation and Initialization



Objects are typically created in Ruby by calling the new method of their class. This section
      explains exactly how that works, and it also explains other mechanisms
      (such as cloning and unmarshaling) that create objects. Each subsection
      explains how you can customize the
      initialization of the newly created objects.
new, allocate, and initialize



Every class inherits the class method new. This method has two jobs: it must
        allocate a new object—actually bring the object into existence—and it
        must initialize the object. It delegates these two jobs to the
        allocate and initialize methods, respectively. If the
        new method were actually written in
        Ruby, it would look something like this:
def new(*args)
  o = self.allocate   # Create a new object of this class
  o.initialize(*args) # Call the object's initialize method with our args
  o                   # Return new object; ignore return value of initialize
end

allocate is an instance
        method of Class, and it is
        inherited by all class objects. Its purpose is to create a new
        instance of the class. You can call this method yourself to create
        uninitialized instances of a class. But don’t try to override it; Ruby
        always invokes this method directly, ignoring any overriding versions
        you may have defined.
initialize is an instance
        method. Most classes need one, and every class that extends a class
        other than Object should use
        super to chain to the initialize method of the superclass. The
        usual job of the initialize method
        is to create instance variables for the object and set them to their
        initial values. Typically, the value of these instance variables are
        derived from the arguments that the client code passed to new and that new passed to initialize. initialize does not need to return the
        initialized object. In fact, the return value of initialize is ignored. Ruby implicitly makes
        the initialize method private,
        which means that you cannot explicitly invoke it on an object.
Class::new and Class#new
Class defines two methods
          named new. One, Class#new, is an instance method, and the other, Class::new, is a class method (we use the
          disambiguating naming convention of the ri tool
          here). The first is the instance method that we’ve been describing
          here; it is inherited by all class objects, becoming a class method
          of the class, and is used to create and initialize new
          instances.
The class method Class::new
          is the Class class’ own version
          of the method, and it can be used to create new classes.


Factory Methods



It is often useful to allow instances of a class to be
        initialized in more than one way. You can often do this by providing
        parameter defaults on the initialize
        method. With an initialize method
        defined as follows, for example, you can invoke new with either two or three
        arguments:
class Point
  # Initialize a Point with two or three coordinates
  def initialize(x, y, z=nil)
    @x,@y,@z = x, y, z
  end
end

Sometimes, however, parameter defaults are not enough, and we
        need to write factory methods other than new for creating instances of our class.
        Suppose that we want to be able to initialize Point objects using either Cartesian or
        polar coordinates:
class Point
  # Define an initialize method as usual...
  def initialize(x,y)  # Expects Cartesian coordinates
    @x,@y = x,y
  end

  # But make the factory method new private
  private_class_method :new

  def Point.cartesian(x,y)  # Factory method for Cartesian coordinates
    new(x,y)  # We can still call new from other class methods
  end

  def Point.polar(r, theta) # Factory method for polar coordinates
    new(r*Math.cos(theta), r*Math.sin(theta))
  end
end

This code still relies on new
        and initialize, but it makes
        new private, so that users of the
        Point class can’t call it directly.
        Instead, they must use one of the custom factory methods.

dup, clone, and initialize_copy



Another way that new objects come into existence is as a result of
        the dup and clone methods (see Copying Objects). These methods allocate a new instance of
        the class of the object on which they are invoked. They then copy all
        the instance variables and the taintedness of the receiver object to
        the newly allocated object. clone
        takes this copying a step further than dup—it also copies singleton methods of the
        receiver object and freezes the copy object if the original is
        frozen.
If a class defines a method named initialize_copy, then clone and dup will invoke that method on the copied
        object after copying the instance variables from the original.
        (clone calls initialize_copy before freezing the copy
        object, so that initialize_copy is
        still allowed to modify it.) The initialize_copy method is passed the
        original object as an argument and has the opportunity to make any
        changes it desires to the copied object. It cannot create its own copy
        object, however; the return value of initialize_copy is ignored. Like
        initialize, Ruby ensures that
        initialize_copy is always private.
When clone and dup copy instance variables from the
        original object to the copy, they copy references to the values of
        those variables; they do not copy the actual values. In other words,
        these methods perform a shallow copy. And this is one reason that many
        classes might want to alter the behavior of these methods. Here is
        code that defines an initialize_copy method to do a deeper
        copy of internal state:
class Point                 # A point in n-space
  def initialize(*coords)   # Accept an arbitrary # of coordinates
    @coords = coords        # Store the coordinates in an array
  end

  def initialize_copy(orig) # If someone copies this Point object
    @coords = @coords.dup   # Make a copy of the coordinates array, too
  end
end

The class shown here stores its internal state in an array.
        Without an initialize_copy method, if an object
        were copied using clone or dup, the copied object would refer to the
        same array of state that the original object did. Mutations performed
        on the copy would affect the state of the original. As this is not the
        behavior we want, we must define initialize_copy to create a copy of the
        array as well.
Some classes, such as those that define enumerated types, may
        want to strictly limit the number of instances that exist. Classes
        like these need to make their new
        method private and also probably want to prevent copies from being
        made. The following code demonstrates one way to do that:
class Season
  NAMES = %w{ Spring Summer Autumn Winter }  # Array of season names
  INSTANCES = []                             # Array of Season objects

  def initialize(n)  # The state of a season is just its 
    @n = n           # index in the NAMES and INSTANCES arrays
  end

  def to_s           # Return the name of a season 
    NAMES[@n]
  end

  # This code creates instances of this class to represent the seasons 
  # and defines constants to refer to those instances.
  # Note that we must do this after initialize is defined.
  NAMES.each_with_index do |name,index|
    instance = new(index)         # Create a new instance
    INSTANCES[index] = instance   # Save it in an array of instances
    const_set name, instance      # Define a constant to refer to it
  end

  # Now that we have created all the instances we'll ever need, we must
  # prevent any other instances from being created
  private_class_method :new,:allocate  # Make the factory methods private
  private :dup, :clone                 # Make copying methods private
end

This code involves some metaprogramming techniques that will
        make more sense after you have read Chapter 8. The main
        point of the code is the line at the end that makes the dup and clone methods private.
Another technique to prevent copying of objects is to use
        undef to simply remove the clone and dup methods. Yet another approach is to
        redefine the clone and dup methods so that they raise an exception
        with an error message that specifically says that copies are not
        permitted. Such an error message might be helpful to programmers who
        are using your class.

marshal_dump and marshal_load



A third way that objects are created is when Marshal.load is
        called to re-create objects previously marshaled (or “serialized”)
        with Marshal.dump. Marshal.dump saves the class of an object
        and recursively marshals the value of each of its instance variables.
        This works well—most objects can be saved and restored using these two
        methods.
Some classes need to alter the way marshaling (and unmarshaling)
        is done. One reason is to provide a more compact representation of an
        object’s state. Another reason is to avoid saving volatile data, such
        as the contents of a cache that would just need to be cleared when the
        object was unmarshaled. You can customize the way an object is
        marshaled by defining a marshal_dump instance method in the class;
        it should return a different object (such as a string or an array of
        selected instance variable values) to be marshaled in place of the
        receiver object.
If you define a custom marshal_dump method, you must define a
        matching marshal_load method, of course.
        marshal_load will be invoked on a
        newly allocated (with allocate) but
        uninitialized instance of the class. It will be passed a reconstituted
        copy of the object returned by marshal_dump, and it must initialize the
        state of the receiver object
        based on the state of the object it is passed.
As an example, let’s return to the multidimensional Point class we started earlier. If we add
        the constraint that all coordinates are integers, then we can shave a
        few bytes off the size of the marshaled object by packing the array of
        integer coordinates into a string (you may want to use
        ri to read about Array.pack to help you understand this
        code):
class Point                  # A point in n-space
  def initialize(*coords)    # Accept an arbitrary # of coordinates
    @coords = coords         # Store the coordinates in an array
  end

  def marshal_dump           # Pack coords into a string and marshal that
    @coords.pack("w*")
  end

  def marshal_load(s)        # Unpack coords from unmarshaled string
    @coords = s.unpack("w*") # and use them to initialize the object
  end
end

If you are writing a class—such as the Season class shown previously—for which you
        have disabled the clone and
        dup methods, you will also need to
        implement custom marshaling methods because dumping and loading an
        object is an easy way to create a copy of it. You can prevent
        marshaling completely by defining marshal_dump and marshal_load methods that raise an exception, but
        that is rather heavy-handed. A more elegant solution is to customize
        the unmarshaling so that Marshal.load returns an existing object rather than creating a
        copy.
To accomplish this, we must define a different pair of custom
        marshaling methods because the return value of marshal_load is ignored. _dump is an instance method that must return
        the state of the object as a string. The matching _load method is a class method that accepts
        the string returned by _dump and
        returns an object. _load is allowed
        to create a new object or return a reference to an existing
        one.
To allow marshaling, but prevent copying, of Season objects, we add these methods to the
        class:
class Season
  # We want to allow Season objects to be marshaled, but we don't
  # want new instances to be created when they are unmarshaled.
  def _dump(limit)         # Custom marshaling method
    @n.to_s                # Return index as a string
  end

  def self._load(s)        # Custom unmarshaling method
    INSTANCES[Integer(s)]  # Return an existing instance
  end
end


The Singleton Pattern



A singleton is a class that has only a single instance. Singletons can
        be used to store global program state within an object-oriented
        framework and can be useful alternatives to class methods and class
        variables.
Singleton Terminology
This section discusses the “Singleton Pattern,” a well-known
          design pattern in object-oriented programming. In Ruby, we have to
          be careful with the term “singleton” because it is overloaded. A
          method added to a single object rather than to a class of objects is
          known as a singleton method (see Defining Singleton Methods). The implicit class object to which
          such singleton methods are added is sometimes called a
          singleton class (though this book uses
          the term eigenclass instead; see
          Singleton Methods and the Eigenclass).

Properly implementing a singleton requires a number of the
        tricks shown earlier. The new and
        allocate methods must be made
        private, dup and clone must be prevented from making copies,
        and so on. Fortunately, the Singleton module in the standard library
        does this work for us; just require
        'singleton' and then include Singleton into your class. This defines a
        class method named instance, which
        takes no arguments and returns
        the single instance of the class. Define an initialize method to perform initialization of the single instance of the
        class. Note, however, that no arguments will be passed to this
        method.
As an example, let’s return to the Point class with which we started this
        chapter and revisit the problem of collecting point creation
        statistics. Instead of storing those statistics in class variables of
        the Point class itself, we’ll use a
        singleton instance of a PointStats
        class:
require 'singleton'           # Singleton module is not built-in

class PointStats              # Define a class
  include Singleton           # Make it a singleton

  def initialize              # A normal initialization method
    @n, @totalX, @totalY = 0, 0.0, 0.0
  end

  def record(point)           # Record a new point
    @n += 1
    @totalX += point.x
    @totalY += point.y
  end

  def report                  # Report point statistics
    puts "Number of points created: #@n"
    puts "Average X coordinate: #{@totalX/@n}"
    puts "Average Y coordinate: #{@totalY/@n}"
  end
end

With a class like this in place, we might write the initialize method for our Point class like this:
def initialize(x,y)
  @x,@y = x,y
  PointStats.instance.record(self)
end

The Singleton module
        automatically creates the instance
        class method for us, and we invoke the regular instance method
        record on that singleton instance.
        Similarly, when we want to query the point statistics, we
        write:
PointStats.instance.report



Modules



Like a class, a module is a named group of
      methods, constants, and class variables. Modules are defined much like
      classes are, but the module keyword
      is used in place of the class
      keyword. Unlike a class, however, a module cannot be instantiated, and
      it cannot be subclassed. Modules stand alone; there is no “module
      hierarchy” of inheritance.
Modules are used as namespaces and as mixins. The subsections that
      follow explain these two uses.
Just as a class object is an instance of the Class class, a module object is an instance of
      the Module class. Class is a subclass of Module. This means that all classes are
      modules, but not all modules are classes. Classes can be used as
      namespaces, just as modules can. Classes cannot, however, be used as
      mixins.
Modules as Namespaces



Modules are a good way to group related methods when
        object-oriented programming is not necessary. Suppose, for example,
        you were writing methods to encode and decode binary data to and from
        text using the Base64 encoding. There is no need for special encoder
        and decoder objects, so there is no reason to define a class here. All
        we need are two methods: one to encode and one to decode. We could
        define just two global methods:
def base64_encode
end

def base64_decode
end

To prevent namespace collisions with other encoding and decoding
        methods, we’ve given our method names the base64 prefix. This solution works, but most
        programmers prefer to avoid adding methods to the global namespace
        when possible. A better solution, therefore, is to define the two
        methods within a Base64
        module:
module Base64
  def self.encode
  end

  def self.decode
  end
end

Note that we define our methods with a self. prefix,
        which makes them “class methods” of the module. We could also
        explicitly reuse the module name and define the methods like
        this:
module Base64
  def Base64.encode
  end

  def Base64.decode
  end
end

Defining the methods this way is more repetitive, but it more
        closely mirrors the invocation
        syntax of these methods:
# This is how we invoke the methods of the Base64 module
text = Base64.encode(data)
data = Base64.decode(text)

Note that module names must begin with a capital letter, just as
        class names do. Defining a
        module creates a constant with the same name as the module. The value
        of this constant is the Module
        object that represents the module.
Modules may also contain constants. Our Base64 implementation
        would likely use a constant to hold a string of the 64 characters used
        as digits in Base64:
module Base64
  DIGITS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' \
           'abcdefghijklmnopqrstuvwxyz' \
           '0123456789+/'
end

Outside the Base64 module,
        this constant can be referred to as Base64::DIGITS. Inside the module, our
        encode and decode methods can refer to it by its simple
        name DIGITS. If the two methods had
        some need to share nonconstant data, they could use a class variable
        (with a @@ prefix), just as they
        could if they were defined in a class.
Nested namespaces



Modules, including classes, may be nested. This creates nested namespaces but has no other
          effect: a class or module nested within another has no special
          access to the class or module it is nested within. To continue with
          our Base64 example, let’s suppose that we wanted to define special
          classes for encoding and decoding. Because the Encoder and Decoder classes are still related to each
          other, we’ll nest them within a module:
module Base64
  DIGITS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'

  class Encoder
    def encode
    end
  end

  class Decoder
    def decode
    end
  end

  # A utility function for use by both classes
  def Base64.helper
  end
end

By structuring our code this way, we’ve defined two new
          classes, Base64::Encoder and
          Base64::Decoder. Inside the
          Base64 module, the two classes
          can refer to each other by their unqualified names, without the
          Base64 prefix. And each of the
          classes can use the DIGITS
          constant without a prefix.
On the other hand, consider the Base64.helper utility function. The nested
          Encoder and Decoder classes have no special access to
          the methods of the containing module, and they must refer to this
          helper method by its fully qualified name: Base64.helper.
Because classes are modules, they too can be nested. Nesting
          one class within another only affects the namespace of the inner
          class; it does not give that class any special access to the methods
          or variables of the outer class. If your implementation of a class
          requires a helper class, a proxy class, or some other class that is
          not part of a public API, you may want to consider nesting that
          internal class within the class that uses it. This keeps the
          namespace tidy but does not actually make the nested class private
          in any way.
See Constant Lookup for an explanation of
          how constant names are resolved when modules are nested.


Modules As Mixins



The second use of modules is more powerful than the first.
        If a module defines instance methods instead of the class methods,
        those instance methods can be mixed in to other classes. Enumerable and
        Comparable are well-known examples
        of mixin modules. Enumerable defines useful iterators
        that are implemented in terms of an each iterator. Enumerable doesn’t define the each method itself, but any class that
        defines it can mix in the Enumerable module to instantly add many
        useful iterators. Comparable is
        similar; it defines comparison operators in terms of the
        general-purpose comparator <=>. If your class defines <=>, you can mix in Comparable to get <, <=, ==
        >, >=, and between? for free.
To mix a module into a class, use include. include is usually used as if it were a
        language keyword:
class Point
  include Comparable
end

In fact, it is a private instance method of Module, implicitly invoked on self—the class into which the module is
        being included. In method form, this code would be:
class Point
  include(Comparable)
end

Because include is a private
        method, it must be invoked as a function, and we cannot write self.include(Comparable). The include method accepts any number of
        Module objects to mix in, so a
        class that defines each and
        <=> might include the
        line:
include Enumerable, Comparable

The inclusion of a module affects the type-checking method
        is_a? and the switch-equality
        operator ===. For example, String mixes in the Comparable module and, in Ruby 1.8,
        also mixes in the Enumerable module:
"text".is_a? Comparable         # => true
Enumerable === "text"           # => true in Ruby 1.8, false in 1.9

Note that instance_of? only
        checks the class of its receiver, not superclasses or modules, so the
        following is false:
"text".instance_of? Comparable  # => false

Although every class is a module, the include method does not allow a class to be
        included within another class. The arguments to include must be modules declared with
        module, not classes.
It is legal, however, to include one module into another. Doing
        this simply makes the instance methods of the included modules into
        instance methods of the including module. As an example, consider this
        code from Chapter 5:
module Iterable       # Classes that define next can include this module
  include Enumerable          # Define iterators on top of each
  def each                    # And define each on top of next
    loop { yield self.next }
  end
end

The normal way to mix in a module is with the Module.include method. Another way is with
        Object.extend. This method makes
        the instance methods of the specified module or modules into singleton
        methods of the receiver object. (And if the receiver object is a
        Class instance, then the methods of
        the receiver become class methods of that class.) Here is an
        example:
countdown = Object.new       # A plain old object
def countdown.each           # The each iterator as a singleton method
  yield 3
  yield 2
  yield 1
end
countdown.extend(Enumerable) # Now the object has all Enumerable methods  
print countdown.sort         # Prints "[1, 2, 3]"


Includable Namespace Modules



It is possible to define modules that define a namespace but still allow
        their methods to be mixed in. The Math module works like this:
Math.sin(0)    # => 0.0: Math is a namespace 
include Math   # The Math namespace can be included
sin(0)         # => 0.0: Now we have easy access to the functions

The Kernel module also works like this: we can invoke its methods through
        the Kernel
        namespace, or as private methods of Object, into which it is included.
If you want to create a module like Math or Kernel, define your methods as instance
        methods of the module. Then use module_function to convert those methods to
        “module functions.” module_function is a private instance method
        of Module, much like the public, protected, and private methods. It accepts any number of
        method names (as symbols or strings) as arguments. The primary effect
        of calling module_function is that
        it makes class method copies of the specified methods. A secondary
        effect is that it makes the instance methods private (we’ll have more
        to say about this shortly).
Like the public, protected, and private methods, the module_function method can also be invoked with no arguments. When invoked in
        this way, any instance methods subsequently defined in the module will
        be module functions: they will become public class methods and private
        instance methods. Once you have invoked module_function with no arguments, it
        remains in effect for the rest of the module definition—so if you want
        to define methods that are not module functions, define those
        first.
It may seem surprising at first that module_function makes the instance methods
        of a module private. The reason to do this is not really for access
        control, as obviously the methods are also available publicly through
        the module’s namespace. Instead, the methods are made private to
        restrict them to function-style invocation without an explicit receiver. (The reason that
        these are called module functions instead of
        module methods is that they must be invoked in functional style.)
        Forcing included module functions to be invoked without a receiver
        makes it less likely that they’ll be mistaken for true instance
        methods. Suppose we’re defining a class whose methods perform a lot of
        trigonometry. For our own convenience, we include the Math module. Then we can invoke the sin method as a function instead of calling
        Math.sin. The sin method is implicitly invoked on self, but we don’t actually expect it to do
        anything to self.
When defining a module function, you should avoid using self, because
        the value of self will depend on
        how it is invoked. It is certainly possible to define a module
        function that behaves differently depending on how it is invoked. But
        if you are going to do that, then it makes more sense to simply define
        one class method and one instance method.


Loading and Requiring Modules



Ruby programs may be broken up into multiple files, and the
      most natural way to partition a program is to place each nontrivial
      class or module into a separate file. These separate files can then be
      reassembled into a single program (and, if well-designed, can be reused
      by other programs) using require or load. These are global functions defined in
      Kernel, but are used like language
      keywords. The same require method is
      also used for loading files from the standard library.
load and require serve similar purposes, though
      require is much more commonly used
      than load. Both functions can load
      and execute a specified file of Ruby source code. If the file to load is
      specified with an absolute path, or is relative to ~ (the user’s home directory), then that
      specific file is loaded. Usually, however, the file is specified as a
      relative path, and load and require search for it relative to the
      directories of Ruby’s load path (details on the load path appear
      below).
Ruby 1.9 also defines a require_relative  method. It works like require, except that it ignores the load path
      and searches for the named file relative to the directory from which the
      invoking code was loaded.
Despite their overall similarities, there are important
      differences between load and require:
	In addition to loading source code, require can also load binary extensions to
          Ruby. Binary extensions are, of course, implementation-dependent,
          but in C-based implementations, they typically take the form of
          shared library files with extensions like .so or
          .dll.

	load expects a complete
          filename including an extension. require is usually passed a library name,
          with no extension, rather than a filename. In that case, it searches
          for a file that has the library name as its base name and an
          appropriate source or native library extension. If a directory
          contains both an .rb source file and a
          binary extension file, require
          will load the source file instead of the binary file.

	load can load the same file
          multiple times. require tries to
          prevent multiple loads of the same file. (require can be fooled, however, if you use two different, but
          equivalent, paths to the same library file. In Ruby 1.9, require expands relative paths to absolute
          paths, which makes it somewhat harder to fool.) require keeps track of the files that have
          been loaded by appending them to the global array $" (also known as $LOADED_FEATURES). load does not do this.

	load loads the specified
          file at the current $SAFE level.
          require loads the specified
          library with $SAFE set to
          0, even if the code that called
          require has a higher value for
          that variable. See Security for more on $SAFE and Ruby’s security system. (Note
          that if $SAFE is set to a value
          higher than 0, require will refuse to load any file with
          a tainted filename or from a world-writable directory. In theory,
          therefore, it should be safe for require to load files with a reduced
          $SAFE level.)



The subsections that follow provide further details about the
      behavior of load and require.
The Load Path



Ruby’s load path is an array that you can access using either of
        the global variables $LOAD_PATH or $:. (The mnemonic for this global is that
        colons are used as path separator characters on Unix-like operating
        systems.) Each element of the array is the name of a directory that
        Ruby will search for files to load. Directories at the start of the
        array are searched before directories at the end of the array. The
        elements of $LOAD_PATH must be
        strings in Ruby 1.8, but in Ruby 1.9, they may be strings or any object that
        has a to_path method that returns a
        string.
The default value of $LOAD_PATH depends on your implementation of
        Ruby, on the operating system it is running on, and even on where in
        your filesystem you installed it. Here is a typical value for Ruby
        1.8, obtained with ruby -e 'puts
        $:':
/usr/lib/site_ruby/1.8
/usr/lib/site_ruby/1.8/i386-linux
/usr/lib/site_ruby
/usr/lib/ruby/1.8
/usr/lib/ruby/1.8/i386-linux
.

The /usr/lib/ruby/1.8/
        directory is where the Ruby standard library is installed. The
        /usr/lib/ruby/1.8/i386-linux/
        directory holds Linux binary extensions for the standard library. The
        site_ruby directories in the path
        are for site-specific libraries that you have installed. Note that
        site-specific directories are searched first, which means that you can
        override the standard library with files installed here. The current
        working directory “.” is at the end of the search path. This is the
        directory from which a user invokes your Ruby program; it is not the
        same as the directory in which your Ruby program is installed.
In Ruby 1.9, the default load path is more complicated. Here is
        a typical value:
/usr/local/lib/ruby/gems/1.9/gems/rake-0.7.3/lib
/usr/local/lib/ruby/gems/1.9/gems/rake-0.7.3/bin
/usr/local/lib/ruby/site_ruby/1.9
/usr/local/lib/ruby/site_ruby/1.9/i686-linux
/usr/local/lib/ruby/site_ruby
/usr/local/lib/ruby/vendor_ruby/1.9
/usr/local/lib/ruby/vendor_ruby/1.9/i686-linux
/usr/local/lib/ruby/vendor_ruby
/usr/local/lib/ruby/1.9
/usr/local/lib/ruby/1.9/i686-linux
.

One minor load path change in Ruby 1.9 is the inclusion of
        vendor_ruby directories that are searched after
        site_ruby and before the standard library. These
        are intended for customizations provided by operating system
        vendors.
The more significant load path change in Ruby 1.9 is the
        inclusion of RubyGems installation directories. In the path shown
        here, the first two directories searched are for the
        rake package installed with the
        gem command of the RubyGems package management system. There is only one gem
        installed in this example, but if you have many gems on your system,
        your default load path may become quite long. (When running programs
        that do not use gems, you may get a minor speed boost by invoking Ruby
        with the --disable-gems
        command-line option, which prevents these directories from being added
        to the load path.) If more than one version of a gem is installed, the
        version with the highest version number is included in the default
        load path. Use the Kernel.gem method to alter this
        default.
RubyGems is built into Ruby 1.9: the gem command is
        distributed with Ruby and can be used to install new packages whose
        installation directories are automatically added to the default load
        path. In Ruby 1.8, RubyGems must be installed separately (though some
        distributions of Ruby 1.8 may automatically bundle it), and gem
        installation directories are never added to the load path. Instead,
        Ruby 1.8 programs require the rubygems module. Doing this replaces the
        default require method with a new
        version that knows where to look for installed gems. See Ruby Package Management with gem for more on RubyGems.
You can add new directories to the start of Ruby’s search path
        with the –I command-line option to the Ruby interpreter. Use multiple –I options to specify multiple directories,
        or use a single –I and separate
        multiple directories from each other with colons (or semicolons on
        Windows).
Ruby programs can also modify their own load path by altering
        the contents of the $LOAD_PATH
        array. Here are some examples:
# Remove the current directory from the load path
$:.pop if $:.last == '.'  

# Add the installation directory for the current program to 
# the beginning of the load path instead of using require_relative.
$LOAD_PATH.unshift File.expand_path($PROGRAM_NAME)

# Add the value of an environment variable to the end of the path
$LOAD_PATH << ENV['MY_LIBRARY_DIRECTORY']

Finally, keep in mind that you can bypass the load path entirely
        by passing absolute filenames (that begin with /
        or ~) to load
        or require.

Executing Loaded Code



loadandrequireexecute the code in the specified file immediately.
        Calling these methods is not, however, equivalent to simply replacing
        the call to load or require with the code contained by the
        file.[*]
Files loaded with load or
        require are executed in a new
        top-level scope that is different from the one in which load or require was invoked. The loaded file can see
        all global variables and constants that have been defined at the time
        it is loaded, but it does not have access to the local scope from
        which the load was initiated. The implications of this include the
        following:
	The local variables defined in the scope from which load or require is invoked are not visible to
            the loaded file.

	Any local variables created by the loaded file are discarded
            once the load is complete;
            they are never visible outside the file in which they are
            defined.

	At the start of the loaded file, the value of self is always the main object, just as
            it is when the Ruby interpreter starts running. That is, invoking
            load or require within a method invocation does
            not propagate the receiver object to the loaded file.

	The current module nesting is ignored within the loaded
            file. You cannot, for example, open a class and then load a file
            of method definitions. The file will be processed in a top-level
            scope, not inside any class or module.



Wrapped loads



The load method has an
          infrequently used feature that we did not describe earlier. If
          called with a second argument that is anything other than nil or false, then it “wraps” the specified file
          and loads it into an anonymous module. This means that the loaded
          file cannot affect the global namespace; any constants (including
          classes and modules) it defines are trapped within the anonymous
          module. You can use wrapped loads as a security precaution (or as a
          way to minimize bugs caused by namespace collisions). We’ll see in
          Security that when Ruby is running untrusted code in
          a “sandbox,” that code is not allowed to call require and can use load only for wrapped loads.
When a file is loaded into an anonymous module, it can still
          set global variables, and the variables it sets will be visible to
          the code that loaded it. Suppose you write a file
          util.rb that defines a Util module of useful utility methods. If
          you want those methods to be accessible even if your file is loaded
          wrapped, you might add the following line to the end of the
          file:
$Util = Util   # Store a reference to this module in a global variable

Now, the code that loads util.rb into an
          anonymous namespace can access the utility functions through the
          global $Util instead of the
          constant Util.
In Ruby 1.8, it is even possible to pass the anonymous module
          itself back to the loading code:
if Module.nesting.size > 0       # If we're loaded into a wrapper module
  $wrapper = Module.nesting[0]   # Pass the module back to the loading code
end

See Ancestry and Modules for more on Module.nesting.


Autoloading Modules



The autoload
        methods of Kernel and
        Module allow lazy loading of files
        on an as-needed basis. The global autoload function allows you to register the
        name of an undefined constant (typically a class or module name) and a
        name of the library that defines it. When that constant is first
        referenced, the named library is loaded using require. For example:
# Require 'socket' if and when the TCPSocket is first used
autoload :TCPSocket, "socket"

The Module class defines its
        own version of autoload to work
        with constants nested within another module.
Use autoload? or Module.autoload? to test whether a reference
        to a constant will cause a file to be loaded. This method expects a
        symbol argument. If a file will be loaded when the constant named by
        the symbol is referenced, then autoload? returns the name of the file.
        Otherwise (if no autoload was requested, or if the file has already
        been loaded), autoload? returns
        nil.



[*] To put this another way for C programmers: load and require are different from C’s #include directive. Passing a file of
            loaded code to the global eval
            function is closer to including it directly in a file: eval(File.read(filename)). But even
            this is not the same, as eval
            does not set local variables.



Singleton Methods and the Eigenclass



We learned in Chapter 6 that it is possible to
      define singleton methods—methods that are defined for only a single
      object rather than a class of objects. To define a singleton method
      sum on an object Point, we’d write:
def Point.sum
  # Method body goes here
end

As noted earlier in this chapter, the class methods of a class are
      nothing more than singleton methods on the Class instance that represents that
      class.
The singleton methods of an object are not defined by the class of
      that object. But they are methods and they must be associated with a
      class of some sort. The singleton methods of an object are instance
      methods of the anonymous eigenclass associated with
      that object. “Eigen” is a German word meaning (roughly) “self,” “own,”
      “particular to,” or “characteristic of.” The eigenclass is also called
      the singleton class or (less commonly) the metaclass. The term “eigenclass”
      is not uniformly accepted within the Ruby community, but it is the term
      we’ll use in this book.
Ruby defines a syntax for opening the eigenclass of an object and
      adding methods to it. This provides an alternative to defining singleton
      methods one by one; we can instead define any number of instance methods
      of the eigenclass. To open the eigenclass of the object o, use class <<
      o. For example, we can define class methods of Point like this:
class << Point
  def class_method1      # This is an instance method of the eigenclass.
  end                    # It is also a class method of Point.

  def class_method2
  end
end

If you open the eigenclass of a class object within the definition
      of a class itself, then you can use self instead of repeating the name of the
      class. To repeat an example from earlier in this chapter:
class Point
  # instance methods go here

  class << self
    # class methods go here as instance methods of the eigenclass
  end
end

Be careful with your syntax. Note that there is considerable
      difference between the following three lines:
class Point            # Create or open the class Point
class Point3D < Point  # Create a subclass of Point
class << Point         # Open the eigenclass of the object Point

In general, it is clearer to define class methods as individual
      singleton methods without explicitly opening the eigenclass.
When you open the eigenclass of an object, self refers to the eigenclass object. The
      idiom for obtaining the eigenclass of an object o is therefore:
eigenclass = class << o; self; end

We can formalize this into a method of Object, so that we can ask for the eigenclass
      of any object:
class Object
  def eigenclass
    class << self; self; end
  end
end

Unless you are doing sophisticated metaprogramming with Ruby, you
      are unlikely to really need an eigenclass utility function like the one shown
      here. It is worth understanding eigenclasses, however, because you’ll
      occasionally see them used in existing code, and because they’re an
      important part of Ruby’s method name resolution algorithm, which we describe next.

Method Lookup



When Ruby evaluates a method invocation expression, it must
      first figure out which method is to be invoked. The process for doing
      this is called method lookup or method
      name resolution. For the method invocation expression
      o.m, Ruby performs name resolution
      with the following steps:
	First, it checks the eigenclass of o for singleton methods named m.

	If no method m is found in
          the eigenclass, Ruby searches the class of o for an instance method named m.

	If no method m is found in
          the class, Ruby searches the instance methods of any modules
          included by the class of o. If
          that class includes more than one module, then they are searched in
          the reverse of the order in which they were included. That is, the
          most recently included module is searched first.

	If no instance method m is
          found in the class of o or in its
          modules, then the search moves up the inheritance hierarchy to the
          superclass. Steps 2 and 3 are repeated for each class in the
          inheritance hierarchy until each ancestor class and its included
          modules have been searched.

	If no method named m is
          found after completing the search, then a method named method_missing is invoked instead. In
          order to find an appropriate definition of this method, the name
          resolution algorithm starts over at step 1. The Kernel module provides a default
          implementation of method_missing,
          so this second pass of name resolution is guaranteed to succeed. The
          method_missing method is covered
          in more detail in Handling Undefined Methods.



Let’s consider a concrete example of this algorithm. Suppose we
      have the following code:
message = "hello"
message.world

We want to invoke a method named world on the String instance "hello". Name resolution proceeds as follows:
	Check the eigenclass for singleton methods. There aren’t any
          in this case.

	Check the String class.
          There is no instance method named world.

	Check the Comparable and
          Enumerable modules of the
          String class for an instance
          method named world. Neither
          module defines such a method.

	Check the superclass of String, which is Object. The Object class does not define a method
          named world, either.

	Check the Kernel module
          included by Object. The world method is not found here either, so
          we now switch to looking for a method named method_missing.

	Look for method_missing in
          each of the spots above (the eigenclass of the String object, the String class, the Comparable and Enumerable modules, the Object class, and the Kernel module). The first definition of
          method_missing we find is in the
          Kernel module, so this is the
          method we invoke. What it does is raise an exception:
NoMethodError: undefined method `world' for "hello":String




This may seem like it requires Ruby to perform an exhaustive
      search every time it invokes a method. In typical implementations,
      however, successful method lookups will be cached so that subsequent
      lookups of the same name (with no intervening method definitions) will
      be very quick.
Class Method Lookup



The name resolution algorithm for class methods is exactly the same as it
        is for instance methods, but there is a twist. Let’s start with a
        simple case, without the twist. Here is a class C that defines no class methods of its
        own:
class C
end

Remember that after we define a class like this, the constant
        C refers to an object that is an
        instance of Class. Any class
        methods we define are simply singleton methods of the object C.
Once we have defined a class C, we are likely to write a method
        invocation expression involving the class method new:
c = C.new

To resolve the method new,
        Ruby first looks for singleton methods in the eigenclass of the object C. Our class does not have any class
        methods, so nothing is found there. After searching the eigenclass,
        the name resolution algorithm searches the class object of C. The class of C is Class, so Ruby next looks for methods in
        Class, and it finds an instance
        method named new there.
You read that right. The method name resolution algorithm for
        the class method C.new ends up locating the
        instance method Class.new. The distinction between instance
        methods and class methods is a useful one to draw in the
        object-oriented programming paradigm, but the truth is that in
        Ruby—where classes are represented by objects—the distinction is
        somewhat artificial. Every method invocation, whether instance method
        or class method, has a receiver object and a method name. The name
        resolution algorithm finds the appropriate method definition for that
        object. Our object C is an instance
        of class Class, so we can of course
        invoke the instance methods of Class through C. Furthermore, Class inherits the instance methods of
        Module, Object, and Kernel, so those inherited methods are also
        available as methods of C. The only
        reason we call these “class methods” is that our object C happens to be a class.
Our class method C.new is
        found as an instance method of Class. If it had not been found there,
        however, the name resolution algorithm would have continued just as it
        would have for an instance method. After searching Class unsuccessfully, we would have looked
        at modules (Class doesn’t include
        any) and then at the superclass Module. Next, we would search the
        modules of Module (there aren’t
        any), and finally the superclass of Module, Object, and its module Kernel.
The twist mentioned at the beginning of this section has to do
        with the fact that class methods are inherited just like instance
        methods are. Let’s define a class method Integer.parse to use as an
        example:
def Integer.parse(text)
  text.to_i
end

Because Fixnum is a subclass
        of Integer, we can invoke this
        method with an expression like this:
n = Fixnum.parse("1")

From the description of the method name resolution algorithm
        that we’ve seen previously, we know that Ruby would first search the
        eigenclass of Fixnum for singleton
        methods. Next, it would search for instance methods of Class, Module, Object, and Kernel. So where does it find the parse method? A class method of Integer is just a singleton method of the
        Integer object, which means that it
        is defined by the eigenclass of Integer. So how does this eigenclass of
        Integer get involved in the name
        resolution algorithm?
Class objects are special: they have superclasses. The
        eigenclasses of class objects are also special: they have
        superclasses, too. The eigenclass of an ordinary object stands alone
        and has no superclass. Let’s use the names Fixnum' and Integer' to refer to the eigenclasses of
        Fixnum and Integer. The superclass of Fixnum' is Integer'.
With that twist in mind, we can now more fully explain the
        method name resolution algorithm and say that when Ruby searches for
        singleton methods in the eigenclass of an object, it also searches the
        superclass (and all ancestors) of the eigenclass as well. So when
        looking for a class method of Fixnum, Ruby first checks the singleton
        methods of Fixnum, Integer, Numeric, and Object, and then checks the instance methods
        of Class, Module, Object, and Kernel.


Constant Lookup



When a constant is referenced without any qualifying namespace,
      the Ruby interpreter must find the appropriate definition of the
      constant. To do so, it uses a name resolution algorithm, just as it does
      to find method definitions. However, constants are resolved much
      differently than methods.
Ruby first attempts to resolve a constant reference in the lexical
      scope of the reference. This means that it first checks the class or
      module that encloses the constant reference to see if that class or
      module defines the constant. If not, it checks the next enclosing class
      or module. This continues until there are no more enclosing classes or
      modules. Note that top-level or “global” constants are not considered
      part of the lexical scope and are not considered during this part of
      constant lookup. The class method Module.nesting returns the list of
      classes and modules that are searched in this step, in the order they
      are searched.
If no constant definition is found in the lexically enclosing
      scope, Ruby next tries to resolve the constant in the inheritance
      hierarchy by checking the ancestors of the class or module that referred
      to the constant. The ancestors method
      of the containing class or module returns the list of classes and
      modules searched in this step.
If no constant definition is found in the inheritance hierarchy,
      then top-level constant definitions are checked.
If no definition can be found for the desired constant, then the
      const_missing method—if there is
      one—of the containing class or module is called and given the
      opportunity to provide a value for the constant. This const_missing hook is covered in Chapter 8, and Example 8-3 illustrates its
      use.
There are a few points about this constant lookup algorithm that
      are worth noting in more detail:
	Constants defined in enclosing modules are found in preference
          to constants defined in
          included modules.

	The modules included by a class are searched before the
          superclass of the class.

	The Object class is part of
          the inheritance hierarchy of all classes. Top-level constants,
          defined outside of any class or module, are like top-level methods:
          they are implicitly defined in Object. When a top-level constant is
          referenced from within a class, therefore, it is resolved during the
          search of the inheritance hierarchy. If the constant is referenced
          within a module definition, however, an explicit check of Object is needed after searching the
          ancestors of the module.

	The Kernel module is an
          ancestor of Object. This means
          that constants defined in Kernel
          behave like top-level constants but can be overridden by true
          top-level constants, that are
          defined in Object.



Example 7-1 defines and resolves
      constants in six different scopes and demonstrates the constant name
      lookup algorithm described previously.
Example 7-1. Constant name resolution
module Kernel
  # Constants defined in Kernel
  A = B = C = D = E = F = "defined in kernel"
end

# Top-level or "global" constants defined in Object
A = B = C = D = E = "defined at toplevel"

class Super
  # Constants defined in a superclass
  A = B = C = D = "defined in superclass"
end

module Included
  # Constants defined in an included module
  A = B = C = "defined in included module"
end

module Enclosing
  # Constants defined in an enclosing module
  A = B = "defined in enclosing module"

  class Local < Super
    include Included

    # Locally defined constant
    A = "defined locally"

    # The list of modules searched, in the order searched
    # [Enclosing::Local, Enclosing, Included, Super, Object, Kernel]
    search = (Module.nesting + self.ancestors + Object.ancestors).uniq

    puts A  # Prints "defined locally"
    puts B  # Prints "defined in enclosing module"
    puts C  # Prints "defined in included module"
    puts D  # Prints "defined in superclass"
    puts E  # Prints "defined at toplevel"
    puts F  # Prints "defined in kernel"
  end
end




Chapter 8. Reflection and Metaprogramming



[image: image with no caption]

We’ve seen that Ruby is a very dynamic language; you can insert new
    methods into classes at runtime, create aliases for existing methods, and
    even define methods on individual objects. In addition, it has a rich API
    for reflection. Reflection, also called introspection, simply means
    that a program can examine its state and its structure. A Ruby program
    can, for example, obtain the list of methods defined by the Hash class, query the value of a named instance
    variable within a specified object, or iterate through all Regexp objects currently defined by the
    interpreter. The reflection API actually goes further and allows a program
    to alter its state and structure. A Ruby program can dynamically set named
    variables, invoke named methods, and even define new classes and new
    methods.
Ruby’s reflection API—along with its generally dynamic nature, its
    blocks-and-iterators control
    structures, and its parentheses-optional syntax—makes it an ideal language for metaprogramming. Loosely defined,
    metaprogramming is writing programs (or frameworks) that help you write
    programs. To put it another way, metaprogramming is a set of techniques
    for extending Ruby’s syntax in ways that make programming easier.
    Metaprogramming is closely tied to the idea of writing domain-specific languages, or DSLs.
    DSLs in Ruby typically use method invocations and blocks as if they were
    keywords in a task-specific extension to the language.
This chapter starts with several sections that introduce Ruby’s
    reflection API. This API is surprisingly rich and consists of quite a few
    methods. These methods are defined, for the most part, by Kernel, Object, and Module.
As you read these introductory sections, keep in mind that
    reflection is not, by itself, metaprogramming. Metaprogramming typically
    extends the syntax or the behavior of Ruby in some way, and often involves
    more than one kind of reflection. After introducing Ruby’s core reflection
    API, this chapter moves on to demonstrate, by example, common
    metaprogramming techniques that use that API.
Note that this chapter covers advanced topics. You can be a
    productive Ruby programmer without ever reading this chapter. You may find
    it helpful to read the remaining chapters of this book first, and then
    return to this chapter. Consider this chapter a kind of final exam: if you
    understand the examples (particularly the longer ones at the end), then
    you have mastered Ruby!
Types, Classes, and Modules



The most commonly used reflective methods are those for determining the
      type of an object—what class it is an instance of and what methods it
      responds to. We introduced most of these important methods early in this
      book in Object Class and Object Type. To review:
	o.class
	Returns the class of an object o.

	c.superclass
	Returns the superclass of a class c.

	o.instance_of? c
	Determines whether the object o.class
            == c.

	o.is_a? c
	Determines whether o is an
            instance of c, or of any of its
            subclasses. If c is a module,
            this method tests whether o.class (or any of its ancestors)
            includes the module.

	o.kind_of? c
	kind_of? is a synonym for is_a?.

	c === o
	For any class or module c, determines if o.is_a?(c).

	o.respond_to? name
	Determines whether the object o has a public or protected method with
            the specified name. Pass true
            as the second argument to check private methods as well.



Ancestry and Modules



In addition to these methods that you’ve already seen, there are a
        few related reflective methods for determining the ancestors of a
        class or module and for determining which modules are included by a
        class or module. These methods are easy to understand when
        demonstrated:
module A; end                # Empty module
module B; include A; end;    # Module B includes A
class C; include B; end;     # Class C includes module B

C < B                # => true: C includes B
B < A                # => true: B includes A
C < A                # => true
Fixnum < Integer     # => true: all fixnums are integers
Integer < Comparable # => true: integers are comparable
Integer < Fixnum     # => false: not all integers are fixnums
String < Numeric     # => nil: strings are not numbers

A.ancestors          # => [A]
B.ancestors          # => [B, A]
C.ancestors          # => [C, B, A, Object, Kernel]
String.ancestors     # => [String, Enumerable, Comparable, Object, Kernel]
                     # Note: in Ruby 1.9 String is no longer Enumerable

C.include?(B)        # => true
C.include?(A)        # => true
B.include?(A)        # => true
A.include?(A)        # => false 
A.include?(B)        # => false

A.included_modules   # => []
B.included_modules   # => [A]
C.included_modules   # => [B, A, Kernel]

This code demonstrates include?, which is a public instance method defined by the Module class. But it also features two
        invocations of the include method
        (without the question mark), which is a private instance method of
        Module. As a private method, it can
        only be invoked implicitly on self,
        which restricts its usage to the body of a class or module definition. This use of the method
        include as if it were a keyword is
        a metaprogramming example in Ruby’s core syntax.
A method related to the private include method is the public Object.extend. This method extends an object
        by making the instance methods of each of the specified modules into
        singleton methods of the object:
module Greeter; def hi; "hello"; end; end # A silly module
s = "string object"
s.extend(Greeter)       # Add hi as a singleton method to s
s.hi                    # => "hello"
String.extend(Greeter)  # Add hi as a class method of String
String.hi               # => "hello"

The class method Module.nesting is not related to module inclusion or ancestry; instead,
        it returns an array that specifies the nesting of modules at the
        current location. Module.nesting[0] is the current class
        or module, Module.nesting[1] is the
        containing class or module, and so on:
module M
  class C
    Module.nesting   # => [M::C, M]
  end
end


Defining Classes and Modules



Classes and modules are instances of the Class and Module classes. As such, you can create them
        dynamically:
M = Module.new      # Define a new module M
C = Class.new       # Define a new class C
D = Class.new(C) {  # Define a subclass of C
  include M         # that includes module M
}
D.to_s              # => "D": class gets constant name by magic

One nice feature of Ruby is that when a dynamically created
        anonymous module or class is assigned to a constant, the name of that
        constant is used as the name of the module or class (and is returned
        by its name and to_s methods).



Evaluating Strings and Blocks



One of the most powerful and straightforward reflective
      features of Ruby is its eval method. If your
      Ruby program can generate a string of valid Ruby code, the Kernel.eval method
      can evaluate that code:
x = 1
eval "x + 1"  # => 2

eval is a very powerful
      function, but unless you are actually writing a shell program (like irb) that executes lines of
      Ruby code entered by a user you are unlikely to really need it. (And in
      a networked context, it is almost never safe to call eval on text received from a user, as it could
      contain malicious code.) Inexperienced programmers sometimes end up
      using eval as a crutch. If you find
      yourself using it in your code, see if there isn’t a way to avoid it.
      Having said that, there are some more useful ways to use eval and eval-like methods.
Bindings and eval



A Binding object represents the state of Ruby’s variable bindings at some
        moment. The Kernel.binding object
        returns the bindings in effect at the location of the call. You may
        pass a Binding object as the second
        argument to eval, and the string
        you specify will be evaluated in the context of those bindings. If,
        for example, we define an instance method that returns a Binding object that represents the variable
        bindings inside an object, then we can use those bindings to query and
        set the instance variables of that object. We might accomplish this as
        follows:
class Object     # Open Object to add a new method
  def bindings   # Note plural on this method
    binding      # This is the predefined Kernel method
  end
end

class Test       # A simple class with an instance variable
  def initialize(x); @x = x; end
end

t = Test.new(10)       # Create a test object
eval("@x", t.bindings) # => 10: We've peeked inside t

Note that it is not actually necessary to define an Object.bindings method of this sort to peek
        at the instance variables of an object. Several other methods
        described shortly offer easier ways to query (and set) the value of
        the instance variables of an object.
As described in Closures and Bindings, the
        Proc object defines a public
        binding method that returns a
        Binding object representing the
        variable bindings in effect for the body of that Proc. Furthermore, the eval method allows you to pass a Proc object instead
        of a Binding object as the second
        argument.
Ruby 1.9 defines an eval method
        on Binding objects, so
        instead of passing a Binding as the
        second argument to the global eval,
        you can instead invoke the eval
        method on a Binding. Which one you
        choose is purely a stylistic matter; the two techniques are equivalent.

instance_eval and class_eval



The Object class defines
        a method named instance_eval, and the Module class defines a method named class_eval. (module_eval is a synonym for class_eval.) Both of these methods evaluate
        Ruby code, like eval does, but
        there are two important differences. The first difference is that they
        evaluate the code in the context of the specified object or in the
        context of the specified module—the object or module is the value of
        self while the code is being
        evaluated. Here are some examples:
o.instance_eval("@x")  # Return the value of o's instance variable @x

# Define an instance method len of String to return string length
String.class_eval("def len; size; end")

# Here's another way to do that
# The quoted code behaves just as if it was inside "class String" and "end"
String.class_eval("alias len size")

# Use instance_eval to define class method String.empty
# Note that quotes within quotes get a little tricky...
String.instance_eval("def empty; ''; end")

Note the subtle but crucial difference between instance_eval and class_eval when the code being evaluated
        contains a method definition. instance_eval defines singleton methods of
        the object (and this results in class methods when it is called on a
        class object). class_eval defines
        regular instance methods.
The second important difference between these two methods and
        the global eval is that instance_eval and class_eval can accept a block of code to
        evaluate. When passed a block instead of a string, the code in the
        block is executed in the appropriate context. Here, therefore, are
        alternatives to the previously shown invocations:
o.instance_eval { @x }
String.class_eval {
  def len
    size
  end
}
String.class_eval { alias len size }
String.instance_eval { def empty; ""; end }


instance_exec and class_exec



Ruby 1.9 defines two more evaluation methods: instance_exec and class_exec (and its alias, module_exec). These methods evaluate a block
        (but not a string) of code in the context of the receiver object, as
        instance_eval and class_eval do. The difference is that the
        exec methods accept arguments and
        pass them to the block. Thus, the block of code is evaluated in the
        context of the specified object, with parameters whose values come
        from outside the object.


Variables and Constants



Kernel, Object, and Moduledefine reflective methods for
      listing the names (as strings) of all defined global variables,
      currently defined local variables, all instance variables of an object,
      all class variables of a class or module, and all constants of a class
      or module:
global_variables   # => ["$DEBUG", "$SAFE", ...]
x = 1              # Define a local variable
local_variables    # => ["x"]

# Define a simple class
class Point
  def initialize(x,y); @x,@y = x,y; end # Define instance variables
  @@classvar = 1                        # Define a class variable
  ORIGIN = Point.new(0,0)               # Define a constant
end

Point::ORIGIN.instance_variables # => ["@y", "@x"]
Point.class_variables            # => ["@@classvar"]
Point.constants                  # => ["ORIGIN"]

The global_variables, local_variables, instance_variables, class_variables, and constants methods return arrays of strings in
      Ruby 1.8 and arrays of symbols in Ruby 1.9.
Querying, Setting, and Testing Variables



In addition to listing defined variables and constants, Ruby
        Object and Module also define reflective methods for
        querying, setting, and removing instance variables, class variables, and
        constants. There are no special purpose methods for querying or
        setting local variables or global variables, but you can use the
        eval method for this
        purpose:
x = 1
varname = "x"
eval(varname)           # => 1
eval("varname = '$g'")  # Set varname to "$g"
eval("#{varname} = x")  # Set $g to 1
eval(varname)           # => 1

Note that eval evaluates its
        code in a temporary scope. eval can
        alter the value of local variables that already exist. But any new
        local variables defined by the evaluated code are local to the
        invocation of eval and cease to
        exist when it returns. (It is as if the evaluated code is run in the
        body of a block—variables local to a block do not exist outside the
        block.)
You can query, set, and test the existence of instance variables
        on any object and of class variables and constants on any class or
        module:
o = Object.new
o.instance_variable_set(:@x, 0)   # Note required @ prefix
o.instance_variable_get(:@x)      # => 0
o.instance_variable_defined?(:@x) # => true

Object.class_variable_set(:@@x, 1)   # Private in Ruby 1.8
Object.class_variable_get(:@@x)      # Private in Ruby 1.8
Object.class_variable_defined?(:@@x) # => true; Ruby 1.9 and later

Math.const_set(:EPI, Math::E*Math::PI)
Math.const_get(:EPI)             # => 8.53973422267357
Math.const_defined? :EPI         # => true 

In Ruby 1.9, you can pass false as the second argument to const_get and
        const_defined? to specify that
        these methods should only look at the current class or module and
        should not consider inherited constants.
The methods for querying and setting class variables are private
        in Ruby 1.8. In that version, you can invoke them with class_eval:
String.class_eval { class_variable_set(:@@x, 1) }  # Set @@x in String
String.class_eval { class_variable_get(:@@x) }     # => 1

Object and Module define private methods for undefining
        instance variables, class variables, and constants. They all return
        the value of the removed variable or constant. Because these methods
        are private, you can’t invoke them directly on an object, class, or
        module, and you must use an eval
        method or the send method
        (described later in this chapter):
o.instance_eval { remove_instance_variable :@x }
String.class_eval { remove_class_variable(:@@x) }
Math.send :remove_const, :EPI  # Use send to invoke private method

The const_missing method of a
        module is invoked, if there is one, when a reference is made to an
        undefined constant. You can define this method to return the value of
        the named constant. (This feature can be used, for example, to
        implement an autoload facility in which classes or modules are loaded
        on demand.) Here is a simpler example:
def Symbol.const_missing(name)
  name # Return the constant name as a symbol
end
Symbol::Test   # => :Test: undefined constant evaluates to a Symbol



Methods



The Object and Module classes define a number of methods for
      listing, querying, invoking, and
      defining methods. We’ll consider each category in turn.
Listing and Testing For Methods



Object defines methods for
        listing the names of methods defined on the object. These methods
        return arrays of methods names. Those name are strings in Ruby 1.8 and
        symbols in Ruby 1.9:
o = "a string"
o.methods                # => [ names of all public methods ]
o.public_methods         # => the same thing
o.public_methods(false)  # Exclude inherited methods
o.protected_methods      # => []: there aren't any
o.private_methods        # => array of all private methods
o.private_methods(false) # Exclude inherited private methods
def o.single; 1; end     # Define a singleton method
o.singleton_methods      # => ["single"] (or [:single] in 1.9)

It is also possible to query a class for the methods it defines
        rather than querying an instance of the class. The following methods
        are defined by Module. Like the
        Object methods, they return arrays
        of strings in Ruby 1.8 and arrays of symbols in 1.9:
String.instance_methods == "s".public_methods                # => true
String.instance_methods(false) == "s".public_methods(false)  # => true
String.public_instance_methods == String.instance_methods    # => true
String.protected_instance_methods       # => []
String.private_instance_methods(false)  # => ["initialize_copy",
                                        #     "initialize"]

Recall that the class methods of a class or module are singleton
        methods of the Class or Module object. So to list class methods,
        use Object.singleton_methods:
Math.singleton_methods  # => ["acos", "log10", "atan2", ... ]

In addition to these listing methods, the Module class defines some predicates for
        testing whether a specified class or module defines a named instance
        method:
String.public_method_defined? :reverse     # => true
String.protected_method_defined? :reverse  # => false
String.private_method_defined? :initialize # => true
String.method_defined? :upcase!            # => true

Module.method_defined? checks
        whether the named method is defined as a public or protected method.
        It serves essentially the same purpose as Object.respond_to?. In Ruby 1.9, you can
        pass false as the second argument to specify that inherited methods
        should not be considered.

Obtaining Method Objects



To query a specific named method, call method on any object or instance_method on any module. The former
        returns a callable Method object
        bound to the receiver, and the latter returns an UnboundMethod. In Ruby 1.9, you can limit
        your search to public methods by calling public_method and public_instance_method. We covered these
        methods and the objects they return in Method Objects:
"s".method(:reverse)             # => Method object 
String.instance_method(:reverse) # => UnboundMethod object


Invoking Methods



As noted earlier, and in Method Objects, you can use
        the method method of
        any object to obtain a Method
        object that represents a named method of that object. Method objects have a call method just
        like Proc objects do; you can use
        it to invoke the method.
Usually, it is simpler to invoke a named method of a specified
        object with send:
"hello".send :upcase        # => "HELLO": invoke an instance method
Math.send(:sin, Math::PI/2) # => 1.0: invoke a class method

send invokes on its receiver the method named by its first argument,
        passing any remaining arguments
        to that method. The name “send” derives from the object-oriented idiom in which invoking a
        method is called “sending a message” to an object.
send can invoke any named
        method of an object, including private and protected methods. We saw
        send used earlier to invoke the
        private method remove_const of a
        Module object. Because global
        functions are really private methods of Object, we can use send to invoke these methods on any object
        (though this is not anything that we’d ever actually want to
        do):
"hello".send :puts, "world"         # prints "world"

Ruby 1.9 defines public_send
        as an alternative to send. This method works like send, but will only invoke public methods,
        not private or protected methods:
"hello".public_send :puts, "world"  # raises NoMethodError

send is a very fundamental
        method of Object, but it has a
        common name that might be overridden in subclasses. Therefore, Ruby
        defines __send__ as a synonym, and
        issues a warning if you attempt to delete or redefine __send__.

Defining, Undefining, and Aliasing Methods



If you want to define a new instance method of a class or module,
        use define_method. This instance method of Module takes the name of the new method (as
        a Symbol) as its first argument.
        The body of the method is provided either by a Method object passed as the second argument
        or by a block. It is important to understand that define_method is private. You must be inside
        the class or module you want to use it on in order to call it:
# Add an instance method named m to class c with body b 
def add_method(c, m, &b)
  c.class_eval {
    define_method(m, &b)
  }
end

add_method(String, :greet) { "Hello, " + self }

"world".greet   # => "Hello, world"

Defining Attribute Accessor Methods
The attr_reader
          and attr_accessor
          methods (see Accessors and Attributes) also define new methods for a
          class. Like define_method, these
          are private methods of Module and
          can easily be implemented in terms of define_method. These method-creation
          methods are an excellent example of how define_method is useful. Notice that
          because these methods are intended to be used inside a class
          definition, they are not hampered by the fact that define_method is private.

To define a class method (or any singleton method) with define_method, invoke it on the
        eigenclass:
def add_class_method(c, m, &b)
  eigenclass = class << c; self; end
  eigenclass.class_eval {
    define_method(m, &b)
  }
end

add_class_method(String, :greet) {|name| "Hello, " + name }

String.greet("world")  # => "Hello, world"

In Ruby 1.9, you can more easily use define_singleton_method, which is a method
        of Object:
String.define_singleton_method(:greet) {|name| "Hello, " + name }

One shortcoming of define_method is that it does not allow you
        to specify a method body that expects a block. If you need to
        dynamically create a method that accepts a block, you will need to use
        the def statement with class_eval. And if the method you are
        creating is sufficiently dynamic, you may not be able to pass a block
        to class_eval and will instead have
        to specify the method definition as a string to be evaluated. We’ll
        see examples of this later in the chapter.
To create a synonym or an alias for an existing method, you can
        normally use the alias
        statement:
alias plus +         # Make "plus" a synonym for the + operator

When programming dynamically, however, you sometimes need to
        use alias_method
        instead. Like define_method,
        alias_method is a private method of
        Module. As a method, it can accept
        two arbitrary expressions as its arguments, rather than requiring two
        identifiers to be hardcoded in your source code. (As a method, it also
        requires a comma between its arguments.) alias_method is often used for
        alias chaining existing methods. Here is a simple example; we’ll
        see more later in the chapter:
# Create an alias for the method m in the class (or module) c
def backup(c, m, prefix="original")
  n = :"#{prefix}_#{m}"    # Compute the alias
  c.class_eval {           # Because alias_method is private
    alias_method n, m      # Make n an alias for m
  }
end

backup(String, :reverse)
"test".original_reverse # => "tset"

As we learned in Undefining Methods, you can use the
        undef statement to undefine a
        method. This works only if you can express the name of a method as a
        hardcoded identifier in your program. If you need to dynamically
        delete a method whose name has been computed by your program, you have
        two choices: remove_method or
        undef_method. Both are private
        methods of Module. remove_method removes the definition of the method from the current
        class. If there is a version defined by a superclass, that version
        will now be inherited. undef_method
        is more severe; it prevents any invocation of the specified method
        through an instance of the class, even if there is an inherited
        version of that method.
If you define a class and want to prevent any dynamic
        alterations to it, simply invoke the freeze method of the class. Once frozen, a
        class cannot be altered.

Handling Undefined Methods



When the method name resolution algorithm (see Method Lookup) fails to find a method, it looks up a
        method named method_missing
        instead. When this method is invoked, the first argument is a symbol
        that names the method that could not be found. This symbol is followed
        by all the arguments that were to be passed to the original method. If
        there is a block associated with the method invocation, that block is
        passed to method_missing as well.
The default implementation of method_missing, in the Kernel module, simply raises a NoMethodError. This exception, if uncaught,
        causes the program to exit with an error message, which is what you
        would normally expect to happen when you try to invoke a method that
        does not exist.
Defining your own method_missing method for a class allows you
        an opportunity to handle any kind of invocation on instances of the
        class. The method_missing hook is
        one of the most powerful of Ruby’s dynamic capabilities, and one of
        the most commonly used metaprogramming techniques. We’ll see examples
        of its use later in this chapter. For now, the following example code
        adds a method_missing method to the
        Hash class. It allows us to query
        or set the value of any named key as if the key were the name of a
        method:
class Hash
  # Allow hash values to be queried and set as if they were attributes.
  # We simulate attribute getters and setters for any key.
  def method_missing(key, *args)
    text = key.to_s

    if text[-1,1] == "="               # If key ends with = set a value
      self[text.chop.to_sym] = args[0] # Strip = from key
    else                               # Otherwise...
      self[key]                        # ...just return the key value
    end
  end
end

h = {}         # Create an empty hash object
h.one = 1      # Same as h[:one] = 1
puts h.one     # Prints 1. Same as puts h[:one]


Setting Method Visibility



Method Visibility: Public, Protected, Private introducedpublic, protected, and private. These look like language keywords
        but are actually private instance methods defined by Module. These methods are usually used as a
        static part of a class definition. But, with class_eval, they can also be used
        dynamically:
String.class_eval { private :reverse }
"hello".reverse  # NoMethodError: private method 'reverse'

private_class_method and
        public_class_method are similar,
        except that they operate on class methods and are themselves
        public:
# Make all Math methods private
# Now we have to include Math in order to invoke its methods
Math.private_class_method *Math.singleton_methods



Hooks



Module, Class, and Objectimplement several callback methods, or hooks. These methods are
      not defined by default, but if you define them for a module, class, or
      object, then they will be invoked when certain events occur. This gives
      you an opportunity to extend Ruby’s behavior when classes are
      subclassed, when modules are included, or when methods are defined. Hook
      methods (except for some deprecated ones not described here) have names that end in
      “ed.”
When a new class is defined, Ruby invokes the class
      method inherited on the
      superclass of the new class, passing the new class object as the
      argument. This allows classes to add behavior to or enforce constraints
      on their descendants. Recall that class methods are inherited, so that
      the an inherited method will be
      invoked if it is defined by any of the ancestors of the new class.
      Define Object.inherited to receive
      notification of all new classes that are defined:
def Object.inherited(c)
  puts "class #{c} < #{self}"
end

When a module is included into a class or into another module, the
      included class method of the included
      module is invoked with the class or module object into which it was
      included as an argument. This gives the included module an opportunity
      to augment or alter the class in whatever way it wants—it effectively
      allows a module to define its own meaning for include. In addition to adding methods to the
      class into which it is included, a module with an included method might also alter the existing
      methods of that class, for example:
module Final             # A class that includes Final can't be subclassed
  def self.included(c)   # When included in class c
    c.instance_eval do   # Define a class method of c
      def inherited(sub) # To detect subclasses
        raise Exception, # And abort with an exception
              "Attempt to create subclass #{sub} of Final class #{self}"
      end
    end
  end
end

Similarly, if a module defines a class method named extended, that method will be invoked any time
      the module is used to extend an object (with Object.extend). The argument to the extended method will be the object that was
      extended, of course, and the extended
      method can take whatever actions it wants on that object.
In addition to hooks for tracking classes and the modules they
      include, there are also hooks for tracking the methods of classes and
      modules and the singleton methods of arbitrary objects. Define a class
      method named method_added for any
      class or module and it will be invoked when an instance method is
      defined for that class or module:
def String.method_added(name) 
  puts "New instance method #{name} added to String"
end

Note that the method_added
      class method is inherited by subclasses of the class on which it is
      defined. But no class argument is passed to the hook, so there is no way
      to tell whether the named method was added to the class that defines
      method_added or whether it was added
      to a subclass of that class. A workaround for this problem is to define
      an inherited hook on any class that
      defines a method_added hook. The
      inherited method can then define a
      method_added method for each
      subclass.
When a singleton method is defined for any object, the method
      singleton_method_added is invoked on that
      object, passing the name of the new method. Remember that for classes, singleton
      methods are class methods:
def String.singleton_method_added(name)
  puts "New class method #{name} added to String"
end

Interestingly, Ruby invokes this singleton_method_added hook when the hook
      method itself is first defined. Here is another use of the hook. In this
      case, singleton_method_added is defined as an
      instance method of any class that includes a module. It is notified of
      any singleton methods added to instances of that class:
# Including this module in a class prevents instances of that class
# from having singleton methods added to them. Any singleton methods added
# are immediately removed again.
module Strict
  def singleton_method_added(name)
    STDERR.puts "Warning: singleton #{name} added to a Strict object"
    eigenclass = class << self; self; end
    eigenclass.class_eval { remove_method name }
  end
end

In addition to method_added and
      singleton_method_added, there are
      hooks for tracking when instance methods and singleton methods are
      removed or undefined. When an instance method is removed or undefined on
      a class or module, the class methods method_removed and method_undefined are invoked on that module.
      When a singleton method is removed or undefined on an object, the
      methods singleton_method_removed and singleton_method_undefined are invoked on that
      object.
Finally, note that the method_missing and const_missing methods documented elsewhere in this chapter also behave like
      hook methods.

Tracing



Ruby defines a number of features for tracing the execution of
      a program. These are mainly useful for debugging code and printing
      informative error messages. Two of the simplest features are actual
      language keywords: __FILE__ and __LINE__. These keyword expressions always evaluate to the name of
      the file and the line number within that file on which they appear, and
      they allow an error message to specify the exact location at which it
      was generated:
STDERR.puts "#{__FILE__}:#{__LINE__): invalid data"

As an aside, note that the methods Kernel.eval,
      Object.instance_eval, and Module.class_eval all accept a filename (or other string) and a line number
      as their final two arguments. If you are evaluating code that you have
      extracted from a file of some sort, you can use these arguments to
      specify the values of __FILE__ and
      __LINE__ for the evaluation.
You have undoubtedly noticed that when an exception is raised and
      not handled, the error message printed to the console contains filename
      and line number information. This information is based on __FILE__ and __LINE__, of course. Every Exception object has a backtrace associated with it that
      shows exactly where it was raised, where the method that raised the
      exception was invoked, where that method was invoked, and so on. The
      Exception.backtrace method returns an
      array of strings containing this information. The first element of this
      array is the location at which the exception occurred, and each subsequent element is
      one stack frame higher.
You needn’t raise an exception to obtain a current stack trace,
      however. The Kernel.caller method returns the current state of the call stack in the same
      form as Exception.backtrace. With no argument,
      caller returns a stack trace whose
      first element is the method that invoked the method that calls caller. That is, caller[0] specifies the location from which
      the current method was invoked. You can also invoke caller with an argument that specifies how
      many stack frames to drop from the start of the backtrace. The default
      is 1, and caller(0)[0] specifies the
      location at which the caller method
      is invoked. This means, for example, that caller[0] is the same thing as caller(0)[1] and that caller(2) is the same as caller[1..-1].
Stack traces returned by Exception.backtrace and Kernel.caller also include method names. Prior
      to Ruby 1.9, you must parse the stack trace strings to extract method
      names. In Ruby 1.9, however, you can obtain the name (as a symbol)
      of the currently executing method with Kernel.__method__ or its synonym, Kernel.__callee__. __method__ is useful in conjunction with
      __FILE__ and __LINE__:
raise "Assertion failed in #{__method__} at #{__FILE__}:#{__LINE__}"

Note that __method__ returns
      the name by which a method was originally defined, even if the method
      was invoked through an alias.
Instead of simply printing the filename and number at which an
      error occurs, you can take it one step further and display the actual
      line of code. If your program defines a global constant named SCRIPT_LINES__ and sets it equal to a hash,
      then the require and load methods add an entry to this hash for
      each file they load. The hash keys are filenames and the values
      associated with those keys are arrays that contain the lines of those
      files. If you want to include the main file (rather than just the files
      it requires) in the hash, initialize it like this:
SCRIPT_LINES__ = {__FILE__ => File.readlines(__FILE__)}

If you do this, then you can obtain the current line of source
      code anywhere in your program with this expression:
SCRIPT_LINES__[__FILE__][__LINE__-1]

Ruby allows you to trace assignments to global variables with
      Kernel.trace_var. Pass this method a symbol that names a global variable and a
      string or block of code. When the value of the named variable changes,
      the string will be evaluated or the block will be invoked. When a block
      is specified, the new value of the variable is passed as an argument. To
      stop tracing the variable, call Kernel.untrace_var. In the following example, note the use of caller[1] to determine the program location at
      which the variable tracing block was invoked:
# Print a message every time $SAFE changes
trace_var(:$SAFE) {|v|
  puts "$SAFE set to #{v} at #{caller[1]}"
}

The final tracing method is Kernel.set_trace_func, which registers a Proc
      to be invoked after every line of a Ruby program. set_trace_func is useful if you want to write
      a debugger module that allows line-by-line stepping through a program,
      but we won’t cover it in any detail here.

ObjectSpace and GC



The ObjectSpace
      module defines a handful of low-level methods that can be
      occasionally useful for debugging or metaprogramming. The most notable
      method is each_object, an iterator
      that can yield every object (or every instance of a specified class)
      that the interpreter knows about:
# Print out a list of all known classes
ObjectSpace.each_object(Class) {|c| puts c }

ObjectSpace._id2ref is
      the inverse of Object.object_id: it takes an object ID as its
      argument and returns the
      corresponding object, or raises a RangeError if there is no object with that
      ID.
ObjectSpace.define_finalizer
      allows the registration of a Proc or a block of code to be invoked when a
      specified object is garbage collected. You must be careful when
      registering such a finalizer, however, as the finalizer block is not
      allowed to use the garbage collected object. Any values required to
      finalize the object must be captured in the scope of the finalizer
      block, so that they are available without dereferencing the object. Use
      ObjectSpace.undefine_finalizer to
      delete all finalizer blocks registered for an
      object.
The final ObjectSpace method is
      ObjectSpace.garbage_collect, which
      forces Ruby’s garbage collector to run. Garbage collection functionality
      is also available through the GC
      module. GC.start is a synonym for
      ObjectSpace.garbage_collect. Garbage
      collection can be temporarily disabled with GC.disable, and it can be enabled again with
      GC.enable.
The combination of the _id2ref
      and define_finalizer methods allows
      the definition of “weak reference” objects, which hold a reference to a
      value without preventing the value from being garbage collected if they
      become otherwise unreachable. See the WeakRef class in the standard library (in
      lib/weakref.rb) for an example.

Custom Control Structures



Ruby’s use of blocks, coupled with its parentheses-optional syntax,
      make it very easy to define iterator methods that look like and behave
      like control structures. The loop
      method of Kernel is a simple example.
      In this section we develop three more examples. The examples here use
      Ruby’s threading API; you may need to read Threads and Concurrency to
      understand all the details.
Delaying and Repeating Execution: after and every



Example 8-1 defines global methods named
        after and every. Each takes a numeric argument that
        represents a number of seconds and should have a block associated with
        it. after creates a new thread and
        returns the Thread object
        immediately. The newly created thread sleeps for the specified number
        of seconds and then calls (with no arguments) the block you provided.
        every is similar, but it calls the
        block repeatedly, sleeping the specified number of seconds between
        calls. The second argument to every
        is a value to pass to the first invocation of the block. The return
        value of each invocation becomes the value passed for the next
        invocation. The block associated with every can use break to prevent any future
        invocations.
Here is some example code that uses after and every:
require 'afterevery'

1.upto(5) {|i| after i { puts i} }  # Slowly print the numbers 1 to 5
sleep(5)                            # Wait five seconds
every 1, 6 do |count|               # Now slowly print 6 to 10
  puts count
  break if count == 10
  count + 1                         # The next value of count
end
sleep(6)                            # Give the above time to run

The sleep call at the end of
        this code prevents the example program from exiting before the thread
        created by every can complete its
        count. With that example of how after and every are used, we are now ready to present
        their implementation. Remember to consult Threads and Concurrency
        if you don’t understand Thread.new.
Example 8-1. The after and every methods
#
# Define Kernel methods after and every for deferring blocks of code.
# Examples:
#
#   after 1 { puts "done" }
#   every 60 { redraw_clock }
#
# Both methods return Thread objects. Call kill on the returned objects
# to cancel the execution of the code.
#
# Note that this is a very naive implementation. A more robust
# implementation would use a single global timer thread for all tasks,
# would allow a way to retrieve the value of a deferred block, and would
# provide a way to wait for all pending tasks to complete.
#

# Execute block after sleeping the specified number of seconds.
def after(seconds, &block)  
  Thread.new do     # In a new thread...
    sleep(seconds)  # First sleep 
    block.call      # Then call the block
  end               # Return the Thread object right away
end

# Repeatedly sleep and then execute the block.
# Pass value to the block on the first invocation.  
# On subsequent invocations, pass the value of the previous invocation.
def every(seconds, value=nil, &block)
  Thread.new do                 # In a new thread...
    loop do                     # Loop forever (or until break in block)
      sleep(seconds)            # Sleep
      value = block.call(value) # And invoke block
    end                         # Then repeat..
  end                           # every returns the Thread
end




Thread Safety with Synchronized Blocks



When writing programs that use multiple threads, it is important that two
        threads do not attempt to modify the same object at the same time. One
        way to do this is to place the code that must be made thread-safe in a
        block associated with a call to the synchronize method of a Mutex object. Again, this is discussed in detail in Threads and Concurrency. In Example 8-2
        we take this a step further, and emulate Java’s synchronized keyword with a global method
        named synchronized. This synchronized method expects a single object
        argument and a block. It obtains a Mutex associated with the object, and uses
        Mutex.synchronize to invoke the block.
        The tricky part is that Ruby’s object, unlike Java’s objects, do not
        have a Mutex associated with them.
        So Example 8-2 also defines an instance method
        named mutex in Object. Interestingly, the implementation of
        this mutex method uses synchronized in its new keyword-style
        form!
Example 8-2. Simple synchronized blocks
require 'thread'  # Ruby 1.8 keeps Mutex in this library

# Obtain the Mutex associated with the object o, and then evaluate
# the block under the protection of that Mutex.
# This works like the synchronized keyword of Java.
def synchronized(o)
  o.mutex.synchronize { yield }
end

# Object.mutex does not actually exist. We've got to define it.
# This method returns a unique Mutex for every object, and
# always returns the same Mutex for any particular object.
# It creates Mutexes lazily, which requires synchronization for
# thread safety.
class Object
  # Return the Mutex for this object, creating it if necessary.
  # The tricky part is making sure that two threads don't call
  # this at the same time and end up creating two different mutexes.
  def mutex
    # If this object already has a mutex, just return it
    return @__mutex if @__mutex
    
    # Otherwise, we've got to create a mutex for the object.
    # To do this safely we've got to synchronize on our class object.
    synchronized(self.class) {
      # Check again: by the time we enter this synchronized block,
      # some other thread might have already created the mutex.
      @__mutex = @__mutex || Mutex.new
    }
    # The return value is @__mutex
  end
end

# The Object.mutex method defined above needs to lock the class 
# if the object doesn't have a Mutex yet. If the class doesn't have
# its own Mutex yet, then the class of the class (the Class object)
# will be locked. In order to prevent infinite recursion, we must
# ensure that the Class object has a mutex.
Class.instance_eval { @__mutex = Mutex.new }





Missing Methods and Missing Constants



The method_missing method
      is a key part of Ruby’s method lookup algorithm (see Method Lookup) and provides a powerful way to catch and
      handle arbitrary invocations on an object. The const_missing method of Module performs a
      similar function for the constant lookup algorithm and allows us to
      compute or lazily initialize constants on the fly. The examples that
      follow demonstrate both of these methods.
Unicode Codepoint Constants with const_missing



Example 8-3 defines a Unicode module
        that appears to define a constant (a UTF-8 encoded string) for every Unicode
        codepoint from U+0000 to U+10FFFF. The only practical way to support
        this many constants is to use the const_missing method. The code makes the
        assumption that if a constant is referenced once, it is likely to be
        used again, so the const_missing
        method calls Module.const_set to
        define a real constant to refer to each value it computes.
Example 8-3. Unicode codepoint constants with const_missing
# This module provides constants that define the UTF-8 strings for
# all Unicode codepoints. It uses const_missing to define them lazily.
# Examples:
#   copyright = Unicode::U00A9
#   euro = Unicode::U20AC
#   infinity = Unicode::U221E
module Unicode
  # This method allows us to define Unicode codepoint constants lazily.
  def self.const_missing(name)  # Undefined constant passed as a symbol
    # Check that the constant name is of the right form.
    # Capital U followed by a hex number between 0000 and 10FFFF.
    if name.to_s =~ /^U([0-9a-fA-F]{4,5}|10[0-9a-fA-F]{4})$/
      # $1 is the matched hexadecimal number. Convert to an integer.
      codepoint = $1.to_i(16)
      # Convert the number to a UTF-8 string with the magic of Array.pack.
      utf8 = [codepoint].pack("U")
      # Make the UTF-8 string immutable.
      utf8.freeze
      # Define a real constant for faster lookup next time, and return
      # the UTF-8 text for this time.
      const_set(name, utf8)
    else 
      # Raise an error for constants of the wrong form.
      raise NameError, "Uninitialized constant: Unicode::#{name}"
    end
  end
end




Tracing Method Invocations with method_missing



Earlier in this chapter, we demonstrated an extension to the
        Hash class using method_missing. Now, in Example 8-4, we demonstrate the use of method_missing to delegate arbitrary calls
        on one object to another object. In this example, we do this in order
        to output tracing messages for the object.
Example 8-4 defines an Object.trace instance method and a TracedObject class. The trace method returns an instance of TracedObject that uses method_missingto catch invocations, trace them, and delegate them to
        the object being traced. You might use it like this:
a = [1,2,3].trace("a")
a.reverse
puts a[2]
puts a.fetch(3)

This produces the following tracing output:
Invoking: a.reverse() at trace1.rb:66
Returning: [3, 2, 1] from a.reverse to trace1.rb:66
Invoking: a.fetch(3) at trace1.rb:67
Raising: IndexError:index 3 out of array from a.fetch

Notice that in addition to demonstrating method_missing, Example 8-4
        also demonstrates Module.instance_methods, Module.undef_method, and Kernel.caller.
Example 8-4. Tracing method invocations with method_missing
# Call the trace method of any object to obtain a new object that
# behaves just like the original, but which traces all method calls
# on that object. If tracing more than one object, specify a name to
# appear in the output. By default, messages will be sent to STDERR, 
# but you can specify any stream (or any object that accepts strings
# as arguments to <<).
class Object
  def trace(name="", stream=STDERR)
    # Return a TracedObject that traces and delegates everything else to us.
    TracedObject.new(self, name, stream)
  end
end

# This class uses method_missing to trace method invocations and
# then delegate them to some other object. It deletes most of its own
# instance methods so that they don't get in the way of method_missing.
# Note that only methods invoked through the TracedObject will be traced.
# If the delegate object calls methods on itself, those invocations
# will not be traced.
class TracedObject
  # Undefine all of our noncritical public instance methods.
  # Note the use of Module.instance_methods and Module.undef_method.
  instance_methods.each do |m|
    m = m.to_sym  # Ruby 1.8 returns strings, instead of symbols
    next if m == :object_id || m == :__id__ || m == :__send__
    undef_method m
  end

  # Initialize this TracedObject instance.
  def initialize(o, name, stream)
    @o = o            # The object we delegate to
    @n = name         # The object name to appear in tracing messages
    @trace = stream   # Where those tracing messages are sent
  end

  # This is the key method of TracedObject. It is invoked for just
  # about any method invocation on a TracedObject.
  def method_missing(*args, &block)
    m = args.shift         # First arg is the name of the method
    begin
      # Trace the invocation of the method.
      arglist = args.map {|a| a.inspect}.join(', ')
      @trace << "Invoking: #{@n}.#{m}(#{arglist}) at #{caller[0]}\n"
      # Invoke the method on our delegate object and get the return value.
      r = @o.send m, *args, &block
      # Trace a normal return of the method.
      @trace << "Returning: #{r.inspect} from #{@n}.#{m} to #{caller[0]}\n"
      # Return whatever value the delegate object returned.
      r
    rescue Exception => e
      # Trace an abnormal return from the method.
      @trace << "Raising: #{e.class}:#{e} from #{@n}.#{m}\n"
      # And re-raise whatever exception the delegate object raised.
      raise
    end
  end

  # Return the object we delegate to.
  def __delegate
    @o
  end
end




Synchronized Objects by Delegation



In Example 8-2, we saw a global method synchronized, which accepts an object and
        executes a block under the protection of the Mutex associated with that object. Most of
        the example consisted of the implementation of the Object.mutex method. The synchronized method was trivial:
def synchronized(o)
  o.mutex.synchronize { yield }
end

Example 8-5 modifies this method so
        that, when invoked without a block, it returns a SynchronizedObject wrapper around the
        object. SynchronizedObject is a
        delegating wrapper class based on method_missing. It is much like the TracedObject class of Example 8-4, but it is written as a subclass of
        Ruby 1.9’s BasicObject, so
        there is no need to explicitly delete the instance methods of
        Object. Note that the code in this example does not stand alone; it
        requires the Object.mutex method
        defined earlier.
Example 8-5. Synchronizing methods with method_missing
def synchronized(o)
  if block_given?
    o.mutex.synchronize { yield }
  else
    SynchronizedObject.new(o)
  end
end

# A delegating wrapper class using method_missing for thread safety
# Instead of extending Object and deleting our methods we just extend
# BasicObject, which is defined in Ruby 1.9. BasicObject does not 
# inherit from Object or Kernel, so the methods of a BasicObject cannot
# invoke any top-level methods: they are just not there.
class SynchronizedObject  < BasicObject
  def initialize(o); @delegate = o;  end
  def __delegate; @delegate; end

  def method_missing(*args, &block)
    @delegate.mutex.synchronize {
      @delegate.send *args, &block
    }
  end
end





Dynamically Creating Methods



One important metaprogramming technique is the use of methods
      that create methods. The attr_reader
      and attr_accessor methods (see Accessors and Attributes) are examples. These private
      instance methods of Module are used
      like keywords within class definitions. They accept attribute names as
      their arguments, and dynamically create methods with those names. The
      examples that follow are variants on these attribute accessor creation
      methods and demonstrate two different ways to dynamically create methods
      like this.
Defining Methods with class_eval



Example 8-6defines private instance methods of Module named readonly and readwrite. These methods work like
        attr_reader and attr_accessor do, and they are here to
        demonstrate how those methods are implemented. The implementation is
        actually quite simple: readonly and
        readwrite first build a string of
        Ruby code containing the def
        statements required to define appropriate accessor methods. Next, they
        evaluate that string of code using class_eval (described earlier in the
        chapter). Using class_eval like
        this incurs the slight overhead of parsing the string of code. The
        benefit, however, is that the methods we define need not use any
        reflective APIs themselves; they can query or set the value of an
        instance variable directly.
Example 8-6. Attribute methods with class_eval
class Module
  private     # The methods that follow are both private

  # This method works like attr_reader, but has a shorter name
  def readonly(*syms)
    return if syms.size == 0  # If no arguments, do nothing
    code = ""                 # Start with an empty string of code
    # Generate a string of Ruby code to define attribute reader methods.
    # Notice how the symbol is interpolated into the string of code.
    syms.each do |s|                     # For each symbol
      code << "def #{s}; @#{s}; end\n"   # The method definition
    end
    # Finally, class_eval the generated code to create instance methods.
    class_eval code
  end

  # This method works like attr_accessor, but has a shorter name.
  def readwrite(*syms)
    return if syms.size == 0
    code = ""
    syms.each do |s|
      code << "def #{s}; @#{s} end\n"
      code << "def #{s}=(value); @#{s} = value; end\n"
    end
    class_eval code
  end
end




Defining Methods with define_method



Example 8-7 is a different take on attribute accessors. The attributes method is something like the
        readwrite method defined in Example 8-6. Instead of taking any number of attribute
        names as arguments, it expects a single hash object. This hash should
        have attribute names as its keys, and should map those attribute names
        to the default values for the attributes. The class_attrs method works like attributes, but defines class attributes
        rather than instance attributes.
Remember that Ruby allows the curly braces to be omitted around
        hash literals when they are the final argument in a method invocation.
        So the attributes method might be
        invoked with code like this:
class Point
  attributes :x => 0, :y => 0
end

In Ruby 1.9, we can use the more succinct hash syntax:
class Point
  attributes x:0, y:0
end

This is another example that leverages Ruby’s flexible syntax to
        create methods that behave like language keywords.
The implementation of the attributes method in Example 8-7 is quite a bit different than that of the
        readwrite method in Example 8-6. Instead of defining a string of Ruby code
        and evaluating it with class_eval,
        the attributes method defines the
        body of the attribute accessors in a block and defines the methods
        using define_method. Because this
        method definition technique does not allow us to interpolate
        identifiers directly into the method body, we must rely on reflective
        methods such as instance_variable_get. Because of this,
        the accessors defined with attributes are likely to be less efficient
        than those defined with readwrite.
An interesting point about the attributes method is that it does not
        explicitly store the default values for the attributes in a class
        variable of any kind. Instead, the default value for each attribute is
        captured by the scope of the block used to define the method. (See
        Closures for more about closures like this.)
The class_attrs method
        defines class attributes very simply: it invokes attributes on the eigenclass of the class.
        This means that the resulting methods use class instance variables
        (see Class Instance Variables) instead of regular class
        variables.
Example 8-7. Attribute methods with define_method
class Module
  # This method defines attribute reader and writer methods for named
  # attributes, but expects a hash argument mapping attribute names to
  # default values. The generated attribute reader methods return the
  # default value if the instance variable has not yet been defined.
  def attributes(hash)
    hash.each_pair do |symbol, default|   # For each attribute/default pair
      getter = symbol                     # Name of the getter method
      setter = :"#{symbol}="              # Name of the setter method
      variable = :"@#{symbol}"            # Name of the instance variable
      define_method getter do             # Define the getter method
        if instance_variable_defined? variable
          instance_variable_get variable  # Return variable, if defined
        else
          default                         # Otherwise return default
        end
      end

      define_method setter do |value|     # Define setter method
        instance_variable_set variable,   # Set the instance variable
                              value       # To the argument value
      end
    end
  end

  # This method works like attributes, but defines class methods instead
  # by invoking attributes on the eigenclass instead of on self.
  # Note that the defined methods use class instance variables
  # instead of regular class variables.  
  def class_attrs(hash)
    eigenclass = class << self; self; end
    eigenclass.class_eval { attributes(hash) }
  end

  # Both methods are private
  private :attributes, :class_attrs
end





Alias Chaining



As we’ve
      seen, metaprogramming in Ruby often involves the dynamic
      definition of methods. Just as common is the dynamic
      modification of methods. Methods are modified with
      a technique we’ll call alias chaining.[6] It works like this:
	First, create an alias for the method to be modified. This
          alias provides a name for the unmodified version of the
          method.

	Next, define a new version of the method. This new version
          should call the unmodified
          version through the alias, but it can add whatever functionality is
          needed before and after it
          does that.



Note that these steps can be applied repeatedly (as long as a
      different alias is used each time), creating a chain of methods and
      aliases.
This section includes three alias chaining examples. The first
      performs the alias chaining statically; i.e., using regular alias and def statements. The second and third examples
      are more dynamic; they alias chain arbitrarily named methods using
      alias_method, define_method, and class_eval.
Tracing Files Loaded and Classes Defined



Example 8-8 is code that keeps track of all
        files loaded and all classes defined in a program. When the program
        exits, it prints a report. You can use this code to “instrument” an
        existing program so that you better understand what it is doing. One
        way to use this code is to insert this line at the beginning of the
        program:
require 'classtrace'

An easier solution, however, is to use the -r option to your Ruby interpreter:
ruby -rclasstrace my_program.rb  --traceout /tmp/trace

The -r option loads the
        specified library before it starts running the program. See Invoking the Ruby Interpreter for more on the Ruby interpreter’s
        command-line arguments.
Example 8-8 uses static alias chaining to
        trace all invocations of the Kernel.require and Kernel.load methods. It defines an Object.inherited hook to track definitions
        of new classes. And it uses Kernel.at_exit to execute a block of code
        when the program terminates. (The END statement described in BEGIN and END would work here as well.) Besides alias chaining
        require and load and defining Object.inherited, the only modification to
        the global namespace made by this code is the definition of a module
        named ClassTrace. All state
        required for tracing is stored in constants within this module, so
        that we don’t pollute the namespace with global variables.
Example 8-8. Tracing files loaded and classes defined
# We define this module to hold the global state we require, so that
# we don't alter the global namespace any more than necessary.
module ClassTrace
  # This array holds our list of files loaded and classes defined.
  # Each element is a subarray holding the class defined or the
  # file loaded and the stack frame where it was defined or loaded.
  T = []  # Array to hold the files loaded

  # Now define the constant OUT to specify where tracing output goes.
  # This defaults to STDERR, but can also come from command-line arguments
  if x = ARGV.index("--traceout")    # If argument exists
    OUT = File.open(ARGV[x+1], "w")  # Open the specified file
    ARGV[x,2] = nil                  # And remove the arguments
  else
    OUT = STDERR                     # Otherwise default to STDERR
  end
end

# Alias chaining step 1: define aliases for the original methods
alias original_require require
alias original_load load

# Alias chaining step 2: define new versions of the methods 
def require(file)
  ClassTrace::T << [file,caller[0]]     # Remember what was loaded where
  original_require(file)                # Invoke the original method
end
def load(*args)
  ClassTrace::T << [args[0],caller[0]]  # Remember what was loaded where
  original_load(*args)                  # Invoke the original method
end

# This hook method is invoked each time a new class is defined
def Object.inherited(c)
  ClassTrace::T << [c,caller[0]]        # Remember what was defined where
end

# Kernel.at_exit registers a block to be run when the program exits
# We use it to report the file and class data we collected
at_exit {
  o = ClassTrace::OUT
  o.puts "="*60
  o.puts "Files Loaded and Classes Defined:"
  o.puts "="*60
  ClassTrace::T.each do |what,where|
    if what.is_a? Class  # Report class (with hierarchy) defined
      o.puts "Defined: #{what.ancestors.join('<-')} at #{where}"
    else                 # Report file loaded
      o.puts "Loaded: #{what} at #{where}"
    end
  end
}




Chaining Methods for Thread Safety



Two earlier examples in this chapter have involved thread safety. Example 8-2 defined a synchronized method (based on an Object.mutex method) that executed a block
        under the protection of a Mutex
        object. Then, Example 8-5 redefined the
        synchronized method so that when it
        was invoked without a block, it would return a SynchronizedObject wrapper around an object,
        protecting access to any methods invoked through that wrapper object.
        Now, in Example 8-9, we augment the synchronized method again so that when it is
        invoked within a class or module definition, it alias chains the named
        methods to add synchronization.
The alias chaining is done by our method Module.synchronize_method, which in turn
        uses a helper method Module.create_alias to define an appropriate
        alias for any given method (including operator methods like +).
After defining these new Module methods, Example 8-9 redefines the synchronized method again. When the method
        is invoked within a class or a module, it calls synchronize_method on
        each of the symbols it is passed. Interestingly, however, it can also
        be called with no arguments; when used this way, it adds
        synchronization to whatever instance method is defined next. (It uses
        the method_added hook to receive
        notifications when a new method is added.) Note that the code in this
        example depends on the Object.mutex
        method of Example 8-2 and the SynchronizedObject class of Example 8-5.
Example 8-9. Alias chaining for thread safety
# Define a Module.synchronize_method that alias chains instance methods
# so they synchronize on the instance before running.
class Module
  # This is a helper function for alias chaining.
  # Given a method name (as a string or symbol) and a prefix, create
  # a unique alias for the method, and return the name of the alias
  # as a symbol. Any punctuation characters in the original method name
  # will be converted to numbers so that operators can be aliased.
  def create_alias(original, prefix="alias")
    # Stick the prefix on the original name and convert punctuation
    aka = "#{prefix}_#{original}"
    aka.gsub!(/([\=\|\&\+\-\*\/\^\!\?\~\%\<\>\[\]])/) {
      num = $1[0]                       # Ruby 1.8 character -> ordinal
      num = num.ord if num.is_a? String # Ruby 1.9 character -> ordinal
      '_' + num.to_s
    }
    
    # Keep appending underscores until we get a name that is not in use
    aka += "_" while method_defined? aka or private_method_defined? aka

    aka = aka.to_sym            # Convert the alias name to a symbol
    alias_method aka, original  # Actually create the alias
    aka                         # Return the alias name
  end

  # Alias chain the named method to add synchronization
  def synchronize_method(m)
    # First, make an alias for the unsynchronized version of the method.
    aka = create_alias(m, "unsync") 
    # Now redefine the original to invoke the alias in a synchronized block.
    # We want the defined  method to be able to accept blocks, so we
    # can't use define_method, and must instead evaluate a string with 
    # class_eval. Note that everything between %Q{ and the matching } 
    # is a double-quoted string, not a block. 
    class_eval %Q{
      def #{m}(*args, &block)
        synchronized(self) { #{aka}(*args, &block) }
      end
    }
  end
end

# This global synchronized method can now be used in three different ways.
def synchronized(*args)
  # Case 1: with one argument and a block, synchronize on the object
  # and execute the block
  if args.size == 1 && block_given?
    args[0].mutex.synchronize { yield }

  # Case two: with one argument that is not a symbol and no block
  # return a SynchronizedObject wrapper
  elsif args.size == 1 and not args[0].is_a? Symbol and not block_given?
    SynchronizedObject.new(args[0])

  # Case three: when invoked on a module with no block, alias chain the
  # named methods to add synchronization. Or, if there are no arguments, 
  # then alias chain the next method defined.
  elsif self.is_a? Module and not block_given?
    if (args.size > 0) # Synchronize the named methods
      args.each {|m| self.synchronize_method(m) }
    else
      # If no methods are specified synchronize the next method defined
      eigenclass = class<<self; self; end 
      eigenclass.class_eval do # Use eigenclass to define class methods
        # Define method_added for notification when next method is defined
        define_method :method_added do |name|
          # First remove this hook method
          eigenclass.class_eval { remove_method :method_added }
          # Next, synchronize the method that was just added
          self.synchronize_method name
        end
      end
    end

  # Case 4: any other invocation is an error
  else
    raise ArgumentError, "Invalid arguments to synchronize()"
  end
end




Chaining Methods for Tracing



Example 8-10 is a variant on Example 8-4 that supports tracing of named methods of an
        object. Example 8-4 used delegation and method_missing to define an Object.trace method that would return a
        traced wrapper object. This version uses chaining to alter methods of
        an object in place. It defines trace! and untrace! to chain and unchain named methods
        of an object.
The interesting thing about this example is that it does its
        chaining in a different way from Example 8-9;
        it simply defines singleton methods on the object and uses super within the singleton to chain to the
        original instance method definition. No method aliases are
        created.
Example 8-10. Chaining with singleton methods for tracing
# Define trace! and untrace! instance methods for all objects.
# trace! "chains" the named methods by defining singleton methods
# that add tracing functionality and then use super to call the original.
# untrace! deletes the singleton methods to remove tracing.
class Object
  # Trace the specified methods, sending output to STDERR.
  def trace!(*methods)
    @_traced = @_traced || []    # Remember the set of traced methods

    # If no methods were specified, use all public methods defined 
    # directly (not inherited) by the class of this object 
    methods = public_methods(false) if methods.size == 0

    methods.map! {|m| m.to_sym } # Convert any strings to symbols
    methods -= @_traced          # Remove methods that are already traced
    return if methods.empty?     # Return early if there is nothing to do
    @_traced |= methods          # Add methods to set of traced methods

    # Trace the fact that we're starting to trace these methods
    STDERR << "Tracing #{methods.join(', ')} on #{object_id}\n"

    # Singleton methods are defined in the eigenclass
    eigenclass = class << self; self; end

    methods.each do |m|         # For each method m
      # Define a traced singleton version of the method m.
      # Output tracing information and use super to invoke the
      # instance method that it is tracing.
      # We want the defined  methods to be able to accept blocks, so we
      # can't use define_method, and must instead evaluate a string.
      # Note that everything between %Q{ and the matching } is a 
      # double-quoted string, not a block. Also note that there are 
      # two levels of string interpolations here. #{} is interpolated
      # when the singleton method is defined. And \#{} is interpolated 
      # when the singleton method is invoked.
      eigenclass.class_eval %Q{
        def #{m}(*args, &block)
          begin
            STDERR << "Entering: #{m}(\#{args.join(', ')})\n"
            result = super
            STDERR << "Exiting: #{m} with \#{result}\n"
            result
          rescue
            STDERR << "Aborting: #{m}: \#{$!.class}: \#{$!.message}"
            raise
          end
        end
      }
    end
  end

  # Untrace the specified methods or all traced methods
  def untrace!(*methods)
    if methods.size == 0    # If no methods specified untrace
      methods = @_traced    # all currently traced methods
      STDERR << "Untracing all methods on #{object_id}\n"
    else                    # Otherwise, untrace
      methods.map! {|m| m.to_sym }  # Convert string to symbols
      methods &= @_traced   # all specified methods that are traced
      STDERR << "Untracing #{methods.join(', ')} on #{object_id}\n"
    end

    @_traced -= methods     # Remove them from our set of traced methods

    # Remove the traced singleton methods from the eigenclass
    # Note that we class_eval a block here, not a string
    (class << self; self; end).class_eval do
      methods.each do |m|
        remove_method m     # undef_method would not work correctly
      end
    end

    # If no methods are traced anymore, remove our instance var 
    if @_traced.empty?
      remove_instance_variable :@_traced
    end
  end
end






[6] It has also been called monkey patching, but
          since that term was originally used with derision, we avoid it here.
          The term duck punching is sometimes used as a
          humorous alternative.



Domain-Specific Languages



The goal of metaprogramming in Ruby is often the creation of
      domain-specific languages, or DSLs. A DSL is just
      an extension of Ruby’s syntax (with methods that look like keywords) or
      API that allows you to solve a problem or represent data more naturally
      than you could otherwise. For our examples, we’ll take the problem
      domain to be the output of XML formatted data, and we’ll define two
      DSLs—one very simple and one more clever—to tackle this
      problem.[*]
Simple XML Output with method_missing



We begin with a simple class named XML for generating XML output. Here’s an
        example of how the XML can be
        used:
pagetitle = "Test Page for XML.generate"
XML.generate(STDOUT) do 
  html do
    head do
      title { pagetitle }
      comment "This is a test"
    end
    body do
      h1(:style => "font-family:sans-serif") { pagetitle }
      ul :type=>"square" do
        li { Time.now }
        li { RUBY_VERSION }
      end
    end
  end
end

This code doesn’t look like XML, and it only sort of looks like
        Ruby. Here’s the output it generates (with some line breaks added for
        legibility):
<html><head>
<title>Test Page for XML.generate</title>
<!-- This is a test -->
</head><body>
<h1 style='font-family:sans-serif'>Test Page for XML.generate</h1>
<ul type='square'>
<li>2007-08-19 16:19:58 -0700</li>
<li>1.9.0</li>
</ul></body></html>

To implement this class and the XML generation syntax it
        supports, we rely on:
	Ruby’s block structure

	Ruby’s parentheses-optional method invocations

	Ruby’s syntax for passing hash literals to methods without
            curly braces

	The method_missing
            method



Example 8-11 shows the implementation for this
        simple DSL.
Example 8-11. A simple DSL for generating XML output
class XML
  # Create an instance of this class, specifying a stream or object to
  # hold the output. This can be any object that responds to <<(String).
  def initialize(out)
    @out = out  # Remember where to send our output
  end

  # Output the specified object as CDATA, return nil.
  def content(text)
    @out << text.to_s
    nil
  end

  # Output the specified object as a comment, return nil.
  def comment(text)
    @out << "<!-- #{text} -->"
    nil
  end

  # Output a tag with the specified name and attributes.
  # If there is a block invoke it to output or return content.
  # Return nil.
  def tag(tagname, attributes={})
    # Output the tag name
    @out << "<#{tagname}"

    # Output the attributes
    attributes.each {|attr,value| @out << " #{attr}='#{value}'" }
    
    if block_given?
      # This block has content
      @out << '>'             # End the opening tag
      content = yield         # Invoke the block to output or return content
      if content              # If any content returned
        @out << content.to_s  # Output it as a string
      end
      @out << "</#{tagname}>" # Close the tag
    else 
      # Otherwise, this is an empty tag, so just close it.
      @out << '/>'
    end
    nil # Tags output themselves, so they don't return any content
  end

  # The code below is what changes this from an ordinary class into a DSL.
  # First: any unknown method is treated as the name of a tag.
  alias method_missing tag

  # Second: run a block in a new instance of the class.
  def self.generate(out, &block)
    XML.new(out).instance_eval(&block)
  end
end




Validated XML Output with Method Generation



The XML class of Example 8-11 is helpful for generating well-formed XML, but it
        does no error checking to ensure that the output is valid according to
        any particular XML grammar. In the next example, Example 8-12, we add some simple error checking (though not
        nearly enough to ensure complete validity—that would require a much
        longer example). This example is really two DSLs in one. The first is
        a DSL for defining an XML grammar: a set of tags and the allowed
        attributes for each tag. You use it like this:
class HTMLForm < XMLGrammar
  element :form, :action => REQ,
                 :method => "GET",
                 :enctype => "application/x-www-form-urlencoded",
                 :name => OPT
  element :input, :type => "text", :name => OPT, :value => OPT,
                  :maxlength => OPT, :size => OPT, :src => OPT,
                  :checked => BOOL, :disabled => BOOL, :readonly => BOOL
  element :textarea, :rows => REQ, :cols => REQ, :name => OPT,
                     :disabled => BOOL, :readonly => BOOL
  element :button, :name => OPT, :value => OPT,
                   :type => "submit", :disabled => OPT
end

This first DSL is defined by the class method XMLGrammar.element. You use it by
        subclassing XMLGrammar to create a
        new class. The element method
        expects the name of a tag as its first argument and a hash of legal
        attributes as the second argument. The keys of the hash are attribute
        names. These names may map to default values for the attribute, to the constant REQ for required attributes, or to the
        constant OPT for optional
        attributes. Calling element
        generates a method with the specified name in the subclass you are
        defining.
The subclass of XMLGrammar
        you define is the second DSL, and you can use it to generate XML
        output that is valid according to the rules you specified. The
        XMLGrammar class does not have a
        method_missing method so it won’t
        allow you to use a tag that is not part of the grammar. And the
        tag method for outputting tags
        performs error checking on your attributes. Use the generated grammar
        subclass like the XML class of
        Example 8-11:
HTMLForm.generate(STDOUT) do
  comment "This is a simple HTML form"
  form :name => "registration",
       :action => "http://www.example.com/register.cgi" do
    content "Name:"
    input :name => "name"
    content "Address:"
    textarea :name => "address", :rows=>6, :cols=>40 do
      "Please enter your mailing address here"
    end
    button { "Submit" }
  end
end

Example 8-12 shows the implementation of the XMLGrammar class.
Example 8-12. A DSL for validated XML output
class XMLGrammar
  # Create an instance of this class, specifying a stream or object to
  # hold the output. This can be any object that responds to <<(String).
  def initialize(out)
    @out = out  # Remember where to send our output
  end

  # Invoke the block in an instance that outputs to the specified stream.
  def self.generate(out, &block)
    new(out).instance_eval(&block)
  end

  # Define an allowed element (or tag) in the grammar.
  # This class method is the grammar-specification DSL
  # and defines the methods that constitute the XML-output DSL.
  def self.element(tagname, attributes={})
    @allowed_attributes ||= {}
    @allowed_attributes[tagname] = attributes

    class_eval %Q{
      def #{tagname}(attributes={}, &block)
        tag(:#{tagname},attributes,&block)
      end
    }
  end

  # These are constants used when defining attribute values.
  OPT = :opt     # for optional attributes
  REQ = :req     # for required attributes
  BOOL = :bool   # for attributes whose value is their own name

  def self.allowed_attributes
    @allowed_attributes
  end

  # Output the specified object as CDATA, return nil.
  def content(text)
    @out << text.to_s
    nil
  end

  # Output the specified object as a comment, return nil.
  def comment(text)
    @out << "<!-- #{text} -->"
    nil
  end

  # Output a tag with the specified name and attribute.
  # If there is a block, invoke it to output or return content.
  # Return nil.
  def tag(tagname, attributes={})
    # Output the tag name
    @out << "<#{tagname}"

    # Get the allowed attributes for this tag.
    allowed = self.class.allowed_attributes[tagname]

    # First, make sure that each of the attributes is allowed.
    # Assuming they are allowed, output all of the specified ones.
    attributes.each_pair do |key,value|
      raise "unknown attribute: #{key}" unless allowed.include?(key)
      @out << " #{key}='#{value}'"
    end

    # Now look through the allowed attributes, checking for 
    # required attributes that were omitted and for attributes with
    # default values that we can output.
    allowed.each_pair do |key,value|
      # If this attribute was already output, do nothing.
      next if attributes.has_key? key
      if (value == REQ)
        raise "required attribute '#{key}' missing in <#{tagname}>"
      elsif value.is_a? String
        @out << " #{key}='#{value}'"
      end
    end

    if block_given?
      # This block has content
      @out << '>'             # End the opening tag
      content = yield         # Invoke the block to output or return content
      if content              # If any content returned
        @out << content.to_s  # Output it as a string
      end
      @out << "</#{tagname}>" # Close the tag
    else 
      # Otherwise, this is an empty tag, so just close it.
      @out << '/>'
    end
    nil # Tags output themselves, so they don't return any content.
  end
end






[*] For a fully realized solution to this problem, see Jim
          Weirich’s Builder API at http://builder.rubyforge.org.



Chapter 9. The Ruby Platform



[image: image with no caption]

Ruby’s  core library defines a rich and powerful API that serves as
    a platform on which to create your programs. It is well worth your time to
    study and master this API, particularly the key classes such as String, Array, Hash,
    Enumerable, and IO. If you aren’t familiar with the methods
    defined by these classes, you may end up spending time reinventing functionality that is already
    provided for you.
This chapter documents those methods. It is not a comprehensive API
    reference, but attempts to illustrate, with short code snippets, the use
    of the important methods of all the important core classes and modules,
    and a few of the most commonly used classes from the standard library. The
    aim is to familiarize you with the broad range of existing methods, so
    that when you need one of them, you will remember that it exists and will
    be able to find its documentation with ri.
This is a long chapter, broken down into sections that cover the
    following:
	Strings and text processing

	Regular expressions

	Numbers and math

	Dates and times

	The Enumerable module and the
        Array, Hash and Set collections

	Input/output and files

	Networking

	Threads and concurrency



You’ll find that the code early in the chapter takes the form of
    one-line snippets demonstrating individual methods. Toward the end,
    however, when documenting networking
    and threads, the examples become longer and demonstrate how to accomplish
    common tasks like creating a network client or using threads to
    concurrently process the items in a collection.
Strings



Chapter 3explained Ruby’s string literal syntax, as well as the String operators for concatenation (+), appends (<<),
      repetition (*), and indexing
      ([]). In this section we expand on that coverage by
      demonstrating the named methods of the String class. The subsections that follow this
      API overview cover specific areas in more detail.
We begin with methods that provide named alternatives to some of
      the operators documented in Chapter 3:
s = "hello"
s.concat(" world")    # Synonym for <<. Mutating append to s. Returns new s.
s.insert(5, " there") # Same as s[5,0] = " there". Alters s. Returns new s.
s.slice(0,5)          # Same as s[0,5]. Returns a substring.
s.slice!(5,6)         # Deletion. Same as s[5,6]="". Returns deleted substring.
s.eql?("hello world") # True. Same as ==.

There are several methods for querying the length of a
      string:
s.length         # => 11: counts characters in 1.9, bytes in 1.8
s.size           # => 11: size is a synonym
s.bytesize       # => 11: length in bytes; Ruby 1.9 only
s.empty?         # => false
"".empty?        # => true

String methods for searching a string and for replacing content
      include the following. We’ll revisit some of these when we consider
      regular expressions later in this section:
s = "hello"
# Finding the position of a substring or pattern match
s.index('l')         # => 2: index of first l in string
s.index(?l)          # => 2: works with character codes as well
s.index(/l+/)        # => 2: works with regular expressions, too
s.index('l',3)       # => 3: index of first l in string at or after position 3
s.index('Ruby')      # => nil: search string not found
s.rindex('l')        # => 3: index of rightmost l in string
s.rindex('l',2)      # => 2: index of rightmost l in string at or before 2

# Checking for prefixes and suffixes: Ruby 1.9 and later
s.start_with? "hell" # => true. Note start_with not starts_with
s.end_with? "bells"  # => false

# Testing for presence of substring
s.include?("ll")     # => true: "hello" includes "ll"
s.include?(?H)       # => false: "hello" does not include character H

# Pattern matching with regular expressions
s =~ /[aeiou]{2}/    # => nil: no double vowels in "hello"
s.match(/[aeiou]/) {|m| m.to_s} # => "e": return first vowel

# Splitting a string into substrings based on a delimiter string or pattern
"this is it".split     # => ["this", "is", "it"]: split on spaces by default
"hello".split('l')     # => ["he", "", "o"]
"1, 2,3".split(/,\s*/) # => ["1","2","3"]: comma and optional space delimiter

# Split a string into two parts plus a delimiter. Ruby 1.9 only.
# These methods always return arrays of 3 strings:
"banana".partition("an")  # => ["b", "an", "ana"] 
"banana".rpartition("an") # => ["ban", "an", "a"]: start from right
"a123b".partition(/\d+/)  # => ["a", "123", "b"]: works with Regexps, too

# Search and replace the first (sub, sub!) or all (gsub, gsub!)
# occurrences of the specified string or pattern.
# More about sub and gsub when we cover regular expressions later.
s.sub("l", "L")            # => "heLlo": Just replace first occurrence
s.gsub("l", "L")           # => "heLLo": Replace all occurrences
s.sub!(/(.)(.)/, '\2\1')   # => "ehllo": Match and swap first 2 letters
s.sub!(/(.)(.)/, "\\2\\1") # => "hello": Double backslashes for double quotes
# sub and gsub can also compute a replacement string with a block
# Match the first letter of each word and capitalize it
"hello world".gsub(/\b./) {|match| match.upcase } # => "Hello World"
# In Ruby 1.9, you can specify a hash to map matches to replacements
s.gsub(/[aeiou]/,"a"=>0, "e"=>1, "i"=>2)   # => "h1ll"

The last line of this example uses the upcase method to convert a string to uppercase. The String class defines a number of methods for
      working with case (but it does not define methods for testing the case
      or category of a character):
# Case modification methods
s = "world"   # These methods work with ASCII characters only
s.upcase      # => "WORLD"
s.upcase!     # => "WORLD"; alter s in place
s.downcase    # => "world"
s.capitalize  # => "World": first letter upper, rest lower
s.capitalize! # => "World": alter s in place
s.swapcase    # => "wORLD": alter case of each letter

# Case insensitive comparison. (ASCII text only)
# casecmp works like <=> and returns -1 for less, 0 for equal, +1 for greater
"world".casecmp("WORLD")  # => 0 
"a".casecmp("B")          # => -1 (<=> returns 1 in this case)

String defines a number of
      useful methods for adding and removing whitespace. Most exist in
      mutating (end with !) and nonmutating versions:
s = "hello\r\n"      # A string with a line terminator
s.chomp!             # => "hello": remove one line terminator from end
s.chomp              # => "hello": no line terminator so no change
s.chomp!             # => nil: return of nil indicates no change made
s.chomp("o")         # => "hell": remove "o" from end
$/ = ";"             # Set global record separator $/ to semicolon
"hello;".chomp       # => "hello": now chomp removes semicolons and end

# chop removes trailing character or line terminator (\n, \r, or \r\n)
s = "hello\n"
s.chop!              # => "hello": line terminator removed. s modified.
s.chop               # => "hell": last character removed. s not modified.
"".chop              # => "": no characters to remove
"".chop!             # => nil: nothing changed

# Strip all whitespace (including \t, \r, \n) from left, right, or both
# strip!, lstrip! and rstrip! modify the string in place.
s = "\t hello \n"   # Whitespace at beginning and end
s.strip             # => "hello"
s.lstrip            # => "hello \n"
s.rstrip            # => "\t hello"

# Left-justify, right-justify, or center a string in a field n-characters wide.
# There are no mutator versions of these methods. See also printf method.
s = "x"
s.ljust(3)          # => "x  "
s.rjust(3)          # => "  x"
s.center(3)         # => " x "
s.center(5, '-')    # => "--x--": padding other than space are allowed
s.center(7, '-=')   # => "-=-x-=-": multicharacter padding allowed

Strings may be enumerated byte-by-byte or line-by-line
      with the each_byte and
      each_line iterators. In Ruby 1.8, the
      each method is a synonym for each_line, and the String class includes Enumerable. Avoid using each and its related iterators because Ruby
      1.9 removes the each method and no
      longer makes strings Enumerable. Ruby 1.9
      (and the jcode library in Ruby 1.8)
      adds an each_char iterator and
      enables character-by-character  enumeration of strings:
s = "A\nB"                       # Three ASCII characters on two lines
s.each_byte {|b| print b, " " }  # Prints "65 10 66 "
s.each_line {|l| print l.chomp}  # Prints "AB"

# Sequentially iterate characters as 1-character strings
# Works in Ruby 1.9, or in 1.8 with the jcode library:
s.each_char { |c| print c, " " } # Prints "A \n B "

# Enumerate each character as a 1-character string
# This does not work for multibyte strings in 1.8
# It works (inefficiently) for multibyte strings in 1.9:
0.upto(s.length-1) {|n| print s[n,1], " "}

# In Ruby 1.9, bytes, lines, and chars are aliases
s.bytes.to_a                     # => [65,10,66]: alias for each_byte
s.lines.to_a                     # => ["A\n","B"]: alias for each_line
s.chars.to_a                     # => ["A", "\n", "B"] alias for each_char

String defines a number of
      methods for parsing numbers from strings, and for converting strings to symbols:
"10".to_i          # => 10: convert string to integer
"10".to_i(2)       # => 2: argument is radix: between base-2 and base-36
"10x".to_i         # => 10: nonnumeric suffix is ignored. Same for oct, hex
" 10".to_i         # => 10: leading whitespace ignored
"ten".to_i         # => 0: does not raise exception on bad input
"10".oct           # => 8: parse string as base-8 integer
"10".hex           # => 16: parse string as hexadecimal integer
"0xff".hex         # => 255: hex numbers may begin with 0x prefix
" 1.1 dozen".to_f  # => 1.1: parse leading floating-point number
"6.02e23".to_f     # => 6.02e+23: exponential notation supported

"one".to_sym       # => :one -- string to symbol conversion
"two".intern       # => :two -- intern is a synonym for to_sym

Finally, here are some miscellaneous String methods:
# Increment a string:
"a".succ                      # => "b": the successor of "a". Also, succ!
"aaz".next                    # => "aba": next is a synonym. Also, next!
"a".upto("e") {|c| print c }  # Prints "abcde". upto iterator based on succ.

# Reverse a string:
"hello".reverse     # => "olleh". Also reverse!

# Debugging
"hello\n".dump      # => "\"hello\\n\"": Escape special characters
"hello\n".inspect   # Works much like dump

# Translation from one set of characters to another
"hello".tr("aeiou", "AEIOU")  # => "hEllO": capitalize vowels. Also tr!
"hello".tr("aeiou", " ")      # => "h ll ": convert vowels to spaces
"bead".tr_s("aeiou", " ")     # => "b d": convert and remove duplicates

# Checksums
"hello".sum          # => 532: weak 16-bit checksum
"hello".sum(8)       # => 20: 8 bit checksum instead of 16 bit
"hello".crypt("ab")  # => "abl0JrMf6tlhw": one way cryptographic checksum
                     # Pass two alphanumeric characters as "salt"
                     # The result may be platform-dependent

# Counting letters, deleting letters, and removing duplicates
"hello".count('aeiou')  # => 2: count lowercase vowels
"hello".delete('aeiou') # => "hll": delete lowercase vowels. Also delete!
"hello".squeeze('a-z')  # => "helo": remove runs of letters. Also squeeze!
# When there is more than one argument, take the intersection.
# Arguments that begin with ^ are negated.
"hello".count('a-z', '^aeiou')   # => 3: count lowercase consonants
"hello".delete('a-z', '^aeiou')  # => "eo: delete lowercase consonants

Formatting Text



As you know, Ruby’s double-quoted string literals allow arbitrary Ruby
        expressions to be interpolated into strings. For example:
n, animal = 2, "mice"
"#{n+1} blind #{animal}"  # => '3 blind mice'

This string-literal interpolation syntax was documented in Chapter 3. Ruby also supports another technique for
        interpolating values into strings: the String class defines a format operator
        %, and the Kernel module defines global printf and sprintf methods. These methods and the % operator are very much like the printf function popularized by the C
        programming language. One advantage of printf-style formatting over regular string
        literal interpolation is that it allows precise control over field
        widths, which makes it useful for ASCII report generation. Another
        advantage is that it allows you to specify the number of significant
        digits to display in floating-point numbers, which is useful in
        scientific (and sometimes financial) applications. Finally, printf-style formatting decouples the values
        to be formatted from the string into which they are
        interpolated. This can be helpful for internationalization and
        localization of applications.
Examples using the % operator
        follow. See Kernel.sprintf for
        complete documentation of the formatting directives used by these
        methods:
# Alternatives to the interpolation above
printf('%d blind %s', n+1, animal)  # Prints '3 blind mice', returns nil
sprintf('%d blind %s', n+1, animal) # => '3 blind mice'
'%d blind %s' % [n+1, animal]  # Use array on right if more than one argument

# Formatting numbers
'%d' % 10         # => '10': %d for decimal integers
'%x' % 10         # => 'a': hexadecimal integers
'%X' % 10         # => 'A': uppercase hexadecimal integers
'%o' % 10         # => '12': octal integers
'%f' % 1234.567   # => '1234.567000': full-length floating-point numbers
'%e' % 1234.567   # => '1.234567e+03': force exponential notation
'%E' % 1234.567   # => '1.234567e+03': exponential with uppercase E
'%g' % 1234.567   # => '1234.57': six significant digits
'%g' % 1.23456E12 # => '1.23456e+12': Use %f or %e depending on magnitude

# Field width
'%5s' % '<<<'     # '  <<<': right-justify in field five characters wide
'%-5s' % '>>>'    # '>>>  ': left-justify in field five characters wide
'%5d' % 123       # '  123': field is five characters wide
'%05d' % 123      # '00123': pad with zeros in field five characters wide

# Precision
'%.2f' % 123.456  # '123.46': two digits after decimal place
'%.2e' % 123.456  # '1.23e+02': two digits after decimal = three significant digits
'%.6e' % 123.456  # '1.234560e+02': note added zero 
'%.4g' % 123.456  # '123.5': four significant digits

# Field and precision combined
'%6.4g' % 123.456 # ' 123.5': four significant digits in field six chars wide
'%3s' % 'ruby'    # 'ruby': string argument exceeds field width
'%3.3s' % 'ruby'  # 'rub': precision forces truncation of string

# Multiple arguments to be formatted
args = ['Syntax Error', 'test.rb', 20]  # An array of arguments
"%s: in '%s' line %d" % args    # => "Syntax Error: in 'test.rb' line 20" 
# Same args, interpolated in different order!  Good for internationalization.
"%2$s:%3$d: %1$s" % args        # => "test.rb:20: Syntax Error"


Packing and Unpacking Binary Strings



Ruby’s strings can hold binary data as well as textual data. A pair of
        methods, Array.pack and String.unpack, can be helpful if you are
        working with binary file formats or binary network protocols. Use
        Array.pack to encode the elements
        of an array into a binary string. And use String.unpack to decode a binary string,
        extracting values from it and returning those values in an array. Both
        the encoding and decoding
        operations are under the control of a format string where letters
        specify the datatype and encoding and numbers specify the number of
        repetitions. The creation of these format strings is fairly arcane,
        and you can find a complete list of letter codes in the documentation
        for Array.pack and String.unpack. Here are some simple
        examples:
a = [1,2,3,4,5,6,7,8,9,10]  # An array of 10 integers
b = a.pack('i10')           # Pack 10 4-byte integers (i) into binary string b
c = b.unpack('i*')          # Decode all (*) the 4-byte integers from b
c == a                      # => true

m = 'hello world'           # A message to encode
data = [m.size, m]          # Length first, then the bytes
template = 'Sa*'            # Unsigned short, any number of ASCII chars
b = data.pack(template)     # => "\v\000hello world"
b.unpack(template)          # => [11, "hello world"]


Strings and Encodings



The String methods encoding, encode, encode!, and force_encoding and the Encoding class were described in String Encodings and Multibyte Characters. You may want to reread that section now
        if you will be writing programs using Unicode or other multibyte
        character encodings.



Regular Expressions



A regular expression (also known as a regexp or regex)
      describes a textual pattern. Ruby’s Regexp class[*] implements regular expressions, and both Regexp and String define pattern matching methods and
      operators. Like most languages that support regular expressions, Ruby’s
      Regexp syntax follows closely (but
      not precisely) the syntax of Perl 5.
Regexp Literals



Regular expression literals are delimited by forward slash characters:
/Ruby?/  # Matches the text "Rub" followed by an optional "y"

The closing slash character isn’t a true delimiter because a
        regular expression literal may be followed by one or more optional
        flag characters that specify additional information about the how
        pattern matching is to be done. For example:
/ruby?/i  # Case-insensitive: matches "ruby" or "RUB", etc.
/./mu     # Matches Unicode characters in Multiline mode

The allowed modifier characters are shown in Table 9-1.
Table 9-1. Regular expression modifier characters
	Modifier	Description
	i 	Ignore case when matching text.
	m 	The pattern is to be matched against multiline text, so
                treat newline as an ordinary character: allow . to match newlines.
	x 	Extended syntax: allow whitespace and comments in
                regexp.
	o 	Perform #{}
                interpolations only once, the first time the regexp literal is
                evaluated. 

	u,e,s,n	Interpret the regexp as Unicode (UTF-8), EUC,
                SJIS, or ASCII. If none of these modifiers is specified, the
                regular expression is assumed to use the source encoding.
                




Like string literals delimited with %Q, Ruby allows you to begin your regular
        expressions with %r followed by
        a delimiter of your choice. This is useful when the pattern you are
        describing contains a lot of forward slash characters that you don’t
        want to escape:
%r|/|         # Matches a single slash character, no escape required
%r[</(.*)>]i  # Flag characters are allowed with this syntax, too

Regular expression syntax gives special meaning to the
        characters (), [], {},
        ., ?, +,
        *, |, ^, and
        $. If you want to describe a
        pattern that includes one of these characters literally, use a
        backslash to escape it. If you want to describe a pattern that
        includes a backslash, double the backslash:
/\(\)/     # Matches open and close parentheses
/\\/       # Matches a single backslash

Regular expression literals behave like double-quoted string
        literals and can include escape characters such as \n, \t,
        and (in Ruby 1.9) \u (see Table 3-1 in Chapter 3 for
        a complete list of escape sequences):
money = /[$\u20AC\u{a3}\u{a5}]/ # match dollar,euro,pound, or yen sign

Also like double-quoted string literals, Regexp literals allow
        the interpolation of arbitrary Ruby expressions with the #{} syntax:
prefix = ","
/#{prefix}\t/   # Matches a comma followed by an ASCII TAB character

Note that interpolation is done early, before the content of the
        regular expression is parsed. This means that any special characters
        in the interpolated expression become part of the regular expression
        syntax. Interpolation is normally done anew each time a regular
        expression literal is evaluated. If you use the o modifier, however, this interpolation is
        only performed once, the first time the code is parsed. The behavior
        of the o modifier is best
        demonstrated by example:
[1,2].map{|x| /#{x}/}   # => [/1/, /2/]
[1,2].map{|x| /#{x}/o}  # => [/1/, /1/]


Regexp Factory Methods



As an alternative to regexp literals, you can also create regular
        expressions with Regexp.new, or its
        synonym, Regexp.compile:
Regexp.new("Ruby?")                          # /Ruby?/
Regexp.new("ruby?", Regexp::IGNORECASE)      # /ruby?/i
Regexp.compile(".", Regexp::MULTILINE, "u")  # /./mu

Use the Regexp.escape to
        escape special regular expression characters in a string
        before passing them to the Regexp
        constructor:
pattern = "[a-z]+"                # One or more letters
suffix = Regexp.escape("()")      # Treat these characters literally
r = Regexp.new(pattern + suffix)  # /[a-z]+\(\)/

In Ruby 1.9 (and 1.8.7), the factory method Regexp.union creates a pattern that
        is the “union” of any number of strings or Regexp objects. (That is, the resulting
        pattern matches any of the strings matched by its constituent
        patterns.) Pass any number of arguments or a single array of strings
        and patterns. This factory method is good for creating patterns that
        match any word in a list of words. Strings passed to Regexp.union are automatically escaped,
        unlike those passed to new and
        compile:
# Match any one of five language names.
pattern = Regexp.union("Ruby", "Perl", "Python", /Java(Script)?/)
# Match empty parens, brackets, or braces. Escaping is automatic:
Regexp.union("()", "[]", "{}")   # => /\(\)|\[\]|\{\}/


Regular Expression Syntax



Many programming languages support regular expressions,
        using the syntax popularized by Perl. This book does not include a
        complete discussion of that syntax, but the following examples walk
        you through the elements of regular expression grammar. The tutorial
        is followed by Table 9-2, which summarizes the
        syntax. The tutorial’s focus is on Ruby 1.8 regular expression syntax, but some of the features
        available only in Ruby 1.9 are demonstrated as well. For book-length
        coverage of regular expressions, see Mastering Regular
        Expressions by Jeffrey E. F. Friedl (O’Reilly).
# Literal characters
/ruby/             # Match "ruby". Most characters simply match themselves.
/¥/                # Matches Yen sign. Multibyte characters are suported
                   # in Ruby 1.9 and Ruby 1.8.

# Character classes
/[Rr]uby/          # Match "Ruby" or "ruby"
/rub[ye]/          # Match "ruby" or "rube"
/[aeiou]/          # Match any one lowercase vowel
/[0-9]/            # Match any digit; same as /[0123456789]/
/[a-z]/            # Match any lowercase ASCII letter
/[A-Z]/            # Match any uppercase ASCII letter
/[a-zA-Z0-9]/      # Match any of the above
/[^aeiou]/         # Match anything other than a lowercase vowel
/[^0-9]            # Match anything other than a digit

# Special character classes
/./                # Match any character except newline
/./m               # In multiline mode . matches newline, too
/\d/               # Match a digit /[0-9]/
/\D/               # Match a nondigit: /[^0-9]/
/\s/               # Match a whitespace character: /[ \t\r\n\f]/
/\S/               # Match nonwhitespace: /[^ \t\r\n\f]/
/\w/               # Match a single word character: /[A-Za-z0-9_]/
/\W/               # Match a nonword character: /[^A-Za-z0-9_]/

# Repetition
/ruby?/            # Match "rub" or "ruby": the y is optional
/ruby*/            # Match "rub" plus 0 or more ys
/ruby+/            # Match "rub" plus 1 or more ys
/\d{3}/            # Match exactly 3 digits
/\d{3,}/           # Match 3 or more digits
/\d{3,5}/          # Match 3, 4, or 5 digits

# Nongreedy repetition: match the smallest number of repetitions
/<.*>/             # Greedy repetition: matches "<ruby>perl>"
/<.*?>/            # Nongreedy: matches "<ruby>" in "<ruby>perl>" 
                   # Also nongreedy: ??, +?, and {n,m}?

# Grouping with parentheses
/\D\d+/            # No group: + repeats \d
/(\D\d)+/          # Grouped: + repeats \D\d pair
/([Rr]uby(, )?)+/  # Match "Ruby", "Ruby, ruby, ruby", etc.

# Backreferences: matching a previously matched group again
/([Rr])uby&\1ails/ # Match ruby&rails or Ruby&Rails
/(['"])[^\1]*\1/   # Single or double-quoted string
                   #   \1 matches whatever the 1st group matched
                   #   \2 matches whatever the 2nd group matched, etc.

# Named groups and backreferences in Ruby 1.9: match a 4-letter palindrome
/(?<first>\w)(?<second>\w)\k<second>\k<first>/
/(?'first'\w)(?'second'\w)\k'second'\k'first'/ # Alternate syntax

# Alternatives
/ruby|rube/        # Match "ruby" or "rube"
/rub(y|le))/       # Match "ruby" or "ruble"
/ruby(!+|\?)/      # "ruby" followed by one or more ! or one ?

# Anchors: specifying match position
/^Ruby/            # Match "Ruby" at the start of a string or internal line
/Ruby$/            # Match "Ruby" at the end of a string or line
/\ARuby/           # Match "Ruby" at the start of a string
/Ruby\Z/           # Match "Ruby" at the end of a string
/\bRuby\b/         # Match "Ruby" at a word boundary
/\brub\B/          # \B is nonword boundary:
                   #   match "rub" in "rube" and "ruby" but not alone
/Ruby(?=!)/        # Match "Ruby", if followed by an exclamation point
/Ruby(?!!)/        # Match "Ruby", if not followed by an exclamation point

# Special syntax with parentheses
/R(?#comment)/     # Matches "R". All the rest is a comment
/R(?i)uby/         # Case-insensitive while matching "uby"
/R(?i:uby)/        # Same thing
/rub(?:y|le))/     # Group only without creating \1 backreference

# The x option allows comments and ignores whitespace
/  # This is not a Ruby comment. It is a literal part
   # of the regular expression, but is ignored.
   R      # Match a single letter R
   (uby)+ # Followed by one or more "uby"s
   \      # Use backslash for a nonignored space
/x                 # Closing delimiter. Don't forget the x option!

Table 9-2 summarizes the syntax rules
        demonstrated by this code.
Table 9-2. Regular expression syntax
	Syntax	Matches
	Character classes
	.	Matches any single character except newline.
                Using m option allows it to
                match newline as well. 

	[...]	Matches any single character in
                brackets.

	[^...]	Matches any single character not in
                brackets.

	\w	Matches word characters.

	\W	Matches nonword characters.

	\s	Matches whitespace. Equivalent to [ \t\n\r\f].

	\S	Matches nonwhitespace.

	\d	Matches digits. Equivalent to [0–9].

	\D	Matches nondigits.

	Sequences,
                alternatives, groups, and references
	ab	Matches expression a
                followed by expression b.
                

	a |
                b	Matches either expression
                a or expression
                b. 

	(
                re )	Grouping: groups re
                into a single syntactic unit that can be used with *, +, ?, |, and so on. Also “captures” the
                text that matches re for later
                use.

	(?:
                re )	Groups as with (), but does not capture the matched
                text. 

	(?<
                name > re
                )	Groups a subexpression and captures the text that
                matches re as with (), and also labels the subexpression with
                name. Ruby 1.9.

	(?'
                name ' re
                )	A named capture, as above. Single quotes may
                optionally replace angle brackets around
                name. Ruby 1.9.

	\1...\9	Matches the same text that matched the
                nth grouped
                subexpression.

	\10...	Matches the same text that matched the
                nth grouped subexpression if there
                are that many previous subexpressions. Otherwise, matches the
                character with the specified octal encoding. 

	\k<
                name >	Matches the same text that matched the named
                capturing group
                name.

	\g<
                n >	Matches group n again.
                n can be a group name or a group
                number. Contrast \g, which
                rematches or reexecutes the specified group, with an ordinary
                back reference that tries to match the same text that matched
                the first time. Ruby 1.9.

	Repetition	 By default, repetition is “greedy”—as
                many occurrences as possible are matched. For “reluctant”
                matching, follow a  * ,  + ,  ? , or {} quantifier with a
                 ?
                . This will match as few
                occurrences as possible while still allowing the rest of the
                expression to match. In Ruby 1.9, follow a quantifier with
                a + 
                for “possessive” (nonbacktracking) behavior.
                

	re *	Matches zero or more occurrences of
                re.

	re +	Matches one or more occurrences of
                re.

	re ?	Optional: matches zero or one occurrence of
                re.

	re { n
                }	Matches exactly n
                occurrences of re. 

	re { n
                ,}	Matches n or more
                occurrences of re. 

	re { n
                ,
                m }	Matches at least n and
                at most m occurrences of
                re. 

	Anchors	 Anchors do not match characters but
                instead match the zero-width positions between characters,
                “anchoring” the match to
                a position at which a specific condition holds.
                

	^	Matches beginning of line.

	$	Matches end of line.

	\A	Matches beginning of string.

	\Z	Matches end of string. If string ends with a
                newline, it matches just before newline. 

	\z	Matches end of string.

	\G	Matches point where last match
                finished.

	\b	Matches word boundaries when outside brackets.
                Matches backspace (0x08)
                when inside brackets. 

	\B	Matches nonword boundaries.

	(?=
                re )	Positive lookahead assertion: ensures that the
                following characters match re, but
                doesn’t include those characters in the matched text.
                

	(?!
                re )	Negative lookahead assertion: ensures that the
                following characters do not match
                re. 

	(?<=
                re )	Positive lookbehind assertion: ensures that the
                preceeding characters match re, but
                doesn’t include those characters in the matched text. Ruby
                1.9. 

	(?<!
                re )	Negative lookbehind assertion: ensures that the
                preceeding characters do not match
                re. Ruby 1.9.

	Miscellaneous
	(?
                onflags -
                offflags )	Doesn’t match anything, but turns on the flags
                specified by onflags, and turns off
                the flags specified by offflags.
                These two strings are combinations in any order of the
                modifier letters i,
                m, and x. Flag settings specified in this
                way take effect at the point that they appear in the
                expression and persist until the end of the expression, or
                until the end of the parenthesized group of which they are a
                part, or until overridden by another flag setting expression.
                

	(?
                onflags -
                offflags : x
                )	Matches x, applying
                the specified flags to this subexpression only. This is a
                noncapturing group, like (?:...), with the addition of flags.
                

	(?#...)	Comment: all text within parentheses is ignored.
                

	(?>
                re )	Matches re
                independently of the rest of the expression, without
                considering whether the match causes the rest of the
                expression to fail to match. Useful to optimize certain
                complex regular expressions. The parentheses do not capture
                the matched text. 





Pattern Matching with Regular Expressions



=~ is Ruby’s basic pattern-matching operator. One operand
        must be a regular expression and one must be a string. (It is
        implemented equivalently by both Regexp and String, so it doesn’t matter whether the
        regular expression is on the left or the right.) The =~ operator checks its string operand to see
        if it, or any substring, matches the pattern specified by the regular
        expression. If a match is found, the operator returns the string index
        at which the first match begins. Otherwise, it returns nil:
pattern = /Ruby?/i      # Match "Rub" or "Ruby", case-insensitive
pattern =~ "backrub"    # Returns 4.
"rub ruby" =~ pattern   # 0
pattern =~ "r"          # nil

After using the =~ operator,
        we may be interested in things other than the position at which the
        matched text begins. After any successful (non-nil) match, the global variable $~ holds a MatchData
        object which contains complete information about the match:
"hello" =~ /e\w{2}/     # 1: Match an e followed by 2 word characters
$~.string               # "hello": the complete string
$~.to_s                 # "ell": the portion that matched
$~.pre_match            # "h": the portion before the match
$~.post_match           # "o": the portion after the match

$~ is a special thread-local
        and method-local variable. Two threads running concurrently will see
        distinct values of this variable. And a method that uses the =~ operator does not alter the value of
        $~ seen by the calling method.
        We’ll have more to say about $~ and
        related global variables later. An object-oriented alternative to this
        magical and somewhat cryptic variable is Regexp.last_match. Invoking this method with no arguments returns the same value as a
        reference to $~.
A MatchData object is more powerful when the Regexp that was matched contains
        subexpressions in parentheses. In this case, the MatchData object can tell us the text (and
        the starting and ending offsets of that text) that matched each
        subexpression:
# This is a pattern with three subpatterns
pattern = /(Ruby|Perl)(\s+)(rocks|sucks)!/ 
text = "Ruby\trocks!"     # Text that matches the pattern    
pattern =~ text           # => 0: pattern matches at the first character
data = Regexp.last_match  # => Get match details
data.size                 # => 4: MatchData objects behave like arrays
data[0]                   # => "Ruby\trocks!": the complete matched text
data[1]                   # => "Ruby": text matching first subpattern
data[2]                   # => "\t": text matching second subpattern
data[3]                   # => "rocks": text matching third subpattern
data[1,2]                 # => ["Ruby", "\t"]
data[1..3]                # => ["Ruby", "\t", "rocks"]
data.values_at(1,3)       # => ["Ruby", "rocks"]: only selected indexes
data.captures             # => ["Ruby", "\t", "rocks"]: only subpatterns
Regexp.last_match(3)      # => "rocks": same as Regexp.last_match[3]

# Start and end positions of matches
data.begin(0)             # => 0: start index of entire match
data.begin(2)             # => 4: start index of second subpattern
data.end(2)               # => 5: end index of second subpattern
data.offset(3)            # => [5,10]: start and end of third subpattern

In Ruby 1.9, if a pattern includes named captures, then
        a MatchData obtained
        from that pattern can be used like a hash, with the names of capturing
        groups (as strings or symbols) as keys. For example:
# Ruby 1.9 only
pattern = /(?<lang>Ruby|Perl) (?<ver>\d(\.\d)+) (?<review>rocks|sucks)!/ 
if (pattern =~ "Ruby 1.9.1 rocks!")
  $~[:lang]            # => "Ruby"
  $~[:ver]             # => "1.9.1"
  $~["review"]         # => "rocks"
  $~.offset(:ver)      # => [5,10] start and end offsets of version number
end
# Names of capturing groups and a map of group names to group numbers
pattern.names          # => ["lang", "ver", "review"]
pattern.named_captures # => {"lang"=>[1],"ver"=>[2],"review"=>[3]}

Named Captures and Local Variables
In Ruby 1.9, if a regular expression containing named
          captures appears literally on the lefthand side of the
          =~ operator, then the names of
          the capturing groups are taken to be local variables, and the text
          that matches is assigned to those variables. If the match fails,
          then the variables are assigned nil. Here is an example:
# Ruby 1.9 only
if /(?<lang>\w+) (?<ver>\d+\.(\d+)+) (?<review>\w+)/ =~ "Ruby 1.9 rules!"
  lang     # => "Ruby"
  ver      # => "1.9"
  review   # => "rules"
end

This is magical behavior, but it only occurs when a regular
          expression appears literally in your code. If a pattern is stored in
          a variable or a constant or is returned by a method, or if the
          pattern appears on the righthand side, then the =~ operator does not perform this special
          local variable assignment. If Ruby is invoked with the -w option, then it issues a warning if the
          =~ operator overwrites a variable
          that is already defined.

In addition to the =~
        operator, the Regexp and String classes also define a match method. This method is like the match operator, except that
        instead of returning the index at which a match is found, it returns
        the MatchData object, or nil if no matching text is found. Use it
        like this:
if data = pattern.match(text)  # Or: data = text.match(pattern)
  handle_match(data)
end

In Ruby 1.9, you can also associate a block with a call to
        match. If no match is found, the
        block is ignored, and match returns
        nil. If a match is found, however,
        the MatchData
        object is passed to the block, and the match method returns whatever the block
        returns. So in Ruby 1.9, this code can be more succinctly written like
        this:
pattern.match(text) {|data| handle_match(data) }

Another change in Ruby 1.9 is that the match methods optionally accept an integer
        as the second argument to specify the starting position of the
        search.
Global variables for match data



Ruby adopts Perl’s regular expression syntax and, like Perl, sets special global variables
          after each match. If you are a Perl programmer, you may find these
          special variables useful. If you are a not a Perl programmer, you
          may find them unreadable! Table 9-3
          summarizes these variables. The variables listed in the second
          column are aliases that are available if you require 'English'.
Table 9-3. Special global regular expression variables
	Global	English	Alternative
	$~	$LAST_MATCH_INFO	Regexp.last_match
	$&	$MATCH	Regexp.last_match[0]
	$`	$PREMATCH	Regexp.last_match.pre_match
	$'	$POSTMATCH	Regexp.last_match.post_match
	$1	none	Regexp.last_match[1]
	$2, etc.	none	Regexp.last_match[2], etc.
	$+	$LAST_PAREN_MATCH	Regexp.last_match[-1]



$~ is the most important of the variables listed in Table 9-3. All the others are derived from it.
          If you set $~ to a MatchData object, the values of the other
          special globals change. The other global variables are read-only and
          cannot be set directly. Finally, it is important to remember that $~ and the variables derived from it are
          all thread-local and method-local. This means that two Ruby threads
          can perform matches at the same time without interfering with each
          other and it means that the value of these variables, as seen by
          your code, will not change when your code calls a method that
          performs a pattern match.

Pattern matching with strings



The String class defines
          a number of methods that accept Regexp arguments. If you index a string
          with a regular expression, then the portion of the string that
          matches the pattern is returned. If the Regexp is followed by an integer, then the
          corresponding element of the MatchData is returned:
"ruby123"[/\d+/]              # "123"
"ruby123"[/([a-z]+)(\d+)/,1]  # "ruby"
"ruby123"[/([a-z]+)(\d+)/,2]  # "123"

The slice method
          is a synonym for the string index operator []. The slice! variant returns the same value as
          slice but also has the side
          effect of deleting the returned substring from the string:
r = "ruby123"
r.slice!(/\d+/)  # Returns "123", changes r to "ruby"

The split method splits a
          string into an array of substrings, using a string or
          regular expression as its delimiter:
s = "one, two, three"
s.split            # ["one,","two,","three"]: whitespace delimiter by default
s.split(", ")      # ["one","two","three"]: hardcoded delimiter
s.split(/\s*,\s*/) # ["one","two","three"]: space is optional around comma

The index method searches a
          string for a character, substring, or pattern, and returns the start
          index. With a Regexp argument, it
          works much like the =~ operator,
          but it also allows a second argument that specifies the character
          position at which to begin the search. This allows you to find
          matches other than the first:
text = "hello world"
pattern = /l/
first = text.index(pattern)       # 2: first match starts at char 2
n = Regexp.last_match.end(0)      # 3: end position of first match
second = text.index(pattern, n)   # 3: search again from there
last = text.rindex(pattern)       # 9: rindex searches backward from end


Search and replace



Some of the most important String methods that use regular
          expressions are sub (for
          substitute) and gsub (for global
          substitute), and their in-place variants sub! and gsub!. All of these methods perform a search-and-replace
          operation using a Regexp pattern.
          sub and sub! replace the first occurrence of the
          pattern. gsub and gsub! replace all occurrences. sub and gsub return a new string, leaving the
          original unmodified. sub! and
          gsub! modify the string on which
          they are called. If any modifications are made to the string, these
          mutator methods return the modified string. If no modifications are
          made, they return nil (which
          makes the methods suitable for use in if statements and while loops):
phone = gets               # Read a phone number
phone.sub!(/#.*$/, "")     # Delete Ruby-style comments
phone.gsub!(/\D/,' '=>'-') # 1.9: remove non-digits but map space to hyphen

These search-and-replace methods do not require the use of
          regular expressions; you can also use an ordinary string as the text
          to be replaced:
text.gsub!("rails", "Rails")     # Change "rails" to "Rails" throughout

However, regular expressions really are more flexible. If you
          want to capitalize “rails” without modifying “grails”, for example,
          use a Regexp:
text.gsub!(/\brails\b/, "Rails") # Capitalize the word "Rails" throughout

The reason that the search-and-replace methods are covered in
          this subsection on their own is that the replacement does not need
          to be an ordinary string of text. (Replacement strings specified in
          a hash must be ordinary strings, however.) Suppose you want a
          replacement string that depends on the details of the match found.
          The search-and-replace methods process the replacement string before
          performing replacements. If the string contains a backslash followed
          by a single digit, then that digit is used as an index into the
          $~ object, and the text from the
          MatchData object is used in place
          of the backslash and the digit. For example, if the string contains
          the escape sequence \0, the
          entire matched text is used. If the replacement string contains
          \1, then the text that matches
          the first subexpression is used in the replacement. The following
          code does a case-insensitive search for the word “ruby” and puts
          HTML bold tags around it, preserving the word’s
          capitalization:
text.gsub(/\bruby\b/i, '<b>\0</b>')

Note that if you use a double-quoted replacement string, you
          must double the backslash character.
You might be tempted to try the same thing using normal
          double-quoted string interpolation:
text.gsub(/\bruby\b/i, "<b>#{$&}</b>")

This does not work, however, because in this case the
          interpolation is performed on the string literal before it is passed
          to gsub. This is before the
          pattern has been matched, so variables like $& are undefined or hold values from a
          previous match.
In Ruby 1.9, you can refer to named capturing groups using the
          \k named backreference syntax:
# Strip pairs of quotes from a string
re = /(?<quote>['"])(?<body>[^'"]*)\k<quote>/
puts "These are 'quotes'".gsub(re, '\k<body>')

Replacement strings can also refer to text other than that
          matched by capturing groups. Use \&, \`, \',
          and \+ to substitute in the value
          of $&, $`, $',
          and $+.
Instead of using a static replacement string, the
          search-and-replace methods can also be called with a block of code
          that computes the replacement string dynamically. The argument to
          the block is the text that matched the pattern:
# Use consistent capitalization for the names of programming languages
text = "RUBY Java perl PyThOn"         # Text to modify
lang = /ruby|java|perl|python/i        # Pattern to match
text.gsub!(lang) {|l| l.capitalize }   # Fix capitalization

Within the block of code, you can use $~ and the related global variables listed
          earlier in Table 9-3:
pattern = /(['"])([^\1]*)\1/   # Single- or double-quoted string
text.gsub!(pattern) do
  if ($1 == '"')   # If it was a double-quoted string
    "'#$2'"        # replace with single-quoted
  else             # Otherwise, if single-quoted
    "\"#$2\""      # replace with double-quoted
  end
end


Regular expression encoding



In Ruby 1.9, Regexp objects
          have an encoding method
           just like strings do. You can explicitly specify the
          encoding of a regular expression with modifiers: u for UTF-8,
          s for SJIS, e for EUC-JP, and n for none. You can also explicitly
          specify UTF-8 encoding by including a \u escape in the regular expression. If
          you don’t explicitly specify an encoding, then the source encoding
          is used. But if all the characters in the regexp are ASCII, then
          ASCII is used, even if the source encoding is some superset of
          ASCII.
Ruby 1.9 pattern-matching operations raise an exception if you
          attempt to match a pattern and a string that have incompatible
          encodings. The fixed_encoding?
           method returns true if a Regexp has an encoding other than ASCII.
          If fixed_encoding? returns
          false, then it is safe to use
          that pattern to match against any string whose encoding is ASCII or
          a superset of ASCII.




[*] JavaScript programmers should note that the Ruby class has a
          lowercase e, unlike the JavaScript RegExp class.



Numbers and Math



Chapter 3 covered the various Numeric
      subclasses in Ruby, explained how to write numeric literals in Ruby, and
      documented Ruby’s integer and floating-point arithmetic. Here we expand
      on that chapter to cover numeric APIs and other math-related
      classes.
Numeric Methods



Numericand its subclasses define a number of useful predicates for
        determining the class or testing the value of a number. Some of these
        predicates work only for Float
        values, and some work only for Integervalues:
# General Predicates
0.zero?        # => true (is this number zero?)
1.0.zero?      # => false
0.0.nonzero?   # => nil (works like false)
1.nonzero?     # => 1 (works like true)
1.integer?     # => true
1.0.integer?   # => false
1.scalar?      # => true: not a complex number. Ruby 1.9.
1.0.scalar?    # => true: not a complex number. Ruby 1.9.
Complex(1,2).scalar? # => false: a complex number. require 'complex' in 1.8

# Integer predicates (Ruby 1.9 and 1.8.7)
0.even?        # => true
0.odd?         # => false

# Float predicates
ZERO, INF, NAN = 0.0, 1.0/0.0, 0.0/0.0  # Constants for testing

ZERO.finite?   # => true: is this number finite?
INF.finite?    # => false
NAN.finite?    # => false

ZERO.infinite? # => nil: is this number infinite? Positive or negative?
INF.infinite?  # => 1
-INF.infinite? # => -1
NAN.infinite?  # => nil

ZERO.nan?      # => false: is this number not-a-number?
INF.nan?       # => false
NAN.nan?       # => true

Numeric and its subclasses define various methods for rounding
        numbers:
# Rounding methods
1.1.ceil     # =>  2: ceiling: smallest integer >= its argument
-1.1.ceil    # => -1: ceiling: smallest integer >= its argument
1.9.floor    # =>  1: floor: largest integer <= its argument
-1.9.floor   # => -2: floor: largest integer <= its argument
1.1.round    # =>  1: round to nearest integer
0.5.round    # =>  1: round toward infinity when halfway between integers 
-0.5.round   # => -1: or round toward negative infinity
1.1.truncate # =>  1: chop off fractional part: round toward zero
-1.1.to_i    # => -1: synonym for truncate

Here are a few other numeric methods and constants of
        interest:
# For any Numeric value n, in Ruby 1.9
[n.abs, n<=>0]                # Absolute value and sign
[n.abs, n.angle]              # Magnitude and angle (or use n.polar)
[n.numerator, n.denominator]  # Numerator and denominator
[n.real, n.imag]              # Real and imaginary parts

# Floating point constants: may be implementation dependent
[Float::MAX, Float::MIN]      # => [1.79769313486232e+308,2.2250738585072e-308]
Float::EPSILON # => 2.22044604925031e-16: difference between adjacent floats


The Math Module



The Math module defines constants PI
        and E, and methods for trigonometry
        and logarithms, plus a few
        miscellaneous methods. The methods of Math are “module functions” (see Includable Namespace Modules), which means that they can be invoked
        through the Math namespace or
        included and invoked as if they were global functions. Here are some
        examples:
# Constants
Math::PI               # => 3.14159265358979
Math::E                # => 2.71828182845905

# Roots
Math.sqrt(25.0)        # => 5.0: square root
Math.cbrt(27.0)        # => 3.0: cube root; Ruby 1.9 and later
27.0**(1.0/3.0)        # => 3.0: cube root computed with ** operator

# Logarithms
Math.log10(100.0)      # => 2.0: base-10 logarithm
Math.log(Math::E**3)   # => 3.0: natural (base-e) logarithm
Math.log2(8)           # => 3.0: base-2 logarithm. Ruby 1.9 and later.
Math.log(16, 4)        # => 2.0: 2nd arg to log() is the base. Ruby 1.9.
Math.exp(2)            # => 7.38905609893065: same as Math::E**2

# Trigonometry
include Math           # Save typing: we can now omit Math prefix.
sin(PI/2)              # => 1.0: sine. Argument is in radians, not degrees.
cos(0)                 # => 1.0: cosine.
tan(PI/4)              # => 1.0: tangent.
asin(1.0)/PI           # => 0.5: arcsine. See also acos and atan.
sinh(0)                # => 0.0: hyperbolic sine. Also cosh, tanh.
asinh(1.0)             # => 0.0: inverse sinh. Also acosh, atanh.

# Convert cartesian point (x,y) to polar coordinates (theta, r)
theta = atan2(y,x)     # Angle between X axis and line (0,0)-(x,y)
r = hypot(x,y)         # Hypotenuse: sqrt(x**2 + y**2)

# Miscellaneous Functions
f,e = frexp(1024.0)    # => [0.5, 11]: decompose x into [f,e], x = f*2**e
x = ldexp(f, e)        # => 1024: compute x = f*2**e
erf(0.0)               # => 0.0: error function
erfc(0.0)              # => 1.0: 1-erf(x): complementary error function
gamma(5)               # => 24.0: floating-point factorial function
lgamma(100)            # => [359.134205369575, 1]: logarithmic gamma


Decimal Arithmetic



The BigDecimal
        class from the standard library is a useful alternative to
        Float, particularly for financial
        computations where you want to avoid the rounding error inherent in
        the use of a binary floating-point arithmetic (see Binary Floating-Point and Rounding Errors). BigDecimal objects can have an unlimited
        number of significant digits and practically unlimited size (exponents
        over 1 billion are supported). Most importantly, they use decimal
        arithmetic and offer precise
        control over rounding modes. Here is example BigDecimal code:
require "bigdecimal"      # Load standard library
dime = BigDecimal("0.1")  # Pass a string to constructor, not a Float
4*dime-3*dime == dime     # true with BigDecimal, but false if we use Float

# Compute monthly interest payments on a mortgage with BigDecimal.
# Use "Banker's Rounding" mode, and limit computations to 20 digits
BigDecimal.mode(BigDecimal::ROUND_MODE, BigDecimal::ROUND_HALF_EVEN)
BigDecimal.limit(20)
principal = BigDecimal("200000")  # Always pass strings to constructor
apr = BigDecimal("6.5")           # Annual percentage rate interest
years = 30                        # Term of mortgage in years
payments = years*12               # 12 monthly payments in a year
interest = apr/100/12             # Convert APR to monthly fraction
x = (interest+1)**payments        # Note exponentiation with BigDecimal
monthly = (principal * interest * x)/(x-1)  # Compute monthly payment
monthly = monthly.round(2)        # Round to two decimal places
monthly = monthly.to_s("f")       # Convert to human-readable string

Use ri for more details on the BigDecimal API, and for complete
        documentation see the file ext/bigdecimal/bigdecimal_en.html in the
        Ruby source distribution.

Complex Numbers



The Complex class represents complex numbers. It is a core class in
        1.9 and part of the standard library in 1.8. Requiring the “complex”
        module (in either 1.8 or 1.9) redefines the methods of the Math module so that they can accept and
        return complex numbers. In Ruby 1.9 you can instead require “cmath” to
        define a CMath module that defines
        complex-enabled versions of the Math methods. Examples:
require "complex"           # Ruby 1.8 and for complex Math methods in 1.9
c = Complex(0.5,-0.2)       # => .5-.2i.  
Complex.polar(1,Math::PI/2) # => Complex(0.0,1.0): create with polar coords
i = 1.im                    # => Complex(0,1): multiply by i
(2.re - 3.5.im).to_s        # => "2-3.5i": re method in Ruby 1.9 only
r,i = c.real, c.imag        # => [0.5,-0.2]: Real part, imaginary part
m,a = c.polar               # => [magnitude, angle]: Same as [c.abs,c.angle]
d = c.conj                  # => .5+.2i: change sign of imaginary part
z = "0+0i".to_c             # String-to-Complex conversion function
10.times { z = z*z + c }    # Arithmetic operators work on Complex numbers
1.im**2                     # => Complex(-1,0): i*i == -1
x = Math.sin(z)             # 'complex' module redefines Math functions
require 'cmath'             # Ruby 1.9: Define CMath module for complex math
CMath.sqrt(-1)==Complex::I  # => true


Rational Numbers



The Rational class represents rational numbers (the quotient of two
        integers). Rational is built-in to
        Ruby 1.9 and is part of the standard library in Ruby 1.8. Division
        with the quo method returns a Rational value if both arguments are
        integers. Some examples:
require "rational"           # Only necessary in Ruby 1.8
penny = Rational(1, 100)     # A penny is 1/100th
nickel = "5/100".to_r        # String-to-Rational conversion: Ruby 1.9 only
dime = 10.quo 100            # => Rational(1,10)
change = 2*dime + 3*penny    # => Rational(23,100)
change.numerator             # => 23: top of the fraction
change.denominator           # => 100: bottom of the fraction
change.to_f                  # => 0.23: convert to Float
(nickel * dime).to_s         # => "1/200": to_s returns fractions


Vectors and Matrices



The matrix library defines
        Matrix and Vector classes to represent matrices and vectors of numbers as well as
        operators to perform arithmetic on them. A discussion of linear
        algebra is well beyond the scope of this book, but the following
        example code uses the Vector class
        to represent a two-dimensional point, and uses 2×2 Matrix objects to represent scaling and rotation
        transformations of the point:
require "matrix"

# Represent the point (1,1) as the vector [1,1]
unit = Vector[1,1]

# The identity transformation matrix
identity = Matrix.identity(2)  # 2x2 matrix
identity*unit == unit          # true: no transformation

# This matrix scales a point by sx,sy
sx,sy = 2.0, 3.0;
scale = Matrix[[sx,0], [0, sy]]
scale*unit             # => [2.0, 3.0]: scaled point

# This matrix rotates counterclockwise around the origin
theta = Math::PI/2     # 90 degrees
rotate = Matrix[[Math.cos(theta), -Math.sin(theta)],
                [Math.sin(theta),  Math.cos(theta)]]
rotate*unit            # [-1.0, 1.0]: 90 degree rotation

# Two transformations in one
scale * (rotate*unit)  # [-2.0, 3.0]


Random Numbers



Random numbers are generated in Ruby with the global Kernel.rand function. With no arguments, it
        returns a pseudorandom Float
        greater than or equal to 0.0 and
        less than 1.0. With an integer
        argument max, it returns a pseudorandom
        integer greater than or equal to 0
        and less than max. For example:
rand       # => 0.964395196505186
rand       # => 0.390523655919935
rand(100)  # => 81
rand(100)  # => 32

If you need a repeatable sequence of pseudorandom numbers (for
        testing, perhaps), seed the random number generator with a known
        value:
srand(0)                # Known seed
[rand(100),rand(100)]   # => [44,47]: pseudorandom sequence
srand(0)                # Reset the seed to repeat the sequence
[rand(100),rand(100)]   # => [44,47]

For cryptographically secure random numbers, use the SecureRandom module, which is part of the
        standard library in Ruby 1.9 and 1.8.7.


Dates and Times



The Time class represents dates and times. It is a thin layer
      over the system date and time functionality provided by the operating
      system. On some platforms, therefore, this class may be unable to
      represent dates before 1970 or after 2038. The Date and DateTime classes in
      the standard date library are not
      constrained in this way, but are not demonstrated here:
# Creating Time objects
Time.now        # Returns a time object that represents the current time
Time.new        # A synonym for Time.now

Time.local(2007, 7, 8)          # July 8, 2007
Time.local(2007, 7, 8, 9, 10)   # July 8, 2007, 09:10am, local time
Time.utc(2007, 7, 8, 9, 10)     # July 8, 2007, 09:10 UTC
Time.gm(2007, 7, 8, 9, 10, 11)  # July 8, 2007, 09:10:11 GMT (same as UTC)

# One microsecond before the new millennium began in London
# We'll use this Time object in many examples below.
t = Time.utc(2000, 12, 31, 23, 59, 59, 999999)

# Components of a Time
t.year    # => 2000
t.month   # => 12: December
t.day     # => 31
t.wday    # => 0: day of week: 0 is Sunday
t.yday    # => 366: day of year: 2000 was a leap year
t.hour    # => 23: 24-hour clock
t.min     # => 59
t.sec     # => 59
t.usec    # => 999999: microseconds, not milliseconds
t.zone    # => "UTC": timezone name

# Get all components in an array that holds
# [sec,min,hour,day,month,year,wday,yday,isdst,zone]
# Note that we lose microseconds
values = t.to_a    # => [59, 59, 23, 31, 12, 2000, 0, 366, false, "UTC"]

# Arrays of this form can be passed to Time.local and Time.utc
values[5] += 1     # Increment the year
Time.utc(*values)  # => Mon Dec 31 23:59:59 UTC 2001

# Timezones and daylight savings time
t.zone       # => "UTC": return the timezone
t.utc?       # => true: t is in UTC time zone
t.utc_offset # => 0: UTC is 0 seconds offset from UTC
t.localtime  # Convert to local timezone. Mutates the Time object!
t.zone       # => "PST" (or whatever your timezone is)
t.utc?       # => false
t.utc_offset # => -28800: 8 hours before UTC
t.gmtime     # Convert back to UTC. Another mutator.
t.getlocal   # Return a new Time object in local zone
t.getutc     # Return a new Time object in UTC
t.isdst      # => false: UTC does not have DST. Note no ?.
t.getlocal.isdst # => false: no daylight savings time in winter.

# Weekday predicates: Ruby 1.9
t.sunday?    # => true
t.monday?    # => false
t.tuesday?   # etc.

# Formatting Times and Dates
t.to_s       # => "Sun Dec 31 23:59:59 UTC 2000": Ruby 1.8
t.to_s       # => "2000-12-31 23:59:59 UTC": Ruby 1.9 uses ISO-8601
t.ctime      # => "Sun Dec 31 23:59:59 2000": another basic format

# strftime interpolates date and time components into a template string
# Locale-independent formatting
t.strftime("%Y-%m-%d %H:%M:%S") # => "2000-12-31 23:59:59": ISO-8601 format
t.strftime("%H:%M")             # => "23:59": 24-hour time
t.strftime("%I:%M %p")          # => "11:59 PM": 12-hour clock

# Locale-dependent formats
t.strftime("%A, %B %d")         # => "Sunday, December 31"
t.strftime("%a, %b %d %y")      # => "Sun, Dec 31 00": 2-digit year
t.strftime("%x")                # => "12/31/00": locale-dependent format
t.strftime("%X")                # => "23:59:59"
t.strftime("%c")                # same as ctime

# Parsing Times and Dates
require 'parsedate'    # A versatile date/time parsing library
include ParseDate      # Include parsedate() as a global function
datestring = "2001-01-01"
values = parsedate(datestring)  # [2001, 1, 1, nil, nil, nil, nil, nil]
t = Time.local(*values)         # => Mon Jan 01 00:00:00 -0800 2001
s = t.ctime                     # => "Mon Jan  1 00:00:00 2001"
Time.local(*parsedate(s))==t    # => true

s = "2001-01-01 00:00:00-0500"  # midnight in New York
v = parsedate(s)                # => [2001, 1, 1, 0, 0, 0, "-0500", nil]
t = Time.local(*v)              # Loses time zone information!

# Time arithmetic
now = Time.now          # Current time
past = now - 10         # 10 seconds ago. Time - number => Time
future = now + 10       # 10 seconds from now Time + number => Time
future - now            # => 10  Time - Time => number of seconds

# Time comparisons
past <=> future         # => -1
past < future           # => true
now >= future           # => false
now == now              # => true

# Helper methods for working with time units other than seconds
class Numeric
  # Convert time intervals to seconds
  def milliseconds; self/1000.0; end
  def seconds; self; end
  def minutes; self*60; end
  def hours; self*60*60; end
  def days; self*60*60*24; end
  def weeks; self*60*60*24*7; end

  # Convert seconds to other intervals
  def to_milliseconds; self*1000; end
  def to_seconds; self; end
  def to_minutes; self/60.0; end
  def to_hours; self/(60*60.0); end
  def to_days; self/(60*60*24.0); end
  def to_weeks; self/(60*60*24*7.0); end
end

expires = now + 10.days     # 10 days from now
expires - now               # => 864000.0 seconds
(expires - now).to_hours    # => 240.0 hours

# Time represented internally as seconds since the (platform-dependent) epoch
t = Time.now.to_i    # => 1184036194 seconds since epoch
Time.at(t)           # => seconds since epoch to Time object
t = Time.now.to_f    # => 1184036322.90872: includes 908720 microseconds
Time.at(0)           # => Wed Dec 31 16:00:00 -0800 1969: epoch in local time


Collections



This section documents Ruby’s collection
      classes. A collection is any class that represents a collection of
      values. Array and Hash are the key collection classes in Ruby,
      and the standard library adds a Set
      class. Each of these collection classes mixes in the Enumerable module, which means that Enumerable methods are universal collection
      methods.
Enumerable Objects



The Enumerable
        module is a mixin that implements a number of useful methods
        on top of the each iterator. The
        Array, Hash, and Set classes described below all include
        Enumerable and
        therefore implement all of the methods described here. Range and IO are other noteworthy enumerable classes.
        Enumerable was covered briefly in
        Enumerable Objects. This section provides more
        detailed coverage.
Note that some enumerable classes have a natural enumeration
        order that their each method
        follows. Arrays, for example, enumerate their elements in order of
        increasing array index. Range
        enumerates in ascending order. And IO objects enumerate lines of text in the
        order in which they are read from the underlying file or socket. In
        Ruby 1.9, Hash and Set (which is based on Hash) enumerate their elements in the order
        in which they were inserted. Prior to Ruby 1.9, however, these classes enumerate their
        elements in what is essentially an arbitrary order.
Many Enumerable methods
        return a processed version of the enumerable collection or a selected
        subcollection of its elements. Usually, if an Enumerable method returns a collection
        (rather than a single value selected from a collection), the
        collection is an Array. This is not
        always the case, however. The Hash
        class overrides the reject method
        so that it returns a Hash object
        instead of an array, for example. Whatever the precise return value,
        it is certain that a collection returned by an Enumerable method will itself be
        enumerable.
Iterating and converting collections



By definition, any Enumerable
          object must have an each
          iterator. Enumerable provides a
          simple variant each_with_index, which yields an element
          of the collection and an integer. For arrays, the integer is the
          array index. For IO objects, the
          integer is the line number (starting at 0). For other objects, the integer is what
          the array index would be if the collection was converted to an
          array:
(5..7).each {|x| print x }                 # Prints "567"
(5..7).each_with_index {|x,i| print x,i }  # Prints "506172"

In Ruby 1.9, Enumerable
          defines cycle, which iterates
          repeatedly through the elements of the collection, looping forever
          until the block you provide explicitly terminates the iteration with
          break or return or by raising an exception. During
          its first pass through the Enumerable object, cycle saves the elements into an array and
          then subsequently iterates from the array. This means that after the
          first pass through the collection, modifications to that collection
          do not affect the behavior of cycle.
each_sliceand each_cons are
          iterators that yield subarrays of a collection. They are available
          in Ruby 1.8 with require
          'enumerator' and are part of the core library in Ruby 1.9
          (and 1.8.7). each_slice(n)
          iterates the enumerable values in “slices” of size n:
(1..10).each_slice(4) {|x| print x } # Prints "[1,2,3,4][5,6,7,8][9,10]"

each_cons is similar to
          each_slice, but it uses a
          “sliding window” on the enumerable collection:
(1..5).each_cons(3) {|x| print x }    # Prints "[1,2,3][2,3,4][3,4,5]"

The collect
          method applies a block to each element of a collection and
          collects the return values of the block into a new array. map is a synonym; it maps the elements of
          a collection to the elements of an array by applying a block to each
          element:
data = [1,2,3,4]                        # An enumerable collection
roots = data.collect {|x| Math.sqrt(x)} # Collect roots of our data
words = %w[hello world]                 # Another collection
upper = words.map {|x| x.upcase }       # Map to uppercase

The zip method interleaves the elements of one enumerable collection
          with the elements of zero or more other collections, and yields an
          array of elements (one from each collection) to the associated
          block. If no block is provided, the return value is an array of
          arrays:
(1..3).zip([4,5,6]) {|x| print x.inspect } # Prints "[1,4][2,5][3,6]"
(1..3).zip([4,5,6],[7,8]) {|x| print x}    # Prints "14725836"
(1..3).zip('a'..'c') {|x,y| print x,y }    # Prints "1a2b3c"
p (1..3).zip('a'..'z')                     # Prints [[1,"a"],[2,"b"],[3,"c"]]
p (1..3).zip('a'..'b')                     # Prints [[1,"a"],[2,"b"],[3,nil]]

Enumerable defines a
          to_a method (and a synonym entries) that converts any enumerable
          collection into an array. to_a is
          included in this section because the conversion obviously involves
          iterating the collection. The elements of the resulting array appear
          in whatever order the each
          iterator yields them:
(1..3).to_a       # => [1,2,3]
(1..3).entries    # => [1,2,3]

If you require 'set', all
          Enumerable objects gain a
          to_set conversion method as well.
          Sets are described in detail in Sets:
require 'set'
(1..3).to_set     # => #<Set: {1, 2, 3}>


Enumerators and external iterators



Enumerators and their use as external iterators are fully documented in
          Enumerators and External Iterators. This section is just a brief recap,
          with examples, of the detailed descriptions in Chapter 5.
Enumerators are of class Enumerable::Enumerator, which has a surprisingly small number of methods for
          such a powerful iteration construct. Enumerators are primarily a
          feature of Ruby 1.9 (and 1.8.7) but some enumerator functionality is
          available in Ruby 1.8 by requiring the enumerator library. Create an Enumerator with to_enum or its alias enum_for, or simply by calling an iterator
          method without the block it expects:
e = [1..10].to_enum              # Uses Range.each
e = "test".enum_for(:each_byte)  # Uses String.each_byte
e = "test".each_byte             # Uses String.each_byte

Enumerator objects are
          Enumerable objects with an
          each method that is based on some
          other iterator method of some other object. In addition to being
          Enumerable proxy objects, an
          enumerator also behaves as an external iterator. To obtain the
          elements of a collection using an external iterator, simply call
          next repeatedly until it raises
          StopIteration. The Kernel.loop iterator rescues StopIteration for you. After next raises StopIteration, a subsequent call will
          typically begin a new iteration, assuming the underlying iterator
          method allows repeated iterations (iterators reading from a file
          don’t allow that, for example). If repeated iterations are possible,
          you can restart an external iterator before StopIteration has been raised by calling
          rewind:
"Ruby".each_char.max       # => "y"; Enumerable method of Enumerator
iter = "Ruby".each_char    # Create an Enumerator
loop { print iter.next }   # Prints "Ruby"; use it as external iterator
print iter.next            # Prints "R": iterator restarts automatically
iter.rewind                # Force it to restart now
print iter.next            # Prints "R" again

Given any enumerator e, you
          can obtain a new enumerator with e.with_index. As the name implies, this new enumerator yields an index
          (or iteration number) along with whatever value the original
          iterator would yield:
# Print "0:R\n1:u\n2:b\n3:y\n"
"Ruby".each_char.with_index.each {|c,i| puts "#{i}:#{c} }

Finally, note that enumerators, like all Enumerable objects, are
          splattable: you can prefix an enumerator with
          an asterisk to expand it into individual values for method
          invocation or parallel assignment.

Sorting collections



One of the most important methods of Enumerable is
          sort. It converts the enumerable
          collection to an array and sorts the elements of that array. By
          default, the sort is done according to the <=> method of the elements. If a
          block is provided, however, then it is passed pairs of elements and
          should return –1, 0, or +1 to indicate their relative
          order:
w = Set['apple','Beet','carrot']  # A set of words to sort
w.sort                         # ['Beet','apple','carrot']: alphabetical
w.sort {|a,b| b<=>a }          # ['carrot','apple','Beet']: reverse
w.sort {|a,b| a.casecmp(b) }   # ['apple','Beet','carrot']: ignore case
w.sort {|a,b| b.size<=>a.size} # ['carrot','apple','Beet']: reverse length

If the block you associate with sort must do substantial computation in
          order to perform its comparison, then it is more efficient to use
          sort_by instead. The block associated with sort_by will be called once for each
          element in the collection, and should return a numeric “sort key”
          for that element. The collection will then be sorted by ascending
          order of the sort key. This way, a sort key is only computed once
          for each element, rather than twice for each comparison:
# Case-insensitive sort
words = ['carrot', 'Beet', 'apple']
words.sort_by {|x| x.downcase}       # => ['apple', 'Beet', 'carrot']


Searching collections



Enumerable defines
          several methods for searching for single elements within a
          collection. include? and its
          synonym member? search for an
          element equal to (using ==) their
          argument:
primes = Set[2, 3, 5, 7]
primes.include? 2        # => true
primes.member? 1         # => false

The find method, and its synonym detect, apply the associated block to each
          element of the collection in turn. If the block returns anything
          other than false or nil, then find returns that element and stops
          iterating. If the block always returns nil or false, then find returns nil:
# Find the first subarray that includes the number 1
data = [[1,2], [0,1], [7,8]]
data.find {|x| x.include? 1}     # => [1,2]
data.detect {|x| x.include? 3}   # => nil: no such element

The find_index method (new
          in Ruby 1.9)  is like the index
          method of Array: it returns the
          index of a specific element or of the first element that matches a
          block:
data.find_index [0,1]              # => 1: the second element matches
data.find_index {|x| x.include? 1} # => 0: the first element matches
data.find_index {|x| x.include? 3} # => nil: no such element

Note that the return value of find_index is not terribly useful for
          collections like hashes and sets that do not use numeric
          indexes.
Enumerable defines other
          searching methods that return a collection of matches rather than a
          single match. We cover these methods in the next section.

Selecting subcollections



The select method
          selects and returns elements of a collection for which a
          block returns a non-nil,
          non-false value. A synonym for
          this method is find_all; it works
          like the find method but returns
          an array of all matching elements:
(1..8).select {|x| x%2==0}    # => [2,4,6,8]: select even elements
(1..8).find_all {|x| x%2==1}  # => [1,3,5,7]: find all odd elements

reject is the opposite of
          select; the elements in the
          returned array are those for which the block returns false or nil.
primes = [2,3,5,7]
primes.reject {|x| x%2==0}  # => [3,5,7]: reject the even ones

If you want both to select and reject elements of a
          collection, use partition. It
          returns an array of two arrays. The first subarray holds elements
          for which the block is true, and the second subarray holds elements
          for which the block is false:
(1..8).partition {|x| x%2==0}  # => [[2, 4, 6, 8], [1, 3, 5, 7]]

The group_by method of
          Ruby 1.9 is a generalization of partition. Rather than treating the block
          as a predicate and returning two groups, group_by takes the return value of the
          block and uses it as a hash key. It maps that key to an array of all
          collection elements for which the block returned that value. For
          example:
# Group programming languages by their first letter
langs = %w[ java perl python ruby ]
groups = langs.group_by {|lang| lang[0] }
groups # => {"j"=>["java"], "p"=>["perl", "python"], "r"=>["ruby"]}

grep returns an array of
          elements that match the argument value, determining matching with
          the case equality operator (===)
          of the argument. When used with a regular expression argument, this method works
          like the Unix command-line utility grep. If a
          block is associated with the call, it is used to process matching
          elements, as if collect or
          map were called on the results of
          grep:
langs = %w[ java perl python ruby ]
langs.grep(/^p/)                    # => [perl, python]: start with 'p'
langs.grep(/^p/) {|x| x.capitalize} # => [Perl, Python]: fix caps
data = [1, 17, 3.0, 4]
ints = data.grep(Integer)           # => [1, 17, 4]: only integers
small = ints.grep(0..9)             # [1,4]: only in range

In Ruby 1.9, the selection methods described previously are
          augmented by first,
          take, drop, take_while, and drop_while. first returns the first element of an
          Enumerable object, or, given an
          integer argument n, an array containing
          the first n elements. take and drop expect an integer argument. take behaves just like first; it returns an array of the first
          n elements of the Enumerable receiver object. drop does the opposite; it returns an
          array of all elements of the Enumerable except for the first
          n:
p (1..5).first(2)      # => [1,2]
p (1..5).take(3)       # => [1,2,3]
p (1..5).drop(3)       # => [4,5]

take_while and drop_while expect a block instead of an
          integer argument. take_while
          passes elements of the Enumerable
          object to the block in turn, until the block returns false or nil for the first time. Then it returns an
          array of the previous elements for which the block returned true. drop also passes elements to the block in
          turn until the block returns false or nil for the first time. Then, however, it
          returns an array containing
          the element for which the block returned false and all subsequent elements:
[1,2,3,nil,4].take_while {|x| x }  # => [1,2,3]: take until nil
[nil, 1, 2].drop_while {|x| !x }   # => [1,2]: drop leading nils

The Array class defines its
          own efficient versions of these taking and dropping methods that do
          not require arrays to be iterated with each.

Reducing collections



Sometimes we want to reduce an enumerable
          collection to a single value that captures some property of the
          collection. min and max are  methods that perform a reduction, returning the
          smallest or largest element of the collection (assuming that the
          elements are mutually comparable with <=>):
[10, 100, 1].min    # => 1
['a','c','b'].max   # => 'c'
[10, 'a', []].min   # => ArgumentError: elements not comparable

min and max can take a block like sort can, to compare two elements. In Ruby
          1.9, it is easier to use min_by
          and max_by instead:
langs = %w[java perl python ruby]    # Which has the longest name?
langs.max {|a,b| a.size <=> b.size } # => "python": block compares 2
langs.max_by {|word| word.length }   # => "python": Ruby 1.9 only

Ruby 1.9 also defines minmax and minmax_by, which compute both the minimum and maximum value of a
          collection and return them as a two-element array [min,max]:
(1..100).minmax                   # => [1,100] min, max as numbers
(1..100).minmax_by {|n| n.to_s }  # => [1,99]  min, max as strings

any? andall? are predicates
          that also perform reductions. They apply a predicate block to
          elements of the collection. all?
          returns true if the predicate is
          true (that is, not nil and not
          false) for
          all elements of the collection. any? returns true if the predicate is true for any one
          of the elements. In Ruby 1.9, none? returns true only if the predicate never returns a
          true value. Also in 1.9, one?
          returns true only if the
          predicate returns a true value for one, and only one, element of the
          collection. Invoked without blocks, these methods simply test the
          elements of the collection themselves:
c = -2..2
c.all? {|x| x>0}    # => false: not all values are > 0
c.any? {|x| x>0}    # => true: some values are > 0
c.none? {|x| x>2}   # => true: no values are > 2
c.one? {|x| x>0}    # => false: more than one value is > 0
c.one? {|x| x>2}    # => false: no values are > 2
c.one? {|x| x==2}   # => true: one value == 2
[1, 2, 3].all?      # => true: no values are nil or false
[nil, false].any?   # => false: no true values
[].none?            # => true: no non-false, non-nil values    

Another Ruby 1.9 addition is the count method: it returns the number of
          elements in the collection that equal a specified value, or the
          number for which an associated block returns true:
a = [1,1,2,3,5,8]
a.count(1)                # => 2: two elements equal 1
a.count {|x| x % 2 == 1}  # => 4: four elements are odd

Finally, inject is
          a general purpose method for reducing a collection.
          Ruby 1.9 defines reduce as an
          alias for inject. The block
          associated with a call to inject
          expects two arguments. The first is an accumulated value; the second
          is an element from the collection. The accumulated value for the
          first iteration is the argument passed to inject. The block return value on one
          iteration becomes the accumulated value for the next iteration. The
          return value after the last iteration becomes the return value of
          inject. Here are some
          examples:
# How many negative numbers?
(-2..10).inject(0) {|num, x| x<0 ? num+1 : num }  # => 2

# Sum of word lengths
%w[pea queue are].inject(0) {|total, word| total + word.length }  # => 11

If no argument is passed to inject, then the first time the block is
          invoked, it is passed the first two elements of the collection. (Or,
          if there is only one element in the collection, inject simply returns that element.) This
          form of inject is useful for a
          number of common operations:
sum = (1..5).inject {|total,x| total + x}  # => 15
prod = (1..5).inject {|total,x| total * x} # => 120
max = [1,3,2].inject {|m,x| m>x ? m : x}   # => 3
[1].inject {|total,x| total + x}           # => 1: block never called

In Ruby 1.9, you can pass a symbol that names a method (or
          operator) to inject instead of
          specifying a block. Each element in the collection will be passed to
          the named method of the accumulated value, and its result will
          become the new accumulated value. It is common to use the reduce synonym when invoking the method
          with a symbol in this way:
sum = (1..5).reduce(:+)                    # => 15
prod = (1..5).reduce(:*)                   # => 120
letters = ('a'..'e').reduce("-", :concat)  # => "-abcde"



Arrays



Arrays are probably the most fundamental and commonly used
        data structure in Ruby programming. We covered array literals and
        indexing operators in Arrays. This section builds
        on that earlier one, demonstrating the rich API implemented by the
        Array class.
Creating arrays



Arrays can be created with array literals, or with the
          classmethod Array.new or
          the class operator Array.[].
          Examples:
[1,2,3]             # Basic array literal
[]                  # An empty array
[]                  # Arrays are mutable: this empty array is different
%w[a b c]           # => ['a', 'b', 'c']: array of words
Array[1,2,3]        # => [1,2,3]: just like an array literal

# Creating arrays with the new() method
empty = Array.new             # []: returns a new empty array
nils = Array.new(3)           # [nil, nil, nil]: three nil elements
copy = Array.new(nils)        # Make a new copy of an existing array
zeros = Array.new(4, 0)       # [0, 0, 0, 0]: four 0 elements
count = Array.new(3){|i| i+1} # [1,2,3]: three elements computed by block

# Be careful with repeated objects
a=Array.new(3,'a')  # => ['a','a','a']: three references to the same string
a[0].upcase!        # Capitalize the first element of the array
a                   # => ['A','A','A']: they are all the same string!
a=Array.new(3){'b'} # => ['b','b','b']: three distinct string objects
a[0].upcase!;       # Capitalize the first one
a                   # => ['B','b','b']: the others are still lowercase

In addition to the Array
          factory methods, a number of other classes define to_a methods that return arrays. In
          particular, any Enumerable
          object, such as a Range or
          Hash, can be converted to an
          array with to_a. Also, array
          operators, such as +, and many
          array methods, such as slice,
          create and return new arrays rather than altering the receiving
          array in place.

Array size and elements



The following code shows how to determine the length of an array, and
          demonstrates a variety of ways to extract elements and subarrays
          from an array:
# Array length
[1,2,3].length     # => 3
[].size            # => 0: synonym for length
[].empty?          # => true
[nil].empty?       # => false
[1,2,nil].nitems   # => 2: number of non-nil elements (Ruby 1.8 only)
[1,2,nil].count(nil)    # => 1: # of nils (Enumerable method in Ruby 1.9)
[1,2,3].count {|x| x>2} # => 1: # of elts matching block (Ruby 1.9)

# Indexing single elements
a = %w[a b c d]    # => ['a', 'b', 'c', 'd']
a[0]               # => 'a': first element
a[-1]              # => 'd': last element
a[a.size-1]        # => 'd': last element
a[-a.size]         # => 'a': first element
a[5]               # => nil: no such element
a[-5]              # => nil: no such element
a.at(2)            # => 'c': just like [] for single integer argument
a.fetch(1)         # => 'b': also like [] and at
a.fetch(-1)        # => 'd': works with negative args
a.fetch(5)         # => IndexError!: does not allow out-of-bounds
a.fetch(-5)        # => IndexError!: does not allow out-of-bounds
a.fetch(5, 0)      # => 0: return 2nd arg when out-of-bounds
a.fetch(5){|x|x*x} # => 25: compute value when out-of-bounds
a.first            # => 'a': the first element
a.last             # => 'd': the last element
a.sample           # Ruby 1.9: return one element at random
a.sample(n)        # Ruby 1.9: return array of n random elements

# Indexing subarrays
a[0,2]             # => ['a','b']: two elements, starting at 0
a[0..2]            # => ['a','b','c']: elements with index in range
a[0...2]           # => ['a','b']: three dots instead of two
a[1,1]             # => ['b']: single element, as an array
a[-2,2]            # => ['c','d']: last two elements
a[4,2]             # => []: empty array right at the end 
a[5,1]             # => nil: nothing beyond that
a.slice(0..1)      # => ['a','b']: slice is synonym for []
a.first(3)         # => ['a','b','c']: first three elements
a.last(1)          # => ['d']: last element as an array

# Extracting arbitrary values
a.values_at(0,2)         # => ['a','c']
a.values_at(4, 3, 2, 1)  # => [nil, 'd','c','b']
a.values_at(0, 2..3, -1) # => ['a','c','d','d']
a.values_at(0..2,1..3)   # => ['a','b','c','b','c','d']


Altering array elements



The following code demonstrates how to change the value of
          individual array elements, insert values into an array, delete
          values from an array, and replace values with other values:
a = [1,2,3]        # Start with this array
# Changing the value of elements
a[0] = 0           # Alter an existing element: a is [0,2,3]
a[-1] = 4          # Alter the last element: a is [0,2,4]
a[1] = nil         # Set the 2nd element to nil: a is [0,nil,4]

# Appending to an array
a = [1,2,3]        # Start over with this array
a[3] = 4           # Add a fourth element to it: a is [1,2,3,4]
a[5] = 6           # We can skip elements: a is [1,2,3,4,nil,6]
a << 7             # => [1,2,3,4,nil,6,7]
a << 8 << 9        # => [1,2,3,4,nil,6,7,8,9] operator is chainable
a = [1,2,3]        # Start over with short array
a + a              # => [1,2,3,1,2,3]: + concatenates into new array
a.concat([4,5])    # => [1,2,3,4,5]: alter a in place: note no !

# Inserting elements with insert
a = ['a', 'b', 'c']
a.insert(1, 1, 2)  # a now holds ['a',1,2,'b','c']. Like a[1,0] = [1,2]

# Removing (and returning) individual elements by index
a = [1,2,3,4,5,6]
a.delete_at(4)     # => 5: a is now [1,2,3,4,6]
a.delete_at(-1)    # => 6: a is now [1,2,3,4]
a.delete_at(4)     # => nil: a is unchanged

# Removing elements by value
a.delete(4)        # => 4: a is [1,2,3]
a[1] = 1           # a is now [1,1,3]
a.delete(1)        # => 1: a is now [3]: both 1s removed
a = [1,2,3]
a.delete_if {|x| x%2==1} # Remove odd values: a is now [2]
a.reject! {|x| x%2==0}   # Like delete_if: a is now []
 
# Removing elements and subarrays with slice!
a = [1,2,3,4,5,6,7,8]
a.slice!(0)        # => 1: remove element 0: a is [2,3,4,5,6,7,8]
a.slice!(-1,1)     # => [8]: remove subarray at end: a is [2,3,4,5,6,7]
a.slice!(2..3)     # => [4,5]: works with ranges: a is [2,3,6,7]
a.slice!(4,2)      # => []: empty array just past end: a unchanged
a.slice!(5,2)      # => nil: a now holds [2,3,6,7,nil]!

# Replacing subarrays with []=
# To delete, assign an empty array
# To insert, assign to a zero-width slice
a = ('a'..'e').to_a    # => ['a','b','c','d','e']
a[0,2] = ['A','B']     # a now holds ['A', 'B', 'c', 'd', 'e']
a[2...5]=['C','D','E'] # a now holds ['A', 'B', 'C', 'D', 'E']
a[0,0] = [1,2,3]       # Insert elements at the beginning of a
a[0..2] = []           # Delete those elements
a[-1,1] = ['Z']        # Replace last element with another
a[-1,1] = 'Z'          # For single elements, the array is optional
a[1,4] = nil           # Ruby 1.9: a now holds ['A',nil]
                       # Ruby 1.8: a now holds ['A']: nil works like []

# Other methods
a = [4,5]
a.replace([1,2,3])     # a now holds [1,2,3]: a copy of its argument
a.fill(0)              # a now holds [0,0,0]
a.fill(nil,1,3)        # a now holds [0,nil,nil,nil]
a.fill('a',2..4)       # a now holds [0,nil,'a','a','a']
a[3].upcase!           # a now holds [0,nil,'A','A','A']
a.fill(2..4) { 'b' }   # a now holds [0,nil,'b','b','b']
a[3].upcase!           # a now holds [0,nil,'b','B','b']
a.compact              # => [0,'b','B','b']: copy with nils removed
a.compact!             # Remove nils in place: a now holds [0,'b','B','b']
a.clear                # a now holds []


Iterating, searching, and sorting arrays



Array mixes in the Enumerable module, so all of the Enumerable iterators are available. In
          addition, the Array class defines
          some important iterators and related searching and sorting methods
          of its own. In Ruby 1.9 and 1.8.7, array iterators return an
          enumerator when invoked without a block:
a = ['a','b','c']
a.each {| elt| print elt }         # The basic each iterator prints "abc"
a.reverse_each {|e| print e}       # Array-specific: prints "cba" 
a.cycle {|e| print e }             # Ruby 1.9, 1.8.7: print "abcabc..." forever
a.each_index {|i| print i}         # Array-specific: prints "012"
a.each_with_index{|e,i| print e,i} # Enumerable: prints "a0b1c2"
a.map {|x| x.upcase}               # Enumerable: returns ['A','B','C']
a.map! {|x| x.upcase}              # Array-specific: alters a in place
a.collect! {|x| x.downcase!}       # collect! is synonym for map!

# Searching methods
a = %w[h e l l o]
a.include?('e')                    # => true
a.include?('w')                    # => false
a.index('l')                       # => 2: index of first match
a.index('L')                       # => nil: no match found
a.rindex('l')                      # => 3: search backwards
a.index {|c| c =~ /[aeiou]/}       # => 1: index of 1st vowel. 1.9 and 1.8.7
a.rindex {|c| c =~ /[aeiou]/}      # => 4: index of last vowel. 1.9 and 1.8.7

# Sorting
a.sort     # => %w[e h l l o]: copy a and sort the copy
a.sort!    # Sort in place: a now holds ['e','h','l','l','o']
a = [1,2,3,4,5]               # A new array to sort into evens and odds
a.sort! {|a,b| a%2 <=> b%2}   # Compare elements modulo 2

# Shuffling arrays: the opposite of sorting; Ruby 1.9 and 1.8.7
a = [1,2,3]     # Start ordered
puts a.shuffle  # Shuffle randomly. E.g.: [3,1,2]. Also shuffle!


Array comparison



Two arrays are equal if and only if they have the same number of elements,
          the elements have the same values, and they appear in the same
          order. The == method tests the
          equality of its elements with ==,
          and the eql? method tests the
          equality of its elements by calling eql? on them. In most cases, these two
          equality-testing methods return the same result.
The Array class is not
          Comparable, but it does implement
          the <=> operator and
          defines an ordering for arrays. This ordering is analogous to string
          ordering, and arrays of character codes are sorted in the same way
          that the corresponding String
          objects are. Arrays are compared element-by-element from index
          0. If any pair of elements is not
          equal, then the array-comparison method returns the same value as
          the element comparison did. If all pairs of elements are equal, and
          the two arrays have the same length, then the arrays are equal and
          <=> returns 0. Otherwise, one of the arrays is a
          prefix of the other. In this case, the longer array is greater than
          the shorter array. Note that the empty array [] is a prefix of every other array and is
          always less than any nonempty array. Also, if a pair of array
          elements is incomparable (if one is a number and one is a string,
          for example), then <=>
          returns nil rather than returning
          –1, 0, or +1:
[1,2] <=> [4,5]      # => -1 because 1 < 4
[1,2] <=> [0,0,0]    # => +1 because 1 > 0
[1,2] <=> [1,2,3]    # => -1 because first array is shorter
[1,2] <=> [1,2]      # => 0: they are equal
[1,2] <=> []         # => +1 [] always less than a nonempty array


Arrays as stacks and queues



The push and pop add and remove elements from the end of an array. They
          allow you to use an array as a last-on-first-off stack:
a = []
a.push(1)     # => [1]: a is now [1]
a.push(2,3)   # => [1,2,3]: a is now [1,2,3]
a.pop         # => 3: a is now [1,2]
a.pop         # => 2: a is now [1]
a.pop         # => 1: a is now []
a.pop         # => nil: a is still []

shift is like pop, but it removes and returns the first
          element of an array instead of the last element. unshift is like push, but it adds elements
          at the beginning of the array instead of the end. You can use
          push and shift to implement a first-in-first-out
          queue:
a = []
a.push(1)     # => [1]: a is [1]
a.push(2)     # => [1,2]: a is [1,2]
a.shift       # => 1: a is [2]
a.push(3)     # => [2,3]: a is [2,3]
a.shift       # => 2: a is [3]
a.shift       # => 3: a is []
a.shift       # => nil: a is []


Arrays as sets



The Array class implements
          the &, |, and - operators to perform set-like
          intersection, union, and difference operations. Furthermore, it
          defines include? to test for the
          presence (membership) of a value in an array. It even defines
          uniq and uniq! to remove duplicate values from an
          array (sets don’t allow duplicates). Array is not an efficient set
          implementation (for that, see the Set class in the standard library), but it
          may be convenient to use it to
          represent small sets:
[1,3,5] & [1,2,3]           # => [1,3]: set intersection
[1,1,3,5] & [1,2,3]         # => [1,3]: duplicates removed
[1,3,5] | [2,4,6]           # => [1,3,5,2,4,6]: set union
[1,3,5,5] | [2,4,6,6]       # => [1,3,5,2,4,6]: duplicates removed
[1,2,3] - [2,3]             # => [1]: set difference
[1,1,2,2,3,3] - [2, 3]      # => [1,1]: not all duplicates removed

small = 0..10.to_a          # A set of small numbers
even = 0..50.map {|x| x*2}  # A set of even numbers
smalleven = small & even    # Set intersection
smalleven.include?(8)       # => true: test for set membership

[1, 1, nil, nil].uniq       # => [1, nil]: remove dups. Also uniq!

Note that the & and
          | - operators do not specify the order of
          the elements in the arrays they return. Only use these operators if
          your array truly represents an unordered set of values.
In Ruby 1.9, the Array
          class defines set combinatorics methods for computing permutations, combinations, and
          Cartesian products:
a = [1,2,3]

# Iterate all possible 2-element subarrays (order matters)
a.permutation(2) {|x| print x }  # Prints "[1,2][1,3][2,1][2,3][3,1][3,2]"

# Iterate all possible 2-element subsets (order does not matter)
a.combination(2) {|x| print x }  # Prints "[1, 2][1, 3][2, 3]"

# Return the Cartesian product of the two sets
a.product(['a','b'])       # => [[1,"a"],[1,"b"],[2,"a"],[2,"b"],[3,"a"],[3,"b"]]
[1,2].product([3,4],[5,6]) # => [[1,3,5],[1,3,6],[1,4,5],[1,4,6], etc... ] 


Associative array methods



The assoc and rassoc
          methods allow you to treat an array as an associative array
          or hash. For this to work, the array must be an array of arrays,
          typically like this:
[[key1, value1], [key2, value2], [key3, value3], ...]

The Hash class defines
          methods that convert a hash to a nested array of this form. The
          assoc methods looks for a nested
          array whose first element matches the supplied argument. It returns the first
          matching nested array. The rassoc
          method does the same thing, but returns the first nested array whose
          second element matches:
h = { :a => 1, :b => 2}   # Start with a hash
a = h.to_a                # => [[:b,2], [:a,1]]: associative array
a.assoc(:a)               # => [:a,1]: subarray for key :a
a.assoc(:b).last          # => 2: value for key :b
a.rassoc(1)               # => [:a,1]: subarray for value 1
a.rassoc(2).first         # => :b: key for value 2
a.assoc(:c)               # => nil
a.transpose               # => [[:a, :b], [1, 2]]: swap rows and cols


Miscellaneous array methods



Array defines a few
          miscellaneous methods that do not fit in any of the previous categories:
# Conversion to strings
[1,2,3].join              # => "123": convert elements to string and join
[1,2,3].join(", ")        # => "1, 2, 3": optional delimiter
[1,2,3].to_s              # => "[1, 2, 3]" in Ruby 1.9
[1,2,3].to_s              # => "123" in Ruby 1.8
[1,2,3].inspect           # => "[1, 2, 3]": better for debugging in 1.8

# Binary conversion with pack. See also String.unpack.
[1,2,3,4].pack("CCCC")    # => "\001\002\003\004"
[1,2].pack('s2')          # => "\001\000\002\000"
[1234].pack("i")          # => "\322\004\000\000"

# Other methods
[0,1]*3                   # => [0,1,0,1,0,1]: * operator repeats
[1, [2, [3]]].flatten     # => [1,2,3]: recursively flatten; also flatten!
[1, [2, [3]]].flatten(1)  # => [1,2,[3]]: specify # of levels; Ruby 1.9
[1,2,3].reverse           # => [3,2,1]: also reverse!
a=[1,2,3].zip([:a,:b,:c]) # => [[1,:a],[2,:b],[3,:c]]: Enumerable method
a.transpose               # => [[1,2,3],[:a,:b,:c]]: swap rows/cols



Hashes



Hashes were introduced in Hashes, which
        explained hash literal syntax and the [] and []= operators for retrieving and storing
        key/value pairs in a hash. This section covers the Hash API in more detail. Hashes use the same
        square-bracket operators as arrays do, and you’ll notice that many
        Hash methods are similar to
        Array methods.
Creating hashes



Hashes can be created with literals, the Hash.new
          method, or the [] operator of the
          Hash class itself:
{ :one => 1, :two => 2 }  # Basic hash literal syntax
{ :one, 1, :two, 2 }      # Same, with deprecated Ruby 1.8 syntax
{ one: 1, two: 2 }        # Same, Ruby 1.9 syntax. Keys are symbols.
{}                        # A new, empty, Hash object
Hash.new                  # => {}: creates empty hash
Hash[:one, 1, :two, 2]    # => {one:1, two:2}

Recall from Hashes for Named Arguments that you can omit the
          curly braces around a hash literal that is the final argument in a
          method invocation:
puts :a=>1, :b=>2   # Curly braces omitted in invocation
puts a:1, b:2       # Ruby 1.9 syntax works too


Indexing hashes and testing membership



Hashes are very efficient at looking up the value associated with a
          given key. It is also possible (though not efficient) to find a key
          with which a value is associated. Note, however, that many keys can
          map to the same value, and in this case, the key returned is
          arbitrary:
h = { :one => 1, :two => 2 }
h[:one]       # => 1: find value associated with a key
h[:three]     # => nil: the key does not exist in the hash
h.assoc :one  # => [:one, 1]: find key/value pair. Ruby 1.9.

h.index 1     # => :one: search for key associated with a value
h.index 4     # => nil: no mapping to this value exists
h.rassoc 2    # => [:two, 2]: key/value pair matching value. Ruby 1.9.

Hash defines several
          synonymous methods for testing membership:
h = { :a => 1, :b => 2 }
# Checking for the presence of keys in a hash: fast
h.key?(:a)       # true: :a is a key in h
h.has_key?(:b)   # true: has_key? is a synonym for key?
h.include?(:c)   # false: include? is another synonym
h.member?(:d)    # false: member? is yet another synonym

# Checking for the presence of values: slow
h.value?(1)      # true: 1 is a value in h
h.has_value?(3)  # false: has_value? is a synonym for value?

The fetch method
          is an alternative to [] when querying values in a hash. It
          provides options for handling the case where a key does not exist in
          the hash:
h = { :a => 1, :b => 2 }
h.fetch(:a)      # => 1: works like [] for existing keys
h.fetch(:c)      # Raises IndexError for nonexistent key
h.fetch(:c, 33)  # => 33: uses specified value if key is not found
h.fetch(:c) {|k| k.to_s } # => "c": calls block if key not found

If you want to extract more than one value from a hash at
          once, use values_at:
h = { :a => 1, :b => 2, :c => 3 }
h.values_at(:c)         # => [3]: values returned in an array
h.values_at(:a, :b)     # => [1, 2]: pass any # of args
h.values_at(:d, :d, :a) # => [nil, nil, 1]

You can extract keys and values selected by a block with the
          select method:
h = { :a => 1, :b => 2, :c => 3 }
h.select {|k,v| v % 2 == 0 } # => [:b,2] Ruby 1.8
h.select {|k,v| v % 2 == 0 } # => {:b=>2} Ruby 1.9

This method overrides Enumerable.select. In Ruby 1.8, select returns an array of key/value
          pairs. It has been modified in Ruby 1.9 so that it returns a hash of
          the selected keys and values instead.

Storing keys and values in a hash



Associate a value with a key in a hash with the []= operator or its synonym, the store
          method:
h = {}        # Start with an empty hash
h[:a] = 1     # Map :a=>1.  h is now {:a=>1}
h.store(:b,2) # More verbose: h is now {:a=>1, :b=>2}

To replace all the key/value pairs in a hash with copies of
          the pairs from another hash, use replace:
# Replace all of the pairs in h with those from another hash
h.replace({1=>:a, 2=>:b}) # h is now equal to the argument hash

The merge, merge!, and update methods allow you to merge the
          mappings from two hashes:
# Merge hashes h and j into new hash k.  
# If h and j share keys, use values from j
k = h.merge(j)
{:a=>1,:b=>2}.merge(:a=>3,:c=>3)  # => {:a=>3,:b=>2,:c=>3}
h.merge!(j)   # Modifies h in place.

# If there is a block, use it to decide which value to use
h.merge!(j) {|key,h,j| h }      # Use value from h
h.merge(j) {|key,h,j| (h+j)/2 } # Use average of two values

# update is a synonym for merge!
h = {a:1,b:2}     # Using Ruby 1.9 syntax and omitting braces
h.update(b:4,c:9) {|key,old,new| old }  # h is now {a:1, b:2, c:9}
h.update(b:4,c:9) # h is now {a:1, b:4, c:9}


Removing hash entries



You can’t remove a key from a hash simply by mapping it to nil. Instead, use the delete
          method:
h = {:a=>1, :b=>2}
h[:a] = nil      # h now holds {:a=> nil, :b=>2 }
h.include? :a    # => true
h.delete :b      # => 2: returns deleted value: h now holds {:a=>nil}
h.include? :b    # => false
h.delete :b      # => nil: key not found
# Invoke block if key not found
h.delete(:b) {|k| raise IndexError, k.to_s } # IndexError!

You can delete multiple key/value pairs from a hash using
          the delete_if and
          reject! iterators (and the
          reject iterator which operates on
          a copy of its receiver). Note that reject overrides the Enumerable method by the same name and
          returns a hash rather than an array:
h = {:a=>1, :b=>2, :c=>3, :d=>"four"}
h.reject! {|k,v| v.is_a? String }  # => {:a=>1, :b=>2, :c=>3 }
h.delete_if {|k,v| k.to_s < 'b' }  # => {:b=>2, :c=>3 }
h.reject! {|k,v| k.to_s < 'b' }    # => nil: no change
h.delete_if {|k,v| k.to_s < 'b' }  # => {:b=>2, :c=>3 }: unchanged hash
h.reject {|k,v| true }             # => {}: h is unchanged

Finally, you can remove all key/value pairs from a hash with
          the clear method. This method
          does not end with an exclamation mark, but it alters its receiver in
          place:
h.clear    # h is now {}


Arrays from hashes



Hash defines methods for extracting hash data into arrays:
h = { :a=>1, :b=>2, :c=>3 }
# Size of hash: number of key/value pairs
h.length     # => 3
h.size       # => 3: size is a synonym for length
h.empty?     # => false
{}.empty?    # => true

h.keys       # => [:b, :c, :a]: array of keys
h.values     # => [2,3,1]: array of values
h.to_a       # => [[:b,2],[:c,3],[:a,1]]: array of pairs
h.flatten    # => [:b, 2, :c, 3, :a, 1]: flattened array. Ruby 1.9
h.sort       # => [[:a,1],[:b,2],[:c,3]]: sorted array of pairs
h.sort {|a,b| a[1]<=>b[1] } # Sort pairs by value instead of key


Hash iterators



It is not usually necessary to extract hash keys, values, or
          pairs as an array, because the Hash class is Enumerable and defines other useful
          iterators as well. In Ruby 1.8, Hash objects make no guarantees about the
          order in which their values are iterated. In Ruby 1.9,
          however, hash elements are iterated in their insertion order,
          and that is the order shown in the following examples:
h = { :a=>1, :b=>2, :c=>3 }

# The each() iterator iterates [key,value] pairs
h.each {|pair| print pair }    # Prints "[:a, 1][:b, 2][:c, 3]"

# It also works with two block arguments
h.each do |key, value|                
  print "#{key}:#{value} "     # Prints "a:1 b:2 c:3" 
end

# Iterate over keys or values or both
h.each_key {|k| print k }      # Prints "abc"
h.each_value {|v| print v }    # Prints "123"
h.each_pair {|k,v| print k,v } # Prints "a1b2c3". Like each

The each iterator yields an
          array containing the key and value. Block invocation syntax allows
          this array to be automatically expanded into separate key and value
          parameters. In Ruby 1.8, the each_pair iterator yields the key and value as two separate
          values (which may have a slight performance advantage). In Ruby 1.9,
          each_pair is simply a synonym for
          each.
Although it is not an iterator, the shift method can be used to iterate through the key/value pairs of
          a hash. Like the array method of the same name, it removes and
          returns one element (one [key,value] array in this case) from the
          hash:
h = { :a=> 1, :b=>2 }
print h.shift[1] while not h.empty?   # Prints "12"


Default values



Normally, if you query the value of a key with which no value has been
          associated, the hash returns nil:
empty = {}
empty["one"]   # nil

You can alter this behavior, however, by specifying a default
          value for the hash:
empty = Hash.new(-1)   # Specify a default value when creating hash
empty["one"]           # => -1
empty.default = -2     # Change the default value to something else
empty["two"]           # => -2
empty.default          # => -2: return the default value

Instead of providing a single default value, you can provide a
          block of code to compute values for keys that do not have an
          associated value:
# If the key is not defined, return the successor of the key.
plus1 = Hash.new {|hash, key| key.succ }
plus1[1]      # 2
plus1["one"]  # "onf": see String.succ
plus1.default_proc  # Returns the Proc that computes defaults
plus1.default(10)   # => 11: default returned for key 10

When using a default block like this, it is common to
          associate the computed value with the key, so that the computation
          does not need to be redone if the key is queried again. This is an
          easy-to-implement form of lazy evaluation (and it explains why the
          default block is passed the hash object itself along with the
          key):
# This lazily initialized hash maps integers to their factorials
fact = Hash.new {|h,k| h[k] = if k > 1: k*h[k-1] else 1 end }
fact      # {}: it starts off empty
fact[4]   # 24: 4! is 24
fact      # {1=>1, 2=>2, 3=>6, 4=>24}: the hash now has entries

Note that setting the default property of a hash overrides any
          block passed to the Hash.new
          constructor.
If you are not interested in default values for a hash, or if you want to
          override them with your own default, use the fetch method to retrieve values instead of
          using square brackets. fetch was
          covered earlier:
fact.fetch(5)   # IndexError: key not found


Hashcodes, key equality, and mutable keys



In order for an object to be used as a hash key, it must have a hash method that returns an integer
          “hashcode” for the object. Classes that do not define their own
          eql? method can simply use the
          hash method they inherit from
          Object. If you define an eql? method for testing object equality,
          however, you must define a corresponding hash method. If two distinct objects are
          considered equal, their hash
          methods must return the same value. Ideally, two objects that are
          not equal should have different hashcodes. This topic was covered in
          Hash Codes, Equality, and Mutable Keys, and Point Equality
          includes an example hash implementation.
As noted in Hash Codes, Equality, and Mutable Keys, you must be careful
          any time you use a mutable object as a hash key. (Strings are a
          special case: the Hash class
          makes a private internal copy of string keys.) If you do use mutable
          keys and mutate one of them, you must call rehash on the Hash object in order to ensure that it
          works right:
key = {:a=>1}      # This hash will be a key in another hash!
h = { key => 2 }   # This hash has a mutable key
h[key]             # => 2: get value associated with key
key.clear          # Mutate the key
h[key]             # => nil: no value found for mutated key
h.rehash           # Fix up the hash after mutation
h[key]             # => 2: now the value is found again


Miscellaneous hash methods



The invert method
          does not fit into any of the previous categories. invert swaps keys and values in a
          hash:
h = {:a=>1, :b=>2}
h.invert        # => {1=>:a, 2=>:b}: swap keys and values

As was the case for Array,
          the Hash.to_s method is not very
          useful in Ruby 1.8, and you may prefer to use inspect to convert to a string in hash
          literal form. In Ruby 1.9, to_s
          and inspect are the
          same:
{:a=>1, :b=>2}.to_s    # => "a1b2" in Ruby 1.8; "{:a=>1, :b=>2}" in 1.9
{:a=>1, :b=>2}.inspect # => "{:a=>1, :b=>2}" for both versions



Sets



A set is simply a collection of values, without duplicates.
        Unlike an array, the elements of a set have no order. A hash can be
        considered a set of key/value pairs. Conversely, a set can be
        implemented using a hash in which set elements are stored as keys and
        values are ignored. A sorted set is a set that
        imposes an ordering on its elements (but does not allow random access
        to them as an array does). A characteristic feature of set
        implementations is that they feature fast membership testing,
        insertion, and deletion operations.
Ruby does not offer a built-in set type, but the standard
        library includes the Set and
        SortedSet classes, which you can
        use if you first:
require 'set'

The Set API is similar in
        many ways to the Array and Hash APIs. A number of Set methods and operators accept any
        Enumerable object as their
        argument.
SortedSet
The SortedSet
          class inherits from Set
          and does not define any new methods of its own; it simply guarantees
          that the elements of the set will be iterated (or printed or
          converted to arrays) in sorted order. SortedSet does not allow you to provide a
          custom block to compare set elements, and requires that all set
          elements are mutually comparable according to their default <=>
          operator. Because the SortedSet
          API is no different than the basic Set API, it will not be covered
          here.

Creating sets



Because Set is not a core
          Ruby class, there is no literal syntax for creating sets. The
          set library adds a to_set method to
          the Enumerable module, and a set
          can be created from any enumerable object with this method:
(1..5).to_set              # => #<Set: {5, 1, 2, 3, 4}>
[1,2,3].to_set             # => #<Set: {1, 2, 3}>

Alternatively, any enumerable object can be passed to Set.new. If a block is provided, it is
          used (as with the map iterator)
          to preprocess the enumerated values before adding them to the
          set:
Set.new(1..5)              # => #<Set: {5, 1, 2, 3, 4}>
Set.new([1,2,3])           # => #<Set: {1, 2, 3}>
Set.new([1,2,3]) {|x| x+1} # => #<Set: {2, 3, 4}>

If you prefer to enumerate the members of your set without
          first placing them in an array or other enumerable object, use the
          [] operator of the Set class:
Set["cow", "pig", "hen"]   # => #<Set: {"cow", "pig", "hen"}>


Testing, comparing, and combining Sets



The most common operation on sets is usually membership
          testing:
s = Set.new(1..3)   # => #<Set: {1, 2, 3}>  
s.include? 1        # => true
s.member? 0         # => false: member? is a synonym

It is also possible to test sets for membership in other sets.
          A set S is a subset of T if all the elements of
          S are also elements of T. We can also say that T is a
          superset of S. If two sets are equal, then they
          are both subsets and supersets of each other. S is a
          proper subset of T if it is a subset of T but
          not equal to T. In this case, T is a proper
          superset of S:
s = Set[2, 3, 5]
t = Set[2, 3, 5, 7]
s.subset? t            # => true
t.subset? s            # => false
s.proper_subset? t     # => true
t.superset? s          # => true
t.proper_superset? s   # => true
s.subset? s            # => true
s.proper_subset? s     # => false

Set defines the same size
          methods as Array and Hash do:
s = Set[2, 3, 5]
s.length               # => 3
s.size                 # => 3: a synonym for length
s.empty?               # => false
Set.new.empty?         # => true

New sets can be created by combining two existing sets. There
          are several ways this can be done, and Set defines the operators &, |, –,
          and ^ (plus named method aliases)
          to represent them:
# Here are two simple sets
primes = Set[2, 3, 5, 7]
odds = Set[1, 3, 5, 7, 9]

# The intersection is the set of values that appear in both
primes & odds             # => #<Set: {5, 7, 3}>
primes.intersection(odds) # this is an explicitly named alias

# The union is the set of values that appear in either
primes | odds             # => #<Set: {5, 1, 7, 2, 3, 9}>
primes.union(odds)        # an explicitly named alias

# a-b: is the elements of a except for those also in b
primes-odds               # => #<Set: {2}>
odds-primes               # => #<Set: {1, 9}>
primes.difference(odds)   # A named method alias

# a^b is the set of values that appear in one set but not both: (a|b)-(a&b)
primes ^ odds             # => #<Set: {1, 2, 9}>

The Set class also defines
          mutating variants of some of these methods; we’ll consider them
          shortly.

Adding and deleting set elements



This section describes methods that add or remove elements from a
          set. They are mutator methods
          that modify the receiver set in place rather than returning a
          modified copy and leaving the original unchanged. Because these
          methods do not exist in nonmutating versions, they do not have an
          exclamation point suffix.
The << operator
          adds a single element to a set:
s = Set[]              # start with an empty set
s << 1                 # => #<Set: {1}>
s.add 2                # => #<Set: {1, 2}>: add is a synonym for <<
s << 3 << 4 << 5       # => #<Set: {5, 1, 2, 3, 4}>: can be chained
s.add 3                # => #<Set: {5, 1, 2, 3, 4}>: value unchanged
s.add? 6               # => #<Set: {5, 6, 1, 2, 3, 4}>
s.add? 3               # => nil: the set was not changed 

To add more than one value to a set, use the merge method, which can take any
          enumerable object as its argument. merge is effectively a mutating version of
          the union
          method:
s = (1..3).to_set   # => #<Set: {1, 2, 3}>
s.merge(2..5)       # => #<Set: {5, 1, 2, 3, 4}>

To remove a single element from a set, use delete or delete?, which are analogous to add and add? but do not have an operator
          equivalent:
s = (1..3).to_set   # => #<Set: {1, 2, 3}>
s.delete 1          # => #<Set: {2, 3}>
s.delete 1          # => #<Set: {2, 3}>: unchanged
s.delete? 1         # => nil: returns nil when no change
s.delete? 2         # => #<Set: {3}>: otherwise returns set

Remove multiple values from a set at once with subtract. The argument to this method can
          be any enumerable object, and the method acts as a mutating version
          of the difference method:
s = (1..3).to_set   # => #<Set: {1, 2, 3}>
s.subtract(2..10)   # => #<Set: {1}>

To selectively delete elements from a set, use delete_if or
          reject!. Just as with the
          Array and Hash classes, these two methods are
          equivalent except for their return value when the set is unmodified.
          delete_if always returns the
          receiver set. reject! returns the
          receiver set if it was modified, or nil if no values were removed from
          it:
primes = Set[2, 3, 5, 7]       # set of prime numbers
primes.delete_if {|x| x%2==1}  # => #<Set: {2}>: remove odds
primes.delete_if {|x| x%2==1}  # => #<Set: {2}>: unchanged
primes.reject! {|x| x%2==1}    # => nil: unchanged

# Do an in-place intersection like this:
s = (1..5).to_set
t = (4..8).to_set
s.reject! {|x| not t.include? x}  # => #<Set: {5, 4}>

Finally, the clear and
          replace methods work just as they
          do for arrays and hashes:
s = Set.new(1..3) # Initial set
s.replace(3..4)   # Replace all elements.  Argument is any enumerable
s.clear           # => #<Set: {}>
s.empty?          # => true


Set iterators



Sets are Enumerable, and
          the Set class
          defines an each iterator that
          yields each of the set elements once. In Ruby 1.9, Set
          behaves like the Hash class on
          which it is implemented and iterates elements in the order in which
          they were inserted. Prior to Ruby 1.9 the iteration order is
          arbitrary. For SortedSet, the
          elements are yielded in their ascending sorted order. In addition,
          the map! iterator transforms each
          element of the set with a block, altering the set in place. collect! is a synonym:
s = Set[1, 2, 3, 4, 5] # => #<Set: {5, 1, 2, 3, 4}>
s.each {|x| print x }  # prints "51234": arbitrary order before Ruby 1.9
s.map! {|x| x*x }      # => #<Set: {16, 1, 25, 9, 4}>
s.collect! {|x| x/2 }  # => #<Set: {0, 12, 2, 8, 4}>


Miscellaneous set methods



Set defines powerful
          methods for partitioning sets into subsets and for flattening sets
          of subsets into single larger sets. In addition, it defines a few
          mundane methods that we will cover first:
s = (1..3).to_set
s.to_a          # => [1, 2, 3]
s.to_s          # => "#<Set:0xb7e8f938>": not useful
s.inspect       # => "#<Set: {1, 2, 3}>": useful       
s == Set[3,2,1] # => true: uses eql? to compare set elements

The classify
          method expects a block and yields each set element to that
          block in turn. The return value is a hash that maps block return
          values to sets of elements that returned that value:
# Classify set elements as even or odd
s = (0..3).to_set     # => #<Set: {0, 1, 2, 3}>
s.classify {|x| x%2}  # => {0=>#<Set: {0, 2}>, 1=>#<Set: {1, 3}>}

The divide method
          is similar but returns a set of subsets rather than
          hash mapping values to subsets:
s.divide {|x| x%2}  # => #<Set: {#<Set: {0, 2}>, #<Set: {1, 3}>}>

divide works completely
          differently if the associated block expects two arguments. In this
          case, the block should return true if the two values belong in the same
          subset, and false
          otherwise:
s = %w[ant ape cow hen hog].to_set # A set of words
s.divide {|x,y| x[0] == y[0]}      # Divide into subsets by first letter
# => #<Set:{#<Set:{"hog", "hen"}>, #<Set:{"cow"}>, #<Set:{"ape", "ant"}>}>

If you have a set of sets (which may themselves include sets,
          recursively), you can flatten it, effectively merging (by union) all
          the contained sets with the flatten method, or the flatten!
          method, which performs the operation in place:
s = %w[ant ape cow hen hog].to_set # A set of words
t = s.divide {|x,y| x[0] == y[0]}  # Divide it into subsets
t.flatten!                         # Flatten the subsets
t == s                             # => true




Files and Directories



The File class defines quite a few class methods for working with files as
      entries in a filesystem: methods for testing the size or existence of a
      named file, for example, and methods for separating a filename from the
      directory name that precedes it. These are class methods and they do not
      operate on File objects; instead,
      filenames are specified as strings. Similarly, the Dir class defines
      class methods for working with and reading filenames from filesystem
      directories. The subsections that follow demonstrate how to:
	Work with and manipulate filenames and directory names

	List directories

	Test files to determine their type, size, modification time,
          and other attributes

	Delete, rename, and perform similar operations on files and
          directories



Note that the methods described here query and manipulate files,
      but do not read or write file content. Reading and
      writing files is covered in Input/Output.
Specifying Filenames in Ruby 1.9
Many of the file and directory methods described in this section expect one
        or more arguments that name files. Normally, you specify filenames and
        directory paths as strings. In Ruby 1.9, you can also use nonstring
        objects if they have a to_path
        method that returns a string.

File and Directory Names



The class methods of the File
        and Dir classes operate on files
        and directories specified by name. Ruby uses Unix-style filenames with
        / as the directory separator character. You can use the
        forward slash character in your filenames, even when using Ruby on a
        Windows platform. On Windows, Ruby can also handle filenames that use the
        backslash character and that include drive letter prefixes. The
        constant File::SEPARATOR should
        be '/' in all
        implementations. File::ALT_SEPARATOR is '\' on Windows, and is nil on other
        platforms.
The File class defines some
        methods for manipulating filenames:
full = '/home/matz/bin/ruby.exe'
file=File.basename(full)     # => 'ruby.exe': just the local filename
File.basename(full, '.exe')  # => 'ruby': with extension stripped
dir=File.dirname(full)       # => '/home/matz/bin': no / at end
File.dirname(file)           # => '.': current directory
File.split(full)             # => ['/home/matz/bin', 'ruby.exe']
File.extname(full)           # => '.exe'
File.extname(file)           # => '.exe'
File.extname(dir)            # => ''
File.join('home','matz')     # => 'home/matz': relative
File.join('','home','matz')  # => '/home/matz': absolute

The File.expand_path
        method converts a relative path to a fully qualified path. If
        the optional second argument is supplied, it is first prepended as a
        directory to the first argument. The result is then converted to an
        absolute path. If it begins with a Unix-style ~, the directory is relative to the current
        user or specified user’s home directory. Otherwise, the directory is
        resolved relative to the current working directory (see Dir.chdir below to change the working
        directory):
Dir.chdir("/usr/bin")      # Current working directory is "/usr/bin"
File.expand_path("ruby")       # => "/usr/bin/ruby"
File.expand_path("~/ruby")     # => "/home/david/ruby"
File.expand_path("~matz/ruby") # => "/home/matz/ruby"
File.expand_path("ruby", "/usr/local/bin") # => "/usr/local/bin/ruby"
File.expand_path("ruby", "../local/bin")   # => "/usr/local/bin/ruby"
File.expand_path("ruby", "~/bin")          # => "/home/david/bin/ruby"

The File.identical?
        method tests whether two filenames refer to the same file.
        This might be because the names are the same, but it is a more useful
        method when the names differ. Two different names might refer to the
        same file if one is a relative filename and the other is absolute, for
        example. One might include “..” to
        go up a level and then down again. Or, two different names might refer
        to the same file if one name is a symbolic link or shortcut (or hard
        link on platforms that support it) to the other. Note, however, that
        File.identical? only returns
        true if the two names refer to the
        same file and that file actually exists. Also note that File.identical? does not expand the ~ character for home directories the way
        that File.expand_path does:
File.identical?("ruby", "ruby")          # => true if the file exists
File.identical?("ruby", "/usr/bin/ruby") # => true if CWD is /usr/bin
File.identical?("ruby", "../bin/ruby")   # => true if CWD is /usr/bin
File.identical?("ruby", "ruby1.9")       # => true if there is a link

Finally, File.fnmatch tests
        whether a filename matches a specified pattern. The pattern is
        not a regular expression, but is like the file-matching patterns used
        in shells. “?” matches a single
        character. “*” matches any
        number of characters. And “**”
        matches any number of directory levels. Characters in square brackets
        are alternatives, as in regular expressions. fnmatch does not allow alternatives in curly
        braces (as the Dir.glob method
        described below does). fnmatch
        should usually be invoked with a third argument of File::FNM_PATHNAME, which prevents “*”
        from matching “/”. Add File::FNM_DOTMATCH if you want “hidden”
        files and directories whose names begin with “.” to match. Only a few examples of fnmatch are given here. Use ri File.fnmatch for complete details. Note
        that File.fnmatch? is a
        synonym:
File.fnmatch("*.rb", "hello.rb")     # => true
File.fnmatch("*.[ch]", "ruby.c")     # => true
File.fnmatch("*.[ch]", "ruby.h")     # => true
File.fnmatch("?.txt", "ab.txt")      # => false
flags = File::FNM_PATHNAME | File::FNM_DOTMATCH
File.fnmatch("lib/*.rb", "lib/a.rb", flags)      # => true
File.fnmatch("lib/*.rb", "lib/a/b.rb", flags)    # => false
File.fnmatch("lib/**/*.rb", "lib/a.rb", flags)   # => true
File.fnmatch("lib/**/*.rb", "lib/a/b.rb", flags) # => true


Listing Directories



The easiest way to list the contents of a directory is with
        the Dir.entries method
        or the Dir.foreach iterator:
# Get the names of all files in the config/ directory 
filenames = Dir.entries("config")        # Get names as an array
Dir.foreach("config") {|filename| ... }  # Iterate names

The names returned by these methods are not guaranteed to be in
        any particular order, and (on Unix-like platforms) include “.” (the
        current directory) and “..” (the
        parent directory). To obtain a list of files that match a given
        pattern, use the Dir.[]
        operator:
Dir['*.data']       # Files with the "data" extension
Dir['ruby.*']       # Any filename beginning with "ruby."
Dir['?']            # Any single-character filename
Dir['*.[ch]']       # Any file that ends with .c or .h
Dir['*.{java,rb}']  # Any file that ends with .java or .rb
Dir['*/*.rb']       # Any Ruby program in any direct sub-directory
Dir['**/*.rb']      # Any Ruby program in any descendant directory

A more powerful alternative to Dir[] is Dir.glob. (The verb “glob” is an old Unix term for filename
        matching in a shell.) By default, this method works like Dir[], but if passed a block, it yields the
        matching filenames one at a time rather than returning an array. Also,
        the glob method accepts an optional
        second argument. If you pass the constant File::FNM_DOTMATCH (see File.fnmatch previously) as this second
        argument, then the result will include files whose names begin with
        “.” (on Unix systems, these files
        are hidden and are not returned
        by default):
Dir.glob('*.rb') {|f| ... }      # Iterate all Ruby files
Dir.glob('*')                    # Does not include names beginning with '.'
Dir.glob('*',File::FNM_DOTMATCH) # Include . files, just like Dir.entries

The directory listing methods shown here, and all File and Dir methods that resolve relative pathnames,
        do so relative to the “current working directory,” which is a value
        global to the Ruby interpreter process. Query and set the CWD with the
        getwd and chdir methods:
puts Dir.getwd          # Print current working directory
Dir.chdir("..")         # Change CWD to the parent directory
Dir.chdir("../sibling") # Change again to a sibling directory
Dir.chdir("/home")      # Change to an absolute directory
Dir.chdir               # Change to user's home directory
home = Dir.pwd          # pwd is an alias for getwd

If you pass a block to the chdir method, the directory will be restored
        to its original value when the block exits. Note, however, that while
        the directory change is limited in duration, it is still global in
        scope and affects other threads. Two threads may not call Dir.chdir with a block at the same time.

Testing Files



File defines a slew of methods to obtain metadata about a named file
        or directory. Many of the methods return low-level information that is
        OS-dependent. Only the most portable and broadly useful are
        demonstrated here. Use ri on the File and File::Statclasses for a complete list of methods.
The following simple methods return basic information about a
        file. Most are predicates that return true or false:
f = "/usr/bin/ruby"      # A filename for the examples below

# File existence and types.
File.exist?(f)           # Does the named file exist? Also: File.exists?
File.file?(f)            # Is it an existing file?
File.directory?(f)       # Or is it an existing directory?
File.symlink?(f)         # Either way, is it a symbolic link?

# File size methods. Use File.truncate to set file size.
File.size(f)             # File size in bytes.
File.size?(f)            # Size in bytes or nil if empty file.
File.zero?(f)            # True if file is empty.

# File permissions. Use File.chmod to set permissions (system dependent).
File.readable?(f)        # Can we read the file?
File.writable?(f)        # Can we write the file? No "e" in "writable"
File.executable?(f)      # Can we execute the file?
File.world_readable?(f)  # Can everybody read it? Ruby 1.9.
File.world_writable?(f)  # Can everybody write it? Ruby 1.9.

# File times/dates. Use File.utime to set the times.
File.mtime(f)            # => Last modification time as a Time object
File.atime(f)            # => Last access time as a Time object

Another way to determine the type (file, directory, symbolic
        link, etc.) of a filename is with ftype, which returns a string that names the
        type. Assume that /usr/bin/ruby
        is a symbolic link (or shortcut) to /usr/bin/ruby1.9:
File.ftype("/usr/bin/ruby")    # => "link"
File.ftype("/usr/bin/ruby1.9") # => "file"
File.ftype("/usr/lib/ruby")    # => "directory"
File.ftype("/usr/bin/ruby3.0") # SystemCallError: No such file or directory

If you are interested in multiple pieces of information about a
        file, it may be more efficient to call stat or lstat. (stat follows symbolic links; lstat returns information about the link
        itself.) These methods return a File::Stat object, which has instance
        methods with the same names (but without arguments) as the class
        methods of File. The efficiency of
        using stat is that Ruby only has to
        make one call to the OS to obtain all file metadata. Your Ruby program
        can then obtain that information from the File::Stat object as it needs it:
s = File.stat("/usr/bin/ruby")
s.file?             # => true
s.directory?        # => false
s.ftype             # => "file"
s.readable?         # => true
s.writable?         # => false
s.executable?       # => true
s.size              # => 5492
s.atime             # => Mon Jul 23 13:20:37 -0700 2007

Use ri on File::Stat for a full list of its methods.
        One final general-purpose file testing method is Kernel.test. It exists for historical
        compatibility with the Unix shell command test. The
        test method is largely obviated by the class methods of the
        File class, but you may see it used
        in existing Ruby scripts. Use ri for complete
        details:
# Testing single files
test ?e, "/usr/bin/ruby"   # File.exist?("/usr/bin/ruby")
test ?f, "/usr/bin/ruby"   # File.file?("/usr/bin/ruby")
test ?d, "/usr/bin/ruby"   # File.directory?("/usr/bin/ruby")
test ?r, "/usr/bin/ruby"   # File.readable?("/usr/bin/ruby")
test ?w, "/usr/bin/ruby"   # File.writeable?("/usr/bin/ruby")
test ?M, "/usr/bin/ruby"   # File.mtime("/usr/bin/ruby")
test ?s, "/usr/bin/ruby"   # File.size?("/usr/bin/ruby")

# Comparing two files f and g
test ?-, f, g              # File.identical(f,g)
test ?<, f, g              # File(f).mtime < File(g).mtime
test ?>, f, g              # File(f).mtime > File(g).mtime
test ?=, f, g              # File(f).mtime == File(g).mtime


Creating, Deleting, and Renaming Files and Directories



The File class does not define any special methods for creating a file.
        To create one, simply open it for writing, write zero or more bytes,
        and close it again. If you don’t want to clobber an existing file,
        open it in append mode:
# Create (or overwrite) a file named "test"
File.open("test", "w") {}
# Create (but do not clobber) a file named "test"
File.open("test", "a") {}

To copy a file, use File.copy_stream,  specifying filenames as the source and
        destination:
File.copy_stream("test", "test.backup")
To change the name of a file, use File.rename:
File.rename("test", "test.old")     # Current name, then new name

To create a symbolic link to a file, use File.symlink:
File.symlink("test.old", "oldtest") # Link target, link name

On systems that support it, you can create a “hard
        link” with File.link:
File.link("test.old", "test2")   # Link target, link name

Finally, to delete a file or link, use File.delete, or its synonym File.unlink:
File.delete("test2")   # May also be called with multiple args
File.unlink("oldtest") # to delete multiple named files

On systems that support it, use File.truncate to truncate a file to a
        specified number (possibly zero) of bytes. Use File.utime to set the access and modification times of a file. And
        use the platform-dependent method File.chmod to change the permissions of a
        file:
f = "log.messages"          # Filename
atime = mtime = Time.now    # New access and modify times
File.truncate(f, 0)         # Erase all existing content
File.utime(atime, mtime, f) # Change times
File.chmod(0600, f)         # Unix permissions -rw-------; note octal arg

To create a new directory, use Dir.mkdir. To delete a directory, use Dir.rmdir or one of its synonyms, Dir.delete or Dir.unlink. The directory must be empty
        before it can be deleted:
Dir.mkdir("temp")                 # Create a directory
File.open("temp/f", "w") {}       # Create a file in it
File.open("temp/g", "w") {}       # Create another one
File.delete(*Dir["temp/*"])       # Delete all files in the directory
Dir.rmdir("temp")                 # Delete the directory



Input/Output



An IO object is a stream: a readable source of bytes or characters or a
      writable sink for bytes or characters. The File class is a subclass of IO. IO
      objects also represent the “standard input” and “standard output”
      streams used to read from and write to the console. The stringio module in the standard library allows
      us to create a stream wrapper around a string object. Finally, the
      socket objects used in networking (described later in this chapter) are also
      IO objects.
Opening Streams



Before we can perform input or output, we must have an
        IO object to read from or write to.
        The IO class defines
        factory methods new,
        open, popen, and pipe, but these are low-level methods with
        operating system dependencies, and they are not documented here. The
        subsections that follow describe more common ways to obtain IO objects. (And Networking includes examples that create IO objects that communicate across the
        network.)
Opening files



One of the most common kinds of IO
          is the reading and writing of files. The File class defines some utility methods
          (described below) that read the entire contents of a file with one
          call. Often, however, you will instead open a file to obtain a
          File object and then use IO methods to read from or write to the
          file.
Use File.open (or File.new) to open a file. The first argument is the name of the
          file. This is usually specified as a string, but in Ruby 1.9, you
          can use any object with a to_path
          method. Filenames are interpreted relative to the current working
          directory unless they are specified with an absolute path. Use
          forward slash characters to separate directories—Ruby automatically
          converts them into backslashes on Windows. The second argument to
          File.open is a short string that
          specifies how the file should be opened:
f = File.open("data.txt", "r")   # Open file data.txt for reading
out = File.open("out.txt", "w")  # Open file out.txt for writing

The second argument to File.open is a string that specifies the
          “file mode.” It must begin with one of the values in the following
          table. Add "b" to the mode string
          to prevent automatic line terminator conversion on Windows
          platforms. For text files, you may add the name of a character
          encoding to the mode string. For binary files, you should add
          ":binary" to the string. This is
          explained in Streams and Encodings.
	Mode	Description
	"r"	Open for reading. The default mode.
	"r+"	Open for reading and writing. Start at
                  beginning of file. Fail if file does not exist.
                  

	"w"	Open for writing. Create a new file or
                  truncate an existing one. 

	"w+"	Like "w", but allows reading of the file
                  as well.

	"a"	Open for writing, but append to the end of the
                  file if it already exists. 

	"a+"	Like "a",
                  but allows reads also. 



File.open (but not File.new) may be followed by a block. If a
          block is provided, then File.open
          doesn’t return the File object
          but instead passes it to the block, and automatically closes it when
          the block exits. The return value of the block becomes the return
          value of File.open:
File.open("log.txt", "a") do |log|      # Open for appending
  log.puts("INFO: Logging a message")   # Output to the file
end                                     # Automatically closed


Kernel.open



The Kernel method open works like File.open but
          is more flexible. If the filename begins with |, it is treated as an operating system
          command, and the returned stream is used for reading from and
          writing to that command process. This is platform-dependent, of
          course:
# How long has the server been up?
uptime = open("|uptime") {|f| f.gets }

If the open-uri library has
          been loaded, then open can also
          be used to read from http and
          ftp URLs as if they were
          files:
require "open-uri"                         # Required library
f = open("http://www.davidflanagan.com/")  # Webpage as a file
webpage = f.read                           # Read it as one big string
f.close                                    # Don't forget to close!

In Ruby 1.9, if the argument to open has a method named to_open, then that method is called and
          should return an opened IO
          object.

StringIO



Another way to obtain an IO object is to
          use the stringio library to read
          from or write to a string:
require "stringio"
input = StringIO.open("now is the time")  # Read from this string
buffer = ""
output = StringIO.open(buffer, "w")       # Write into buffer

The StringIO class is not a
          subclass of IO, but it defines
          many of the same methods as IO
          does, and duck typing usually allows us to use a StringIO object in place of an IO object.

Predefined streams



Ruby predefines a number of streams that can be used without
          being created or opened. The global constants STDIN, STDOUT, and STDERR are the standard input stream, the
          standard output stream, and the standard error stream, respectively.
          By default, these streams are connected to the user’s console or a
          terminal window of some sort. Depending on how your Ruby script is
          invoked, they may instead use a file, or even another process, as a
          source of input or a destination for output. Any Ruby program can
          read from standard input and write to standard output (for normal
          program output) or standard error (for error messages that should be
          seen even if the standard output is redirected to a file). The
          global variables $stdin, $stdout, and $stderr are initially set to the same
          values as the stream constants. Global functions like print and
          puts write to $stdout by default. If a script alters the
          value of this global variable, it will change the behavior of those
          methods. The true “standard output” will still be
          available through STDOUT,
          however.
Another predefined stream is ARGF, or
          $<. This stream has special
          behavior intended to make it simple to write scripts that read the
          files specified on the command line or from standard input. If there
          are command-line arguments to the Ruby script (in the ARGV or $* array), then the ARGF stream acts as if those files had
          been concatenated together and the single resulting file opened for
          reading. In order for this to work properly, a Ruby script that
          accepts command-line options other than filenames must first process
          those options and remove them from the ARGV array. If the ARGV array is empty, then ARGF is the same as STDIN. (See
          Input Functions for further details about the ARGF stream.)
Finally, the DATA stream is
          designed for reading text that appears after the end of your Ruby
          script. This works only if your script includes the token __END__ on a
          line by itself. That token marks the end of the program text. Any
          lines after the token may be read with the DATA stream.


Streams and Encodings



One of the most significant changes in Ruby 1.9 is support for
        multibyte character encodings. We saw in Text that
        there were many changes to the String class. There are similar changes
        to the IO class.
In Ruby 1.9, every stream can have two encodings associated with
        it. These are known as the external and internal encodings, and are
        returned by the external_encoding
        and internal_encoding
        methods of an  IO object. The
        external encoding is the encoding of the text as stored in the file.
        If you do not explicitly specify an external encoding for a stream,
        the default external encoding (see Source, External, and Internal Encodings) of the process is used. You can
        specify the default external encoding with the -E option (see Encoding Options). If you don’t specify the default
        external encoding, an appropriate default encoding is derived from
        your locale.
The internal encoding of a stream is the desired encoding for
        text that is read from the stream. If you do not explicitly specify an
        internal encoding, the default internal encoding (Source, External, and Internal Encodings) will be used. If you did not
        explicitly specify a default internal encoding with the -E, or -U
        options (Encoding Options) then the default internal
        encoding is unset. If a stream has an internal encoding, then all
        strings read from it are automatically transcoded, if necessary, to
        that encoding. If a stream does not have an internal encoding, then no
        transcoding is done: strings read from the stream are simply tagged
        with the external encoding (as by the String.force_encoding method).
Specify the encoding of any IO object (including pipes and network
        sockets) with the set_encoding
        method. With two arguments, it specifies an external
        encoding and an internal encoding. You can also specify two encodings
        with a single string argument, which consists of two encoding names
        separated by a colon. Normally, however, a single argument specifies
        just an external encoding. The arguments can be strings or Encoding objects. The external encoding is
        always specified first, followed, optionally, by an internal encoding.
        For example:
f.set_encoding("iso-8859-1", "utf-8") # Latin-1, transcoded to UTF-8
f.set_encoding("iso-8859-1:utf-8")    # Same as above
f.set_encoding(Encoding::UTF-8)       # UTF-8 text

set_encoding works for any
        kind of IO object. For files,
        however, it is often easiest to specify encoding when you open the
        file. You can do this by appending the encoding names to the file mode
        string. For example:
in = File.open("data.txt", "r:utf-8");           # Read UTF-8 text
out = File.open("log", "a:utf-8");               # Write UTF-8 text
in = File.open("data.txt", "r:iso8859-1:utf-8"); # Latin-1 transcoded to UTF-8 
Note that it is not usually necessary to specify two encodings
        for a stream that is to be used for output. In that case, the internal
        encoding is specified by the String
        objects that are written to the stream.
The default external encoding is, by default, derived from the
        user’s locale settings and is often a multibyte encoding. In order to
        read binary data from a file, therefore, you must explicitly specify
        that you want unencoded bytes, or you’ll get characters in the default
        external encoding. To do this, open a file with mode "r:binary", or pass Encoding::BINARY to set_encoding after opening the file:
File.open("data", "r:binary")  # Open a file for reading binary data
On Windows, you should open binary files with mode "rb:binary" or call
        binmode
        on the stream. This disables the automatic newline
        conversion performed by Windows, and is only necessary on that
        platform.
Not every stream-reading method honors the encoding of a stream.
        Some lower-level reading methods take an argument that specifies the
        number of bytes to read. By their nature, these methods return
        unencoded strings of bytes rather than strings of text. The methods
        that do not specify a length to read do honor the encoding.

Reading from a Stream



The IO class defines a number of methods for reading from streams.
        They work only if the stream is readable, of course. You can read
        from STDIN, ARGF, and DATA, but not from STDOUT or STDERR. Files and StringIO objects are opened for reading by
        default, unless you explicitly open them for writing only.
Reading lines



IO defines a number of ways
          to read lines  from a stream:
lines = ARGF.readlines         # Read all input, return an array of lines
line = DATA.readline           # Read one line from stream
print l while l = DATA.gets    # Read until gets returns nil, at EOF
DATA.each {|line| print line } # Iterate lines from stream until EOF
DATA.each_line                 # An alias for each
DATA.lines                     # An enumerator for each_line: Ruby 1.9

Here are some important notes on these line-reading methods.
          First, the readline and the
          gets method differ only in their
          handling of EOF (end-of-file: the condition that occurs when
          there is no more to read from a stream). gets returns nil if it is invoked on a stream at EOF.
          readline instead raises an
          EOFError. If you do not know how
          many lines to expect, use gets.
          If you expect another line (and it is an error if it is not there),
          then use readline. You
          can check whether a stream is already at EOF with the eof? method.
Second, gets and readline implicitly set the global
          variable $_ to the line of text
          they return. A number of global methods, such as print, use $_ if they are
          not explicitly passed an argument. Therefore, the while loop in the code above could be
          written more succinctly as:
print while DATA.gets

Relying on $_ is useful for
          short scripts, but in longer programs, it is better style to
          explicitly use variables to store the lines of input you’ve
          read.
Third, these methods are typically used for text (instead of
          binary) streams, and a “line” is defined as a sequence of bytes up
          to and including the default line terminator (newline on most
          platforms). The lines returned by these methods include the line
          terminator (although the last line in a file may not have one). Use
          String.chomp! to strip it off.
          The special global variable $/
          holds the line terminator. You can set $/ to alter the default behavior of all
          the line-reading methods, or you can simply pass an alternate
          separator to any of the methods (including the each iterator). You might do this when
          reading comma-separated fields from a file, for example, or when
          reading a binary file that has some kind of “record separator”
          character. There are two special cases for the line terminator. If
          you specify nil, then the
          line-reading methods keep reading until EOF and return the entire
          contents of the stream as a single line. If you specify the empty
          string “” as the line terminator, then the line-reading methods read
          a paragraph at a time, looking for a blank line as the
          separator.
In Ruby 1.9, gets and
          readline accept an optional
          integer as the first argument or as the second after a separator
          string. If specified, this integer specifies the maximum number of
          bytes to read from the stream. This limit argument exists to prevent
          accidental reads of unexpectedly long lines, and these methods are
          exceptions to the previously cited rule; they return encoded
          character strings despite the fact that they have a limit argument
          measured in bytes.
Finally, the line-reading methods gets, readline, and the each iterator (and its each_line alias) keep track of the number
          of lines they’ve read. You can query the line number of the most
          recently read line with the lineno method, and you can set that line
          number with lineno= accessor.
          Note that lineno does not
          actually count the number of newlines in a file. It counts the
          number of times line-reading methods have been called, and may
          return different results if you use different line separator
          characters:
DATA.lineno = 0     # Start from line 0, even though data is at end of file
DATA.readline       # Read one line of data
DATA.lineno         # => 1
$.                  # => 1: magic global variable, implicitly set


Reading entire files



IO defines three class methods for reading files without ever opening
          an IO stream. IO.read reads an  entire file (or a portion of a file) and returns it
          as a single string. IO.readlines
          reads an entire named file  into an array of lines. And IO.foreach iterates over the lines of a named file. In Ruby 1.9, you can
          pass a hash to these methods to specify the mode string and/or
          encoding of the file being read:
data = IO.read("data")                    # Read and return the entire file
data = IO.read("data", mode:"rb")         # Open with mode string "rb"
data = IO.read("data", encoding:"binary") # Read unencoded bytes
data = IO.read("data", 4, 2)              # Read 4 bytes starting at byte 2
data = IO.read("data", nil, 6)            # Read from byte 6 to end-of-file

# Read lines into an array
words = IO.readlines("/usr/share/dict/words")

# Read lines one at a time and initialize a hash
words = {}
IO.foreach("/usr/share/dict/words") {|w| words[w] = true}

In Ruby 1.9 you can use IO.copy_stream to
          read a file (or a portion) and write its content to a stream:
IO.copy_stream("/usr/share/dict/words", STDOUT) # Print the dictionary
IO.copy_stream("/usr/share/dict/words", STDOUT, 10, 100) # Print bytes 100-109
Although these class methods are defined by the IO class, they operate on named files, and
          it is also common to see them invoked as class methods of File: File.read, File.readlines, File.foreach, and File.copy_stream.
The IO class also defines
          an instance method named read,
          which is similar to the class method with the same name; with no
          arguments it reads text until the end of the stream and returns it
          as an encoded string:
# An alternative to text = File.read("data.txt")
f = File.open("data.txt")  # Open a file
text = f.read              # Read its contents as text
f.close                    # Close the file

The IO.read instance method
          can also be used with arguments to read a specified number of bytes
          from the stream. That use is described in the next section.

Reading bytes and characters



The IO class also
          defines methods for reading a stream one or more bytes
          or characters at a time, but these methods have changed
          substantially between Ruby 1.8 and Ruby 1.9 because Ruby’s
          definition of a character has changed.
In Ruby 1.8, bytes and characters are the same thing, and the
          getc and readchar methods read a single byte and
          return it as a Fixnum. Like
          gets, getc returns nil at EOF. And like readline, readchar raises EOFError if it is called at EOF.
In Ruby 1.9, getc and
          readchar have been modified to
          return a string of length 1 instead of a Fixnum. When reading from a stream with a
          multibyte encoding, these methods read as many bytes as necessary to
          read a complete character. If you want to read a string a byte at a
          time in Ruby 1.9, use the new methods getbyte and readbyte. getbyte is like getc and gets: it returns nil at EOF. And readbyte is like readchar and readline: it raises EOFError.
Programs (like parsers) that read a stream one character at a
          time sometimes need to push a single character back into the
          stream’s buffer, so that it will be returned by the next read call.
          They can do this with ungetc. This
          method expects a Fixnum in Ruby
          1.8 and a single character string in Ruby 1.9. The character pushed
          back will be returned by the next call to getc or readchar:
f = File.open("data", "r:binary") # Open data file for binary reads 
c = f.getc                        # Read the first byte as an integer
f.ungetc(c)                       # Push that byte back
c = f.readchar                    # Read it back again

You can also iterate and enumerate the characters and bytes of
          a stream:    
f.each_byte {|b| ... }      # Iterate through remaining bytes
f.bytes                     # An enumerator for each_byte: Ruby 1.9
f.each_char {|c} ...}       # Iterate characters: Ruby 1.9
f.chars                     # An enumerator for each_char: Ruby 1.9  

If you want to read more than one byte at a time, you have a
          choice of five methods, each with slightly different
          behavior:
	readbytes(n)
	Read exactly n
                bytes and return them as a string. Block, if necessary, until
                n bytes arrive. Raise
                EOFError if EOF occurs
                before n bytes are
                available.

	readpartial(n,
              buffer=nil)
	Read between 1 and n
                bytes and return them as a new binary string, or, if a
                String object is passed as
                the second argument, store them in that string (overwriting whatever text it
                contains). If one or more bytes are available for reading,
                this method returns them (up to a maximum of n) immediately. It blocks only if no
                bytes are available. This method raises EOFError if called when the stream
                is at EOF.

	read(n=nil,
              buffer=nil)
	Read n bytes (or
                fewer, if EOF is reached), blocking if necessary, until
                the bytes are ready. The bytes are returned as a binary
                string. If the second argument is an existing String object, then the bytes are
                stored in that object (replacing any existing content) and the
                string is returned. If the stream is at EOF and n is specified, it returns nil. If called at EOF and n is omitted or is nil, then it returns the empty
                string "".
If n is nil or is omitted, then this method
                reads the rest of the stream and returns it as an encoded
                character string rather than an unencoded byte string.

	read_nonblock(n,
              buffer=nil)
	Read the bytes (up to a maximum of n) that are currently available for
                reading, and return them as a string, using the buffer string if it is specified.
                This method does not block. If there is no data ready to be
                read on the stream (this might occur with a networking socket
                or with STDIN, for example) this method raises a SystemCallError. If called at
                EOF, this method raises EOFError.
This method is new in Ruby 1.9. (Ruby 1.9 also defines
                other nonblocking IO
                methods, but they are low-level and are not covered
                here.)

	sysread(n)
	This method works like readbytes but operates at a lower
                level without buffering. Do not mix calls to sysread with any other line- or
                byte-reading methods; they are incompatible.



Here is some example code you might use when reading a binary
          file:
f = File.open("data.bin", "rb:binary")  # No newline conversion, no encoding
magic = f.readbytes(4)       # First four bytes identify filetype
exit unless magic == "INTS"  # Magic number spells "INTS" (ASCII)
bytes = f.read               # Read the rest of the file
                             # Encoding is binary, so this is a byte string
data = bytes.unpack("i*")    # Convert bytes to an array of integers



Writing to a Stream



The IO methods for writing to a stream mirror those for reading. The
        STDOUT and STDERR streams are writable, as are files
        opened in any mode other than "r"
        or "rb".
IO defines a single putc method for writing single bytes or characters to a stream. This
        method accepts either a byte value or a single-character string as its
        argument, and therefore has not changed between Ruby 1.8 and
        1.9:
o = STDOUT
# Single-character output
o.putc(65)         # Write single byte 65 (capital A)
o.putc("B")        # Write single byte 66 (capital B)
o.putc("CD")       # Write just the first byte of the string

The IO class defines a number
        of other methods for writing arbitrary strings. These methods differ
        from each other in the number of arguments they accept and whether or
        not line terminators are added. Recall that in Ruby 1.9, textual
        output is transcoded to the external encoding of the stream, if one
        was specified:
o = STDOUT
# String output
o << x             # Output x.to_s 
o << x << y        # May be chained: output x.to_s + y.to_s
o.print            # Output $_ + $\
o.print s          # Output s.to_s + $\
o.print s,t        # Output s.to_s + t.to_s + $\
o.printf fmt,*args # Outputs fmt%[args]
o.puts             # Output newline
o.puts x           # Output x.to_s.chomp plus newline
o.puts x,y         # Output x.to_s.chomp, newline, y.to_s.chomp, newline
o.puts [x,y]       # Same as above
o.write s          # Output s.to_s, returns s.to_s.length
o.syswrite s       # Low-level version of write

Output streams are appendable, like strings and arrays are, and
        you can write values to them with the << operator. puts is one of the most common output
        methods. It converts each of its arguments to a string, and writes
        each one to the stream. If the string does not already end with a
        newline character, it adds one. If any of the arguments to puts is an array, the array is recursively
        expanded, and each element is printed on its own line as if it were
        passed directly as an argument to puts. The print method converts its arguments to strings, and outputs them to
        the stream. If the global field separator $, has been changed from its default value
        of nil, then that value is output
        between each of the arguments to print. If the output record separator
        $\ has been changed from its
        default value of nil, then that
        value is output after all arguments are printed.
The printf method expects a
        format string as its first argument, and interpolates the values of
        any additional arguments into that format string using the String %
        operator. It then outputs the interpolated string with no newline or
        record separator.
write simply outputs its
        single argument as << does,
        and returns the number of bytes written. Finally, syswrite is a low-level, unbuffered,
        nontranscoding version of write. If
        you use syswrite, you must use that
        method exclusively, and not mix it with any other writing
        methods.

Random Access Methods



Some streams, such as those that represent network sockets, or user
        input at the console, are sequential streams: once you have read or
        written from them, you cannot go back. Other streams, such as those
        that read from or write to files or strings, allow random access with
        the methods described here. If you attempt to use these methods on a
        stream that does not allow random access, they will raise a SystemCallException:
f = File.open("test.txt")
f.pos        # => 0: return the current position in bytes
f.pos = 10   # skip to position 10
f.tell       # => 10: a synonym for pos
f.rewind     # go back to position 0, reset lineno to 0, also
f.seek(10, IO::SEEK_SET)  # Skip to absolute position 10
f.seek(10, IO::SEEK_CUR)  # Skip 10 bytes from current position
f.seek(-10, IO::SEEK_END) # Skip to 10 bytes from end
f.seek(0, IO::SEEK_END)   # Skip to very end of file
f.eof?                    # => true: we're at the end

If you use sysread or
        syswrite in your program, then use
        sysseek instead of seek for random access. sysseek is like seek except that it returns the new file
        position after each call:
pos = f.sysseek(0, IO::SEEK_CUR)  # Get current position
f.sysseek(0, IO::SEEK_SET)        # Rewind stream
f.sysseek(pos, IO::SEEK_SET)      # Return to original position


Closing, Flushing, and Testing Streams



When you are done reading from or writing to a stream, you must
        close it with the close method. This
        flushes any buffered input or output, and also frees up operating
        system resources. A number of stream-opening methods allow you to
        associate a block with them. They pass the open stream to the block,
        and automatically close the stream when the block exits. Managing
        streams in this way ensures that they are properly closed even when
        exceptions are raised:
File.open("test.txt") do |f|
  # Use stream f here
  # Value of this block becomes return value of the open method
end # f is automatically closed for us here

The alternative to using a block is to use an ensure clause of your own:
begin
  f = File.open("test.txt")
  # use stream f here
ensure
  f.close if f
end

Network sockets are implemented using IO objects that have separate read and write
        streams internally. You can use close_read and close_write to close these internal streams
        individually. Although files can be opened for reading and writing at
        the same time, you cannot use close_read and close_write on those IO objects.
Ruby’s output methods (except syswrite) buffer output for efficiency. The
        output buffer is flushed at reasonable times, such as when a newline
        is output or when data is read from a corresponding input stream.
        There are times, however, when you may need to explicitly flush the
        output buffer to force output to be sent right away:
out.print 'wait>' # Display a prompt
out.flush         # Manually flush output buffer to OS
sleep(1)          # Prompt appears before we go to sleep

out.sync = true   # Automatically flush buffer after every write
out.sync = false  # Don't automatically flush
out.sync          # Return current sync mode
out.fsync         # Flush output buffer and ask OS to flush its buffers
                  # Returns nil if unsupported on current platform

IO defines several predicates
        for testing the state of a stream:
f.eof?       # true if stream is at EOF
f.closed?    # true if stream has been closed
f.tty?       # true if stream is interactive

The only one of these methods that needs explanation is tty?. This method, and its alias isatty (with no question mark), returns
        true if the stream is connected to
        an interactive device such as a
        terminal window or a keyboard with (presumably) a human at it. They
        return false if the stream is a
        noninteractive one, such as a file, pipe, or socket. A program can use
        tty? to avoid prompting a user for
        input if STDIN has actually been
        redirected and is coming from a file, for example.


Networking



Ruby’s networking capabilities are provided by the standard
      library rather than by core classes. For this reason, the subsections
      that follow do not attempt to enumerate each available class or method.
      Instead, they demonstrate how to accomplish common networking tasks with
      simple examples. Use ri for more complete
      documentation.
At the lowest level, networking is accomplished with sockets,
      which are a kind of IO object. Once
      you have a socket opened, you can read data from, or write data to,
      another computer just as if you were reading from or writing to a file.
      The socket class hierarchy is somewhat confusing, but the details are
      not important in the following examples. Internet clients use the
      TCPSocket class, and Internet servers
      use the TCPServer class (also a
      socket). All socket classes are part of the standard library, so to use
      them in your Ruby program, you must first write:
require 'socket'

A Very Simple Client



To write Internet client applications, use the TCPSocket class.
        Obtain a TCPSocket instance with the TCPSocket.open class method, or with its synonym TCPSocket.new. Pass the name of the host to
        connect to as the first argument and the port as the second argument.
        (The port should be an integer between 1 and 65535, specified as a
        Fixnum or String object. Different internet protocols
        use different ports. Web servers use port 80 by default, for example.
        You may also pass the name of an Internet service, such as “http”, as
        a string, in place of a port number, but this is not well documented
        and may be system dependent.)
Once you have a socket open, you can read from it like any
        IO object. When done, remember to
        close it, as you would close a file. The following code is a very
        simple client that connects to a given host and port, reads any
        available data from the socket, and then exits:
require 'socket'                # Sockets are in standard library

host, port = ARGV               # Host and port from command line

s = TCPSocket.open(host, port)  # Open a socket to host and port
while line = s.gets             # Read lines from the socket
  puts line.chop                # And print with platform line terminator
end
s.close                         # Close the socket when done

Like File.open, the TCPSocket.open method can be invoked with a
        block. In that form, it passes the open socket to the block and
        automatically closes the socket when the block returns. So we can also
        write this code like this:
require 'socket'                  
host, port = ARGV                 
TCPSocket.open(host, port) do |s| # Use block form of open
  while line = s.gets             
    puts line.chop                
  end
end                               # Socket automatically closed

This client code is for use with services like the old-style
        (and now defunct) Unix “daytime”
        service. With services like these, the client doesn’t make a query;
        the client simply connects and the server sends a response. If you
        can’t find an Internet host running a server to test the client with,
        don’t despair—the next section shows how to write an equally simple
        time server.

A Very Simple Server



To write Internet servers, we use the TCPServer class. In essence, a TCPServer object is a factory for TCPSocket objects. Call TCPServer.open to specify a port for your
        service and create a TCPServer
        object. Next, call the accept
        method of the returned TCPServer
        object. This method waits until a client connects to the port you
        specified, and then returns a TCPSocket object that represents the
        connection to that client.
The following code shows how we might write a simple time
        server. It listens for connections on port 2000. When a client
        connects to that port, it sends the current time to the client and
        closes the socket, thereby terminating the connection with the
        client:
require 'socket'               # Get sockets from stdlib

server = TCPServer.open(2000)  # Socket to listen on port 2000
loop {                         # Infinite loop: servers run forever
  client = server.accept       # Wait for a client to connect
  client.puts(Time.now.ctime)  # Send the time to the client
  client.close                 # Disconnect from the client
}

To test this code, run it in the background or in another
        terminal window. Then, run the simple client code from above with a
        command like this:
ruby client.rb localhost 2000


Datagrams



Most Internet protocols are implemented using TCPSocket and TCPServer, as shown earlier. A
        lower-overhead alternative is to use UDP datagrams, with the UDPSocket class. UDP allows computers to
        send individual packets of data to other computers, without the
        overhead of establishing a persistent connection. The following client
        and server code demonstrate: the client sends a datagram containing a
        string of text to a specified host and port. The server, which should
        be running on that host and listening on that port, receives the text,
        converts it to uppercase (not much of a service, I know), and sends it
        back in a second datagram.
The client code is first. Note that although UDPSocket objects are IO objects, datagrams are pretty different
        from other IO streams. For this
        reason, we avoid using IO methods
        and use the lower-level sending and receiving methods of UDPSocket. The second argument to the
        send method specifies flags. It is
        required, even though we are not setting any flags. The argument to
        recvfrom specifies the maximum
        amount of data we are interested in receiving. In this case, we limit
        our client and server to transferring 1 kilobyte:
require 'socket'                     # Standard library

host, port, request = ARGV           # Get args from command line

ds = UDPSocket.new                   # Create datagram socket
ds.connect(host, port)               # Connect to the port on the host
ds.send(request, 0)                  # Send the request text
response,address = ds.recvfrom(1024) # Wait for a response (1kb max)
puts response                        # Print the response

The server code uses the UDPSocket class just as the client code
        does—there is no special UDPServer
        class for datagram-based servers. Instead of calling connect to connect the socket, our server
        calls bind to tell the socket what
        port to listen on. The server then uses send and recvfrom, just as the client does, but in
        the opposite order. It calls recvfrom to wait until it receives a
        datagram on the specified port. When that happens, it converts the
        text it receives to uppercase and sends it back. An important point to
        notice is that the recvfrom method
        returns two values. The first is the received data. The second is an
        array containing information about where that data came from. We
        extract host and port information from that array and use it to send
        the response back to the client:
require 'socket'                     # Standard library

port = ARGV[0]                       # The port to listen on

ds = UDPSocket.new                   # Create new socket
ds.bind(nil, port)                   # Make it listen on the port
loop do                              # Loop forever
  request,address=ds.recvfrom(1024)  # Wait to receive something
  response = request.upcase          # Convert request text to uppercase
  clientaddr = address[3]            # What ip address sent the request?
  clientname = address[2]            # What is the host name?
  clientport = address[1]            # What port was it sent from
  ds.send(response, 0,               # Send the response back...
          clientaddr, clientport)    # ...where it came from
  # Log the client connection
  puts "Connection from: #{clientname} #{clientaddr} #{clientport}"
end


A More Complex Client



The following code is a more fully developed Internet client in
        the style of telnet. It connects to the specified
        host and port and then loops, reading a line of input from the
        console, sending it to the server, and then reading and printing the
        server’s response. It demonstrates how to determine the local and
        remote addresses of the network connection, adds exception handling, and
        uses the IO methods read_nonblock and readpartial described earlier in this
        chapter. The code is well-commented and should be self-explanatory:
require 'socket'     # Sockets from standard library

host, port = ARGV    # Network host and port on command line

begin                # Begin for exception handling
  # Give the user some feedback while connecting.
  STDOUT.print "Connecting..."      # Say what we're doing
  STDOUT.flush                      # Make it visible right away
  s = TCPSocket.open(host, port)    # Connect
  STDOUT.puts "done"                # And say we did it

  # Now display information about the connection.
  local, peer = s.addr, s.peeraddr
  STDOUT.print "Connected to #{peer[2]}:#{peer[1]}"
  STDOUT.puts " using local port #{local[1]}"

  # Wait just a bit, to see if the server sends any initial message.
  begin
    sleep(0.5)                      # Wait half a second
    msg = s.read_nonblock(4096)     # Read whatever is ready
    STDOUT.puts msg.chop            # And display it
  rescue SystemCallError
    # If nothing was ready to read, just ignore the exception.
  end

  # Now begin a loop of client/server interaction.
  loop do
    STDOUT.print '> '   # Display prompt for local input
    STDOUT.flush        # Make sure the prompt is visible
    local = STDIN.gets  # Read line from the console
    break if !local     # Quit if no input from console

    s.puts(local)       # Send the line to the server
    s.flush             # Force it out

    # Read the server's response and print out.
    # The server may send more than one line, so use readpartial
    # to read whatever it sends (as long as it all arrives in one chunk).
    response = s.readpartial(4096) # Read server's response
    puts(response.chop)            # Display response to user
  end
rescue           # If anything goes wrong
  puts $!        # Display the exception to the user
ensure           # And no matter what happens
  s.close if s   # Don't forget to close the socket
end


A Multiplexing Server



The simple time server shown earlier in this section never
        maintained a connection with any client—it would simply tell the
        client the time and disconnect. Many more sophisticated servers maintain a
        connection, and in order to be useful, they must allow multiple
        clients to connect and interact at the same time. One way to do this
        is with threads—each client runs in its own thread. We’ll see an
        example of a multithreaded server later in this chapter. The
        alternative that we’ll consider here is to write a multiplexing server
        using the Kernel.select
        method.
When a server has multiple clients connected, it cannot call a
        blocking method like gets on the
        socket of any one client. If it blocks waiting for input from one
        client, it won’t be able to receive input from other clients or accept
        connections from new clients. The select method solves this problem; it allows
        us to block on a whole array of IO
        objects, and returns when there is activity on any one of those
        objects. The return value of select
        is an array of arrays of IO
        objects. The first element of the array is the array of streams
        (sockets, in this case) that have data to be read (or a connection to
        be accepted).
With that explanation of select, you should be able to understand the
        following server code. The service it implements is trivial—it simply
        reverses each line of client input and sends it back. It is the
        mechanism for handling multiple connections that is interesting. Note
        that we use select to monitor both
        the TCPServer object and each of
        the client TCPSocket objects. Also
        note that the server handles the case where a client asks to
        disconnect as well as the case where the client disconnects
        unexpectedly:
# This server reads a line of input from a client, reverses
# the line and sends it back. If the client sends the string "quit"
# it disconnects. It uses Kernel.select to handle multiple sessions.

require 'socket'           

server = TCPServer.open(2000) # Listen on port 2000
sockets = [server]            # An array of sockets we'll monitor
log = STDOUT                  # Send log messages to standard out
while true                    # Servers loop forever
  ready = select(sockets)     # Wait for a socket to be ready
  readable = ready[0]         # These sockets are readable

  readable.each do |socket|         # Loop through readable sockets
    if socket == server             # If the server socket is ready
      client = server.accept        # Accept a new client
      sockets << client             # Add it to the set of sockets
      # Tell the client what and where it has connected.
      client.puts "Reversal service v0.01 running on #{Socket.gethostname}"
      # And log the fact that the client connected
      log.puts "Accepted connection from #{client.peeraddr[2]}"
    else                            # Otherwise, a client is ready
      input = socket.gets           # Read input from the client

      # If no input, the client has disconnected
      if !input   
        log.puts "Client on #{socket.peeraddr[2]} disconnected."
        sockets.delete(socket)      # Stop monitoring this socket
        socket.close                # Close it
        next                        # And go on to the next
      end

      input.chop!                   # Trim client's input
      if (input == "quit")          # If the client asks to quit
        socket.puts("Bye!");        # Say goodbye
        log.puts "Closing connection to #{socket.peeraddr[2]}"
        sockets.delete(socket)      # Stop monitoring the socket
        socket.close                # Terminate the session
      else                          # Otherwise, client is not quitting
        socket.puts(input.reverse)  # So reverse input and send it back
      end
    end
  end
end


Fetching Web Pages



We can use the socket library to implement any Internet
        protocol. Here, for example, is code to fetch the content of a web
        page:
require 'socket'           # We need sockets
 
host = 'www.example.com'   # The web server
port = 80                  # Default HTTP port
path = "/index.html"       # The file we want 

# This is the HTTP request we send to fetch a file
request = "GET #{path} HTTP/1.0\r\n\r\n"

socket = TCPSocket.open(host,port)  # Connect to server
socket.print(request)               # Send request
response = socket.read              # Read complete response
# Split response at first blank line into headers and body
headers,body = response.split("\r\n\r\n", 2) 
print body                          # And display it

HTTP is a complex protocol, and the simple code above only
        really handles straightforward cases. You might prefer to use a
        prebuilt library like Net::HTTP for
        working with HTTP. Here is code that does the equivalent of the
        previous code:
require 'net/http'         # The library we need
host = 'www.example.com'   # The web server
path = '/index.html'       # The file we want 

http = Net::HTTP.new(host)      # Create a connection
headers, body = http.get(path)  # Request the file
if headers.code == "200"        # Check the status code   
                                # NOTE: code is not a number!
  print body                    # Print body if we got it
else                            # Otherwise
  puts "#{headers.code} #{headers.message}" # Display error message
end

Similar libraries exist for working with the FTP, SMTP, POP, and
        IMAP protocols. Details of those standard libraries are beyond the
        scope of this book.
Finally, recall that the open-uri library described earlier in the
        chapter makes fetching a web page even easier:
require 'open-uri'
open("http://www.example.com/index.html") {|f|
  puts f.read
}



Threads and Concurrency



Traditional programs have a single “thread of execution”: the
      statements or instructions that comprise the program are executed
      sequentially until the program terminates. A
      multithreaded program has more than one thread of execution. Within each
      thread, statements are executed sequentially, but the threads themselves
      may be executed in parallel—on a multicore CPU, for example. Often (on
      single-core, single-CPU machines,
      for instance), multiple threads are not actually executed in parallel,
      but parallelism is simulated by
      interleaving the execution of the threads.
Programs such as image processing software that perform a lot of
      calculations are said to be compute-bound. They can only benefit
      from multithreading if there are actually multiple CPUs to run
      computations in parallel. Most programs are not fully compute-bound,
      however. Many, such as web browsers, spend most of their time waiting
      for network or file I/O. Programs like these are said to be
      IO-bound. IO-bound programs can be usefully multithreaded even when
      there is only a single CPU available. A web browser might render an
      image in one thread while another thread is waiting for the next image
      to be downloaded from the network.
Ruby makes it easy to write multi-threaded programs with the
      Thread class. To start a new thread,
      just associate a block with a call to Thread.new. A new thread will be created to execute the code in the
      block, and the original thread will return from Thread.new immediately and resume execution
      with the next statement:
# Thread #1 is running here
Thread.new {
  # Thread #2 runs this code
}
# Thread #1 runs this code

We’ll begin our coverage of threads by explaining Ruby’s thread
      model and API in some detail. These introductory sections explain things
      such as thread lifecycle, thread scheduling, and thread states. With
      that introductory material as prerequisite, we move on to present
      example code and to cover advanced topics such as thread synchronization.
Finally, it is worth noting that Ruby programs can also achieve
      concurrency at the level of the operating system process by running
      external executables or by forking new copies of the Ruby interpreter.
      Doing this is operating system-dependent, however, and is covered only
      briefly in Chapter 10. For further information, use
      ri to look up the methods Kernel.system, Kernel.exec, Kernel.fork, IO.popen, and the module Process.
Threads and Platform Dependencies
Different operating systems implement threads differently. And
        different Ruby implementations layer Ruby threads on top of operating
        system threads differently. The standard C implementation of Ruby 1.8,
        for example, uses only a single native thread and runs
        all Ruby threads within that one native thread. This means that in
        Ruby 1.8 threads are very lightweight, but that they never run in
        parallel, even on multicore CPUs.
Ruby 1.9 is different: it allocates a native thread for each
        Ruby thread. But because some of the C libraries used in this
        implementation are not themselves thread-safe, Ruby 1.9 is very
        conservative and never allows more than one of its native threads to
        run at the same time. (This restriction may be relaxed in later
        releases of 1.9, if the C code can be made thread-safe.)
JRuby, the Java implementation of Ruby, maps each Ruby thread to
        a Java thread. But the implementation and behavior of Java threads
        depends, in turn, on the implementation of the Java virtual machine.
        Modern Java implementations typically implement Java threads as native
        threads and allow true parallel processing on multicore CPUs.

Thread Lifecycle



As described above, new threads are created with Thread.new. You can also use the synonyms
        Thread.start and Thread.fork. There is no need to start a
        thread after creating it; it begins running automatically when CPU
        resources become available. The value of the Thread.new invocation is a Thread object. The Thread class defines a number of methods to
        query and manipulate the thread while it is running.
A thread runs the code in the block associated with the call to
        Thread.new and then it stops
        running. The value of the last expression in that block is the value
        of the thread, and can be obtained by calling the value method of the Thread object. If the thread has run to
        completion, then the value returns
        the thread’s value right away. Otherwise, the value method blocks and does not return
        until the thread has completed.
The class method Thread.current returns the Thread object that represents the current
        thread. This allows threads to manipulate themselves. The class method
        Thread.main returns the Thread object that represents the main
        thread—this is the initial thread of execution that began when the
        Ruby program was started.
The main thread



The main thread is special: the Ruby interpreter stops running
          when the main thread is done. It does this even if the main thread
          has created other threads that are still running. You must ensure,
          therefore, that your main thread does not end while other threads
          are still running. One way to do this is to write your main thread
          in the form of an infinite loop. Another way is to explicitly wait
          for the threads you care about to complete. We’ve already mentioned
          that you can call the value
          method of a thread to wait for it to finish. If you don’t care about
          the value of your threads, you can wait with the join method instead.
The following method waits until all threads, other than the
          main thread and the current thread (which may be the same thing),
          have exited:
# Wait for all threads (other than the current thread and
# main thread) to stop running.
# Assumes that no new threads are started while waiting.
def join_all
  main = Thread.main        # The main thread
  current = Thread.current  # The current thread
  all = Thread.list         # All threads still running
  # Now call join on each thread
  all.each {|t| t.join unless t == current or t == main }
end


Threads and unhandled exceptions



If an exception is raised in the main thread, and is not handled anywhere, the Ruby
          interpreter prints a message and exits. In threads other than the
          main thread, unhandled exceptions cause the thread to stop running.
          By default, however, this does not cause the interpreter to print a
          message or exit. If a thread t
          exits because of an unhandled exception, and another thread s calls t.join or t.value, then the exception that occurred in t is raised in the thread s.
If you would like any unhandled exception in any
          thread to cause the interpreter to exit, use the class
          method Thread.abort_on_exception=:
Thread.abort_on_exception = true

If you want an unhandled exception in one particular thread to
          cause the interpreter to exit, use the instance method by the same
          name:
t = Thread.new { ... }
t.abort_on_exception = true



Threads and Variables



One of the key features of threads is that they can share access to variables.
        Because threads are defined by blocks, they have access to whatever
        variables (local variables, instance variables, global variables, and
        so on) are in the scope of the block:
x = 0

t1 = Thread.new do
  # This thread can query and set the variable x
end

t2 = Thread.new do
  # This thread and also query and set x
  # And it can query and set t1 and t2 as well.   
end

When two or more threads read and write the same variables
        concurrently, they must be careful that they do so correctly. We’ll
        have more to say about this when we consider thread synchronization
        below.
Thread-private variables



Variables defined within the block of a thread are private to
          that thread and are not visible to any other thread. This is simply
          a consequence of Ruby’s variable scoping rules.
We often want a thread to have its own private copy of a
          variable so that its behavior does not change if the value of that
          variable changes. Consider the following code, which attempts to
          create three threads that print (respectively) the numbers 1, 2,
          and 3:
n = 1
while n <= 3
  Thread.new { puts n }
  n += 1
end 

In some circumstances, in some implementations, this code
          might work as expected and print the numbers 1, 2,
          and 3. In other circumstances or
          in other implementations, it might not. It is perfectly possible (if
          newly created threads do not run right away) for the code to print
          4, 4, and 4, for example. Each thread reads a shared
          copy of the variable n, and the
          value of that variable changes as the loop executes. The value
          printed by the thread depends on when that thread runs in relation
          to the parent thread.
To solve this problem, we pass the current value of n to the Thread.new method, and assign the current
          value of that variable to a block parameter. Block parameters are
          private to the block (but see Blocks and Variable Scope for
          cautions), and this private value is not shared between
          threads:
n = 1
while n <= 3
  # Get a private copy of the current value of n in x
  Thread.new(n) {|x| puts x }
  n += 1
end 

Note that another way to solve this problem is to use an
          iterator instead of a while loop.
          In this case, the value of n is
          private to the outer block and never changes during the execution of
          that block:
1.upto(3) {|n| Thread.new { puts n }}


Thread-local variables



Certain of Ruby’s special global variables are
          thread-local: they may have different values in
          different threads. $SAFE (see
          Security) and $~
          (see Table 9-3) are examples. This means
          that if two threads are performing regular expression matching
          concurrently, they will see different values of $~, and performing a match in one thread
          will not interfere with the results of a match performed in another
          thread.
The Thread class provides
          hash-like behavior. It defines []
          and []= instance methods that
          allow you to associate arbitrary values with any symbol. (If you use
          a string instead, it will be converted to a symbol. Unlike true
          hashes, the Thread class only
          allows symbols as keys.) The values associated with these symbols
          behave like thread-local variables. They are not private like
          block-local variables because any thread can look up a value in any
          other thread. But they are not shared variables either, since each
          thread can have its own copy.
As an example, suppose that we’ve created threads to download
          files from a web server. The main thread might want to monitor the
          progress of the download. To enable this, each thread might do the
          following:
Thread.current[:progress] = bytes_received

The main thread could then determine the total bytes
          downloaded with code like this:
total = 0
download_threads.each {|t| total += t[:progress] }

Along with [] and []=, Thread also defines a key? method to test whether a given key
          exists for a thread. The keys
          method returns an array of symbols representing the defined keys for
          the thread. This code could be better written as follows, so that it
          works for threads that have not yet started running and have not
          defined the :progress key yet:
total = 0
download_threads.each {|t| total += t[:progress] if t.key?(:progress)}



Thread Scheduling



Ruby interpreters often have more threads to run than there are CPUs available to
        run them. When true parallel processing is not possible, it is
        simulated by sharing a CPU among threads. The process for sharing a
        CPU among threads is called thread scheduling. Depending on the
        implementation and platform, thread scheduling may be done by the Ruby
        interpreter, or it may be handled by the underlying operating
        system.
Thread priorities



The first factor that affects thread scheduling is
          thread priority: high-priority threads are scheduled before low-priority threads.
          More precisely, a thread will only get CPU time if there are no
          higher-priority threads waiting to run.
Set and query the priority of a Ruby Thread object with priority= and priority. Note that there is no way to set
          the priority of a thread before it starts running. A thread can,
          however, raise or lower its own priority as the first action it
          takes.
A newly created thread starts at the same priority as the
          thread that created it. The main thread starts off at priority
          0.
Like many aspects of threading, thread priorities are
          dependent on the implementation of Ruby and on the underlying
          operating system. Under Linux, for example, nonprivileged threads
          cannot have their priorities raised or lowered. So in Ruby 1.9 (which uses native threads) on Linux, the
          thread priority setting is ignored.

Thread preemption and Thread.pass



When multiple threads of the same priority need to share the CPU, it is up to
          the thread scheduler to decide when, and for how long, each thread
          runs. Some schedulers are preempting, which means that they allow a
          thread to run only for a fixed amount of time before allowing
          another thread of the same priority to run. Other schedulers are not
          preempting: once a thread starts running, it keeps running unless it
          sleeps, blocks for I/O, or a higher-priority thread wakes up.
If a long-running compute-bound thread (i.e., one that does
          not ever block for I/O) is running on a nonpreempting scheduler, it
          will “starve” other threads of the same priority, and they will
          never get a chance to run. To avoid this issue, long-running
          compute-bound threads should periodically call Thread.pass to ask the scheduler to yield
          the CPU to another thread.


Thread States



A Ruby thread may be in one of five possible states. The two
        most interesting states are for live threads: a thread that is
        alive is runnable or
        sleeping. A runnable thread is one that is
        currently running, or that is ready and eligible to run the next time
        there are CPU resources for it. A sleeping thread is one that is
        sleeping (see Kernel.sleep), that
        is waiting for I/O, or that has stopped itself (see Thread.stop below). Threads typically go
        back and forth between the runnable and sleeping states.
There are two thread states for threads that are no longer
        alive. A terminated thread has either terminated normally or has
        terminated abnormally with an exception.
Finally, there is one transitional state. A thread that has been
        killed (see Thread.kill below) but
        that has not yet terminated is said to be
        aborting.
Querying thread state



The Thread class defines
          several instance methods for testing the status of a thread.
          alive? returns true if a thread is runnable or sleeping.
          stop? returns true if a thread is in any state other
          than runnable. Finally, the status method returns the state of the
          thread. There are five possible return values corresponding to the
          five possible states as shown in the following table.
	Thread state	Return value
	Runnable	"run"
	Sleeping	"sleep"
	Aborting	"aborting"
	Terminated normally	false
	Terminated with exception	nil



Altering state: pausing, waking, and killing threads



Threads are created in the runnable
          state, and are eligible to run right away. A thread can pause
          itself—enter the sleeping state—by calling
          Thread.stop. This is a class
          method that operates on the current thread—there is no equivalent
          instance method, so one thread cannot force another thread to pause.
          Calling Thread.stop is
          effectively the same thing as calling Kernel.sleep with no argument: the thread
          pauses forever (or until woken up, as explained below).
Threads also temporarily enter the
          sleeping state if they call Kernel.sleep with an argument. In this case, they
          automatically wake up and reenter the runnable
          state after (approximately) the specified number of seconds pass.
          Calling blocking IO methods may
          also cause a thread to sleep until the IO operation completes—in fact, it is the
          inherent latency of IO operations
          that makes threading worthwhile even on single-CPU systems.
A thread that has paused itself with Thread.stop or Kernel.sleep can be started again (even if
          the sleep time has not expired yet) with the instance methods
          wakeup and run. Both methods switch the thread from
          the sleeping state to the
          runnable state. The run method also invokes the thread
          scheduler. This causes the current thread to yield the CPU, and may
          cause the newly awoken thread to start running right away. The
          wakeup method wakes the specified
          thread without yielding the CPU.
A thread can switch itself from the
          runnable state to one of the
          terminated states simply by exiting its block
          or by raising an exception. Another way for a thread to terminate
          normally is by calling Thread.exit. Note that any ensure clauses are processed before a
          thread exits in this way.
A thread can forcibly terminate another thread by invoking the
          instance method kill on the thread to be terminated. terminate and exit are synonyms for kill. These methods put the killed thread
          into the terminated normally state. The killed
          thread runs any ensure clauses
          before it actually dies. The kill! method (and its synonyms terminate! and
          exit!) terminate a thread but do
          not allow any ensure clauses to
          run.
The thread termination methods described so far all force a
          thread to the terminated normally state. You
          can raise an exception within another thread with the instance
          method raise. If the thread
          cannot handle the exception you have imposed on it, it will enter
          the terminated with exception state. The
          threads ensure clauses are processed as they would normally be
          during the course of exception propagation.
Killing a thread is a dangerous thing to do unless you have
          some way of knowing that the thread is not in the middle of altering
          the shared state of your system. Killing a thread with one of the
          ! methods is even more dangerous
          because the killed thread may leave files, sockets, or other
          resources open. If a thread must be able to exit upon command, it is
          better to have it periodically check the state of a flag variable
          and terminate itself safely and gracefully if or when the flag
          becomes set.


Listing Threads and Thread Groups



The Thread.list method
        returns an array of Thread objects
        representing all live (running or sleeping) threads. When a thread
        exits, it is removed from this array.
Every thread other than the main thread is created by some other
        thread. Threads could, therefore, be organized into a tree structure,
        with every thread having a parent and a set of children. The Thread class does not maintain this
        information, however: threads are usually considered autonomous rather
        than subordinate to the thread that created them.
If you want to impose some order onto a subset of threads, you
        can create a ThreadGroup object and
        add threads to it:
group = ThreadGroup.new
3.times {|n| group.add(Thread.new { do_task(n) }}

New threads are initially placed in the group to which their
        parent belongs. Use the instance method group to query the ThreadGroup to which a thread belongs. And
        use the list method of ThreadGroup to obtain an array of threads in
        a group. Like the class method Thread.list,
        the instance method ThreadGroup.list returns only threads that have not terminated yet. You
        can use this list method to define
        methods that operate on all threads in a group. Such a method might
        lower the priority of all threads in the group, for example.
The feature of the ThreadGroup class that makes it more useful
        than a simple array of threads is its enclose method. Once a thread group has been
        enclosed, threads may not be removed from it and new threads cannot be
        added to it. The threads in the group may create new threads, and
        these new threads will become members of the group. An enclosed
        ThreadGroup is useful when you run
        untrusted Ruby code under the $SAFE
        variable (see Security) and want to keep track of any
        threads spawned by that code.

Threading Examples



Now that we’ve explained Ruby’s thread model and thread API,
        we’ll take a look at some actual examples of multithreaded
        code.
Reading files concurrently



The most common use of Ruby’s threads is in programs that are
          IO-bound. They allow programs to keep busy even while waiting for
          input from the user, the filesystem, or the network. The following
          code, for example, defines a method conread (for concurrent read) that takes
          an array of filenames and returns a hash mapping those names to the
          contents of those files. It uses threads to read those files
          concurrently, and is really intended for use with the open-uri module, which allows HTTP and FTP
          URLs to be opened with Kernel.open and read as if they were
          files:
# Read files concurrently. Use with the "open-uri" module to fetch URLs.
# Pass an array of filenames. Returns a hash mapping filenames to content.
def conread(filenames)
  h = {}                            # Empty hash of results

  # Create one thread for each file
  filenames.each do |filename|      # For each named file
    h[filename] = Thread.new do     # Create a thread, map to filename
      open(filename) {|f| f.read }  # Open and read the file
    end                             # Thread value is file contents
  end

  # Iterate through the hash, waiting for each thread to complete.
  # Replace the thread in the hash with its value (the file contents)
  h.each_pair do |filename, thread| 
    begin
      h[filename] = thread.value    # Map filename to file contents
    rescue
      h[filename] = $!              # Or to the exception raised
    end
  end
end


A Multithreaded Server



Another, almost canonical, use case for threads is for writing servers that can
          communicate with more than one client at a time. We saw how to do
          this using multiplexing with Kernel.select, but a somewhat simpler
          (though possibly less scalable) solution uses threads:
require 'socket'

# This method expects a socket connected to a client.
# It reads lines from the client, reverses them and sends them back.
# Multiple threads may run this method at the same time.
def handle_client(c)
  while true
    input = c.gets.chop     # Read a line of input from the client
    break if !input         # Exit if no more input
    break if input=="quit"  # or if the client asks to.
    c.puts(input.reverse)   # Otherwise, respond to client.
    c.flush                 # Force our output out
  end
  c.close                   # Close the client socket
end


server = TCPServer.open(2000) # Listen on port 2000

while true                    # Servers loop forever
  client = server.accept      # Wait for a client to connect
  Thread.start(client) do |c| # Start a new thread 
    handle_client(c)          # And handle the client on that thread
  end
end


Concurrent iterators



Although IO-bound tasks are the typical use case for Ruby’s threads,
          they are not restricted to
          that use. The following code adds a method conmap (for concurrent map) to the
          Enumerable
          module. It works like map but
          processes each element of the input array using a separate
          thread:
module Enumerable           # Open the Enumerable module
  def conmap(&block)        # Define a new method that expects a block
    threads = []            # Start with an empty array of threads
    self.each do |item|     # For each enumerable item
      # Invoke the block in a new thread, and remember the thread
      threads << Thread.new { block.call(item) }
    end
    # Now map the array of threads to their values 
    threads.map {|t| t.value } # And return the array of values
  end
end

And here’s a similar concurrent version of the each iterator:
module Enumerable
  def concurrently
    map {|item| Thread.new { yield item }}.each {|t| t.join }
  end
end

The code is succinct and challenging: if you can make sense of
          it, you are well on your way to mastery of Ruby syntax and Ruby
          iterators.
Recall that in Ruby 1.9, standard iterators that are not
          passed a block return an enumerator object. This means that given
          the concurrently method defined
          earlier and a Hash object
          h, we can write:
h.each_pair.concurrently {|*pair| process(pair)}



Thread Exclusion and Deadlock



If two threads share access to the same data, and at least one of the
        threads modifies that data, you must take special care to ensure that
        no thread can ever see the data in an inconsistent state. This is
        called thread exclusion. A couple of examples will explain why it is
        necessary.
First, suppose that two threads are processing files and each
        thread increments a shared variable in order to keep track of the
        total number of files processed. The problem is that incrementing a
        variable is not an atomic operation. That means
        that it does not happen in a single step: to increment a variable, a
        Ruby program must read its value, add 1, and then store the new value back into
        the variable. Suppose that our counter is at 100, and imagine the following interleaved
        execution of the two threads. The first thread reads the value
        100, but before it can add 1, the scheduler stops running the first
        thread and allows the second thread to run. Now the second thread
        reads the value 100, adds 1, and stores 101 back into the counter variable. This
        second thread now starts to read a new file, which causes it to block
        and allows the first thread to resume. The first thread now adds
        1 to 100 and stores the result. Both threads have
        incremented the counter, but its value is 101 instead of 102.
Another classic example of the need for thread exclusion
        involves an electronic banking application. Suppose one thread is
        processing a transfer of money from a savings account to a checking
        account, and another thread is generating monthly reports to be sent
        out to customers. Without proper exclusion, the report-generation
        thread might read the customers’ account data after funds had been
        subtracted from savings but before they had been added to
        checking.
We resolve problems like these by using a cooperative locking
        mechanism. Each thread that wants to access shared data must first
        lock that data. The lock is represented by a
        Mutex (short for “mutual
        exclusion”) object. To lock a Mutex, you call its lock method. When you’re done reading or
        altering the shared data, you call the unlock method of the Mutex. The lock method blocks when called on a Mutex that’s already locked, and it does not
        return until the caller has successfully obtained a lock. If each
        thread that accesses the shared data locks and unlocks the Mutex correctly, no thread will see the data
        in an inconsistent state and we won’t have problems like those we’ve
        described.
Mutex is a core class in Ruby
        1.9 and is part of the standard thread library in Ruby 1.8. Instead of using
        the lock and unlock methods explicitly, it is more common
        to use the synchronize method and
        associate a block with it. synchronize locks the Mutex, runs the code in the block, and then
        unlocks the Mutex in an ensure clause so that exceptions are
        properly handled. Here is a simple model of our bank account example,
        using a Mutex object to synchronize
        thread access to shared account data:
require 'thread'  # For Mutex class in Ruby 1.8

# A BankAccount has a name, a checking amount, and a savings amount.
class BankAccount
  def init(name, checking, savings)
    @name,@checking,@savings = name,checking,savings 
    @lock = Mutex.new         # For thread safety
  end

  # Lock account and transfer money from savings to checking
  def transfer_from_savings(x)
    @lock.synchronize {
      @savings -= x
      @checking += x
    }
  end

  # Lock account and report current balances
  def report
    @lock.synchronize {
      "#@name\nChecking: #@checking\nSavings: #@savings"
    }
  end
end

Deadlock



When we start using Mutex
          objects for thread exclusion we must be careful to avoid
          deadlock. Deadlock is the condition that occurs
          when all threads are waiting to acquire a resource held by another
          thread. Because all threads are blocked, they cannot release the
          locks they hold. And because they cannot release the locks, no other
          thread can acquire those locks.
A classic deadlock scenario involves two threads and two
          Mutex objects. Thread 1 locks
          Mutex 1 and then attempts to lock
          Mutex 2. Meanwhile, thread 2
          locks Mutex 2 and then attempts
          to lock Mutex 1. Neither thread
          can acquire the lock it needs, and neither thread can release the
          lock the other one needs, so both threads block forever:
# Classic deadlock: two threads and two locks
require 'thread'

m,n = Mutex.new, Mutex.new

t = Thread.new {
  m.lock
  puts "Thread t locked Mutex m"
  sleep 1
  puts "Thread t waiting to lock Mutex n"
  n.lock
}

s = Thread.new {
  n.lock
  puts "Thread s locked Mutex n"
  sleep 1
  puts "Thread s waiting to lock Mutex m"
  m.lock
}

t.join
s.join

The way to avoid this kind of deadlock is to always lock
          resources in the same order. If the second thread locked m before locking n, then deadlock would not occur.
Note that deadlock is possible even without using Mutex objects. Calling join on a thread that calls Thread.stop will deadlock both threads,
          unless there is a third thread that can awaken the stopped
          thread.
Bear in mind that some Ruby implementations can detect simple
          deadlocks like these and abort with an error, but this is not
          guaranteed.


Queue and SizedQueue



The standard thread library
        defines the Queue and SizedQueue data
        structures specifically for concurrent programming. They implement
        thread-safe FIFO queues and are intended for a producer/consumer model
        of programming. Under this model, one thread produces values of some
        sort and places them on a queue with the enq (enqueue) method or its synonym push. Another thread “consumes” these
        values, removing them from the queue with the deq (dequeue) method as needed. (The
        pop and shift methods are synonyms for deq.)
The key features of Queue
        that make it suitable for concurrent programming is that the deq method blocks if the queue is empty and
        waits until the producer thread adds a value to the queue. The
        Queue and SizedQueue classes implement the same basic
        API, but the SizedQueue variant has
        a maximum size. If the queue is already at its maximum size, then the
        method for adding a value to the queue will block until the consumer
        thread removes a value from the queue.
As with Ruby’s other collection classes, you can determine the
        number of elements in a queue with size or length, and you can determine if a queue is
        empty with empty?. Specify the
        maximum size of a SizedQueue when
        you call SizedQueue.new. After
        creating a SizedQueue, you can
        query and alter its maximum size with max and max=.
Earlier in this chapter, we saw how to add a concurrent map
        method to the Enumerable module. We now define a
        method that combines a concurrent map with a concurrent inject. It creates a thread for each element
        of the enumerable collection and uses that thread to apply a mapping
        Proc. The value returned by that
        Proc is enqueued on a Queue object. One final thread acts as a
        consumer; it removes values from the queue and passes them to the
        injection Proc as they become
        available.
We call this concurrent injection method conject, and you could use it like this to
        concurrently compute the sum of the squares of the values in an array.
        Note that a sequential algorithm would almost certainly be faster for
        a simple sum-of-squares example
        like this:
a = [-2,-1,0,1,2]
mapper = lambda {|x| x*x }             # Compute squares
injector = lambda {|total,x| total+x } # Compute sum
a.conject(0, mapper, injector)         # => 10

The code for this conject
        method is as follows—note the use of a Queue object and its enq and deq methods:
module Enumerable
  # Concurrent inject: expects an initial value and two Procs
  def conject(initial, mapper, injector)
    # Use a Queue to pass values from mapping threads to injector thread
    q = Queue.new   
    count = 0                 # How many items?
    each do |item|            # For each item
      Thread.new do           # Create a new thread
        q.enq(mapper[item])   # Map and enqueue mapped value
      end
      count += 1              # Count items
    end

    t = Thread.new do         # Create injector thread
      x = initial             # Start with specified initial value
      while(count > 0)        # Loop once for each item
        x = injector[x,q.deq] # Dequeue value and inject
        count -= 1            # Count down
      end
      x                       # Thread value is injected value
    end

    t.value   # Wait for injector thread and return its value
  end
end


Condition Variables and Queues



There is something important to notice about the Queue class: the deq method can block. Normally, we only
        think of blocking as happening with IO methods (or when calling join on a thread or lock on a Mutex). In multithreaded programming,
        however, it is sometimes necessary to have a thread wait for some
        condition (outside of the control of that thread) to become true. In
        the case of the Queue class, the
        condition is the nonempty status of the queue: if the queue is empty,
        then a consumer thread must wait until a producer thread calls
        enq and makes the queue
        nonempty.
Making a thread wait until some other thread tells it that it
        can go again is accomplished most cleanly with a ConditionVariable. Like Queue, ConditionVariable is part of the standard
        thread library. Create a ConditionVariable with ConditionVariable.new. Make a thread wait on
        the condition with the wait method.
        Wake one waiting thread with signal. Wake all waiting threads with
        broadcast. There is one slightly
        tricky part to the use of condition variables: in order to make things
        work correctly, the waiting thread must pass a locked Mutex object to the wait method. This mutex will be temporarily
        unlocked while the thread waits, and it will be locked again when the
        thread wakes up.
We conclude our coverage of threads with a utility class that is
        sometimes useful in multithreaded programs. It is called Exchanger, and it allows two threads to swap
        arbitrary values. Suppose we have threads t1 and t2
        and an Exchanger object e. t1
        calls e.exchange(1). This method
        then blocks (using a ConditionVariable, of course) until t2 calls e.exchange(2). This second thread does not
        block, it simply returns 1—the
        value passed by t1. Now that the
        second thread has called exchange,
        t1 wakes up again and returns
        2 from the exchange method.
The Exchanger implementation
        shown here is somewhat complex, but it demonstrates a typical use of
        the ConditionVariable class. One
        interesting feature of this code is that it uses two Mutex objects. One of them is used to
        synchronize access to the exchange
        method and is passed to the wait
        method of the condition variable. The other Mutex is used to determine whether the
        calling thread is the first or the second thread to invoke exchange. Instead of using lock with this Mutex, this class uses the nonblocking
        try_lock method. If @first.try_lock returns true, then the calling thread is the first
        thread. Otherwise, it is the second thread:
require 'thread'

class Exchanger
  def initialize
    # These variables will hold the two values to be exchanged.
    @first_value = @second_value = nil
    # This Mutex protects access to the exchange method.
    @lock = Mutex.new
    # This Mutex allows us to determine whether we're the first or
    # second thread to call exchange.
    @first = Mutex.new
    # This ConditionVariable allows the first thread to wait for
    # the arrival of the second thread.
    @second = ConditionVariable.new
  end

  # Exchange this value for the value passed by the other thread.
  def exchange(value)
    @lock.synchronize do      # Only one thread can call this method at a time
      if @first.try_lock      # We are the first thread
        @first_value = value  # Store the first thread's argument
        # Now wait until the second thread arrives.
        # This temporarily unlocks the Mutex while we wait, so 
        # that the second thread can call this method, too
        @second.wait(@lock)   # Wait for second thread 
        @first.unlock         # Get ready for the next exchange
        @second_value         # Return the second thread's value
      else                    # Otherwise, we're the second thread
        @second_value = value # Store the second value
        @second.signal        # Tell the first thread we're here
        @first_value          # Return the first thread's value
      end
    end
  end
end



Chapter 10. The Ruby Environment



[image: image with no caption]

This chapter is a catch-all for Ruby programming topics that have not
    been discussed elsewhere. Most of the features covered here have to do
    with the interface between Ruby and the operating system on which it is
    running. As such, some of these features are OS-dependent. Similarly, many
    of the features may be implementation dependent: not every Ruby
    interpreter will implement them in the same way. Topics covered include:
	The Ruby interpreter’s command-line arguments and environment
        variables.

	The top-level execution environment: global functions,
        variables, and constants.

	Shortcuts for text processing scripts: global functions,
        variables, and interpreter options, usually inspired by the Perl
        programming language, that make it possible to write short but
        powerful Ruby programs for processing text files.

	OS commands: running shell commands and invoking executables in
        the underlying operating system. These are features that allow Ruby to
        be used as a scripting or “glue” language.

	Security: how to reduce the risk of SQL injection and similar
        attacks with Ruby’s tainting mechanism, and how to “sandbox” untrusted
        Ruby code with $SAFE execution levels.



Invoking the Ruby Interpreter



The standard C-based Ruby implementation is invoked from the command line like
      this:
ruby [options] [--] program [arguments]

options is zero or more command-line arguments that affect the operation
      of the interpreter. The legal
      arguments are described shortly.
program is the name of the file that
      holds the Ruby program to be run. If the name of the program begins with
      a hyphen, precede it with -- to force
      it to be treated as a program name rather than as an option. If you use
      a single hyphen as the program name, or omit
      program and
      arguments altogether, the interpreter will
      read program text from standard input.
Finally, arguments is any number of
      additional tokens on the command line. These tokens become the elements
      of the ARGV array.
The subsections that follow describe the options supported by the
      standard C-based Ruby implementation. Note that you may set the
       RUBYOPT environment
      variable to include any of the -W,
      -w, -v, -d,
      -I, -r, -K,
      -E, and -T options. These will automatically be
      applied to every invocation of the interpreter, as if they were
      specified on the command line, unless the command line
      includes --disable-rubyopt.
Common Options



The following options are probably the most commonly used. Most
        Ruby implementations can be expected to support these options or to
        provide a work-alike alternative:
	-w
	This option enables warnings about deprecated or problematic code and
              sets $VERBOSE to true. Many Ruby programmers use this
              option routinely to ensure that their code is clean.

	-e
            script
	This option runs the Ruby code in script.
              If more than one -e option is
              specified, their associated scripts are treated as separate
              lines of code. Also, if one or more -e option is specified, the
              interpreter does not load or run any
              program specified on the command
              line.
To enable succinct one-liner scripts, Ruby code specified
              with the -e option may use
              the Regexp matching shortcut
              explained later in this chapter.

	-I
            path
	This option adds the directories in path to the
              beginning of the global $LOAD_PATH array. This specifies
              directories to be searched by the load and require methods (but does not affect
              the loading of the program specified
              on the command line).
Multiple -I options may
              appear in the command line and each may list one or more
              directories. If multiple directories are specified with a single
              -I option, they should be
              separated from each other with : on Unix and Unix-like systems and
              with ; on Windows
              systems.

	-r
            library
	This option loads the specified library before running
              the specified program. This option works as if the first line of
              the program were:
require 'library'

The space between the -r and the name of the library is
              optional and often omitted.

	-rubygems
	This frequently used command-line argument is not a true
              option but simply a clever application of the -r option. It loads the module named
              ubygems (with no r) from the
              standard library. Conveniently, the ubygems module simply loads the real
              rubygems module. Ruby 1.9 can
              load installed gems without this module, so this option is only
              necessary in Ruby 1.8.

	--disable-gems
	This Ruby 1.9 option prevents the addition of gem
              installation directories to the default load path. If you have
              many gems installed, and you are running a program that does not
              use those gems (or a program that explicitly manages its own
              dependencies with the gem
              method), you may find that your program startup time is reduced
              with this option.

	-d
--debug
	These options set the global variables $DEBUG and $VERBOSE to true. Your program, or library code,
              used by your program may print debugging output or take other
              action when these variables are set.

	-h
	This option displays a list of interpreter options and
              exits.




Warnings and Information Options



The following options control the type or the amount of
        information the Ruby interpreter
        displays:
	-W
-W2
--verbose
	These are all synonyms for -w: they enable verbose warnings and
              set $VERBOSE to true.

	-W0
	This option suppresses all warnings.

	-v
	This option prints the Ruby version number. If no program is specified,
              it exits rather than reading a program from standard input. If a
              program is specified, run it as if --verbose (or -w) had been specified.

	--version
--copyright
--help
	These options print Ruby version number, copyright information, or
              command-line help and exit. --help is a synonym for -h. --version differs from -v in that it never runs a specified
              program.




Encoding Options



The following options are used to specify the default
        external encoding of the Ruby process and the default source encoding
        for files that do not specify their own encoding with a coding
        comment. If none of these options is specified, then the default
        external encoding is derived from the locale and the default source
        encoding is ASCII (see Program Encoding for more on
        source encoding and default external encoding):
	-K
            code
	In Ruby 1.8, this option specifies the source encoding of
              the script and sets the global variable $KCODE. In Ruby 1.9, it sets the
              default external encoding of the Ruby process and specifies a
              default source encoding.
Specify a code of a, A, n, or N for ASCII; u or U for Unicode; e or E for EUC-JP; and s or S for SJIS. (EUC-JP and SJIS are
              common Japanese encodings.)

	-E
            encodings
--encoding=
            encodings
	These Ruby 1.9 options allow you to specify the default external
              encoding, the default internal encoding or both. The
              encodings string is the
              case-insensitive name of one or two encodings, separated by a
              colon. To specify just a default external encoding, simply use
              the name of the desired encoding. To specify two encodings, list
              the default external first, followed by a colon and the default
              internal. To specify just a default internal encoding, use a
              colon followed by the default internal encoding name.

	-U
	Specifies a default internal encoding of UTF-8. Equivalent
              to --encoding=:utf-8.




Text Processing Options



The following options alter Ruby’s default text processing behavior, or are
        helpful when writing one-line scripts with the -e option:
	-0
            xxx
	This option is the digit 0, not the letter O.
              xxx should be between zero and three
              octal digits. When specified, these digits are the ASCII code of
              the input record separator character and set the $/ variable. This defines “a line” for
              gets and similar methods.
              -0 by itself sets $/ to character code 0. -00 is special; it puts Ruby into
              “paragraph mode” in which lines are separated by two adjacent
              newline characters.

	-a
	This option automatically splits each line of input into fields and stores
              the fields in $F. This option
              only works with -n or
              -p looping options and adds
              the code $F =
              $_.split at the start of each iteration. See also
              -F.

	-F
            fieldsep
	This option sets the input field separator $;
              to fieldsep. This affects the
              behavior of split when called
              with no arguments. See -a.
fieldsep may be a
              single character or an arbitrary regular expression, without the
              delimiting slashes. Depending on your shell, you may need to
              quote or double the backslashes in any regular expression
              specified on the command line.

	-i
            [ext]
	This option edits the files specified on the command line in place.
              Lines are read from the files specified on the command line, and
              output goes back to those same files. If
              ext is specified, a backup copy of
              the files is made, adding ext to the
              filename.

	-l
	This option makes the output record separator $\ the same as the input record
              separator $/ (see -0), so that that line ending is
              automatically added to text output with print. This option is intended for use
              with -p or -n. When used with one of those
              options, it automatically calls chop to remove the input record
              separator from each line of input.

	-n
	This option runs the program as if it were enclosed in the following
              loop:
while gets             # Read a line of input into $_
  $F = split if $-a    # Split $_ into fields if -a was specified
  chop! if $-l         # Chop line ending off $_ if -l was specified
  # Program text here
end

This option works in Ruby 1.9 even though the global
              functions chop! and split are no longer available in that
              version of the language.
This option is often used with -e. See also -p.

	-p
	This option runs the program as if it were written in the following
              loop:
while gets             # Read a line of input into $_
  $F = split if $-a    # Split $_ into fields if -a was specified
  chop! if $-l         # Chop line ending off $_ if -l was specified
  # Program text here
  print                # Output $_ (adding $/ if -l was specified)
end

This option works in Ruby 1.9 even though the global
              functions chop! and split are no longer available in that
              version of the language.
This option is often used with -e. See also -n.




Miscellaneous Options



The following options don’t fit into any of the previous
        categories:
	-c
	This option parses the program and report any syntax errors, but does
              not run it.

	-C
            dir
-X
            dir
	These options change the current directory to dir before running the program.

	-s
	When this option is specified, the interpreter
              preprocesses any arguments that appear after the program name
              and begin with a hyphen. For arguments of the form -x=y, it sets $x to y. For arguments of the form -x, it sets $x to true. The preprocessed arguments are
              removed from ARGV.

	-S
	This option looks for the specified program file relative to the
              path specified in the RUBY_PATH environment variable. If it
              is not found there, it looks for it relative to the PATH environment variable. And if it
              is still not found, it looks for it normally.

	-T
            n
	This option sets $SAFE
              to n, or to 1 if
              n is omitted. See Security for more.

	-x
            [dir]
	This option extracts Ruby source from the program file by discarding any lines
              before the first that starts #!ruby. For compatibility with the
              capital -X option, this
              option also allows a directory to be specified.






The Top-Level Environment



When the Ruby interpreter starts, a number of classes,
      modules, constants, and global variables and global functions are
      defined and available for use by programs. The subsections that follow list these
      predefined features.
Predefined Modules and Classes



When the Ruby 1.8 interpreter starts, the following modules are
        defined:
Comparable      FileTest        Marshal         Precision
Enumerable      GC              Math            Process
Errno           Kernel          ObjectSpace     Signal

These classes are defined on startup:
Array           File            Method          String
Bignum          Fixnum          Module          Struct
Binding         Float           NilClass        Symbol
Class           Hash            Numeric         Thread
Continuation    IO              Object          ThreadGroup
Data            Integer         Proc            Time
Dir             MatchData       Range           TrueClass
FalseClass      MatchingData    Regexp          UnboundMethod

The following exception classes are also defined:
ArgumentError           NameError               SignalException
EOFError                NoMemoryError           StandardError
Exception               NoMethodError           SyntaxError
FloatDomainError        NotImplementedError     SystemCallError
IOError                 RangeError              SystemExit
IndexError              RegexpError             SystemStackError
Interrupt               RuntimeError            ThreadError
LoadError               ScriptError             TypeError
LocalJumpError          SecurityError           ZeroDivisionError

Ruby 1.9 adds the following modules, classes, and
        exceptions:
BasicObject     FiberError      Mutex           VM
Fiber           KeyError        StopIteration

You can check the predefined modules, classes, and exceptions in
        your implementation with code like this:
# Print all modules (excluding classes)
puts Module.constants.sort.select {|x| eval(x.to_s).instance_of? Module}

# Print all classes (excluding exceptions)
puts Module.constants.sort.select {|x|
  c = eval(x.to_s)
  c.is_a? Class and not c.ancestors.include? Exception
}

# Print all exceptions
puts Module.constants.sort.select {|x|
  c = eval(x.to_s)
  c.instance_of? Class and c.ancestors.include? Exception
}


Top-Level Constants



When the Ruby interpreter starts, the following top-level
        constants are defined (in addition to the modules and classes
        listed previously). A module that defines a constant by the same name
        can still access these top-level constants by explicitly prefixing
        them with ::. You can list the
        top-level constants in your implementation with:
ruby -e 'puts Module.constants.sort.reject{|x| eval(x.to_s).is_a? Module}'

	ARGF
	An IO object
              providing access to a virtual concatenation of files named in
              ARGV, or to standard input if
              ARGV is empty. A synonym for
              $<.

	ARGV
	An array containing the arguments specified on the command line. A
              synonym for $*.

	DATA
	If your program file includes the token __END__ on a line by itself, then this
              constant is defined to be a stream that allows access to the
              lines of the file following __END__. If the program file does not
              include __END__, then this
              constant is not defined.

	ENV
	An object that behaves like a hash and provides
              access to the environment variable settings in effect for the
              interpreter.

	FALSE
	A deprecated synonym for false.

	NIL
	A deprecated synonym for nil.

	RUBY_PATCHLEVEL
	A string indicating the patchlevel for the interpreter.

	RUBY_PLATFORM
	A string indicating the platform of the Ruby interpreter.

	RUBY_RELEASE_DATE
	A string indicating the release date of the Ruby
              interpreter.

	RUBY_VERSION
	A string indicating the version of the Ruby language supported by the
              interpreter.

	STDERR
	The standard error output stream. This is the default
              value of the $stderr
              variable.

	STDIN
	The standard input stream. This is the default value of
              the $stdin
              variable.

	STDOUT
	The standard output stream. This is the default value of
              the $stdout
              variable.

	TOPLEVEL_BINDING
	A Binding object
              representing the bindings in the top-level scope.

	TRUE
	A deprecated synonym for true.




Global Variables



The Ruby interpreter predefines a number of global variables that your
        programs can use. Many of these variables are special in some way.
        Some use punctuation characters in their names. (The English.rb module defines English-language
        alternatives to the punctuation. Add require
        'English' to your program if you want to use these verbose
        alternatives.) Some are read-only and may not be assigned to. And some
        are thread-local, so that each thread of a Ruby program may see a
        different value of the variable. Finally, some global variables
        ($_, $~, and the pattern-matching variables
        derived from it) are method-local: although the variable is globally
        accessible, its value is local to the current method. If a method sets
        the value of one of these magic globals, it does not alter the value
        seen by the code that invokes that method.
You can obtain the complete list of global variables predefined
        by your Ruby interpreter with:
ruby -e 'puts global_variables.sort'

To include the verbose names from the English module in your listing, try:
ruby -rEnglish -e 'puts global_variables.sort'

The subsections that follow document the predefined global
        variables by category.
Global settings



These global variables hold configuration settings and specify
          information, such as command-line arguments, about the environment
          in which the Ruby program is running:
	$*
	A read-only synonym for the ARGV constant. English synonym:
                $ARGV.

	$$
	The process ID of the current Ruby process.
                Read-only. English synonyms: $PID, $PROCESS_ID.

	$?
	The exit status of the last process terminated.
                Read-only and thread-local. English synonym: $CHILD_STATUS.

	$DEBUG
$-d
	Set to true if
                the -d or --debug options were set on the
                command line.

	$KCODE
$-K
	In Ruby 1.8, this variable holds a string that names the
                current text encoding. Its value is “NONE”, “UTF8”, “SJIS” or
                “EUC”. This value can be set with the interpreter option
                -K. This variable no longer
                works in Ruby 1.9 and using it causes a warning.

	$LOADED_FEATURES
$"
	An array of strings naming the files that have been
                loaded. Read-only.

	$LOAD_PATH
$:
$-I
	An array of strings holding the directories to be
                searched when loading files with the load and require methods. This variable is
                read-only, but you can alter the contents of the array to
                which it refers, appending or prepending new directories to
                the path, for example.

	$PROGRAM_NAME
$0
	The name of the file that holds the Ruby program currently
                being executed. The value will be “-” if the program is read from
                standard input, or “-e” if
                the program was specified with a -e option. Note that this is
                different from $FILENAME.

	$SAFE
	The current safe level for program execution. See Security
                for details. This variable may be set from the command line
                with the -T option. The
                value of this variable is thread-local.

	$VERBOSE
$-v
$-w
	True if the -v,
                -w, or --verbose command-line option is
                specified. nil if -W0 was specified. false otherwise. You can set this
                variable to nil to suppress
                all warnings.




Exception-handling globals



The following two global variables are useful in rescue clauses when an exception has been
          raised:
	$!
	The last exception object raised. The exception
                object can also be accessed using the => syntax in the declaration of
                the rescue clause. The
                value of this variable is thread-local. English synonym:
                $ERROR_INFO.

	$@
	The stack trace of the last exception, equivalent
                to $!.backtrace. This value
                is thread-local. English synonym: $ERROR_POSITION.




Streams and text-processing globals



The following globals are IO streams and
          variables that affect the default behavior of text-processing
          Kernel methods. You’ll find
          examples of their use in Practical Extraction and Reporting Shortcuts:
	$_
	The last string read by the Kernel methods gets and readline. This value is thread-local
                and method-local. A number of Kernel methods operate implicitly on
                $_. English synonym:
                $LAST_READ_LINE.

	$<
	A read-only synonym for the ARGF stream: an IO-like object providing access to a
                virtual concatenation of the files specified on the
                command-line, or to standard input if no files were specified.
                Kernel read methods, such
                as gets, read from this
                stream. Note that this stream is not always the same as
                $stdin. English synonym:
                $DEFAULT_INPUT.

	$stdin
	The standard input stream. The initial value of this
                variable is the constant STDIN. Many Ruby program read from
                ARGF or $< instead of $stdin.

	$stdout
$>
	The standard output stream, and the destination of
                the printing methods of Kernel: puts, print, printf, etc. English synonym:
                $DEFAULT_OUTPUT.

	$stderr
	The standard error output stream. The initial value of this
                variable is the constant STDERR.

	$FILENAME
	The name of the file currently being read from ARGF. Equivalent to ARGF.filename. Read-only.

	$.
	The number of the last line read from the current input file.
                Equivalent to ARGF.lineno. English synonyms:
                $NR, $INPUT_LINE_NUMBER.

	$/
$-0
	The input record separator (newline by default).
                gets and readline use this value by default
                to determine line boundaries. You can set this value with the
                -0 interpreter option.
                English synonyms: $RS,
                $INPUT_RECORD_SEPARATOR.

	$\
	The output record separator. The default value is nil, but is set to $/ when the interpreter option
                -l is used. If non-nil, the output record separator is
                output after every call to print (but not puts or other output methods).
                English synonyms: $ORS,
                $OUTPUT_RECORD_SEPARATOR.

	$,
	The separator output between the arguments to print and the default separator for
                Array.join. The default is
                nil. English synonyms:
                $OFS, $OUTPUT_FIELD_SEPARATOR.

	$;
$-F
	The default field separator used by split. The default is nil, but you can specify a value
                with the interpreter option -F. English synonyms: $FS, $FIELD_SEPARATOR.

	$F
	This variable is defined if the Ruby interpreter is invoked with
                the -a option and either
                -n or -p. It holds the fields of the
                current input line, as returned by split.




Pattern-matching globals



The following globals are thread-local and method-local and
          are set by any Regexp
          pattern-matching operation:
	$~
	The MatchData
                object produced by the last pattern matching operation. This
                value is thread-local and method-local. The other
                pattern-matching globals described here are derived from this
                one. Setting this variable to a new MatchData object alters the value of
                the other variables. English synonym: $MATCH_INFO.

	$&
	The most recently matched text. Equivalent to $~[0]. Read-only, thread-local,
                method-local, and derived from $~. English synonym: $MATCH.

	$`
	The string preceding the match in the last pattern match. Equivalent to
                $~.pre_match. Read-only,
                thread-local, method-local, and derived from $~. English synonym: $PREMATCH.

	$'
	The string following the match in the last pattern match.
                Equivalent to $~.post_match
                Read-only, thread-local, method-local, and derived from
                $~. English synonym:
                $POSTMATCH.

	$+
	The string corresponding to the last successfully matched
                group in the last pattern match. Read-only, thread-local,
                method-local, and derived from $~. English synonym: $LAST_PAREN_MATCH.




Command-line option globals



Ruby defines a number of global variables that correspond to
          the state or value of interpreter command-line options. The
          variables $-0, $-F, $-I, $-K, $-d, $-v, and $-w have synonyms and are included in the
          previous sections:
	$-a
	true if the
                interpreter option -a was
                specified; false otherwise.
                Read-only.

	$-i
	nil if the
                interpreter option -i was
                not specified. Otherwise, this variable is set to the backup
                file extension specified with -i.

	$-l
	true if the -l option was specified.
                Read-only.

	$-p
	true if the
                interpreter option -p was
                specified; false otherwise.
                Read-only.

	$-W
	In Ruby 1.9, this global variable specifies the current
                verbose level. It is 0 if
                the -W0 option was used, and is
                2 if any of the options
                -w, -v, or --verbose were used. Otherwise, this
                variable is 1.
                Read-only.





Predefined Global Functions



The Kernel module, which
        is included by Object, defines a
        number of private instance methods that serve as global functions.
        Because they are private, they must be invoked functionally, without
        an explicit receiver object. And because they are included by Object, they can be invoked anywhere—no
        matter what the value of self is,
        it will be an object, and these methods can be implicitly invoked on
        it. The functions defined by Kernel
        can be grouped into several categories, most of which are covered
        elsewhere in this chapter or elsewhere in this book.
Keyword functions



The following Kernel
          functions behave like language keywords and are documented elsewhere
          in this book:
block_given?    iterator?       loop            require
callcc          lambda          proc            throw
catch           load            raise


Text input, output, and manipulation functions



Kernel defines the
          following functions most of which are global variants of IO methods. They are covered in more
          detail in Practical Extraction and Reporting Shortcuts:
format          print           puts            sprintf
gets            printf          readline
p               putc            readlines

In Ruby 1.8 (but not 1.9), Kernel also defines the following global
          variants of String methods that
          operate implicitly on $_:
chomp   chop    gsub    scan    sub
chomp!  chop!   gsub!   split   sub!


OS methods



The following Kernel
          functions allow a Ruby program to interface with the operating
          system. They are platform-dependent and are covered in Calling the OS. Note that ` is
          the specially named backtick method that returns the text output by
          an arbitrary OS shell command:
`       fork    select  system  trap
exec    open    syscall test


Warnings, failures, and exiting



The following Kernel
          functions display warnings, raise exceptions, cause the program to
          exit, or register blocks of code to be run when the program
          terminates. They are documented along with OS-specific methods in
          Calling the OS:
abort   at_exit exit    exit!   fail    warn


Reflection functions



The following Kernel
          functions are part of Ruby’s reflection API and were described in
          Chapter 8:
binding                         set_trace_func
caller                          singleton_method_added
eval                            singleton_method_removed
global_variables                singleton_method_undefined
local_variables                 trace_var
method_missing                  untrace_var
remove_instance_variable


Conversion functions



The following Kernel
          functions attempt to convert their arguments to a new type. They
          were described in Conversion functions:
Array   Float   Integer String


Miscellaneous Kernel functions



The following miscellaneous Kernel functions don’t fit into the
          previous categories:
autoload                rand                    srand
autoload?               sleep

rand and srand are for generating random numbers,
          and are documented in Random Numbers. autoload and autoload? are covered in Autoloading Modules. And sleep
          is covered in Threads and Concurrency and Terminating Programs.


User-Defined Global Functions



When you define a method with def inside a class or module declaration and do not specify a
        receiver object for the method, the method is created as a public
        instance method of self, where
        self is the class or module you are
        defining. Using def at the top
        level, outside of any class or
        module, is different in two
        important ways. First, top-level methods are instance methods of
        Object (even though self is not Object). Second, top-level methods are
        always private.
Top-Level self: the Main Object
Because top-level methods become instance methods of Object, you might expect that the value of
          self would be Object. In fact, however, top-level
          methods are a special case: methods are defined in Object, but self is a different object. This special
          top-level object is known as the “main” object, and there is not
          much to say about it. The class of the main object is Object, and it has a singleton to_s method that returns the string
          “main”.

The fact that top-level methods are defined in Object means that they are inherited by all
        objects (including Module and
        Class) and (if not overridden) can
        be used within any class or instance method definition. (You can
        review Ruby’s method name resolution algorithm in Method Lookup to convince yourself of this.) The fact that
        top-level methods are private means that they must be invoked like
        functions, without an explicit receiver. In this way, Ruby mimics a
        procedural programming paradigm within its strictly object-oriented
        framework.


Practical Extraction and Reporting Shortcuts



Ruby was
      influenced by the scripting language Perl, whose name is an acronym for
      Practical Extraction and Reporting Language. Because of this, Ruby
      includes a number of global functions that make it easy to write
      programs that extract information from files and generate reports. In
      the object-oriented paradigm, input and output functions are methods of
      IO, and string manipulation functions
      are methods of String. For pragmatic
      reasons, however, it is useful to have global functions that read from
      and write to predefined input and
      output streams. In addition to providing these global functions, Ruby
      follows Perl further and defines special behavior for the functions:
      many of them operate implicitly on
      the special method-local variable $_.
      This variable holds the last line read from the input stream. The
      underscore character is mnemonic: it looks like a line. (Most of Ruby’s
      global variables that use punctuation characters are inherited from
      Perl.) In addition to the global input and output functions, there are
      several global string processing functions that work like the String methods but operate implicitly on
      $_.
These global functions and variables are intended as shortcuts for
      short and simple Ruby scripts. It is generally considered bad form to
      rely on them in larger programs.
Input Functions



The global functions gets, readline, and readlines are just like the IO methods by the same names (see Reading lines), but they operate implicitly on the
        $< stream (which is also
        available as the constant known as ARGF). Like the methods of IO, these global functions implicitly set
        $_.
$< behaves like an
        IO object, but it is not an
        IO object. (Its class method returns Object, and its to_s method returns “ARGF”.) The precise behavior of this stream
        is complicated. If the ARGV array
        is empty, then $< is the same as
        STDIN: the standard input stream.
        If ARGV is not empty, then Ruby
        assumes that it is a list of filenames. In this case, $< behaves as if it were reading from the
        concatenation of each of those files. This does not correctly capture
        the behavior of $<, however.
        When the first read request for $< occurs, Ruby uses ARGV.shift to remove the first filename from
        ARGV. It opens and reads from that
        file. When the end of that file is reached, Ruby repeats the process,
        shifting the next filename out of ARGV and opening that file. $< does not report end-of-file until
        there are no more file names in ARGV.
What this means is that your Ruby scripts can alter ARGV (to process command-line options, for
        example) before beginning to read from $<. Your script can also add additional files to ARGV as it runs, and $< will use these files.

Deprecated Extraction Functions



In Ruby 1.8 and before, the global functions chomp, chomp!, chop, chop!, gsub, gsub!, scan, split, sub, and sub! work like the same-named methods of
        String, but operate implicitly on
        $_. Furthermore, chomp, chop, gsub, and sub assign their result back into $_, which means that they are effectively
        synonyms for their exclamation-mark versions.
These global functions have been removed in Ruby 1.9, so they
        should not be used in new code.

Reporting Functions



Kernel defines a number of global functions for sending output to
        $stdout. (This global variable
        initially refers to the standard output stream, STDOUT, of the Ruby process, but you can
        alter its value and change the behavior of the functions described
        here.)
puts, print, printf and putc are equivalent to the same-named
        methods of STDOUT (see Writing to a Stream). Recall that puts appends a newline to its output if
        there is not one there already. print, on the other hand, does not
        automatically append a newline, but it does append the output record
        separator $\, if that global
        variable has been set.
The global function p is one
        with no analog in the IO class. It
        is intended for debugging, and its short name makes it very easy to
        type. It calls the inspect method
        of each of its arguments and passes the resulting strings to puts. Recall that inspect is equivalent to to_s by default, but that some classes
        redefine it to provide more developer-friendly output suitable for
        debugging. If you require the pp
        library, you can use the pp
        function in place of p to “pretty
        print” your debugging output. (This is useful for printing large
        arrays and hashes.)
The printf method mentioned
        earlier expects a format string as its first argument and substitutes
        the value of its remaining arguments into that string before
        outputting the result. You can also format into a string without
        sending the result to $stdout with
        the global function sprintf or its
        synonym format. These work like the
        % operator of String.

One-Line Script Shortcuts



Earlier in this chapter, we described the -e
        option to the interpreter for executing single-line Ruby scripts
        (often used in conjunction with the -n and -p
        looping options). There is one special shortcut inherited from Perl
        that is allowed only in scripts specified with -e.
If a script is specified with -e, and a regular expression literal appears
        by itself in a conditional expression (part of an if, unless, while, or until statement or modifier), then the
        regular expression is implicitly compared to $_. If you want to print all lines in a file
        that begin with the letter A, for example, you can write:
ruby -n -e 'print if /^A/' datafile

If this same script was stored in a file and run without the
        -e option, it would still work, but
        it would print a warning (even without -w). To avoid the warning, you’d have to
        make the comparison explicit instead:
print if $_ =~ /^A/



Calling the OS



Ruby supports a number of global functions for interacting with the operating
      system to execute programs, fork new processes, handle signals, and so
      on. Ruby was initially developed for Unix-like operating systems, and
      many of these OS-related functions reflect that heritage. By their very
      nature, these functions are less portable than most others, and some may
      not be implemented at all on Windows and other non-Unix platforms. The
      subsections that follow describe some of the most commonly used of the
      OS-dependent functions. Functions, such a syscall, that are particularly low-level or
      platform-dependent are not covered here.
Invoking OS Commands



The Kernel.` method expects a
        single string argument representing an OS shell command. It starts a
        subshell and passes the specified text to it. The return value is the
        text printed to standard output. This method is typically invoked
        using special syntax; it is invoked on string literals surrounded by
        backquotes or on string literals delimited with %x (see Backtick command execution). For example:
os = `uname`             # String literal and method invocation in one
os = %x{uname}           # Another quoting syntax
os = Kernel.`("uname")   # Invoke the method explicitly

This method does not simply invoke the specified executable; it
        invokes a shell, which means that shell features such as filename
        wildcard expansion are available:
files = `echo *.xml`

Another way to start a process and read its output is with the
        Kernel.open function. This method
        is a variant on File.open and is
        most often used to open files. (And if you require 'open-uri' from the standard
        library, it can also be used to open HTTP and FTP URLs.) But if the
        first character of the specified “filename” is the pipe character
        |, then it instead opens a pipe to
        read from and/or write to the specified shell command:
pipe = open("|echo *.xml")
files = pipe.readline
pipe.close

If you want to invoke a command in a shell, but are not
        interested in its output, use the Kernel.system method instead. When passed a
        single string, it executes that string in a shell, waits for the
        command to complete, and returns true on success or false on failure. If you pass multiple
        arguments to system, the first
        argument is the name of the program to invoke, and remaining arguments
        are its command-line arguments. In this case no shell expansion is
        performed on those arguments.
A lower-level way to invoke an arbitrary executable is with the
        exec function. This function never
        returns: it simply replaces the currently running Ruby process with
        the specified executable. This might be useful if you are writing a
        Ruby script that is simply a wrapper to launch some other program.
        Usually, however, it is used in conjunction with the fork function, which is described in the
        next section.

Forking and Processes



Threads and Concurrency described Ruby’s API for writing multithreaded programs. Another
        approach to achieving concurrency in Ruby is to use multiple Ruby
        processes. Do this with the fork
        function or its Process.fork
        synonym. The easiest way to use this function is with a block:
fork {
  puts "Hello from the child process: #$$"
}
puts "Hello from the parent process: #$$"

When used this way, the original Ruby process continues with the
        code that appears after the block and the new Ruby process executes
        the code in the block.
When invoked without a block, fork behaves differently. In the parent
        process, the call to fork returns
        an integer which is the process ID of the newly created child process.
        In the child process, the same call to fork returns nil. So the previous code could also be
        written like this:
pid = fork
if (pid)
  puts "Hello from parent process: #$$"
  puts "Created child process #{pid}"   
else
  puts Hello from child process: #$$"
end

One very important difference between processes and threads is
        that processes do not share memory. When you call fork, the new Ruby process starts off as an
        exact duplicate of the parent process. But any changes it makes to the
        process state (by altering or creating objects) are done in its own
        address space. The child process cannot alter the data structures of
        the parent, nor can the parent alter the structures seen by the
        child.
If you need your parent and child processes to be able to
        communicate, use open, and pass
        “|-” as the first argument. This
        opens a pipe to a newly forked Ruby process. The open call yields to the associated block in
        both the parent and the child. In the child, the block receives
        nil. In the parent, however, an
        IO object is passed to the block.
        Reading from this IO object returns
        data written by the child. And data written to the IO object becomes available for reading
        through the child’s standard input. For example:
open("|-", "r+") do |child|
  if child
    # This is the parent process
    child.puts("Hello child")       # Send to child
    response = child.gets           # Read from child
    puts "Child said: #{response}"
  else
    # This is the child process
    from_parent = gets              # Read from parent
    STDERR.puts "Parent said: #{from_parent}"
    puts("Hi Mom!")                 # Send to parent
  end
end

The Kernel.exec function is
        useful in conjunction with the fork
        function or the open method. We saw
        earlier that you can use the ` and
        system functions to send an
        arbitrary command to the operating system shell. Both of those methods
        are synchronous, however; they don’t return until the command
        completes. If you want to execute an operating system command as a
        separate process, first use fork to
        create a child process, and then call exec in the child to run the command. A call
        to exec never returns; it replaces
        the current process with a new process. The arguments to exec are the same as those to system. If there is only one, it is treated
        as a shell command. If there are multiple arguments, then the first
        identifies the executable to invoke, and any remaining arguments
        become the “ARGV” for that
        executable:
open("|-", "r") do |child|
  if child
    # This is the parent process
    files = child.readlines   # Read the output of our child
    child.close
  else
    # This is the child process
    exec("/bin/ls", "-l")     # Run another executable
  end
end

Working with processes is a low-level programming task and the
        details are beyond the scope of this book. If you want to know more,
        start by using ri to read about the other methods
        of the Process module.

Trapping Signals



Most operating systems allow asynchronous signals to be sent to a running process.
        This is what happens, for example, when the user types Ctrl-C to abort
        a program. Most shell programs send a signal named “SIGINT” (for interrupt) in response to
        Ctrl-C. And the default response
        to this signal is usually to abort the program. Ruby allows programs
        to “trap” signals and define their own signal handlers. This is done
        with the Kernel.trap method (or its
        synonym Signal.trap). For example,
        if you don’t want to allow the user to use Ctrl-C to abort:
trap "SIGINT" {
  puts "Ignoring SIGINT"
}

Instead of passing a block to the trap method, you can equivalently pass a
        Proc object. If you simply want to
        silently ignore a signal, you can also pass the string “IGNORE” as the second argument. Pass
        “DEFAULT” as the second argument to
        restore the OS default behavior for a signal.
In long-running programs such as servers, it can be useful to
        define signal handlers to make the server reread its configuration
        file, dump its usage statistics to the log, or enter debugging mode,
        for example. On Unix-like operating systems, SIGUSR1 and SIGUSR2 are commonly used for such
        purposes.

Terminating Programs



There are a number of related Kernel methods for terminating program or
        performing related actions. The exit function is the most straightforward.
        It raises a SystemExit exception,
        which, if uncaught, causes the program to exit. Before the exit
        occurs, however, END blocks and any
        shutdown handlers registered with Kernel.at_exit are run. To exit immediately,
        use exit! instead. Both methods
        accept an integer argument that specifies the process exit code that
        is reported to the operating system. Process.exit and Process.exit! are synonyms for these two
        Kernel functions.
The abort function prints the
        specified error message to the standard output stream and then calls
        exit(1).
fail is simply a synonym for
        raise, and it is intended for cases
        in which the exception raised is expected to terminate the program.
        Like abort, fail causes a message to be displayed when
        the program exits. For example:
fail "Unknown option #{switch}"

The warn function is related
        to abort and fail: it prints a warning message to
        standard error (unless warnings have been explicitly disabled with
        -W0). Note, however, that this
        function does not raise an exception or cause the program to
        exit.
sleep is another related
        function that does not cause the program to exit. Instead, it simply
        causes the program (or at least the current thread of the program) to
        pause for the specified number of seconds.


Security



Ruby’s security system provides a mechanism for writing programs that work with
      untrusted data and untrusted code. There are two parts to the security
      system. The first is a mechanism for distinguishing safe data from
      untrusted, or tainted, data. The second is a
      technique for restricted execution, which allows
      you to “lock down” the Ruby environment and prevents the Ruby
      interpreter from performing potentially dangerous operations on tainted
      data. This serves to prevent things like SQL injection attacks in which
      malicious input alters a program’s behavior. Restricted execution can be taken a step further so
      that untrusted (and possibly malicious) code can be executed without
      fear that it will delete files, steal data, or otherwise cause
      harm.
This discussion of Ruby’s security mechanisms is specific to the
      reference implementation. Other implementations may differ. JRuby, in
      particular, makes very little attempt (at the time of this writing) to
      emulate the restricted execution modes of the reference implementation.
      Furthermore, keep in mind that Ruby’s security model has not received
      the kind of careful and prolonged scrutiny that Java’s security
      architecture has. This section explains how Ruby’s security architecture
      is supposed to work, but bugs yet to be discovered may allow the
      restrictions to be circumvented.
Tainted Data



Every object in Ruby is either tainted or untainted. Literal values in program source code are
        untainted. Values that are derived from the external environment are
        tainted. These include strings read from the command-line (ARGV) or environment variables (ENV) and also any data read from files,
        sockets, or other streams. The environment variable PATH is a special case: it is tainted only
        if one or more of the directories it contains is world-writable.
        Importantly, taintedness is contagious, so objects derived from
        tainted objects are also
        tainted.
The Object methods taint, tainted?, and untaint allow you to mark an untainted
        object as tainted, test the taintedness of an object, and untaint a
        tainted object. You should untaint a tainted object only if your code
        has inspected it and determined that it is safe despite its unsafe
        origin or derivation.
In Ruby 1.8, any objects created by untrusted code (i.e. code
        run under the “Safe level 4” restrictions described below) are also
        tainted. Furthermore, that untrusted code is not allowed to modify
        untainted objects.
Ruby 1.9 adds an “untrusted” flag to each object and separates
        the notions of taint and trust. In Ruby 1.9, objects created by
        untrusted code are both tainted and untrusted, and untrusted code is
        not allowed to modify trusted objects, regardless of whether those
        objects are tainted or not. You can test whether an object is
        untrusted with the untrusted? method. You can force an
        object to be untrusted (so it can be modified by untrusted code, for
        example) with the untrust method,
        and you can make an object trusted again with the trust method. These three Object methods parallel tainted?, taint, and untaint.

Restricted Execution and Safe Levels



Ruby can execute programs with security
        checking turned on. The global variable $SAFE determines the level of the security
        check. The default safe level is normally 0, but is 1 for Ruby
        programs that run setuid or
        setgid. (These are Unix terms for a program that
        runs with privileges beyond those of the user that invokes it.) Legal
        safe levels are the integers 0, 1, 2, 3, and 4. You can explicitly set
        the safe level with the -T
        command-line option to the Ruby interpreter. You can also set the safe
        level by assigning to $SAFE. Note,
        however, that you can only increase the value—it is never possible to
        lower this value:
$SAFE=1                # upgrade the safe level
$SAFE=4                # upgrade the safe level even higher
$SAFE=0                # SecurityError!  you can't do it

$SAFE is thread-local. In
        other words, the value of $SAFE in
        a thread may be changed without affecting the value in other threads.
        Using this feature, threads can be sandboxed for untrusted
        programs:
Thread.start {     # Create a "sandbox" thread
  $SAFE = 4        # Restrict execution in this thread only
  ...              # Untrusted code can be run here
}

Proc objects have their own
        copy of the global $SAFE variable.
        When a proc or a lambda is invoked with the call method (but not when invoked like a
        block with yield) it runs at the
        safe level in effect when it was defined, not the level in effect when
        it is invoked. Furthermore, if you set $SAFE in a proc or lambda, that setting
        remains local. This means that you can sandbox code without creating a
        new thread:
# Execute a block at the specified safe level
def safely(level = 4)
  sandbox = lambda do # Set up a sandbox 
    $SAFE = level     # Go to the specified safe level for this lambda only
    yield             # Invoke the block at that level
  end
  sandbox.call        # Invoke the sandbox without changing $SAFE globally
end

Safe level 0



Level 0 is the default safe level. No checks are performed on
          tainted data.

Safe Level 1



In this level, potentially dangerous operations using tainted
          data are forbidden. You can’t evaluate a string of code if the
          string is tainted; you can’t require a library if the library name is
          tainted; you can’t open a named file if the filename is tainted; and
          you can’t connect to a network host if the hostname is tainted.
          Programs, especially networked servers, that accept arbitrary input
          should probably use this safe level. This helps catch programming
          errors that use tainted data in unsafe ways.
If you write a library that performs potentially dangerous
          operations—such as communicating with a database server—you should
          check the value of $SAFE. If it
          is 1 or higher, your library should not operate on tainted objects.
          For example, you should not send a SQL query to a database if the
          string containing that query is tainted.
Execution restrictions at safe level 1 include the
          following:
	Environment variables RUBYLIB and RUBYOPT are ignored at startup.

	The current directory (.) isn’t included in $LOAD_PATH.

	The command-line options -e, -i, -I, -r, -s, -S, and -X are prohibited.

	Certain instance methods and class methods of Dir, IO, File, and FileTest are prohibited for tainted
              arguments.

	test, eval, require, load, and trap may not be invoked with tainted
              arguments.




Safe level 2



Safe level 2 restricts operations on tainted data just as
          level 1 does, but also imposes additional restrictions on how files
          and processes can be manipulated, regardless of taint. There is
          little reason for a program to set its own safe level to 2, but a
          system administrator might choose to run a program you have written
          at this safe level to ensure that it cannot create or delete
          directories, change file permissions, launch executables, load Ruby
          code from world-writable directories, and so on.
Methods restricted at this safe level include:
Dir.chdir               File.truncate           Process.egid=
Dir.chroot              File.umask              Process.fork
Dir.mkdir               IO.fctrl                Process.kill
Dir.rmdir               IO.ioctl                Process.setpgid
File.chmod              Kernel.exit!            Process.setpriority
File.chown              Kernel.fork             Process.setsid
File.flock              Kernel.syscall
File.lstat              Kernel.trap

In addition, safe level 2 prevents you from loading or
          requiring Ruby code or running executables stored in world-writable
          directories.

Safe level 3



Safe level 3 includes all of the restrictions of level 2, and
          in addition, all objects—including literals in program source code
          (but not including predefined objects in the global environment)—are
          tainted when they are created. In Ruby 1.9, objects created at this
          level are untrusted in addition to being tainted. Neither the
          untaint nor the trust methods may be called at this
          level.
Safe level 3 is an intermediate step toward level 4 and is not
          commonly used.

Safe level 4



This level extends safe level 3 by preventing any
          modifications to trusted objects (including making trusted objects
          untrusted). In Ruby 1.8, trusted objects are untainted objects,
          which means that any tainted objects can be modified by untrusted
          code. In Ruby 1.9, trust and taint are separate, and trusted objects
          are those created at safe level 2 or lower. This means that
          untrusted code can only modify objects created at safe level 3 or 4,
          and also any objects that have been explicitly opened up to
          modifications with the untrust
          method. This effectively creates a sandbox in which untrusted code
          can be run without doing any harm. (In theory, at least—bugs in the
          implementation or deficiencies in the underlying security model may
          be found in the future.)
Calling eval on a tainted
          string is prohibited in levels 1, 2, and 3. In safe level 4, it is
          allowed again because the restrictions on level 4 are stringent
          enough that the evaluated string can do no harm. Here is a way to
          evaluate arbitrary code in a level-4 sandbox:
def safe_eval(str)
  Thread.start {            # Start sandbox thread
    $SAFE = 4               # Upgrade safe level
    eval(str)               # Eval in the sandbox
  }.value                   # Retrieve result
end

In safe level 4, you may not use require to load another file of Ruby code.
          You can use load, but only in
          wrapped form, with true as its
          second argument. This causes Ruby to sandbox the loaded file in an
          anonymous module so that any classes, modules, or constants it
          defines do not affect the global namespace. This means that code
          running under safe level 4 can load, but cannot use, classes and
          modules defined in external modules.
You can further restrict a level-4 sandbox by placing the
          sandbox thread (before setting $SAFE) into a ThreadGroup and calling enclose on that group. See Listing Threads and Thread Groups for details.
As part of the sandbox it creates, safe level 4 prohibits
          additional operations including the
          following:
	require, unwrapped
              load, autoload, and include

	Modifying Object
              class

	Modifying untainted classes or modules

	Metaprogramming methods

	Manipulating threads other than current

	Accessing thread local data

	Terminating the process

	File input/output

	Modifying environment variables

	Seeding the random number generator with srand






Index



A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols
	! operator, Punctuation in identifiers, Operators, Boolean Operators: &&, ||, !, and, or, not, Strings
	!= operator, String Operators, The == operator, Object Order, Equality: ==, !=, =~, !~, and ===
		object equality and, The == operator


	!~ operator, Operators, Equality: ==, !=, =~, !~, and ===
	" (quotation marks), Double-quoted string literals, Formatting Text
		expressions, interpolating into strings, Formatting Text


	# (hash), Ruby Is Object-Oriented, Comments, Program Encoding, Double-quoted string literals
		comments and, Ruby Is Object-Oriented, Comments, Program Encoding
	string interpolation and, Double-quoted string literals


	#{ } interpolation in regexps, Regexp Literals
	$ (dollar sign), Punctuation in identifiers, Keywords, Variable References, Regular Expression Syntax
		global, Punctuation in identifiers
		variables and, Punctuation in identifiers


	keywords prefixes and, Keywords
	regexp anchor, Regular Expression Syntax


	$! global variable, Naming the exception object, Exception-handling globals
	$$ global variable, Global settings
	$& global variable, Pattern-matching globals
	$' global variable, Pattern-matching globals
	$* global variable, Global settings
	$+ global variable, Pattern-matching globals
	$, global operator, Streams and text-processing globals
	$-d global variable, Global settings
	$-I global variable, Global settings
	$-K global variables, Global settings
	$. global variable, Streams and text-processing globals
	$/ global variable, Streams and text-processing globals
	$: global variable, The Load Path, Global settings
	$; global variable, Streams and text-processing globals
	$< global operator, Predefined streams, Streams and text-processing globals
	$> global operator, Streams and text-processing globals
	$? global variable, Global settings
	$@ global variable, Exception-handling globals
	$\ global variable, Streams and text-processing globals
	$_ global variable, Reading lines, Streams and text-processing globals
	$` global variable, Pattern-matching globals
	$~ global regexp variable, Global variables for match data
	$~ global variable, Pattern Matching with Regular Expressions, Pattern-matching globals
	% (percent sign), Arithmetic in Ruby, Arbitrary delimiters for string literals, Backtick command execution, Abbreviated Assignment, Operators, Regexp Literals
		modulo operator, using as, Arithmetic in Ruby, Abbreviated Assignment, Operators
	%Q sequence, using
              as, Arbitrary delimiters for string literals
	%r delimiter, Regexp Literals
	%x syntax, Backtick command execution


	%= operator, Operators
	%q sequences, Arrays
	%Q sequences, Arrays
	& (ampersand), Using & in method invocation
		method invocation and, Using & in method invocation


	& operator, Arrays, Operators, Complement, Union, Intersection: ~, &, |, and ^
	&& operator, Operators, Boolean Operators: &&, ||, !, and, or, not
	&&= operator, Abbreviated Assignment, Operators
	&= operator, Abbreviated Assignment, Operators
	' (single quotes), using for string literals, Single-quoted string literals
	( ) (parentheses), Ruby Is Object-Oriented, Spaces and method invocations, Method Invocations, Parentheses in parallel assignment, if, Methods and Parentheses, Optional Parentheses, Required Parentheses
		functions/methods, using, Ruby Is Object-Oriented
	if statements and, if
	method declarations, Spaces and method invocations, Method Invocations, Methods and Parentheses
	optional, Optional Parentheses
	parallel assignment and, Parentheses in parallel assignment
	required, Required Parentheses


	* (asterisk), Expressions and Operators in Ruby, Arithmetic in Ruby, Operators, Nonoperators, Variable-Length Argument Lists and Arrays, Strings, File and Directory Names
		matching characters, File and Directory Names
	multiplication operator, Expressions and Operators in Ruby, Arithmetic in Ruby, Operators
	repetition (strings), Strings
	variable-length method argument lists,
            setting, Variable-Length Argument Lists and Arrays


	** (exponentiation) operator, Arithmetic in Ruby, Operators, Exponentiation: **
	**= operator, Abbreviated Assignment, Operators
	*= operator, Abbreviated Assignment, Operators
	+ (plus sign), Expressions and Operators in Ruby, Arithmetic in Ruby, String Operators, Operators, Unary + and –, Memoizing Functions, Strings
		concatenation and, Strings
	strings and, String Operators
	unary, Unary + and –, Memoizing Functions


	+= operator, Abbreviated Assignment, Operators
	+@ unary operator, Unary + and –
	, (comma), Nonoperators
	– (minus sign)
            operator, Arithmetic in Ruby, Operators, Unary + and –
		unary, Unary + and –


	--debug
                  command-line option, Common Options
	–= operator, Abbreviated Assignment
	–= operator, Operators
	-> (arrow) characters, Lambda Literals
	–@ unary operator, Unary + and –
	. (dot), Variable References, Method Invocations, Method Invocations, Nonoperators, Regular Expression Syntax, Listing Directories
		directories, Listing Directories
	matching characters and newlines (regular
                    expressions), Regular Expression Syntax
	method declarations, Method Invocations
	method invocations and, Method Invocations


	.. operator, Ranges, Operators, Ranges and Flip-Flops: .. and ..., Conditional: ?:
	... operator, Operators, Ranges and Flip-Flops: .. and ..., Conditional: ?:
	/ (forward slash), Arithmetic in Ruby, File and Directory Names, File and Directory Names
		directory separator character, File and Directory Names
	division operator, Arithmetic in Ruby
	Windows directory separator character, File and Directory Names


	/* ... */ (C-style) comments, Comments
	/= operator, Abbreviated Assignment, Operators
	: (colon), Nonoperators
	:: (double colon), Variable References, Method Invocations, Nonoperators
	; (semicolons), as statement terminators, Newlines as statement terminators, Nonoperators
	< (less than) operator, String Operators, Object Order, Operators, Comparison: <, <=, >, >=, and <=>
	<< operator, Expressions and Operators in Ruby, Ruby Surprises, String Operators, Operators, Strings, Adding and deleting set elements
		appending text, Strings
	set elements and, Adding and deleting set elements
	string operators and, String Operators


	<<= operator, Abbreviated Assignment, Operators
	<= (less than or equal) operator, String Operators, Object Order, Operators, Comparison: <, <=, >, >=, and <=>
	<=> operator, Ranges, Testing Membership in a Range, Object Order, Operators, Comparison: <, <=, >, >=, and <=>, Ordering Points, Sets
		object order and, Object Order
	SortedSet class and, Sets
	testing membership in ranges, Testing Membership in a Range


	= (equals sign), Assignment, Assignment, Punctuation Suffixes and Prefixes, Embedded documents, Punctuation in identifiers, Operators, Method Names
		embedded documents, writing comments and, Embedded documents
	method names and, Method Names
	nonoverridable operator, Assignment
	suffixes/prefixes punctuation, Punctuation Suffixes and Prefixes


	== operator, Regexp and Range, String Operators, The == operator, Object Order, Operators, Equality: ==, !=, =~, !~, and ===, Proc Equality, Point Equality
		object equality, testing, The == operator
	point equality and, Point Equality
	proc equality and, Proc Equality
	String class and, String Operators


	===, The === operator (see case equality operator)
	=> (arrow), Ruby Is Object-Oriented, Hash Literals, Nonoperators
		comments, using for, Ruby Is Object-Oriented


	=begin (multiline comments), Embedded documents
	=end (multiline comments), Embedded documents
	=~ operator, The =~ operator, Operators, Equality: ==, !=, =~, !~, and ===, Pattern Matching with Regular Expressions, Numbers and Math
		pattern matching and, Pattern Matching with Regular Expressions, Numbers and Math


	> (greater than) operator, String Operators, Object Order, Operators
	>= (greater than or equal) operator, String Operators, Object Order, Operators, Comparison: <, <=, >, >=, and <=>
	>> operator, Operators
	>>= operator, Abbreviated Assignment, Operators
	? (question mark), Punctuation in identifiers, Method Names, File and Directory Names
		matching characters with, File and Directory Names
	method names and, Method Names


	?: operator, Operators, Conditional: ?:, The ?: Operator
	@ (at sign), Classes and Modules, Punctuation in identifiers, Keywords, Variable References, Class Variables
		class variables and, Class Variables
	instance variables and, Classes and Modules, Punctuation in identifiers
	keywords prefixes and, Keywords


	@@ (class variables), Class Variables
	[ ] (square-bracket array-index), Expressions and Operators in Ruby, Accessing Characters and Substrings, Multibyte characters in Ruby 1.9, Arrays, Nonoperators, Array and Hash Access with [ ], Strings
		access to arrays/hashes, Array and Hash Access with [ ]
	strings, indexing, Strings


	[ ]= operator, Expressions and Operators in Ruby, Ruby Surprises, Assigning to Attributes and Array Elements, Storing keys and values in a hash
		storing key/values in hashes, Storing keys and values in a hash


	\ (backslash), Newlines as statement terminators, Single-quoted string literals, Double-quoted string literals
		apostrophes, using inside string literals, Single-quoted string literals
	escapes, Double-quoted string literals
	line breaks, escaping, Newlines as statement terminators


	\ (slash), Regexp Literals
		regular expressions and, Regexp Literals


	\" (nonterminating quotation mark), Double-quoted string literals
	^ operator, Operators, Complement, Union, Intersection: ~, &, |, and ^, Regular Expression Syntax
		regexp anchor, Regular Expression Syntax


	^= operator, Abbreviated Assignment, Operators
	_ (underscore), Integer Literals, Constant References
		constants, Constant References
	integer literals, using, Integer Literals


	` (backtick) method (Kernel), Backtick command execution
	{ } (curly braces), Blocks and Iterators, Block Structure in Ruby, Double-quoted string literals, Unicode escapes, Nonoperators, Block Syntax
		block structure and, Block Structure in Ruby
	iterators in blocks, using, Blocks and Iterators
	string interpolation and, Double-quoted string literals
	syntax of blocks, Block Syntax
	Unicode escapes and, Unicode escapes


	| (Boolean) operator, Arrays, Operators
	| operator, Complement, Union, Intersection: ~, &, |, and ^
	|= operator, Abbreviated Assignment, Operators
	|| operator, Operators, Boolean Operators: &&, ||, !, and, or, not
	||= operator, Abbreviated Assignment, Operators
	~ (tilde), Operators, Complement, Union, Intersection: ~, &, |, and ^


A
	"a" (append) file
                      mode, Opening files
	-a command-line
                  option, Text Processing Options
	\a escape
                      (BEL character), Double-quoted string literals
	\A regexp
                    anchor, Regular Expression Syntax
	"a+"
                      (append and reading) file mode, Opening files
	abbreviated assignments, Assignments, Abbreviated Assignment
	aborting thread state, Querying thread state
	accessors, Ruby Is Object-Oriented, Accessors and Attributes, Defining Operators, Defining Methods with define_method
		define_method and, Defining Methods with define_method
	methods, Ruby Is Object-Oriented


	add method (Set), Adding and deleting set elements
	add? method (Set), Adding and deleting set elements
	alias chaining, Alias Chaining, Domain-Specific Languages
	alias keyword, Method Aliases
	aliases (method), Method Aliases
	alias_method method (Module), Defining, Undefining, and Aliasing Methods
	all? method (Enumerable), Reducing collections
	allocate keyword, new, allocate, and initialize
	ampersand (&), Using & in method invocation
		method invocation and, Using & in method invocation
		(see also &)




	ancestry, Subclassing and Inheritance, Ancestry and Modules
	AND (&) operator, Operators
	and keyword, Operators, Boolean Operators: &&, ||, !, and, or, not
	any? method (Enumerable), Reducing collections
	apostrophes ('), using inside string literals, Single-quoted string literals
	append operator, Shift and Append: << and >> (see >>)
	arbitrary delimiters for string literals, Arbitrary delimiters for string literals
	ARGF stream, Predefined streams, Reading from a Stream, Top-Level Constants
	ArgumentError, Handling exceptions by type
	arguments, Passing Arguments to a Block, Method Arguments, Procs and Lambdas, Variable-Length Argument Lists and Arrays, Mapping Arguments to Parameters, Block Arguments, Procs and Lambdas, Argument passing to procs and lambdas
		arbitrary number, setting, Variable-Length Argument Lists and Arrays
	block, Block Arguments, Procs and Lambdas
	method, Method Arguments, Procs and Lambdas
	parameters, mapping to, Mapping Arguments to Parameters
	passing to blocks, Passing Arguments to a Block
	procs/lambdas, passing to, Argument passing to procs and lambdas


	ARGV stream, Top-Level Constants
	arithmetic, Arithmetic in Ruby, Arithmetic operator type coercions, Arithmetic: +, –, *, /, and %
		coerce method and, Arithmetic operator type coercions
	operations, Arithmetic: +, –, *, /, and %


	arity (proc/lambda), The Arity of a Proc
	Array class, Expressions and Operators in Ruby, Punctuation Suffixes and Prefixes
		suffixes/prefixes punctuation, Punctuation Suffixes and Prefixes
	[ ] operator, Expressions and Operators in Ruby


	Array functions, Conversion functions
		conversion functions and, Conversion functions


	Array.new method, Creating arrays
	Array.[] method, Creating arrays
	arrays, Blocks and Iterators, Arrays, Hashes, Assigning to Attributes and Array Elements, Variable-Length Argument Lists and Arrays, Passing arrays to methods, Array and Hash Access with [ ], Arrays, Hashes, Creating arrays, Array size and elements, Altering array elements, Iterating, searching, and sorting arrays, Iterating, searching, and sorting arrays, Iterating, searching, and sorting arrays, Array comparison, Arrays as stacks and queues, Associative array methods, Arrays from hashes
		access with [ ], Array and Hash Access with [ ]
	associative, Associative array methods
	comparison, Array comparison
	creating, Creating arrays
	elements, Assigning to Attributes and Array Elements, Array size and elements, Altering array elements
		altering, Altering array elements
	assigning to, Assigning to Attributes and Array Elements


	hashes, extracting from, Arrays from hashes
	iterating, Iterating, searching, and sorting arrays
	methods, passing to, Passing arrays to methods
	searching, Iterating, searching, and sorting arrays
	sorting, Iterating, searching, and sorting arrays
	stacks and queues, Arrays as stacks and queues
	variable-length method arguments, Variable-Length Argument Lists and Arrays


	arrows (=>), Ruby Is Object-Oriented, Nonoperators
		comments, using for, Ruby Is Object-Oriented


	ASCII, Program Encoding, Double-quoted string literals
		\a escape, Double-quoted string literals
	default source encoding, Program Encoding


	assignments, Assignment, Assignments, Operators, Abbreviated Assignment, Parallel Assignment, Assignment Operators
		abbreviated, Abbreviated Assignment
	operators, Assignment Operators
	parallel, Parallel Assignment


	assoc method (Array), Associative array methods
	associative arrays, Hashes, Associative array methods
	asterisk (*), Expressions and Operators in Ruby, Arithmetic in Ruby, Nonoperators, Variable-Length Argument Lists and Arrays, Strings, File and Directory Names
		matching characters (Dir class), File and Directory Names
	multiplication operator, Expressions and Operators in Ruby, Arithmetic in Ruby
	repetition (strings), Strings
	variable-length method argument lists,
            setting, Variable-Length Argument Lists and Arrays


	at sign (@), Classes and Modules, Classes and Modules, Punctuation in identifiers, Keywords, Variable References, Class Variables
		class variables and, Class Variables
	instance variables and, Classes and Modules, Classes and Modules, Punctuation in identifiers
	keywords prefixes and, Keywords


	attr method (Module), Accessors and Attributes
	attributes, Assigning to Attributes and Array Elements, Classes and Modules, Accessors and Attributes, Defining, Undefining, and Aliasing Methods, Defining Methods with define_method
		(see also accessors)
	define_method and, Defining Methods with define_method
	methods, Defining, Undefining, and Aliasing Methods
		accessor, defining, Defining, Undefining, and Aliasing Methods




	attr_accessor method (Module), Accessors and Attributes, Defining, Undefining, and Aliasing Methods
		define_method and, Defining, Undefining, and Aliasing Methods


	attr_reader method (Module), Accessors and Attributes, Defining, Undefining, and Aliasing Methods
		define_method and, Defining, Undefining, and Aliasing Methods


	at_exit method (Kernel), BEGIN and END
	autoload? function, Autoloading Modules


B
	\b
                      (backspace character) escape, Double-quoted string literals
	\B
                    (nonword boundary) regexp anchor, Regular Expression Syntax
	\b (word
                    boundary) regexp anchor, Regular Expression Syntax
	backslash (\), Newlines as statement terminators, Single-quoted string literals, Double-quoted string literals
		apostrophes, using inside string literals, Single-quoted string literals
	escapes, Double-quoted string literals
	line breaks, escaping, Newlines as statement terminators


	backspace character (\b) escape, Double-quoted string literals
	backtick (`) method (Kernel), Backtick command execution
	backtraces, Tracing
	BasicObject class, Subclassing and Inheritance
	BEGIN keyword, Program Execution, BEGIN and END
		program execution and, Program Execution


	BigDecimal class, Numbers, Decimal Arithmetic
	Bignum class, Expressions and Operators in Ruby, Numbers, Arithmetic in Ruby, Arithmetic in Ruby
		arithmetic and, Arithmetic in Ruby
	bit-manipulation operators and, Arithmetic in Ruby


	BINARY encodings, Multibyte characters in Ruby 1.9
	binary floating-point, Binary Floating-Point and Rounding Errors
	binary strings, Packing and Unpacking Binary Strings
	binding method (Proc), Closures and Bindings
	Binding object, Bindings and eval
	binding UnboundMethod objects, Unbound Method Objects
	binmode method (IO), Streams and Encodings
	bit-manipulation operators, Arithmetic in Ruby
	blocks, Blocks and Iterators, Blocks and Iterators, Block Structure in Ruby, Blocks, Block Syntax, The Value of a Block, Blocks and Variable Scope, Passing Arguments to a Block, Altering Control Flow, Methods, Procs, Lambdas, and Closures, Block Arguments, Procs and Lambdas, Evaluating Strings and Blocks, Variables and Constants, Thread Safety with Synchronized Blocks
		arguments, Passing Arguments to a Block, Altering Control Flow, Block Arguments, Procs and Lambdas
		passing to, Passing Arguments to a Block, Altering Control Flow


	evaluating, Evaluating Strings and Blocks, Variables and Constants
	structure, Block Structure in Ruby
	syntax, Block Syntax
	thread safety and, Thread Safety with Synchronized Blocks
	values of, The Value of a Block
	variable scope, Blocks and Variable Scope


	Boolean flip-flops, Boolean flip-flops
	Boolean operators, Arrays, Boolean type conversions
	break statement, Newlines as statement terminators, The Value of a Block, Altering Control Flow, break, next, throw and catch, Break in blocks, procs and lambdas
		next keyword and, next
	procs/lambdas/blocks and, Break in blocks, procs and lambdas
	throw and catch methods, throw and catch


	bytesize method (String), Multibyte characters in Ruby 1.9


C
	-c command-line
                  option, Miscellaneous Options
	-C command-line
                  option, Miscellaneous Options
	C-style (/* ... */) comments, Comments
	call method (Continuation), Continuations
	call method (Method), Invoking Methods
	call method (Proc), Block Arguments
	caller method (Kernel), Tracing
	Cardinal, The Ruby Interpreter
	carriage return (\r) escape, Double-quoted string literals
	case equality (===) operator, Regexp and Range, Object Class and Object Type, Operators, Equality: ==, !=, =~, !~, and ===, case
		case keyword and, case


	case sensitivity, Case sensitivity, String Operators
		string comparison and, String Operators


	case statement, case
	casecmp method (String), String Operators
	catch statement, Altering Control Flow, throw and catch
	chaining methods, Augmenting Behavior by Chaining
	characters, Character Literals, Accessing Characters and Substrings, Iterating Strings, String Encodings and Multibyte Characters, Arrays
		accessing, Accessing Characters and Substrings, Iterating Strings
	literals, Character Literals
	multibyte, String Encodings and Multibyte Characters, Arrays


	Class class (Module), Accessors and Attributes
	class hierarchy, Subclassing and Inheritance
	class keyword, Creating the Class
		creating classes, Creating the Class


	class method (Object), Types, Classes, and Modules
	class methods, A Class Method, Inheritance of Class Methods, Class Method Lookup
		inheritance of, Inheritance of Class Methods
	lookup, Class Method Lookup


	Class#new method, new, allocate, and initialize
	Class::new method, new, allocate, and initialize
	classes, Ruby Is Object-Oriented, Classes and Modules, Ruby Surprises, Identifiers, Block Structure in Ruby, Uninitialized Variables, Defining new exception classes, Defining a Simple Class, Method Visibility: Public, Protected, Private, Class Variables, Class Instance Variables, Defining Classes and Modules, Predefined Modules and Classes
		block structure and, Block Structure in Ruby
	defining, Defining a Simple Class, Method Visibility: Public, Protected, Private, Defining Classes and Modules
	exceptions, defining, Defining new exception classes
	identifiers and, Identifiers
	instance variables, Class Instance Variables
	variables, Uninitialized Variables, Class Variables


	classify method (Set), Miscellaneous set methods
	class_eval method (Module), instance_eval and class_eval, Tracing, Defining Methods with class_eval
	class_exec method (Module), instance_exec and class_exec
	clone method (Object), dup, clone, and initialize_copy, marshal_dump and marshal_load
	close method (IO), Closing, Flushing, and Testing Streams
	closures, Closures, Method Objects, Closures and Bindings
		bindings and, Closures and Bindings


	coding comments, File Structure
	coerce method (Numeric), Arithmetic operator type coercions
	collect method (Enumerable), Enumerable Objects, Iterating and converting collections
	collections, The for/in Loop, Collections, Files and Directories, Iterating and converting collections, Sorting collections, Searching collections
		iterating/converting and, Iterating and converting collections
	searching, Searching collections
	sorting, Sorting collections


	colon (:), Nonoperators
	comma (,), Nonoperators
	command-line options, Invoking the Ruby Interpreter
	command-line tools, Interactive Ruby with irb
	comments, Ruby Is Object-Oriented, Comments, Program Encoding, Multibyte characters in Ruby 1.9
		lexical structure and, Comments


	Comparable module, Comparison: <, <=, >, >=, and <=>, Modules As Mixins
	comparison operators, String Operators, Comparison: <, <=, >, >=, and <=>
	compiled languages, Program Execution
	Complex class, Numbers, Complex Numbers
	compute-bound programs, Threads and Concurrency
	concurrency, Iteration and Concurrent Modification, Threads for Concurrency, Threads and Concurrency, Condition Variables and Queues, Threads and Concurrency, Thread Lifecycle, Concurrent iterators
		iterators, Concurrent iterators
	modification, Iteration and Concurrent Modification
	platform dependencies and, Threads and Concurrency
	thread lifecycle and, Thread Lifecycle
	threads for, Threads for Concurrency


	conditional (?:) operator, Conditional: ?:
	conditionals, Conditionals, Loops, if, if As a Modifier, case
		case statements, case
	if statements, if, if As a Modifier


	constants, Constant References, Assigning to Constants, Constants, Inheritance of Constants, Inheritance of Constants, Variables and Constants, Methods, Missing Methods and Missing Constants
		assigning, Assigning to Constants
	inheritance of, Inheritance of Constants, Inheritance of Constants
	missing, Missing Methods and Missing Constants


	constructors, Initializing a Point
	const_missing method, Missing Methods and Missing Constants
	continue keyword, next
	continuous ranges, Ranges
	control flow, Altering Control Flow, Exceptions and Exception Handling
	control structures, Expressions and Operators in Ruby, Statements and Control Structures, Continuations, Custom Control Structures, Missing Methods and Missing Constants
		custom, Custom Control Structures, Missing Methods and Missing Constants


	conversions (object), Object Conversion, Copying Objects
	coroutines, Fibers for Coroutines
	cover? method (Range), Testing Membership in a Range
	curly braces ({ }), Blocks and Iterators, Block Structure in Ruby, Double-quoted string literals, Unicode escapes, Nonoperators, Block Syntax
		block structure and, Block Structure in Ruby
	iterators in blocks, using, Blocks and Iterators
	string interpolation and, Double-quoted string literals
	syntax of blocks, Block Syntax
	Unicode escapes and, Unicode escapes


	curry method (Proc), Invoking Procs and Lambdas
	currying, procs and lambdas, Invoking Procs and Lambdas


D
	\d
                    (digits) regexp character class, Regular Expression Syntax
	\D
                    (nondigits) regexp character class, Regular Expression Syntax
	-d command-line
                  option, Common Options
	DATA stream, File Structure, Reading from a Stream, Top-Level Constants
	datatypes, Datatypes and Objects, Tainted and Untrusted Objects, Numbers, Text, Text, Arrays, Character Literals, String Operators, Arrays, Hashes, Hashes, Ranges
		arrays, Arrays, Hashes
	character literals, Character Literals
	hashes, Hashes, Ranges
	numbers, Numbers, Text
	string operators, String Operators
	text and, Text, Arrays


	dates and times, Dates and Times
	DateTime class, Dates and Times
	deadlocks, Deadlock
	$DEBUG variable, Global settings
	decimal point (.), using floating-point literals
            and, Floating-Point Literals
	def keyword, Methods, Defining Simple Methods
		methods, defining, Defining Simple Methods


	default external encoding, Source, External, and Internal Encodings
	default internal encoding, Source, External, and Internal Encodings
	default parameters of methods, Parameter Defaults
	defined? keyword, Operators, The defined? Operator
	define_finalizer method (ObjectSpace), ObjectSpace and GC
	define_method method (Module), Defining, Undefining, and Aliasing Methods, Defining Methods with define_method
	delete method (Hash), Removing hash entries
	delete method (Set), Adding and deleting set elements, Adding and deleting set elements
	delete? method (Set), Adding and deleting set elements
	delete_if method (Hash), Removing hash entries
	delete_if method (Set), Adding and deleting set elements
	delimiters (arbitrary), Arbitrary delimiters for string literals
	deprecated extraction functions, Deprecated Extraction Functions
	descendants of classes, Subclassing and Inheritance
	Dir class, Files and Directories, Listing Directories, Listing Directories, Listing Directories, Listing Directories, Creating, Deleting, and Renaming Files and Directories, Creating, Deleting, and Renaming Files and Directories, Creating, Deleting, and Renaming Files and Directories
		chdir method, Listing Directories
	entries method, Listing Directories
	foreach method, Listing Directories
	glob method, Listing Directories
	mkdir method, Creating, Deleting, and Renaming Files and Directories
	rmdir method, Creating, Deleting, and Renaming Files and Directories
	unlink method, Creating, Deleting, and Renaming Files and Directories


	Dir.glob method, Listing Directories
	directories, Files and Directories, Input/Output, File and Directory Names, Listing Directories, Creating, Deleting, and Renaming Files and Directories
		creating, deleting, and renaming, Creating, Deleting, and Renaming Files and Directories
	listing, Listing Directories
	separator character (/), File and Directory Names


	--disable-rubyopt command-line
          option, Invoking the Ruby Interpreter
	discrete, Ranges, Testing Membership in a Range
		membership, Testing Membership in a Range
	ranges, Ranges


	divide method (Set), Miscellaneous set methods
	division, Arithmetic in Ruby
	divmod method (Numeric), Arithmetic in Ruby
	.dll files,
              loading extensions, Loading and Requiring Modules
	do keyword, Block Structure in Ruby, while and until, Block Syntax
		while loops and, while and until


	documentation comments, Documentation comments
	dollar sign ($), Punctuation in identifiers, Keywords, Variable References
		global, Punctuation in identifiers
		variables and, Punctuation in identifiers


	keywords prefixes and, Keywords


	domain-specific languages (DSLs), Reflection and Metaprogramming, Domain-Specific Languages, Validated XML Output with Method Generation
	dot (.), Variable References, Method Invocations, Method Invocations, Nonoperators, Regular Expression Syntax, Listing Directories
		directories and, Listing Directories
	matching characters and newlines (regular
                    expressions), Regular Expression Syntax
	method declarations, Method Invocations
	method invocations and, Method Invocations


	double colon (::), Variable References, Method Invocations, Nonoperators
	double-quoted string literals, Double-quoted string literals
	downto method (Integer), Numeric Iterators
	drop method (Enumerable), Selecting subcollections
	drop_while method (Enumerable), Selecting subcollections
	DSLs (domain-specific languages), Reflection and Metaprogramming, Domain-Specific Languages, Validated XML Output with Method Generation
	duck typing, Object Class and Object Type, Defining Operators, Point Equality
	dup method (Object), dup, clone, and initialize_copy, marshal_dump and marshal_load


E
	\e (ESC)
                      escape, Double-quoted string literals
	e (regular expression) modifier, Regexp Literals
	-e command-line
            option, The Ruby Interpreter, Common Options
	-E command-line
                  option, Encoding Options
	-E option, Source, External, and Internal Encodings
	each method (Enumerable), Iterators and Enumerable Objects
	each method (String), Iterating Strings
	each_byte method (String), Strings
	each_char method (String), Strings
	each_cons method (Enumerable), Iterating and converting collections
	each_line method (String), Strings
	each_pair method (Hash), Hash iterators
	each_slice method (Enumerable), Iterating and converting collections
	each_with_index method (Enumerable), Iterating and converting collections
	eigenclass, Symbols, Methods, and Procs, The Singleton Pattern, Singleton Methods and the Eigenclass, Method Lookup, Method Lookup, Class Method Lookup
		class method lookup, Class Method Lookup
	method lookup and, Method Lookup


	else keyword, else, case, The else Clause, Methods and Exception Handling
	elsif keyword, elsif
	embedded documents, Embedded documents
	empty? method (Array/Hash), Punctuation Suffixes and Prefixes
	encapsulation, Initializing a Point
	encode! method (String), Multibyte characters in Ruby 1.9
	Encoding class, Multibyte characters in Ruby 1.9, The Encoding class
	--encoding
                  command-line option, Encoding Options
	__ENCODING__ keyword, Specifying Program Encoding
	encoding method (Regexp), Regular expression encoding
	encoding method (String), Multibyte characters in Ruby 1.9
	encoding options, Source, External, and Internal Encodings, Encoding Options
	Encoding.aliases method, The Encoding class
	Encoding.compatible? method, Multibyte characters in Ruby 1.9
	Encoding.default_external method, Source, External, and Internal Encodings, The Encoding class
	Encoding.default_internal method, The Encoding class
	Encoding.find method, The Encoding class, The Encoding class
	Encoding.locale_charmap method, Source, External, and Internal Encodings, The Encoding class
	Encoding.name_list method, The Encoding class
	END keyword, Case sensitivity, BEGIN and END
	end keyword, Block Structure in Ruby, if
		if statement and, if


	__END__ token, File Structure, Predefined streams
	end-of-file (EOF), Reading lines, Reading bytes and characters
	ensure keyword, The ensure Clause, rescue with Method, Class, and Module Definitions, Methods and Exception Handling
	Enumerable module, Blocks and Iterators, Iterating Strings, Iterators and Enumerable Objects, Blocks, Enumerable Objects, Variable-Length Argument Lists and Arrays, Applying a Function to an Enumerable, Modules As Mixins, Strings, Enumerable Objects, Arrays
		functions, applying functions to, Applying a Function to an Enumerable
	max method and, Variable-Length Argument Lists and Arrays
	String class and, Strings


	Enumerable::Enumerator class, Enumerators and external iterators
	enumerators, Enumerators
	ENV stream, Top-Level Constants
	environment, The Ruby Environment, Safe level 4
	EOF (end-of-file), Reading lines, Reading bytes and characters
	eof? method (IO), Reading lines
	EOFError, Subclassing and Inheritance
	eql? method (Object), Hash Codes, Equality, and Mutable Keys, The eql? method, Point Equality
	equal? method (Object), The equal? method
	equality, Hash Codes, Equality, and Mutable Keys
	equals sign (=), Assignment, Punctuation Suffixes and Prefixes, Embedded documents, Punctuation in identifiers, Operators, Method Names
		embedded documents, writing comments and, Embedded documents
	method names and, Method Names
	suffixes/prefixes punctuation, Punctuation Suffixes and Prefixes


	$ERROR_INFO global
              variable, Naming the exception object
	ESC (\e) escape, Double-quoted string literals
	escapes, Double-quoted string literals, Double-quoted string literals, Unicode escapes
		double-quoted string literals and, Double-quoted string literals
	Unicode, Unicode escapes


	EUC characters, Unicode characters in identifiers
	EUC-JP, Specifying Program Encoding
	eval method (Binding), Closures and Bindings, Bindings and eval
	eval method (Kernel), Evaluating Strings and Blocks, Bindings and eval, Tracing
	Exception objects, Implicit conversions
	exceptions, Exceptions and Exception Handling, BEGIN and END, Exception Classes and Exception Objects, Handling Exceptions with rescue, The else Clause, Exceptions during exception handling, Methods and Exception Handling
		classes and objects, Exception Classes and Exception Objects
	exceptions during handling, Exceptions during exception handling
	methods, handling, Methods and Exception Handling
	rescue clause and, Handling Exceptions with rescue, The else Clause


	exclamation point (!), Punctuation in identifiers, Method Names
		(see also !)
	method names and, Method Names


	exclusion (thread), Thread Exclusion and Deadlock
	exclusive (ranges), Ranges
	execution of programs, The Structure and Execution of Ruby Programs, Program Execution
	explicit conversions, Explicit conversions
	exponentiation (**) operator, Arithmetic in Ruby, Operators, Exponentiation: **
	expressions, Expressions and Operators in Ruby, Expressions and Operators, Nonoperators
	external iterators, External Iterators, Iteration and Concurrent Modification, Enumerators and external iterators
	external_encoding method (IO), Streams and Encodings


F
	\f (form
                      feed character) escape, Double-quoted string literals
	-F command-line
                  option, Text Processing Options
	$F global
                    variable, Streams and text-processing globals
	factory methods, Factory Methods, Regexp Factory Methods
		regular expression, Regexp Factory Methods


	false keyword, True, False, and Nil, Literals and Keyword Literals, Conditionals, else
		conditionals and, Conditionals
	else keyword and, else


	fetch method (Hash), Indexing hashes and testing membership, Default values
	Fiber.new method, Fibers for Coroutines
	Fiber.yield method, Fiber arguments and return values
	fibers, Fibers for Coroutines, Continuations, Fiber arguments and return values, Advanced fiber features
		advanced features, Advanced fiber features
	argument/return values and, Fiber arguments and return values


	File class, File and Directory Names, File and Directory Names, File and Directory Names, Creating, Deleting, and Renaming Files and Directories, Creating, Deleting, and Renaming Files and Directories, Creating, Deleting, and Renaming Files and Directories, Creating, Deleting, and Renaming Files and Directories, Opening files, Reading entire files, Reading entire files
		copy_stream method, Creating, Deleting, and Renaming Files and Directories
	expand_path method, File and Directory Names
	fnmatch method, File and Directory Names
	identical? method, File and Directory Names
	link method, Creating, Deleting, and Renaming Files and Directories
	open method, Opening files
	read method, Reading entire files
	readlines method, Reading entire files
	rename method, Creating, Deleting, and Renaming Files and Directories
	symlink method, Creating, Deleting, and Renaming Files and Directories


	__FILE__ keyword, Literals and Keyword Literals, Tracing
		tracing and, Tracing


	file structure, File Structure
	File.chmod method, Creating, Deleting, and Renaming Files and Directories
	File.expand_path method, File and Directory Names
	File.fnmatch method, File and Directory Names
	File.identical? method, File and Directory Names
	File.truncate method, Creating, Deleting, and Renaming Files and Directories
	File.unlink method, Creating, Deleting, and Renaming Files and Directories
	File.utime method, Creating, Deleting, and Renaming Files and Directories
	File::ALT_SEPARATOR method, File and Directory Names
	File::FNM_PATHNAME method, File and Directory Names
	File::Stat method, Testing Files
	$FILENAME
                    global variable, Streams and text-processing globals
	files, Files and Directories, Input/Output, File and Directory Names, Testing Files, Creating, Deleting, and Renaming Files and Directories, Opening files, Streams and Encodings, Reading entire files, Reading bytes and characters
		bytes and characters, reading, Reading bytes and characters
	creating, deleting, and renaming, Creating, Deleting, and Renaming Files and Directories
	opening, Opening files
	reading entire, Reading entire files
	specifying encodings, Streams and Encodings
	testing, Testing Files
	Windows, File and Directory Names


	find method (Enumerable), Searching collections
	find_index method (Enumerable), Searching collections
	first method (Enumerable), Selecting subcollections
	fixed_encoding? method (Regexp), Regular expression encoding
	Fixnum objects, Expressions and Operators in Ruby, Numbers, Integer Literals, Arithmetic in Ruby, Arithmetic in Ruby, Immediate values, Object Identity
		arithmetic and, Arithmetic in Ruby
	bit-manipulation operators and, Arithmetic in Ruby
	integer literals and, Integer Literals
	object identity and, Object Identity
	references and, Immediate values


	flatten method (Set), Miscellaneous set methods
	flatten! method (Set), Miscellaneous set methods
	flip-flops, Ranges and Flip-Flops: .. and ..., Conditional: ?:
	Float class, Binary Floating-Point and Rounding Errors
	Float function (Kernel), Conversion functions
	floating-point literals, Floating-Point Literals
	flow-of-control, Statements and Control Structures, Altering Control Flow
		statements, Altering Control Flow


	for keyword, The for/in Loop
		in keyword and, The for/in Loop


	force_encoding method (String), Multibyte characters in Ruby 1.9
	forking, Forking and Processes
	form feed character (\f) escape, Double-quoted string literals
	forward slash (/), Arithmetic in Ruby, File and Directory Names, File and Directory Names
		directory separator character, File and Directory Names
	division operator, Arithmetic in Ruby
	Window directory separator character, File and Directory Names


	freeze method (Object), Hash Codes, Equality, and Mutable Keys
	frozen objects, Freezing Objects
	functional styles, Method Visibility: Public, Protected, Private
	functions, Ruby Is Object-Oriented, Conversion functions, Invoking Procs and Lambdas, Functional Programming, Symbols, Methods, and Procs, Applying a Function to an Enumerable, Composing Functions, Partially Applying Functions, Memoizing Functions, Predefined Global Functions, User-Defined Global Functions, Deprecated Extraction Functions, Reporting Functions
		composition, Composing Functions
	conversion, Conversion functions
	currying, Invoking Procs and Lambdas
	deprecated extraction, Deprecated Extraction Functions
	enumerable, applying to, Applying a Function to an Enumerable
	functional programming, Functional Programming, Symbols, Methods, and Procs
	memoization, Memoizing Functions
	parentheses (( )) and, Ruby Is Object-Oriented
	partial application, Partially Applying Functions
	predefined global, Predefined Global Functions
	reporting, Reporting Functions
	user-defined global, User-Defined Global Functions




G
	garbage collection, Object Lifetime, ObjectSpace and GC
	GC module (garbage collection), ObjectSpace and GC
	Gem, Subclassing and Inheritance
	gem tool, Try Ruby, Ruby Package Management with gem
	getbyte method (String), Multibyte characters in Ruby 1.9
	getter methods, Assigning to Attributes and Array Elements
	global, Punctuation in identifiers, Uninitialized Variables, Method Invocations, Naming the exception object, Method Visibility: Public, Protected, Private, The Load Path, Executing Loaded Code, Global Variables, Predefined Global Functions
		functions, Method Invocations
	methods, Method Visibility: Public, Protected, Private
	variables, Punctuation in identifiers, Uninitialized Variables, Naming the exception object, The Load Path, Executing Loaded Code, Global Variables, Predefined Global Functions
		$! operator, Naming the exception object
	load path and, The Load Path, Executing Loaded Code




	greater than (>) operator, String Operators, Object Order, Operators
	greater than or equal (>=) operator, String Operators, Object Order, Operators, Comparison: <, <=, >, >=, and <=>
	group_by method (Enumerable), Selecting subcollections
	gsub method (String), Search and replace
	gsub! method (String), Search and replace


H
	hash (#), Ruby Is Object-Oriented, Comments, Program Encoding, Double-quoted string literals
		comments and, Ruby Is Object-Oriented, Comments, Program Encoding
	string interpolation and, Double-quoted string literals


	Hash.each_pair method, Passing Arguments to a Block
	Hash.new method, Creating hashes, Default values
	hashcodes, Hash Codes, Equality, and Mutable Keys
	hashes, Blocks and Iterators, Expressions and Operators in Ruby, Punctuation Suffixes and Prefixes, Hashes, Ranges, Hash Literals, Hash Codes, Equality, and Mutable Keys, The eql? method, Hashes for Named Arguments, Array and Hash Access with [ ], Hashes, Sets, Hashes, Creating hashes, Removing hash entries, Arrays from hashes, Default values, Hashcodes, key equality, and mutable keys
		access with [ ], Array and Hash Access with [ ]
	arrays, extracting from, Arrays from hashes
	codes/tables, Hash Codes, Equality, and Mutable Keys
	creating, Creating hashes
	default values, Default values
	entries, removing, Removing hash entries
	eql? method, using, The eql? method
	integer hashcodes, Hashcodes, key equality, and mutable keys
	literals, Hash Literals
	named method arguments, Hashes for Named Arguments
	suffixes/prefixes punctuation, Punctuation Suffixes and Prefixes
	[ ] operator, Expressions and Operators in Ruby, Hashes


	--help
                  command-line option, Warnings and Information Options
	<<here
              documents, Here documents, Backtick command execution
	hooks, Hooks, Tracing


I
	i (regular expression) modifier, Regexp Literals
	-I command-line
            option, The Load Path, Common Options
	-i command-line
                  option, Text Processing Options
	id method (deprecated), Object Identity
	id2ref method (ObjectSpace), ObjectSpace and GC
	idempotent expressions, Assignments
	identifiers, Identifiers, Keywords, Unicode characters in identifiers
		unicode characters and, Unicode characters in identifiers


	if keyword, Expressions and Operators in Ruby, Operators, Conditional: ?:, if, if As a Modifier, if As a Modifier, unless
		?: (conditional) operator, Conditional: ?:
	modifier, as a, if As a Modifier, unless


	immutable objects, Numbers, A Mutable Point
	implicit conversions, Implicit conversions
	in keyword, The for/in Loop
	includable namespace module, Includable Namespace Modules
	include? method (Module), Ancestry and Modules
	include? method (Range), Ranges
	inclusive (ranges), Ranges
	indexes, Accessing Characters and Substrings, Indexing hashes and testing membership
		arrays, Accessing Characters and Substrings
	hashes, Indexing hashes and testing membership


	indexing arrays, Arrays
	inheritance, Subclassing and Inheritance, Object Creation and Initialization, Inheriting Methods, Inheritance of Class Methods, Inheritance and Instance Variables, Inheritance of Constants
		class methods and, Inheritance of Class Methods
	constants, Inheritance of Constants
	instance variables, Inheritance and Instance Variables
	methods, Inheriting Methods


	inherited method, Hooks
		hooks and, Hooks


	initialize method, Initializing a Point, Constants, Class Instance Variables, Method Visibility: Public, Protected, Private, Inheritance and Instance Variables, new, allocate, and initialize, Factory Methods, The Singleton Pattern
		factory methods, Factory Methods
	object creation and initialization, new, allocate, and initialize
	private/protected methods and, Method Visibility: Public, Protected, Private
	singleton classes and, The Singleton Pattern


	initialize method (Class), Object Lifetime
	initialize_copy method, Copying Objects, dup, clone, and initialize_copy, marshal_dump and marshal_load
	inject iterator, Applying a Function to an Enumerable
	inject method (Enumerable), Enumerable Objects, Reducing collections
	input/output, Input/Output, Networking, Writing to a Stream, Random Access Methods, Input Functions
		input functions, Input Functions
	random access methods, Random Access Methods
	streams, writing to, Writing to a Stream


	inspect method, Displaying Output, Miscellaneous hash methods
	installing gems, Ruby Package Management with gem
	instance variables, Classes and Modules, Punctuation in identifiers, Uninitialized Variables, Assigning to Variables, Class Instance Variables, Inheritance and Instance Variables
		assigning, Assigning to Variables
	classes, Class Instance Variables
	inheritance and, Inheritance and Instance Variables


	instance_eval method (Object), Method Visibility: Public, Protected, Private, instance_eval and class_eval, Tracing
	instance_exec method (Object), instance_exec and class_exec
	instance_of? method (Object), Object Class and Object Type, Types, Classes, and Modules
	Integer function, Numeric Methods
	Integer function (Kernel), Conversion functions
	integers, Integer Literals
		literals, Integer Literals


	intern method (String), Symbols
	internal iterator, External Iterators
	internal_encoding method (IO), Streams and Encodings
	internationalization, Formatting Text
	interpreter (Ruby), Try Ruby, Ruby Resources, Lexical Structure, Syntactic Structure, Invoking the Ruby Interpreter, The Top-Level Environment
		lexical structure and, Lexical Structure
	syntactic structure and, Syntactic Structure


	introspection, Reflection and Metaprogramming (see reflection)
	invert method (Hash), Miscellaneous hash methods
	invocations, Method Invocations, Assignments, Methods, Procs, Lambdas, and Closures
	IO object, Input/Output, Networking
	IO-bound programs, Threads and Concurrency
	IO.bytes enumerator, Reading bytes and characters
	IO.chars enumerator, Reading bytes and characters
	IO.copy_stream method, Reading entire files
	IO.each iterator, Reading lines
	IO.each_byte iterator, Reading bytes and characters
	IO.each_char iterator, Reading bytes and characters
	IO.each_line iterator, Reading lines
	IO.foreach method, Reading entire files
	IO.lines enumerator, Reading lines
	IO.new method, Opening Streams
	IO.open method, Opening Streams
	IO.pipe method, Opening Streams
	IO.popen method, Opening Streams
	IO.read method, Reading entire files
	IO.readlines method, Reading entire files
	IOError, Subclassing and Inheritance
	irb (interactive Ruby) tool, Try Ruby, Interactive Ruby with irb, Evaluating Strings and Blocks
	IronRuby, The Ruby Interpreter
	is_a? method (Object), Object Class and Object Type, Types, Classes, and Modules
	iterators, Blocks and Iterators, Blocks and Iterators, Classes and Modules, Iterating Strings, Iterators and Enumerable Objects, Blocks, Numeric Iterators, Writing Custom Iterators, Enumerators, External Iterators, Iteration and Concurrent Modification, Iteration and Concurrent Modification, Enumerators and external iterators, Set iterators
		classes/methods and, Classes and Modules
	concurrent modification and, Iteration and Concurrent Modification
	custom, writing, Writing Custom Iterators, Enumerators
	external, External Iterators, Iteration and Concurrent Modification, Enumerators and external iterators
	numeric, Numeric Iterators
	Set class and, Set iterators
	strings, Iterating Strings




J
	Java programming language, using equality
                operators, The == operator
	JRuby, The Ruby Interpreter


K
	-K command-line
            option, Specifying Program Encoding, Multibyte characters in Ruby 1.8
	Kanji characters, Unicode characters in identifiers
	$KCODE global
                    variable, Global settings
	Kernel module, Conversion functions, Method Invocations, External Iterators, Includable Namespace Modules, Reflection and Metaprogramming
		looping, External Iterators


	Kernel.eval method, Evaluating Strings and Blocks
	Kernel.lambda method, Kernel.lambda
	Kernel.proc method, Kernel.proc
	Kernel.rand method, Random Numbers
	keys, Hashes, Storing keys and values in a hash
		storing in hashes, Storing keys and values in a hash


	keyword literals, Literals and Keyword Literals
	keywords, Keywords
	kill method, Altering state: pausing, waking, and killing threads
	kill! method, Altering state: pausing, waking, and killing threads
	kind_of? method (Object), Types, Classes, and Modules


L
	-l command-line
                  option, Text Processing Options
	lambdas, return, Procs and Lambdas, Closures, Lambda Literals, Invoking Procs and Lambdas
		invoking, Invoking Procs and Lambdas
	literals, Lambda Literals


	length method (Array), Arrays
	length method (String), Accessing Characters and Substrings, Multibyte characters in Ruby 1.9
	less than (<) operator, String Operators, Object Order, Operators, Comparison: <, <=, >, >=, and <=>
	less than or equal (<=) operator, String Operators, Object Order, Operators, Comparison: <, <=, >, >=, and <=>
	lexical structure, Lexical Structure, Syntactic Structure, Program Encoding
	lifetime of objects, Object Lifetime
	__LINE__ keyword, Literals and Keyword Literals, Literals and Keyword Literals, Tracing
		tracing and, Tracing


	literals, Literals, Integer Literals, String Literals, Character Literals, Arbitrary delimiters for string literals, String literals and mutability, Character Literals, Hash Literals, Literals and Keyword Literals
		characters, Character Literals
	hashes, Hash Literals
	integer and floating-point, Integer Literals
	strings, String Literals, Character Literals, Arbitrary delimiters for string literals, String literals and mutability
		arbitrary delimiters and, Arbitrary delimiters for string literals
	mutability and, String literals and mutability




	load function, Loading and Requiring Modules, Executing Loaded Code
		executing code, Executing Loaded Code


	load path, The Load Path, Executing Loaded Code
	$LOADED_FEATURES global
                    variable, Global settings
	$LOAD_PATH global
            variable, The Load Path, Global settings
	local variables, Uninitialized Variables
	localization, Formatting Text
	lock method, Thread Exclusion and Deadlock
	lookups (methods), Method Invocations, Method Lookup, Constant Lookup
	loop method, Numeric Iterators
	loops, Blocks and Iterators, Loops, Iterators and Enumerable Objects, break
		break keyword, break


	lvalues, Assignments, Abbreviated Assignment, Parallel Assignment
		abbreviated assignment and, Abbreviated Assignment
	parallel assignments and, Parallel Assignment




M
	m (regular expression) modifier, Regexp Literals
	main method, Program Execution
	makeproc method, Creating Procs
	map iterator, Applying a Function to an Enumerable
	map method (Enumerable), Iterators and Enumerable Objects
	maps, Hashes
	Marshal.dump method, Marshaling Objects
	Marshal.load method, Marshaling Objects, marshal_dump and marshal_load
	marshal_dump method, marshal_dump and marshal_load
	marshal_load method, marshal_dump and marshal_load
	match method (Regexp/String), Pattern Matching with Regular Expressions
	MatchData object, Pattern Matching with Regular Expressions
	Math module, Methods, The Math Module
	Matrix class, Vectors and Matrices
	Matsumoto, Yukihiro (Matz), Introduction
	Matz’s Ruby Implementation (MRI), The Ruby Interpreter
	max method, Variable-Length Argument Lists and Arrays
	max method (Enumerable), Reducing collections
	max_by method (Enumerable), Reducing collections
	member? method (Range), Testing Membership in a Range
	memberships, Testing Membership in a Range, Indexing hashes and testing membership
		testing in ranges, Testing Membership in a Range


	memoization, Memoizing Functions
	metaclass, Singleton Methods and the Eigenclass
		(see also eigenclass)


	metaprogramming, About This Book, Method Objects, Accessors and Attributes, Method Visibility: Public, Protected, Private, Reflection and Metaprogramming, Validated XML Output with Method Generation
	Method class, Method Objects
	method method (Object), Invoking Methods
	methods, Ruby Is Object-Oriented, Methods, Identifiers, Block Structure in Ruby, Method Invocations, Assignments, The methods of exception objects, Methods, Procs, Lambdas, and Closures, Symbols, Methods, and Procs, Defining Simple Methods, Method Names, Method Return Value, Methods and Exception Handling, Invoking a Method on an Object, Defining Singleton Methods, Undefining Methods, Method Names, Methods and Parentheses, Operator Methods, Method Aliases, Methods and Parentheses, Method Arguments, Optional Parentheses, Method Arguments, Procs and Lambdas, Method Objects, Unbound Method Objects, Accessors and Attributes, A Mutable Point, Method Visibility: Public, Protected, Private, Subclassing and Inheritance, Overriding Methods, Augmenting Behavior by Chaining, Factory Methods, Singleton Methods and the Eigenclass, Method Lookup, Constant Lookup, Methods, Hooks, Methods, Invoking Methods, Defining, Undefining, and Aliasing Methods, Handling Undefined Methods, Setting Method Visibility, Missing Methods and Missing Constants, Dynamically Creating Methods, Alias Chaining, Chaining Methods for Thread Safety, Numeric Methods, Random Access Methods
		accessors/attributes and, Accessors and Attributes
	aliases, Method Aliases
	arguments, Method Arguments, Procs and Lambdas
	block structure and, Block Structure in Ruby
	chaining for thread safety, Chaining Methods for Thread Safety
	creating dynamically, Dynamically Creating Methods, Alias Chaining
	defining, undefining, and aliasing, Defining, Undefining, and Aliasing Methods
	exception handling and, Methods and Exception Handling
	exception objects and, The methods of exception objects
	factory, Factory Methods
	identifiers and, Identifiers
	invocations, Method Invocations, Assignments
	invoking, Invoking Methods
	invoking on objects, Invoking a Method on an Object
	IO random access, Random Access Methods
	lookup/name resolution, Method Lookup, Constant Lookup
	Method objects, Method Objects
	missing, Missing Methods and Missing Constants
	mutable, A Mutable Point
	names, Method Names, Methods and Parentheses
	numeric, Numeric Methods
	omitting parentheses in, Optional Parentheses
	operator, Operator Methods
	overriding, Overriding Methods, Augmenting Behavior by Chaining
	parentheses (( )) and, Ruby Is Object-Oriented, Methods and Parentheses, Method Arguments
	return values and, Method Return Value
	simple, defining, Defining Simple Methods, Method Names
	singleton, Defining Singleton Methods, Singleton Methods and the Eigenclass
		defining, Defining Singleton Methods


	UnboundMethod objects, Unbound Method Objects
	undefined, handling, Handling Undefined Methods
	undefining, Undefining Methods
	visibility, Method Visibility: Public, Protected, Private, Subclassing and Inheritance, Setting Method Visibility
		public, protected, and private, Method Visibility: Public, Protected, Private, Subclassing and Inheritance
	setting, Setting Method Visibility




	method_missing method, Handling Undefined Methods, Missing Methods and Missing Constants, Tracing Method Invocations with method_missing, Simple XML Output with method_missing
		XML output and, Simple XML Output with method_missing


	min method (Enumerable), Reducing collections
	minmax method (Enumerable), Reducing collections
	minmax_by method (Enumerable), Reducing collections
	minus sign (–) operator, Arithmetic in Ruby, Operators, Unary + and –
		unary, Unary + and –


	min_by method (Enumerable), Reducing collections
	missing constants, Missing Methods and Missing Constants
	missing methods, Missing Methods and Missing Constants
	mixin modules, Object Order, Modules As Mixins
		object order and, Object Order


	modifiers, Statement Modifiers, if As a Modifier, unless, while and until As Modifiers
		while and until as, while and until As Modifiers


	Module class, Comparison: <, <=, >, >=, and <=>, Accessors and Attributes, Reflection and Metaprogramming
	Module.nesting method, Ancestry and Modules
	modules, Classes and Modules, Ruby Surprises, Block Structure in Ruby, Modules, Loading and Requiring Modules, Modules as Namespaces, Modules As Mixins, Modules As Mixins, Includable Namespace Modules, Loading and Requiring Modules, Singleton Methods and the Eigenclass, Autoloading Modules, Ancestry and Modules, Defining Classes and Modules, Predefined Modules and Classes
		ancestry, Ancestry and Modules
	autoloading, Autoloading Modules
	block structure and, Block Structure in Ruby
	defining, Defining Classes and Modules
	includable namespaces, Includable Namespace Modules
	loading and requiring, Loading and Requiring Modules, Singleton Methods and the Eigenclass
	mixins as, Modules As Mixins
	namespaces as, Modules as Namespaces, Modules As Mixins


	module_function method, Includable Namespace Modules
	modulo (%) operator, Arithmetic in Ruby, Abbreviated Assignment, Operators
	modulo method (Numeric), Arithmetic in Ruby
	monkey patching, Alias Chaining
	MRI (Matz’s Ruby Implementation), The Ruby Interpreter
	multibyte characters, String Encodings and Multibyte Characters
	multiline comments, Comments
	multiplication (*) operator, Expressions and Operators in Ruby, Operators
	multithreaded, Threads and Concurrency, A Multithreaded Server
		programs, Threads and Concurrency
	servers, A Multithreaded Server


	mutable, Hash Codes, Equality, and Mutable Keys, A Mutable Point
		keys, Hash Codes, Equality, and Mutable Keys
	points, A Mutable Point


	mutator methods, Method Names
	Mutex object, Thread Safety with Synchronized Blocks


N
	\n (newline), Double-quoted string literals, Double-quoted string literals
	n (regular expression) modifier, Regexp Literals
	-n command-line
                  option, Text Processing Options
	name method (Encoding), The Encoding class
	name resolution (methods), Method Invocations, Method Lookup, Constant Lookup
	named captures, Pattern Matching with Regular Expressions, Pattern Matching with Regular Expressions, Search and replace
		local variables, and, Pattern Matching with Regular Expressions
	MatchData, and, Pattern Matching with Regular Expressions
	references in replacement strings, Search and replace


	NameError, Uninitialized Variables
	namespaces, Modules as Namespaces, Modules As Mixins, Nested namespaces, Includable Namespace Modules
		includable modules, Includable Namespace Modules
	nested, Nested namespaces


	NaN (Not-a-Number), Arithmetic in Ruby
	negative numbers, Arithmetic in Ruby
	networking, Networking, Threads and Concurrency
	new keyword, new, allocate, and initialize
	new method (Class), Object Lifetime
	newlines, Displaying Output, Whitespace, Double-quoted string literals, Double-quoted string literals
		using print methods and, Displaying Output
	\n escape, Double-quoted string literals, Double-quoted string literals


	next keyword, next, redo
	next method, External Iterators
	nil keyword, Ruby Is Object-Oriented, Expressions and Operators in Ruby, Accessing Characters and Substrings, True, False, and Nil, Object Order, Literals and Keyword Literals, Conditionals, else
		<=> operator and, Object Order
	characters in strings, accessing, Accessing Characters and Substrings
	conditionals, Conditionals
	else keyword and, else
	expressions and, Expressions and Operators in Ruby


	NoMethodError, Handling Undefined Methods
	nonoperators, Nonoperators
	nonoverridable (=) operator, Assignment
	nonterminating quotation mark (\"), Double-quoted string literals
	not keyword, Operators, Boolean Operators: &&, ||, !, and, or, not
	Not-a-Number (NaN), Arithmetic in Ruby
	numbers, Numbers, Text, Numbers and Math, Dates and Times, Random Numbers
		random, Random Numbers


	Numeric class, The == operator, Numeric Iterators, Numeric Methods
	numeric iterators, Numeric Iterators


O
	o (regular expression) modifier, Regexp Literals
	Object class, Methods, Reflection and Metaprogramming
	object-oriented, Ruby Is Object-Oriented
	objects, Datatypes and Objects, Objects, Tainted and Untrusted Objects, Object References, Object Lifetime, Object Identity, Object Class and Object Type, Object Equality, Object Order, Object Order, Object Conversion, Copying Objects, Copying Objects, Marshaling Objects, Freezing Objects, Tainted and Untrusted Objects, Creating exception objects, Naming the exception object, Invoking a Method on an Object, Object Creation and Initialization, Modules
		classes/types, Object Class and Object Type
	conversion, Object Conversion, Copying Objects
	copying, Copying Objects
	creating and initialization, Object Creation and Initialization, Modules
	equality, Object Equality, Object Order
	exceptions, creating, Creating exception objects, Naming the exception object
		naming, Naming the exception object


	freezing, Freezing Objects
	identity, Object Identity
	lifetime, Object Lifetime
	marshaling, Marshaling Objects
	methods, invoking on, Invoking a Method on an Object
	order, Object Order
	references, Object References
	tainting, Tainted and Untrusted Objects


	ObjectSpace module, ObjectSpace and GC
	object_id method (Object), Object Identity
	one-line scripts, One-Line Script Shortcuts
	open classes, Classes and Modules
	open method (Kernel), Kernel.open
	operators, Expressions and Operators in Ruby, Punctuation, Operators, Nonoperators, Assignment Operators, Operator Methods, Defining Operators
		assignments, Assignment Operators
	defining, Defining Operators
	methods, Operator Methods
	punctuation and, Punctuation


	optional parentheses, Optional Parentheses
	options (command-line), Invoking the Ruby Interpreter
	or keyword, Operators, Boolean Operators: &&, ||, !, and, or, not
	OR operator, Complement, Union, Intersection: ~, &, |, and ^ (see |)
	ORIGIN constant, Inheritance of Constants
	OS-dependent functions, Calling the OS
	output, displaying, Displaying Output
	overriding methods, Overriding Methods, Augmenting Behavior by Chaining


P
	-p command-line
                  option, Text Processing Options
	package management systems, Ruby Package Management with gem
	parallel assignments, Assignment, Assignments, Parallel Assignment, Passing Arguments to a Block
	parameter defaults, Parameter Defaults
	parentheses (( )), Ruby Is Object-Oriented, Spaces and method invocations, Method Invocations, Parentheses in parallel assignment, Nonoperators, if, Methods and Parentheses, Method Arguments, Optional Parentheses, Required Parentheses
		function/methods, Ruby Is Object-Oriented
	if statements and, if
	method declarations, Spaces and method invocations, Method Invocations, Methods and Parentheses, Method Arguments
	optional, Optional Parentheses
	parallel assignment and, Parentheses in parallel assignment
	required, Required Parentheses


	partial application, Partially Applying Functions
	partition method (Enumerable), Selecting subcollections
	pattern matching, Pattern Matching with Regular Expressions, Numbers and Math
	percent sign, Arbitrary delimiters for string literals (see %)
	Perl regular expression syntax, Global variables for match data
	platform (Ruby), The Ruby Platform, Condition Variables and Queues
	platform dependencies, Threads and Concurrency
	plus sign (+), Expressions and Operators in Ruby, Arithmetic in Ruby, String Operators, Arithmetic operator type coercions, Operators, Unary + and –, Memoizing Functions, Strings
		coerce method and, Arithmetic operator type coercions
	concatenation and, Strings
	strings and, String Operators
	unary, Unary + and –, Memoizing Functions


	Point class, using accessors and attributes, Accessors and Attributes
	Point3D class, Inheriting Methods, Inheritance of Class Methods, Inheritance of Constants
		class methods, inheritance of, Inheritance of Class Methods


	pointers, Object References
	precedence, Operators, Assignment Operators
		assignment operators and, Assignment Operators


	predicate methods, Method Names
	preemption (thread), Thread preemption and Thread.pass
	prefixes punctuation, Punctuation Suffixes and Prefixes
	primary expressions, Expressions and Operators
	primitive types, Objects
	print function, IO streams and, Predefined streams
	print method, Displaying Output, Writing to a Stream
	printf function, Double-quoted string literals, Formatting Text
	priorities (thread), Thread priorities
	private methods, Methods, Method Invocations, Method Visibility: Public, Protected, Private, Subclassing and Inheritance, Overriding private methods
		overriding, Overriding private methods


	Proc.new method, Proc.new, Break in blocks, procs and lambdas
	processes, Forking and Processes
	procs, Methods, Procs, Lambdas, and Closures, Procs and Lambdas, Closures, Creating Procs, Invoking Procs and Lambdas, Invoking Procs and Lambdas, Proc Equality
		creating, Creating Procs, Invoking Procs and Lambdas
	equality, Proc Equality
	invoking, Invoking Procs and Lambdas


	program encoding, Program Encoding, Program Execution
	program execution, Program Execution
	$PROGRAM_NAME global
                    variable, Global settings
	protected methods, Method Visibility: Public, Protected, Private, Subclassing and Inheritance
	public methods, Method Visibility: Public, Protected, Private, Subclassing and Inheritance
	public_instance_method, Unbound Method Objects
	public_method method, Method Objects
	public_send method, Invoking Methods
	punctuation, Punctuation Suffixes and Prefixes, Punctuation, Punctuation in identifiers, Nonoperators
		characters, Nonoperators
	identifiers and, Punctuation in identifiers
	suffixes/prefixes, Punctuation Suffixes and Prefixes


	putc method, Writing to a Stream
	puts function, Displaying Output
	puts method (Kernel), Method Invocations


Q
	%Q sequences, Arbitrary delimiters for string literals
	%q sequences, Arbitrary delimiters for string literals
	question mark (?), Punctuation in identifiers, Method Names, File and Directory Names
		matching characters with, File and Directory Names
	method names and, Method Names


	queue data structures, Queue and SizedQueue
	quo method (Numeric), Rational Numbers
	quotation marks ("), Double-quoted string literals, Formatting Text
		expressions, interpolating into strings, Formatting Text




R
	\r
                      (carriage return) escape, Double-quoted string literals
	"r" (reading)
                      file mode, Opening files
	-r command-line
                  option, Common Options
	%r delimiter, Regexp Literals
	"r+"
                      (reading and writing) file mode, Opening files
	raise method, Exceptions and Exception Handling, Raising Exceptions with raise
		exceptions and, Exceptions and Exception Handling
	exceptions, raising and, Raising Exceptions with raise


	rand method, Random Numbers
	random access methods, Random Access Methods
	Range object, Accessing Characters and Substrings
	ranges, Regexp and Range, Ranges, Symbols, Testing Membership in a Range, Testing Membership in a Range, Ranges and Flip-Flops: .. and ..., Conditional: ?:
		(see also .. operator)
	membership, testing, Testing Membership in a Range


	rassoc method (Array), Associative array methods
	Rational class, Numbers, Rational Numbers
	.rb source files, Loading and Requiring Modules
	rdoc tool, Documentation comments
	read method, Reading bytes and characters
	readbytes method, Reading bytes and characters
	readline method (IO), Reading lines
	readpartial method, Reading bytes and characters
	read_nonblock method, Reading bytes and characters
	receiver, Invoking a Method on an Object
		(see also objects)


	redo keyword, Altering Control Flow, redo, Other control-flow statements
	references, Object References, Variable References, Constant References
		constant, Constant References
	object, Object References
	variable, Variable References


	reflection, Method Objects, Reflection and Metaprogramming, Validated XML Output with Method Generation
	Regexp, Regexp and Range
		(see also regular expressions)


	Regexp objects, Text, The =~ operator, Regular Expressions, Regexp Factory Methods, Regexp Factory Methods
		=~ operator and, The =~ operator
	compile method, Regexp Factory Methods
	new method, Regexp Factory Methods
	textual patterns and, Text


	Regexp.escape method, Regexp Factory Methods
	Regexp.last_match method, Pattern Matching with Regular Expressions
	Regexp.union method, Regexp Factory Methods
	regular expressions, Regexp Literals, Regular Expression Syntax, Pattern Matching with Regular Expressions, Pattern Matching with Regular Expressions, Pattern Matching with Regular Expressions, Search and replace
		literals, Regexp Literals
	named backreferences, Search and replace
	named captures, in, Pattern Matching with Regular Expressions, Pattern Matching with Regular Expressions
	syntax, Regular Expression Syntax, Pattern Matching with Regular Expressions


	reject method (Enumerable), Enumerable Objects
	reject! method, Adding and deleting set elements
	reject! method (Hash), Removing hash entries
	remainder method (Numeric), Arithmetic in Ruby
	remove_method method (Module), Defining, Undefining, and Aliasing Methods
	replace method (Hash), Storing keys and values in a hash
	require method, Ruby Package Management with gem, Loading and Requiring Modules, Executing Loaded Code
		code, executing, Executing Loaded Code


	required parentheses, Required Parentheses
	require_relative method, Loading and Requiring Modules
	rescue keyword, Operators, Handling Exceptions with rescue, The else Clause, retry in a rescue clause, rescue with Method, Class, and Module Definitions, rescue As a Statement Modifier, Methods and Exception Handling
		exceptions, handling, Handling Exceptions with rescue, The else Clause
	method, class, and module definitions, rescue with Method, Class, and Module Definitions
	methods and exception handling, Methods and Exception Handling
	retry statement and, retry in a rescue clause
	statement modifiers and, rescue As a Statement Modifier


	reserved words, Keywords
	respond_to? method, Object Class and Object Type, Types, Classes, and Modules
	retry keyword, Altering Control Flow, retry, retry in a rescue clause, Other control-flow statements
		rescue clause and, retry in a rescue clause


	return keyword, Newlines as statement terminators, Return value, The Value of a Block, Altering Control Flow, break, next, Method Return Value
		blocks and, The Value of a Block
	method values and, Method Return Value
	next statement and, next


	ri tools, Try Ruby, Viewing Ruby Documentation with ri, Documentation comments
		comments and, Documentation comments


	rounding errors, Binary Floating-Point and Rounding Errors
	Rubinius, The Ruby Interpreter
	Ruby 1.8, Ruby Package Management with gem, Specifying Program Encoding, Text, Character Literals, String Operators, Iterating Strings, Multibyte characters in Ruby 1.8, Hash Literals, Object Identity, Implicit conversions, Enumerators, Blocks and Variable Scope, Passing Arguments to a Block, retry, Required Parentheses, Mapping Arguments to Parameters, Inheritance and Class Variables, Modules As Mixins, The Load Path, Regular Expression Syntax, Hash iterators, Threads and Concurrency
		$LOAD_PATH, The Load Path
	blocks and, Blocks and Variable Scope
	blocks, passing arguments, Passing Arguments to a Block
	character literals, Character Literals
	encoding, specifying, Specifying Program Encoding
	enumerators, Enumerators
	Exception objects and, Implicit conversions
	hashes and, Hash Literals, Hash iterators
	inheritance and class variables, Inheritance and Class Variables
	installing gem, Ruby Package Management with gem
	iterating strings, Iterating Strings
	modules as mixins and, Modules As Mixins
	multibyte characters and, Multibyte characters in Ruby 1.8
	object identity and, Object Identity
	parameters, mapping arguments to, Mapping Arguments to Parameters
	parentheses, required, Required Parentheses
	platform dependencies and, Threads and Concurrency
	regular expressions, Regular Expression Syntax
	retry statement and, retry
	string operators, String Operators
	text in, Text


	Ruby 1.9, The Ruby Interpreter, Ruby Package Management with gem, Newlines as statement terminators, Text, Double-quoted string literals, Character Literals, Iterating Strings, Multibyte characters in Ruby 1.9, Multibyte characters in Ruby 1.9, Hash Literals, Symbols, The === operator, Operators, case, Blocks and Variable Scope, Fibers for Coroutines, Passing arrays to methods, Mapping Arguments to Parameters, Invoking Procs and Lambdas, Closures and Bindings, Unbound Method Objects, Symbols, Methods, and Procs, Subclassing and Inheritance, Loading and Requiring Modules, The Load Path, The Load Path, Bindings and eval, Querying, Setting, and Testing Variables, Listing and Testing For Methods, Invoking Methods, Tracing, Synchronized Objects by Delegation, Enumerable Objects, Set iterators, Files and Directories, Thread priorities
		$LOAD_PATH, The Load Path
	=== operator and, The === operator, case
	arrays, passing to methods, Passing arrays to methods
	ASCII and BINARY encodings and, Multibyte characters in Ruby 1.9
	BasicObject class and, Subclassing and Inheritance, Synchronized Objects by Delegation
	bindings and, Closures and Bindings
	blocks and, Blocks and Variable Scope
	character literals, Character Literals
	const_get method/const_defined? method, passing
            false, Querying, Setting, and Testing Variables
	enumerable objects and, Enumerable Objects
	eval method and, Bindings and eval
	fibers for coroutines and, Fibers for Coroutines
	filenames and, Files and Directories
	gem and, Ruby Package Management with gem
	gem command and, The Load Path
	hashes and, Hash Literals
	implementation and, The Ruby Interpreter
	invoking methods and, Invoking Methods
	iterating strings, Iterating Strings
	mapping arguments to, Mapping Arguments to Parameters
	modules, loading, Loading and Requiring Modules
	multibyte characters and, Multibyte characters in Ruby 1.9
	operators and, Operators
	Proc objects and, Invoking Procs and Lambdas
	public_instance_method and, Unbound Method Objects
	respond_to method (Object) and, Listing and Testing For Methods
	Set class and, Set iterators
	stack traces and, Tracing
	string literals and, Double-quoted string literals
	Symbol class and, Symbols
	text and, Text
	thread scheduling and, Thread priorities
	to_proc method and, Symbols, Methods, and Procs
	whitespace and, Newlines as statement terminators


	ruby command, The Ruby Interpreter
	Ruby operator, The splat operator
		splat operator and, The splat operator


	Ruby platform, The Ruby Platform, Condition Variables and Queues
	ruby-lang.org, The Ruby Interpreter
	RubyGems, Ruby Package Management with gem, The Load Path
	-rubygems
            command-line option, Ruby Package Management with gem
	RUBYOPT environment variable, Ruby Package Management with gem, Invoking the Ruby Interpreter
	RUBY_PATCHLEVEL constant, Top-Level Constants
	RUBY_PLATFORM constant, Top-Level Constants
	RUBY_RELEASE_DATE constant, Top-Level Constants
	RUBY_VERSION constant, Top-Level Constants
	runnable threads, Thread States
	rvalues, Assignments, Parallel Assignment
		parallel assignments and, Parallel Assignment




S
	\S
                    (nonwhitespace) regexp character class, Regular Expression Syntax
	s (regular expression) modifier, Regexp Literals
	\s (space
                      character), Double-quoted string literals
	\s
                    (whitespace) regexp character class, Regular Expression Syntax
	-s option, Miscellaneous Options
	-S option, Miscellaneous Options
	%s sequences, Symbols
	$SAFE global
                    variable, Global settings
	security, Security
	select method (Enumerable), Enumerable Objects, Selecting subcollections
	self keyword, Literals and Keyword Literals, A Class Method, Method Visibility: Public, Protected, Private, Includable Namespace Modules
		class methods and, A Class Method
	protected methods and, Method Visibility: Public, Protected, Private


	self. prefix, Modules as Namespaces
	semicolons (;), as statement terminators, Newlines as statement terminators, Nonoperators
	semicoroutines, Fibers for Coroutines
	send method (Object), Invoking Methods
	sequential execution, Statements and Control Structures
	setbyte method (String), Multibyte characters in Ruby 1.9
	sets, Sets, Files and Directories, Adding and deleting set elements
		adding/deleting elements, Adding and deleting set elements


	setter methods, Assigning to Attributes and Array Elements, Method Names, Accessors and Attributes
	set_encoding method (IO), Streams and Encodings
	set_trace_func method (Kernel), Tracing
	shared variables, Closures and Shared Variables
	shebang comments, File Structure
	shell commands, using backtick command
              execution, Backtick command execution
	shift method (Hash), Hash iterators
	shift operator, Shift and Append: << and >> (see <<)
	side effects of
            assignments, Assignments
	signals, trapping, Trapping Signals
	simple methods, Defining Simple Methods, Method Names
	single quotes ('), using for string literals, Single-quoted string literals
	single-quoted string literals, Single-quoted string literals
	singleton classes, The Singleton Pattern
	singleton methods, Methods, Immediate values, Defining Singleton Methods, Singleton Methods and the Eigenclass, Method Lookup
	singleton_methods method (Object), Listing and Testing For Methods
	size method (Array), Arrays
	size method (String), Accessing Characters and Substrings, Multibyte characters in Ruby 1.9
	SizedQueue data structures, Queue and SizedQueue
	SJIS, Specifying Program Encoding
	SJIS characters, Unicode characters in identifiers
	slash (/), Regexp Literals
		regular expressions and, Regexp Literals


	sleeping threads, Thread States
	slice method (String), Pattern matching with strings
	slices (subarrays), Expressions and Operators in Ruby
	.so files,
              loading extensions, Loading and Requiring Modules
	SortedSet class, Sets
	sort_by method (Enumerable), Sorting collections
	source encoding, Source, External, and Internal Encodings
	space character (\s), Double-quoted string literals
	spaces, Whitespace
	splat operator, The splat operator
	split method (String), Pattern matching with strings
	sprintf function, Double-quoted string literals, Formatting Text
	square-bracket array-index ([ ]), Expressions and Operators in Ruby, Accessing Characters and Substrings, Multibyte characters in Ruby 1.9, Arrays, Nonoperators, Array and Hash Access with [ ], Strings
		access to arrays/hashes, Array and Hash Access with [ ]
	strings, indexing, Strings


	StandardError, Handling exceptions by type, Subclassing and Inheritance
	statement modifiers, Statement Modifiers, rescue As a Statement Modifier
		rescue keyword and, rescue As a Statement Modifier


	statement terminators, Newlines as statement terminators
	statements, Expressions and Operators, Statements and Control Structures, Continuations
	$stderr global, Streams and text-processing globals
	STDERR stream, Reading from a Stream, Top-Level Constants
	$stdin global, Streams and text-processing globals
	STDIN stream, Predefined streams, Reading from a Stream, Top-Level Constants
	$stdout global, Streams and text-processing globals
	STDOUT stream, Predefined streams, Reading from a Stream, Top-Level Constants
	store method (Hash), Storing keys and values in a hash
	streams, Opening Streams, Streams and Encodings, Streams and Encodings, Reading from a Stream, Writing to a Stream, Writing to a Stream, Closing, Flushing, and Testing Streams, Streams and text-processing globals
		closing, flushing, and testing, Closing, Flushing, and Testing Streams
	encoding and, Streams and Encodings
	opening, Opening Streams, Streams and Encodings
	reading from, Reading from a Stream, Writing to a Stream
	text processing globals, Streams and text-processing globals
	writing to, Writing to a Stream


	String class, Text, The String.new method, String Operators, Iterating Strings, The =~ operator, Strings
		=~ operator and, The =~ operator
	Enumerable module and, Iterating Strings
	new method, The String.new method


	String.new method, The String.new method
	StringIO class, Object Class and Object Type, StringIO
	strings, Literals, String Literals, Character Literals, Arbitrary delimiters for string literals, String Operators, Accessing Characters and Substrings, Iterating Strings, String Encodings and Multibyte Characters, Arrays, Evaluating Strings and Blocks, Variables and Constants, Strings, Regular Expressions, Formatting Text, Strings and Encodings, Pattern matching with strings
		encodings, String Encodings and Multibyte Characters, Arrays, Strings and Encodings
	evaluating, Evaluating Strings and Blocks, Variables and Constants
	formatting, Formatting Text
	iterating, Iterating Strings
	literals, Literals, String Literals, Character Literals, Arbitrary delimiters for string literals
	operators, String Operators, Accessing Characters and Substrings
	pattern matching and, Pattern matching with strings


	structure of programs, The Structure and Execution of Ruby Programs, Program Execution
	sub method (String), Search and replace
	sub! method (String), Search and replace
	subarrays (slices), Expressions and Operators in Ruby
	subclassing, Subclassing and Inheritance, Object Creation and Initialization
	substrings, Accessing Characters and Substrings, Iterating Strings
	succ method, Ranges
	Sudoku, A Sudoku Solver in Ruby
	suffixes punctuation, Punctuation Suffixes and Prefixes
	super method, Augmenting Behavior by Chaining
	superclass method, Hooks
		hooks and, Hooks


	superclass method (Class), Types, Classes, and Modules
	switch statement, case
	symbols, Blocks and Iterators, Symbols, Symbols, Methods, and Procs
	synchronize method (Mutex), Thread Safety with Synchronized Blocks
	synchronized, Thread Safety with Synchronized Blocks, Synchronized Objects by Delegation
		blocks, Thread Safety with Synchronized Blocks
	objects, Synchronized Objects by Delegation


	syntactic structure, Syntactic Structure, File Structure
	syntax, using parentheses and, Required Parentheses
	sysread method, Reading bytes and characters
	SystemCallException, Random Access Methods


T
	\t (tab), Double-quoted string literals, Double-quoted string literals
	-T option, Miscellaneous Options
	tab, Whitespace, Double-quoted string literals, Double-quoted string literals
		\t escape, Double-quoted string literals


	tables (hash), Hash Codes, Equality, and Mutable Keys
	tainted data, Tainted Data
	tainted? method, Tainted and Untrusted Objects
	take method (Enumerable), Selecting subcollections
	take_while method (Enumerable), Selecting subcollections
	TCPServer class, A Very Simple Server
	TCPSocket class, A Very Simple Client
	TCPSocket.open method, A Very Simple Client
	terminated normally thread state, Querying thread state
	terminated with exception thread
                      state, Querying thread state
	test method (Kernel), Testing Files
	text, Text, Arrays, Formatting Text, Formatting Text, Streams and text-processing globals
		(see also strings)
	formatting, Formatting Text
	global, Streams and text-processing globals


	text processing options, Text Processing Options
	thawing objects, Freezing Objects
	Thread class, Threads for Concurrency, Threads and Concurrency, Thread preemption and Thread.pass, Listing Threads and Thread Groups
		list method, Listing Threads and Thread Groups
	new method, Threads for Concurrency, Threads and Concurrency
	pass method, Thread preemption and Thread.pass


	Thread.abort_on_exception method, Threads and unhandled exceptions
	Thread.new method, Threads for Concurrency
	ThreadGroup.list method, Listing Threads and Thread Groups
	threads, Threads for Concurrency, Thread Safety with Synchronized Blocks, Threads and Concurrency, Condition Variables and Queues, Thread Lifecycle, Threads and Variables, Thread Scheduling, Thread States, Thread Exclusion and Deadlock
		exclusion and deadlock, Thread Exclusion and Deadlock
	of execution, Threads for Concurrency
	lifecycle, Thread Lifecycle
	safety, Thread Safety with Synchronized Blocks
	scheduling, Thread Scheduling
	states, Thread States
	variables and, Threads and Variables


	throw statement, Altering Control Flow, throw and catch
	tilde, Operators (see ~)
	Time class, Dates and Times
	times method, Blocks and Iterators
	times method (Integer), Iterators and Enumerable Objects
	tokens, Lexical Structure
	top-level environment, The Top-Level Environment, Practical Extraction and Reporting Shortcuts
	TOPLEVEL_BINDING constant, Top-Level Constants
	to_a method, Creating arrays
		arrays and, Creating arrays


	to_a method (Enumerable), Iterating and converting collections
	to_ary method, Implicit conversions
	to_enum method, Enumerators
	to_hash method, Implicit conversions
	to_int method, Implicit conversions
	to_path method, Files and Directories
	to_proc method (Symbol), Symbols, Methods, and Procs
	to_s method, Boolean type conversions, Defining a to_s Method, Miscellaneous hash methods
	to_s method (Object), Object Conversion
	to_set method (Enumerable), Creating sets
	to_sym method (String), Symbols
	trace_var method (Kernel), Tracing
	tracing, Tracing
	TRUE constant, Top-Level Constants
	true keyword, True, False, and Nil, Literals and Keyword Literals
	Try Ruby tutorial, More Ruby Tutorials
	TypeError, Handling exceptions by type
	types (objects), Object Class and Object Type, Types, Classes, and Modules, Evaluating Strings and Blocks


U
	u (regular expression) modifier, Regexp Literals
	\u (Unicode)
              escape, Double-quoted string literals, Double-quoted string literals
	UCS (Universal Character Set), Multibyte characters in Ruby 1.9
	UDPServer class, Datagrams
	unary +/–, Unary + and –, Memoizing Functions
	UnboundMethod class, Unbound Method Objects
	undef keyword, Undefining Methods
	undefine_finalizer method (ObjectSpace), ObjectSpace and GC
	undefining methods, Undefining Methods
	underscore (_), Integer Literals, Constant References
		constants, Constant References
	integer literals, using, Integer Literals


	ungetc method, Reading bytes and characters
	unhandled exceptions, Threads and unhandled exceptions
	Unicode, Unicode Codepoint Constants with const_missing
		const_missing method and, Unicode Codepoint Constants with const_missing


	Unicode characters, Unicode characters in identifiers, Double-quoted string literals, Unicode escapes
		escapes, Double-quoted string literals, Unicode escapes


	uninitialized variables, Uninitialized Variables
	union method, Adding and deleting set elements
	Universal Character Set (UCS), Multibyte characters in Ruby 1.9
	unless keyword, Operators, unless
	unreachable objects, Object Lifetime
	until keyword, Operators, while and until, while and until As Modifiers
		modifiers, as, while and until As Modifiers
	while loops and, while and until


	untrace_var method (Kernel), Tracing
	upto method, Blocks and Iterators, Numeric Iterators
	upto method (Integer), Iterators and Enumerable Objects
	UTF-8 encoding, Unicode characters in identifiers, Specifying Program Encoding, Unicode escapes, Regular expression encoding


V
	\v (vertical
                      tab), Double-quoted string literals
	-v command-line
                  option, Warnings and Information Options
	valid_encoding? method (String), Multibyte characters in Ruby 1.9
	values, storing in hashes, Storing keys and values in a hash
	variable-length argument lists and, Variable-Length Argument Lists and Arrays
	variables, Classes and Modules, Object References, Variable References, Uninitialized Variables, Assigning to Variables, Blocks and Variable Scope, Naming the exception object, Variable-Length Argument Lists and Arrays, Closures and Shared Variables, Class Variables, Variables and Constants, Methods, Querying, Setting, and Testing Variables, Threads and Variables
		$! (global), Naming the exception object
	assigning to, Assigning to Variables
	blocks and, Blocks and Variable Scope
	classes, Class Variables
	instance, Classes and Modules
	method arguments and, Variable-Length Argument Lists and Arrays
	object references and, Object References
	querying, setting, and testing, Querying, Setting, and Testing Variables
	references, Variable References
	shared, Closures and Shared Variables
	threads and, Threads and Variables
	uninitialized, Uninitialized Variables


	Vector class, Vectors and Matrices
	--verbose
                  command-line option, Warnings and Information Options
	$VERBOSE global
                    variable, Global settings
	--version
                  command-line option, Warnings and Information Options
	vertical tab (\v), Double-quoted string literals


W
	\W
                    (nonword) regexp character class, Regular Expression Syntax
	\w
                    (word) regexp character class, Regular Expression Syntax
	"w" (writing)
                      file mode, Opening files
	-w command-line
                  option, Common Options
	-W command-line
                  option, Warnings and Information Options
	"w+"
                      (writing and reading) file mode, Opening files
	-W0 command-line
                  option, Warnings and Information Options
	-W2 command-line
                  option, Warnings and Information Options
	weak reference
          objects, ObjectSpace and GC
	when keyword, case
	while keyword, Operators
	while loops, Blocks and Iterators, Expressions and Operators in Ruby, while and until, while and until As Modifiers, retry
		modifiers, as, while and until As Modifiers
	retry statements and, retry


	whitespace, Whitespace
	with_index (Enumerable), Enumerators and external iterators
	with_index method, Enumerators


X
	x (regular expression) modifier, Regexp Literals
	-X option, Miscellaneous Options
	-x option, Miscellaneous Options
	%x syntax, Backtick command execution
	XML, using method_missing method and, Simple XML Output with method_missing


Y
	YAML, Marshaling Objects
	YARV, The Ruby Interpreter
	yield statement, Method Invocations, Iterators and Enumerable Objects, Writing Custom Iterators, The Value of a Block, Block Arguments, Enumerating Coordinates
		blocks and, The Value of a Block, Block Arguments
	coordinates, enumerating, Enumerating Coordinates
	custom iterators, writing, Writing Custom Iterators
	method invocations and, Method Invocations




Z
	\Z regexp
                    anchor, Regular Expression Syntax
	\z regexp
                    anchor, Regular Expression Syntax
	ZeroDivisionError, Arithmetic in Ruby
	zip method (Enumerable), Iterating and converting collections




About the Authors
David Flanagan is a computer programmer who spends most of his time writing about JavaScript and Java. His books with O'Reilly include JavaScript: The Definitive Guide, JavaScript Pocket Reference, Java in a Nutshell, Java Examples in a Nutshell, and Java Foundation Classes in a Nutshell. David has a degree in computer science and engineering from the Massachusetts Institute of Technology. He lives with his wife and children in the U.S. Pacific Northwest bewteen the cities of Seattle, Washington and Vancouver, British Columbia. David has a blog at www.davidflanagan.com.
Yukihiro Matsumoto ("Matz"), the creator of Ruby, is a professional programmer who worked for the Japanese open source company, netlab.jp. Matz is also known as one of the open source evangelists in Japan. He's released several open source products, including cmail, the emacs-based mail user agent, written entirely in emacs lisp. Ruby is his first piece of software that has become known outside of Japan.

Colophon
The animals on the cover of The Ruby Programming
    Language are Horned Sungem hummingbirds (Heliactin
    bilophus). These small birds are native to South America,
    living mainly in Brazil and Bolivia. They prefer dry, open habitats such
    as grasslands, and they avoid dense or humid forests.
Hummingbirds have the fastest wingbeat of all birds, and the Horned
    Sungem is capable of 90 wingbeats per second. (Contrast that with the
    vulture, the slowest of all birds, capable of just 1 wingbeat per second.)
    Because hummingbirds are so fast and light, they are able to hover in
    mid-air by rapidly flapping their wings. They can also fly backward (the
    only birds who can do so) in order to keep position as they drink nectar
    from flowers. Their long, thin bills allow them to reach deep within
    blossoms. Fittingly, the Portuguese word for hummingbird is
    beija-flor, or “flower kisser.” The English word, of
    course, comes from the hum made by its fast-moving wings.
The male Horned Sungem has tufts of red, blue, and gold feathers on
    either side of its head. Its back is iridescent green, its throat and
    breast are black, and its belly is white. It has a long, pointed tail. The
    female looks similar to the male but lacks the dramatic crown pattern.
    Because of the hummingbird’s vibrant colors, early Spanish explorers named
    it Joyas voladoras, or “flying jewel.”
There are many myths about hummingbirds. In Brazil, a black
    hummingbird is a sign of a death in the family. The ancient Aztecs honored
    them, and priests used staffs covered with their feathers to remove
    curses. The hummingbird is also a symbol of resurrection, as Aztecs
    believed that dead warriors were reincarnated as these birds. The Aztec
    god of the Sun and war, Huitzilopochtli, was represented as one; his name
    means “Hummingbird from the south,” the south being the location of the
    spirit world.
The cover image is from J. G. Wood’s Animate
    Creation. The cover font is Adobe’s ITC Garamond. The text font
    is Linotype Birka, the heading font is Adobe Myriad Condensed, and the
    code font is LucasFont’s TheSans Mono Condensed.

OEBPS/httpatomoreillycomsourceoreillyimages34765.png
Ruby script

block

1.231.map

x|

x*x

}

Iterator returns [1,4,9]

Script calls iterator

J0je13)1 dew





OEBPS/httpatomoreillycomsourceoreillyimages34773.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages226051.jpg
Everything You Need to Know

The Ruby
Programming
Language

David Flanagan & Yukibiro Mats:

O’REILLY*® with drawings by why the luc






OEBPS/httpatomoreillycomsourceoreillyimages34755.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages34769.png
def enclosing_method(x)

method

block

end

G def iterator
2= xteratordo [yj—1-Calliterator £
yield w—y
end
2.Yield to block
break y*y -
end 3. Returnivalue from iterator

1011y





OEBPS/httpatomoreillycomsourceoreillyimages34763.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages34767.png
method

def enclosing_method(x)

z=Vxiterator do Jy|

defiterator

1. Calliterator

return y*y

yield w-
end

2.Yield to block

end

lue from method

101013}





OEBPS/httpatomoreillycomsourceoreillyimages34777.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages34781.png.jpg





OEBPS/oreilly_large.gif
O’REILLY










OEBPS/httpatomoreillycomsourceoreillyimages34771.png
method

def enclosing_method(x)

block

end

] 1. Galliterator
-~
2. Yield to block
nexty*y —
end 3. Return value to iterator

10013}





OEBPS/httpatomoreillycomsourceoreillyimages34757.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages34753.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages34761.png.jpg





OEBPS/httpatomoreillycomsourceoreillyimages34779.png.jpg
9

A‘\ X ‘ | | |
i

e
.






OEBPS/httpatomoreillycomsourceoreillyimages34759.png
Numeric

| | I 1
Float I Complex I Bighecimal I Rational I

Integer






OEBPS/httpatomoreillycomsourceoreillyimages34775.png.jpg





