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Preface

Since its inception in the early part of the twentieth century, quantum physics has
fascinated the academic world, its students, and even the general public. In fact, it is
—or has become — a highly interdisciplinary field. On a topic such as “the physics of
the atom” the disciplines of physics, philosophy, and history of science interconnect
in a remarkable way, and to an extent that is revealed in this volume for the first
time. This compendium brings together some 90 researchers, who have authored
approximately 185 articles on all aspects of quantum theory. The project is truly
international and interdisciplinary because it is a compilation of contributions by
historians of science, philosophers, and physicists, all interested in particular aspects
of quantum physics. A glance at the biographies at the end of the volume reveals
author affiliations in no fewer than twenty countries: Australia, Austria, Belgium,
Canada, Denmark, Finland, France, Germany, Greece, Italy, Israel, the Netherlands,
New Zealand, Norway, Poland, Portugal, Spain, Switzerland, the United Kingdom
and the United States. Indeed, the authors are not only international, they are also
internationally renowned — with three Physics Nobel Prize laureates among them.
The basic idea and motivation behind the compendium is indicated in its subtitle,
namely, to describe in concise and accessible form the essential concepts and exper-
iments as well as the history and philosophy of quantum physics. The length of the
contributions varies according to the topic, and all texts are written by recognized
experts in the respective fields. The need for such a compendium was originally
perceived by one of the editors (FW), who later discovered that many physicists
shared this view. Due to the interdisciplinary nature of this endeavor, it would have
been impossible to realize it without the expertise and active participation of a pro-
fessional physicist (DG) and a historian of science (KH). We should not forget,
however, that it was brought to life by the numerous contributions of the many
authors from around the world, who generously offered their time and expertise to
write their respective articles. The contributions appear in alphabetical order by title,
and include many cross-references, as well as selected references to the literature.
The volume includes a short English—French—German lexicon of common terms in
quantum physics. This will be especially helpful to anyone interested in exploring



vi Preface

historical documents on quantum physics, the theory of which was developed side-
by-side in these three cultures and languages.

The editors would like to thank Brigitte Falkenburg and Peter Mittelstaedt for
their initial work on the project. Angela Lahee (at Springer publishers) deserves our
gratitude for her unwavering support and patience during the four years it has taken
to turn the idea for this compendium into reality.

January 2009 Dan Greenberger
Klaus Hentschel
Friedel Weinert
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Aharonov-Bohm Effect

Holger Lyre

The Aharonov—Bohm effect (for short: AB effect) is, quite generally, a non-local
effect in which a physical object travels along a closed loop through a gauge field-
free region and thereby undergoes a physical change. As such, the AB effect can be
described as a holonomy. Its paradigmatic realization became widely known after
Aharonov and Bohm’s 1959 paper — with forerunners by Weiss [1] and Ehrenberg
and Siday [2]. Aharonov and Bohm [3] consider the following scenario: A split
electron beam passes around a solenoid in which a magnetic field is confined. The
region outside the solenoid is field-free, but nevertheless a shift in the interference
pattern on a screen behind the solenoid can be observed upon alteration of the mag-
netic field. The schematic experimental setting can be grasped from the following
figure:

e~ beam @
solenoid

screen

The phase shift can be calculated from the loop integral over the potential,
which — due to Stokes’ theorem — relates to the magnetic flux

Ax=q¢‘Adr=quds=q¢mag. (1)
C N

Convincing arguments can be given that the effect is no artifact of some improper
shielding of the fields involved. On the one hand, the magnetic field can perfectly be
confined by the usage of toroidal magnets [15], the unavoidable penetration of the
quantum » wave function into the solenoid, on the other hand, is not known to be
correlated to any scaling of the effect with the quality of the solenoid’s shielding.
While the above experimental setting is called the magnetic AB effect, it is also
possible to consider the electric pendant where the phase of the wave function

D. Greenberger et al. (eds.), Compendium of Quantum Physics: Concepts, Experiments, 1
History and Philosophy, © Springer-Verlag Berlin Heidelberg 2009



2 Aharonov—-Bohm Effect

depends upon varying the electric potential for two paths of a particle travelling
through regions free of an electric field. Moreover, Aharonov and Casher [4] de-
scribed a dual to the AB effect, called the » Aharonov—Casher effect, where a phase
shift in the interference of the magnetic moment in an electric field is considered.

The discovery of the AB effect has caused a flood of publications both about the
theoretical nature of the effect as well as about the various experimental realizations.
Much of the relevant material is covered in Peshkin and Tonomura [14]. The theo-
retical debate can basically be centered around the questions, whether and in which
sense the AB effect is of (1) quantum, (2) topological, and (3) non-local nature.

1. Contrary to a widely held view in the literature, the point can be made that
the AB effect is not of a genuine quantum nature, since there exist classical gravi-
tational AB effects as well ([5]; [6]; [7]). A simple case is the geometry of a cone
where the curvature is flat everywhere except at the apex (which may be smoothed).
Parallel transport on a loop enclosing the apex leads to a holonomy. Also, the second
clock effect in Weylian spacetime can be construed as an AB analogue, as Brown
and Pooley [8] have pointed out. In Weylian spacetime, a clock travelling on a loop
through a field free region enclosing a non-vanishing electromagnetic field under-
goes a shift. It has been shown that the AB effect can be generalized to any SU(N)
gauge theory ([9]; [10]).

2. The AB effect does not depend on the particular path as long as the region
of the non-vanishing gauge field strength is enclosed. It is therefore no instance
of the » Berry phase, which is a path-dependent geometrical quantum phase. It
does depend on the topology of the configuration space of the considered physical
object (in case of the electric AB effect this space is homeomorphic to a circle).
Nevertheless, the AB effect can still be distinguished from topological effects within
gauge theories such as monopoles or instantons, where the topological nature can
be described as non-trivial mappings from the gauge group into the configuration
space (this incidentally also applies to the magnetic AB effect, but generally not to
SU(N) or gravitational AB effects).

3. It is obvious that the AB effect is in some sense non-local. A closer inspection
depends directly on the question about the genuine entities involved, and this ques-
tion has been in the focus of the philosophy of physics literature. In the magnetic
AB effect, the electron wave function does not directly interact with the confined
magnetic field, but since the vector gauge potential outside the solenoid is non-zero,
it is a common view to consider the AB effect as a proof for the reality of the gauge
potential. This, however, renders real entities gauge-dependent. Healey [11] there-
fore argues for the holonomy itself as the genuine gauge theoretic entity. In both
the potential and the holonomy interpretation the AB effect is non-local in the sense
that it is non-separable, since properties of the whole — the holonomy — do not su-
pervene on properties of the parts. As a third possibility even an interpretation solely
in terms of field strengths can be given at the expense of violating the principle of
local action. The case can be made that this is an instance of ontological underde-
termination, where only the gauge group structure is invariant (and, hence, a case in
favour of structural realism [12]).
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Remarkably, van Kampen [13] has argued that the AB effect is in fact instan-
taneous, but that this cannot be directly observed since the instantaneous action
of the magnetic effect is accordingly cancelled by the electric AB effect. » Also
Berry’s Phase.
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4 Aharonov—Casher Effect

excluded from a tubular region of space, but otherwise no force acts on it. Yet it
acquires a measurable quantum phase that depends on what is inside the tube of
space from which it is excluded. In the AB effect, the particle is charged and the
tube contains a magnetic flux. In the Aharonov—Casher (AC) effect, the particle is
neutral, but has a magnetic moment, and the tube contains a line of charge. Experi-
ments in neutron [2], vortex [3], atom [4], and electron [5] interferometry bear out
the prediction of Aharonov and Casher. Here we briefly explain the logic of the AC
effect and how it is dual to the AB effect.

We begin with a two-dimensional version of the AB effect. Figure 1 shows an
electron moving in a plane, and also a “fluxon”, i.e. a small region of magnetic
flux (pointing out of the plane) from which the electron is excluded. In Fig. 1 the
fluxon is in a quantum » superposition of two positions, and the electron diffracts
around one of the positions but not the other. Initially, the fluxon and electron are in
a product state |Wip):

1
¥in) = S (/1) + 1/2)) ® (le1) + le2)).

where | f1) and | f2) represent the two fluxon wave packets and |e1) and |es) repre-
sent the two electron wave packets. After the electron passes the fluxon, their state
|Whn) is not a product state; the relative phase between |ej) and |ez) depends on the
fluxon position:

1 1 ,
|Whin) = §|f1> ® (le1) + le2)) + §|f2> ® (le1) + P28 |e2)).

el A
7 N
7 N
/ \
/ \
/ \
! \
1 \
I I
I I
I I
,“\‘ Pigai ,“s\ ,"'\‘
{mmy) { @) {=m) { @)
\ ’ \ \ 4 \ /
S’ S’ Sa?’ S’
4 4
I I
I I
I I
\ 1
Fig. 1 An electron and a ‘\ /’
fluxon, each in a superposition \ /
of two wave packets; the AR it
electron wave packets enclose S e

only one of the fluxon wave
packets
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Here ¢ap is the Aharonov—Bohm phase, and | f2) represents the fluxon positioned
between the two electron » wave packets. Now if we always measure the position of
the fluxon and the relative phase of the electron, we discover the Aharonov—Bohm
effect: the electron acquires the relative phase ¢ap if and only if the fluxon lies
between the two electron paths. But we can rewrite |Wgy,) as follows:

1 1 .
Win) = S (A1) +1/2) @ ler) + S (A1) + 48] 2)) ® lea).

This rewriting implies that if we always measure the relative phase of the fluxon and
the position of the electron, we discover an effect that is analogous to the Aharonov—
Bohm effect: the fluxon acquires the relative phase ¢ap if and only if the electron
passes between the two fluxon wave packets. Indeed, the effects are equivalent: we
can choose a reference frame in which the fluxon passes by the stationary electron.
Then we find the same relative phase whether the electron paths enclose the fluxon
or the fluxon paths enclose the electron.

In two dimensions, the two effects are equivalent, but there are two inequivalent
ways to go from two to three dimensions while preserving the topology (of paths
of one particle that enclose the other): either the electron remains a particle and the
fluxon becomes a tube of flux, or the fluxon remains a particle (a neutral particle
with a magnetic moment) and the electron becomes a tube of charge. These two
inequivalent ways correspond to the AB and AC effects, respectively. They are not
equivalent but dual, i.e. equivalent up to interchange of electric charge and magnetic
flux.

In the AB effect, the electron does not cross through a magnetic field; in the AC
effect, the neutral particle does cross through an electric field. However, there is no
force on either particle. The proof [6] is surprisingly subtle and holds only if the line
of charge is straight and parallel to the magnetic moment of the neutral particle [8].
Hence only for such a line of charge are the AB and AC effects dual.

Duality has another derivation. To derive their effect, Aharonov and Casher [1]
first obtained the nonrelativistic Lagrangian for a neutral particle of magnetic mo-
ment g interacting with a particle of charge e. In Gaussian units, it is

| | 5, e
L=§mv +EMV +-A(r—R)-(v=YV),
c

where M, R,V and m, r,v are the mass, position and velocity of the neutral and
charged particle, respectively, and the vector potential A (r — R) is

A_Ry =P —B

Ir — R|3
Note L is invariant under respective interchange of r,v and R, V. Thus L is the
same whether an electron interacts with a line of magnetic moments (AB effect) or
a magnetic moment interacts with a line of electrons (AC effect). However, if we
begin with the AC effect and replace the magnetic moment with an electron, and all
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the electrons with the original magnetic moment, we end up with magnetic moments
that all point in the same direction, i.e. with a straight line of magnetic flux. Hence
the original line of electrons must have been straight. We see intuitively that the
effects are dual only for a straight line of charge.'
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Algebraic quantum mechanics is an abstraction and generalization of the » Hilbert
space formulation of quantum mechanics due to von Neumann [5]. In fact, von Neu-
mann himself played a major role in developing the algebraic approach. Firstly, his
joint paper [3] with Jordan and Wigner was one of the first attempts to go beyond
Hilbert space (though it is now mainly of historical value). Secondly, he founded
the mathematical theory of operator algebras in a magnificent series of papers [4, 6].
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Although his own attempts to apply this theory to quantum mechanics were unsuc-
cessful [18], the operator algebras that he introduced (which are now aptly called
von Neumann algebras) still play a central role in the algebraic approach to quantum
theory. Another class of operator algebras, now called C*-algebras, introduced by
Gelfand and Naimark [1], is of similar importance in algebraic quantum mechanics
and quantum field theory. Authoritative references for the theory of C*-algebras and
von Neumann algebras are [14] and [21]. Major contributions to algebraic quantum
theory were also made by Segal [7, 8] and Haag and his collaborators [2, 13].

The need to go beyond Hilbert space initially arose in attempts at a mathemati-
cally rigorous theory of systems with an infinite number of degrees of freedom, both
in quantum statistical mechanics [9, 12, 13, 19, 20, 22] and in quantum field theory
[2, 13, 20]. These remain active fields of study. More recently, the algebraic ap-
proach has also been applied to » quantum chemistry [17], to the quantization and
» quasi-classical limit of finite-dimensional systems [15, 16], and to the philosophy
of physics [10, 11, 16].

Besides its mathematical rigour, an important advantage of the algebraic ap-
proach is that it enables one to incorporate » Superselection Rules. Indeed, it was
a fundamental insight of Haag that the superselection sectors of a quantum system
correspond to (unitarily) inequivalent representations of its algebra of » observ-
ables (see below). As shown in the references just cited, in quantum field theory
such representations (and hence the corresponding superselection sectors) are typ-
ically labeled by charges, whereas in quantum statistical mechanics they describe
different thermodynamic phases of the system. In chemistry, the chirality of certain
molecules can be understood as a superselection rule. The algebraic approach also
leads to a transparent description of situations where » locality and/or » entangle-
ment play a role [11, 13].

The notion of a C*-algebra is basic in algebraic quantum theory. This is a com-
plex algebra A that is complete in a norm || - || satisfying ||ab| < |la] ||&] for all
a,b € A, and has an involution @ — a* such that |a*a|| = ||a||>. A quantum system
is then supposed to be modeled by a C*-algebra whose self-adjoint elements (i.e.
a* = a) form the observables of the system. Of course, further structure than the
C*-algebraic one alone is needed to describe the system completely, such as a time-
evolution or (in the case of quantum field theory) a description of the localization of
each observable [13].

A basic example of a C*-algebra is the algebra M,, of all complex n x n matrices,
which describes an n-level system. Also, one may take A = B(H ), the algebra of
all bounded operators on an infinite-dimensional Hilbert space H, equipped with
the usual operator norm and adjoint. By the Gelfand—Naimark theorem [1], any
C*-algebra is isomorphic to a norm-closed self-adjoint subalgebra of B(H), for
some Hilbert space H. Another key example is A = Co(X), the space of all con-
tinuous complex-valued functions on a (locally compact Hausdorff) space X that
vanish at infinity (in the sense that for every ¢ > 0 there is a compact subset
K C X such that |f(x)] < ¢ for all x ¢ K), equipped with the supremum norm
Il flloo :=sup,cx | f(x)|, and involution given by (pointwise) complex conjugation.
By the Gelfand—Naimark lemma [1], any commutative C*-algebra is isomorphic to
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Co(X) for some locally compact Hausdorff space X. The algebra of observables of
a classical system can often be modeled as a commutative C*-algebra.

A von Neumann algebra M is a special kind of C*-algebra, namely one that
is concretely given on some Hilbert space, i.e. M C B(H), and is equal to its
own bicommutant: (M’)" = M (where M’ consists of all bounded operators on H
that commute with every element of M). For example, B(H) is always a von Neu-
mann algebra. Whereas C*-algebras are usually considered in their norm-topology,
a von Neumann algebra in addition carries a second interesting topology, called the
o-weak topology, in which its is complete as well. In this topology, one has conver-
gence a, — a if Tr p(a, —a) — 0 for each density matrix p on H. Unlike a general
C*-algebra (which may not have any nontrivial projections at all), a von Neumann
algebra is generated by its projections (i.e. its elements p satisfying p> = p* = p).
It is often said, quite rightly, that C*-algebras describe “non-commutative topol-
ogy”” whereas von Neumann algebra form the domain of “non-commutative measure
theory”.

In the algebraic framework the notion of a state is defined in a different way from
what one is used to in quantum mechanics. An (algebraic) state on a C*-algebra A is
a linear functional p: A — C that is positive in that p(a*a) > 0 foralla € A and
normalized in that p (1) = 1, where 1 is the unit element of A (provided A has a unit;
if not, an equivalent requirement given positivity is ||p|| = 1).If A is a von Neumann
algebra, the same definition applies, but one has the finer notion of a normal state,
which by definition is continuous in the o-weak topology (a state is automatically
continuous in the norm topology). If A = B(H), then a fundamental theorem of von
Neumann [5] states that each normal state p on A is given by a » density matrix
p on H, so that p(a) = Tr pa for each a € A. (If H is infinite-dimensional, then
B(H) also possesses states that are not normal. For example, if H = L2(R) the
Dirac eigenstates |x) of the position operator are well known not to exist as vectors
in H, but it turns out that they do define non-normal states on B(H).) On this basis,
algebraic states are interpreted in the same way as states in the usual formalism, in
that the number p(a) is taken to be the expectation value of the observable a in the
state p (this is essentially the » Born rule).

The notions of pure and mixed states can be defined in a general way now.
Namely, a state p : A — C is said to be pure when a decomposition p =
Aw + (1 — A)o for some A € (0, 1) and two states @ and o is possible only if
w = o = p. Otherwise, p is called mixed, in which case it evidently does have
a nontrivial decomposition. It then turns out that a normal pure state on B(H) is
necessarily of the form ¥ (a) = (¥, a¥) for some unit vector ¥ € H; of course,
the state p defined by a density matrix p that is not a one-dimensional projection
is mixed. Thus one recovers the usual notion of pure and mixed states from the
algebraic formalism.

In the algebraic approach, however, states play a role that has no counterpart in
the usual formalism of quantum mechanics. Namely, each state p on a C*-algebra
A defines a representation 7, of A on a Hilbert space H, by means of the so-
called GNS-construction (after Gelfand, Naimark and Segal [1, 7]). First, assume
that p is faithful in that p(a*a) > 0 for all nonzero a € A. It follows that (a, b) :=
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p(a*b) defines a positive definite sesquilinear form on A; the completion of A in the
corresponding norm is a Hilbert space denoted by H,. By construction, it contains
A as a dense subspace. For each a € A, define an operator 77, (a) on A by 7, (a)b :=
ab, where b € A. It easily follows that 77, (a) is bounded, so that it may be extended
by continuity to all of H,. One then checks that 7, : A — B(H,) is linear and
satisfies 7, (a1az) = mwy(a1)mp(az) and mw,(a™) = m,(a)*. This means that 7, is a
representation of A on H,. If p is not faithful, the same construction applies with
one additional step: since the sesquilinear form is merely positive semidefinite, one
has to take the quotient of A by the kernel N, of the form (i.e. the collection of all
¢ € A for which p(c*c) = 0), and construct the Hilbert space H, as the completion
of A/Np.

As in group theory, one has a notion of unitary (in)equivalence of representations
of C*-algebras. As already mentioned, this provides a mathematical explanation for
the phenomenon of superselection rules, an insight that remains one of the most
important achievements of algebraic quantum theory to date. See also » operational
quantum mechanics; relativistic quantum mechanics.
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Angular Momentum

» See Spin; Stern—Gerlach experiment; Vector model.

Anyons

Jon Magne Leinaas

Quantum mechanics gives a unique characterization of elementary particles as be-
ing either bosons or fermions. This property, referred to as the » quantum statistics
of the particles, follows from a simple symmetry argument, where the » wave func-
tions of a system of identical particles are restricted to be either symmetric (bosons)
or antisymmetric (fermions) under permutation of particle coordinates. For two
spinless particles, this symmetry is expressed through a sign factor which is as-
sociated with the switching of positions

Y(ri,ry) = £y, r1) , (D

with + for bosons and — for fermions. From the symmetry constraint, when ap-
plied to a many-particle system, the statistical distributions of particles over single
particle states can be derived, and the completely different collective behaviour of
systems like » electrons (fermions) and photons (bosons) (» light quantum) can be
understood.



10 Anyons

13. R. Haag: Local Quantum Physics: Fields, Particles, Algebras (Springer, Heidelberg 1992)

14. R.V. Kadison & J.R. Ringrose: Fundamentals of the Theory of Operator Algebras. Vol. 1:
Elementary Theory; Vol. 2: Advanced Theory (Academic, New York 1983, 1986)

15. N.P. Landsman: Mathematical Topics Between Classical and Quantum Mechanics (Springer,
New York 1998)

16. N.P. Landsman: Between classical and quantum, in Handbook of the Philosophy of Science
Vol. 2: Philosophy of Physics, ed. by J. Butterfield and J. Earman, pp. 417-554 (North-Holland,
Elsevier, Amsterdam 2007)

17. H. Primas: Chemistry, Quantum Mechanics and Reductionism, Second Edition (Springer,
Berlin 1983)

18. M. Redei: Why John von Neumann did not like the Hilbert space formalism of quantum me-
chanics (and what he liked instead). Stud. Hist. Phil. Mod. Phys. 27, 493-510 (1996).

19. G.L. Sewell: Quantum Mechanics and its Emergent Macrophysics (Princeton University Press,
Princeton 2002)

20. E Strocchi: Elements of Quantum mechanics of Infinite Systems (World Scientific, Singapore
1985)

21. M. Takesaki: Theory of Operator Algebras. Vols. I-111. (Springer, New York 2003)

22. W. Thirring: Quantum Mathematical Physics: Atoms, Molecules and Large Systems, Second
Edition (Springer, New York 2002)

Angular Momentum

» See Spin; Stern—Gerlach experiment; Vector model.

Anyons

Jon Magne Leinaas

Quantum mechanics gives a unique characterization of elementary particles as be-
ing either bosons or fermions. This property, referred to as the » quantum statistics
of the particles, follows from a simple symmetry argument, where the » wave func-
tions of a system of identical particles are restricted to be either symmetric (bosons)
or antisymmetric (fermions) under permutation of particle coordinates. For two
spinless particles, this symmetry is expressed through a sign factor which is as-
sociated with the switching of positions

Y(ri,ry) = £y, r1) , (D

with + for bosons and — for fermions. From the symmetry constraint, when ap-
plied to a many-particle system, the statistical distributions of particles over single
particle states can be derived, and the completely different collective behaviour of
systems like » electrons (fermions) and photons (bosons) (» light quantum) can be
understood.



10 Anyons

13. R. Haag: Local Quantum Physics: Fields, Particles, Algebras (Springer, Heidelberg 1992)

14. R.V. Kadison & J.R. Ringrose: Fundamentals of the Theory of Operator Algebras. Vol. 1:
Elementary Theory; Vol. 2: Advanced Theory (Academic, New York 1983, 1986)

15. N.P. Landsman: Mathematical Topics Between Classical and Quantum Mechanics (Springer,
New York 1998)

16. N.P. Landsman: Between classical and quantum, in Handbook of the Philosophy of Science
Vol. 2: Philosophy of Physics, ed. by J. Butterfield and J. Earman, pp. 417-554 (North-Holland,
Elsevier, Amsterdam 2007)

17. H. Primas: Chemistry, Quantum Mechanics and Reductionism, Second Edition (Springer,
Berlin 1983)

18. M. Redei: Why John von Neumann did not like the Hilbert space formalism of quantum me-
chanics (and what he liked instead). Stud. Hist. Phil. Mod. Phys. 27, 493-510 (1996).

19. G.L. Sewell: Quantum Mechanics and its Emergent Macrophysics (Princeton University Press,
Princeton 2002)

20. E Strocchi: Elements of Quantum mechanics of Infinite Systems (World Scientific, Singapore
1985)

21. M. Takesaki: Theory of Operator Algebras. Vols. I-111. (Springer, New York 2003)

22. W. Thirring: Quantum Mathematical Physics: Atoms, Molecules and Large Systems, Second
Edition (Springer, New York 2002)

Angular Momentum

» See Spin; Stern—Gerlach experiment; Vector model.

Anyons

Jon Magne Leinaas

Quantum mechanics gives a unique characterization of elementary particles as be-
ing either bosons or fermions. This property, referred to as the » quantum statistics
of the particles, follows from a simple symmetry argument, where the » wave func-
tions of a system of identical particles are restricted to be either symmetric (bosons)
or antisymmetric (fermions) under permutation of particle coordinates. For two
spinless particles, this symmetry is expressed through a sign factor which is as-
sociated with the switching of positions

Y(ri,ry) = £y, r1) , (D

with + for bosons and — for fermions. From the symmetry constraint, when ap-
plied to a many-particle system, the statistical distributions of particles over single
particle states can be derived, and the completely different collective behaviour of
systems like » electrons (fermions) and photons (bosons) (» light quantum) can be
understood.



Anyons 11

The restriction to two possible kinds of quantum statistics, represented by the
sign factor in (1), seems almost obvious. On one hand the permutation of parti-
cle coordinates has no physical significance when the particles are identical, which
means that the wave function can change at most by a complex phase factor !¢
On the other hand a double permutation seems to make no change at all, which fur-
ther restricts the phase factor to a sign £1. This is the standard argument used in
textbooks like [14].

However, there is a loophole to this argument, as pointed out by J.M. Leinaas and
J. Myrheim in 1976 [1]. If the dimension of space is reduced from three to two the
constraint on the phase factor is lifted and a continuum of possibilities appears that
interpolates between the boson and fermion cases. In [1] these unconventional types
of quantum statistics were found by analysis of the wave functions defined on the
many-particle configuration space. Other approaches by G.A. Goldin, R. Menikoff,
and D.H. Sharp [2] and by F. Wilczek [3] lead to similar results, and Wilczek in-
troduced the name anyon for these new types of particles. As a precursor to this
discussion M.G.G. Laidlaw and C.M. DeWitt had already shown that a path integral
description applied to systems of identical particles reproduces standard results, but
only in a space of dimensions higher than two [4].

The difference between continuous interchange of positions in two and three di-
mensions can readily be demonstrated, as illustrated in Fig. la. In two dimensions
a two-particle interchange path comes with an orientation, and as a consequence a
right-handed path and its inverse, a left-handed path, may be associated with dif-
ferent (inverse) phase factors. In three and higher dimensions there is no intrinsic
difference between orientations of a path, since a right-handed path can be continu-
ously changed to a left-handed one by a rotation in the extra dimension. Therefore,
in dimensions higher than two the exchange phase factor has to be equal to its in-
verse, and is consequently restricted to 1. This explains why anyons are possible
in two but not in three dimensions. Since the statistics angle 6 in the exchange fac-
tor ¢!’ is a free parameter, there is a different type of anyon for each value of 6. For

time

Setsat /

Fig. 1 Switching positions in two dimensions. (a) The difference between right-handed and left-
handed interchange may give rise to quantum phase factors el that are different from 1.
(b) When many particles switch positions the collection of continuous particle paths can be viewed

as forming a braid and the associated phase factor can be viewed as a representing an element of
the braid group
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systems with more than two particles the different paths define more complicated
patterns (Fig. 1b), which are generally known as braids, and in this view of quan-
tum statistics the corresponding braid group is therefore more fundamental than the
permutation group. The generalized types of quantum statistics characterized by the
parameter 6 is often referred to as fractional statistics or braiding statistics.

Since anyons can only exist in two dimensions, elementary particles in the world
of three space dimensions are still restricted to be either fermions or bosons. But in
condensed matter physics the creation of quasi-twodimensional systems is possible,
and in such systems anyons may emerge. They are excitations of the quantum sys-
tem with sharply defined particle properties, generally known as quasiparticles.
The presence of anyons in such systems is not only a theoretical possibility, as
was realized after the discovery of the fractional » quantum Hall effect in 1982.
This effect is due to the formation of a two-dimensional, incompressible electron
fluid in a strong magnetic field, and the anyon character of the quasiparticles in
this system was demonstrated quite convincingly in theoretical studies [5, 6]. Al-
though theoretical developments have given further support to this idea, a direct
experimental evidence has been lacking. However, experiments performed by V.J.
Goldman and his group in 2005, with studies on interference effects in tunnelling
currents, have given clear indications for the presence of excitations with fractional
statistics [7].

The discovery of the fractional quantum Hall effect and the subsequent de-
velopment of ideas of anyon superconductivity [15] gave a boost in interest for
anyons, which later on has been followed up by ideas of anyons in other types
of systems with exotic quantum properties. One of these ideas applies to rotating
atomic » Bose-Einstein condensation, where theoretical studies have lead to pre-
dictions that at sufficiently high angular velocities a transition of the condensate to
a bosonic analogy of a quantum Hall state will occur, and in this new quantum state
anyon excitations should exist [8].

Topology is an important element in the description of anyons, since the focus
is on continuous paths rather than simply on permutations of particle coordinates
[1]. This focus on topology and on braids places the theory of anyons into a wider
context of modern physics. Thus, anyons form a natural part of an approach to
the physics of exotic condensed matter systems known as fopologically ordered
systems, where the two-dimensional electron gas of the quantum Hall system is a
special realization [9]. The braid formulation also opens for generalizations in the
form of non-abelian anyons. In this extension of the anyon theory, the phase factor
associated with the interchange of two anyon positions is replaced by non-abelian
unitary operations (or matrices). This is an extension of the simple identical particle
picture of anyons, since new degrees of freedom are introduced which in a sense are
shared by the participants in the braid. In the rich physics of the quantum Hall effect
there are indications that such nonabelions may indeed exist [10], and theoretical
ideas of exploiting such objects in the form of topological » quantum computation
[11] have gained much interest.

The topological aspects are important for the description of anyons, but at the
same time they create problems for the study of many-anyon systems. Even if no
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additional interaction is present such systems can be studied in detail only when the
particle number is small. There are also limitations to the application of standard
many-particle methods. For these reasons the physics of many-anyon systems is
only partly understood. One approach to the many-anyon problem is to trade the
non-trivial braiding symmetry for a compensating statistics interaction [1], which is
a two-body interaction that is sensitive to the braiding of particles, but is independent
of distance. The same type of statistics transformation has also been used in field
theory descriptions of the fractional quantum Hall effect, where the fundamental
electron field is changed by a statistics transmutation into an effective bosonic field
of the system [12].

Even if anyons, as usually defined, are particles restricted to two dimensions,
there are related many-particle effects in one dimension. The interchange of parti-
cle positions cannot be viewed in the same way, since particles in one dimension
cannot switch place in a continuous way without actually passing through each
other. Nevertheless there are special kinds of interactions that can be interpreted as
representing unconventional types of quantum statistics also in one dimension [13].
The name anyon is often applied also to these kinds of particles.

For further reading see [15] and [16].
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Aspect Experiment

A.J. Leggett

In 1965, John S. Bell proved a celebrated theorem [1] which essentially states that
no theory belonging to the class of “objective local theories” (OLT’s) can reproduce
the experimental predictions of quantum mechanics for a situation in which two cor-
related particles are detected at mutually distant stations (» Bell’s Theorem). A few
years later Clauser et al. [2] extended the theorem so as to make possible an experi-
ment which would in principle unambiguously discriminate between the predictions
of the class of OLT’s and those of quantum mechanics, and the first experiment of
this type was carried out by Freedman and Clauser [3] in 1972. This experiment,
and (with one exception) others performed in the next few years confirmed the pre-
dictions of quantum mechanics. However, they did not definitively rule out the class
of OLT’s, because of a number of “loopholes” (» Loopholes in Experiments). Of
these various loopholes, probably the most worrying was the “locality loophole”:
a crucial ingredient in the definition of an OLT is the postulate that the outcome
of a measurement at (e.g.) station 2 cannot depend on the nature of the measure-
ment at the distant station 1 (i.e., on the experimenter’s choice of which of two or
more mutually incompatible measurements to perform). If the space-time interval
between the “event” of the choice of measurement at station 1 and that of the out-
come of the measurement at station 2 were spacelike, then violation of the postulate
under the conditions of the experiment would imply, at least prima facie, a viola-
tion of the principles of special relativity, so that most physicists would have a great
deal of confidence in the postulate. Unfortunately, in the experiments mentioned, the
choice of which variable to measure was made in setting up the apparatus (polariz-
ers, etc.) in a particular configuration, a process which obviously precedes the actual
measurements by a time of the order of hours; since the spatial separation between
the stations was only of the order of a few meters, it is clear that the events of choice
at 1 and measurement at 2 fail to meet the condition of spacelike separation by many
orders of magnitude, and the possibility is left open that information concerning the
setting (choice) at station 1 has been transmitted (subluminally) to station 2 and
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affected the outcome of the measurement there. While such a hypothesis certainly
seems bizarre within the framework of currently accepted physics, the question of
the viability or not of the class of OLT’s is so fundamental an issue that one cannot
afford to neglect it completely.

In this situation it becomes highly desirable, as emphasized by Bell in his orig-
inal paper, to perform an experiment in which the choice of what to measure at
station 1 is made “at the last moment”, so that there is no time for information
about this choice to be transmitted (subluminally or luminally) to station 2 before
the outcome of the measurement there is realized. Of course, whether or not this
condition is fulfilled in any given experiment depends crucially on exactly at what
stage the “realization” of a specific outcome is taken to occur, and this question
immediately gets us into the fundamental problem of measurement in quantum me-
chanics (» Measurement Theory); however, most discussions of the incompatibility
of OLT’s and quantum theory in the literature have been content to assume that the
realization occurs no later than the first irreversible processes taking place in the
macroscopic measuring device.(For example, in a typical photomultiplier it is as-
sumed to take place when the photon hits the cathode and ejects the first electron,
since in practice any processes taking place thereafter are irreversible). Although
this assumption is certainly questionable, for the sake of definiteness it will be made
until further notice.

The first experiment to attempt to evade the locality loophole was that of Aspect
et al. [4] in 1982, and subsequent experiments which continue this approach are
often referred to as “Aspect-type”. In some sense these experiments are a sub-class
of the more general category of “delayed-choice” experiments » Delayed-Choice
Experiment), but they have a special significance in their role of attempting to ex-
clude the class of OLT’s. In the original experiment [4], the distance between the
detection stations is about 12 m, corresponding to a transit time for light of 40 nsec.
At each station, the “switch” which decides which of the two alternative measure-
ments to make is an acousto-optical device; in each case two electro-acoustical
transducers, driven in phase, create ultrasonic standing waves in a slab of water
through which the relevant photon must pass, with a period of about 25 MHz (the
frequency is different for the two stations). The periodic density variation in the
wave acts as a diffraction grating: If a given photon » wave packet (length in
time ~5 nsec) arrives at (say) station 1 when the wave has a node (i.e., the density
and hence dielectric constant of the water is uniform) it is transmitted rectilinearly
through the slab and enters a polarizer set in direction a; if on the other hand it ar-
rives at an antinode (periodic density variation) it undergoes Bragg diffraction and is
directed into a polarizer set at a’. (See Fig. 1). Photons (» light quantum) incident at
intermediate phases of the wave are deflected into neither polarizer and thus missed
in the counting. The period of switching between the alternative choices (a quarter
period of the transducers) is about 10 nsec., short compared to the transit time of
light between the stations. To the extent, then, that one can regard the switching as
a “random” process, the locality loophole is blocked. The data obtained in ref. [4]
violate the OLT predictions by 5 standard deviations.
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Fig. 1 Schema of switching devices in Aspect experiment. P, (P,/) are polarisers with transmis-
sion axis a (a). When a photon arrives at time on ultrasonic cycle when density of H>O is constant,
it is directed into P,; (b) if it arrives at a maximum of the standing wave, into P,/

Is the switching in fact a truly random process? On the one hand, since the trans-
ducer pairs are driven by different generators at different frequencies, there is no
correlation between the choices made at the two stations, and as we have seen no
time for information about the choice itself to be transmitted between them. On the
other hand, since the driving at each station separately is periodic, a sufficiently
determined advocate of OLT’s might argue that station 2 has the information to pre-
dict what the setting at station 1 will be at a given time in the future and to make
arrangements accordingly (and of course vice versa). Thus, while the experiment
of ref. [4] is clearly a major advance on the original Freedman-Clauser one, not
everyone was convinced that it had definitively blocked the locality loophole.

Of the various Aspect-type experiments performed subsequently to 1982, proba-
bly the most notable is that of Weihs et al. [5]. This experiment used a much longer
baseline, around 400 m, and the choice of measurement was made by a quantum ran-
dom number generator (QRNG), with a total switching time of less than 100 nsec.
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A further feature of this experiment, unique up to now among the whole class of
“Bell’s theorem” experiments, is that instead of being channelled to a central coin-
cidence counter the detection outcomes are recorded in situ and compared, with the
help of accurate timing, only hours or days later (so that, coming back to the ques-
tion of the time of “realization”, its postponement until the time of comparison,
which is not totally implausible in other experiments, would in this case seem
distinctly unnatural). The duration of the registration process was such that it is
completed well within the signal transit time. The data obtained are consistent with
the predictions of quantum mechanics and violate those of the class of OLT’s by 30
standard deviations.

One further experiment which has some significance in the present context is that
of Tittel et al. [6]. Although there was no in-situ recording, this is otherwise similar
in spirit to that of ref. [5], with an even longer base-line (10 km); the difference is
that the role of the QRNG which controls the choice of measurement is played by
the measured photon itself (it impinges on a beam splitter where the output beams
correspond to different choices). Once more good agreement with the predictions of
quantum mechanics is obtained.

In the light of these experiments, any attempt to continue to exploit the locality
loophole to defend a theory of the OLT class would have either to deny that the
QRNG’s used work in a genuinely random way, or postpone the realization pro-
cess for at least 1.3 microsec after the photon enters the photomultiplier (the signal
transit time in the experiment of Weihs et al.). A truly definitive blocking of this
loophole would presumably require that the detection be directly conducted by two
human observers with a spatial separation such that the signal transit time exceeds
human reaction times, a few hundred milliseconds (i.e., a separation of several tens
of thousand kilometers). Given the extraordinary progress made in quantum com-
munication in recent years, this goal may not be indefinitely far in the future. In the
meantime, a small step in this direction might be taken by repeating the experiment
of Weihs et al. with inspection of the outcomes by independent human observers
before they are correlated, something which was not done in ref. [5].!
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“Plum Pudding” Model

Klaus Hentschel

In 1897, Joseph John Thomson (1856-1940) had announced the discovery of a cor-
puscle. Others soon called it » electron, despite Thomson’s stubborn preference for
his original term, borrowed from Robert Boyle (1627-91) to denote any particle-
like structure. Very soon afterwards, Thomson began to think about how to explain
the periodicity of properties of the chemical elements in terms of these negatively
charged corpuscles as atomic constituents. Chemical properties would thus have to
depend on the number and constellations of these corpuscles inside the atom. They
would have to have stable positions in it, bound by electrostatic and possibly kinetic
forces. Because under normal conditions chemical atoms are electrically neutral,
the total electric charge of all these negatively charged electrons had to be com-
pensated for by an equal amount of positive charge. For Thomson it was natural to
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Fig. 1 Left: From [1, p. 248]; right: from [2, pp. 100-101]

assume that this positive charge was continuously distributed throughout the atom,
whose radius was estimated at the time to be around 10~!? m. The very small neg-
atively charged electrons (contemporary estimates indicated an order of magnitude
of 10~15 m) were distributed in the atom like raisins inside a cake or like plums in a
pudding, whence the popular nickname for Thomson’s atomic model as the “plum
pudding model”.

In order to get a better idea of the stable configurations of these corpuscles inside
the atom, Thomson drew an analogy to experiments by Alfred Marshall Mayer
(1836-1897) who had pierced small magnetic needles into corks and watched
them float in water below a strong magnet (see Fig. 1, left). In 1878/79 Mayer had
observed that the magnetized floating needles quasi-automatically positioned them-
selves in characteristic configurations depending on their number. With more than
six magnetic needles present, a seventh and eighth would inevitably position itself
inside the outer ring of six (see the third row of Fig. 1 middle). As the number of
floating magnets increased, more and more rings would form. Thomson hoped that
a similar ring-structure composed of corpuscules could be found inside chemical
atoms, and suspected that each of these rings would be analogous to the chemical
periods in the period table of the elements. Specific configurations of the innermost
ring would determine the chemical properties of the chemical element at hand. Two
chemical elements with differing numbers of outer rings of corpuscles but similar in-
nermost configurations would thus share similar chemical properties, like elements
situated beneath each other in a column of the periodic table. To stabilize these con-
figurations, Thomson also assumed that the concentric rings would all rotate around
their common center.

Around 1904 Thomson believed each chemical atom would contain a very large
number of » electrons, something in the order of magnitude of 1,000 or more. With
such high numbers he hoped to explain the puzzle of the exceedingly many spectral
lines in each atom’s spectrum and the fact that the masses of atoms proved to be sev-
eral thousand times the mass of an electron. Radioactive decay (» radioactive decay
law) very often correlated with the emission of negatively charged 3-rays, turned out
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to be nothing but highly accelerated electrons, which Thomson thus interpreted as
a mechanical instability of these electron configurations. A slight disturbance of
the carefully balanced equilibrium position would result in electrostatic repulsion
taking over and the expulsion of individual electrons or whole groups of electrons
from the atom, where they would be experimentally observable as B-rays. Thomson
also tried to explore the atomic structure by using corpuscles/electrons as projec-
tiles in B-ray scattering experiments onto thin foils. The scattering angles observed
by him and his students were predominantly very small, with a Gaussian distribu-
tion peaking sharply around zero-degree refraction and a width proportional to the
thickness of the target layer. This experimental finding was interpreted as evidence
for small-angle scattering, with successive layers of matter in thicker foils induc-
ing an increasing, but still relatively small probability of multiple scattering, with
occasional larger scattering angles resulting.

When Ernest Rutherford (1871-1937) started to work on » scattering ex-
periments, he varied Thomson’s set-up by also using the positively charged and
much heavier o-rays as projectiles. As will be discussed in detail in the entries
on » large-angle scattering and the » Rutherford atom model, Rutherford’s exper-
iments showed that » large-angle scattering was far more frequent than would be
expected on the basis of J.J. Thomson’s plum pudding » atomic models. Rutherford
decided to modify J.J. Thomson’s atomic model: instead of assuming a continuous
smeared-out positive charge, Rutherford postulated a concentrated atomic nucleus
model with positive charge surrounded by a diffuse sphere of negative electricity
(cf. Fig.2). Quantitative analysis of his o-ray scattering experiments showed this
atomic nucleus model was consistent with his data if the positive charge of the core
was of the order of A/2-e, with A being the atomic number of the chemical element
and e equal to the charge of J.J. Thomson’s corpuscles, the elementary charge quan-
tum. Thus Rutherford’s estimate (which proved to be correct) drastically reduced
the number of electrons inside atoms compared to J.J. Thomson’s.

Fig. 2 Rutherford’s first calculations on the passage of o-particles through atoms: “Theory of
structure of atoms/Suppose atoms consist of + charge ne at centre & — charge as electrons
distributed throughout sphere of radius p.” From the Rutherford papers, Cambridge University
Library, reproduced from [7, p. 24]
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When the young Niels Bohr (1885-1962) finished writing his Ph.D. thesis at the
University of Copenhagen, he obtained a fellowship for postgraduate study abroad.
He chose to go to Cambridge, hoping to get to work more closely with J.J. Thomson,
who was director of the Cavendish laboratory since 1884. The two personalities did
not match, however, and Bohr soon decided to move on to Manchester where Ernest
Rutherford introduced him to the intricacies of scattering experiments with o.-rays
and discussed his brand new nuclear core model of the atom. In the atomic model
Bohr introduced in 1913, later refined by Arnold Sommerfeld (1868—1951) and
others (» Bohr’s atomic model; » Sommerfeld school), Bohr masterfully merged
ideas by J.J. Thomson, Rutherford and Nagaoka (» Atomic models). He also su-
perimposed quantum conditions introduced by Max Planck (1858-1947) in 1900
and first employed in atomic models from 1910 on by Arthur Erich Haas (1884—
1941) and John William Nicholson (1881-1955) [cf., e.g. [10], and [8]. While Bohr
and Rutherford soon looked back on the older atomic models by J.J. Thomson and
others as “a museum of scientific curiosities”, J.J. Thomson for his part rejected
Bohr’s advances as “meretricious superficialities obtained without, or at the price
of, an understanding of the mechanism of atoms” [7, p. 23]. Today we know that
J.J. Thomson’s hope to arrive at an intuitive, quasi-mechanical understanding of the
atom was in vain — but at the time no one could be sure.
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Atomic Models, Nagaoka’s Saturnian Model

Klaus Hentschel

In late 1903, Hantaro Nagaoka (1865-1950) developed the earliest published
quasi-planetary model of the atom. This graduate of the University of Tokyo from
1887 spent his postdoctoral period in Vienna, Berlin and Munich before obtaining a
professorship in Tokyo to become Japan’s foremost modern physicist. Nagaoka as-
sumed that the atom is a large, massive, positively charged sphere, encircled by very
many (in order of magnitude: hundreds) light-weight, negatively charged » elec-
trons, bound by electrostatic forces analogous to Saturn’s ring, which is stabilized
and attracted to the heavy planet by gravitation and consists of a myriad of small
fragments. Thus, Nagaoka’s model is also called a saturnian model. (Fig. 1) Even
though its basic assumption foreshadowed later models of the atom, such as William
Nicholson’s (1753—-1815) and Niels Bohr’s (1885-1962), it differed from » Bohr’s
atomic model in crucial points. Unlike Bohr one decade later, Nagaoka thought that

Fig. 1 Nagaoka’s ‘Saturnian’ model: very many electrons move in one ring around a positively
charged central body. In Nagoka’s own words (1903/04, pp. 445f.): “The system, which [ am going
to discuss, consists of a large number of particles of equal mass arranged in a circle at equal angular
intervals and repelling each other with forces inversely proportional to the square of distance; at
the centre of the circle, place a particle of large mass attracting the other particles according to
the same law of force. If these repelling particles be revolving with nearly the same velocity about
the attracting centre, the system will generally remain stable, for small disturbances provided the
attracting force be sufficiently great . ... The present case will evidently be approximately realized
if we replace these satellites by negative electrons and the attracting centre by a positively charged
particle”
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the observed atomic spectra should be directly correlated with the electron’s orbit
frequency. Radioactivity was interpreted as an occasional breakdown of saturnian
rings, with electrons then being ejected from the atoms as -rays. Consequently,
Nagaoka and others tried to correlate spectral series, bands and other data observed
in » spectroscopy and early research on radioactivity with predictions derived from
his model — in vain. Another problem of Nagaoka’s and Nicholson’s planetary
models was a lack of stability of the electron orbits to oscillations orthogonal to
the plane of rotation, as J.J. Thomson pointed out, which ultimately led to Nagaoka
himself abandoning the Saturnian model in 1908.
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Bell’s Theorem

A.J. Leggett

Bell’s theorem, first proved by John Stewart Bell (1928—1990) [1] in 1964, is prob-
ably the most celebrated result in the whole of twentieth-century physics. Briefly
stated, it demonstrates that a whole class of theories about the physical world (“ob-
jective local theories”, see below) defined by the conjunction of three apparently
plausible general principles, must yield experimental predictions which under cer-
tain conditions are inconsistent with the predictions of quantum mechanics. Over
the last 35 years a series of experiments motivated by the theorem have shown that
under the relevant conditions the experimental properties of the world are consis-
tent with the predictions of quantum mechanics and thus, subject to certain caveats,
inconsistent with those of the alternative class of theories, so that the latter must
apparently be rejected.

Let’s first define an idealized experimental arrangement which is useful for the
discussion of the theorem (see Fig. 1). A source emits pairs of particles (let us say
for definiteness photons (» light quantum) as is usually the case in the real-life ex-
periments). The photons travel to two different experimental “stations” Sy and Sj
which are distant not only from the source but from one another, so that the space-
time points at which they are detected at the stations are spacelike separated in the
sense of special relativity (i.e. there is no time for a light wave, or anything slower,
to pass between them). At (say) station 1 the relevant photon (1) encounters a ran-
domly activated switch which directs it into one of two “measurement devices”.
Each measurement device gives a binary output (“yes” or “no”), but to two different
“questions”. To put a little flesh on this rather abstract formulation, let us imagine
(as is usually the case in practice) that the “measurement” is of photon polarization;
then one measurement device (call it M,) would consist of a polarizer set to transmit
photons polarized along direction a in the plane orthogonal to its propagation direc-
tion and reflect photons with the orthogonal polarization, together with counters
[Ca(+) and Ca(_)] to detect both the transmitted and reflected photons. The second
measurement device, My, is similar except that the polarizer now has a transmission
axis @’ which is different from a. A similar setup is constructed at station 2, with
the alternative polarizer axes now b and b'. It is important that the “events” not only
of the arrival of the photons at S; and S, but of the activation of the two switches,
i.e. of the “choice” of which of the two alternative measurements to make at each
station, be spacelike separated.

It is further assumed that we are able to identify precisely which photon 2
has been emitted in conjunction with a given photon 1 (e.g. by turning down the
source intensity to a sufficiently low value). The output of each of the counters is a
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Fig. 1 Schematic setup of experimental arrangement. (a) The source and the two measurement
stations. (b) Details of the measurement apparatus M,. The apparatuses My, My, My are similarly
constructed

macroscopic event, e.g. an audible click; for complete idealization we may assume
that at each station the click is noted by a conscious human observer (who can later
report what he/she heard) and that the spacetime separation between the event of
random switching at station 1 and that of conscious observation at station 2, and be-
tween the conscious observations at 1 and 2 themselves, is itself spacelike. Needless
to say, real-life experiments do not fulfil all of the above requirements, particularly
the last, but I will assume them for the sake of a clean discussion.

It is useful to develop a vocabulary to describe the data obtained in such an exper-
imental setup. Consider a given pair of photons 1 and 2 which we are sure have been
emitted in conjunction. Let us suppose that on this particular occasion the switch at
station 1 has directed photon 1 into counter M,. Then, if the design is ideal, one of
two things will happen: either counter C,* will click while counter C,~) remains
silent, or vice versa. Let us define a dichotomic variable A so that the measured
value of A is by definition +1 in the former case and —1 in the latter.
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Similarly, if we suppose that the switch at station 2 has directed photon 2 into
measurement apparatus My, we can define a quantity B so that the measured value of
B is by definition +1 if it is counter My, ") which clicks, and —1 if it is My (™). Now
let us consider a different pair of photons, for which (say) photon 2 is still switched
into My, but photon 1 is now switched into My . We can define B as previously, but
instead of A we must now define a quantity A’, which has the measured value A’ if
Ma/(+) clicks, etc. Note that for this second pair, the “measured value” of A is not
defined (as was not that of A’ for the first pair). A quantity B’ is introduced in the
obviously analogous way. Let us now define the correlation of A and B, (AB), by
the formula

_ N4y (@b) + N (ab) — Ny (ab) — N_4 (ab)}

(AB) =
{Ny+ (ab) + N__ (ab) + N4_ (ab) + N_ (ab)}

ey

where N4 (ab) means the number of occasions on which photon 1 was switched
into counter M, and photon 2 into My, and A and B were both measured to be +1,
etc.; note that the denominator is simply the number of times that 1 was switched
into M, and 2 into My, irrespective of the outcome of the measurements. Corre-
lations (A’B), (AB’), (A’B’) are defined analogously. With these definitions it is
clear that we can measure (A B) on one subensemble of the total ensemble of photon
pairs, namely that consisting of those pairs for which photon 1 was switched into
M, and photon 2 into Mp. Similarly, we can measure the correlation (AB’) on a
different subensemble (1 switched into My, 2 into My/), and so on.

Let us next define the class of “objective local theories” (OLT’s) whose predic-
tions are to be compared with those of quantum mechanics and with experiment in
situations approximating the idealized one described above. While the details of the
definition as presented in the literature tend to vary from one author to another and
with Bell’s original one, one can summarize by saying that the class of OLT’s is de-
fined by the conjunction of three independent general hypotheses about the physical
world, which for brevity I will refer to as (1) » locality (2) induction and (3) real-
ism. (As will be discussed below, some treatments in the literature do not explicitly
include (2)). I now discuss these three postulates in turn.

1. Locality (sometimes called » “Einstein locality”) is the postulate, central to
the special theory of relativity, that events which are spacelike separated can-
not causally influence one another. In the experimental arrangement described
above, this means that (for example) the outcome of a measurement at station 2
cannot depend on the setting of the switch at station 1.

2. Induction means basically our normal assumption about the “arrow of time”,
i.e. that physical » ensembles in quantum mechanics (the collections of systems
which possess reproducible statistical properties) existing at a time r > 0 are
defined only by their past experience (e.g. by the initial conditions at time 0 and
forces acting between 0 and 7), and not by anything which is going to happen
at a time later than ¢. In the relevant experiments this means that the statistical
properties of the subensemble consisting of those pairs of photons on which (say)
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A and B are measured should be identical to those of the ensemble of photons
as a whole (in intuitive language, the photons cannot “know” in advance which
polarization components are to be measured on them).

In many papers on Bell’s theorem in the literature, postulate (2) is not included ex-
plicitly, probably because of a belief that it is subsumed under (1). This is a rather
delicate issue: within the context of special relativity without any additional con-
straints the belief is obviously correct, in the sense that if one considers three events
X,Y.Z such that X and Y are spacelike separated but both are in the past light cone
of Z, then violation of (2) would allow Z to influence Y, and we assume that X
influences Z in the usual way then X can influence Y, in violation of (1).

However, there is no obvious reason why a general OLT should not incorporate, for
example, the postulate that such “causal triangles” are forbidden to occur, so that it
is useful to incorporate postulate (2) explicitly in the definition of an objective local
theory.

3. Realism is probably the conceptually trickiest ingredient in the definition of the
class of OLT’s. In the simplest form (essentially that used by Bell in his original
paper) it is the statement that each individual particle (in the described experi-
ment, each individual photon of a given pair) possesses definite properties; for
example, each photon 1 carries with it information which determines both how it
will respond if directed by the switch into M,, and how it will respond if directed
into My . Let’s call this assumption the hypothesis of microscopic realism, and
denote it (3a). Note that while in his original paper Bell, whose original moti-
vation was the issue of the consistency of “hidden-variable” theories (» Hidden
Variables) with quantum mechanics, assumed that the response is deterministic
as in most theories of that type, this is not essential; one can perfectly well con-
sider models where there is intrinsic randomness in the outcome of the relevant
measurement, provided only that the statistics of the latter is completely deter-
mined by information carried by photon 1 alone.

A possible alternative formulation of postulate (3) (call it (3b)) eschews any
statement about the properties of microscopic objects (photons) in favor of state-
ments about (actual and possible) directly observed events at the macroscopic level
(clicks). Consider for example a case in which photon 1 is actually switched into
M,y; then, of course, this particular photon cannot be measured by M,, and conse-
quently the value of the quantity A is not defined. Now imagine, contrary to fact, that
this particular photon had been switched into M,. It is, of course, a (rather trivial)
“fact” about the world that under these (counterfactual) conditions either counter
Ca(+) would have clicked, giving A = 41, or counter Ca(_) would have clicked
(A = —1). In other words we can presumably agree, referring to the given counter-
factual conditions, that

(Py): It is a fact that either A would have been +1, or A would have been —1.
Now consider the subtly different assertion:

(P2): Either it is a fact that A would have been +1, or it is a fact that A would
have been —1.




28 Bell’s Theorem

The assertion of (P») is called the hypothesis of macroscopic counterfactual def-
initeness (hereafter abbreviated MCFD » Counterfactuals in QM)). In contrast to
assertion 1, which makes as it were no particular metaphysical statement, assertion
(P7) claims that the outcome of an unperformed experiment is a fixed property of
the world. It should be emphasized that the above formulation of the defining pos-
tulates of the class of theories for which Bell’s theorem holds is only one of many
possible such formulations. The equivalence or not of these alternative formulations,
and the advantages and disadvantages of each, has been the subject of an extensive
literature.

With these preliminaries we are now in a position to state and prove Bell’s the-
orem. In the literature, the formulation tends to depend on whether the context is a
discussion of the conflict of the predictions of the class of “objective local theories”
with those of quantum mechanics, or rather of that with the experimental data; in the
latter case, an extension of Bell’s original theorem (the “CHSH theorem”) proved
by Clauser et al. [2] a few years after his paper tends to be more directly applica-
ble than the original version. Here I shall present the CHSH theorem, and treat the
original theorem proved by Bell as a special case of it.

The CHSH theorem states that, for any choice whatever of the settings a, b,
a’, b’, any theory of the OLT class must predict the inequality

K (a.b.a'.b') = (AB) + (AB')+ (A'B) — (A'B) < 2 )

(and some related inequalities; in the interests of clarity I state only the first, which
is the one most often used in experimental tests). Bell’s original inequality is the
special case of (2) which is obtained under the additional assumption that for A =
— B’ (which in the polarization case means that &’ is orthogonal to a’) the quantity
(A’B’y = +1, as predicted by quantum mechanics for certain states (see below).
Relabelling the various quantities so as to make closer contact with Bell’s original
notation, we find in this case the inequality

(AB) — (CB) <=1+ (AC) 3)

which is known as Bell’s inequality (or more precisely one of Bell’s inequalities;
again for clarity I give only one version). The inequalities (2) and (3) do not at first
sight seem particularly dramatic, but the crucial point is that for certain states and
settings they are violated by the predictions of quantum mechanics. For example,
if we consider the pair of photons emitted in a so-called 07(J = 0,4+ — J =
1, — — J = 0, +) atomic transition like that used in the experiments on C,, we
find that quantum mechanics unambiguously predicts, under ideal conditions, the
result

(AB) = cos (26ap) (4)

where 6, is the angle between the settings a and b. Setting a’=0, b=3n/8,
a=m/4 and b’ =3m/8, we find that the quantum mechanical prediction for this
choice of settings is

K =23?
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which violates the CHSH inequality by a factor of 2!/2. Similarly, for a 0~ transi-
tion, for which quantum mechanics predicts (A B) = sin (26,;), (hence (AB) = +1
for a and b orthogonal as assumed by Bell, who actually treated explicitly the spin
singlet state of two spin-l/ particles, which is isomorphic to the 0— photon pair)
the inequality (3) is violated by the quantum prediction over a range of settings
(this is most intuitively obvious when (e.g.) a and ¢ are both close to zero and b
to /4, since the LHS of (3) is then fairly obviously linear in 6,; while the RHS is
quadratic).

The proof of the CHSH theorem and hence of Bell’s theorem as a special case,
while conceptually subtle, requires only the most elementary algebra. For definite-
ness I will take the third postulate defining an OLT as the assumption of MCFD; it
is straightforward to adapt the argument so as to substitute the assumption (3a) of
microscopic realism. Then a possible derivation of the inequality (3) (one of many!)
goes as follows:

1. By assumption (3b), the quantity A exists for each photon 1 and possesses a
definite value, independently of whether or not that photon was directed into M,.
Similarly for A’, B, B’.

2. By postulate (1), the value of A for any particular photon 1 cannot depend on
the choice of what to measure at the distant station 2, nor on the outcome of that
measurement. Similarly for A’, B, B’.

3. Hence each of the quantities A, A’, B and B’ exists and takes a value +1 or —1
which is, in the case of A, independent of whether it is B or B’ which is measured
at the distant station, and vice versa. In other words, the value of A which occurs
in the product AB is identical to that occurring in AB’, etc.

4. It is then a matter of elementary algebra to show that for any given pair the
quantities AB, etc. must satisfy the inequality

AB+AB +A'B—A'B' <2 (5

(Any reader who doubts the truth of this statement is invited simply to exhaust
the 16 possibilities!).

5. It then immediately follows that when taken on the whole ensemble of pairs (ir-
respective of which quantities were actually measured on them) the expectation
values (A B)ay etc. satisfy an inequality of the same structure as (5).

6. By postulate (2), the statistical properties of each subensemble are identical to
those of the complete ensemble. Hence, for example, the average of (AB) over the
whole ensemble may be legitimately identified with the measured quantity (A B),
which is of course strictly the average for the ab-ensemble only. Making this
identification, we see that the measured correlations satisfy the CHSH inequality
(3), QED.

Over the last 35 years, starting with the work of Freedman and Clauser [3] in 1972,
a large number — probably hundreds — of experiments based on Bell’s theorem have
been performed. With a handful of exceptions, these experiments have all obtained
results which are consistent with the predictions of quantum mechanics, and prima
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facie inconsistent with those of the whole class of objective local theories, in some
cases by hundreds of standard deviations. However, no existing experiment has con-
formed entirely to the idealized setup described above, and this gives rise to various
so-called “loopholes” in the refutation of OLT’s. Generally speaking, these loop-
holes arise because of doubts about whether the OLT postulates are adequately
satisfied by a given real-life experimental setup (for example, whether the relevant
“events” of realization are sufficiently separated that one can legitimately invoke the
locality assumption) » Loopholes in Experiments.

Apart from the question of whether or not the conditions to invoke the OLT
postulates have actually been satisfied in existing experiments, the implications of
Bell’s theorem are so disturbing that the theorem itself has been repeatedly chal-
lenged; that is, it has been argued that even if it turns out that even when (if?) all
the loopholes have been plugged the experimental data still conform to the quan-
tum mechanical predictions, this will not mean that we have to abandon the class
of OLT’s. In the present author’s opinion, all these challenges to Bell’s theorem as
such have been uniformly unsuccessful: at best they reduce to the claim that one or
other of the defining assumptions of an OLT is less overwhelmingly plausible than
generally believed, while leaving the theorem itself intact.

If we assume that the loopholes will progressively be blocked and the data con-
tinue to conform to the quantum-mechanical predictions, so that we must conclude
that the class of OLT’s is ruled out, which of the three defining assumptions should
we abandon? To abandon postulate (1) would be in prima facie conflict with the ba-
sic postulates of the special theory of relativity, and is therefore something that most
practising physicists (as distinct from most popular writers on the subject!) would be
extremely loath to do. Of course, we cannot rule out the possibility, which has been
advocated by some prominent physicists, that (for example) an ultimate theory of
» quantum gravity will reveal special relativity to be only an approximate descrip-
tion of reality, so that postulate (1) might fail, but at present no such theory seems
to be developed in a sufficiently concrete way to give us this escape-hatch. To chal-
lenge postulate (2) would be to abandon our conventional notions concerning the
“arrow of time”; again, it cannot be excluded that future theoretical developments
might force us to do just that, but the prospect is certainly not appealing; most of us
would not currently know how to do physics without this deeply ingrained assump-
tion. The weakest link would appear to be postulate (3), and that is probably what
most practising physicists would choose to sacrifice; that is, they would claim that
neither the assumption (3a) of microscopic realism nor that (3b) of MCFD is actu-
ally true of the real world. In the words of the late Asher Peres [4], “unperformed
experiments have no results”!

While this conclusion is in some sense in the spirit of the Copenhagen interpre-
tation of quantum mechanics, it is still a very surprising and, if one really takes it
seriously, alarming fact about the physical world.! See also » Aspect experiment
and Section on Bell inequalities in » Wave function collapse.

! 'This work was supported by the National Science Foundation through grant no.NSF-EIA-01-
21568.
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Berry’s Phase

Daniel Rohrlich

Berry’s phase [1] is a quantum phase effect arising in systems that undergo a slow,
cyclic evolution. It is a remarkable correction to the quantum adiabatic theorem and
to the closely related Born—Oppenheimer approximation [2]. Berry’s elegant and
general analysis has found application to such diverse fields as atomic, condensed
matter, nuclear and elementary » particle physics, and optics. In this brief review,
we first derive Berry’s phase in the context of the quantum adiabatic theorem and
then in the context of the Born—Oppenheimer approximation. We mention general-
izations of Berry’s phase and analyze its relation to the » Aharonov—Bohm effect.

Consider a Hamiltonian Hy(R) that depends on parameters Ry, Rz, ..., Ry,
components of a vector R. Let us assume that H ¢(R) has at least one discrete and
nondegenerate eigenvalue E; (R) with |¥; (R)) its eigenstate; E; (R) and |¥; (R)) in-
herit their dependence on R from H (R). If the vector R changes in time, then |¥; (R))
is not an exact solution to the time-dependent » Schrodinger equation. But if R
changes slowly enough, the system does not » quantum jump to another eigenstate.
Instead, it adjusts itself to the changing Hamiltonian. A heavy weight hanging on a
string illustrates such adiabaticity. Pull the string quickly — it snaps and the weight
falls. Pull the string slowly — the weight comes up with it.
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“Slowly enough” has the following formal sense. Let R[¢/T] evolve over a time
interval 0 < ¢ < T the larger T, the slower the evolution. If at time ¢+ = 0 the
system is in the state |¥; (R[0])), then at time r = T the state is ¢'% ) |¥; (R[1]))
with probability approaching 1 as 7" approaches infinity, according to the quantum
adiabatic theorem [10]. We obtain the phase ¢; () by substituting el% Dy (R)) into
the time-dependent » Schrodinger equation,

ih%ei@(’nwi (R)) = Hy(R[1/ TNV |w; (R)),

and projecting both sides of the equation onto ¢'? ) |W; (R)):

d . drR 1
% (1) = (¥ (R)|VR|¥i(R)) - T £Ei(R)-

Thus
roT. drR 1
@i (1) — ¢i(0) = / dt [l(Wi(R)IVRI‘Pi(RD - —Ei(R)]
0 t h

RI] 1t
=f (7 (R)[iVR|¥; (R)) - dR — —f di" Ei(R).
RI[O] h Jo

The integrand A g = (¥; (R)|iVR|¥; (R)) is Berry’s connection for the state |¥; (R)).
The integral — fot E;dt'/h is called the dynamical phase.

The overall phase of a quantum state is not observable. But a quantum system
may be in a » superposition of states; the relative phase of these states is observ-
able. Consider two paths R[¢/T] and R'[¢/ T with the same endpoints R[0] = R'[0]
and R[1] = R'[1], and suppose that the system evolves in a superposition of states
|W;(R[t/T])) and |¥;(R'[t/T])). At time r = T the relative phase of this superpo-
sition contains two parts. One part is the relative dynamical phase. The other part
is Berry’s phase, the difference between Ap integrated along R and Ap integrated
along R’, i.e. it is the circular integral of Ag along the closed path comprising R and
R’ with opposite senses. This phase is well defined, because it is gauge invariance
(» gauge symmetry): If we multiply |¥; (R)) by a phase factor e 4B it remains the
same instantaneous eigenstate of Hy(R), but Ag changes by —Vg A(R). Since the
change in Ap is a gradient, the integral of Ag around a closed loop is unchanged,
hence well defined.

As an example of Berry’s phase, consider the spin-1/2 Hamiltonian Hy = uR - o,
where oy, 0y and o are the » Pauli spin matrices. The eigenstate corresponding to
the positive eigenvalue £y = uR is

COS —

el sin —
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where R, = Rcosf and R, + iR, = Rel? sin 6. The Berry connection, expressed
as a function of 6 and ¢, is (Ag)s = 0, (Ap)y = (cos® — 1)/2 and matches the
vector potential of a Dirac monopole of strength 1/2 located at the origin R = 0. The
integral of Ap along any loop in R equals —1/2 times the solid angle subtended by
the loop at the origin (as an application of Stokes’s theorem shows). This example
is generic because wherever two nondegenerate energy levels cross at a point in a
space of parameters, the Hamiltonian near the point reduces to an effective two-level
Hamiltonian proportional to R - o, with the degeneracy at R = 0. Hence an effective
magnetic monopole can arise wherever two discrete, nondegenerate levels become
degenerate.

The spin-1/2 example also illustrates how Berry’s phase can be topological. A
loop in R defines fwo solid angles, just as a loop on the surface of a sphere cuts
the surface into two parts. Why, then, is Berry’s phase not ambiguous? The answer
is that the difference between the two solid angles is equal to 4. (The two solid
angles have opposite signs because their orientations, or the directions of integration
of Ap, are opposite.) But a £4x difference of solid angle corresponds to a F27
difference in phase, which is unobservable. Here Berry’s phase obeys a constraint
arising from the topology of a sphere.

In the Born—Oppenheimer approximation, the Ry, R, ... are quantum observ-
ables and may not even commute. They evolve according to their own “slow”
Hamiltonian Hj, and the overall Hamiltonian is the sum H = Hy + H;. The
eigenvalues of Hy must be discrete, and the adiabatic limit applies if Hj is an ar-
bitrarily weak perturbation on Hy. The weaker the perturbation, the smaller the
probability of transitions (» quantum jumps) among the eigenstates of Hy. The un-
perturbed » Hilbert space for H divides into subspaces, one for each eigenvalue E;
of Hy. In the adiabatic limit, the “fast” variables remain in an eigenstate |\W; (R))
of Hy, with i fixed, while dynamical and Berry phases of |W;(R)) show up in H as
induced scalar and vector potentials.

Born and Oppenheimer multiplied |¥;(R)) by a function ®(R, ¢) and obtained
an effective Hamiltonian for ® (R, ¢). Here we obtain and simplify their effective
Hamiltonian algebraically. Let IT; denote the operator of » projection onto the sub-
space corresponding to E;. The subspaces are disjoint and form a complete set:
>, II; = 1. In the adiabatic limit, we can replace Hs by >, IT; HiII; to obtain the
effective Hamiltonian of Born and Oppenheimer:

Hep = Hy + ) T HII;.

1

In Hesr there are induced potentials. If
Hs = P?/2M + V(R),

where P; = —ihd/9R;, the sum ) ; II; HiII; in Hefr contains products of the form

I; P*I; = »  II;PII,PIL;.
j
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We simplify them by decomposing P into two parts, P = (P —A) 4+ A. The first part
acts only within subspaces; that is, [P — A, IT;] = 0 for all i. Only the second part,
A, causes transitions among the subspaces. Like a vector potential, A is somewhat
arbitrary: we can add to A any term that commutes with the II;. Let us remove this
arbitrariness by requiring IT;AIl; = O for each i. The effective Hamiltonian for the
R is then [3]

HeffZHf+—(P A)? +—ZHA2H + V(R).

The sum in i is an induced scalar potential, while A is an induced vector potential: A
is Berry’s connection Ap in an off-diagonal gauge. For example, let Hy = uR - o as
in the spin-1/2 example above. The operators of projection corresponding to E4+ =
+uR are

n. = %(1 +R-0/R),
and the vector potential
IR xo
2R?
solves the two conditions [P — A, I1+] = 0 and IILAIl+ = 0; A is off-diagonal.
The field corresponding to A,

1 1 .
Bi = seijeFjr = Efijk(ajAk — A —ilAj, AxD) =

2R4 o,

is a monopole field B = AR /2R since the eigenvalues of R - o'/ R are %1.

So far we have taken the eigenvalues of Hy to be discrete and nondegenerate. If
H ¢ has a discrete and degenerate eigenvalue, Berry’s phase may be non-abelian [4].
The eigenstates belonging to this eigenvalue do not (in the adiabatic approximation)
jump to eigenstates belonging to other eigenvalues, but they may mix among them-
selves. The mixing amounts to multiplication by a non-abelian phase, i.e. a unitary
matrix.

Another generalization of Berry’s phase is the Aharonov—Anandan phase [5].
Suppose a system evolves according to Schrodinger’s equation, but the change in
the Hamiltonian is neither adiabatic nor cyclic. Aharonov and Anandan showed that
the system can still exhibit a Berry phase; all that is needed is cyclic evolution of the
state of the system. Cyclic evolution of a state defines a closed path in the Hilbert
space of the state. Whether or not this evolution is adiabatic, it leaves the system
with a dynamical phase, which depends on the Hamiltonian of the system, and a
geometrical phase — Berry’s phase — which depends only on the closed path of the
state in its Hilbert space. Thus Berry’s phase need not be adiabatic (although it is
still a correction to the adiabatic theorem).

We have considered evolution consistent with Schrodinger’s equation. But as
Pancharatnam showed [6], geometric phases can emerge from nonunitary evolu-
tion. For example, let an » ensemble be divided into two subensembles, one of
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which is subjected to a sequence of filtering measurements (projections). If the sub-
subensemble that survives this filtering has returned to its initial state, it has a well
defined phase (relative to the unfiltered subensemble) which equals a relative dy-
namical phase plus the Berry phase for this evolution.

Berry’s phase has a classical analogue: Hannay’s angle [7] is a phase effect
in a classical periodic system that depends on adiabatically changing parameters.
A canonical pair of variables for such a system is an “action” variable /, which is
an adiabatic constant of the motion, and a conjugate “angle” variable ¢. Hannay’s
angle is an extra shift in ¢ acquired by the system during a cyclic evolution in the
space of parameters. When the Hannay angle of a system depends on its action /,
the corresponding quantum system acquires a Berry phase during the same cyclic
evolution [8].

Although the Aharonov—Bohm effect has no classical analogue, we may treat
it as an example of Berry’s phase. More generally, however, the Aharonov—Bohm
and Berry phases can combine in a topological phase [9]. For example, imagine
a “semifluxon”, something like a straight, heavy, infinite solenoid enclosing flux
hc/2e — exactly half a flux quantum — that moves perpendicular to itself. It interacts
with an electron » wave function that has support in two disjoint regions. If the
semifluxon moves in a slow circuit, we can ask what phase the electron acquires
from this adiabatic cyclic evolution. Figure 1 shows one of the two regions where
the electron wave function has support, and two possible circuits for the semifluxon.
If the semifluxon evolves along Cj, the electron acquires no relative Berry phase
and also the Aharonov—-Bohm phase vanishes. If the semifluxon evolves along C»,
the relative Berry phase is 7 and it is entirely the Aharonov—Bohm phase. If the
semifluxon does neither but plows through the electron wave function, we might
expect the Berry phase to lie between 0 and 7. However, it can be shown (using
time-reversal symmetry) that the Berry phase can only be 0 or 7. Since the path
of the semifluxon is arbitrary, at some point P the Berry phase must jump from 0
to m, i.e. the electron wave function must become degenerate when the semifluxon
is situated at P. Here the Berry phase and the Aharonov—Bohm phase combine in a
single topological phase that depends only on the winding number of the semifluxon
path around the point P.

Fig. 1 An electron cloud with support in a region S (and in disjoint region not shown) and two
possible paths, C| and Cy, of a semifluxon. At the point P, the semifluxon induces a degeneracy
in the energy of the electron
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Black Body

Dieter Hoffmann

A black body was first defined by Gustav R. Kirchhoff (1824-87) in 1859 as an
object that absorbs all radiation falling upon it. Such a conception of an ideal black
body was crucial for understanding heat radiation and its laws. Since a completely
black body does not exist in nature, it had to be constructed. Kirchhoff had already
suggested that a black body was technically feasible in his famous paper formulating
his radiation law: “If a volume is enclosed by bodies of the same temperature and
rays cannot penetrate those bodies, then each bundle of rays inside this volume has
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the same quality and intensity it would have had if it had come from a completely
black body of the same temperature and is therefore independent of the constitution
and the shape of these bodies and is determined by the temperature alone.”

Although Kirchhoff as well as Ludwig Boltzmann (1844—1906) had already ex-
perimented with the design of a black body using a heated cavity, most of the first
experimentalists trying to verify the radiation laws did not take up Kirchhoff’s idea.
Instead they made do with metal sheets with specially prepared surfaces or met-
als — through oxidizing, a layering of lamp black, roughening, etc. — to achieve a
maximum of blackness. For instance the Danish physicist Christian Christiansen
(1843-1917) had carried out such experiments around 1880. He tested the optical
behavior of such powders as soot. He also made the observation, that conical tubes
radiate with an emissivity of about 1, which means that they act as “small black
spots”. All these arrangements had shown that it was possible to make a black body
effective for a limited range of wavelengths and temperatures, but a totally black
body remained a distant hope.

The turning point for the design of a truly black body was reached in 1895 when
Wilhelm Wien (1864—1928) and Otto Lummer (1866—1925) — at that time both fel-
lows of the Physikalisch-Technische Reichsanstalt in Berlin (Imperial Institute of
Physics, PTR) — recognized that one “had to disregard artificially blackened metal
sheets.” Instead “one had to consider the radiation of a black body as the state of
thermodynamical equilibrium. . . To use this conception as the basis for a practical
method for producing radiation arbitrarily close to that of a black body, one needs
to heat a cavity to a uniform temperature and allow the radiation to escape through
the opening.”

With Wien’s and Lummer’s description, in principle, of a design for a black cav-
ity radiator, Lummer (together with Ernst Pringsheim (1859-1917) in particular)
was able to build a functioning device in 1897/98. First they experimented with
small cylindrically and spherically shaped cavities of iron and copper, and later
they designed hollow spheres of porcelain or metal, the inner surfaces of which
were covered with soot (for lower temperatures) or with uranium oxide (for higher
temperatures). To produce a definite and stable temperature, the cavities were im-
mersed in a fluid bath — for instance, liquid air, boiling water, hot saltpeter or other
liquids of well-defined temperature. In this way Lummer and Pringsheim material-
ized a completely black body for the temperature range between —188 and 700 °C,
and also for temperatures up to 1200 °C, when they placed the cavity into a gas-
heated chamotte oven.

With these apparatus they carried out experiments confirming the Stefan-
Boltzmann law and Wien’s displacement law. But for further verifications of the
radiation laws it was necessary to design a black body for much higher temperatures.
Furthermore the cavity temperature of the black body had to be more homogeneous
and more manageable. An “electrically glowing completely black body” was finally
designed by Lummer and Ferdinand Kurlbaum (1857-1927) in 1898, also at the
PTR. It consisted of a platinium sheet, 0.01 mm thick and about 40 cm long. It was
rolled into a cylinder 4 cm in diameter, one end of which was squeezed and closed.
Both ends had rings for the electrical supply of heat. With a current of about 100 A,
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one could attain temperatures of about 1500 °C. A porcelain tube with a radiating
cavity was inserted inside. A thermocouple was also integrated into this tube to
measure the temperature of the cavity. Several diaphragms were also included in
the arrangement, which served to shelter the cavity from outer disturbances — for in-
stance, incoming air, etc. The inner surface of the tube was blackened with a mixture
of chromium, nickel and cobalt oxide. For insulation purposes, the whole arrange-
ment was surrounded by a second tube of a fire-proof material; the insulation could
be improved by extra covering tubes or asbestos sheets.

ILIFITIS SIS ITIIIFIIIFISIFIFFISIFIFI S
S

This new black body marked a major step forward in radiation research in gen-
eral. In particular, the experiments led to Planck’s radiation law and the basis for
the quantum hypothesis. » Blackbody radiation the design of a black body for
still higher temperatures (already in 1903 Lummer and Pringsheim developed an
improved black body on the same principle (but using specific materials and gas
atmospheres) for temperatures of about 2100 °C) opened the way to establishing a
new definition for temperature on the basis of the Stefan-Boltzmann law.
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With the designs by Lummer, Kurlbaum and Pringsheim (1898/1903) the black
body attained its more or less final shape and has been used for radiation research
in the following decades, remaining occasionally in use to this day.
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Black-Body Radiation

Clayton Gearhart

Hot objects give off light and heat in the form of electromagnetic radiation whose
character changes with temperature. Black-body radiation is such electromag-
netic radiation in equilibrium with its material surroundings. By the late 1800s,
it was a lively research topic for both theoretical and experimental physicists.
Samuel Pierpont Langley (1834—1906) in the United States, and a group of ex-
perimental physicists in Germany centered around the Physikalisch-Technische
Reichsanstalt (PTR) in Charlottenburg, had developed sophisticated techniques for
studying this radiation. Part of their motivation was practical — establishing better
absolute temperature scales, and measuring light intensities, at high temperatures
(» Black Body).

In December 1900 and January 1901, the German physicist Max Planck (1858—
1947) published three short papers in which he derived a new equation to describe
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black-body radiation—one that ever since has given excellent agreement with ob-
servation. This derivation was the culmination of research Planck had begun in the
mid-1890s. In a series of lengthy papers, Planck had combined thermodynamics,
in which he was an acknowledged authority, with the new electromagnetic theory
of James Clerk Maxwell (1831-1879). He considered the electromagnetic field in
equilibrium with what he called “resonators” — electric dipoles oscillating in sim-
ple harmonic motion — which represented the material cavity containing the field.
By late 1899, he had found a new and more rigorous derivation of Wien’s law,
an equation describing black-body radiation discovered in 1896 by his friend and
colleague Wilhelm Wien (1864-1928), and seemingly in good agreement with ex-
periment.

By mid-1900, however, physicists at the PTR had found systematic deviations
between Wien’s law and their latest experiments. Planck went back to work, and
by the end of the year, had produced his new radiation law, which takes the famil-

iar form
8mv?  hv

Uy = —J4/——4—>+—,
v 3 ehv/kT _q

where ¢ is the speed of light, and u,, is the energy density of the electromagnetic
field as a function of the frequency v and the absolute temperature 7. This equa-
tion also contains two new fundamental constants of nature, 7 and k — today we
call them » Planck’s constant and Boltzmann’s constant — to which Planck at-
tached the greatest importance. They played a central role in his system of natural
units for length, mass, time, and temperature, which as he said in 1899, “neces-
sarily retain their significance for all times and for all cultures, even alien and
non-human ones.”

However, Planck’s derivation was decidedly mysterious. It relied on a 1877 pa-
per by the Austrian physicist Ludwig Boltzmann (1844-1906), relating entropy and
probability, now famous but little known in 1900. Today it is summarized in the
equation S = k log W, inscribed on Boltzmann’s tombstone in Vienna. Boltzmann
had begun with a physically unrealistic picture, in which he divided the energy of a
gas into finite “energy elements” (as Planck later called them), which he distributed
among the molecules of an ideal gas. This step allowed him to use combinatorials
to calculate the probabilities of microscopic states and relate them to the entropy of
a gas. Planck applied a similar scheme to his resonators, though he persisted in his
absolute interpretation of entropy and the second law of thermodynamics, in sharp
contrast to Maxwell’s and Boltzmann’s probabilistic viewpoint.

In 1877, Boltzmann had replaced his artificial scheme with the more realistic one
of partitioning molecules among arbitrarily small cells in phase space, thereby re-
covering the standard description of an ideal gas. Planck, by contrast, could make his
derivation work only by retaining these finite “energy elements” and assigning them
the specific size hv. In 1900, he said nothing about the striking differences between
the two derivations, though he certainly understood what Boltzmann had done.

Today we call these energy elements “quanta,” and over the last century, physi-
cists have developed the strange new theory called quantum mechanics to describe
nature at the atomic level. But in 1900, all this was yet to come. The “energy
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elements,” whatever they might be, had no obvious interpretation in the physics
of the day. Planck in 1900 said virtually nothing about how to interpret them phys-
ically. Both his contemporaries and later historians found it difficult to grasp his
meaning.

Over the next decade, scientists slowly came to terms with these new ideas
(» Quantum theory, early period). If Planck’s energy elements do become ar-
bitrarily small, for example, Planck’s law goes over to the Rayleigh-Jeans law,
Uy, = (87w2 /c3) kT, in which the radiation density increases without limit at short
wavelengths—an effect Paul Ehrenfest (1880-1933) later dubbed the “ultraviolet
catastrophe.” Physicists developed an increasingly sophisticated understanding of
this theme and its relation to equipartition in the first decade of quantum theory.

Planck contributed to these efforts in his 1906 book, Lectures on the Theory of
Heat Radiation, in which he presented & as the “elementary quantum of action,”
since its units were those of action, the product of energy and time. He also showed
that % is the size of a finite “elementary domain” in phase space, a step that made his
combinatorial assignments of probability more plausible. Hendrik Antoon Lorentz
(1853-1928), Paul Ehrenfest, Henri Poincaré (1854—1912) and others also explored
the foundations of black-body radiation, and showed that it necessarily involved a
sharp and inescapable break with earlier physical theory.

For many years, Planck pointed out the need for a physical interpretation of his
theory, but was reluctant to advance one himself. Only in 1909 did he state pub-
licly that the energies of his resonators were restricted to integer multiples of Av.
But in that same year, Lorentz showed that under some circumstances, it would take
an implausibly long time to absorb one quantum of radiation from a Maxwellian
electromagnetic field. Neither Lorentz, Planck, nor most other physicists were pre-
pared to accept the alternative of “light quanta” that Albert Einstein (1879-1955)
had proposed in 1905 (» Light quanta; » Quantum theory, early period).

In 1911, therefore, Planck proposed what became known as his “second quantum
theory,” in which resonators absorbed energy continuously, but emitted energy in
quanta only when they reached the boundaries of finite cells in phase space, where
their energies became integral multiples of 4v. This theory also led Planck to his
new radiation law. But in this version, resonators possessed a » “zero-point” energy,
the smallest average energy that a resonator could take on. Thus, for the first time,
physicists contemplated systems whose energy did not go to zero at the absolute zero
of temperature. This zero-point energy soon took on a life of its own, appearing in
the early 1920s in the context of both Planck’s first and second theories, and after
1925, finally finding a secure home in modern quantum mechanics.

Albert Einstein took perhaps the most radical view of black-body theory, begin-
ning with his famous paper of 1905, in which he suggested that light consists of
“a finite number of energy quanta that are localized in points of space, move with-
out dividing, and can be absorbed or created only as a whole.” (» light quanta;
» Quantum theory, early period) In succeeding years, black-body radiation and its
connection to light quanta remained at the center of Einstein’s thoughts. In 1909,
for example, it was at the heart of his analysis of fluctuations — random variations
in energy and momentum — in which he argued that light sometimes behaved like
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a wave and sometimes like a particle, and that the dual wave and particle nature
of light was inescapable — he spoke of “a kind of fusing of the wave and emission
theories of light.”

In 1916, he found a new derivation of Planck’s radiation law, his famous and
influential “A and B coefficients” argument that involved assumptions on the “stim-
ulated emission” of light and set down the underlying principles of the laser, not
invented until decades later. And in 1924, he understood immediately the signif-
icance of a paper sent to him by the then-unknown Indian physicist Satyendra
Nath Bose (1894-1974), who had found yet another derivation of Planck’s ra-
diation law — one that implicitly suggested that Einstein’s light quanta were not
independent particles. Einstein translated Bose’s paper into German and arranged
for its publication. He also saw its implications for the seemingly unrelated topic
of quantum ideal gases, and published the papers describing what is now known as
Bose-Einstein condensation, experimentally confirmed only recently (» Quantum
statistics, » Bose-Einstein-statistics).

In short, although black-body theory was not the whole of early quantum theory,
it remained a continuing source of inspiration and new discoveries. Please see also
the Reference » Specific heats.
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Bohm Interpretation of Quantum Mechanics

B.J. Hiley

The Bohm interpretation aims at providing an interpretation based on the description
of the evolution of an actual individual process evolving in space-time. In the case
of particles, it accounts for their individual behaviour in terms of their simultaneous
positions and momenta, even though these are assumed to be unknown. It is often
argued that this view must be untenable owing to the » Heisenberg uncertainty rela-
tions. However the uncertainty principle only rules out the possibility of measuring
experimentally the simultaneous position and momentum. From this principle two
conclusions are possible. Either the particle does not have a simultaneous position
and momentum to measure, or that it does have a simultaneous position and mo-
mentum but it is simply not possible to measure them simultaneously and therefore
must remain unknown. There is no direct experimental way to decide which of these
two positions is actually correct. The conventional approach adopts the former, the
Bohm interpretation adopts the latter. In this latter approach it may be helpful to
regard the (x, p) as “beables”.

Having chosen the latter position, the question is whether it is possible to use the
formalism based on the » wave function ¥ (r, ) and the » Schrodinger equation
to provide a mathematical description of a particle following a trajectory and still
reproduce all the statistical predictions of the standard approach. Bohm [1] showed
that this was possible contrary to the views of Bohr [2] who argued that such a
“picture” was not possible.

The mathematical procedure for a particle that obeys the Schrodinger equation
is straight forward. Simply write the wave function in polar form ¢ = Re'S/" and
substitute into the Schrodinger equation. By separating into the real and imaginary
parts, we find two equations. The first is

S (VS K2 V2R

— — V=0 1
ot * 2m 2m R + M
The second equation is
IR? ,VS
—+ V. |R"F— | =0 2)
ot m

Equation (1) differs by only one term from the classical Hamilton-Jacobi equation

3Se  (VSe)?
ot 2m

+V=0 3)

This equation defines a set of trajectories which are identical to those calculated
from Newton’s law of motion
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Y v 4
mey = V) 4)

Comparing (1) and (3), we see the phase of the wave function has been replaced by
the classical action S; and an extra term

0— h? V2R )

~ 2m R

appears in the quantum case. In the classical Hamilton-Jacobi theory we have two
canonical relations,p = VS. and E = —9S5./d¢. What Bohm did was to assume that
these two relations with S; replaced by S held in the quantum case. This means that
the quantum Hamilton-Jacobi equation (1) can be used to provide a set of trajectories

that differ from the classical trajectories owing to the presence of the extra term Q.
It can be shown that these trajectories can be also be calculated from

dv
mo =-VV+0) -V (6)

The appearance of Q in this equation suggested that Q be called the quantum po-
tential. In some ways (6) is somewhat misleading as it suggests that this “potential”
is playing a role similar to that of a classical potential and this has tended to sug-
gest that this interpretation is simply a return to classical physics. Nothing could be
further from the truth. The quantum potential is nothing like a classical potential.
There is no external source for this potential and should be regarded as a new form
of internal energy. This becomes more apparent when we realise that (1) is simply
an expression of the conservation of energy,

Total energy

= kinetic energy + quantum potential energy + classical potential energy (7)

Although we have the possibility of calculating trajectories for Schrédinger par-
ticles, we cannot produce experimentally a particle with a known value of (r, p)
simply because of the restrictions imposed by the uncertainty principle. All we can
do is to generate a distribution of initial rs and ps consistent with the probability be-
ing given by the initial wave function v; (r, #). Equation (2) then guarantees that the
final probability distribution agrees with the standard quantum predictions provided
we assume the probability is still given by P = R2. Equation (2) is then simply an
expression for the conservation of probability.

The Bohm interpretation has been applied to many of the usual quantum exper-
iments such as the » double-slit experiment, the » Schrodinger cat paradox, the
» delayed-choice experiment, teleportation (» quantum communication) and many
other such experiments. The interpretation provides an intuitive picture of what
could underlie quantum phenomena without the paradoxes of the standard theory.
» Errors and paradoxes in quantum mechanics for example, each Schrodinger
particle goes through one and only one slit, the quantum potential adjusting the
trajectories to account for the slit configurations. The Schrodinger cat is either alive
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or dead and never in a linear supposition of these two contradictory states. There
is no measurement problem in this approach. More details of this method can be
found in Bohm and Hiley [3] and in Holland [4]. See also » Bohmian mechanics;
Measurement theory; Metaphysics in Quantum Mechanics; Modal Interpretation;
Objectification; Projection Postulate.

While this is all straight forward for the Schrodinger particle, we have to gen-
eralise the approach to the electromagnetic field where photons (» light quantum)
have to be accounted for and a generalisation to apply to Dirac particles is also
necessary.

In the case of photons, it is the electromagnetic field, or more accurately, the
vector potential field v, (r, ) that must be used since it is not possible to attribute a
simultaneous (r, p) to a photon. The beables in this case are not (r, p) but the fields
and their conjugate momentum v, (x*) and 7, (x*). We then have a “super-wave
function” which is a functional of the field. More details can be found in Bohm,
Hiley and Kaloyerou [5], and in Kaloyerou [6].

We can illustrate the mathematical structure of the field approach by using a
scalar field ¢ (x*). The super-wave function is the functional W(...¢(x")...),
which is assumed to satisfy the super-Schrodinger equation

Y HWY 8)
or T
where the Hamiltonian is given by
o=l / (V.0 ©)
= — _ X,
2 JAllspace | (8¢(x,1))?
We then write ¥ = R[...¢(x,1)...]exp{iS[...¢(x,?)...]} and obtain
BS+1/ <5S>2+(V Y dv+0=0 (10)
EREVAAT: ? =

Here the super-quantum potential is

| [ [/ oG R (o6 . )]

0=—= dv (11)
2 R(...¢p(xH)...)
We also obtain a conservation of probability equation
oP 1) N
—+ | —|P—|dV =0 (12)
at S | ¢
From (10) using the Hamiltonian (9) the field equation becomes
92 8
O w2y 92 (13)

Fr 5




46 Bohm Interpretation of Quantum Mechanics

Thus we see that although more involved, the field theory displays a similar general
structure to the Schrodinger particle theory only now it is the fields that represent the
beables. They have well-defined and continuously changing values. Equation (10)
replaces the quantum Hamilton-Jacobi equation (1), while (12) replaces the conser-
vation of probability equation (2). The field equation (13) shows the role played by
the super-quantum potential and replaces (6).

The physical picture that emerges from these equations is that the field (the vector
potential field, for example) is organised by the super-quantum potential as is clear
from the appearance of the last term in (13). This term is generally a non-linear and
non-local function of the field ¢. In the classical limit this term is negligible.

Finally we need to understand how the concept of a photon, a field quanta,
emerges from this picture. To do this we must consider the field in interaction
with an atom. If the field is in an excited state, the interaction will produce a very
complex wave functional of the field together with the atom. During this process
the super-quantum potential will change dramatically, producing bifurcation points.
These points will correspond to the absorption of quanta by the atom from the field.
Suppose the field energy is only sufficient to excite the atom into its first excited
state. The super-quantum potential, being non-linear and non-local, sweeps out the
energy from the field leaving the atom in its first excited state and the field in its
ground state. Since the field takes energy from excited atoms, the energy in the field
must be quantised.

In this picture the photon is not localised and does not follow a trajectory. Rather
it is the field that evolves in a well defined way and we can regard it as evolving
along a “trajectory” defined by a point in the configuration space of the total set
of field variables. These ideas have been successfully applied to the photoelectric
effect, the Pfleegor-Mandle experiment which involves low intensity interference
effects between two independent lasers and to correlated Einstein-Rosen-Podolsky
photons (see Bohm and Hiley [3] for more details.)

The interpretation has also been applied to the » Dirac equation although this
equation has presented more difficulties and no successful attempt to construct a
quantum potential has been made. The condition p = VS is replaced by the ex-
pression for the Dirac current j* = Wy*W. This has been applied to the two-slit
interference experiment where trajectories for electrons have been actually calcu-
lated [7]. Application to fermion fields has also presented problems [8].

This approach has produced intuitive pictures lying behind quantum phenomena,
but it is not without its own difficulties. The nature of the quantum potential is still
unclear in spite of the various attempts that have been made to provide an explana-
tion. Also the quantum potential contains the non-local features which are apparent
in the EPR type experiments. Some claim that this is the only interpretation that
accounts for this » nonlocality yet it still sits uncomfortably with special relativity.
On the other hand it might be pointing to a deeper a-local structure underlying the
quantum phenomena [9].

See also Ignorance interpretation, Ithaca Interpretation, Many Worlds Interpreta-
tion, Modal Interpretation, Orthodox Interpretation, Transactional Interpretation.
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Bohmian Mechanics

Detlef Diirr, Sheldon Goldstein, Roderich Tumulka, and Nino Zanghi

Bohmian mechanics is a theory about point particles moving along trajectories. It
has the property that in a world governed by Bohmian mechanics, observers see
the same statistics for experimental results as predicted by quantum mechanics.
Bohmian mechanics thus provides an explanation of quantum mechanics. More-
over, the Bohmian trajectories are defined in a non-conspiratorial way by a few
simple laws.

Overview. Bohmian mechanics is a version of quantum mechanics for nonrelativistic
particles in which the word “particle” is to be understood literally: In Bohmian
mechanics quantum particles have positions, always, and follow trajectories. These
trajectories differ, however, from the classical Newtonian trajectories. Indeed, the
law of motion, see (1) below, involves a » wave function. As a consequence, the
role of the wave function in Bohmian mechanics is to tell the matter how to move.

Bohmian mechanics constitutes a guantum theory without observers, i.e., a the-
ory that is formulated not in terms of what observers see but in terms of objective
events, regardless of whether or not they are observed. Bohmian mechanics pro-
vides a consistent resolution of » errors and paradoxes in quantum mechanics, in
particular of the so-called measurement problem. In particular, the » wave function
collapse (see » Projection Postulate) can be derived from Bohmian mechanics. (On
the measurement problem see also » Measurement theory; Metaphysics in Quantum
Mechanics; Modal Interpretation; Objectification; Projection Postulate Measure-
ment theory; Objectification; Projection Postulate).

Bohmian mechanics is sometimes called a » /idden variables theory because
it involves variables besides the wave function. However, there is a danger of con-
fusion here because the term “hidden variables theory” is often used to convey the
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vides a consistent resolution of » errors and paradoxes in quantum mechanics, in
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the measurement problem see also » Measurement theory; Metaphysics in Quantum
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Bohmian mechanics is sometimes called a » /idden variables theory because
it involves variables besides the wave function. However, there is a danger of con-
fusion here because the term “hidden variables theory” is often used to convey the
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idea that every “quantum measurement” of an “observable” reveals a pre-existing
value of that observable, which is not the case in Bohmian mechanics.

Bohmian mechanics is deterministic. But the motivation behind Bohmian me-
chanics is not to obtain a deterministic theory, but rather to obtain a coherent
account of the nature of physical reality. In this regard, we note that some vari-
ants of Bohmian mechanics, developed by its proponents, are stochastic rather than
deterministic, for example Bell’s proposal for lattice quantum field theory [4].

Historically, the “Bohmian” law of motion, see eq. (1) below, was first proposed
by de Broglie [6]. However, Bohm [5] was the first to recognize that this theory
explains all of the phenomena of (non-relativistic) quantum mechanics.

Defining Equations. Bohmian mechanics is a non-relativistic theory governing the
behavior of a system of N point particles moving in physical space R along
trajectories. Let Q;(t) € R3 denote the position of the i-th particle of the system at
time 7, and Q(¢) = (Q1 ®,..., QN(t)) e R3V its configuration.

The trajectories are governed by Bohm’s law of motion [2,5]

dQ;, h . WUV,

o= m—iIm R (o), (1)

where m; is the mass of particle i, Im denotes the imaginary part, ¥, : R3V —
Ck (i.e., a function of the configuration with k complex components) is the wave
function at time ¢, ®*W is the scalar product in Ck, and V; is the gradient relative
to the 3 coordinates of particle i. (In case k = 1, i.e., for complex-valued wave
functions, a factor W;* cancels on the right hand side of (1).)

The wave function evolves according to the Schrodinger equation

o,

w3

U+ VU, @)

where V : R* — R is the potential function. (The potential, while often assumed
to be real-valued, may take values in the space of self-adjoint complex k x k matrices
instead of R.) The wave function is postulated to belong to the » Hilbert space
H = L*(R3N, CK) of square-integrable functions (and to be sufficiently smooth).

Deterministic Evolution. Since the Schrodinger equation does not involve the parti-
cle positions Q;(t), it can be solved first and determines the wave function W; for
every time ¢ once an initial wave function W, is specified for any time 7y that we
choose to regard as the initial time. Next note that the right hand side of (1) con-
sists of the 3 components corresponding to particle i out of the 3N components of a
vector field v¥ on configuration space R*V. As a consequence, equation (1) for all
i =1,..., N can be summarized by

do
- =" (em). 3)
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Regarding W; as known, this is a (time-dependent) ordinary differential equation
(ODE) of first order, and as such determines the entire history ¢t +— Q(¢) once an
initial configuration Q (7o) is specified. That is why Bohmian mechanics is determin-
istic: once Q(tp) and ¥, are specified, the entire history is fixed by the equations (1)
and (2). This fact also implies that the pair (Q(#p), Wy,) can be regarded as the state
of the Bohmian particle system at time #y. Since the choice of 7y is arbitrary, the state
at any time ¢ is the pair (Q(¢), V;), and the phase space of Bohmian mechanics is
R3N x 2.

System or Universe. The equations of Bohmian mechanics could be applied to a
familiar system (e.g., an atom) or to the universe as a whole. Of course, one cannot
expect that the equations hold for every system, for example for systems that interact
with their environments. So let us begin with the system for which the equations are
primarily intended: the universe. In this setting, N is the number of particles in
the universe, and W, is the wave function of the universe. To consider such a wave
function is unusual; after all, the quantum formalism never refers to a wave function
of the universe; the quantum formalism, providing the probabilities for the results
of observations performed on a system by an external observer, involves the wave
function of that system and not of the entire universe. In the context of Bohmian
mechanics, however, the wave function of the universe is not at all a meaningless
concept, as it influences the motion of the particles according to (1).

When (1) and (2) hold for the universe, it follows that equations of the same
type (but with smaller N) hold for certain subsystems. (We shall assume here for
simplicity that k = 1, i.e., that we are dealing with spinless particles.) Consider a
subsystem of the universe with configuration X (the x-system), so that the config-
uration Q of the universe is of the form Q = (X, Y) with Y the configuration of
the environment of the x-system. Then a natural notion of the wave function of the
x-system is provided by its conditional wave function

yx) =V¥(x,Y), 4

where W(g) = W(x, y) is the wave function of the universe. It is easy to see that the
x-system obeys (3) (with Q = X and W = ).

Moreover, if the x-system is suitably decoupled from its environment, (2) will
hold as well. For example, this is the case when there is no interaction between the
x-system and its environment, and the wave function of the universe is of the form

Vx, y) =y ey) + @(x, y) )

with ¢ and ® having macroscopically disjoint y-supports (so that they will never
again overlap appreciably), and with Y lying in the support of ¢. Such a situation
often arises after a “quantum measurement.”

Equivariance. If the initial configuration Q(#p) is chosen at random with proba-
bility density |\IJ,0|2 then the configuration Q(¢) at any other time ¢ is random
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with probability density |W;|?. (Whenever speaking of probabilities, we assume
that & has been normalized, by multiplication by a suitable constant, so that
(VW) = f |W(q)|>’dg = 1.) This fact, known as equivariance, follows from the
continuity equation

dp

L _v. 6

” (pv) (6)
for p = |¥|? and with the Bohmian velocity vector field v = v"¥ as in (3). The
continuity equation (6) is in turn a consequence of the Schrodinger equation; it is
usually written (in standard quantum mechanics) in terms of the quantum probabil-
ity current J = p v.

Identical Particles. Bohmian mechanics can be formulated for identical particles,
despite a fact that could be felt to contradict their » indistinguishability, namely
that the particle trajectories in R3 determine “who is who” at different times, i.e.,
select a one-to-one association between the N points at any time #; and the N
points at another time #,. Taking the notion of a particle seriously, as one should
in Bohmian mechanics, one recognizes that the configuration space for N identi-
cal particles is best regarded as the manifold of all sets of N points in physical
space R3. This manifold has non-trivial topological properties, as its fundamental
(homotopy) group is isomorphic to the group of permutations of N objects. On
such manifolds there arise several versions of Bohmian mechanics corresponding to
the different 1-dimensional representations of the fundamental group; for the per-
mutation group, there are two such representations, corresponding to bosons (with
symmetric wave functions on the covering space R3V) and fermions (with anti-
symmetric wave functions). Thus, Bohmian mechanics lends support to the modern
view that the symmetrization postulate emerges as a topological effect, due to the
non-trivial topology of configuration space.

Quantum Equilibrium Hypothesis. This is the assertion that whenever a system has
wave function Y then its configuration is (or can be taken to be) random with prob-
ability distribution [y|?. Equivariance implies that this hypothesis is consistent with
the time evolution of isolated systems, and it is not hard to show that it is also con-
sistent with the time evolution if the system is not isolated, provided we take
to mean the conditional wave function. An important consequence of the quantum
equilibrium hypothesis is the empirical equivalence between Bohmian mechanics
and quantum mechanics: For every conceivable experiment, whenever quantum me-
chanics makes an unambiguous prediction, Bohmian mechanics makes exactly the
same prediction. Thus, the two cannot be tested against each other.

Typicality. The quantum equilibrium hypothesis follows from typicality: As shown
in [7] using the law of large numbers, results of experiments are as predicted by the
quantum equilibrium hypothesis for fypical initial configurations Q(#p) of the uni-
verse relative to the [Wy, |? distribution, i.e., for the overwhelming majority, counted
using the |V, |2 distribution, of the initial configurations.
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Operators. Given that it makes the same predictions as quantum mechanics, what is
the status in Bohmian mechanics of the non-commuting » operators of the quantum
formalism (the self-adjoint “observables”), with which the predictions of quantum
mechanics seem exclusively concerned? The answer is that operators do in fact
arise naturally in Bohmian mechanics, but with a different meaning than the one
attributed to them in orthodox quantum mechanics (which regards them as more
or less the same thing as their classical counterparts: as “» observables” that can
be “measured”). Instead, operators in Bohmian mechanics are mathematical tools
encoding statistics. Let us explain.

The statistics of the random outcome Z of an experiment in a world governed by
Bohmian mechanics on a system with wave function Y can be shown [8] always to
be of the form (in » Dirac notation)

Prob(Z = a) = (Y[E(a)|y), (N

where E(«) is a suitable positive operator. (Together, the E(«) form a positive-
operator-valued measure, or » POVM.) In relevant cases, E(«) is a family of
projection operators (» projection) which are mutually orthogonal (a projection-
valued measure, or PVM), and thus correspond to the one » self-adjoint operator

A= Za E(a), (®)

which, by the spectral theorem, contains precisely the same information as the PVM
E(a). Thus, operators encode the functional dependence of the outcome statistics on
the system’s wave function y. With this understanding, which is opposite to think-
ing of operators as representing quantities whose values can be “measured,”’ it is
no longer surprising that one cannot associate actual values with all “observables”
in a consistent way. With this understanding, contextuality is not surprising either,
since it no longer means that the same quantity can choose different values depend-
ing on what happens to another system, but rather that, unspectacularly, different
experiments can have the same statistics.

» Wave Function Collapse. Here is an analysis, for Bohmian mechanics, of an
“ideal measurement” of a quantum observable, given by a self-adjoint operator
A on the Hilbert space of the relevant system. For simplicity we assume that A has
pure point spectrum with non-degenerate eigenvalues «, corresponding to (8) for
E(a) = |y, ) (v, | with normalized eigenstates y, (x) = |A = «). The experiment
is implemented by having the system interact with an apparatus in a suitable way.
To avoid unimportant complications, we shall assume that the relevant “universe”
for the problem at hand consists entirely of the system, with configuration X, and
the apparatus, with configuration Y. The measurement begins, say, at time 0, with
the initial (“ready”) state of the apparatus given by a wave function ¢y (y), and ends
at time ¢. The interaction is such that when the state of the system is initially v, it
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produces a normalized apparatus state ¢, (y), that registers that the value found for
A is o without having affected the state of the system,

Vo ()90 (3) = Wy (1)@ (). )

Here - indicates the unitary evolution induced by the interaction. If the mea-
surement is to provide useful information, the apparatus states must be noticeably
different, corresponding, say, to a pointer on the apparatus pointing in different di-
rections. We thus assume that the ¢, have disjoint supports in the configuration
space for the apparatus,

supp(¢q) N supp(pp) =¥, a # B. (10

Now suppose that the system is initially, not in an eigenstate of A, butin a general
state, given by a » superposition

V) =) caWy (x). (11)
o
We then have, by (9) and the linearity of the unitary evolution, that

Wo(x, y) = Yx)go(y) = Wr(x, ¥) = Y caW () (), (12)

so that the final wave function W, of system and apparatus is itself a superposition.
The fact that the pointer ends up pointing in a definite direction, even a random one,
is not discernible in this final wave function. Insofar as orthodox quantum theory is
concerned, we have arrived at the measurement problem.

However, insofar as Bohmian mechanics is concerned, we have no such problem,
because in Bohmian mechanics particles always have positions and pointers, which
are made of particles, always point—in a direction determined by the final config-
uration Y; of the apparatus. Moreover, in Bohmian mechanics we find that the state
of the system is transformed in exactly the manner prescribed by textbook quantum
theory, as the final wave function of the system, i.e., its conditional wave function
at time ¢, see (4), is

Y0 = W, V) = Y caWy (Da(Y)) = cpup()es(Y) = Nyp(x)  (13)

when Y; € supp(gp), i.e., when the value f is registered. (Here N is a constant that
depends upon Y but not on x. According to (13) the wave function of the system at
time 7, when normalized, is Wg.) The probability for this event is, by the quantum
equilibrium hypothesis,

fdx f dy W, (x, »)I* = [epl*. (14)

supp(¢p)
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The upshot of the analysis is this: It is a consequence of Bohmian mechanics that
in the course of an ideal measurement of A the (normalized) wave function of the
system is transformed from y (11) to Wy with probability |cg > = |<‘If,3 [y) |2. That
is how the » projection postulate arises from Bohmian mechanics. (The fact that
the contributions with &« # S will never again overlap with what evolves from
Vg (x)@p(y), and thus will not influence the future motion of the particles, is the
reason why they can be ignored from time ¢ onwards, or “collapsed away,” without
consequences for the trajectories of the particles.)

The Double Slit Experiment. In Bohmian mechanics, » “wave—particle duality” can
be taken literally: there is a wave (y) and there are particles. Accordingly, in a
» double-slit experiment the wave passes through both slits, whereas the particle
passes only through one slit. Since the motion of the particle depends on the wave,
it matters whether or not the other slit is open. The possible trajectories, when both
slits are open, are depicted in Fig. 1; by virtue of the quantum equilibrium hypothe-
sis, the actual trajectory will be random with the appropriate |y|? distribution. Thus,
the place of the particle’s arrival at a screen on the right will have a probability dis-
tribution featuring interference fringes. As John Bell commented [10, p. 191]: “This
idea seems to me so natural and simple [...] that it is a great mystery to me that it
was so generally ignored.”

Spin. One may easily get the impression that » spin cannot be explained in a realist
way, given its “non-classical two-valuedness.” But actually it can be incorporated
into Bohmian mechanics very easily, and Bell discovered how [2]: Do not assume
that there is an “actual value” associated with the spin observable & in the z (or
any other) direction! Instead, take the equation of motion (1) seriously, with C* the
spin space, i.e., k = (25 + 1) for N spin-s particles. (In particular, it is useful here

Fig. 1 Possible Bohmian trajectories in the double-slit experiment (from C. Philippidis,
C. Dewdney and B.J. Hiley, Il Nuovo Cimento 52, 15 (1979))
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to regard the wave function W, for, say, a single spin-% particle not as a function
v, o R3 x {—1,1} — C of a continuous (position) variable and a discrete (spin)
variable, but rather as a spinor-valued function of position, , : R3 — C2)

As a consequence of (1), the motion of a particle with spin is influenced by
both the “spin-up” and the “spin-down” component of the wave function. While
the particle has an actual position (and a wave function) but no additional actual
spin degrees of freedom, these are sufficient to completely account for all quantum
phenomena associated with spin.

» Quantum Field Theory and Relativity. Bohmian mechanics does not account for
phenomena such as particle creation and annihilation characteristic of quantum field
theory. This is not an objection to Bohmian mechanics but merely a recognition that
quantum field theory explains a great deal more than does nonrelativistic quantum
mechanics, whether in orthodox or Bohmian form. There are extensions of Bohmian
mechanics to general quantum field theories based on a particle ontology, as well
as other approaches. Moreover, like nonrelativistic quantum theory, Bohmian me-
chanics is incompatible with special relativity, a central principle of physics: it is
not Lorentz invariant. Nor can Bohmian mechanics easily be modified to become
Lorentz invariant. For an overview of recent proposals aimed at finding a Lorentz
invariant extension of Bohmian mechanics, see [13].

Nonlocality. In Bohmian mechanics the motion of a particle may depend on the
positions of distant particles, at spacelike separation. This is an instance of » non-
locality. Tt is worth noting that this dependence is of a kind that does not allow
» superluminal communication. Orthodox quantum mechanics features nonlocal-
ity as well, associated with the instantaneous collapse of the wave function for all
particles, even distant ones. In 1964, John Bell asked whether nonlocality could be
avoided by any version of quantum mechanics, and his celebrated (but often misun-
derstood) argument [3,10], involving » Bell’s theorem, proves that the answer is no.
His argument shows that certain correlations predicted by quantum mechanics (and
Bohmian mechanics) and confirmed in experiment [ 1] cannot be explained in a local
way, i.e., without allowing influences travelling faster than light. Thus, nonlocality
is a feature of our world.
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Bohm’s Approach to the EPR Paradox

B.J. Hiley

In 1935 Einstein et al. [1] challenged the » orthodox approach to the quantum for-
malism by asking whether the formalism was complete or not. The specific point
that led them to this conclusion was based on a puzzle that arose when two particles
were in an entangled state (» entanglement). These states are characterised by the
fact that the » wave function of the individual particles are not well defined, being
ambiguous until the state of one of them was measured. The difficulty arose when
the two particles were separated by a large distance and were not interacting with
each other through any known classical potential. If a measurement was made on
one of the particles, the state of the other became immediately well defined, even
though it was removed far from the apparatus measuring the state of the first parti-
cle. How does this come about?

Einstein et al. chose the position and momentum variables to illustrate the
problem, but because the eigenfunctions for these operators were delta functions,
8(r — ro), and their Fourier components, the exponentials e, it was difficult to
see exactly what was happening in these entangled states. Bohm [2] simplified the
problem by considering two spin-half particles in an entangled state given by

V2U = Y (r) Y (1) — Y (r) Y (2)
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Fig. 1 Two spin-1/2 particles in an entangled state, on which the x-component of spin is measured

Here ry and r; refer to the respective positions of the two particles and the suffixes
denote the spin states along the z-axis. We can immediately see that the » spin of
each particle is not well defined but ambiguous. When a measurement of the spin in
the z-direction is made on particle #1, its state immediately becomes well defined
giving either {4, or ¥_,. No matter how far away particle #2 is, we immediately
know its state. It is either y/_, or ¥, respectively (Fig. 1) .

At first sight this appears just like the situation we would have if we had two balls,
one red and one blue contained in two separate envelopes. We can then shuffle the
envelopes so that we do not know which envelope contains which ball before sep-
arating the envelopes. Clearly if we open one envelope we will immediately know
which colour ball is in the other envelope. No mystery here then. But the quantum
situation is different because the same wave function can also be expressed as

V2U = Y r) Y (1) — Y (F) Y (2)

where the spin components are now in the x-direction. If we had measured the
x-component of spin of particle #1 we would have found either ¥4, or ¥_,
implying particle #2 was either in the definite state ¥_, or ¥4, respectively. But in
quantum mechanics a particle cannot be in the two complementary states, ¥+, and
Y4y, at the same time. How then does particle #2 “know” what direction is being
measured when it is far away from particle #1 and there is no known force between
the two particles? In other words how does the distant measurement produce the
right state for particle #27

There are two possibilities. Either there are additional “elements of reality” or
» hidden variables that determine the final state of particle #2 independently of
what is being measured at particle #1, but not necessarily independently of what is
found there. Or there is a “spooky action at a distance” connecting the two particles,
a notion that Einstein found so abhorrent that he refused even to consider such a
possibility.

When Bohm [3,4] analysed two-particle entangled states in his interpretation
(» Bohm interpretation) he found that the two entangled particles were coupled by
the quantum potential. Thus if the entangled state
W (ry,r,t) = R(ry,ra, t) expiS(ry, ra, t) is substituted into the Schrédinger equa-
tion, we find the real part gives

AS(ri,r2, 1) (ViS@ri,r2,1)>  (VaS(ri,r2,1))?
+ +
ot 2m 2m

+0(r1,r2,1) =0
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Here Q(ry, 2, t) is the non-local quantum potential, which is non-zero no matter
how far apart the two particles are. Thus the Bohm model accounted for the results
by providing a non-local, “spooky action at a distance”. In the classical limit Q = 0,
so there are no non-local features in classical mechanics.

Bohm et al. [5] proposed a model for spin in which all the components were de-
fined simultaneously and which reproduced all the results of the conventional model.
Here they showed that the separated particles were connected by a quantum potential
which produced a non-local torque. Dewdney et al. [6] examined the model in more
detail and produced numerical results vividly illustrating the time evolution of the
entangled state when one particle had its spin measured. It clearly demonstrates the
non-local effect of the quantum torque.

Bell [7] noticed this » nonlocality in the Bohm model and asked whether all
theories that attributed properties to individual particles had this unwelcome feature.
Before his first paper appeared in print, he [8] was able to prove under quite general
considerations that all theories based on local properties (local hidden variables)
must satisfy the Bell inequalities » Bell theorem, which can be written in the form

|P(a,b) — P(a, b))+ |P@,b)+ P@, b <2

This inequality is violated by certain quantum mechanical entangled states. Further-
more for those quantum states that produce such a violation experiment shows that
the inequality is also violated and that predictions of the quantum formalism is, in
fact, correct [9].

Thus we are faced with what appears to be a dilemma. On the one hand spe-
cial relativity tells us that signals cannot travel faster than the speed of light, yet
the quantum formalism shows that distant particles in entangled states appear to
be connected instantaneously with each other while they remain in the entangled
states. However Eberhard [10] has shown that it is not possible to use these non-
local connections to send signals because they are fragile in the sense that once
a measurement is made on one particle, the » entanglement is destroyed and the
particles behave independently from then on. Thus there seems to be a peaceful
coexistence between relativity and quantum theory [11].

A good review of the experimental situation regarding the Bell inequality and
other similar inequalities see Clauser and Shimony [12]. See also » Causal Infer-
ence and the EPR problem; EPR problem.
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Bohr’s Atomic Model

Arne Schirrmacher

The model of Niels Bohr (1885-1962) for the atom is since long just the one and
only conception for atoms of the vast majority of educated people. The picture of
» clectrons revolving round a nucleus on select avenues has become the icon of the
atomic age. In stark contrast to this omnipresence, historically, the Bohr atom may
be identified as the best available theory for the atom only for a period of roughly
ten years between 1914 and 1924. For this reason any consideration of Bohr’s atom
has to take into account both the historical context of its creation and the long and
diverse processes of reception within science, education and public that gave rise
to much misinterpretation of Bohr’s intentions, his actual work and its physical or
realistic interpretation.

For the question of the genesis of the Bohr model one has to go back to the be-
ginning of the twentieth century, when it became widely recognized that both atoms
contain electrons and at the same time were almost fully penetrable by electron
bombardment. Between 1901 and 1905 various physicists and science popularizers
draw the analogy between atoms and planetary systems (e.g. Jean Perrin (1870-
1942), Wilhelm Meyer (1853-1910), or Hantaro Nagaoka (1856—1950) » atomic
models) and some of them immediately realized the difference: Since electric forces
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were both attractive and repulsive it was hard to understand how stable configura-
tions could result at all. As a consequence in the years before world war I concern
with detailed atomic models was not widespread. For this reason also the » Ruther-
ford atom was largely ignored until it could be reinterpreted as a predecessor of
the Bohr atom. The favorite heuristic models for the atom in the years around 1910
also for Bohr was Thomson’s that came in various imprecise and at times conflict-
ing variations but was nonetheless able to serve in this way the purpose in helping
to conceptualize stability, light emission and the existence of a periodic system of
elements.

When Bohr in 1911/1912 went to Cambridge and Manchester to work with
Thomson (1856—1940) and Ernest Rutherford (1871-1937), resp., he was mostly in-
terested in extending his doctoral thesis on the electron theory of metals (for which
Thomson had been a pioneer). The problem of bound electrons made Bohr looking
for special assumptions about their arrangements and motions that could be treated
in a Thomsonian manner. The switch to Rutherford then was neither motivated by a
discontent with Thomson nor by a particular interest in the Rutherford atom, but by
Rutherford’s work in radioactivity. Rather by accident in commenting on a theory
of a-particle absorption in metals by the Rutherford collaborator Charles G. Darwin
(1887-1963) Bohr arrived at discussing atomic structure for the first time, as in this
work the problems of bound electrons in metals and atomic structure met. At this
stage Bohr conceived of an atomic model that “would not be an indication of the na-
ture of a possibility (like J. J. Thomson’s theory) but perhaps a little piece of reality”
(letter to Harald Bohr 19th July 1912).

The first version of Bohr’s atom in his “Manchester memorandum” than com-
bined Thomsonian modeling with a conviction drawn from his earlier work on
electron theory in metals, i.e. that within matter ordinary mechanics and electro-
dynamics is not sufficient but has to be complemented by some quantum condition
(like in the theory of specific heats). In the case of the atom it was the mechanical
instability of the models that Bohr wanted to fix by a quantum condition. While
he arrived at far-reaching results (explanation of periodic table, though by a wrong
calculation) and implemented a quantum condition to relate the kinetic energy of
the electrons to the frequency of rotation, Exij, = K - v this first version of the Bohr
atom would not take off (Fig. 1).

n=3

n=2

n=1 A
Fig. 1 Bohr model of '+ Ze AE = hvy

atom, with quantized energy
levels, and electron jumps,
accompanied by photon emis-
sions. Source: Wikimedia
Commons
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Only after Bohr stumbled upon a publications of J. W. Nicholson (1881-1955)
late in 1912, who had constructed an comparably immature atomic model also
with a quantum condition in order to explain the spectral lines of the solar corona,
Bohr realized that » spectroscopy was the missing link for establishing a sound
atomic model. Disregarding spectra was not a particular failure of Bohr, since
their complexity and the futile search for explanation rejected most atom builders.
Nicholson’s work motivated Bohr to combine his initial model with Planck’s (1858—
1947) quantized oscillator thus postulating series of states with quantized energy.
The prize he had to pay was to obscure the nature of the atomic vibrations, or
positively turned, this amounted to the most important step towards a quantized
atomic model in which the frequency of revolution are disconnected with the fre-
quencies of radiation that simply equate from the energy difference of two atomic
states expressed in terms of » Planck’s constant: E, E,; = hvy,,,. With this separa-
tion of optical and mechanical frequencies, obviously, the “little piece of reality”
the model might claim had become even smaller. However, the good accord with
the Balmer series nv,, = Z2R[(1/m?) — (1/n?)] provided irresistible persuasive-
ness in favor of this new atomic model which amounted to a perfect compromise of
general (mechanical) intelligibility and modern (fascinating) quantum properties.

It must have been this attractive combination that made Arnold Sommerfeld
(1868-1951) adopting and extending Bohr’s model, while Rutherford immedi-
ately scolded Bohr for the lack of a mechanism for the electrons to change from
one state to another and Thomson just kept on lecturing his atomic theory un-
changed. Bohr himself was quite aware of the makeshift character of his theory
and appeared pessimistic to many colleagues. This may indicate that besides the
spectroscopic success additional factors were necessary for the general recogni-
tion of Bohr’s achievement, factors that for some reason where most favorable in
(war-time) Germany.

While in Gottingen Peter Debye (1884-1966) extended the model to the hy-
drogen molecule and met experimental results on dispersion convincingly, it was
Sommerfeld who took up Bohr’s model most forcefully and guided a young gen-
eration of German physicists into the refinement of Bohr’s theory. Though already
mentioned by Bohr only the Munich group worked out the generalization of elec-
tron orbits to elliptic ones into a systematic theory and hence introduced a second
quantum number for labeling the possible states of the atoms. In combination
with relativistic corrections and consideration of the co-movement of the nucleus
» Sommerfeld School mastered the fine-structure of spectral lines to great exper-
imental unison. Further » quantum numbers and » selection rules for describing
possible transitions between states transformed » atomic physics to a “number mys-
ticism” while heavy use of pictures for representing complex systems of electron
orbits at the same time provided an engineering type of approach to it. Sommer-
feld’s promotion of the refined Bohr model between 1917 and 1925 would include
non-specialized university lectures, articles in popular science journals, wood and
brass models for the Deutsches Museum as well as radio programs.

With the older scientists largely skeptical, the Bohr atom won recognition
among wider scientific and lay circles by popularization. Although as early as 1916



Bohr’s Atomic Model 61

problems of the theory to account for anomalous dispersion appeared the momen-
tum the pictorial representation of the new understanding of matter developed could
not anymore be rescinded. Further progress in atomic theory only developed when
Bohr’s central postulate of the separation of optical and mechanical frequencies
was put aside and Hendrik Kramers (1894—-1952) at Bohr’s institute associated with
each stationary state of Bohr’s atom a harmonic oscillator with frequencies equal to
those emitted and absorbed. Similarly did Heisenberg (1901-1976) find his way to a
quantum mechanical reinterpretation of mechanical relations only after abandoning
graphic models and turning to dispersion theory with virtual oscillators.

The Bohr atom has served many scientists, educators and philosophers as ex-
emplar. Notions like “Rutherford—-Bohr atom” » Bohr’s atomic model, Rutherford
atom are commonplace, logical and rational reconstructions of the (conceived)
research have been undertaken and even analyses of Bohr’s (idealized) research
programs are at hand [8, 10]. All these however, have always to be judged against
the rich historical sources that rather provide a complex and coincidental picture of
the historical path.
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Bohr-Kramers—Slater Theory

Helge Kragh

The Bohr-Kramers—Slater theory (or BKS theory) was proposed in 1924 as an
attempt to explain problems in physical optics and to provide a unified picture
of the continuous electromagnetic field and the discontinuous quantum transitions
in atoms. Although the theory was short-lived it proved most important in the
subsequent development of quantum theory, not least because it replaced causal
spatio-temporal description of the transitions between stationary states with statis-
tical considerations. Moreover, it followed that energy and momentum was only
conserved statistically, not for individual atomic processes.

In early 1924 atomic physics was in a state of crisis (» quantum theory, cri-
sis period), one of the critical problems being the interaction between matter and
radiation. In a paper published in Nature in February 1924, John Clark Slater (1900—
1976) suggested the radical idea that when an atom was in a stationary state, it would
“communicate with other atoms. . . by means of a virtual field of radiation originat-
ing from oscillators having the frequencies of possible quantum transitions and the
function of which is to provide for statistical conservation of energy and momen-
tum by determining the probabilities for quantum transitions.” Note that the field
was thought to be emitted by atoms in their stationary states and not, as in Bohr’s
original theory, during the » quantum jumps from one state to another.

The idea to conceive the atom as a collection of “virtual harmonic oscillators”
had implicitly been suggested by Rudolf Ladenburg (1882—1952) in a paper on dis-
persion theory from 1924, but it was only with Slater’s paper and the subsequent
BKS paper that explicit use was made of the idea. Slater provided a picture of emis-
sion as well as absorption of radiation inspired by and in qualitative agreement with
Einstein’s probabilistic radiation theory of 1916—17. He considered his picture to be
a reconciliation of the continuous wave theory of the electromagnetic field with the
discreteness of light quanta (photons » light quantum), of whose existence he had
been convinced by Arthur Compton (1892—-1962) » Compton experiment.

Slater was at the time a visiting physicist at Niels Bohr’s (1885-1962) institute
in Copenhagen, and he discussed at length his theory with Bohr and his assistant
Hendrik Kramers (1894-1952) who found it interesting but also suggested mod-
ifications. Neither Bohr nor Kramers shared Slater’s belief in the light quantum.
Rather than adopting a theory which harmonized the electromagnetic field with
light quanta (Slater’s view), they wanted to connect the continuous field responsible
for the propagation of light with the discontinuous quantum transitions in the atom.
Moreover, the idea of a statistical connection, as proposed by Slater in his Nature pa-
per, appealed greatly to Bohr and Kramers who believed that it implied that a causal
description of quantum transitions had to be abandoned. If so, they concluded, the
conservation laws of energy and momentum could not be strictly valid for individ-
ual processes, but should be understood as statistical laws. This idea seems to have
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been due to Bohr and Kramers rather than Slater. In a general sense it was not new
to Bohr, who for some time had been prepared to abandon the validity of energy
conservation in the quantum domain.

The result of the discussions in Copenhagen — and the pressure put on Slater to
go along with the statistical, non-conservation ideas of Bohr and Kramers — was
a joint paper published simultaneously in Philosophical Magazine and Zeitschrift
fiir Physik. Although jointly authored, the paper reflected Bohr’s ideas more than
Slater’s, and in fact Slater disagreed with much of it. The BKS paper kept to
Slater’s idea of a virtual radiation field associated with the stationary state of an
atom and also incorporated the probabilistic interpretation of transition processes.
“The occurrence of a certain transition in a given atom will depend on the initial
stationary state of this atom itself and on the states of the atoms with which it is
in communication through the virtual radiation field, but not on the occurrence of
transition processes in the latter atoms.”

Slater had originally conceived the virtual radiation field as a kind of wave-field
guiding the light quanta, but in the BKS paper there was no trace of this idea (which
was also part of Louis de Broglie’s theory (1892—1981)). It remained unclear what
the enigmatic virtual oscillators were, except that they were not directly observable.
The most radical feature of the BKS theory was the description of atomic processes
at the expense of sacrificing the laws of detailed conservation of energy and mo-
mentum.

The BKS theory was almost purely qualitative and appealed conceptually to an
intuitive understanding of virtual fields and virtual oscillators, but if it was to be
taken seriously it had to make testable predictions. Bohr and Kramers (and, nom-
inally, Slater) applied the theory to the » Compton effect and concluded that the
direction of a recoil electron after scattering an X-ray photon would not be uniquely
determined, as required by the conservations laws, but display a wide statistical
distribution. Even before this prediction could be tested, the theory aroused much
attention, if little enthusiasm. Erwin Schrédinger (1887-1961) supported the BKS
theory and Bohr’s interpretation, but most other physicists either rejected it or ex-
pressed reservation. Among those who were opposed to it were Arnold Sommerfeld
(1868-1951), Albert Einstein (1879-1955), Compton and Wolfgang Pauli (1900—
1958), and it is uncertain if even Kramers supported it.

At any rate, the theory did not last for more than a year. As early as June 1924,
Walther Bothe (1891-1957) and Hans Geiger (1882—1945) in Berlin proposed an
experiment to test the theory by measuring simultaneously the scattered » X-rays
and the recoil electrons. This was one of the first experiments using electronic co-
incidence devices, and it was not until April 1925 that they had ready their final
result, which was “incompatible with Bohr’s interpretation of the Compton effect.”
Also Compton and Alfred W. Simon, who used a cloud chamber to determine the
direction of recoil electrons, concluded in favour of energy and momentum conser-
vation and that experiments had therefore disproved the BKS theory. Karl Popper
(1902-1994) later described the experiments of 1925 as a kind of experimentum
crucis. While this was good news to Slater, it was not to Bohr, who for a year
had defended the theory and taken it very seriously. Nonetheless, he accepted the




64 Born Rule and its Interpretation

experimental verdict and wrote to Fowler that “there is nothing else to do than to
give our revolutionary efforts as honourable a funeral as possible.”

In spite of its short lifetime, the BKS theory was singularly important. For one
thing, its radically new approach paved the way for a greater understanding that
methods and concepts of classical physics could not be carried over in a future
quantum mechanics. For another thing, the theory provided the point of depar-
ture of Kramers’ theory of dispersion of 1924 and its further development into the
Kramers—Heisenberg dispersion theory of 1925, the final step before Heisenberg’s
formulation of quantum or » matrix mechanics.
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Born Rule and its Interpretation

N.P. Landsman

The Born rule provides a link between the mathematical formalism of quantum
theory and experiment, and as such is almost single-handedly responsible for prac-
tically all predictions of quantum physics. In the history of science, on a par with
the » Heisenberg uncertainty relations, the » Born rule is often seen as a turning
point where » indeterminism entered fundamental physics. For these two reasons,
its importance for the practice and philosophy of science cannot be overestimated.
The Born rule was first stated by Max Born (1882-1970) in the context of scat-
tering theory [1], following a slightly earlier paper in which he famously omitted
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the absolute value squared signs (though he corrected this is a footnote added in
proof). The application to the position operator (cf. (5) below) is due to Pauli, who
mentioned it to Heisenberg and Jordan, the latter publishing Pauli’s suggestion with
acknowledgment [6] even before Pauli himself spent a footnote on it [8]. The general
formulation (6) below is due to von Neumann (see §I1I.1 of [7]), following earlier
contributions by Dirac [2] and Jordan [5, 6].

Both Born and Heisenberg acknowledge the profound influence of Einstein on
the probabilistic formulation of quantum mechanics. However, Born and Heisen-
berg as well as Bohr, Dirac, Jordan, Pauli and von Neumann differed with Einstein
about the (allegedly) fundamental nature of the Born probabilities and hence on the
issue of determinism. Indeed, whereas Born and the others just listed after him be-
lieved the outcome of any individual quantum measurement to be unpredictable in
principle, Einstein felt this unpredictability was just caused by the incompleteness
of quantum mechanics (as he saw it). See, for example, the invaluable source [3].
Mehra & Rechenberg [20] provide a very detailed reconstruction of the historical
origin of the Born rule within the context of quantum mechanics, whereas von Plato
[22] embeds a briefer historical treatment of it into the more general setting of the
emergence of modern probability theory and probabilistic thinking.

Let a be a quantum-mechanical » observable, mathematically represented by a
» self-adjoint operator on a » Hilbert space H with inner product denoted by ( , ).
For the simplest formulation of the Born rule, assume that a has non-degenerate
discrete spectrum: this means that @ has an » orthonormal basis of eigenvectors
(e;) with corresponding eigenvalues A;, i.e. ae; = A;e;. A fundamental assumption
underlying the Born rule is that a » measurement of the observable a will produce
one of its eigenvalues A; as a result. In what follows, ¥ € H is a unit vector and
hence a (pure) state in the usual sense. Then the Born rule states:

If the system is in a state W, then the probability P(a = A; | V) that the eigenvalue A; of a
is found when a is measured is

Pla=hx| V) =], V) (1)

In other words, if ¥ = ), cje; (with ), lcil> = 1), then P(a = A; | W) = |¢;|2.
The general formulation of the Born rule (which is necessary, for example, to
discuss » observables with continuous spectrum such as the position operator x on
H = L*(R) for a particle moving in one dimension) relies on the spectral theo-
rem for self-adjoint operators on Hilbert space (see, e.g., [21]). According to this
theorem, a self-adjoint operator a defines a so-called spectral measure (alternatively
called a projection-valued measure or PVM) B > p(“)(B) onR. Here B is a (Borel)
subset of R and p® (B) is a projection on H. (Recall that a projection on a Hilbert
space H is a bounded operator p : H — H satisfying p> = p* = p; such opera-
tors correspond bijectively to their images p H, which are closed subspaces of H.)
The spectral measure p® turns out to be concentrated on the spectrum o (a) C R
of a in the sense that if B N o(a) = ¥, then p¥(B) = 0 (hence p@ is often
defined on o (@) instead of R). The map B — p'®(B) satisfies properties such as
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P (A UB) = p@W(A)+ pY(B) when AN B = ¢ (and a similar property for
a countable family of disjoint sets) and p® (R) = 1 (i.e. the unit operator on H).
Consequently, a self-adjoint operator a and a unit vector ¥ € H jointly define a
probability measure Pé,a) on R by

PYO(B) = (W, p@(BYY) = | p(B) W, @)
where || - || is the norm derived from the inner product on H. The properties of p®

just mentioned then guarantee that P\g,a) indeed has the properties of a probability
measure, such as Pé,a)(A UB) = Pé,a)(A) + Pé,a)(B) when AN B = ¢ (and a
similar property for a countable family of disjoint sets) and Pé,a)(R) = 1. Again,
the probability measure P\g,a) is concentrated on o (a).

For example, if a has discrete spectrum, then o (a) = {11, A2, ...} and p(“)(B)
projects onto the space spanned by all eigenvectors whose eigenvalues lie in B.
In particular, if ¥ = )", ¢;e; as above, then Pé,a)({)»,-}) = |¢i|. In the case of
the position operator x as above, o (x) = R and p*)(B) equals the characteristic
function xp, seen as a multiplication operator on L2(R). The image of p™(B)
consists of functions vanishing (almost everywhere) outside B, and the measure
Pé,x) is given by

P$X)(B>=Adx xB<x>|\v(x)|2=/de|\v<x>|2. 3)

The general statement of the Born rule, then, is as follows:

If the system is in a state W € H, then the probability P(a € B | V) thataresultin B C R
is found when a is measured equals

Pa e B| V) =P (B). 4)

For discrete non-degenerate spectrum this reduces to (1). For the position opera-
tor in one dimension, (4) yields

P(x € B| W) =/dx|\11(x)|2 (5)
B

for the probability that the particle is found in the region B.

Note that it follows from the general Born rule (4) that with probability one a
measurement of @ will lead to a result contained in its spectrum, since P\g,a)(B) =0
whenever B N o(a) = . Curiously, however, the probability P(a = A | V) of
finding any specific number A in the continuous spectrum of a is zero! As a case
in point, the probability P(x = x¢ | W) of finding the particle at any given point
xo vanishes. Of course, this phenomenon also occurs in classical probability theory
(e.g., the probability of any given infinite sequence of results of a coin flip is zero).
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The rule (4) is easily extended to n commuting self-adjoint operators
ai,...,ay [7]:

The probability that the observables ay, ..., a, simultaneously take some value in a subset
By x -+ x B, C R" upon measurement in a state W is

Py(a) € By, ...,ay € By) = |p“V(B)) - p'“)(B,) V| (6)

This version of the Born rule is needed, for example, in order to generalize (5) to
three dimensions. Indeed, the ensuing formula is practically the same, this time with
B C R3 and x replaced by (x, y, z).

The statement that the expectation value of an observable a in a state W equals
(W, aW) is equivalent to the Born rule. To see this, we identify projections with
yes-no questions [7], identifying the answer ‘yes’ with eigenvalue 1 and ‘no’ with
eigenvalue 0. The expectation value (¥, p¥) = || pW¥|? of a projection then simply
becomes the probability of the answer ‘yes’. Taking p = p“(B) then repro-
duces (4), since the probability of ‘yes’ to the question p®(B) is nothing but
P(a € B | V). In this fashion, the Born rule may be generalized from pure states
to mixed ones (i.e. » density matrices in the standard formalism we are consider-
ing here), by stipulating that the expectation value of a in a state p (i.e. a positive
trace-class operator with » trace one) is Tr(pa). For a further generalization in this
direction see » Algebraic quantum mechanics.

Finally, another formulation of the Born rule is as follows:

The transition probability P (¥, ®) from a state WV to a state ®, or, in other words, the
probability of a ‘quantum jump’ from W to @, is

P(V, ®) = |(¥, D)|*. (N

This related to the first formulation above, in that in standard measurement theory
one assumes a » ‘wave function collapse’ in the sense that ¥ changes to e; after a
measurement of a yielding A;. The transition probability P (W, ¢;) is then precisely
equal to P(a = A; | W) as stated above.

The Born interpretation of quantum mechanics is usually taken to be the state-
ment that the empirical content of the theory (and particularly of the quantum state)
is given by the Born rule. However, this is not really an interpretation at all until it
is specified what the notions of measurement and probability mean. The pragmatic
attitude taken by most physicists is that measurements are what experimentalists
perform in the laboratory and that probability is given the frequency interpreta-
tion [15, 17] (which is neutral with respect to the issue whether the probabilities
are fundamental or due to ignorance). Given that firstly the notion of a quantum
measurement is quite subtle and hard to define, and that secondly the frequency
interpretation is held in rather low regard in the philosophy of probability [17,
18], it is amazing how successful this attitude has been! Going beyond pragma-
tism requires a mature interpretation of quantum mechanics, however. Each such
interpretation hinges on some interpretation of probability and will contain its own
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perspective on the Born rule. See Ignorance interpretation, Ithaca Interpretation,
Many Worlds Interpretation, Modal Interpretation, Orthodox Interpretation, Trans-
actional Interpretation.

The nature of the Born rule comes out particularly well in the Copenhagen
interpretation, » Consistent Histories; Metaphysics in Quantum Mechanics; Non-
locality; Orthodox Interpretation; Schrodinger’s Cat; Transactional Interpretation,
especially if this approach is combined with » Algebraic quantum mechanics. In the
algebraic approach, a quantum system is modeled by a non-commutative C*-algebra
of observables. The simplest illustration of this is the algebra M,, of all complex
n x n matrices. This contains the commutative C*-algebra D, of all diagonal ma-
trices as a subalgebra. A unit vector ¥ € C”" determines a pure state ¢ on M,, in the
algebraic sense by ¥ (a) = (W, aW). The latter may be restricted to a state 1|p, on

D,,, which turns out to be mixed: if ¥ = Z?:l ciej and dy = diag(Aq, ..., An) 1S
the diagonal matrix with entries (A1, ..., A,), then
n
Yip, () = Y leil A ®)
i=1

yields the expectation value of dj in the state v. In particular, if p; € D, is the
projection p; = diag(0, ..., 1,...,0) having 1 on the i’th diagonal entry and zeros
elsewhere, then ¥|p, (pi;) = Ic; | yields the Born probability of obtaining A; upon
measuring D;,.

Similarly, one may regard a » wave function ¥ € L?(R) as an algebraic state v/
on the C*-algebra B(L?%(R)) of all bounded operators on the Hilbert space L2(R).
This C*-algebra contains the commutative subalgebra Co(R) given by all multipli-
cation operators on L?(R) defined by continuous functions of x € R that vanish at
infinity (roughly speaking, this is the C*-algebra generated by the position opera-
tor). The restriction ¢, r) of ¥ to Co(R) is given by

Ve (f) = /R ax [W ()P (). ©)

The probability measure Py o0 R associated to the functional V¢, k) by the

Riesz representation theorem [21] is just P,/,‘CO(R) = Pé,x) , cf. (3). Hence the re-
stricted state v/, (r)precisely yields the Born—Pauli probability (5).

Finally, to recover (4) (assuming for simplicity that the operatora : H — H is
bounded), one considers the commutative C*-algebra C*(a) of B(H) generated by
a and the unit operator. It can be shown [21] that C*(a) = C(o(a)). Hence a unit
vector W € H defines a state ¥ on B(H ), whose restriction y/|cx(4) to C*(a) yields

a probability measure Py, .., on the spectrum o (a) of a. It easily follows that

(a)
Pyesqy = Py, (10)

which reproduces (2).
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The physical relevance of these constructions derives from Bohr’s doctrine of
classical concepts, which is an essential ingredient of the Copenhagen interpretation
[24]. In particular, if it is to serve its function, a measurement apparatus has to be de-
scribed as if it were classical. This implies that if it is used as a measuring device, the
apparatus (which a priori is quantum mechanical) has to be described by a commu-
tative subalgebra D of its full non-commutative algebra A of quantum-mechanical
observables. Upon the identifications explained above, the Born probability measure
then comes out to be just the restriction of the total state on A to the ‘classical’
subalgebra D thereof that Bohr calls for.

This account does not provide a derivation of the Born rule from first princi-
ples, but it does clarify its mathematical and physical origin. In particular, in the
Copenhagen interpretation probabilities arise because we look at the quantum world
through classical glasses:

“One may call these uncertainties [i.e. the Born probabilities] objective, in that they are

simply a consequence of the fact that we describe the experiment in terms of classical

physics; they do not depend in detail on the observer. One may call them subjective, in that
they reflect our incomplete knowledge of the world.” (Heisenberg [4], pp. 53-54)

In other words, one cannot say that the Born probabilities are either subjective (i.e.
Bayesian, or due to ignorance) or objective (i.e. fundamentally ingrained in nature
and independent of the observer). Instead, the situation is more subtle and has no
counterpart in classical physics or probability theory: the choice of a particular clas-
sical description is subjective, but once it has been made the ensuing probabilities
are objective and the particular outcome of an experiment compatible with the cho-
sen classical context is unpredictable. Or so Bohr and Heisenberg say. ..

In most interpretations of quantum mechanics, some version of the Born rule is
simply postulated. This is the case, for example, in the » Consistent histories inter-
pretation, the » Modal interpretation and the » Orthodox interpretation. Attempts
to derive the Born rule from more basic postulates of quantum theory go back to
Finkelstein [16] and Hartle [19], whose work was corrected and extended in [14].
These authors study infinite sequences of measurements and prove that the ensuing
relative frequencies automatically satisfy the Born rule. It is controversial, however,
to what extent this argument really derives the Born rule or is eventually circular
[11, 12]. In the version of the » Many worlds interpretation developed by Deutsch
[13] and his followers [23, 26], the authors claim to derive the Born rule using argu-
ments from decision theory, but once again the charge of circularity has been raised
[9, 10]. See also [27, 25] for a similar debate in the context of » decoherence. The
conclusion seems to be that no generally accepted derivation of the Born rule has
been given to date, but this does not imply that such a derivation is impossible in
principle.
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Bose-Einstein Condensation

A.J. Leggett

Bose—Einstein condensation (BEC) is a phenomenon that occurs in a macroscopic
system of bosons (particles obeying » Bose—FEinstein statistics) at low temperatures:
a nonzero fraction of all the particles in the system (thus a macroscopic number of
particles) occupy a single one-particle state. This would, of course, happen for a
system of distinguishable, noninteracting particles at zero temperature, but in this
case the phenomenon disappears as soon as the temperature becomes comparable
to the energy splitting between the single-particle groundstate and the first excited
state — a quantity which tends to zero with the size of the system. By contrast,
in BEC the macroscopic occupation occurs at all temperatures below a transition
temperature, usually denoted 7, which while a function of intensive parameters
such as density and interaction strength is constant in the thermodynamic limit.

The fundamental reason for the occurrence of BEC lies in the requirement, which
follows from considerations of quantum field theory, that the » wave function of a
system of identical bosons should be symmetric under the exchange of any two par-
ticles. This has the consequence that states that differ only by such an exchange
must be counted as identical, i.e. counted only once. Thus, for example, while for a
system of N distinguishable objects, which must be partitioned between two boxes,
the number of ways of putting M of them into one box is given by the familiar bino-
mial formula N!/(M!N — M!), for bosons there is exactly one way for each M. The
effect is to remove the “entropic” factor, which for distinguishable objects militates
against putting a large fraction of them in a single one-particle state.

For noninteracting bosons in thermal equilibrium at temperature 7" a calculation
of the average number of particles (n;) occupying the various single-particle states
i is straightforward and was carried out by Albert Einstein (1879-1955) [1] in 1925
on the basis of the statistics derived by Satyendra Nath Bose (1894—1974) [2] a year
earlier:

(ni) = {lexp(e; — n)/ksT]— 1} (1)

where p is the chemical potential,which must be fixed by the condition

D i) =N )

i

where N is the total number of particles present. In order to make sense of (1), it is
clear that the chemical potential must be negative (we set the lowest single-particle
energy to zero by convention); since the LHS of (2) is an increasing function of u,
it follows that if in it we take the value of (n;) for © = 0, the equality must be
replaced by an inequality. Thus, if we were to replace the sum by an integral and
introduce the single-particle density of states p(¢€) in the standard way, we would
find the condition
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o p(€)de
/0 oxple/ksT) —1 - 3)

However, if p(€) tends to zero with €, as happens for a gas in three-dimensional
free space, this condition cannot be fulfilled below a certain “critical temperature”
T, which for 3D free space is given by

T. =3-31n**W*/m 4)

where n = N/V is the density.

What then happens for temperatures T < 7;.? According to Einstein, while for
the states with €; > 0 the sum can still be legitimately replaced by an integral, the
zero-energy state (the single-particle groundstate) must be taken out and handled
separately. In fact, the difference — call it No — between the right and left sides of (3),
which is proportional to N and for T < T¢ is positive, is the number of particles
which occupy the groundstate. Thus a single state, in this case the single-particle
groundstate, is occupied by a macroscopic number of particles — the phenomenon
of BEC. Note that for free particles in d dimensions, BEC does not occur for d < 2,
since in this case the LHS of (3) is divergent and the equation is trivially satisfied at
any nonzero value of 7'. For a free gas in 3D the condensate fraction is given by the
formula

No(T)/N =1 —(T/Te)*? (5)

and so tends to 1 as T tends to O.

Since in real life many-particle systems are rarely noninteracting and in addition
may not be in thermal equilibrium, it is desirable to have a more general definition of
BEC. Such a definition was formulated by Oliver Penrose (*1929) and Lars Onsager
(1903-1976): If we choose any complete » orthonormal basis (in general time-
dependent) of single-particle wave functions x; (r : t), then we can define in this
basis the single-particle density matrix p;; () = (aTia 7)(). Since the matrix p(z) is
Hermitian, general theorems guarantee that for any given time ¢ we will be able to
find a basis which diagonalizes it, i. . such that

pij (1) = 8;j{n;)(t) (6)

If one and only one! of the eigenvalues (n;) (call the relevant value of i 0 by conven-
tion) is of order N while all the rest are all of order 1, then we say that the system
possesses the property of Bose—Einstein condensation (BEC); the quantity (n¢) (of-
ten written Ng) is called the “condensate number” (so that No/N is the “condensate
fraction™), and the associated eigenfunction of 4(¢), xo(r), is called the “condensate
wave function.” Note that in the general case both Ny and yo(r) may be functions
of time.

't is possible, though for various reasons uncommon, for more than one eigenvalue to be of
order N. In this case the system is said to possess “fragmented BEC.”
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There are strong arguments that the occurrence of BEC should lead to the phe-
nomenon of superfluidity (» Superfluidity), so that when the latter phenomenon
was detected, in 1938, in He-II (the phase of liquid 4He below the so-called lambda-
temperature, about 2.17 K), it was almost immediately suggested by Fritz London
that BEC is occurring in this phase. This conjecture is now almost universally
believed to be correct, and although the strong and mostly repulsive interatomic
interactions in liquid helium prevent the direct observation of the onset of BEC
which is possible in the alkali gases (see below), it has proved possible (with cer-
tain caveats, see e.g. ref. [3]) to observe a nonzero condensate fraction No(7T)/N
by high-energy neutron scattering and other experiments; it increases from zero at
the lambda-temperature to about 8% at T = 0. (By contrast, the superfluid fraction
is 100% at T = 0). The strong “depletion” of the condensate fraction relative to its
value for the free gas is believed to be due to the strong interactions occurring in
this high-density system.

A second system in which BEC has been achieved is the bosonic atomic alkali
gases®. Since (neutral) alkali atoms by definition have an odd number of electrons,
odd-A alkali isotopes such as 8’Rb, 23Na or "Li are composed of an even num-
ber of fermions and thus behave, as wholes, as bosons; at the densities currently
realized the transition temperature 7, to the BEC phase is predicted to be of the
order of a microkelvin, a temperature now relatively easily reached by laser cooling
and rf evaporation techniques. These gases are normally held in trapping potentials
(generated by magnetic fields or lasers) that are harmonic in form, and in such a
geometry the effect of the onset of BEC is spectacular: Above T; the density dis-
tribution in the trap is approximately Gaussian, with a large value of the halfwidth.
If the atoms were noninteracting, then below 7 a nonzero fraction would occupy
the single-particle groundstate of the harmonic potential, which has a very much
narrower width. In real life this effect is reduced owing to the repulsive interatomic
interactions, but one still sees a sharp “spike” in the density appear below T¢, see e.g.
ref. [4]; this is probably the most convincing evidence that BEC is indeed occurring
in these systems as theory confidently predicts.

In contrast to liquid helium, the atomic alkali gases are very dilute, and thus the
effects of the interatomic interactions are generally rather weak and can be handled
by perturbation theory. Thus it has been possible to achieve a very good quantitative
understanding of the effects of BEC in these systems.>
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Bose-Einstein Statistics

Arianna Borrelli

Bose—Einstein statistics is a procedure for counting the possible states of quantum
systems composed of identical particles with integer » spin. It takes its name from
Satyendra Nath Bose (1894-1974), the Indian physicist who first proposed it for
» light quanta (1924), and Albert Einstein (1879-1955), who extended it to gas
molecules (1924, 1925).

Both in classical and in quantum mechanics, the behaviour of systems composed
of a large number of particles can be investigated with the help of statistical con-
siderations. If all particles obey the same dynamics, and if their interactions can be
neglected in a first approximation, one can determine all possible energy states of
a single particle, and then make statistical assumptions on the distribution of the
particles among single-particle states, thus computing the average behaviour of the
whole system. The usual statistical assumption is that all possible states of the many-
particle system (i.e. all configurations) are equally probable. As became clear around
the middle of the 1920’s, the description of quantum systems of many particles has
to be different from that of classical ones, a fact usually described by referring to
the » indistinguishability of quantum particles as opposed to the distinguishability
of classical ones. Two kinds of » quantum statistics have been found to play a role
in quantum mechanics: the statistics of Bose—Einstein and that of » Fermi-Dirac.

Let us consider the classical case first, i.e. a system of N identical, noninteracting
particles which are assumed to be distinguishable. The configuration of the system
is determined by indicating which particles are in which states, for example particle
a in state 1 and particle b in state 2:

|particle a|particle b|
| state 1 | state 2 ‘
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Since a and b are distinguishable, this configuration is different from the
configuration:

|particle a| particle b|
| state 2 | state 1 |’

with particle a in state 2 and particle b in state 1.

In quantum statistics, the configurations of the whole system are not described
by specifying which particles are in which states, but only by saying how many
particles are in each state. For example:

|one particle|one particle|
| state ] | state2

)

for a configuration with one particle in state 1 and one in state 2. In the classical
case, this description corresponds to two distinct configurations, but in the quantum
case there is by definition only one configuration which can be described in this way.
This method of counting configurations can be seen as expressing the particles’ in-
distinguishability, although in fact it is the notion of “particle” itself that becomes
problematic in quantum statistical systems. Any number of particles following the
Bose—Einstein distribution (bosons) can occupy the same state at the same time,
while for particles satisfying Fermi-Dirac statistics (fermions) each state can be oc-
cupied by at most one particle at a time.

The key difference between Bose—Einstein statistics and the classical way of
counting is that a large number of configurations which in the classical case are
considered different, in Bose—Einstein statistics count as one. More precisely, when
N particles occupy N different single-particle states, all of their N! permutations
count as only one configuration. On the other hand, for particles which are in the
same state, there is no difference with respect to the classical way of counting: the
classical configuration

|particle a |particle b|
state 1 | state 1 ‘

with both particles in state 1, counts only once, just like the Bose—Einstein configu-
ration

|two particles | no particles |
‘ state 1 | state 2 |

If, as usually done, it is assumed that all configurations of the many-particle sys-
tem are equally probable, it follows that, for Bose—Einstein particles, the statistical
weight of configurations in which many particles are in the same state is enhanced
with respect to the classical case. In other words, it is more probable to find two
or more bosons in the same single-particle state than it is the case for classical par-
ticles. Because of this, bosons cannot be considered statistically independent from
each other even when they are not interacting.
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In the limit of high temperatures, i.e. for high average energies, an increasing
number of energy states becomes accessible to the particles, and the number of
configurations with two or more of them in the same state eventually becomes neg-
ligible. The overall effect of Bose—FEinstein statistics is then simply a reduction of
the statistical weight of any configuration by a factor N'! with respect to the classical
case. In the low-temperature limit, instead, the number of configurations with two or
more particles occupying the same state is not negligible, and those configurations
are privileged: at low temperature, a boson has a greater probability than a classi-
cal particle of occupying the ground state. Under specific conditions, the formalism
predicts the phenomenon of » Bose—Einstein condensation.

Bose—Einstein statistics had its origin in Max Planck’s (1858—1947) formula for
the energy density u, of » black-body radiation (1900) of frequency v at thermal
equilibrium at temperature 7. To justify his formula, Planck considered the energy
density u, as associated to N, oscillators of average energy U (v, T'), with

8?2
Uy =
3

Uw,T).

This relation was derived from classical electrodynamics. He then assumed that the
radiant energy was distributed among the N, oscillators in form of P energy ele-
ments of value Av. The configurations of the system were described by giving only
the total number of energy elements in each oscillator, without considering the pos-
sibility of permuting the energy elements: this method of counting corresponded to
what would later be called Bose—FEinstein statistics. However, Planck did not regard
the energy elements as particles, but only as a computational device whose physical
significance remained to be determined.

In the following years, Planck’s formula and its possible relationship to Albert
Einstein’s hypothesis of a » light quantum (1905) were discussed by a number of
authors, whose views have been discussed by Silvio Bergia [10]. In 1911, the Polish
physicist Wiadystaw Natanson (1864-1937) noted that Planck’s counting method
implied the indistinguishability of the energy elements and the distinguishability of
the oscillators [1]. The correctness of this assumption, Natanson remarked, was sup-
ported only by the agreement of Planck’s formula with experiments. In 1914, Paul
Ehrenfest (1880-1933) and Heike Kamerlingh—Onnes (1853-1926) underscored
that Planck’s energy elements were not statistically independent from each other and
therefore, in their opinion, could not be regarded as real, independent particles [2].

In 1923, Einstein’s light quantum hypothesis was vindicated by the » Compton
experiment. In 1924, Bose, at the time working at Dacca University, showed how
Planck’s formula could be derived without recourse to classical electrodynamics,
but instead assuming the existence of massless light quanta whose position and mo-
mentum were quantized by dividing phase-space into cells of volume (k)3 [3,4].
As in the case of Planck’s energy elements and oscillators, Bose’s light quanta were
distributed among the phase-space cells by specifying only the number of quanta
in a cell, without considering permutations. A factor 2 took into account the two
possible states of polarisation of light so that, in the end, Planck’s radiation formula
was recovered. In conclusion, Bose derived Planck’s formula by assuming that light
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quanta existed and satisfied a new kind of statistics. He developed his theory in two
papers written in English which he sent to Einstein, whom he did not know, asking
for help for the publication in a German journal. Einstein, recognizing the impor-
tance of Bose’s contribution, translated the papers into German, had them published
(1924) and wrote two papers of his own (1924, 1925) in which he extended Bose’s
statistics to an ideal gas of molecules, making explicit a number of implicit fea-
tures of the theory [5, 6]. However, it remained open to discussion whether the new
statistics would be applicable to particles different from light quanta.

In 1926, after the formulaton of Erwin Schrodinger’s (1887-1961) » wave
mechanics, Bose—Einstein statistics was linked to the behaviour of many-particle
» wave functions. This result was obtained by Werner Heisenberg (1901-1976)
and, somewhat later but independently, by Paul Dirac (1902-1984). Consider a wave
function ¥ (x1, x2, ..., x;, ...) which is a solution of » Schridinger’s equation for
a system of N particles satisfying the same dynamics, with x; representing the set
of coordinates of the i-th particle. A generic ¥ will not remain unchanged under a
permutation of the indexes 7, but, because of the » identity of the particles, the per-
muted function shall be a solution of the equation of motion as well. If, following the
model of Bose—FEinstein statistics, one imposes on the wave function the additional
requirement that a permutation of the particles should not change the configuration
of the system, it follows that the only physically acceptable ¥’s are those which,
under a permutation of the indexes i, either remain unchanged (symmetrical wave
functions) or change sign (antisymmetrical wave functions). The indeterminacy of
the sign derives from the fact that only | ¥ |? is physically significant.

As both Heisenberg and Dirac noted, the choice of symmetrical wave functions
implied the same shift in statistical weights as the one brought about by Bose—
Einstein statistics. Choosing antisymmetrical wave functions instead resulted in a
system obeying Pauli’s » exclusion principle and satisfying Fermi—Dirac statistics.
After initial discussions as to whether particles of matter would obey Bose—Einstein
or Fermi-Dirac statistics, it eventually became clear that both alternatives are re-
alised in nature, depending on the spin of the particles: particles with zero or
integer spin satisfy Bose—Einstein statistics, while particles of half-integer spin obey
Fermi-Dirac statistics (» spin-statistics theorem).
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Bremsstrahlung

Bruce R. Wheaton

All charged particles emit radiation when accelerated. Indeed on the Maxwell view,
that radiation (which takes energy from the particle) is the “wake” left by that
acceleration in an @ther of crossed electric and magnetic fields, and the concept
underlies Hertz’ corroboration of Maxwell in 1888. So when » cathode-rays were
about 1900 identified by most physicists as streams of » electrons, their impact
on the anti-cathode in Rontgen’s vacuum tube should produce an irregular se-
quence of dislocated electromagnetic impulses due to the electrons’ deceleration.
This is “braking,” hence the term Arnold Sommerfeld (1868—1951) coined in 1909
of Bremsstrahlung.

Wilhelm Conrad Rontgen (1845-1923) had thought in 1895 he had found the
elusive longitudinal e-m wave in his discovery of » x-rays. But Sommerfeld in
1899 found two species in the new radiation: at the low-energy end periodic waves
like ultra-violet light, at the high end a broad spectrum to be expected from discon-
tinuous impulses dissected by Fourier frequency expansion. This distinction was
reinforced by Charles Barkla (1877-1944) in 1907: superimposed on the spectrally-
spread out x-radiation from electron impacts (Bremsstrahlung) was a series of sharp
strong peaks characteristic of the anti-cathode metal (fluorescent x-rays) that Barkla
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Fig. 1 Sommerfeld’s calculated distribution of y-ray intensity as a function of azimuthal angle.
[Miinchen Sb, 41 (1911), 11.] (The two cases for v/c are not to the same scale. Were they, the case
for .99¢ would extend down the hall to your right, a thousand times the other)

showed were polarized. Sommerfeld returned to the issue in 1911 with a non-
relativistic analysis of y-rays (Bremsstrahlung from exiting B-electrons) to show
their energy is emitted markedly in the forward direction like “directed radiation,”
or “needle radiation,” see Fig. 1. Niels Bohr had to contend with Bremsstrahlung as
fundamental evidence for his atom in 1913, although Joseph Larmor (1857-1942)
[1] and J. J. Thomson (1856-1940) [3] had defused the notion of the » Bohr atom
necessarily destroying itself by radiation from orbiting electrons.

With the integration of quantum mechanics in the mid-1920s, and with emerging
recognition of the distinction between atomic and nuclear phenomena, came a new
understanding of the essential nature of Bremsstrahlung in investigating the nucleus.
In particular Dirac’s » relativistic quantum mechanics (1928) predicted positive
electrons; so the passage of high-energy (>800MeV/Z) electrons through matter
(of atomic mass Z) can emit photons (» light quantum) of sufficient energy to decay
into an e~ e™ pair, leading to more Bremsstrahlung from the products, resulting in
a succession of pairs decreasing in energy, as had been seen in cosmic ray showers
using Wilson’s (1911) cloud chamber.

When you accelerate charged particles in a cyclotron (1932+) they also radi-
ate and lose energy. This is a particular problem for electrons in a synchrotron,
since they have large charge and little mass (E; o« a?/M?), requiring regions
in the machine where they can regain energy lost at each turn in order to keep
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the beam together. This puts constraints on, i.e., storage-rings. In extremely high
energy (15 GeV) collisions of e*e™, Bremsstrahlung takes the form of hadron jets
able to traverse 30 m of air, the least energetic of which can be explained by a quark
(» QCD) emitting a field particle (gluon); or in the case of neutron scattering by
emission of neutrinos.

Perhaps the most pregnant analyses of Bremsstrahlung also came with the accel-
erator. An accelerated beam of electrons or deuterons that passes through a dense
medium might do so with a velocity exceeding the velocity of light in that medium.
Its Bremsstrahlung then consists of shock waves, similar to the sonic boom from an
airplane traveling above Mach 1. These are constructed periodic wave-phenomena
that interact with matter as do particles and were discussed by Cherenkov [10] in
1934. They echo the speculations of Huygens from the seventeenth century about
light and of early (1900) views of » x-rays. Here may indeed lie more detailed
understanding of » wave-particle duality.
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Brownian Motion

Charlotte Bigg

Brownian motion is the irregular and perpetual agitation of small particles sus-
pended in a liquid or gas. In 1828 the Scottish botanist Robert Brown (1773-1858)
published the first extensive study of the phenomenon. Brown showed notably that
this motion equally affects organic and inorganic particles, suggesting a physical
rather than a biological explanation [1]. Developments in thermodynamics and the
kinetic theory in the second half of the nineteenth century led several scientists to
consider Brownian motion as a visible consequence of thermal molecular agitation;
but it was not until the early twentieth century that a convincing quantitative de-
scription and theoretical explanation of the motion was worked out.

In particular A. Einstein (1879-1955), M. von Smoluchowski (1872-1917) and
J. Perrin (1870-1942) demonstrated that the Brownian motion of particles sus-
pended in a liquid is caused by their incessant collisions with the molecules making
up the liquid, and they developed new, statistical methods of measuring this motion.
Instead for instance of measuring the instantaneous velocity of individual particles,
as scientists had previously, finding values widely diverging from those predicted by
the kinetic theory, Einstein proposed in 1905 to measure their mean displacement.
He found that the mean displacement of a particle on the X axis during a period of
time ¢ is proportional to the square root of ¢:
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Brownian Motion

Charlotte Bigg

Brownian motion is the irregular and perpetual agitation of small particles sus-
pended in a liquid or gas. In 1828 the Scottish botanist Robert Brown (1773-1858)
published the first extensive study of the phenomenon. Brown showed notably that
this motion equally affects organic and inorganic particles, suggesting a physical
rather than a biological explanation [1]. Developments in thermodynamics and the
kinetic theory in the second half of the nineteenth century led several scientists to
consider Brownian motion as a visible consequence of thermal molecular agitation;
but it was not until the early twentieth century that a convincing quantitative de-
scription and theoretical explanation of the motion was worked out.

In particular A. Einstein (1879-1955), M. von Smoluchowski (1872-1917) and
J. Perrin (1870-1942) demonstrated that the Brownian motion of particles sus-
pended in a liquid is caused by their incessant collisions with the molecules making
up the liquid, and they developed new, statistical methods of measuring this motion.
Instead for instance of measuring the instantaneous velocity of individual particles,
as scientists had previously, finding values widely diverging from those predicted by
the kinetic theory, Einstein proposed in 1905 to measure their mean displacement.
He found that the mean displacement of a particle on the X axis during a period of
time ¢ is proportional to the square root of ¢:
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R is the gas constant, 7' the absolute temperature, N the number of molecules in
a mole (Avogadro’s number), k the viscosity of the fluid, and P the radius of the
particle. The mean displacement for a given period of time can be thus be calculated
when R, N, T, k, and P are known; conversely N or P can be obtained when mean
displacement and other factors are known [2].

In a series of experiments on colloidal suspensions that involved careful mea-
surement of the diameter, density and displacement of particles, Perrin supplied
evidence in support of this approach (see Fig. 1), and he demonstrated the broad
agreement of experimental determinations of Avogadro’s number made by himself
and others on the basis of a wide range of phenomena [3,4].

Beyond the elucidation of the origin of Brownian motion, the significance of
these investigations is twofold. First, they helped clarify two major scientific and
epistemological issues of late nineteenth century physical science, about the atomic
hypothesis and the relationship between mechanics and thermodynamics. In the in-
troduction to his 1905 paper on Brownian motion, Einstein stated

“In this paper it will be shown that according to the molecular-kinetic theory
of heat, bodies of microscopically-visible size suspended in a liquid will perform
movements of such magnitudes that they can be easily observed in a microscope, on
account of the molecular theory of heat. [. . .]

[
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#

Fig.1 Measuring the displacement of invidual particles: “three drawings obtained by tracing lines
to link the consecutive positions of the same grain of rubber at intervals of 30s” [3,81]
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If the movement discussed here can actually be observed (together with the laws
relating to it that one would expect to find), then classical thermodynamics can no
longer be looked upon as applicable with precision to bodies even of dimensions
distinguishable in a microscope; an exact determination of actual atomic dimensions
is then possible. On the other hand, had the prediction of this movement proved to
be incorrect, a weighty argument would be provided against the molecular-kinetic
conception of heat” [2].

Einstein and others’ investigations of Brownian motion provided conclusive ev-
idence in favour of the kinetic theory of heat and the existence of atoms, as well as
of the statistical nature of the second law of thermodynamics. Perrin was awarded
the Nobel Prize in Physics in 1926 for having “put a definite end to the long struggle
regarding the real existence of molecules.” Secondly, this work announced and pre-
pared the emergence of new fields of investigation in twentieth century physical
science: statistical thermodynamics, the study of fluctuation phenomena, and the
general theory of stochastic processes, of which Brownian motion continues to con-
stitute the archetypal example.

In the history and philosophy of science, the history of research on Brownian
motion is frequently cited as a perfect example of “the failure of experiment and
observation, unguided (until 1905) by theory, to unearth the simple laws governing
a phenomenon.” [6]
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Bub-Clifton Theorem

Jeffrey Bub

The two fundamental ‘no go’ theorems for hidden variable reconstructions of the
» quantum statistics, the » Kochen-Specker theorem [4] and » Bell’s theorem
[1], can be formulated as results about the impossibility of associating a classical
probability space (X, §, P,) with a quantum system in the state p, when certain con-
straints are placed on the probability measure P,. The Bub—Clifton theorem [2, 3],
by contrast, is a ‘go’ theorem: a positive result about the possibility of associating a
classical probability space with a quantum system in a given state.
If P, is required to satisfy the conditions:

(@) Py(a,b,...|A, B, ...) is a classical probability measure defined for all eigen-
values a, b, ... of the » observables A, B, ... in some set of observables £.
(b)If A, A',... € £ commute, then P,(a,ad’,...|A, A’,...) coincides with the

quantum mechanical probability assigned by p.

then the existence of P, is equivalent to the requirement that the set of numbers:
{Py(a,a,...|A,A,..); A, A" € € commute}

should satisfy a finite family of inequalities (Boole’s ‘conditions of possible expe-
rience’), so the non-existence of P, entails a violation of at least one inequality
(see Pitowsky [6, 7]). If P, exists, then it is a weighted average of pure states
(characteristic functions onto 1-element subsets of X or 2-valued (0,1) probability
measures).

The Kochen-Specker and Bell theorems can be formulated (following Pitowsky)
as follows:

The Kochen-Specker Theorem. There is a set of observables € such that for all p
the classical probability measure P, does not exist.

Bell’s Theorem. There is a set of local observables € on H @ H and a state p €
H ® H such that the classical probability measure P, does not exist.
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The Bub—Clifton is the positive result:

The Bub-Clifton Theorem. For every pure state p = | )(¥| and every observ-
able R, there is a maximal extension £ of {R} for which there exists a classical
probability measure P,. The extension £ is unique if we require invariance with re-
spect to automorphisms of the subspace structure of H (the projective geometry of
‘H) that preserve p and R.

The pure state p can be expressed as a linear » superposition of orthogonal
1-dimensional projection operators (» projection) p, onto the non-null eigenspaces
{Vi}of R: p = \/, pr = )_, pr. The theorem shows that the set of observables £
contains all the maximal observables whose spectral measures comprise:

(i) The 1-dimensional projection operators oy,

(i) The 1-dimensional projection operators onto any orthogonal basis in the ortho-
complement of the subspace spanned by the projections p;, i.e., the ‘null space’
Vaun that is the range of the projection operator I — Zr Or s

and all the non-maximal observables which are functions of these maximal
observables.

Equivalently, £ consists of all the observables whose eigenspaces are spanned by
the rays defined by (i) and (ii) above.

According to the theorem, even though the set £ contains non-commuting
observables, there exists a classical probability measure P, for the observables
in &, i.e., a measure space (X, 3§, P,), where the elements of the space X are
the projection operators p,, which are in 1-1 correspondence with the 2-valued
homomorphisms—representing bivalent truth-value assignments—on the lattice of
subspaces generated by the 1-dimensional projectors in (i) and (ii) above, and hence
in 1-1 correspondence with the 2-valued homomorphisms on the ranges of values of
the observables in €.

Nakayama [5] has constructed a topos-theoretic extension of the theorem.

A quantum measurement interaction can be represented schematically as follows:

)1r) 223 eilsidlr)

where |s) = ) ; ¢i|s;) is the initial state of the measured system expressed as a
linear superposition of the eigenstates |s;) of the measured observable S, |r) is the
initial state of the measuring instrument with indicator or ‘pointer’ observable R,
and U () is the unitary transformation implementing the measurement interaction
between the system and the measuring instrument that sets up a correlation be-
tween eigenvalues of S and pointer positions. (Note that for the systems we use
as measuring instruments, the pointer observable R commutes with the instrument-
environment interaction Hamiltonian, so the correlation between eigenvalues of S
and pointer positions R induced by the system-instrument Hamiltonian is preserved
under the instrument-environment interaction.) If we take the pointer observable R
as ‘preferred,” in the sense that it always has a definite (determinate) value, then
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the set of definite-valued observables £ for the state [yy) = ), ¢, [s;)|r;) after the
measurement interaction includes the observables whose spectral measures contain
the projection operators onto the states [y;) = |s;}|r;). It follows that £ contains the
measured observable S and the pointer observable R. For this state p = |V) (Y],
there exists a classical measure space (X, §, P,), where the elements of X are the
projection operators p; = |¥;){¥;|, in 1-1 correspondence with the 2-valued homo-
morphisms on the ranges of values of the observables in £. So the elements of X
can be identified with the alternative possible states of affairs that are the outcomes
of the quantum measurement process.

This observation underlies the demonstration in [2, 3] that various ‘no col-
lapse’ interpretations, including Bohr’s » complementarity principle interpretation,
» modal interpretations, and » Bohm’s hidden variable theory, can all be repre-
sented as ‘preferred observable’ interpretations, for different choices of the preferred
observable (e.g., in the case of Bohm’s theory, the preferred observable is position
in the configuration space of all the Bohmian particles).
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Casimir Effect

Peter W. Milonni and Umar Mohideen

The Casimir effect is a force associated with the » zero-point energy of a field.
The effect originally considered by Hendrik B. G. Casimir (1909-2000) is the
attraction between two uncharged, perfectly conducting plates (Fig. 1). According
to quantum theory, there is energy in the electromagnetic field even at the absolute
zero of temperature. For a field of frequency v, this energy is %hv, identical to
the zero-point energy of a harmonic oscillator having the same frequency. The
total zero-point energy is then %h times the sum over all the field frequencies,
these being determined by Maxwell’s equations and the boundary conditions. In
the example of Fig. 1, Maxwell’s equations allow field modes of arbitrarily large
frequency both between the plates and outside them, and therefore the zero-point
field energy is infinite when the plates are separated by a finite distance d as well as
when they are infinitely far apart. However, the difference in zero-point energy for
the two cases is finite, and its dependence on the plate separation d implies a force
F = —mhc/480d* per unit area.

The force between conducting plates is the most widely cited Casimir effect, but
such effects can be derived — usually with considerable difficulty — for more com-
plicated geometries as well as for dielectric media, and more generally they appear
whenever topological constraints are imposed on quantum fields. Because of their
close association with zero-point energy in empty space, Casimir effects are often
cited as evidence of the nontrivial nature of the vacuum in quantum field theory.

Casimir effects are generally rather weak. However, due to its inverse fourth-
order distance dependence it is a dominant effect at the nanometer scale and impacts
experimental searches for extra dimensions, new forces outside the standard model
and the design of micromachines. The first experimental searches for the Casimir
effect were constrained by the available technology and understanding of system-
atic errors. Sparnaay, and later Overbeek and von Blokland, qualitatively showed
the attractive Casimir force using a spring balance technique but they were lim-
ited due to large experimental errors. Experimental progress accelerated in 1997
with Lamoreaux’s demonstration of the Casimir effect using the torsion pendulum.
Increasing precision has been demonstrated with techniques using the Atomic Force
Microscope and microelectromechanical oscillators. Presently precision of the order
of a percent has been reported, restricted by both theoretical and experimental un-
certainties. Experiments with simple periodic non-planar surfaces have also been
reported. The extraordinary theoretical and experimental activity of the last few
years should lead to measurements of increased precision and demonstrations of
some of the fascinating nontrivial geometry dependences of the Casimir force.

D. Greenberger et al. (eds.), Compendium of Quantum Physics: Concepts, Experiments, 87
History and Philosophy, © Springer-Verlag Berlin Heidelberg 2009
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Fig. 1 Two parallel, perfectly
conducting plates experience
an attractive Casimir force
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Cathode Rays

Theodore Arabatzis

The detection of cathode rays was a by-product of the investigation of the discharge
of electricity through rarefied gases. The latter phenomenon had been studied since
the early eighteenth century. By the middle of the nineteenth century it was known
that the passage of electricity through a partly evacuated tube produced a glow in
the gas, whose color depended on its chemical composition and its pressure. Below
a certain pressure the glow assumed a stratified pattern of bright and dark bands.

During the second half of the nineteenth century the discharge of electricity
through gases became a topic of intense exploratory experimentation, primarily
in Germany [21]. In 1855 the German instrument maker Heinrich Geifller (1815—
1879) manufactured improved vacuum tubes, which made possible the isolation
and investigation of cathode rays [23]. In 1857 Geissler’s tubes were employed by
Julius Pliicker (1801-1868) to study the influence of a magnet on the electrical dis-
charge. He observed various complex and striking phenomena associated with the
discharge. Among those phenomena were a “light which appears about the negative
electrode” and a fluorescence in the glass of the tube ([9], pp. 122, 130).

The understanding of those phenomena was advanced by Pliicker’s student and
collaborator, Johann Wilhelm Hittorf (1824-1914), who observed that “if any ob-
ject is interposed in the space filled with glow-light [emanating from the negative
electrode], it throws a sharp shadow on the fluorescent side” ([5], p. 117). This effect
implied that the “rays” emanating from the cathode followed a straight path. Further-
more, Hittorf showed that those rays could be deflected by the action of a magnet.
In 1876 they were dubbed cathode rays (Kathodenstrahlen) by Eugen Goldstein
(1850-1930) [2,24]. Thus, by the late 1870s cathode rays had been identified and
some of their main observable properties had been established.

The nature of cathode rays remained a controversial subject for some years to
come. There were two opposing views concerning their constitution. The first view
was maintained by British and French scientists, who identified cathode rays with
streams of charged particles. A well-known advocate of that view was the British ex-
perimentalist William Crookes (1832-1919). Crookes studied electrical discharges
through highly rarefied gases: “[T]he exhaustion carried out [is so high] that the
dark space around the negative pole ... entirely fills the tube.” ([1], p. 6) Under
those conditions the behavior of cathode rays could be studied in isolation, without
interference from other discharge phenomena. Thus, Crookes determined, in a par-
ticularly clear manner, several properties of cathode rays: their “power of exciting
phosphorescence” (p. 7), their propagation in straight lines (p. 12), their power to
cast shadows (p. 15), their capacity to “exert strong mechanical action where they
strike” (p. 17) and to “produce heat when their motion is arrested” (p. 24), and
their deflection by a magnet (p. 20). He put forward the hypothesis that cathode
rays were charged molecules, “molecular bullets”, which he justified on the basis
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of their magnetic deflection and their capacity to perform mechanical work. Fur-
thermore, from the direction of their magnetic deflection he inferred that they were
negatively charged. Several years later, in 1895, Jean B. Perrin (1870-1942) would
arrive at the same conclusion by means of a different experiment [8].

Another eminent scientist who defended the particulate interpretation of cathode
rays was Arthur Schuster (1851-1934). In 1884 he suggested that they were nega-
tively charged atoms [10]. In 1890 he calculated the upper and lower bounds of their
charge to mass ratio (e/m), based on measurements of their magnetic deflection and
an estimate of their velocity. The lower limit was close to the charge to mass ratio
of electrolytic ions. The upper limit was three orders of magnitude higher ([11],
pp- 546-547).

The second view concerning the nature of cathode rays was advocated by some
German physicists, who identified them with processes in the ether. Their main
argument was that cathode rays have some of the properties of light-waves. For
instance, they both travel in straight lines and produce fluorescence. The ethereal
interpretation of cathode rays received additional support in 1883, when Heinrich
Hertz (1857-1894) failed to deflect them by an electric field [3,22]. In the following
years, new experimental facts were discovered which seemed to undermine further
the interpretation of cathode rays as charged particles. In 1892 Hertz showed that
they could penetrate thin sheets of metal (e.g., gold, silver, aluminum) [4]. In 1893
his student, Philipp Lenard (1862—-1947), built upon Hertz’s work to investigate the
behavior of cathode rays outside the vacuum tube. He devised a tube with a thin
metallic “window” facing the cathode. The cathode rays passed through that window
and, thus, Lenard could measure their mean free path outside the tube. As it turned
out, it was much longer than that of atoms and molecules. Furthermore, he showed
that their absorption depended only on the density of the absorbing substance [7].

Thus, different experimental results supported different accounts of the nature of
cathode rays. Furthermore, the evidential import of some of those results was am-
biguous. On the one hand, the magnetic deflection of cathode rays, which indicated
that they were charged particles, was compatible with an ethereal interpretation of
their nature. It was conceivable that the magnetic field altered the state of the ether
so as to produce a deflection of the rays ([17], p. 285). On the other hand, the capac-
ity of cathode rays to pass through thin metallic sheets, which suggested that they
were waves in the ether, could be accommodated by the hypothesis that cathode rays
were charged particles. In 1893 J. J. Thomson (1856—1940) argued that the capacity
in question was only apparent: what really happened, according to Thomson, was
that the material bombarded by cathode rays turned into a source of cathode rays
itself.

The cathode ray controversy was resolved by Thomson in 1897. He had studied
electrical discharges in gases since 1883 and the discovery of » X-rays by Wilhelm
Conrad Rontgen (1845-1923) rekindled his interest in cathode rays. In a lecture
to the Royal Institution on 30 April 1897, Thomson argued that cathode rays were
composed of minute, sub-atomic particles that he named “corpuscles”. Their small
size followed, according to Thomson, from Lenard’s results concerning their mean
free path outside the cathode ray tube. A further indication of their small size was
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provided by Thomson measurements of their mass to charge ratio, which turned out
to be very small in comparison to the corresponding ratio of hydrogen ions [12].

A few months later, in October 1897, Thomson presented his case for the partic-
ulate interpretation of cathode rays in more detail [13]. He reported a novel result
favoring that interpretation: the deflection of cathode rays by an electric field. Fur-
thermore, he reported a series of measurements of the mass to charge ratio (m/e)
of cathode ray particles, whose purpose was to enable him to figure out their iden-
tity. He obtained those measurements by means of two different approaches. The
first one was based on measurements of the charge carried by cathode rays, the heat
produced by their impact on a target, and the effect of a magnetic field on their tra-
jectory. A combination of those data led to an estimate of m/e. The guiding idea
behind the second approach was to place cathode rays under the influence of an
electric and a magnetic field and to adjust the intensity of the latter “so that the elec-
trostatic deflexion [sic] was the same as the magnetic” ([13], p. 309). It was then
possible to calculate m /e on the basis of directly measurable parameters. Thomson
obtained the following value: m/e = H 2 /F®, where H and F were, respectively,
the intensities of the magnetic and the electric fields, / the length of the region un-
der the influence of the field, and ® the angle of electric (or magnetic) deflection.
Both methods indicated that the value of m /e was three orders of magnitude smaller
than “the smallest value of this quantity previously known, and which is the value
for the hydrogen ion in electrolysis” ([13], p. 310). Furthermore, the value of m /e
was independent of the material of the cathode and the chemical composition of the
gas within the cathode ray tube. This independence suggested to Thomson that the
“corpuscles” were universal constituents of all material substances.

In the early months of 1897 analogous results of the charge to mass ratio of
cathode rays were reported by Emil Wiechert (1861-1928) and Walter Kaufmann
(1871-1947). Those physicists, however, drew different conclusions from their ex-
periments. Wiechert identified the constituents of cathode rays with disembodied
charges [14, 15]; and Kaufmann suggested that the unexpectedly large ratio of e/m
refuted the particulate interpretation of cathode rays [6]. According to our knowl-
edge today, the cathode rays are nothing but swiftly moving » electrons.
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Causal Inference and EPR

Mauricio Sudrez

The status of causality in the EPR experiment has always been a source of con-
troversy. A condition of local causality is implicit in the original EPR criterion of
reality: “If, without in any way disturbing the system, we can predict with certainty
(i.e., with probability equal to unity) the value of a physical quantity, then there ex-
ists an element of physical reality corresponding to this physical quantity.” In the
EPR set-up both systems have separated and are no longer interacting so it is as-
sumed that “no real change can take place in the second system in consequence
of anything that may be done to the first system” [1, p. 779]. The non-disturbance
clause in the antecedent is hence satisfied, and we may predict with certainty the val-
ues of properties in the distant wing. In other words: although the theory does not
represent causal influences, there seems prima facie to be physical determination of
values across a spatial gap. This notoriously led EPR to draw the conclusion that
the theory is incomplete; but in the aftermath of » Bell’s theorem it is customary to
draw the alternative conclusion — that there is non-local causation in nature. Indeed
Bell’s theorem has been the driving force of scepticism regarding local causality in
the literature. In the last two decades the scepticism has linked up to a more general
worry concerning the inference of causal hypotheses from statistical correlations in
quantum mechanics. For physicists these issues matter to the evaluation of the com-
patibility of quantum mechanics with special relativity theory, and the prospects of
a unified quantum gravitational theory. For philosophers these issues are key to a
thorough assessment of the philosophical implications of quantum mechanics; and
in addition EPR has become one benchmark against which all methodologies of
causal inference are routinely tested.

The EPR Experiment Briefly Reviewed

Recall that in Bohm’s version of the EPR experiment two particles (“1” and “2”)
are simultaneously created at some event “e” in the singlet state W and move in
opposite directions. In a Minkowski space-time diagram, both particles describe
symmetric paths along the time axis (see Fig. 1). The » Stern—Gerlach apparati
that measure these particles’ » spin at each wing of the experiment are at rest in the
laboratory frame so their world lines are represented by vertical lines “A;” and “A5”
in that frame. Each time the experiment is repeated, laboratory technicians can freely
select a particular orientation of the measurement apparatus in each wing, and we

[P

denote such events as “a” and “b”. Each particle’s spin is measured on interaction
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Fig. 1 EPR in space-time setting

with the associated measuring device on the corresponding wing. The outcomes
that are produced are denoted by “s;” and “s>”, respectively, and are known as the
“outcome-events’:

The Argument Against Causality in EPR

An essay by Bas van Fraassen [2] has been particularly influential in setting a
default view against causality in EPR among philosophers of physics and founda-
tional physicists alike. Van Fraassen’s argument tracks Bell’s own reasoning, with
the notorious factorizability condition playing a key role. But there is a significant
difference: whereas Bell was concerned with factorizability as a condition of phys-
ical » locality, Van Fraassen takes it to be a condition of causality, in the tradition
of Reichenbach’s Principle of the Common Cause. The putative conclusion of this
influential argument is that the principle of the common cause fails in quantum me-
chanics: there are quantum phenomena that have no causal explanation.

Let us briefly review the argument. Van Fraassen rules out a direct causal link
between the wings by appeal to special relativity theory. I will not discuss this as-
sumption here, although it is controversial (see e.g. [10] for an extended critique).
The main statistical condition at the heart of Bell’s theorem (the notorious “factor-
izability” condition) is:

prob (s; & s2/a & b & W) = prob (s1 /a & W) prob (s2 /b & W) (FACT)

The condition can be further analysed into three Reichenbachian screening-off
conditions, which in different versions have received the names “causality” or “out-
come independence”; “hidden locality” or “parameter independence”; and “hidden
autonomy’’:
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prob (s /s> & a & b & W) = prob (si /a & b & ¥ .
prob (sz/sl &a&b& \11% = prob (sz/a &b & WU (Causality)
prob sl/a&b&\ll):prob sl/a&\ll . ’
prob (s2 / a&b& \p) = prob (s> / h& W (Hidden Locality)

prob (\Il / a& b) = prob (V) (Hidden Autonomy)

However, in the » Aspect Experiment a violation of (Hidden Locality) would be as
much in conflict with relativity as a direct causal link; while a violation of (Hidden
Autonomy) would entail backwards-in-time causation. Hence (Causality) must bear
the blame for the violation of factorizability, and indeed it is easy to show that in
an EPR experiment with parallel settings and perfect anticorrelation, (Causality) is
false. This seems to imply that no causal model is viable for the EPR correlations,
and that Reichenbach’s principle of the common cause is false as a matter of fact:
not all well established correlations admit of a screening-off causal model.

Arguments in Favour of Causality in EPR

However influential, the above argument is not conclusive, and several authors ex-
plicitly or implicitly take issue with it. Maudlin [10] argues that direct causation
between the wings remains compatible with relativity, and objects to the analysis
of factorizability in terms of the three conditions above. Healey [8] and Cartwright
and Jones [4] object to the screening-off condition on common causes more gen-
erally. Fine [6] accepts the argument but claims that no causal explanation was
required in the first place. Bohmian mechanics is widely believed to reject “hidden
locality”. Price [11] rejects “hidden autonomy”, and builds “backwards in time”
models following Costa de Beauregard [5]. Hofer-Szabo et al. [9] argue that Van
Fraassen’s proof assumes not just common causes, but what they term common com-
mon causes; without this assumption, they claim, Reichenbach’s Principle may be
rescued (their claim has also been recently contested — see Butterfield [3]). Some of
the various options are mapped out in detail in [12]. (See also » Bohm’s approach
to EPR paradox; EPR problem; Indeterminism).
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Cluster States

Hans J. Briegel

1

Introduction

Cluster states [1] form a class of multiparty entangled quantum states with surprising
and useful properties. The main interest in these states draws from their role as a
universal resource in the one-way quantum computer [2, 3]: Given a collection of
sufficiently many particles that are prepared in a cluster state, one can realize any

>

quantum computation by simply measuring the particles, one by one, in a specific

order and basis (see Fig. 1). By the measurements, one exploits » correlations in
quantum mechanics which are rich enough to allow for universal logical processing.
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Coherent States

Peter W. Milonni and Michael Martin Nieto

Coherent states (of the harmonic oscillator) were introduced by Erwin Schrédinger
(1887-1961) at the very beginning of quantum mechanics in response to a complaint
by Lorentz that Schrodinger’s » wave function did not display classical motion.
Schrédinger obtained solutions that were Gaussians having the width of the ground
state. The expectation values of the coordinate and momentum for these Gaussian
solutions oscillate in time in just the same way as the coordinate and momentum in
the classical theory of the harmonic oscillator.

In modern parlance Schrodinger’s solutions are the 2-parameter ({(x), (p)) states

2
- x — (x) Ap)x
Vos = [27(Ax)°] ‘“exp[—( o > +i ”h } 1)
satisfying equality in the uncertainty relation
2 2 1
(Ax)“(Ap)” = vy (2)

and having “widths” equal to those of the ground state, (v2Ax) = (h/mw)/2.!
These can be called minimum uncertainty coherent states.

In the 1960s there was a reawakening of interest in these states in terms of the bo-
son operator formalism. Two other, equivalent formulations of coherent states were
obtained. The first yields the annihilation operator coherent states, |o), defined by

ala) = ala), 3)

where a (a') is the annihilation (creation) operator (» creation and annihilation
operator). The second yields the displacement operator coherent states

la) = D(a)|0) = explaa’ — a*a]|0). “

The real and imaginary parts of the complex number « are the two parameters which
give the solution as

&)

o) = exp [——Ial ] i::o

au

Ly Squeezed states, whose width oscillates with time, were introduced in 1927 by E. H. Kennard.
They are a 3-parameter set of Gaussians whose widths are not that of the ground state.
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where |n) are the number states, i.e., the energy eigenstates of the harmonic oscil-
lator. From the Hermite polynomial generating function these can be shown to be
identical to the Gaussians of the minimum-uncertainty coherent states, where

Re o = (x) (2—;:) , Imao = (p) (—) . (6)

2mwh

These ideas have been applied to non-harmonic systems, involving different
symmetries and/or potentials. There the coherence properties are not as strong in
general, since it is the equally-spaced levels of the harmonic oscillator which allow
the system never to decohere if there is no damping or excitation.

An especially interesting system is described by the even- and odd-coherent

states (“cat” states). They are higher-power states, eigenvalues of aa. They are given
by

l; +) = [cosh ] ]—“ZZ m'z" Yo (), (7)
2n+1
|a;—>=[sinh|a|2]—1/22\/7|2n+1 — Y (x). ®)

e~12xop0 [exp[—%(x — xo)z]eipox + exp —%(x + xo)z]e_ipox]

Ya(o) = o )

2121/4 1 £ exp[—(x3 + pd)]]

where we have set hand m = 1.

The » wave packet of these states are two Gaussians, at positions 7 apart in
the phase-space circle. The Gaussians keep their shapes as they move as a normal
coherent state would in time evolution, until they overlap. When the even states,
composed of n = 0, 2,4, ... number states. interfere, they have a maximum central
peak. (See the left graph in Fig. 1.) The odd states are composed of n = 1, 3,5, ...

Fig. 1 The time evolution of the even- and odd-coherent states p (x, t). The initial conditions are
xo = 23/ and py = 0. The position is along the x-axis, time is along the y axis, and the Z-axis
displays the probability density
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number states. When the odd Gaussians interfere there is a central minimum and
two slightly smaller peaks on each side. (See the right graph in Fig. 1.)

These states have been observed experimentally (Monroe et al.).

The coherent states have been especially useful in quantum optics. Each mode
of the electromagnetic field may be described formally as a harmonic oscillator,
and different quantum states of the oscillator correspond to different states of the
field. The field from a single-mode laser operating far enough above threshold can
be described for many purposes as a coherent state; it differs from a coherent state
in that its phase drifts randomly. But its photon counting statistics and other prop-
erties make the light from a single-mode laser practically indistinguishable from a
coherent state.

The quantum theory of optical coherence is based on “normally ordered” prod-
ucts of lowering and raising operators a and a’ which act, respectively, as photon
annihilation and creation operators. The fact that coherent states are eigenstates of
lowering operators implies that the expectation value of a normally ordered field op-
erator product f (a, a™) reduces to the deterministic function f (e, o*) for a coherent
state. A coherent state of the field therefore comes closest to the idealized classical
stable wave in which there are no random field fluctuations. Thus a coherent-state
field exhibits maximal fringe visibility or “coherence” in a Michelson interfero-
meter, for instance, and it is maximally coherent as well when more complicated
interference effects involving higher orders of field products are considered.
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Color Charge Degree of Freedom
in Particle Physics

O.W. Greenberg

Color has two facets in » particle physics. One is as a three-valued charge degree of
freedom, analogous to electric charge as a degree of freedom in electromagnetism.
The other is as a » gauge symmetry, analogous to the U (1) gauge theory of elec-
tromagnetism. Color as a three-valued charge degree of freedom was introduced by
Oscar W. Greenberg [1] in 1964. Color as a gauge symmetry was introduced by
Yoichiro Nambu [2] and by Moo Young Han and Yoichiro Nambu [3] in 1965. The
union of the two contains the essential ingredients of » Quantum Chromodynamics,
QCD. The word “color” in this context is purely colloquial and has no connection
with the the color that we see with our eyes in everyday life.

The theoretical and experimental background to the discovery of color centers
around events in 1964. In 1964 Murray Gell-Mann [4] and George Zweig [5] inde-
pendently proposed what are now called “quarks,” particles that are constituents of
the observed strongly interacting particles, “hadrons,” such as protons and neutrons.
Quarks gave a simple way to account for the » quantum numbers of the hadrons.
However quarks were paradoxical in that they had fractional values of their elec-
tric charges, but no such fractionally charged particles had been observed. Three
“flavors” of quarks, up, down, and strange, were known at that time. The group
SU (3)f1avor, acting on these three flavors, gave an approximate symmetry that led
to mass formulas for the hadrons constructed with these quarks. However the spin
1/2 of the quarks was not included in the model. (Quarks, see also » Mixing and
Oscillations of Particles; Particle Physics; Parton Model; QCD; QFT.)

The quark spin 1/2 and the symmetry SU (2)spin acting on the two states of spin
1/2 were introduced in the model by Feza Giirsey and Luigi Radicati [6]. They
combined SU (2)spin With SU (3)fiavor into a larger SU (6)spin—flavor Symmetry. This
larger symmetry unified the previously known mass formulas for the octet of spin-
1/2 baryons and the decuplet of spin-3/2 baryons. Using this SU (6) theory Mirza
A.B. Bég, Benjamin W. Lee and Abraham Pais [7] calculated the ratio of the mag-
netic moments of the proton and neutron to be -3/2, which agrees with experiment to
within 3%. However the successful SU (6) theory required that the configuration of
the quarks that gave the correct lowlying baryons must be in a symmetric state under
permutations. This contradicts the » spin statistics theorem of Wolfgang Pauli [8],
according to which quarks as spin-1/2 particles have » Fermi statistics and must be
in an antisymmetric state under permutations.

In the same year 1964 Oscar W. Greenberg [ 1] recognized that this contradiction
could be resolved by allowing quarks to have a new hidden three-valued charge,
expressed in terms of parafermi statistics of order three. This was the discovery of
color. The antisymmetrization of the hidden degree of freedom allows the quarks
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in baryons to be in the observed symmetric configuration of the visible degrees of
freedom: space, spin and flavor. Greenberg called this model the “symmetric quark
model” for baryons. As an observable test of this model, Greenberg constructed a
table of the spin, » parity, isospin and strangeness of the orbital excitations of the
ground-state quark configurations in this model.

In 1964 the hidden color charge on top of the fractionally charged quarks seemed
unduly speculative to some. Independent evidence for the existence of color came
when measurements of the properties of excited baryons confirmed the predictions
of the symmetric quark model. It was only in 1968 that Haim Harari [9], as rap-
porteur for baryon spectrocopy, adopted the symmetric quark model as the correct
model of baryons.

Additional evidence for color came from the ratio of the annihilation cross sec-
tion for ete™ — hadrons to that for ete™ — p™ ™ and from the decay rate for
7% — yy. Both of these follow from the gauge theory and the parastatistics version
of color. Further consequences of color require the gauged theory of color, quantum
chromodynamics, » QCD, described below.

In 1965 Yoichiro Nambu [2] and, in a separate paper, Moo Young Han and
Yoichiro Nambu [3] proposed a model with three sets of quark triplets. Their model
has two different SU (3) symmetries. One called SU (3)’ has the original SU (3)gavor
symmetry of the quark model and the other, called SU (3)”, makes explicit the hid-
den three-valued color charge degree of freedom that had been introduced in the
parastatistics model of Greenberg. This model allows the SU(3)”, which can be
identified with the present SU (3)color if the quark charges are chosen fractional, to
be gauged. Indeed Nambu [2] and Han and Nambu [3] introduced an octet of what
we now call “gluons” as the mediator of the force between the quarks. The gauging
of the three-valued color charge carried by quarks with fractional electric charges is
the present QCD, the accepted theory of the strong interactions.

The model of Han and Nambu assigned integer charges to their three triplets to
avoid the fractional electric charges of the original quark model. This aspect of the
Han-Nambu model conflicts both with experiment and with exact color symmetry
and is not part of QCD. Greenberg and Daniel Zwanziger [10] made the identity
of the 3 of parafermi statistics of order 3 and the 3 of SU (3)¢olor With fractionally-
charged quarks explicit in 1966.

In addition to the consequences of the parastatistics model, QCD leads to other
important results. These include (a) permanent confinement of quarks and color, (b)
asymptotic freedom » QCD; QFT, discovered by David J. Gross [11], H. David
Politzer [12] and Frank Wilczek [11] in 1973, which reconciles the low energy be-
havior of quarks confined in hadrons with the quasi-free behavior of quarks that
interact at high energy and momentum transfer in the » parton model, (¢) running
of coupling constants and high-precision tests of QCD at high energy, and (d) jets
in high energy collisions.

Note: References [1] through [12] are primary references. References [13]
through [18] are secondary references.
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Complementarity Principle

Henry Stapp

Niels Bohr introduced and explained his concept of “complementarity” in his
famous 1927 Como Lecture (reproduced in [1]. He recognized the need for the
mathematical formalism of quantum mechanics to be imbedded in a rationally co-
herent conceptual framework if it were to serve as the core of an acceptable scientific
theory. Yet the applications of the formalism were based upon the integration of
two logically incompatible conceptual structures, the mathematical formalisms of
classical and quantum physics. The applications that we normally make of quantum
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theory involve three physical systems: (1), the system being examined; (2), the mea-
suring devices by means of which we probe its properties; and (3), our own physical
bodies. All three systems are composed of atoms, and hence must be describable
in terms of the mathematical concepts of quantum theory. Yet our observations are
described in terms of the contents of our sense experiences, which, for the phenom-
ena under consideration, are described in terms of the concepts of classical physics.

Classical physics postulates that, at each instant of time, each elementary particle
is located at some definite point in space, and has a definite velocity, and hence
also a definite momentum. On the other hand, in quantum mechanics an elementary
particle is represented by a distribution of possibilities, where the distributions in
position and in momentum are related by Fourier transformation. This entails that
localization at a point in position space demands a complete lack of localization
in momentum space, and vice versa. Bohr associates “causation” with the law of
conservation of momentum and energy, and hence is able to say that:

The very nature of quantum theory thus forces us to regard the claim of space-
time co-ordination and the claim of causality, the union of which characterizes the
classical theories, as complementary but exclusive features of the description, sym-
bolizing the idealization of observation and definition respectively. ( [1], p. 54)

Bohr explains that:

The quantum theory is characterized by the acknowledgement of a fundamental limitation

in the classical physical ideas when applied to atomic phenomena. ... its essence may be

expressed in the so-called quantum postulate, which attributes to any atomic process an

essential discontinuity, or rather individuality, completely foreign to classical theories and
symbolized by Planck’s quantum of action. ... the quantum postulate implies that any ob-
servation of atomic phenomena will involve an interaction with the agency of observation
not to be neglected. Accordingly, an independent reality in the ordinary physical sense can
neither be ascribed to the phenomena nor to the agencies of observation. After all, the con-
cept of observation is in so far arbitrary as it depends upon which objects are included in
the system to be observed. Ultimately, every observation can, of course, be reduced to our
sense perceptions.” ( [1], p. 53)

These passages gives a glimpse of the range and complexity of the ideas that Bohr
wants to integrate into his rationally coherent foundation for the application and use
of quantum theory.

The elaboration that he provides in the remainder of the Como lecture is lengthy,
but its essence is summarized and updated in his 1958 paper “Quantum physics and
Philosophy: Causality and Complementarity”, in which he says:

Within the scope of classical physics, all characteristic properties of a given object can in
principle be ascertained by a single experimental arrangement, although in practice various
arrangements are often convenient for the study of different aspects of the phenomena. In
fact, data obtained in such a way simply supplement each other and can be combined into a
consistent picture of the behaviour of the object under investigation. In quantum mechanics,
however, evidence about atomic objects obtained by different experimental arrangements
exhibits a novel kind of complementary relationship. Indeed, it must be recognized that such
evidence which appears contradictory when combination into a single picture is attempted,
exhaust all conceivable knowledge about the object. Far from restricting our efforts to put
questions to nature in the form of experiments, the notion of complementarity simply char-
acterizes the answers we can receive by such inquiry, whenever the interaction between the
measuring instruments and the objects form an integral part of the phenomena. ([2], p.4)
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Compactly stated, the essential idea here is that in quantum theory the informa-
tion provided by different experimental procedures that in principle cannot, because
of the physical character of the needed apparatus, be performed simultaneously,
cannot be represented by any mathematically allowed quantum state of the sys-
tem being examined. The elements of information obtainable from incompatible
measurements are said to be complementary: taken together they exhaust the infor-
mation obtainable about the state. On the other hand, any preparation protocol that
is maximally complete, in the sense that all the procedures are mutually compatible
and are such that no further procedure can add any more information, can be repre-
sented by a quantum state, and that state represents in a mathematical form all the
conceivable knowledge about the object that experiments can reveal to us.
As regards the closely connected issue of causality, Bohr says:

In the treatment of atomic problems, actual calculations are most conveniently carried out
with the help of a Schrodinger state function, from which the statistical laws governing ob-
servations obtainable under specified conditions can be deduced by definite mathematical
operations. It must be recognized, however, that we are dealing here with a purely sym-
bolic procedure, the unambiguous physical interpretation of which in the last resort requires
reference to the complete experimental arrangement. ( [2], p. 5)

This relegation of the Schrodinger state function, which gives the space-time repre-
sentation of the atomic substrate of all systems, to a purely symbolic status, might
seem to be denigrating this Schrodinger representation of the state relative to others.
But the point is rather that it puts the Schrodinger space-time representation on a
par with the others:

In fact, wave mechanics, just as the matrix mechanics, represents on this view a symbolic
transcription of the problem of motion of classical mechanics adapted to the requirements
of quantum theory and only to be interpreted by an explicit use of the quantum postulate.
([11, p.75)

All of this must be understood within the basic pragmatic premise of Bohr’s
approach:

In our description of nature the purpose is not to disclose the real essence of phenomena
but only to track down as far as possible relations between the multifold aspects of our
experience. ([1], p. 18)
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Complex-Conjugate Number

Roderich Tumulka

The complex-conjugate number, or conjugate number, of a complex number z =
X + iy with real part x and imaginary part y is the number x — iy, usually denoted
z or z*. (The notation z* is more frequent in quantum physics.)

The definition implies the following properties. Every complex number is the
conjugate of its conjugate:

Z=z, or (H*=z (1)

That is, conjugate numbers come in pairs, except for the cases in which a number is
conjugate to itself; the latter case occurs if and only if the number z = x + iy has
vanishing imaginary part y, that is if and only if z is real:

=z zeR 2)

Conjugation, i.e., the operation of taking the conjugate, defines a mapping * :
C — C. This mapping is real-linear, i.e.,

E+w*=z"+w" and (A2)" = A" 3)

for all z, w € C and A € R. It is not complex-linear, as there exist z, w € C for
which (zw)* # z(w*), but instead conjugation is multiplicative, i.e.,

(zw)* = Z*w*. 4)

If the set of complex numbers is represented as a plane then conjugation corre-
sponds to reflection across the real axis (see Fig. 1). Complex-conjugate numbers
have equal modulus (absolute value), r = |z| = |z*|, and opposite phase angles
(arguments) ¢(z) = —¢(z*). As a related fact, forall ¢ € R and z € C,

€“)* =e ™ and (e5)* = e . 5)

Moreover,
7z =|z)% (6)

The real and imaginary part of a complex number z can be expressed using z and z*:

Rez=%(z+z*), Imz=%(z—z*). (7)
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Fig.1 The complex plane, with example numbers z and w and their complex conjugate numbers
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For a function f(z) of a complex variable z one defines the Wirtinger derivatives
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wherex = Rez,y =Imz,u =Re f,andv = Im f.

Compton Experiment (or Compton Effect)

Friedel Weinert

The famous Compton experiment concentrates on the wave rather than the particle
aspect of quantum phenomena. It had been observed that the wavelength of » X-
rays is increased when they are scattered off matter. Arthur Compton (1892-1962)
showed that this behaviour could be explained by assuming that the X-rays were
photons (» light quantum). When photons are scattered off » clectrons, part of
their energy is transferred to the electrons. The loss of energy is translated into a
reduction of frequency, which in turn leads to a lengthening of the wavelength of
the scattered photons. This happens because the relation £ = hv = hc/X holds. In
these experiments, first carried out between 1919 and 1922, the scattering of X-rays
is treated as a collision of photons with electrons (Fig. 1).
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Incident Photon 2o

Fig. 1 Compton’s model of the scattering process

The wavelength of the scattered photon, A, can be related to its initial wave-
length, Aq, to the electron mass, m., and the scattering angle, 6, by the relation
A —Ap = h/mec (1 — cosB). We should note that Compton was not content with
stating the equation. He also sought an explanation. Compton’s description of his
model conveys the flavour of a mechanistic explanation.

From the point of view of the quantum theory, we may suppose that any particular
quantum of X-rays is not scattered by all the electrons in the radiator, but spends all
of its energy upon some particular electron. This electron will in turn scatter the
ray in some definite direction, at an angle with the incident beam. This bending
of the path of the quantum of radiation results in a change in its momentum. As
a consequence, the scattering electron will recoil with a momentum equal to the
change in momentum of the X-ray. The energy in the scattered ray will be equal
to that in the incident ray minus the kinetic energy of the recoil of the scattering
electron; and since the scattered ray must be a complete quantum, the frequency
will be reduced in the same ratio as is the energy. Thus on the quantum theory we
should expect the wavelength of the scattered X-rays to be greater than that of the
incident rays.

In terms of a causal account, the effect is the increase in wavelength of the
scattered photon, caused by a collision with an electron. Note that Compton’s expla-
nation dispenses with the above-stated Compton scattering formula, i.e. the precise
numerical determination of the wavelength, A, of the scattered photon.
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Consistent Histories

Robert B. Griffiths

The consistent histories interpretation of quantum mechanics was introduced by
Griffiths in 1984 [1], and further developed by Omnes in 1987 [2]. It is essentially
identical to the decoherent histories approach of Gell-Mann and Hartle that first
appeared in 1989 [3]. See the monographs [4] and [5] for a detailed treatment and
more extensive bibliographies.

In essence, what the consistent histories approach does is to introduce probabili-
ties into quantum mechanics in a fully consistent and physically meaningful way. In
Copenhagen quantum mechanics (i.e., the version in most current textbooks) prob-
abilities are introduced with reference to measurements and refer (if one is careful)
only to measurement outcomes, macroscopic states of the measurement appara-
tus (“pointer positions”) after the measurement is over. (» Born rule; Metaphysics
in Quantum Mechanics; Nonlocality; Orthodox Interpretation; Schrodinger’s Cat;
Transactional Interpretation). How these probabilities are related to the microscopic
quantum properties supposedly measured is obscure, due to the infamous mea-
surement problem. (» Bohmian mechanics; Measurement theory; Metaphysics in
Quantum Mechanics; Modal Interpretation; Objectification; Projection Postulate.)
By contrast, the consistent histories approach assigns probabilities to both micro-
scopic and macroscopic states of affairs, using the same formalism for both, without
any reference to measurements. Actual laboratory measurements can then be dis-
cussed in purely quantum terms using the same principles that apply to any quantum
process. » Hidden variables play no role in the consistent histories approach, which
employs the standard quantum » Hilbert space. And there is no such thing as a
classical world or classical measuring apparatus lying outside the quantum domain.
Instead, classical physics is an approximation to quantum mechanics, one that works
very well in certain situations.

Copenhagen quantum mechanics is a “black box™ description in which a macro-
scopic preparation procedure is followed by a macroscopic measurement outcome,
and what happens in between cannot be discussed in terms of microscopic physics
if one wants to avoid paradoxes. The consistent histories approach opens the box
without generating paradoxes (» errors and paradoxes in quantum mechanics), and
thus extends Copenhagen to allow a consistent discussion of microscopic (or macro-
scopic) quantum physics in probabilistic terms.
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Let us see how this works for a spin-half particle whose z component of angular
momentum S, can take on only two values, +1/2 and —1/2 in units of &. These
correspond to orthogonal vectors (or rays) in a two-dimensional complex Hilbert
space. Each vector can be interpreted as the logical negation of the other, so +1/2
and —1/2 are mutually exclusive possibilities, one of which must be true. The actual
value can be determined by carrying out a » Stern—Gerlach measurement; see Spin;
Vector model.

As there are no preferred directions in space, the preceding comments apply
equally to the x component of angular momentum, S,, which is either +1/2 or
—1/2. In classical physics the conjunction of two descriptions of a physical system
is always a meaningful description; thus “L, = 0.002Js AND L, = —0.002 Js”
makes perfect sense when referring to two components of angular momentum of a
spinning top. But “S, = +1/2 AND S§; = —1/2” for a spin-half particle cannot
be associated with any vector in the quantum Hilbert space, and in the consistent
histories approach it is considered a meaningless statement: quantum mechanics
can assign it no meaning. Similarly, “Sy = 4+1/2 OR §; = —1/2” is meaningless.
Note that “meaningless” is very different from “false,” since the logical negation of a
false statement is a true statement, whereas the negation of a meaningless statement
is equally meaningless. For more details, see Sect. 4.6 of [5].

The single framework rule of consistent histories states that two (or more) in-
compatible quantum descriptions — such as Sy = +1/2 and S; = —1/2, or other
properties represented by noncommuting projectors — cannot be combined to form
a meaningful quantum description. Quantum incompatibility is a concept difficult
to grasp and easily misunderstood, so the following analogy may be helpful. A
photographer taking pictures of Mt. Rainier may do so from a variety of different
directions or perspectives: north, south, east, etc. The perspective is chosen by the
photographer and has no effect on the reality represented by the mountain. The cho-
sen perspective makes it possible to answer certain questions but not others on the
basis of the resulting photograph: a view from the south will not indicate what is
happening on the northern slopes. Now replace the photographer with a physicist,
the mountain with a spin-half particle, and the choice of perspective with a decision
to measure a particular component of its angular momentum. The physicist’s choice
is free and has no influence on the physical reality associated with the particle before
it is measured. However, several photographs of a mountain taken from different
perspectives can be combined to provide a more complete description, whereas this
is not possible for measurements of different components of spin-half angular mo-
mentum. The issue is not that the apparatus will perturb the particle — it certainly
will, but we are interested in the particle’s state before the measurement. The point
is that there is no physical reality associated with simultaneous values of Sy and S,
and what is not real cannot be measured.

The consistent histories approach treats the time development of a quantum sys-
tem as probabilistic, rather than deterministic, and uses » Schrodinger’s equation to
calculate the requisite probabilities. In the simplest case the » Born rule gives

Pr(p; | ) = [(;1T (11, t0) 19| (1)
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for the conditional probability that the quantum system is in the state |¢;), be-
longing to the » orthonormal basis {|¢;)}, at time #;, given the state |v/) at time
to. Here T(¢', t) is the unitary time development operator that results from solving
Schrédinger’s equation; it is exp[—i(+’ — ) H /k] if the Hamiltonian H is indepen-
dent of time.

Several comments are in order. First, (1) applies to a closed or isolated quantum
system, as Schrodinger’s equation only works for this case. Second, unlike Copen-
hagen, the probability (1) refers not to outcomes of some external measurement, but
to physical states inside the closed system, independent of whether or not it is being
measured. (These could be pointer states if the measurement apparatus is itself part
of the closed quantum system, i.e., inside the box.) Third, the states {|¢;)} must be
orthogonal, for only then do they represent mutually exclusive possibilities appro-
priate for a quantum sample space. Nonorthogonal states are incompatible (unless
multiples of each other), and hence it is meaningless to ask whether one or the other
occurred. Fourth, one need not assume that ¢y precedes #;. The » Born rule and its
consistent extensions (see below) work equally well for both senses of time, so that
introducing probabilities into quantum mechanics does not in and of itself single out
a direction of time.

The right side of (1) is often written as [(¢;|¥/)|%, where [¢) = T (11, 10)|V) is
obtained from |i) by integrating Schrodinger’s equation from 7y to #;. When used
in this way |1@), which is typically incompatible with the basis states {|¢;)}, does
not represent the physical reality of the quantum system at time #. It is instead a
mathematical construct, a pre-probability in the terminology of [5], used for com-
puting probabilities. One could equally well compute these probabilities by starting
with each of the |¢;) and integrating Schrodinger’s equation in the reverse direction
from #; to tp, making no reference whatsoever to |I/A/>. For further discussion, see
Sect. 9.4 of [5].

Indeed, HZ) could be the infamous » Schridinger’s cat state. To discuss whether
the cat is dead or alive, the consistent historian adopts an orthonormal basis (or
a decomposition of the identity, see [5]) for which these terms make sense, and
computes probabilities. As | is a computational tool, it requires no physical inter-
pretation. One could instead adopt an orthonormal basis that includes |1/A/) as one of
its elements, in which case it occurs with probability 1. But then it makes no sense
to ask whether the cat is dead or alive, since the corresponding quantum properties
are incompatible with |1@).

In order to describe a quantum system at more than two times it is necessary to
extend the Born rule to families of quantum histories. A history is simply a sequence
of quantum events represented by vectors — or, more generally, subspaces — of the
quantum Hilbert space at successive times. A family is a collection of mutually
exclusive histories, the quantum counterpart of the sample space of a stochastic pro-
cess in ordinary probability theory. Extending the Born rule is nontrivial because
assigning probabilities in a meaningful way requires a consistent family or frame-
work in which appropriate consistency (or » decoherence) conditions are satisfied.
Different consistent families may be incompatible with each other, in which case
they cannot be combined (single-framework rule), even though each one provides a
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Fig. 1 Mach-Zehnder interferometer

valid set of possibilities for describing the time development of the quantum system.
Rather than discussing the details, found in Chaps. 10 and 11 of [5], let us consider
a particular application.

The figure shows a Mach-Zehnder interferometer: B and B’ are beam splitters,
M and M’ mirrors, D and D’ detectors. Suppose the unitary time development of a
photon » wave packet passing through the interferometer has the (schematic) form
la) — (|c) + |d))/~/2 — | f). This history can be embodied in a family F;, which
remains consistent when extended to include the event that D’ is, and D is not,
triggered by the arrival of the photon. Within this family it makes no sense to ask
whether the photon passes through the ¢ or d arm of the interferometer, for those
properties are incompatible with (|c)+|d))/ /2. There is a second consistent family
F> in which the photon while inside the interferometer is either in the ¢ arm or in
the d arm, two mutually exclusive possibilities. One can extend J> to a consistent
family including later states of D and D', but only by using macroscopic quantum
» superposition (Schrodinger cat states). Thus a “which arm?” description (F7)
precludes a “which detector?” description (1), and vice versa. No fundamental
quantum principle singles out one of the two incompatible families F; or F, as
“the correct” description, just as there is no “correct” perspective from which to
photograph Mt. Rainier. Instead, certain descriptions are useful when addressing
certain physical questions. The same sort of analysis can be applied to the famous
» double-slit interference paradox; see Sect. 13.1 of [5].

Quantum measurements pose no difficulty in the consistent histories approach.
By adopting an appropriate framework one can show that the measurement out-
come (pointer position) for a properly constructed quantum-mechanical apparatus is
appropriately correlated with, and thus reveals, a property the microscopic system
possessed before the measurement took place. In brief, measurements actually mea-
sure something, as has long been believed by experimental physicists. See Chaps. 17
and 18 of [5] for details. In Chaps. 23 and 24 of [5] it is shown explicitly, by apply-
ing appropriate quantum principles, that the nonlocal influences sometimes thought
to arise in the Einstein—Podolsky—Rosen gedanken (» EPR) experiment are com-
pletely spurious: they come about from improperly assuming that “» wave function
collapse” is a physical process, rather than a mathematical technique for comput-
ing conditional probabilities that can be obtained by completely different methods.
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This removes an apparent conflict with relativity theory. Indeed, the consistent his-
tories approach, unlike some other interpretations of quantum theory, is perfectly
compatible with special relativity [6]. A number of other quantum paradoxes can be
resolved or “tamed” in the sense that a consistent analysis is possible using quan-
tum principles, and one is able to identify the point(s) at which an improper use of
classical reasoning has led to an apparent contradiction. See Chaps. 19-25 of [5].

Here are brief comments on the relationship of consistent histories with some
other approaches to quantum interpretation. The connection with Copenhagen
(current textbooks) was discussed above. The Everett or » many-worlds
interpretation regards the » wave function of a closed system (“universe”) as
representing physical reality, whereas in consistent histories it is a mathematical
tool, |¥) in the preceding discussion, useful for computing some but not all of
the probabilities of real histories. » Bohmian mechanics and consistent histories
contradict each other about what happens inside the box [7]. Because it solves the
Schrodinger cat problem in a completely different way, consistent histories has
no need of the nonunitary dynamics employed in spontaneous localization. Unlike
Bohmian mechanics and spontaneous localization, there is no conflict between con-
sistent histories and special relativity. Since it employs rules to delineate meaningful
descriptions, consistent histories is (or employs) a form of “» quantum logic” in the
sense of specifying rules for correct reasoning in the quantum domain. These rules
are, however, different from those employed in what is usually called » quantum
logic. See [8] for the relationship between consistent histories and the » Ithaca
interpretation of Mermin.
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Correlations in Quantum Mechanics

Richard Healey

The statistical algorithm of quantum mechanics predicts that measurements will
reveal correlations among the values of magnitudes (“» observables”). Whenever
such measurements have been performed, they have borne out the predictions. But
the patterns exhibited by these correlations can be difficult to square with classical
intuitions — about probability, about the nature and properties of quantum systems,
and about causal connections between systems.

In a » Hilbert space formulation, an observable is represented by a » self-adjoint
operator, while the state of a system is represented by a normalized vector (perhaps a
» wave function) or more generally a » density operator W (a self-adjoint operator
with unit trace). If {Oy, ..., O,} is a set of observables on a system represented
by pairwise commuting operators {01, e én}, then quantum mechanics predicts
that measured values of all these observables in state W will conform to a joint
probability distribution pr(0; € Ay, ..., O, € Ap) given by

pr(01 € AL, .., On € Ap) = Tr [Wél(Al) ..... én(An)] (1

where O; (A;) is the element of the spectral resolution of O; corresponding to Borel
set A; of possible values (i = 1, ..., n). If any two operators éi, éj in such a set
fail to commute, then no joint distribution is predicted.

For example, a simple quantum mechanical model of a Hydrogen atom » Bohr’s
atom model will predict a joint probability distribution for energy, total angular
momentum, and z-component of angular momentum in any state; but it will never
predict a joint probability distribution for energy, position and momentum, nor for
z-component and x-component of angular momentum.
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The orthodox view of this reticence takes non-commuting operators to represent
incompatible observables—pairs of observables that can never be jointly measured
with arbitrary precision because at most one of each pair may have a precise value
in any state. In general, there are no theoretical restrictions on the precision with
which any single observable may be measured. So measurement cannot be taken
always faithfully to reveal the value of the measured observable.

A number of “no-go” theorems may be cited in support of this orthodox view
[6, 11]. But when are the joint distributions that quantum mechanics does predict
compatible with an underlying joint distribution for all observables? Fine [4] shows
that the necessary and sufficient condition for four two-valued observables A;, B;
(i, j = 1,2) to have a joint distribution compatible with the given joints is that the
following system of (BCH) inequalities be satisfied, fori # i’ and j # j':

—1 < pr(A;, Bj) +pr(A;, Bjs) +pr(A;, Bjr) — pr(A;, Bj)
—pr(A;) —pr(Bj) <0

As we shall see, for some observables and quantum states quantum mechanics
predicts values for the terms in this expression that violate the inequalities: these
predictions have been verified. Such observables then have no joint distribution.

The state of a non-relativistic particle may be represented in a tensor product
Hilbert space H = H| ® H>, where H> is used to represent its » spin. But not ev-
ery vector in a product space is itself expressible as a tensor product of vectors, one
from each space. A vector state of the form | ¥1) ® --- ® | ;) is said to be sepa-
rable. The state of a pair of particles may also be represented in a tensor product of
the spaces used to represent their individual states. When their joint state is nonsep-
arable between these component spaces, the particles are said to be entangled, and
their state exhibits state holism (» Holism in Quantum Mechanics). The total spin
space for a pair of spin-1/2 particles is a tensor product of two-dimensional spin
spaces that includes nonseparable spin states, including the singlet spin state

1

|1//s)=ﬁ

IM® )= N)e It) 2

Any spin component A; on one particle is compatible with any spin component B
on the other, so quantum mechanics predicts a joint distribution for every such pair.
There are many choices of four such observables for which these violate the (BCH)
inequalities in the singlet state and other entangled states.

Quantum mechanics predicts that measurements of the same spin-component on
each particle in the singlet state will yield different results with probability 1. Ein-
stein believed that if particles in such a pair are widely separated, then each must
have its own real state, and any influence on the state of one can have no direct
influence on the state of the other [3]. On that basis his argument would conclude
that each particle in the singlet state has a definite value of spin-component in ev-
ery direction. But every way of distributing such values among many pairs will
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yield a statistical distribution conforming to the (BCH) inequalities [2, 13]. So un-
less the statistics systematically differ between measured and unmeasured pairs,
measurements confirming (quantum mechanically-predicted) statistics in violation
of (BCH) inequalities refute this conclusion. These measurements have been suc-
cessfully performed in circumstances where the event of choice and execution of
a measurement on one particle is spacelike separated from the analogous event on
the other [1]. Not only is there no known mechanism by which the measurement on
one particle could influence the result of the other measurement: any such influence
would have to be superluminal, undetectable and unpreventable, and extraordinarily
selective. Although Einstein dismissed this possibility as “spooky” action at a dis-
tance, the observed violations of (BCH) inequalities show we may have to live with
just such a novel kind of non-local “causal” connection [10], [» Causal Inference
and EPR].

But causation is a relation between distinct events. Perhaps it is wrong to regard
each particle, or measurement event, as a distinct entity, each with its own properties.
If a pair together constitute an indivisible whole, then the question of causal relations
among its parts doesn’t arise. The clearest violations of (BCH) inequalities involve
the polarization states of pairs of photons (» light quantum). A two-photon state
of the quantized electromagnetic field is perhaps best not thought to consist of two
distinct particles—certainly not if each were considered to have its own trajectory.
From this perspective, violation of (BCH) inequalities only seems strange if one
fails to acknowledge the fundamental holism underlying quantum mechanics. It is
neither the properties of quantum objects nor their probabilistic relations that strain
our non-classical intuitions, but the objects themselves. Such ontological holism is
also suggested by the fact that violations of (BCH)-type inequalities occur even in
the vacuum state of a quantum field [14].

Leggett [9] has proposed a test of macroscopic realism that relies on an unusual
application of (BCH)-type inequalities involving measurements on a single system.
Here the quantum correlations that cause problems for a classical world-view con-
cern measurements at different times of the current circulating in an RF SQUID.
There are quantum mechanical states that are » superpositions of different direc-
tions of current circulation. Assuming these are measurable without disturbance,
then measurements of the current at carefully chosen times will reveal correlations
that are incompatible with the assumption that the current is always circulating ei-
ther one way or the other.

Investigations of the nature of light have uncovered correlations that seemed sur-
prising on the assumption that light is “composed” of photons. Hanbury, Brown
and Twiss [5] investigated correlations between the responses of two separated de-
tectors to a weak light source. They expected the responses of the detectors to be
uncorrelated, on the grounds that each photon could activate only one detector at a
time. Instead they found strong correlations. These could be explained by a » semi-
classical model in which light is treated classically but the detectors are treated
quantum-mechanically. The anticorrelations expected on the photon hypothesis only
showed up much later after the incoherent light source was replaced by a source to
which single excited atoms made independent coherent contributions [7, 8].
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Correlations play a starring role in some proposed interpretations of quantum me-
chanics. Mermin [12] claims that while correlations have physical reality, that which
they correlate does not. This view of correlations without correlata has produced
philosophical debate but little consensus.

See Consistent histories, Ignorance interpretation, Ithaca Interpretation, Many
Worlds Interpretation, Modal Interpretation, Orthodox Interpretation, Transactional
Interpretation.
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Brigitte Falkenburg

The correspondence principle is due to Niels Bohr (1885-1962). According to Bohr,
the principle justifies the use of formal classical expressions in quantum theory and
a physical interpretation of quantum theory in terms of classical concepts. The prin-
ciple emerged from his use of classical concepts and formal analogies in » Bo/hr’s
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atomic model of 1913. Before the rise of quantum mechanics (i.e., in “old” quantum
theory), Bohr employed the principle in order to establish inter-theoretical relations
between the classical theory of radiation and the quantum theory of atomic spec-
tra. After the rise of quantum mechanics, he justified his » complementarity view
of quantum mechanics in terms of the correspondence between mutually exclusive
quantum phenomena on the one hand and the classical concepts of wave or parti-
cle (particle picture, wave picture) (» Franck—Hertz experiment; Davisson—Germer
experiment; Stern—Gerlach experiment; Schrodinger equation) on the other hand.

Werner Heisenberg (1901-1976) made heuristic use of Bohr’s correspondence
principle when he developed his » matrix mechanics. In 1930, he developed a gen-
eralized version of the correspondence principle which emphasized the heuristic and
interpretative aspects of the correspondence principle.

See also » Bohmian mechanics; Measurement theory; Metaphysics in Quantum
Mechanics; Modal Interpretation; Objectification; Projection Postulate.

In view of the quantum measurement problem, a generalized correspondence
principle is indispensable up to the present day. In particular, it underlies the » semi-
classical models of atomic and nuclear physics, condensed matter physics etc.

Classical Concepts in “Old” Quantum Theory

» Bohr’s atomic model of 1913 was based on quantum postulates which violate
the classical laws of radiation. The model raised the question of how the quantized
transitions between the stationary electron states relate to the classical theory of
radiation. In order to explain this, Bohr postulated a formal analogy between the har-
monics of classical radiation and the various quantum jumps from a given stationary
state. This analogy warranted the asymptotic agreement between the classical and
quantum-theoretical radiations in the limit of large » quantum numbers (when the
quantum jumps become very small) [1, 9, 10]. Together with Ehrenfest’s “adiabatic
hypothesis” (which concerned the energy of the permitted electron motions [2]), the
analogy justified a limited use of the classical concepts of energy and frequency
in quantum theory. In particular, it made it possible to interpret the quantum law
AE = hv in terms of the classical concepts of energy and frequency. This was the
germ of the correspondence principle. 1914—1918, Bohr elaborated the analogy for
periodic systems and extended it to multi-periodic systems and more general cases
[10]. He managed to derive » selection rules for the line splitting of the hydrogen
spectrum in an electric or magnetic field, i.e., the » Stark and » Zeeman effects.
After Einstein had introduced transition probability coefficients [3], Bohr expected
that the limited use of classical electrodynamics should also give correct intensities
and polarizations for the spectral lines. The calculations were performed by Hen-
drik Anthony Kramers (1894-1952) [4], who applied the correspondence principle
to the Fourier analysis of the classical stationary motions and derived in this way
the intensities and polarizations of the hydrogen lines, including the fine structure,
Stark and Zeeman effects.
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Finally, in 1920 Bohr gave the following explicit formulation of the correspon-
dence principle [5, p. 23-24; quoted in 10, p. 137-138]:

[...] there is found [...] to exist a far-reaching correspondence between the various types of
possible transitions between the stationary states on the one hand and the various harmonic
components of the motion on the other hand. This correspondence is of such a nature that
the present theory of spectra is in a certain sense to be regarded as a rational generalization
of the ordinary theory of radiation.

Here, the correspondence principle comes in two steps. First, it states the actual cor-
respondence of the possible quantum transitions to components of the classical mo-
tion. Second, it claims that the quantum theory of atomic spectra should be regarded
as a “rational generalization” of the classical theory of radiation. The first point jus-
tified the use of classical concepts in quantum theory. The second point justified the
heuristic use of the correspondence principle for the derivation of quantum laws.

To regard the quantum theory of atomic spectra as a “rational generalization” of
the classical theory of radiation has two aspects, a formal and an interpretative one
[10, p. 82; 12]. The classical orbit is merely formal since it can by no means be
measured and is only related to the quantum radiation in a formal, indirect manner.
At the same time, the correspondence principle associates the symbol v in the formal
expression AE = hv with the familiar quantity of a light frequency measured by a
spectrometer, in accordance with the laws of classical wave optics.

In old quantum theory, the correspondence principle had a hybrid theoretical
status. On the one hand, it was a meta-theoretical principle. It established inter-
theoretical relations between classical radiation theory and the laws of old quantum
theory. On the other hand, it put inner-theoretical constraints on the formulation of
quantum laws, thus making the extension of old quantum theory possible. Hence,
Bohr’s correspondence principle should not be confused with an empirical rule of
correspondence in the sense of empiricist philosophy of science. It does much more
than only assigning the empirical concept of a “line in the spectrum” to the formal
law of radiation AE = hv, as Ernest Nagel (1901-1985) suggested [14]. In par-
ticular, it does not relate theoretical concepts directly to an observational language.
Rather, it is an inter-theoretical relation that establishes a formal (numerical) and
interpretative (physical) analogy between classical radiation theory and quantum
theory. This two-fold analogy allows for the continued use of the classical concepts
of ‘frequency’, ‘wavelength’, ‘energy’, ‘polarization’, etc. in the quantum theory of
atoms and line spectra. Even taken as an internal principle of old quantum theory,
the correspondence principle only expresses constraints that derive from an inter-
theoretical relation.

Correspondence and Complementarity

Quantum mechanics emerged from the crisis of old quantum theory confronted by
the anomalous Zeeman effect and other problems with which the correspondence
principle could not cope. Nevertheless, Bohr’s correspondence principle played a
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crucial heuristic role for Heisenberg when he developed his matrix mechanics. Af-
ter the rise of quantum mechanics, Heisenberg emphasized that the correspondence
principle helps to obtain a quantum theory from quantizing the corresponding clas-
sical theory (see below).

In view of quantum mechanics, Bohr employed the correspondence principle
in order to interpret the formal quantum concepts. He considered Schrodinger’s
» wave function W as a mere symbol, as a formal tool that lacks any direct
physical meaning [9,15]. His » complementarity view of quantum mechanics aimed
at interpreting quantum phenomena in terms of the corresponding classical con-
cepts. According to his famous Como lecture, » Heisenberg’s uncertainty relations
describe quantum phenomena which correspond to mutually exclusive classical de-
scriptions and appear under mutually exclusive experimental conditions [6]. Bohr’s
examples of complementary quantum phenomena are » particle tracks and » scat-
tering events such as the » Compton effect, on the one hand, and interference
fringes, on the other hand. The physical magnitudes attributed to these phenom-
ena (i.e., either momentum-energy, or spatio-temporal magnitudes) are classical.
According to Bohr’s writings of 1927 and later, any physical magnitude attributed
to a quantum phenomenon represents the outcome of a measurement, and all mea-
surement results have to be expressed in classical terms. Bohr thought that a full
understanding of quantum phenomena is only possible in terms of the corresponding
classical concepts (i.e., either momentum-energy or spatio-temporal location) and
classical models (i.e., the complementary wave and particle picture » Franck—Hertz
experiment; Davisson—Germer experiment; Stern—Gerlach experiment; Schrodinger
equation [9-11,13,15].

The Generalized Correspondence Principle

In 1930, Heisenberg generalized Bohr’s correspondence principle. His generalized
principle deals explicitly with inter-theoretical relations, extending Bohr’s original
analogy between classical and quantized radiation frequencies to many more physi-
cal quantities. Heisenberg emphasizes three features of the general correspondence
principle [7, p. 70]:

1. It postulates a detailed analogy between the quantum theory and the appropriate
“mental picture”, i.e., the classical wave or particle picture.

2. This analogy is a “guide to the discovery of formal laws”, i.e., it has heuristic
meaning in the formation of a quantum theory. Here, Heisenberg means the well-
known » quantization of a classical theory.

3. In addition, it “furnishes the interpretation of the formal laws in terms of the
mental picture used”, i.e., the analogy tells us that we may attribute to the quan-
tized » observables the physical properties of the corresponding classical wave
or particle picture.
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Like Bohr’s original version, Heisenberg’s generalized correspondence principle is a
principle of semantic continuity [10, p. 133-137; 11; 12, p. 188—194]. It guarantees
that the predicates for the classical physical properties of ‘position’, ‘momentum’,
‘mass’, ‘energy’, etc. can also be defined in the domain of quantum mechanics, and
that one may interpret them operationally in accordance with classical measurement
methods. It provides many inter-theoretical relations by means of which the formal
concepts and models of quantum mechanics can be filled with physical meaning.
Bohr and Heisenberg both called this physical meaning “intuitive”, even though in
quite a different sense [6,11].

In modern textbooks of quantum mechanics, the generalized correspondence
principle shows up for example in » Ehrenfest theorem.

Correspondence in Semi-Classical Models

Often, the general correspondence principle helps to interpret the abstract formalism
of a quantum theory in such a way that it can be applied against the background of
classical physics and on semi-classical conditions. In the semi-classical models of
quantum physics, the correspondence principle is tacitly employed up to the present
day. Important examples stem from condensed matter physics, atomic and nuclear
physics, as well as » particle physics.

In condensed matter physics, the macroscopic state of a solid is necessarily
presupposed. As a macroscopic state, it has obviously to be described in classi-
cal terms. As Philip K. Anderson (*1923) emphasized, the existence of a solid (or
the regularity of the ground states of most assemblages of atoms, respectively) can
not be explained by quantum theory [16, p. 3]. In addition, the quantum behavior
of a complex many-particle system cannot be calculated ab initio. Therefore, semi-
classical approximations are indispensable in condensed matter physics or atomic
physics. Many » scattering experiments of atomic, nuclear, and » particle physics
are based on » semi-classical models, too. The models of the scattering of sub-
atomic particles off the atoms inside macroscopic measuring devices are based on
several semi-classical conditions. In these models, a generalized correspondence
principle is employed in the following ways [12, pp. 125-160]:

1. The simplest models of quantum mechanical scattering theory correspond to
classical Rutherford scattering. Exact correspondence between the classical and
quantum mechanical differential scattering cross sections (» scattering experi-
ments) is given in the case of the Rutherford formula, that is, for the Coulomb
potential, for non-relativistic probe particles, and in the absence of quantum me-
chanical » spin or exchange effects.

2. In the domain of » relativistic quantum mechanics and » quantum field theory,
there is a chain of models of quantum mechanical scattering theory, namely Mott
scattering and Dirac scattering, that approximately correspond to Rutherford
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scattering under well-defined conditions. Here, the tacit use of a generalized
correspondence principle is extended to the inter-theoretical relation between rel-
ativistic and non-relativistic concepts.

3. To describe the charge distribution inside the atom by a classical form factor
(» nuclear models) is based on the correspondence between the quantum me-
chanical many-particle » wave function | W(r) |* of charged subatomic particles
and the classical charge distribution p(r), which is the Fourier transform of a
classical form factor F(q).

4. In the domain of relativistic quantum field theory, the above correspondence as-
sumptions (1)—(3) come together in the definition of structure functions, which
express (via correspondence to the classical case, again) the momentum distribu-
tions of the partons (» parton model) or quark constituents of the nucleons, the
proton and neutron (» [arge angle scattering).

5. The data analysis of the particle tracks taken in such (» scattering experiments)
is based on a similar chain of models, which relate the quantum mechanics of
scattering to the corresponding classical case.

In all » semi-classical models, the generalized correspondence principle bridges
the semantic gaps between quantum theory and the classical theories, which are due
to the unresolved problems of the » measurement process. Hence, the correspon-
dence principle connects the languages of classical physics and quantum theory. In
a further common generalization, it bridges the languages of non-relativistic and
relativistic theories.

Limitations of Correspondence

Obviously, the correspondence principle does not exhaust the domain of the current
quantum theories. Indeed quantum mechanics emerged from its limitations in old
quantum theory. These early limitations were due to the spin-orbit coupling effects
in the spectra of complex atoms. Later, the » nonlocality of quantum mechanics
predicted in the famous » EPR paper showed up. Today, in addition to the EPR cor-
relations many non-local quantum phenomena without any classical correspondence
are known, such as, e.g., super conductivity, the Bohm—Aharanov effect, etc.
However, the semi-classical models of quantum physics are affected by the lim-
itations of the correspondence principle, too. In particular, such limitations are
relevant for the data analysis of » particle tracks. According to the classical particle
picture, a particle loses energy along its track due to dissipation, where the energy
loss is due to the ionization of atoms (e.g., in Wilson’s cloud chamber). There is in-
deed a classical model of the process, namely Bohr’s classical calculation of energy
loss by ionization [8]. However, for charged particles that pass the cloud chamber
with non-vanishing energy, the results of this model are wrong by a factor of 2. In
addition, the non-relativistic model of the energy loss via ionization no longer corre-
sponds to the relativistic description of the scattering processes along the track of a
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particle of high energy. In particular, the process of pair creation, which becomes the
more probable the higher the particle energy is, does not have any classical analogue
[12,p. 174-187].
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Counterfactuals in Quantum Mechanics

Lev Vaidman

Counterfactuals in quantum mechanics appear in discussions of (a) » nonlocality,
(b) pre- and post-selected systems, and (c) » interaction-free measurement; Quan-
tum interrogation. Only the first two issues are related to counterfactuals as they are
considered in the general philosophical literature:

If it were that A, then it would be that B.

The truth value of a counterfactual is decided by the analysis of similarities between
the actual and possible counterfactual worlds [1].

The difference between a counterfactual (or counterfactual conditional) and a
simple conditional: If A, then B, is that in the actual world A is not true and we
need some “miracle” in the counterfactual world to make it true. In the analysis
of counterfactuals out of the scope of physics, this miracle is crucial for deciding
whether B is true. In physics, however, miracles are not involved. Typically:

A : A measurement M is performed

B : The outcome of M has property P.

Physical theory does not deal with the questions of which measurement and whether
a particular measurement is performed? Physics yields conditionals: “If 4;, then
B;”. The reason why in some cases these conditionals are considered to be coun-
terfactual is that several conditionals with incompatible premises .4; are considered
with regard to a single system.

The most celebrated example is the Einstein—Podolsky—Rosen (» EPR prob-
lem) argument in which incompatible measurements of the position or, instead, the
momentum of a particle are considered. Stapp has applied a formal calculus of coun-
terfactuals to various EPR-type proofs [2,3] and in spite of extensive criticism [4-9],
continues to claim that the nonlocality of quantum mechanics can be proved without
the assumption “reality” [10].

Let me give here just the main point of this controversy. Stapp provides elaborate
arguments in which an a priori uncertain outcome of a measurement of O in one
location might depend on the measurements performed on an entangled quantum
particle in another location. But if anything is different in a counterfactual world, the
outcome of the measurement of O need not be the same as in the actual world. The
core of the difficulty is this randomness of the outcomes of quantum measurements.
The formal philosophical analysis of counterfactuals which uses similarity criteria,
presupposes that in a counterfactual world which is identical to the actual world in
all relevant aspects up until the measurement of O, the outcome has to be the same.
Thus, Stapp’s analysis tacitly adopts the counterfactual definiteness [4,5] which is
essentially equivalent to “reality” or » hidden variables and which is absent in the
conventional quantum theory.
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Important examples of quantum counterfactuals are elements of reality. Consider
the following definition [11]:

If we can infer with certainty that the result of measuring at time ¢ of an observable O is o,
then, at time ¢, there exists an element of reality O = o.

If we consider several elements of reality which cannot be verified together, we
obtain counterfactuals. A celebrated example is the Greenberger—Horne—Zeilinger
(» GHZ) entangled state of three spin—% particles [4, 13]:

1
V2
We consider spin component measurements of these three particles in the x and y

directions. The counterfactuals (the elements of reality) have a more general form
than merely “the value of O is 0”, they are properties of a set of three measurements:

|v) Malt)sltle = all) sl )e)- ey

{GAx}{GBx}{GCx} = _1»
{UAx}{UB)f}{GCy} =1,
(2)

{oayHopiHocy} =1,
{UAy}{UB)f}{GCx} =1L

Here {04} signifies the outcome of a measurement of o, of particle A, etc. Since
one cannot measure for the same particle both oy and o, at the same time, this is
a set of counterfactuals. It is a very important set because no local hidden variable
theory can ensure such outcomes with certainty; there is no solution for the set of
equations (2).

Lewis’s theory of counterfactuals is asymmetric in time [14]. The counterfactual
worlds have to be identical to the actual world during the whole time before A,
but not after. This creates difficulty in applications of counterfactuals to physics
and especially to quantum mechanics because “before” and “after” are not ab-
solute concepts. Different Lorentz observers might see different time ordering of
measurements performed at different places. Finkelstein [15] and Bigaj [16] have
attempted to define time asymmetric counterfactuals to overcome this difficulty. But
in my view, the time asymmetry of quantum counterfactuals is an unnecessary bur-
den [17]. We can consider a time symmetric (or time neutral) definition of quantum
counterfactuals.

The general strategy of counterfactual theory is to find counterfactual worlds
closest to the actual world. In the standard approach, the worlds must be close only
before the measurement. In the time-symmetric approach, the counterfactual worlds
should be close to the actual world both before and after the measurement at time 7.
Quantum theory allows for a natural and non-trivial definition of “close” worlds as
follows: all outcomes of all measurements performed before and after the measure-
ment of O at time t are the same in the actual and counterfactual worlds.
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A peculiar example of time symmetric counterfactuals is the three box paradox
[18]. Consider a single particle prepared at time #; in a » superposition of being in
three separate boxes:

W) = —=(14) + |B) +1C)) 3)
1=—= .
V3

At a later time #, the particle is found in another superposition:
1
V3

For this pre- and post-selected particle, a set of counterfactual statements, which
are elements of reality according to the above definition, is:

|W2) = —=(A) +1B) — |C)). “)

Pr=1,
Pp=1. 5)

Or, in words: if we open box A, we find the particle there for sure; if we open box
B (instead), we also find the particle there for sure. Indeed, not finding the particle
in box A (or B) collapses the pre-selected state (3) to a state which is orthogonal to
the post-selected state (4).

Beyond these counterfactual statements, there are numerous manifestations of
the claim that in some sense, this single particle is indeed in two boxes simultane-
ously. A single photon which interacts with this particle scatters as if there are two
particles: one in A and one in B, but two or more photons (» light quantum) do
not “see” two particles. Many photons see this single particle as two particles if the
photons interact weakly with the particle. Indeed, there is a useful theorem which
says that if a strong measurement of an observable O yields a particular outcome
with probability 1, (i.e. there is an element of reality) then a weak measurement
yields the same outcome. Sometime this is called a weak-measurement element of
reality [19]. The outcomes of weak measurements are weak values (» weak value
and weak measurements):

Pa)w =1,
Pp)w = L. (6)

Contrary to the set of counterfactuals above, the weak measurements can be per-
formed simultaneously both in box A and box B. Thus, the existence of counterfac-
tuals helps us to know the outcome of real (weak) measurement.

The three-box paradox and other time-symmetric quantum counterfactuals have
raised a significant controversy [11, 20, 21, 21-28]. It seems that the core of the
controversy is that quantum counterfactuals about the results of measurements of
» observables, and especially “elements of reality” are understood as attributing
values to observables which are not observed. But this is completely foreign to quan-
tum mechanics. Unperformed experiments have no results! “Element of reality” is
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just a shorthand for describing a situation in which we know with certainty the
outcome of a measurement if it is to be performed, which in turn helps us to know
how weakly coupled particles are influenced by the system. Having “elements of
reality” does not mean having values for observables. The semantics are misleading
since “elements of reality” are not “real” in the ontological sense.

An attempt to give counterfactuals some ontological sense, at the cost of plac-
ing artificial constraints on the context in which counterfactuals are considered, was
made by Griffiths [29]. He showed that counterfactuals have no paradoxical fea-
tures when only » consistent histories are considered. Another recent step in this
direction are quantum counterfactuals in very restrictive “measurement-ready”” situ-
ations [30].

Penrose [31] used the term “counterfactuals” in a very different sense:

Counterfactuals are things that might have happened, although they did not in fact happen.

In interaction-free measurements [32], an object is found because it might have
absorbed a photon, although actually it did not. This idea has been applied to
“counterfactual computation” [33], a setup in which the outcome of a computation
becomes known in spite of the fact that the computer did not run the algorithm (in
case of one particular outcome [34]).

In the framework of the » Many-Worlds Interpretation, Penrose’s “counterfac-
tuals” are counterfactual only in one world. The physical Universe incorporates
all worlds, and, in particular, the world in which Penrose’s “counterfactual” is
actual, the world in which the “counterfactual” computer actually performed the
computation.

This work has been supported in part by the European Commission under the
Integrated Project Qubit Applications (QAP) funded by the IST directorate as Con-
tract Number 015848 and by grant 990/06 of the Israel Science Foundation.

Literature

1. D. Lewis: Counterfactuals. Oxford, Blackwell (1973).
2. H.P. Stapp: S-Matrix interpretation of quantum theory. Phys. Rev. D 3, 1303 (1971).
3. H.P. Stapp: Nonlocal character of quantum theory. Am. J. Phys. 65, 300 (1997).
4. B. Skyrms: Counterfactual definiteness and local causation. Phil. Sci. 49, 43 (1982).
5. M. Redhead: Incompleteness, Nonlocality, and Realism: A Prolegomenon to the Philosophy of
Quantum Mechanics. New York, Oxford University Press (1987).
6. R.K. Clifton, J.N. Butterfield, M. Redhead: Nonlocal influences and possible worlds — a Stapp
in the wrong direction. Br. J. Philos. Sci. 41, 5 (1990).
7. D. Mermin: Nonlocal character of quantum theory? Am. J. Phys. 66, 920 (1998).
8. W. Unruh: Nonlocality, counterfactuals, and quantum mechanics. Phys. Rev. A 59, 126 (1999).
9. A. Shimony, H. Stein: Comment on Nonlocal character of quantum theory, Am. J. Phys. 69,
848 (2001).
10. H.P. Stapp: Comments on Shimony’s an analysis of Stapp’s ‘a Bell-type theorem without hidden
variables’, Found. Phys. 36, 73 (2006).
11. L. Vaidman: The meaning of elements of reality and quantum counterfactuals: Reply to
Kastner. Found. Phys. 29, 856 (1999).




136 Covariance

12. D.M. Greenberger, M.A. Horne, A. Zeilinger: Going beyond Bell’s theorem. In Bell Theorem,
Quantum Theory and Conceptions of the Universe, M. Kafatos, ed., p. 69, Dordrecht, Kluwer,
(1989).

13. N.D. Mermin: Quantum mysteries revisited. Am. J. Phys. 58, 731 (1990).

14. D. Lewis: Counterfactual dependence and time’s arrow. Nous 13, 455 (1979).

15. J. Finkelstein: Space-time counterfactuals. Synthese 119, 287 (1999).

16. T. Bigaj: Counterfactuals and spatiotemporal events. Synthese 142, 1 (2004).

17. L. Vaidman: Time-symmetrized counterfactuals in quantum theory. Found. Phys. 29, 755
(1999).

18. Y. Aharonov, L. Vaidman: Complete description of a quantum system at a given time. J. Phys.
A 24,2315 (1991).

19. L. Vaidman: Weak-measurement elements of reality. Found. Phys. 26, 895 (1996).

20. W.D. Sharp, N. Shanks: The rise and fall of time-symmetrized quantum mechanics. Philos. Sci.
60, 488 (1993).

21. R.E. Kastner: Time-symmetrised quantum theory, counterfactuals and ‘advanced action’. Stud.
Hist. Philos. Mod. Phy. 30 B, 237 (1999).

22. L. Vaidman: Defending time-symmetrised quantum counterfactuals. Stud. Hist. Philos. Mod.
Phy. 30 B, 337 (1999).

23. R.E. Kastner: The three-box paradox and other reasons to reject the counterfactual usage of
the ABL rule. Found. Phys. 29, 851 (1999).

24. R.E. Kastner: The nature of the controversy over time-symmetric quantum counterfactuals.
Phil. Sci. 70, 145 (2003).

25. L. Vaidman: (2003) Discussion: Time-Symmetric Quantum Counterfactuals. e-print: PITT-
PHIL-SCIO00001108 (2003).

26. U. Mohrhoff: Objective probabilities, quantum counterfactuals, and the ABL rule A response
to R. E. Kastner. Am. J. Phys. 69, 864 (2001).

27. K.A. Kirkpatrick: Classical three-box ‘paradox’. J. Phys. A 36, 4891 (2003).

28. T. Ravon, L. Vaidman: The three-box paradox revisited. J. Phys. A 40, 2882 (2007).

29. R.B. Griffiths: Consistent quantum counterfactuals. Phys. Rev. A 60, R5 (1999).

30. D.J. Miller: Counterfactual reasoning in time-symmetric quantum mechanics. Found. Phys.
Lett. 19, 321 (2006).

31. R. Penrose: Shadows of the Mind. Oxford, Oxford University Press (1994).

32. A.C. Elitzur, L. Vaidman: Quantum mechanical interaction-free measurements. Found. Phys.
23,987 (1993).

33. G. Mitchison, R. Jozsa: Counterfactual Computation. Proc. R. Soc. Lond. A 457, 1175 (2001).

34. L. Vaidman: Impossibility of the counterfactual computation for all possible outcomes. Phys.
Rev. Lett. 98, 160403 (2007).

Covariance

K. Mainzer

Covariance means form invariance, i.e. the form of a physical law is unchanged
(invariant) with respect to transformations of reference systems. Covariance can be
distinguished from » invariance which refers to quantities and objects [2]. The co-
variant formulation of laws implies that the form of laws is independent of the state
of motion in a reference system that an observer takes. In that sense, all fundamental
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laws of classical and relativistic physics are covariant [3,4]. According to the def-
inition of covariance, the gauge principle (> gauge symmetry; symmetry) can also
be considered a principle of gauge covariance [5].

In quantum mechanics, measurable quantities (eigenvalues, probabilities, ex-
pectation values) are invariants (» invariance) with respect to unitary transforma-
tions (» symmetry). But the form of laws changes in a » Heisenberg picture or
» Schrodinger picture. The fundamental laws of quantum mechanics can also be
formulated in a covariant form with respect to arbitrary unitary transformations [1].
In this case the fundamental laws are represented by the following schemes:

1. Heisenberg’s commutation relation:

[Qk, PLl =M kL, [Qk., QL1 =0,[Pk, PL1 =0
2. Heisenberg’s equation of motion for operators:

W L e uy(r=F(0x. Px. 1)
a ot ih —hARK DK

3. Equation of movement for a general state and eigenvalues:

dly) _aly) 1 difr) dlfr) 1
o - witW T T Tt

The concept of state |) = | (1)) resp. | fr) = | fT (¢)) is generalized as |¢) =
[ (Qk (1), PL(2), 1)) resp. | fr) = | fr (Qk (1), P (2), 1)) which allows the
partial time-depending derivation of states. This formulation yields a maximal
symmetry between the equations of motion between operators and states.

4. Eigenvalue equation:

Flfr)=frlfr)

These equations can be considered a picture-free formulation of quantum mechan-
ics, because they are covariant with respect to arbitrary unitary transformations.
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CPT Theorem

Claus Kiefer

The CPT theorem is a theorem for local relativistic quantum field theories in
Minkowski space-time. Here, C means ‘charge conjugation’, P “parity transforma-
tion’ (‘space inversion’), and T ‘time inversion’; while C and P are implemented by
» unitary operators, T is implemented by an antiunitary operator.

The CPT theorem states that these field theories are invariant under the com-
bined combination of C, P, and T; one therefore speaks of CPT symmetry. The
original proof by Gerhart Liiders [1] and Wolfgang Pauli [2] was performed within
Lagrangian field theories; Res Jost then presented a more general proof using ax-
iomatic quantum field theory [3].

The importance of the CPT theorem stems from the fact that the assumptions
for this theorems are very general; in fact, they are believed to be universally valid
for field theories in flat space-time. The main assumption is Lorentz » invariance,
which implements the principle of special relativity; in addition, one has to assume
that the fields obey the standard commutation relations. The proof in [3], besides
being more general, has also the advantage that it provides a simple method to cal-
culate the CPT transform of a field directly, without having to calculate C, P, and T
separately and to multiply them.

The Standard Model of elementary particles » quantum field theory; particle
physics describes the strong and the electroweak interaction by a local relativistic
field theory and therefore implements the CPT symmetry; however, it violates CP
symmetry (and therefore T symmetry), as has been confirmed by many experimental
tests.

CPT symmetry entails in particular that the masses of particles and antiparticles
must be equal. This, in turn, provides the most precise test of this symmetry. The
current experimental bounds result mainly from the limit of the mass difference
between the neutral K-meson K and its antiparticle, K° [4]:

mygo — M g0
K K —18
‘7 <107 °°.

mgo

The CPT symmetry also entails equal lifetimes for particles and antiparticles. More
details on the CPT theorem can be found in references [5, 6].
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physics describes the strong and the electroweak interaction by a local relativistic
field theory and therefore implements the CPT symmetry; however, it violates CP
symmetry (and therefore T symmetry), as has been confirmed by many experimental
tests.

CPT symmetry entails in particular that the masses of particles and antiparticles
must be equal. This, in turn, provides the most precise test of this symmetry. The
current experimental bounds result mainly from the limit of the mass difference
between the neutral K-meson K and its antiparticle, K° [4]:

mygo — M g0
K K —18
‘7 <107 °°.

mgo

The CPT symmetry also entails equal lifetimes for particles and antiparticles. More
details on the CPT theorem can be found in references [5, 6].
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It is clear from its proof that the CPT theorem is not expected to hold if the main
assumption — Lorentz symmetry — is violated. This should apply, in particular, to
a fundamental theory of » quantum gravity, since already the classical theory of
gravity (Einstein’s theory of general relativity) is not a Lorentz-invariant theory (it
possesses instead » diffeomorphism invariance). Since, moreover, time seems to
be absent in quantum gravity, the theorem cannot even be formulated at the most
fundamental level.
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(sum over all permutations o, with (—1)? the signature of o) and for the sake of
completeness Sf )= 1. They are orthogonal projectors onto the bosonic (Sff)) and
Sfermionic (S(_")) n-particle space H?g” = Sil)H‘X’”. The orthogonal direct £>-sum of
Hilbert spaces F4 (H) := @52, HY" is called the symmetric or bosonic Fock space
(%4+) and the antisymmetric or fermionic Fock space (.%#_) over H. These spaces
are used as state spaces for systems with identical particles of variable number. The
element 1 € ’Hfo will be denoted by €2, when embedded into a Fock space, and
called the vacuum or no-particle state.

By linear extension the following sets of operators are defined on the Fock
spaces: For any f € H i.) the creation operator a*(f) is defined by

FHSVAR @ F) =i+ ISV A ® )

thus mapping n-particle states to (n + 1)-particle states, and ii.) the annihilation
operator a( f) is defined by

n 1 j— n— ~
a(HSL 1@ ® f) = 7 DT, SV fi® ),
J

where f] denotes the omission of the j-th factor such that this operator maps
n-particle states to (n — 1)-particle states. On the vacuum €2 the action of the operator
is defined to be a(f)2 = 0.

Given any » orthonormal basis {e;} of the one-particle Hilbert space H the
sum of operators Zi a*(e;j)a(e;) converges on each n-particle space to the n-
fold of the identity operator. Therefore it is common to write the formal sum
N =) ;a*(ej)a(e;), where N denotes the self-adjoint number operator with dis-
crete spectrum and eigenspaces HE" for eigenvalue n € Ny. The eigenvectors of
the number operator, i.e., the elements of Hfﬁ" embedded into Fock space, are also
called Fock states.

Another important class of vectors especially in bosonic systems are the eigen-
vectors of the annihilation operator, obeying a( f )%{ = ozwo{ , with generally com-
plex eigenvalue «. Contrary to the Fock states, the statistical distribution of the
results in a number measurement in these states is a Poisson distribution. These
states are usually called » coherent states and are of great importance in the study
of quantum optical systems (see, e.g., [4]).

Occupation-Numbers. In the bosonic n-particle space ’H?" an orthonormal basis
related to a one-particle basis {e;} is given by

n!
. n
e(ni,ny,...):= — (e ®...Qe,),
nilny!. ..
where n; is the number of indices among iy, ..., i, which are equal to i. Eviden-

tally Zi n; =n,and e(0, 0, ...) = Q. Considering the vectors e(n, na, ...) for all
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values of n € Ny, a basis of the symmetric Fock space F1(H) consisting of Fock
states is induced. The representation of vectors and operators of HS?" and F4(H)
with respect to the basis {e(n1, na, ...)} is called the occupation-number represen-
tation associated with {e;}.

The bosonic creation and annihilation operators can be replaced by the discrete
set of operators a := a*(e;) and a; := a(e;). The action of these operators on the
basis is given by

afe(ny,...,nj,...)=+nj+lemy,....nj +1,..)

' ' _Jniemy, ... on;—1,..)ifn; #0
ale(nl,...,nl,...)—{ 0 i n; = 0.

An orthonormal basis in the fermionic n-particle space H®" is given by

e(ny,ny,...) = \/ES’l(eil ®...Q0e¢,),

where i] < iy < ... < iy, n; = 1 orn; = 0 depending on whether the vector ¢; is
among ¢;,, ..., ¢;, or not, and Zi n; = n; the basis vectors define the occupation-
number representation for fermions. The creation and annihilation operators a; :=
a*(e;) and a; := a(e;) act according to
—D%iemny,...,n;+1,..)ifn; =0
afe(ny,...,nj,...) = (=D¥e(m i+ ). !
! 0 ifn; =1
aie(n ni..) = 0 ifn; =0
IR e B S DS ey, .o — 1, L) i =1
where s; = Z;_:l] nj (i.e., s; is the number of indices i; satisfying i; < 7).
Any self-adjoint one-particle operator A acting on H gives rise to a self-adjoint
operator on Fock space (as well bosonic as fermionic) acting on all particles identi-
cally, sometimes called the “second » quantization” of the operator. It is defined by

the formal sum
oo

n
dT(A) ::ZZI@...@A@...@I,
n=0v=1
where in the inner sum A is at the v-th position. This can be written in an easy way
using creation and annihilation operators:

dT'(A) =) Ajja}a;.
i

with matrix elements A;; = (e;, Ae;). Translated to the occupation-number repre-
sentation one finds
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Ae(ny,...,nj,...) = ZniA,-,-e(nl,nz,...)

i
+Z (ni—i-l)ninje(n],...,ni—l—l,...,nj—1,...).
i#]

The easiest example of such an operator is the above seen number operator: N =
drq.

It is worth noting at this point that the “second quantization” of unitary operators
is defined differently, namely by I'(U) := Y 72 U ® ... ® U. In this way the
useful relation exp(itd"'(H)) = I'(exp(it H)) in the realm of unitary one-parameter
groups holds true (see » Hamiltonian operator).

Canonical Commutation and Anticommutation Relations. The bosonic annihi-
lation and creation operators are unbounded linear operators and can be defined on
the dense subset D of the bosonic Fock space .7, (H) constituted by finite sums
of n-particle vectors [1]. On this subset they are formal adjoints of each other in the
way the notation suggest: a(f)*|p, = a*(f)|p, . Furthermore they fulfil on D the
following relations:

la(f),a* (@)1= (f.g); la(f),a(®)]=I[a"(f).a"(g)] =0,

called canonical commutation relations (CCRs). Together with the property
a(f)2 = 0 the CCRs define the action of the bosonic creation and annihilation
operators, justifying the term “canonical” [2,5]. The operators A(f) := (a(f)+
a*(f))/v/2 are essentially self-adjoint and thus one can form unitary operators
W(f) = exp(1A(f)) with these. The CCRs can expressed equivalently by these so
called Weyl operators:

W(fIW(g) = W(f + g)e Iml/:8)/2,

In the study of coherent states it is worth noting that the Weyl operators map the
vacuum to coherent states: a(f)W ()2 = (i(f, f)/ﬁ) W (f)2. The C*-algebra
generated by the Weyl operators is called the CCR algebra.

The fermionic annihilation and creation operators are bounded linear operators
with norm |la(f)|| = lla*(f)|| = || f]l. Indeed the mapping f +> a*(f) is an iso-
metric embedding of Banach spaces, whereas the mapping f +— a(f) is antilinear,
ie., a(Af) = ra(f) for A € C, and isometric. Thus both sets of operators are de-
fined on the whole fermionic Fock space .7#_(H) and are adjoints of each other:
a(f)* = a*(f). By defining the anticommutator [A, Bl = AB + BA, one finds

la(f),a*(@l+ = (f. &) [a(f),a(@l+ =[a*(f),a*(®)]+ =0,

called canonical anticommutation relations (CARs). The basic consequence
a*(f)?> = 0 is a demonstration of the Pauli » exclusion principle in fermionic
systems. Together with the property a( /)2 = 0 the CARs define the action of the
fermionic creation and annihilation operators. The norm closure of polynomials
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in the a(f) and a*(f) form a C*-Algebra, called the CAR algebra. A detailed
description of CCRs and CARs can be found in [3].

Continuous Representations. If the Hilbert space H is represented in form of
a function space L2(R"), it is common to introduce creation and annihilation
operators in a point a*(x) and a(x). Mathematically these are operator-valued dis-
tributions, defined by

a*(f) = / a*(x) f)d"x;  a(f) = / a(x) f(x)d"x.

While a(x) can still be interpreted as a densely defined, but not closable operator,
a*(x) is not an operator at all. Formally the operator-valued distributions fulfil the
continuous CARs and CCRs

[a(x),a*(M]+ =8(x —y); [a(x),a(M)]+ = [a*(x),a*(y)]+ = 0.

Examples. The most basic bosonic Fock space is .Z4(C) = @, C, which
is canonically isomorphic to the sequence space ¢». Each n-particle space is one-
dimensional and spanned by the sequence e(n) = (6,k)k, with the Kronecker delta
being different from zero only at the n-th position. These vectors form an orthonor-
mal basis of £, and define the occupation-number representation in this case. The
action of creation and annihilation operator is afe(n) = +/n+le(n + 1) and
aje(n) = /ne(n — 1) (the indices of the operators can be omitted due to one-
dimensionality of H).

This example is relevant in the study of the one-dimensional quantum me-
chanical harmonic oscillator, modeled on the Hilbert space L*(R). By defining
annihilation and creation operators on this space, one can find a suitable isomor-
phism to .%, (C). On L*(R) we set a := /mw/(2h) (x +ip/(mw)) and a* :=
Jmw/2h) (x —ip/(mw)), where x and p denote position and momentum opera-
tors and m and w are positive constants. The two operators obey the CCRs (with f
set to unity) and the operator a has a one-dimensional kernel, from which we choose
a normed representative Q2 = |0) = (mw/(Tch))]/4 exp (—ma)xz/(2h)). By defining
|n) := (a*)"|0)/+/n one finds an orthonormal basis and thus the isomorphism onto
%4 (C) by |n) — e(n). The Hamiltonian operator of an oscillator of mass m and
frequency w can be expressed in the simple form H = hw (a*a + 1/2). The operator
N = a*a is the number operator in the one dimensional setting with N|n) = n|n).
Thus the n-particle states are the eigenstates of the Hamiltonian operator, with
H|n) = (n + 1/2)hw|n). The term “particle” is somewhat misleading in this con-
text, since it does not refer to the single oscillating particle, but to so called phonons,
which is a name for each “quantum” of oscillation energy, numbered by n. The “vac-
uum” state refers to the absence of any such oscillation quantum and defines the
ground state of the system. Coherent states of the oscillator, given by av, = ay,
can be derived by the Weyl operator from the vacuum v, = W (—iv/2a)|0). The
Weyl operator can be expressed by position and momentum operators, leading to an
interpretation as displacement operator in phase space. Coherent states can thus be
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seen as elongated ground states with a certain momentum. They are not stationary,
but stay coherent with only the phase of the eigenvalue o changing in time.

The typical Hamiltonian of a bosonic many-particle system with constant particle
number reads

1
H=dT(H) + 5 Y Vi
nF#v

Here the one-particle Hamiltonian H; (kinetic energy and potential energy in an
exterior field) is used in “second quantization” dI"(H1), and

Vi (ex, ®...®ekﬂ®...®ekv®...®ek”)::

Zvijkﬂkvekl ®..068®...¢;®...Qe,
ij

e; being at position u, e; at position v, acts only on the p-th and v-th tensor fac-
tor nontrivially and V;jk,k, is the matrix element of some two-body interaction
operator V.

Due to the special form of H, acting on each particle identically, it makes
sense to write the Hamiltonian H in occupation-number representation. H can be
represented in terms of creation and annihilation operators according to

* 1 k ok
H = ZHijai aj + 3 Z Vijua; aiaa
ij i,j,k,l

where the matrix elements of H; are H;; := (e;, Hiej). In particular, if the basis
vectors e; are eigenvectors of Hy, Hoe; = Eje;, then dI'(H}) = Zi E,-afa,-, i.e.,

dT'(Hpe(ny,ny,...) = ZniE,-e(nl, ny,...).
i

The most basic fermionic Fock space is .Z_ (C) = C @ C = C?, since the anti-
symmetrization operator reduces all n-particle spaces for n > 2 to {0} in this case.
The vectors Q and a*Q can be identified with the canonical basis of C? and span
the vacuum and the 1-particle space, respectively. The annihilation and creation
operator can be represented by matrices:

(0 1Y, « (00
““Loo) “=\1 o)
This system can be taken as model for a single locally fixed electron with » spin in

a magnetic field. The Hamiltonian operator of such a system is basically given by a
multiple of the number operator a*a, i.e.,

H:2,usBa*a:2,ugB< 8 (1) >

with ug the spin magnetic moment of the electron and B the magnetic field.
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Likewise fermionic Fock spaces over finite dimensional Hilbert spaces C" have
dimension 2" and are isomorphic to (C?)®"_ Therefore they can be used to model
n-electron spin systems (see, e.g., [2]). The general formalism to write a fermionic
system in occupation-number representation is analogous to the bosonic case seen
above.
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The fundamental equation of non-relativistic quantum mechanics, the » Schrodinger
equation, is linear. Thus, superpositions of its solutions (quantum states) constitute
solutions as well. This is the famous » superposition principle. Given a composite
quantum system, i.e. a quantum system that consists of two or more subsystems,
superpositions of its states can be either separable or entangled [1]. The quantum
state of a bipartite system, i.e. a system consisting of two subsystems A (located at
Alice’s lab) and B (located at Bob’s lab), is an element of the tensored Hilbert space
H = Ha ® Hp. A pure bipartite state | V) € Ha ® Hp is called separable if and
onlyif | ) = |a) ® | b), where |a) € H4 and | b) € Hp. Itis entangled otherwise.

A mixed bipartite density matrix o, acting on H 4 ® H p, is called separable if and
only if it can be written as [2] 0 = Y, pil a;)(a; | ® | bi)(b; |, with |a;) € H4 and
| bi) € Hp. Itis entangled otherwise. Here the coefficients p; are probabilities, i.e.
0< pi<land Zi pi = 1.In general (g; |a;) # §;;, and also Bob’s states need not
be orthogonal. This decomposition is not unique. Note that a mixed separable state
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may contain classical correlations, but no quantum correlations (entanglement), see
the reviews [24-26] and general textbooks on quantum information, e.g. [27-29].
The definition of a separable state can be interpreted as follows: as a separable
state is a statistical mixture of projectors onto product states, Alice and Bob can
create a separable state locally in their corresponding laboratories, with the help
of communication over a classical channel (e.g. a telephone). In other words, any
state that can be prepared without interaction of the subsystems is not entangled. In
order to create entanglement, the subsystems have to interact via some entangling
(non-local) Hamiltonian [3]. When a Hamiltonian acts for a certain time, one can
consider its action as a quantum gate. The most simple quantum gate that allows to
entangle two qubits (any two-level system can be considered as a qubit) is the CNOT
gate, with the truth table | 00) — |00), |01) — |01),]10) — |11),|11) — | 10),
i.e. the second qubit (target) is flipped if the first qubit (control) is in state | 1).
A simple quantum network, consisting of a Hadamard gate, with the truth table
10) — %qm +1),1) —> \/%“0) — | 1)), applied to the first qubit, and
a subsequent CNOT gate acting on both qubits, creates from the four possible
inputs | 00), | 01), | 10), | 11) the four (maximally entangled) Bell states | ®T) =

1 — 1 _
55 (100) + [11)), |¥F) = %(IOI) +110), [@7) = —=(100) — [11)), [W™) =

%2(| 01) — ] 10)), respectively. All quantum networks can be built from a certain
set of one- and two-qubit gates (universality theorem, see, e.g. [27]). Thus, the main
experimental challenge for the creation of entanglement lies in the realisation of
two-qubit quantum gates with low noise. Nowadays it is routine to entangle two
qubits, represented by photons (» light quantum), atoms or ions, so the experi-
mental attention moved towards creation of entanglement between more than two
subsystems.

The above general definition of separability vs. entanglement holds for bipar-
tite quantum states, but can be generalized to multipartite quantum states (states
of composite systems with more than two subsystems). However, for multipartite
states it is not sufficient to distinguish only between separable and entangled states,
as the structure of the set of states is much richer than that: already for quantum
systems composed of three qubits there are four different types of states: separable
states, biseparable states (i.e. two of the three subsystems are entangled with each
other, while the third one is separable from the others), and two classes of genuinely
tripartite entangled states (each subsystem is entangled with both others): the GHZ-
class [4] and the W-class [5]. A typical » GHZ state consists of a superposition
of two product states, where each of the three qubits in the first term is orthogonal
to the corresponding one in the second term, e.g. | GHZ) = %ﬂ 000) + | 111)).
A typical W state consists of a superposition of three terms that are permutations of
each other and have one excitation each, i.e. | W) = %ﬂ 001) + |010) + | 100)).
The entanglement of a GHZ state is more fragile (with respect to the loss of one
subsystem) than that of a W state: tracing out one of the three particles leads to a
separable state of the remaining two particles for a GHZ state, but to an entangled
state for a W state. Mixed states of three qubits can be classified according to their
decomposition into projectors onto pure states [6]. For more than three subsystems
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the number of entanglement classes grows accordingly. When creating multipartite
entanglement, one is mainly interested in that type of entanglement where all sub-
systems are entangled with each other (genuine multipartite entanglement).

The task of controlled creation of multipartite entanglement is very challeng-
ing, due to the impediment of » decoherence. At present quantum optical methods
provide the most advanced experimental tools to engineer and control entangle-
ment. Entanglement between atoms and photons has been created in a cavity [7, 8].
Here, a 3-particle GHZ state was produced by first creating a Bell state of an atom
and a cavity mode (photon), and then entangling this Bell state with another atom.
Photons (» light quantum) can be entangled with each other via the non-linear pro-
cess of parametric downconversion. Interference of independent photon pairs and
conditional detection allowed to create a 3-photon GHZ state [9] and a 4-photon
GHZ state [10]. Recently, even a 5-photon GHZ state has been realised in the
laboratory [11]. Another method to entangle polarised photons consists of using
a strong pump power in parametric downconversion, and thus reaching a reasonable
probability for simultaneous emission of four entangled photons. In this way, a 4-
photon singlet state [12] (which is invariant under simultaneous basis rotations) and
a 3-photon W state [13] were produced. - The record in the number of entangled
particles is held by the implementation with ion traps. Here, the ions are entangled
via a collective excitation mode (phonon bus) [14]. Already in 2000 it was possible
to create a 4-particle GHZ state [15]. Meanwhile even a GHZ state of 6 ions has
been achieved [16]. The class of W states has first been produced with 3 ions [17],
and recently even an 8-qubit W-state has been created [18].

In any experiment that aims at creating entanglement one also has to take into
account the existence of noise, and thus one needs a method to prove that the pro-
duced state is indeed entangled. Here, three methods are of importance: first, one
can perform state tomography, i.e. one measures every element in the » density
matrix and then uses theoretical tools to determine whether the density matrix is en-
tangled. Second, one can perform a Bell inequality test: if a Bell inequality (» Bell’s
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Fig. 1 Measuring an entanglement witness for three qubits: local measurement directions are as
indicated, where o; are the Pauli operators. The expectation value (W) is a certain function of all
these probabilities [21]. Source [23]
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theorem) is violated, the state is entangled. Note, however, that this is not an optimal
criterion for the detection of entanglement, because there exist states (even states of
two qubits) that do not violate any Bell inequality [2]. Third, one can use the tool
of so-called entanglement witnesses. Entanglement witnesses are Hermitean opera-
tors that are constructed such that they detect entanglement: they lead to a positive
expectation value for any separable state, but have a negative expectation value for
some entangled states [19,20,26]. An entanglement witness is an observable and
can be decomposed into local measurements [21]. Therefore witnesses provide a
simple tool for entanglement detection: a negative expectation value of a witness im-
plies the existence of entanglement [22]. Regarding multipartite quantum systems,
witnesses have been constructed that prove the existence of genuine multipartite en-
tanglement [6]. For example, for 3 qubits YW =2/3 - 1 — | W)(W | is a witness that
detects noisy W-states. Here, 2/3 is the maximal squared overlap of a W state with
any pure biseparable state, and therefore the witness V' has a positive expectation
value for all biseparable states.

As an example for the creation of entanglement with polarised photons, and
the detection of entanglement via witnesses we show data from [23]. Here, a
3-partite W state was produced, and the witness ¥V given above was measured,
by collecting results from local coincidence measurements in different polarisation
directions, as indicated in the figure. The expectation value of V¥V was determined as
(W) = —0.197 £ 0.018. This value is higher than the theoretically expected one of
—0.333, but this can be explained by noise that systematically increases the expec-
tation value. The negative expectation value clearly proves the existence of genuine
3-partite entanglement.

See also entanglement; entanglement purification and distillation; entropy of
entanglement.
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Davisson—Germer Experiment

Friedel Weinert

The Davisson—Germer experiment (1927) was the first measurement of the wave-
lengths of » electrons. C. J. Davisson, who worked in the Bell Research Labora-
tories, received the Nobel Prize in Physics for the year 1937 together with George
P. Thomson from the University of Aberdeen in Scotland, who independently also
found experimental indications of electron diffraction. According to the Copen-
hagen Interpretation of Quantum Mechanics, » wave-particle duality leads to parti-
cles also exhibiting wave-like properties like extension in space and interference.

Clinton J. Davisson (1881-1958) and Lester H. Germer (1896-1971) investi-
gated the reflection of electron beams on the surface of nickel crystals. When the
beam strikes the crystal, the nickel atoms in the crystal scatter the electrons in
all directions. Their detector measured the intensity of the scattered electrons with
respect to the incident electron beam. Their normal polycrystalline samples exhib-
ited a very smooth angular distribution of scattered electrons. In early 1925, one of
their samples was inadvertently recrystallized in a laboratory accident that changed
its structure into nearly monocrystalline form. As a result, the angular distribution
manifested sharp peaks at certain angles. As Davisson and Germer soon found out,
other monocrystalline samples also exhibited such anomalous patterns, which dif-
fer with chemical constitution, angle of incidence and orientation of the sample.
Only in late 1926 did they understand what was going on, when Davisson attended
the meeting of the British Association for the Advancement of Science in Oxford.
There Born spoke about de Broglie’s » matter-waves and Schrodinger’s » wave
mechanics. Their later measurements completely confirmed the quantum mechani-
cal predictions for electron wavelength A as a function of momentum p: A = h/p.
But their initial experiments (unlike G.P. Thomson’s) were conducted in the con-
text of industrial materials research on filaments for vacuum tubes, not under any
specific theoretical guidance.

The phenomenon of electron diffraction is quite general and can be explained by
the wave nature of atomic particles. Planes of atoms in the crystal (Bragg planes)
are regularly spaced and can produce a constructive interference pattern, if the so-
called Bragg condition (nA = 2d sin# = D sin ¢, where d is the spacing of atomic
planes and D is the spacing of the atoms in the crystal) is satisfied. This condition
basically states that the reflected beams from the planes of atoms in the crystal will
give an intensity maximum, or interfere constructively, if the distance, which the
wave travels between two successive planes (2 d sin 0), amounts to a whole number
of wavelengths (nA, n = 1,2,3...). This is illustrated in Fig. 1.
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Fig. 1 Davisson-Germer Experiment: Scattering of electrons by a crystal for 54 eV electrons

In their experiment, Davisson and Germer found that the intensity reached a max-
imum at ¢ = 50° (for an initial kinetic energy of the electrons of 54 eV, normal
incidence as indicated and ¢ as the scattering angle). From a philosophical point
of view this experiment reveals a striking feature. It demonstrates the existence of
de Broglie waves (» de Broglie wavelength). Yet we can speak of causation, not
in a deterministic but in a probabilistic sense. There is clearly, on the observational
level, a conditional dependence of the intensity of the reflected beam on the set of
antecedent conditions. These antecedent conditions are also conditionally prior to
their respective effects. There is of course no local causal mechanism, as the causal
situation covers a stream of particles. There is only a certain likelihood that one
particular particle in these experiments will be scattered in a particular direction.

But sufficiently much is known about scattering of atomic particles to estab-
lish a causal dependence between the antecedent and consequent conditions. In the
Davisson—Germer experiment the wavelength of the electron beam, scattered at 50°,
is 0.165 nm. This is the effect to which specific antecedent conditions correspond:
the electron beam has initial kinetic energy of 54 eV; the lattice spacing of the nickel
atoms is known, from which the spacing of the Bragg planes can be calculated; the
condition for constructive interference is also known. There is quite a general de-
pendence of the interference effects on the regular spacing of the atom planes in the
crystal. It is used regularly in the study of atomic properties and is completely anal-
ogous to the use of X-ray diffraction by Max von Laue, Paul Knipping and Walter
Friedrich in 1912. Under certain conditions, particles such as electrons thus exhibit
wave-like characteristics like electromagnetic radiation.
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De Broglie Wavelength (A = h/p)

Bruce R. Wheaton

Initially a thought in the thesis of young Louis de Broglie in 1923 for his doctor-
ate from the Sorbonne. Attempting to reconcile special relativity with the quantum
transformation relation (QTR), de Broglie assumed a hypothetical “phase wave”
traveling faster than light that guides the physical displacement of an » electron (see
» matter waves). In the thesis he derived its putative wavelength in the degenerate
case of dipole oscillation, equal to » Planck’s constant divided by the momentum
of the linearly oscillating particle; at the same time deriving the action-integral rep-
resentation of the » Bohr atom’s orbital states by forcing every elliptical orbit to
contain an integral number of phase wavelengths, as in Fig. 1.

With de Broglie, others (Einstein » light-quantum, Schrodinger » wave
mechanics and Dirac » QED) recognized the generality of the de Broglie wave

Fig. 1 Louis de Broglie’s “beautiful result” of 1923 imagining a sinewave. Figure (c) 2009 TAP-
SHA, with thanks to Lauren Zimmermann
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representation to all micro-processes of matter, confirming a missing permutation
of matter with light in » wave-particle duality. Some of the most important precur-
sors to A = h/p were, in fact, concerns about the apparent » light-quantum behavior
of high-frequency X- and y-rays.

Although the de Broglie wavelength, which predicted the electron diffraction
found in 1927, applies only on the most microscopic level, it lately has come to
have practical consequences. At extremely low temperatures (<10~?°K achieved by
evaporative cooling) the » wave packet of particles increase in wavelength, spread,
and combine with others producing a sea of undifferentiated bosons (» Bose—
Einstein statistics) (rather than the non-fungible fermions (» Fermi-Dirac statistics)
they may have started as) in what is called a » “Bose—Einstein condensate” or BEC.
It has a macroscopic de Broglie wavelength (up to 30 wm so it can actually be pho-
tographed with visible light) because the entire assemblage of millions of atoms
functions as a single » wave function. See Fig. 2.

On the down-slope approach to this transition from atomic to Bosonic hierar-
chy lie » superconductivity, » superfluidity, the lowest temperatures yet attained
and a demonstrated matter-wave “laser” (masem?) One of the most remarkable
characteristics of a BEC is its phenomenally large effective group index of re-
fraction (vg ~ didv so slows by as much as 10~%) which, in almost stopping an
incident light beam, may lead to information storage in un-heard of density albeit
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Fig. 2 How the de Broglie wave behaves on the downslope of temperature. From W. Ketterle,
Bose-Einstein Condensation: Identity Crisis for Indistinguishable Particles. Quantum Mechanics
at the Crossroads (Berlin: Springer 2007). p. 160
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only in a momentary BEC. Other properties may lead to unprecedentedly fast
multi-processing super-conducting computers, inter alia,from this quite literally
“quintessential” new state of matter.
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Decoherence

E. Joos

The term decoherence is used in many fields of (quantum) physics to describe the
disappearance or absence of certain superpositions of quantum states. Decoherence
is a consequence of the unavoidable interaction of virtually all physical systems
with their environment. In particular, macroscopic objects must be strongly entan-
gled if quantum theory is universally valid [1,2]. Decoherence then explains within
quantum theory why macroscopic objects seem to possess their familiar classical
properties. No additional classical concepts are required for a consistent quantum
description. Decoherence explains, for example, why particles appear localized in
space (hence there is no need for an additional particle concept). Contradictory lev-
els of description (classical and quantum) are no longer needed, instead a consistent
description in terms of a universal » wave function can be pursued.

The basic mechanism of decoherence is the unavoidable and generally irre-
versible disappearance of certain phase relations from the states of (local) systems
by interaction with their environment according to the » Schrodinger equation.
Equivalently, decoherence describes irreversibly increasing entanglement as a con-
sequence of a unitary global dynamics. Phase relations between certain states of a
system are preserved globally (because of the assumed unitarity), but are no longer
locally accessible, thus leading to apparent non-unitarity — or, in other words — to
an apparent violation of the quantum » superposition principle. This non-unitarity
can be described as a disappearance of non-diagonal (in a certain basis) elements
of the » density matrix characterizing the local system. The two most important
consequences of decoherence are suppression of interference and the selection of a
set of preferred (dynamically stable) states.

The mechanisms underlying decoherence phenomena have much in common
with quantum measurements. In the paradigmatic example of a macroscopic mass
point scattering photons (» light quantum), and molecules, recoil is negligible like
in an “ideal” measurement. This scheme also represents the case of “pure” deco-
herence: only the state of the environment changes, depending on the state of the
“measured” object (here the position of the mass point).

Different components |n) of the state of the considered system may influence the
environment ® in different ways,

ch|n>) Do) = D caln) [ @u (1))

The resulting global superposition still contains phase relations connecting all com-
ponents, but these are now a property of the total state and no longer relevant locally.
Generically, phase relations originating from the initial superposition are distributed
over an increasing number of degrees of freedom, rendering this process effectively
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irreversible. Local observations are operationally characterized by the system’s den-
sity matrix ps which changes according to

t
ps =D cmenlmy(n] —> > cren (| Pn)m)(n] .
n,m

n,m

Non-diagonal terms are reduced by a factor [(®,,|P,)| < 1, which represents
the overlap of corresponding environmental states. If these are approaching
orthogonality,

<¢ﬂ’l |<I)n> ~ 51/}’1’19

the density matrix becomes approximately diagonal in this basis,

ps = Y leal*|n) (n].
n

The result of this interaction is a density matrix which seems to describe an ensem-
ble of states |n) with the respective probabilities [3]. However, this density matrix
only represents an apparent (non-statistical) ensemble (“improper mixture”), not
a genuine ensemble of quantum states (» ensembles in quantum mechanics). Co-
herence is not lost but is only delocalized into the larger system. The basis {|n)}
characterizing dynamically stable states is defined solely by the properties of the
interaction. These states are inert against further decoherence (with respect to the
same basis). A complete treatment of realistic cases has to include the Hamiltonian
governing the evolution of the system itself (as well as that of the environment),
leading to a large variety of consequences [11,12,13].

Some fundamental examples of decoherence are the following.

e Localization and trajectories
Coherence between macroscopically different positions of macroscopic ob-
jects disappears very rapidly because of the strong influence of scattering
processes [2]. Trajectories thus emerge just as » particle tracks in a bubble
chamber as a consequence of the locality of interactions.
In this way the equations of reversible classical mechanics are derivable from
irreversible decoherence processes. In the macroscopic domain, decoherence is
a much faster process than dissipation.

e Molecular configurations and robust states
Most molecules appear to have a shape. Obvious examples are chiral molecules
such as sugar — in contrast to small molecules (such as ammonia) appearing
mostly in energy eigenstates. Parity (energy) eigenstates of a symmetric molec-
ular Hamiltonian would immediately decohere (into local mixtures) because the
shape of the molecule is monitored by the environment. Additional stabilization
may be achieved by the » Zeno effect. The robustness of these molecules
resembles a classical (“macroscopic”) state. Again, in this way classical prop-
erties are created by decoherence.
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e » Superselection rules
Local charges are always accompanied by their Coulomb field (Gauss law). This
may explain the charge superselection rule (usually derived from a kinematical
constraint), if viewed as caused by dynamical coupling between local charge and
Coulomb field. If a charge is decohered by its own field, a charge superselection
rule does not need to be postulated separately. In quantum gravity, superpositions
of different masses should be decohered by coupling to the spatial curvature.

e Quantum and classical fields
Fields are decohered by coupling to matter (charges). » Colerent states are
usually the most stable states [7, 8] under decoherence, therefore they represent
classical fields.

e Quantum gravity and space-time
Entangled superpositions of space-time curvature and matter necessarily emerge
in all versions of » quantum gravity. Even if the precise form of a theory of
quantum gravity is not known, decoherence should explain the classical structure
of spacetime [9,14].

e » Quantum jumps
Exponential decay represents the textbook example for quantum “randomness”,
but an exactly exponential decay law is incompatible with the Schrédinger equa-
tion (this is related to the » Zeno effect). Instead, the Schrodinger equation leads
to superposition of different decay times (as observed in cavities). As soon as
decay fragments interact with the environment, decay becomes irreversible (and
usually exponential). The appearance of “quantum jumps” thus has its origin in
very small, but finite decoherence times.

e Classical and » quantum chaos
According to the » correspondence principle there should exist quantum states
which mimic the behavior found for classically chaotic systems. Already the
breakdown of » Ehrenfest theorems shows that this is not the case. Instead, open
systems show a behavior resembling classical chaos. Omission of decoherence
has been shown to lead to unacceptable » Schrodinger cat like states for large
objects (such as the chaotically tumbling moon Hyperion).

e Quantum Computers
Quantum computing schemes depend decisively on controllable unitary evolu-
tion of certain states (“qubits”). Since decoherence irreversibly delocalizes the
required phase relations, it represents a major challenge to the practical realiza-
tion of quantum computers. Error correction schemes try to reconstruct the lost
coherences by scaling up the system with redundant bits, thereby possibly caus-
ing even larger sensitivity to decoherence.

e Decoherence in the brain
The quantum superposition principle would allow “non-classical” states, like that
of a superposition of a neuron firing and not firing. Quantum coherence effects
in the brain have been repeatedly suggested. Quantitative estimates [10] showed,
however, that the brain is such a “hot” environment that any non-classical states
would decohere on a very small timescale. This dynamical selection of certain
states is important for defining observers (which play a crucial role for some
interpretations) in a quantum framework.
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Decoherence represents a straightforward application of quantum concepts (in
particular, wave function(al)s) to all physical objects. The essential new feature of
quantum states, namely (kinematical) quantum non-locality, is responsible for all
local consequences of » entanglement. Therefore, decoherence does not have any
classical analogue, while it is also based on an arrow of time in the form of a special
(cosmological) initial condition.

Decoherence can explain why and how within quantum theory certain objects
(including fields) appear classical to “local” observers. It can, of course, not explain
conscious observers.

In many situations decoherence leads to a selection of a special set of dy-
namically stable (robust) states, which are relatively stable, thereby representing
“classical” states (in a quantum framework). Classical properties are then not an a
priori attribute of objects, but only come into being through the irreversible interac-
tion with the environment. If all physical states are expressed in terms of quantum
states, all the well-known paradoxes (» errors and paradoxes in quantum mechan-
ics) which arise from intermingling incompatible notions can be avoided. Secondary
concepts, such as “observable” can be derived from the dynamics of quantum states.
Traditional, but ill-defined concepts, such as dualism, » Heisenberg uncertain rela-
tions, or » complementarity principle appear obsolete from this point of view.

Because decoherence acts, for macroscopic systems, on an extremely short time
scale, it appears to work discontinuously, although decoherence is a smooth process.
This is why “events”, “particles”, or “‘quantum jumps” seem to be observed. Only in
the special arrangement of experiments, where systems are used that lie at the border
between microscopic and macroscopic, can this smooth nature of decoherence be
observed [4, 5, 6].

There are some common misinterpretations of decoherence. First, decoherence
does not mean a disturbance of the system by the environment (‘“noise”). Quite to
the contrary, in the case of “pure” decoherence, the system disturbs the environment.
The local consequences result solely from quantum » nonlocality.

Phenomena which mimic decoherence also arise in a statistical description using
either an ensemble of differently prepared initial states or different Hamiltonians.
This may lead to similar effects (e.g. disappearance of interference fringes), but has
nothing to do with decoherence proper [11].

Decoherence leads to only an apparent collapse, in contrast to what would be tra-
ditionally expected in a quantum measurement. This apparent collapse is, however,
operationally indistinguishable from a real collapse because of the irreversibility of
decoherence [15]. See also » Experimental Observation of Decoherence.
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Degeneracy

Daniel M. Greenberger

In quantum mechanics, when there is more than one solution to the » Schrodinger
equation for a given energy, the energy level is said to be degenerate. In one dimen-
sion, if V (x) is even, i.e., V(—x) = V(x) (and V (+o0) — 0), then for bound states
(E<0, ¥(co) — 0), there will generally be one solution. For unbound states,
(E>0, ¥ (o0) finite), there are two solutions for a given E, one an even function
of x, and one an odd function of x (y/(—x) = —(x)), or any linearly independent
combination of the two, so that for unbound solutions there is a two-fold degeneracy.

In more general circumstances, such as in 3-D problems, if there are several de-
generate solutions, and one makes a unitary transformation between any of them,
Yi = R;j¥j, then R will commute with the Hamiltonian, [R, H] = 0, and so R,
which usually generates some symmetry group, will be a constant of the motion.
For example, if the (3-D) potential is spherically symmetric, V = V (r), the angu-
lar part of the solution to the Schrédinger equation will be the spherical harmonics,
Yom (0, @), which are degenerate, and one can transform between them with the
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different components of L, the angular momentum, » Spin; Stern—Gerlach experi-
ment; Vector model which is a constant of the motion, and is also the operator which
generates rotations, and mixes up the Yy,,.

Occasionally the symmetry is non-existent, or more usually, not apparent, and
the degeneracy is called “accidental”. A famous example is the Kepler (Coulomb)
problem, with the potential V = —a/r, whose energies are E,, = —Eq/ n?, which
are independent of £. This contrasts with the case for any other potential V = (ar"),
for which E = E,. But for this special potential there is a hidden symmetry that
explains this, and there is another constant of the motion, the Runge-Lenz vector, R,

Relass. = —p x L —F,
mo
1 N
Rquant. = =—@ xL—LXxp)—r,
2ma

where 7 is the unit vector r/r. The quantum form differs from the classical one by
having been symmetrized, so as to be Hermitian. (An even deeper connection exists,
in that if the system is imbedded in a 4-D Euclidean space, then L and R are the
generators of rotations.)

The connection between the degeneracy of the Hamiltonian and the existence
of » symmetry groups is very profound, and leads, e.g., to the classification and
representations of crystal symmetries.

Also, when one adds a perturbation to a symmetrical system, the perturbation
generally has a lesser symmetry than the original Hamiltonian, and this leads to
the splitting of the degeneracy. In the unperturbed Hamiltonian, any independent,
orthogonal combination of the degenerate solutions is an equally good basis for
describing the system. But under the lesser symmetry of the perturbation, only a
single combination, or subset of combinations of the solutions will still be proper
to describe the system with the perturbation (i.e., will make the perturbation matrix
Vij diagonal).

Furthermore, if there is a symmetry operator A that commutes with both the
unperturbed Hamiltonian, and the perturbation, so that

Hyln,a) =E,|n,a), Aln,a)=aln,a),
[A, H)l=[A,V]=0,

then for the perturbation,
(n. d'|Vin,a) =840 f(n),

so that symmetries dictate whether or not the perturbation can split the degeneracy.

So, as a general rule, it is the symmetries of the system that determine the struc-
ture of the Hamiltonian, and they are revealed in the degeneracy of the solutions.
For a detailed analysis of the relation between symmetry and degeneracy, see Elliot
and Dawber, below.
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Delayed-Choice Experiments

A.J. Leggett

The phenomenon of » “wave-particle duality” is at the heart of quantum mechanics,
indeed has been described as “the one real mystery” of the subject. If we consider
the standard Young’s slits setup shown in Fig. 1, we may imagine for definiteness
that the experiment is done with electrons (» Double-slit Experiment), then in the
absence of “inspection” the probability of arrival of an electron on the final screen

UERIRS

Souree of

Fig. 1 The standard Young’s slit setup. We may or may not choose to ‘inspect’ whether a given
electron passes through slit B or slit C; the brackets indicate the optionality of the observation
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Fig. 2 An experiment illustrating “wave-particle duality” for photons. The brackets around the
screen indicate that it may be either left in place (to indicate the “wave” aspect) or removed (to
indicate the “particle” aspect)

shows the usual interference pattern — the electron appears to behave as a wave. If
on the other hand we arrange to inspect which path is followed (e.g. by shining light
on the intermediate slits as in the Heisenberg “gamma ray microscope” thought ex-
periment » Heisenberg microscope; which-way experiments), then the electron is
always found, like a classical particle, to take one route or the other, and under these
conditions no interference occurs at the final screen. If we replace the » electrons
with photons (» light quantum), we expect a similar duality to manifest itself; how-
ever, in this case, since it is very difficult to detect a photon without destroying it,
it is more convenient to try to display the “particle” aspect by removing the final
screen and replacing it by a pair of detectors as indicated in Fig.2; again we will
find that one detector or the other clicks, never both.

If D; clicks we can infer that the photon in question came through slit C, if
D; clicks that it came through B. As is well known, Bohr interpreted experiments of
this type to indicate that the very nature (‘“wave” or “particle”) of elementary objects
such as electrons or photons depends on the arrangement of the macroscopic exper-
imental apparatus used to examine them; the arrangements needed to see wavelike
behavior on the one hand and particle-like behavior on the other are always mu-
tually exclusive (“complementarity”). This is particularly obvious in the example
of the photon, and for definiteness I will from now on restrict myself to this case,
although an entirely parallel discussion could be given for the case of an electron.

(See Consistent histories, Ignorance Interpretation, Ithaca Interpretation, Many
Worlds Interpretation, Modal Interpretation, Orthodox Interpretation, Transactional
Interpretation).

Is it necessary that the photon should as it were know in advance of entering the
apparatus whether the latter has been set up in the “wave” configuration (Fig. 2) with
the screen S in place or the “particle” one (S removed)? This question was already
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raised by implication [1] within a few years of the birth of quantum mechanics,
and in 1978 John Archibald Wheeler (1911-2008) [2] pointed out that it can be
answered, at least in principle, by an experiment in which we leave the decision as
to which configuration to use until after the » wave packet representing the photon
is well within the apparatus (let us say to the right of point X in Fig. 1). Such an
experiment is called a “delayed-choice” experiment, and several have been done
over the last 30 years, not only on photons but also on hydrogen atoms » Bohr’s
atomic model and neutrons; without exception they have indicated that it does not
matter whether the choice of configuration is made well in advance or only at the
“last moment”, the counting statistics are quite independent of this.

In the case of photons, if the dimensions of the apparatus are of the order of 3 m
(a fairly typical value), the transit time is about 10 ns, and it is therefore essential, in
conducting a meaningful delayed-choice experiment, that the time needed to make
the “choice” should be substantially smaller than this. (For atoms and neutrons the
requirement is somewhat less stringent). This obviously rules out the possibility of
physically inserting or removing a screen as in Fig. 2; however, it turns out that one
can get around this difficulty by exploiting the polarization degree of freedom. (For
a different technique which does not rely on this, see below). The basic idea is to
correlate (or decline to correlate) the path taken by the photon with its polarization,
a choice which can be realized over a few nanoseconds with the help of a device
such as a Pockels cell (which can rotate the plane of polarization by 90°).

A possible schematic realization is shown in Fig. 3: The photons emitted by the
source are polarized (for example) in the plane of the paper, and in the absence
of the Pockels cell (or if it is in place but not activated) this polarization is main-
tained throughout the experiment for both beams, so that they interfere at BS, with a
relative phase which is controlled by the phase shifter. Thus, under these conditions
the output of the detector D (for example) is a periodic function of the phase differ-
ence introduced by the shifter (“wave” behavior). If on the other hand the Pockels
cell is activated, the polarization of a photon in the lower beam is rotated out of

Phase
? shifter

(s v

BS: X0 BS,
—_|

? Pockels
Cell

Fig. 3 Schematic realization of a polarization-mediated delayed-choice experiment. The notation
to the right of the Pockels cell indicates that the polarization may, depending on our choice, be
either in-plane or out-of-plane
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the plane of the paper, so is perpendicular to that of the upper beam; the path taken
by a given photon is now effectively “labelled” by its polarization. Under these
conditions there can be no interference at BS, (which we assume is polarization-
insensitive), and the output of detector D is exactly the sum of what it would be
for each of the two beams separately; since for each beam alone the output is inde-
pendent of the position of the phase shifter, the total output of D; when the Pockels
cell is activated is similarly insensitive to the latter (“particle” behavior). The cru-
cial point is that the cell can be activated after the incoming photon wave packet has
split at BS;.

Over the last twenty years a number of experiments along these general lines
have been done; the one closest to Wheeler’s original proposal is probably that of
ref. [3], which uses a setup similar though not identical! to that of Fig.3. In this
experiment the length of the interferometer was 48 m, and the choice as to whether
or not to activate the switching cell was made by a quantum random number gen-
erator (QRNG) close to the far end; with this geometry the photon enters the future
light cone of the random choice event long after it has passed the initial beam split-
ter. The use of the QRNG is designed to ensure that the photon has no way of
“knowing” the choice ahead of time. The results are clear-cut: If one selects those
photons for which the “wave” configuration was realized and plots the dependence
of the output of one of the detectors on the phase shift between the two beams,
one finds a well-defined sinusoidal pattern with visibility of 94%. If on the other
hand one selects those photons which experienced the “particle” configuration, the
corresponding plot is flat within experimental error.

An interesting variant of the “delayed-choice” experiment was reported in
ref. [4]. The schematic setup is shown in Fig. 4: the “source” is prepared in such a
way that there are nonzero mutually coherent amplitudes for a pair of photons to be
emitted back-to-back by either of two regions A and B. Photon no.1 is registered by
the screen S long before photon no.2 hits BS| or BS». The point of this arrangement
is that any photon detected by D3 (D4) could only have come from source A(B);
on the other hand, a photon arriving in D; or D> could have come from either
source. Under these conditions, if we select only those photons 1 whose partners
2 were detected in (say) D4 (let’s call this the “Dy4-correlated subensemble” of
photons 1), we find that the distribution on the screen S is flat; on the other hand,
if we select only those whose partners were detected in (say) D (“Dj-correlated”
subensemble), we obtain a well-defined fringe pattern (with a complementary pat-
tern for those whose partners were detected in Dy). At first sight this is puzzling,
since the detection of photon 1 on screen S took place well before the corresponding
photon 2 “knew” whether it would be transmitted or reflected by BS1/2 and thus
whether it will be detected by D3 /D4 or by Dy /D».

In fact, there is no real paradox here (or in any of the other delayed-choice ex-
periments); a consistent application of the quantum measurement axioms predicts

! Note in particular that in contrast to the setup of Fig. 3, in ref. [4] the activation of the electro-
optical cell corresponds to the “wave” configuration and its non-activation to the “particle”
configuration.
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BS,

Fig. 4 The experimental arrangement of Kim et al. [4]

precisely the experimentally observed results. In particular, let us consider a case in
which photon no.1 is detected at a point where the pattern corresponding to (say) the
Dj-correlated subensemble has a node. When we say that the photon is “detected”,
we imply that it has induced a (quasi-) macroscopic event and thus satisfied what
is usually considered the criterion for having undergone a “measurement”. If at this
point we apply the standard » projection postulate to the two-photon system, we
find that following the projection the » wave function of photon 2 is automatically
such that its amplitude to arrive in Dy is zero, so everything is consistent. What the
“delayed-choice” experiments really illustrate, in a spectacular way, is the pitfalls
of applying the projection postulate at too early a stage in the game, while nothing
has been registered at the macroscopic level and there is still a possibility of mutual
interference of the possible alternatives.?
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Density Matrix

Leslie Ballentine

A matrix representation of the » state operator. So named because in the posi-
tion basis its diagonal elements are equal to the position probability density. This
name is older than the modern term state operator, and is still frequently used in
its place, especially in many-electron theory and » quantum chemistry. The name
density matrix is not entirely accurate, since in the position basis it is not really
a matrix, but rather a function of two continuous variables. If a discrete basis is
chosen (such as the spin basis), then it becomes a genuine matrix, but its diagonal
elements are probabilities rather than densities. » States, pure and mixed, and their
representation.

Density Operator

Werner Stulpe

Density operator, an operator used to describe (mixed) quantum states. A density
operator [1-6], also called statistical operator or — somehow misleading — density
matrix, is a positive trace-class » operator p of trace 1 acting in some separable
complex » Hilbert space H; i.e., p is a linear operator defined on H with values in
H that satisfies p = p*, (plpg) > Oforall ¢ € H,and trp = D, (¢ilppi) = 1,
@1, @2, ... being a complete orthonormal system in H. In particular, p is a com-
pact self-adjoint » operator; in consequence, a density operator has the spectral
decomposition p = ), A; Py, (» self-adjoint operator) where Aq, A2, ... are the
nonzero eigenvalues of p, counted according to their multiplicity and arranged
accordingto Ay = Ay > ... >0, Zi Ai =1, x1, x2, - - . is an orthonormal system
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of corresponding eigenvectors (supplemented by the eigenvectors belonging to the
possible eigenvalue 0, the system xi, x2, ... is complete), and P,, = |x;){x;| are
the corresponding one-dimensional orthogonal projections (» projection). More-
over, for a bounded linear operator A in H, tr pA exists (» operator) and tr pA =
D Ai{xilAxi); if in addition A is self-adjoint, then tr p A is a real number.

The set S(H) of all density operators is convex, i.e., the convex linear combi-
nation p = ap; + (1 —a)pz of any p1, 02 € S(H), 0 < o < 1, belongs to
S(H). The set S(H) is even o-convex, i.e., for any sequence pg, p2, ... of density
operators and any sequence of numbers satisfying 0 < o; < land ) oy = 1,
p = Z?il a;p; € S(H) where the sum converges in the operator norm and even in
the trace norm (» operator). An extreme point of the convex set S(H) is a density
operator p that admits only trivial convex decompositions, i.e., p = ap;+ (1 —a)p2,
p1, 02 € S(H),and 0 < o < 1 imply p; = p2 = p. The extreme points of S(H)
are the one-dimensional orthogonal projections Py, = [) (¥, [[¥|| = 1. Physically,
the extreme points Py describe the pure states of conventional Hilbert-space quan-
tum mechanics (equivalently, a pure » state can be described by the unit vector v
which is uniquely determined up to a phase factor /%, & € R). A » mixed state is
described by a density operator that is not an extreme point. So S(H) can be con-
sidered as the set of all quantum states and the set ex S(H) of the extreme points
of S(H) as the set of all pure states. For p € S(H), the statement p € ex S(H) is
equivalent to p = p?.

For instance, if i1, ¥, ... is a nonorthogonal sequence of unit vectors and
a1, 02, ... a sequence of numbers satisfying 0 < «; < 1 and Zi o; = 1, then
p = ;i Py, Py, = |¥;)(¥il, is a density operator with a spectral decomposition
p = Y ; Ai Py, into mutually orthogonal states P,;. That is physically, the state p
can be prepared both as the » mixture of the states Py, , Py,,...inratioa; :ap : ...
and as the mixture of the states P, Py,, ... inratio A1, A2, .... Even the decom-
position of a density operator into orthogonal states is in general not unique, as the
example p = %(P¢l + Py,) = %(le + Py,) = %P shows where ¢1, ¢ and x1, x2
are two different orthonormal bases of a two-dimensional subspace X’ of H and P
is the orthogonal projection onto X. In particular, for spin-% systems, ¢ and ¢»
can be the eigenstates (eigenvectors) of the operator S; of the z-component of spin
whereas x; and x; can be the eigenstates of S;. The decomposition of a density
operator p € S(H) into mutually orthogonal pure states P,;, corresponds to the
spectral decomposition p = Zi Ai Py;, under the condition Ay > Ay > ... > 0
the spectral decomposition is unique if and only if the nonzero eigenvalues A; of p
are nondegenerate, i.e., of multiplicity 1. Besides the decomposition into orthogonal
pure states, every » mixed state p € S(H) can be decomposed in many ways into
pure states Py, not being mutually orthogonal [3], 50 p = Y, APy, = Y, & Py,
where 0 <o <land ), o = 1.

(Spectral decomposition, see » [gnorance interpretation; Measurement theory;
Objectification; Operator; Probabilistic Interpretation; Propensities in Quantum Me-
chanics; Self-adjoint operator; Wave Mechanics).

For a density operator p € S(H) and a bounded self-adjoint operator A sat-
isfying0 < A < 1,0 < trpA < 1 holds; in particular, if Q is an orthogonal
» projection, then 0 < tr pQ < 1. The orthogonal projections can be interpreted
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as ideal (sharp) yes-no measurements performed on quantum systems (» effect),
and tr p Q is interpreted to be the probability for the outcome ‘yes’ of the measure-
ment Q in the state p. If p is a pure state, i.e., p = Py, then trpQ = (¥ |QV).
Moreover, quantum observables (» observable) are traditionally described by (in
general unbounded) operators A; if E is the spectral measure of A (» self-adjoint
operator) and B a Borel set of the real line (e.g., an interval), then tr p E(B) is the
probability that a measurement of A in the state p yields a value in B. The mapping
i, defined by ,(B) = tr pE(B) is a probability measure on the Borel sets of R,
called the probability distribution of the observable A in the state p. Furthermore,
if tr p A exists, it is the expectation value of A (for a definition of tr pA in the case
of an unbounded operator A, see [7]).

A mixed state p = ), o; Py, can be established by preparing the pure states
Py, , Py,, ... with respective probabilities o, a2, . ... This preparation procedure
can be generalized. If a preparation device produces pure states P = Py whose
occurrence is subject to a probability distribution v on the set ex S(H) of all pure
states (i.e., i is a probability measure on the Borel sets of the one-dimensional
orthogonal projections), then the probability for the outcome ‘yes’ of a measure-
ment Q, Q = Q% = Q% is given by [(Q) = fexS('H) tr PQ u(dP). Replacing
Q in this equality by a general bounded self-adjoint operator A € B;(H) (» op-
erator), [ becomes a bounded linear functional on By (H). Moreover, [ is positive,
ie., I[(A) > Oforall A > 0, and [ is normal, i.e., for every sequence of operators
A, € By(H) suchthat A, < A+ and ||A,¢ — A¢| — Oforall ¢ € Hasn — oo
where A € Bs(H), [ satisfies [(A,) — [(A) as n — o0. Just the normal positive
linear functionals on B (H) can be represented by positive trace-class operators [6],
that is, [(A) = trpA where p > 0. Since [(A) = fexS(H) tr PA u(dP) and u
is a probability measure, p is of trace 1, i.e., p is a density operator. Hence, the
probability considered above reads /(Q) = f xSy [T PQ n(dP) = tr pQ where
p describes the underlying preparation procedure which is determined by u; for-
mally, one can write p = fex S(H) P 1(dP). In general, many different probability
distributions on ex S(H) give rise to the same quantum state p.

The states of quantum systems consisting of two subsystems with the respective
Hilbert spaces H and H» are described by the density operators acting in the tensor
product H; ® H» [3, 4, 8]. For every density operator p € S(H| ® Hz), there exist
a uniquely determined density operator p; € S(H1) such that, for all A € Bs(H1),
tr p(A®I) = tr p; A where [ is the unit operator of H>; A ® I are those observables
of the composite systems that concern only their first components. The operator p;
is called the reduced state of p w.r.t. H1 or the partial trace of p w.r.t. H>. The latter
name is related to the explicit representation o1 = 3_; ; 1 (i ® x| ¢; ® xx)|¢i) (¢,
where ¢1, ¢2, ... and x1, X2, ... are complete orthonormal systems in H; and H>,
respectively. Analogously, the reduced state of p w.rt. H> (the partial trace w.rt.
H1) is defined. The reduced states of a pure state p = Py € exS(H| ® H) are
pure if and only if v is of the form ¢ ® x in which case p; = Py and p2 = Py,.
If p = Py where ¥ € H; ® H> is not of the form ¢ ® x, i.e., if p is an entangled
pure state (» entanglement), then both the reduced states are mixed. In fact, for
every vector ¥ € H; ® H, there exist orthogonal systems ¢, ¢z, ... in H; and



Density Operator 169

X1, X2, ... in Hy such that = >, ¢y ® x; where oy > 0[3,4,21. If [y =1
and p = Py, then p; = ) ; i[> Py, and pr = Y |ai|?Py,. So the pure states
of S(H1 ® Hy) yield in general mixed reduced states. More generally, for a state
p = p1 ® p2, the partial traces are just p; and py; for an entangled state p (i.e., for
astate p € S(H| ® Hy) that is not of the form p; ® pz), both the partial traces are
mixed states.

A face F of the convex set S(H) is a subset of S(H) being closed under convex
linear combinations as well as under convex decompositions, that is, 7 € S(H)
is a convex set such that p € F, p = ap; + (1 — @)p2, p1, p2 € S(H), and
0 < a < 1 imply that p1, p» € F. The empty set and the whole set S(H)
are the trivial faces of S(H), and the extreme points of S(H) correspond to the
one-element faces of S(H). The set @ (S(H)) of all faces of S(H) can be ordered by
inclusion; it is obvious that the partially ordered set ®(S()) is a complete lattice.
The same holds true for the set @, (S(H)) of all faces of S(H) that are closed w.r.t.
the trace norm. For every orthogonal projection Q, Fp = {p € S(H) |[trpQ = 1}
is such a trace-norm closed face. Moreover, the mapping assigning the face F¢ to
every Q, is an order isomorphism between the orthocomplemented lattice P (H) of
all orthogonal projections (» projection, quantum logic) and the lattice ®,(S(H))
[3]; s0 @,(S(H)) is, as P(H), an atomic complete orthomodular lattice.
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Diffeomorphism Invariance

Christian Heinicke

Diffeomorphism invariance refers to the form invariance of tensor(-equations)s un-
der diffeomorphisms ([5], see also » covariance).

A diffeomorphism & is a one-to-one mapping of a differentiable manifold M
(or an open subset) onto another differentiable manifold N (or an open subset).
Moreover, ® (and its inverse ®~!) is differentiable. The concept of a diffeomor-
phism is intrinsically tied to the concept of a differentiable manifold. Here, we
are mainly concerned with the four-dimensional spacetime manifold. The curves
in Fig. 1 correspond to coordinate lines. There are two interpretations of the action
of a diffeomorphism. A passive diffeomorphism changes one coordinate system to
another one, like a cartesian to a polar coordinate system. Thus, one just changes the
description of one and the same manifold (M = N). An active diffeomorphism cor-
responds to a transformation of the manifold which may be visualized as a smooth
deformation of a continuous medium.

Now let a (tensor) field T be a solution of a diffeomorphism invariant field equa-
tion. By applying a diffeomorphism we obtain a transformed field T which still is a
solution to the field equation.

Passively interpreted, T and T describe one and the same field in different co-
ordinate systems. Passive diffeomorphism invariance is achievable by formulating
the fundamental differential equations of a theory in a coordinate free way. One
may argue that this is a purely mathematical task and involves no physics, i.e.
means no restriction to a theory (Kretschmann, 1917 [2]). But even if the “de-
coordinatization” may seem quite “harmless” the interpretation of the basic terms
of the theory is modified. Moreover, in specific cases, such as in the development of
general relativity, there can emerge substantial generalizations.

Interpreted as active transformation T and T describe two distinct fields in
the same coordinate system. “Distinct” here means that the field is “redistributed”
(or “spread differently”) over the manifold. From this point of view one would
say that the field equation has the property to allow for (local) symmetry or gauge
transformations of the field (» symmetries). Such local symmetries are not ensured
automatically by a coordinate free formulation but have to be enforced dynami-
cally (» gauge theories). Invariance under active diffeomorphisms raises important

Fig. 1 Passive vs.
active diffeomorphism:
re-coordinatization vs.
deformation
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interpretational questions. Do the (“gauge equivalent™) fields T and T represent
distinct physical situations? If so, does the (diffeomorphism invariant) theory fail
to prescribe the dynamics of the field uniquely? These questions are addressed in
the famous hole-argument, originally put forward by Einstein in 1913 in the con-
text of his search for the theory of general relativity [1]. Later, these difficulties
were circumvented by focusing on (gauge-) invariant observables. Nevertheless, the
values of fields alone can not be used to individuate points of the manifold. This
makes a realistic interpretation of the manifold as spacetime less tenable. Therefore,
diffeomorphism invariance (general covariance) plays an important role in the con-
text of the spacetime structuralism-realism debate [3].

Earman, Stachel, Norton revived the hole argument in view of modern develop-
ments in spacetime and gauge theories. The discussion still continues [4].
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Dirac Equation

Helge Kragh

The Dirac equation is a fundamental wave equation that satisfies the requirements
of the special theory of relativity. Shortly after the appearance of the » Schrodinger
equation, several physicists attempted to extend it to the relativistic domain. The
result — known as the Klein-Gordon-equation » relativistic quantum mechanics —
was however unable to describe » electrons correctly. Paul A.M. Dirac realized that
the formal structure of the Schrodinger equation, the form Hvyr = i hdy/dt, had to
be retained also in a relativistic theory, implying that the » Hamilton operator must
be of the first order in the space derivatives. By “playing around with mathematics”
he derived in late 1927 a wave equation which was linear in both space and time
derivatives. For a free electron he wrote it as (W /c + « - p + Bmoc)y = 0, where
the quantities & and 8 were 4 x 4 matrices. In later literature the matrices were often
designated y, (n =1, 2, 3, 4).
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As Dirac showed in his paper of 1928, the operators or matrices have the math-
ematical properties that yﬁ = land, for u # v, yuyv + »wyu = 0. In fact, it
were these relations that led him to the equation. Dirac had not originally thought of
» spin, but discovered that his equation was able to account for the electron’s mag-
netic moment, hence its spin. When it turned out that the equation provided a full
explanation of the hydrogen spectrum (» spectroscopy), including the fine-structure
components, it was quickly accepted by the physics community as the fundamental
equation for the electron and presumably also the proton. Only after World War II,
with the discovery of the Lamb shift, was it shown that the predictions from Dirac’s
theory disagree slightly with the measured spectrum.

Dirac’s relativistic equation led to serious conceptual difficulties, principally be-
cause the wave function has four components rather than the two corresponding to
the electron’s spin states. Its solutions seemingly referred to electrons with negative
energy — entities with no physical meaning. The so-called “#+-difficulty” was turned
into a success with Dirac’s theory of the anti-electron (and other anti-particles)
which he developed 1929-31. According to Dirac’s theory of 1931, two of the four
components of the » wave function referred to an electron with positive electrical
charge, soon to be known as a positron. When the positron was detected in cosmic-
ray experiments 1932-33, it was considered a great triumph of the Dirac equation.
In 1995 a plaque was unveiled in Westminster Abbey, commemorating Dirac. It
contains a version of the Dirac wave equation in the compact form iy - oy = my.
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Dirac Notation

Roderich Tumulka

The “bra”-and-“ket” notation (introduced by Dirac) uses the symbols [¢) and (/|
for vectors in and linear forms on » Hilbert space.
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In this notation, if ¢ is a vector in Hilbert space .7 then |y) is just another
notation for v, and (/| means the mapping ¢ — (V|¢), a linear form 7€ — C
defined using the scalar product (-|-) of 7. Turning |¥) into (| is a conjugate-
linear operation: (¢ + V| = (¢| + (Y| and (z¥| = z*(¢| for z € C.

Linear forms are also called co-vectors, and the set of all linear forms is called
the dual space. Thus, (1| is the co-vector naturally associated with the vector .
The difference between vectors and co-vectors is basically the same as the differ-
ence between a column and a row in matrix theory (linear algebra), or between the
contravariant components #* and the covariant components u,, of a 4-vector in rel-
ativity theory. The Riesz lemma of functional analysis implies that every continuous
linear form .72 — C (only the continuous ones are usually considered) is of the
form ¢ +— (Y|¢p) for a suitable v € #; as a consequence, there is a one-to-one
correspondence between vectors and (continuous) co-vectors, and .7 is, up to com-
plex conjugation, its own continuous dual space.

As the notation suggests, the scalar product (¢|¥) is the same as the linear form
(¢| applied to the vector |¢/). That is why Dirac called (¢| a “bra” vector and [y/)
a “ket” vector: bra 4 ket = bracket; that is, when written one after the other, they
form the scalar product. When written in the opposite order, |y)(¢|, they form not
a number but an operator |x) — |¥)(¢|x). In particular, if ||| = 1 then |y )(¥|
is the projection to the 1-dimensional subspace spanned by . Moreover, if T is an
operator then (¢|7T |r) means the same as (¢|T ) or (T*@|r).

The Dirac notation has another advantage: If some vectors ¥, are indexed by
some index n then one can write |n) instead of |¢,), provided there is no dan-
ger of misunderstanding. For example, an » orthonormal basis can be denoted
[1),12),13), ..., so that the matrix elements of an operator T can be written as
Toum = (n|T|m), the identity operator as

I :Z|n)(n|, )

and the orthonormality relation as
(nlm) = 8ppm - (2)

An extension of the » Dirac equation concerns generalized orthonormal bases
(such as the position basis in quantum mechanics), which consist of a unitary iso-
morphism . — L*($2) and thus permits us to write every vector ¢ € # as a
square-integrable function 1/(q) on some set 2 (such as Q2 = R3N), whereas an
» orthonormal basis in the ordinary sense permits us to write a vector ¥ € .7 as a
sequence (1[v), (2]|¥), ... of numbers, the components of . The extended » Dirac
notation introduces the symbol |g) as if the generalized basis was an ordinary basis,
and to treat this symbol as if it denoted a vector in .77 (In quantum mechanics, in
fact, |g) of the position basis represents the Dirac delta function §(- — ¢), which is
not a square-integrable function and thus does not belong to .77; similarly, the kets
of the momentum basis |k) represent the non-normalizable functions x > e'**.)
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Thus, one writes

vig) =(ql¥), 3)
while the orthonormality relation can be expressed as
(qlg") =8(q —4q"), )
and the identity operator as
1= [laalda. )

See also the contributions on » Rigged Hilbert Spaces.

Double-Slit Experiment (or Two-Slit
Experiment)

Gregg Jaeger

The phenomenon of interference arises in both classical and quantum physics. In
everyday life, more general interference effects can be seen, for example, patterns
formed on the surface of a body of water when the wakes of two passing ships
merge and pass through each other. Mathematically, this effect is due to the addi-
tion of corresponding physical quantities, such as wave height in the case of surface
waves on water, to produce modulated patterns. These patterns can be made to ex-
hibit clear regularities, particularly in simple situations. This effect has most often
been studied by passing light through a pair of slits in a diaphragm, due in particular
to an influential experiment in the early nineteenth century performed by Thomas
Young [4] in which a double-slitted screen was used to produce an interference pat-
tern. This pattern was readily explained in terms of classical light beams as waves
traveling in the classical electromagnetic field. However, there are important differ-
ences between quantum interference and the more familiar effect of interference in
classical physics. In particular, in quantum mechanical situations there are complex
amplitudes, which therefore mathematically involve a phase contribution, that add,
giving rise to characteristically quantum behavior, rather than real-valued intensi-
ties which are sometimes also referred to as amplitudes which add as in the case
of water waves. It is important, from the ontological perspective, to recognize that
quantum mechanical quantities do not directly describe substances, unlike in the
classical ether theory of Christiaan Huygens, for example.

At the time of its appearance, the double-slit experiment of Young was under-
stood to resolve a long-running debate regarding the nature of light as to whether
light is best understood as composed of waves or composed of particles. Robert
Hooke, in his book Micrographia [1] of 1665, had initially suggested that light
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propagation may involve “very short” vibratory motions in some underlying me-
chanical medium, making reference to the mechanical properties of diamond in
particular. However, because Hooke provided no specific experimental evidence
supporting this view, it was not particularly influential in his scientific environment
in which, by then, empirical evidence had already become paramount. At the time,
various phenomena were in need of explanation by making use of one or the other
of these two ontologies, including the observation of rays and shadows, diffraction,
reflection, refraction, the polarization of light, and rainbows. Huygens later emerged
as the primary advocate of what is now identified as the wave ontology, which was
used in his 1690 book Traité de la lumiére [2], whereas Isaac Newton was the pri-
mary advocate of the particle ontology, which was used in his Opticks [3] of 1704.
(» Wave-Particle Duality)

Huygens was able to explain the appearance of linearly propagating patterns of
light by considering the net effect of locally originating radial propagation of finite-
speed influences. Mechanically, Huygens described light as a solitary longitudinal
pulse moving at a uniform rate, in contrast to water wave motion, through homo-
geneous material through an elastic ether medium determined by its composition.
He was able within this limited wavelike picture to make headway by explaining
both reflection and refraction. Importantly, however, this picture left no room for a
mathematical description involving a phase. As a result, there were difficulties in
explaining other of the above-mentioned phenomena, rainbows in particular, using
this picture. By contrast, Newton’s corpuscular theory was able to explain rainbows,
as well as reflection and refraction. Famously, Newton first explained the produc-
tion of colored light from white light by prisms. The theory was referred to as the
corpuscular theory because, in it, light beams are represented as many localized in-
dividual bodies of colored matter, which could be variously combined and separated
by media. The separation of variously colored corpuscles by a glass prism provided
an adequate explanation of rainbows.

Newton’s conception of light then held sway for nearly a century, until the ap-
pearance of Thomas Young’s [4] article “Experiments and Calculations Relative to
Physical Optics” in the Philosophical Transactions of the Royal Society of London,
in which the double-slit experiment was reported. In Young’s experiment, light was
allowed to pass through a slit in a diaphragm, after which it then encountered a sec-
ond diaphragm horizontally distanced from the first with two slits equally spaced
vertically about the vertical location of the first slit, and finally impinged on a de-
tection screen in a pattern of light and dark fringes. This sort of apparatus is now
referred to as a Young interferometer. Because, by Huygens’ principle, light con-
tinually expands radially from every point where it is present, it will do so from
each of the three slits; first, the single slit feeds equally the remaining two slits,
after which emanations from these two slits are able to encounter each other. As
a result, light from each of the two slits meets on the detection screen, producing
a distinctive pattern of illuminated and dark points. In this way, the pattern at the
detection screen, particularly the dark regions thereof, can be understood as due to
the addition of contributions from each of the pair of slits. By contrast, when only
one of the two slits was unblocked, no such pattern was seen but only illumination
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symmetrically fading vertically about the position horizontally located directly in
front of the unblocked slit.

At the very turn of the twentieth century, due to the influence of Young’s experi-
mental results and the further development of classical electromagnetic field theory
by James Clerk Maxwell and others, light was believed to be fundamentally wave-
like whereas matter was continued to be understood as fundamentally particulate.
With the advent of quantum mechanics, the understanding of the fundamental na-
ture of both light and matter changed again. This was due equally to the success of
Albert Einstein’s light-particle or photon hypothesis [6], which explained the then
surprising » photoelectric effect, and to Louis de Broglie’s hypothesis [5] that both
light and matter exhibit wavelike behavior in accordance with the relation A = &/ p,
where / is » Planck’s constant and p is momentum; X-ray diffraction experiments
of von Laue [7] and » Davisson—Germer experiment [8] electron diffraction exper-
iment confirmed the latter hypothesis.

Now, after the formal completion of modern quantum theory, quantum inter-
ference as observed in double-slit experiments is understood to arise due to the
» superposition of quantum states, which occurs when there is » indistinguisha-
bility in principle by a precise measurement of alternative sequences of quantum
states that originate with a common initial preparation. In the quantum mechan-
ical double-slit experiment (for an instructive, more detailed and yet elementary
discussion, see [16]), elementary systems such as » electrons impinge precisely
in one direction on a double-slit diaphragm and strike a detection screen, much
as in the last stages of Young’s original arrangement (Fig. 1). Take a;(x) to be the
quantum probability amplitude corresponding to the passage through sliti (i = 1, 2)
of a diaphragm toward the vertical spatial point x on the measurement screen ori-
ented precisely perpendicularly to the direction of the initial horizontal beam. The
probability density of later finding these systems at x upon measurement is then
pi(x) = |a;(x)|. The normalized quantum amplitude for systems being found at x
when both slits are passable, so that either slit might be entered on the way to the
screen, is ajp(x) = %(al (x) + az(x)), according to the amplitude superposition
principle. The probability density of arrival at a point x of the detection screen upon
measurement is

1
P = 3l + ax@P

+lar ()az(x)|(exp [1(02(x) — 61(x)] + exp [i(61 (x) — 92()6))])],

the complex square of a12(x), where the {0; (x)} are the phases of the complex num-
bers {a;(x)} in the polar representation. Integrating pi2(x) provides the detection
rates observed in realizations of this ideal experiment.

The important difference between this quantum-mechanical experiment and the
analogous one in which particles are described by classical mechanics is that the
probability density p12(x) & p1(x) + p2(x) in the quantum case: the density is not
additive, as it is in the classical experiment. The quantum-mechanical predictions
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Fig. 1 (a) Particle-like behaviour of particles from a sand blast aimed at two slits. Depending on
whether slit 1 or slit 2 is open, patterns /; or I will form respectively. (b) Wavelike behaviour
of electrons, when both slits are open. Adapted from F. Weinert, The Scientist as Philosopher

(Springer 2004, 58)

are confirmed by observation, even in the case that the systems are sent into this
apparatus only one at a time. Such independency from intensity was first clearly
observed in a related ‘feeble’ light diffraction experiment by G. I. Taylor [9],
and is also exhibited in the interference of massive electrically neutral particles.
The analogue of Young’s experiment was carried out by Jonsson and Mollenstedt
[10, 11], and a conclusive demonstration with individual electrons was achieved by
Tonomura et al. [12]. Further suggested reading regarding historical and concep-
tual issues involving the nature of light and the double-slit experiment are [13—15].
More detail of the very interesting history of the experiment with references to real-
izations with atoms and molecules can be found in the Physics World Editorial of 1

September, 2002 [17].
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Effect

Paul Busch

The term effect was introduced by G. Ludwig [1] as a technical term in his ax-
iomatic reconstruction of quantum mechanics. Intuitively, this term refers to the
“effect” of a physical object on a measuring device. Every experiment is understood
to be carried out on a particular ensemble (“Gesamtheit”) of objects (» ensembles
in quantum mechanics), all of which are subjected to the same preparation proce-
dure; each object interacting with the measuring device triggers one of the different
possible measurement outcomes. Technically, preparation procedures and effects
are used as primitive concepts to postulate the existence of probability assignments:
each measurement outcome, identified by its effect, and each preparation procedure
are assumed to determine a unique probability which represents the probability of
the occurrence of that particular outcome. Thus, an effect can be taken to be the
probability assignment, associated with a given outcome, to an ensemble of objects,
or the preparation procedure applied to this ensemble [3].

In Hilbert space quantum mechanics, an effect is defined as an affine map from
the set of states to the interval [0,1], or equivalently, as a linear operator £ whose
expectation value tr[p E'] for any state (» density operator) p lies within [0,1]. From
this it follows that E is a positive bounded, hence selfadjoint, » operator.

Two selfadjoint bounded linear operators are said to be ordered as A < B (A
is less than B) if tr[pA] < tr[pB] for all states p. Thus, an effect E is a positive
bounded operator with the property that O < E < I, where O and [ are the null
and identity operators, respectively.

Among the effects are the projection operators (» projection), P, with the idem-
potency property P2 = P. They are singled out as those effects for which the
generalized Liiders operation p +— E 125E1/2 s repeatable, that is, trf[EpE] =
tr[El/szl/z] for all states p. The condition E = E? canbe expressedas EE' = O,
where E' := I — E is the complement effect of E. It is thus seen that for an effect
that is not a projection, there is in general a nonzero probability, in a repeated Liiders
measurement, of obtaining complementary outcomes. By contrast, two complemen-
tary projections P and P’ = I — P satisfy P P’ = O, they are mutually orthogonal.
If projections are interpreted as properties, then effects which are not projections are
sometimes called unsharp properties, in an operational sense made precise in [2].

Another characterization of the set of projections is given by the fact that the set
of effects is convex and the extreme elements are exactly the projections. Further
details on mathematical and physical aspects of effects and their application can be
found in [4-6].

D. Greenberger et al. (eds.), Compendium of Quantum Physics: Concepts, Experiments, 179
History and Philosophy, © Springer-Verlag Berlin Heidelberg 2009
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Ehrenfest Theorems

Erich Joos

The Ehrenfest theorems establish a formal connection between the time dependence
of quantum mechanical expectation values of » observables and the corresponding
classical equations of motion. Although mean values alone are insufficient to derive
classical behavior from quantum mechanics, the validity of the Ehrenfest relations
is an important requirement for a partial derivation of classical physics.

If the system (here a particle in one dimension, with obvious generalization to
more complex systems) is governed by a » Schrodinger equation with Hamiltonian

P>

2m

the mean values for position, momentum and energy obey the relations

d (p)

(x) = —,

dr m
d()— <dV()>
a PP\ YY)
and
d
5(11):0.

The mean value of position therefore follows a law of motion similar to Newton’s:

d? dv
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These relations are a special case of the general time-dependence of expectation
values of an observable A(t),
$ iy =S witm, anw) + w22 vy
' h ’ ot '
which follows immediately from the definition of the expectation value (A) =
(W] A |W¥) and Schrodinger’s equation ih0; |V) = H |W).
Further considerations:

1. Quite independent of the chosen interpretation of quantum states, the mean value
<% V(x)> is different from % V({x)). Only if V(x) is a polynomial of degree
2 — that is, for a free particle, motion in a homogenous field and the harmonic
oscillator — does the mean value follow the classical law of motion. For all other
cases, a strongly localized » wave packet is required, a condition which is rapidly
violated for classically chaotic systems. The range of validity of classical equa-
tions is sometimes called “Ehrenfest time”. Beyond this time-scale wave packet
dispersion becomes essential.

2. Historically, Ehrenfest’s theorem played an important role in establishing the
“correspondence limit” of quantum mechanics, that is, the hope (or the re-
quirement) that classical mechanics be contained in quantum mechanics as a
limiting case. This “» correspondence principle” fails, however, for at least two
reasons: As already mentioned, mean values for general wave packets and po-
tentials do not follow classical laws, second, macroscopic systems do not obey a
Schrodinger equation, since they are manifestly open systems.

A spectacular example of failure of the “correspondence principle” is provided
by the rotation of Hyperion, a moon of Saturn. Hyperion’s rotation is chaotic with
an estimated Ehrenfest time of only 20 years.

3. Extension to open systems. For some important classes of open systems, rela-
tions similar to that shown by Ehrenfest can be derived. Mean values are then
calculated from dynamical equations for the density matrix p describing the open

system according to % (A) = %tr (Ap) =tr (A fl—f) for a time-independent ob-
servable A. For example, from the equation for “Quantum Brownian motion” (a
particle immersed in a heat bath of temperature 7),

D 2 v o |+ 2 e i )] — kT L, L, 1]
latp_ 2m x,,O 2m X, p’p 177B X, x!p )

one finds
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In this case, motion is damped (with friction constant 1), while energy approaches
its equilibrium value. Re-evaluations of the Ehrenfest theorem for open quantum
systems (often described by Lindblad equations derived from a Schrodinger equa-
tion that includes the environment (see » decoherence)) are important for a proper
understanding of the relation between classical and quantum physics.
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See » States pure and mixed, and their Representations.

Einstein Locality

Henry P. Stapp

In 1935 Albert Einstein, in collaboration with Boris Podolsky and Nathan Rosen,
published a landmark paper entitled “Can quantum mechanical description of phys-
ical reality be considered complete?” [1] Einstein had already been engaged for



182 Einstein Locality

and

d 2n | kgT p?

—(H) =1 2 - (B

dr m 2 2m
In this case, motion is damped (with friction constant 1), while energy approaches
its equilibrium value. Re-evaluations of the Ehrenfest theorem for open quantum
systems (often described by Lindblad equations derived from a Schrodinger equa-
tion that includes the environment (see » decoherence)) are important for a proper
understanding of the relation between classical and quantum physics.

Primary Literature

1. P. Ehrenfest: Bemerkung iiber die angeniherte Giiltigkeit der klassischen Mechanik innerhalb
der Quantenmechanik. Z. Phys 45, 455-457 (1927)

2. E. Joos, H. D. Zeh: The emergence of classical properties through interaction with the environ-
ment. Z. Phys. B59, 223-243 (1985)

3. W.H. Zurek: Decoherence, chaos, quantum-classical correspondence, and the algorithmic arrow
of time. Phys. Scripta T76, 186-1988 (1998)

Secondary Literature

4. F. Haake: Quantum signatures of chaos (Springer, Berlin, 2001)

5. E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, 1.-O. Stamatescu: Decoherence and the
appearance of a classical World in quantum theory (Springer, Berlin, 2003)

6. Z. P. Karkuszewski, J. Zakrewski, W. H. Zurek: Breakdown of correspondence in chaotic sys-
tems: Ehrenfest versus localization times. Phys. Rev. A65, 042113 (2002)

Eigenstates, Eigenvalues

See » States pure and mixed, and their Representations.

Einstein Locality

Henry P. Stapp

In 1935 Albert Einstein, in collaboration with Boris Podolsky and Nathan Rosen,
published a landmark paper entitled “Can quantum mechanical description of phys-
ical reality be considered complete?” [1] Einstein had already been engaged for



182 Einstein Locality

and

d 2n | kgT p?

—(H) =1 2 - (B

dr m 2 2m
In this case, motion is damped (with friction constant 1), while energy approaches
its equilibrium value. Re-evaluations of the Ehrenfest theorem for open quantum
systems (often described by Lindblad equations derived from a Schrodinger equa-
tion that includes the environment (see » decoherence)) are important for a proper
understanding of the relation between classical and quantum physics.

Primary Literature

1. P. Ehrenfest: Bemerkung iiber die angeniherte Giiltigkeit der klassischen Mechanik innerhalb
der Quantenmechanik. Z. Phys 45, 455-457 (1927)

2. E. Joos, H. D. Zeh: The emergence of classical properties through interaction with the environ-
ment. Z. Phys. B59, 223-243 (1985)

3. W.H. Zurek: Decoherence, chaos, quantum-classical correspondence, and the algorithmic arrow
of time. Phys. Scripta T76, 186-1988 (1998)

Secondary Literature

4. F. Haake: Quantum signatures of chaos (Springer, Berlin, 2001)

5. E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, 1.-O. Stamatescu: Decoherence and the
appearance of a classical World in quantum theory (Springer, Berlin, 2003)

6. Z. P. Karkuszewski, J. Zakrewski, W. H. Zurek: Breakdown of correspondence in chaotic sys-
tems: Ehrenfest versus localization times. Phys. Rev. A65, 042113 (2002)

Eigenstates, Eigenvalues

See » States pure and mixed, and their Representations.

Einstein Locality

Henry P. Stapp

In 1935 Albert Einstein, in collaboration with Boris Podolsky and Nathan Rosen,
published a landmark paper entitled “Can quantum mechanical description of phys-
ical reality be considered complete?” [1] Einstein had already been engaged for



Einstein Locality 183

several years in a discussion with Niels Bohr about the completeness of quantum
theory. In the1935 paper Einstein did not challenge the claim of the quantum the-
orists that their theory was complete in the pragmatic/epistemological sense that it
gives all possible empirically testable predictions about connections between the
various aspects of “our knowledge.” In the 1935 paper Einstein et. al. effectively
accepted this claim of epistemological completeness, but defined the question they
were addressing to be the completeness of quantum mechanics as a description of
physical reality.

“Physical reality” is a slippery concept for scientists, when it becomes sepa-
rated from empirically testable predictions. Hence Einstein and his colleagues were
faced with the difficult task of introducing this term into the discussion in a way
that could not easily be dismissed as vague metaphysics by a physics community
which, greatly impressed by the empirical successes of quantum mechanics, was
in no mood to be sucked into abstruse philosophical dialectics. Yet Einstein and his
colleagues did succeed in coming up with a formulation that shook the complacency
of physicists in a way that continues to reverberate to this day.

The key to their approach was to tie the needed characterization of physical
reality to a peculiar nonlocal feature of the quantum mechanical treatment of two-
particle systems.

The mathematical rules of quantum theory permit the generation of a state of two
particles that has predicted properties that appear, at least at first sight, to violate a
basic precept of the special theory of relativity, namely the exclusion of instanta-
neous (i.e., faster-than-light) action at a distance. (» Locality)

Quantum theory generally allows any one of several alternative possible mea-
surements to be performed on a particle that lies in some experimental region R.
The choice of the measurement to be performed in R is treated in quantum me-
chanics as a boundary condition that can be “freely chosen” by the experimenter.
According to the Copenhagen interpretation, performing the measurement is sup-
posed to affect the particle being measured in a way such that the observed outcome
specifies the measured property of the state of the particle after the measuring pro-
cess is complete. (See » Born rule; Consistent Histories; Metaphysics in Quantum
Mechanics; Nonlocality; Orthodox Interpretation; Schrodinger’s Cat; Transactional
[nterpretation). But then if two alternative possible measurements are mutually in-
compatible, in the sense that either one or the other can be performed, but not both
at the same time, then there is no logical reason why the particle should have at the
same time well defined values of both of the two properties.

The mathematical structure of quantum theory does in fact involve various prop-
erties of a particle that cannot, within that theoretical structure, have simultaneously
well defined values. Potential inconsistencies are evaded by claiming that any two
such theoretically incompatible properties are also empirically incompatible, in the
sense that they cannot be measured simultaneously. But Einstein et. al. constructed
an argument designed to show that the values of certain of these properties are, nev-
ertheless, simultaneous elements of physical reality. Such a demonstration would
render quantum mechanical account incomplete, as a description of physical reality!
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To bring “physical reality” into the discussion, in conjunction with the question
of completeness, Einstein et. al, noted that the basic precepts of quantum theory
ensure that there is a state (» wave function) of two particles that has the following
properties:

1. The two particles lie at the time of a measurement performed on particle 1, in
two large regions that lie very far apart.

2. There is a pair of measurable properties, X; and Py, which are the location and
the momentum of particle 1, respectively, that are neither simultaneously repre-
sentable nor simultaneously measurable; and also a pair of measurable properties,
X5 and Py, of particle 2 that are, likewise, neither simultaneously representable
nor simultaneously measurable.

3. The prepared state of the two particle system, before the measurement is per-
formed on particle 1, is such that measuring the value of X; determines the value
of X», whereas measuring the value of P; determines the value of P5.

These properties entail that the experimenter in the region where the first particle
lies can come to know either X, or P», depending upon which measurement he
chooses to perform. This choice controls physical measuring actions that are con-
fined to the region where particle 1 is located, and this region is very far from the
region where particle 2 is located. Consequently, any physically real property of the
faraway particle 2 should, according to the precepts of the theory of relativity, be
left undisturbed by the nearby measurement process: the distance between the two
regions can be made so great that the physical consequences of performing the mea-
surement on particle 1 cannot reach the region where particle 2 is located without
traveling superluminally: faster than the speed of light » superluminal communica-
tion.

These considerations permit Einstein et. al. to introduce “physical reality” by
means of their famous “criterion of physical reality”:

If, without in any way disturbing a system, we can predict with certainty (i.e., with proba-
bility unity) the value of a physical property, then there exists an element of physical reality
corresponding to this physical property.

If a measurement were to be performed in the region where particle 2 is located
then the quantum theorist could argue that this measurement could disturb the par-
ticle, and hence there would be no reason why properties X, and P, should exist
simultaneously. But the situation under consideration allows either of the two (si-
multaneously incompatible) properties of particle 2 to be determined (predicted with
certainty) without anything at all being done in the region where that particle 2 is
located, and hence, according to the ideas of the theory of relativity, “without in any
way disturbing that system.” Thus Einstein and his colleagues infer, on the basis of
their criterion of physical reality, that both properties are physically real. However,
these two properties cannot be represented simultaneously by any quantum mechan-
ical wave function. Hence Einstein et.al. “conclude that the quantum mechanical
description of physical reality given by wave functions is not complete.”
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Anticipating an objection, Einstein et. al. complete their argument by saying:

One could object to this conclusion on the grounds that our criterion of reality is not suf-
ficiently restrictive. Indeed, one would not arrive at our conclusion if one insisted that two
or more physical quantities can be regarded as simultaneous elements of reality only when
they can be simultaneously measured or predicted. On this point of view, since either or
the other, but not both simultaneously, of the quantities P [here P>] or Q [here X;] can be
predicted they are not simultaneously real. This makes the reality of P and Q depend upon
which measurement is made of the first system, which does not disturb the second system
in any way. No reasonable definition of reality can be expected to permit this.

If one examines the situation considered by Einstein et. al. in the explicit formula-
tion of relativistic quantum field theory given by Tomonaga [2] and Schwinger [3]
one finds that the quantum state (wave function) of particle 2 after the measurement
is performed on particle 1 depends not simply on which measurement is performed
on particle 1, but jointly upon which measurement is performed and what its out-
come is.

In a general context it is neither problematic nor surprising that what a person can
predict should depend not only upon which measurement he performs, but also upon
what he learns by experiencing the outcome of that experiment, and hence upon both
which measurement is chosen and performed, and which outcome then appears.

In classical relativistic physics an outcome in one region can be correlated to an
outcome in a faraway region — that is space-like separated from the first — without
their being any hint or suggestion of any faster-than-light transfer of information.
Such correlations can arise from a common cause lying in the earlier (preparation)
region from which each of the two later experimental regions can be reached by
things traveling at the speed of light or less.

In relativistic quantum field theory, as in relativistic classical theory, merely per-
forming the measurement action on particle 1 does not affect any measurable or
predictable property of particle 2. In both the classical and quantum versions the
subsequent outcome pertaining to particle 1 is correlated (through the earlier ini-
tial preparation) to a predictable and measurable outcome pertaining to the faraway
particle 2. Thus, although this experimenter’s choice and his consequent action on
particle 1 have, by themselves, no direct faraway effects, this choice and action-by
determining the physical significance (X or P;) of the local outcome, and thereby
also the physical significance (X3 or P;) of the correlated faraway outcome-do in-
fluence the nature of the particular property of the faraway property of particle 2
that is revealed to the experimenter who is performing the measurement on parti-
cle 1, by his experiencing the outcome of the experiment that he has chosen and
performed. But this sort of “influence” would, as in the classical case, fall far short
of any indication of the need for any superluminal action at a distance, or of any
superluminal transfer of information about the nearby free choice to the faraway
region. All that has happened, in both the classical and quantum cases, is that the
nearby experimenter has learned the value of an outcome that is correlated to the
value of the outcome that a particular faraway experiment would have if the faraway
experimenter were to choose to perform that particular experiment.




186 Einstein Locality

To identify what makes the quantum case different from classical case suppose
one has two balls, one red and one green, and one hot the other cold. Suppose they
are shot in opposite directions into two far-apart labs. Simply measuring the color
of the ball reaching the first lab does not immediately disturb in any way anything
in the other lab. But knowing the outcome of this color measurement allows one to
know something about what will be found if color is measured also in the second lab.
But in the classical case this real property of the system that arrives in the second
lab would not be nullified or eradicated if one had chosen to measure temperature
instead of color. It is the claimed nullification of one kind of property of particle 2
or another, on the basis of which kind of experiment is performed on particle 1, that
distinguishes the quantum case from the classical one. It entails the need for some
sort of leaping of the information about which action was chosen and performed
on particle 1 to the region where particle 2 is being measured. The need for this
nullification arises from the fact that no wave function can represent a well defined
value of both X, and P».

In spite of this apparent violation of the notion that no information about the
free choice made in region 1 can get to region 2, relativistic quantum field theory
is compatible with the basic requirement of relativity theory that no “signal” can
be transmitted faster than light. A signal is a carrier of information that allows a
receiving observer to know which action was taken by a distant sender. Because
the receiver does not know, superluminally, which outcome was observed by the
sender, she, the receiver, cannot know, superluminally, which action was taken by
the sender. Hence no signal can be sent.

The sender, who knows both which experiment he has freely chosen and per-
formed, and which outcome has appeared, knows, on the basis of his knowledge of
both the theory and this outcome, more about what the receiver will experience than
the receiver herself can know.

Quantum theory, by focusing on knowledge and prediction, is able neatly to sort
out these observer dependent features. The theory carries one step further Einstein’s
idea that science needs to focus on what actual observers can know and deduce on
the basis of their own observations. But quantum theory places a crucial restric-
tion on definability that classical relativistic theory lacks: a person by his choice of
probing action performed in one region can cause one fype of property in a faraway
region to become undefined in principle, within the theory, because an incompatible
type of property becomes defined there.

In the book Albert Einstein: Philosopher—Physicist Einstein [4, p. 85] gives a
short statement of his locality condition:

The real factual situation of the system S is independent of what is done with the system
S1, which is spatially separated from S.

The problem of reconciling this condition with quantum theory is that quantum
theory is a theory of predictions (about outcomes of observations) not a theory of
reality. The probing action performed on system S; by the experimenter does not,
by itself, disturb in any way the real factual system S,. This action, by itself, does
not allow any new prediction to be made about any outcome of any measurement
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made on S,. Hence one may quite reasonably claim that “the real factual situation of
the system S;” is not disturbed by the mere action of performing the faraway mea-
surement. And it is in no way surprising that what kind of predictions one can make
about the faraway correlated system depends upon what kind of nearby measure-
ment is chosen. Einstein’s challenge is to the quantum theoretical claim that if the
quantum state, which pertains to predictions, allows no predictions about a property
then that property is in reality ill-defined.

If one accepts the quantum claim that the property itself is ill-defined if the prop-
erty is ill-defined in the quantum theoretic state then the argument of Einstein et al.
shows that the condition of no-faster-than-light action is violated in quantum theory.
It is violated because the choice made in one region determines, no matter which
outcome occurs, which kind of properties of the faraway particle becomes, within
the quantum framework, ill defined.

The conclusion is that Einstein’s argument leads, within the quantum theoretical
framework, not to a proof of some incompleteness of quantum theory, but rather to a
proof of the existence within theory of a faster-than-light transfer to a faraway region
of the information about which measurement is performed in the nearby region.

This conclusion depends, however, on accepting the basic precept of quantum
theory that if two properties of a system cannot be simultaneously represented by
a wave function and one of these two properties is defined then the other cannot
exist. Einstein rejected that premise. The question thus arises: Can the requirement
of no superluminal transfer of information be upheld if one rejects the quantum
precept that properties that cannot be simultaneously represented by any quantum
state cannot be considered to be simultaneously definite.

This question has been studied by John Bell [5] and others within the special
context of theories that postulate the existence of pertinent real hidden-variables.
(» Bell’s Theorem) Those arguments show that, within this hidden-variable context,
the answer to the question posed at the end of the preceding paragraph is ‘No’!
Once the notion is accepted that decisions as to which measurements are performed
are controlled by free choices that can go either way, it is impossible to reconcile
even merely the predictions of quantum theory for all of the then-allowed alternative
possible measurements with the demand that there be no superluminal transfer of
information about which measurements are freely chosen. (» Nonlocality)
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Electron Interferometry

J.C.H. Spence

Massive-particle interferometry can provide tests of fundamental ideas in quantum
mechanics, due to the presence of mass and charge, not possible with the more
familiar optical interferometry. Most importantly, since the first observation of elec-
tron diffraction in 1927 by Davisson, Germer and Thomson [1] (and the observation
of electron Fresnel edge fringes by Boersch in 1940 [2]), it has been clear that matter
diffracts, according to de Broglie’s 1924 hypothesis. (» Davisson—Germer Experi-
ment) The subsequent demonstration of Young’s pinhole and biprism experiments
(discussed below) with » clectrons about fifty years ago has since led to aston-
ishing demonstrations of, for example, the diffraction of beams of buckyballs by a
grating [3] and effects of gravity on neutron interferometry [4]. For neutrons and
electrons, both Fermions, new effects due to » spin and the » exclusion principle
might also be expected, not seen with photons (» light quantum). Perhaps the most
famous experiments to date have been tests of the » Aharonov—Bohm effect us-
ing electrons, and those using neutrons to see the effects of gravity on interference,
but there have been many more (including an electron Sagnac interferometer and
experiments on » decoherence). The separate but closely related field of electron
holography has come to prominence in recent decades, with applications in mate-
rials science and superconducting vortex imaging. Here we briefly review work on
electron interferometry, first reviewed at an early stage by Denis Gabor [5], and also
provide some guidance to the rapidly growing contemporary electron holography
literature. Historically, it is of interest to note that the analysis of multiple scat-
tering, and the role of the mean inner potential, in the experiments of Davisson and
Germer by H. Bethe in his thesis work introduced Floquet’s theorem into condensed
matter physics for periodic structures, leading to the review article which founded
modern condensed matter physics [6]. Bethe and Bloch were both students of A.
Sommerfeld in 1928.
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Electron Interferometry
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Massive-particle interferometry can provide tests of fundamental ideas in quantum
mechanics, due to the presence of mass and charge, not possible with the more
familiar optical interferometry. Most importantly, since the first observation of elec-
tron diffraction in 1927 by Davisson, Germer and Thomson [1] (and the observation
of electron Fresnel edge fringes by Boersch in 1940 [2]), it has been clear that matter
diffracts, according to de Broglie’s 1924 hypothesis. (» Davisson—Germer Experi-
ment) The subsequent demonstration of Young’s pinhole and biprism experiments
(discussed below) with » clectrons about fifty years ago has since led to aston-
ishing demonstrations of, for example, the diffraction of beams of buckyballs by a
grating [3] and effects of gravity on neutron interferometry [4]. For neutrons and
electrons, both Fermions, new effects due to » spin and the » exclusion principle
might also be expected, not seen with photons (» light quantum). Perhaps the most
famous experiments to date have been tests of the » Aharonov—Bohm effect us-
ing electrons, and those using neutrons to see the effects of gravity on interference,
but there have been many more (including an electron Sagnac interferometer and
experiments on » decoherence). The separate but closely related field of electron
holography has come to prominence in recent decades, with applications in mate-
rials science and superconducting vortex imaging. Here we briefly review work on
electron interferometry, first reviewed at an early stage by Denis Gabor [5], and also
provide some guidance to the rapidly growing contemporary electron holography
literature. Historically, it is of interest to note that the analysis of multiple scat-
tering, and the role of the mean inner potential, in the experiments of Davisson and
Germer by H. Bethe in his thesis work introduced Floquet’s theorem into condensed
matter physics for periodic structures, leading to the review article which founded
modern condensed matter physics [6]. Bethe and Bloch were both students of A.
Sommerfeld in 1928.
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The construction of an electron interferometer requires a beam-splitter and a
small, bright source of electrons. This should be of sufficiently small size ds to
produce a spatial coherence width L. which spans the beam-splitter. (L. ~ X/O,
for a source at distance L = ds/(20.) from the beamsplitter). Prior to the devel-
opment of the field-emission electron source in 1968 [7] the use of heated tungsten
wire pointed filaments produced values of L. < 1 micrometer, so that early workers
understood the need for an extremely small beamsplitting device, which limited de-
velopment of the field. But even before the peak of interest in the Aharonov—Bohm
effect in the 1960s, both amplitude and wavefront dividing beamsplitters had been
demonstrated for electron beams. The first, using Bragg scattering [8], has since
been abandoned in favor of the Mollenstedt and Duker electrostatic biprism, which
may be said to have founded the field of electron interferometry [9].

(The convenient ability to adjust fringe spacing with a biprism using the applied
voltage, and lack of inelastic scattering background favored it over the Bragg beam-
splitter). The biprism uses a micron-sized wire (originally spider’s web, then quartz
fibers) held at a small potential running across the beam (normal to the page at B) as
shown in Fig. 1. The charge on this wire creates a field which deflects rays from the
source S around it such that they appear to come from virtual sources S’ and S”. In
fact a cone of rays is deflected, so that S" and S”, being images of S, are coherent if
S is small. These act as Young’s pin-holes to produce the interference fringes at F by
exact analogy with an optical biprism. For these experiments it was natural to use the
recently developed electron microscope, which produced a very high quality beam
of electrons at a kinetic energy of about £ = 100keV, corresponding to a relativis-
tically corrected » de Broglie wavelength of about A = 0.004nm = |k|~!. (The
longitudinal coherence length of an electron beam, L, ~ A E/(2AE) is maximized
by reducing electronic fluctuations AE in the accelerating voltage E. The largest
possible values of L. and L, are needed by modern transmission electron micro-
scopes to produce high resolution phase-contrast images of atoms; they therefore
provide the highest quality electron beams for interferometry, together with high
mechanical and thermal stability. Low-energy biprism instruments are discussed
below). The earliest pioneering work on the development of the electron biprism
was undertaken at the University of Tiibingen and used to measure L. and L,. Soon
after, it became clear that by placing an electron-transparent sample in one arm of
the interferometer at D, an off-axis electron hologram could be formed. (The in-line
geometry was being investigated at the same time by Mulvey, Gabor and Haine in
the UK — Gabor’s original Noble-prize winning proposal for holography was de-
voted to electron interference, not light. The history of electron interferometry is
therefore inextricably linked with that of electron holography). Modern work uses
electron microscopes fitted with a field-emission electron source. This emits elec-
trons from a source size of about d; = 2 nm diameter with a brightness (measured in
particles per unit solid angle per unit area) which exceeds that of current generation
synchrotrons [10]. The dramatic success of electron interferometry is due primarily
to these two inventions — the biprism and the field-emission electron gun.

Using an electron biprism, Feynman’s “only one mystery” of quantum mechanics
can immediately be demonstrated. Figure2 shows Young’s fringes obtained using
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Fig. 2 Young’s fringes formed using coher-
ent electrons of very low intensity, recorded as
a function of increasing exposure time. There
is only one electron in the interferometer at
any instant, yet an interference pattern devel-
ops with time [11]

Fig. 1 The electron biprism

coherent electrons and a biprism [11]. The important point is that the intensity has
been reduced to such a low value that the electrons arrive one at a time, and the
flight time of the electrons is much shorter than the time between their arrival at the
detector. Nevertheless, the statistical buildup of an interference pattern is observed.
(A similar experiment was undertaken for light by G.I.Taylor in 1909 [12]).

Despite the brightness of field-emission sources, if intense focussing by lenses
is avoided, electron—electron interactions can normally be neglected in an electron
microscope beam, and each electron reaches the detector before the next leaves
the source. Then spin interactions can be neglected and the scalar theory of first-
order optical coherence [29] (for bosons) can be applied to electron interferometry
(fermions). If each of the beams in Fig. 1 are of unity amplitude, the fringe intensity
recorded on the screen at F is then

I(x) =2+ 2|p|cos(2ngx + ¢ + Ap(x)) (1)

where the complex degree of coherence is u© = |u|exp(ipe), ¢ = |k| a (a is
the angle between beams arriving at the detector, controlled by the voltage on the
biprism wire, and setting the period of the fringes) and A¢ is the phase difference
along the two optical paths a and b from source to detector point x. The complex
degree of coherence may be expressed as a product of factors describing spatial
and temporal coherence. These factors are proportional to the Fourier transform
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of the source intensity distribution (spatial coherence) and the distribution of wave
numbers (temporal coherence). The biprism therefore offers a method of measuring
both types of coherence. (Temporal coherence measurement requires a variable time
delay to be introduced, by passing one beam along the axis of a cylinder held at a
fixed potential [11]).

To understand the effect of the addition of fields into one or both arms of the
interferometer, we require an expression for the refractive index of a medium with
finite permeability traversed by an electron beam. For the » Aharonov—Bohm effect
we might imagine a solenoid at C in Fig. 1, with axis normal to the page, and return
flux at infinity. (A clear description of the Aharonov—Bohm effect is given in the
undergraduate lectures of R. Feynman [30]). For electron holography, an electron-
transparent thin sample with internal fields might be placed at D. The refractive
index expression was first given by Ehrenberg and Siday in 1949 [13], however the
implications of this paper were not fully appreciated until the work of Aharonov and
Bohm [14] a decade later. The precise form of the interaction had been controversial
at that time. These papers showed that an electron would experience a measurable
phase-shift even in the absence of a magnetic field B = curl A, (or resulting clas-
sical force), provided the vector potential A was non-zero. (This emphasis on the
fundamental nature of potentials coincided with Maxwell’s original formulation of
electrodynamics, and differs from the standard modern form of his equations in
terms of fields, first published by Heaviside long after Maxwell’s death). For poten-
tials weak compared with the accelerating potential, the phase shift is given by

Ap =0 / V(r)dz — % % A(r)ds 2)

a—b a+b

for electrostatic potential V, interaction constant ¢ = 27 |e|/hv and electron veloc-
ity v with charge e. The optical paths a (SaX) and b (SbX) are indicated in Fig. 1.

Since the first test of equation 2 with V.= B = 0 at the electron trajectory in
1960, many experimental tests of the Aharnonov—Bohm effect have been published
(see [15] for a review). All confirm the existence of a measurable phase-shift ac-
cording to equation 2 if A is finite. Early objections regarding leakage of fields and
the proximity of the return flux were met in the most sophisticated experiment, in
which a torroidal magnet, coated with superconductor, was inserted into one arm of
an electron interferometer, with the beam passing along its axis. The Meissner effect
in the coating then confines the flux below 7; to within the torroid, and the field on
its axis is zero [15].

The effects of inelastic scattering in one arm of the interferometer have been
analysed in several papers, and the results have important implications for electron
holography. An energy change as small as 4 x 10~ eV results in a beat frequency of
1 Hz in the observed fringes, and fringe motion (consistent with the » Heisenberg
uncertainty relations). This effect has been observed [16] using the doppler shift
from a moving electron mirror, or ramped electric or magnetic fields in one path.
(Related effects are observed in the interference fringes observed very briefly due to
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interference between different lasers, if the recording time is less than the beat pe-
riod). For electron holography, this has the remarkable effect that, for long recording
times, we may consider that images reconstructed from off-axis electron holograms
are formed from purely elastic scattering in the sample, since electrons loosing more
than 4 x 10~13 eV while traversing the sample (e.g. due to phonon excitation) cannot
produce stable time-independent fringes by interference with the reference wave
(which has not lost energy). Electron holography therefore acts as a very efficient
elastic energy filter [16]. There has been considerable discussion in the literature re-
garding » “which way” experiments, in which a small energy loss in one arm might
be used to signal the path taken by an electron [11].

For some purposes a low-energy table-top electron interferometer has advan-
tages. Typical values of A E/ E (which controls the temporal coherence) for electron
microscopes operating at hundreds of kilovolts are 107, whereas the spatial co-
herence width is proportional to A, which increases at low energy. But stray fields
and potentials, to which low-energy instruments are extremely susceptible, make
their design very challenging. (The effect of time-dependent stray magnetic fields,
for example, may result in enlargement of the virtual electron source size within
a field-emission tip, resulting in loss of coherence [17]). Such a small instrument
of 30 cm length with high performance has been constructed at the University of
Tiibingen [18]. This instrument includes a Wien filter, which imparts a different
group velocity to the » wave packet in one arm of the interferometer, without
introducing a phase difference (the wavepackets in each arm are thus shifted longi-
tudinally). The instrument operates at 150eV — 3 keV using a field-emission source,
includes three biprisms, quadrupole lenses (to magnify the fringes) and extensive
magnetic shielding. The fringes are detected on a channel plate, viewed by a charge-
coupled device. Since it is powered by batteries, it may readily be rotated, and so has
been used to form the electron equivalent of a Sagnac interferometer, with the path
SaXbS taking the place of the loop in the Sagnac optical interferometer. The obser-
vation of an electron Sagnac effect [19] demonstrates that the coupling of inertial
potentials and fields is independent of charge.

Most recently, this instrument has been used to demonstrate the electron an-
tibunching effect [20]. Unlike the bunching of photons observed in the Hanbury
Brown and Twiss experiment, the Pauli » exclusive principle for electrons prevents
overlapping wavetrains due to antisymmetrization of the » wave function [21]. The
result is a reduced probability (compared with classical particles) of detecting two
electrons within a coherence time T = L./v. The electron arrival times are more
uniformly distributed than Boltzman classical particles, and fluctuations reduced.
A strong antibunching effect requires crowding of electrons in phase space, yet the
degeneracy of a field-emitter is only about 10~ (electrons per cell in phase space —
maximum two, with opposite spins), unlike the values of 10! for lasers (unrestricted
Bosons). The degeneracy (and coherence parameters) may be measured from ob-
servations of Fresnel edge fringes [22]. In addition, electron detectors with time
resolution T ~ 10~1*s do not exist. Nevertheless, by detecting the arrival times at
two detectors of an electron beam whose coherence patch spanned both detectors it
has been possible recently to detect electron antibunching by comparing the results
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of coherent and incoherent illumination [20]. Finally, a variant of this instrument
has been used to observe decoherence effects directly [23] (» decoherence, exper-
imental observation of decoherence), as discussed above for inelastic scattering in
electron holography [16]. The transition to classical behaviour of a quantum sys-
tem is supposed to occur as a result of » entanglement of its wave function with
the environment, resulting in an incoherent mixture of states and loss of interfer-
ence effects. Under these conditions of classical behaviour it should be possible to
determine which path the electron took. Anglin and Zurek [24] proposed an inter-
ferometric experiment to test this idea, which has recently been implemented by
electron interferometry. Both beams of the biprism interferometer pass over a resis-
tive plate (tens of microns above it), in which they may induce polarization charges
and Joule heating. The fringes are observed as a function of the height of the beam
above the plate. The fading of the fringes with decreasing gap is clearly seen as cou-
pling with phonon excitations in the plate increases [23]. A variety of more exotic
electron interference experiments have been proposed by M. Silverman [21], such as
those which test many-particle, multivalued wavefunction, and spin effects. These
require a more subtle interpretation of Dirac’s famous dictum that “each electron
interferes only with itself”. The simplest directly observable many-body effect in
electron beams is the Boersch effect, in which Coulomb interactions along the di-
rection of travel broaden the energy distribution. Lateral coulomb repulsion causes
an angular divergence, which degrades the spatial resolution in time-resolved elec-
tron microscopy. At present, as a result of this effect, resolution is limited to a few
nanometers, unlike the Angstrom level of resolution possible in CW mode.

Gabor’s original proposal for electron holography in 1948 had the aim of elim-
inating the aberrations of electron lenses. This aim was finally achieved in 1995,
when, for the first time, atomic-resolution images were reconstructed from an off-
axis electron hologram whose resolution (about one Angstrom) exceeded that of the
same state-of-the-art instrument in its conventional (Scherzer) imaging mode [25].
Since that time, aberration-correction devices have provided a simpler approach
to this resolution, and electron holography has undergone a recent renaissance for
other reasons — including the ability to map out electric and magnetic fields inside
materials and nanostructures, from semiconductor devices to magnetic bacteria, fer-
roelectrics [26] and computer memory elements [27]. Other applications include the
ability to image vortices and their quantization in superconductors at low tempera-
ture, and the ability to image magnetic domain structures in nanoparticles (see [28]
for areview). Most recently, three-dimensional electron holography of internal fields
has been developed, with important implications for semiconductor devices. At the
same time, new solutions to the phase problem have been developed, which allow
“interferometry without an interferometer” by extracting the phase difference in-
formation which is encoded within scattered intensities. It has recently been shown
that this phase information may be extracted if scattering is sampled at the Shannon
sampling interval (for a review of this field, see [31]).
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Electrons

Theodore Arabatzis

The discovery of the electron was a complex and extended process, stretching from
Faraday’s investigation of electrolysis to Millikan’s oil-drop experiments [18]. The
results of four different fields (electrochemistry, electromagnetic theory, » spec-
troscopy, and » cathode rays) converged to support the existence of a novel
subatomic constituent of matter. Faraday’s experiments on electrolysis, interpreted
from the perspective of the atomic theory of matter, implied that electricity has
an atomic structure [4]. That is, electricity appears in naturally occurring units. In
1891 George Johnstone Stoney (1826—1911) named those units “electrons”™ ([13],
p- 583, [30]).

In 1894 Stoney’s electrons were appropriated by Joseph Larmor (1857-1942) to
overcome certain empirical and conceptual problems faced by Maxwell’s electro-
magnetic theory ([6], pp. 806 ff.). Larmor’s electrons were supposed to be universal
constituents of matter and were represented as structures in the all-pervading ether.
On the continent a similar electromagnetic theory had been proposed by Hendrik
Antoon Lorentz (1853-1928), who developed a synthesis of British and Continental
traditions in electromagnetism [7]. Lorentz’s theory incorporated Maxwell’s sug-
gestion that electromagnetic phenomena are wave processes in the ether and the
suggestion of continental theorists (e.g., Wilhelm Weber) that these phenomena are
due to the action of charged particles. Lorentz named those particles “ions”, in anal-
ogy with the ions of electrolysis.

A crucial event for the development of Larmor’s and Lorentz’s theories was
an experimentally discovery by Pieter Zeeman (1865-1943). In 1896 Zeeman ob-
served that the spectral lines of sodium widen under the influence of a magnetic field
(» Zeeman effect). Drawing on Lorentz’s theory, he attributed the modification of
the sodium spectrum to the influence of magnetism on the mode of vibration of the
“ions”. From the observed widening he was able to calculate their charge to mass
ratio, which to everyone’s surprise turned out to be three orders of magnitude larger
than that of the electrolytic ions [17]. That was the first indication that Lorentz’s
ions, as well as Larmor’s electrons, were much smaller than ordinary ions. In 1899
Lorentz changed the name of his “ions” to “electrons” [18].
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Electrons

Theodore Arabatzis

The discovery of the electron was a complex and extended process, stretching from
Faraday’s investigation of electrolysis to Millikan’s oil-drop experiments [18]. The
results of four different fields (electrochemistry, electromagnetic theory, » spec-
troscopy, and » cathode rays) converged to support the existence of a novel
subatomic constituent of matter. Faraday’s experiments on electrolysis, interpreted
from the perspective of the atomic theory of matter, implied that electricity has
an atomic structure [4]. That is, electricity appears in naturally occurring units. In
1891 George Johnstone Stoney (1826—1911) named those units “electrons”™ ([13],
p- 583, [30]).

In 1894 Stoney’s electrons were appropriated by Joseph Larmor (1857-1942) to
overcome certain empirical and conceptual problems faced by Maxwell’s electro-
magnetic theory ([6], pp. 806 ff.). Larmor’s electrons were supposed to be universal
constituents of matter and were represented as structures in the all-pervading ether.
On the continent a similar electromagnetic theory had been proposed by Hendrik
Antoon Lorentz (1853-1928), who developed a synthesis of British and Continental
traditions in electromagnetism [7]. Lorentz’s theory incorporated Maxwell’s sug-
gestion that electromagnetic phenomena are wave processes in the ether and the
suggestion of continental theorists (e.g., Wilhelm Weber) that these phenomena are
due to the action of charged particles. Lorentz named those particles “ions”, in anal-
ogy with the ions of electrolysis.

A crucial event for the development of Larmor’s and Lorentz’s theories was
an experimentally discovery by Pieter Zeeman (1865-1943). In 1896 Zeeman ob-
served that the spectral lines of sodium widen under the influence of a magnetic field
(» Zeeman effect). Drawing on Lorentz’s theory, he attributed the modification of
the sodium spectrum to the influence of magnetism on the mode of vibration of the
“ions”. From the observed widening he was able to calculate their charge to mass
ratio, which to everyone’s surprise turned out to be three orders of magnitude larger
than that of the electrolytic ions [17]. That was the first indication that Lorentz’s
ions, as well as Larmor’s electrons, were much smaller than ordinary ions. In 1899
Lorentz changed the name of his “ions” to “electrons” [18].
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Electron theories received additional support by the theoretical and experimental
investigation of » cathode rays. The nature of those rays had been the subject of
considerable debate. The controversy subsided in 1897, when J. J. Thomson (1856—
1940) showed that they were composed of “corpuscles”, minute charged particles.
From the electric and magnetic deflections of those particles he calculated their
mass to charge ratio (m/e). It turned out that the value of m /e was three orders of
magnitude smaller than “the smallest value of this quantity previously known, and
which is the value for the hydrogen ion in electrolysis” ( [15], p. 310).

In 1899 Thomson reported measurements of the mass to charge ratio of the par-
ticles produced in the » photoelectric effect as well as by thermionic emission.
Those measurements indicated that the particles in question were identical with the
constituents of cathode rays [16]. Henri Becquerel (1852—-1908) reached a similar
conclusion about the identity of the recently discovered -rays, which were shown to
be “entirely comparable to ... cathode rays, or masses of negative electricity trans-
ported with great speed” ([1], p. 210). Thus, by the end of the nineteenth century
the electron had surfaced in a variety of theoretical and experimental contexts.

In the beginning of the twentieth century, B-rays were employed as a tool to
adjudicate between contemporary electromagnetic theories, which gave different
accounts of the electron’s shape and structure. First, the theory developed by Max
Abraham (1875-1922) implied that the electron was a rigid sphere with a uniform
(surface or volume) distribution of charge, whose shape was not affected by its mo-
tion through the ether. Second, according to H. A. Lorentz’s theory of electrons and
Albert Einstein’s relativity theory, the electron was deformable and contracted in
the direction of its motion. Third, Alfred Bucherer (1863-1927) and Paul Langevin
(1872-1946) suggested that a moving electron would be deformed but its volume
would remain constant. All of those theories implied that the mass of the elec-
tron depended on its velocity. However, their quantitative predictions about that
dependence differed. Walter Kaufmann (1871-1947) undertook an experimental re-
search program that aimed at elucidating the nature of the electron’s mass and its
variation with velocity. He determined the velocity dependence of the charge to mass
ratio of B-rays, on the basis of their electric and magnetic deflections. His results
seemed to contradict the predictions of the “Lorentz—Einstein” theory and to fa-
vor the theories of Abraham, Bucherer, and Langevin [5]. Lorentz, for one, thought
“very likely that we shall have to relinquish this idea [of a deformable electron] al-
together” ([8], p. 213). His pessimism, however, was not vindicated by subsequent
developments. By the mid-1910s the combined efforts of theoreticians and experi-
mentalists had shown that Kaufmann’s results were erroneous [20, 24-26].

The 1910s saw the culmination of a research program that aimed at measuring
the charge of the electron. Its origins go back to the late nineteenth century and
the experimental method devised by C. T. R. Wilson (1869-1959) to obtain artifi-
cial clouds and raindrops. J. J. Thomson employed Wilson’s method to measure the
charge of the “ions” (i.e., electrons) liberated “when a negatively electrified metal
plate . . . is illuminated by ultra-violet light” ( [16], p. 548). Thomson’s work, as well
as subsequent efforts along similar lines, were beset by many uncertainties (e.g., due
to the evaporation of cloud droplets). Their main limitation was that they provided
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information about the statistical average of a great number of individual charges.
Those difficulties were met by Robert Millikan (1868—1953). From 1909 onwards
Millikan was able to get a grip on individual electrons. His meticulous observa-
tions of charged oil drops, moving under the simultaneous action of gravity and an
electric field, enabled him to measure the charge of individual electrons [9]. Those
measurements established that electricity has an atomic structure and eliminated the
possibility of the electron being “a statistical mean of charges which are themselves
greatly divergent” ([11], p. 58; cf. [23]). Thus, they provided “[t]he most direct and
unambiguous proof of the existence of the electron” ( [10], p. 55].

The electron also played a key role in the development of » atomic models [22].
From 1913 to 1928 a quantum physics of the electron was gradually developed.
Niels Bohr (1885-1962) and Arnold Sommerfeld (1868—1951) imposed restrictive
conditions on the size, shape, and direction in space of the orbit of electrons bound
within the atom. Those conditions were expressed as » quantum numbers, which
“denote the state of the electron in question” ( [12], p. 150). In 1924 Wolfgang
Pauli (1900-1958) attributed a fourth quantum number to the electron in an at-
tempt to come to terms with the complexities of the anomalous Zeeman effect and
the regularities of the periodic table. Furthermore, Pauli formulated an » exclu-
sion principle, which prohibited the coexistence of identical electrons (i.e., with the
same quantum numbers) in the same atom. In 1925 Samuel Goudsmit (1902—-1978)
and George Uhlenbeck (1900-1988) proposed a semi-classical interpretation of the
fourth quantum number as a manifestation of » spin, that is, as a self-rotation of
the electron. This interpretation led to several paradoxes (» errors and paradoxes in
quantum mechanics) and was subsequently abandoned [18]. Spin was reconceptu-
alized as a quantum mechanical property with no classical correlate. However, the
incorporation of spin into the new quantum mechanics encountered difficulties, un-
til P. A. M. Dirac (1902-1984) showed in 1928 that spin could be derived from his
relativistic wave equation [27].

During the 1920s the wave character of the electron was also established. In
1923 Louis de Broglie (1892-1987) developed a synthesis of particle and wave
conceptions of matter. The wave properties of matter implied that “[a] group of
electrons that traverses a sufficiently small aperture will exhibit diffraction effects”
([2], p- 549; transl. in [29], p. 263; » matter waves; » de Broglie wavelength). De
Broglie’s suggestion was confirmed in 1927-28, when Clinton Davisson (1881—
1958) and Lester Germer (1896-1971) in the US and George Paget Thomson
(1892-1975) in England discovered experimentally electron diffraction [3, 14, 28]
» Davisson—Germer experiment.
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