

 Table of Contents

 Qt 5 Blueprints

 Credits

 About the Author

 About the Reviewers

 www.PacktPub.com

 Support files, eBooks, discount offers, and more

 Why subscribe?

 Free access for Packt account holders

 Preface

 What this book covers

 What you need for this book

 Who this book is for

 Conventions

 Reader feedback

 Customer support

 Downloading the example code

 Errata

 Piracy

 Questions

 1. Creating Your First Qt Application

 Creating a new project

 Changing the layout of widgets

 Understanding the mechanism of signals and slots

 Connecting two signals

 Creating a Qt Quick application

 Connecting C++ slots to QML signals

 Summary

 2. Building a Beautiful Cross-platform Clock

 Creating a basic digital clock

 Tweaking the digital clock

 Saving and restoring settings

 Building on the Unix platforms

 Summary

 3. Cooking an RSS Reader with Qt Quick

 Understanding model and view

 Parsing RSS Feeds by XmlListModel

 Tweaking the categories

 Utilizing ScrollView

 Adding BusyIndicator

 Making a frameless window

 Debugging QML

 Summary

 4. Controlling Camera and Taking Photos

 Accessing the camera in Qt

 Controlling the camera

 Displaying errors on the status bar

 Permanent widgets in the status bar

 Utilizing the menu bar

 Using QFileDialog

 QML camera

 Summary

 5. Extending Paint Applications with Plugins

 Drawing via QPainter

 Writing static plugins

 Writing dynamic plugins

 Merging plugins and main program projects

 Creating a C++ plugin for QML applications

 Summary

 6. Getting Wired and Managing Downloads

 Introducing Qt network programming

 Utilizing QNetworkAccessManager

 Making use of the progress bar

 Writing multithreaded applications

 Managing a system network session

 Summary

 7. Parsing JSON and XML Documents to Use Online APIs

 Setting up Qt for Android

 Parsing JSON results

 Parsing XML results

 Building Qt applications for Android

 Parsing JSON in QML

 Summary

 8. Enabling Your Qt Application to Support Other Languages

 Internationalization of Qt applications

 Translating Qt Widgets applications

 Disambiguating identical texts

 Changing languages dynamically

 Translating Qt Quick applications

 Summary

 9. Deploying Applications on Other Devices

 Releasing Qt applications on Windows

 Creating an installer

 Packaging Qt applications on Linux

 Deploying Qt applications on Android

 Summary

 10. Don't Panic When You Encounter These Issues

 Commonly encountered issues

 C++ syntax mistakes

 Pointer and memory

 Incompatible shared libraries

 Doesn't run on Android!

 Debugging Qt applications

 Debugging Qt Quick applications

 Useful resources

 Summary

 Index

 Qt 5 Blueprints

 Qt 5 Blueprints

Copyright © 2015 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: March 2015
Production reference: 1240315
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78439-461-5

www.packtpub.com

 Credits

Author

Symeon Huang

Reviewers

Lee Zhi Eng
Sudhendu Kumar
Mickael Minarie

Acquisition Editor

Shaon Basu

Content Development Editor

Sriram Neelakantan

Technical Editors

Novina Kewalramani
Shruti Rawool

Copy Editor

Sonia Michelle Cheema

Project Coordinator

Judie Jose

Proofreaders

Simran Bhogal
Safis Editing

Indexer

Rekha Nair

Graphics

Sheetal Aute
Disha Haria
Abhinash Sahu

Production Coordinator

Conidon Miranda

Cover Work

Conidon Miranda

 About the Author

Symeon Huang is an amateur developer who's currently doing his master's degree at Trinity College, Dublin. He has been contributing to open source projects for several years. He has worked in various areas, including the maintenance of Linux servers, desktop application development, and image recognition and analysis.
Symeon has always been passionate about cool technology and elegant programming techniques. He has been programming Qt and QML applications for 2 years and has also been developing pure C and C++ programs for many years. Most of the projects he's working on can be found on his GitHub and Gitorious pages.

I would like to thank my family, especially my parents, for supporting me all through this process. I would never have been able to achieve what I have today without their hard work and unconditional love.
I would also like to thank my mentor, Ting Dai, from Southeast University, China, for his teaching. Without the things I have learned from him, I wouldn't have started programming in C++ with Qt. He also taught me a lot about common software development and gave me helpful programming tips.

 About the Reviewers

Lee Zhi Eng is a 3D artist-turned-programmer who worked as a game artist and programmer in several local game studios in his native country before becoming a contractor and a part-time lecturer at a local university and teaching game development subjects, particularly those related to Unity Engine and Unreal Engine 4. You can find more information about him at http://www.zhieng.com.

Sudhendu Kumar has been a GNU/Linux user for more than 7 years. Currently, he is a software developer for a networking giant, and in his free time, he also contributes to KDE.

I would like to thank the publishers for giving me the opportunity to review this book. I hope readers find it useful and enjoy reading it and playing around with Qt/Qml applications, not only on desktop devices but also on mobile platforms.

Mickael Minarie is a software developer who graduated from the University of Clermont-Ferrand (bachelor's in embedded systems) and Robert Gordon University, Aberdeen (bachelor's in computer science). He has worked on freelance projects, developing some programs in C++/Qt for embedded systems or in programs linked with photos and videos.
He now lives in France, but he has lived in the UK and Canada for some years.
He is an analog photography and video enthusiast and has written articles for photography fanzines.

 www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www.PacktPub.com.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
[image: Support files, eBooks, discount offers, and more]

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can search, access, and read Packt's entire library of books.
Why subscribe?

	Fully searchable across every book published by Packt
	Copy and paste, print, and bookmark content
	On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view 9 entirely free books. Simply use your login credentials for immediate access.

 Preface

Qt has been developed as a cross-platform framework and has been provided free to the public for years. It's mainly used to build GUI applications. It also provides thousands of APIs for easier development.
Qt 5, the latest major version of Qt, has once again proven to be the most popular cross-platform toolkit. With all these platform-independent classes and functions, you only need to code once, and then you can make it run everywhere.
In addition to the traditional and powerful C++, Qt Quick 2, which is more mature, can help web developers to develop dynamic and reliable applications, since QML is very similar to JavaScript.

What this book covers

Chapter 1, Creating Your First Qt Application, takes you through the fundamental concepts of Qt, such as signals and slots, and helps you create your first Qt and Qt Quick applications.

Chapter 2, Building a Beautiful Cross-platform Clock, teaches you how to read and write configurations and handle cross-platform development.

Chapter 3, Cooking an RSS Reader with Qt Quick, demonstrates how to develop a stylish RSS Reader in QML, which is a script language quite similar to JavaScript.

Chapter 4, Controlling Camera and Taking Photos, shows you how to access camera devices through the Qt APIs and make use of the status and menu bars.

Chapter 5, Extending Paint Applications with Plugins, teaches you how to make applications extendable and write plugins, by using the Paint application as as an example.

Chapter 6, Getting Wired and Managing Downloads, shows you how to utilize Qt's network module using the progress bar, as well as learning about threaded programming in Qt.

Chapter 7, Parsing JSON and XML Documents to Use Online APIs, teaches you how to parse JSON and XML documents in both Qt/C++ and Qt Quick/QML, which is essential to obtain data from online APIs.

Chapter 8, Enabling Your Qt Application to Support Other Languages, demonstrates how to make internationalized applications, translate strings using Qt Linguist, and then load translation files dynamically.

Chapter 9, Deploying Applications on Other Devices, shows you how to package and make your applications redistributable on Windows, Linux, and Android.

Chapter 10, Don't Panic When You Encounter These Issues, gives you some solutions and advice for common issues during Qt and Qt Quick application development and shows you how to debug Qt and Qt Quick applications.

 What you need for this book

Qt is cross-platform, which means you can use it on almost all operating systems, including Windows, Linux, BSD, and Mac OS X. The hardware requirements are listed as follows:
	A computer (PC or Macintosh)
	A webcam or a connected camera device
	Available Internet connection

An Android phone or tablet is not required, but is recommended so that you can test applications on a real Android device.
All the software mentioned in this book, including Qt itself, is free of charge and can be downloaded from the Internet.

 Who this book is for

If you are a programmer looking for a truly cross-platform GUI framework to help you save time by side-stepping issues involving incompatibility between different platforms and building applications using Qt 5 for multiple targets, this book is most certainly intended for you. It is assumed that you have basic programming experience of C++.

 Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The UI files are under the Forms directory."
A block of code is set as follows:
#include "mainwindow.h"
#include <QApplication>

int main(int argc, char *argv[])
{
 QApplication a(argc, argv);
 MainWindow w;
 w.show();

 return a.exec();
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:
#include <QStyleOption>
#include <QPainter>
#include <QPaintEvent>
#include <QMouseEvent>
#include <QResizeEvent>
#include "canvas.h"

Canvas::Canvas(QWidget *parent) :
 QWidget(parent)
{
}

void Canvas::paintEvent(QPaintEvent *e)
{
 QPainter painter(this);

 QStyleOption opt;
 opt.initFrom(this);
 this->style()->drawPrimitive(QStyle::PE_Widget, &opt, &painter, this);

 painter.drawImage(e->rect().topLeft(), image);
}

void Canvas::updateImage()
{
 QPainter painter(&image);
 painter.setPen(QColor(Qt::black));
 painter.setRenderHint(QPainter::Antialiasing);
 painter.drawPolyline(m_points.data(), m_points.count());
 this->update();
}

void Canvas::mousePressEvent(QMouseEvent *e)
{
 m_points.clear();
 m_points.append(e->localPos());
 updateImage();
}

void Canvas::mouseMoveEvent(QMouseEvent *e)
{
 m_points.append(e->localPos());
 updateImage();
}

void Canvas::mouseReleaseEvent(QMouseEvent *e)
{
 m_points.append(e->localPos());
 updateImage();
}

void Canvas::resizeEvent(QResizeEvent *e)
{
 QImage newImage(e->size(), QImage::Format_RGB32);
 newImage.fill(Qt::white);
 QPainter painter(&newImage);
 painter.drawImage(0, 0, image);
 image = newImage;
 QWidget::resizeEvent(e);
}

Any command-line input or output is written as follows:
..\..\bin\binarycreator.exe -c config\config.xml -p packages internationalization_installer.exe

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: " Navigate to File | New File or Project."
Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

 Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.
To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

 Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Downloading the example code

You can download the example code files from your account at http://www.packtpub.com for all the Packt Publishing books you have purchased. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.
To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at <questions@packtpub.com>, and we will do our best to address the problem.

 Chapter 1. Creating Your First Qt Application

GUI programming is not as difficult as you think. At least it's not when you come to the world of Qt. This book will take you through this world and give you an insight into this incredibly amazing toolkit. It doesn't matter whether you've heard of it or not, as long as you have essential knowledge of C++ programming.
In this chapter, we will get you comfortable with the development of Qt applications. Simple applications are used as a demonstration for you to cover the following topics:
	Creating a new project
	Changing the layout of widgets
	Understanding the mechanism of signals and slots
	Connecting two signals
	Creating a Qt Quick application
	Connecting C++ slots to QML signals

Creating a new project

If you haven't installed Qt 5, refer to http://www.qt.io/download to install the latest version of it. It's recommended that you install the Community version, which is totally free and compliant with GPL/LGPL. Typically, the installer will install both Qt Library and Qt Creator for you. In this book, we will use Qt 5.4.0 and Qt Creator 3.3.0. Later versions may have slight differences but the concept remains the same. It's highly recommended that you install Qt Creator if you don't have it on your computer, because all the tutorials in this book are based on it. It is also the official IDE for the development of Qt applications. Although you may be able to develop Qt applications with other IDEs, it tends to be much more complex. So if you're ready, let's go for it by performing the following steps:
	Open Qt Creator.
	Navigate to File | New File or Project.
	Select Qt Widgets Application.
	Enter the project's name and location. In this case, the project's name is layout_demo.

You may wish to follow the wizard and keep the default values. After this process, Qt Creator will generate the skeleton of the project based on your choices. The UI files are under the Forms directory. When you double-click on a UI file, Qt Creator will redirect you to the integrated designer. The mode selector should have Design highlighted, and the main window should contain several sub-windows to let you design the user interface. This is exactly what we are going to do. For more details about Qt Creator UI, refer to http://doc.qt.io/qtcreator/creator-quick-tour.html.
Drag three push buttons from the widget box (widget palette) into the frame of MainWindow in the center. The default text displayed on these buttons is PushButton, but you can change the text if you want by double-clicking on the button. In this case, I changed the buttons to Hello, Hola, and Bonjour, accordingly. Note that this operation won't affect the objectName property. In order to keep it neat and easy to find, we need to change the objectName property. The right-hand side of the UI contains two windows. The upper-right section includes Object Inspector and the lower-right side includes Property Editor. Just select a push button; you can easily change objectName in Property Editor. For the sake of convenience, I changed these buttons' objectName properties to helloButton, holaButton, and bonjourButton respectively.
Tip
It's a good habit to use lowercase for the first letter of objectName and an uppercase letter for Class name. This helps your code to be more readable by people who are familiar with this convention.

Okay, it's time to see what you have done to the user interface of your first Qt application. Click on Run on the left-hand side panel. It will build the project automatically and then run it. It's amazing to see that the application has the exact same interface as the design, isn't it? If everything is alright, the application should appear similar to what is shown in the following screenshot:
[image: Creating a new project]
You may want to look at the source code and see what happened there. So, let's go back to the source code by returning to the Edit mode. Click on the Edit button in the mode selector. Then, double-click on main.cpp in the Sources folder of the Projects tree view. The code for main.cpp is shown as follows:
#include "mainwindow.h"
#include <QApplication>

int main(int argc, char *argv[])
{
 QApplication a(argc, argv);
 MainWindow w;
 w.show();

 return a.exec();
}

Note
The QApplication class manages the GUI application's control flow and the main settings.

Actually, you don't need to and you probably won't change too much in this file. The first line of the main scope just initializes the applications on a user's desktop and handles some events. Then there is also an object, w, which belongs to the MainWindow class. As for the last line, it ensures that the application won't terminate after execution but will keep in an event loop, so that it is able to respond to external events such as mouse clicks and window state changes.
Last but not least, let's see what happens during the initialization of the MainWindow object, w. It is the content of mainwindow.h, shown as follows:
#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

namespace Ui {
 class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private:
 Ui::MainWindow *ui;
};

#endif // MAINWINDOW_H

You may feel a bit surprised seeing a Q_OBJECT macro if this is your first time writing a Qt application. In the QObject documentation, it says:
The Q_OBJECT macro must appear in the private section of a class definition that declares its own signals and slots or that uses other services provided by Qt's meta-object system.

Well, this means that QObject has to be declared if you're going to use Qt's meta-object system and (or) its signals and slots mechanism. The signals and slots, which are almost the core of Qt, will be included later in this chapter.
There is a private member named ui, which is a pointer of the MainWindow class of the Ui namespace. Do you remember the UI file we edited before? What the magic of Qt does is that it links the UI file and the parental source code. We can manipulate the UI through code lines as well as design it in Qt Creator's integrated designer. Finally, let's look into the construction function of MainWindow in mainwindow.cpp:
#include "mainwindow.h"
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);
}

MainWindow::~MainWindow()
{
 delete ui;
}

Did you see where the user interface comes from? It's the member setupUi function of Ui::MainWindow that initializes it and sets it up for us. You may want to check what happens if we change the member function to something like this:
MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);
 ui->holaButton->setEnabled(false);
}

What happened here? The Hola button can't be clicked on because we disabled it! It has the same effect if the enabled box is unchecked in the designer instead of writing a statement here. Please apply this change before heading to the next topic, because we don't need a disabled push button to do any demonstrations in this chapter.

 Changing the layout of widgets

You already know how to add and move widgets in the Design mode. Now, we need to make the UI neat and tidy. I'll show you how to do this step by step.
A quick way to delete a widget is to select it and press the Delete button. Meanwhile, some widgets, such as the menu bar, status bar, and toolbar can't be selected, so we have to right-click on them in Object Inspector and delete them. Since they are useless in this example, it's safe to remove them and we can do this for good.
Okay, let's understand what needs to be done after the removal. You may want to keep all these push buttons on the same horizontal axis. To do this, perform the following steps:
	Select all the push buttons either by clicking on them one by one while keeping the Ctrl key pressed or just drawing an enclosing rectangle containing all the buttons.
	Right-click and select Layout | LayOut Horizontally, The keyboard shortcut for this is Ctrl + H.
	Resize the horizontal layout and adjust its layoutSpacing by selecting it and dragging any of the points around the selection box until it fits best.

Hmm…! You may have noticed that the text of the Bonjour button is longer than the other two buttons, and it should be wider than the others. How do you do this? You can change the property of the horizontal layout object's layoutStretch property in Property Editor. This value indicates the stretch factors of the widgets inside the horizontal layout. They would be laid out in proportion. Change it to 3,3,4, and there you are. The stretched size definitely won't be smaller than the minimum size hint. This is how the zero factor works when there is a nonzero natural number, which means that you need to keep the minimum size instead of getting an error with a zero divisor.
Now, drag Plain Text Edit just below, and not inside, the horizontal layout. Obviously, it would be neater if we could extend the plain text edit's width. However, we don't have to do this manually. In fact, we could change the layout of the parent, MainWindow. That's it! Right-click on MainWindow, and then navigate to Lay out | Lay Out Vertically. Wow! All the children widgets are automatically extended to the inner boundary of MainWindow; they are kept in a vertical order. You'll also find Layout settings in the centralWidget property, which is exactly the same thing as the previous horizontal layout.
The last thing to make this application halfway decent is to change the title of the window. MainWindow is not the title you want, right? Click on MainWindow in the object tree. Then, scroll down its properties to find windowTitle. Name it whatever you want. In this example, I changed it to Greeting. Now, run the application again and you will see it looks like what is shown in the following screenshot:
[image: Changing the layout of widgets]

 Understanding the mechanism of signals and slots

It is really important to keep your curiosity and to explore what on earth these properties do. However, please remember to revert the changes you made to the app, as we are about to enter the core part of Qt, that is, signals and slots.
Note
Signals and slots are used for communication between objects. The signals and slots mechanism is a central feature of Qt and probably the part that differs the most from the features provided by other frameworks.

Have you ever wondered why a window closes after the Close button is clicked on? Developers who are familiar with other toolkits would say that the Close button being clicked on is an event, and this event is bound with a callback function that is responsible for closing the window. Well, it's not quite the same in the world of Qt. Since Qt uses a mechanism called signals and slots, it makes the callback function weakly coupled to the event. Also, we usually use the terms signal and slot in Qt. A signal is emitted when a particular event occurs. A slot is a function that is called in response to a particular signal. The following simple and schematic diagram helps you understand the relation between signals, events, and slots:
[image: Understanding the mechanism of signals and slots]
Qt has tons of predefined signals and slots, which cover its general purposes. However, it's indeed commonplace to add your own slots to handle the target signals. You may also be interested in subclassing widgets and writing your own signals, which will be covered later. The mechanism of signals and slots was designed to be type-safe because of its requirement of the list of the same arguments. In fact, the slot may have a shorter arguments list than the signal since it can ignore the extras. You can have as many arguments as you want. This enables you to forget about the wildcard void* type in C and other toolkits.
Since Qt 5, this mechanism is even safer because we can use a new syntax of signals and slots to deal with the connections. A conversion of a piece of code is demonstrated here. Let's see what a typical connect statement in old style is:
connect(sender, SIGNAL(textChanged(QString)), receiver, SLOT(updateText(QString)));

This can be rewritten in a new syntax style:
connect(sender, &Sender::textChanged, receiver, &Receiver::updateText);

In the traditional way of writing code, the verification of signals and slots only happens at runtime. In the new style, the compiler can detect the mismatches in the types of arguments and the existence of signals and slots at compile time.
Note
As long as it is possible, all connect statements are written in the new syntax style in this book.

Now, let's get back to our application. I'll show you how to display some words in a plain text edit when the Hello button is clicked on. First of all, we need to create a slot since Qt has already predefined the clicked signal for the QPushButton class. Edit mainwindow.h and add a slot declaration:
#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

namespace Ui {
 class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private slots:
 void displayHello();

private:
 Ui::MainWindow *ui;
};

#endif // MAINWINDOW_H

As you can see, it's the slots keyword that distinguishes slots from ordinary functions. I declared it private to restrict access permission. You have to declare it a public slot if you need to invoke it in an object from other classes. After this declaration, we have to implement it in the mainwindow.cpp file. The implementation of the displayHello slot is written as follows:
void MainWindow::displayHello()
{
 ui->plainTextEdit->appendPlainText(QString("Hello"));
}

It simply calls a member function of the plain text edit in order to add a Hello QString to it. QString is a core class that Qt has introduced. It provides a Unicode character string, which efficiently solves the internationalization issue. It's also convenient to convert a QString class to std::string and vice versa. Besides, just like the other QObject classes, QString uses an implicit sharing mechanism to reduce memory usage and avoid needless copying. If you don't want to get concerned about the scenes shown in the following code, just take QString as an improved version of std::string. Now, we need to connect this slot to the signal that the Hello push button will emit:
MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 connect(ui->helloButton, &QPushButton::clicked, this, &MainWindow::displayHello);
}

What I did is add a connect statement to the constructor of MainWindow. In fact, we can connect signals and slots anywhere and at any time. However, the connection only exists after this line gets executed. So, it's a common practice to have lots of connect statements in the construction functions instead of spreading them out. For a better understanding, run your application and see what happens when you click on the Hello button. Every time you click, a Hello text will be appended to the plain text edit. The following screenshot is what happened after we clicked on the Hello button three times:
[image: Understanding the mechanism of signals and slots]
Getting confused? Let me walk you through this. When you clicked on the Hello button, it emitted a clicked signal. Then, the code inside the displayHello slot got executed, because we connected the clicked signal of the Hello button to the displayHello slot of MainWindow. What the displayHello slot did is that it simply appended Hello to the plain text edit.
It may take you some time to fully understand the mechanism of signals and slots. Just take your time. I'll show you another example of how to disconnect such a connection after we clicked on the Hola button. Similarly, add a declaration of the slot to the header file and define it in the source file. I pasted the content of the mainwindow.h header file, as follows:
#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

namespace Ui {
 class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private slots:
 void displayHello();
 void onHolaClicked();

private:
 Ui::MainWindow *ui;
};

#endif // MAINWINDOW_H

It's only declaring a onHolaClicked slot that differed from the original. Here's the content of the source file:
#include "mainwindow.h"
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 connect(ui->helloButton, &QPushButton::clicked, this, &MainWindow::displayHello);
 connect(ui->holaButton, &QPushButton::clicked, this, &MainWindow::onHolaClicked);
}

MainWindow::~MainWindow()
{
 delete ui;
}

void MainWindow::displayHello()
{
 ui->plainTextEdit->appendPlainText(QString("Hello"));
}

void MainWindow::onHolaClicked()
{
 ui->plainTextEdit->appendPlainText(QString("Hola"));
 disconnect(ui->helloButton, &QPushButton::clicked, this, &MainWindow::displayHello);
}

You'll find that the Hello button no longer works after you clicked on the Hola button. This is because in the onHolaClicked slot, we just disconnected the binding between the clicked signal of helloButton and the displayHello slot of MainWindow. Actually, disconnect has some overloaded functions and can be used in a more destructive way. For example, you may want to disconnect all connections between a specific signal sender and a specific receiver:
disconnect(ui->helloButton, 0, this, 0);

If you want to disconnect all the slots associated with a signal, since a signal can be connected to as many slots as you wish, the code can be written like this:
disconnect(ui->helloButton, &QPushButton::clicked, 0, 0);

We can also disconnect all the signals in an object, whatever slots they might be connected to. The following code will disconnect all the signals in helloButton, which of course includes the clicked signal:
disconnect(ui->helloButton, 0, 0, 0);

Just like a signal, a slot can be connected to as many signals as you want. However, there's no such function to disconnect a specific slot from all the signals.
Tip
Always remember the signals and slots that you have connected.

Apart from the new syntax for traditional connections of signals and slots, Qt 5 has offered a new way to simplify such a binding process with C++11 lambda expressions. As you may have noticed, it's kind of tedious to declare a slot in the header file, define it in the source code file, and then connect it to a signal. It's worthwhile if the slot has a lot of statements, otherwise it becomes time consuming and increases the complexity. Before we go any further, we need to turn on C++11 support on Qt. Edit the pro file (layout_demo.pro in my example) and add the following line to it:
CONFIG += c++11

Note
Note that some old compilers don't support C++11. If this happens, upgrade your compiler.

Now, you need to navigate to Build | Run qmake to reconfigure the project properly. If everything is okay, we can go back to editing the mainwindow.cpp file. This way, there is no need to declare a slot and define and connect it. Just add a connect statement to the construction function of MainWindow:
connect(ui->bonjourButton, &QPushButton::clicked, [this](){
 ui->plainTextEdit->appendPlainText(QString("Bonjour"));
});

It's very straightforward, isn't it? The third argument is a lambda expression, which was added to C++ since C++11.
Note
For more details about lambda expression, visit http://en.cppreference.com/w/cpp/language/lambda.

This pair of signal and slot connection is done if you don't do need to to disconnect such a connection. However, if you need, you have to save this connection, which is a QMetaObject::Connection type. In order to disconnect this connection elsewhere, it would be better to declare it as a variable of MainWindow. So the header file becomes as follows:
#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

namespace Ui {
 class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private slots:
 void displayHello();
 void onHolaClicked();

private:
 Ui::MainWindow *ui;
 QMetaObject::Connection bonjourConnection;
};

#endif // MAINWINDOW_H

Here, I declared bonjourConnection as an object of QMetaObject::Connection so that we can save the connection dealing with an unnamed slot. Similarly, the disconnection happens in onHolaClicked, so there won't be any new Bonjour text on screen after we click on the Hola button. Here is the content of mainwindow.cpp:
#include "mainwindow.h"
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 connect(ui->helloButton, &QPushButton::clicked, this, &MainWindow::displayHello);
 connect(ui->holaButton, &QPushButton::clicked, this, &MainWindow::onHolaClicked);
 bonjourConnection = connect(ui->bonjourButton, &QPushButton::clicked, [this](){
 ui->plainTextEdit->appendPlainText(QString("Bonjour"));
 });
}

MainWindow::~MainWindow()
{
 delete ui;
}

void MainWindow::displayHello()
{
 ui->plainTextEdit->appendPlainText(QString("Hello"));
}

void MainWindow::onHolaClicked()
{
 ui->plainTextEdit->appendPlainText(QString("Hola"));
 disconnect(ui->helloButton, &QPushButton::clicked, this, &MainWindow::displayHello);
 disconnect(bonjourConnection);
}

Tip

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com for all the Packt Publishing books you have purchased. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

This is indeed another new usage of disconnect. It takes in a QMetaObject::Connection object as the only argument. You'll thank this new overloaded function if you're going to use the lambda expression as a slot.

 Connecting two signals

Due to the weak couplings of the Qt signals and slot mechanisms, it is viable to bind signals to each other. It may sound confusing, so let me draw a diagram to make it clear:
[image: Connecting two signals]
When an event triggers a specific signal, this emitted signal could be another event, which will emit another specific signal. It is not a very common practice, but it tends to be useful when you deal with some complex signals and slot connection networks, especially when tons of events lead to the emission of only a few signals. Although it definitely increases the complexity of the project, binding these signals could simplify the code a lot. Append the following statement to the construction function of MainWindow:
connect(ui->bonjourButton, &QPushButton::clicked, ui->helloButton, &QPushButton::clicked);

You'll get two lines in a plain text edit after you click on the Bonjour button. The first line is Bonjour and the second one is Hello. Apparently, this is because we coupled the clicked signal of the Bonjour button with the clicked signal of the Hello button. The clicked signal of the latter has already been coupled with a slot, which results in the new text line, Hello. In fact, it has the same effect as the following statement:
connect(ui->bonjourButton, &QPushButton::clicked, [this](){
 emit ui->helloButton->clicked();
});

Basically, connecting two signals is a simplified version of connecting a signal and a slot, while the slot is meant to emit another signal. As for priority, the slot(s) of the latter signal will be handled when the event loop is returned to the object.
However, it is impossible to connect two slots because the mechanism requires a signal while a slot is considered a receiver instead of a sender. Therefore, if you want to simplify the connection, just wrap these slots as one slot, which can be used for connections.

 Creating a Qt Quick application

We already covered how to create a Qt (C++) application. How about giving the newly introduced Qt Quick application development a try? Qt Quick was introduced in Qt 4.8 and it is now becoming mature in Qt 5. Because the QML file is usually platform-independent, it enables you to develop an application for multiple targets, including mobile operating systems with the same code.
In this chapter, I'll show you how to create a simple Qt Quick application based on Qt Quick Controls 1.2, as follows:
	Create a new project named HelloQML.
	Select Qt Quick Application instead of Qt Widgets Application, which we chose previously.
	Select Qt Quick Controls 1.2 when the wizard navigates you to Select Qt Quick Components Set.

Qt Quick Controls has been introduced since Qt 5.1 and is highly recommended because it enables you to build a complete and native user interface. You can also control the top-level window properties from QML. Getting confused by QML and Qt Quick?
Note
QML is a user interface specification and programming language. It allows developers and designers alike to create highly performant, fluidly animated, and visually appealing applications. QML offers a highly readable, declarative, JSON-like syntax with support for imperative JavaScript expressions combined with dynamic property bindings.

While Qt Quick is the standard library for QML, it sounds like the relation between STL and C++. The difference is that QML is dedicated to user interface design and Qt Quick includes a lot of visual types, animations, and so on. Before we go any further, I want to inform you that QML is different from C++ but similar to JavaScript and JSON.
Edit the main.qml file under the root of the Resources file, qml.qrc, which Qt Creator has generated for our new Qt Quick project. Let's see how the code should be:
import QtQuick 2.3
import QtQuick.Controls 1.2

ApplicationWindow {
 visible: true
 width: 640
 height: 480
 title: qsTr("Hello QML")

 menuBar: MenuBar {
 Menu {
 title: qsTr("File")
 MenuItem {
 text: qsTr("Exit")
 shortcut: "Ctrl+Q"
 onTriggered: Qt.quit()
 }
 }
 }

 Text {
 id: hw
 text: qsTr("Hello World")
 font.capitalization: Font.AllUppercase
 anchors.centerIn: parent
 }

 Label {
 anchors { bottom: hw.top; bottomMargin: 5; horizontalCenter: hw.horizontalCenter }
 text: qsTr("Hello Qt Quick")
 }
}

If you have ever touched Java or Python, the first two lines won't be too unfamiliar to you. It simply imports Qt Quick and Qt Quick Controls, and the number following is the version of the library. You may need to change the version if there is a newer library. Importing other libraries is a common practice when developing Qt Quick applications.
The body of this QML source file is actually in the JSON style, which enables you to understand the hierarchy of the user interface through the code. Here, the root item is ApplicationWindow, which is basically the same thing as MainWindow in the previous topics, and we use braces to enclose the statements just like in a JSON file. Although you could use a semicolon to mark an ending of a statement just like we do in C++, there is no need to do this. As you can see, the property definition needs a colon if it's a single-line statement and enclosing braces if it contains more than one subproperty.
The statements are kind of self explanatory and they are similar to the properties that we saw in the Qt Widgets application. A qsTr function is used for internationalization and localization. Strings marked by qsTr could be translated by Qt Linguist. In addition to this, you don't need to care about QString and std::string any more. All the strings in QML are encoded in the same coding as the QML file and the QML file is created in UTF-8 by default.
As for the signals and slots mechanism in Qt Quick, it's easy if you only use QML to write the callback function to the corresponding slot. Here, we execute Qt.quit() inside the onTriggered slot of MenuItem. It's viable to connect the signal of a QML item to a C++ object's slot, which I'll introduce later.
When you run this application in Windows, you can barely find the difference between the Text item and the Label item. However, on some platforms, or when you change the system font and/or its color, you'll find that Label follows the font and the color scheme of the system, while Text doesn't. Although you can use the properties of Text to customize the appearance of Label, it would be better to use the system settings to keep the looks of the application native. Well, if you run this application right now, it will appear similar to what is shown in the following screenshot:
[image: Creating a Qt Quick application]
Because there is no separate UI file for the Qt Quick applications, only a QML file, we use the anchors property to position the items, and anchors.centerIn will position the item in the center of the parent. There is an integrated Qt Quick Designer in Qt Creator, which could help you design the user interface of a Qt Quick application. If you need it, just navigate to Design mode when you're editing a QML file. However, I suggest you stay in Edit mode to understand the meaning of each statement.

 Connecting C++ slots to QML signals

The separation of the user interface and backend allows us to connect C++ slots to the QML signals. Although it's possible to write processing functions in QML and manipulate interface items in C++, it violates the principle of the separation. Therefore, you may want to know how to connect a C++ slot to a QML signal at first. As for connecting a QML slot to a C++ signal, I'll introduce that later in this book.
In order to demonstrate this, we need to create a C++ class in the first place by right-clicking on the project in the Projects panel and selecting Add New…. Then, click on C++ Class in the pop-up window. The newly created class should at least inherit from QObject by choosing QObject as its base class. This is because a plain C++ class can't include Qt's slots or signals. The header file's content is displayed as follows:
#ifndef PROCESSOR_H
#define PROCESSOR_H

#include <QObject>

class Processor : public QObject
{
 Q_OBJECT
public:
 explicit Processor(QObject *parent = 0);

public slots:
 void onMenuClicked(const QString &);
};

#endif // PROCESSOR_H

Here's the content of the source file:
#include <QDebug>
#include "processor.h"

Processor::Processor(QObject *parent) :
 QObject(parent)
{
}

void Processor::onMenuClicked(const QString &str)
{
 qDebug() << str;
}

The C++ file is the same as the one we dealt with in the previous topics. The onMenuClicked slot I defined is simply to output the string that passes through the signal. Note that you have to include QDebug if you want to use the built-in functions of qDebug, qWarning, qCritical, and so on.
The slot is prepared, so we need to add a signal to the QML file. The QML file is changed to the following code:
import QtQuick 2.3
import QtQuick.Controls 1.2

ApplicationWindow {
 id: window
 visible: true
 width: 640
 height: 480
 title: qsTr("Hello QML")
 signal menuClicked(string str)

 menuBar: MenuBar {
 Menu {
 title: qsTr("File")
 MenuItem {
 text: qsTr("Exit")
 shortcut: "Ctrl+Q"
 onTriggered: Qt.quit()
 }
 MenuItem {
 text: qsTr("Click Me")
 onTriggered: window.menuClicked(text)
 }
 }
 }

 Text {
 id: hw
 text: qsTr("Hello World")
 font.capitalization: Font.AllUppercase
 anchors.centerIn: parent
 }

 Label {
 anchors { bottom: hw.top; bottomMargin: 5; horizontalCenter: hw.horizontalCenter }
 text: qsTr("Hello Qt Quick")
 }
}

As you can see, I specified the ID of the root ApplicationWindow item to window and declared a signal named menuClicked. In addition to this, there is another MenuItem in the menu file. It emits the menuClicked signal of window, using its text as the parameter.
Now, let's connect the slot in the C++ file to this newly created QML signal. Edit the main.cpp file.
#include <QApplication>
#include <QQmlApplicationEngine>
#include "processor.h"

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

 QQmlApplicationEngine engine;
 engine.load(QUrl(QStringLiteral("qrc:///main.qml")));

 QObject *firstRootItem = engine.rootObjects().first();
 Processor myProcessor;
 QObject::connect(firstRootItem, SIGNAL(menuClicked(QString)), &myProcessor, SLOT(onMenuClicked(QString)));

 return app.exec();
}

The item in the QML file is accessed as QObject in C++ and it could be cast to QQuickItem. For now, we only need to connect its signal, so QObject will do.
You may notice that I used the old-style syntax of the connect statement. This is because QML is dynamic and the C++ compiler can't detect the existence of the signal in the QML file. Since things in QML are checked at runtime, it doesn't make sense to use the old syntax here.
When you run this application and navigate to File | Click Me in the menu bar, you'll see Application Output in Qt Creator:
"Click Me"

Let's review this process again. Triggering the Click Me menu item resulted in the emission of the window's signal menuClicked. This signal passed the text of MenuItem, which is Click Me, to the slot in C++ class Processor, and the processor myProcessor slot onMenuClicked printed the string to the Application Output panel.

 Summary

In this chapter, we learned the fundamentals of Qt, which included steps for how to create a Qt application. Then, we had a walk-through of both Qt Widgets and Qt Quick, and how to change the layout. Finally, we rounded off by covering an important concept about the mechanism of signals and slots.
In the next chapter, we will have a chance to put this knowledge into practice and get started on building a real-world, and of course cross-platform, Qt application.

 Chapter 2. Building a Beautiful Cross-platform Clock

In this chapter, you will learn that Qt is a great tool to build cross-platform applications. A Qt/C++ clock example is used as a demonstration here. The topics covered in this chapter, which are listed here, are essential for any real-world applications. These are as follows:
	Creating a basic digital clock
	Tweaking the digital clock
	Saving and restoring settings
	Building on Unix platforms

Creating a basic digital clock

It's time to create a new project, so we will create a Qt Widgets application named Fancy_Clock.
Note
We won't utilize any Qt Quick knowledge in this chapter.

Now, change the window title to Fancy Clock or any other name that you like. Then, the main window UI needs to be tailored because the clock is displayed at the top of the desktop. The menu bar, status bar, and toolbar are all removed. After that, we need to drag an LCD Number widget into centralWidget. Next, change the layout of MainWindow to LayOut Horizontally in order to autoresize the subwidget. The last thing that needs to be done to the UI file is to change frameShape to NoFrame under the QFrame column in the property of lcdNumber. If you've done this right, you'll get a prototype of a digital clock, as shown here:
[image: Creating a basic digital clock]
In order to update the LCD number display repeatedly, we have to make use of the QTimer class to set up a timer that emits a signal repetitively. In addition to this, we need to create a slot to receive the signal and to update the LCD number display to the current time. Thus, the QTime class is also needed. This is how the header file of MainWindowmainwindow.h will look now:
#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

namespace Ui {
 class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private:
 Ui::MainWindow *ui;

private slots:
 void updateTime();
};

#endif // MAINWINDOW_H

As you can see, the only modification made here is the declaration of a private updateTime slot. As usual, we're supposed to define this slot in mainwindow.cpp, whose content is pasted here. Note that we need to include QTimer and QTime.
#include <QTimer>
#include <QTime>
#include "mainwindow.h"
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 QTimer *timer = new QTimer(this);
 connect(timer, &QTimer::timeout, this, &MainWindow::updateTime);
 timer->start(1000);

 updateTime();
}

MainWindow::~MainWindow()
{
 delete ui;
}

void MainWindow::updateTime()
{
 QTime currentTime = QTime::currentTime();
 QString currentTimeText = currentTime.toString("hh:mm");
 if (currentTime.second() % 2 == 0) {
 currentTimeText[2] = ' ';
 }
 ui->lcdNumber->display(currentTimeText);
}

Inside the updateTime slot, the QTime class is used to deal with the time, that is, the clock. This class can provide accuracy of up to 1 millisecond, if the underlying operating system supports it. However, QTime has nothing to do with the time zone or daylight saving time. It is, at least, sufficient for our little clock. The currentTime() function is a static public function, which is used to create a QTime object that contains the system's local time.
As for the second line of the updateTime function, we used the toString function provided by QTime to convert the time to a string, and then saved it in currentTimeText. The arguments that are passed to toString are in the format of the time string. The full list of expressions can be obtained from Qt Reference Documentation. The colon in the middle of the clock should be flashing, just as in the case of a real digital clock. Hence, we used an if statement to control this. The colon will vanish when the second's value is even, and it will reappear when the second's value is odd. Here, inside the if block, we used the [2] operator to get a modifiable reference of the third character because this is the only way to do direct modifications to a character inside a string. Here, the counting of the currentTimeText string starts from 0. Meanwhile, the at() function of QString returns a constant character, which you have no right to change. At last, this function will let lcdNumber display the time string. Now, let's get back to the constructor of MainWindow. After the initialization of the UI, the first thing it does is to create a QTimer object. Why can't we use a local variable? The answer to that question is because the local variables will be destroyed after the construction of MainWindow. If the timer has gone, there's no way to trigger updateTime repetitively. We don't use a member variable because there is no need to perform the declaration work in the header file, since we won't use this timer elsewhere.
The QTimer class is used to create a repetitive and single-shot timer. It will emit the timeout signal at constant intervals after start is called. Here, we create one timer and connect the timeout signal to the updateTime slot so that updateTime is called every second.
There is another important aspect in Qt called parent-child mechanism. Although it's not as well-known as signals and slots, it plays a crucial role in the development of the Qt applications. Basically speaking, when we create an QObject child with a parent or explicitly set a parent by calling setParent, the parent will add this QObject child to its list of children. Then, when the parent is deleted, it'll go through its list of children and delete each child. In most cases, especially in the design of a UI, the parent-child relationship is set up implicitly. The parent widget or layout automatically becomes the parent object to its children widgets or layouts. In other cases, we have to explicitly set the parent for a QObject child so that the parent can take over its ownership and manage the release of its memory. Hence, we pass the QObject parent, which is this, a MainWindow class to the constructor of QTimer. This ensures that QTimer will be deleted after MainWindow is deleted. That's why we don't have to explicitly write the delete statements in the destructor.
At the end of the constructor, we need to call updateTime explicitly, which will allow the clock to display the current time. If we don't do this, the application will display a zero for a second until the timeout signal is emitted by timer. Now, run your application; it will be similar to the following screenshot:
[image: Creating a basic digital clock]

 Tweaking the digital clock

It's time to make this basic digital clock look more beautiful. Let's add something like a transparent background, which sits on top of the frameless window. Using a transparent background can deliver a fantastic visual effect. While the frameless window hides window decorations, including a border and the title bar, a desktop widget, such as a clock, should be frameless and displayed on top of the desktop.
To make our clock translucent, simply add the following line to the constructor of MainWindow:
setAttribute(Qt::WA_TranslucentBackground);

The effect of the WA_TranslucentBackground attribute depends on the composition managers on the X11 platforms.
A widget may have lots of attributes, and this function is used to switch on or switch off a specified attribute. It's turned on by default. You need to pass a false Boolean as the second argument to disable an attribute. The full list of Qt::WidgetAttribute can be found in the Qt Reference Documentation.
Now, add the following line to the constructor as well, which will make the clock look frameless and make it stay on top of the desktop:
setWindowFlags(Qt::WindowStaysOnTopHint | Qt::FramelessWindowHint);

Similarly, Qt::WindowFlags is used to define the type of widget. It controls the behavior of the widget, rather than of its properties. Thus, two hints are given: one is to stay on top and the other is to be frameless. If you want to preserve old flags while setting new ones, you need to add them to the combination.
setWindowFlags(Qt::WindowStaysOnTopHint | Qt::FramelessWindowHint | windowFlags());

Here, the windowFlags function is used to retrieve the window flags. One thing you may be interested to know is that setWindowFlags will result in the invisibility of the widget after the show function. So, you can either call setWindowFlags before the show function of the window or widget or call show again after setWindowFlags.
After the modification to the constructor, this is how the clock is expected to look:
[image: Tweaking the digital clock]
There is a useful trick that you can use to hide the clock from the taskbar. Of course, a clock doesn't need to be displayed among the applications in a taskbar. You should never set a flag such as Qt::Tool or Qt::ToolTip alone to achieve this because this will cause the exit behavior of the application to be abnormal. This trick is even simpler; here is the code of main.cpp:
#include "mainwindow.h"
#include <QApplication>

int main(int argc, char *argv[])
{
 QApplication a(argc, argv);

 QWidget wid;
 MainWindow w(&wid);
 w.show();

 return a.exec();
}

The preceding code makes our MainWindow w object a child of QWidget wid. The child widgets won't display on the taskbar because there should be only one top parent widget. Meanwhile, our parent widget, wid, doesn't even show. It's tricky, but it's the only one that does the trick without breaking any other logic.
Well, a new problem has just surfaced. The clock is unable to move and the only way to close it is by stopping it through the Qt Creator's panel or through a keyboard shortcut. This is because we declared it as a frameless window, which led to an inability to control it via a window manager. Since there is no way to interact with it, it's impossible to close it by itself. Hence, the solution to this problem is to write our own functions to move and close the clock.
Closing this application may be more urgent. Let's see how to reimplement some functions to achieve this goal. First, we need to declare a new showContextMenu slot to display a context menu and reimplement mouseReleaseEvent. The following code shows the content of mainwindow.h:
#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

namespace Ui {
 class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT
public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private:
 Ui::MainWindow *ui;

private slots:
 void updateTime();
 void showContextMenu(const QPoint &pos);

protected:
 void mouseReleaseEvent(QMouseEvent *);
};

#endif // MAINWINDOW_H

There are two new classes defined in the preceding code: QPoint and QMouseEvent. The QPoint class defines a point in the plane by using integer precision. Relatively, there is another class named QPointF, which provides float precision. Well, the QMouseEvent class inherits QEvent and QInputEvent. It contains some parameters that describe a mouse event. Let's see why we need them in mainwindow.cpp:
#include <QTimer>
#include <QTime>
#include <QMouseEvent>
#include <QMenu>
#include <QAction>
#include "mainwindow.h"
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 setAttribute(Qt::WA_TranslucentBackground);
 setWindowFlags(Qt::WindowStaysOnTopHint | Qt::FramelessWindowHint | windowFlags());

 connect(this, &MainWindow::customContextMenuRequested, this, &MainWindow::showContextMenu);

 QTimer *timer = new QTimer(this);
 connect(timer, &QTimer::timeout, this, &MainWindow::updateTime);
 timer->start(1000);

 updateTime();
}

MainWindow::~MainWindow()
{
 delete ui;
}

void MainWindow::updateTime()
{
 QTime currentTime = QTime::currentTime();
 QString currentTimeText = currentTime.toString("hh:mm");
 if (currentTime.second() % 2 == 0) {
 currentTimeText[2] = ' ';
 }
 ui->lcdNumber->display(currentTimeText);
}

void MainWindow::showContextMenu(const QPoint &pos)
{
 QMenu contextMenu;
 contextMenu.addAction(QString("Exit"), this, SLOT(close()));
 contextMenu.exec(mapToGlobal(pos));
}

void MainWindow::mouseReleaseEvent(QMouseEvent *e)
{
 if (e->button() == Qt::RightButton) {
 emit customContextMenuRequested(e->pos());
 }
 else {
 QMainWindow::mouseReleaseEvent(e);
 }
}

Note that you should include QMouseEvent, QMenu, and QAction in order to utilize these classes. There is a predefined customContextMenuRequested signal, which is coupled with the newly created showContextMenu slot. For the sake of consistency, we will follow the rule that Qt defined, which means that the QPoint argument in customContextMenuRequested should be a local position instead of a global position. That's why we need a mapToGlobal function to translate pos to a global position. As for the QMenu class, it provides a menu widget for a menu bar, context menu, or other pop-up menus. So, we create the contextMenu object, and then add a new action with the Exit text. This is coupled with a close slot of MainWindow. The last statement is used to execute the contextMenu object at the specified global position. In other words, this slot will display a pop-up menu at the given position.
The reimplementation of mouseReleaseEvent is done to check the triggered button of the event. If it's the right button, emit the customContextMenuRequested signal with the local position of the mouse. Otherwise, simply call the default mouseReleaseEvent function of QMainWindow.
Make use of the default member functions of the base class when you reimplement it.
Run the application again; you can quit by right-clicking on it and then selecting Exit. Now, we should continue the reimplementation to make the clock movable. This time, we need to rewrite two protected functions: mousePressEvent and mouseMoveEvent. Therefore, this is how the header file looks:
#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

namespace Ui {
 class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private:
 Ui::MainWindow *ui;
 QPoint m_mousePos;

private slots:
 void updateTime();
 void showContextMenu(const QPoint &pos);

protected:
 void mouseReleaseEvent(QMouseEvent *);
 void mousePressEvent(QMouseEvent *);
 void mouseMoveEvent(QMouseEvent *);
};

#endif // MAINWINDOW_H

There is also a declaration of a new private member variable in the preceding code, m_mousePos, which is a QPoint object used to store the local position of the mouse. The following code defines mousePressEvent and mouseMoveEvent:
void MainWindow::mousePressEvent(QMouseEvent *e)
{
 m_mousePos = e->pos();
}

void MainWindow::mouseMoveEvent(QMouseEvent *e)
{
 this->move(e->globalPos() - m_mousePos);
}

It's easier than you thought. When a mouse button is pressed, the local position of the mouse is stored as m_mousePos. When the mouse is moving, we call the move function to move MainWindow to a new position. Because the position passed to move is a global position, we need to use globalPos of the event minus the local position of the mouse. Confused? The m_mousePos variable is the mouse's relative position to the top-left point of the parent widget, which is MainWindow in our case. The move function will move the top-left point of MainWindow to the given global position. While the e->globalPos() function is the global position of the mouse and not MainWindow, we need to subtract the relative position of m_mousePos to translate the mouse's global position to the top-left point position of MainWindow. After all this effort, the clock should look much more satisfying.

 Saving and restoring settings

Although the clock can be moved, it won't restore its last position after restarting. In addition to this, we can give users some choices to adjust the clock's appearance, such as the font color. To make it work, we need the QSettings class, which provides platform-independent persistent settings. It needs a company or organization name and the name of an application. A typical QSettings object can be constructed by using this line:
QSettings settings("Qt5 Blueprints", "Fancy Clock");

Here, Qt5 Blueprints is the organization's name and Fancy Clock is the application's name.
The settings are stored in the system registry on Windows, while they are stored in the XML preferences files on Mac OS X and the INI text files on the other Unix operating systems, such as Linux. However, we do not usually need to be concerned with this, since QSettings provides high-level interfaces to manipulate the settings.
If we're going to read and/or write settings in multiple places, we'd better set the organization and application in QCoreApplication, which is inherited by QApplication. The main.cpp file's content is shown as follows:
#include "mainwindow.h"
#include <QApplication>

int main(int argc, char *argv[])
{
 QApplication a(argc, argv);

 a.setOrganizationName(QString("Qt5 Blueprints"));
 a.setApplicationName(QString("Fancy Clock"));

 QWidget wid;
 MainWindow w(&wid);
 w.show();

 return a.exec();
}

This enables us to use the default QSettings constructor to access the same settings. In order to save the geometry and state of MainWindow, we need to reimplement closeEvent. First, we need to declare closeEvent to be a protected member function, as follows:
void closeEvent(QCloseEvent *);

Then, let's define the closeEvent function in mainwindow.cpp, as follows:
void MainWindow::closeEvent(QCloseEvent *e)
{
 QSettings sts;
 sts.setValue("MainGeometry", saveGeometry());
 sts.setValue("MainState", saveState());
 e->accept();
}

Remember to add #include <QSettings> in order to include the QSettings header files.
Thanks to setOrganizationName and setApplicationName, we don't need to pass any arguments to the QSettings constructor now. Instead, we call a setValue function to save the settings. The saveGeometry() and saveState() functions return the MainWindow geometry and state respectively as the QByteArray objects.
The next step is to read these settings and restore the geometry and state. This can be done inside the constructor of MainWindow. You just need to add two statements to it:
QSettings sts;
restoreGeometry(sts.value("MainGeometry").toByteArray());
restoreState(sts.value("MainState").toByteArray());

Here, toByteArray() can translate the stored value to a QByteArray object. How do we test to see if this works? To do this, perform the following steps:
	Rebuild this application.
	Run it.
	Move its position.
	Close it.
	Run it again.

You'll see that the clock will appear at exactly the same position as it was before it closed. Now that you're pretty much familiar with widgets, layouts, settings, signals, and slots, it's time to cook a preference dialog by performing the following steps:
	Right-click on the Fancy_Clock project in the Projects panel.
	Select Add New….
	Select Qt in the Files and Classes panel.
	Click on Qt Designer Form Class in the middle panel.
	Select Dialog with Buttons Bottom.
	Fill in Preference under Class name.
	Click on Next, and then select Finish.

Qt Creator will redirect you to the Design mode. First, let's change windowTitle to Preference, and then do some UI work. Perform the following steps to do this:
	Drag Label to QDialog and change its objectName property to colourLabel. Next, change its text to Colour.
	Add QComboBox and change its objectName property to colourBox.
	Add the Black, White, Green, and Red items to colourBox.
	Change the layout of Preference to Lay Out in a Form Lay Out.

Close this UI file. Go back to editing the preference.h add a private onAccepted slot. The following code shows the content of this file:
#ifndef PREFERENCE_H
#define PREFERENCE_H

#include <QDialog>

namespace Ui {
 class Preference;
}

class Preference : public QDialog
{
 Q_OBJECT

public:
 explicit Preference(QWidget *parent = 0);
 ~Preference();

private:
 Ui::Preference *ui;

private slots:
 void onAccepted();
};

#endif // PREFERENCE_H

As usual, we define this slot in the source file. Besides, we have to set up some initializations in the constructor of Preference. Thus, preference.cpp becomes similar to the following code:
#include <QSettings>
#include "preference.h"
#include "ui_preference.h"

Preference::Preference(QWidget *parent) :
 QDialog(parent),
 ui(new Ui::Preference)
{
 ui->setupUi(this);

 QSettings sts;
 ui->colourBox->setCurrentIndex(sts.value("Colour").toInt());

 connect(ui->buttonBox, &QDialogButtonBox::accepted, this, &Preference::onAccepted);
}

Preference::~Preference()
{
 delete ui;
}

void Preference::onAccepted()
{
 QSettings sts;
 sts.setValue("Colour", ui->colourBox->currentIndex());
}

Similarly, we load the settings and change the current item of colourBox. Then, it's the signal and slot coupling that follow. Note that Qt Creator has automatically generated the accept and reject connections between buttonBox and Preference for us. The accepted signal of buttonBox is emitted when the OK button is clicked. Likewise, the rejected signal is emitted if the user clicks on Cancel. You may want to check Signals & Slots Editor in the Design mode to see which connections are defined there. This is shown in the following screenshot:
[image: Saving and restoring settings]
As for the definition of the onAccepted slot, it saves currentIndex of colourBox to the settings so that we can read this setting elsewhere.
Now, what we're going to do next is add an entry for Preference in the pop-up menu and change the color of lcdNumber according to the Colour setting value. Therefore, you should define a private slot and a private member function in mainwindow.h first.
#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

namespace Ui {
 class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private:
 Ui::MainWindow *ui;
 QPoint m_mousePos;
 void setColour();

private slots:
 void updateTime();
 void showContextMenu(const QPoint &pos);
 void showPreference();

protected:
 void mouseReleaseEvent(QMouseEvent *);
 void mousePressEvent(QMouseEvent *);
 void mouseMoveEvent(QMouseEvent *);
 void closeEvent(QCloseEvent *);
};

#endif // MAINWINDOW_H

The setColour function is used to change the color of lcdNumber, while the showPreference slot will execute a Preference object. The definitions of these two members are in the mainwindow.cpp file, which is displayed in the following manner:
#include <QTimer>
#include <QTime>
#include <QMouseEvent>
#include <QMenu>
#include <QAction>
#include <QSettings>
#include "mainwindow.h"
#include "preference.h"
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 setAttribute(Qt::WA_TranslucentBackground);
 setWindowFlags(Qt::WindowStaysOnTopHint | Qt::FramelessWindowHint | windowFlags());

 QSettings sts;
 restoreGeometry(sts.value("MainGeometry").toByteArray());
 restoreState(sts.value("MainState").toByteArray());
 setColour();

 connect(this, &MainWindow::customContextMenuRequested, this, &MainWindow::showContextMenu);

 QTimer *timer = new QTimer(this);
 connect(timer, &QTimer::timeout, this, &MainWindow::updateTime);
 timer->start(1000);

 updateTime();
}

MainWindow::~MainWindow()
{
 delete ui;
}

void MainWindow::updateTime()
{
 QTime currentTime = QTime::currentTime();
 QString currentTimeText = currentTime.toString("hh:mm");
 if (currentTime.second() % 2 == 0) {
 currentTimeText[2] = ' ';
 }
 ui->lcdNumber->display(currentTimeText);
}

void MainWindow::showContextMenu(const QPoint &pos)
{
 QMenu contextMenu;
 contextMenu.addAction(QString("Preference"), this, SLOT(showPreference()));
 contextMenu.addAction(QString("Exit"), this, SLOT(close()));
 contextMenu.exec(mapToGlobal(pos));
}

void MainWindow::mouseReleaseEvent(QMouseEvent *e)
{
 if (e->button() == Qt::RightButton) {
 emit customContextMenuRequested(e->pos());
 }
 else {
 QMainWindow::mouseReleaseEvent(e);
 }
}

void MainWindow::mousePressEvent(QMouseEvent *e)
{
 m_mousePos = e->pos();
}

void MainWindow::mouseMoveEvent(QMouseEvent *e)
{
 this->move(e->globalPos() - m_mousePos);
}

void MainWindow::closeEvent(QCloseEvent *e)
{
 QSettings sts;
 sts.setValue("MainGeometry", saveGeometry());
 sts.setValue("MainState", saveState());
 e->accept();
}

void MainWindow::setColour()
{
 QSettings sts;
 int i = sts.value("Colour").toInt();
 QPalette c;
 switch (i) {
 case 0://black
 c.setColor(QPalette::Foreground, Qt::black);
 break;
 case 1://white
 c.setColor(QPalette::Foreground, Qt::white);
 break;
 case 2://green
 c.setColor(QPalette::Foreground, Qt::green);
 break;
 case 3://red
 c.setColor(QPalette::Foreground, Qt::red);
 break;
 }
 ui->lcdNumber->setPalette(c);
 this->update();
}

void MainWindow::showPreference()
{
 Preference *pre = new Preference(this);
 pre->exec();
 setColour();
}

We call setColour in the constructor in order to set the color of lcdNumber correctly. Inside setColour, we first read the Colour value from the settings, and then use a switch statement to get the correct QPalette class before calling setPalette to change the color of lcdNumber. Since Qt doesn't provide a direct way to change the foreground color of the QLCDNumber objects, we need to use this tedious method to achieve this. At the end of this member function, we call update() to update the MainWindow user interface.
Note
Don't forget to add the Preference action to contextMenu inside showContextMenu. Otherwise, there will be no way to open the dialog.

In the relevant showPreference slot, we create a new Preference object, which is the child of MainWindow, and then call exec() to execute and show it. Lastly, we call setColour() to change the color of lcdNumber. As Preference is modal and exec() has its own event loop, it will block the application until pre is finished. After pre finishes executing, either by accepted or rejected, setColour will be called next. Of course, you can use the signal-slot way to implement it, but we have to apply some modifications to the previous code. Firstly, delete the accepted-accept signal-slot couple in preference.ui in the Design mode. Then, add accept() to the end of onAccepted in preference.cpp.
void Preference::onAccepted()
{
 QSettings sts;
 sts.setValue("Colour", ui->colourBox->currentIndex());
 this->accept();
}

Now, showPreference in mainwindow.cpp can be rewritten as follows:
void MainWindow::showPreference()
{
 Preference *pre = new Preference(this);
 connect(pre, &Preference::accepted, this, &MainWindow::setColour);
 pre->exec();
}

Tip
The connect statement shouldn't be placed after exec(), as it will cause the binding to fail.

No matter which way you prefer, the clock should have a Preference dialog now. Run it, select Preference from the pop-up menu, and change the color to whatever you please. You should expect a result similar to what is shown in the following screenshot:
[image: Saving and restoring settings]

 Building on the Unix platforms

So far, we are still trapped with our applications on Windows. It's time to test whether our code can be built on other platforms. In this chapter, the code involved with only desktop operating systems, while we'll get a chance to build applications for mobile platforms later in this book. In terms of other desktop operating systems, there are plenty of them, and most of them are Unix-like. Qt officially supports Linux and Mac OS X, along with Windows. Hence, users of other systems, such as FreeBSD, may need to compile Qt from scratch or get prebuilt packages from their own communities. In this book, the Linux distribution Fedora 20 is used as a demonstration to introduce platform crossing. Please bear in mind that there are lots of desktop environments and theming tools on Linux, so don't be surprised if the user interface differs. Well, since you're curious, let me tell you that the desktop environment is KDE 4 with QtCurve, unifying GTK+ / Qt 4 / Qt 5 in my case. Let's get started as soon as you're ready. You can perform the following steps to do this:
	Copy the source code of Fancy Clock to a directory under Linux.
	Delete the Fancy_Clock.pro.user file.
	Open this project in Qt Creator.

Now, build and run this application. Everything is good except that there's a taskbar icon. Small issues such as this can't be avoided without testing. Well, to fix this, just modify a single line in the constructor of MainWindow. Changing the window flags will amend this:
setWindowFlags(Qt::WindowStaysOnTopHint | Qt::FramelessWindowHint | Qt::Tool);

If you run the file again, Fancy Clock won't show up in the taskbar any more. Please keep the MainWindow object, w, as a child of QWidget wid; otherwise, the application won't terminate after you click on Close.
Note that the Preference dialog uses native UI controls, rather than bringing the other platform's controls to this one. This is one of the most fascinating things that Qt has provided. All the Qt applications will look and behave like native applications across all platforms.
[image: Building on the Unix platforms]
It's not a hustle but the truth is that once you code the Qt application, you can run it everywhere. You don't need to write different GUIs for different platforms. That dark age has long gone. However, you may want to write some functions for specific platforms, either because of particular needs or workarounds. Firstly, I'd like to introduce you to some Qt Add-On modules dedicated for several platforms.
Take Qt Windows Extras as an example. Some cool features that Windows provides, such as Thumbnail Toolbar and Aero Peek, are supported by Qt through this add-on module.
Well, adding this module to the project file directly, which in this case is Fancy_Clock.pro file, will definitely upset other platforms. A better way to do this is to test whether it's on Windows; if so, add this module to the project. Otherwise, skip this step. The following code shows you the Fancy_Clock.pro file, which will add the winextras module if it's built on Windows:
QT += core gui

win32: QT += winextras

greaterThan(QT_MAJOR_VERSION, 4): QT += widgets

TARGET = Fancy_Clock
TEMPLATE = app

SOURCES += main.cpp\
 mainwindow.cpp \
 preference.cpp

HEADERS += mainwindow.h \
 preference.h

FORMS += mainwindow.ui \
 preference.ui

As you can see, win32 is a conditional statement, which is true only if the host machine is Windows. After a qmake rerun for this project, you'll be able to include and utilize those extra classes.
Similarly, if you want to do something on the Unix platforms, simply use the keyword unix, but unix will be true only on Linux/X11 or Mac OS X. To distinguish Mac OS X from Linux, here's an example:
win32 {
 message("Built on Windows")
}
else: unix: macx{
 message("Built on Mac OS X")
}
else {
 message("Built on Linux")
}

In fact, you can just use unix: !macx as the conditional statement to do some platform-specific work on Linux. It's a common practice to have many platform-specific statements in the project file(s), especially when your project needs to be linked with other libraries. You have to specify different paths for these libraries on different platforms, otherwise the compiler will complain about missing libraries or unknown symbols.
In addition to this, you may want to know how to write platform-specific code while keeping it from other platforms. Similar to C++, it's a predefined macro that is handled by various compilers. However, these compiler macro lists may differ from one compiler to another. So, it is better to use Global Qt Declarations instead. I'll use a the following short example to explain this further:
void MainWindow::showContextMenu(const QPoint &pos)
{
 QMenu contextMenu;
 #ifdef Q_OS_WIN
 contextMenu.addAction(QString("Options"), this, SLOT(showPreference()));
 #elif defined(Q_OS_LINUX)
 contextMenu.addAction(QString("Profile"), this, SLOT(showPreference()));
 #else
 contextMenu.addAction(QString("Preference"), this, SLOT(showPreference()));
 #endif
 contextMenu.addAction(QString("Exit"), this, SLOT(close()));
 contextMenu.exec(mapToGlobal(pos));
}

The preceding code shows you the new version of showContextMenu. The Preference menu entry will use different texts on different platforms, namely Windows, Linux, and Mac OS X. Change your showContextMenu function and run it again. You'll see Options on Windows, Profile on Linux, and Preference on Mac OS X. Below is a list concerning the platform-specific macros. You can get a full description, including other macros, functions, and types on the QtGlobal document.
	
Macro

	
Correspond Platform

	
Q_OS_ANDROID

	
Android

	
Q_OS_FREEBSD

	
FreeBSD

	
Q_OS_LINUX

	
Linux

	
Q_OS_IOS

	
iOS

	
Q_OS_MAC

	
Mac OS X and iOS (Darwin-based)

	
Q_OS_WIN

	
All Windows platforms, including Windows CE

	
Q_OS_WINPHONE

	
Windows Phone 8

	
Q_OS_WINRT

	
Windows Runtime on Windows 8. Windows RT and Windows Phone 8

 Summary

In this chapter, information, including some tricks, about UI designing is included. Furthermore, there are basic yet useful cross-platform topics. Now, you're able to write an elegant Qt application in your favorite, and possibly already mastered, C++.
In the next chapter, we are going to learn how to write an application in Qt Quick. However, fear not; Qt Quick is even easier and, of course, quicker to develop.

 Chapter 3. Cooking an RSS Reader with Qt Quick

In this chapter, we will focus on developing applications with Qt Quick. For touchscreen-enabled devices, Qt Quick applications are much more responsive and easy to write. An RSS reader is used as a demonstration in this chapter. The following topics will enable you to build elegant Qt Quick applications:
	Understanding model and view
	Parsing RSS Feeds by XmlListModel
	Tweaking the categories
	Utilizing ScrollView
	Adding BusyIndicator
	Making a frameless window
	Debugging QML

Understanding model and view

As mentioned before, Qt Quick applications are different from traditional Qt Widgets applications. You are going to write QML instead of C++ code. So, let's create a new project, a Qt Quick application named RSS_Reader. This time, we will use Qt Quick 2.3 as the component set. Since we won't use the widgets provided by Qt Quick Controls, we'll write our own widgets.
Before getting our hands dirty, let's sketch out what this application looks like. According to the following diagram, there will be two sections. The left-hand panel provides some categories so that users can choose interesting categories. The right-hand panel is the main area, which displays news under the current category. This is a typical RSS news reader's user interface.
[image: Understanding model and view]
We can implement the Categories panel by using ListView. This type (we say "type" instead of "class" in QML) is used to display data from all sorts of list models. So let's edit our main.qml to something similar to this:
import QtQuick 2.3
import QtQuick.Window 2.2

Window {
 id: mainWindow
 visible: true
 width: 720
 height: 400

 ListView {
 id: categories

 width: 150
 height: parent.height
 orientation: ListView.Vertical
 anchors.top: parent.top
 spacing: 3
 }
}

ListView needs a model to get data from. In this case, we can utilize ListModel for its simplicity. To achieve this, let's create a new Feeds.qml file, which will contain a custom ListModel example:
	Right-click on the project.
	Select Add New….
	Navigate to Qt | QML File (Qt Quick 2).
	Enter the Feeds.qml filename.

Here is the content of Feeds.qml:
import QtQuick 2.3

ListModel {
 ListElement { name: "Top Stories"; url: "http://feeds.bbci.co.uk/news/rss.xml" }
 ListElement { name: "World"; url: "http://feeds.bbci.co.uk/news/world/rss.xml" }
 ListElement { name: "UK"; url: "http://feeds.bbci.co.uk/news/uk/rss.xml" }
 ListElement { name: "Business"; url: "http://feeds.bbci.co.uk/news/business/rss.xml" }
 ListElement { name: "Politics"; url: "http://feeds.bbci.co.uk/news/politics/rss.xml" }
 ListElement { name: "Health"; url: "http://feeds.bbci.co.uk/news/health/rss.xml" }
 ListElement { name: "Education & Family"; url: "http://feeds.bbci.co.uk/news/education/rss.xml" }
 ListElement { name: "Science & Environment"; url: "http://feeds.bbci.co.uk/news/science_and_environment/rss.xml" }
 ListElement { name: "Technology"; url: "http://feeds.bbci.co.uk/news/technology/rss.xml" }
 ListElement { name: "Entertainment & Arts"; url: "http://feeds.bbci.co.uk/news/entertainment_and_arts/rss.xml" }
}

Note
We use BBC News RSS as feeds, but you may wish to change it to another.

As you can see, the preceding ListModel example has two roles, name and url. A "role" is basically a fancy way of saying the child item. These can be bound to by the ListView delegate that we are about to create. In this way, roles usually represent the properties of an entity or columns of a table.
Let me explain the relation between view, model, and delegate, which is another important yet difficult concept in the world of Qt. This is officially called model-view architecture. In addition to the traditional view, Qt decouples the view and controller so that the data can be rendered and edited in many customized ways. The latter is much more elegant and efficient. The following diagram helps you understand this concept:
[image: Understanding model and view]
Take ListModel, which is a model used to arrange data, as an example to elaborate the relationship. CategoriesDelegate, shown in the following code, is a delegate and is used to control how to display the roles from the model. Lastly, we use a view, which is ListView in this case, to render the delegate.
The communication between the models, views, and delegates are based on the signals and slots mechanism. It'll take you some time to fully understand this concept. Hopefully, we can shorten this time by practicing this example. At this stage, we already have a view and a model. We have to define a delegate, which is CategoriesDelegate as mentioned before, to control the data from the model and render it on the view. Add a new CategoriesDelegate.qml file, whose content is pasted in this way:
import QtQuick 2.3

Rectangle {
 id: delegate
 property real itemWidth
 width: itemWidth
 height: 80
 Text {
 id: title
 anchors { left: parent.left; leftMargin: 10; right: parent.right; rightMargin: 10 }
 anchors.verticalCenter: delegate.verticalCenter
 text: name
 font { pointSize: 18; bold: true }
 verticalAlignment: Text.AlignVCenter
 wrapMode: Text.WordWrap
 }
}

You should have some idea about the relation between the model, delegate, and view. Here, we use Rectangle as the delegate type. Inside the Rectangle type is a Text object that displays the name from our ListModel example. As for the font property, here we use pointSize to specify the size of text, while you can use pixelSize as an alternative.
To finish the model-view architecture, go back to the main.qml edit:
import QtQuick 2.3
import QtQuick.Window 2.2
import "qrc:/"

Window {
 id: mainWindow
 visible: true
 width: 720
 height: 400

 Feeds {
 id: categoriesModel
 }

 ListView {
 id: categories

 width: 150
 height: parent.height
 orientation: ListView.Vertical
 anchors.top: parent.top
 spacing: 3
 model:categoriesModel
 delegate: CategoriesDelegate {
 id: categoriesDelegate
 width: categories.width
 }
 }
}

Take note of the third line; it's crucial to import this directory into qrc. We use "qrc:/" because we need to put the QML files in the root directory. Modify it if you use a subdirectory to keep Feeds.qml and CategoriesDelegate.qml. In this example, these files are left unorganized. But it's highly recommended to keep them categorized as a different module. If you didn't import the directory, you won't be able to use these QML files.
Inside the Window item, we create Feeds, which is exactly an element of ListModel from Feeds.qml. Then, we give this Feeds item a categoriesModel ID and use it as the model of ListView. Specifying the delegate is quite similar to specifying the model for views. Instead of declaring it outside ListView, we have to define it inside the delegate scope, otherwise the delegate item, CategoriesDelegate, won't be able to get data from the model. As you can see, we can manipulate the width of categoriesDelegate. This is to ensure that the text won't lie outside the boundary of ListView.
If everything is done correctly, click on Run and you'll see it run like this:
[image: Understanding model and view]

 Parsing RSS Feeds by XmlListModel

It's true that we now have categories, but they don't seem to be involved with RSS at all. Also, if you dig deeper, you'll find that the RSS feeds are in fact the XML documents. Qt already provides a useful type to help us parse them. We don't need to reinvent the wheel. This powerful type is the so-called XmlListModel element and it uses XmlRole to query.
Firstly, we need to expose the url role of categoriesModel to the main scope. This is done by declaring the property storing the model's current element, url, inside ListView. Then, we can add an XmlListModel element and use that url element as its source. Accordingly, the modified main.qml file is pasted here:
import QtQuick 2.3
import QtQuick.Window 2.2
import QtQuick.XmlListModel 2.0
import "qrc:/"

Window {
 id: mainWindow
 visible: true
 width: 720
 height: 400

 Feeds {
 id: categoriesModel
 }

 ListView {
 id: categories
 width: 150
 height: parent.height
 orientation: ListView.Vertical
 anchors.top: parent.top
 spacing: 3
 model:categoriesModel
 delegate: CategoriesDelegate {
 id: categoriesDelegate
 width: categories.width
 }
 property string currentUrl: categoriesModel.get(0).url
 }

 XmlListModel {
 id: newsModel

 source: categories.currentUrl
 namespaceDeclarations: "declare namespace media = 'http://search.yahoo.com/mrss/'; declare namespace atom = 'http://www.w3.org/2005/Atom';"
 query: "/rss/channel/item"

 XmlRole { name: "title"; query: "title/string()" }
 XmlRole { name: "description"; query: "description/string()" }
 XmlRole { name: "link"; query: "link/string()" }
 XmlRole { name: "pubDate"; query: "pubDate/string()" }
 //XPath starts from 1 not 0 and the second thumbnail is larger and more clear
 XmlRole { name: "thumbnail"; query: "media:thumbnail[2]/@url/string()" }
 }
}

Note
Objects' values are changed dynamically and updated implicitly in Qt Quick. You don't need to give new values explicitly.

In order to use this element, you will need to import the module by adding an import QtQuick.XmlListModel 2.0 line. Additionally, XmlListModel is a read-only model which means that you can't modify the data source through this model. This is completely acceptable since what we need is to retrieve the news data from the RSS feeds. Take Top Stories as an example; the following code is a part of this XML document content:
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet title="XSL_formatting" type="text/xsl" href="/shared/bsp/xsl/rss/nolsol.xsl"?>

<rss xmlns:media="http://search.yahoo.com/mrss/" xmlns:atom="http://www.w3.org/2005/Atom" version="2.0">
<channel>
<title>BBC News - Home</title>
<link>http://www.bbc.co.uk/news/#sa-ns_mchannel=rss&ns_source=PublicRSS20-sa</link>
<description>The latest stories from the Home section of the BBC News web site.</description>
<language>en-gb</language>
<lastBuildDate>Mon, 26 Jan 2015 23:19:42 GMT</lastBuildDate>
<copyright>Copyright: (C) British Broadcasting Corporation, see http://news.bbc.co.uk/2/hi/help/rss/4498287.stm for terms and conditions of reuse.</copyright>

<ttl>15</ttl>
<atom:link href="http://feeds.bbci.co.uk/news/rss.xml" rel="self" type="application/rss+xml"/>
<item>
 <title>Germany warns Greece over debts</title>
 <description>The German government warns Greece that it must meet its commitments to lenders, after the election win of the Greek anti-austerity Syriza party.</description>
 <link>http://www.bbc.co.uk/news/business-30977714#sa-ns_mchannel=rss&ns_source=PublicRSS20-sa</link>
 <guid isPermaLink="false">http://www.bbc.co.uk/news/business-30977714</guid>
 <pubDate>Mon, 26 Jan 2015 20:15:56 GMT</pubDate>
 <media:thumbnail width="66" height="49" url="http://news.bbcimg.co.uk/media/images/80536000/jpg/_80536447_025585607-1.jpg"/>
 <media:thumbnail width="144" height="81" url="http://news.bbcimg.co.uk/media/images/80536000/jpg/_80536448_025585607-1.jpg"/>
</item>
……

The namespaceDeclarations property needs to be set because the XML document has the XML namespaces.
<rss xmlns:media="http://search.yahoo.com/mrss/" xmlns:atom="http://www.w3.org/2005/Atom" version="2.0">

Here, xmlns stands for the XML namespace, so we declare the namespace accordingly.
namespaceDeclarations: "declare namespace media = 'http://search.yahoo.com/mrss/'; declare namespace atom = 'http://www.w3.org/2005/Atom';"

In fact, you can just declare a media namespace and safely ignore an atom namespace. However, if you didn't declare the media namespace, the application would end up failing to parse the XML document. Hence, go back to see the XML document and you'll find it has a hierarchy to order data. What we want here are these items. Take the top-level as root, /, so the path of item can be written as /rss/channel/item. This is exactly what we put in query.
All the XmlRole elements are created using query as the base. For XmlRole, name defines its name, which doesn't need to be the same as in the XML document. It's similar to id for the regular Qt Quick items. However, the query of XmlRole must use a relative path to the query of XmlListModel. Although it's a string() type in most cases, it still must be declared explicitly. If there are elements sharing the same keys, it'd be an array where the element listed first has the first index.
Note
The first index in XPath is 1 instead of 0.

Sometimes, we need to get an attribute thumbnail. This is the url attribute of the media:thumbnail tag. In this case, it's the @ symbol that will do all the magic we need.
Similar to these categories, we have to write a delegate for the XmlListModel element to render the view. The new QML NewsDelegate.qml file is shown here:
import QtQuick 2.3

Column {
 id: news
 spacing: 8

 //used to separate news item
 Item { height: news.spacing; width: news.width }

 Row {
 width: parent.width
 height: children.height
 spacing: news.spacing

 Image {
 id: titleImage
 source: thumbnail
 }

 Text {
 width: parent.width - titleImage.width
 wrapMode: Text.WordWrap
 font.pointSize: 20
 font.bold: true
 text: title
 }
 }

 Text {
 width: parent.width
 font.pointSize: 9
 font.italic: true
 text: pubDate + " (Details)"
 onLinkActivated: {
 Qt.openUrlExternally(link)
 }
 }

 Text {
 width: parent.width
 wrapMode: Text.WordWrap
 font.pointSize: 10.5
 horizontalAlignment: Qt.AlignLeft
 text: description
 }
}

The difference is that this time we use Column to organize the news data and represent it in an intuitive way. The relevant diagram is sketched as follows:
[image: Parsing RSS Feeds by XmlListModel]
So, this is why we use Row inside Column to box Thumbnail and Title together. Thus, we need to put an empty item element in front to separate each news delegate. Apart from these self-explanatory lines, there is a tip for dealing with links. You need to specify the slot for the onLinkActivated signal, which is Qt.openUrlExternally(link) in this case. Otherwise, nothing will happen when you click on the link.
After all this, it's time to write a view in main.qml to display our news:
import QtQuick 2.3
import QtQuick.Window 2.2
import QtQuick.XmlListModel 2.0
import "qrc:/"

Window {
 id: mainWindow
 visible: true
 width: 720
 height: 400

 Feeds {
 id: categoriesModel
 }

 ListView {
 id: categories

 width: 150
 height: parent.height
 orientation: ListView.Vertical
 anchors.top: parent.top
 spacing: 3
 model:categoriesModel
 delegate: CategoriesDelegate {
 id: categoriesDelegate
 width: categories.width
 }
 property string currentUrl: categoriesModel.get(0).url
 }

 XmlListModel {
 id: newsModel

 source: categories.currentUrl
 namespaceDeclarations: "declare namespace media = 'http://search.yahoo.com/mrss/'; declare namespace atom = 'http://www.w3.org/2005/Atom';"
 query: "/rss/channel/item"

 XmlRole { name: "title"; query: "title/string()" }
 XmlRole { name: "description"; query: "description/string()" }
 XmlRole { name: "link"; query: "link/string()" }
 XmlRole { name: "pubDate"; query: "pubDate/string()" }
 //XPath starts from 1 not 0 and the second thumbnail is larger and more clear
 XmlRole { name: "thumbnail"; query: "media:thumbnail[2]/@url/string()" }
 }

 ListView {
 id: newsList

 anchors { left: categories.right; leftMargin: 10; right: parent.right; rightMargin: 4; top: parent.top; bottom: parent.bottom; }
 model: newsModel
 delegate: NewsDelegate {
 width: newsList.width
 }
 }
}

Remember to define the width of NewsDelegate in case it displays abnormally. Click on Run; the application will look like the following screenshot:
[image: Parsing RSS Feeds by XmlListModel]

 Tweaking the categories

This application is still incomplete. For example, the news view won't change at all after you click on the other categories. In this stage, we're going to work this out and make it more beautiful.
What we need to do is add MouseArea to CategoriesDelegate. This element is used to deal with a variety of mouse interactions, including clicking. The new CategoriesDelegate.qml file's code is pasted here:
import QtQuick 2.3

Rectangle {
 id: delegate
 height: 80

 Text {
 id: title
 anchors { left: parent.left; leftMargin: 10; right: parent.right; rightMargin: 10 }
 anchors.verticalCenter: delegate.verticalCenter
 text: name
 font { pointSize: 18; bold: true }
 verticalAlignment: Text.AlignVCenter
 wrapMode: Text.WordWrap
 }

 MouseArea {
 anchors.fill: delegate
 onClicked: {
 categories.currentIndex = index
 if(categories.currentUrl == url)
 newsModel.reload()
 else
 categories.currentUrl = url
 }
 }
}

As you can see, once a delegate gets clicked on, it'll change categories.currentIndex and currentUrl if necessary, or simply let newsModel reload. As mentioned before, QML is a dynamic language, which changes categories.currentUrl, the source property of newsModel, and would automatically cause newsModel to reload.
To help users distinguish a currently-selected category from others, we may wish to change its size and scale. There are some attached properties, which are attached to each instance of a delegate or are simply shared among them. The .isCurrentItem property is the one that would so us a favor. It's a Boolean value that holds whether this delegate is the current item or not. However, only the root item of a delegate can access these attached properties directly. In order to code in a clean way, we add a line to Rectangle of CategoriesDelegate to hold this property:
property bool selected: ListView.isCurrentItem

Now, we can utilize selected in Text by adding the following lines to the Text item:
scale: selected ? 1.0 : 0.8
color: selected ? "#000" : "#AAA"

Text will be scaled to 0.8 if it's not selected and will behave as usual when it's active. A similar condition is in place for its color. The #AAA color code is an extremely light gray color, which makes the active black text stand out more. However, there is no animation for these changes. While we want these transitions to be more natural, Qt Quick provides Behavior with State to make these transitions happen. By adding these lines to the Text item, we get the following code:
Behavior on color { ColorAnimation { duration: 300 } }
Behavior on scale { PropertyAnimation { duration: 300 } }

Animations are expected to present when you change the current delegate, which results in changes in the color and scale. If you're not sure whether you've performed the correct modification, the following code shows you the newly modified CategoriesDelegate.qml file:
import QtQuick 2.3

Rectangle {
 id: delegate
 height: 80

 property bool selected: ListView.isCurrentItem

 Text {
 id: title
 anchors { left: parent.left; leftMargin: 10; right: parent.right; rightMargin: 10 }
 anchors.verticalCenter: delegate.verticalCenter
 text: name
 font { pointSize: 18; bold: true }
 verticalAlignment: Text.AlignVCenter
 wrapMode: Text.WordWrap
 scale: selected ? 1.0 : 0.8
 color: selected ? "#000" : "#AAA"
 Behavior on color { ColorAnimation { duration: 300 } }
 Behavior on scale { PropertyAnimation { duration: 300 } }
 }

 MouseArea {
 anchors.fill: delegate
 onClicked: {
 categories.currentIndex = index
 if(categories.currentUrl == url)
 newsModel.reload()
 else
 categories.currentUrl = url
 }
 }
}

There is room to improve the categories, including the background image which is simply an Image element, and could form part of your exercises. However, it won't be covered in this chapter. Here, what we do next is to change the displaying fonts on the Windows platform. We're going to change the font to Times New Roman by adding a few lines in main.cpp (not main.qml).
#include <QGuiApplication>
#include <QQmlApplicationEngine>
#include <QFont>

int main(int argc, char *argv[])
{
 QGuiApplication app(argc, argv);

 #ifdef Q_OS_WIN
 app.setFont(QFont(QString("Times New Roman")));
 #endif

 QQmlApplicationEngine engine;
 engine.load(QUrl(QStringLiteral("qrc:/main.qml")));

 return app.exec();
}

Here, we use a predefined macro to limit this change for the Windows platforms. By setting the font of app whose type is QGuiApplication, all the children widgets, including engine, are subjected to this change. Now run the application again; you should expect a new RSS reader with this newspaper-like font:
[image: Tweaking the categories]

 Utilizing ScrollView

Our RSS news reader is shaping up now. From now on, let's focus on the unpleasant details. The first thing we're going to add is a scroll bar. To be more specific, ScrollView is about to be added.
Back in the Qt 4 era, you had to write your own ScrollView component to gain this small yet very nice feature. Although you can utilize KDE Plasma Components' ScrollArea on X11 Platforms, there are no Qt bundled modules for this purpose, which means you can't use these on Windows and Mac OS X. Thanks to the open governance of the Qt project, a lot of community code gets merged, especially from the KDE community. From Qt 5.1 onwards, we have the QtQuick.Controls module, which has many built-in desktop components, including ScrollView.
It's a very easy to use element that provides scroll bars and content frames for its child item. There can be only one direct Item child, and this child is implicitly anchored to fill the ScrollView component. This means that we only need to anchor the ScrollView component.
There are two ways to specify the child item. The first one is to declare the child item inside the ScrollView component's scope, and the item which is inside will implicitly become the child of the ScrollView component. Another way is to set the contentItem property, which is an explicit method. In this chapter's example, both ways are demonstrated for you. The content of main.qml is shown here:
import QtQuick 2.3
import QtQuick.Window 2.2
import QtQuick.XmlListModel 2.0
import QtQuick.Controls 1.2
import QtQuick.Controls.Styles 1.2
import "qrc:/"

Window {
 id: mainWindow
 visible: true
 width: 720
 height: 400

 Feeds {
 id: categoriesModel
 }

 ListView {
 id: categories

 orientation: ListView.Vertical
 spacing: 3
 model:categoriesModel
 delegate: CategoriesDelegate {
 id: categoriesDelegate
 width: categories.width
 }
 property string currentUrl: categoriesModel.get(0).url
 }

 ScrollView {
 id: categoriesView
 contentItem: categories
 anchors { left: parent.left; top: parent.top; bottom: parent.bottom; }
 width: 0.2 * parent.width
 style: ScrollViewStyle {
 transientScrollBars: true
 }
 }

 XmlListModel {
 id: newsModel

 source: categories.currentUrl
 namespaceDeclarations: "declare namespace media = 'http://search.yahoo.com/mrss/'; declare namespace atom = 'http://www.w3.org/2005/Atom';"
 query: "/rss/channel/item"

 XmlRole { name: "title"; query: "title/string()" }
 XmlRole { name: "description"; query: "description/string()" }
 XmlRole { name: "link"; query: "link/string()" }
 XmlRole { name: "pubDate"; query: "pubDate/string()" }
 //XPath starts from 1 not 0 and the second thumbnail is larger and more clear
 XmlRole { name: "thumbnail"; query: "media:thumbnail[2]/@url/string()" }
 }

 ScrollView {
 id: newsView
 anchors { left: categoriesView.right; leftMargin: 10; right: parent.right; top: parent.top; bottom: parent.bottom }
 style: ScrollViewStyle {
 transientScrollBars: true
 }
 ListView {
 id: newsList
 model: newsModel
 delegate: NewsDelegate {
 width: newsList.width
 }
 }
 }
}

Since the child item is automatically filled with anchors, some lines inside ListView are deleted. Most of them are just moved to ScrollView though. You can see that we use the explicit way for categories and the implicit way for newsList.
Looking into ScrollView, we defined a custom style element by forcing transientScrollBars to true. It's noted that the default value of transientScrollBars is platform dependent. The transient scroll bars only appear when the content is scrolled and then disappear when they are no longer needed. Anyway, it's false by default on Windows, so we turn it on explicitly, resulting in a better visual style shown as follows:
[image: Utilizing ScrollView]

 Adding BusyIndicator

The absence of a busy indicator makes people uncomfortable as well. No matter how short or long indicator it is, it takes time to download data and parse XML. I'm pretty sure you'd like to add such an indicator, which tells users to calm down and wait. Luckily, BusyIndicator, which is simply a running circle, is an element of QtQuick.Controls. This does exactly what we want.
What you need to do is to add these lines to main.qml inside the Window item:
BusyIndicator {
 anchors.centerIn: newsView
 running: newsModel.status == XmlListModel.Loading
}

Note that we don't need to change the visible property of BusyIndicator, because BusyIndicator is only visible when the running property is set to true. In this case, we set running to true when the newsModel status is Loading.

 Making a frameless window

Similar to what we did in the previous chapter, here we don't want the borders of the system window to decorate our Qt Quick application. This is partly because it looks like a web application, which makes it seems odd with native window decorations. This job is even easier in QML than in C++. We can add the following line to Window in main.qml:
flags: Qt.Window | Qt.FramelessWindowHint

Although our RSS reader runs in a frameless style, there is no way to move it and it's difficult to close it, just like the situation in the previous chapter. Since our mouse has many duties for the categories and news ListView along with ScrollView, we can't simply use a new MouseArea element to fill the Window root. Therefore, what we're going to do is to draw our own title bar and, of course, the exit button.
To add the exit button image to the qrc file, right-click on qml.qrc, select Open in Editor, navigate to Add | Add Files, and then select close.png.
Tip
It'd be better to use different resource files (qrc) for different types of files, which make it more organized. We'll talk more about resource files in Chapter 8, Enabling Your Qt Application to Support Other Languages.

Now, add a new QML TitleBar.qml file whose content is pasted here:
import QtQuick 2.3

Row {
 id: titlebar
 width: parent.width
 height: 22
 layoutDirection: Qt.RightToLeft

 property point mPos: Qt.point(0,0)

 Image {
 id: closebutton
 width: 22
 height: 22
 fillMode: Image.PreserveAspectFit
 source: "qrc:/close.png"

 MouseArea {
 anchors.fill: parent
 onClicked: {
 Qt.quit()
 }
 }
 }

 Rectangle {
 width: titlebar.width - closebutton.width
 height: titlebar.height
 color: "#000"

 MouseArea {
 anchors.fill: parent
 onPressed: {
 mPos = Qt.point(mouseX, mouseY)
 }
 onPositionChanged: {
 mainWindow.setX(mainWindow.x + mouseX - mPos.x)
 mainWindow.setY(mainWindow.y + mouseY - mPos.y)
 }
 }
 }
}

Here, we use a QPoint object, mPos, to store the position when the mouse button is clicked.
Note
Although we may have declared it as var or variant in the past, for maximum performance you should avoid the use of var. Also note that variant is deprecated now, so it shouldn't be used under any circumstances.

The MouseArea element, which is used for moving, is located inside the Rectangle element. There are lots of predefined signals and slots for MouseArea. Note that we use the onPressed slot instead of onClicked here to get the mouse position. This is because the clicked signal is only emitted when the mouse button is pressed and then released, which makes it unsuitable for moving the window.
The positionChanged signal is emitted when the mouse button is pressed and then moved. In addition to this, there is a property called hoverEnabled, which is false by default. If you set it to true, all the mouse events will be handled even when no mouse button is clicked. In other words, the positionChanged signal will be emitted when the mouse is moving, regardless of whether it's clicked or not. Therefore, we don't set hoverEnabled to true in this example.
Now let's go back and check the Image item. The fillMode element determines how an image should be adjusted. By default, it'll be stretched despite the ratio. Here, we set it to preserve the ratio while we fit the Image. The source property holds the image file path. In this case, it's the close.png file that is in the Resources file, qml.qrc. Here we go; this is another MouseArea, which simply makes Image into a closed button.
At last, it's time to add TitleBar to main.qml as follows:
import QtQuick 2.3
import QtQuick.Window 2.2
import QtQuick.XmlListModel 2.0
import QtQuick.Controls 1.2
import QtQuick.Controls.Styles 1.2
import "qrc:/"

Window {
 id: mainWindow
 visible: true
 width: 720
 height: 400
 flags: Qt.Window | Qt.FramelessWindowHint

 TitleBar {
 id: titleBar
 }

 Text {
 id: windowTitle
 anchors { left: titleBar.left; leftMargin: 10; verticalCenter: titleBar.verticalCenter }
 text: "BBC News Reader"
 color: "#FFF"
 font.pointSize: 10
 }

 Feeds {
 id: categoriesModel
 }

 ListView {
 id: categories

 orientation: ListView.Vertical
 spacing: 3
 model:categoriesModel
 delegate: CategoriesDelegate {
 id: categoriesDelegate
 width: categories.width
 }
 property string currentUrl: categoriesModel.get(0).url
 }

 ScrollView {
 id: categoriesView
 contentItem: categories
 anchors { left: parent.left; top: titleBar.bottom; bottom: parent.bottom; }
 width: 0.2 * parent.width
 style: ScrollViewStyle {
 transientScrollBars: true
 }
 }

 XmlListModel {
 id: newsModel

 source: categories.currentUrl
 namespaceDeclarations: "declare namespace media = 'http://search.yahoo.com/mrss/'; declare namespace atom = 'http://www.w3.org/2005/Atom';"
 query: "/rss/channel/item"

 XmlRole { name: "title"; query: "title/string()" }
 XmlRole { name: "description"; query: "description/string()" }
 XmlRole { name: "link"; query: "link/string()" }
 XmlRole { name: "pubDate"; query: "pubDate/string()" }
 //XPath starts from 1 not 0 and the second thumbnail is larger and more clear
 XmlRole { name: "thumbnail"; query: "media:thumbnail[2]/@url/string()" }
 }

 ScrollView {
 id: newsView
 anchors { left: categoriesView.right; leftMargin: 10; right: parent.right; top: titleBar.bottom; bottom: parent.bottom }
 style: ScrollViewStyle {
 transientScrollBars: true
 }
 ListView {
 id: newsList
 model: newsModel
 delegate: NewsDelegate {
 width: newsList.width
 }
 }
 }

 BusyIndicator {
 anchors.centerIn: newsView
 running: newsModel.status == XmlListModel.Loading
 }
}

We also use a Text element, windowTitle, to display the window title in titleBar. Since we retrieve data from BBC News, it's not a bad idea to call it BBC News Reader or just name it whatever you like.
Apart from the addition of the title bar, some code needs to be modified to spare room for it. Both the ScrollView component's anchored top should be changed to titleBar.bottom instead of parent.top, otherwise the title bar will be placed partially on top of these two scroll views.
Give the application a run; it should deliver a new visual style. Although it looks more like a web application, the whole interface is clean and integrated. Another benefit of this change is a unified UI across all platforms.
[image: Making a frameless window]

 Debugging QML

The most common practice to debug QML is the use of the API console. JavaScript developers should be familiar with this because of the console support in QML. The relationships between the console functions and the Qt/C++ QDebug functions are given as follows:
	
QML

	
Qt/C++

	

console.log()

	

qDebug()

	

console.debug()

	

qDebug()

	

console.info()

	

qDebug()

	

console.warn()

	

qWarning()

	

console.error()

	

qCritical()

With the preceding supports present, QML is just like JavaScript programming. At the same time, the following functions are also introduced in QML:
	
Functions

	
Description

	

console.assert()

	
This function tests whether the expression is true. If not, it will write an optional message to the console and print the stack trace.

	

console.exception()

	
This function prints an error message together with the stack trace of the JavaScript execution at the point it is called.

	

console.trace()

	
This function prints the stack trace of the JavaScript execution at the point it is called.

	

console.count()

	
This function prints the current number of times a particular piece of code has been executed, along with a message.

	

console.time()

console.timeEnd()

	
This pair of functions will print the time that a particular piece of code between them takes in milliseconds.

	

console.profile()

console.profileEnd()

	
This pair of functions profiles both the state of QDeclarativeEngine as well as the V8 call methods. However, you need to attach the QML Profiler tool to the application before console.profileEnd() is called.

In addition to the preceding useful functions, the common Debug mode in Qt Creator is available for QML as well. The operations are almost identical to C++ debugging. You can set the breakpoints, observe values, and so on. However, there is one more thing provided for QML. It's the QML/JS Console! Qt Creator doesn't show the QML/JS Console by default, you have to turn it on manually. Just click on the small button (the red circle in the following screenshot), and then tick QML/JS Console:
[image: Debugging QML]
Tip
When the application is interrupted by a breakpoint, you can use the QML/JS Console to execute the JavaScript expressions in the current context. You can change the property values temporarily, without editing the source, and view the results in the running application.

The QML/JS Console tab shows the debug output, both the Qt debug messages and JavaScript console messages, in an appealing way. It provides a button group to help you filter information, warnings, and errors. Therefore, just use this QML/JS Console tab to replace Application Output when you debug Qt Quick applications.

 Summary

In this chapter, we went through a thorough introduction to Qt Quick. We also covered model-view programming, which is a vital concept in both Qt/C++ and Qt Quick/QML. You may also find that QML is in some way an extensible version of JavaScript. This is an additional bonus for JavaScript developers. However, it's not difficult to start if you've never written a script before. Once you start, you'll get to explore the fascinating qualities of Qt Quick. We're going to show you how to access camera devices using Qt in the next chapter.

 Chapter 4. Controlling Camera and Taking Photos

Through this chapter, you'll find how easy it is to access and control a camera with Qt. The example in this chapter also demonstrates how to utilize the status bar and menu bar. In addition to the traditional Qt Widget applications, there is a QML camera example, which does the same thing as Qt/C++ but in a more elegant way. The following topics, which are covered in this chapter, will extend your application:
	Accessing the camera in Qt
	Controlling the camera
	Displaying errors in the status bar
	Displaying the permanent widgets in the status bar
	Utilizing the menu bar
	Using QFileDialog
	Using the QML Camera

Accessing the camera in Qt

Although we won't talk about the technical details of how a camera works, the overview of the implementation of a camera in Qt will be covered. Support for a camera is included in Qt Multimedia, which is a module that provides a rich set of QML types and C++ classes to handle multimedia content. Things such as audio playback, camera, and radio functionality are shown. To complement this, the Qt Multimedia Widgets module provides widget-based multimedia classes to make the work easier.
There are some classes to help us deal with the camera. For instance, viewfinder lets a user look through the camera to compose, and in many cases focus, the picture. In Qt/C++, you can use QGraphicsView along with QGraphicsVideoItem to do this job. QGraphicsView provides a widget to display the contents of QGraphicsScene. In this case, QGraphicsVideoItem is an item of the scene. This view-scene-item is the Graphics View Framework. For details on this concept, visit http://doc.qt.io/qt-5/graphicsview.html. In this example, we use QCameraViewfinder, which is the dedicated viewfinder class and is simpler and more straightforward.
To capture a photo, we need to use the QCameraImageCapture class, which records the media content, while the focus and zoom are managed by the QCameraFocus class.
After all, QCamera plays a core role in this process. The QCamera class provides an interface to access the camera devices, including webcams and mobile device cameras. There is another class, QCameraInfo, which can list all the available camera devices and choose which one to use. The following diagram will help you understand this:
[image: Accessing the camera in Qt]
To see a demonstration, create a new Qt Widget Application project named CameraDemo. Edit the CameraDemo.pro file. Add multimedia multimediawidgets to QT by appending a line, as shown here, or add two modules to the predefined QT line:
QT += multimedia multimediawidgets

After this modification, you need save the file and navigate to Build | Run qmake to load these new modules. Let's edit the mainwindow.ui file of CameraDemo to add some widgets to use the camera by performing the following steps:
	Remove the status and menu bars. They will be re-added in the next sections. For now, they're removed for a cleaner user interface.
	Drag Widget into the frame.
	Change its name to viewfinder.
	Right-click on viewfinder and select Promote to ….
	Fill in QCameraViewfinder in the Promoted class name field. Remember to tick the Global include checkbox because this is a predefined Qt class. Click on Add, and then on Promote.
	Set MainWindow to Lay Out Horizontally.
	Drag a Vertical layout on the right-hand side of viewfinder. Following this, components will be added to the layout.
	Add Label, which is used to display the captured image. Note that, here we don't use QGraphicsView, simply because QLabel is good enough for this purpose and is much easier.
	Rename it as previewLabel and clear its text.
	Drag Combo Box just beneath previewLabel.
	Rename it as cameraComboBox since it'll be used to display all the available camera devices.
	Add a Push Button named captureButton below ComboBox in the Vertical layout to let the user click to take a photo. This button should have the text Capture on it.

It should look like the following screenshot:
[image: Accessing the camera in Qt]
Now, go back to the mainwindow.h edit, as shown here:
#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>
#include <QCamera>
#include <QCameraInfo>
#include <QCameraImageCapture>

namespace Ui {
 class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private:
 Ui::MainWindow *ui;
 QList<QCameraInfo> camList;
 QCamera *camera;
 QCameraImageCapture *imgCapture;

private slots:
 void onCameraChanged(int);
 void onCaptureButtonClicked();
 void onImageCaptured(int, const QImage &);
};

#endif // MAINWINDOW_H

As usual, in order to use the classes in the preceding code, we have to include them properly. In addition to this, we use camList, which is a type of QList<QCameraInfo>, to store the available camera devices. Since QList is a template class, we have to pass the type of list element, which is QCameraInfo in this case, to the constructor.
These private slots are responsible for the camera controls, namely, changing the camera device and clicking the capture button. Meanwhile, onImageCaptured is used to handle the imageCaptured signal of QCameraImageCapture.
The content of the maindow.cpp file is shown as follows:
#include "mainwindow.h"
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 camera = NULL;
 connect(ui->captureButton, &QPushButton::clicked, this, &MainWindow::onCaptureButtonClicked);
 connect(ui->cameraComboBox, static_cast<void (QComboBox::*) (int)>(&QComboBox::currentIndexChanged), this, &MainWindow::onCameraChanged);

 camList = QCameraInfo::availableCameras();
 for (QList<QCameraInfo>::iterator it = camList.begin(); it != camList.end(); ++it) {
 ui->cameraComboBox->addItem(it->description());
 }
}

MainWindow::~MainWindow()
{
 delete ui;
}

void MainWindow::onCameraChanged(int idx)
{
 if (camera != NULL) {
 camera->stop();
 }

 camera = new QCamera(camList.at(idx), this);
 camera->setViewfinder(ui->viewfinder);
 camera->setCaptureMode(QCamera::CaptureStillImage);
 camera->start();
}

void MainWindow::onCaptureButtonClicked()
{
 imgCapture = new QCameraImageCapture(camera, this);
 connect(imgCapture, &QCameraImageCapture::imageCaptured, this, &MainWindow::onImageCaptured);
 camera->searchAndLock();
 imgCapture->setCaptureDestination(QCameraImageCapture::CaptureToFile);
 imgCapture->capture();
}

void MainWindow::onImageCaptured(int, const QImage &img)
{
 QPixmap pix = QPixmap::fromImage(img).scaled(ui->previewLabel->size(), Qt::KeepAspectRatio);
 ui->previewLabel->setPixmap(pix);
 camera->unlock();
 imgCapture->deleteLater();
}

Let's have a look at the constructor first. We give camera a NULL address to mark that there is no camera allocated and/or active. This is explained later.
Since there are overloaded signal functions for QComboBox::currentIndexChanged, you have to specify the signal that you want with static_cast. Otherwise, the compiler would complain and fail to compile. Only the new syntax statement of the signal and slot are affected, which means the old syntax statement, shown here, won't pose any errors:
connect(ui->cameraComboBox, SIGNAL(currentIndexChanged(int)), this, SLOT(onCameraChanged(int)));

However, as mentioned previously, the new syntax has many advantages and it's highly recommended that you replace the old one.
As we continue, we can fill in camList with the available cameras since availableCameras is a static member function of QCameraInfo, which returns a list of all available cameras on the system. Also, you can pass an argument to specify the camera position, such as the front or back camera, which is pretty useful on mobile platforms.
Then, we add all the items in camList to our camera combobox. Here, it's the iterator that walks through the list and operates each one. Using iterators is very fast when dealing with a list, array, and so on. Qt supports this method, including both Java-style and STL-style iterators. In this case, we prefer and use STL-style iterators. The description function of QCameraInfo returns a human-readable description of the camera.
Now, let's go inside onCameraChanged. Before the construction of the camera, we need to check whether there is a camera present already. If there is, we stop the old camera. Then, we set up the viewfinder class using the viewfinder widget, which we did in the Design mode. After specifying the capture mode to CaptureStillImage, we can start the camera.
Tip
The camera cannot start again if it's not deallocated (stopped).

Consequently, it goes to the onCaptureButtonClicked slot. Similarly, the imgCapture object is constructed by passing the camera and this arguments as its QCamera target and QObject parent respectively. Then, we have to connect the imageCaptured signal to the onImageCaptured slot of MainWindow. Now, let camera->searchAndLock() lock all the camera settings. This function is in response to the shutter button being half pressed. Before taking a shot, we set the capture destination to the file. Although it can be set to a buffer using the QCameraImageCapture::CaptureToBuffer flag if needed, bear in mind that it's not supported on all platforms.
If everything goes well, an image will be captured by camera and the imageCaptured signal will be emitted. Then, the onImageCaptured slot function will be executed. Inside this function, we scale the captured image to the size of our previewLabel. Then, just set QPixmap for previewLabel and unlock camera. In the end, we call the deleteLater() function to safely delete the imgCapture instance.
Note
You should explicitly indicate Qt::KeepAspectRatio, otherwise it uses the default Qt::IgnoreAspectRatio flag.

Now, run the demo and see what you get.
[image: Accessing the camera in Qt]
Just as we did in the previous chapters, feel free to change the window's title, application font, and so on. These trivial tweaks won't be detailed anymore.

 Controlling the camera

The QCameraFocus class is mentioned to control the zoom and focus of the camera. Speaking of zoom, Qt supports both optical and digital zoom. As we all know, optical zoom offers a better quality than digital. Hence, optical zoom should take priority over digital.
Drag a horizontal slider and a label to MainWindow pane's verticalLayout just above the capture button. Name them zoomSlider and zoomLabel, respectively. Remember to change the text of zoomLabel to Zoom and Horizontal in alignment to AlignHCenter. Since Qt doesn't provide a floating point number slider, we simply multiply 10 to get an integer in the slider. Hence, change the minimum value of zoomSlider to 10, which means zoom by 1.0.
Include QCameraFocus in mainwindow.h and add these two private members:
QCameraFocus *cameraFocus;
qreal maximumOptZoom;

Tip
Not every camera supports zoom. If it doesn't, the maximum zoom is 1.0, which applies to both optical and digital zoom.

There is a type named qreal, which is basically a double value. It was float on the ARM platforms for performance concerns and double on others. However, Qt has used double on ARM by default since the Qt 5.2 version. Anyway, using qreal is recommended if the application is deployed on different hardware platforms.
A new slot also needs to be declared:
void onZoomChanged(int);

Now, connect zoomSlider in the MainWindow class' constructor:
connect(ui->zoomSlider, &QSlider::valueChanged, this, &MainWindow::onZoomChanged);

However, QCameraFocus can't be constructed explicitly. Instead, it can only be retrieved from the QCamera class. So, we get cameraFocus just after the construction of the camera argument inside onCameraChanged:
cameraFocus = camera->focus();

Then, set up maximumOptZoom and the maximum value of zoomSlider:
maximumOptZoom = cameraFocus->maximumOpticalZoom();
ui->zoomSlider->setMaximum(maximumOptZoom * cameraFocus->maximumDigitalZoom() * 10);

If the camera doesn't support zoom at all, the slider won't be able to slide. The definition of the onZoomChanged slot is shown in the following lines:
void MainWindow::onZoomChanged(int z)
{
 qreal zoom = qreal(z) / 10.0;
 if (zoom > maximumOptZoom) {
 cameraFocus->zoomTo(maximumOptZoom, zoom / maximumOptZoom);
 }
 else {
 cameraFocus->zoomTo(zoom, 1.0);
 }
}

As you can see, the first parameter of zoomTo is the optical zoom factor while the other is the digital zoom factor.

 Displaying errors on the status bar

First of all, there could be errors during the whole camera process and it's a good practice to make the user aware of what the error is. It can be done by a pop-up dialog and/or status bar. You don't want to alert the user to every trivial error. Therefore, it'd be better to use a pop-up dialog only for critical errors, while displaying non-critical errors and warnings on the status bar.
Qt began supporting the status bar a long time ago. The QStatusBar class is the one that provides a horizontal bar suitable for presenting status information. The status of the camera can be displayed as well and it'll be introduced in later topics.
To use the status bar, edit mainwindow.ui, right-click on MainWindow, and select Create Status Bar if it doesn't exist or was previously removed.
Then, we should declare two slots to handle the camera and image capture errors, respectively. Add these two lines to private slots in mainwindow.h:
void onCameraError();
void onImageCaptureError(int, QCameraImageCapture::Error, const QString &);

The definitions in mainwindow.cpp are shown as follows:
void MainWindow::onCameraError()
{
 ui->statusBar->showMessage(camera->errorString(), 5000);
}

void MainWindow::onImageCaptureError(int, QCameraImageCapture::Error, const QString &err)
{
 ui->statusBar->showMessage(err, 5000);
 imgCapture->deleteLater();
}

This simply makes statusBar show a temporary message for five seconds. Even if you pass zero to showMessage, it's still a temporary message. In later cases, it won't disappear after a given period; instead, it'll disappear if there is a new temporary message.
Since the signal error is different in QCamera from QCameraImageCapture, we use different slots to handle it. For QCamera, the error signal function has QCamera::Error as the only argument.
By contrast, QCameraImageCapture::error provides three arguments: int, QCameraImageCapture::Error, and a const QString reference. Therefore, we can make use of this signal by using its error string directly.
Don't forget to connect the signals and slots. Here, inside the onCameraChanged function, just after the camera construction, connect the camera error and the onCameraError slot.
connect(camera, static_cast<void (QCamera::*) (QCamera::Error)>(&QCamera::error), this, &MainWindow::onCameraError);

As there is another overloaded function called error in the QCamera class, we have to use static_cast to specify the signal function, as we did in QComboBox.
Similarly, add the connect statement after the imgCapture object's construction in the onCaptureButtonClicked function.
connect(imgCapture, static_cast<void (QCameraImageCapture::*) (int, QCameraImageCapture::Error, const QString &)>(&QCameraImageCapture::error), this, &MainWindow::onImageCaptureError);

It is another overloaded error signal function. However, it's tedious because of three arguments.

 Permanent widgets in the status bar

Sometimes, we want a sort of indicator inside the status bar to display real-time status, such as the camera status. This is inappropriate if it's covered by temporary messages. In such a case, QStatusBar provides the insertPermanentWidget function to add a widget to the status bar permanently. It means that it won't be obscured by temporary messages and is located on the far right of the status bar.
Firstly, let's make a camera status widget. Add a new C++ class named CameraStatusWidget that inherits from QWidget, but use QLabel as the base class. We use QLabel as the base class because the status of the camera is displayed in text and is basically a customized label widget. The camerastatuswidget.h content is shown as follows:
#ifndef CAMERASTATUSWIDGET_H
#define CAMERASTATUSWIDGET_H

#include <QLabel>
#include <QCamera>

class CameraStatusWidget : public QLabel
{
 Q_OBJECT
 public:
 explicit CameraStatusWidget(QWidget *parent = 0);

 public slots:
 void onCameraStatusChanged(QCamera::Status);
};

#endif // CAMERASTATUSWIDGET_H

Besides the #include <QCamera>, we only add a declaration of the onCameraStatusChanged slot to this header file. The relevant camerastatuswidget.cpp source file is pasted as follows:
#include "camerastatuswidget.h"

CameraStatusWidget::CameraStatusWidget(QWidget *parent) :
 QLabel(parent)
{
}

void CameraStatusWidget::onCameraStatusChanged(QCamera::Status s)
{
 QString status;
 switch (s) {
 case QCamera::ActiveStatus:
 status = QString("Active");
 break;
 case QCamera::StartingStatus:
 status = QString("Starting");
 break;
 case QCamera::StoppingStatus:
 status = QString("Stopping");
 break;
 case QCamera::StandbyStatus:
 status = QString("Standby");
 break;
 case QCamera::LoadedStatus:
 status = QString("Loaded");
 break;
 case QCamera::LoadingStatus:
 status = QString("Loading");
 break;
 case QCamera::UnloadingStatus:
 status = QString("Unloading");
 break;
 case QCamera::UnloadedStatus:
 status = QString("Unloaded");
 break;
 case QCamera::UnavailableStatus:
 status = QString("Unavailable");
 break;
 default:
 status = QString("Unknown");
 }
 this->setText(status);
}

Tip
Always handle exceptions in the switch statements.

QCamera::Status is an enum type. That's why we have to use a switch statement to translate the status to string. Since we have our camera status widget now, it's time to add it to the status bar. Edit mainwindow.h and add a CameraStatusWidget pointer as follows:
CameraStatusWidget *camStatusWid;

Don't forget to include the camerastatuswidget.h header file. Then, set up camStatusWid just after ui->setupUi(this) by adding the following lines:
camStatusWid = new CameraStatusWidget(ui->statusBar);
ui->statusBar->addPermanentWidget(camStatusWid);

Navigate to the onCameraChanged function; we need to connect the QCamera::statusChanged signal. Just add the following line after construction of the camera:
connect(camera, &QCamera::statusChanged, camStatusWid, &CameraStatusWidget::onCameraStatusChanged);

Likewise, we can add current zoom to the status bar. In fact, for this small and easy-to-do widget, we don't need to create a new class. Instead, we'll use the existing QLabel class to achieve this by declaring a new member. In mainwindow.h, add a new private member:
QLabel *zoomStatus;

Meanwhile, construct and insert the zoomStatus into statusBar in the MainWindow class constructor in mainwindow.cpp:
zoomStatus = new QLabel(QString::number(qreal(ui->zoomSlider->value()) / 10.0), this);
ui->statusBar->addPermanentWidget(zoomStatus);

Here, we use a number function, which is a static public function of the QString class to convert a number (it can be double or integer) to QString. In order to update zoomStatus in time, append this line to the onZoomChanged function:
zoomStatus->setText(QString::number(zoom));

After these modifications, the application will run as shown in the following screenshot:
[image: Permanent widgets in the status bar]

 Utilizing the menu bar

Now that you have finished the bar at the bottom, it's time to begin the one on top—the menu bar. Similar to the status bar, right-click on MainWindow in the Design mode, and select Create Menu Bar if it doesn't exist or was previously removed.
Then, just follow the hints. Add a File menu containing the Exit action. Another menu could be About, which contains the About CameraDemo action. You should know that these actions are able to change in the Action Editor panel, which is in the same place as Signals & Slots Editor.
[image: Utilizing the menu bar]
As shown in the following screenshot, the names of these actions are changed to actionAbout and actionExit, respectively. In addition to this, there is a shortcut, Ctrl + Q, for actionExit. Just double-click on the action and add shortcuts by pressing the shortcut you want. This is shown in the following screenshot:
[image: Utilizing the menu bar]
We already used QMenu and QAction in Chapter 2, Building a Beautiful Cross-platform Clock. The difference here is that you use QMenu as the menu bar, and set it up it in Design mode instead of writing code. But why is it called QAction? This is because the user can trigger a command on the menu, tool bar, or keyboard shortcut. They expect the same behavior regardless of where it is. Therefore, it should be abstracted into an action, which can be inserted into the menu or tool bar. You can set it to the checkable QAction option and use it as a simple QCheckbox option.
Let's finish actionExit first, since it's simpler than the other one. For actionExit, we only need one connect statement to make it work. Add the following statement to the MainWindow class constructor in the mainwindow.cpp file:
connect(ui->actionExit, &QAction::triggered, this, &MainWindow::close);

The triggered signal will be emitted by either a mouse click or a keyboard shortcut (if there is a shortcut). Since we connect it to the close slot of MainWindow, it'll close MainWindow, which results in exiting the entire application.
Meanwhile, we need to declare a slot to fulfill the connection with actionAbout. As usual, declare it in the mainwindow.h header file.
void onAboutTriggered();

You may think that we're going to create a new class just to show an About dialog. Well, we don't have to cook the About dialog ourselves because Qt has already done this for us. It's included in QMessageBox, so you should include it with the following line:
#include <QMessageBox>

This is the definition of the slot:
void MainWindow::onAboutTriggered()
{
 QMessageBox::about(this, QString("About"), QString("Camera Demonstration of Qt5"));
}

Note
The QMessageBox class provides a modal dialog for informing or asking the user a question and receiving an answer.

Almost every kind of pop-up dialog can be found in QMessageBox. Here, we use the static About function to create an About dialog. It has three arguments. The first one is the parent QObject pointer, followed by the title and context. Remember to connect the signal and slot in the MainWindow class constructor.
connect(ui->actionAbout, &QAction::triggered, this, &MainWindow::onAboutTriggered);

If you compile and run the application again, try to trigger the About dialog, which would look similar to the following screenshot:
[image: Utilizing the menu bar]
Note
In addition to About, there are other useful static public members of QMessageBox. Most commonly, critical, information, question, and, warning are used to pop up a message box. Sometimes, you'll see an About Qt entry in the menu bar, which is to call the aboutQt function.

In fact, the About dialog will display an icon if it exists. There is an empty space since it lacks an icon. The order of the search icons is shown as follows:
	This first icon will be parent->icon(), if it exists.
	The second icon will be the top-level widget, which contains parent.
	The third icon will be the active window.
	The fourth icon will be the Information icon.

 Using QFileDialog

The last step of taking a photo is to save it to disk. At this point, the program saves an image to the file, but the location is determined by the camera backend. We can simply use a dialog, letting the user choose the directory and the filename of the photo. There is a QFileDialog class to help make the work easier. The easiest way to create a QFileDialog class is to use the static functions. Therefore, edit the onCaptureButtonClicked function in the mainwindow.cpp file.
void MainWindow::onCaptureButtonClicked()
{
 imgCapture = new QCameraImageCapture(camera, this);
 connect(imgCapture, static_cast<void (QCameraImageCapture::*) (int, QCameraImageCapture::Error, const QString &)>(&QCameraImageCapture::error), this, &MainWindow::onImageCaptureError);
 connect(imgCapture, &QCameraImageCapture::imageCaptured, this, &MainWindow::onImageCaptured);

 camera->searchAndLock();
 imgCapture->setCaptureDestination(QCameraImageCapture::CaptureToFile);
 QString location = QFileDialog::getSaveFileName(this, QString("Save Photo As"), QString(), "JPEG Image (*.jpg)");
 imgCapture->capture(location);
}

Here, we're using the getSaveFileName static function to create a file dialog to return the file that the user selected. If the user clicks on Cancel, the location type would be an empty QString reference and the image will be stored in a default location. The file doesn't need to exist. In fact, if it exists, there will be an overwrite dialog. This function's prototype is pasted as follows:
QString QFileDialog::getSaveFileName(QWidget * parent = 0, const QString & caption = QString(), const QString & dir = QString(), const QString & filter = QString(), QString * selectedFilter = 0, Options options = 0)

The first argument is the QObject parent, as usual. The second one is the dialog's title, followed by the default directory. The filter object is used to restrict the file type and it's possible to use multiple filters that are separated by two semicolons, ;;. Here is an example:
"JPEG (*.jpeg *.jpg);;PNG (*.png);;BMP (*.bmp)"

Setting selectedFilter can change the default filter. Lastly, Options is used to define the behaviors of the file dialog. For more details, refer to the QFileDialog documentation.

 QML camera

So far, we talked about how to access and control the camera in Qt/C++. Now it's time to see how QML does in this area. Although there are some limitations, you'll find it's much easier and more elegant to do this in Qt Quick/QML because of the many packages that Qt has to offer.
Create a new Qt Quick application project. The main.qml content is shown as follows:
import QtQuick 2.3
import QtQuick.Controls 1.2
import QtMultimedia 5.3
import "qrc:/"

ApplicationWindow {
 visible: true
 width: 640
 height: 480
 title: qsTr("QML Camera Demo")

 Camera {
 id: camera

 imageCapture {
 onImageCaptured: {
 photoPreview.source = preview
 photoPreview.visible = true;
 previewTimer.running = true;
 }
 }
 }

 VideoOutput {
 id: viewfinder
 source: camera
 anchors.fill: parent
 }

 Image {
 id: photoPreview
 anchors.fill: viewfinder
 }

 Timer {
 id: previewTimer
 interval: 2000
 onTriggered: photoPreview.visible = false;
 }

 CaptureButton {
 anchors.right: parent.right
 anchors.verticalCenter: parent.verticalCenter
 diameter: 50
 }
}

Let me walk you through this one.

Camera and VideoOutput are provided by the QtMultimedia module. Similar to the Qt/C++ classes, the Camera type is identical to the QCamera class. The preview is dealt with differently when VideoOutput is used as viewfinder. An image object is used to display the captured photo and it's only visible for 2 seconds each time a picture is taken. This photoPreview is controlled by the timer, previewTimer. In other words, the 2 seconds show up of photoPreview depends on this previewTimer timer. At the same time, the camera type's imageCapture will provide the preview image to photoPreview and turn on previewTimer once it captures a photo.
The last piece is CaptureButton, which is not provided by Qt but written in another file, CaptureButton.qml. Its content is shown in the following code:
import QtQuick 2.3

Rectangle {
 property real diameter

 width: diameter
 height: diameter

 color: "blue"
 border.color: "grey"
 border.width: diameter / 5
 radius: diameter * 0.5

 MouseArea {
 anchors.fill: parent
 onClicked: camera.imageCapture.capture()
 }
}

Since there is no circular shape provided by Qt Quick, we use this Rectangle object as a workaround to display it as a circle. Just like what we did in the previous chapter, define a diameter property to hold both height and width. The trick is the radius value. By setting it to half the diameter, this Rectangle object becomes circular. Last but not least, add MouseArea to respond to a user's click. It's a pity that MouseArea can't be circular, so just leave it and fill in the button.
Now you can run your application, and it should be something similar to this:
[image: QML camera]
It's not as powerful as the Qt/C++ demo. The first thing you probably notice is that you can't change the camera device. It's missing in the current version of Qt, but it should be supported in the future. In the meantime, the only solution to this is to write a C++ plugin while the main part is still written in QML. Since developing a C++ plugin for QML will be covered in a later chapter, we'll simply skip this part here.
We can make the file dialog in QML in an even more elegant way. Qt Quick provides commonly-used dialogs through the QtQuick.Dialogs module. Therefore, first import this module:
import QtQuick.Dialogs 1.2

What're we interested in is the FileDialog type, which provides a basic file chooser. It allows the user to select existing files and/or directories, or create new filenames. It uses the native platform file dialogs wherever possible. To use this type, add FileDialog inside ApplicationWindow in the main.qml file.
FileDialog {
 id: saveDlg
 property string location

 title: "Save Photo As"
 selectExisting: false
 nameFilters: ["JPEG (*.jpg)"]
 onAccepted: {
 location = saveDlg.fileUrl
 camera.imageCapture.captureToLocation(location.slice(8))
 }
}

The string type in QML is an extended version of the JavaScript string type. Wherever possible, you should avoid the var keyword and use the exact type, such as int, double, and string. According to the QML documentation, this will improve performance since the machine doesn't need to guess the data type. Here, we declare location, which is a string type, while the rest of its properties are similar to the dialog settings in Qt/C++, its title (caption), and nameFilters. You should set the selectExisting property to false, as it is true by default. Otherwise, it'll behave like an open file dialog.
Inside the onAccepted handler, pass the fileUrl value to location first. This handler is the response to the accepted signal, which is emitted if the user selects a file successfully. The fileUrl property will then be changed. It's in a URI format, which has an extra file:/// prefix. In addition to this, there is currently an issue if we execute slice on fileUrl directly. So as a workaround, we use the explicitly declared string location to invoke the slice function. This is a JavaScript function, which will return a new string type that contains the extracted parts of a string. The slice method's prototype is slice(start,end) where end will be the end of the string type if it's omitted. Also, note that the character at the start position is included and the index starts from zero. After that, we simply call the captureToLocation function of imageCapture to store the image at the selected location.
In order to make it work, we have to change the behavior of CaptureButton. Edit the CaptureButton.qml file and change MouseArea, as shown in the following lines:
MouseArea {
 anchors.fill: parent
 onClicked: saveDlg.open()
 onPressed: parent.color = "black"
 onReleased: parent.color = "blue"
}

In addition to this, to change the onClicked handler, we also add onPressed and onReleased to let it have the push effect. As you can see, the open() function will execute our FileDialog. On a desktop operating system, such as Windows, the platform file dialog is used as shown here:
[image: QML camera]
The inner circle of CaptureButton will become black once it's pressed, and then go back to blue when the mouse is released. Although it's just a minor visual effect, it definitely improves the user experience.
"Do not fail to commit an act of kindness just because it is small in scale."

To complete this QML camera application, we need to add a zoom control as we did for the Qt/C++ camera. Add a new QML file named ZoomControl.qml, whose content is shown as follows:
import QtQuick 2.3

Item {
 property real zoom: camera.opticalZoom * camera.digitalZoom

 function zoomControl() {
 if (zoom > camera.maximumOpticalZoom) {
 camera.digitalZoom = zoom / camera.maximumOpticalZoom
 camera.opticalZoom = camera.maximumOpticalZoom
 }
 else {
 camera.digitalZoom = 1.0
 camera.opticalZoom = zoom
 }
 }

 Text {
 id: indicator
 anchors.fill: parent
 horizontalAlignment: Text.AlignHCenter
 verticalAlignment: Text.AlignVCenter
 color: "darkgrey"
 font.bold: true
 font.family: "Segoe"
 font.pointSize: 20
 style: Text.Raised
 styleColor: "black"
 }

 Timer {
 id: indicatorTimer
 interval: 2000
 onTriggered: indicator.visible = false
 }

 MouseArea {
 anchors.fill: parent
 onWheel: {
 if (wheel.angleDelta.y > 0) {
 zoom += 1.0
 if (zoom > camera.maximumOpticalZoom * camera.maximumOpticalZoom) {
 zoom -= 1.0
 }
 else {
 zoomControl()
 }
 }
 else {
 zoom -= 1.0
 if (zoom < camera.maximumOpticalZoom * camera.maximumOpticalZoom) {
 zoom += 1.0
 }
 else {
 zoomControl()
 }
 }
 indicator.text = "X " + zoom.toString()
 indicator.visible = true
 indicatorTimer.running = true
 }
 }
}

First, we declare property of the real type to store the current zoom, whose initial value is the camera's current zoom, which is itself the multiplication of the current digital and optical zoom. This is followed by a JavaScript-style function, zoomControl. As mentioned before, you can use JavaScript in QML anywhere seamlessly. This function is identical to the Qt/C++ slot, onZoomChanged, in the previous topic.
Then, there is a Text element used to display the current zoom function on screen. These are just some visual customizations inside the Text element, which include centering in the parent by setting both the horizontal and vertical alignments.
What's next is a Timer element that controls the visibility of Text, similar to the controller of photoPreview.
The last but also the trickiest is MouseArea. We use the mouse wheel to control the zoom, so the handler that can get the wheel event is onWheel. The wheel.angleDelta.y is the wheel, which is rotated to a vertical orientation. If it's positive, it goes up; otherwise, it goes down. It zooms in with a positive value, and zooms out with negative one. You have to ensure that the new zoom is within the supported zoom range of camera before invoking the zoomControl function. After this, let the Text indicator display zoom and turn on Timer so that it's only visible for 2 seconds. You can also see that there is a built-in function for the real element to convert it to string, just like the QString::number function in Qt/C++.
After all this, edit main.qml and add ZoomControl to the application, as shown in the following code:
ZoomControl {
 anchors.fill: viewfinder
}

Be aware that ZoomControl should fill in viewfinder instead of parent; otherwise, it may get overlaid by other components, such as viewfinder.
Give this QML camera a test run and compare which one is better.

 Summary

By the end of this chapter, you should be able to write applications that can access camera devices in either Qt/C++ or QML. What's more is that you should be able to utilize the status and menu bar in traditional desktop applications, which are historically important and continue to play a crucial role as interactive functional widgets. In addition to this, don't forget the file dialog and message box since they make your coding work easier. In the next chapter, we're going to talk about an advanced topic, plugins, which is a popular way to extend large applications.

 Chapter 5. Extending Paint Applications with Plugins

Plugins enable you to make your application extendable and friendly for other developers. Therefore, in this chapter, we'll guide you in how to write plugins for Qt applications. A paint application demonstrates the recipe for Qt/C++. A simple demonstration shows you how to write a C++ plugin for QML. The topics we will cover in this chapter are listed as follows:
	Drawing via QPainter
	Writing static plugins
	Writing dynamic plugins
	Merging plugin and main program projects
	Creating a C++ plugins for QML applications

Drawing via QPainter

Before we get started, let me introduce the QPainter class to you. This class performs low-level painting on widgets and other paint devices. In fact, everything drawn on the screen in a Qt application is the result of QPainter. It can draw almost anything, including simple lines and aligned text. Thanks to the high-level APIs that Qt has provided, it's extremely easy to use these rich features.
Qt's paint system consists of QPainter, QPaintDevice, and QPaintEngine. In this chapter, we won't need to deal with the latter two. The relations diagram is sketched as follows:
[image: Drawing via QPainter]

QPainter is used to perform drawing operations, while QPaintDevice is an abstraction of a two-dimensional space that can be painted on by using QPainter. QPaintEngine provides the interface that the painter uses to draw onto different types of devices. Note that the QPaintEngine class is used internally by QPainter and QPaintDevice. It's also designed to be hidden from programmers unless they create their own device type.
So basically, what we need to concentrate on is QPainter. Let's create a new project and do some exercises in it. The new painter_demo project is a Qt Widget application. Quickly create it and add a new C++ Canvas class that inherits from QWidget. Canvas is our customized widget whose header file is shown as follows:
#ifndef CANVAS_H
#define CANVAS_H

#include <QWidget>

class Canvas : public QWidget
{
 Q_OBJECT
 public:
 explicit Canvas(QWidget *parent = 0);

 private:
 QVector<QPointF> m_points;

 protected:
 void paintEvent(QPaintEvent *);
 void mousePressEvent(QMouseEvent *);
 void mouseMoveEvent(QMouseEvent *);
 void mouseReleaseEvent(QMouseEvent *);
};

#endif // CANVAS_H

The QVector class is a template class that provides a fast and dynamic array. It's fast because the items are stored in adjacent memory locations, which means that the indexing time is constant. Here, we store the QPointF elements in m_points, where QPointF is a class that defines a point using a floating point precision.
In a protected scope, there are four event functions. We're familiar with these mouse events. The leading one, which is also the new one, is the paintEvent function. Since we're painting on the widget, QPainter should only be used inside the paintEvent function.
The definitions of the functions in canvas.cpp are shown as follows:
#include <QStyleOption>
#include <QPainter>
#include <QPaintEvent>
#include <QMouseEvent>
#include "canvas.h"

Canvas::Canvas(QWidget *parent) :
 QWidget(parent)
{
}

void Canvas::paintEvent(QPaintEvent *)
{
 QPainter painter(this);

 QStyleOption opt;
 opt.initFrom(this);
 this->style()->drawPrimitive(QStyle::PE_Widget, &opt, &painter, this);

 painter.setPen(QColor(Qt::black));
 painter.setRenderHint(QPainter::Antialiasing);
 painter.drawPolyline(m_points.data(), m_points.count());
}

void Canvas::mousePressEvent(QMouseEvent *e)
{
 m_points.clear();
 m_points.append(e->localPos());
 this->update();
}

void Canvas::mouseMoveEvent(QMouseEvent *e)
{
 m_points.append(e->localPos());
 this->update();
}

void Canvas::mouseReleaseEvent(QMouseEvent *e)
{
 m_points.append(e->localPos());
 this->update();
}

First, let's check what's inside the paintEvent function. The first clause is to initialize a QPainter object, which uses this as QPaintDevice. Well, there is an alternate way to initialize a QPainter class, which is demonstrated here:
QPainter painter;
painter.begin(this);
painter.drawPolyline(m_points.data(), m_points.count());
painter.end();

If you use the method shown in the preceding code, remember to call the end() function to destroy painter. By contrast, if you initialize QPainter by its constructor, the destructor will automatically call the end() function. However, the constructor won't return a value indicating whether it was initialized successfully or not. Thus, it'd be better to choose the latter method when dealing with an external QPaintDevice such as a printer.
After the initialization, we use QStyleOption, which contains all the information that the QStyle functions need to draw a graphical element and make our customized widget style-aware. We simply use the initFrom function to get the style information. Then, we get the QStyle function of our widget and draw QStyle::PE_Widget with painter using the style options specified by opt. If we don't write these three lines, we can't change the widget display style, such as the background color.
Then, we let the painter use a black pen to draw an anti-aliasing polyline on the widget. Here, an overloaded setPen function is used. The painter.setPen(QColor(Qt::black)) function will set a solid-line style pen with a width of 1 and the color in black. The painter.setRenderHint(QPainter::Antialiasing) function will make the drawing smooth.
Note
A second argument, bool, controls the render hint. It's true by default, which means that you need to turn on the render hint. You can turn off a render hint by passing a false value, though.

A list of the available render hints are shown as follows:
QPainter::Antialiasing
QPainter::TextAntialiasing
QPainter::SmoothPixmapTransform
QPainter::Qt4CompatiblePainting

There are also two obsolete hints: QPainter::HighQualityAntialiasing and QPainter::NonCosmeticDefaultPen. The first one is replaced by QPainter::Antialiasing and the second is useless because QPen is non-cosmetic by default now.
Finally, the drawPolyline function will draw a polyline, which is made from the mouse movements, on the Canvas widget. The first argument is the pointer to a QPointF or QPoint array, while the second one is the number of items inside that array.
Speaking of mouse movements, three mouse event functions are used to track the mouse. In fact, they're pretty self-explanatory. When a mouse press event occurs, purge the points array because it's obviously a new polyline now, and then add the mouse position by invoking a localPos() function. The localPos() function will return the position of the mouse relative to the widget or item that received the event. Although you can get a global position by the screenPos() and globalPos() function, in most cases, we only need a local position. At the end of these event functions, call update() to repaint the widget to show the mouse moving path as a polyline.
Now, edit mainwindow.ui in the Design mode. Remove the status bar since we won't use it in this chapter, but keep the menu bar. Drag Widget to centralWidget and rename it as canvas. Right-click on canvas and select Promote to …, and then fill in Canvas in Promoted class name. Now, click on Add, and then on Promote. You shouldn't check the Global include box because the canvas.h header file is in our project directory instead of the global include directory.
Inside Property, edit styleSheet, input background-color: rgb(255, 255, 255); so that the canvas has a white background. Then, change the MainWindow class' layout to Lay Out Horizontally or Lay Out Vertically so that the canvas widget can fill the whole frame. Give your application a run now; you should expect a simple white painter as follows:
[image: Drawing via QPainter]
This painter is too simple to hold the old lines. While Qt doesn't provide an API to paint on the old scene, QImage can get us out of this dilemma. In other words, when the mouse moves, we paint a stroke on a QImage object, and then paint this QImage object onto Canvas.
The new header file, canvas.h, is as shown as follows:
#ifndef CANVAS_H
#define CANVAS_H

#include <QWidget>

class Canvas : public QWidget
{
 Q_OBJECT
 public:
 explicit Canvas(QWidget *parent = 0);

 private:
 QVector<QPointF> m_points;
 QImage image;

 void updateImage();

 protected:
 void paintEvent(QPaintEvent *);
 void mousePressEvent(QMouseEvent *);
 void mouseMoveEvent(QMouseEvent *);
 void mouseReleaseEvent(QMouseEvent *);
 void resizeEvent(QResizeEvent *);
};

#endif // CANVAS_H

The differences include the declaration of a QImage object, image; private member function, updateImage(); and a reimplemented function, resizeEvent(QResizeEvent *). The paintEvent(QPaintEvent *) function is also changed to draw the image object instead, whereas there are more modifications in the canvas.cpp source file than the header file, whose content is shown here:
#include <QStyleOption>
#include <QPainter>
#include <QPaintEvent>
#include <QMouseEvent>
#include <QResizeEvent>
#include "canvas.h"

Canvas::Canvas(QWidget *parent) :
 QWidget(parent)
{
}

void Canvas::paintEvent(QPaintEvent *e)
{
 QPainter painter(this);

 QStyleOption opt;
 opt.initFrom(this);
 this->style()->drawPrimitive(QStyle::PE_Widget, &opt, &painter, this);

 painter.drawImage(e->rect().topLeft(), image);
}

void Canvas::updateImage()
{
 QPainter painter(&image);
 painter.setPen(QColor(Qt::black));
 painter.setRenderHint(QPainter::Antialiasing);
 painter.drawPolyline(m_points.data(), m_points.count());
 this->update();
}

void Canvas::mousePressEvent(QMouseEvent *e)
{
 m_points.clear();
 m_points.append(e->localPos());
 updateImage();
}

void Canvas::mouseMoveEvent(QMouseEvent *e)
{
 m_points.append(e->localPos());
 updateImage();
}

void Canvas::mouseReleaseEvent(QMouseEvent *e)
{
 m_points.append(e->localPos());
 updateImage();
}

void Canvas::resizeEvent(QResizeEvent *e)
{
 QImage newImage(e->size(), QImage::Format_RGB32);
 newImage.fill(Qt::white);
 QPainter painter(&newImage);
 painter.drawImage(0, 0, image);
 image = newImage;
 QWidget::resizeEvent(e);
}

Let's look into the mouse event handlers; after the operation on m_points, the updateImage()function is called instead of update(). Inside the updateImage() function, we create a QPainter object using the QImage object image as QPaintDevice while the rest of them are just the same as in paintEvent.
There is a new member function, though, called resizeEvent, which is reimplemented from QWidget. As you can imagine, we change the underlying QImage object once the widget size changes, which could be as a result of window resizing. Therefore, we simply paint the old image onto the new one. This may cause the loss of a part of the image if the new size is smaller than the previous one. You may wish to add Scroll Area to MainWindow and make Canvas the child widget of Scroll Area. You already know how to do that in QML, while it's similar in Qt/C++. Therefore, just take it as an exercise and implement Scroll Area for this application.

 Writing static plugins

There are two types of plugins: static and dynamic. Static plugins are statically linked to the executables, while the dynamic plugins are loaded at runtime. Dynamic plugins exist as the .dll or .so files, depending on the platform. Although the static plugins will be built as the .lib or .a files, they'll be integrated into an executable file when the main program gets compiled.
In this topic, we'll get to know how to write a static plugin to extend the application. Serving as an external plugin, it gains the flexibility to change its internal code while it's only required to keep the interface compatible. It's up to you to decide whether the interface should be maintained in the main program or in different plugins. In this example, we'll put the interface.h file in the main program, painter_demo. The content of interface.h is as follows:
#ifndef INTERFACE_H
#define INTERFACE_H

#include <QtPlugin>
#include <QPainterPath>

class InsertInterface
{
 public:
 virtual ~InsertInterface() {}
 virtual QString name() const = 0;
 virtual QPainterPath getObject(QWidget *parent) = 0;
};

#define InsertInterface_iid "org.qt-project.Qt.PainterDemo.InsertInterface"
Q_DECLARE_INTERFACE(InsertInterface, InsertInterface_iid)

#endif // INTERFACE_H

As you can see, we declare a pure virtual class, InsertInterface. In order to avoid errors, you have to declare a virtual destructor. Otherwise, the compiler may complain and abort the compilation. The QPainterPath class provides a container for common 2D painting operations, including ellipse and text. Hence, the return type of getObject is QPainterPath ,which can be used directly where the argument, QWidget, could be useful if there is a newly created dialog to get any input from the user.
At the end of this file, we declare InsertInterface as an interface by the Q_DECLARE_INTERFACE macro, where InsertInterface_iid is the identifier for the InsertInterface class. Note that the identifier must be unique, so it's recommended that you use a Java-style naming rule.
Now, we need to create a new project. Navigate to Libraries | C++ Library. Then, as shown in the following screenshot, select Qt Plugin for Type and keep this project inside the main program project folder for the sake of convenience or any concerns:
[image: Writing static plugins]
Click on Next and choose the same Qt kits as the painter_demo project. In this example, the build directory is set in the same directory as the painter_demo project, which is D:\Projects\build. Therefore, the build directory of TextPlugin is D:\Projects\build\TextPlugin-Qt_5_4_0_mingw491_32-Debug and D:\Projects\build\TextPlugin-Qt_5_4_0_mingw491_32-Release for Debug and Release, respectively.
Note
Furthermore, you can change Default build directory in Tools | Options | Build & Run | General. In this book, we use D:/Projects/build/%{CurrentProject:Name}-%{CurrentKit:FileSystemName}-%{CurrentBuild:Name} so that all the builds are organized in one place.

Then, fill in TextPlugin in the Class name field, as shown in the following screenshot:
[image: Writing static plugins]
We need to apply some modifications to the TextPlugin.pro project file, as displayed here:
QT += core gui widgets

TARGET = TextPlugin
TEMPLATE = lib
CONFIG += plugin static

DESTDIR = ../plugins

SOURCES += textplugin.cpp

INCLUDEPATH += ../

HEADERS += textplugin.h
OTHER_FILES += TextPlugin.json

By adding widgets, we can use some useful classes such as QMessageBox. We also need to add static to CONFIG to declare this a static plugin project. Then, change the DESTDIR variable to ../plugins so that the plugin is installed to the plugins directory outside the build folder. Lastly, we add the upper directory ../ to INCLUDEPATH so that we can include the interface.h header file in this subproject. The textplugin.h file is shown as follows:
#ifndef TEXTPLUGIN_H
#define TEXTPLUGIN_H

#include "interface.h"

class TextPlugin : public QObject,
 public InsertInterface
{
 Q_OBJECT
 Q_PLUGIN_METADATA(IID "org.qt-project.Qt.PainterDemo.InsertInterface" FILE "TextPlugin.json")
 Q_INTERFACES(InsertInterface)

 public:
 QString name() const;
 QPainterPath getObject(QWidget *parent);
};

#endif // TEXTPLUGIN_H

We use the Q_PLUGIN_METADATA macro to specify the unique IID, which is the same as the one we declared in interface.h, where FILE "TextPlugin.json" can be used to contain the metadata for this plugin. In this case, we just keep the TextPlugin.json file intact. Then, the Q_INTERFACES macro tells the compiler that this is a plugin for InsertInterface. In the public scope, there are just two reimplemented functions. Their definitions are located in the textplugin.cpp source file, whose content is pasted as follows:
#include <QInputDialog>
#include "textplugin.h"

QString TextPlugin::name() const
{
 return QString("Text");
}

QPainterPath TextPlugin::getObject(QWidget *parent)
{
 QPainterPath ppath;
 QString text = QInputDialog::getText(parent, QString("Insert Text"), QString("Text"));

 if (!text.isEmpty()) {
 ppath.addText(10, 80, QFont("Cambria", 60), text);
 }
 return ppath;
}

The name() function simply returns the name of this plugin, which is Text in this case. As for getObject, it constructs a QPainterPath class that contains the text given by the user via a pop-up dialog, and then returns the QPainterPath object to the main program. The addText function will draw the text as a set of closed subpaths created from the font, while the first two arguments define the left end of the baseline for this text.
This is it for the plugin project. Now, just build it and you should expect a libTextPlugin.a file to be located under the plugins directory, while the plugins directory itself should be located in the parent directory of your project's build folders, as shown here:
[image: Writing static plugins]
It doesn't matter much if you put the files under other directories, although this means that you need to do some path modifications relevantly afterwards.
Now, let's go back to the main program's project, which is painter_demo in this example. Edit its painter_demo.pro project file and add the following line to it:
LIBS += -L../plugins -lTextPlugin

Tip
The working directory during compilation is the build directory instead of the project source code directory.

Then, edit mainwindow.ui in the Design mode; add a menu named Plugins to the menu bar, whose object name is menuPlugins.
Among all the changes made in the main program, the modifications for the MainWindow class are maximum. Here is the code of the new mainwindow.h file:
#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

namespace Ui {
 class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

 public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

 private:
 Ui::MainWindow *ui;

 void loadPlugins();
 void generatePluginMenu(QObject *);

 private slots:
 void onInsertInterface();
};

#endif // MAINWINDOW_H

Still no clue about it? Well, its mainwindow.cpp source file is pasted here as well:
#include <QPluginLoader>
#include "mainwindow.h"
#include "ui_mainwindow.h"
#include "interface.h"

Q_IMPORT_PLUGIN(TextPlugin)

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);
 loadPlugins();
}

MainWindow::~MainWindow()
{
 delete ui;
}

void MainWindow::loadPlugins()
{
 foreach(QObject *plugin, QPluginLoader::staticInstances()) {
 generatePluginMenu(plugin);
 }
}

void MainWindow::generatePluginMenu(QObject *plugin)
{
 InsertInterface *insertInterfacePlugin = qobject_cast<InsertInterface *>(plugin);
 if (insertInterfacePlugin) {
 QAction *action = new QAction(insertInterfacePlugin->name(), plugin);
 connect(action, &QAction::triggered, this, &MainWindow::onInsertInterface);
 ui->menuPlugins->addAction(action);
 }
}

void MainWindow::onInsertInterface()
{
 QAction *action = qobject_cast<QAction *>(sender());
 InsertInterface *insertInterfacePlugin = qobject_cast<InsertInterface *>(action->parent());
 const QPainterPath ppath = insertInterfacePlugin->getObject(this);
 if (!ppath.isEmpty()) {
 ui->canvas->insertPainterPath(ppath);
 }
}

You may have figured out that the Q_IMPORT_PLUGIN macro is used to import the plugin. Yes, it is, but only for static plugins. In the loadPlugins() function, we walked through all the static plugin instances and added them to the menu by invoking the generatePluginMenu function.
Plugins are treated as plain QOjbect objects at first, and then you can use qobject_cast to convert them to their own classes. The qobject_cast class will return a NULL pointer if it failed. Inside the if statement, there is a trick to use the plugin successfully later. Instead of calling a simplified and overloaded addAction function, we can construct QAction and add it to the menu, because QAction will have the plugin as its QObject parent. Therefore, you can see that we convert its parent to the relevant plugin class in the onInsertInterface function. Inside this function, we call the insertPainterPath function to paint the QPainterPath class returned by the plugin on canvas. Of course, we need to declare and define this function in the Canvas class. Add this statement to the public domain of the canvas.h file:
void insertPainterPath(const QPainterPath &);

The preceding code's definition in canvas.cpp is as follows:
void Canvas::insertPainterPath(const QPainterPath &ppath)
{
 QPainter painter(&image);
 painter.drawPath(ppath);
 this->update();
}

The preceding statements should be familiar to you and they're also self-explanatory. Now, build and run this application again; don't forget to change the current active project back to painter_demo by right-clicking on the painter_demo project and selecting Set "painter_demo" as Active Project. When it runs, click on Plugins, select Text, input Plugin!! in the pop-up dialog, and confirm. Then, you'll see the text, Plugin!!, painted on the canvas as expected.
[image: Writing static plugins]
The executable's size grows as well because we statically linked our TextPlugin project file to it. In addition to this, you have to rebuild the main program if you changed the plugin. Otherwise, the newly generated plugin won't be linked to the executable as it should.

 Writing dynamic plugins

Static plugins provide a convenient way to distribute your applications. However, this always requires a rebuild of the main program. By contrast, dynamic plugins are much more flexible since they're linked dynamically. This means the main project, which is painter_demo in this example, doesn't need to be built with dynamic plugins nor is it required to release its source code. Instead, it only needs to provide an interface and the header file of that interface, and then scan those dynamic plugins at runtime so that they can be loaded.
Note
Dynamic plugins are commonly seen in complex applications, especially in commercial software such as Adobe Illustrator.

Similar to the static plugin we just wrote, we need to create a new Qt Plugin project and we'll call it EllipsePlugin this time. Although you can write a new interface along with this plugin, here we will just focus on plugin-related topics. So, we just reuse the InsertInterface class while the ellipseplugin.pro project file is shown as follows:
QT += core gui widgets

TARGET = EllipsePlugin
TEMPLATE = lib
CONFIG += plugin

DESTDIR = ../plugins

SOURCES += ellipseplugin.cpp \
 ellipsedialog.cpp

HEADERS += ellipseplugin.h \
 ellipsedialog.h
OTHER_FILES += EllipsePlugin.json

INCLUDEPATH += ../

FORMS += ellipsedialog.ui

Don't forget to change the DESTDIR and INCLUDEPATH variables in the ellipseplugin.pro file though, they're basically the same as the previous TextPlugin project.
Ignoring the source files, forms, and so on, it's basically the same thing with only the removal of static in CONFIG. The ellipseplugin.h header file is shown as follows:
#ifndef ELLIPSEPLUGIN_H
#define ELLIPSEPLUGIN_H

#include "interface.h"

class EllipsePlugin : public QObject,
 public InsertInterface
{
 Q_OBJECT
 Q_PLUGIN_METADATA(IID "org.qt-project.Qt.PainterDemo.InsertInterface" FILE "EllipsePlugin.json")
 Q_INTERFACES(InsertInterface)

 public:
 QString name() const;
 QPainterPath getObject(QWidget *parent);

 public slots:
 void onDialogAccepted(qreal x, qreal y, qreal wid, qreal hgt);

 private:
 qreal m_x;
 qreal m_y;
 qreal width;
 qreal height;
};

#endif // ELLIPSEPLUGIN_H

As you can see in the preceding code, we declare that this is a plugin using InsertInterface as the same in TextPlugin, whereas the difference is the declaration of an onDialogAccepted slot function and several private variables. Accordingly, the ellipseplugin.cpp file is shown as follows:
#include "ellipsedialog.h"
#include "ellipseplugin.h"

QString EllipsePlugin::name() const
{
 return QString("Ellipse");
}

QPainterPath EllipsePlugin::getObject(QWidget *parent)
{
 m_x = 0;
 m_y = 0;
 width = 0;
 height = 0;

 EllipseDialog *dlg = new EllipseDialog(parent);
 connect(dlg, &EllipseDialog::accepted, this, &EllipsePlugin::onDialogAccepted);
 dlg->exec();

 QPainterPath ppath;
 ppath.addEllipse(m_x, m_y, width, height);
 return ppath;
}

void EllipsePlugin::onDialogAccepted(qreal x, qreal y, qreal wid, qreal hgt)
{
 m_x = x;
 m_y = y;
 width = wid;
 height = hgt;
}

There is nothing special about the name() function. By contrast, we use the EllipseDialog custom dialog to get some inputs from the user. Remember to connect all the signals and slots associated with the dialog before executing the exec() function; otherwise, the slots simply won't be connected. Also, note that the exec() function will block the event loop and return only after the dialog closes, which is pretty handy for our purposes because we can use the accepted values, such as m_x and m_y, to add an ellipse to QPainterPath.
As for the EllipseDialog custom dialog itself, it was created by adding a new Qt Designer Form Class via Qt Creator. Since it's used to provide an interface for the user to specify some parameters, we use Form Layout in this dialog. Add QLabel and QDoubleSpinBox, as suggested in the following screenshot:
[image: Writing dynamic plugins]
Accordingly, their objectName values are tlXLabel, tlXDoubleSpinBox, tlYLabel, tlYDoubleSpinBox, widthLabel, widthDoubleSpinBox, heightLabel, and heightDoubleSpinBox. You should also change the maximum value to 9999.99 or something big enough in the Property panel of QDoubleSpinBox.
In addition to this, also note that there is a removal of the default signal and slot in Signals & Slots Editor. Simply delete the accepted() signal pair of buttonBox because we need a more advanced handler. In this form class header file, ellipsedialog.h, we declare a new signal and a new slot:
#ifndef ELLIPSEDIALOG_H
#define ELLIPSEDIALOG_H

#include <QDialog>

namespace Ui {
 class EllipseDialog;
}

class EllipseDialog : public QDialog
{
 Q_OBJECT

 public:
 explicit EllipseDialog(QWidget *parent = 0);
 ~EllipseDialog();

 signals:
 void accepted(qreal, qreal, qreal, qreal);

 private:
 Ui::EllipseDialog *ui;

 private slots:
 void onAccepted();
};

#endif // ELLIPSEDIALOG_H

The accepted(qreal, qreal, qreal, qreal) signal here passes these values back to the plugin, while the onAccepted() slot handles the accepted() signal emitted from buttonBox. They are defined in the ellipsedialog.cpp source file, as shown in the following code:
#include "ellipsedialog.h"
#include "ui_ellipsedialog.h"

EllipseDialog::EllipseDialog(QWidget *parent) :
 QDialog(parent),
 ui(new Ui::EllipseDialog)
{
 ui->setupUi(this);

 connect(ui->buttonBox, &QDialogButtonBox::accepted, this, &EllipseDialog::onAccepted);
}

EllipseDialog::~EllipseDialog()
{
 delete ui;
}

void EllipseDialog::onAccepted()
{
 emit accepted(ui->tlXDoubleSpinBox->value(), ui->tlYDoubleSpinBox->value(), ui->widthDoubleSpinBox->value(), ui->heightDoubleSpinBox->value());
 this->accept();
}

Inside the constructor, connect the accepted() signal of buttonBox to the onAccepted() advanced handler slot. In this slot, we emit the accepted signal, which contains the values that the user has entered. Then, call the accept() function to close this dialog.

EllipsePlugin is finished at this point. Click on the Build button in the panel to build this project. You should expect the output, EllipsePlugin.dll on Windows, to be located in the same plugins directory as the previous TextPlugin project.
To make use of this dynamic plugin, we need a final step, which is to make the main program load the dynamic plugin(s). What we have to change here is the loadPlugins() function in mainwindow.cpp:
void MainWindow::loadPlugins()
{
 foreach(QObject *plugin, QPluginLoader::staticInstances()) {
 generatePluginMenu(plugin);
 }

 //search and load dynamic plugins
 QDir pluginDir = QDir(qApp->applicationDirPath());
 #ifdef Q_OS_WIN
 QString dirName = pluginDir.dirName();
 if (dirName.compare(QString("debug"), Qt::CaseInsensitive) == 0 || dirName.compare(QString("release"), Qt::CaseInsensitive) == 0) {
 pluginDir.cdUp();
 pluginDir.cdUp();
 }
 #endif
 pluginDir.cd(QString("plugins"));

 foreach (QString fileName, pluginDir.entryList(QDir::Files)) {
 QPluginLoader loader(pluginDir.absoluteFilePath(fileName));
 QObject *plugin = loader.instance();
 if (plugin) {
 generatePluginMenu(plugin);
 }
 }
}

In order to use the QDir class, you may also need to include this:
#include <QDir>

The QDir class will provide access to directory structures and their contents, which we use to locate our dynamic plugins. The qApp macro is a global pointer, referring to this very application instance. It's equivalent to the QCoreApplication::instance() function and QApplication::instance() for non-GUI and GUI applications, respectively. On Windows platforms, our plugins directory is located in the second upper folder of the build path.
Then, we just test each file in the plugins directory, load it, and generate a proper menu entry if it's a loadable plugin. Run this application again; you'll have an Ellipse entry inside the Plugins menu. It works as expected.
[image: Writing dynamic plugins]

 Merging plugins and main program projects

It is a tedious thing that opens several projects and builds them in order. This is not a big deal given that we have just two plugins and a main program. However, it'll become a serious inefficiency issue once the number of plugins increase. Therefore, it is a better practice to merge the plugins into the main project and get them built in a specified order every time we click on the Build button. It's totally feasible and is commonly seen in Qt projects.
Firstly, we move all the files in the painter_demo directory, except for the EllipsePlugin and TextPlugin folders, into a newly created main folder.
Then, rename the painter_demo.pro to main.pro in the main folder while creating a new painter_demo.pro project file outside in the painter_demo directory. This new painter_demo.pro project file needs to have contents as shown in the following code:
TEMPLATE = subdirs
CONFIG += ordered
SUBDIRS = TextPlugin \
 EllipsePlugin \
 main

The subdirs project is a special template, which means that this project file won't generate an application or a library. Instead, it tells qmake to build subdirectories. By adding ordered to CONFIG, we can ensure that the compiling process follows the exact order according to SUBDIRS.
To accomplish this, we need to modify the project files in the two plugins directories. Change the INCLUDEPATH variable to the following line:
INCLUDEPATH += ../main

This change is obvious because we moved all the source code into the main directory. If we don't change INCLUDEPATH, the compiler will complain that it can't find the interface.h header file.

 Creating a C++ plugin for QML applications

It's not too difficult to write a plugin for Qt/C++ applications, whereas it's somewhat more complex to create a plugin for the QML applications. The idea is the same, and here we will use a very basic example to demonstrate this topic. Basically, this application will encode the text input as Base64 and display it. The Base64 encoding part is implemented in the C++ plugin.
This time, we're going to create the plugin project first, and then complete the QML part. Creating a plugin project for a QML application shares the same procedure. Navigate to Libraries | C++ Library, and then select Qt Plugin with the name as Base64Plugin. Its project file, Base64Plugin.pro, is pasted here:
QT += core qml

TARGET = qmlbase64Plugin
TEMPLATE = lib
CONFIG += plugin

DESTDIR = ../imports/Base64

SOURCES += base64.cpp \
 base64plugin.cpp

HEADERS += base64.h \
 base64plugin.h

OTHER_FILES += \
 qmldir

We set DESTDIR to ../imports/Base64 for the sake of convenience. You can change this to some other path, but you may need to make some relevant changes later to be able to import this plugin.
This project consists of two C++ classes. The Base64 class will later be exported to QML, whereas Base64Plugin registers the Base64 class. The former class' base64.h header file is as follows:
#ifndef BASE64_H
#define BASE64_H

#include <QObject>

class Base64 : public QObject
{
 Q_OBJECT

 public:
 explicit Base64(QObject *parent = 0);

 public slots:
 QString get(QString);
};

#endif // BASE64_H

The base.cpp counterpart defines the get function, as shown in the following code:
#include "base64.h"

Base64::Base64(QObject *parent) :
 QObject(parent)
{
}

QString Base64::get(QString in)
{
 return QString::fromLocal8Bit(in.toLocal8Bit().toBase64());
}

The tricky part is in the Base64Plugin class, which is not identical to the previous plugin class. Its base64plugin.h header file is shown here:
#ifndef BASE64PLUGIN_H
#define BASE64PLUGIN_H

#include <QQmlExtensionPlugin>

class Base64Plugin : public QQmlExtensionPlugin
{
 Q_OBJECT
 Q_PLUGIN_METADATA(IID "org.qt-project.Qt.QmlExtensionInterface")

 public:
 void registerTypes(const char *uri);
};

#endif // BASE64PLUGIN_H

With the QQmlExtensionPlugin subclass, we're able to write our own QML plugin. In fact, this class is used to declare the Base64 class for QML. Also note that since IID in Q_PLUGIN_METADATA is fixed, you probably don't want to change it. As a subclass, it has to reimplement the registerTypes function, which simply registers the class(es). The detailed definition is located in the baseplugin.cpp file whose contents are as shown in the following code:
#include <QtQml>
#include "base64plugin.h"
#include "base64.h"

void Base64Plugin::registerTypes(const char *uri)
{
 Q_ASSERT(uri == QLatin1String("Base64"));
 qmlRegisterType<Base64>(uri, 1, 0, "Base64");
}

The Q_ASSERT macro will ensure that the plugin is located inside the Base64 directory. If not, it'll print a warning message containing the source code, filename, and line number. Note that uri, which is expected to be Base64 in this case, is the module name for QML. Below this line, qmlRegisterType is a template function where you need to put the class name, Base64, inside brackets. These arguments will register the class with Base64 as the QML name with Version 1.0.
A last piece is needed to declare a loadable plugin, which is the qmldir file. Note that it has no extension name. This file defines the module name and relevant files in the directory. Here is the content:
module Base64
plugin qmlbase64Plugin

We need to put this file in the ../imports/Base64 directory, which is the DESTDIR of Base64Plugin. Along with a few lines in the QML application project's main.cpp file, QML can then import a plugin as it imports any other Qt Quick modules.
It's time to create a new Qt Quick application project now. The project name is simply QML_Plugin and we move the Base64Plugin class into the QML_Plugin directory, which enables the Qt Creator syntax to highlight the Base64Plugin class. Here is the content of main.qml:
import QtQuick 2.3
import QtQuick.Controls 1.2
import Base64 1.0

ApplicationWindow {
 visible: true
 width: 180
 height: 100
 title: qsTr("QML Plugin")

 Base64 {
 id: b64
 }

 Column {
 spacing: 6
 anchors {left: parent.left; right: parent.right; top: parent.top; bottom: parent.bottom; leftMargin: 6; rightMargin: 6; topMargin: 6; bottomMargin: 6}
 Label {
 text: "Input"
 }
 TextField {
 id: input
 width: parent.width
 placeholderText: "Input string here"
 onEditingFinished: bt.text = b64.get(text)
 }
 Label {
 text: "Base64 Encoded"
 }
 TextField {
 id: bt
 readOnly: true
 width: parent.width
 }
 }
}

Remember to state import Base64 1.0 at the very beginning of the code so that our plugin can be loaded. Then, Base64 is just like other QML types we have used before. In the onEditingFinished handler of input TextField, we use the get function, which is in the Base64 class, to set bt.text to the corresponding Base64 class-encoded string.
You may wonder how a QML string type is converted to a QString object. Well, it's implicitly converted between QML and Qt/C++. There are plenty of these conversions for commonly-seen QML data types and Qt data classes. For details, you can look at the Qt documentation to see the full list.
Another thing is that we need to change main.cpp, as mentioned before. Similar to the Qt/C++ case, we use the QDir class to get an application directory and change it to ../imports. Be aware that you should use addImportPath instead of addPluginPath to add ../imports to the QML engine's module search path. This is because we use Base64 as a module, which should be located in the imports path. Meanwhile, the plugin path is for native plugins of imported modules, which are stated in qmldir. The content of the main.cpp file is as follows:
#include <QApplication>
#include <QDir>
#include <QQmlApplicationEngine>

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

 QQmlApplicationEngine engine;
 QDir pluginDir = app.applicationDirPath();
 pluginDir.cdUp();
 pluginDir.cdUp();
 pluginDir.cd("imports");
 engine.addImportPath(pluginDir.absolutePath());
 engine.load(QUrl(QStringLiteral("qrc:/main.qml")));

 return app.exec();
}

In order to run this application, perform the following steps:
	Build Base64Plugin.
	Copy the qmldir file into the ../imports/Base64 directory (the imports folder should be located in the same place as plugins).
	Build and run the QML_Plugin project.

You can test this application by inputting any string in the first input field and just pressing Enter. One scenario for this application is to encode your e-mail address to avoid a web spider, as shown here:
[image: Creating a C++ plugin for QML applications]
If the module isn't well located, the application won't show up and it'll complain that Base64 is not installed. If that happens, make sure you add the correct path in main.cpp and there is a qmldir file inside the Base64 folder.

 Summary

It is somewhat difficult to get started on writing plugins. However, after some basic practice, you'll find that it's actually easier than it looks. For Qt Widgets applications, plugins simply extend the application in a flexible way. Meanwhile, they enable developers to devise new forms for QML applications. We also covered using the subdirs project to manage multiple subprojects. Even if you don't plan to write plugins, this chapter covered painting-related stuff that is crucial for GUI application development, including QPainter, paintEvent, and resizeEvent.
In the next chapter, we're going to talk about network programming and multithreading in Qt.

 Chapter 6. Getting Wired and Managing Downloads

Network modules have become crucial nowadays and are also a must-have feature for development frameworks; therefore, Qt does provide APIs for network programming. Sit tight, we're going to get wired and download files from the network. In addition to this, threading is included in this chapter, which is a vital programming skill to avoid blocking. This chapter's topics are listed as follows:
	Introducing Qt network programming
	Utilizing QNetworkAccessManager
	Making use of the progress bar
	Writing multithreaded applications
	Managing a system network session

Introducing Qt network programming

Qt supports network programming and provides lots of high-level APIs to ease your work. QNetworkRequest, QNetworkReply, and QNetworkAccessManager use common protocols to perform network operations. Qt also offers lower-level classes to represent low level network concepts.
In this chapter, we're going to utilize the high-level APIs that Qt has offered to write a downloader to retrieve the Internet files and save them to your disk. As I mentioned earlier, the application will need the QNetworkRequest, QNetworkReply, and QNetworkAccessManager classes.
Firstly, all network requests are represented by the QNetworkRequest class, which is a general container for information associated with a request, including the header and encryption. Currently, HTTP, FTP, and local file URLs are supported for uploading and downloading.
Once a request has been created, the QNetworkAccessManager class is used to dispatch it and emits signals, reporting the progress. Then, it creates the reply to a network request, represented by the QNetworkReply class. At the same time, the signals provided by QNetworkReply can be used to monitor each reply individually. Some developers will discard the reference to the reply and use the QNetworkAccessManager class's signals for that purpose, though. All replies can be handled synchronously or asynchronously, because QNetworkReply is a subclass of QIODevice, which means that it's possible to implement nonblocking operations.
Here is a diagram that describes the relationship between these classes:
[image: Introducing Qt network programming]
Likewise, the network-related stuff is offered in the network module. To use this module, you need to edit the project file and add network to QT. Now, create a new Qt Widget Application project and edit the project file. In our Downloader_Demo example, the downloader_demo.pro project file is shown here:
QT += core gui network

greaterThan(QT_MAJOR_VERSION, 4): QT += widgets

TARGET = Downloader_Demo
TEMPLATE = app

SOURCES += main.cpp\
 mainwindow.cpp \
 downloader.cpp \
 downloaddialog.cpp

HEADERS += mainwindow.h \
 downloader.h \
 downloaddialog.h

FORMS += mainwindow.ui \
 downloaddialog.ui

 Utilizing QNetworkAccessManager

Now, we're going to discover how to write an application that is able to download files from other locations. By other locations, we mean that you can download files from a local position; it doesn't have to be an Internet address, since the local file URLs are supported by Qt as well.
First of all, let's create a Downloader class that will use QNetworkAccessManager to do the downloading work for us. The downloader.h header file is pasted shown as follows:
#ifndef DOWNLOADER_H
#define DOWNLOADER_H

#include <QObject>
#include <QNetworkAccessManager>
#include <QNetworkRequest>
#include <QNetworkReply>

class Downloader : public QObject
{
 Q_OBJECT
public:
 explicit Downloader(QObject *parent = 0);

public slots:
 void download(const QUrl &url, const QString &file);

signals:
 void errorString(const QString &);
 void available(bool);
 void running(bool);
 void downloadProgress(qint64, qint64);

private:
 QNetworkAccessManager *naManager;
 QString saveFile;

 void saveToDisk(QNetworkReply *);

private slots:
 void onDownloadFinished(QNetworkReply *);
};

#endif // DOWNLOADER_H

We expose the download slot to get the URL and the saving target. Accordingly, saveFile is used to store the saving target. In addition to this, we use an naManager object of the QNetworkAccessManager class to manage the downloading process.
Let's check the definitions of these functions in the downloader.cpp file. In the following constructor, we connect the naManager object's finished signal to the onDownloadFinished slot. Therefore, when a network connection is finished, a relevant QNetworkReply reference will be passed via this signal.
Downloader::Downloader(QObject *parent) :
 QObject(parent)
{
 naManager = new QNetworkAccessManager(this);
 connect(naManager, &QNetworkAccessManager::finished, this, &Downloader::onDownloadFinished);
}

Accordingly, in the onDownloadFinished slot, we have to handle QNetworkReply with caution. If there is any error, which means that the download has failed, we expose the errorString() function by the errorString signal. Otherwise, we call the saveToDisk function to save the file to the disk. Then, we use deleteLater() to release the QNetworkReply object safely. As stated in the Qt documentation, it's not safe to use the delete statement directly; since it's finished, we emit the available and running signals. Those signals will later be used to change the user interface.
void Downloader::onDownloadFinished(QNetworkReply *reply)
{
 if (reply->error() != QNetworkReply::NoError) {
 emit errorString(reply->errorString());
 }
 else {
 saveToDisk(reply);
 }
 reply->deleteLater();
 emit available(true);
 emit running(false);
}

In the saveToDisk function, we just implement QFile to save all the downloaded data to the disk. This is feasible because QNetworkReply inherits from QIODevice. Therefore, in addition to the networking APIs, you can treat QNetworkReply as a normal QIODevice object. In this case, use the readAll() function to get all data:
void Downloader::saveToDisk(QNetworkReply *reply)
{
 QFile f(saveFile);
 f.open(QIODevice::WriteOnly | QIODevice::Truncate);
 f.write(reply->readAll());
 f.close();
}

Finally, let's see inside the download function that will be used by MainWindow later. Firstly, we store the saved file to saveFile. Then, we construct QNetworkRequest req using the QUrl object, url. Next, we send req to the naManager object of QNetworkAccessManager, while saving the reference to the created QNetworkManager object to reply. After this, we connect the two downloadProgress signals together, which is simply exposing the downloadProgress signal of the reply. At last, we end up emitting two signals, indicating the availability and running status respectively.
void Downloader::download(const QUrl &url, const QString &file)
{
 saveFile = file;
 QNetworkRequest req(url);
 QNetworkReply *reply = naManager->get(req);
 connect(reply, &QNetworkReply::downloadProgress, this, &Downloader::downloadProgress);
 emit available(false);
 emit running(true);
}

We described the Downloader class. Now, we're going to add DownloadDialog by navigating to Qt Designer | Dialog with Buttons Bottom. This class is used to get the URL and save the path for the user. For the design of downloaddialog.ui, we use the two QLineEdit objects to get the URL and saved path respectively. One of the object names is urlEdit, and the other is saveAsEdit. In order to open a file dialog for the user to choose the saving location, a saveAsButton attribute of QPushButton is added to the right-hand side of saveAsEdit. The following screenshot shows you the layout of this UI file:
[image: Utilizing QNetworkAccessManager]
You need to change the layout of this dialog to Lay Out in a Grid. In a similar way as we did before, in order to pass the values to the main window, we need to delete the default accepted signal and slot connection in Signals & Slots Editor.
The contents of this class's downloaddialog.h header file are shown here:
#ifndef DOWNLOADDIALOG_H
#define DOWNLOADDIALOG_H

#include <QDialog>

namespace Ui {
 class DownloadDialog;
}

class DownloadDialog : public QDialog
{
 Q_OBJECT

public:
 explicit DownloadDialog(QWidget *parent = 0);
 ~DownloadDialog();

signals:
 void accepted(const QUrl &, const QString &);

private:
 Ui::DownloadDialog *ui;

private slots:
 void onButtonAccepted();
 void onSaveAsButtonClicked();
};

#endif // DOWNLOADDIALOG_H

As you can see, a new signal named accepted is added to pass the URL and save the location. Besides, the two private slots are used to handle the accepted event of the button box and the saveAsButtonClicked signal, respectively.
The definitions are in the downloaddialog.cpp source file, which is shown here:
#include <QFileDialog>
#include "downloaddialog.h"
#include "ui_downloaddialog.h"

DownloadDialog::DownloadDialog(QWidget *parent) :
 QDialog(parent),
 ui(new Ui::DownloadDialog)
{
 ui->setupUi(this);

 connect(ui->buttonBox, &QDialogButtonBox::accepted, this, &DownloadDialog::onButtonAccepted);
 connect(ui->saveAsButton, &QPushButton::clicked, this, &DownloadDialog::onSaveAsButtonClicked);
}

DownloadDialog::~DownloadDialog()
{
 delete ui;
}

void DownloadDialog::onButtonAccepted()
{
 emit accepted(QUrl(ui->urlEdit->text()), ui->saveAsEdit->text());
 this->accept();
}

void DownloadDialog::onSaveAsButtonClicked()
{
 QString str = QFileDialog::getSaveFileName(this, "Save As");
 if (!str.isEmpty()) {
 ui->saveAsEdit->setText(str);
 }
}

In the constructor of DownloadDialog, just connect the signals and slots. In the onButtonAccepted slot, we emit the accepted signal, which is to pass the URL and the saving path, where a temporary QUrl class is constructed using the text of urlEdit. Then, the accept function is invoked to close the dialog. Meanwhile, in the onSaveAsButtonClicked slot function, we use the static function provided by the QFileDialog class to obtain the saving location. Do nothing if the QString return is empty; this means that the user may have clicked on Cancel in the file dialog.

 Making use of the progress bar

An intuitive way to indicate the downloading progress is by using a progress bar. In Qt, it is the QProgressBar class that provides a horizontal or vertical progress bar widget. It uses minimum, value, and maximum to determine the completed percentage. The percentage is calculated by the formula, (value – minimum) / (maximum – minimum). We'll use this useful widget in our example application by performing the following steps:
	Go back to the MainWindow class.
	Edit the mainwindow.ui file in the Design mode.
	Drag Push Button and rename it as newDownloadButton with New Download as its text.
	Drag Progress Bar just beneath newDownloadButton.
	Change the layout to Lay Out Vertically.
	Uncheck textVisible in the progressBar widget's property.

The push button, newDownloadButton, is used to popup DownloadDialog to get a new download task. We need to apply some modifications to mainwindow.h, as suggested here:
#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>
#include "downloader.h"
#include "downloaddialog.h"

namespace Ui {
 class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private:
 Ui::MainWindow *ui;
 Downloader *downloader;
 DownloadDialog *ddlg;

private slots:
 void onNewDownloadButtonPressed();
 void showMessage(const QString &);
 void onDownloadProgress(qint64, qint64);
};

#endif // MAINWINDOW_H

In order to use the Downloader and DownloadDialog classes, we have to include them in the header file. Then, we can include them as the private pointers. For the private slots, onNewDownloadButtonPressed is used to handle the newDownloadButton clicked signal. While showMessage is a slot function that displays the message on status bar, the last one, onDownloadProgress, is used to update the progress bar.
Similarly, for the mainwindow.cpp source file, we connect the signals and slots in the constructor, shown as follows:
MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);
 ui->progressBar->setVisible(false);

 downloader = new Downloader(this);

 connect(ui->newDownloadButton, &QPushButton::clicked, this, &MainWindow::onNewDownloadButtonPressed);
 connect(downloader, &Downloader::errorString, this, &MainWindow::showMessage);
 connect(downloader, &Downloader::downloadProgress, this, &MainWindow::onDownloadProgress);
 connect(downloader, &Downloader::available, ui->newDownloadButton, &QPushButton::setEnabled);
 connect(downloader, &Downloader::running, ui->progressBar, &QProgressBar::setVisible);
}

Before beginning to create these connections, we need to hide the progress bar and create a new Downloader class, using MainWindow as the QObject parent. Meanwhile, in these connections, the first one is to connect the newDownloadButton clicked signal. Then, we connect the errorString signal of downloader to showMessage, which enables the status bar to show the error message directly. Next, we connect the downloadProgress signal to our onDownloadProgress handler. As for the available and running signals, they're connected to control the availability and visibility of newDownloadButton and progressBar, respectively.
Inside the onNewDownloadButtonPressed slot function, we construct a DownloadDialog object, ddlg, then connect the accepted signal of DownloadDialog to the Downloader class's download slot. Then, use exec to run the dialog and block the event loop. After this, we call deleteLater to safely release the resource allocated for ddlg.
void MainWindow::onNewDownloadButtonPressed()
{
 ddlg = new DownloadDialog(this);
 connect(ddlg, &DownloadDialog::accepted, downloader, &Downloader::download);
 ddlg->exec();
 ddlg->deleteLater();
}

As for the showMessage slot function, it simply calls the showMessage function of statusBar with a three second timeout, as shown here:
void MainWindow::showMessage(const QString &es)
{
 ui->statusBar->showMessage(es, 3000);
}

At last, we can update the progress bar via the onDownloadProgress function, which is shown in the following code. Since the minimum value is 0 by default, we don't need to change it. Instead, we change the maximum value to the total bytes of the download, and value to the current downloaded bytes. Note that if the total size is unknown, then the value of the total size is -1, which will happen to make the progress bar display in a busy style.
void MainWindow::onDownloadProgress(qint64 r, qint64 t)
{
 ui->progressBar->setMaximum(t);
 ui->progressBar->setValue(r);
}

Now, give the application a run and click on the New Download button. The Add New Download dialog will pop up, where you can add a new download task as shown here:
[image: Making use of the progress bar]
Click on OK, if there is no error; a progress bar is expected to show up and display the current download progress, shown as follows:
[image: Making use of the progress bar]
As you can see, the New Download button is not enabled now, since it is associated with the available signal of downloader. Besides, the progress bar won't even show if downloader isn't running.
While this downloader demo still lacks a basic function, which is to cancel downloading, it is, in fact, easy to implement. There is a slot function called abort in the QNetworkReply class. You may have to store the reference to QNetworkReply and then call abort if some button in MainWindow is clicked. This won't be demonstrated here. It has been left up to you to practice on your own.

 Writing multithreaded applications

I bet multithread or threading isn't unfamiliar to you. Using other threads saves the GUI application from freezing. If the application runs on a single thread, it'll get stuck if there it's a synchronous time-consuming operation. Multiple threads make application running much smoother. Although most of the Qt Network APIs are nonblocking, it is not that difficult to practice on it.
Qt provides a QThread class to implement threading on all supported platforms. In other words, we don't need to write platform-specific code utilizing POSIX Threads or a Win32 API. Instead, QThread provides a platform-independent way to manage threads. A QThread object manages a thread within the program, which begins executing in run() and ends when calling quit() or exit().
For some historical reason, it's still possible to subclass QThread and put the blocking or time-consuming code in the reimplemented run() function. However, it's considered an incorrect practice and is not recommended to do so. The right way is to use QObject::moveToThread, which will be demonstrated later.
We're going to put the Downloader::download function into a new thread. In fact, it's the QNetworkAccessManager::get function that will be moved onto another thread. Let's create a new C++ class, DownloadWorker, whose downloadworker.h header file is pasted as follows:
#ifndef DOWNLOADWORKER_H
#define DOWNLOADWORKER_H

#include <QObject>
#include <QNetworkReply>
#include <QNetworkRequest>
#include <QNetworkAccessManager>

class DownloadWorker : public QObject
{
 Q_OBJECT

public slots:
 void doDownload(const QUrl &url, QNetworkAccessManager *nm);

signals:
 void downloadProgress(qint64, qint64);
};

#endif // DOWNLOADWORKER_H

The constructor is removed from the code because we can't make a child object that will be in another thread. This is almost the only limitation of QThread. In contrast to this, you can connect signals and slots between different threads without any problems.
Don't split parent and children between threads. Parent objects and children objects can only be in the same thread.
We declare the doDownload slot function to do the QNetworkAccessManager::get function work for us. On the other hand, the downloadProgress signal is used to expose the downloadProgress signal of QNetworkReply as we did. The contents of downloadworker.cpp is shown as follows:
#include "downloadworker.h"

void DownloadWorker::doDownload(const QUrl &url, QNetworkAccessManager *nm)
{
 QNetworkRequest req(url);
 QNetworkReply *reply = nm->get(req);
 connect(reply, &QNetworkReply::downloadProgress, this, &DownloadWorker::downloadProgress);
}

The preceding code is an example of a simple worker class. Now, we have to change the Downloader class to use the DownloadWorker class. The header file of the Downloader class, downloader.h, needs a few modifications, shown here:
#ifndef DOWNLOADER_H
#define DOWNLOADER_H

#include <QObject>
#include <QNetworkAccessManager>
#include <QNetworkRequest>
#include <QNetworkReply>
#include <QThread>
#include "downloadworker.h"

class Downloader : public QObject
{
 Q_OBJECT
public:
 explicit Downloader(QObject *parent = 0);
 ~Downloader();

public slots:
 void download(const QUrl &url, const QString &file);

signals:
 void errorString(const QString &);
 void available(bool);
 void running(bool);
 void downloadProgress(qint64, qint64);

private:
 QString saveFile;
 QNetworkAccessManager *naManager;
 DownloadWorker *worker;
 QThread workerThread;

 void saveToDisk(QNetworkReply *);

private slots:
 void onDownloadFinished(QNetworkReply *);
};

#endif // DOWNLOADER_H

As you can see, we have declared a new private member, workerThread, which is a type of QThread. Also, a DownloadWorker object worker has been declared as well. There are more changes in the downloader.cpp source file, as displayed here:
#include <QFile>
#include "downloader.h"

Downloader::Downloader(QObject *parent) :
 QObject(parent)
{
 naManager = new QNetworkAccessManager(this);
 worker = new DownloadWorker;
 worker->moveToThread(&workerThread);

 connect(naManager, &QNetworkAccessManager::finished, this, &Downloader::onDownloadFinished);
 connect(&workerThread, &QThread::finished, worker, &DownloadWorker::deleteLater);
 connect(worker, &DownloadWorker::downloadProgress, this, &Downloader::downloadProgress);

 workerThread.start();
}

Downloader::~Downloader()
{
 workerThread.quit();
 workerThread.wait();
}

void Downloader::download(const QUrl &url, const QString &file)
{
 saveFile = file;
 worker->doDownload(url, naManager);
 emit available(false);
 emit running(true);
}

void Downloader::onDownloadFinished(QNetworkReply *reply)
{
 if (reply->error() != QNetworkReply::NoError) {
 emit errorString(reply->errorString());
 }
 else {
 saveToDisk(reply);
 }
 reply->deleteLater();
 emit available(true);
 emit running(false);
}

void Downloader::saveToDisk(QNetworkReply *reply)
{
 QFile f(saveFile);
 f.open(QIODevice::WriteOnly | QIODevice::Truncate);
 f.write(reply->readAll());
 f.close();
}

In the constructor, we will create a new DownloadWorker class, and move it to another thread, workerThread. By connecting the finished signal of workerThread to the deleteLater function of worker, the resources of worker can be deleted safely after the exit of workerThread. Then, we need to expose downloadProgress again, since it's moved into worker. At last, we call the start() function, to start workerThread.
As a reverse operation, we call the quit() function to exit workerThread and then use wait() to ensure it quits successfully.
Since a lot of code has been moved into the doDownload function of worker, we only need to call doDownload of worker here. In fact, the function calling is inter-thread, which means that the main thread won't be blocked by that statement.
Since get is not blocking, you may not feel the difference. However, I'm sure you have some applications that have frozen, which therefore need to be modified to adapt to QThread. Always remember to put only the background blocking operations in another thread. This is mainly because these operations are easily separated from GUI into single objects without parents or children. Due to this limitation, almost all the GUI objects must be in the same thread, which is the main thread in most cases.

 Managing a system network session

In addition to networking applications, Qt also provides you with cross-platform APIs to control network interfaces and access points. Although it's not very common to control the network state, there are some certain situations where it's required to do this.
First, I'd like to introduce QNetworkConfigurationManager to you. This class manages the network configurations provided by the system. It enables you access to them, as well as to detect the system's capabilities during runtime. The network configuration is presented by the QNetworkConfiguration class, which abstracts a set of configuration options concerning how a network interface has to be configured in order to connect to the target network. To control the network session, you need to use the QNetworkSession class. This class provides you with control over the system's access points and enables session management. It also enables you to control network interfaces that are represented by the QNetworkInterface class. To help you figure out this relationship, a diagram is shown here:
[image: Managing a system network session]
As you can see, the structure is similar to QNetworkAccessManager, QNetworkReply, and QNetworkRequest. Especially, there is another manager class. Let's see how to deal with these classes in practice.
Create a new Qt Widgets Application project as usual. The example regarding this topic is called NetworkManager_Demo. Remember to add network to Qt in your project file, as we did in the previous example. Then, edit mainwindow.ui in the Design mode and perform the following steps:
	Remove the status bar, menu bar, and tool bar since we don't need them in this application.
	Add List View (under the Item Views (Model-Based) category).
	Drag Vertical Layout to the right of listView.
	Change Lay out in MainWindow to Lay Out Horizontally.
	Drag Label into verticalLayout and rename it as onlineStatus.
	Drag Progress Bar into verticalLayout. Change its maximum value to 0 and uncheck textVisible so that it can be used as a busy indicator.
	Add three Push Button buttons; Refresh, Connect, and Disconnect; beneath the progress bar. Their object names are refreshButton, connectButton, and disconnectButton, respectively.
	At last, drag Vertical Spacer between progressBar and onlineStatus to separate them.

As usual, we need to do some declarations in mainwindow.h header file as shown here:
#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>
#include <QNetworkConfigurationManager>
#include <QNetworkConfiguration>
#include <QNetworkSession>
#include <QStandardItemModel>

namespace Ui {
 class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private:
 Ui::MainWindow *ui;
 QNetworkConfigurationManager *networkConfManager;
 QStandardItemModel *confListModel;

private slots:
 void onOnlineStateChanged(bool isOnline);
 void onConfigurationChanged(const QNetworkConfiguration &config);
 void onRefreshClicked();
 void onRefreshCompleted();
 void onConnectClicked();
 void onDisconnectClicked();
};

#endif // MAINWINDOW_H

In this case, we only utilize the QNetworkConfigurationManager, QNetworkConfiguration, and QNetworkSession classes to manage the system network sessions. Therefore, we need to include them in an appropriate location.
Note
Note that we only need to declare a private member, in this case networkConfManager, of the QNetworkConfigurationManager class, because the QNetworkConfiguration can be retrieved from this manager, while QNetworkSession is bound to QNetworkConfiguration.

As for QStandardItemModel, remember the model/view stuff in Chapter 3, Cooking an RSS Reader with Qt Quick. The only difference between that chapter and this one is that we wrote QML in the former. However, we are using a C++ application in this chapter. They share the same concept, though, and it's just the tool that changes. QStandardItemModel *confListModel is the exact model of listView in the UI file.
Last, but not least, is the declaration of some slots. Apart from the button click handlers, the first two are used to monitor the network system. This is explained later.
Let's edit the mainwindow.cpp file and take a look at the constructor of MainWindow:
MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 networkConfManager = new QNetworkConfigurationManager(this);
 confListModel = new QStandardItemModel(0, 1, this);

 ui->listView->setModel(confListModel);
 ui->progressBar->setVisible(false);

 connect(networkConfManager, &QNetworkConfigurationManager::onlineStateChanged, this, &MainWindow::onOnlineStateChanged);
 connect(networkConfManager, &QNetworkConfigurationManager::configurationChanged, this, &MainWindow::onConfigurationChanged);
 connect(networkConfManager, &QNetworkConfigurationManager::updateCompleted, this, &MainWindow::onRefreshCompleted);

 connect(ui->refreshButton, &QPushButton::clicked, this, &MainWindow::onRefreshClicked);
 connect(ui->connectButton, &QPushButton::clicked, this, &MainWindow::onConnectClicked);
 connect(ui->disconnectButton, &QPushButton::clicked, this, &MainWindow::onDisconnectClicked);

 onOnlineStateChanged(networkConfManager->isOnline());
 onRefreshClicked();
}

We construct QNetworkConfigurationManager with this object, also known as MainWindow as its QObject parent. Then, we look at the construction of confListModel. The arguments are the count of row, the count of column, and the QObject parent, which is this as usual. We will use only one column because we use List View to display the data. If you use Table View, you will probably use more columns. Then, we bind this model to listView of ui. After this, we hide progressBar because it's a busy indicator, which only shows up when there is work running. There will be several connect statements before we call two member functions explicitly. Among them, you may want to look into the signals of QNetworkConfigurationManager. The onlineStateChanged signal is emitted if the online status of the system is changed, that is, offline from online. The configurationChanged signal is emitted whenever the state of QNetworkConfiguration is changed. Once QNetworkConfigurationManager finished updateConfigurations, the updateCompleted signal will be emitted. In the end of the constructor, we call onOnlineStateChanged directly in order to set up the text of onlineStatus. Similarly, calling onRefreshClicked enables an application to scan for all the network configurations at the start.
As mentioned before, the onOnlineStateChanged function is used to set up onlineStatus. It'll display Online if the system is considered to be connected to another device via an active network interface; otherwise, it'll display Offline. This function's definition is shown as follows:
void MainWindow::onOnlineStateChanged(bool isOnline)
{
 ui->onlineStatus->setText(isOnline ? "Online" : "Offline");
}

Inside the onConfigurationChanged slot function, which is shown in the following code, we change the item's background color to indicate whether a configuration is active or not. We use the findItems function to get itemList, which contains only some QStandardItem that matches config.name() exactly. However, the configuration name may not be unique. This is why we use a foreach loop to compare the identifier of config, which is a unique string, where the data function is used to retrieve the specific data whose type is QVariant. Then, we use toString to cast it back to QString. QStandardItem enables us set multiple data into one item.
void MainWindow::onConfigurationChanged(const QNetworkConfiguration &config)
{
 QList<QStandardItem *> itemList = confListModel->findItems(config.name());
 foreach (QStandardItem *i, itemList) {
 if (i->data(Qt::UserRole).toString().compare(config.identifier()) == 0) {
 if (config.state().testFlag(QNetworkConfiguration::Active)) {
 i->setBackground(QBrush(Qt::green));
 }
 else {
 i->setBackground(QBrush(Qt::NoBrush));
 }
 }
 }
}

This means that we store identifier as a Qt::UserRole data. It won't be displayed on the screen; instead, it serves as a specific data carrier, which turns out to be very helpful in this case. Thus, after this, if it's active, we set the background color to green; otherwise, use no brush, which means a default background. Note that the state function of QNetworkConfiguration returns StateFlags, which is actually a QFlag template class, where the best practice is to check whether or not a flag is set is to use the testFlag function.
Let's check the onRefreshClicked function, which is shown in the following code before onRefreshCompleted. It'll call updateConfigurations of the QNetworkConfigurationManager *networkConfManager. This function is a time consuming one, especially if it needs to scan WLAN. Therefore, we show progressBar to tell users to be patient and disable refreshButton, since it's refreshing.
void MainWindow::onRefreshClicked()
{
 ui->progressBar->setVisible(true);
 ui->refreshButton->setEnabled(false);
 networkConfManager->updateConfigurations();
}

When the update has been completed, the updateCompleted signal is emitted and the onRefreshCompleted bound slot is executed. Check the following function shown here, where we need to purge the list. However, instead of calling the clear function, we use removeRows, which would spare the column. If you're calling clear, beware to add the column back; otherwise, there is literally no column, which means that there is no place to put the item. In the foreach loop, we add all the configurations that networkConfManager has found to confListModel. As I mentioned previously, we use the name as displaying text, while we set its identifier as a hidden user role data. After the loop, hide progressBar as the refreshing is finished, and then enable refreshButton.
void MainWindow::onRefreshCompleted()
{
 confListModel->removeRows(0, confListModel->rowCount());
 foreach(QNetworkConfiguration c, networkConfManager->allConfigurations()) {
 QStandardItem *item = new QStandardItem(c.name());
 item->setData(QVariant(c.identifier()), Qt::UserRole);
 if (c.state().testFlag(QNetworkConfiguration::Active)) {
 item->setBackground(QBrush(Qt::green));
 }
 confListModel->appendRow(item);
 }
 ui->progressBar->setVisible(false);
 ui->refreshButton->setEnabled(true);
}

The remaining two are handlers to the connect and disconnect buttons. For connectButton, we show progressBar because it may take a long time to get the IP address from the router. Then, we get identifier from the data of confListModel directly and save it as QString ident, where the currentIndex function of listView will return the current QModelIndex of the view. By using this index, we can get the currently selected data from the model. Then, we construct QNetworkConfiguration from ident by calling configurationFromIdentifier of networkConfManager. The QNetworkSession session is constructed using QNetworkConfiguration. At last, open this network session and wait for 1,000 milliseconds. Then, call deleteLater to safely release the session. Also, hide progressBar after all these works in the end.
void MainWindow::onConnectClicked()
{
 ui->progressBar->setVisible(true);
 QString ident = confListModel->data(ui->listView->currentIndex(), Qt::UserRole).toString();
 QNetworkConfiguration conf = networkConfManager->configurationFromIdentifier(ident);
 QNetworkSession *session = new QNetworkSession(conf, this);
 session->open();
 session->waitForOpened(1000);
 session->deleteLater();
 ui->progressBar->setVisible(false);
}

void MainWindow::onDisconnectClicked()
{
 QString ident = confListModel->data(ui->listView->currentIndex(), Qt::UserRole).toString();
 QNetworkConfiguration conf = networkConfManager->configurationFromIdentifier(ident);
 QNetworkSession *session = new QNetworkSession(conf, this);
 if (networkConfManager->capabilities().testFlag(QNetworkConfigurationManager::SystemSessionSupport)) {
 session->close();
 }
 else {
 session->stop();
 }
 session->deleteLater();
}

As for disconnectButton, the onDisconnectClicked handler will do the reverse, which is to stop the network session. The first three lines are identical to those in onConnectClicked. However, we then need to test whether the platform supports out-of-process sessions. As stated in the Qt documentation, the result of calling close will be as follows:
void QNetworkSession::close() [slot]
Decreases the session counter on the associated network configuration. If the session counter reaches zero the active network interface is shut down. This also means that state() will only change from Connected to Disconnected if the current session was the last open session.

However, if the platform doesn't support out-of-process sessions, the close function won't stop the interface, in which case we need to use stop instead.
Therefore, we call the capabilities function of networkConfManager to check whether it has SystemSessionSupport. Call close if it does, otherwise call stop. Then, we just call deleteLater to safely release the session.
Now, run this application, and you'll expect it works as the following screenshot:
[image: Managing a system network session]
On Windows, the network architecture is different from that of the world of Unix. So, you may find some odd configurations in the list, such as Teredo Tunneling Pseudo-Interface in the screenshot. Don't worry about these configurations and just ignore them! Also, there is no Qt API to allow you to connect to a newly discovered encrypted Wi-Fi access point. This is because there is no implementation in place to access the WLAN system passwords. In other words, it can only be used to control the network sessions that are already known to the system.

 Summary

In this chapter, you have had a chance to practice what you have learned in the previous chapters while picking up new skills in Qt. So far, you'll have gained an insight into the architecture of Qt that is commonly seen and shared by its submodules. After all, networking and threading will definitely bring your applications to a higher level.
In the next chapter, besides parsing XML and JSON documents, we're going to rock Android with Qt!

 Chapter 7. Parsing JSON and XML Documents to Use Online APIs

In this chapter, you'll find the powerful application, Qt, running on the popular Android devices. Following the introduction of Qt application development for Android, it also utilizes online APIs, which usually return JSON or XML documents. The topics that are covered in this chapter are as follows:
	Setting up Qt for Android
	Parsing JSON results
	Parsing XML results
	Building Qt applications for Android
	Parsing JSON in QML

Setting up Qt for Android

Qt for Android requires at least an API level 10 (for Android 2.3.3 platforms). Most Qt modules are supported, which means your Qt application can be deployed on Android with little or no modification. For development, both Qt Widget-based applications and Qt Quick applications in Qt Creator are supported on Android. However, setting up Qt for Android on a Windows PC is not very straightforward. Therefore, before we venture deeper into anything, let's set up the development environment for Qt on Android.
First, you need to install Qt for Android. If you're using an online installer, remember to select the Android components, as shown in the following screenshot:
[image: Setting up Qt for Android]
Here, we only chose Android armv7, which enables us to deploy applications for ARMv7 Android devices. If you're using an offline installer, download Qt for the Android installer.
Now, let's install a Java Development Kit (JDK). There is no way to get rid of Java, since Android heavily depends on it. Also, note that you need to install at least Version 6 of JDK, according to http://doc.qt.io/qt-5/androidgs.html. You can download JDK from http://www.oracle.com/technetwork/java/javase/downloads/index.html. You also need to set a JAVA_HOME environment variable in the JDK installation directory, D:\Program Files\Java\jdk1.8.0_25.
Now, let's install two kits from Google, the Android SDK and Android NDK. Always remember to download the latest version; here we use Android SDK r24.0.2 and Android NDK r10b.
After you install the Android SDK, run the SDK Manager. Install or update Android SDK Tools, Android SDK Platform-tools, Android SDK Build-tools, Google USB Driver, at least one API level's SDK Platform, and ARM EABI v7a System Image for the purpose of our task. For this chapter, we installed API 19's SDK Platform and ARM EABI v7a System Image. Then, edit the PATH environment variable. Add the path of the platform and SDK tools to it with a semicolon as a separator. If D:\Program Files (x86)\Android\android-sdk is the path of Android SDK Tools, it would be as follows:

D:\Program Files (x86)\Android\android-sdk\platform-tools;D:\Program Files (x86)\Android\android-sdk\tools

Note
Android SDK and NDK can be obtained on the Android developer website, http://developer.android.com.

Once you download the NDK, extract the zip file to your hard drive, D:\android-ndk. Then, add an environment variable named ANDROID_NDK_ROOT with the value, D:\android-ndk.
Similar procedures should be applied for Apache Ant. You can download it from http://ant.apache.org/bindownload.cgi. We use Apache Ant 1.9.4 in this book. There is no environment variable that needs to be set here. Now, reboot your computer if you're using Windows so that the environment variables can be refreshed and loaded correctly.
Open AVD Manager and create a new virtual device. You'd better choose a smaller virtual device such as Nexus S for this exercise, as shown in the following screenshot. Feel free to change it if you want, but remember to tick Use Host GPU, which will make the virtual device use GLES to accelerate the graphics. If you haven't turned that on, you'll get an extremely slow virtual device that might even be too sluggish to test applications on.
[image: Setting up Qt for Android]
Now, open Qt Creator; navigate to Tools | Options. See if Qt Version in Build & Run has an Android entry. You have to manually add Qt for Android if it's not there. Then, switch to the Android options, set up JDK, Android SDK, Android NDK, and Ant, as shown in the following screenshot:
[image: Setting up Qt for Android]
The warning for missing architectures can be safely ignored because we won't develop applications for MIPS and x86 Android in this chapter. However, pay attention to it if you need to deploy your applications on these hardware platforms.
Click on Apply and switch to the Devices options. There should be a Run on Android item in the Device combobox. An auto-detected Android for armeabi-v7a is expected if you navigate to Build & Run | Kits now.
Now, let's test if we can run a Qt application on our virtual Android device. Open AVD Manager and start the virtual device. We start it first because it could take a lot of time. Then, open Qt Creator and make a simple application.
	Create a new Qt Widget-based application project.
	Select Android for armeabi-v7a Kit.
	Edit mainwindow.ui and drag a label to centralWidget.
	Change the MainWindow page's layout to Lay Out Vertically (or others) so that the widgets will be stretched automatically.
	Change the label's text to Hello Android! or something else.

Wait for the time-consuming virtual Android device until it's fully started. If it's not, click on Run and wait for a few minutes. You'll see this application running on our virtual Android device. As seen in the following screenshot, the Qt for Android development environment is set up successfully. So, we can move on and write an application that can use a camera to take photos:
[image: Setting up Qt for Android]
Tip
Testing an application on a desktop while it's incomplete, and then testing it on a mobile platform would save plenty of time compared to testing on the virtual Android device all the time. In addition to this, it's much faster to test on a real device than a virtual one.

Instead of tolerating a slow emulator, we're going to first develop the application on a desktop, then deploy it on an actual Android device and see if there is anything mismatched or inappropriate for mobile devices. Make any relevant changes accordingly. This could save you plenty of time. However, it still takes a longer time, even though the actual Android device is much more responsive than the virtual one.

 Parsing JSON results

There are tons of companies that provide developers APIs to access to their services, including the dictionary, weather, and so on. In this chapter, we'll use Yahoo! Weather as an example to show you how to use its online API to get weather data. For more details about Yahoo! Weather API, refer to https://developer.yahoo.com/weather/.
Now, let's create a new project named Weather_Demo, which is a Qt Widget-based application project. As usual, let's first design the UI.
[image: Parsing JSON results]
We've removed the menu bar, tool bar, and status bar as we did before. Then, we added a Label, Line Edit, and Push Button on top of centralWidget. Their object names are woeidLabel, woeidEdit, and okButton, respectively. After this, another label named locationLabel is used to display the location returned from the API. The red rectangle is Horizontal Layout, which consists of tempLabel and windLabel, which are both Label and are separated by Horizontal Spacer. Append Label, whose object name is attrLabel, and then change its alignment to AlignRight and AlignBottom.

Where On Earth ID (WOEID) is a 32-bit identifier that is unique and nonrepetitive. By using WOEID, we can avoid duplicity. However, this also means that we need to find out what WOEID is used for our location. Luckily, there are several websites that provide you with easy-to-use online tools to get the WOEID. One of them is the Zourbuth project, Yahoo! WOEID Lookup, which can be accessed at http://zourbuth.com/tools/woeid/.
Now, let's move on and focus on the parsing of API results. We created a new C++ class, Weather, to deal with the Yahoo! Weather API. I'd like to introduce you to parsing the JSON (JavaScript Object Notation) results before XML. However, before we cook the Weather class, remember to add network to QT in the project file. In this case, the Weather_Demo.pro project file looks like this:
QT += core gui network

greaterThan(QT_MAJOR_VERSION, 4): QT += widgets

TARGET = Weather_Demo
TEMPLATE = app

SOURCES += main.cpp\
 mainwindow.cpp \
 weather.cpp

HEADERS += mainwindow.h \
 weather.h

FORMS += mainwindow.ui

Now, we can write the Weather class. Its weather.h header file is pasted as follows:
#ifndef WEATHER_H
#define WEATHER_H

#include <QObject>
#include <QJsonDocument>
#include <QJsonObject>
#include <QNetworkAccessManager>
#include <QNetworkReply>
#include <QImage>

class Weather : public QObject
{
 Q_OBJECT
 public:
 explicit Weather(QObject *parent = 0);

 signals:
 void updateFinished(const QString &location, const QString &temp, const QString &wind);
 void imageDownloaded(const QImage &);

 public slots:
 void updateData(const QString &woeid);
 void getAttrImg();

 private:
 QNetworkAccessManager *naManager;
 QNetworkReply *imgReply;
 QImage attrImg;

 private slots:
 void onSSLErrors(QNetworkReply *);
 void onQueryFinished(QNetworkReply *);
};

#endif // WEATHER_H

In addition to the weather information query, we also use this class to get an attribution image, which is stated in the Yahoo! documentation. It is kind of trivial in traditional Qt/C++ that we have to use QNetworkAccessManager to access QUrl, because QJsonDocument cannot load from QUrl directly. Anyway, let's see how we get the result from the Yahoo! Weather API in the weather.cpp file. The header part includes the following lines:
#include <QDebug>
#include <QNetworkRequest>
#include <QJsonArray>
#include "weather.h"

Then, let's see the constructor of Weather. Here, we simply construct the QNetworkAccessManager object, naManager, and connect its signals:
Weather::Weather(QObject *parent) :
 QObject(parent)
{
 naManager = new QNetworkAccessManager(this);

 connect(naManager, &QNetworkAccessManager::finished, this, &Weather::onQueryFinished);
 connect(naManager, &QNetworkAccessManager::sslErrors, this, &Weather::onSSLErrors);
}

The onSSLErrors slot is simply to let the QNetworkReply object ignore all the SSL errors. This won't cause any serious problems in this case. However, if you're dealing with a secure communication or anything else that needs to validate the connection, you may wish to look into the error.
void Weather::onSSLErrors(QNetworkReply *re)
{
 re->ignoreSslErrors();
}

Then, let's check the updateData function before onQueryFinished. Here, we construct QUrl, which is the Yahoo! Weather API's exact address. Note that you don't need to use an HTML code for QUrl. In fact, it'd be better to use a space along with the other symbols directly. After this, similar to the previous chapter, we use QNetworkRequest to wrap this QUrl and dispatch the request through QNetworkAccessManager.
void Weather::updateData(const QString &woeid)
{
 QUrl url("https://query.yahooapis.com/v1/public/yql?q=select * from weather.forecast where woeid = " + woeid + "&format=json");
 QNetworkRequest req(url);
 naManager->get(req);
}

As for the getAttrImg function, it's almost the same. The only difference is that this function is used to get an attribution image instead of weather information. We store the reply as imgReply so that we can distinguish the image from the weather.
void Weather::getAttrImg()
{
 QUrl url("https://poweredby.yahoo.com/purple.png");
 QNetworkRequest req(url);
 imgReply = naManager->get(req);
}

If the corresponding QNetworkReply object is finished, the onQueryFinished slot function will be executed, which is shown in the following code. After all the pavement, let's see what's inside this function. We can check whether there is any error in the reply at the very beginning. Then, if it's imgReply, we cook QImage from the data and emit a signal to send this image out. If none of these happen, we'll parse the weather from the JSON reply.
void Weather::onQueryFinished(QNetworkReply *re)
{
 if (re->error() != QNetworkReply::NoError) {
 qDebug() << re->errorString();
 re->deleteLater();
 return;
 }

 if (re == imgReply) {
 attrImg = QImage::fromData(imgReply->readAll());
 emit imageDownloaded(attrImg);
 imgReply->deleteLater();
 return;
 }

 QByteArray result = re->readAll();
 re->deleteLater();

 QJsonParseError err;
 QJsonDocument doc = QJsonDocument::fromJson(result, &err);
 if (err.error != QJsonParseError::NoError) {
 qDebug() << err.errorString();
 return;
 }
 QJsonObject obj = doc.object();
 QJsonObject res = obj.value("query").toObject().value("results").toObject().value("channel").toObject();

 QJsonObject locObj = res["location"].toObject();
 QString location;
 for(QJsonObject::ConstIterator it = locObj.constBegin(); it != locObj.constEnd(); ++it) {
 location.append((*it).toString());
 if ((it + 1) != locObj.constEnd()) {
 location.append(", ");
 }
 }

 QString temperature = res["item"].toObject()["condition"].toObject()["temp"].toString() + res["units"].toObject()["temperature"].toString();

 QJsonObject windObj = res["wind"].toObject();
 QString wind;
 for(QJsonObject::ConstIterator it = windObj.constBegin(); it != windObj.constEnd(); ++it) {
 wind.append(it.key());
 wind.append(": ");
 wind.append((*it).toString());
 wind.append("\n");
 }

 emit updateFinished(location, temperature, wind);
}

As I mentioned before, it is trivial. First, we read the result from QNetworkReply, and then use QJsonDocument::fromJson to parse the byte array as a JSON document. If there is an error during the process, we simply print the error string and return. Then, we need to get QJsonObject contained in QJsonDocument. Only then can we parse all the information inside it. The formatted result using 560743 as the WOEID is shown as follows:
{
 "query":{
 "count":1,
 "created":"2014-12-05T23:19:54Z",
 "lang":"en-GB",
 "results":{
 "channel":{
 "title":"Yahoo! Weather - Dublin, IE",
 "link":"http://us.rd.yahoo.com/dailynews/rss/weather/Dublin__IE/*http://weather.yahoo.com/forecast/EIXX0014_f.html",
 "description":"Yahoo! Weather for Dublin, IE",
 "language":"en-us",
 "lastBuildDate":"Fri, 05 Dec 2014 9:59 pm GMT",
 "ttl":"60",
 "location":{
 "city":"Dublin",
 "country":"Ireland",
 "region":"DUB"
 },
 "units":{
 "distance":"mi",
 "pressure":"in",
 "speed":"mph",
 "temperature":"F"
 },
 "wind":{
 "chill":"29",
 "direction":"230",
 "speed":"8"
 },
 "atmosphere":{
 "humidity":"93",
 "pressure":"30.36",
 "rising":"1",
 "visibility":"6.21"
 },
 "astronomy":{
 "sunrise":"8:22 am",
 "sunset":"4:09 pm"
 },
 "image":{
 "title":"Yahoo! Weather",
 "width":"142",
 "height":"18",
 "link":"http://weather.yahoo.com",
 "url":"http://l.yimg.com/a/i/brand/purplelogo//uh/us/news-wea.gif"
 },
 "item":{
 "title":"Conditions for Dublin, IE at 9:59 pm GMT",
 "lat":"53.33",
 "long":"-6.29",
 "link":"http://us.rd.yahoo.com/dailynews/rss/weather/Dublin__IE/*http://weather.yahoo.com/forecast/EIXX0014_f.html",
 "pubDate":"Fri, 05 Dec 2014 9:59 pm GMT",
 "condition":{
 "code":"29",
 "date":"Fri, 05 Dec 2014 9:59 pm GMT",
 "temp":"36",
 "text":"Partly Cloudy"
 },
 "description":"\n
\nCurrent Conditions:
\nPartly Cloudy, 36 F
\n
Forecast:
\nFri - Partly Cloudy. High: 44 Low: 39
\nSat - Mostly Cloudy. High: 48 Low: 41
\nSun - Mostly Sunny/Wind. High: 43 Low: 37
\nMon - Mostly Sunny/Wind. High: 43 Low: 37
\nTue - PM Light Rain/Wind. High: 52 Low: 38
\n
\nFull Forecast at Yahoo! Weather

\n(provided by The Weather Channel)
\n",
 "forecast":[
 {
 "code":"29",
 "date":"5 Dec 2014",
 "day":"Fri",
 "high":"44",
 "low":"39",
 "text":"Partly Cloudy"
 },
 {
 "code":"28",
 "date":"6 Dec 2014",
 "day":"Sat",
 "high":"48",
 "low":"41",
 "text":"Mostly Cloudy"
 },
 {
 "code":"24",
 "date":"7 Dec 2014",
 "day":"Sun",
 "high":"43",
 "low":"37",
 "text":"Mostly Sunny/Wind"
 },
 {
 "code":"24",
 "date":"8 Dec 2014",
 "day":"Mon",
 "high":"43",
 "low":"37",
 "text":"Mostly Sunny/Wind"
 },
 {
 "code":"11",
 "date":"9 Dec 2014",
 "day":"Tue",
 "high":"52",
 "low":"38",
 "text":"PM Light Rain/Wind"
 }
],
 "guid":{
 "isPermaLink":"false",
 "content":"EIXX0014_2014_12_09_7_00_GMT"
 }
 }
 }
 }
 }
}

Note
For details about JSON, visit http://www.json.org.

As you can see, all the information is stored inside query/results/channel. Therefore, we need to convert it to QJsonObject, level by level. As you can see in the code, QJsonObject res is channel. Note that the value function will return a QJsonValue object and you will need to call toObject() to make it QJsonObject before you can use the value function to parse the value again. After this, it's pretty straightforward. The locObj object is the location where we use a for loop to put the values together, where as QJsonObject::ConstIterator is just Qt's wrapper of STL const_iterator.
To obtain the current temperature, we need to go through a similar journey to channel because the temperature is in item/condition/temp, while its unit is units/temperature.
As for the wind section, we use a lazy way to retrieve the data. The windObj line is not a single value statement; instead, it has several keys and values. Therefore, we use a for loop to walk through this array and retrieve both of its keys along with its value, and simply put them together.
Now, let's go back to the MainWindow class to see how to interact with the Weather class. The header file of MainWindow, which is mainwindow.h, is pasted here:
#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>
#include "weather.h"

namespace Ui {
 class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private:
 Ui::MainWindow *ui;
 Weather *w;

private slots:
 void onOkButtonClicked();
 void onAttrImageDownloaded(const QImage &);
 void onWeatherUpdateFinished(const QString &location, const QString &temp, const QString &wind);
};

#endif // MAINWINDOW_H

We declare a Weather object pointer, w, as the MainWindow class's private member. Meanwhile, onOkButtonClicked is the handler when okButton gets clicked. The onAttrImageDownloaded and onWeatherUpdateFinished functions will be coupled with the Weather class's signals. Now, let's see what's inside the source file:
#include "mainwindow.h"
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);
 w = new Weather(this);

 connect(ui->okButton, &QPushButton::clicked, this, &MainWindow::onOkButtonClicked);
 connect(w, &Weather::updateFinished, this, &MainWindow::onWeatherUpdateFinished);
 connect(w, &Weather::imageDownloaded, this, &MainWindow::onAttrImageDownloaded);
 w->getAttrImg();
}

MainWindow::~MainWindow()
{
 delete ui;
}

void MainWindow::onOkButtonClicked()
{
 w->updateData(ui->woeidEdit->text());
}

void MainWindow::onAttrImageDownloaded(const QImage &img)
{
 ui->attrLabel->setPixmap(QPixmap::fromImage(img));
}

void MainWindow::onWeatherUpdateFinished(const QString &location, const QString &temp, const QString &wind)
{
 ui->locationLabel->setText(location);
 ui->tempLabel->setText(temp);
 ui->windLabel->setText(wind);
}

In the constructor, apart from the signals connection and the w object's construction, we call getAttrImg of w to retrieve the attribution image. When the image is downloaded, the onAttrImageDownloaded slot function will be executed where the image will be displayed on attrLabel.
Once the user clicks on okButton, the onOkButtonClicked slot function gets executed, where we call the updateData function of the Weather class to pass the WOEID. Then, when the update is finished, the updateFinished signal is emitted and onWeatherUpdateFinished is executed. We just use these three QString objects to set the corresponding label's text.
Now, test your application to see if it's running as shown in this screenshot:
[image: Parsing JSON results]

 Parsing XML results

Although a lot of APIs provide both XML and JSON results, you may still find that some of them only offer one format. Besides, you might feel that parsing JSON in C++/Qt is not a pleasant process. You may remember how easy it is to parse the XML model in QML/Qt Quick. Well, let's see how to do this in C++/Qt.
To make use of an xml module, we have to add xml to QT in the project file, the same way we did to network. This time, Qt has provided an XML reader class called QXmlStreamReader to help us parse the XML documents. The first thing we need to do is to change the updateData function in the Weather class to let the Yahoo! Weather API return an XML result.
void Weather::updateData(const QString &woeid)
{
 QUrl url("https://query.yahooapis.com/v1/public/yql?q=select * from weather.forecast where woeid = " + woeid + "&format=xml");
 QNetworkRequest req(url);
 naManager->get(req);
}

The changing of &format=json to &format=xml needs to be done here. In contrast to this, there is a lot of work to do in the onQueryFinished slot function. The old JSON part is commented out so that we can write the XML parsing code. The modified function without the comment is shown as follows:
void Weather::onQueryFinished(QNetworkReply *re)
{
 if (re->error() != QNetworkReply::NoError) {
 qDebug() << re->errorString();
 re->deleteLater();
 return;
 }

 if (re == imgReply) {
 attrImg = QImage::fromData(imgReply->readAll());
 emit imageDownloaded(attrImg);
 imgReply->deleteLater();
 return;
 }

 QByteArray result = re->readAll();
 re->deleteLater();

 QXmlStreamReader xmlReader(result);
 while (!xmlReader.atEnd() && !xmlReader.hasError()) {
 QXmlStreamReader::TokenType token = xmlReader.readNext();
 if (token == QXmlStreamReader::StartElement) {
 QStringRef name = xmlReader.name();
 if (name == "channel") {
 parseXMLChannel(xmlReader);
 }
 }
 }
}

Here, parseXMLChannel is a newly created member function. We can use a separate function to make our code neat and tidy.
Note
Remember to declare the parseXMLChannel function in the header file.

Its definition is pasted as follows:
void Weather::parseXMLChannel(QXmlStreamReader &xml)
{
 QString location, temperature, wind;
 QXmlStreamReader::TokenType token = xml.readNext();
 while (token != QXmlStreamReader::EndDocument) {
 if (token == QXmlStreamReader::EndElement || xml.name().isEmpty()) {
 token = xml.readNext();
 continue;
 }

 QStringRef name = xml.name();
 if (name == "location") {
 QXmlStreamAttributes locAttr = xml.attributes();
 location = locAttr.value("city").toString() + ", " + locAttr.value("country").toString() + ", " + locAttr.value("region").toString();
 }
 else if (name == "units") {
 temperature = xml.attributes().value("temperature").toString();
 }
 else if (name == "wind") {
 QXmlStreamAttributes windAttr = xml.attributes();
 for (QXmlStreamAttributes::ConstIterator it = windAttr.begin(); it != windAttr.end(); ++it) {
 wind.append(it->name().toString());
 wind.append(": ");
 wind.append(it->value());
 wind.append("\n");
 }
 }
 else if (name == "condition") {
 temperature.prepend(xml.attributes().value("temp").toString());
 break;//we got all information, exit the loop
 }
 token = xml.readNext();
 }

 emit updateFinished(location, temperature, wind);
}

Before we walk through parseXMLChannel function, I'd like to show you what the XML document looks like, shown as follows:
<?xml version="1.0"?>
<query xmlns:yahoo="http://www.yahooapis.com/v1/base.rng" yahoo:count="1" yahoo:created="2014-12-06T22:50:22Z" yahoo:lang="en-GB">
 <results>
 <channel>
 <title>Yahoo! Weather - Dublin, IE</title>
 <link>http://us.rd.yahoo.com/dailynews/rss/weather/Dublin__IE/*http://weather.yahoo.com/forecast/EIXX0014_f.html</link>
 <description>Yahoo! Weather for Dublin, IE</description>
 <language>en-us</language>
 <lastBuildDate>Sat, 06 Dec 2014 9:59 pm GMT</lastBuildDate>
 <ttl>60</ttl>
 <yweather:location xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0" city="Dublin" country="Ireland" region="DUB"/>
 <yweather:units xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0" distance="mi" pressure="in" speed="mph" temperature="F"/>
 <yweather:wind xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0" chill="41" direction="230" speed="22"/>
 <yweather:atmosphere xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0" humidity="93" pressure="30.03" rising="2" visibility="6.21"/>
 <yweather:astronomy xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0" sunrise="8:24 am" sunset="4:07 pm"/>
 
 <item>
 <title>Conditions for Dublin, IE at 9:59 pm GMT</title>
 <geo:lat xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#">53.33</geo:lat>
 <geo:long xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#">-6.29</geo:long>
 <link>http://us.rd.yahoo.com/dailynews/rss/weather/Dublin__IE/*http://weather.yahoo.com/forecast/EIXX0014_f.html</link>
 <pubDate>Sat, 06 Dec 2014 9:59 pm GMT</pubDate>
 <yweather:condition xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0" code="27" date="Sat, 06 Dec 2014 9:59 pm GMT" temp="48" text="Mostly Cloudy"/>
 <description><![CDATA[
 Current Conditions:
 Mostly Cloudy, 48 F

Forecast:
 Sat - Light Rain/Wind Late. High: 48 Low: 42
 Sun - Mostly Sunny/Wind. High: 44 Low: 37
 Mon - Sunny. High: 43 Low: 37
 Tue - Showers/Wind. High: 53 Low: 39
 Wed - Partly Cloudy/Wind. High: 45 Low: 39

 Full Forecast at Yahoo! Weather

 (provided by The Weather Channel)
]]></description>
 <yweather:forecast xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0" code="11" date="6 Dec 2014" day="Sat" high="48" low="42" text="Light Rain/Wind Late"/>
 <yweather:forecast xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0" code="24" date="7 Dec 2014" day="Sun" high="44" low="37" text="Mostly Sunny/Wind"/>
 <yweather:forecast xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0" code="32" date="8 Dec 2014" day="Mon" high="43" low="37" text="Sunny"/>
 <yweather:forecast xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0" code="11" date="9 Dec 2014" day="Tue" high="53" low="39" text="Showers/Wind"/>
 <yweather:forecast xmlns:yweather="http://xml.weather.yahoo.com/ns/rss/1.0" code="24" date="10 Dec 2014" day="Wed" high="45" low="39" text="Partly Cloudy/Wind"/>
 <guid isPermaLink="false">EIXX0014_2014_12_10_7_00_GMT</guid>
 </item>
 </channel>
 </results>
</query>
<!-- total: 27 -->
<!-- engine4.yql.bf1.yahoo.com -->

As you can deduce, the XML structure shares a lot of similarities with the JSON document. For instance, all the data we need is still stored in query/results/channel. The difference is, however, more significant than you may have expected.
Note
If you want to learn XML thoroughly, check the XML tutorial at http://www.w3schools.com/xml/.

In the onQueryFinished slot, we use a while loop to let xmlReader keep reading until the end or until an error. The readNext function of the QXmlStreamReader class will read the next token and return its type. TokenType is an enum, which describes the type of token currently being read. Each time you call readNext, QXmlStreamReader will move forward by one token. If we want to read all the data of one element, we may have to read it from the beginning. Therefore, we use an if statement to ensure that the token is at the starting. In addition to this, we test if we're reading the channel now. Then, we call parseXMLChannel to retrieve all data that we need.
In the parseXMLChannel function, pretty much the same strategy is used. We test the name element so that we know which stage we are in. One thing worth your attention is that all prefixes such as yweather: are omitted. Hence, you should use location instead of yweather:location. Other parts are similar to their counterparts in JSON, where QStringRef is similar to QJsonValue. Last but not least, QXmlStreamReader is a stream reader, which means that it reads in order. In other words, we can break the while loop after we get temp in condition since condition is the last element that we're interested in.
After these changes, you can build and run this application again and you should expect it to run in the same manner.

 Building Qt applications for Android

You may wonder how to build Qt applications for Android devices since this application is built for desktop PCs. Well, it's much easier than you thought.
	Switch to Projects mode.
	Click on Add Kit and select Android for armeabit-v7a (GCC 4.9 and Qt 5.3.2). Note that the text may differ a little bit.
	Plug in your phone if you're using it as the target Android device.
	Open Command Prompt and run adb devices. Make sure your device is on the list.

Now, click on Run and Qt will prompt a dialog asking you to select the Android device, as shown in the following screenshot:
[image: Building Qt applications for Android]
We choose to run our application on an actual Android device, which is an HTC One phone in this case. If you don't have any available Android devices, you may have to create a virtual device, as mentioned at the beginning of this chapter. For both the options, choose the device and click on the OK button.
Note
On an actual Android device, you need to go to Settings and turn on USB debugging in Developer options.

As you can see from the following screenshot, the demonstration runs well. It definitely needs ongoing improvements and UI optimization before submitting, though. However, remember that we designed and built this application for a desktop PC! We have just built it for a mobile phone without any modification and it runs as expected.
[image: Building Qt applications for Android]
When you test the application, all the information is printed to the Application Output panel in Qt Creator. This could be useful when your application runs unexpectedly.

 Parsing JSON in QML

Let's rewrite the weather demo in QML. You will find out how easy and elegant it is to write such an application in QML. Since the XML part is already covered in the previous chapter, we'll focus on parsing JSON this time.
First, create a new Qt Quick application project named Weather_QML. Keep the other settings as default, which means we use Qt Quick Controls. Remember to tick the checkbox of the Android kit.
Create a new QML file named Weather.qml to mimic the Weather class in the previous C++ code. This file is pasted here:
import QtQuick 2.3
import QtQuick.Controls 1.2

Rectangle {
 Column {
 anchors.fill: parent
 spacing: 6

 Label {
 id: location
 width: parent.width
 fontSizeMode: Text.Fit
 minimumPointSize: 9
 font.pointSize: 12
 }

 Row {
 spacing: 20
 width: parent.width
 height: parent.height

 Label {
 id: temp
 width: parent.width / 2
 height: parent.height
 fontSizeMode: Text.Fit
 minimumPointSize: 12
 font.pointSize: 72
 font.bold: true
 }

 Label {
 id: wind
 width: temp.width - 20
 height: parent.height
 fontSizeMode: Text.Fit
 minimumPointSize: 9
 font.pointSize: 24
 }
 }
 }

 Image {
 id: attrImg
 anchors { right: parent.right; bottom: parent.bottom }
 fillMode: Image.PreserveAspectFit
 source: 'https://poweredby.yahoo.com/purple.png'
 }

 function query (woeid) {
 var url = 'https://query.yahooapis.com/v1/public/yql?q=select * from weather.forecast where woeid = ' + woeid + '&format=json'
 var res
 var doc = new XMLHttpRequest()
 doc.onreadystatechange = function() {
 if (doc.readyState == XMLHttpRequest.DONE) {
 res = doc.responseText
 parseJSON(res)
 }
 }
 doc.open('GET', url, true)
 doc.send()
 }

 function parseJSON(data) {
 var obj = JSON.parse(data)

 if (typeof(obj) == 'object') {
 if (obj.hasOwnProperty('query')) {
 var ch = obj.query.results.channel
 var loc = '', win = ''
 for (var lk in ch.location) {
 loc += ch.location[lk] + ', '
 }
 for (var wk in ch.wind) {
 win += wk + ': ' + ch.wind[wk] + '\n'
 }
 location.text = loc
 temp.text = ch.item.condition.temp + ch.units.temperature
 wind.text = win
 }
 }
 }
}

The first part is just a QML version UI of the previous application. You may want to pay attention to the fontSizeMode and minimumPointSize property in Label. These properties are newly introduced in Qt 5, and enable the text scale to be dynamically adjusted. By setting Text.Fit as fontSizeMode, it'll shrink the text if height or width is not sufficient for the text, where minimumPointSize is the minimum point size. The text will get elided if it can't display at a minimum size. Similar to the elide property, you have to explicitly set the width and height property of Text or Label to make this dynamic mechanism work.
The attribution image is displayed in a slightly different way from C++. We utilize the flexibility of Qt Quick to float Image on top of the whole item by setting only anchors. In addition to this, we don't need to use QNetworkAccessManager to download the image. It's all in one.
After the UI part, we create the two JavaScript functions to do the dirty work. The query function is used to send an http request and pass the received data to the parseJSON function once it's done. Don't get confused by XML in XMLHttpRequest; it's just a traditional naming convention. Then, we create a handler function for onreadystatechanged, which is to call parseJSON when the request is done. Note that the open function won't send the request, only the send function does.
It's still short and clean in the parseJSON function. JSON.parse will return a JSON object if it is parsed successfully. Therefore, we need to test whether its type is object before we get into parsing. Then, we just do one more test to see whether it has query as its property. If so, we can start extracting data from obj. Unlike its C++ counterpart, we can treat all its keys as its properties and use the dot operation to access them directly. To shorten the operations, we first create a ch variable, which is query/results/channel. Next, we extract the data from the ch object. Finally, we change the text directly.
Note
The ch.location and ch.wind objects can be treated as QVariantMap objects. Thus, we can use the for loop to easily extract the values.

Let's edit the main.qml file as shown here:
import QtQuick 2.3
import QtQuick.Controls 1.2
import "qrc:/"

ApplicationWindow {
 visible: true
 width: 240
 height: 320
 title: qsTr("Weather QML")

 Row {
 id: inputField
 anchors { top: parent.top; topMargin: 10; left: parent.left; leftMargin: 10; right: parent.right; rightMargin: 10 }
 spacing: 6

 Label {
 id: woeidLabel
 text: "WOEID"
 }
 TextField {
 width: inputField.width - woeidLabel.width
 inputMethodHints: Qt.ImhDigitsOnly
 onAccepted: weather.query(text)
 }
 }

 Weather {
 anchors { top: inputField.bottom; topMargin: 10; left: parent.left; leftMargin: 10; right: parent.right; rightMargin: 10; bottom: parent.bottom; bottomMargin: 10 }
 id: weather
 }
}

Row is the same WOEID input panel, for which we don't create an OK button this time. Instead, we handle the accepted signal in onAccepted by calling the query function in weather, which is a Weather element. We set the inputMethodHints property to Qt.ImhDigitsOnly, which is useful on mobile platforms. This application should run almost the same as the C++ one or should we say better.
[image: Parsing JSON in QML]
The inputMethodHints property may seem useless on a desktop; indeed, you need to use inputMask and validator to restrict the acceptable input. However, it shows its power on mobiles, as follows:
[image: Parsing JSON in QML]
As you can see, inputMethodHints not only restricts the input, but it also provides a better experience for users. This is also viable in a C++/Qt development; you can find the relevant functions to achieve this. The whole point in QML is that parsing the JSON and XML documents is easier and tidier than C++.

 Summary

After this chapter, you're expected to handle common tasks and write types of real-world applications. You'll get your own understanding of Qt Quick and traditional Qt. It's also a current trend to write hybrid applications, which make full use of both of them by writing the C++ plugins to enhance QML. QML has an unbeatable advantage of flexible UI design, which is even more obvious on mobile platforms. While the development part is nearing the end, in the next chapter we'll talk about how to support multiple languages.

 Chapter 8. Enabling Your Qt Application to Support Other Languages

In this era of globalization, the internationalization and localization of applications is almost inevitable. Fortunately, Qt provides relevant classes, along with some handy tools such as Qt Linguist to ease the burden of developers and translators. In this chapter, we will use two example applications to demonstrate the following topics:
	Internationalization of Qt applications
	Translating Qt Widgets applications
	Disambiguating identical texts
	Changing languages dynamically
	Translating Qt Quick applications

Internationalization of Qt applications

Internationalization and localization are the processes of adapting the application to other locales, which might include different languages and regional differences. In software development, internationalization refers to designing an application in such a way that it can be adapted to various languages and regions without code changes. On the other hand, localization means adapting internationalized software for a specific language or region. This usually involves locale-specific components and translating text.
Qt has done a lot to free developers from different writing systems. We don't need to worry about how different languages display and input, as long as we use Qt's input and display controls or their subclasses.
In most cases, what we need to do is to produce translations and enable them in the application. Qt offers the QTranslator class, which loads the translation file and displays the corresponding language on the screen. The procedure is concluded in the following diagram:
[image: Internationalization of Qt applications]
First of all, Qt won't just make all the strings translatable, because that would obviously be a disaster. Instead, you need to explicitly set whether the string is translatable in code or in the Design mode. In the Qt/C++ code, use the tr() function to enclose all the strings that can be translated. We use the qsTr() function to do this job in the Qt Quick/QML code. Let me show you an example. Here is a demonstration of the normal usage of a string:
qDebug() << "Hello World";

This will output Hello World to the standard output stream, which is your command prompt or shell in general cases. If we want to make Hello World translatable, we need to use a tr() function to enclose the string, as follows:
qDebug() << tr("Hello World");

Since tr() is a static public member function of the QObject class, you can still use it even for a non QObject class.
qDebug() << QObject::tr("Hello World");

Then, we need to use the lupdate command, which is located in Tools | External | Linguist | Update Translations (lupdate) in Qt Creator. This will update, or create if the translation source (TS) file doesn't exist. You can then use Qt Linguist to translate the strings. Before you release your application, run the lrelease command, which is located in Tools | External | Linguist | Release Translations (lrelease), to generate the Qt message (QM) files that can be loaded by an application dynamically. Don't worry if it confuses you; we'll use two examples to walk you through these procedures.

 Translating Qt Widgets applications

First, let's create a new Qt Widget project, whose name is Internationalization. Then, edit mainwindow.ui in the Design mode.
	As usual, remove the status bar, menu bar, and tool bar.
	Add Label into centralWidget and change its object name to nonTransLabel. Then, change its text to This is a non-translatable label and uncheck translatable under text in Property Editor.
	Drag a Push Button just beneath nonTransLabel with transButton as its object name. Change its text to This is a translatable button.
	Change Lay out to Lay Out Vertically in MainWindow.
	Resize the frame to a comfortable size.

Go back to editing the Internationalization.pro project file in the Edit mode. Add a line indicating the translation source file, which is shown as follows:
TRANSLATIONS = Internationalization_de.ts

The _de suffix is a locale code, indicating that this is a German translation source file. The locale codes are defined by Internet Engineering Task Force in the BCP 47 document series. Historically, Qt follows the POSIX definition, which is slightly different from BCP 47. In this, it uses underscores (_) instead of hyphens (-) to separate subtags. In other words, Brazilian Portuguese is expressed as pt_BR instead of pt-BR. Meanwhile, Qt has provided some APIs to conform the locale name to a BCP 47 definition since the Qt 4.8 version.
To ensure this change is valid, save the project file and right-click on the project and select Run qmake. After this, we can generate the translation source file, which is exactly Internationalization_de.ts, by executing the lupdate command. The results will be printed in the General Messages panel, which contains the strings added to the TS file, as shown here:
Updating 'Internationalization_de.ts'...
Found 3 source text(s) (3 new and 0 already existing)

Now, open the Internationalization_de.ts file in Qt Linguist. The overview UI of Qt Linguist is displayed in the following screenshot:
[image: Translating Qt Widgets applications]

Context lists the source text context, which is the class name in most cases, while Strings contains all the translatable strings. Sources and Forms displays the corresponding location of the string, either as a piece of code or a UI form. Beneath them is the translation area, which lets you input the translation and comments, if there are any.
In addition to the overview, the icon in front of each entry is noteworthy. A yellow question mark (?) simply means there is no translation currently, while a green checkmark means accepted/correct, and a yellow checkmark stands for accepted/warnings. You may also encounter a red exclamation mark (!), which indicates warnings. The sharp symbol (#) in front of a button's text in the Sources and Forms pane indicates untranslated, and possibly translatable, strings. Qt Linguist checks string translations automatically according to its own algorithm, which means that it may give a false warning. In this case, simply ignore the warning and accept the translation.
You'll find that the label text isn't among Source text. This is because we unchecked the translatable property. Now, input German translations in the translation area and click on the Done and Next button in the tool bar, then navigate to Translation | Done and Next. Or, even quicker, press Ctrl + Enter to accept the translation. When you've finished, click on the Save button, and then exit Qt Linguist.
Although it's recommended to use Qt Linguist for translation tasks, it's viable to use a normal text editor to edit the TS file directly. The TS file is XML-formatted and should be supported well by other editors.
After translating, return to Qt Creator and run the lrelease command to generate the Internationalization_de.qm file. At the current stage, your project folder should contain both the TS and QM files, as shown in the following screenshot:
[image: Translating Qt Widgets applications]
Note
Note that file icons may differ slightly on your computers because of different operating system and (or) software installations.

We already produced the QM file; it's now time to modify the main.cpp file in order to load the translation into this application.
#include "mainwindow.h"
#include <QApplication>
#include <QTranslator>

int main(int argc, char *argv[])
{
 QApplication a(argc, argv);

 QTranslator translator;
 translator.load(QLocale::German, "Internationalization", "_");
 a.installTranslator(&translator);

 MainWindow w;
 w.show();

 return a.exec();
}

Here, QTranslator is used to load the German translation. Before we install translator into QApplication, we have to load a QM file by calling the load function. This will load the translation file whose filename consists of Internationalization followed by _ and the UI language name (which is de in this case) and .qm (the default value). There is a simplified overloaded load function. Our equivalent is as follows:
translator.load("Internationalization_de");

Usually, it would be better to call the previous load function because it uses QLocale::uiLanguages(), and it will also format dates and numbers if they're necessary for the new locale. Whichever you choose, always remember that if you load the translation after the MainWindow w; line, MainWindow won't be able to use the translation at all.
If you run the application now, the application won't display German yet. Why? This is simply because QTranslator can't find the Internationalization_de.qm file. There are lots of ways to solve this problem. The neatest way is to change the working directory, while running the application in Qt Creator.
	Switch to the Projects mode.
	Switch to Run Settings.
	Change Working directory to your project source directory where you put the Internationalization_de.qm file.

Now, run it again; you'll see German text on the screen, as follows:
[image: Translating Qt Widgets applications]
The label is displayed in English as we expected, whereas the window title and button text are displayed in German.
You may think this solution pointless, since the German translation is loaded despite the system locale setting. Well, the application can load the translation according to the system locale with only one modification; that is, changing the translator load line to the one shown here:
translator.load(QLocale::system().language(), "Internationalization", "_");

Here, system() is a static member function of the QLocale class, which returns a QLocale object that initialized with the system locale. We then call the language() function to get the language of the current locale.

 Disambiguating identical texts

If there are identical texts, the default behavior is to treat them as the texts with the same meaning. This could effectively save translators from translating the same texts. Meanwhile, this doesn't hold true all the time. For instance, the word open can be used as a noun or an adjective, which may be different words in other languages. Thankfully, it's possible and easy to disambiguate identical texts in Qt.
Now, let's add a PushButton and openButton between transButton and nonTransLabel. Use Open as its text, and then edit mainwindow.h. Add a new private slot named onOpenButtonClicked(), which is used to handle the event when openButton gets clicked. The relevant source file, mainwindow.cpp, is pasted as follows:

#include <QMessageBox>
#include "mainwindow.h"
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 connect(ui->openButton, &QPushButton::clicked, this, &MainWindow::onOpenButtonClicked);
}

MainWindow::~MainWindow()
{
 delete ui;
}

void MainWindow::onOpenButtonClicked()
{
 QMessageBox::information(this, tr("Dialog"), tr("Open"));
}

First, we connect the clicked signal of openButton to the onOpenButtonClicked slot of MainWindow in the constructor of MainWindow. Then, we simply use the static member function, information, of QMessageBox to pop-up an information dialog, using Dialog as the title and Open as its context. Don't forget to use the tr() function to make these strings translatable.
Now, run lupdate and open the TS file in Qt Linguist. There is only one Open string in the Strings panel, as shown here:
[image: Disambiguating identical texts]
However, Open in the information dialog is supposed to have an adjective, which shouldn't be mixed up with the text in openButton. It's a comment that we need to separate this Open from the other Open. Modify the onOpenButtonClicked function in mainwindow.cpp:
void MainWindow::onOpenButtonClicked()
{
 QMessageBox::information(this, tr("Dialog"), tr("Open", "adj."));
}

Here, the second argument of the tr() function is the comment. Different comments stand for different texts. In this way, lupdate will treat them as nonidentical texts. Rerun lupdate, and you're able to translate two Open strings in Qt Linguist. The Developer comments column in the translation area is shown here. Qt Linguist will also show two translatable Open strings.
[image: Disambiguating identical texts]
The equivalent property in the Design mode for openButton is disambiguation under the text property. After translation, execute lrelease, and then rerun the application and the two Open strings should have two different translations, which is demonstrated here:
[image: Disambiguating identical texts]

 Changing languages dynamically

Sometimes, people want to use languages other than the one specified by the system locale. This is a matter of application of the customized settings. This usually means restarting the application in order to load the corresponding translation file. This is partly because changing the language dynamically requires additional work. However, it's feasible and can be done with some lines. What's more important is that it delivers a better user experience!
Let's add a new push button to MainWindow. Name it loadButton and change its text to Load/Unload Translation. Then, edit the main.cpp file in the Edit mode. Remove all QTranslator related lines, as we'll be implementing this dynamic language switch in the MainWindow class. The main.cpp file should look like the originally generated one as follows:
#include "mainwindow.h"
#include <QApplication>

int main(int argc, char *argv[])
{
 QApplication a(argc, argv);
 MainWindow w;
 w.show();

 return a.exec();
}

Now, edit mainwindow.h, as we need to declare some members here:
#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>
#include <QTranslator>

namespace Ui {
class MainWindow;
}

class MainWindow : public QMainWindow
{
 Q_OBJECT

public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

private:
 Ui::MainWindow *ui;
 QTranslator *deTranslator;
 bool deLoaded;

private slots:
 void onOpenButtonClicked();
 void onLoadButtonClicked();

protected:
 void changeEvent(QEvent *);
};

#endif // MAINWINDOW_H

As you can tell, we moved QTranslator here, named it deTranslator, and used it as a pointer with the deLoaded variable to suggest whether or not we've already loaded the German translation. The following onLoadButtonClicked is a private slot function, which will be connected to the clicked signal of loadButton. Last but not least, we reimplement changeEvent, so that we can translate the entire user interface on the fly. It'll be clear in the mainwindow.cpp source file, where it is pasted as follows:
#include <QMessageBox>
#include "mainwindow.h"
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 deTranslator = new QTranslator(this);
 deTranslator->load(QLocale::German, "Internationalization", "_");
 deLoaded = false;

 connect(ui->openButton, &QPushButton::clicked, this, &MainWindow::onOpenButtonClicked);
 connect(ui->loadButton, &QPushButton::clicked, this, &MainWindow::onLoadButtonClicked);
}

MainWindow::~MainWindow()
{
 delete ui;
}

void MainWindow::onOpenButtonClicked()
{
 QMessageBox::information(this, tr("Dialog"), tr("Open", "adj."));
}

void MainWindow::onLoadButtonClicked()
{
 if (deLoaded) {
 deLoaded = false;
 qApp->removeTranslator(deTranslator);
 }
 else {
 deLoaded = true;
 qApp->installTranslator(deTranslator);
 }
}

void MainWindow::changeEvent(QEvent *e)
{
 if (e->type() == QEvent::LanguageChange) {
 ui->retranslateUi(this);
 }
 else {
 QMainWindow::changeEvent(e);
 }
}

In the constructor, we initialize deTranslator and load the German translation, which is almost identical to what we did in main.cpp before. Then, we set deLoaded to false, indicating that the German translation is not installed yet. Next, this is followed by a connect statement.
Now, let's look into the onLoadButtonClicked function to see what will happen if the loadButton gets clicked. We set deLoaded to false and remove deTranslator if it's already loaded. Otherwise, we install deTranslator and set deLoaded to true. Remember that qApp is a predefined macro that simply refers to the current instance of QCoreApplication. Both installTranslator and removeTranslator will propagate the event to all the top-level windows, that is to say, changeEvent of MainWindow will be triggered in this case.
In order to update all the text according to the translator, we have to reimplement changeEvent. In this reimplemented function, we call the retranslateUi function to retranslate MainWindow if the event is languageChange. Otherwise, we simply call the inherited and default QMainWindow::changeEvent function.
When you firstly start the application, it'll display English text.
[image: Changing languages dynamically]
Once you click on the Load/Unload Translation button, all translatable and translated text will show in German.
[image: Changing languages dynamically]
It'll display in English if you click the button again. In addition to a nontranslatable label, loadButton will not be not translated either. This is because we didn't translate the button at all. However, as you can see, the lack of some translations won't prevent the application from loading other translated texts.

 Translating Qt Quick applications

The procedure of translating a Qt Quick application is similar to a Qt Widgets application. We'll walk through the process with another example application.
Create a new Qt Quick application project and name it Internationalization_QML. The generated main.qml file has already added a qsTr() function for us. The contents may differ slightly in a later version of Qt Creator and (or) Qt Library. However, it should look similar to this one:
import QtQuick 2.3
import QtQuick.Controls 1.2

ApplicationWindow {
 visible: true
 width: 640
 height: 480
 title: qsTr("Hello World")

 menuBar: MenuBar {
 Menu {
 title: qsTr("File")
 MenuItem {
 text: qsTr("&Open")
 onTriggered: console.log("Open action triggered");
 }
 MenuItem {
 text: qsTr("Exit")
 onTriggered: Qt.quit();
 }
 }
 }

 Text {
 text: qsTr("Hello World")
 anchors.centerIn: parent
 }
}

Now, let's edit the Internationalization_QML.pro project file, whose modified version is pasted as follows:
TEMPLATE = app

QT += qml quick widgets

SOURCES += main.cpp

RESOURCES += qml.qrc

lupdate_only {
 SOURCES += main.qml
}

TRANSLATIONS = Internationalization_QML_de.ts

Additional import path used to resolve QML modules in Qt
Creator's code model
QML_IMPORT_PATH =

Default rules for deployment.
include(deployment.pri)

In addition to the TRANSLATIONS line, we also add a lupdate_only block. It is crucial in this case.
Note
We probably don't need this block in the Qt/C++ projects because the lupdate tool extracts the translatable strings from SOURCES, HEADERS, and FORMS.

However, this means that all the strings located elsewhere won't be found, not even saying translating. On the other hand, the qml files are not the C++ source files that are going to be compiled by the C++ compiler. In this case, we use lupdate_only to restrict those SOURCES, which are only available for lupdate.
Now, executing lupdate can generate the translation source file for us. Similarly, we use Qt Linguist to translate the Internationalization_QML_de.ts file. Then, execute lrelease to generate the QM file.
To load the translation, we need to modify main.cpp into the one shown here:
#include <QApplication>
#include <QQmlApplicationEngine>
#include <QTranslator>

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

 QTranslator translator;
 translator.load(QLocale::German, "Internationalization_QML", "_");
 app.installTranslator(&translator);

 QQmlApplicationEngine engine;
 engine.load(QUrl(QStringLiteral("qrc:/main.qml")));

 return app.exec();
}

Also, we need to change Working directory to this project's directory in Run Settings in the Projects mode. Now, run the application again; we should be able to see German text on the screen, as we can in the following screenshot:
[image: Translating Qt Quick applications]
There is an alternative way to load the translations file, which doesn't need to change Working directory. Firstly, change the translator.load line in main.cpp to the following one:
translator.load(QLocale::German, "Internationalization_QML", "_", ":/");

We specify the directory that the translator should search. In this case, it's ":/", which is the top directory inside Resources. Please don't prepend qrc to the directory string; this will cause translator to be unable to find the QM file. A colon (:) is sufficient here to indicate that there is a qrc path inside Resources.
You can either create a new qrc file, or similar to what we do, add Internationalization_QML_de.qm to the current qml.qrc file.
	Right-click on the qml.qrc file under Resources in Projects Editor.
	Select Open in Editor.
	Navigate to Add | Add Files on the lower-right panel.
	Select the Internationalization_QML_de.qm file and click on Open.

Now, the Internationalization_QML_de.qm file should display on both Editor and the Projects tree like the following screenshot:
[image: Translating Qt Quick applications]
Go to the Projects mode and reset Working directory in Run Settings. Then, run the application again; the German translation should still load successfully.
So far, there is no huge difference between Qt and Qt Quick. However, it's tedious to achieve dynamic translation installation and removal in Qt Quick. You have to write a C++ class that installs and remove the translator, which then emits a signal indicating that there is a change to the text. Therefore, the best practice for the Qt Quick application is to make language a setting. The user can then load different translations. It needs a restart of the application, though.

 Summary

You're now able to make your application more competitive by adding support for other languages now. Besides, the super easy to use Qt Linguist, which is also a cross-platform tool provided by Qt, is also covered in this chapter. In addition to the skills you learnt, you can also tell that Qt/C++ still holds a great advantage over Qt Quick/QML in terms of APIs and features.
In the next chapter, we're going to make our Qt applications redistributable and deploy them on other devices.

 Chapter 9. Deploying Applications on Other Devices

After development, it's time to distribute your application. We'll use an example application, Internationalization, from the previous chapter to demonstrate how to spread your Qt application to Windows, Linux, and Android. The following topics will be covered in this chapter:
	Releasing Qt applications on Windows
	Creating an installer
	Packaging Qt applications on Linux
	Deploying Qt applications on Android

Releasing Qt applications on Windows

After the development stage, you can build your application using release as the build configuration. In the release configuration, your compiler will optimize the code and won't produce debug symbols, which in turn reduces the size. Please ensure that the project is in the release configuration.
Before we jump into the packaging procedure, I'd like to talk about the difference between static and dynamic linking. You have probably been using dynamic linking of Qt libraries throughout this book. This can be confirmed if you download the Community Edition from the Qt website.
So, what does dynamic linking mean? Well, it means that when an executable file gets executed, the operating system will load and link the necessary shared libraries at runtime. In other words, you'll see a lot of .dll files on Windows and .so files on the Unix platforms. This technique allows developers to update these shared libraries and the executable separately, which means that you don't need to rebuild the executable file if you change shared libraries, so long as their ABIs are compatible. Although this method is more flexible, developers are warned to take care to avoid DLL Hell.
The most commonly used solution to DLL Hell on Windows is to choose static linking instead. By contrast, static linking will resolve all the function calls and variables at compile time and copy them into the target to produce a standalone executable. The advantages are obvious. Firstly, you don't need to ship all necessary and shared libraries. There won't be DLL Hell in this situation. On Windows, static libraries may get .lib or .a as extensions depending on the compiler you use, whereas they usually get .a on the Unix platforms.
To make a clear comparison, a table is made for you to see the differences between the dynamic and static linking:
	 	
Dynamic Linking

	
Static Linking

	

Library types

	
Shared libraries

	
Static libraries

	

Executable size

	
Considerably smaller

	
Greater than dynamically linked

	

Library updates

	
Only libraries themselves

	
Executable file needs to be rebuilt

	

Incompatible libraries

	
Need to take care to avoid this

	
Won't happen

However, if the shared libraries shipped with dynamically linked executable files are counted as part of the package, the dynamic style package will be larger than the statically linked standalone executable files.
Now, back to the topic! Since there is no standard Qt runtime library installer for Windows, the best routine is to produce a statically linked target because the package to be released will be smaller, and the executable is immune to DLL Hell.
However, as mentioned previously, the Qt libraries you downloaded can only be used for dynamic linking applications because they are shared libraries. It is viable to compile Qt as static libraries. However, before you proceed, you need to know the licenses of Qt.
Currently, in addition to the Qt Open Source License, there is also the Qt Commercial License. For open source licenses, most of the Qt libraries are licensed under The GNU Lesser General Public License (LPGL). In this case, if you build your application statically linked with the Qt libraries, your application is subject to provide users the source code of your application under LGPL. Your application may stay proprietary and closed source if it's dynamically linked with the Qt libraries. In other words, if you want to link an application statically and keep it proprietary, you have to purchase the Qt commercial license. For details about Qt licensing, refer to http://www.qt.io/licensing/.
If you decide to use static linking, you might have to compile the Qt libraries statically before building your application. In this case, the executable target is the only thing that needs to be packaged and released. Don't forget the QM files if your application has multi-language support, as mentioned previously.
On the other hand, if you want to go the dynamic way, it'd need some extra effort. Firstly, there are some core DLLs that have to exist and the list is different depending on the compiler. The following table includes both MSVC and MinGW/GCC scenarios:
	
MSVC 2013

	
MinGW/GCC

	

msvcp120.dll

	

libgcc_s_dw2-1.dll

	

msvcr120.dll

	

libstdc++-6.dll

	 	

libwinpthread-1.dll

There are common DLLs that need to be included, such as icudt53.dll, icuin53.dll, and icuuc53.dll. You can find these files in the Qt libraries directory. Take MinGW/GCC as an example; they're located in QT_DIR\5.4\mingw491_32\bin where QT_DIR is the Qt installation path, such as D:\Qt. Note that the later versions of Qt may have slightly different filenames.
Besides, there is no need to ship msvcp120.dll and msvcr120.dll if the target users have installed Visual C++ Redistributable Packages for Visual Studio 2013, which can be downloaded from http://www.microsoft.com/en-ie/download/details.aspx?id=40784.
After this, you may want to check other DLLs you'll need by looking into the project file. Take the Internationalization project as an example. Its project file, Internationalization.pro, gives us a clue. There are two lines related to the QT configuration, shown as follows:
QT += core gui

greaterThan(QT_MAJOR_VERSION, 4): QT += widgets

The QT variable includes the core gui widgets. In fact, all the Qt applications will include core at least, while others are dependent. In this case, we have to ship Qt5Core.dll, Qt5Gui.dll, and Qt5Widgets.dll along with the executable target.
Now, build the Internationalization project with MinGW/GCC. The executable target, Internationalization.exe, should be located inside the release folder of the build directory, which can be read from the Projects mode. Next, we create a new folder named package and copy the executable file there. Then, we copy the needed DLLs to package as well. Now, this folder should have all the necessary DLLs as shown here:
[image: Releasing Qt applications on Windows]
In most cases, if a required library is missing, the application won't run while the operating system will prompt the missing library name. For instance, if Qt5Widgets.dll is missing, the following system error dialog will show up when you try to run Internationalizationi.exe:
[image: Releasing Qt applications on Windows]
Basically, the routine is to copy the missing libraries to the same folder that the application is in. Besides, you can use some tools such as Dependency Walker to get the library dependencies.
Please don't use DLLs from the Qt Editor folder. This version is often different from Qt Libraries you've used. In addition to these libraries, you may have to include all the resources that your application is going to use. For example, the QM files used for translation, that is, to copy the Internationalization_de.qm file in order to load the German translation.
The file list is as follows:
	icudt53.dll
	icuin53.dll
	icuuc53.dll
	Internationalization.exe
	Internationalization_de.qm
	libgcc_s_dw2-1.dll
	libstdc++-6.dll
	libwinpthread-1.dll
	Qt5Core.dll
	Qt5Gui.dll
	Qt5Widgets.dll

Don't forget, this is the case for MinGW/GCC in Qt 5.4.0, while different versions and compilers might have a slightly different list, as we discussed before.
After this first-time preparation, to some extent this list is fixed. You only need to change the executable target and the QM file if it's changed. An easy way to do this is to compress all of them in tarball.

 Creating an installer

Although it's quick to use an archive file to distribute your application, it seems more professional if you provide users with an installer. Qt offers Qt Installer Framework whose latest open source version, 1.5.0 for now, can be obtained from http://download.qt.io/official_releases/qt-installer-framework/1.5.0/.
For the sake of convenience, let's create a folder named dist under the Qt Installer Framework installation path, D:\Qt\QtIFW-1.5.0. This folder is used to store all the application projects that need to be packaged.
Then, create a folder named internationalization under dist. Inside internationalization, create two folders, config and packages.
The name of the directory inside the packages directory acts as a domain-like, or say Java-style, identifier. In this example, we have two packages, one is the application while the other one is a translation. Therefore, it adds to the two folders in the packages directory, com.demo.internationalization, and com.demo.internationalization.translation, respectively. There will be meta and data directories present inside each of them, so the overall directory structure is sketched as follows:
[image: Creating an installer]
Let's edit the global configuration file, config.xml, which is first inside the config directory. You need to create one file named config.xml.
Note
Always remember not to use the Windows built-in Notepad to edit this file, or in fact any file. You may either use Qt Creator or other advanced editors, such as Notepad++, to edit it. This is simply because Notepad lacks of a lot of features as a code editor.

In this example, the config.xml file's content is pasted here:
<?xml version="1.0" encoding="UTF-8"?>
<Installer>
 <Name>Internationalization</Name>
 <Version>1.0.0</Version>
 <Title>Internationalization Installer</Title>
 <Publisher>Packt</Publisher>
 <TargetDir>@homeDir@/Internationalization</TargetDir>
 <AdminTargetDir>@rootDir@/Internationalization</AdminTargetDir>
</Installer>

For a minimum config.xml file, the elements <Name> and <Version> must exist in <Installer>. All other elements are optional, but you should specify them if there is a need. Meanwhile, <TargetDir> and <AdminTargetDir> may be a bit confusing. They both specify the default installation path, where <AdminTargetDir> is to specify the installation path when it gained administrative rights. The other elements are pretty much self-explanatory. There are other elements that you can set to customize the installer. For more details, refer to http://doc.qt.io/qtinstallerframework/ifw-globalconfig.html.
Let's navigate into the meta folder inside com.demo.internationalization. This directory contains the files that specify the settings for deployment and installation. All the files in this directory, except for licenses, won't be extracted by the installer, and neither will they be installed. There must be at least a package information file, such as package.xml. The following example, package.xml, in com.demo.internationalization/meta is shown here:
<?xml version="1.0" encoding="UTF-8"?>
<Package>
 <DisplayName>Core Application</DisplayName>
 <Description>Essential part of Internationalization</Description>
 <Version>1.0.0</Version>
 <ReleaseDate>2014-12-27</ReleaseDate>
 <Name>com.demo.internationalization</Name>
 <Licenses>
 <License name="License Agreement" file="license.txt" />
 </Licenses>
 <Default>true</Default>
 <ForcedInstallation>true</ForcedInstallation>
</Package>

The <Default> element specifies whether this package should be selected by default. At the same time, we set <ForcedInstallation> to true, indicating that the end users can't deselect this package. While the <Licenses> element can have multiple children <License>, in this case we only have one. We have to provide the license.txt file, whose content is just a single line demonstration, as shown here:
This is the content of license.txt.

The following package.xml file, which is located in com.demo.internationalization.translation/meta, has fewer lines:
<?xml version="1.0" encoding="UTF-8"?>
<Package>
 <DisplayName>German Translation</DisplayName>
 <Description>German translation file</Description>
 <Version>1.0.0</Version>
 <ReleaseDate>2014-12-27</ReleaseDate>
 <Name>com.demo.internationalization.translation</Name>
 <Default>false</Default>
</Package>

The difference between <DisplayName> and <Description> is demonstrated by the following screenshot:
[image: Creating an installer]
The <Description> element is the text that displays on the right-hand side when the package gets selected. It's also the text that pops up as the tooltip when the mouse hovers over the entry. You can also see the relationship between these two packages. As the name com.demo.internationalization.translation suggests, it is a subpackage of com.demo.internationalization.
The licenses will be displayed after this step and are shown in the following screenshot. If you set multiple licenses, the dialog will have a panel to view those licenses separately, similar to the one you see when you install Qt itself.
[image: Creating an installer]
For more settings in the package.xml file, refer to http://doc.qt.io/qtinstallerframework/ifw-component-description.html#package-information-file-syntax.
By contrast, the data directories store all the files that need to be installed. In this example, we keep all files prepared previously in the data folder of com.demo.internationalization, except for the QM file. The QM file, Internationalization_de.qm, is kept in the data folder inside com.demo.internationalization.translation.
After all the initial preparation, we come to the final step to generate the installer application of this project. Depending on your operating system, open Command Prompt or Terminal, changing the current directory to dist/internationalization. In this case, it's D:\Qt\QtIFW-1.5.0\dist\internationalization. Then, execute the following command to generate the internationalization_installer.exe installer file:

..\..\bin\binarycreator.exe -c config\config.xml -p packages internationalization_installer.exe

Note
On Unix platforms, including Linux and Mac OS X, you'll have to use a slash (/) instead of anti-slash (\), and drop the .exe suffix, which makes the command slightly different, as shown here:
../../bin/binarycreator -c config/config.xml -p packages internationalization_installer

You need to wait for a while because the binarycreator tool will package files in the data directories into the 7zip archives, which is a time consuming process. After this, you should expect to see internationalization_installer.exe (or without .exe) in the current directory.
The installer is much more convenient, especially for a big application project that has several optional packages. Besides, it'll register and let the end users uninstall through Control Panel.

 Packaging Qt applications on Linux

Things are more complicated on Linux than on Windows. There are two popular package formats: RPM Package Manager (RPM) and Debian Binary Package (DEB). RPM was originally developed for Red Hat Linux and it's the baseline package format of Linux Standard Base. It's mainly used on Fedora, OpenSUSE, Red Hat Enterprise Linux, and its derivatives; while the latter is famous for being used in Debian and its well-known and popular derivative, Ubuntu.
In addition to these formats, there are other Linux distributions using different package formats, such as Arch Linux and Gentoo. It will take extra time to package your applications for different Linux distributions.
However, it won't be too time consuming, especially for open-source applications. If your application is open source, you can refer to the documentation to write a formatted script to compile and package your application. For details on creating an RPM package, refer to https://fedoraproject.org/wiki/How_to_create_an_RPM_package, whereas for DEB packaging, refer to https://www.debian.org/doc/manuals/maint-guide/index.en.html. There is an example later that demonstrates how to package DEB.
Although it's feasible to pack proprietary applications, such as the RPM and DEB packages, they won't get into the official repository. In this case, you may want to set up a repository on your server or just release the packages via a file host.
Alternatively, you can archive your applications, similar to what we do on Windows, and write a shell script for installation and uninstallation. In this way, you can use one tarball or Qt Installer Framework to cook an installer for various distributions. But, don't ever forget to address the dependencies appropriately. The incompatible shared library issue is even worse on Linux, because almost all the libraries and applications are linked dynamically. The worst part is the incompatibility between different distributions, since they may use different library versions. Therefore, either take care of these pitfalls, or go the static linking way.
As we mentioned previously, statically linked software must be open source unless you have purchased the Qt commercial license. This dilemma makes the statically linked open source application pointless. This is not only because dynamic linking is the standard way, but also because statically linked Qt applications won't be able to use the system theme and can't benefit from system upgrades, which is not okay when security updates are involved. Anyway, you can compile your application using static linking if your application is proprietary and you get a commercial license. In this case, just like static linking on Windows, you only need to release the target executable files with the necessary resources, such as icons and translations. It's noteworthy that even if you build statically linked Qt applications, it's still impossible to run them on any Linux distributions.
Therefore, the recommended way is to install several mainstream Linux distributions on virtual machines, and then use these virtual machines to package your dynamically linked application as their own package formats. The binary package doesn't contain source code, and it's also a common practice to strip the symbols from the binary package. In this way, your source code for proprietary software won't be leaked through these packages.
We still use Internationalization as an example here. Let's see how to create a DEB package. The following operations were tested on the latest Debian Wheezy; later versions or different Linux distributions might be slightly different.
Before we package the application, we have to edit the project file, Internationalization.pro, to make it installable as follows:
QT += core gui

greaterThan(QT_MAJOR_VERSION, 4): QT += widgets

TARGET = Internationalization
TEMPLATE = app

SOURCES += main.cpp \
 mainwindow.cpp

HEADERS += mainwindow.h

FORMS += mainwindow.ui

TRANSLATIONS = Internationalization_de.ts

unix: {
 target.path = /opt/internationalization_demo
 qmfile.path = $$target.path
 qmfile.files = Internationalization_de.qm

 INSTALLS += target \
 qmfile
}

There is a concept in qmake called install set. Each install set has three members: path, files, and extra. The path member defines the destination location, while files tells qmake what files should be copied. You can specify some commands that need to be executed before other instructions in extra.

TARGET is a bit special. Firstly, it's the target executable (or library), while on the other hand, it also implies target.files. Therefore, we only need to specify the path of target. We also use the same path for qmfile, which includes the QM file. Don't forget to use a double dollar sign, $$, to use a variable. Lastly, we set the INSTALLS variable, which defines what is to be installed when make install is called. The unix brackets are used to limit the lines only read by qmake on the Unix platforms.
Now, we can get into the DEB packaging part by performing the following steps:
	Change your working directory (current directory) to the root of the project, that is, ~/Internationalization.
	Create a new folder named debian.
	Create the four required files in the debian folder: control, copyright, changelog, and rules, respectively. Then, create an optional compat file in the debian folder as well.

The control file defines the most basic yet most critical things. This file is all about the source package and the binary package(s). The control file of our example is pasted here:
Source: internationalization
Section: misc
Priority: extra
Maintainer: Symeon Huang <hzwhuang@gmail.com>
Build-Depends: debhelper (>=9),
 qt5-qmake,
 qtbase5-dev,
 qtbase5-private-dev
Standards-Version: 3.9.6

Package: internationalization
Architecture: any
Depends: ${shlibs:Depends}, ${misc:Depends}
Description: An example of Qt5 Blueprints

The first paragraph is to control information for a source, whereas each of the following sets describe a binary package that the source tree builds. In other words, one source package may build several binary packages. In this case, we build only one binary package whose name is the same as Source and internationalization.
In the Source paragraph, Source and Maintainer are mandatory while Section, Priority, and Standards-Version are recommended. Source identifies the source package name, which can't include uppercase letters. Meanwhile, Maintainer contains the maintainer package's name and the e-mail address in the RFC822 format. The Section field specifies an application area in which the package has been classified. Priority is a self-explanatory field, indicating how important this package is. Lastly, Standards-Version describes the most recent version of the standards with which the package complies. In most cases, you should use the latest standard version, 3.9.6 for now. There are other fields that may be useful but optional. For more details, refer to https://www.debian.org/doc/debian-policy/ch-controlfields.html.
You can specify certain packages needed for building in Build-Depends, similar to qt5-qmake and qtbase5-dev in our example. They're only defined for building processes and won't be included in the dependencies of binary packages.
The binary paragraphs are similar to the source except that there is no Maintainer, but Architecture and Description are mandatory now. For binary packages, Architecture can be any particular architecture or simply any or all. Specifying any indicates that the source package isn't dependent on any particular architecture and hence can be built on any architecture. In contrast to this, all means that the source package will produce only architecture-independent packages, such as documentations and scripts.
In Depends of the binary paragraph, we put ${shlibs:Depends}, ${misc:Depends} instead of particular packages. The ${shlibs:Depends} line can be used to let dpkg-shlibdeps generate shared library dependencies automatically. On the other hand, according to debhepler, you're encouraged to put ${misc:Depends} in the field to supplement ${shlibs:Depends}. In this way, we don't need to specify the dependencies manually, which is a relief for packagers.
The second required file, copyright, is to describe the licenses of the source as well as the DEB packages. In the copyright file, the format field is required while the others are optional. For more details about the formats of copyright, refer to https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/. The copyright file in this example is shown as follows:
Format: http://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Contact: Symeon Huang <hzwhuang@gmail.com>

File: *
Copyright: 2014, 2015 Symeon Huang
License: Packt

License: Packt
 This package is released under Packt license.

The first paragraph is called Header paragraph, which is needed once and only once. The Format line is the only mandatory field in this paragraph, and in most cases, this line is the same. The syntax of the Upstream-Contact field is the same as Maintainer in the control file.
The second paragraph in this file is Files paragraph, which is mandatory and repeatable. In these paragraphs, File, Copyright, and License are required. We use an asterisk sign (*) indicating that this paragraph applies to all files. The Copyright field may contain the original statement copied from files or a shortened text. The License field in a Files paragraph describes the licensing terms for the files defined by File.
Following the Files paragraph, the Stand-alone license paragraph is optional and repeatable. We have to provide the full license text if the license is not provided by Debian. Generally speaking, only commonly-seen open-source licenses are provided. The first line must be a single license short name, which is then followed by a license text. For a license text, there must be a two space indentation in each line's head.
Don't be misled by the changelog filename. This file also has a special format and is used by dpkg to obtain the version number, revision, distribution, and urgency of your package. It's a good practice to document all the changes you have made in this file. However, you can just list the most important ones if you have a version control system. The changelog file in our example has the following contents:
internationalization (1.0.0-1) unstable; urgency=low

 * Initial release

 -- Symeon Huang <hzwhuang@gmail.com> Mon, 29 Dec 2014 18:45:31 +0000

The first line is the package name, version, distribution, and urgency. The name must match the source package name. In this example, internationalization is the name, 1.0.0-1 is the version, unstable stands for the distribution, and urgency is low. Then, use an empty line to separate the first line and log entries. In the log entries, all the changes that you want to document should be listed. For each entry, there are two spaces and an asterisk sign (*) in the header. The last part of a paragraph is a maintainer line that begins with a space. For more details about this file and its format, refer to https://www.debian.org/doc/debian-policy/ch-source.html#s-dpkgchangelog.
Now, we need to take a look at what dpkg-buildpackage will do to create the package. This process is controlled by the rules file; the example is pasted here:
#!/usr/bin/make -f

export QT_SELECT := qt5

%:
 dh $@

override_dh_auto_configure:
 qmake

This file, similar to Makefile, consists of several rules. Also, each rule begins with its target declaration, while the recipes are the following lines beginning with the TAB code (not four spaces). We explicitly set Qt 5 as the Qt version, which can avoid some issues when Qt 5 coexists with Qt 4. The percentage sign (%) is a special target and means any targets, which just calls the dh program with the target name, while dh is just a wrapper script, which runs appropriate programs depending on its argument, the real target.
The rest of the lines are customizations for the dh command. For instance, dh_auto_configure will call ./configure by default. In our case, we use qmake to generate Makefile instead of a configure script. Therefore, we override dh_auto_configure by adding the override_dh_auto_configure target with qmake as the recipe.
Although the compat file is optional, you'll get bombarded with warnings if you don't specify it. Currently, you should set its content to 9, which can be done by the following single-line command:

echo 9 > debian/compat

We can generate the binary DEB package now. The -uc argument stands for uncheck while -us stands for unsign. If you have a PKG key, you may need to sign the package so that users can trust the packages you've released. We don't need source packages, so the last argument, -b, indicates that only the binary packages will be built.

dpkg-buildpackage -uc -us -b

The automatically detected dependencies can be viewed in the debian/ file, internationalization.substvars. This file's contents are pasted here:
shlibs:Depends=libc6 (>= 2.13-28), libc6 (>= 2.4), libgcc1 (>= 1:4.4.0), libqt5core5a (>= 5.0.2), libqt5gui5 (>= 5.0.2), libqt5widgets5 (>= 5.0.2), libstdc++6 (>= 4.3.0)
misc:Depends=

As we discussed earlier, the dependencies are generated by shlibs and misc. The biggest advantage is that these generated version numbers tend to be the smallest, which means the maximum backwards compatibility. As you can see, our Internationalization example can run on Qt 5.0.2.
If everything goes well, you'd expect a DEB file in an upper-level directory. However, you can only build the current architecture's binary package, amd64. If you want to build for i386 natively, you need to install a 32-bit x86 Debian. For cross-compilation, refer to https://wiki.debian.org/CrossBuildPackagingGuidelines and https://wiki.ubuntu.com/CrossBuilding.
Installing a local DEB file is easily done with the following single-line command:

sudo dpkg -i internationalization_1.0.0-1_amd64.deb

After installation, we can run our application by running /opt/internationalization_demo/Internationalization. It should run as expected and behave exactly the same as on Windows, as shown in the following screenshot:
[image: Packaging Qt applications on Linux]

 Deploying Qt applications on Android

The internationalization application requires a QM file to be loaded correctly. On Windows and Linux, we choose to install them alongside the target executable. However, this is not always a good approach, especially on Android. The path is more complicated than the desktop operating systems. Besides, we're building a Qt application instead of the Java application. Localization is definitely different from a plain Java application, as stated in the Android documentation. Hence, we're going to bundle all the resources into the qrc file, which will be built into the binary target:
	Add a new file to project by right-clicking on the project, and then select Add New….
	Navigate to Qt | Qt Resource File in the New File dialog.
	Name it res and click on OK; Qt Creator will redirect you to edit res.qrc.
	Navigate to Add | Add Prefix and change Prefix to /.
	Navigate to Add | Add Files and select the .Internationalization_de.qm file in the dialog.

Now, we need to edit mainwindow.cpp to make it load the translation file from Resources. We only need to change the constructor of MainWindow where we load the translation, as shown here:
MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 deTranslator = new QTranslator(this);
 deTranslator->load(QLocale::German, "Internationalization", "_", ":/");
 deLoaded = false;

 connect(ui->openButton, &QPushButton::clicked, this, &MainWindow::onOpenButtonClicked);
 connect(ui->loadButton, &QPushButton::clicked, this, &MainWindow::onLoadButtonClicked);
}

The preceding code is to specify the directory for the QTranslator::load function. As we mentioned in the previous chapter, :/ indicates that it's a qrc path. Don't add a qrc prefix unless it's a QUrl object.
We can remove the qmfile install set from the project file now, because we've already bundled the QM file. In other words, after this change, you don't need to ship the QM file on Windows or Linux anymore. Edit the project file, Internationalization.pro, as shown in the following code:
QT += core gui

greaterThan(QT_MAJOR_VERSION, 4): QT += widgets

TARGET = Internationalization
TEMPLATE = app

SOURCES += main.cpp \
 mainwindow.cpp

HEADERS += mainwindow.h

FORMS += mainwindow.ui

TRANSLATIONS = Internationalization_de.ts

unix: {
 target.path = /opt/internationalization_demo

 INSTALLS += target
}

RESOURCES += \
 res.qrc

Now, switch to Projects mode and add the Android kit. Don't forget to switch the build to release. In Projects mode, you can modify how Qt Creator should build the Android APK package. There is an entry in Build Steps called Build Android APK, as shown in the following screenshot:
[image: Deploying Qt applications on Android]
Here, you can specify the Android API level and your certificate. By default, Qt Deployment is set to Bundle Qt libraries in APK, which creates a redistributable APK file. Let's click on the Create Templates button to generate a manifest file, AndroidManifest.xml. Normally, you just click on the Finish button on the pop-up dialog, and then Qt Creator will redirect you back to the Edit mode with AndroidManifest.xml open in the editing area, as shown here:
[image: Deploying Qt applications on Android]
Let's make a few changes to this manifest file by performing the following steps:
	Change Package name to com.demo.internationalization.
	Change Minimum required SDK to API 14: Android 4.0, 4.0.1, 4.0.2.
	Change Target SDK to API 19: Android 4.4.
	Save the changes.

Different API levels have an impact on compatibility and the UI; you have to decide the levels carefully. In this case, we require at least Android 4.0 to run this application, which we're going to it for Android 4.4. Generally speaking, the higher the API level, the better the overall performance is. The Internationalization.pro project file is automatically changed as well.
QT += core gui

greaterThan(QT_MAJOR_VERSION, 4): QT += widgets

TARGET = Internationalization
TEMPLATE = app

SOURCES += main.cpp \
 mainwindow.cpp

HEADERS += mainwindow.h

FORMS += mainwindow.ui

TRANSLATIONS = Internationalization_de.ts

unix: {
 target.path = /opt/internationalization_demo

 INSTALLS += target
}

RESOURCES += \
res.qrc

DISTFILES += \
 android/gradle/wrapper/gradle-wrapper.jar \
 android/AndroidManifest.xml \
 android/res/values/libs.xml \
 android/build.gradle \
 android/gradle/wrapper/gradle-wrapper.properties \
 android/gradlew \
 android/gradlew.bat

ANDROID_PACKAGE_SOURCE_DIR = $$PWD/android

Now, build a release build. The APK file is created in android-build/bin inside the project build directory. The APK filename is QtApp-release.apk or QtApp-debug.apk if you don't set your certificate. If you're going to submit your application to Google Play or any other Android markets, you have to set your certificate and upload QtApp-release.apk instead of QtApp-debug.apk. Meanwhile, QtApp-debug.apk can be used on your own devices to test the functionality of your application.
The screenshot of Internationalization running on HTC One is shown as follows:
[image: Deploying Qt applications on Android]
As you can see, the German translation is loaded as expected, while the pop-up dialog has a native look and feel.

 Summary

In this chapter, we compared the advantages and disadvantages of static and dynamic linking. Later on, we used an example application, showing you how to create an installer on Windows and how to package it as a DEB package on Debian Linux. Last but not least, we also learned how to create a redistributable APK file for Android. The slogan, code less, create more, deploy everywhere is now fulfilled.
In the next chapter, which is also the last chapter of this book, in addition to how to debug applications, we're also going to look at some common issues and solutions to them.

 Chapter 10. Don't Panic When You Encounter These Issues

During application development, you may get stuck with some issues. Qt is amazing, as always, since Qt Creator has an excellent Debug mode that can save you time when debugging. You'll learn how to debug either Qt/C++ or Qt Quick/QML applications. The following topics will be covered in this chapter:
	Commonly encountered issues
	Debugging Qt applications
	Debugging Qt Quick applications
	Useful resources

Commonly encountered issues

Errors, or more appropriately, unexpected results, are definitely unavoidable during application development. Besides, there could also be compiler errors, or even application crashes. Please don't panic when you encounter these kinds of issues. To ease your pain and help you locate the problem, we have collected some commonly encountered and reproducible unexpected results and categorized them, as shown in the next sections.
C++ syntax mistakes

For programming beginners, or developers who are not familiar with C and C++, the syntax of C++ is not easy to remember. If there are any syntax mistakes, the compiler will abort with error messages. In fact, the editor will display tildes below problematic statements, as shown here:
[image: C++ syntax mistakes]
Among all C++ syntax mistakes, the most common one is a missing semicolon (;). C++ needs a semicolon to mark the end of a statement. Therefore, line 7 and line 8 are equivalent to the following line:
 MainWindow w w.show();

This, in C++, is obviously written incorrectly. Not only will the editor highlight the error, the compiler will also give you a thorough error message. In this case, it'll display the following message:

C:\Users\Symeon\OneDrive\Book_Dev\4615OS\4615OS_07\project\Weather_Demo\main.cpp:8: error: C2146: syntax error : missing ';' before identifier 'w'

As you can tell, the compiler won't tell you that you should add a semicolon at the end of line 7. Instead, it reads missing; before the w identifier, which is in line 8. Anyway, in most cases the C++ syntax errors can be detected by the compiler, while most of them will first be detected by the editor. Thanks to the highlighting feature of Qt Creator, these types of mistakes should be avoided effectively.
It's recommended as a good habit that you add a semicolon before you press Enter. This is because in some cases the syntax may seem correct for compilers and Qt Creator, but it's definitely wrongly coded and will cause unexpected behavior.

Pointer and memory

Anyone familiar with C and its wild pointers understands how easy it is to make a mistake regarding memory management. As we mentioned before, Qt has a superior memory management mechanism, which will release its child objects once the parent is deleted. This, unfortunately, may lead to a crash if the developer explicitly uses delete to release a child object.
The primary reason behind this is that delete is not a thread-safe operation. It may cause a double delete, resulting in a segment fault. Therefore, to release memory in a thread-safe way, we use the deleteLater() function defined in the QObject class, which means that this method is available for all classes inherited from QObject. As stated in the documentation, deleteLater() will schedule the object for deletion but the deletion won't happen immediately.
Note
It's completely safe to call deleteLater() multiple times. Once the first deferred deletion is completed, any pending deletions are removed from the event queue. There won't be any double deletes.

There is another class dealing with memory management in Qt, QObjectCleanupHandler. This class watches the lifetime of multiple QObjects. You can treat it as a simple Qt garbage collector. For instance, there are a lot of QTcpSocket objects that need to be watched and deleted properly. These kinds of cases are not uncommon, especially for networking programs. An easy trick is to add all these objects to QObjectCleanupHandler. The following piece of code is a simple demonstration that adds QObject to QObjectCleanupHandler ch:
QTcpSocket *t = new QTcpSocket(this);
QObjectCleanupHandler ch;
ch.add(t);

Adding the t object to ch won't change the parent object of t from this to &ch. QObjectCleanupHandler is more like QList in this way. If t is deleted somewhere else, it'll get removed from the list of ch automatically. If there is no object left, the isEmpty() function will return true. All objects in QObjectCleanupHandler will be deleted when it's destroyed. You can also explicitly call clear() to delete all objects in QObjectCleanupHandler manually.

Incompatible shared libraries

This type of errors are the so-called DLL Hell, which we discussed in the previous chapter. It results from incompatible shared libraries, which may lead to strange behavior or crashes.
In most cases, Qt libraries are backwards compatible, which means that you may replace all DLLs with newer ones and not need to recompile executables. Some certain modules or APIs may be deprecated and be deleted from a later version of Qt. For example, the QGLWidget class is replaced by a newly introduced QOpenGLWidget class in Qt 5.4. QGLWidget is still provided for now though.
In the reverse direction, things are getting pretty bad. If your application calls an API that is introduced since, for example, Qt 5.4, the application definitely will malfunction with an older version of Qt, such as Qt 5.2.
The following is a simple program that makes use of QSysInfo, which is introduced in Qt 5.4. The main.cpp file of this simple incompat_demo project is shown here:
#include <QDebug>
#include <QSysInfo>
#include <QCoreApplication>

int main(int argc, char *argv[])
{
 QCoreApplication a(argc, argv);

 qDebug() << "CPU:" << QSysInfo::currentCpuArchitecture();

 return a.exec();
}

QSysInfo::currentCpuArchitecture() returns the architecture of the CPU that the application is running on as a QString object. If the version of Qt is high enough (greater than or equal to 5.4), it'll run as expected, as shown in the following screenshot:
[image: Incompatible shared libraries]
As you can see, it says we're running this application on a 64-bit x86 CPU machine. However, if we put the compiled executable with DLLs from Qt 5.2, it'll give an error as shown here and crash:
[image: Incompatible shared libraries]
This situation is rare, of course. However, if this happens, you'll get an idea about what goes wrong. From the error dialog, we can see the error is because of the missing QSysInfo::currentCpuArchitecture line in the dynamic link library.
Another DLL Hell is more complex and may be ignored by beginners. All libraries must be built by the same compiler. You can't use the MSVC libraries with GCC, which holds true for other compilers, such as ICC and Clang. Different compiler versions might cause incompatibility as well. You probably don't want to use a library compiled by GCC 4.3 in your development environment where the GCC version is 4.9. However, libraries compiled by GCC 4.9.1 should be compatible with those compiled by GCC 4.9.2.
In addition to compilers, different architectures are often incompatible. For example, 64-bit libraries won't work on 32-bit platforms. Similarly, x86 libraries and binaries can't be used on the non-x86 devices, such as ARM and MIPS.

Doesn't run on Android!

Qt was ported to Android not too long ago. Hence, there is a possibility that it runs well on a desktop PC but not on Android. On one hand, Android hardware varies, not even speaking of thousands of customized ROMs. Therefore, it is reasonable that some Android devices may encounter compatibility issues. On the other hand, the Qt application running on Android is a native C++ application with a Java wrapper, while binary executables are naturally more vulnerable to compatibility issues than scripts.
Anyway, here's the recipe:
	Try to run your application on another Android handset or virtual Android device.
	If it still doesn't work, it can be a potential bug of Qt on Android. We'll talk about how to report a bug to Qt at the end of this chapter.

 Debugging Qt applications

To debug any Qt application, you need to ensure that you have installed the debug symbols of the Qt libraries. On Windows, they are installed together with release version DLLs. Meanwhile, on Linux, you may need to install debug symbols by the distribution's package manager.
Some developers tend to use a function similar to printf to debug the application. Qt provides four global functions, which are shown in the following table, to print out debug, warnings, and error text:
	
Function

	
Usage

	

qDebug()

	
This function is used for writing custom debug output.

	

qWarning()

	
This function is used for reporting warnings and recoverable errors.

	

qCritical()

	
This function is used for writing critical error messages and reporting system errors.

	

qFatal()

	
This function is used for printing fatal error messages shortly before exiting.

Normally, you can just use a C-style method similar to printf.
qDebug("Hello %s", "World!");

However, in most cases, we'll include the <QtDebug> header file so that we can use the stream operator (<<) as a more convenient way.
qDebug() << "Hello World!"

The most powerful place of these functions is that they can output the contents of some complex classes', QList and QMap. It's noted that these complex data types can only be printed through a stream operator (<<).
Both qDebug() and qWarning() are debugging tools, which mean that they can be disabled at compile time by defining QT_NO_DEBUG_OUTPUT and QT_NO_WARNING_OUTPUT, respectively.
In addition to these functions, Qt also provides the QObject::dumpObjectTree() and QObject::dumpObjectInfo() functions which are often useful, especially when an application looks strange. QObject::dumpObjectTree() dumps information about signal connections, which is really useful if you think there may be a problem in signal slot connections. Meanwhile, the latter dumps a tree of children to the debug output. Don't forget to build the application in Debug mode, otherwise neither of them will print anything.
Apart from these useful debugging functions, Qt Creator has offered an intuitive way to debug your application. Ensure that you've installed Microsoft Console debugger (CDB) if you're using an MSVC compiler. In other cases, the GDB debugger is bundled in a MinGW version.
Note
CDB is now a part of Windows Driver Kit (WDK); visit http://msdn.microsoft.com/en-us/windows/hardware/hh852365 to download it. Don't forget to check Debugging Tools for Windows during the installation.

Consider Fancy_Clock from Chapter 2, Building a Beautiful Cross-platform Clock, as an example. In the MainWindow::setColour() function, move the cursor to line 97, which is switch (i) {. Then, navigate to Debug | Toggle Breakpoint or just press F9 on the keyboard. This will add a breakpoint on line 97, which will add a breakpoint marker (a red pause icon in front of a line number) as shown here:
[image: Debugging Qt applications]
Now click on the Start Debugging button on the pane, which has a bug on it, or navigate to Debug | Start Debugging | Start Debugging on the menu bar, or press F5 on the keyboard. This will recompile the application, if needed, and start it in Debug mode. At the same time, Qt Creator will automatically switch to Debug mode.
[image: Debugging Qt applications]
The application is interrupted because of the breakpoint we set. You can see a yellow arrow indicating which line the application is currently on, as shown in the preceding screenshot. By default, on the right pane, you can see Locals and Expressions where all the local variables along with their values and types are shown. To change the default settings, navigate to Window | Views, and then choose what to display or hide.
The panes in the Debug mode are marked in blue text in this screenshot:
[image: Debugging Qt applications]
Briefly said, you can monitor the variables in Locals and expressions in Expressions. Stack displays the current stack and all breakpoints can be managed in the Breakpoints pane.
On the bottom pane, there are a series of buttons to control the debugging process. The first six buttons are Continue, Stop Debugger, Step Over, Step Into, Step Out, and Restart the debugging session, respectively. Step Over is to execute a line of code as a whole. Step Into will step into a function or a subfunction, while Step Out can leave the current function or subfunction.

Breakpoints plays a crucial role in debugging, as you can tell whether a breakpoint represents a position or set of positions in the code that interrupts the application from being debugged and grants you control. Once it is interrupted, you can examine the state of the program or continue the execution, either line-by-line or continuously. Qt Creator shows breakpoints in the Breakpoints view, which is located at the lower-right-hand side by default. You can add or delete breakpoints in the Breakpoints view. To add a breakpoint, right-click on the Breakpoints view and select Add Breakpoint…; there will be an Add Breakpoint dialog as shown here:
[image: Debugging Qt applications]
In the Breakpoint type field, select the location in the program code where you want the application to be interrupted. Other options are dependent on the selected type.
To move the breakpoint, simply drag the breakpoint marker and drop it on the destination. It's not an often needed function, though.
There're many ways to delete a breakpoint.
	By clicking on the breakpoint marker in the editor, moving the cursor to the corresponding line, and navigating to Debug | Toggle Breakpoint, or by pressing F9
	By right-clicking on the breakpoint in the Breakpoints view and selecting Delete Breakpoint
	By selecting the breakpoint in the Breakpoints view and pressing the Delete button on the keyboard

The most powerful place is the previously introduced Locals and Expressions view. Every time the program stops under the control of the debugger, it retrieves information and displays it in the Locals and Expressions view. The Locals pane shows function parameters and local variables. There is a comprehensive display of data belonging to Qt's basic objects. In this case, when the program is interrupted in MainWindow::setColour(), there is a pointer whose Value is "MainWindow". Instead of just memory address of this pointer, it can show you all the data and children that belong to this object:
[image: Debugging Qt applications]
As you can see from preceding screenshot, this is a MainWindow instance, which is inherited from QMainWindow. It has three children items: _layout, qt_rubberband, and centralWidget. It's noted that only slot functions are displayed in [methods]. Now you'll understand why the Locals pane is the most important and commonly used view in the Debug mode.
On the other hand, the Expressions pane is even more powerful and can compute the values of arithmetic expressions or function calls. Right-click on the Locals and Expressions view and select Add New Expression Evaluator… in the context menu.
Note that the context menu entries are available only when the program is interrupted. In this case, Fancy_Clock is interrupted in the MainWindow::setColour() function where the local variable, i, can be used to perform some arithmetic operations. For example, we fill i * 5 in the New Evaluated Expression pop-up dialog.
[image: Debugging Qt applications]
In addition to arithmetic operations, you can call a function to evaluate the return value. However, this function must be accessible to the debugger, which means it's either compiled into the executable or can be invoked from a library.
The expression value will be re-evaluated after each step. After you click on the OK button, the expression i * 5, is shown in the Expressions pane as shown here:
[image: Debugging Qt applications]
The value of i is now 3. Therefore, the expression i * 5 is evaluated as 15.
"Expression evaluators are powerful, but slow down debugger operation significantly. It is advisable not to use them excessively, and to remove unneeded expression evaluators as soon as possible."

Even if functions used in the expressions have side effects, they will be called each time the current frame changes. After all, the expression evaluator is powerful but bad for debugging speed.

 Debugging Qt Quick applications

We will use the Weather_QML project from Chapter 7, Parsing JSON and XML Documents to Use Online APIs, as a demonstration program to show how to debug a Qt Quick application.
First, we need to ensure that QML debugging is enabled. Open the Weather_QML project in Qt Creator. Then, perform the following steps:
	Switch to the Projects mode.
	Expand the qmake step in Build Steps.
	Check Enable QML debugging if it's not checked.Tip
Debugging QML will open a socket at a well-known port, which poses a security risk. Anyone on your network could connect to the debugging application and execute any JavaScript function. Therefore, you have to make sure there are appropriate firewall rules.

The same procedure is used to start QML debugging, which is to navigate to Debug | Start Debugging | Start Debugging, or click the Debug button, or just press F5. It may trigger a Windows Security Alert, shown in the following screenshot. Don't forget to click on the Allow access button.
[image: Debugging Qt Quick applications]
Once the application starts running, it behaves and performs as usual. However, you can perform some useful tasks in debugging mode. You can see all the elements and their properties in the Locals pane as we did for the Qt/C++ applications.
In addition to just watching these variables, you can change them temporarily and see the changes at runtime immediately. To change a value, you can either directly change it in the Locals pane or change it in QML/JS Console.
For example, to change the title property of ApplicationWindow, perform the following steps:
	Expand ApplicationWindow | Properties in the Locals pane.
	Double-click on the title entry.
	Change the value from Weather QML to Yahoo! Weather.
	Press the Enter or Return key on the keyboard to confirm.

Alternatively, you can change it in QML/JS Console. There is no need to expand ApplicationWindow; just click on ApplicationWindow in the Locals pane. You'll notice Context on the QML/JS Console panel will become ApplicationWindow, as shown in the following screenshot. Then, just input the title="Yahoo! Weather" command to change the title.
[image: Debugging Qt Quick applications]
You'll notice the title in the application window is changed to Yahoo! Weather immediately, as shown here:
[image: Debugging Qt Quick applications]
Meanwhile, the source code is left intact. This feature is really handy when you want to test a better value for a property. Instead of changing it in the code and rerunning, you can change and test it on the fly. In fact, you can also execute the JavaScript expressions in QML/JS Console, not just change their values.

 Useful resources

Still getting stuck with an issue? In addition to online search engines, there are two online forums that could also be useful for you. The first one is the forum in the Qt Project, whose URL is http://qt-project.org/forums. The other one is maintained by a community site, Qt Centre, and its URL is http://www.qtcentre.org/forum.php.
In most cases, you should be able to find similar or even identical problems on these websites. If not, you can post a new thread asking for help. Describe the problem as thoroughly as possible so that other users can get an idea of what's going wrong.
There is a possibility that you did everything correctly but still might be getting unexpected results, compiler errors, or crashes. In this case, it may be a Qt bug. If you believe that you've encountered a Qt bug, you are encouraged to report it. It's easy to report a bug since Qt has a bug tracker, whose URL is https://bugreports.qt.io.
Tip
The quality of the bug report dramatically impacts how soon the bug will be fixed.

To produce a high-quality bug report, here is a simple step-by-step manual:
	Visit the Qt bug tracker website.
	Log in. If it's your first time, you need to create a new account. Remember to supply a valid e-mail address as this is the only way for the Qt developers to contact you.
	Use the Search field on the upper-right side to find any similar, or even identical bugs.
	If you find one, you can leave a comment with any additional information that you have. Besides, you can click on Vote to vote for that bug. Lastly, you could add yourself as a watcher if you want to track the progress.
	If not, click on Create New Issues and fill in the fields.

You should enter a brief descriptive text in Summary. This is not only for a higher chance to get it fixed, but also good for other people searching for existing bugs. For other fields, you're always encouraged to provide as much information as you can.

 Summary

After having a read through this chapter, you can sort out the majority of Qt-based issues on your own. We started off with a few commonly encountered problems, followed by how to debug Qt and Qt Quick applications. At the end, there were a few useful links to help you crack down on the varied issues and errors. If you encounter any problem with a particular Qt bug, don't panic, just go to the bug tracker and report it.

 Index

 A

 	About function / Utilizing the menu bar

 	addText function / Writing static plugins

 	Aero Peek / Building on the Unix platforms

 	Android	Qt, setting up / Setting up Qt for Android
	Qt applications, building / Building Qt applications for Android
	Qt application, deploying / Deploying Qt applications on Android

 	Android SDK	URL / Setting up Qt for Android

 	Apache Ant	URL / Setting up Qt for Android

 	Arch Linux	about / Packaging Qt applications on Linux

 	at() function / Creating a basic digital clock

 B

 	Base64 class / Creating a C++ plugin for QML applications

 	basic digital clock	creating / Creating a basic digital clock
	tweaking / Tweaking the digital clock

 	Behavior with State / Tweaking the categories

 	bug tracker, Qt	URL / Useful resources

 	BusyIndicator	adding / Adding BusyIndicator

 C

 	C++ plugin	creating, for QML applications / Creating a C++ plugin for QML applications

 	C++ slots	connecting, to QML signals / Connecting C++ slots to QML signals

 	camera	accessing, in Qt / Accessing the camera in Qt
	controlling / Controlling the camera

 	camera->searchAndLock() function / Accessing the camera in Qt

 	categories	tweaking / Tweaking the categories

 	Categories panel / Understanding model and view

 	console.assert() function / Debugging QML

 	console.count() function / Debugging QML

 	console.exception() function / Debugging QML

 	console.profile() function / Debugging QML

 	console.profileEnd() function / Debugging QML

 	console.time() function / Debugging QML

 	console.timeEnd() function / Debugging QML

 	console.trace() function / Debugging QML

 	Console debugger (CDB) / Debugging Qt applications

 	contentItem property / Utilizing ScrollView

 	currentTime() function / Creating a basic digital clock

 D

 	DEB	about / Packaging Qt applications on Linux

 	Debian	about / Packaging Qt applications on Linux

 	Debian Wheezy	about / Packaging Qt applications on Linux

 	deleteLater() function / Pointer and memory

 	DLL Hell	about / Releasing Qt applications on Windows

 	drawPolyline function / Drawing via QPainter

 	dynamic linking	versus static linking / Releasing Qt applications on Windows

 	dynamic plugins	writing / Writing dynamic plugins

 E

 	errors	displaying, in status bar / Displaying errors on the status bar

 	exec() function / Writing dynamic plugins

 F

 	Fedora	about / Packaging Qt applications on Linux

 	Fedora 20 / Building on the Unix platforms

 	Files paragraph	about / Packaging Qt applications on Linux

 	forums, Qt Project	URL / Useful resources

 	frameless window	creating / Making a frameless window

 	FreeBSD / Building on the Unix platforms

 G

 	Gentoo	about / Packaging Qt applications on Linux

 	getAttrImg function / Parsing JSON results

 	get function / Creating a C++ plugin for QML applications

 	Graphics View Framework	URL / Accessing the camera in Qt

 H

 	handler function / Parsing JSON in QML

 	Header paragraph	about / Packaging Qt applications on Linux

 	high-quality bug report	producing / Useful resources

 I

 	identical texts	disambiguating / Disambiguating identical texts

 	InsertInterface class / Writing static plugins

 	installer	creating / Creating an installer

 	install set	about / Packaging Qt applications on Linux

 	Internet Engineering Task Force / Translating Qt Widgets applications

 	issues	about / Commonly encountered issues
	C++ syntax mistakes / C++ syntax mistakes
	pointers / Pointer and memory
	memory management / Pointer and memory
	incompatible shared libraries / Incompatible shared libraries
	compatibility issues, with Android / Doesn't run on Android!

 J

 	Java Development Kit (JDK)	URL / Setting up Qt for Android

 	JSON	URL / Parsing JSON results
	parsing, in QML / Parsing JSON in QML

 	JSON results	parsing / Parsing JSON results

 K

 	KDE 4 / Building on the Unix platforms

 L

 	lambda expression	URL / Understanding the mechanism of signals and slots

 	languages	changing dynamically / Changing languages dynamically

 	Linux	Qt application, packaging / Packaging Qt applications on Linux

 	Linux Standard Base	about / Packaging Qt applications on Linux

 	localPos() function / Drawing via QPainter

 M

 	mapToGlobal function / Tweaking the digital clock

 	menu bar	utilizing / Utilizing the menu bar

 	model	about / Understanding model and view

 	model-view architecture / Understanding model and view

 	move function / Tweaking the digital clock

 	multithreaded applications	writing / Writing multithreaded applications

 N

 	NDK	URL / Setting up Qt for Android

 	number function / Permanent widgets in the status bar

 O

 	onInsertInterface function / Writing static plugins

 	onOnlineStateChanged function / Managing a system network session

 P

 	paintEvent function / Drawing via QPainter

 	parent-child mechanism / Creating a basic digital clock

 	parseXMLChannel function / Parsing XML results

 	permanent widgets	in status bar / Permanent widgets in the status bar

 	plugins	merging, with main program�s projects / Merging plugins and main program projects

 	progress bar	using / Making use of the progress bar

 	project	creating / Creating a new project

 	project, main program	plugins, merging with / Merging plugins and main program projects

 Q

 	QApplication class / Creating a new project

 	QCamera class / Accessing the camera in Qt

 	QCameraFocus class / Controlling the camera

 	QCameraImageCapture class / Accessing the camera in Qt

 	qCritical() function / Debugging Qt applications

 	qDebug() function / Debugging Qt applications

 	QDir class / Writing dynamic plugins

 	qFatal() function / Debugging Qt applications

 	QFileDialog	using / Using QFileDialog

 	QMenu class / Tweaking the digital clock

 	QMessageBox class / Utilizing the menu bar

 	QML	debugging / Debugging QML
	JSON, parsing / Parsing JSON in QML

 	QML applications	C++ plugin, creating / Creating a C++ plugin for QML applications

 	QML camera	about / QML camera

 	QML signals	C++ slots, connecting to / Connecting C++ slots to QML signals

 	QNetworkAccessManager	utilizing / Utilizing QNetworkAccessManager

 	QNetworkAccessManager class / Introducing Qt network programming

 	QNetworkConfiguration class / Managing a system network session

 	QNetworkConfigurationManager class / Managing a system network session

 	QNetworkRequest class / Introducing Qt network programming

 	QNetworkSession class / Managing a system network session

 	QObject**dumpObjectInfo() function / Debugging Qt applications

 	QObject**dumpObjectTree() function / Debugging Qt applications

 	QObjectCleanupHandler class / Pointer and memory

 	QPaintDevice / Drawing via QPainter

 	QPaintEngine / Drawing via QPainter

 	QPainter	about / Drawing via QPainter
	used, for drawing / Drawing via QPainter

 	QPainterPath class / Writing static plugins

 	QProgressBar class / Making use of the progress bar

 	QStatusBar class / Displaying errors on the status bar

 	qsTr() function / Internationalization of Qt applications, Translating Qt Quick applications

 	qsTr function / Creating a Qt Quick application

 	QStyleOption function / Drawing via QPainter

 	Qt	camera, accessing / Accessing the camera in Qt
	network programming / Introducing Qt network programming
	setting up, for Android / Setting up Qt for Android

 	Qt 5	URL / Creating a new project

 	Qt application	widget layout, modifying / Changing the layout of widgets
	signals / Understanding the mechanism of signals and slots
	slots / Understanding the mechanism of signals and slots
	signals, connecting / Connecting two signals
	C++ slots, connecting to QML signals / Connecting C++ slots to QML signals
	releasing, on Windows / Releasing Qt applications on Windows
	packaging, on Linux / Packaging Qt applications on Linux
	deploying, on Android / Deploying Qt applications on Android

 	Qt applications	building, for Android / Building Qt applications for Android
	internationalization / Internationalization of Qt applications
	debugging / Debugging Qt applications
	breakpoint, deleting / Debugging Qt applications

 	Qt Centre	URL / Useful resources

 	Qt Creator / Creating a new project

 	Qt Creator UI	URL / Creating a new project

 	QThread class / Writing multithreaded applications

 	QTime class / Creating a basic digital clock

 	QTimer class / Creating a basic digital clock

 	Qt Installer Framework	about / Creating an installer
	URL / Creating an installer

 	Qt Library / Creating a new project

 	Qt licensing	URL / Releasing Qt applications on Windows

 	Qt message (QM) / Internationalization of Qt applications

 	Qt network programming	about / Introducing Qt network programming

 	 Qt Quick application	creating / Creating a Qt Quick application

 	Qt Quick applications	translating / Translating Qt Quick applications
	debugging / Debugging Qt Quick applications

 	Qt Reference Documentation / Creating a basic digital clock

 	Qt Widgets applications	translating / Translating Qt Widgets applications

 	query function / Parsing JSON in QML

 	 QVector class / Drawing via QPainter

 	qWarning() function / Debugging Qt applications

 R

 	readNext function / Parsing XML results

 	Red Hat Linux	about / Packaging Qt applications on Linux

 	reimplemented function / Changing languages dynamically

 	RPM package	URL / Packaging Qt applications on Linux

 	RPM Package Manager (RPM)	about / Packaging Qt applications on Linux

 	RSS Feeds	parsing, by XmlListModel / Parsing RSS Feeds by XmlListModel

 	RSS_Reader application	creating / Understanding model and view

 S

 	ScrollView	utilizing / Utilizing ScrollView

 	setColour function / Saving and restoring settings

 	setPen function / Drawing via QPainter

 	settings	saving / Saving and restoring settings
	restoring / Saving and restoring settings

 	setValue function / Saving and restoring settings

 	show function / Tweaking the digital clock

 	signals	using / Understanding the mechanism of signals and slots
	connecting / Connecting two signals

 	slice function / QML camera

 	slots	using / Understanding the mechanism of signals and slots
	about / Understanding the mechanism of signals and slots

 	Stand-alone license paragraph	about / Packaging Qt applications on Linux

 	static linking	versus dynamic linking / Releasing Qt applications on Windows

 	static plugins	writing / Writing static plugins

 	status bar	errors, displaying / Displaying errors on the status bar
	permanent widgets / Permanent widgets in the status bar

 	system network session	managing / Managing a system network session

 T

 	Thumbnail / Parsing RSS Feeds by XmlListModel

 	Thumbnail Toolbar / Building on the Unix platforms

 	Title / Parsing RSS Feeds by XmlListModel

 	tr() function / Internationalization of Qt applications

 	translation source (TS) / Internationalization of Qt applications

 U

 	Ubuntu	about / Packaging Qt applications on Linux

 	Unix platforms	code, building / Building on the Unix platforms

 	updateData function / Parsing JSON results

 V

 	view	about / Understanding model and view

 	Visual C++ Redistributable Packages / Releasing Qt applications on Windows

 W

 	Where On Earth ID (WOEID) / Parsing JSON results

 	widget layout	modifying / Changing the layout of widgets

 	windowFlags function / Tweaking the digital clock

 	Windows	Qt application, releasing / Releasing Qt applications on Windows

 	Windows Driver Kit (WDK)	URL / Debugging Qt applications

 X

 	XmlListModel	used, for parsing RSS Feeds / Parsing RSS Feeds by XmlListModel

 	XML results	parsing / Parsing XML results

 	XML tutorial	URL / Parsing XML results

 Y

 	Yahoo! Weather API	URL / Parsing JSON results

 	Yahoo! WOEID Lookup	URL / Parsing JSON results

 OEBPS/Images/4615OS_08_08.jpg
MainWindow - C I

This & a non-translatable label

Open

Load/Urioad Translation

Thisis 2 translatable button

OEBPS/Images/4615OS_08_09.jpg
Hauptfenster = o IE

This & a non-translatable label

Ersfnen

Load/Urioad Translation

Dies st eine Ubersetzbar Taste

OEBPS/Images/4615OS_08_06.jpg
Source text

Open

Developer comments.

ad

German translation

German translator comments

OEBPS/Images/4615OS_08_07.jpg
%] Hauptfenster

This & a non-translatable label

OEBPS/Images/4615OS_08_04.jpg
Hauptfenster

This & a non-translatable label

Dies st eine Ubersetzbar Taste

OEBPS/Images/4615OS_08_05.jpg
 Sourcetet
& MainWindow
Open

2 bieg

OEBPS/Images/4615OS_08_02.jpg
!B»a u\ o0 mm ﬁl‘h?\

OEBPS/Images/4615OS_08_03.jpg
pro

nternstiona zat
onpro

[T——

>

Iterationalzzt:
onproucer

E——

Internationalizas
or_deqm

i

Intemationalizat
on_dete

man cop

cover.jpeg
Symeon Huang []g_p_en_s“oir_ceﬂ?

OEBPS/Images/4615OS_08_11.jpg
43 Internatonalization_ QUL
Interstioralzsion QMLpro
4 3 deployment
deploymentpi
4 4 Sources
L mincpp.
mtbgd
4 Resources
4B amiae
By
L nterrationalrion. o

B moinam!

b/

anl.ar

main.gml

Internationalization OM__deqm

OEBPS/Images/4615OS_08_10.jpg

OEBPS/Images/4615OS_05_04.jpg
Sesre [

OEBPS/Images/4615OS_05_03.jpg
e

trosustion sne roject czatior

o e s ot

[y —.

OEBPS/Images/4615OS_05_06.jpg

OEBPS/Images/4615OS_05_05.jpg
Ui painter_demo-Qt.5_4.0_mingwd91_32-Debug

[) plugins
). TexPlugin-Gt_5_4.0_mingw41_32-Debug

OEBPS/Images/4615OS_05_02.jpg

OEBPS/Images/4615OS_05_01.jpg
‘ QPainter H QPaintEngine H QPaintDevice ‘

OEBPS/Images/4615OS_05_08.jpg
x) Painter Demo

Plugins

Ellipse

S —|
voftoner 00]
width
Hecht

OEBPS/Images/4615OS_05_07.jpg
Xof toplft [0.00
¥ of toplft [0.00
w width (0.0

Heght 000

OEBPS/Images/4615OS_05_09.jpg
Davie. - o R

Input
Qts Blueprints
Base64 Encoded

UXQUEIsdWVwalud

OEBPS/Images/4615OS_08_01.jpg
Mark translatable strings in code

}

Produce translations using Qt Linguist

}

Load translations via Qtranslator

OEBPS/Images/4615OS_06_05.jpg
P
{ Network Session
~

QNewarkConfiguration Vianager

QNetworsConfiguratior

a o
R———

QNetworkintsrface

OEBPS/Images/4615OS_06_04.jpg
71 Downloader De,

OEBPS/Images/4615OS_06_06.jpg
Network Manager

CHEERS
isatap.{B43AE3E-CT2-4892-99D3-385BIFSDCS3F}

Ethernet

Local Area Connection” 2

Refresh

Comnect

Discornect

OEBPS/Images/4615OS_06_01.jpg
Network

N\ Request

~

QetworkRecuest [— QNetworkAccessManager (— QNetvorkReply

OEBPS/Images/4615OS_06_03.jpg
Add New Download EN

WL fonline_nstalers/at-opensource-windows-x36-onine.exe
Destination }/at-opensource-windows-x36-onine.exe | | Save As

oK Cancel

OEBPS/Images/4615OS_06_02.jpg
WL

 Savess Choose

Cancel

OEBPS/Images/4615OS_09_01.jpg
Name

feudts2.dl

liswingthread-1.d1
(5Corl

(Gl
Ceswidgets.cl

2127201

21020

1112720

o3/12720

1412720

a2241
41807
a2

Type
Appication ten:.
Appication siens
Appication stens,
Appication

Appication stens
Appication tcaz
Appication sitens,
Appiation e,
Appication e,
Appication een.

Sze
nostia
EEATe]
2015k
0k
Tieka
oKz

OEBPS/Images/4615OS_09_02.jpg
Internationalization.exe - System Error

‘The program can't start because QtSWidgets.dilis missing from your
computer. Try reinstalling the program to fix this problem.

OEBPS/Images/4615OS_02_03_03.jpg
s);

[tz :WA_TranslucentBackground);
KQt: :WindowStavedaTopHint | Qt

his)
s

E new QTijger| [
&QTiner:Qti his, &Main|
pee);
|
AR

_Framele

ndnu- -y
e

ccllindouHi

= pdate]iﬂe)

OEBPS/Images/4615OS_03_01.jpg
Categories

News of current category

OEBPS/Images/4615OS_03_02.jpg
Delegate

Render

OEBPS/Images/4615OS_03_03.jpg
UK

Business

Politics

OEBPS/Images/4615OS_03_04.jpg
—~_ " Spacing —~_—~_—~_—

Thumbnail

‘ Date and link

‘ Descrption

OEBPS/Images/4615OS_03_09.jpg

OEBPS/Images/4615OS_03_05.jpg
Top
Stories

World

UK

Business

RSS

Germany warns Greece over
debts

o, 26 30 3015 20,4555 G (D)
The German govemmant werrs Greece that £ must meet s commerts to fenders,

3 e leclon i of 1 Greek ant-austrny Syizs party.
- Fighter jet crash in Spain kills
10

Mo, 26 10 2015 2207225 G (s

Eht French pesple a1 among 10 Kiled when a Greek fighter jet rashes curing take-oif
ata Neto aif base 1 central Spain.

I'd probably cheat again -
Armstrong

OEBPS/Images/4615OS_03_06.jpg
Germany warns Greece over
debts

e

T 1 govsramen wama Giresee that i st 520t s commitmerts o endsrs, aftr the
lecron i o Gk sy Syes o

. | Fighter jet crash in Spain kills 10

& people: s saweg 10 Kiled whe s Greek fghte ot essbs ducig take-afTat
Nain air hase e S

T'd probably cheat again -
Armstrong

OEBPS/Images/4615OS_03_07.jpg
Top Stories

Warld

it French popie e ancng 10kl when ek figtor et cches crng ke ot 0 ()
Nt si b i sl i

T'd probably cheat again -
Armstrong

st ssys the aneis coning whe b should be forgiven, and fells e BBC be
Would do it again s he same circurstances

) Litvinenko 'killed on third
attempt’

Two pror atempts o il x-Rusian spy Alexander Litineako msy huve been made efie he
dicd s sodithon oo in 2006, the BBC s leasocd

OEBPS/Images/4615OS_03_08.jpg
Top Stories

I8 Germany warns Greece over debts

exona goveramont wais Gosee that it st et i comitits o eades, aer e
clestion it of the Grock arh austety Syriza ey

" Fighter jog grash in Spain kills 10

Son, 26 Jan 2015 21:7:25 GMT (Dl

Fight Frene penpl e g 10k led when a (e fghte ot ceashes g abowolTat &
Naco aif base n cental Spein.

OEBPS/Images/4615OS_04_02.jpg
ey
ST 3R

|| e — e
= 13

OEBPS/Images/4615OS_10_09.jpg
% New Evaluated Expression

Enter an expressin to evaluste,
Note: each step. For
]

OEBPS/Images/4615OS_04_03.jpg

OEBPS/Images/4615OS_04_04.jpg

OEBPS/Images/4615OS_04_05.jpg
X x Fiter

Name Tedt Shortcut Checkable ToolTip
actionAbout About D: About CameraDemo.
actionxit Exit adl-q [Exit

Action Editor | Signals & Slots Editor

OEBPS/Images/4615OS_04_01.jpg
QCameralnfo

Select
2

Qeamera

Preview

QCameraViewfinder

Capture
v

QCameralmageCapture

Focus

Zoom

QCameraFocus

OEBPS/Images/4615OS_04_06.jpg

OEBPS/Images/4615OS_04_07.jpg
Avout A

Camera Demonstration of Qt5

oK

OEBPS/Images/4615OS_04_08.jpg
QML Camera Demo =

OEBPS/Images/4615OS_04_09.jpg
Organise ~

@88 b2
» [Desktcp.

b Conrioac
» 0 Masic
I wee
8 v
PR 0sE

b Settnsre V)

€ Newerk

Fiename:

Swvesype

= e Toders

1B TRFC) Decumens »

Mew olcer

& MNane

U Gt Linay

1 Eestors Ofice Temolotes
p——

b Visul Studo 2013

&

Search Dowunzts

D rdified
Wt
o514
300 /205 1735
04106

e ropg)

OEBPS/Images/PacktLibLogo.jpg

OEBPS/Images/4615OS_10_01.jpg
| B X |7 main(int, char <[):int

#include "mainwindow.h"
#include <qapplication>

5 }nt main(int argc, char *argv[1)
QApplication a(argc, argv);
Mainwindow
w.show(;

return a.exec();

i
1
2
A
5
6
7|
g
10
1

12

OEBPS/Images/4615OS_10_02.jpg
D\QNqt-creat

OEBPS/Images/4615OS_10_03.jpg
incompat_demo.exe - Entry Point Not Found

could not be located mthedyr\am\(link lbras
DAGH G152 1586 mingwdiar>-gws-openghbinincompat_demo o

OEBPS/Images/4615OS_10_04.jpg
4 \Em’d Mainwindow: :setColour)

Qsetnngs sts
ts. va]ue("Colour").toInt();

o
switch (i) {
case 0://blacl

c. 5etC|ﬂ or (QPalette: : Foreground, Qt:

case 1://uh

c. SQECM or(QPa] ette::Foreground, Qt:

case 2://gr
c.

5etC|ﬂ or (QPalette: : Foreground, Qt:

case 3://re

E 5etC|ﬂ or(Qpalette::Foreground, Qt::

ui->1cdNumber->setPalette(c);
this->update();

:black);
swhite);

:green);

red);

OEBPS/Images/4615OS_10_05.jpg
c. seﬁmﬂ or(Qpalette::Foreground, Qt::black);

/wh
(seECrﬂ or(QPa] ette::Foreground, Qt::white);

o
case 2://gry
c. seﬁcrﬂ or(QPa] ette::Foreground, Qt::green);

case
c. setco] or(Qpalette::Foreground, Qt::red);
break;

OEBPS/Images/4615OS_10_06.jpg
Expressions

Breakpoints

OEBPS/Images/4615OS_10_07.jpg
Basc
et e
Fienane:

e unber
enatc:
o

Exprescr:
Functin:
Ouestotuy:

Advarcad
Conditr:

‘rore count:

Furcton nane
et on rerery addras

ek hen 24+ xcEaon & o

Dres e 24+ exceoion & cavght

Srca shen furcton "oan” tarts

sresk shen 3 processic frked

res shen 2rn processis evec s

sk shen 2 ycien el esectied

oresk on ot acces at fed aess

Bt n Jala ot ol ek e e Ly expressins
s on L serm et

resk e JovcSerpt cptior i throan,

Commande

Thread specfintins

pat

Tracepointorlys []

OEBPS/Images/4615OS_10_08.jpg
<Titems>
<2Titems>
00

<morethan O tems>
<ditems>

<morethan O tems>
<Ditems>
©0

Type
QPalette

int

Qettings
MainWindow
QMainWindow
QWidget
QObjectlist

QWidget
QMetaObject
QObjectlist
QMainWindowLayout

QRubberBand
QWidget

QWidget

QObjectlist

QObject*

QWidgetData
QMetaObject

QPoint
QMetaObject
UizMainWindow

OEBPS/Images/4615OS_09_09.jpg
7 © 2 .l 90% &= 12:37

i

OEBPS/Images/4615OS_09_07.jpg
Buikd Steps

[T e ———— e
kg2 r st e A5 G e
ke matal
[Emp—— © A v % |an
R
L g
et st st
Mosga
[—
[STSSpPRNE——— O e
s
[

Stz

OEBPS/Images/4615OS_09_08.jpg
Package
Package name:
Version code:

Version name:

com.demo.nternationazation

1 +

10

Minimum required SDK: |APL 14: Androd 4.0, 40.1, 40.2

Target SDK:
Appication
‘Appication name:
Run

Appication con

Permissions

APL 19: Android 4.4

LINSERT_APP_NAME%:% —

— 4%INSERT_APP_LIB_NAVE®A%

Inciude defauit permissions for Qt modes.

Include default features for Qt modes.

OEBPS/Images/4615OS_01_02.jpg

OEBPS/Images/4615OS_09_05.jpg
Interationalization Installr Setup

License Agreement

Please read the

agreement before contnuing with the nstalation

Thisis the content of cense. i,

Taccept the icense,
Tdo ot accept the ficense.

OEBPS/Images/4615OS_01_01.jpg

OEBPS/Images/4615OS_09_06.jpg
Hauptfenster

This s a non-translatable label

Erdffnen

Load/Unload Translation

Dies st eine ibersetzbar Taste

OEBPS/Images/4615OS_09_03.jpg
internationalization

config

packages

com.demo.internationalization

com.demo.internationalization.translation

OEBPS/Images/4615OS_09_04.jpg
© B Intematonsiuston nstallrSeup

Select Components

Please select the components you want to nstal,

[+ ¥ Corehpplication | Geman translation fle

] German Translation

Defaut SelectAl | | Deselectal

OEBPS/Images/4615OS_01_06.jpg
Feina Quck
Hewo woD

OEBPS/Images/4615OS_01_05.jpg
Object 1

Object 2

Signal 1A

T

Signal 2A

OEBPS/Images/4615OS_01_04.jpg

OEBPS/Images/4615OS_01_03.jpg
Object 1

event. i.e.
clicked

Object 2

Signal 2A

OEBPS/Images/4615OS_02_02.jpg
o
'

Fancy Clock

OEBPS/Images/4615OS_02_01.jpg

OEBPS/Images/4615OS_02_06.jpg
Preference

Golour Red

© Gancel

9 © B 7 Fancy_Clock — Dolphin

OEBPS/Images/4615OS_02_05.jpg

OEBPS/Images/4615OS_02_04.jpg
Sender Sgnal Receiver ot

buttonEox accepted() Freference accept()
buttonEox rejected() Freference refect()

Action Edtor | sigrals & lots Edtor

OEBPS/Images/4615OS_07_06.jpg
woem s |

Dubin, reland, DUB

il 23
drecton: 20
speed: 2

povered by YAHOO!

OEBPS/Images/4615OS_07_05.jpg

OEBPS/Images/4615OS_07_08.jpg
WOEID 560743
Dublin, Ireland, DUB

37F

92% (= 22:37
oK
chill: 28

direction: 230
speed: 16

OEBPS/Images/4615OS_07_07.jpg
Compstible devices

[EE—

s Devie st | [crects A Yt Deves

[Sy 1+ dovi o architechrs smeatio7a

OEBPS/Images/4615OS_07_02.jpg
oo
_—

Keyboard:

Skin: Skin with dynamic hardware controls v

Front Camera:

Back Camera: Webcam0

Intenal Storage:

SD Card:

T —

O File: Browse.

Emulation Optons: [spapchot

Override the existing AVD with the same name

OEBPS/Images/4615OS_07_01.jpg
(© [sewp

Select Components

Plesse select the components you want to nstal,

Defaut

mevc2013 60-bit
] Windows Phone arm (MSVC.
[msvc2013 64-bit OpenGL
[msve2013 32-bit OpenGL
[Android x86

Android armvs

Android amy7

Source Components

Qt WebEngine

selectAl | | Deselectal

License optons: LGPL3, Commercial
NOTE: Not lcensed under LGPLY2. 1
Q1540 Prebuit Components or
Ancroida

This component il occup

apprmately 137,00 M on your
hard sk rive.

OEBPS/Images/4615OS_07_04.jpg
Hello Android!

5554Virual Nemo

OEBPS/Images/4615OS_07_03.jpg
T
@ e
@ o ot P AT
Oc- JR—
e e it

Ao

B s S e

AL e

Wotene o avan

OEBPS/Images/4615OS_07_09.jpg
WOEID (560743

Dublin, Ireland, DUB,

chil: 30
dection: 220
speed: 12

powns oy YAHOO!

OEBPS/Images/4615OS_10_10.jpg
QPalette <no such value>
i*s 15

OEBPS/Images/4615OS_10_11.jpg
Windows Security Alert

O Windows Firewall has blocked some features of this app

features of weather_qm,

lame:
Publsher: Unknown
Paty: D:\projects\puildweather_aml-qt_5_4_0_mingwdg1_32-
debug\debug\weather_qm.exe
‘Allow weather_gm.exe to communicate on these netiorks:
rivate networks, such as my home or work network

networks,

[Cput ich e
because these networks often have ltte o no security)

What are the risks of alowing an 2pp thvough a frenal?

OEBPS/Images/4615OS_10_12.jpg
casontrdon

o

OEBPS/Images/4615OS_10_13.jpg
powns oy YAHOO!

OEBPS/Images/4615OS_07_10.jpg
WOEID 560743

Dublin, Ireland, DUB,

chill: 30
37 F direction: 210

speed: 12

