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Preface

Since its inception in the early part of the twentieth century, quantum physics has
fascinated the academic world, its students, and even the general public. In fact, it is
– or has become – a highly interdisciplinary field. On a topic such as “the physics of
the atom” the disciplines of physics, philosophy, and history of science interconnect
in a remarkable way, and to an extent that is revealed in this volume for the first
time. This compendium brings together some 90 researchers, who have authored
approximately 185 articles on all aspects of quantum theory. The project is truly
international and interdisciplinary because it is a compilation of contributions by
historians of science, philosophers, and physicists, all interested in particular aspects
of quantum physics. A glance at the biographies at the end of the volume reveals
author affiliations in no fewer than twenty countries: Australia, Austria, Belgium,
Canada, Denmark, Finland, France, Germany, Greece, Italy, Israel, the Netherlands,
New Zealand, Norway, Poland, Portugal, Spain, Switzerland, the United Kingdom
and the United States. Indeed, the authors are not only international, they are also
internationally renowned – with three Physics Nobel Prize laureates among them.

The basic idea and motivation behind the compendium is indicated in its subtitle,
namely, to describe in concise and accessible form the essential concepts and exper-
iments as well as the history and philosophy of quantum physics. The length of the
contributions varies according to the topic, and all texts are written by recognized
experts in the respective fields. The need for such a compendium was originally
perceived by one of the editors (FW), who later discovered that many physicists
shared this view. Due to the interdisciplinary nature of this endeavor, it would have
been impossible to realize it without the expertise and active participation of a pro-
fessional physicist (DG) and a historian of science (KH). We should not forget,
however, that it was brought to life by the numerous contributions of the many
authors from around the world, who generously offered their time and expertise to
write their respective articles. The contributions appear in alphabetical order by title,
and include many cross-references, as well as selected references to the literature.
The volume includes a short English–French–German lexicon of common terms in
quantum physics. This will be especially helpful to anyone interested in exploring
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historical documents on quantum physics, the theory of which was developed side-
by-side in these three cultures and languages.

The editors would like to thank Brigitte Falkenburg and Peter Mittelstaedt for
their initial work on the project. Angela Lahee (at Springer publishers) deserves our
gratitude for her unwavering support and patience during the four years it has taken
to turn the idea for this compendium into reality.

January 2009 Dan Greenberger
Klaus Hentschel
Friedel Weinert
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A
Aharonov–Bohm Effect

Holger Lyre

The Aharonov–Bohm effect (for short: AB effect) is, quite generally, a non-local
effect in which a physical object travels along a closed loop through a gauge field-
free region and thereby undergoes a physical change. As such, the AB effect can be
described as a holonomy. Its paradigmatic realization became widely known after
Aharonov and Bohm’s 1959 paper – with forerunners by Weiss [1] and Ehrenberg
and Siday [2]. Aharonov and Bohm [3] consider the following scenario: A split
electron beam passes around a solenoid in which a magnetic field is confined. The
region outside the solenoid is field-free, but nevertheless a shift in the interference
pattern on a screen behind the solenoid can be observed upon alteration of the mag-
netic field. The schematic experimental setting can be grasped from the following
figure:
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The phase shift can be calculated from the loop integral over the potential,
which – due to Stokes’ theorem – relates to the magnetic flux

�χ = q

∮
C

A dr = q

∫
S

B ds = q Φmag. (1)

Convincing arguments can be given that the effect is no artifact of some improper
shielding of the fields involved. On the one hand, the magnetic field can perfectly be
confined by the usage of toroidal magnets [15], the unavoidable penetration of the
quantum � wave function into the solenoid, on the other hand, is not known to be
correlated to any scaling of the effect with the quality of the solenoid’s shielding.

While the above experimental setting is called the magnetic AB effect, it is also
possible to consider the electric pendant where the phase of the wave function
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2 Aharonov–Bohm Effect

depends upon varying the electric potential for two paths of a particle travelling
through regions free of an electric field. Moreover, Aharonov and Casher [4] de-
scribed a dual to the AB effect, called the � Aharonov–Casher effect, where a phase
shift in the interference of the magnetic moment in an electric field is considered.

The discovery of the AB effect has caused a flood of publications both about the
theoretical nature of the effect as well as about the various experimental realizations.
Much of the relevant material is covered in Peshkin and Tonomura [14]. The theo-
retical debate can basically be centered around the questions, whether and in which
sense the AB effect is of (1) quantum, (2) topological, and (3) non-local nature.

1. Contrary to a widely held view in the literature, the point can be made that
the AB effect is not of a genuine quantum nature, since there exist classical gravi-
tational AB effects as well ([5]; [6]; [7]). A simple case is the geometry of a cone
where the curvature is flat everywhere except at the apex (which may be smoothed).
Parallel transport on a loop enclosing the apex leads to a holonomy. Also, the second
clock effect in Weylian spacetime can be construed as an AB analogue, as Brown
and Pooley [8] have pointed out. In Weylian spacetime, a clock travelling on a loop
through a field free region enclosing a non-vanishing electromagnetic field under-
goes a shift. It has been shown that the AB effect can be generalized to any SU(N)
gauge theory ([9]; [10]).

2. The AB effect does not depend on the particular path as long as the region
of the non-vanishing gauge field strength is enclosed. It is therefore no instance
of the � Berry phase, which is a path-dependent geometrical quantum phase. It
does depend on the topology of the configuration space of the considered physical
object (in case of the electric AB effect this space is homeomorphic to a circle).
Nevertheless, the AB effect can still be distinguished from topological effects within
gauge theories such as monopoles or instantons, where the topological nature can
be described as non-trivial mappings from the gauge group into the configuration
space (this incidentally also applies to the magnetic AB effect, but generally not to
SU(N) or gravitational AB effects).

3. It is obvious that the AB effect is in some sense non-local. A closer inspection
depends directly on the question about the genuine entities involved, and this ques-
tion has been in the focus of the philosophy of physics literature. In the magnetic
AB effect, the electron wave function does not directly interact with the confined
magnetic field, but since the vector gauge potential outside the solenoid is non-zero,
it is a common view to consider the AB effect as a proof for the reality of the gauge
potential. This, however, renders real entities gauge-dependent. Healey [11] there-
fore argues for the holonomy itself as the genuine gauge theoretic entity. In both
the potential and the holonomy interpretation the AB effect is non-local in the sense
that it is non-separable, since properties of the whole – the holonomy – do not su-
pervene on properties of the parts. As a third possibility even an interpretation solely
in terms of field strengths can be given at the expense of violating the principle of
local action. The case can be made that this is an instance of ontological underde-
termination, where only the gauge group structure is invariant (and, hence, a case in
favour of structural realism [12]).
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A
Remarkably, van Kampen [13] has argued that the AB effect is in fact instan-

taneous, but that this cannot be directly observed since the instantaneous action
of the magnetic effect is accordingly cancelled by the electric AB effect. � Also
Berry’s Phase.
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excluded from a tubular region of space, but otherwise no force acts on it. Yet it
acquires a measurable quantum phase that depends on what is inside the tube of
space from which it is excluded. In the AB effect, the particle is charged and the
tube contains a magnetic flux. In the Aharonov–Casher (AC) effect, the particle is
neutral, but has a magnetic moment, and the tube contains a line of charge. Experi-
ments in neutron [2], vortex [3], atom [4], and electron [5] interferometry bear out
the prediction of Aharonov and Casher. Here we briefly explain the logic of the AC
effect and how it is dual to the AB effect.

We begin with a two-dimensional version of the AB effect. Figure 1 shows an
electron moving in a plane, and also a “fluxon”, i.e. a small region of magnetic
flux (pointing out of the plane) from which the electron is excluded. In Fig. 1 the
fluxon is in a quantum � superposition of two positions, and the electron diffracts
around one of the positions but not the other. Initially, the fluxon and electron are in
a product state |Ψin〉:

|Ψin〉 = 1

2
(|f1〉 + |f2〉)⊗ (|e1〉 + |e2〉),

where |f1〉 and |f2〉 represent the two fluxon wave packets and |e1〉 and |e2〉 repre-
sent the two electron wave packets. After the electron passes the fluxon, their state
|Ψfin〉 is not a product state; the relative phase between |e1〉 and |e2〉 depends on the
fluxon position:

|Ψfin〉 = 1

2
|f1〉 ⊗ (|e1〉 + |e2〉)+ 1

2
|f2〉 ⊗ (|e1〉 + eiφAB |e2〉).

Fig. 1 An electron and a
fluxon, each in a superposition
of two wave packets; the
electron wave packets enclose
only one of the fluxon wave
packets
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A
Here φAB is the Aharonov–Bohm phase, and |f2〉 represents the fluxon positioned
between the two electron � wave packets. Now if we always measure the position of
the fluxon and the relative phase of the electron, we discover the Aharonov–Bohm
effect: the electron acquires the relative phase φAB if and only if the fluxon lies
between the two electron paths. But we can rewrite |Ψfin〉 as follows:

|Ψfin〉 = 1

2
(|f1〉 + |f2〉)⊗ |e1〉 + 1

2
(|f1〉 + eiφAB |f2〉)⊗ |e2〉.

This rewriting implies that if we always measure the relative phase of the fluxon and
the position of the electron, we discover an effect that is analogous to the Aharonov–
Bohm effect: the fluxon acquires the relative phase φAB if and only if the electron
passes between the two fluxon wave packets. Indeed, the effects are equivalent: we
can choose a reference frame in which the fluxon passes by the stationary electron.
Then we find the same relative phase whether the electron paths enclose the fluxon
or the fluxon paths enclose the electron.

In two dimensions, the two effects are equivalent, but there are two inequivalent
ways to go from two to three dimensions while preserving the topology (of paths
of one particle that enclose the other): either the electron remains a particle and the
fluxon becomes a tube of flux, or the fluxon remains a particle (a neutral particle
with a magnetic moment) and the electron becomes a tube of charge. These two
inequivalent ways correspond to the AB and AC effects, respectively. They are not
equivalent but dual, i.e. equivalent up to interchange of electric charge and magnetic
flux.

In the AB effect, the electron does not cross through a magnetic field; in the AC
effect, the neutral particle does cross through an electric field. However, there is no
force on either particle. The proof [6] is surprisingly subtle and holds only if the line
of charge is straight and parallel to the magnetic moment of the neutral particle [8].
Hence only for such a line of charge are the AB and AC effects dual.

Duality has another derivation. To derive their effect, Aharonov and Casher [1]
first obtained the nonrelativistic Lagrangian for a neutral particle of magnetic mo-
ment μ interacting with a particle of charge e. In Gaussian units, it is

L = 1

2
mv2 + 1

2
MV 2 + e

c
A(r− R) · (v− V),

where M,R,V and m, r, v are the mass, position and velocity of the neutral and
charged particle, respectively, and the vector potential A(r− R) is

A(r− R) = μ× (r− R)
|r− R|3 .

Note L is invariant under respective interchange of r, v and R,V. Thus L is the
same whether an electron interacts with a line of magnetic moments (AB effect) or
a magnetic moment interacts with a line of electrons (AC effect). However, if we
begin with the AC effect and replace the magnetic moment with an electron, and all
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the electrons with the original magnetic moment, we end up with magnetic moments
that all point in the same direction, i.e. with a straight line of magnetic flux. Hence
the original line of electrons must have been straight. We see intuitively that the
effects are dual only for a straight line of charge.1
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1 I thank Prof. Aharonov for a conversation on this point.

Algebraic Quantum Mechanics

N.P. Landsman

Algebraic quantum mechanics is an abstraction and generalization of the � Hilbert
space formulation of quantum mechanics due to von Neumann [5]. In fact, von Neu-
mann himself played a major role in developing the algebraic approach. Firstly, his
joint paper [3] with Jordan and Wigner was one of the first attempts to go beyond
Hilbert space (though it is now mainly of historical value). Secondly, he founded
the mathematical theory of operator algebras in a magnificent series of papers [4, 6].
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Although his own attempts to apply this theory to quantum mechanics were unsuc-
cessful [18], the operator algebras that he introduced (which are now aptly called
von Neumann algebras) still play a central role in the algebraic approach to quantum
theory. Another class of operator algebras, now called C∗-algebras, introduced by
Gelfand and Naimark [1], is of similar importance in algebraic quantum mechanics
and quantum field theory. Authoritative references for the theory of C∗-algebras and
von Neumann algebras are [14] and [21]. Major contributions to algebraic quantum
theory were also made by Segal [7, 8] and Haag and his collaborators [2, 13].

The need to go beyond Hilbert space initially arose in attempts at a mathemati-
cally rigorous theory of systems with an infinite number of degrees of freedom, both
in quantum statistical mechanics [9, 12, 13, 19, 20, 22] and in quantum field theory
[2, 13, 20]. These remain active fields of study. More recently, the algebraic ap-
proach has also been applied to � quantum chemistry [17], to the quantization and� quasi-classical limit of finite-dimensional systems [15, 16], and to the philosophy
of physics [10, 11, 16].

Besides its mathematical rigour, an important advantage of the algebraic ap-
proach is that it enables one to incorporate � Superselection Rules. Indeed, it was
a fundamental insight of Haag that the superselection sectors of a quantum system
correspond to (unitarily) inequivalent representations of its algebra of � observ-
ables (see below). As shown in the references just cited, in quantum field theory
such representations (and hence the corresponding superselection sectors) are typ-
ically labeled by charges, whereas in quantum statistical mechanics they describe
different thermodynamic phases of the system. In chemistry, the chirality of certain
molecules can be understood as a superselection rule. The algebraic approach also
leads to a transparent description of situations where � locality and/or � entangle-
ment play a role [11, 13].

The notion of a C∗-algebra is basic in algebraic quantum theory. This is a com-
plex algebra A that is complete in a norm ‖ · ‖ satisfying ‖ab‖ � ‖a‖ ‖b‖ for all
a, b ∈ A, and has an involution a �→ a∗ such that ‖a∗a‖ = ‖a‖2. A quantum system
is then supposed to be modeled by a C∗-algebra whose self-adjoint elements (i.e.
a∗ = a) form the observables of the system. Of course, further structure than the
C∗-algebraic one alone is needed to describe the system completely, such as a time-
evolution or (in the case of quantum field theory) a description of the localization of
each observable [13].

A basic example of a C∗-algebra is the algebra Mn of all complex n×n matrices,
which describes an n-level system. Also, one may take A = B(H), the algebra of
all bounded operators on an infinite-dimensional Hilbert space H , equipped with
the usual operator norm and adjoint. By the Gelfand–Naimark theorem [1], any
C∗-algebra is isomorphic to a norm-closed self-adjoint subalgebra of B(H), for
some Hilbert space H . Another key example is A = C0(X), the space of all con-
tinuous complex-valued functions on a (locally compact Hausdorff) space X that
vanish at infinity (in the sense that for every ε > 0 there is a compact subset
K ⊂ X such that |f (x)| < ε for all x /∈ K), equipped with the supremum norm
‖f ‖∞ := supx∈X |f (x)|, and involution given by (pointwise) complex conjugation.
By the Gelfand–Naimark lemma [1], any commutative C∗-algebra is isomorphic to
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C0(X) for some locally compact Hausdorff space X. The algebra of observables of
a classical system can often be modeled as a commutative C∗-algebra.

A von Neumann algebra M is a special kind of C∗-algebra, namely one that
is concretely given on some Hilbert space, i.e. M ⊂ B(H), and is equal to its
own bicommutant: (M ′)′ = M (where M ′ consists of all bounded operators on H

that commute with every element of M). For example, B(H) is always a von Neu-
mann algebra. Whereas C∗-algebras are usually considered in their norm-topology,
a von Neumann algebra in addition carries a second interesting topology, called the
σ -weak topology, in which its is complete as well. In this topology, one has conver-
gence an → a if Tr ρ̂(an−a)→ 0 for each density matrix ρ̂ on H . Unlike a general
C∗-algebra (which may not have any nontrivial projections at all), a von Neumann
algebra is generated by its projections (i.e. its elements p satisfying p2 = p∗ = p).
It is often said, quite rightly, that C∗-algebras describe “non-commutative topol-
ogy” whereas von Neumann algebra form the domain of “non-commutative measure
theory”.

In the algebraic framework the notion of a state is defined in a different way from
what one is used to in quantum mechanics. An (algebraic) state on a C∗-algebra A is
a linear functional ρ:A → C that is positive in that ρ(a∗a) � 0 for all a ∈ A and
normalized in that ρ(1) = 1, where 1 is the unit element ofA (providedA has a unit;
if not, an equivalent requirement given positivity is ‖ρ‖ = 1). If A is a von Neumann
algebra, the same definition applies, but one has the finer notion of a normal state,
which by definition is continuous in the σ -weak topology (a state is automatically
continuous in the norm topology). If A = B(H), then a fundamental theorem of von
Neumann [5] states that each normal state ρ on A is given by a � density matrix
ρ̂ on H , so that ρ(a) = Tr ρ̂a for each a ∈ A. (If H is infinite-dimensional, then
B(H) also possesses states that are not normal. For example, if H = L2(R) the
Dirac eigenstates |x〉 of the position operator are well known not to exist as vectors
in H , but it turns out that they do define non-normal states on B(H).) On this basis,
algebraic states are interpreted in the same way as states in the usual formalism, in
that the number ρ(a) is taken to be the expectation value of the observable a in the
state ρ (this is essentially the � Born rule).

The notions of pure and mixed states can be defined in a general way now.
Namely, a state ρ : A → C is said to be pure when a decomposition ρ =
λω + (1 − λ)σ for some λ ∈ (0, 1) and two states ω and σ is possible only if
ω = σ = ρ. Otherwise, ρ is called mixed, in which case it evidently does have
a nontrivial decomposition. It then turns out that a normal pure state on B(H) is
necessarily of the form ψ(a) = (Ψ, aΨ ) for some unit vector Ψ ∈ H ; of course,
the state ρ defined by a density matrix ρ̂ that is not a one-dimensional projection
is mixed. Thus one recovers the usual notion of pure and mixed states from the
algebraic formalism.

In the algebraic approach, however, states play a role that has no counterpart in
the usual formalism of quantum mechanics. Namely, each state ρ on a C∗-algebra
A defines a representation πρ of A on a Hilbert space Hρ by means of the so-
called GNS-construction (after Gelfand, Naimark and Segal [1, 7]). First, assume
that ρ is faithful in that ρ(a∗a) > 0 for all nonzero a ∈ A. It follows that (a, b) :=
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ρ(a∗b) defines a positive definite sesquilinear form on A; the completion of A in the
corresponding norm is a Hilbert space denoted by Hρ . By construction, it contains
A as a dense subspace. For each a ∈ A, define an operator πρ(a) on A by πρ(a)b :=
ab, where b ∈ A. It easily follows that πρ(a) is bounded, so that it may be extended
by continuity to all of Hρ . One then checks that πρ : A → B(Hρ) is linear and
satisfies πρ(a1a2) = πρ(a1)πρ(a2) and πρ(a

∗) = πρ(a)
∗. This means that πρ is a

representation of A on Hρ . If ρ is not faithful, the same construction applies with
one additional step: since the sesquilinear form is merely positive semidefinite, one
has to take the quotient of A by the kernel Nρ of the form (i.e. the collection of all
c ∈ A for which ρ(c∗c) = 0), and construct the Hilbert space Hρ as the completion
of A/Nρ .

As in group theory, one has a notion of unitary (in)equivalence of representations
of C∗-algebras. As already mentioned, this provides a mathematical explanation for
the phenomenon of superselection rules, an insight that remains one of the most
important achievements of algebraic quantum theory to date. See also � operational
quantum mechanics; relativistic quantum mechanics.
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Angular Momentum

� See Spin; Stern–Gerlach experiment; Vector model.

Anyons

Jon Magne Leinaas

Quantum mechanics gives a unique characterization of elementary particles as be-
ing either bosons or fermions. This property, referred to as the � quantum statistics
of the particles, follows from a simple symmetry argument, where the � wave func-
tions of a system of identical particles are restricted to be either symmetric (bosons)
or antisymmetric (fermions) under permutation of particle coordinates. For two
spinless particles, this symmetry is expressed through a sign factor which is as-
sociated with the switching of positions

ψ(r1, r2) = ±ψ(r2, r1) , (1)

with + for bosons and − for fermions. From the symmetry constraint, when ap-
plied to a many-particle system, the statistical distributions of particles over single
particle states can be derived, and the completely different collective behaviour of
systems like � electrons (fermions) and photons (bosons) (� light quantum) can be
understood.
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The restriction to two possible kinds of quantum statistics, represented by the

sign factor in (1), seems almost obvious. On one hand the permutation of parti-
cle coordinates has no physical significance when the particles are identical, which
means that the wave function can change at most by a complex phase factor eiθ .
On the other hand a double permutation seems to make no change at all, which fur-
ther restricts the phase factor to a sign ±1. This is the standard argument used in
textbooks like [14].

However, there is a loophole to this argument, as pointed out by J.M. Leinaas and
J. Myrheim in 1976 [1]. If the dimension of space is reduced from three to two the
constraint on the phase factor is lifted and a continuum of possibilities appears that
interpolates between the boson and fermion cases. In [1] these unconventional types
of quantum statistics were found by analysis of the wave functions defined on the
many-particle configuration space. Other approaches by G.A. Goldin, R. Menikoff,
and D.H. Sharp [2] and by F. Wilczek [3] lead to similar results, and Wilczek in-
troduced the name anyon for these new types of particles. As a precursor to this
discussion M.G.G. Laidlaw and C.M. DeWitt had already shown that a path integral
description applied to systems of identical particles reproduces standard results, but
only in a space of dimensions higher than two [4].

The difference between continuous interchange of positions in two and three di-
mensions can readily be demonstrated, as illustrated in Fig. 1a. In two dimensions
a two-particle interchange path comes with an orientation, and as a consequence a
right-handed path and its inverse, a left-handed path, may be associated with dif-
ferent (inverse) phase factors. In three and higher dimensions there is no intrinsic
difference between orientations of a path, since a right-handed path can be continu-
ously changed to a left-handed one by a rotation in the extra dimension. Therefore,
in dimensions higher than two the exchange phase factor has to be equal to its in-
verse, and is consequently restricted to ±1. This explains why anyons are possible
in two but not in three dimensions. Since the statistics angle θ in the exchange fac-
tor eiθ is a free parameter, there is a different type of anyon for each value of θ . For

time

eiθ e−iθ

a b

Fig. 1 Switching positions in two dimensions. (a) The difference between right-handed and left-
handed interchange may give rise to quantum phase factors e±iθ that are different from ±1.
(b) When many particles switch positions the collection of continuous particle paths can be viewed
as forming a braid and the associated phase factor can be viewed as a representing an element of
the braid group
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systems with more than two particles the different paths define more complicated
patterns (Fig. 1b), which are generally known as braids, and in this view of quan-
tum statistics the corresponding braid group is therefore more fundamental than the
permutation group. The generalized types of quantum statistics characterized by the
parameter θ is often referred to as fractional statistics or braiding statistics.

Since anyons can only exist in two dimensions, elementary particles in the world
of three space dimensions are still restricted to be either fermions or bosons. But in
condensed matter physics the creation of quasi-twodimensional systems is possible,
and in such systems anyons may emerge. They are excitations of the quantum sys-
tem with sharply defined particle properties, generally known as quasiparticles.
The presence of anyons in such systems is not only a theoretical possibility, as
was realized after the discovery of the fractional � quantum Hall effect in 1982.
This effect is due to the formation of a two-dimensional, incompressible electron
fluid in a strong magnetic field, and the anyon character of the quasiparticles in
this system was demonstrated quite convincingly in theoretical studies [5, 6]. Al-
though theoretical developments have given further support to this idea, a direct
experimental evidence has been lacking. However, experiments performed by V.J.
Goldman and his group in 2005, with studies on interference effects in tunnelling
currents, have given clear indications for the presence of excitations with fractional
statistics [7].

The discovery of the fractional quantum Hall effect and the subsequent de-
velopment of ideas of anyon superconductivity [15] gave a boost in interest for
anyons, which later on has been followed up by ideas of anyons in other types
of systems with exotic quantum properties. One of these ideas applies to rotating
atomic � Bose-Einstein condensation, where theoretical studies have lead to pre-
dictions that at sufficiently high angular velocities a transition of the condensate to
a bosonic analogy of a quantum Hall state will occur, and in this new quantum state
anyon excitations should exist [8].

Topology is an important element in the description of anyons, since the focus
is on continuous paths rather than simply on permutations of particle coordinates
[1]. This focus on topology and on braids places the theory of anyons into a wider
context of modern physics. Thus, anyons form a natural part of an approach to
the physics of exotic condensed matter systems known as topologically ordered
systems, where the two-dimensional electron gas of the quantum Hall system is a
special realization [9]. The braid formulation also opens for generalizations in the
form of non-abelian anyons. In this extension of the anyon theory, the phase factor
associated with the interchange of two anyon positions is replaced by non-abelian
unitary operations (or matrices). This is an extension of the simple identical particle
picture of anyons, since new degrees of freedom are introduced which in a sense are
shared by the participants in the braid. In the rich physics of the quantum Hall effect
there are indications that such nonabelions may indeed exist [10], and theoretical
ideas of exploiting such objects in the form of topological � quantum computation
[11] have gained much interest.

The topological aspects are important for the description of anyons, but at the
same time they create problems for the study of many-anyon systems. Even if no
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additional interaction is present such systems can be studied in detail only when the
particle number is small. There are also limitations to the application of standard
many-particle methods. For these reasons the physics of many-anyon systems is
only partly understood. One approach to the many-anyon problem is to trade the
non-trivial braiding symmetry for a compensating statistics interaction [1], which is
a two-body interaction that is sensitive to the braiding of particles, but is independent
of distance. The same type of statistics transformation has also been used in field
theory descriptions of the fractional quantum Hall effect, where the fundamental
electron field is changed by a statistics transmutation into an effective bosonic field
of the system [12].

Even if anyons, as usually defined, are particles restricted to two dimensions,
there are related many-particle effects in one dimension. The interchange of parti-
cle positions cannot be viewed in the same way, since particles in one dimension
cannot switch place in a continuous way without actually passing through each
other. Nevertheless there are special kinds of interactions that can be interpreted as
representing unconventional types of quantum statistics also in one dimension [13].
The name anyon is often applied also to these kinds of particles.

For further reading see [15] and [16].
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Aspect Experiment

A.J. Leggett

In 1965, John S. Bell proved a celebrated theorem [1] which essentially states that
no theory belonging to the class of “objective local theories” (OLT’s) can reproduce
the experimental predictions of quantum mechanics for a situation in which two cor-
related particles are detected at mutually distant stations (� Bell’s Theorem). A few
years later Clauser et al. [2] extended the theorem so as to make possible an experi-
ment which would in principle unambiguously discriminate between the predictions
of the class of OLT’s and those of quantum mechanics, and the first experiment of
this type was carried out by Freedman and Clauser [3] in 1972. This experiment,
and (with one exception) others performed in the next few years confirmed the pre-
dictions of quantum mechanics. However, they did not definitively rule out the class
of OLT’s, because of a number of “loopholes” (� Loopholes in Experiments). Of
these various loopholes, probably the most worrying was the “locality loophole”:
a crucial ingredient in the definition of an OLT is the postulate that the outcome
of a measurement at (e.g.) station 2 cannot depend on the nature of the measure-
ment at the distant station 1 (i.e., on the experimenter’s choice of which of two or
more mutually incompatible measurements to perform). If the space-time interval
between the “event” of the choice of measurement at station 1 and that of the out-
come of the measurement at station 2 were spacelike, then violation of the postulate
under the conditions of the experiment would imply, at least prima facie, a viola-
tion of the principles of special relativity, so that most physicists would have a great
deal of confidence in the postulate. Unfortunately, in the experiments mentioned, the
choice of which variable to measure was made in setting up the apparatus (polariz-
ers, etc.) in a particular configuration, a process which obviously precedes the actual
measurements by a time of the order of hours; since the spatial separation between
the stations was only of the order of a few meters, it is clear that the events of choice
at 1 and measurement at 2 fail to meet the condition of spacelike separation by many
orders of magnitude, and the possibility is left open that information concerning the
setting (choice) at station 1 has been transmitted (subluminally) to station 2 and
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affected the outcome of the measurement there. While such a hypothesis certainly
seems bizarre within the framework of currently accepted physics, the question of
the viability or not of the class of OLT’s is so fundamental an issue that one cannot
afford to neglect it completely.

In this situation it becomes highly desirable, as emphasized by Bell in his orig-
inal paper, to perform an experiment in which the choice of what to measure at
station 1 is made “at the last moment”, so that there is no time for information
about this choice to be transmitted (subluminally or luminally) to station 2 before
the outcome of the measurement there is realized. Of course, whether or not this
condition is fulfilled in any given experiment depends crucially on exactly at what
stage the “realization” of a specific outcome is taken to occur, and this question
immediately gets us into the fundamental problem of measurement in quantum me-
chanics (� Measurement Theory); however, most discussions of the incompatibility
of OLT’s and quantum theory in the literature have been content to assume that the
realization occurs no later than the first irreversible processes taking place in the
macroscopic measuring device.(For example, in a typical photomultiplier it is as-
sumed to take place when the photon hits the cathode and ejects the first electron,
since in practice any processes taking place thereafter are irreversible). Although
this assumption is certainly questionable, for the sake of definiteness it will be made
until further notice.

The first experiment to attempt to evade the locality loophole was that of Aspect
et al. [4] in 1982, and subsequent experiments which continue this approach are
often referred to as “Aspect-type”. In some sense these experiments are a sub-class
of the more general category of “delayed-choice” experiments � Delayed-Choice
Experiment), but they have a special significance in their role of attempting to ex-
clude the class of OLT’s. In the original experiment [4], the distance between the
detection stations is about 12 m, corresponding to a transit time for light of 40 nsec.
At each station, the “switch” which decides which of the two alternative measure-
ments to make is an acousto-optical device; in each case two electro-acoustical
transducers, driven in phase, create ultrasonic standing waves in a slab of water
through which the relevant photon must pass, with a period of about 25 MHz (the
frequency is different for the two stations). The periodic density variation in the
wave acts as a diffraction grating: If a given photon � wave packet (length in
time ∼5 nsec) arrives at (say) station 1 when the wave has a node (i.e., the density
and hence dielectric constant of the water is uniform) it is transmitted rectilinearly
through the slab and enters a polarizer set in direction a; if on the other hand it ar-
rives at an antinode (periodic density variation) it undergoes Bragg diffraction and is
directed into a polarizer set at a’. (See Fig. 1). Photons (� light quantum) incident at
intermediate phases of the wave are deflected into neither polarizer and thus missed
in the counting. The period of switching between the alternative choices (a quarter
period of the transducers) is about 10 nsec., short compared to the transit time of
light between the stations. To the extent, then, that one can regard the switching as
a “random” process, the locality loophole is blocked. The data obtained in ref. [4]
violate the OLT predictions by 5 standard deviations.
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Fig. 1 Schema of switching devices in Aspect experiment. Pa (Pa′ ) are polarisers with transmis-
sion axis a (a). When a photon arrives at time on ultrasonic cycle when density of H2O is constant,
it is directed into Pa ; (b) if it arrives at a maximum of the standing wave, into Pa′

Is the switching in fact a truly random process? On the one hand, since the trans-
ducer pairs are driven by different generators at different frequencies, there is no
correlation between the choices made at the two stations, and as we have seen no
time for information about the choice itself to be transmitted between them. On the
other hand, since the driving at each station separately is periodic, a sufficiently
determined advocate of OLT’s might argue that station 2 has the information to pre-
dict what the setting at station 1 will be at a given time in the future and to make
arrangements accordingly (and of course vice versa). Thus, while the experiment
of ref. [4] is clearly a major advance on the original Freedman-Clauser one, not
everyone was convinced that it had definitively blocked the locality loophole.

Of the various Aspect-type experiments performed subsequently to 1982, proba-
bly the most notable is that of Weihs et al. [5]. This experiment used a much longer
baseline, around 400 m, and the choice of measurement was made by a quantum ran-
dom number generator (QRNG), with a total switching time of less than 100 nsec.
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A further feature of this experiment, unique up to now among the whole class of
“Bell’s theorem” experiments, is that instead of being channelled to a central coin-
cidence counter the detection outcomes are recorded in situ and compared, with the
help of accurate timing, only hours or days later (so that, coming back to the ques-
tion of the time of “realization”, its postponement until the time of comparison,
which is not totally implausible in other experiments, would in this case seem
distinctly unnatural). The duration of the registration process was such that it is
completed well within the signal transit time. The data obtained are consistent with
the predictions of quantum mechanics and violate those of the class of OLT’s by 30
standard deviations.

One further experiment which has some significance in the present context is that
of Tittel et al. [6]. Although there was no in-situ recording, this is otherwise similar
in spirit to that of ref. [5], with an even longer base-line (10 km); the difference is
that the role of the QRNG which controls the choice of measurement is played by
the measured photon itself (it impinges on a beam splitter where the output beams
correspond to different choices). Once more good agreement with the predictions of
quantum mechanics is obtained.

In the light of these experiments, any attempt to continue to exploit the locality
loophole to defend a theory of the OLT class would have either to deny that the
QRNG’s used work in a genuinely random way, or postpone the realization pro-
cess for at least 1.3 microsec after the photon enters the photomultiplier (the signal
transit time in the experiment of Weihs et al.). A truly definitive blocking of this
loophole would presumably require that the detection be directly conducted by two
human observers with a spatial separation such that the signal transit time exceeds
human reaction times, a few hundred milliseconds (i.e., a separation of several tens
of thousand kilometers). Given the extraordinary progress made in quantum com-
munication in recent years, this goal may not be indefinitely far in the future. In the
meantime, a small step in this direction might be taken by repeating the experiment
of Weihs et al. with inspection of the outcomes by independent human observers
before they are correlated, something which was not done in ref. [5].1
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In 1897, Joseph John Thomson (1856–1940) had announced the discovery of a cor-
puscle. Others soon called it � electron, despite Thomson’s stubborn preference for
his original term, borrowed from Robert Boyle (1627–91) to denote any particle-
like structure. Very soon afterwards, Thomson began to think about how to explain
the periodicity of properties of the chemical elements in terms of these negatively
charged corpuscles as atomic constituents. Chemical properties would thus have to
depend on the number and constellations of these corpuscles inside the atom. They
would have to have stable positions in it, bound by electrostatic and possibly kinetic
forces. Because under normal conditions chemical atoms are electrically neutral,
the total electric charge of all these negatively charged electrons had to be com-
pensated for by an equal amount of positive charge. For Thomson it was natural to
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Fig. 1 Left: From [1, p. 248]; right: from [2, pp. 100–101]

assume that this positive charge was continuously distributed throughout the atom,
whose radius was estimated at the time to be around 10−12 m. The very small neg-
atively charged electrons (contemporary estimates indicated an order of magnitude
of 10−15 m) were distributed in the atom like raisins inside a cake or like plums in a
pudding, whence the popular nickname for Thomson’s atomic model as the “plum
pudding model”.

In order to get a better idea of the stable configurations of these corpuscles inside
the atom, Thomson drew an analogy to experiments by Alfred Marshall Mayer
(1836–1897) who had pierced small magnetic needles into corks and watched
them float in water below a strong magnet (see Fig. 1, left). In 1878/79 Mayer had
observed that the magnetized floating needles quasi-automatically positioned them-
selves in characteristic configurations depending on their number. With more than
six magnetic needles present, a seventh and eighth would inevitably position itself
inside the outer ring of six (see the third row of Fig. 1 middle). As the number of
floating magnets increased, more and more rings would form. Thomson hoped that
a similar ring-structure composed of corpuscules could be found inside chemical
atoms, and suspected that each of these rings would be analogous to the chemical
periods in the period table of the elements. Specific configurations of the innermost
ring would determine the chemical properties of the chemical element at hand. Two
chemical elements with differing numbers of outer rings of corpuscles but similar in-
nermost configurations would thus share similar chemical properties, like elements
situated beneath each other in a column of the periodic table. To stabilize these con-
figurations, Thomson also assumed that the concentric rings would all rotate around
their common center.

Around 1904 Thomson believed each chemical atom would contain a very large
number of � electrons, something in the order of magnitude of 1,000 or more. With
such high numbers he hoped to explain the puzzle of the exceedingly many spectral
lines in each atom’s spectrum and the fact that the masses of atoms proved to be sev-
eral thousand times the mass of an electron. Radioactive decay (� radioactive decay
law) very often correlated with the emission of negatively charged β-rays, turned out
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to be nothing but highly accelerated electrons, which Thomson thus interpreted as
a mechanical instability of these electron configurations. A slight disturbance of
the carefully balanced equilibrium position would result in electrostatic repulsion
taking over and the expulsion of individual electrons or whole groups of electrons
from the atom, where they would be experimentally observable as β-rays. Thomson
also tried to explore the atomic structure by using corpuscles/electrons as projec-
tiles in β-ray scattering experiments onto thin foils. The scattering angles observed
by him and his students were predominantly very small, with a Gaussian distribu-
tion peaking sharply around zero-degree refraction and a width proportional to the
thickness of the target layer. This experimental finding was interpreted as evidence
for small-angle scattering, with successive layers of matter in thicker foils induc-
ing an increasing, but still relatively small probability of multiple scattering, with
occasional larger scattering angles resulting.

When Ernest Rutherford (1871–1937) started to work on � scattering ex-
periments, he varied Thomson’s set-up by also using the positively charged and
much heavier α-rays as projectiles. As will be discussed in detail in the entries
on � large-angle scattering and the � Rutherford atom model, Rutherford’s exper-
iments showed that � large-angle scattering was far more frequent than would be
expected on the basis of J.J. Thomson’s plum pudding � atomic models. Rutherford
decided to modify J.J. Thomson’s atomic model: instead of assuming a continuous
smeared-out positive charge, Rutherford postulated a concentrated atomic nucleus
model with positive charge surrounded by a diffuse sphere of negative electricity
(cf. Fig. 2). Quantitative analysis of his α-ray scattering experiments showed this
atomic nucleus model was consistent with his data if the positive charge of the core
was of the order of A/2 ·e,with A being the atomic number of the chemical element
and e equal to the charge of J.J. Thomson’s corpuscles, the elementary charge quan-
tum. Thus Rutherford’s estimate (which proved to be correct) drastically reduced
the number of electrons inside atoms compared to J.J. Thomson’s.

Fig. 2 Rutherford’s first calculations on the passage of α-particles through atoms: “Theory of
structure of atoms/Suppose atoms consist of + charge ne at centre & – charge as electrons
distributed throughout sphere of radius ρ.” From the Rutherford papers, Cambridge University
Library, reproduced from [7, p. 24]
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A
When the young Niels Bohr (1885–1962) finished writing his Ph.D. thesis at the

University of Copenhagen, he obtained a fellowship for postgraduate study abroad.
He chose to go to Cambridge, hoping to get to work more closely with J.J. Thomson,
who was director of the Cavendish laboratory since 1884. The two personalities did
not match, however, and Bohr soon decided to move on to Manchester where Ernest
Rutherford introduced him to the intricacies of scattering experiments with α-rays
and discussed his brand new nuclear core model of the atom. In the atomic model
Bohr introduced in 1913, later refined by Arnold Sommerfeld (1868–1951) and
others (� Bohr’s atomic model; � Sommerfeld school), Bohr masterfully merged
ideas by J.J. Thomson, Rutherford and Nagaoka (� Atomic models). He also su-
perimposed quantum conditions introduced by Max Planck (1858–1947) in 1900
and first employed in atomic models from 1910 on by Arthur Erich Haas (1884–
1941) and John William Nicholson (1881–1955) [cf., e.g. [10], and [8]. While Bohr
and Rutherford soon looked back on the older atomic models by J.J. Thomson and
others as “a museum of scientific curiosities”, J.J. Thomson for his part rejected
Bohr’s advances as “meretricious superficialities obtained without, or at the price
of, an understanding of the mechanism of atoms” [7, p. 23]. Today we know that
J.J. Thomson’s hope to arrive at an intuitive, quasi-mechanical understanding of the
atom was in vain – but at the time no one could be sure.

Primary Literature

1. Alfred M. Mayer: Floating magnets. American Journal of Science 116, 248–9 (1878), also in
Nature 17, 487–488

2. Alfred M. Mayer: On the morphological laws of the configurations formed by magnets float-
ing vertically and subjected to the attraction of a superposed magnet. Philosophical Magazine
(5th series) 17, 98–108 (1879)

3. Joseph John Thomson: On the structure of the atom. Philosophical Magazine (6th series) 7,
237–265 (1904)

4. Joseph John Thomson: The structure of the atom (an evening lecture at the Royal Institution of
London on March 10, 1905), published in the Proceedings of the Royal Institution of London
(1905, 1–15)

5. Joseph John Thomson: The Corpuscular Theory of Matter (Constable & Company, London
1907)

Secondary Literature

6. Edward Arthur Davis & Elisabeth Falconer: J.J. Thomson and the Discovery of the Electron
(Taylor & Francis, London 1997, esp. chap. 6, with a reprint of Thomson 1905 on pp. 215–229)

7. John Heilbron: J.J. Thomson and the Bohr atom. Physics Today 30, 23–30 (April 1977)
8. Armin Hermann (ed.): Der erste Quantenansatz für das Atom: Arthur Erich Haas (Battenberg,

Stuttgart 1965) (Dokumente der Naturwissenschaft, Abt. Physik, issue 10)
9. Helge Kragh: The First Subatomic Explanations of the Periodic System. Foundations of Chem-

istry 3/2, 129–143 (2001)
10. Russell McCormmach: The atomic theory of John William Nicholson. Archive for History of

Exact Sciences 3/2, 160–184 (1975)



22 Atomic Models, Nagaoka’s Saturnian Model

Atomic Models, Nagaoka’s Saturnian Model

Klaus Hentschel

In late 1903, Hantaro Nagaoka (1865–1950) developed the earliest published
quasi-planetary model of the atom. This graduate of the University of Tokyo from
1887 spent his postdoctoral period in Vienna, Berlin and Munich before obtaining a
professorship in Tokyo to become Japan’s foremost modern physicist. Nagaoka as-
sumed that the atom is a large, massive, positively charged sphere, encircled by very
many (in order of magnitude: hundreds) light-weight, negatively charged � elec-
trons, bound by electrostatic forces analogous to Saturn’s ring, which is stabilized
and attracted to the heavy planet by gravitation and consists of a myriad of small
fragments. Thus, Nagaoka’s model is also called a saturnian model. (Fig. 1) Even
though its basic assumption foreshadowed later models of the atom, such as William
Nicholson’s (1753–1815) and Niels Bohr’s (1885–1962), it differed from � Bohr’s
atomic model in crucial points. Unlike Bohr one decade later, Nagaoka thought that

    +

Fig. 1 Nagaoka’s ‘Saturnian’ model: very many electrons move in one ring around a positively
charged central body. In Nagoka’s own words (1903/04, pp. 445f.): “The system, which I am going
to discuss, consists of a large number of particles of equal mass arranged in a circle at equal angular
intervals and repelling each other with forces inversely proportional to the square of distance; at
the centre of the circle, place a particle of large mass attracting the other particles according to
the same law of force. If these repelling particles be revolving with nearly the same velocity about
the attracting centre, the system will generally remain stable, for small disturbances provided the
attracting force be sufficiently great . . . . The present case will evidently be approximately realized
if we replace these satellites by negative electrons and the attracting centre by a positively charged
particle”
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A
the observed atomic spectra should be directly correlated with the electron’s orbit
frequency. Radioactivity was interpreted as an occasional breakdown of saturnian
rings, with electrons then being ejected from the atoms as β-rays. Consequently,
Nagaoka and others tried to correlate spectral series, bands and other data observed
in � spectroscopy and early research on radioactivity with predictions derived from
his model – in vain. Another problem of Nagaoka’s and Nicholson’s planetary
models was a lack of stability of the electron orbits to oscillations orthogonal to
the plane of rotation, as J.J. Thomson pointed out, which ultimately led to Nagaoka
himself abandoning the Saturnian model in 1908.
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Bell’s Theorem

A.J. Leggett

Bell’s theorem, first proved by John Stewart Bell (1928–1990) [1] in 1964, is prob-
ably the most celebrated result in the whole of twentieth-century physics. Briefly
stated, it demonstrates that a whole class of theories about the physical world (“ob-
jective local theories”, see below) defined by the conjunction of three apparently
plausible general principles, must yield experimental predictions which under cer-
tain conditions are inconsistent with the predictions of quantum mechanics. Over
the last 35 years a series of experiments motivated by the theorem have shown that
under the relevant conditions the experimental properties of the world are consis-
tent with the predictions of quantum mechanics and thus, subject to certain caveats,
inconsistent with those of the alternative class of theories, so that the latter must
apparently be rejected.

Let’s first define an idealized experimental arrangement which is useful for the
discussion of the theorem (see Fig. 1). A source emits pairs of particles (let us say
for definiteness photons (� light quantum) as is usually the case in the real-life ex-
periments). The photons travel to two different experimental “stations” S1 and S2
which are distant not only from the source but from one another, so that the space-
time points at which they are detected at the stations are spacelike separated in the
sense of special relativity (i.e. there is no time for a light wave, or anything slower,
to pass between them). At (say) station 1 the relevant photon (1) encounters a ran-
domly activated switch which directs it into one of two “measurement devices”.
Each measurement device gives a binary output (“yes” or “no”), but to two different
“questions”. To put a little flesh on this rather abstract formulation, let us imagine
(as is usually the case in practice) that the “measurement” is of photon polarization;
then one measurement device (call it Ma) would consist of a polarizer set to transmit
photons polarized along direction a in the plane orthogonal to its propagation direc-
tion and reflect photons with the orthogonal polarization, together with counters
[Ca

(+) and Ca
(−)] to detect both the transmitted and reflected photons. The second

measurement device, Ma′ , is similar except that the polarizer now has a transmission
axis a′ which is different from a. A similar setup is constructed at station 2, with
the alternative polarizer axes now b and b′. It is important that the “events” not only
of the arrival of the photons at S1 and S2 but of the activation of the two switches,
i.e. of the “choice” of which of the two alternative measurements to make at each
station, be spacelike separated.

It is further assumed that we are able to identify precisely which photon 2
has been emitted in conjunction with a given photon 1 (e.g. by turning down the
source intensity to a sufficiently low value). The output of each of the counters is a

D. Greenberger et al. (eds.), Compendium of Quantum Physics: Concepts, Experiments, 24
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Fig. 1 Schematic setup of experimental arrangement. (a) The source and the two measurement
stations. (b) Details of the measurement apparatus Ma. The apparatuses Ma′ , Mb, Mb′ are similarly
constructed

macroscopic event, e.g. an audible click; for complete idealization we may assume
that at each station the click is noted by a conscious human observer (who can later
report what he/she heard) and that the spacetime separation between the event of
random switching at station 1 and that of conscious observation at station 2, and be-
tween the conscious observations at 1 and 2 themselves, is itself spacelike. Needless
to say, real-life experiments do not fulfil all of the above requirements, particularly
the last, but I will assume them for the sake of a clean discussion.

It is useful to develop a vocabulary to describe the data obtained in such an exper-
imental setup. Consider a given pair of photons 1 and 2 which we are sure have been
emitted in conjunction. Let us suppose that on this particular occasion the switch at
station 1 has directed photon 1 into counter Ma. Then, if the design is ideal, one of
two things will happen: either counter Ca

(+) will click while counter Ca
(−) remains

silent, or vice versa. Let us define a dichotomic variable A so that the measured
value of A is by definition+1 in the former case and −1 in the latter.



26 Bell’s Theorem

Similarly, if we suppose that the switch at station 2 has directed photon 2 into
measurement apparatus Mb, we can define a quantity B so that the measured value of
B is by definition+1 if it is counter Mb

(+) which clicks, and −1 if it is Mb
(−). Now

let us consider a different pair of photons, for which (say) photon 2 is still switched
into Mb but photon 1 is now switched into Ma′ . We can define B as previously, but
instead of A we must now define a quantity A′, which has the measured value A′ if
Ma′ (+) clicks, etc. Note that for this second pair, the “measured value” of A is not
defined (as was not that of A′ for the first pair). A quantity B ′ is introduced in the
obviously analogous way. Let us now define the correlation of A and B, 〈AB〉, by
the formula

〈AB〉 = {N++ (ab)+N−− (ab)−N+− (ab)− N−+ (ab)}
{N++ (ab)+N−− (ab)+N+− (ab)+ N−+ (ab)} (1)

where N++(ab) means the number of occasions on which photon 1 was switched
into counter Ma and photon 2 into Mb, and A and B were both measured to be +1,
etc.; note that the denominator is simply the number of times that 1 was switched
into Ma and 2 into Mb, irrespective of the outcome of the measurements. Corre-
lations 〈A′B〉, 〈AB ′〉, 〈A′B ′〉 are defined analogously. With these definitions it is
clear that we can measure 〈AB〉 on one subensemble of the total ensemble of photon
pairs, namely that consisting of those pairs for which photon 1 was switched into
Ma and photon 2 into Mb. Similarly, we can measure the correlation 〈AB ′〉 on a
different subensemble (1 switched into Ma, 2 into Mb′), and so on.

Let us next define the class of “objective local theories” (OLT’s) whose predic-
tions are to be compared with those of quantum mechanics and with experiment in
situations approximating the idealized one described above. While the details of the
definition as presented in the literature tend to vary from one author to another and
with Bell’s original one, one can summarize by saying that the class of OLT’s is de-
fined by the conjunction of three independent general hypotheses about the physical
world, which for brevity I will refer to as (1) � locality (2) induction and (3) real-
ism. (As will be discussed below, some treatments in the literature do not explicitly
include (2)). I now discuss these three postulates in turn.

1. Locality (sometimes called � “Einstein locality”) is the postulate, central to
the special theory of relativity, that events which are spacelike separated can-
not causally influence one another. In the experimental arrangement described
above, this means that (for example) the outcome of a measurement at station 2
cannot depend on the setting of the switch at station 1.

2. Induction means basically our normal assumption about the “arrow of time”,
i.e. that physical � ensembles in quantum mechanics (the collections of systems
which possess reproducible statistical properties) existing at a time t > 0 are
defined only by their past experience (e.g. by the initial conditions at time 0 and
forces acting between 0 and t), and not by anything which is going to happen
at a time later than t . In the relevant experiments this means that the statistical
properties of the subensemble consisting of those pairs of photons on which (say)



Bell’s Theorem 27

B

A and B are measured should be identical to those of the ensemble of photons
as a whole (in intuitive language, the photons cannot “know” in advance which
polarization components are to be measured on them).

In many papers on Bell’s theorem in the literature, postulate (2) is not included ex-
plicitly, probably because of a belief that it is subsumed under (1). This is a rather
delicate issue: within the context of special relativity without any additional con-
straints the belief is obviously correct, in the sense that if one considers three events
X,Y,Z such that X and Y are spacelike separated but both are in the past light cone
of Z, then violation of (2) would allow Z to influence Y, and we assume that X
influences Z in the usual way then X can influence Y, in violation of (1).
However, there is no obvious reason why a general OLT should not incorporate, for
example, the postulate that such “causal triangles” are forbidden to occur, so that it
is useful to incorporate postulate (2) explicitly in the definition of an objective local
theory.

3. Realism is probably the conceptually trickiest ingredient in the definition of the
class of OLT’s. In the simplest form (essentially that used by Bell in his original
paper) it is the statement that each individual particle (in the described experi-
ment, each individual photon of a given pair) possesses definite properties; for
example, each photon 1 carries with it information which determines both how it
will respond if directed by the switch into Ma, and how it will respond if directed
into Ma′ . Let’s call this assumption the hypothesis of microscopic realism, and
denote it (3a). Note that while in his original paper Bell, whose original moti-
vation was the issue of the consistency of “hidden-variable” theories (� Hidden
Variables) with quantum mechanics, assumed that the response is deterministic
as in most theories of that type, this is not essential; one can perfectly well con-
sider models where there is intrinsic randomness in the outcome of the relevant
measurement, provided only that the statistics of the latter is completely deter-
mined by information carried by photon 1 alone.

A possible alternative formulation of postulate (3) (call it (3b)) eschews any
statement about the properties of microscopic objects (photons) in favor of state-
ments about (actual and possible) directly observed events at the macroscopic level
(clicks). Consider for example a case in which photon 1 is actually switched into
Ma′ ; then, of course, this particular photon cannot be measured by Ma, and conse-
quently the value of the quantity A is not defined. Now imagine, contrary to fact, that
this particular photon had been switched into Ma. It is, of course, a (rather trivial)
“fact” about the world that under these (counterfactual) conditions either counter
Ca

(+) would have clicked, giving A = +1, or counter Ca
(−) would have clicked

(A = −1). In other words we can presumably agree, referring to the given counter-
factual conditions, that

(P1): It is a fact that either A would have been +1, or A would have been −1.

Now consider the subtly different assertion:

(P2): Either it is a fact that A would have been +1, or it is a fact that A would
have been −1.



28 Bell’s Theorem

The assertion of (P2) is called the hypothesis of macroscopic counterfactual def-
initeness (hereafter abbreviated MCFD � Counterfactuals in QM)). In contrast to
assertion 1, which makes as it were no particular metaphysical statement, assertion
(P2) claims that the outcome of an unperformed experiment is a fixed property of
the world. It should be emphasized that the above formulation of the defining pos-
tulates of the class of theories for which Bell’s theorem holds is only one of many
possible such formulations. The equivalence or not of these alternative formulations,
and the advantages and disadvantages of each, has been the subject of an extensive
literature.

With these preliminaries we are now in a position to state and prove Bell’s the-
orem. In the literature, the formulation tends to depend on whether the context is a
discussion of the conflict of the predictions of the class of “objective local theories”
with those of quantum mechanics, or rather of that with the experimental data; in the
latter case, an extension of Bell’s original theorem (the “CHSH theorem”) proved
by Clauser et al. [2] a few years after his paper tends to be more directly applica-
ble than the original version. Here I shall present the CHSH theorem, and treat the
original theorem proved by Bell as a special case of it.

The CHSH theorem states that, for any choice whatever of the settings a, b,
a′, b′, any theory of the OLT class must predict the inequality

K
(
a, b, a′, b′

) ≡ 〈AB〉 + 〈AB ′〉+ 〈A′B 〉− 〈A′B〉 � 2 (2)

(and some related inequalities; in the interests of clarity I state only the first, which
is the one most often used in experimental tests). Bell’s original inequality is the
special case of (2) which is obtained under the additional assumption that for A =
−B ′ (which in the polarization case means that b′ is orthogonal to a′) the quantity
〈A′B ′〉 = +1, as predicted by quantum mechanics for certain states (see below).
Relabelling the various quantities so as to make closer contact with Bell’s original
notation, we find in this case the inequality

〈AB〉 − 〈CB〉 <= 1+ 〈AC〉 (3)

which is known as Bell’s inequality (or more precisely one of Bell’s inequalities;
again for clarity I give only one version). The inequalities (2) and (3) do not at first
sight seem particularly dramatic, but the crucial point is that for certain states and
settings they are violated by the predictions of quantum mechanics. For example,
if we consider the pair of photons emitted in a so-called 0+(J = 0,+ → J =
1, − → J = 0,+) atomic transition like that used in the experiments on Ca, we
find that quantum mechanics unambiguously predicts, under ideal conditions, the
result

〈AB〉 = cos (2θab) (4)

where θab is the angle between the settings a and b. Setting a′= 0, b= 3π/8,
a= π/4 and b′ = 3π/8, we find that the quantum mechanical prediction for this
choice of settings is

K = 23/2
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which violates the CHSH inequality by a factor of 21/2. Similarly, for a 0− transi-
tion, for which quantum mechanics predicts 〈AB〉 = sin (2θab), (hence 〈AB〉 = +1
for a and b orthogonal as assumed by Bell, who actually treated explicitly the spin
singlet state of two spin-1/2 particles, which is isomorphic to the 0− photon pair)
the inequality (3) is violated by the quantum prediction over a range of settings
(this is most intuitively obvious when (e.g.) a and c are both close to zero and b

to π/4, since the LHS of (3) is then fairly obviously linear in θab while the RHS is
quadratic).

The proof of the CHSH theorem and hence of Bell’s theorem as a special case,
while conceptually subtle, requires only the most elementary algebra. For definite-
ness I will take the third postulate defining an OLT as the assumption of MCFD; it
is straightforward to adapt the argument so as to substitute the assumption (3a) of
microscopic realism. Then a possible derivation of the inequality (3) (one of many!)
goes as follows:

1. By assumption (3b), the quantity A exists for each photon 1 and possesses a
definite value, independently of whether or not that photon was directed into Ma.
Similarly for A′, B, B ′.

2. By postulate (1), the value of A for any particular photon 1 cannot depend on
the choice of what to measure at the distant station 2, nor on the outcome of that
measurement. Similarly for A′, B, B ′.

3. Hence each of the quantities A, A′, B and B ′ exists and takes a value +1 or −1
which is, in the case of A, independent of whether it is B or B ′ which is measured
at the distant station, and vice versa. In other words, the value of A which occurs
in the product AB is identical to that occurring in AB ′, etc.

4. It is then a matter of elementary algebra to show that for any given pair the
quantities AB, etc. must satisfy the inequality

AB + AB ′ + A′B − A′B ′ � 2 (5)

(Any reader who doubts the truth of this statement is invited simply to exhaust
the 16 possibilities!).

5. It then immediately follows that when taken on the whole ensemble of pairs (ir-
respective of which quantities were actually measured on them) the expectation
values 〈AB〉all etc. satisfy an inequality of the same structure as (5).

6. By postulate (2), the statistical properties of each subensemble are identical to
those of the complete ensemble. Hence, for example, the average of (AB) over the
whole ensemble may be legitimately identified with the measured quantity 〈AB〉,
which is of course strictly the average for the ab-ensemble only. Making this
identification, we see that the measured correlations satisfy the CHSH inequality
(3), QED.

Over the last 35 years, starting with the work of Freedman and Clauser [3] in 1972,
a large number – probably hundreds – of experiments based on Bell’s theorem have
been performed. With a handful of exceptions, these experiments have all obtained
results which are consistent with the predictions of quantum mechanics, and prima
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facie inconsistent with those of the whole class of objective local theories, in some
cases by hundreds of standard deviations. However, no existing experiment has con-
formed entirely to the idealized setup described above, and this gives rise to various
so-called “loopholes” in the refutation of OLT’s. Generally speaking, these loop-
holes arise because of doubts about whether the OLT postulates are adequately
satisfied by a given real-life experimental setup (for example, whether the relevant
“events” of realization are sufficiently separated that one can legitimately invoke the
locality assumption) � Loopholes in Experiments.

Apart from the question of whether or not the conditions to invoke the OLT
postulates have actually been satisfied in existing experiments, the implications of
Bell’s theorem are so disturbing that the theorem itself has been repeatedly chal-
lenged; that is, it has been argued that even if it turns out that even when (if?) all
the loopholes have been plugged the experimental data still conform to the quan-
tum mechanical predictions, this will not mean that we have to abandon the class
of OLT’s. In the present author’s opinion, all these challenges to Bell’s theorem as
such have been uniformly unsuccessful: at best they reduce to the claim that one or
other of the defining assumptions of an OLT is less overwhelmingly plausible than
generally believed, while leaving the theorem itself intact.

If we assume that the loopholes will progressively be blocked and the data con-
tinue to conform to the quantum-mechanical predictions, so that we must conclude
that the class of OLT’s is ruled out, which of the three defining assumptions should
we abandon? To abandon postulate (1) would be in prima facie conflict with the ba-
sic postulates of the special theory of relativity, and is therefore something that most
practising physicists (as distinct from most popular writers on the subject!) would be
extremely loath to do. Of course, we cannot rule out the possibility, which has been
advocated by some prominent physicists, that (for example) an ultimate theory of� quantum gravity will reveal special relativity to be only an approximate descrip-
tion of reality, so that postulate (1) might fail, but at present no such theory seems
to be developed in a sufficiently concrete way to give us this escape-hatch. To chal-
lenge postulate (2) would be to abandon our conventional notions concerning the
“arrow of time”; again, it cannot be excluded that future theoretical developments
might force us to do just that, but the prospect is certainly not appealing; most of us
would not currently know how to do physics without this deeply ingrained assump-
tion. The weakest link would appear to be postulate (3), and that is probably what
most practising physicists would choose to sacrifice; that is, they would claim that
neither the assumption (3a) of microscopic realism nor that (3b) of MCFD is actu-
ally true of the real world. In the words of the late Asher Peres [4], “unperformed
experiments have no results”!

While this conclusion is in some sense in the spirit of the Copenhagen interpre-
tation of quantum mechanics, it is still a very surprising and, if one really takes it
seriously, alarming fact about the physical world.1 See also � Aspect experiment
and Section on Bell inequalities in � Wave function collapse.

1 This work was supported by the National Science Foundation through grant no.NSF-EIA-01-
21568.
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Berry’s Phase

Daniel Rohrlich

Berry’s phase [1] is a quantum phase effect arising in systems that undergo a slow,
cyclic evolution. It is a remarkable correction to the quantum adiabatic theorem and
to the closely related Born–Oppenheimer approximation [2]. Berry’s elegant and
general analysis has found application to such diverse fields as atomic, condensed
matter, nuclear and elementary � particle physics, and optics. In this brief review,
we first derive Berry’s phase in the context of the quantum adiabatic theorem and
then in the context of the Born–Oppenheimer approximation. We mention general-
izations of Berry’s phase and analyze its relation to the � Aharonov–Bohm effect.

Consider a Hamiltonian Hf (R) that depends on parameters R1, R2, . . . , RN ,
components of a vector R. Let us assume that Hf (R) has at least one discrete and
nondegenerate eigenvalue Ei(R) with |Ψi(R)〉 its eigenstate; Ei(R) and |Ψi(R)〉 in-
herit their dependence on R fromH(R). If the vector R changes in time, then |Ψi(R)〉
is not an exact solution to the time-dependent � Schrödinger equation. But if R
changes slowly enough, the system does not � quantum jump to another eigenstate.
Instead, it adjusts itself to the changing Hamiltonian. A heavy weight hanging on a
string illustrates such adiabaticity. Pull the string quickly – it snaps and the weight
falls. Pull the string slowly – the weight comes up with it.
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“Slowly enough” has the following formal sense. Let R[t/T ] evolve over a time
interval 0 � t � T ; the larger T , the slower the evolution. If at time t = 0 the
system is in the state |Ψi(R[0])〉, then at time t = T the state is eiφi (T )|Ψi(R[1])〉
with probability approaching 1 as T approaches infinity, according to the quantum
adiabatic theorem [10]. We obtain the phase φi(t) by substituting eiφi (t)|Ψi(R)〉 into
the time-dependent � Schrödinger equation,

i�
d

dt
eiφi(t)|Ψi(R)〉 = Hf (R[t/T ])eiφi(t)|Ψi(R)〉,

and projecting both sides of the equation onto eiφi(t)|Ψi(R)〉:
d

dt
φi(t) = i〈Ψi(R)|∇R|Ψi(R)〉 · dR

dt
− 1

�
Ei(R).

Thus

φi(t)− φi(0) =
∫ t

0
dt ′
[

i〈Ψi(R)|∇R|Ψi(R)〉 · dR
dt ′
− 1

�
Ei(R)

]

=
∫ R[t ]

R[0]
〈Ψi(R)|i∇R|Ψi(R)〉 · dR− 1

�

∫ t

0
dt ′ Ei(R).

The integrand AB ≡ 〈Ψi(R)|i∇R|Ψi(R)〉 is Berry’s connection for the state |Ψi(R)〉.
The integral− ∫ t0 Eidt

′/� is called the dynamical phase.
The overall phase of a quantum state is not observable. But a quantum system

may be in a � superposition of states; the relative phase of these states is observ-
able. Consider two paths R[t/T ] and R′[t/T ] with the same endpoints R[0] = R′[0]
and R[1] = R′[1], and suppose that the system evolves in a superposition of states
|Ψi(R[t/T ])〉 and |Ψi(R′[t/T ])〉. At time t = T the relative phase of this superpo-
sition contains two parts. One part is the relative dynamical phase. The other part
is Berry’s phase, the difference between AB integrated along R and AB integrated
along R′, i.e. it is the circular integral of AB along the closed path comprising R and
R′ with opposite senses. This phase is well defined, because it is gauge invariance
(� gauge symmetry): If we multiply |Ψi(R)〉 by a phase factor eiΛ(R), it remains the
same instantaneous eigenstate of Hf (R), but AB changes by −∇RΛ(R). Since the
change in AB is a gradient, the integral of AB around a closed loop is unchanged,
hence well defined.

As an example of Berry’s phase, consider the spin-1/2 HamiltonianHf =μR · σ,
where σx , σy and σz are the � Pauli spin matrices. The eigenstate corresponding to
the positive eigenvalue E+ = μR is

⎛
⎜⎝

cos
θ

2

eiφ sin
θ

2

⎞
⎟⎠,
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where Rz = R cos θ and Rx + iRy = Reiφ sin θ . The Berry connection, expressed
as a function of θ and φ, is (AB)θ = 0, (AB)φ = (cos θ − 1)/2 and matches the
vector potential of a Dirac monopole of strength 1/2 located at the origin R = 0. The
integral of AB along any loop in R equals −1/2 times the solid angle subtended by
the loop at the origin (as an application of Stokes’s theorem shows). This example
is generic because wherever two nondegenerate energy levels cross at a point in a
space of parameters, the Hamiltonian near the point reduces to an effective two-level
Hamiltonian proportional to R ·σ , with the degeneracy at R = 0. Hence an effective
magnetic monopole can arise wherever two discrete, nondegenerate levels become
degenerate.

The spin-1/2 example also illustrates how Berry’s phase can be topological. A
loop in R defines two solid angles, just as a loop on the surface of a sphere cuts
the surface into two parts. Why, then, is Berry’s phase not ambiguous? The answer
is that the difference between the two solid angles is equal to ±4π . (The two solid
angles have opposite signs because their orientations, or the directions of integration
of AB, are opposite.) But a ±4π difference of solid angle corresponds to a ∓2π
difference in phase, which is unobservable. Here Berry’s phase obeys a constraint
arising from the topology of a sphere.

In the Born–Oppenheimer approximation, the R1, R2, . . . are quantum observ-
ables and may not even commute. They evolve according to their own “slow”
Hamiltonian Hs, and the overall Hamiltonian is the sum H = Hf + Hs. The
eigenvalues of Hf must be discrete, and the adiabatic limit applies if Hs is an ar-
bitrarily weak perturbation on Hf . The weaker the perturbation, the smaller the
probability of transitions (� quantum jumps) among the eigenstates of Hf . The un-
perturbed � Hilbert space for H divides into subspaces, one for each eigenvalue Ei

of Hf . In the adiabatic limit, the “fast” variables remain in an eigenstate |�i(R)〉
of Hf , with i fixed, while dynamical and Berry phases of |�i(R)〉 show up in H as
induced scalar and vector potentials.

Born and Oppenheimer multiplied |�i(R)〉 by a function �(R, t) and obtained
an effective Hamiltonian for �(R, t). Here we obtain and simplify their effective
Hamiltonian algebraically. Let �i denote the operator of � projection onto the sub-
space corresponding to Ei . The subspaces are disjoint and form a complete set:∑

i �i = 1. In the adiabatic limit, we can replace Hs by
∑

i �iHs�i to obtain the
effective Hamiltonian of Born and Oppenheimer:

Heff = Hf +
∑
i

�iHs�i .

In Heff there are induced potentials. If

Hs = P 2/2M + V (R),

where Pi = −i�∂/∂Ri , the sum
∑

i �iHs�i in Heff contains products of the form

�iP
2�i =

∑
j

�iP�jP�i .



34 Berry’s Phase

We simplify them by decomposing P into two parts, P = (P−A)+A. The first part
acts only within subspaces; that is, [P− A,�i] = 0 for all i. Only the second part,
A, causes transitions among the subspaces. Like a vector potential, A is somewhat
arbitrary: we can add to A any term that commutes with the �i . Let us remove this
arbitrariness by requiring �iA�i = 0 for each i. The effective Hamiltonian for the
R is then [3]

Heff = Hf + 1

2M
(P− A)2 + 1

2M

∑
i

�iA2�i + V (R).

The sum in i is an induced scalar potential, while A is an induced vector potential: A
is Berry’s connection AB in an off-diagonal gauge. For example, let Hf =μR · σ as
in the spin-1/2 example above. The operators of projection corresponding to E± =
±μR are

�± = 1

2
(1± R · σ/R),

and the vector potential

A = �R× σ

2R2

solves the two conditions [P − A,�±] = 0 and �±A�± = 0; A is off-diagonal.
The field corresponding to A,

Bi = 1

2
εijkFjk = 1

2
εijk(∂jAk − ∂kAj − i[Aj ,Ak]) = − �Ri

2R4
(R · σ ),

is a monopole field B = ∓�R/2R3 since the eigenvalues of R · σ/R are ±1.
So far we have taken the eigenvalues of Hf to be discrete and nondegenerate. If

Hf has a discrete and degenerate eigenvalue, Berry’s phase may be non-abelian [4].
The eigenstates belonging to this eigenvalue do not (in the adiabatic approximation)
jump to eigenstates belonging to other eigenvalues, but they may mix among them-
selves. The mixing amounts to multiplication by a non-abelian phase, i.e. a unitary
matrix.

Another generalization of Berry’s phase is the Aharonov–Anandan phase [5].
Suppose a system evolves according to Schrödinger’s equation, but the change in
the Hamiltonian is neither adiabatic nor cyclic. Aharonov and Anandan showed that
the system can still exhibit a Berry phase; all that is needed is cyclic evolution of the
state of the system. Cyclic evolution of a state defines a closed path in the Hilbert
space of the state. Whether or not this evolution is adiabatic, it leaves the system
with a dynamical phase, which depends on the Hamiltonian of the system, and a
geometrical phase – Berry’s phase – which depends only on the closed path of the
state in its Hilbert space. Thus Berry’s phase need not be adiabatic (although it is
still a correction to the adiabatic theorem).

We have considered evolution consistent with Schrödinger’s equation. But as
Pancharatnam showed [6], geometric phases can emerge from nonunitary evolu-
tion. For example, let an � ensemble be divided into two subensembles, one of
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which is subjected to a sequence of filtering measurements (projections). If the sub-
subensemble that survives this filtering has returned to its initial state, it has a well
defined phase (relative to the unfiltered subensemble) which equals a relative dy-
namical phase plus the Berry phase for this evolution.

Berry’s phase has a classical analogue: Hannay’s angle [7] is a phase effect
in a classical periodic system that depends on adiabatically changing parameters.
A canonical pair of variables for such a system is an “action” variable I , which is
an adiabatic constant of the motion, and a conjugate “angle” variable φ. Hannay’s
angle is an extra shift in φ acquired by the system during a cyclic evolution in the
space of parameters. When the Hannay angle of a system depends on its action I ,
the corresponding quantum system acquires a Berry phase during the same cyclic
evolution [8].

Although the Aharonov–Bohm effect has no classical analogue, we may treat
it as an example of Berry’s phase. More generally, however, the Aharonov–Bohm
and Berry phases can combine in a topological phase [9]. For example, imagine
a “semifluxon”, something like a straight, heavy, infinite solenoid enclosing flux
hc/2e – exactly half a flux quantum – that moves perpendicular to itself. It interacts
with an electron � wave function that has support in two disjoint regions. If the
semifluxon moves in a slow circuit, we can ask what phase the electron acquires
from this adiabatic cyclic evolution. Figure 1 shows one of the two regions where
the electron wave function has support, and two possible circuits for the semifluxon.
If the semifluxon evolves along C1, the electron acquires no relative Berry phase
and also the Aharonov–Bohm phase vanishes. If the semifluxon evolves along C2,
the relative Berry phase is π and it is entirely the Aharonov–Bohm phase. If the
semifluxon does neither but plows through the electron wave function, we might
expect the Berry phase to lie between 0 and π . However, it can be shown (using
time-reversal symmetry) that the Berry phase can only be 0 or π . Since the path
of the semifluxon is arbitrary, at some point P the Berry phase must jump from 0
to π , i.e. the electron wave function must become degenerate when the semifluxon
is situated at P . Here the Berry phase and the Aharonov–Bohm phase combine in a
single topological phase that depends only on the winding number of the semifluxon
path around the point P .

S
C1C2

Fig. 1 An electron cloud with support in a region S (and in disjoint region not shown) and two
possible paths, C1 and C2, of a semifluxon. At the point P , the semifluxon induces a degeneracy
in the energy of the electron



36 Black Body

Primary Literature

1. M. V. Berry: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond.
A392, 45–57 (1984).

2. M. Born, J. R. Oppenheimer: Zur Quantentheorie der Molekeln. Ann. Phys. 84, 457–84 (1927);
see also C. A. Mead, D. G. Truhlar: On the determination of Born–Oppenheimer nuclear mo-
tion wave functions including complications due to conical intersections and identical nuclei.
J. Chem. Phys. 70, 2284–96 (1979).

3. Y. Aharonov, E. Ben-Reuven, S. Popescu, D. Rohrlich: Perturbative induction of vector poten-
tials. Phys. Rev. Lett. 65, 3065–67 (1990) and 65, 863 (1992); Born–Oppenheimer revisited.
Nucl. Phys. B350, 818–30 (1991).

4. F. Wilczek, A. Zee: Appearance of gauge structure in simple dynamical systems. Phys. Rev.
Lett. 52, 2111–14 (1984); A. Zee: Non-Abelian gauge structure in nuclear quadrupole reso-
nance. Phys. Rev. A38, 1–6 (1988).

5. Y. Aharonov, J. Anandan: Phase change during a cyclic quantum evolution. Phys. Rev. Lett.
58, 1593–96 (1987).

6. S. Pancharatnam: Generalized theory of interference, and its applications. Part I. Coherent
pencils. Proc. Ind. Acad. Sci. A44, 247–62 (1956).

7. J. H. Hannay: Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian.
J. Phys. A: Math. Gen. 18, 221–30 (1985).

8. M. V. Berry: Classical adiabatic angles and quantal adiabatic phase. J. Phys. A: Math. Gen. 18,
15–27 (1985).

9. Y. Aharonov, S. Coleman, A. Goldhaber, S. Nussinov, S. Popescu, B. Reznik, D. Rohrlich,
L. Vaidman: Aharonov-Bohm and Berry phases for a quantum cloud of charge. Phys. Rev.
Lett. 73, 918–921 (1994).

Secondary Literature

10. See A. Messiah: Quantum Mechanics, Vol. II, trans. J. Potter (North-Holland, Amsterdam,
1963), Chap. XVII, Sects. 10–12.

Black Body

Dieter Hoffmann

A black body was first defined by Gustav R. Kirchhoff (1824–87) in 1859 as an
object that absorbs all radiation falling upon it. Such a conception of an ideal black
body was crucial for understanding heat radiation and its laws. Since a completely
black body does not exist in nature, it had to be constructed. Kirchhoff had already
suggested that a black body was technically feasible in his famous paper formulating
his radiation law: “If a volume is enclosed by bodies of the same temperature and
rays cannot penetrate those bodies, then each bundle of rays inside this volume has
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Black Body

Dieter Hoffmann

A black body was first defined by Gustav R. Kirchhoff (1824–87) in 1859 as an
object that absorbs all radiation falling upon it. Such a conception of an ideal black
body was crucial for understanding heat radiation and its laws. Since a completely
black body does not exist in nature, it had to be constructed. Kirchhoff had already
suggested that a black body was technically feasible in his famous paper formulating
his radiation law: “If a volume is enclosed by bodies of the same temperature and
rays cannot penetrate those bodies, then each bundle of rays inside this volume has
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the same quality and intensity it would have had if it had come from a completely
black body of the same temperature and is therefore independent of the constitution
and the shape of these bodies and is determined by the temperature alone.”

Although Kirchhoff as well as Ludwig Boltzmann (1844–1906) had already ex-
perimented with the design of a black body using a heated cavity, most of the first
experimentalists trying to verify the radiation laws did not take up Kirchhoff’s idea.
Instead they made do with metal sheets with specially prepared surfaces or met-
als – through oxidizing, a layering of lamp black, roughening, etc. – to achieve a
maximum of blackness. For instance the Danish physicist Christian Christiansen
(1843–1917) had carried out such experiments around 1880. He tested the optical
behavior of such powders as soot. He also made the observation, that conical tubes
radiate with an emissivity of about 1, which means that they act as “small black
spots”. All these arrangements had shown that it was possible to make a black body
effective for a limited range of wavelengths and temperatures, but a totally black
body remained a distant hope.

The turning point for the design of a truly black body was reached in 1895 when
Wilhelm Wien (1864–1928) and Otto Lummer (1866–1925) – at that time both fel-
lows of the Physikalisch-Technische Reichsanstalt in Berlin (Imperial Institute of
Physics, PTR) – recognized that one “had to disregard artificially blackened metal
sheets.” Instead “one had to consider the radiation of a black body as the state of
thermodynamical equilibrium. . . To use this conception as the basis for a practical
method for producing radiation arbitrarily close to that of a black body, one needs
to heat a cavity to a uniform temperature and allow the radiation to escape through
the opening.”

With Wien’s and Lummer’s description, in principle, of a design for a black cav-
ity radiator, Lummer (together with Ernst Pringsheim (1859–1917) in particular)
was able to build a functioning device in 1897/98. First they experimented with
small cylindrically and spherically shaped cavities of iron and copper, and later
they designed hollow spheres of porcelain or metal, the inner surfaces of which
were covered with soot (for lower temperatures) or with uranium oxide (for higher
temperatures). To produce a definite and stable temperature, the cavities were im-
mersed in a fluid bath – for instance, liquid air, boiling water, hot saltpeter or other
liquids of well-defined temperature. In this way Lummer and Pringsheim material-
ized a completely black body for the temperature range between −188 and 700 ◦C,
and also for temperatures up to 1200 ◦C, when they placed the cavity into a gas-
heated chamotte oven.

With these apparatus they carried out experiments confirming the Stefan-
Boltzmann law and Wien’s displacement law. But for further verifications of the
radiation laws it was necessary to design a black body for much higher temperatures.
Furthermore the cavity temperature of the black body had to be more homogeneous
and more manageable. An “electrically glowing completely black body” was finally
designed by Lummer and Ferdinand Kurlbaum (1857–1927) in 1898, also at the
PTR. It consisted of a platinium sheet, 0.01 mm thick and about 40 cm long. It was
rolled into a cylinder 4 cm in diameter, one end of which was squeezed and closed.
Both ends had rings for the electrical supply of heat. With a current of about 100 A,
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one could attain temperatures of about 1500 ◦C. A porcelain tube with a radiating
cavity was inserted inside. A thermocouple was also integrated into this tube to
measure the temperature of the cavity. Several diaphragms were also included in
the arrangement, which served to shelter the cavity from outer disturbances – for in-
stance, incoming air, etc. The inner surface of the tube was blackened with a mixture
of chromium, nickel and cobalt oxide. For insulation purposes, the whole arrange-
ment was surrounded by a second tube of a fire-proof material; the insulation could
be improved by extra covering tubes or asbestos sheets.

This new black body marked a major step forward in radiation research in gen-
eral. In particular, the experiments led to Planck’s radiation law and the basis for
the quantum hypothesis. � Blackbody radiation the design of a black body for
still higher temperatures (already in 1903 Lummer and Pringsheim developed an
improved black body on the same principle (but using specific materials and gas
atmospheres) for temperatures of about 2100 ◦C) opened the way to establishing a
new definition for temperature on the basis of the Stefan-Boltzmann law.
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With the designs by Lummer, Kurlbaum and Pringsheim (1898/1903) the black
body attained its more or less final shape and has been used for radiation research
in the following decades, remaining occasionally in use to this day.
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Black-Body Radiation

Clayton Gearhart

Hot objects give off light and heat in the form of electromagnetic radiation whose
character changes with temperature. Black-body radiation is such electromag-
netic radiation in equilibrium with its material surroundings. By the late 1800s,
it was a lively research topic for both theoretical and experimental physicists.
Samuel Pierpont Langley (1834–1906) in the United States, and a group of ex-
perimental physicists in Germany centered around the Physikalisch-Technische
Reichsanstalt (PTR) in Charlottenburg, had developed sophisticated techniques for
studying this radiation. Part of their motivation was practical – establishing better
absolute temperature scales, and measuring light intensities, at high temperatures
(� Black Body).

In December 1900 and January 1901, the German physicist Max Planck (1858–
1947) published three short papers in which he derived a new equation to describe
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peraturmessung. Annalen der Physik, 4th ser., 17 (1898) 106–111.

4. O. Lummer, E. Pringsheim: Die strahlungstheoretische Temperaturskala und ihre Verwirk-
lichung bis 2,300 ◦C. Annalen der Physik, 4th ser., 1 (1903) 3–13.

Secondary Literature

5. D. Hoffmann: On the experimental context of Planck’s foundation of quantum theory. Centaurus
43 (2001) 240–259.

6. H. Kangro: Early History of Planck’s Radiation Law. Taylor and Francis, London 1976.

Black-Body Radiation

Clayton Gearhart

Hot objects give off light and heat in the form of electromagnetic radiation whose
character changes with temperature. Black-body radiation is such electromag-
netic radiation in equilibrium with its material surroundings. By the late 1800s,
it was a lively research topic for both theoretical and experimental physicists.
Samuel Pierpont Langley (1834–1906) in the United States, and a group of ex-
perimental physicists in Germany centered around the Physikalisch-Technische
Reichsanstalt (PTR) in Charlottenburg, had developed sophisticated techniques for
studying this radiation. Part of their motivation was practical – establishing better
absolute temperature scales, and measuring light intensities, at high temperatures
(� Black Body).

In December 1900 and January 1901, the German physicist Max Planck (1858–
1947) published three short papers in which he derived a new equation to describe



40 Black-Body Radiation

black-body radiation—one that ever since has given excellent agreement with ob-
servation. This derivation was the culmination of research Planck had begun in the
mid-1890s. In a series of lengthy papers, Planck had combined thermodynamics,
in which he was an acknowledged authority, with the new electromagnetic theory
of James Clerk Maxwell (1831–1879). He considered the electromagnetic field in
equilibrium with what he called “resonators” – electric dipoles oscillating in sim-
ple harmonic motion – which represented the material cavity containing the field.
By late 1899, he had found a new and more rigorous derivation of Wien’s law,
an equation describing black-body radiation discovered in 1896 by his friend and
colleague Wilhelm Wien (1864–1928), and seemingly in good agreement with ex-
periment.

By mid-1900, however, physicists at the PTR had found systematic deviations
between Wien’s law and their latest experiments. Planck went back to work, and
by the end of the year, had produced his new radiation law, which takes the famil-
iar form

uν = 8πν2

c3

hν

ehν/kT − 1
,

where c is the speed of light, and uν is the energy density of the electromagnetic
field as a function of the frequency ν and the absolute temperature T . This equa-
tion also contains two new fundamental constants of nature, h and k – today we
call them � Planck’s constant and Boltzmann’s constant – to which Planck at-
tached the greatest importance. They played a central role in his system of natural
units for length, mass, time, and temperature, which as he said in 1899, “neces-
sarily retain their significance for all times and for all cultures, even alien and
non-human ones.”

However, Planck’s derivation was decidedly mysterious. It relied on a 1877 pa-
per by the Austrian physicist Ludwig Boltzmann (1844–1906), relating entropy and
probability, now famous but little known in 1900. Today it is summarized in the
equation S = k logW , inscribed on Boltzmann’s tombstone in Vienna. Boltzmann
had begun with a physically unrealistic picture, in which he divided the energy of a
gas into finite “energy elements” (as Planck later called them), which he distributed
among the molecules of an ideal gas. This step allowed him to use combinatorials
to calculate the probabilities of microscopic states and relate them to the entropy of
a gas. Planck applied a similar scheme to his resonators, though he persisted in his
absolute interpretation of entropy and the second law of thermodynamics, in sharp
contrast to Maxwell’s and Boltzmann’s probabilistic viewpoint.

In 1877, Boltzmann had replaced his artificial scheme with the more realistic one
of partitioning molecules among arbitrarily small cells in phase space, thereby re-
covering the standard description of an ideal gas. Planck, by contrast, could make his
derivation work only by retaining these finite “energy elements” and assigning them
the specific size hν. In 1900, he said nothing about the striking differences between
the two derivations, though he certainly understood what Boltzmann had done.

Today we call these energy elements “quanta,” and over the last century, physi-
cists have developed the strange new theory called quantum mechanics to describe
nature at the atomic level. But in 1900, all this was yet to come. The “energy
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elements,” whatever they might be, had no obvious interpretation in the physics
of the day. Planck in 1900 said virtually nothing about how to interpret them phys-
ically. Both his contemporaries and later historians found it difficult to grasp his
meaning.

Over the next decade, scientists slowly came to terms with these new ideas
(� Quantum theory, early period). If Planck’s energy elements do become ar-
bitrarily small, for example, Planck’s law goes over to the Rayleigh-Jeans law,
uν =

(
8πν2/c3

)
kT , in which the radiation density increases without limit at short

wavelengths—an effect Paul Ehrenfest (1880–1933) later dubbed the “ultraviolet
catastrophe.” Physicists developed an increasingly sophisticated understanding of
this theme and its relation to equipartition in the first decade of quantum theory.

Planck contributed to these efforts in his 1906 book, Lectures on the Theory of
Heat Radiation, in which he presented h as the “elementary quantum of action,”
since its units were those of action, the product of energy and time. He also showed
that h is the size of a finite “elementary domain” in phase space, a step that made his
combinatorial assignments of probability more plausible. Hendrik Antoon Lorentz
(1853–1928), Paul Ehrenfest, Henri Poincaré (1854–1912) and others also explored
the foundations of black-body radiation, and showed that it necessarily involved a
sharp and inescapable break with earlier physical theory.

For many years, Planck pointed out the need for a physical interpretation of his
theory, but was reluctant to advance one himself. Only in 1909 did he state pub-
licly that the energies of his resonators were restricted to integer multiples of hν.
But in that same year, Lorentz showed that under some circumstances, it would take
an implausibly long time to absorb one quantum of radiation from a Maxwellian
electromagnetic field. Neither Lorentz, Planck, nor most other physicists were pre-
pared to accept the alternative of “light quanta” that Albert Einstein (1879–1955)
had proposed in 1905 (� Light quanta; � Quantum theory, early period).

In 1911, therefore, Planck proposed what became known as his “second quantum
theory,” in which resonators absorbed energy continuously, but emitted energy in
quanta only when they reached the boundaries of finite cells in phase space, where
their energies became integral multiples of hν. This theory also led Planck to his
new radiation law. But in this version, resonators possessed a � “zero-point” energy,
the smallest average energy that a resonator could take on. Thus, for the first time,
physicists contemplated systems whose energy did not go to zero at the absolute zero
of temperature. This zero-point energy soon took on a life of its own, appearing in
the early 1920s in the context of both Planck’s first and second theories, and after
1925, finally finding a secure home in modern quantum mechanics.

Albert Einstein took perhaps the most radical view of black-body theory, begin-
ning with his famous paper of 1905, in which he suggested that light consists of
“a finite number of energy quanta that are localized in points of space, move with-
out dividing, and can be absorbed or created only as a whole.” (� light quanta;� Quantum theory, early period) In succeeding years, black-body radiation and its
connection to light quanta remained at the center of Einstein’s thoughts. In 1909,
for example, it was at the heart of his analysis of fluctuations – random variations
in energy and momentum – in which he argued that light sometimes behaved like
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a wave and sometimes like a particle, and that the dual wave and particle nature
of light was inescapable – he spoke of “a kind of fusing of the wave and emission
theories of light.”

In 1916, he found a new derivation of Planck’s radiation law, his famous and
influential “A and B coefficients” argument that involved assumptions on the “stim-
ulated emission” of light and set down the underlying principles of the laser, not
invented until decades later. And in 1924, he understood immediately the signif-
icance of a paper sent to him by the then-unknown Indian physicist Satyendra
Nath Bose (1894–1974), who had found yet another derivation of Planck’s ra-
diation law – one that implicitly suggested that Einstein’s light quanta were not
independent particles. Einstein translated Bose’s paper into German and arranged
for its publication. He also saw its implications for the seemingly unrelated topic
of quantum ideal gases, and published the papers describing what is now known as
Bose-Einstein condensation, experimentally confirmed only recently (� Quantum
statistics, � Bose-Einstein-statistics).

In short, although black-body theory was not the whole of early quantum theory,
it remained a continuing source of inspiration and new discoveries. Please see also
the Reference � Specific heats.
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Bohm Interpretation of Quantum Mechanics

B.J. Hiley

The Bohm interpretation aims at providing an interpretation based on the description
of the evolution of an actual individual process evolving in space-time. In the case
of particles, it accounts for their individual behaviour in terms of their simultaneous
positions and momenta, even though these are assumed to be unknown. It is often
argued that this view must be untenable owing to the � Heisenberg uncertainty rela-
tions. However the uncertainty principle only rules out the possibility of measuring
experimentally the simultaneous position and momentum. From this principle two
conclusions are possible. Either the particle does not have a simultaneous position
and momentum to measure, or that it does have a simultaneous position and mo-
mentum but it is simply not possible to measure them simultaneously and therefore
must remain unknown. There is no direct experimental way to decide which of these
two positions is actually correct. The conventional approach adopts the former, the
Bohm interpretation adopts the latter. In this latter approach it may be helpful to
regard the (x, p) as “beables”.

Having chosen the latter position, the question is whether it is possible to use the
formalism based on the � wave function ψ(r, t) and the � Schrödinger equation
to provide a mathematical description of a particle following a trajectory and still
reproduce all the statistical predictions of the standard approach. Bohm [1] showed
that this was possible contrary to the views of Bohr [2] who argued that such a
“picture” was not possible.

The mathematical procedure for a particle that obeys the Schrödinger equation
is straight forward. Simply write the wave function in polar form ψ = ReiS/� and
substitute into the Schrödinger equation. By separating into the real and imaginary
parts, we find two equations. The first is

∂S

∂t
+ (∇S)2

2m
− �2

2m

∇2R

R
+ V = 0 (1)

The second equation is

∂R2

∂t
+∇.

(
R2 ∇S

m

)
= 0 (2)

Equation (1) differs by only one term from the classical Hamilton-Jacobi equation

∂Sc

∂t
+ (∇Sc)

2

2m
+ V = 0 (3)

This equation defines a set of trajectories which are identical to those calculated
from Newton’s law of motion
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m
dv
dt
= −∇(V ) (4)

Comparing (1) and (3), we see the phase of the wave function has been replaced by
the classical action Sc and an extra term

Q = − �2

2m

∇2R

R
(5)

appears in the quantum case. In the classical Hamilton-Jacobi theory we have two
canonical relations, p = ∇Sc andE = −∂Sc/∂t . What Bohm did was to assume that
these two relations with Sc replaced by S held in the quantum case. This means that
the quantum Hamilton-Jacobi equation (1) can be used to provide a set of trajectories
that differ from the classical trajectories owing to the presence of the extra term Q.
It can be shown that these trajectories can be also be calculated from

m
dv
dt
= −∇(V +Q)− ∇(Q) (6)

The appearance of Q in this equation suggested that Q be called the quantum po-
tential. In some ways (6) is somewhat misleading as it suggests that this “potential”
is playing a role similar to that of a classical potential and this has tended to sug-
gest that this interpretation is simply a return to classical physics. Nothing could be
further from the truth. The quantum potential is nothing like a classical potential.
There is no external source for this potential and should be regarded as a new form
of internal energy. This becomes more apparent when we realise that (1) is simply
an expression of the conservation of energy,

Total energy

= kinetic energy+ quantum potential energy+ classical potential energy (7)

Although we have the possibility of calculating trajectories for Schrödinger par-
ticles, we cannot produce experimentally a particle with a known value of (r, p)
simply because of the restrictions imposed by the uncertainty principle. All we can
do is to generate a distribution of initial rs and ps consistent with the probability be-
ing given by the initial wave function ψi(r, t). Equation (2) then guarantees that the
final probability distribution agrees with the standard quantum predictions provided
we assume the probability is still given by P = R2. Equation (2) is then simply an
expression for the conservation of probability.

The Bohm interpretation has been applied to many of the usual quantum exper-
iments such as the � double-slit experiment, the � Schrödinger cat paradox, the� delayed-choice experiment, teleportation (� quantum communication) and many
other such experiments. The interpretation provides an intuitive picture of what
could underlie quantum phenomena without the paradoxes of the standard theory.� Errors and paradoxes in quantum mechanics for example, each Schrödinger
particle goes through one and only one slit, the quantum potential adjusting the
trajectories to account for the slit configurations. The Schrödinger cat is either alive
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or dead and never in a linear supposition of these two contradictory states. There
is no measurement problem in this approach. More details of this method can be
found in Bohm and Hiley [3] and in Holland [4]. See also � Bohmian mechanics;
Measurement theory; Metaphysics in Quantum Mechanics; Modal Interpretation;
Objectification; Projection Postulate.

While this is all straight forward for the Schrödinger particle, we have to gen-
eralise the approach to the electromagnetic field where photons (� light quantum)
have to be accounted for and a generalisation to apply to Dirac particles is also
necessary.

In the case of photons, it is the electromagnetic field, or more accurately, the
vector potential field ψμ(r, t) that must be used since it is not possible to attribute a
simultaneous (r, p) to a photon. The beables in this case are not (r, p) but the fields
and their conjugate momentum ψμ(x

μ) and πμ(x
μ). We then have a “super-wave

function” which is a functional of the field. More details can be found in Bohm,
Hiley and Kaloyerou [5], and in Kaloyerou [6].

We can illustrate the mathematical structure of the field approach by using a
scalar field φ(xμ). The super-wave function is the functional �(. . . φ(xμ) . . . ),
which is assumed to satisfy the super-Schrödinger equation

i
∂�

∂t
= H� (8)

where the Hamiltonian is given by

H = 1

2

∫
All space

[
− δ2

(δφ(x, t))2
+ (∇φ(x, t))2

]
(9)

We then write � = R[. . . φ(x, t) . . . ] exp{iS[. . . φ(x, t) . . . ]} and obtain

∂S

∂t
+ 1

2

∫ [(
δS

δφ

)2

+ (∇φ)2

]
dV +Q = 0 (10)

Here the super-quantum potential is

Q = −1

2

∫ ⎧⎨
⎩

[
δ2/ (δφ(xμ))2 R (. . . φ(xμ) . . . )

]

R (. . . φ(xμ) . . . )

⎫⎬
⎭ dV (11)

We also obtain a conservation of probability equation

∂P

∂t
+
∫

δ

δφ

[
P
δS

δφ

]
dV = 0 (12)

From (10) using the Hamiltonian (9) the field equation becomes

∂2φ

∂t2
= ∇2φ − δQ

δφ
. (13)
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Thus we see that although more involved, the field theory displays a similar general
structure to the Schrödinger particle theory only now it is the fields that represent the
beables. They have well-defined and continuously changing values. Equation (10)
replaces the quantum Hamilton-Jacobi equation (1), while (12) replaces the conser-
vation of probability equation (2). The field equation (13) shows the role played by
the super-quantum potential and replaces (6).

The physical picture that emerges from these equations is that the field (the vector
potential field, for example) is organised by the super-quantum potential as is clear
from the appearance of the last term in (13). This term is generally a non-linear and
non-local function of the field φ. In the classical limit this term is negligible.

Finally we need to understand how the concept of a photon, a field quanta,
emerges from this picture. To do this we must consider the field in interaction
with an atom. If the field is in an excited state, the interaction will produce a very
complex wave functional of the field together with the atom. During this process
the super-quantum potential will change dramatically, producing bifurcation points.
These points will correspond to the absorption of quanta by the atom from the field.
Suppose the field energy is only sufficient to excite the atom into its first excited
state. The super-quantum potential, being non-linear and non-local, sweeps out the
energy from the field leaving the atom in its first excited state and the field in its
ground state. Since the field takes energy from excited atoms, the energy in the field
must be quantised.

In this picture the photon is not localised and does not follow a trajectory. Rather
it is the field that evolves in a well defined way and we can regard it as evolving
along a “trajectory” defined by a point in the configuration space of the total set
of field variables. These ideas have been successfully applied to the photoelectric
effect, the Pfleegor-Mandle experiment which involves low intensity interference
effects between two independent lasers and to correlated Einstein-Rosen-Podolsky
photons (see Bohm and Hiley [3] for more details.)

The interpretation has also been applied to the � Dirac equation although this
equation has presented more difficulties and no successful attempt to construct a
quantum potential has been made. The condition p = ∇S is replaced by the ex-
pression for the Dirac current jμ = �̄γ μ� . This has been applied to the two-slit
interference experiment where trajectories for electrons have been actually calcu-
lated [7]. Application to fermion fields has also presented problems [8].

This approach has produced intuitive pictures lying behind quantum phenomena,
but it is not without its own difficulties. The nature of the quantum potential is still
unclear in spite of the various attempts that have been made to provide an explana-
tion. Also the quantum potential contains the non-local features which are apparent
in the EPR type experiments. Some claim that this is the only interpretation that
accounts for this � nonlocality yet it still sits uncomfortably with special relativity.
On the other hand it might be pointing to a deeper a-local structure underlying the
quantum phenomena [9].

See also Ignorance interpretation, Ithaca Interpretation, Many Worlds Interpreta-
tion, Modal Interpretation, Orthodox Interpretation, Transactional Interpretation.
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Bohmian mechanics is a theory about point particles moving along trajectories. It
has the property that in a world governed by Bohmian mechanics, observers see
the same statistics for experimental results as predicted by quantum mechanics.
Bohmian mechanics thus provides an explanation of quantum mechanics. More-
over, the Bohmian trajectories are defined in a non-conspiratorial way by a few
simple laws.

Overview. Bohmian mechanics is a version of quantum mechanics for nonrelativistic
particles in which the word “particle” is to be understood literally: In Bohmian
mechanics quantum particles have positions, always, and follow trajectories. These
trajectories differ, however, from the classical Newtonian trajectories. Indeed, the
law of motion, see (1) below, involves a � wave function. As a consequence, the
role of the wave function in Bohmian mechanics is to tell the matter how to move.

Bohmian mechanics constitutes a quantum theory without observers, i.e., a the-
ory that is formulated not in terms of what observers see but in terms of objective
events, regardless of whether or not they are observed. Bohmian mechanics pro-
vides a consistent resolution of � errors and paradoxes in quantum mechanics, in
particular of the so-called measurement problem. In particular, the � wave function
collapse (see � Projection Postulate) can be derived from Bohmian mechanics. (On
the measurement problem see also � Measurement theory; Metaphysics in Quantum
Mechanics; Modal Interpretation; Objectification; Projection Postulate Measure-
ment theory; Objectification; Projection Postulate).

Bohmian mechanics is sometimes called a � hidden variables theory because
it involves variables besides the wave function. However, there is a danger of con-
fusion here because the term “hidden variables theory” is often used to convey the
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idea that every “quantum measurement” of an “observable” reveals a pre-existing
value of that observable, which is not the case in Bohmian mechanics.

Bohmian mechanics is deterministic. But the motivation behind Bohmian me-
chanics is not to obtain a deterministic theory, but rather to obtain a coherent
account of the nature of physical reality. In this regard, we note that some vari-
ants of Bohmian mechanics, developed by its proponents, are stochastic rather than
deterministic, for example Bell’s proposal for lattice quantum field theory [4].

Historically, the “Bohmian” law of motion, see eq. (1) below, was first proposed
by de Broglie [6]. However, Bohm [5] was the first to recognize that this theory
explains all of the phenomena of (non-relativistic) quantum mechanics.

Defining Equations. Bohmian mechanics is a non-relativistic theory governing the
behavior of a system of N point particles moving in physical space R

3 along
trajectories. Let Qi (t) ∈ R3 denote the position of the i-th particle of the system at
time t , and Q(t) = (Q1(t), . . . ,QN(t)

) ∈ R3N its configuration.
The trajectories are governed by Bohm’s law of motion [2, 5]

dQi

dt
= �

mi

Im
�∗t ∇i�t

�∗t �t

(
Q(t)

)
, (1)

where mi is the mass of particle i, Im denotes the imaginary part, �t : R
3N →

Ck (i.e., a function of the configuration with k complex components) is the wave
function at time t , �∗� is the scalar product in Ck, and ∇i is the gradient relative
to the 3 coordinates of particle i. (In case k = 1, i.e., for complex-valued wave
functions, a factor �∗t cancels on the right hand side of (1).)

The wave function evolves according to the Schrödinger equation

i�
∂�t

∂t
= −

N∑
i=1

�
2

2mi

∇2
i �t + V�t , (2)

where V : R
3N → R is the potential function. (The potential, while often assumed

to be real-valued, may take values in the space of self-adjoint complex k×k matrices
instead of R.) The wave function is postulated to belong to the � Hilbert space
H = L2(R3N,Ck) of square-integrable functions (and to be sufficiently smooth).

Deterministic Evolution. Since the Schrödinger equation does not involve the parti-
cle positions Qi (t), it can be solved first and determines the wave function �t for
every time t once an initial wave function �t0 is specified for any time t0 that we
choose to regard as the initial time. Next note that the right hand side of (1) con-
sists of the 3 components corresponding to particle i out of the 3N components of a
vector field v�t on configuration space R

3N . As a consequence, equation (1) for all
i = 1, . . . , N can be summarized by

dQ

dt
= v�t

(
Q(t)

)
. (3)
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Regarding �t as known, this is a (time-dependent) ordinary differential equation
(ODE) of first order, and as such determines the entire history t �→ Q(t) once an
initial configurationQ(t0) is specified. That is why Bohmian mechanics is determin-
istic: once Q(t0) and �t0 are specified, the entire history is fixed by the equations (1)
and (2). This fact also implies that the pair (Q(t0),�t0) can be regarded as the state
of the Bohmian particle system at time t0. Since the choice of t0 is arbitrary, the state
at any time t is the pair (Q(t),�t ), and the phase space of Bohmian mechanics is
R3N ×H .

System or Universe. The equations of Bohmian mechanics could be applied to a
familiar system (e.g., an atom) or to the universe as a whole. Of course, one cannot
expect that the equations hold for every system, for example for systems that interact
with their environments. So let us begin with the system for which the equations are
primarily intended: the universe. In this setting, N is the number of particles in
the universe, and �t is the wave function of the universe. To consider such a wave
function is unusual; after all, the quantum formalism never refers to a wave function
of the universe; the quantum formalism, providing the probabilities for the results
of observations performed on a system by an external observer, involves the wave
function of that system and not of the entire universe. In the context of Bohmian
mechanics, however, the wave function of the universe is not at all a meaningless
concept, as it influences the motion of the particles according to (1).

When (1) and (2) hold for the universe, it follows that equations of the same
type (but with smaller N) hold for certain subsystems. (We shall assume here for
simplicity that k = 1, i.e., that we are dealing with spinless particles.) Consider a
subsystem of the universe with configuration X (the x-system), so that the config-
uration Q of the universe is of the form Q = (X, Y ) with Y the configuration of
the environment of the x-system. Then a natural notion of the wave function of the
x-system is provided by its conditional wave function

ψ(x) = �(x, Y ), (4)

where �(q) = �(x, y) is the wave function of the universe. It is easy to see that the
x-system obeys (3) (with Q = X and � = ψ).

Moreover, if the x-system is suitably decoupled from its environment, (2) will
hold as well. For example, this is the case when there is no interaction between the
x-system and its environment, and the wave function of the universe is of the form

�(x, y) = ψ(x) ϕ(y)+�(x, y) (5)

with ϕ and � having macroscopically disjoint y-supports (so that they will never
again overlap appreciably), and with Y lying in the support of ϕ. Such a situation
often arises after a “quantum measurement.”

Equivariance. If the initial configuration Q(t0) is chosen at random with proba-
bility density |�t0 |2 then the configuration Q(t) at any other time t is random
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with probability density |�t |2. (Whenever speaking of probabilities, we assume
that � has been normalized, by multiplication by a suitable constant, so that
〈�|�〉 = ∫ |�(q)|2dq = 1.) This fact, known as equivariance, follows from the
continuity equation

∂ρ

∂t
= −∇ · (ρ v) (6)

for ρ = |�|2 and with the Bohmian velocity vector field v = v� as in (3). The
continuity equation (6) is in turn a consequence of the Schrödinger equation; it is
usually written (in standard quantum mechanics) in terms of the quantum probabil-
ity current J = ρ v.

Identical Particles. Bohmian mechanics can be formulated for identical particles,
despite a fact that could be felt to contradict their � indistinguishability, namely
that the particle trajectories in R3 determine “who is who” at different times, i.e.,
select a one-to-one association between the N points at any time t1 and the N

points at another time t2. Taking the notion of a particle seriously, as one should
in Bohmian mechanics, one recognizes that the configuration space for N identi-
cal particles is best regarded as the manifold of all sets of N points in physical
space R3. This manifold has non-trivial topological properties, as its fundamental
(homotopy) group is isomorphic to the group of permutations of N objects. On
such manifolds there arise several versions of Bohmian mechanics corresponding to
the different 1-dimensional representations of the fundamental group; for the per-
mutation group, there are two such representations, corresponding to bosons (with
symmetric wave functions on the covering space R3N ) and fermions (with anti-
symmetric wave functions). Thus, Bohmian mechanics lends support to the modern
view that the symmetrization postulate emerges as a topological effect, due to the
non-trivial topology of configuration space.

Quantum Equilibrium Hypothesis. This is the assertion that whenever a system has
wave function ψ then its configuration is (or can be taken to be) random with prob-
ability distribution |ψ|2. Equivariance implies that this hypothesis is consistent with
the time evolution of isolated systems, and it is not hard to show that it is also con-
sistent with the time evolution if the system is not isolated, provided we take ψ
to mean the conditional wave function. An important consequence of the quantum
equilibrium hypothesis is the empirical equivalence between Bohmian mechanics
and quantum mechanics: For every conceivable experiment, whenever quantum me-
chanics makes an unambiguous prediction, Bohmian mechanics makes exactly the
same prediction. Thus, the two cannot be tested against each other.

Typicality. The quantum equilibrium hypothesis follows from typicality: As shown
in [7] using the law of large numbers, results of experiments are as predicted by the
quantum equilibrium hypothesis for typical initial configurations Q(t0) of the uni-
verse relative to the |�t0|2 distribution, i.e., for the overwhelming majority, counted
using the |�t0|2 distribution, of the initial configurations.
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Operators. Given that it makes the same predictions as quantum mechanics, what is
the status in Bohmian mechanics of the non-commuting � operators of the quantum
formalism (the self-adjoint “observables”), with which the predictions of quantum
mechanics seem exclusively concerned? The answer is that operators do in fact
arise naturally in Bohmian mechanics, but with a different meaning than the one
attributed to them in orthodox quantum mechanics (which regards them as more
or less the same thing as their classical counterparts: as “� observables” that can
be “measured”). Instead, operators in Bohmian mechanics are mathematical tools
encoding statistics. Let us explain.

The statistics of the random outcome Z of an experiment in a world governed by
Bohmian mechanics on a system with wave function ψ can be shown [8] always to
be of the form (in � Dirac notation)

Prob(Z = α) = 〈ψ|E(α)|ψ〉, (7)

where E(α) is a suitable positive operator. (Together, the E(α) form a positive-
operator-valued measure, or � POVM.) In relevant cases, E(α) is a family of
projection operators (� projection) which are mutually orthogonal (a projection-
valued measure, or PVM), and thus correspond to the one � self-adjoint operator

A =
∑
α

α E(α), (8)

which, by the spectral theorem, contains precisely the same information as the PVM
E(α). Thus, operators encode the functional dependence of the outcome statistics on
the system’s wave function ψ. With this understanding, which is opposite to think-
ing of operators as representing quantities whose values can be “measured,” it is
no longer surprising that one cannot associate actual values with all “observables”
in a consistent way. With this understanding, contextuality is not surprising either,
since it no longer means that the same quantity can choose different values depend-
ing on what happens to another system, but rather that, unspectacularly, different
experiments can have the same statistics.

� Wave Function Collapse. Here is an analysis, for Bohmian mechanics, of an
“ideal measurement” of a quantum observable, given by a self-adjoint operator
A on the Hilbert space of the relevant system. For simplicity we assume that A has
pure point spectrum with non-degenerate eigenvalues α, corresponding to (8) for
E(α) = |ψα〉〈ψα| with normalized eigenstates ψα(x) = |A = α〉. The experiment
is implemented by having the system interact with an apparatus in a suitable way.
To avoid unimportant complications, we shall assume that the relevant “universe”
for the problem at hand consists entirely of the system, with configuration X, and
the apparatus, with configuration Y . The measurement begins, say, at time 0, with
the initial (“ready”) state of the apparatus given by a wave function ϕ0(y), and ends
at time t . The interaction is such that when the state of the system is initially ψα it
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produces a normalized apparatus state ϕα(y), that registers that the value found for
A is α without having affected the state of the system,

ψα(x)ϕ0(y)
t→ ψα(x)ϕα(y). (9)

Here
t→ indicates the unitary evolution induced by the interaction. If the mea-

surement is to provide useful information, the apparatus states must be noticeably
different, corresponding, say, to a pointer on the apparatus pointing in different di-
rections. We thus assume that the ϕα have disjoint supports in the configuration
space for the apparatus,

supp(ϕα) ∩ supp(ϕβ) = ∅, α �= β. (10)

Now suppose that the system is initially, not in an eigenstate of A, but in a general
state, given by a � superposition

ψ(x) =
∑
α

cαψα(x). (11)

We then have, by (9) and the linearity of the unitary evolution, that

�0(x, y) = ψ(x)ϕ0(y)
t→ �t(x, y) =

∑
α

cαψα(x)ϕα(y), (12)

so that the final wave function �t of system and apparatus is itself a superposition.
The fact that the pointer ends up pointing in a definite direction, even a random one,
is not discernible in this final wave function. Insofar as orthodox quantum theory is
concerned, we have arrived at the measurement problem.

However, insofar as Bohmian mechanics is concerned, we have no such problem,
because in Bohmian mechanics particles always have positions and pointers, which
are made of particles, always point—in a direction determined by the final config-
uration Yt of the apparatus. Moreover, in Bohmian mechanics we find that the state
of the system is transformed in exactly the manner prescribed by textbook quantum
theory, as the final wave function of the system, i.e., its conditional wave function
at time t , see (4), is

ψt (x) = �t(x, Yt ) =
∑
α

cαψα(x)ϕα(Yt ) = cβψβ(x)ϕβ(Yt ) = N ψβ(x) (13)

when Yt ∈ supp(ϕβ), i.e., when the value β is registered. (Here N is a constant that
depends upon Y but not on x. According to (13) the wave function of the system at
time t , when normalized, is ψβ .) The probability for this event is, by the quantum
equilibrium hypothesis,

∫
dx

∫

supp(ϕβ )

dy |�t(x, y)|2 = |cβ |2. (14)
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The upshot of the analysis is this: It is a consequence of Bohmian mechanics that
in the course of an ideal measurement of A the (normalized) wave function of the
system is transformed from ψ (11) to ψβ with probability |cβ |2 =

∣∣〈ψβ |ψ〉
∣∣2. That

is how the � projection postulate arises from Bohmian mechanics. (The fact that
the contributions with α �= β will never again overlap with what evolves from
ψβ(x)ϕβ(y), and thus will not influence the future motion of the particles, is the
reason why they can be ignored from time t onwards, or “collapsed away,” without
consequences for the trajectories of the particles.)

The Double Slit Experiment. In Bohmian mechanics, � “wave–particle duality” can
be taken literally: there is a wave (ψ) and there are particles. Accordingly, in a� double-slit experiment the wave passes through both slits, whereas the particle
passes only through one slit. Since the motion of the particle depends on the wave,
it matters whether or not the other slit is open. The possible trajectories, when both
slits are open, are depicted in Fig. 1; by virtue of the quantum equilibrium hypothe-
sis, the actual trajectory will be random with the appropriate |ψ|2 distribution. Thus,
the place of the particle’s arrival at a screen on the right will have a probability dis-
tribution featuring interference fringes. As John Bell commented [10, p. 191]: “This
idea seems to me so natural and simple [...] that it is a great mystery to me that it
was so generally ignored.”

Spin. One may easily get the impression that � spin cannot be explained in a realist
way, given its “non-classical two-valuedness.” But actually it can be incorporated
into Bohmian mechanics very easily, and Bell discovered how [2]: Do not assume
that there is an “actual value” associated with the spin observable σ̂z in the z (or
any other) direction! Instead, take the equation of motion (1) seriously, with Ck the
spin space, i.e., k = (2s + 1)N for N spin-s particles. (In particular, it is useful here

Fig. 1 Possible Bohmian trajectories in the double-slit experiment (from C. Philippidis,
C. Dewdney and B.J. Hiley, Il Nuovo Cimento 52, 15 (1979))
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to regard the wave function ψt for, say, a single spin- 1
2 particle not as a function

ψt : R3 × {−1, 1} → C of a continuous (position) variable and a discrete (spin)
variable, but rather as a spinor-valued function of position, ψt : R3 → C2.)

As a consequence of (1), the motion of a particle with spin is influenced by
both the “spin-up” and the “spin-down” component of the wave function. While
the particle has an actual position (and a wave function) but no additional actual
spin degrees of freedom, these are sufficient to completely account for all quantum
phenomena associated with spin.

� Quantum Field Theory and Relativity. Bohmian mechanics does not account for
phenomena such as particle creation and annihilation characteristic of quantum field
theory. This is not an objection to Bohmian mechanics but merely a recognition that
quantum field theory explains a great deal more than does nonrelativistic quantum
mechanics, whether in orthodox or Bohmian form. There are extensions of Bohmian
mechanics to general quantum field theories based on a particle ontology, as well
as other approaches. Moreover, like nonrelativistic quantum theory, Bohmian me-
chanics is incompatible with special relativity, a central principle of physics: it is
not Lorentz invariant. Nor can Bohmian mechanics easily be modified to become
Lorentz invariant. For an overview of recent proposals aimed at finding a Lorentz
invariant extension of Bohmian mechanics, see [13].

Nonlocality. In Bohmian mechanics the motion of a particle may depend on the
positions of distant particles, at spacelike separation. This is an instance of � non-
locality. It is worth noting that this dependence is of a kind that does not allow� superluminal communication. Orthodox quantum mechanics features nonlocal-
ity as well, associated with the instantaneous collapse of the wave function for all
particles, even distant ones. In 1964, John Bell asked whether nonlocality could be
avoided by any version of quantum mechanics, and his celebrated (but often misun-
derstood) argument [3,10], involving � Bell’s theorem, proves that the answer is no.
His argument shows that certain correlations predicted by quantum mechanics (and
Bohmian mechanics) and confirmed in experiment [1] cannot be explained in a local
way, i.e., without allowing influences travelling faster than light. Thus, nonlocality
is a feature of our world.
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Bohm’s Approach to the EPR Paradox

B.J. Hiley

In 1935 Einstein et al. [1] challenged the � orthodox approach to the quantum for-
malism by asking whether the formalism was complete or not. The specific point
that led them to this conclusion was based on a puzzle that arose when two particles
were in an entangled state (� entanglement). These states are characterised by the
fact that the � wave function of the individual particles are not well defined, being
ambiguous until the state of one of them was measured. The difficulty arose when
the two particles were separated by a large distance and were not interacting with
each other through any known classical potential. If a measurement was made on
one of the particles, the state of the other became immediately well defined, even
though it was removed far from the apparatus measuring the state of the first parti-
cle. How does this come about?

Einstein et al. chose the position and momentum variables to illustrate the
problem, but because the eigenfunctions for these operators were delta functions,
δ(r − r0), and their Fourier components, the exponentials eip.r, it was difficult to
see exactly what was happening in these entangled states. Bohm [2] simplified the
problem by considering two spin-half particles in an entangled state given by

√
2� = ψ+z(r1)ψ−z(r2)− ψ−z(r1)ψ+z(r2)
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cle. How does this come about?

Einstein et al. chose the position and momentum variables to illustrate the
problem, but because the eigenfunctions for these operators were delta functions,
δ(r − r0), and their Fourier components, the exponentials eip.r, it was difficult to
see exactly what was happening in these entangled states. Bohm [2] simplified the
problem by considering two spin-half particles in an entangled state given by

√
2� = ψ+z(r1)ψ−z(r2)− ψ−z(r1)ψ+z(r2)
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Fig. 1 Two spin-1/2 particles in an entangled state, on which the x-component of spin is measured

Here r1 and r2 refer to the respective positions of the two particles and the suffixes
denote the spin states along the z-axis. We can immediately see that the � spin of
each particle is not well defined but ambiguous. When a measurement of the spin in
the z-direction is made on particle #1, its state immediately becomes well defined
giving either ψ+z or ψ−z. No matter how far away particle #2 is, we immediately
know its state. It is either ψ−z or ψ+z respectively (Fig. 1) .

At first sight this appears just like the situation we would have if we had two balls,
one red and one blue contained in two separate envelopes. We can then shuffle the
envelopes so that we do not know which envelope contains which ball before sep-
arating the envelopes. Clearly if we open one envelope we will immediately know
which colour ball is in the other envelope. No mystery here then. But the quantum
situation is different because the same wave function can also be expressed as

√
2� = ψ+x(r1)ψ−x(r2)− ψ−x(r1)ψ+x(r2)

where the spin components are now in the x-direction. If we had measured the
x-component of spin of particle #1 we would have found either ψ+x or ψ−x
implying particle #2 was either in the definite state ψ−x or ψ+x respectively. But in
quantum mechanics a particle cannot be in the two complementary states, ψ±z and
ψ±x , at the same time. How then does particle #2 “know” what direction is being
measured when it is far away from particle #1 and there is no known force between
the two particles? In other words how does the distant measurement produce the
right state for particle #2?

There are two possibilities. Either there are additional “elements of reality” or� hidden variables that determine the final state of particle #2 independently of
what is being measured at particle #1, but not necessarily independently of what is
found there. Or there is a “spooky action at a distance” connecting the two particles,
a notion that Einstein found so abhorrent that he refused even to consider such a
possibility.

When Bohm [3, 4] analysed two-particle entangled states in his interpretation
(� Bohm interpretation) he found that the two entangled particles were coupled by
the quantum potential. Thus if the entangled state
�(r1, r2, t) = R(r1, r2, t) exp iS(r1, r2, t) is substituted into the Schrödinger equa-
tion, we find the real part gives

∂S(r1, r2, t)

∂t
+ (∇1S(r1, r2, t))

2

2m
+ (∇2S(r1, r2, t))

2

2m
+Q(r1, r2, t) = 0
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Here Q(r1, r2, t) is the non-local quantum potential, which is non-zero no matter
how far apart the two particles are. Thus the Bohm model accounted for the results
by providing a non-local, “spooky action at a distance”. In the classical limit Q = 0,
so there are no non-local features in classical mechanics.

Bohm et al. [5] proposed a model for spin in which all the components were de-
fined simultaneously and which reproduced all the results of the conventional model.
Here they showed that the separated particles were connected by a quantum potential
which produced a non-local torque. Dewdney et al. [6] examined the model in more
detail and produced numerical results vividly illustrating the time evolution of the
entangled state when one particle had its spin measured. It clearly demonstrates the
non-local effect of the quantum torque.

Bell [7] noticed this � nonlocality in the Bohm model and asked whether all
theories that attributed properties to individual particles had this unwelcome feature.
Before his first paper appeared in print, he [8] was able to prove under quite general
considerations that all theories based on local properties (local hidden variables)
must satisfy the Bell inequalities � Bell theorem, which can be written in the form

|P(â, b̂)− P(â, b̂′)| + |P(â′, b̂′)+ P(â′, b̂)| � 2

This inequality is violated by certain quantum mechanical entangled states. Further-
more for those quantum states that produce such a violation experiment shows that
the inequality is also violated and that predictions of the quantum formalism is, in
fact, correct [9].

Thus we are faced with what appears to be a dilemma. On the one hand spe-
cial relativity tells us that signals cannot travel faster than the speed of light, yet
the quantum formalism shows that distant particles in entangled states appear to
be connected instantaneously with each other while they remain in the entangled
states. However Eberhard [10] has shown that it is not possible to use these non-
local connections to send signals because they are fragile in the sense that once
a measurement is made on one particle, the � entanglement is destroyed and the
particles behave independently from then on. Thus there seems to be a peaceful
coexistence between relativity and quantum theory [11].

A good review of the experimental situation regarding the Bell inequality and
other similar inequalities see Clauser and Shimony [12]. See also � Causal Infer-
ence and the EPR problem; EPR problem.
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Bohr’s Atomic Model

Arne Schirrmacher

The model of Niels Bohr (1885–1962) for the atom is since long just the one and
only conception for atoms of the vast majority of educated people. The picture of� electrons revolving round a nucleus on select avenues has become the icon of the
atomic age. In stark contrast to this omnipresence, historically, the Bohr atom may
be identified as the best available theory for the atom only for a period of roughly
ten years between 1914 and 1924. For this reason any consideration of Bohr’s atom
has to take into account both the historical context of its creation and the long and
diverse processes of reception within science, education and public that gave rise
to much misinterpretation of Bohr’s intentions, his actual work and its physical or
realistic interpretation.

For the question of the genesis of the Bohr model one has to go back to the be-
ginning of the twentieth century, when it became widely recognized that both atoms
contain electrons and at the same time were almost fully penetrable by electron
bombardment. Between 1901 and 1905 various physicists and science popularizers
draw the analogy between atoms and planetary systems (e.g. Jean Perrin (1870–
1942), Wilhelm Meyer (1853–1910), or Hantaro Nagaoka (1856–1950) � atomic
models) and some of them immediately realized the difference: Since electric forces
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were both attractive and repulsive it was hard to understand how stable configura-
tions could result at all. As a consequence in the years before world war I concern
with detailed atomic models was not widespread. For this reason also the � Ruther-
ford atom was largely ignored until it could be reinterpreted as a predecessor of
the Bohr atom. The favorite heuristic models for the atom in the years around 1910
also for Bohr was Thomson’s that came in various imprecise and at times conflict-
ing variations but was nonetheless able to serve in this way the purpose in helping
to conceptualize stability, light emission and the existence of a periodic system of
elements.

When Bohr in 1911/1912 went to Cambridge and Manchester to work with
Thomson (1856–1940) and Ernest Rutherford (1871–1937), resp., he was mostly in-
terested in extending his doctoral thesis on the electron theory of metals (for which
Thomson had been a pioneer). The problem of bound electrons made Bohr looking
for special assumptions about their arrangements and motions that could be treated
in a Thomsonian manner. The switch to Rutherford then was neither motivated by a
discontent with Thomson nor by a particular interest in the Rutherford atom, but by
Rutherford’s work in radioactivity. Rather by accident in commenting on a theory
of α-particle absorption in metals by the Rutherford collaborator Charles G. Darwin
(1887–1963) Bohr arrived at discussing atomic structure for the first time, as in this
work the problems of bound electrons in metals and atomic structure met. At this
stage Bohr conceived of an atomic model that “would not be an indication of the na-
ture of a possibility (like J. J. Thomson’s theory) but perhaps a little piece of reality”
(letter to Harald Bohr 19th July 1912).

The first version of Bohr’s atom in his “Manchester memorandum” than com-
bined Thomsonian modeling with a conviction drawn from his earlier work on
electron theory in metals, i.e. that within matter ordinary mechanics and electro-
dynamics is not sufficient but has to be complemented by some quantum condition
(like in the theory of specific heats). In the case of the atom it was the mechanical
instability of the models that Bohr wanted to fix by a quantum condition. While
he arrived at far-reaching results (explanation of periodic table, though by a wrong
calculation) and implemented a quantum condition to relate the kinetic energy of
the electrons to the frequency of rotation, Ekin = K · ν this first version of the Bohr
atom would not take off (Fig. 1).

Fig. 1 Bohr model of
atom, with quantized energy
levels, and electron jumps,
accompanied by photon emis-
sions. Source: Wikimedia
Commons
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Only after Bohr stumbled upon a publications of J. W. Nicholson (1881–1955)
late in 1912, who had constructed an comparably immature atomic model also
with a quantum condition in order to explain the spectral lines of the solar corona,
Bohr realized that � spectroscopy was the missing link for establishing a sound
atomic model. Disregarding spectra was not a particular failure of Bohr, since
their complexity and the futile search for explanation rejected most atom builders.
Nicholson’s work motivated Bohr to combine his initial model with Planck’s (1858–
1947) quantized oscillator thus postulating series of states with quantized energy.
The prize he had to pay was to obscure the nature of the atomic vibrations, or
positively turned, this amounted to the most important step towards a quantized
atomic model in which the frequency of revolution are disconnected with the fre-
quencies of radiation that simply equate from the energy difference of two atomic
states expressed in terms of � Planck’s constant: EnEm = hνnm. With this separa-
tion of optical and mechanical frequencies, obviously, the “little piece of reality”
the model might claim had become even smaller. However, the good accord with
the Balmer series nνnm = Z2R[(1/m2)− (1/n2)] provided irresistible persuasive-
ness in favor of this new atomic model which amounted to a perfect compromise of
general (mechanical) intelligibility and modern (fascinating) quantum properties.

It must have been this attractive combination that made Arnold Sommerfeld
(1868–1951) adopting and extending Bohr’s model, while Rutherford immedi-
ately scolded Bohr for the lack of a mechanism for the electrons to change from
one state to another and Thomson just kept on lecturing his atomic theory un-
changed. Bohr himself was quite aware of the makeshift character of his theory
and appeared pessimistic to many colleagues. This may indicate that besides the
spectroscopic success additional factors were necessary for the general recogni-
tion of Bohr’s achievement, factors that for some reason where most favorable in
(war-time) Germany.

While in Göttingen Peter Debye (1884–1966) extended the model to the hy-
drogen molecule and met experimental results on dispersion convincingly, it was
Sommerfeld who took up Bohr’s model most forcefully and guided a young gen-
eration of German physicists into the refinement of Bohr’s theory. Though already
mentioned by Bohr only the Munich group worked out the generalization of elec-
tron orbits to elliptic ones into a systematic theory and hence introduced a second
quantum number for labeling the possible states of the atoms. In combination
with relativistic corrections and consideration of the co-movement of the nucleus� Sommerfeld School mastered the fine-structure of spectral lines to great exper-
imental unison. Further � quantum numbers and � selection rules for describing
possible transitions between states transformed � atomic physics to a “number mys-
ticism” while heavy use of pictures for representing complex systems of electron
orbits at the same time provided an engineering type of approach to it. Sommer-
feld’s promotion of the refined Bohr model between 1917 and 1925 would include
non-specialized university lectures, articles in popular science journals, wood and
brass models for the Deutsches Museum as well as radio programs.

With the older scientists largely skeptical, the Bohr atom won recognition
among wider scientific and lay circles by popularization. Although as early as 1916
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problems of the theory to account for anomalous dispersion appeared the momen-
tum the pictorial representation of the new understanding of matter developed could
not anymore be rescinded. Further progress in atomic theory only developed when
Bohr’s central postulate of the separation of optical and mechanical frequencies
was put aside and Hendrik Kramers (1894–1952) at Bohr’s institute associated with
each stationary state of Bohr’s atom a harmonic oscillator with frequencies equal to
those emitted and absorbed. Similarly did Heisenberg (1901–1976) find his way to a
quantum mechanical reinterpretation of mechanical relations only after abandoning
graphic models and turning to dispersion theory with virtual oscillators.

The Bohr atom has served many scientists, educators and philosophers as ex-
emplar. Notions like “Rutherford–Bohr atom” � Bohr’s atomic model, Rutherford
atom are commonplace, logical and rational reconstructions of the (conceived)
research have been undertaken and even analyses of Bohr’s (idealized) research
programs are at hand [8, 10]. All these however, have always to be judged against
the rich historical sources that rather provide a complex and coincidental picture of
the historical path.
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Bohr–Kramers–Slater Theory

Helge Kragh

The Bohr–Kramers–Slater theory (or BKS theory) was proposed in 1924 as an
attempt to explain problems in physical optics and to provide a unified picture
of the continuous electromagnetic field and the discontinuous quantum transitions
in atoms. Although the theory was short-lived it proved most important in the
subsequent development of quantum theory, not least because it replaced causal
spatio-temporal description of the transitions between stationary states with statis-
tical considerations. Moreover, it followed that energy and momentum was only
conserved statistically, not for individual atomic processes.

In early 1924 atomic physics was in a state of crisis (� quantum theory, cri-
sis period), one of the critical problems being the interaction between matter and
radiation. In a paper published in Nature in February 1924, John Clark Slater (1900–
1976) suggested the radical idea that when an atom was in a stationary state, it would
“communicate with other atoms. . . by means of a virtual field of radiation originat-
ing from oscillators having the frequencies of possible quantum transitions and the
function of which is to provide for statistical conservation of energy and momen-
tum by determining the probabilities for quantum transitions.” Note that the field
was thought to be emitted by atoms in their stationary states and not, as in Bohr’s
original theory, during the � quantum jumps from one state to another.

The idea to conceive the atom as a collection of “virtual harmonic oscillators”
had implicitly been suggested by Rudolf Ladenburg (1882–1952) in a paper on dis-
persion theory from 1924, but it was only with Slater’s paper and the subsequent
BKS paper that explicit use was made of the idea. Slater provided a picture of emis-
sion as well as absorption of radiation inspired by and in qualitative agreement with
Einstein’s probabilistic radiation theory of 1916–17. He considered his picture to be
a reconciliation of the continuous wave theory of the electromagnetic field with the
discreteness of light quanta (photons � light quantum), of whose existence he had
been convinced by Arthur Compton (1892–1962) � Compton experiment.

Slater was at the time a visiting physicist at Niels Bohr’s (1885–1962) institute
in Copenhagen, and he discussed at length his theory with Bohr and his assistant
Hendrik Kramers (1894–1952) who found it interesting but also suggested mod-
ifications. Neither Bohr nor Kramers shared Slater’s belief in the light quantum.
Rather than adopting a theory which harmonized the electromagnetic field with
light quanta (Slater’s view), they wanted to connect the continuous field responsible
for the propagation of light with the discontinuous quantum transitions in the atom.
Moreover, the idea of a statistical connection, as proposed by Slater in his Nature pa-
per, appealed greatly to Bohr and Kramers who believed that it implied that a causal
description of quantum transitions had to be abandoned. If so, they concluded, the
conservation laws of energy and momentum could not be strictly valid for individ-
ual processes, but should be understood as statistical laws. This idea seems to have
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been due to Bohr and Kramers rather than Slater. In a general sense it was not new
to Bohr, who for some time had been prepared to abandon the validity of energy
conservation in the quantum domain.

The result of the discussions in Copenhagen – and the pressure put on Slater to
go along with the statistical, non-conservation ideas of Bohr and Kramers – was
a joint paper published simultaneously in Philosophical Magazine and Zeitschrift
für Physik. Although jointly authored, the paper reflected Bohr’s ideas more than
Slater’s, and in fact Slater disagreed with much of it. The BKS paper kept to
Slater’s idea of a virtual radiation field associated with the stationary state of an
atom and also incorporated the probabilistic interpretation of transition processes.
“The occurrence of a certain transition in a given atom will depend on the initial
stationary state of this atom itself and on the states of the atoms with which it is
in communication through the virtual radiation field, but not on the occurrence of
transition processes in the latter atoms.”

Slater had originally conceived the virtual radiation field as a kind of wave-field
guiding the light quanta, but in the BKS paper there was no trace of this idea (which
was also part of Louis de Broglie’s theory (1892–1981)). It remained unclear what
the enigmatic virtual oscillators were, except that they were not directly observable.
The most radical feature of the BKS theory was the description of atomic processes
at the expense of sacrificing the laws of detailed conservation of energy and mo-
mentum.

The BKS theory was almost purely qualitative and appealed conceptually to an
intuitive understanding of virtual fields and virtual oscillators, but if it was to be
taken seriously it had to make testable predictions. Bohr and Kramers (and, nom-
inally, Slater) applied the theory to the � Compton effect and concluded that the
direction of a recoil electron after scattering an X-ray photon would not be uniquely
determined, as required by the conservations laws, but display a wide statistical
distribution. Even before this prediction could be tested, the theory aroused much
attention, if little enthusiasm. Erwin Schrödinger (1887–1961) supported the BKS
theory and Bohr’s interpretation, but most other physicists either rejected it or ex-
pressed reservation. Among those who were opposed to it were Arnold Sommerfeld
(1868–1951), Albert Einstein (1879–1955), Compton and Wolfgang Pauli (1900–
1958), and it is uncertain if even Kramers supported it.

At any rate, the theory did not last for more than a year. As early as June 1924,
Walther Bothe (1891–1957) and Hans Geiger (1882–1945) in Berlin proposed an
experiment to test the theory by measuring simultaneously the scattered � X-rays
and the recoil electrons. This was one of the first experiments using electronic co-
incidence devices, and it was not until April 1925 that they had ready their final
result, which was “incompatible with Bohr’s interpretation of the Compton effect.”
Also Compton and Alfred W. Simon, who used a cloud chamber to determine the
direction of recoil electrons, concluded in favour of energy and momentum conser-
vation and that experiments had therefore disproved the BKS theory. Karl Popper
(1902–1994) later described the experiments of 1925 as a kind of experimentum
crucis. While this was good news to Slater, it was not to Bohr, who for a year
had defended the theory and taken it very seriously. Nonetheless, he accepted the
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experimental verdict and wrote to Fowler that “there is nothing else to do than to
give our revolutionary efforts as honourable a funeral as possible.”

In spite of its short lifetime, the BKS theory was singularly important. For one
thing, its radically new approach paved the way for a greater understanding that
methods and concepts of classical physics could not be carried over in a future
quantum mechanics. For another thing, the theory provided the point of depar-
ture of Kramers’ theory of dispersion of 1924 and its further development into the
Kramers–Heisenberg dispersion theory of 1925, the final step before Heisenberg’s
formulation of quantum or � matrix mechanics.
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Born Rule and its Interpretation

N.P. Landsman

The Born rule provides a link between the mathematical formalism of quantum
theory and experiment, and as such is almost single-handedly responsible for prac-
tically all predictions of quantum physics. In the history of science, on a par with
the � Heisenberg uncertainty relations, the � Born rule is often seen as a turning
point where � indeterminism entered fundamental physics. For these two reasons,
its importance for the practice and philosophy of science cannot be overestimated.

The Born rule was first stated by Max Born (1882–1970) in the context of scat-
tering theory [1], following a slightly earlier paper in which he famously omitted
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The Born rule was first stated by Max Born (1882–1970) in the context of scat-
tering theory [1], following a slightly earlier paper in which he famously omitted
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the absolute value squared signs (though he corrected this is a footnote added in
proof). The application to the position operator (cf. (5) below) is due to Pauli, who
mentioned it to Heisenberg and Jordan, the latter publishing Pauli’s suggestion with
acknowledgment [6] even before Pauli himself spent a footnote on it [8]. The general
formulation (6) below is due to von Neumann (see §III.1 of [7]), following earlier
contributions by Dirac [2] and Jordan [5, 6].

Both Born and Heisenberg acknowledge the profound influence of Einstein on
the probabilistic formulation of quantum mechanics. However, Born and Heisen-
berg as well as Bohr, Dirac, Jordan, Pauli and von Neumann differed with Einstein
about the (allegedly) fundamental nature of the Born probabilities and hence on the
issue of determinism. Indeed, whereas Born and the others just listed after him be-
lieved the outcome of any individual quantum measurement to be unpredictable in
principle, Einstein felt this unpredictability was just caused by the incompleteness
of quantum mechanics (as he saw it). See, for example, the invaluable source [3].
Mehra & Rechenberg [20] provide a very detailed reconstruction of the historical
origin of the Born rule within the context of quantum mechanics, whereas von Plato
[22] embeds a briefer historical treatment of it into the more general setting of the
emergence of modern probability theory and probabilistic thinking.

Let a be a quantum-mechanical � observable, mathematically represented by a� self-adjoint operator on a � Hilbert space H with inner product denoted by ( , ).
For the simplest formulation of the Born rule, assume that a has non-degenerate
discrete spectrum: this means that a has an � orthonormal basis of eigenvectors
(ei) with corresponding eigenvalues λi , i.e. aei = λiei . A fundamental assumption
underlying the Born rule is that a � measurement of the observable a will produce
one of its eigenvalues λi as a result. In what follows, � ∈ H is a unit vector and
hence a (pure) state in the usual sense. Then the Born rule states:

If the system is in a state �, then the probability P (a = λi | �) that the eigenvalue λi of a
is found when a is measured is

P(a = λi | �) = |(ei,�)|2. (1)

In other words, if � =∑i ciei (with
∑

i |ci |2 = 1), then P(a = λi | �) = |ci |2.
The general formulation of the Born rule (which is necessary, for example, to

discuss � observables with continuous spectrum such as the position operator x on
H = L2(R) for a particle moving in one dimension) relies on the spectral theo-
rem for self-adjoint operators on Hilbert space (see, e.g., [21]). According to this
theorem, a self-adjoint operator a defines a so-called spectral measure (alternatively
called a projection-valued measure or PVM)B �→ p(a)(B) on R. Here B is a (Borel)
subset of R and p(a)(B) is a projection on H . (Recall that a projection on a Hilbert
space H is a bounded operator p : H → H satisfying p2 = p∗ = p; such opera-
tors correspond bijectively to their images pH , which are closed subspaces of H .)
The spectral measure p(a) turns out to be concentrated on the spectrum σ(a) ⊂ R

of a in the sense that if B ∩ σ(a) = ∅, then p(a)(B) = 0 (hence p(a) is often
defined on σ(a) instead of R). The map B �→ p(a)(B) satisfies properties such as
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p(a)(A ∪ B) = p(a)(A) + p(a)(B) when A ∩ B = ∅ (and a similar property for
a countable family of disjoint sets) and p(a)(R) = 1 (i.e. the unit operator on H ).
Consequently, a self-adjoint operator a and a unit vector � ∈ H jointly define a
probability measure P (a)

� on R by

P
(a)
� (B) := (�, p(a)(B)�) = ‖p(a)(B)�‖2, (2)

where ‖ · ‖ is the norm derived from the inner product on H . The properties of p(a)

just mentioned then guarantee that P (a)
� indeed has the properties of a probability

measure, such as P
(a)
� (A ∪ B) = P

(a)
� (A) + P

(a)
� (B) when A ∩ B = ∅ (and a

similar property for a countable family of disjoint sets) and P
(a)
� (R) = 1. Again,

the probability measure P (a)
� is concentrated on σ(a).

For example, if a has discrete spectrum, then σ(a) = {λ1, λ2, . . .} and p(a)(B)

projects onto the space spanned by all eigenvectors whose eigenvalues lie in B.
In particular, if � = ∑

i ciei as above, then P
(a)
� ({λi}) = |ci |2. In the case of

the position operator x as above, σ(x) = R and p(x)(B) equals the characteristic
function χB , seen as a multiplication operator on L2(R). The image of p(x)(B)

consists of functions vanishing (almost everywhere) outside B, and the measure
P
(x)
� is given by

P
(x)
� (B) =

∫
R

dx χB(x)|�(x)|2 =
∫
B

dx |�(x)|2. (3)

The general statement of the Born rule, then, is as follows:

If the system is in a state � ∈ H , then the probability P (a ∈ B | �) that a result in B ⊂ R

is found when a is measured equals

P(a ∈ B | �) = P
(a)
� (B). (4)

For discrete non-degenerate spectrum this reduces to (1). For the position opera-
tor in one dimension, (4) yields

P(x ∈ B | �) =
∫
B

dx |�(x)|2 (5)

for the probability that the particle is found in the region B.
Note that it follows from the general Born rule (4) that with probability one a

measurement of a will lead to a result contained in its spectrum, since P (a)
� (B) = 0

whenever B ∩ σ(a) = ∅. Curiously, however, the probability P(a = λ | �) of
finding any specific number λ in the continuous spectrum of a is zero! As a case
in point, the probability P(x = x0 | �) of finding the particle at any given point
x0 vanishes. Of course, this phenomenon also occurs in classical probability theory
(e.g., the probability of any given infinite sequence of results of a coin flip is zero).
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The rule (4) is easily extended to n commuting self-adjoint operators
a1, . . . , an [7]:

The probability that the observables a1, . . . , an simultaneously take some value in a subset
B1 × · · · × Bn ⊂ R

n upon measurement in a state � is

P�(a1 ∈ B1, . . . , an ∈ Bn) = ‖p(a1)(B1) · · ·p(an)(Bn)�‖2. (6)

This version of the Born rule is needed, for example, in order to generalize (5) to
three dimensions. Indeed, the ensuing formula is practically the same, this time with
B ⊂ R3 and x replaced by (x, y, z).

The statement that the expectation value of an observable a in a state � equals
(�, a�) is equivalent to the Born rule. To see this, we identify projections with
yes-no questions [7], identifying the answer ‘yes’ with eigenvalue 1 and ‘no’ with
eigenvalue 0. The expectation value (�, p�) = ‖p�‖2 of a projection then simply
becomes the probability of the answer ‘yes’. Taking p = p(a)(B) then repro-
duces (4), since the probability of ‘yes’ to the question p(a)(B) is nothing but
P(a ∈ B | �). In this fashion, the Born rule may be generalized from pure states
to mixed ones (i.e. � density matrices in the standard formalism we are consider-
ing here), by stipulating that the expectation value of a in a state ρ (i.e. a positive
trace-class operator with � trace one) is Tr(ρa). For a further generalization in this
direction see � Algebraic quantum mechanics.

Finally, another formulation of the Born rule is as follows:

The transition probability P (�,�) from a state � to a state �, or, in other words, the
probability of a ‘quantum jump’ from � to �, is

P(�,�) = |(�,�)|2. (7)

This related to the first formulation above, in that in standard measurement theory
one assumes a � ‘wave function collapse’ in the sense that � changes to ei after a
measurement of a yielding λi . The transition probability P(�, ei ) is then precisely
equal to P(a = λi | �) as stated above.

The Born interpretation of quantum mechanics is usually taken to be the state-
ment that the empirical content of the theory (and particularly of the quantum state)
is given by the Born rule. However, this is not really an interpretation at all until it
is specified what the notions of measurement and probability mean. The pragmatic
attitude taken by most physicists is that measurements are what experimentalists
perform in the laboratory and that probability is given the frequency interpreta-
tion [15, 17] (which is neutral with respect to the issue whether the probabilities
are fundamental or due to ignorance). Given that firstly the notion of a quantum
measurement is quite subtle and hard to define, and that secondly the frequency
interpretation is held in rather low regard in the philosophy of probability [17,
18], it is amazing how successful this attitude has been! Going beyond pragma-
tism requires a mature interpretation of quantum mechanics, however. Each such
interpretation hinges on some interpretation of probability and will contain its own
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perspective on the Born rule. See Ignorance interpretation, Ithaca Interpretation,
Many Worlds Interpretation, Modal Interpretation, Orthodox Interpretation, Trans-
actional Interpretation.

The nature of the Born rule comes out particularly well in the Copenhagen
interpretation, � Consistent Histories; Metaphysics in Quantum Mechanics; Non-
locality; Orthodox Interpretation; Schrödinger’s Cat; Transactional Interpretation,
especially if this approach is combined with � Algebraic quantum mechanics. In the
algebraic approach, a quantum system is modeled by a non-commutativeC∗-algebra
of observables. The simplest illustration of this is the algebra Mn of all complex
n × n matrices. This contains the commutative C∗-algebra Dn of all diagonal ma-
trices as a subalgebra. A unit vector � ∈ Cn determines a pure state ψ on Mn in the
algebraic sense by ψ(a) = (�, a�). The latter may be restricted to a state ψ|Dn on
Dn, which turns out to be mixed: if � = ∑n

i=1 ciei and dλ = diag(λ1, . . . , λn) is
the diagonal matrix with entries (λ1, . . . , λn), then

ψ|Dn(dλ) =
n∑

i=1

|ci |2λi (8)

yields the expectation value of dλ in the state ψ . In particular, if pi ∈ Dn is the
projection pi = diag(0, . . . , 1, . . . , 0) having 1 on the i’th diagonal entry and zeros
elsewhere, then ψ|Dn(pi) = |ci |2 yields the Born probability of obtaining λi upon
measuring Dλ.

Similarly, one may regard a � wave function � ∈ L2(R) as an algebraic state ψ
on the C∗-algebra B(L2(R)) of all bounded operators on the Hilbert space L2(R).
This C∗-algebra contains the commutative subalgebra C0(R) given by all multipli-
cation operators on L2(R) defined by continuous functions of x ∈ R that vanish at
infinity (roughly speaking, this is the C∗-algebra generated by the position opera-
tor). The restriction ψ|C0(R) of ψ to C0(R) is given by

ψ|C0(R)(f ) =
∫

R

dx |�(x)|2f (x). (9)

The probability measure Pψ|C0 (R)
on R associated to the functional ψ|C0(R) by the

Riesz representation theorem [21] is just Pψ|C0 (R)
= P

(x)
� , cf. (3). Hence the re-

stricted state ψ|C0(R)precisely yields the Born–Pauli probability (5).
Finally, to recover (4) (assuming for simplicity that the operator a : H → H is

bounded), one considers the commutative C∗-algebra C∗(a) of B(H) generated by
a and the unit operator. It can be shown [21] that C∗(a) ∼= C(σ(a)). Hence a unit
vector � ∈ H defines a state ψ on B(H), whose restriction ψ|C∗(a) to C∗(a) yields
a probability measure Pψ|C∗(a) on the spectrum σ(a) of a. It easily follows that

Pψ|C∗(a) = P
(a)
� , (10)

which reproduces (2).
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The physical relevance of these constructions derives from Bohr’s doctrine of
classical concepts, which is an essential ingredient of the Copenhagen interpretation
[24]. In particular, if it is to serve its function, a measurement apparatus has to be de-
scribed as if it were classical. This implies that if it is used as a measuring device, the
apparatus (which a priori is quantum mechanical) has to be described by a commu-
tative subalgebra D of its full non-commutative algebra A of quantum-mechanical
observables. Upon the identifications explained above, the Born probability measure
then comes out to be just the restriction of the total state on A to the ‘classical’
subalgebra D thereof that Bohr calls for.

This account does not provide a derivation of the Born rule from first princi-
ples, but it does clarify its mathematical and physical origin. In particular, in the
Copenhagen interpretation probabilities arise because we look at the quantum world
through classical glasses:

“One may call these uncertainties [i.e. the Born probabilities] objective, in that they are
simply a consequence of the fact that we describe the experiment in terms of classical
physics; they do not depend in detail on the observer. One may call them subjective, in that
they reflect our incomplete knowledge of the world.” (Heisenberg [4], pp. 53–54)

In other words, one cannot say that the Born probabilities are either subjective (i.e.
Bayesian, or due to ignorance) or objective (i.e. fundamentally ingrained in nature
and independent of the observer). Instead, the situation is more subtle and has no
counterpart in classical physics or probability theory: the choice of a particular clas-
sical description is subjective, but once it has been made the ensuing probabilities
are objective and the particular outcome of an experiment compatible with the cho-
sen classical context is unpredictable. Or so Bohr and Heisenberg say. . .

In most interpretations of quantum mechanics, some version of the Born rule is
simply postulated. This is the case, for example, in the � Consistent histories inter-
pretation, the � Modal interpretation and the � Orthodox interpretation. Attempts
to derive the Born rule from more basic postulates of quantum theory go back to
Finkelstein [16] and Hartle [19], whose work was corrected and extended in [14].
These authors study infinite sequences of measurements and prove that the ensuing
relative frequencies automatically satisfy the Born rule. It is controversial, however,
to what extent this argument really derives the Born rule or is eventually circular
[11, 12]. In the version of the � Many worlds interpretation developed by Deutsch
[13] and his followers [23, 26], the authors claim to derive the Born rule using argu-
ments from decision theory, but once again the charge of circularity has been raised
[9, 10]. See also [27, 25] for a similar debate in the context of � decoherence. The
conclusion seems to be that no generally accepted derivation of the Born rule has
been given to date, but this does not imply that such a derivation is impossible in
principle.
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Bose–Einstein Condensation

A.J. Leggett

Bose–Einstein condensation (BEC) is a phenomenon that occurs in a macroscopic
system of bosons (particles obeying � Bose–Einstein statistics) at low temperatures:
a nonzero fraction of all the particles in the system (thus a macroscopic number of
particles) occupy a single one-particle state. This would, of course, happen for a
system of distinguishable, noninteracting particles at zero temperature, but in this
case the phenomenon disappears as soon as the temperature becomes comparable
to the energy splitting between the single-particle groundstate and the first excited
state – a quantity which tends to zero with the size of the system. By contrast,
in BEC the macroscopic occupation occurs at all temperatures below a transition
temperature, usually denoted Tc, which while a function of intensive parameters
such as density and interaction strength is constant in the thermodynamic limit.

The fundamental reason for the occurrence of BEC lies in the requirement, which
follows from considerations of quantum field theory, that the � wave function of a
system of identical bosons should be symmetric under the exchange of any two par-
ticles. This has the consequence that states that differ only by such an exchange
must be counted as identical, i.e. counted only once. Thus, for example, while for a
system of N distinguishable objects, which must be partitioned between two boxes,
the number of ways of putting M of them into one box is given by the familiar bino-
mial formula N !/(M!N −M!), for bosons there is exactly one way for each M . The
effect is to remove the “entropic” factor, which for distinguishable objects militates
against putting a large fraction of them in a single one-particle state.

For noninteracting bosons in thermal equilibrium at temperature T a calculation
of the average number of particles 〈ni〉 occupying the various single-particle states
i is straightforward and was carried out by Albert Einstein (1879–1955) [1] in 1925
on the basis of the statistics derived by Satyendra Nath Bose (1894–1974) [2] a year
earlier:

〈ni〉 = {[exp(εi − μ)/kBT ] − 1}−1 (1)

where μ is the chemical potential,which must be fixed by the condition

∑
i

〈ni〉 = N (2)

where N is the total number of particles present. In order to make sense of (1), it is
clear that the chemical potential must be negative (we set the lowest single-particle
energy to zero by convention); since the LHS of (2) is an increasing function of μ,
it follows that if in it we take the value of 〈ni〉 for μ = 0, the equality must be
replaced by an inequality. Thus, if we were to replace the sum by an integral and
introduce the single-particle density of states ρ(ε) in the standard way, we would
find the condition
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∫ ∞

0

ρ(ε)dε

exp(ε/kBT )− 1
� N (3)

However, if ρ(ε) tends to zero with ε, as happens for a gas in three-dimensional
free space, this condition cannot be fulfilled below a certain “critical temperature”
Tc, which for 3D free space is given by

Tc = 3 · 31n2/3
�

2/m (4)

where n = N/V is the density.
What then happens for temperatures T < Tc? According to Einstein, while for

the states with εi > 0 the sum can still be legitimately replaced by an integral, the
zero-energy state (the single-particle groundstate) must be taken out and handled
separately. In fact, the difference – call it N0 – between the right and left sides of (3),
which is proportional to N and for T < Tc is positive, is the number of particles
which occupy the groundstate. Thus a single state, in this case the single-particle
groundstate, is occupied by a macroscopic number of particles – the phenomenon
of BEC. Note that for free particles in d dimensions, BEC does not occur for d � 2,
since in this case the LHS of (3) is divergent and the equation is trivially satisfied at
any nonzero value of T . For a free gas in 3D the condensate fraction is given by the
formula

N0(T )/N = 1− (T /Tc)
3/2 (5)

and so tends to 1 as T tends to 0.
Since in real life many-particle systems are rarely noninteracting and in addition

may not be in thermal equilibrium, it is desirable to have a more general definition of
BEC. Such a definition was formulated by Oliver Penrose (*1929) and Lars Onsager
(1903–1976): If we choose any complete � orthonormal basis (in general time-
dependent) of single-particle wave functions χi(r : t), then we can define in this
basis the single-particle density matrix ρij (t) ≡ 〈a†

iaj 〉(t). Since the matrix ρ̂(t) is
Hermitian, general theorems guarantee that for any given time t we will be able to
find a basis which diagonalizes it, i. e. such that

ρij (t) = δij 〈ni〉(t) (6)

If one and only one1 of the eigenvalues 〈ni〉 (call the relevant value of i 0 by conven-
tion) is of order N while all the rest are all of order 1, then we say that the system
possesses the property of Bose–Einstein condensation (BEC); the quantity 〈n0〉 (of-
ten written N0) is called the “condensate number” (so that N0/N is the “condensate
fraction”), and the associated eigenfunction of ρ̂(t), χ0(r), is called the “condensate
wave function.” Note that in the general case both N0 and χ0(r) may be functions
of time.

1 It is possible, though for various reasons uncommon, for more than one eigenvalue to be of
order N . In this case the system is said to possess “fragmented BEC.”
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There are strong arguments that the occurrence of BEC should lead to the phe-
nomenon of superfluidity (� Superfluidity), so that when the latter phenomenon
was detected, in 1938, in He-II (the phase of liquid 4He below the so-called lambda-
temperature, about 2.17 K), it was almost immediately suggested by Fritz London
that BEC is occurring in this phase. This conjecture is now almost universally
believed to be correct, and although the strong and mostly repulsive interatomic
interactions in liquid helium prevent the direct observation of the onset of BEC
which is possible in the alkali gases (see below), it has proved possible (with cer-
tain caveats, see e.g. ref. [3]) to observe a nonzero condensate fraction N0(T )/N

by high-energy neutron scattering and other experiments; it increases from zero at
the lambda-temperature to about 8% at T = 0. (By contrast, the superfluid fraction
is 100% at T = 0). The strong “depletion” of the condensate fraction relative to its
value for the free gas is believed to be due to the strong interactions occurring in
this high-density system.

A second system in which BEC has been achieved is the bosonic atomic alkali
gases2. Since (neutral) alkali atoms by definition have an odd number of electrons,
odd-A alkali isotopes such as 87Rb, 23Na or 7Li are composed of an even num-
ber of fermions and thus behave, as wholes, as bosons; at the densities currently
realized the transition temperature Tc to the BEC phase is predicted to be of the
order of a microkelvin, a temperature now relatively easily reached by laser cooling
and rf evaporation techniques. These gases are normally held in trapping potentials
(generated by magnetic fields or lasers) that are harmonic in form, and in such a
geometry the effect of the onset of BEC is spectacular: Above Tc the density dis-
tribution in the trap is approximately Gaussian, with a large value of the halfwidth.
If the atoms were noninteracting, then below Tc a nonzero fraction would occupy
the single-particle groundstate of the harmonic potential, which has a very much
narrower width. In real life this effect is reduced owing to the repulsive interatomic
interactions, but one still sees a sharp “spike” in the density appear below Tc, see e.g.
ref. [4]; this is probably the most convincing evidence that BEC is indeed occurring
in these systems as theory confidently predicts.

In contrast to liquid helium, the atomic alkali gases are very dilute, and thus the
effects of the interatomic interactions are generally rather weak and can be handled
by perturbation theory. Thus it has been possible to achieve a very good quantitative
understanding of the effects of BEC in these systems.3
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Bose–Einstein Statistics

Arianna Borrelli

Bose–Einstein statistics is a procedure for counting the possible states of quantum
systems composed of identical particles with integer � spin. It takes its name from
Satyendra Nath Bose (1894–1974), the Indian physicist who first proposed it for� light quanta (1924), and Albert Einstein (1879–1955), who extended it to gas
molecules (1924, 1925).

Both in classical and in quantum mechanics, the behaviour of systems composed
of a large number of particles can be investigated with the help of statistical con-
siderations. If all particles obey the same dynamics, and if their interactions can be
neglected in a first approximation, one can determine all possible energy states of
a single particle, and then make statistical assumptions on the distribution of the
particles among single-particle states, thus computing the average behaviour of the
whole system. The usual statistical assumption is that all possible states of the many-
particle system (i.e. all configurations) are equally probable. As became clear around
the middle of the 1920’s, the description of quantum systems of many particles has
to be different from that of classical ones, a fact usually described by referring to
the � indistinguishability of quantum particles as opposed to the distinguishability
of classical ones. Two kinds of � quantum statistics have been found to play a role
in quantum mechanics: the statistics of Bose–Einstein and that of � Fermi-Dirac.

Let us consider the classical case first, i.e. a system of N identical, noninteracting
particles which are assumed to be distinguishable. The configuration of the system
is determined by indicating which particles are in which states, for example particle
a in state 1 and particle b in state 2:

particle a particle b
state 1 state 2 .
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Bose–Einstein Statistics

Arianna Borrelli

Bose–Einstein statistics is a procedure for counting the possible states of quantum
systems composed of identical particles with integer � spin. It takes its name from
Satyendra Nath Bose (1894–1974), the Indian physicist who first proposed it for� light quanta (1924), and Albert Einstein (1879–1955), who extended it to gas
molecules (1924, 1925).

Both in classical and in quantum mechanics, the behaviour of systems composed
of a large number of particles can be investigated with the help of statistical con-
siderations. If all particles obey the same dynamics, and if their interactions can be
neglected in a first approximation, one can determine all possible energy states of
a single particle, and then make statistical assumptions on the distribution of the
particles among single-particle states, thus computing the average behaviour of the
whole system. The usual statistical assumption is that all possible states of the many-
particle system (i.e. all configurations) are equally probable. As became clear around
the middle of the 1920’s, the description of quantum systems of many particles has
to be different from that of classical ones, a fact usually described by referring to
the � indistinguishability of quantum particles as opposed to the distinguishability
of classical ones. Two kinds of � quantum statistics have been found to play a role
in quantum mechanics: the statistics of Bose–Einstein and that of � Fermi-Dirac.

Let us consider the classical case first, i.e. a system of N identical, noninteracting
particles which are assumed to be distinguishable. The configuration of the system
is determined by indicating which particles are in which states, for example particle
a in state 1 and particle b in state 2:

particle a particle b
state 1 state 2 .
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Since a and b are distinguishable, this configuration is different from the
configuration:

particle a particle b
state 2 state 1 ,

with particle a in state 2 and particle b in state 1.
In quantum statistics, the configurations of the whole system are not described

by specifying which particles are in which states, but only by saying how many
particles are in each state. For example:

one particle one particle
state 1 state 2

,

for a configuration with one particle in state 1 and one in state 2. In the classical
case, this description corresponds to two distinct configurations, but in the quantum
case there is by definition only one configuration which can be described in this way.
This method of counting configurations can be seen as expressing the particles’ in-
distinguishability, although in fact it is the notion of “particle” itself that becomes
problematic in quantum statistical systems. Any number of particles following the
Bose–Einstein distribution (bosons) can occupy the same state at the same time,
while for particles satisfying Fermi-Dirac statistics (fermions) each state can be oc-
cupied by at most one particle at a time.

The key difference between Bose–Einstein statistics and the classical way of
counting is that a large number of configurations which in the classical case are
considered different, in Bose–Einstein statistics count as one. More precisely, when
N particles occupy N different single-particle states, all of their N ! permutations
count as only one configuration. On the other hand, for particles which are in the
same state, there is no difference with respect to the classical way of counting: the
classical configuration

particle a particle b
state 1 state 1

with both particles in state 1, counts only once, just like the Bose–Einstein configu-
ration

two particles no particles
state 1 state 2 .

If, as usually done, it is assumed that all configurations of the many-particle sys-
tem are equally probable, it follows that, for Bose–Einstein particles, the statistical
weight of configurations in which many particles are in the same state is enhanced
with respect to the classical case. In other words, it is more probable to find two
or more bosons in the same single-particle state than it is the case for classical par-
ticles. Because of this, bosons cannot be considered statistically independent from
each other even when they are not interacting.
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In the limit of high temperatures, i.e. for high average energies, an increasing
number of energy states becomes accessible to the particles, and the number of
configurations with two or more of them in the same state eventually becomes neg-
ligible. The overall effect of Bose–Einstein statistics is then simply a reduction of
the statistical weight of any configuration by a factor N ! with respect to the classical
case. In the low-temperature limit, instead, the number of configurations with two or
more particles occupying the same state is not negligible, and those configurations
are privileged: at low temperature, a boson has a greater probability than a classi-
cal particle of occupying the ground state. Under specific conditions, the formalism
predicts the phenomenon of � Bose–Einstein condensation.

Bose–Einstein statistics had its origin in Max Planck’s (1858–1947) formula for
the energy density uν of � black-body radiation (1900) of frequency ν at thermal
equilibrium at temperature T . To justify his formula, Planck considered the energy
density uν as associated to Nν oscillators of average energy U(ν, T ), with

uν = 8πν2

c3
U(ν, T ).

This relation was derived from classical electrodynamics. He then assumed that the
radiant energy was distributed among the Nν oscillators in form of P energy ele-
ments of value hν. The configurations of the system were described by giving only
the total number of energy elements in each oscillator, without considering the pos-
sibility of permuting the energy elements: this method of counting corresponded to
what would later be called Bose–Einstein statistics. However, Planck did not regard
the energy elements as particles, but only as a computational device whose physical
significance remained to be determined.

In the following years, Planck’s formula and its possible relationship to Albert
Einstein’s hypothesis of a � light quantum (1905) were discussed by a number of
authors, whose views have been discussed by Silvio Bergia [10]. In 1911, the Polish
physicist Władysław Natanson (1864–1937) noted that Planck’s counting method
implied the indistinguishability of the energy elements and the distinguishability of
the oscillators [1]. The correctness of this assumption, Natanson remarked, was sup-
ported only by the agreement of Planck’s formula with experiments. In 1914, Paul
Ehrenfest (1880–1933) and Heike Kamerlingh–Onnes (1853–1926) underscored
that Planck’s energy elements were not statistically independent from each other and
therefore, in their opinion, could not be regarded as real, independent particles [2].

In 1923, Einstein’s light quantum hypothesis was vindicated by the � Compton
experiment. In 1924, Bose, at the time working at Dacca University, showed how
Planck’s formula could be derived without recourse to classical electrodynamics,
but instead assuming the existence of massless light quanta whose position and mo-
mentum were quantized by dividing phase-space into cells of volume (h)3 [3, 4].
As in the case of Planck’s energy elements and oscillators, Bose’s light quanta were
distributed among the phase-space cells by specifying only the number of quanta
in a cell, without considering permutations. A factor 2 took into account the two
possible states of polarisation of light so that, in the end, Planck’s radiation formula
was recovered. In conclusion, Bose derived Planck’s formula by assuming that light
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quanta existed and satisfied a new kind of statistics. He developed his theory in two
papers written in English which he sent to Einstein, whom he did not know, asking
for help for the publication in a German journal. Einstein, recognizing the impor-
tance of Bose’s contribution, translated the papers into German, had them published
(1924) and wrote two papers of his own (1924, 1925) in which he extended Bose’s
statistics to an ideal gas of molecules, making explicit a number of implicit fea-
tures of the theory [5, 6]. However, it remained open to discussion whether the new
statistics would be applicable to particles different from light quanta.

In 1926, after the formulaton of Erwin Schrödinger’s (1887–1961) � wave
mechanics, Bose–Einstein statistics was linked to the behaviour of many-particle� wave functions. This result was obtained by Werner Heisenberg (1901–1976)
and, somewhat later but independently, by Paul Dirac (1902–1984). Consider a wave
function ψ(x1, x2, . . . , xi, . . .) which is a solution of � Schrödinger’s equation for
a system of N particles satisfying the same dynamics, with xi representing the set
of coordinates of the i-th particle. A generic ψ will not remain unchanged under a
permutation of the indexes i, but, because of the � identity of the particles, the per-
muted function shall be a solution of the equation of motion as well. If, following the
model of Bose–Einstein statistics, one imposes on the wave function the additional
requirement that a permutation of the particles should not change the configuration
of the system, it follows that the only physically acceptable ψ’s are those which,
under a permutation of the indexes i, either remain unchanged (symmetrical wave
functions) or change sign (antisymmetrical wave functions). The indeterminacy of
the sign derives from the fact that only | ψ |2 is physically significant.

As both Heisenberg and Dirac noted, the choice of symmetrical wave functions
implied the same shift in statistical weights as the one brought about by Bose–
Einstein statistics. Choosing antisymmetrical wave functions instead resulted in a
system obeying Pauli’s � exclusion principle and satisfying Fermi–Dirac statistics.
After initial discussions as to whether particles of matter would obey Bose–Einstein
or Fermi-Dirac statistics, it eventually became clear that both alternatives are re-
alised in nature, depending on the spin of the particles: particles with zero or
integer spin satisfy Bose–Einstein statistics, while particles of half-integer spin obey
Fermi-Dirac statistics (� spin-statistics theorem).
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Bremsstrahlung

Bruce R. Wheaton

All charged particles emit radiation when accelerated. Indeed on the Maxwell view,
that radiation (which takes energy from the particle) is the “wake” left by that
acceleration in an æther of crossed electric and magnetic fields, and the concept
underlies Hertz’ corroboration of Maxwell in 1888. So when � cathode-rays were
about 1900 identified by most physicists as streams of � electrons, their impact
on the anti-cathode in Röntgen’s vacuum tube should produce an irregular se-
quence of dislocated electromagnetic impulses due to the electrons’ deceleration.
This is “braking,” hence the term Arnold Sommerfeld (1868–1951) coined in 1909
of Bremsstrahlung.

Wilhelm Conrad Röntgen (1845–1923) had thought in 1895 he had found the
elusive longitudinal e-m wave in his discovery of � x-rays. But Sommerfeld in
1899 found two species in the new radiation: at the low-energy end periodic waves
like ultra-violet light, at the high end a broad spectrum to be expected from discon-
tinuous impulses dissected by Fourier frequency expansion. This distinction was
reinforced by Charles Barkla (1877–1944) in 1907: superimposed on the spectrally-
spread out x-radiation from electron impacts (Bremsstrahlung) was a series of sharp
strong peaks characteristic of the anti-cathode metal (fluorescent x-rays) that Barkla
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on the anti-cathode in Röntgen’s vacuum tube should produce an irregular se-
quence of dislocated electromagnetic impulses due to the electrons’ deceleration.
This is “braking,” hence the term Arnold Sommerfeld (1868–1951) coined in 1909
of Bremsstrahlung.

Wilhelm Conrad Röntgen (1845–1923) had thought in 1895 he had found the
elusive longitudinal e-m wave in his discovery of � x-rays. But Sommerfeld in
1899 found two species in the new radiation: at the low-energy end periodic waves
like ultra-violet light, at the high end a broad spectrum to be expected from discon-
tinuous impulses dissected by Fourier frequency expansion. This distinction was
reinforced by Charles Barkla (1877–1944) in 1907: superimposed on the spectrally-
spread out x-radiation from electron impacts (Bremsstrahlung) was a series of sharp
strong peaks characteristic of the anti-cathode metal (fluorescent x-rays) that Barkla
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Fig. 1 Sommerfeld’s calculated distribution of γ-ray intensity as a function of azimuthal angle.
[München Sb, 41 (1911), 11.] (The two cases for ν/c are not to the same scale. Were they, the case
for .99c would extend down the hall to your right, a thousand times the other)

showed were polarized. Sommerfeld returned to the issue in 1911 with a non-
relativistic analysis of γ-rays (Bremsstrahlung from exiting β-electrons) to show
their energy is emitted markedly in the forward direction like “directed radiation,”
or “needle radiation,” see Fig. 1. Niels Bohr had to contend with Bremsstrahlung as
fundamental evidence for his atom in 1913, although Joseph Larmor (1857–1942)
[1] and J. J. Thomson (1856–1940) [3] had defused the notion of the � Bohr atom
necessarily destroying itself by radiation from orbiting electrons.

With the integration of quantum mechanics in the mid-1920s, and with emerging
recognition of the distinction between atomic and nuclear phenomena, came a new
understanding of the essential nature of Bremsstrahlung in investigating the nucleus.
In particular Dirac’s � relativistic quantum mechanics (1928) predicted positive
electrons; so the passage of high-energy (>800 MeV/Z) electrons through matter
(of atomic mass Z) can emit photons (� light quantum) of sufficient energy to decay
into an e−e+ pair, leading to more Bremsstrahlung from the products, resulting in
a succession of pairs decreasing in energy, as had been seen in cosmic ray showers
using Wilson’s (1911) cloud chamber.

When you accelerate charged particles in a cyclotron (1932+) they also radi-
ate and lose energy. This is a particular problem for electrons in a synchrotron,
since they have large charge and little mass (Er ∝ a2/M2), requiring regions
in the machine where they can regain energy lost at each turn in order to keep
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the beam together. This puts constraints on, i.e., storage-rings. In extremely high
energy (15 GeV) collisions of e+e−, Bremsstrahlung takes the form of hadron jets
able to traverse 30 m of air, the least energetic of which can be explained by a quark
(� QCD) emitting a field particle (gluon); or in the case of neutron scattering by
emission of neutrinos.

Perhaps the most pregnant analyses of Bremsstrahlung also came with the accel-
erator. An accelerated beam of electrons or deuterons that passes through a dense
medium might do so with a velocity exceeding the velocity of light in that medium.
Its Bremsstrahlung then consists of shock waves, similar to the sonic boom from an
airplane traveling above Mach 1. These are constructed periodic wave-phenomena
that interact with matter as do particles and were discussed by Cherenkov [10] in
1934. They echo the speculations of Huygens from the seventeenth century about
light and of early (1900) views of � x-rays. Here may indeed lie more detailed
understanding of � wave-particle duality.
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Brownian Motion

Charlotte Bigg

Brownian motion is the irregular and perpetual agitation of small particles sus-
pended in a liquid or gas. In 1828 the Scottish botanist Robert Brown (1773–1858)
published the first extensive study of the phenomenon. Brown showed notably that
this motion equally affects organic and inorganic particles, suggesting a physical
rather than a biological explanation [1]. Developments in thermodynamics and the
kinetic theory in the second half of the nineteenth century led several scientists to
consider Brownian motion as a visible consequence of thermal molecular agitation;
but it was not until the early twentieth century that a convincing quantitative de-
scription and theoretical explanation of the motion was worked out.

In particular A. Einstein (1879–1955), M. von Smoluchowski (1872–1917) and
J. Perrin (1870–1942) demonstrated that the Brownian motion of particles sus-
pended in a liquid is caused by their incessant collisions with the molecules making
up the liquid, and they developed new, statistical methods of measuring this motion.
Instead for instance of measuring the instantaneous velocity of individual particles,
as scientists had previously, finding values widely diverging from those predicted by
the kinetic theory, Einstein proposed in 1905 to measure their mean displacement.
He found that the mean displacement of a particle on the X axis during a period of
time t is proportional to the square root of t :

λx =
√
t ×
√
RT

N

1

3πkP
.
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R is the gas constant, T the absolute temperature, N the number of molecules in
a mole (Avogadro’s number), k the viscosity of the fluid, and P the radius of the
particle. The mean displacement for a given period of time can be thus be calculated
when R, N , T , k, and P are known; conversely N or P can be obtained when mean
displacement and other factors are known [2].

In a series of experiments on colloidal suspensions that involved careful mea-
surement of the diameter, density and displacement of particles, Perrin supplied
evidence in support of this approach (see Fig. 1), and he demonstrated the broad
agreement of experimental determinations of Avogadro’s number made by himself
and others on the basis of a wide range of phenomena [3, 4].

Beyond the elucidation of the origin of Brownian motion, the significance of
these investigations is twofold. First, they helped clarify two major scientific and
epistemological issues of late nineteenth century physical science, about the atomic
hypothesis and the relationship between mechanics and thermodynamics. In the in-
troduction to his 1905 paper on Brownian motion, Einstein stated

“In this paper it will be shown that according to the molecular-kinetic theory
of heat, bodies of microscopically-visible size suspended in a liquid will perform
movements of such magnitudes that they can be easily observed in a microscope, on
account of the molecular theory of heat. [. . .]

Fig. 1 Measuring the displacement of invidual particles: “three drawings obtained by tracing lines
to link the consecutive positions of the same grain of rubber at intervals of 30s” [3,81]
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If the movement discussed here can actually be observed (together with the laws
relating to it that one would expect to find), then classical thermodynamics can no
longer be looked upon as applicable with precision to bodies even of dimensions
distinguishable in a microscope; an exact determination of actual atomic dimensions
is then possible. On the other hand, had the prediction of this movement proved to
be incorrect, a weighty argument would be provided against the molecular-kinetic
conception of heat” [2].

Einstein and others’ investigations of Brownian motion provided conclusive ev-
idence in favour of the kinetic theory of heat and the existence of atoms, as well as
of the statistical nature of the second law of thermodynamics. Perrin was awarded
the Nobel Prize in Physics in 1926 for having “put a definite end to the long struggle
regarding the real existence of molecules.” Secondly, this work announced and pre-
pared the emergence of new fields of investigation in twentieth century physical
science: statistical thermodynamics, the study of fluctuation phenomena, and the
general theory of stochastic processes, of which Brownian motion continues to con-
stitute the archetypal example.

In the history and philosophy of science, the history of research on Brownian
motion is frequently cited as a perfect example of “the failure of experiment and
observation, unguided (until 1905) by theory, to unearth the simple laws governing
a phenomenon.” [6]
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Bub–Clifton Theorem

Jeffrey Bub

The two fundamental ‘no go’ theorems for hidden variable reconstructions of the� quantum statistics, the � Kochen-Specker theorem [4] and � Bell’s theorem
[1], can be formulated as results about the impossibility of associating a classical
probability space (X,F, Pρ) with a quantum system in the state ρ, when certain con-
straints are placed on the probability measure Pρ . The Bub–Clifton theorem [2, 3],
by contrast, is a ‘go’ theorem: a positive result about the possibility of associating a
classical probability space with a quantum system in a given state.

If Pρ is required to satisfy the conditions:

(a) Pρ(a, b, . . . |A,B, . . .) is a classical probability measure defined for all eigen-
values a, b, . . . of the � observables A,B, . . . in some set of observables E .

(b) If A,A′, . . . ∈ E commute, then Pρ(a, a
′, . . . |A,A′, . . .) coincides with the

quantum mechanical probability assigned by ρ.

then the existence of Pρ is equivalent to the requirement that the set of numbers:

{Pρ(a, a
′, . . . |A,A′, . . .);A,A′ ∈ E commute}

should satisfy a finite family of inequalities (Boole’s ‘conditions of possible expe-
rience’), so the non-existence of Pρ entails a violation of at least one inequality
(see Pitowsky [6, 7]). If Pρ exists, then it is a weighted average of pure states
(characteristic functions onto 1-element subsets of X or 2-valued (0,1) probability
measures).

The Kochen-Specker and Bell theorems can be formulated (following Pitowsky)
as follows:

The Kochen-Specker Theorem. There is a set of observables E such that for all ρ
the classical probability measure Pρ does not exist.

Bell’s Theorem. There is a set of local observables E on H ⊗ H and a state ρ ∈
H⊗H such that the classical probability measure Pρ does not exist.
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The Bub–Clifton is the positive result:

The Bub–Clifton Theorem. For every pure state ρ = |ψ〉〈ψ| and every observ-
able R, there is a maximal extension E of {R} for which there exists a classical
probability measure Pρ . The extension E is unique if we require invariance with re-
spect to automorphisms of the subspace structure of H (the projective geometry of
H) that preserve ρ and R.

The pure state ρ can be expressed as a linear � superposition of orthogonal
1-dimensional projection operators (� projection) ρr onto the non-null eigenspaces
{Vr} of R: ρ = ∨r ρr =

∑
r ρr . The theorem shows that the set of observables E

contains all the maximal observables whose spectral measures comprise:

(i) The 1-dimensional projection operators ρr ,
(ii) The 1-dimensional projection operators onto any orthogonal basis in the ortho-

complement of the subspace spanned by the projections ρr , i.e., the ‘null space’
Vnull that is the range of the projection operator I −∑r ρr ,

and all the non-maximal observables which are functions of these maximal
observables.

Equivalently, E consists of all the observables whose eigenspaces are spanned by
the rays defined by (i) and (ii) above.

According to the theorem, even though the set E contains non-commuting
observables, there exists a classical probability measure Pρ for the observables
in E , i.e., a measure space (X,F, Pρ), where the elements of the space X are
the projection operators ρr , which are in 1-1 correspondence with the 2-valued
homomorphisms—representing bivalent truth-value assignments—on the lattice of
subspaces generated by the 1-dimensional projectors in (i) and (ii) above, and hence
in 1-1 correspondence with the 2-valued homomorphisms on the ranges of values of
the observables in E .

Nakayama [5] has constructed a topos-theoretic extension of the theorem.
A quantum measurement interaction can be represented schematically as follows:

|s〉|r〉 U(t)−→
∑
i

ci |si〉|ri〉

where |s〉 = ∑
i ci |si〉 is the initial state of the measured system expressed as a

linear superposition of the eigenstates |si〉 of the measured observable S, |r〉 is the
initial state of the measuring instrument with indicator or ‘pointer’ observable R,
and U(t) is the unitary transformation implementing the measurement interaction
between the system and the measuring instrument that sets up a correlation be-
tween eigenvalues of S and pointer positions. (Note that for the systems we use
as measuring instruments, the pointer observable R commutes with the instrument-
environment interaction Hamiltonian, so the correlation between eigenvalues of S
and pointer positions R induced by the system-instrument Hamiltonian is preserved
under the instrument-environment interaction.) If we take the pointer observable R
as ‘preferred,’ in the sense that it always has a definite (determinate) value, then
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the set of definite-valued observables E for the state |ψ〉 = ∑i cr |si〉|ri〉 after the
measurement interaction includes the observables whose spectral measures contain
the projection operators onto the states |ψi〉 = |si〉|ri〉. It follows that E contains the
measured observable S and the pointer observable R. For this state ρ = |ψ〉〈ψ|,
there exists a classical measure space (X,F, Pρ), where the elements of X are the
projection operators ρi = |ψi〉〈ψi |, in 1-1 correspondence with the 2-valued homo-
morphisms on the ranges of values of the observables in E . So the elements of X
can be identified with the alternative possible states of affairs that are the outcomes
of the quantum measurement process.

This observation underlies the demonstration in [2, 3] that various ‘no col-
lapse’ interpretations, including Bohr’s � complementarity principle interpretation,� modal interpretations, and � Bohm’s hidden variable theory, can all be repre-
sented as ‘preferred observable’ interpretations, for different choices of the preferred
observable (e.g., in the case of Bohm’s theory, the preferred observable is position
in the configuration space of all the Bohmian particles).
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C
Casimir Effect

Peter W. Milonni and Umar Mohideen

The Casimir effect is a force associated with the � zero-point energy of a field.
The effect originally considered by Hendrik B. G. Casimir (1909–2000) is the
attraction between two uncharged, perfectly conducting plates (Fig. 1). According
to quantum theory, there is energy in the electromagnetic field even at the absolute
zero of temperature. For a field of frequency ν, this energy is 1

2hν, identical to
the zero-point energy of a harmonic oscillator having the same frequency. The
total zero-point energy is then 1

2h times the sum over all the field frequencies,
these being determined by Maxwell’s equations and the boundary conditions. In
the example of Fig. 1, Maxwell’s equations allow field modes of arbitrarily large
frequency both between the plates and outside them, and therefore the zero-point
field energy is infinite when the plates are separated by a finite distance d as well as
when they are infinitely far apart. However, the difference in zero-point energy for
the two cases is finite, and its dependence on the plate separation d implies a force
F = −πhc/480d4 per unit area.

The force between conducting plates is the most widely cited Casimir effect, but
such effects can be derived – usually with considerable difficulty – for more com-
plicated geometries as well as for dielectric media, and more generally they appear
whenever topological constraints are imposed on quantum fields. Because of their
close association with zero-point energy in empty space, Casimir effects are often
cited as evidence of the nontrivial nature of the vacuum in quantum field theory.

Casimir effects are generally rather weak. However, due to its inverse fourth-
order distance dependence it is a dominant effect at the nanometer scale and impacts
experimental searches for extra dimensions, new forces outside the standard model
and the design of micromachines. The first experimental searches for the Casimir
effect were constrained by the available technology and understanding of system-
atic errors. Sparnaay, and later Overbeek and von Blokland, qualitatively showed
the attractive Casimir force using a spring balance technique but they were lim-
ited due to large experimental errors. Experimental progress accelerated in 1997
with Lamoreaux’s demonstration of the Casimir effect using the torsion pendulum.
Increasing precision has been demonstrated with techniques using the Atomic Force
Microscope and microelectromechanical oscillators. Presently precision of the order
of a percent has been reported, restricted by both theoretical and experimental un-
certainties. Experiments with simple periodic non-planar surfaces have also been
reported. The extraordinary theoretical and experimental activity of the last few
years should lead to measurements of increased precision and demonstrations of
some of the fascinating nontrivial geometry dependences of the Casimir force.

D. Greenberger et al. (eds.), Compendium of Quantum Physics: Concepts, Experiments, 87
History and Philosophy, c© Springer-Verlag Berlin Heidelberg 2009



88 Casimir Effect

Fig. 1 Two parallel, perfectly
conducting plates experience
an attractive Casimir force

d
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Cathode Rays

Theodore Arabatzis

The detection of cathode rays was a by-product of the investigation of the discharge
of electricity through rarefied gases. The latter phenomenon had been studied since
the early eighteenth century. By the middle of the nineteenth century it was known
that the passage of electricity through a partly evacuated tube produced a glow in
the gas, whose color depended on its chemical composition and its pressure. Below
a certain pressure the glow assumed a stratified pattern of bright and dark bands.

During the second half of the nineteenth century the discharge of electricity
through gases became a topic of intense exploratory experimentation, primarily
in Germany [21]. In 1855 the German instrument maker Heinrich Geißler (1815–
1879) manufactured improved vacuum tubes, which made possible the isolation
and investigation of cathode rays [23]. In 1857 Geissler’s tubes were employed by
Julius Plücker (1801–1868) to study the influence of a magnet on the electrical dis-
charge. He observed various complex and striking phenomena associated with the
discharge. Among those phenomena were a “light which appears about the negative
electrode” and a fluorescence in the glass of the tube ([9], pp. 122, 130).

The understanding of those phenomena was advanced by Plücker’s student and
collaborator, Johann Wilhelm Hittorf (1824–1914), who observed that “if any ob-
ject is interposed in the space filled with glow-light [emanating from the negative
electrode], it throws a sharp shadow on the fluorescent side” ([5], p. 117). This effect
implied that the “rays” emanating from the cathode followed a straight path. Further-
more, Hittorf showed that those rays could be deflected by the action of a magnet.
In 1876 they were dubbed cathode rays (Kathodenstrahlen) by Eugen Goldstein
(1850–1930) [2, 24]. Thus, by the late 1870s cathode rays had been identified and
some of their main observable properties had been established.

The nature of cathode rays remained a controversial subject for some years to
come. There were two opposing views concerning their constitution. The first view
was maintained by British and French scientists, who identified cathode rays with
streams of charged particles. A well-known advocate of that view was the British ex-
perimentalist William Crookes (1832–1919). Crookes studied electrical discharges
through highly rarefied gases: “[T]he exhaustion carried out [is so high] that the
dark space around the negative pole . . . entirely fills the tube.” ([1], p. 6) Under
those conditions the behavior of cathode rays could be studied in isolation, without
interference from other discharge phenomena. Thus, Crookes determined, in a par-
ticularly clear manner, several properties of cathode rays: their “power of exciting
phosphorescence” (p. 7), their propagation in straight lines (p. 12), their power to
cast shadows (p. 15), their capacity to “exert strong mechanical action where they
strike” (p. 17) and to “produce heat when their motion is arrested” (p. 24), and
their deflection by a magnet (p. 20). He put forward the hypothesis that cathode
rays were charged molecules, “molecular bullets”, which he justified on the basis
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of their magnetic deflection and their capacity to perform mechanical work. Fur-
thermore, from the direction of their magnetic deflection he inferred that they were
negatively charged. Several years later, in 1895, Jean B. Perrin (1870–1942) would
arrive at the same conclusion by means of a different experiment [8].

Another eminent scientist who defended the particulate interpretation of cathode
rays was Arthur Schuster (1851–1934). In 1884 he suggested that they were nega-
tively charged atoms [10]. In 1890 he calculated the upper and lower bounds of their
charge to mass ratio (e/m), based on measurements of their magnetic deflection and
an estimate of their velocity. The lower limit was close to the charge to mass ratio
of electrolytic ions. The upper limit was three orders of magnitude higher ([11],
pp. 546–547).

The second view concerning the nature of cathode rays was advocated by some
German physicists, who identified them with processes in the ether. Their main
argument was that cathode rays have some of the properties of light-waves. For
instance, they both travel in straight lines and produce fluorescence. The ethereal
interpretation of cathode rays received additional support in 1883, when Heinrich
Hertz (1857–1894) failed to deflect them by an electric field [3,22]. In the following
years, new experimental facts were discovered which seemed to undermine further
the interpretation of cathode rays as charged particles. In 1892 Hertz showed that
they could penetrate thin sheets of metal (e.g., gold, silver, aluminum) [4]. In 1893
his student, Philipp Lenard (1862–1947), built upon Hertz’s work to investigate the
behavior of cathode rays outside the vacuum tube. He devised a tube with a thin
metallic “window” facing the cathode. The cathode rays passed through that window
and, thus, Lenard could measure their mean free path outside the tube. As it turned
out, it was much longer than that of atoms and molecules. Furthermore, he showed
that their absorption depended only on the density of the absorbing substance [7].

Thus, different experimental results supported different accounts of the nature of
cathode rays. Furthermore, the evidential import of some of those results was am-
biguous. On the one hand, the magnetic deflection of cathode rays, which indicated
that they were charged particles, was compatible with an ethereal interpretation of
their nature. It was conceivable that the magnetic field altered the state of the ether
so as to produce a deflection of the rays ([17], p. 285). On the other hand, the capac-
ity of cathode rays to pass through thin metallic sheets, which suggested that they
were waves in the ether, could be accommodated by the hypothesis that cathode rays
were charged particles. In 1893 J. J. Thomson (1856–1940) argued that the capacity
in question was only apparent: what really happened, according to Thomson, was
that the material bombarded by cathode rays turned into a source of cathode rays
itself.

The cathode ray controversy was resolved by Thomson in 1897. He had studied
electrical discharges in gases since 1883 and the discovery of � X-rays by Wilhelm
Conrad Röntgen (1845–1923) rekindled his interest in cathode rays. In a lecture
to the Royal Institution on 30 April 1897, Thomson argued that cathode rays were
composed of minute, sub-atomic particles that he named “corpuscles”. Their small
size followed, according to Thomson, from Lenard’s results concerning their mean
free path outside the cathode ray tube. A further indication of their small size was
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provided by Thomson measurements of their mass to charge ratio, which turned out
to be very small in comparison to the corresponding ratio of hydrogen ions [12].

A few months later, in October 1897, Thomson presented his case for the partic-
ulate interpretation of cathode rays in more detail [13]. He reported a novel result
favoring that interpretation: the deflection of cathode rays by an electric field. Fur-
thermore, he reported a series of measurements of the mass to charge ratio (m/e)

of cathode ray particles, whose purpose was to enable him to figure out their iden-
tity. He obtained those measurements by means of two different approaches. The
first one was based on measurements of the charge carried by cathode rays, the heat
produced by their impact on a target, and the effect of a magnetic field on their tra-
jectory. A combination of those data led to an estimate of m/e. The guiding idea
behind the second approach was to place cathode rays under the influence of an
electric and a magnetic field and to adjust the intensity of the latter “so that the elec-
trostatic deflexion [sic] was the same as the magnetic” ([13], p. 309). It was then
possible to calculate m/e on the basis of directly measurable parameters. Thomson
obtained the following value: m/e = H 2l/FΘ , where H and F were, respectively,
the intensities of the magnetic and the electric fields, l the length of the region un-
der the influence of the field, and Θ the angle of electric (or magnetic) deflection.
Both methods indicated that the value of m/e was three orders of magnitude smaller
than “the smallest value of this quantity previously known, and which is the value
for the hydrogen ion in electrolysis” ( [13], p. 310). Furthermore, the value of m/e

was independent of the material of the cathode and the chemical composition of the
gas within the cathode ray tube. This independence suggested to Thomson that the
“corpuscles” were universal constituents of all material substances.

In the early months of 1897 analogous results of the charge to mass ratio of
cathode rays were reported by Emil Wiechert (1861–1928) and Walter Kaufmann
(1871–1947). Those physicists, however, drew different conclusions from their ex-
periments. Wiechert identified the constituents of cathode rays with disembodied
charges [14, 15]; and Kaufmann suggested that the unexpectedly large ratio of e/m
refuted the particulate interpretation of cathode rays [6]. According to our knowl-
edge today, the cathode rays are nothing but swiftly moving � electrons.

Primary Literature

1. W. Crookes, On Radiant Matter, Nature 20, 419–423, 436–440 (1879).
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Causal Inference and EPR

Mauricio Suárez

The status of causality in the EPR experiment has always been a source of con-
troversy. A condition of local causality is implicit in the original EPR criterion of
reality: “If, without in any way disturbing the system, we can predict with certainty
(i.e., with probability equal to unity) the value of a physical quantity, then there ex-
ists an element of physical reality corresponding to this physical quantity.” In the
EPR set-up both systems have separated and are no longer interacting so it is as-
sumed that “no real change can take place in the second system in consequence
of anything that may be done to the first system” [1, p. 779]. The non-disturbance
clause in the antecedent is hence satisfied, and we may predict with certainty the val-
ues of properties in the distant wing. In other words: although the theory does not
represent causal influences, there seems prima facie to be physical determination of
values across a spatial gap. This notoriously led EPR to draw the conclusion that
the theory is incomplete; but in the aftermath of � Bell’s theorem it is customary to
draw the alternative conclusion – that there is non-local causation in nature. Indeed
Bell’s theorem has been the driving force of scepticism regarding local causality in
the literature. In the last two decades the scepticism has linked up to a more general
worry concerning the inference of causal hypotheses from statistical correlations in
quantum mechanics. For physicists these issues matter to the evaluation of the com-
patibility of quantum mechanics with special relativity theory, and the prospects of
a unified quantum gravitational theory. For philosophers these issues are key to a
thorough assessment of the philosophical implications of quantum mechanics; and
in addition EPR has become one benchmark against which all methodologies of
causal inference are routinely tested.

The EPR Experiment Briefly Reviewed

Recall that in Bohm’s version of the EPR experiment two particles (“1” and “2”)
are simultaneously created at some event “e” in the singlet state � and move in
opposite directions. In a Minkowski space-time diagram, both particles describe
symmetric paths along the time axis (see Fig. 1). The � Stern–Gerlach apparati
that measure these particles’ � spin at each wing of the experiment are at rest in the
laboratory frame so their world lines are represented by vertical lines “A1” and “A2”
in that frame. Each time the experiment is repeated, laboratory technicians can freely
select a particular orientation of the measurement apparatus in each wing, and we
denote such events as “a” and “b”. Each particle’s spin is measured on interaction
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“A2”“A1”

“s1”

“s2”

“b”

“a”
“1” “2”

“e”

Fig. 1 EPR in space-time setting

with the associated measuring device on the corresponding wing. The outcomes
that are produced are denoted by “s1” and “s2”, respectively, and are known as the
“outcome-events”:

The Argument Against Causality in EPR

An essay by Bas van Fraassen [2] has been particularly influential in setting a
default view against causality in EPR among philosophers of physics and founda-
tional physicists alike. Van Fraassen’s argument tracks Bell’s own reasoning, with
the notorious factorizability condition playing a key role. But there is a significant
difference: whereas Bell was concerned with factorizability as a condition of phys-
ical � locality, Van Fraassen takes it to be a condition of causality, in the tradition
of Reichenbach’s Principle of the Common Cause. The putative conclusion of this
influential argument is that the principle of the common cause fails in quantum me-
chanics: there are quantum phenomena that have no causal explanation.

Let us briefly review the argument. Van Fraassen rules out a direct causal link
between the wings by appeal to special relativity theory. I will not discuss this as-
sumption here, although it is controversial (see e.g. [10] for an extended critique).
The main statistical condition at the heart of Bell’s theorem (the notorious “factor-
izability” condition) is:

prob
(
s1 & s2

/
a & b & �

) = prob
(
s1
/
a & �

)
prob

(
s2
/
b & �

)
(FACT)

The condition can be further analysed into three Reichenbachian screening-off
conditions, which in different versions have received the names “causality” or “out-
come independence”; “hidden locality” or “parameter independence”; and “hidden
autonomy”:
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However, in the � Aspect Experiment a violation of (Hidden Locality) would be as
much in conflict with relativity as a direct causal link; while a violation of (Hidden
Autonomy) would entail backwards-in-time causation. Hence (Causality) must bear
the blame for the violation of factorizability, and indeed it is easy to show that in
an EPR experiment with parallel settings and perfect anticorrelation, (Causality) is
false. This seems to imply that no causal model is viable for the EPR correlations,
and that Reichenbach’s principle of the common cause is false as a matter of fact:
not all well established correlations admit of a screening-off causal model.

Arguments in Favour of Causality in EPR

However influential, the above argument is not conclusive, and several authors ex-
plicitly or implicitly take issue with it. Maudlin [10] argues that direct causation
between the wings remains compatible with relativity, and objects to the analysis
of factorizability in terms of the three conditions above. Healey [8] and Cartwright
and Jones [4] object to the screening-off condition on common causes more gen-
erally. Fine [6] accepts the argument but claims that no causal explanation was
required in the first place. Bohmian mechanics is widely believed to reject “hidden
locality”. Price [11] rejects “hidden autonomy”, and builds “backwards in time”
models following Costa de Beauregard [5]. Höfer-Szabo et al. [9] argue that Van
Fraassen’s proof assumes not just common causes, but what they term common com-
mon causes; without this assumption, they claim, Reichenbach’s Principle may be
rescued (their claim has also been recently contested – see Butterfield [3]). Some of
the various options are mapped out in detail in [12]. (See also � Bohm’s approach
to EPR paradox; EPR problem; Indeterminism).
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Cluster States

Hans J. Briegel

1 Introduction

Cluster states [1] form a class of multiparty entangled quantum states with surprising
and useful properties. The main interest in these states draws from their role as a
universal resource in the one-way quantum computer [2, 3]: Given a collection of
sufficiently many particles that are prepared in a cluster state, one can realize any� quantum computation by simply measuring the particles, one by one, in a specific
order and basis (see Fig. 1). By the measurements, one exploits � correlations in
quantum mechanics which are rich enough to allow for universal logical processing.
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Cluster States

Hans J. Briegel

1 Introduction

Cluster states [1] form a class of multiparty entangled quantum states with surprising
and useful properties. The main interest in these states draws from their role as a
universal resource in the one-way quantum computer [2, 3]: Given a collection of
sufficiently many particles that are prepared in a cluster state, one can realize any� quantum computation by simply measuring the particles, one by one, in a specific
order and basis (see Fig. 1). By the measurements, one exploits � correlations in
quantum mechanics which are rich enough to allow for universal logical processing.
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Coherent States

Peter W. Milonni and Michael Martin Nieto

Coherent states (of the harmonic oscillator) were introduced by Erwin Schrödinger
(1887-1961) at the very beginning of quantum mechanics in response to a complaint
by Lorentz that Schrödinger’s � wave function did not display classical motion.
Schrödinger obtained solutions that were Gaussians having the width of the ground
state. The expectation values of the coordinate and momentum for these Gaussian
solutions oscillate in time in just the same way as the coordinate and momentum in
the classical theory of the harmonic oscillator.

In modern parlance Schrödinger’s solutions are the 2-parameter (〈x〉, 〈p〉) states

ψcs = [2π(�x)2]−1/4 exp

[
−
(
x − 〈x〉

2�x

)2

+ i
〈p〉x

�

]
(1)

satisfying equality in the uncertainty relation

(�x)2(�p)2 � �2

4
(2)

and having “widths” equal to those of the ground state, (
√

2�x) ≡ (�/mω)1/2.1

These can be called minimum uncertainty coherent states.
In the 1960s there was a reawakening of interest in these states in terms of the bo-

son operator formalism. Two other, equivalent formulations of coherent states were
obtained. The first yields the annihilation operator coherent states, |α〉, defined by

a|α〉 = α|α〉, (3)

where a (a†) is the annihilation (creation) operator (� creation and annihilation
operator). The second yields the displacement operator coherent states

|α〉 ≡ D(α)|0〉 = exp[αa† − α∗a]|0〉. (4)

The real and imaginary parts of the complex number α are the two parameters which
give the solution as

|α〉 = exp

[
−1

2
|α|2
] n=∞∑

n=0

αn√
n! |n〉, (5)

1 � Squeezed states, whose width oscillates with time, were introduced in 1927 by E. H. Kennard.
They are a 3-parameter set of Gaussians whose widths are not that of the ground state.



Coherent States 107

C

where |n〉 are the number states, i.e., the energy eigenstates of the harmonic oscil-
lator. From the Hermite polynomial generating function these can be shown to be
identical to the Gaussians of the minimum-uncertainty coherent states, where

Re α = 〈x〉
(mω

2�

)1/2
, Im α = 〈p〉

(
1

2mω�

)1/2

. (6)

These ideas have been applied to non-harmonic systems, involving different
symmetries and/or potentials. There the coherence properties are not as strong in
general, since it is the equally-spaced levels of the harmonic oscillator which allow
the system never to decohere if there is no damping or excitation.

An especially interesting system is described by the even- and odd-coherent
states (“cat” states). They are higher-power states, eigenvalues of aa. They are given
by

|α; +〉 = [cosh |α|2]−1/2
∞∑
n=0

α2n

√
(2n)! |2n〉 → ψ+(x), (7)

|α; −〉 = [sinh |α|2]−1/2
∞∑
n=0

α2n+1

√
(2n+ 1)! |2n+ 1〉 → ψ−(x). (8)

ψ±(x) =
e−i2x0p0

[
exp[− 1

2(x − x0)
2]eip0x ± exp[− 1

2 (x + x0)
2]e−ip0x

]

21/2π1/4
[
1± exp[−(x2

0 + p2
0)]
]1/2 . (9)

where we have set � and m = 1.
The � wave packet of these states are two Gaussians, at positions π apart in

the phase-space circle. The Gaussians keep their shapes as they move as a normal
coherent state would in time evolution, until they overlap. When the even states,
composed of n = 0, 2, 4, . . . number states. interfere, they have a maximum central
peak. (See the left graph in Fig. 1.) The odd states are composed of n = 1, 3, 5, . . .
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Fig. 1 The time evolution of the even- and odd-coherent states ρ±(x, t). The initial conditions are
x0 = 23/2 and p0 = 0. The position is along the x-axis, time is along the y axis, and the Z-axis
displays the probability density
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number states. When the odd Gaussians interfere there is a central minimum and
two slightly smaller peaks on each side. (See the right graph in Fig. 1.)

These states have been observed experimentally (Monroe et al.).
The coherent states have been especially useful in quantum optics. Each mode

of the electromagnetic field may be described formally as a harmonic oscillator,
and different quantum states of the oscillator correspond to different states of the
field. The field from a single-mode laser operating far enough above threshold can
be described for many purposes as a coherent state; it differs from a coherent state
in that its phase drifts randomly. But its photon counting statistics and other prop-
erties make the light from a single-mode laser practically indistinguishable from a
coherent state.

The quantum theory of optical coherence is based on “normally ordered” prod-
ucts of lowering and raising operators a and a† which act, respectively, as photon
annihilation and creation operators. The fact that coherent states are eigenstates of
lowering operators implies that the expectation value of a normally ordered field op-
erator product f (a, a†) reduces to the deterministic functionf (α, α∗) for a coherent
state. A coherent state of the field therefore comes closest to the idealized classical
stable wave in which there are no random field fluctuations. Thus a coherent-state
field exhibits maximal fringe visibility or “coherence” in a Michelson interfero-
meter, for instance, and it is maximally coherent as well when more complicated
interference effects involving higher orders of field products are considered.
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Color Charge Degree of Freedom
in Particle Physics

O.W. Greenberg

Color has two facets in � particle physics. One is as a three-valued charge degree of
freedom, analogous to electric charge as a degree of freedom in electromagnetism.
The other is as a � gauge symmetry, analogous to the U(1) gauge theory of elec-
tromagnetism. Color as a three-valued charge degree of freedom was introduced by
Oscar W. Greenberg [1] in 1964. Color as a gauge symmetry was introduced by
Yoichiro Nambu [2] and by Moo Young Han and Yoichiro Nambu [3] in 1965. The
union of the two contains the essential ingredients of � Quantum Chromodynamics,
QCD. The word “color” in this context is purely colloquial and has no connection
with the the color that we see with our eyes in everyday life.

The theoretical and experimental background to the discovery of color centers
around events in 1964. In 1964 Murray Gell-Mann [4] and George Zweig [5] inde-
pendently proposed what are now called “quarks,” particles that are constituents of
the observed strongly interacting particles, “hadrons,” such as protons and neutrons.
Quarks gave a simple way to account for the � quantum numbers of the hadrons.
However quarks were paradoxical in that they had fractional values of their elec-
tric charges, but no such fractionally charged particles had been observed. Three
“flavors” of quarks, up, down, and strange, were known at that time. The group
SU(3)flavor, acting on these three flavors, gave an approximate symmetry that led
to mass formulas for the hadrons constructed with these quarks. However the spin
1/2 of the quarks was not included in the model. (Quarks, see also � Mixing and
Oscillations of Particles; Particle Physics; Parton Model; QCD; QFT.)

The quark spin 1/2 and the symmetry SU(2)spin acting on the two states of spin
1/2 were introduced in the model by Feza Gürsey and Luigi Radicati [6]. They
combined SU(2)spin with SU(3)flavor into a larger SU(6)spin−flavor symmetry. This
larger symmetry unified the previously known mass formulas for the octet of spin-
1/2 baryons and the decuplet of spin-3/2 baryons. Using this SU(6) theory Mirza
A.B. Bég, Benjamin W. Lee and Abraham Pais [7] calculated the ratio of the mag-
netic moments of the proton and neutron to be -3/2, which agrees with experiment to
within 3%. However the successful SU(6) theory required that the configuration of
the quarks that gave the correct lowlying baryons must be in a symmetric state under
permutations. This contradicts the � spin statistics theorem of Wolfgang Pauli [8],
according to which quarks as spin-1/2 particles have � Fermi statistics and must be
in an antisymmetric state under permutations.

In the same year 1964 Oscar W. Greenberg [1] recognized that this contradiction
could be resolved by allowing quarks to have a new hidden three-valued charge,
expressed in terms of parafermi statistics of order three. This was the discovery of
color. The antisymmetrization of the hidden degree of freedom allows the quarks
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in baryons to be in the observed symmetric configuration of the visible degrees of
freedom: space, spin and flavor. Greenberg called this model the “symmetric quark
model” for baryons. As an observable test of this model, Greenberg constructed a
table of the spin, � parity, isospin and strangeness of the orbital excitations of the
ground-state quark configurations in this model.

In 1964 the hidden color charge on top of the fractionally charged quarks seemed
unduly speculative to some. Independent evidence for the existence of color came
when measurements of the properties of excited baryons confirmed the predictions
of the symmetric quark model. It was only in 1968 that Haim Harari [9], as rap-
porteur for baryon spectrocopy, adopted the symmetric quark model as the correct
model of baryons.

Additional evidence for color came from the ratio of the annihilation cross sec-
tion for e+e− → hadrons to that for e+e− → μ+μ− and from the decay rate for
π0 → γ γ . Both of these follow from the gauge theory and the parastatistics version
of color. Further consequences of color require the gauged theory of color, quantum
chromodynamics, � QCD, described below.

In 1965 Yoichiro Nambu [2] and, in a separate paper, Moo Young Han and
Yoichiro Nambu [3] proposed a model with three sets of quark triplets. Their model
has two different SU(3) symmetries. One called SU(3)′ has the original SU(3)flavor
symmetry of the quark model and the other, called SU(3)′′, makes explicit the hid-
den three-valued color charge degree of freedom that had been introduced in the
parastatistics model of Greenberg. This model allows the SU(3)′′, which can be
identified with the present SU(3)color if the quark charges are chosen fractional, to
be gauged. Indeed Nambu [2] and Han and Nambu [3] introduced an octet of what
we now call “gluons” as the mediator of the force between the quarks. The gauging
of the three-valued color charge carried by quarks with fractional electric charges is
the present QCD, the accepted theory of the strong interactions.

The model of Han and Nambu assigned integer charges to their three triplets to
avoid the fractional electric charges of the original quark model. This aspect of the
Han-Nambu model conflicts both with experiment and with exact color symmetry
and is not part of QCD. Greenberg and Daniel Zwanziger [10] made the identity
of the 3 of parafermi statistics of order 3 and the 3 of SU(3)color with fractionally-
charged quarks explicit in 1966.

In addition to the consequences of the parastatistics model, QCD leads to other
important results. These include (a) permanent confinement of quarks and color, (b)
asymptotic freedom � QCD; QFT, discovered by David J. Gross [11], H. David
Politzer [12] and Frank Wilczek [11] in 1973, which reconciles the low energy be-
havior of quarks confined in hadrons with the quasi-free behavior of quarks that
interact at high energy and momentum transfer in the � parton model, (c) running
of coupling constants and high-precision tests of QCD at high energy, and (d) jets
in high energy collisions.

Note: References [1] through [12] are primary references. References [13]
through [18] are secondary references.
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Complementarity Principle

Henry Stapp

Niels Bohr introduced and explained his concept of “complementarity” in his
famous 1927 Como Lecture (reproduced in [1]. He recognized the need for the
mathematical formalism of quantum mechanics to be imbedded in a rationally co-
herent conceptual framework if it were to serve as the core of an acceptable scientific
theory. Yet the applications of the formalism were based upon the integration of
two logically incompatible conceptual structures, the mathematical formalisms of
classical and quantum physics. The applications that we normally make of quantum
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Complementarity Principle

Henry Stapp

Niels Bohr introduced and explained his concept of “complementarity” in his
famous 1927 Como Lecture (reproduced in [1]. He recognized the need for the
mathematical formalism of quantum mechanics to be imbedded in a rationally co-
herent conceptual framework if it were to serve as the core of an acceptable scientific
theory. Yet the applications of the formalism were based upon the integration of
two logically incompatible conceptual structures, the mathematical formalisms of
classical and quantum physics. The applications that we normally make of quantum
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theory involve three physical systems: (1), the system being examined; (2), the mea-
suring devices by means of which we probe its properties; and (3), our own physical
bodies. All three systems are composed of atoms, and hence must be describable
in terms of the mathematical concepts of quantum theory. Yet our observations are
described in terms of the contents of our sense experiences, which, for the phenom-
ena under consideration, are described in terms of the concepts of classical physics.

Classical physics postulates that, at each instant of time, each elementary particle
is located at some definite point in space, and has a definite velocity, and hence
also a definite momentum. On the other hand, in quantum mechanics an elementary
particle is represented by a distribution of possibilities, where the distributions in
position and in momentum are related by Fourier transformation. This entails that
localization at a point in position space demands a complete lack of localization
in momentum space, and vice versa. Bohr associates “causation” with the law of
conservation of momentum and energy, and hence is able to say that:

The very nature of quantum theory thus forces us to regard the claim of space-
time co-ordination and the claim of causality, the union of which characterizes the
classical theories, as complementary but exclusive features of the description, sym-
bolizing the idealization of observation and definition respectively. ( [1], p. 54)

Bohr explains that:

The quantum theory is characterized by the acknowledgement of a fundamental limitation
in the classical physical ideas when applied to atomic phenomena. . . . its essence may be
expressed in the so-called quantum postulate, which attributes to any atomic process an
essential discontinuity, or rather individuality, completely foreign to classical theories and
symbolized by Planck’s quantum of action. . . . the quantum postulate implies that any ob-
servation of atomic phenomena will involve an interaction with the agency of observation
not to be neglected. Accordingly, an independent reality in the ordinary physical sense can
neither be ascribed to the phenomena nor to the agencies of observation. After all, the con-
cept of observation is in so far arbitrary as it depends upon which objects are included in
the system to be observed. Ultimately, every observation can, of course, be reduced to our
sense perceptions.” ( [1], p. 53)

These passages gives a glimpse of the range and complexity of the ideas that Bohr
wants to integrate into his rationally coherent foundation for the application and use
of quantum theory.

The elaboration that he provides in the remainder of the Como lecture is lengthy,
but its essence is summarized and updated in his 1958 paper “Quantum physics and
Philosophy: Causality and Complementarity”, in which he says:

Within the scope of classical physics, all characteristic properties of a given object can in
principle be ascertained by a single experimental arrangement, although in practice various
arrangements are often convenient for the study of different aspects of the phenomena. In
fact, data obtained in such a way simply supplement each other and can be combined into a
consistent picture of the behaviour of the object under investigation. In quantum mechanics,
however, evidence about atomic objects obtained by different experimental arrangements
exhibits a novel kind of complementary relationship. Indeed, it must be recognized that such
evidence which appears contradictory when combination into a single picture is attempted,
exhaust all conceivable knowledge about the object. Far from restricting our efforts to put
questions to nature in the form of experiments, the notion of complementarity simply char-
acterizes the answers we can receive by such inquiry, whenever the interaction between the
measuring instruments and the objects form an integral part of the phenomena. ([2], p.4)
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Compactly stated, the essential idea here is that in quantum theory the informa-
tion provided by different experimental procedures that in principle cannot, because
of the physical character of the needed apparatus, be performed simultaneously,
cannot be represented by any mathematically allowed quantum state of the sys-
tem being examined. The elements of information obtainable from incompatible
measurements are said to be complementary: taken together they exhaust the infor-
mation obtainable about the state. On the other hand, any preparation protocol that
is maximally complete, in the sense that all the procedures are mutually compatible
and are such that no further procedure can add any more information, can be repre-
sented by a quantum state, and that state represents in a mathematical form all the
conceivable knowledge about the object that experiments can reveal to us.

As regards the closely connected issue of causality, Bohr says:

In the treatment of atomic problems, actual calculations are most conveniently carried out
with the help of a Schrödinger state function, from which the statistical laws governing ob-
servations obtainable under specified conditions can be deduced by definite mathematical
operations. It must be recognized, however, that we are dealing here with a purely sym-
bolic procedure, the unambiguous physical interpretation of which in the last resort requires
reference to the complete experimental arrangement. ( [2], p. 5)

This relegation of the Schrödinger state function, which gives the space-time repre-
sentation of the atomic substrate of all systems, to a purely symbolic status, might
seem to be denigrating this Schrödinger representation of the state relative to others.
But the point is rather that it puts the Schrödinger space-time representation on a
par with the others:

In fact, wave mechanics, just as the matrix mechanics, represents on this view a symbolic
transcription of the problem of motion of classical mechanics adapted to the requirements
of quantum theory and only to be interpreted by an explicit use of the quantum postulate.
([1], p.75)

All of this must be understood within the basic pragmatic premise of Bohr’s
approach:

In our description of nature the purpose is not to disclose the real essence of phenomena
but only to track down as far as possible relations between the multifold aspects of our
experience. ([1], p. 18)

Literature

1. N. Bohr: Atomic theory and the description of nature (Cambridge University Press,
Cambridge 1934)

2. N. Bohr: Essays 1958–1962 on atomic physics and human knowledge (Wiley, New York 1963)
3. K. Camilleri: Bohr, Heisenberg and the divergent views of complementarity, Studies in History

and Philosophy of Modern Physics 38 (2007), 514–528
4. H. Folse: The philosophy of Niels Bohr. The framework of complementarity (Dordrecht: North

Holland Publ. 1985)
5. D. Murdoch: Niels Bohr’s philosophy of physics (Cambridge: Cambridge University Press 1987)



114 Complex-Conjugate Number

Complex-Conjugate Number

Roderich Tumulka

The complex-conjugate number, or conjugate number, of a complex number z =
x + iy with real part x and imaginary part y is the number x − iy, usually denoted
z or z∗. (The notation z∗ is more frequent in quantum physics.)

The definition implies the following properties. Every complex number is the
conjugate of its conjugate:

z = z , or (z∗)∗ = z. (1)

That is, conjugate numbers come in pairs, except for the cases in which a number is
conjugate to itself; the latter case occurs if and only if the number z = x + iy has
vanishing imaginary part y, that is if and only if z is real:

z∗ = z⇔ z ∈ R. (2)

Conjugation, i.e., the operation of taking the conjugate, defines a mapping ∗ :
C→C. This mapping is real-linear, i.e.,

(z+ w)∗ = z∗ + w∗ and (λz)∗ = λ(z∗) (3)

for all z,w ∈ C and λ ∈ R. It is not complex-linear, as there exist z,w ∈ C for
which (zw)∗ �= z(w∗), but instead conjugation is multiplicative, i.e.,

(zw)∗ = z∗w∗. (4)

If the set of complex numbers is represented as a plane then conjugation corre-
sponds to reflection across the real axis (see Fig. 1). Complex-conjugate numbers
have equal modulus (absolute value), r = |z| = |z∗|, and opposite phase angles
(arguments) ϕ(z) = −ϕ(z∗). As a related fact, for all ϕ ∈ R and z ∈ C,

(eiϕ)∗ = e−iϕ and (ez)∗ = ez
∗
. (5)

Moreover,
z∗z = |z|2. (6)

The real and imaginary part of a complex number z can be expressed using z and z∗:

Re z = 1
2 (z+ z∗) , Im z = 1

2i (z − z∗). (7)
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where x = Re z, y = Im z, u = Re f , and v = Im f .

Compton Experiment (or Compton Effect)

Friedel Weinert

The famous Compton experiment concentrates on the wave rather than the particle
aspect of quantum phenomena. It had been observed that the wavelength of � X-
rays is increased when they are scattered off matter. Arthur Compton (1892–1962)
showed that this behaviour could be explained by assuming that the X-rays were
photons (� light quantum). When photons are scattered off � electrons, part of
their energy is transferred to the electrons. The loss of energy is translated into a
reduction of frequency, which in turn leads to a lengthening of the wavelength of
the scattered photons. This happens because the relation E = hν = hc/λ holds. In
these experiments, first carried out between 1919 and 1922, the scattering of X-rays
is treated as a collision of photons with electrons (Fig. 1).
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θ

Fig. 1 Compton’s model of the scattering process

The wavelength of the scattered photon, λ, can be related to its initial wave-
length, λ0, to the electron mass, me, and the scattering angle, θ , by the relation
λ − λ0 = h/mec (1− cos θ). We should note that Compton was not content with
stating the equation. He also sought an explanation. Compton’s description of his
model conveys the flavour of a mechanistic explanation.

From the point of view of the quantum theory, we may suppose that any particular
quantum of X-rays is not scattered by all the electrons in the radiator, but spends all
of its energy upon some particular electron. This electron will in turn scatter the
ray in some definite direction, at an angle with the incident beam. This bending
of the path of the quantum of radiation results in a change in its momentum. As
a consequence, the scattering electron will recoil with a momentum equal to the
change in momentum of the X-ray. The energy in the scattered ray will be equal
to that in the incident ray minus the kinetic energy of the recoil of the scattering
electron; and since the scattered ray must be a complete quantum, the frequency
will be reduced in the same ratio as is the energy. Thus on the quantum theory we
should expect the wavelength of the scattered X-rays to be greater than that of the
incident rays.

In terms of a causal account, the effect is the increase in wavelength of the
scattered photon, caused by a collision with an electron. Note that Compton’s expla-
nation dispenses with the above-stated Compton scattering formula, i.e. the precise
numerical determination of the wavelength, λ, of the scattered photon.
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Consistent Histories

Robert B. Griffiths

The consistent histories interpretation of quantum mechanics was introduced by
Griffiths in 1984 [1], and further developed by Omnès in 1987 [2]. It is essentially
identical to the decoherent histories approach of Gell–Mann and Hartle that first
appeared in 1989 [3]. See the monographs [4] and [5] for a detailed treatment and
more extensive bibliographies.

In essence, what the consistent histories approach does is to introduce probabili-
ties into quantum mechanics in a fully consistent and physically meaningful way. In
Copenhagen quantum mechanics (i.e., the version in most current textbooks) prob-
abilities are introduced with reference to measurements and refer (if one is careful)
only to measurement outcomes, macroscopic states of the measurement appara-
tus (“pointer positions”) after the measurement is over. (� Born rule; Metaphysics
in Quantum Mechanics; Nonlocality; Orthodox Interpretation; Schrödinger’s Cat;
Transactional Interpretation). How these probabilities are related to the microscopic
quantum properties supposedly measured is obscure, due to the infamous mea-
surement problem. (� Bohmian mechanics; Measurement theory; Metaphysics in
Quantum Mechanics; Modal Interpretation; Objectification; Projection Postulate.)
By contrast, the consistent histories approach assigns probabilities to both micro-
scopic and macroscopic states of affairs, using the same formalism for both, without
any reference to measurements. Actual laboratory measurements can then be dis-
cussed in purely quantum terms using the same principles that apply to any quantum
process. � Hidden variables play no role in the consistent histories approach, which
employs the standard quantum � Hilbert space. And there is no such thing as a
classical world or classical measuring apparatus lying outside the quantum domain.
Instead, classical physics is an approximation to quantum mechanics, one that works
very well in certain situations.

Copenhagen quantum mechanics is a “black box” description in which a macro-
scopic preparation procedure is followed by a macroscopic measurement outcome,
and what happens in between cannot be discussed in terms of microscopic physics
if one wants to avoid paradoxes. The consistent histories approach opens the box
without generating paradoxes (� errors and paradoxes in quantum mechanics), and
thus extends Copenhagen to allow a consistent discussion of microscopic (or macro-
scopic) quantum physics in probabilistic terms.
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Let us see how this works for a spin-half particle whose z component of angular
momentum Sz can take on only two values, +1/2 and −1/2 in units of �. These
correspond to orthogonal vectors (or rays) in a two-dimensional complex Hilbert
space. Each vector can be interpreted as the logical negation of the other, so +1/2
and−1/2 are mutually exclusive possibilities, one of which must be true. The actual
value can be determined by carrying out a � Stern–Gerlach measurement; see Spin;
Vector model.

As there are no preferred directions in space, the preceding comments apply
equally to the x component of angular momentum, Sx , which is either +1/2 or
−1/2. In classical physics the conjunction of two descriptions of a physical system
is always a meaningful description; thus “Lx = 0.002 J s AND Lz = −0.002 J s”
makes perfect sense when referring to two components of angular momentum of a
spinning top. But “Sx = +1/2 AND Sz = −1/2” for a spin-half particle cannot
be associated with any vector in the quantum Hilbert space, and in the consistent
histories approach it is considered a meaningless statement: quantum mechanics
can assign it no meaning. Similarly, “Sx = +1/2 OR Sz = −1/2” is meaningless.
Note that “meaningless” is very different from “false,” since the logical negation of a
false statement is a true statement, whereas the negation of a meaningless statement
is equally meaningless. For more details, see Sect. 4.6 of [5].

The single framework rule of consistent histories states that two (or more) in-
compatible quantum descriptions – such as Sx = +1/2 and Sz = −1/2, or other
properties represented by noncommuting projectors – cannot be combined to form
a meaningful quantum description. Quantum incompatibility is a concept difficult
to grasp and easily misunderstood, so the following analogy may be helpful. A
photographer taking pictures of Mt. Rainier may do so from a variety of different
directions or perspectives: north, south, east, etc. The perspective is chosen by the
photographer and has no effect on the reality represented by the mountain. The cho-
sen perspective makes it possible to answer certain questions but not others on the
basis of the resulting photograph: a view from the south will not indicate what is
happening on the northern slopes. Now replace the photographer with a physicist,
the mountain with a spin-half particle, and the choice of perspective with a decision
to measure a particular component of its angular momentum. The physicist’s choice
is free and has no influence on the physical reality associated with the particle before
it is measured. However, several photographs of a mountain taken from different
perspectives can be combined to provide a more complete description, whereas this
is not possible for measurements of different components of spin-half angular mo-
mentum. The issue is not that the apparatus will perturb the particle – it certainly
will, but we are interested in the particle’s state before the measurement. The point
is that there is no physical reality associated with simultaneous values of Sx and Sz,
and what is not real cannot be measured.

The consistent histories approach treats the time development of a quantum sys-
tem as probabilistic, rather than deterministic, and uses � Schrödinger’s equation to
calculate the requisite probabilities. In the simplest case the � Born rule gives

Pr(φj |ψ) = |〈φj |T (t1, t0)|ψ〉|2 (1)
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for the conditional probability that the quantum system is in the state |φj 〉, be-
longing to the � orthonormal basis {|φj 〉}, at time t1, given the state |ψ〉 at time
t0. Here T (t ′, t) is the unitary time development operator that results from solving
Schrödinger’s equation; it is exp[−i(t ′ − t)H/�] if the Hamiltonian H is indepen-
dent of time.

Several comments are in order. First, (1) applies to a closed or isolated quantum
system, as Schrödinger’s equation only works for this case. Second, unlike Copen-
hagen, the probability (1) refers not to outcomes of some external measurement, but
to physical states inside the closed system, independent of whether or not it is being
measured. (These could be pointer states if the measurement apparatus is itself part
of the closed quantum system, i.e., inside the box.) Third, the states {|φj 〉} must be
orthogonal, for only then do they represent mutually exclusive possibilities appro-
priate for a quantum sample space. Nonorthogonal states are incompatible (unless
multiples of each other), and hence it is meaningless to ask whether one or the other
occurred. Fourth, one need not assume that t0 precedes t1. The � Born rule and its
consistent extensions (see below) work equally well for both senses of time, so that
introducing probabilities into quantum mechanics does not in and of itself single out
a direction of time.

The right side of (1) is often written as |〈φj |ψ̂〉|2, where |ψ̂〉 = T (t1, t0)|ψ〉 is
obtained from |ψ〉 by integrating Schrödinger’s equation from t0 to t1. When used
in this way |ψ̂〉, which is typically incompatible with the basis states {|φj 〉}, does
not represent the physical reality of the quantum system at time t1. It is instead a
mathematical construct, a pre-probability in the terminology of [5], used for com-
puting probabilities. One could equally well compute these probabilities by starting
with each of the |φj 〉 and integrating Schrödinger’s equation in the reverse direction
from t1 to t0, making no reference whatsoever to |ψ̂〉. For further discussion, see
Sect. 9.4 of [5].

Indeed, |ψ̂〉 could be the infamous � Schrödinger’s cat state. To discuss whether
the cat is dead or alive, the consistent historian adopts an orthonormal basis (or
a decomposition of the identity, see [5]) for which these terms make sense, and
computes probabilities. As |ψ̂〉 is a computational tool, it requires no physical inter-
pretation. One could instead adopt an orthonormal basis that includes |ψ̂〉 as one of
its elements, in which case it occurs with probability 1. But then it makes no sense
to ask whether the cat is dead or alive, since the corresponding quantum properties
are incompatible with |ψ̂〉.

In order to describe a quantum system at more than two times it is necessary to
extend the Born rule to families of quantum histories. A history is simply a sequence
of quantum events represented by vectors – or, more generally, subspaces – of the
quantum Hilbert space at successive times. A family is a collection of mutually
exclusive histories, the quantum counterpart of the sample space of a stochastic pro-
cess in ordinary probability theory. Extending the Born rule is nontrivial because
assigning probabilities in a meaningful way requires a consistent family or frame-
work in which appropriate consistency (or � decoherence) conditions are satisfied.
Different consistent families may be incompatible with each other, in which case
they cannot be combined (single-framework rule), even though each one provides a



120 Consistent Histories

a

c

d

e

f

B

B ′

M

M ′

D

D ′

Fig. 1 Mach-Zehnder interferometer

valid set of possibilities for describing the time development of the quantum system.
Rather than discussing the details, found in Chaps. 10 and 11 of [5], let us consider
a particular application.

The figure shows a Mach–Zehnder interferometer: B and B ′ are beam splitters,
M and M ′ mirrors, D and D′ detectors. Suppose the unitary time development of a
photon � wave packet passing through the interferometer has the (schematic) form
|a〉 → (|c〉 + |d〉)/√2 → |f 〉. This history can be embodied in a family F1, which
remains consistent when extended to include the event that D′ is, and D is not,
triggered by the arrival of the photon. Within this family it makes no sense to ask
whether the photon passes through the c or d arm of the interferometer, for those
properties are incompatible with (|c〉+|d〉)/√2. There is a second consistent family
F2 in which the photon while inside the interferometer is either in the c arm or in
the d arm, two mutually exclusive possibilities. One can extend F2 to a consistent
family including later states of D and D′, but only by using macroscopic quantum� superposition (Schrödinger cat states). Thus a “which arm?” description (F2)
precludes a “which detector?” description (F1), and vice versa. No fundamental
quantum principle singles out one of the two incompatible families F1 or F2 as
“the correct” description, just as there is no “correct” perspective from which to
photograph Mt. Rainier. Instead, certain descriptions are useful when addressing
certain physical questions. The same sort of analysis can be applied to the famous� double-slit interference paradox; see Sect. 13.1 of [5].

Quantum measurements pose no difficulty in the consistent histories approach.
By adopting an appropriate framework one can show that the measurement out-
come (pointer position) for a properly constructed quantum-mechanical apparatus is
appropriately correlated with, and thus reveals, a property the microscopic system
possessed before the measurement took place. In brief, measurements actually mea-
sure something, as has long been believed by experimental physicists. See Chaps. 17
and 18 of [5] for details. In Chaps. 23 and 24 of [5] it is shown explicitly, by apply-
ing appropriate quantum principles, that the nonlocal influences sometimes thought
to arise in the Einstein–Podolsky–Rosen gedanken (� EPR) experiment are com-
pletely spurious: they come about from improperly assuming that “� wave function
collapse” is a physical process, rather than a mathematical technique for comput-
ing conditional probabilities that can be obtained by completely different methods.
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This removes an apparent conflict with relativity theory. Indeed, the consistent his-
tories approach, unlike some other interpretations of quantum theory, is perfectly
compatible with special relativity [6]. A number of other quantum paradoxes can be
resolved or “tamed” in the sense that a consistent analysis is possible using quan-
tum principles, and one is able to identify the point(s) at which an improper use of
classical reasoning has led to an apparent contradiction. See Chaps. 19–25 of [5].

Here are brief comments on the relationship of consistent histories with some
other approaches to quantum interpretation. The connection with Copenhagen
(current textbooks) was discussed above. The Everett or � many-worlds
interpretation regards the � wave function of a closed system (“universe”) as
representing physical reality, whereas in consistent histories it is a mathematical
tool, |ψ̂〉 in the preceding discussion, useful for computing some but not all of
the probabilities of real histories. � Bohmian mechanics and consistent histories
contradict each other about what happens inside the box [7]. Because it solves the
Schrödinger cat problem in a completely different way, consistent histories has
no need of the nonunitary dynamics employed in spontaneous localization. Unlike
Bohmian mechanics and spontaneous localization, there is no conflict between con-
sistent histories and special relativity. Since it employs rules to delineate meaningful
descriptions, consistent histories is (or employs) a form of “� quantum logic” in the
sense of specifying rules for correct reasoning in the quantum domain. These rules
are, however, different from those employed in what is usually called � quantum
logic. See [8] for the relationship between consistent histories and the � Ithaca
interpretation of Mermin.

Primary Literature

1. R. B. Griffiths: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys.
36, 219 (1984); Quantum interpretation using consistent histories, in Fundamental Questions in
Quantum Mechanics, edited by L. M. Roth, and A. Inomata, (Gordon and Breach Science Pub-
lishers, New York, 1986, p. 211); Making consistent inferences from quantum measurements,
in New Techniques and Ideas in Quantum Measurement Theory, edited by D. M. Greenberger,
(New York Academy of Sciences, New York, 1986, p. 512); Am. J. Phys. 55, 11 (1987).

2. R. Omnès: Interpretation of quantum mechanics. Phys. Lett. A 125, 169 (1987); Logical refor-
mulation of quantum mechanics I, II, III. J. Stat. Phys. 53, 893, 933, 957 (1988).

3. M. Gell-Mann, J. B. Hartle: Quantum Mechanics in the Light of Quantum Cosmology, in Com-
plexity, Entropy, and the Physics of Information, edited by W. Zurek (Addison Wesley, Reading,
1990, p. 425); Classical equations for quantum systems, Phys. Rev. D 47, 3345 (1993)

Secondary Literature

4. R. Omnès: Understanding Quantum Mechanics (Princeton University Press, Princeton, 1999)
5. R. B. Griffiths: Consistent Quantum Theory (Cambridge University Press, 2002) and http://

quantum.phys.cmu.edu.



122 Correlations in Quantum Mechanics

6. R. B. Griffiths: Consistent resolution of some relativistic quantum paradoxes. Phys. Rev. A 66,
062101 (2002)

7. R. B. Griffiths: Bohmian mechanics and consistent histories. Phys. Lett. A 261, 227 (1999)
8. R. B. Griffiths: Probabilities and quantum reality: are there correlata? Found. Phys. 33, 1423

(2003).

Copenhagen Interpretation

See � Born rule; Consistent Histories; Metaphysics in Quantum Mechanics; Non-
locality; Orthodox Interpretation; Schrödinger’s Cat; Transactional Interpretation.

Correlations in Quantum Mechanics

Richard Healey

The statistical algorithm of quantum mechanics predicts that measurements will
reveal correlations among the values of magnitudes (“� observables”). Whenever
such measurements have been performed, they have borne out the predictions. But
the patterns exhibited by these correlations can be difficult to square with classical
intuitions – about probability, about the nature and properties of quantum systems,
and about causal connections between systems.

In a � Hilbert space formulation, an observable is represented by a � self-adjoint
operator, while the state of a system is represented by a normalized vector (perhaps a� wave function) or more generally a � density operator Ŵ (a self-adjoint operator
with unit trace). If {O1, ...,On} is a set of observables on a system represented
by pairwise commuting operators {Ô1, ..., Ôn}, then quantum mechanics predicts
that measured values of all these observables in state Ŵ will conform to a joint
probability distribution pr(O1 ∈ �1, ...,On ∈ �n) given by

pr(O1 ∈ �1, ...,On ∈ �n) = T r
[
Ŵ Ô1(�1).....Ôn(�n)

]
(1)

where Ôi(�i) is the element of the spectral resolution of Ôi corresponding to Borel
set �i of possible values (i = 1, ..., n). If any two operators Ôi, Ôj in such a set
fail to commute, then no joint distribution is predicted.

For example, a simple quantum mechanical model of a Hydrogen atom � Bohr’s
atom model will predict a joint probability distribution for energy, total angular
momentum, and z-component of angular momentum in any state; but it will never
predict a joint probability distribution for energy, position and momentum, nor for
z-component and x-component of angular momentum.
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The orthodox view of this reticence takes non-commuting operators to represent
incompatible observables–pairs of observables that can never be jointly measured
with arbitrary precision because at most one of each pair may have a precise value
in any state. In general, there are no theoretical restrictions on the precision with
which any single observable may be measured. So measurement cannot be taken
always faithfully to reveal the value of the measured observable.

A number of “no-go” theorems may be cited in support of this orthodox view
[6, 11]. But when are the joint distributions that quantum mechanics does predict
compatible with an underlying joint distribution for all observables? Fine [4] shows
that the necessary and sufficient condition for four two-valued observables Ai,Bj

(i, j = 1, 2) to have a joint distribution compatible with the given joints is that the
following system of (BCH) inequalities be satisfied, for i �= i ′ and j �= j ′:

−1 � pr(Ai, Bj )+ pr(Ai, Bj ′)+ pr(Ai′ , Bj ′)− pr(Ai′, Bj )

−pr(Ai)− pr(Bj ′) � 0

As we shall see, for some observables and quantum states quantum mechanics
predicts values for the terms in this expression that violate the inequalities: these
predictions have been verified. Such observables then have no joint distribution.

The state of a non-relativistic particle may be represented in a tensor product
Hilbert space H = H1 ⊗H2, where H2 is used to represent its � spin. But not ev-
ery vector in a product space is itself expressible as a tensor product of vectors, one
from each space. A vector state of the form | ψ1〉 ⊗ · · ·⊗ | ψn〉 is said to be sepa-
rable. The state of a pair of particles may also be represented in a tensor product of
the spaces used to represent their individual states. When their joint state is nonsep-
arable between these component spaces, the particles are said to be entangled, and
their state exhibits state holism (� Holism in Quantum Mechanics). The total spin
space for a pair of spin-1/2 particles is a tensor product of two-dimensional spin
spaces that includes nonseparable spin states, including the singlet spin state

| ψs〉 = 1√
2
(|↑〉⊗ |↓〉− |↓〉⊗ |↑〉) (2)

Any spin component Ai on one particle is compatible with any spin component Bj

on the other, so quantum mechanics predicts a joint distribution for every such pair.
There are many choices of four such observables for which these violate the (BCH)
inequalities in the singlet state and other entangled states.

Quantum mechanics predicts that measurements of the same spin-component on
each particle in the singlet state will yield different results with probability 1. Ein-
stein believed that if particles in such a pair are widely separated, then each must
have its own real state, and any influence on the state of one can have no direct
influence on the state of the other [3]. On that basis his argument would conclude
that each particle in the singlet state has a definite value of spin-component in ev-
ery direction. But every way of distributing such values among many pairs will
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yield a statistical distribution conforming to the (BCH) inequalities [2, 13]. So un-
less the statistics systematically differ between measured and unmeasured pairs,
measurements confirming (quantum mechanically-predicted) statistics in violation
of (BCH) inequalities refute this conclusion. These measurements have been suc-
cessfully performed in circumstances where the event of choice and execution of
a measurement on one particle is spacelike separated from the analogous event on
the other [1]. Not only is there no known mechanism by which the measurement on
one particle could influence the result of the other measurement: any such influence
would have to be superluminal, undetectable and unpreventable, and extraordinarily
selective. Although Einstein dismissed this possibility as “spooky” action at a dis-
tance, the observed violations of (BCH) inequalities show we may have to live with
just such a novel kind of non-local “causal” connection [10], [� Causal Inference
and EPR].

But causation is a relation between distinct events. Perhaps it is wrong to regard
each particle, or measurement event, as a distinct entity, each with its own properties.
If a pair together constitute an indivisible whole, then the question of causal relations
among its parts doesn’t arise. The clearest violations of (BCH) inequalities involve
the polarization states of pairs of photons (� light quantum). A two-photon state
of the quantized electromagnetic field is perhaps best not thought to consist of two
distinct particles–certainly not if each were considered to have its own trajectory.
From this perspective, violation of (BCH) inequalities only seems strange if one
fails to acknowledge the fundamental holism underlying quantum mechanics. It is
neither the properties of quantum objects nor their probabilistic relations that strain
our non-classical intuitions, but the objects themselves. Such ontological holism is
also suggested by the fact that violations of (BCH)-type inequalities occur even in
the vacuum state of a quantum field [14].

Leggett [9] has proposed a test of macroscopic realism that relies on an unusual
application of (BCH)-type inequalities involving measurements on a single system.
Here the quantum correlations that cause problems for a classical world-view con-
cern measurements at different times of the current circulating in an RF SQUID.
There are quantum mechanical states that are � superpositions of different direc-
tions of current circulation. Assuming these are measurable without disturbance,
then measurements of the current at carefully chosen times will reveal correlations
that are incompatible with the assumption that the current is always circulating ei-
ther one way or the other.

Investigations of the nature of light have uncovered correlations that seemed sur-
prising on the assumption that light is “composed” of photons. Hanbury, Brown
and Twiss [5] investigated correlations between the responses of two separated de-
tectors to a weak light source. They expected the responses of the detectors to be
uncorrelated, on the grounds that each photon could activate only one detector at a
time. Instead they found strong correlations. These could be explained by a � semi-
classical model in which light is treated classically but the detectors are treated
quantum-mechanically.The anticorrelations expected on the photon hypothesis only
showed up much later after the incoherent light source was replaced by a source to
which single excited atoms made independent coherent contributions [7, 8].
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Correlations play a starring role in some proposed interpretations of quantum me-
chanics. Mermin [12] claims that while correlations have physical reality, that which
they correlate does not. This view of correlations without correlata has produced
philosophical debate but little consensus.

See Consistent histories, Ignorance interpretation, Ithaca Interpretation, Many
Worlds Interpretation, Modal Interpretation, Orthodox Interpretation, Transactional
Interpretation.

Primary Literature

1. A. Aspect, J. Dalibard, G. Roger, Experimental test of Bell’s Inequalities using time-varying
analyzers, Physical Review Letters 49: 1804–7, 1982.

2. J.S. Bell, On the Einstein-Podolsky-Rosen paradox, Physics 1: 195–200, 1964.
3. A. Einstein, Quantentheorie und Wirklichkeit, Dialectica 2: 320–4, 1948.
4. A. Fine, Joint distributions, quantum correlations, and commuting observables, Journal of

Mathematical Physics 23: 1306–10, 1982.
5. R. Hanbury-Brown and R.Q. Twiss, Correlations between photons in two coherent beams of

light, Nature 177: 27–9, 1956.

Secondary Literature

6. J. Bub, Interpreting the Quantum World, Cambridge University Press, Cambridge 1997.
7. P. Grangier, G. Roger and A. Aspect, Experimental evidence for a photon anticorrelation effect

on a beamsplitter, Europhysics Letters 1: 173–9, 1986.
8. M. Hennrich, A. Kuhn, and G. Rempe, Transition from antibunching to bunching in cavity

QED, Phys. Rev. Lett. 94: 53604-1–4, 2005.
9. A.J. Leggett and A. Garg, Quantum mechanics versus macroscopic realism: Is the flux there

when nobody looks?, Phys. Rev. Lett. 54: 857–60, 1985.
10. T. Maudlin, Quantum Non-locality and Relativity, Blackwell, Oxford 1994.
11. N.D. Mermin, Simple unified form for the major no-hidden-variables theorems, Phys. Rev.

Lett. 65: 3373–7, 1990
12. N.D. Mermin, What is quantum mechanics trying to tell us?, American Journal of Physics 66:

753–67, 1998.
13. A. Shimony, Bell’s Theorem at http://plato.stanford.edu/entries/bell-theorem/.
14. S.J. Summers and R.F. Werner, The vacuum violates Bell’s inequalities, Phys. Lett. A 110:

257–9, 1985.

Correspondence Principle

Brigitte Falkenburg

The correspondence principle is due to Niels Bohr (1885–1962). According to Bohr,
the principle justifies the use of formal classical expressions in quantum theory and
a physical interpretation of quantum theory in terms of classical concepts. The prin-
ciple emerged from his use of classical concepts and formal analogies in � Bohr’s
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atomic model of 1913. Before the rise of quantum mechanics (i.e., in “old” quantum
theory), Bohr employed the principle in order to establish inter-theoretical relations
between the classical theory of radiation and the quantum theory of atomic spec-
tra. After the rise of quantum mechanics, he justified his � complementarity view
of quantum mechanics in terms of the correspondence between mutually exclusive
quantum phenomena on the one hand and the classical concepts of wave or parti-
cle (particle picture, wave picture) (� Franck–Hertz experiment; Davisson–Germer
experiment; Stern–Gerlach experiment; Schrödinger equation) on the other hand.

Werner Heisenberg (1901–1976) made heuristic use of Bohr’s correspondence
principle when he developed his � matrix mechanics. In 1930, he developed a gen-
eralized version of the correspondence principle which emphasized the heuristic and
interpretative aspects of the correspondence principle.

See also � Bohmian mechanics; Measurement theory; Metaphysics in Quantum
Mechanics; Modal Interpretation; Objectification; Projection Postulate.

In view of the quantum measurement problem, a generalized correspondence
principle is indispensable up to the present day. In particular, it underlies the � semi-
classical models of atomic and nuclear physics, condensed matter physics etc.

Classical Concepts in “Old” Quantum Theory

� Bohr’s atomic model of 1913 was based on quantum postulates which violate
the classical laws of radiation. The model raised the question of how the quantized
transitions between the stationary electron states relate to the classical theory of
radiation. In order to explain this, Bohr postulated a formal analogy between the har-
monics of classical radiation and the various quantum jumps from a given stationary
state. This analogy warranted the asymptotic agreement between the classical and
quantum-theoretical radiations in the limit of large � quantum numbers (when the
quantum jumps become very small) [1, 9, 10]. Together with Ehrenfest’s “adiabatic
hypothesis” (which concerned the energy of the permitted electron motions [2]), the
analogy justified a limited use of the classical concepts of energy and frequency
in quantum theory. In particular, it made it possible to interpret the quantum law
�E = hν in terms of the classical concepts of energy and frequency. This was the
germ of the correspondence principle. 1914–1918, Bohr elaborated the analogy for
periodic systems and extended it to multi-periodic systems and more general cases
[10]. He managed to derive � selection rules for the line splitting of the hydrogen
spectrum in an electric or magnetic field, i.e., the � Stark and � Zeeman effects.
After Einstein had introduced transition probability coefficients [3], Bohr expected
that the limited use of classical electrodynamics should also give correct intensities
and polarizations for the spectral lines. The calculations were performed by Hen-
drik Anthony Kramers (1894–1952) [4], who applied the correspondence principle
to the Fourier analysis of the classical stationary motions and derived in this way
the intensities and polarizations of the hydrogen lines, including the fine structure,
Stark and Zeeman effects.
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Finally, in 1920 Bohr gave the following explicit formulation of the correspon-
dence principle [5, p. 23–24; quoted in 10, p. 137–138]:

[...] there is found [...] to exist a far-reaching correspondence between the various types of
possible transitions between the stationary states on the one hand and the various harmonic
components of the motion on the other hand. This correspondence is of such a nature that
the present theory of spectra is in a certain sense to be regarded as a rational generalization
of the ordinary theory of radiation.

Here, the correspondence principle comes in two steps. First, it states the actual cor-
respondence of the possible quantum transitions to components of the classical mo-
tion. Second, it claims that the quantum theory of atomic spectra should be regarded
as a “rational generalization” of the classical theory of radiation. The first point jus-
tified the use of classical concepts in quantum theory. The second point justified the
heuristic use of the correspondence principle for the derivation of quantum laws.

To regard the quantum theory of atomic spectra as a “rational generalization” of
the classical theory of radiation has two aspects, a formal and an interpretative one
[10, p. 82; 12]. The classical orbit is merely formal since it can by no means be
measured and is only related to the quantum radiation in a formal, indirect manner.
At the same time, the correspondence principle associates the symbol ν in the formal
expression �E = hν with the familiar quantity of a light frequency measured by a
spectrometer, in accordance with the laws of classical wave optics.

In old quantum theory, the correspondence principle had a hybrid theoretical
status. On the one hand, it was a meta-theoretical principle. It established inter-
theoretical relations between classical radiation theory and the laws of old quantum
theory. On the other hand, it put inner-theoretical constraints on the formulation of
quantum laws, thus making the extension of old quantum theory possible. Hence,
Bohr’s correspondence principle should not be confused with an empirical rule of
correspondence in the sense of empiricist philosophy of science. It does much more
than only assigning the empirical concept of a “line in the spectrum” to the formal
law of radiation �E = hν, as Ernest Nagel (1901–1985) suggested [14]. In par-
ticular, it does not relate theoretical concepts directly to an observational language.
Rather, it is an inter-theoretical relation that establishes a formal (numerical) and
interpretative (physical) analogy between classical radiation theory and quantum
theory. This two-fold analogy allows for the continued use of the classical concepts
of ‘frequency’, ‘wavelength’, ‘energy’, ‘polarization’, etc. in the quantum theory of
atoms and line spectra. Even taken as an internal principle of old quantum theory,
the correspondence principle only expresses constraints that derive from an inter-
theoretical relation.

Correspondence and Complementarity

Quantum mechanics emerged from the crisis of old quantum theory confronted by
the anomalous Zeeman effect and other problems with which the correspondence
principle could not cope. Nevertheless, Bohr’s correspondence principle played a



128 Correspondence Principle

crucial heuristic role for Heisenberg when he developed his matrix mechanics. Af-
ter the rise of quantum mechanics, Heisenberg emphasized that the correspondence
principle helps to obtain a quantum theory from quantizing the corresponding clas-
sical theory (see below).

In view of quantum mechanics, Bohr employed the correspondence principle
in order to interpret the formal quantum concepts. He considered Schrödinger’s� wave function � as a mere symbol, as a formal tool that lacks any direct
physical meaning [9,15]. His � complementarity view of quantum mechanics aimed
at interpreting quantum phenomena in terms of the corresponding classical con-
cepts. According to his famous Como lecture, � Heisenberg’s uncertainty relations
describe quantum phenomena which correspond to mutually exclusive classical de-
scriptions and appear under mutually exclusive experimental conditions [6]. Bohr’s
examples of complementary quantum phenomena are � particle tracks and � scat-
tering events such as the � Compton effect, on the one hand, and interference
fringes, on the other hand. The physical magnitudes attributed to these phenom-
ena (i.e., either momentum-energy, or spatio-temporal magnitudes) are classical.
According to Bohr’s writings of 1927 and later, any physical magnitude attributed
to a quantum phenomenon represents the outcome of a measurement, and all mea-
surement results have to be expressed in classical terms. Bohr thought that a full
understanding of quantum phenomena is only possible in terms of the corresponding
classical concepts (i.e., either momentum-energy or spatio-temporal location) and
classical models (i.e., the complementary wave and particle picture � Franck–Hertz
experiment; Davisson–Germer experiment; Stern–Gerlach experiment; Schrödinger
equation [9–11,13,15].

The Generalized Correspondence Principle

In 1930, Heisenberg generalized Bohr’s correspondence principle. His generalized
principle deals explicitly with inter-theoretical relations, extending Bohr’s original
analogy between classical and quantized radiation frequencies to many more physi-
cal quantities. Heisenberg emphasizes three features of the general correspondence
principle [7, p. 70]:

1. It postulates a detailed analogy between the quantum theory and the appropriate
“mental picture”, i.e., the classical wave or particle picture.

2. This analogy is a “guide to the discovery of formal laws”, i.e., it has heuristic
meaning in the formation of a quantum theory. Here, Heisenberg means the well-
known � quantization of a classical theory.

3. In addition, it “furnishes the interpretation of the formal laws in terms of the
mental picture used”, i.e., the analogy tells us that we may attribute to the quan-
tized � observables the physical properties of the corresponding classical wave
or particle picture.
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Like Bohr’s original version, Heisenberg’s generalized correspondence principle is a
principle of semantic continuity [10, p. 133–137; 11; 12, p. 188–194]. It guarantees
that the predicates for the classical physical properties of ‘position’, ‘momentum’,
‘mass’, ‘energy’, etc. can also be defined in the domain of quantum mechanics, and
that one may interpret them operationally in accordance with classical measurement
methods. It provides many inter-theoretical relations by means of which the formal
concepts and models of quantum mechanics can be filled with physical meaning.
Bohr and Heisenberg both called this physical meaning “intuitive”, even though in
quite a different sense [6,11].

In modern textbooks of quantum mechanics, the generalized correspondence
principle shows up for example in � Ehrenfest theorem.

Correspondence in Semi-Classical Models

Often, the general correspondence principle helps to interpret the abstract formalism
of a quantum theory in such a way that it can be applied against the background of
classical physics and on semi-classical conditions. In the semi-classical models of
quantum physics, the correspondence principle is tacitly employed up to the present
day. Important examples stem from condensed matter physics, atomic and nuclear
physics, as well as � particle physics.

In condensed matter physics, the macroscopic state of a solid is necessarily
presupposed. As a macroscopic state, it has obviously to be described in classi-
cal terms. As Philip K. Anderson (∗1923) emphasized, the existence of a solid (or
the regularity of the ground states of most assemblages of atoms, respectively) can
not be explained by quantum theory [16, p. 3]. In addition, the quantum behavior
of a complex many-particle system cannot be calculated ab initio. Therefore, semi-
classical approximations are indispensable in condensed matter physics or atomic
physics. Many � scattering experiments of atomic, nuclear, and � particle physics
are based on � semi-classical models, too. The models of the scattering of sub-
atomic particles off the atoms inside macroscopic measuring devices are based on
several semi-classical conditions. In these models, a generalized correspondence
principle is employed in the following ways [12, pp. 125–160]:

1. The simplest models of quantum mechanical scattering theory correspond to
classical Rutherford scattering. Exact correspondence between the classical and
quantum mechanical differential scattering cross sections (� scattering experi-
ments) is given in the case of the Rutherford formula, that is, for the Coulomb
potential, for non-relativistic probe particles, and in the absence of quantum me-
chanical � spin or exchange effects.

2. In the domain of � relativistic quantum mechanics and � quantum field theory,
there is a chain of models of quantum mechanical scattering theory, namely Mott
scattering and Dirac scattering, that approximately correspond to Rutherford
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scattering under well-defined conditions. Here, the tacit use of a generalized
correspondence principle is extended to the inter-theoretical relation between rel-
ativistic and non-relativistic concepts.

3. To describe the charge distribution inside the atom by a classical form factor
(� nuclear models) is based on the correspondence between the quantum me-
chanical many-particle � wave function | �(r) |2 of charged subatomic particles
and the classical charge distribution ρ(r), which is the Fourier transform of a
classical form factor F(q).

4. In the domain of relativistic quantum field theory, the above correspondence as-
sumptions (1)–(3) come together in the definition of structure functions, which
express (via correspondence to the classical case, again) the momentum distribu-
tions of the partons (� parton model) or quark constituents of the nucleons, the
proton and neutron (� large angle scattering).

5. The data analysis of the particle tracks taken in such (� scattering experiments)
is based on a similar chain of models, which relate the quantum mechanics of
scattering to the corresponding classical case.

In all � semi-classical models, the generalized correspondence principle bridges
the semantic gaps between quantum theory and the classical theories, which are due
to the unresolved problems of the � measurement process. Hence, the correspon-
dence principle connects the languages of classical physics and quantum theory. In
a further common generalization, it bridges the languages of non-relativistic and
relativistic theories.

Limitations of Correspondence

Obviously, the correspondence principle does not exhaust the domain of the current
quantum theories. Indeed quantum mechanics emerged from its limitations in old
quantum theory. These early limitations were due to the spin-orbit coupling effects
in the spectra of complex atoms. Later, the � nonlocality of quantum mechanics
predicted in the famous � EPR paper showed up. Today, in addition to the EPR cor-
relations many non-local quantum phenomena without any classical correspondence
are known, such as, e.g., super conductivity, the Bohm–Aharanov effect, etc.

However, the semi-classical models of quantum physics are affected by the lim-
itations of the correspondence principle, too. In particular, such limitations are
relevant for the data analysis of � particle tracks. According to the classical particle
picture, a particle loses energy along its track due to dissipation, where the energy
loss is due to the ionization of atoms (e.g., in Wilson’s cloud chamber). There is in-
deed a classical model of the process, namely Bohr’s classical calculation of energy
loss by ionization [8]. However, for charged particles that pass the cloud chamber
with non-vanishing energy, the results of this model are wrong by a factor of 2. In
addition, the non-relativistic model of the energy loss via ionization no longer corre-
sponds to the relativistic description of the scattering processes along the track of a
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particle of high energy. In particular, the process of pair creation, which becomes the
more probable the higher the particle energy is, does not have any classical analogue
[12, p. 174–187].
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Counterfactuals in Quantum Mechanics

Lev Vaidman

Counterfactuals in quantum mechanics appear in discussions of (a) � nonlocality,
(b) pre- and post-selected systems, and (c) � interaction-free measurement; Quan-
tum interrogation. Only the first two issues are related to counterfactuals as they are
considered in the general philosophical literature:

If it were that A, then it would be that B.

The truth value of a counterfactual is decided by the analysis of similarities between
the actual and possible counterfactual worlds [1].

The difference between a counterfactual (or counterfactual conditional) and a
simple conditional: If A, then B, is that in the actual world A is not true and we
need some “miracle” in the counterfactual world to make it true. In the analysis
of counterfactuals out of the scope of physics, this miracle is crucial for deciding
whether B is true. In physics, however, miracles are not involved. Typically:

A : A measurement M is performed

B : The outcome of M has property P .

Physical theory does not deal with the questions of which measurement and whether
a particular measurement is performed? Physics yields conditionals: “If Ai , then
Bi”. The reason why in some cases these conditionals are considered to be coun-
terfactual is that several conditionals with incompatible premises Ai are considered
with regard to a single system.

The most celebrated example is the Einstein–Podolsky–Rosen (� EPR prob-
lem) argument in which incompatible measurements of the position or, instead, the
momentum of a particle are considered. Stapp has applied a formal calculus of coun-
terfactuals to various EPR-type proofs [2,3] and in spite of extensive criticism [4–9],
continues to claim that the nonlocality of quantum mechanics can be proved without
the assumption “reality” [10].

Let me give here just the main point of this controversy. Stapp provides elaborate
arguments in which an a priori uncertain outcome of a measurement of O in one
location might depend on the measurements performed on an entangled quantum
particle in another location. But if anything is different in a counterfactual world, the
outcome of the measurement of O need not be the same as in the actual world. The
core of the difficulty is this randomness of the outcomes of quantum measurements.
The formal philosophical analysis of counterfactuals which uses similarity criteria,
presupposes that in a counterfactual world which is identical to the actual world in
all relevant aspects up until the measurement of O , the outcome has to be the same.
Thus, Stapp’s analysis tacitly adopts the counterfactual definiteness [4, 5] which is
essentially equivalent to “reality” or � hidden variables and which is absent in the
conventional quantum theory.
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Important examples of quantum counterfactuals are elements of reality. Consider
the following definition [11]:

If we can infer with certainty that the result of measuring at time t of an observable O is o,
then, at time t , there exists an element of reality O = o.

If we consider several elements of reality which cannot be verified together, we
obtain counterfactuals. A celebrated example is the Greenberger–Horne–Zeilinger
(� GHZ) entangled state of three spin- 1

2 particles [4, 13]:

|�〉 = 1√
2
(|↑〉A|↑〉B |↑〉C − |↓〉A|↓〉B |↓〉C). (1)

We consider spin component measurements of these three particles in the x and y

directions. The counterfactuals (the elements of reality) have a more general form
than merely “the value of O is o”, they are properties of a set of three measurements:

{σAx}{σBx}{σCx} = −1,

{σAx}{σBy}{σCy} = 1,
(2){σAy}{σBx}{σCy} = 1,

{σAy}{σBy}{σCx} = 1.

Here {σAx} signifies the outcome of a measurement of σx of particle A, etc. Since
one cannot measure for the same particle both σx and σy at the same time, this is
a set of counterfactuals. It is a very important set because no local hidden variable
theory can ensure such outcomes with certainty; there is no solution for the set of
equations (2).

Lewis’s theory of counterfactuals is asymmetric in time [14]. The counterfactual
worlds have to be identical to the actual world during the whole time before A,
but not after. This creates difficulty in applications of counterfactuals to physics
and especially to quantum mechanics because “before” and “after” are not ab-
solute concepts. Different Lorentz observers might see different time ordering of
measurements performed at different places. Finkelstein [15] and Bigaj [16] have
attempted to define time asymmetric counterfactuals to overcome this difficulty. But
in my view, the time asymmetry of quantum counterfactuals is an unnecessary bur-
den [17]. We can consider a time symmetric (or time neutral) definition of quantum
counterfactuals.

The general strategy of counterfactual theory is to find counterfactual worlds
closest to the actual world. In the standard approach, the worlds must be close only
before the measurement. In the time-symmetric approach, the counterfactual worlds
should be close to the actual world both before and after the measurement at time t .
Quantum theory allows for a natural and non-trivial definition of “close” worlds as
follows: all outcomes of all measurements performed before and after the measure-
ment of O at time t are the same in the actual and counterfactual worlds.
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A peculiar example of time symmetric counterfactuals is the three box paradox
[18]. Consider a single particle prepared at time t1 in a � superposition of being in
three separate boxes:

|�1〉 = 1√
3
(|A〉 + |B〉 + |C〉). (3)

At a later time t2 the particle is found in another superposition:

|�2〉 = 1√
3
(|A〉 + |B〉 − |C〉). (4)

For this pre- and post-selected particle, a set of counterfactual statements, which
are elements of reality according to the above definition, is:

PA = 1,

PB = 1. (5)

Or, in words: if we open box A, we find the particle there for sure; if we open box
B (instead), we also find the particle there for sure. Indeed, not finding the particle
in box A (or B) collapses the pre-selected state (3) to a state which is orthogonal to
the post-selected state (4).

Beyond these counterfactual statements, there are numerous manifestations of
the claim that in some sense, this single particle is indeed in two boxes simultane-
ously. A single photon which interacts with this particle scatters as if there are two
particles: one in A and one in B, but two or more photons (� light quantum) do
not “see” two particles. Many photons see this single particle as two particles if the
photons interact weakly with the particle. Indeed, there is a useful theorem which
says that if a strong measurement of an observable O yields a particular outcome
with probability 1, (i.e. there is an element of reality) then a weak measurement
yields the same outcome. Sometime this is called a weak-measurement element of
reality [19]. The outcomes of weak measurements are weak values (� weak value
and weak measurements):

(PA)w = 1,

(PB)w = 1. (6)

Contrary to the set of counterfactuals above, the weak measurements can be per-
formed simultaneously both in box A and box B. Thus, the existence of counterfac-
tuals helps us to know the outcome of real (weak) measurement.

The three-box paradox and other time-symmetric quantum counterfactuals have
raised a significant controversy [11, 20, 21, 21–28]. It seems that the core of the
controversy is that quantum counterfactuals about the results of measurements of� observables, and especially “elements of reality” are understood as attributing
values to observables which are not observed. But this is completely foreign to quan-
tum mechanics. Unperformed experiments have no results! “Element of reality” is
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just a shorthand for describing a situation in which we know with certainty the
outcome of a measurement if it is to be performed, which in turn helps us to know
how weakly coupled particles are influenced by the system. Having “elements of
reality” does not mean having values for observables. The semantics are misleading
since “elements of reality” are not “real” in the ontological sense.

An attempt to give counterfactuals some ontological sense, at the cost of plac-
ing artificial constraints on the context in which counterfactuals are considered, was
made by Griffiths [29]. He showed that counterfactuals have no paradoxical fea-
tures when only � consistent histories are considered. Another recent step in this
direction are quantum counterfactuals in very restrictive “measurement-ready” situ-
ations [30].

Penrose [31] used the term “counterfactuals” in a very different sense:

Counterfactuals are things that might have happened, although they did not in fact happen.

In interaction-free measurements [32], an object is found because it might have
absorbed a photon, although actually it did not. This idea has been applied to
“counterfactual computation” [33], a setup in which the outcome of a computation
becomes known in spite of the fact that the computer did not run the algorithm (in
case of one particular outcome [34]).

In the framework of the � Many-Worlds Interpretation, Penrose’s “counterfac-
tuals” are counterfactual only in one world. The physical Universe incorporates
all worlds, and, in particular, the world in which Penrose’s “counterfactual” is
actual, the world in which the “counterfactual” computer actually performed the
computation.

This work has been supported in part by the European Commission under the
Integrated Project Qubit Applications (QAP) funded by the IST directorate as Con-
tract Number 015848 and by grant 990/06 of the Israel Science Foundation.
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Covariance

K. Mainzer

Covariance means form invariance, i.e. the form of a physical law is unchanged
(invariant) with respect to transformations of reference systems. Covariance can be
distinguished from � invariance which refers to quantities and objects [2]. The co-
variant formulation of laws implies that the form of laws is independent of the state
of motion in a reference system that an observer takes. In that sense, all fundamental



136 Covariance

12. D.M. Greenberger, M.A. Horne, A. Zeilinger: Going beyond Bell’s theorem. In Bell Theorem,
Quantum Theory and Conceptions of the Universe, M. Kafatos, ed., p. 69, Dordrecht, Kluwer,
(1989).

13. N.D. Mermin: Quantum mysteries revisited. Am. J. Phys. 58, 731 (1990).
14. D. Lewis: Counterfactual dependence and time’s arrow. Nous 13, 455 (1979).
15. J. Finkelstein: Space-time counterfactuals. Synthese 119, 287 (1999).
16. T. Bigaj: Counterfactuals and spatiotemporal events. Synthese 142, 1 (2004).
17. L. Vaidman: Time-symmetrized counterfactuals in quantum theory. Found. Phys. 29, 755

(1999).
18. Y. Aharonov, L. Vaidman: Complete description of a quantum system at a given time. J. Phys.

A 24, 2315 (1991).
19. L. Vaidman: Weak-measurement elements of reality. Found. Phys. 26, 895 (1996).
20. W.D. Sharp, N. Shanks: The rise and fall of time-symmetrized quantum mechanics. Philos. Sci.

60, 488 (1993).
21. R.E. Kastner: Time-symmetrised quantum theory, counterfactuals and ‘advanced action’. Stud.

Hist. Philos. Mod. Phy. 30 B, 237 (1999).
22. L. Vaidman: Defending time-symmetrised quantum counterfactuals. Stud. Hist. Philos. Mod.

Phy. 30 B, 337 (1999).
23. R.E. Kastner: The three-box paradox and other reasons to reject the counterfactual usage of

the ABL rule. Found. Phys. 29, 851 (1999).
24. R.E. Kastner: The nature of the controversy over time-symmetric quantum counterfactuals.

Phil. Sci. 70, 145 (2003).
25. L. Vaidman: (2003) Discussion: Time-Symmetric Quantum Counterfactuals. e-print: PITT-

PHIL-SCI000001108 (2003).
26. U. Mohrhoff: Objective probabilities, quantum counterfactuals, and the ABL rule A response

to R. E. Kastner. Am. J. Phys. 69, 864 (2001).
27. K.A. Kirkpatrick: Classical three-box ‘paradox’. J. Phys. A 36, 4891 (2003).
28. T. Ravon, L. Vaidman: The three-box paradox revisited. J. Phys. A 40, 2882 (2007).
29. R.B. Griffiths: Consistent quantum counterfactuals. Phys. Rev. A 60, R5 (1999).
30. D.J. Miller: Counterfactual reasoning in time-symmetric quantum mechanics. Found. Phys.

Lett. 19, 321 (2006).
31. R. Penrose: Shadows of the Mind. Oxford, Oxford University Press (1994).
32. A.C. Elitzur, L. Vaidman: Quantum mechanical interaction-free measurements. Found. Phys.

23, 987 (1993).
33. G. Mitchison, R. Jozsa: Counterfactual Computation. Proc. R. Soc. Lond. A 457, 1175 (2001).
34. L. Vaidman: Impossibility of the counterfactual computation for all possible outcomes. Phys.

Rev. Lett. 98, 160403 (2007).

Covariance

K. Mainzer

Covariance means form invariance, i.e. the form of a physical law is unchanged
(invariant) with respect to transformations of reference systems. Covariance can be
distinguished from � invariance which refers to quantities and objects [2]. The co-
variant formulation of laws implies that the form of laws is independent of the state
of motion in a reference system that an observer takes. In that sense, all fundamental



Covariance 137

C

laws of classical and relativistic physics are covariant [3, 4]. According to the def-
inition of covariance, the gauge principle (� gauge symmetry; symmetry) can also
be considered a principle of gauge covariance [5].

In quantum mechanics, measurable quantities (eigenvalues, probabilities, ex-
pectation values) are invariants (� invariance) with respect to unitary transforma-
tions (� symmetry). But the form of laws changes in a � Heisenberg picture or� Schrödinger picture. The fundamental laws of quantum mechanics can also be
formulated in a covariant form with respect to arbitrary unitary transformations [1].
In this case the fundamental laws are represented by the following schemes:

1. Heisenberg’s commutation relation:

[QK,PL] = iη δKL, [QK,QL] = 0, [PK,PL] = 0

2. Heisenberg’s equation of motion for operators:

dF

dt
= ∂F

∂t
+ 1

ih
[F,H ] (F=F(QK,PK, t))

3. Equation of movement for a general state and eigenvalues:

d |ψ〉
dt

= ∂ |ψ〉
∂t

− 1

ih
H |ψ〉 , d |f�〉

dt
= ∂ |f�〉

∂t
− 1

ih
H |f�〉

The concept of state |ψ〉 = |ψ (t)〉 resp. |f�〉 = |f� (t)〉 is generalized as |ψ〉 =
|ψ (QK (t) , PL (z) , t)〉 resp. |f�〉 = |f� (QK (t) , PL (z) , t)〉 which allows the
partial time-depending derivation of states. This formulation yields a maximal
symmetry between the equations of motion between operators and states.

4. Eigenvalue equation:
F |f�〉 = f� |f�〉

These equations can be considered a picture-free formulation of quantum mechan-
ics, because they are covariant with respect to arbitrary unitary transformations.
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CPT Theorem

Claus Kiefer

The CPT theorem is a theorem for local relativistic quantum field theories in
Minkowski space-time. Here, C means ‘charge conjugation’, P ‘parity transforma-
tion’ (‘space inversion’), and T ‘time inversion’; while C and P are implemented by� unitary operators, T is implemented by an antiunitary operator.

The CPT theorem states that these field theories are invariant under the com-
bined combination of C, P, and T; one therefore speaks of CPT symmetry. The
original proof by Gerhart Lüders [1] and Wolfgang Pauli [2] was performed within
Lagrangian field theories; Res Jost then presented a more general proof using ax-
iomatic quantum field theory [3].

The importance of the CPT theorem stems from the fact that the assumptions
for this theorems are very general; in fact, they are believed to be universally valid
for field theories in flat space-time. The main assumption is Lorentz � invariance,
which implements the principle of special relativity; in addition, one has to assume
that the fields obey the standard commutation relations. The proof in [3], besides
being more general, has also the advantage that it provides a simple method to cal-
culate the CPT transform of a field directly, without having to calculate C, P, and T
separately and to multiply them.

The Standard Model of elementary particles � quantum field theory; particle
physics describes the strong and the electroweak interaction by a local relativistic
field theory and therefore implements the CPT symmetry; however, it violates CP
symmetry (and therefore T symmetry), as has been confirmed by many experimental
tests.

CPT symmetry entails in particular that the masses of particles and antiparticles
must be equal. This, in turn, provides the most precise test of this symmetry. The
current experimental bounds result mainly from the limit of the mass difference
between the neutral K-meson K0 and its antiparticle, K̄0 [4]:

∣∣∣∣mK̄0 −mK0

mK0

∣∣∣∣ � 10−18.

The CPT symmetry also entails equal lifetimes for particles and antiparticles. More
details on the CPT theorem can be found in references [5, 6].
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current experimental bounds result mainly from the limit of the mass difference
between the neutral K-meson K0 and its antiparticle, K̄0 [4]:

∣∣∣∣mK̄0 −mK0

mK0

∣∣∣∣ � 10−18.

The CPT symmetry also entails equal lifetimes for particles and antiparticles. More
details on the CPT theorem can be found in references [5, 6].
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It is clear from its proof that the CPT theorem is not expected to hold if the main
assumption – Lorentz symmetry – is violated. This should apply, in particular, to
a fundamental theory of � quantum gravity, since already the classical theory of
gravity (Einstein’s theory of general relativity) is not a Lorentz-invariant theory (it
possesses instead � diffeomorphism invariance). Since, moreover, time seems to
be absent in quantum gravity, the theorem cannot even be formulated at the most
fundamental level.

Literature
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Creation and Annihilation Operators

Christopher Witte

Creation and annihilation operators are linear � operators on a so called Fock space
associated to a complex � Hilbert space. The interpretation of creation and annihi-
lation operators in multi-particle quantum system is that they increase and lower,
respectively, the number of particles of the system by one. Some of many applica-
tions of these operators can be found in the study of oscillations in solids, quantum
optical systems, spin systems and general free quantum fields.

Fock Space. Let H be a complex Hilbert space and H⊗n the n-fold tensor product
of H. The orthogonal direct �2-sum of Hilbert spaces F (H) := ⊕∞

n=0 H⊗n (with
H⊗0 := C) is called the Fock space over H.

The n-particle symmetrization operator S
(n)
+ and antisymmetrization operator

S
(n)
− are defined by linear extension of

S
(n)
± (f1 ⊗ · · · ⊗ fn) = 1

n!
∑
σ∈Sn

(±1)σ fσ(1) ⊗ · · · ⊗ fσ(n)
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(sum over all permutations σ , with (−1)σ the signature of σ ) and for the sake of
completeness S(0)± := 1. They are orthogonal projectors onto the bosonic (S(n)+ ) and

fermionic (S(n)− ) n-particle space H⊗n± := S
(n)
± H⊗n. The orthogonal direct �2-sum of

Hilbert spaces F±(H) :=⊕∞
n=0 H⊗n± is called the symmetric or bosonic Fock space

(F+) and the antisymmetric or fermionic Fock space (F−) over H. These spaces
are used as state spaces for systems with identical particles of variable number. The
element 1 ∈ H⊗0± will be denoted by �, when embedded into a Fock space, and
called the vacuum or no-particle state.

By linear extension the following sets of operators are defined on the Fock
spaces: For any f ∈ H i.) the creation operator a∗(f ) is defined by

a∗(f )S(n)± (f1 ⊗ · · · ⊗ fn) :=
√
n+ 1S(n+1)

± (f ⊗ f1 ⊗ · · · ⊗ fn),

thus mapping n-particle states to (n + 1)-particle states, and ii.) the annihilation
operator a(f ) is defined by

a(f )S
(n)
± (f1 ⊗ · · · ⊗ fn) := 1√

n

∑
j

(±1)j−1〈f, fj 〉S(n−1)
± (f1 ⊗ · · · f̂j · · · ⊗ fn),

where f̂j denotes the omission of the j -th factor such that this operator maps
n-particle states to (n−1)-particle states. On the vacuum� the action of the operator
is defined to be a(f )� = 0.

Given any � orthonormal basis {ei} of the one-particle Hilbert space H the
sum of operators

∑
i a
∗(ei)a(ei) converges on each n-particle space to the n-

fold of the identity operator. Therefore it is common to write the formal sum
N :=∑i a

∗(ei)a(ei), where N denotes the self-adjoint number operator with dis-
crete spectrum and eigenspaces H⊗n± for eigenvalue n ∈ N0. The eigenvectors of
the number operator, i.e., the elements of H⊗n± embedded into Fock space, are also
called Fock states.

Another important class of vectors especially in bosonic systems are the eigen-
vectors of the annihilation operator, obeying a(f )ψ

f
α = αψ

f
α , with generally com-

plex eigenvalue α. Contrary to the Fock states, the statistical distribution of the
results in a number measurement in these states is a Poisson distribution. These
states are usually called � coherent states and are of great importance in the study
of quantum optical systems (see, e.g., [4]).

Occupation-Numbers. In the bosonic n-particle space H⊗n+ an orthonormal basis
related to a one-particle basis {ei} is given by

e(n1, n2, . . .) :=
√

n!
n1!n2! . . . S

n+(ei1 ⊗ . . .⊗ ein ),

where ni is the number of indices among i1, . . . , in which are equal to i. Eviden-
tally

∑
i ni = n, and e(0, 0, . . .) = �. Considering the vectors e(n1, n2, . . .) for all
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values of n ∈ N0, a basis of the symmetric Fock space F+(H) consisting of Fock
states is induced. The representation of vectors and operators of H⊗n+ and F+(H)

with respect to the basis {e(n1, n2, . . .)} is called the occupation-number represen-
tation associated with {ei}.

The bosonic creation and annihilation operators can be replaced by the discrete
set of operators a∗i := a∗(ei) and ai := a(ei). The action of these operators on the
basis is given by

a∗i e(n1, . . . , ni , . . .) =
√
ni + 1 e(n1, . . . , ni + 1, . . .)

aie(n1, . . . , ni , . . .) =
{√

ni e(n1, . . . , ni − 1, . . .) if ni �= 0
0 if ni = 0.

An orthonormal basis in the fermionic n-particle space H⊗n− is given by

e(n1, n2, . . .) :=
√
n! Sn−(ei1 ⊗ . . .⊗ ein ),

where i1 < i2 < . . . < in, ni = 1 or ni = 0 depending on whether the vector ei is
among ei1, . . . , ein or not, and

∑
i ni = n; the basis vectors define the occupation-

number representation for fermions. The creation and annihilation operators a∗i :=
a∗(ei) and ai := a(ei) act according to

a∗i e(n1, . . . , ni , . . .) =
{
(−1)si e(n1, . . . , ni + 1, . . .) if ni = 0

0 if ni = 1

aie(n1, . . . , ni , . . .) =
{

0 if ni = 0
(−1)si e(n1, . . . , ni − 1, . . .) if ni = 1

where si =∑i−1
j=1 nj (i.e., si is the number of indices ij satisfying ij < i).

Any self-adjoint one-particle operator A acting on H gives rise to a self-adjoint
operator on Fock space (as well bosonic as fermionic) acting on all particles identi-
cally, sometimes called the “second � quantization” of the operator. It is defined by
the formal sum

d�(A) :=
∞∑
n=0

n∑
ν=1

1⊗ . . .⊗ A⊗ . . .⊗ 1,

where in the inner sum A is at the ν-th position. This can be written in an easy way
using creation and annihilation operators:

d�(A) =
∑
i,j

Aij a
∗
i aj ,

with matrix elements Aij = 〈ei , Aej 〉. Translated to the occupation-number repre-
sentation one finds
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Ae(n1, . . . , ni , . . .) =
∑
i

niAiie(n1, n2, . . .)

+
∑
i �=j

√
(ni + 1)njAij e(n1, . . . , ni + 1, . . . , nj − 1, . . .).

The easiest example of such an operator is the above seen number operator: N =
d�(1).

It is worth noting at this point that the “second quantization” of unitary operators
is defined differently, namely by �(U) := ∑∞

n=0 U ⊗ . . . ⊗ U . In this way the
useful relation exp(itd�(H)) = �(exp(itH )) in the realm of unitary one-parameter
groups holds true (see � Hamiltonian operator).

Canonical Commutation and Anticommutation Relations. The bosonic annihi-
lation and creation operators are unbounded linear operators and can be defined on
the dense subset D+ of the bosonic Fock space F+(H) constituted by finite sums
of n-particle vectors [1]. On this subset they are formal adjoints of each other in the
way the notation suggest: a(f )∗|D+ = a∗(f )|D+ . Furthermore they fulfil on D+ the
following relations:

[a(f ), a∗(g)] = 〈f, g〉; [a(f ), a(g)] = [a∗(f ), a∗(g)] = 0,

called canonical commutation relations (CCRs). Together with the property
a(f )� = 0 the CCRs define the action of the bosonic creation and annihilation
operators, justifying the term “canonical” [2, 5]. The operators A(f ) := (a(f )+
a∗(f ))/

√
2 are essentially self-adjoint and thus one can form unitary operators

W(f ) = exp(iA(f )) with these. The CCRs can expressed equivalently by these so
called Weyl operators:

W(f )W(g) = W(f + g)e−i Im〈f,g〉/2.

In the study of coherent states it is worth noting that the Weyl operators map the
vacuum to coherent states: a(f )W(f )� = (i〈f, f 〉/√2)W(f )�. The C*-algebra
generated by the Weyl operators is called the CCR algebra.

The fermionic annihilation and creation operators are bounded linear operators
with norm ‖a(f )‖ = ‖a∗(f )‖ = ‖f ‖. Indeed the mapping f �→ a∗(f ) is an iso-
metric embedding of Banach spaces, whereas the mapping f �→ a(f ) is antilinear,
i.e., a(λf ) = λ̄a(f ) for λ ∈ C, and isometric. Thus both sets of operators are de-
fined on the whole fermionic Fock space F−(H) and are adjoints of each other:
a(f )∗ = a∗(f ). By defining the anticommutator [A,B]+ = AB + BA, one finds

[a(f ), a∗(g)]+ = 〈f, g〉; [a(f ), a(g)]+ = [a∗(f ), a∗(g)]+ = 0,

called canonical anticommutation relations (CARs). The basic consequence
a∗(f )2 = 0 is a demonstration of the Pauli � exclusion principle in fermionic
systems. Together with the property a(f )� = 0 the CARs define the action of the
fermionic creation and annihilation operators. The norm closure of polynomials
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in the a(f ) and a∗(f ) form a C*-Algebra, called the CAR algebra. A detailed
description of CCRs and CARs can be found in [3].

Continuous Representations. If the Hilbert space H is represented in form of
a function space L2(Rn), it is common to introduce creation and annihilation
operators in a point a∗(x) and a(x). Mathematically these are operator-valued dis-
tributions, defined by

a∗(f ) =
∫

a∗(x)f (x)dnx; a(f ) =
∫

a(x)f (x)dnx.

While a(x) can still be interpreted as a densely defined, but not closable operator,
a∗(x) is not an operator at all. Formally the operator-valued distributions fulfil the
continuous CARs and CCRs

[a(x), a∗(y)]± = δ(x − y); [a(x), a(y)]± = [a∗(x), a∗(y)]± = 0.

Examples. The most basic bosonic Fock space is F+(C) = ⊕∞
n=0 C, which

is canonically isomorphic to the sequence space �2. Each n-particle space is one-
dimensional and spanned by the sequence e(n) = (δnk)k , with the Kronecker delta
being different from zero only at the n-th position. These vectors form an orthonor-
mal basis of �2, and define the occupation-number representation in this case. The
action of creation and annihilation operator is a∗1e(n) =

√
n+ 1 e(n + 1) and

a1e(n) = √
n e(n − 1) (the indices of the operators can be omitted due to one-

dimensionality of H).
This example is relevant in the study of the one-dimensional quantum me-

chanical harmonic oscillator, modeled on the Hilbert space L2(R). By defining
annihilation and creation operators on this space, one can find a suitable isomor-
phism to F+(C). On L2(R) we set a := √

mω/(2�) (x + ip/(mω)) and a∗ :=√
mω/(2�) (x − ip/(mω)), where x and p denote position and momentum opera-

tors and m and ω are positive constants. The two operators obey the CCRs (with f

set to unity) and the operator a has a one-dimensional kernel, from which we choose
a normed representative � = |0〉 = (mω/(π�))1/4 exp

(−mωx2/(2�)
)
. By defining

|n〉 := (a∗)n|0〉/√n one finds an orthonormal basis and thus the isomorphism onto
F+(C) by |n〉 �→ e(n). The Hamiltonian operator of an oscillator of mass m and
frequencyω can be expressed in the simple form H = �ω(a∗a+1/2). The operator
N = a∗a is the number operator in the one dimensional setting with N |n〉 = n|n〉.
Thus the n-particle states are the eigenstates of the Hamiltonian operator, with
H |n〉 = (n + 1/2)�ω|n〉. The term “particle” is somewhat misleading in this con-
text, since it does not refer to the single oscillating particle, but to so called phonons,
which is a name for each “quantum” of oscillation energy, numbered by n. The “vac-
uum” state refers to the absence of any such oscillation quantum and defines the
ground state of the system. Coherent states of the oscillator, given by aψα = αψα ,
can be derived by the Weyl operator from the vacuum ψα = W(−i

√
2α)|0〉. The

Weyl operator can be expressed by position and momentum operators, leading to an
interpretation as displacement operator in phase space. Coherent states can thus be
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seen as elongated ground states with a certain momentum. They are not stationary,
but stay coherent with only the phase of the eigenvalue α changing in time.

The typical Hamiltonian of a bosonic many-particle system with constant particle
number reads

H = d�(H1)+ 1

2

∑
μ�=ν

Vμν.

Here the one-particle Hamiltonian H1 (kinetic energy and potential energy in an
exterior field) is used in “second quantization” d�(H1), and

Vμν(ek1 ⊗ . . .⊗ ekμ ⊗ . . .⊗ ekν ⊗ . . .⊗ ekn) :=∑
i,j

Vijkμkν ek1 ⊗ . . .⊗ ei ⊗ . . . ej ⊗ . . .⊗ ekn ,

ei being at position μ, ej at position ν, acts only on the μ-th and ν-th tensor fac-
tor nontrivially and Vijkμkν is the matrix element of some two-body interaction
operator V .

Due to the special form of H , acting on each particle identically, it makes
sense to write the Hamiltonian H in occupation-number representation. H can be
represented in terms of creation and annihilation operators according to

H =
∑
i,j

Hij a
∗
i aj +

1

2

∑
i,j,k,l

Vijkla
∗
i a
∗
j akal

where the matrix elements of H1 are Hij := 〈ei ,H1ej 〉. In particular, if the basis
vectors ei are eigenvectors of H0, H0ei = Eiei , then d�(H1) =∑i Eia

∗
i ai , i.e.,

d�(H1)e(n1, n2, . . .) =
∑
i

niEie(n1, n2, . . .).

The most basic fermionic Fock space is F−(C) = C ⊕ C = C2, since the anti-
symmetrization operator reduces all n-particle spaces for n � 2 to {0} in this case.
The vectors � and a∗� can be identified with the canonical basis of C

2 and span
the vacuum and the 1-particle space, respectively. The annihilation and creation
operator can be represented by matrices:

a =
(

0 1
0 0

)
; a∗ =

(
0 0
1 0

)
.

This system can be taken as model for a single locally fixed electron with � spin in
a magnetic field. The Hamiltonian operator of such a system is basically given by a
multiple of the number operator a∗a, i.e.,

H = 2μSBa
∗a = 2μSB

(
0 0
0 1

)
,

with μS the spin magnetic moment of the electron and B the magnetic field.
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Likewise fermionic Fock spaces over finite dimensional Hilbert spaces Cn have
dimension 2n and are isomorphic to (C2)⊗n. Therefore they can be used to model
n-electron spin systems (see, e.g., [2]). The general formalism to write a fermionic
system in occupation-number representation is analogous to the bosonic case seen
above.

Primary Literature

1. K. Ito (editor): Encyclopedic Dictionary of Mathematics (2nd edn.). MIT Press, Cambridge
(1993)

2. W. Thirring: Quantum Mathematical Physics: Atoms, Molecules and Large Systems. Springer,
Berlin (2002)

3. O. Bratteli, D.W. Robinson: Operator Algebras and Quantum Statistical Mechanics 2.
Springer, New York (1979)

Secondary Literature

4. M.O. Scully, M.S. Zubairy: Quantum Optics. Cambridge University Press, Cambridge (1997)
5. J. Glimm, A. Jaffe: Quantum Physics. Springer, New York (1981)

Creation and Detection of Entanglement

Dagmar Bruß

The fundamental equation of non-relativistic quantum mechanics, the � Schrödinger
equation, is linear. Thus, superpositions of its solutions (quantum states) constitute
solutions as well. This is the famous � superposition principle. Given a composite
quantum system, i.e. a quantum system that consists of two or more subsystems,
superpositions of its states can be either separable or entangled [1]. The quantum
state of a bipartite system, i.e. a system consisting of two subsystems A (located at
Alice’s lab) and B (located at Bob’s lab), is an element of the tensored Hilbert space
H = HA ⊗HB . A pure bipartite state |ψ〉 ∈ HA ⊗HB is called separable if and
only if |ψ〉 = | a〉⊗ | b〉, where | a〉 ∈ HA and | b〉 ∈ HB . It is entangled otherwise.

A mixed bipartite density matrix �, acting on HA⊗HB , is called separable if and
only if it can be written as [2] �= ∑i pi | ai〉〈ai | ⊗ | bi〉〈bi |, with | ai〉 ∈ HA and
| bi〉 ∈ HB . It is entangled otherwise. Here the coefficients pi are probabilities, i.e.
0 � pi � 1 and

∑
i pi = 1. In general 〈ai |aj 〉 �= δij , and also Bob’s states need not

be orthogonal. This decomposition is not unique. Note that a mixed separable state
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may contain classical correlations, but no quantum correlations (entanglement), see
the reviews [24–26] and general textbooks on quantum information, e.g. [27–29].

The definition of a separable state can be interpreted as follows: as a separable
state is a statistical mixture of projectors onto product states, Alice and Bob can
create a separable state locally in their corresponding laboratories, with the help
of communication over a classical channel (e.g. a telephone). In other words, any
state that can be prepared without interaction of the subsystems is not entangled. In
order to create entanglement, the subsystems have to interact via some entangling
(non-local) Hamiltonian [3]. When a Hamiltonian acts for a certain time, one can
consider its action as a quantum gate. The most simple quantum gate that allows to
entangle two qubits (any two-level system can be considered as a qubit) is the CNOT
gate, with the truth table | 00〉 → | 00〉, | 01〉 → | 01〉, | 10〉 → | 11〉, | 11〉 → | 10〉,
i.e. the second qubit (target) is flipped if the first qubit (control) is in state | 1〉.
A simple quantum network, consisting of a Hadamard gate, with the truth table
| 0〉 → 1√

2
(| 0〉 + | 1〉), | 1〉 → 1√

2
(| 0〉 − | 1〉), applied to the first qubit, and

a subsequent CNOT gate acting on both qubits, creates from the four possible
inputs | 00〉, | 01〉, | 10〉, | 11〉 the four (maximally entangled) Bell states |�+〉 =

1√
2
(| 00〉 + | 11〉), |�+〉 = 1√

2
(| 01〉 + | 10〉), |�−〉 = 1√

2
(| 00〉 − | 11〉), |�−〉 =

1√
2
(| 01〉 − | 10〉), respectively. All quantum networks can be built from a certain

set of one- and two-qubit gates (universality theorem, see, e.g. [27]). Thus, the main
experimental challenge for the creation of entanglement lies in the realisation of
two-qubit quantum gates with low noise. Nowadays it is routine to entangle two
qubits, represented by photons (� light quantum), atoms or ions, so the experi-
mental attention moved towards creation of entanglement between more than two
subsystems.

The above general definition of separability vs. entanglement holds for bipar-
tite quantum states, but can be generalized to multipartite quantum states (states
of composite systems with more than two subsystems). However, for multipartite
states it is not sufficient to distinguish only between separable and entangled states,
as the structure of the set of states is much richer than that: already for quantum
systems composed of three qubits there are four different types of states: separable
states, biseparable states (i.e. two of the three subsystems are entangled with each
other, while the third one is separable from the others), and two classes of genuinely
tripartite entangled states (each subsystem is entangled with both others): the GHZ-
class [4] and the W-class [5]. A typical � GHZ state consists of a superposition
of two product states, where each of the three qubits in the first term is orthogonal
to the corresponding one in the second term, e.g. |GHZ〉 = 1√

2
(| 000〉 + | 111〉).

A typical W state consists of a superposition of three terms that are permutations of
each other and have one excitation each, i.e. |W 〉 = 1√

3
(| 001〉 + | 010〉 + | 100〉).

The entanglement of a GHZ state is more fragile (with respect to the loss of one
subsystem) than that of a W state: tracing out one of the three particles leads to a
separable state of the remaining two particles for a GHZ state, but to an entangled
state for a W state. Mixed states of three qubits can be classified according to their
decomposition into projectors onto pure states [6]. For more than three subsystems



Creation and Detection of Entanglement 147

C

the number of entanglement classes grows accordingly. When creating multipartite
entanglement, one is mainly interested in that type of entanglement where all sub-
systems are entangled with each other (genuine multipartite entanglement).

The task of controlled creation of multipartite entanglement is very challeng-
ing, due to the impediment of � decoherence. At present quantum optical methods
provide the most advanced experimental tools to engineer and control entangle-
ment. Entanglement between atoms and photons has been created in a cavity [7, 8].
Here, a 3-particle GHZ state was produced by first creating a Bell state of an atom
and a cavity mode (photon), and then entangling this Bell state with another atom.
Photons (� light quantum) can be entangled with each other via the non-linear pro-
cess of parametric downconversion. Interference of independent photon pairs and
conditional detection allowed to create a 3-photon GHZ state [9] and a 4-photon
GHZ state [10]. Recently, even a 5-photon GHZ state has been realised in the
laboratory [11]. Another method to entangle polarised photons consists of using
a strong pump power in parametric downconversion, and thus reaching a reasonable
probability for simultaneous emission of four entangled photons. In this way, a 4-
photon singlet state [12] (which is invariant under simultaneous basis rotations) and
a 3-photon W state [13] were produced. - The record in the number of entangled
particles is held by the implementation with ion traps. Here, the ions are entangled
via a collective excitation mode (phonon bus) [14]. Already in 2000 it was possible
to create a 4-particle GHZ state [15]. Meanwhile even a GHZ state of 6 ions has
been achieved [16]. The class of W states has first been produced with 3 ions [17],
and recently even an 8-qubit W-state has been created [18].

In any experiment that aims at creating entanglement one also has to take into
account the existence of noise, and thus one needs a method to prove that the pro-
duced state is indeed entangled. Here, three methods are of importance: first, one
can perform state tomography, i.e. one measures every element in the � density
matrix and then uses theoretical tools to determine whether the density matrix is en-
tangled. Second, one can perform a Bell inequality test: if a Bell inequality (� Bell’s

Fig. 1 Measuring an entanglement witness for three qubits: local measurement directions are as
indicated, where σi are the Pauli operators. The expectation value 〈W〉 is a certain function of all
these probabilities [21]. Source [23]
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theorem) is violated, the state is entangled. Note, however, that this is not an optimal
criterion for the detection of entanglement, because there exist states (even states of
two qubits) that do not violate any Bell inequality [2]. Third, one can use the tool
of so-called entanglement witnesses. Entanglement witnesses are Hermitean opera-
tors that are constructed such that they detect entanglement: they lead to a positive
expectation value for any separable state, but have a negative expectation value for
some entangled states [19, 20, 26]. An entanglement witness is an observable and
can be decomposed into local measurements [21]. Therefore witnesses provide a
simple tool for entanglement detection: a negative expectation value of a witness im-
plies the existence of entanglement [22]. Regarding multipartite quantum systems,
witnesses have been constructed that prove the existence of genuine multipartite en-
tanglement [6]. For example, for 3 qubits W = 2/3 · 1l− |W 〉〈W | is a witness that
detects noisy W-states. Here, 2/3 is the maximal squared overlap of a W state with
any pure biseparable state, and therefore the witness W has a positive expectation
value for all biseparable states.

As an example for the creation of entanglement with polarised photons, and
the detection of entanglement via witnesses we show data from [23]. Here, a
3-partite W state was produced, and the witness W given above was measured,
by collecting results from local coincidence measurements in different polarisation
directions, as indicated in the figure. The expectation value of W was determined as
〈W〉 = −0.197± 0.018. This value is higher than the theoretically expected one of
−0.333, but this can be explained by noise that systematically increases the expec-
tation value. The negative expectation value clearly proves the existence of genuine
3-partite entanglement.

See also entanglement; entanglement purification and distillation; entropy of
entanglement.
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D
Davisson–Germer Experiment

Friedel Weinert

The Davisson–Germer experiment (1927) was the first measurement of the wave-
lengths of � electrons. C. J. Davisson, who worked in the Bell Research Labora-
tories, received the Nobel Prize in Physics for the year 1937 together with George
P. Thomson from the University of Aberdeen in Scotland, who independently also
found experimental indications of electron diffraction. According to the Copen-
hagen Interpretation of Quantum Mechanics, � wave-particle duality leads to parti-
cles also exhibiting wave-like properties like extension in space and interference.

Clinton J. Davisson (1881–1958) and Lester H. Germer (1896–1971) investi-
gated the reflection of electron beams on the surface of nickel crystals. When the
beam strikes the crystal, the nickel atoms in the crystal scatter the electrons in
all directions. Their detector measured the intensity of the scattered electrons with
respect to the incident electron beam. Their normal polycrystalline samples exhib-
ited a very smooth angular distribution of scattered electrons. In early 1925, one of
their samples was inadvertently recrystallized in a laboratory accident that changed
its structure into nearly monocrystalline form. As a result, the angular distribution
manifested sharp peaks at certain angles. As Davisson and Germer soon found out,
other monocrystalline samples also exhibited such anomalous patterns, which dif-
fer with chemical constitution, angle of incidence and orientation of the sample.
Only in late 1926 did they understand what was going on, when Davisson attended
the meeting of the British Association for the Advancement of Science in Oxford.
There Born spoke about de Broglie’s � matter-waves and Schrödinger’s � wave
mechanics. Their later measurements completely confirmed the quantum mechani-
cal predictions for electron wavelength λ as a function of momentum p: λ = h/p.
But their initial experiments (unlike G.P. Thomson’s) were conducted in the con-
text of industrial materials research on filaments for vacuum tubes, not under any
specific theoretical guidance.

The phenomenon of electron diffraction is quite general and can be explained by
the wave nature of atomic particles. Planes of atoms in the crystal (Bragg planes)
are regularly spaced and can produce a constructive interference pattern, if the so-
called Bragg condition (nλ = 2 d sin θ = D sinφ, where d is the spacing of atomic
planes and D is the spacing of the atoms in the crystal) is satisfied. This condition
basically states that the reflected beams from the planes of atoms in the crystal will
give an intensity maximum, or interfere constructively, if the distance, which the
wave travels between two successive planes (2 d sin θ), amounts to a whole number
of wavelengths (nλ, n = 1, 2, 3 . . .). This is illustrated in Fig. 1.

D. Greenberger et al. (eds.), Compendium of Quantum Physics: Concepts, Experiments, 150
History and Philosophy, c© Springer-Verlag Berlin Heidelberg 2009



Davisson–Germer Experiment 151

D

Source Detector

φ

• • • • • • • • Atoms in crystal

• • • • • • • •
• • • • • • • •
• • • • • • • •

Fig. 1 Davisson–Germer Experiment: Scattering of electrons by a crystal for 54 eV electrons

In their experiment, Davisson and Germer found that the intensity reached a max-
imum at φ = 50◦ (for an initial kinetic energy of the electrons of 54 eV, normal
incidence as indicated and φ as the scattering angle). From a philosophical point
of view this experiment reveals a striking feature. It demonstrates the existence of
de Broglie waves (� de Broglie wavelength). Yet we can speak of causation, not
in a deterministic but in a probabilistic sense. There is clearly, on the observational
level, a conditional dependence of the intensity of the reflected beam on the set of
antecedent conditions. These antecedent conditions are also conditionally prior to
their respective effects. There is of course no local causal mechanism, as the causal
situation covers a stream of particles. There is only a certain likelihood that one
particular particle in these experiments will be scattered in a particular direction.

But sufficiently much is known about scattering of atomic particles to estab-
lish a causal dependence between the antecedent and consequent conditions. In the
Davisson–Germer experiment the wavelength of the electron beam, scattered at 50◦,
is 0.165 nm. This is the effect to which specific antecedent conditions correspond:
the electron beam has initial kinetic energy of 54 eV; the lattice spacing of the nickel
atoms is known, from which the spacing of the Bragg planes can be calculated; the
condition for constructive interference is also known. There is quite a general de-
pendence of the interference effects on the regular spacing of the atom planes in the
crystal. It is used regularly in the study of atomic properties and is completely anal-
ogous to the use of X-ray diffraction by Max von Laue, Paul Knipping and Walter
Friedrich in 1912. Under certain conditions, particles such as electrons thus exhibit
wave-like characteristics like electromagnetic radiation.
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De Broglie Wavelength (λ = h/p)

Bruce R. Wheaton

Initially a thought in the thesis of young Louis de Broglie in 1923 for his doctor-
ate from the Sorbonne. Attempting to reconcile special relativity with the quantum
transformation relation (QTR), de Broglie assumed a hypothetical “phase wave”
traveling faster than light that guides the physical displacement of an � electron (see� matter waves). In the thesis he derived its putative wavelength in the degenerate
case of dipole oscillation, equal to � Planck’s constant divided by the momentum
of the linearly oscillating particle; at the same time deriving the action-integral rep-
resentation of the � Bohr atom’s orbital states by forcing every elliptical orbit to
contain an integral number of phase wavelengths, as in Fig. 1.

With de Broglie, others (Einstein � light-quantum, Schrödinger � wave
mechanics and Dirac � QED) recognized the generality of the de Broglie wave

Fig. 1 Louis de Broglie’s “beautiful result” of 1923 imagining a sinewave. Figure (c) 2009 TAP-
SHA, with thanks to Lauren Zimmermann
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representation to all micro-processes of matter, confirming a missing permutation
of matter with light in � wave-particle duality. Some of the most important precur-
sors to λ = h/p were, in fact, concerns about the apparent � light-quantum behavior
of high-frequency X- and γ-rays.

Although the de Broglie wavelength, which predicted the electron diffraction
found in 1927, applies only on the most microscopic level, it lately has come to
have practical consequences. At extremely low temperatures (<10−9 ◦K achieved by
evaporative cooling) the � wave packet of particles increase in wavelength, spread,
and combine with others producing a sea of undifferentiated bosons (� Bose–
Einstein statistics) (rather than the non-fungible fermions (� Fermi-Dirac statistics)
they may have started as) in what is called a � “Bose–Einstein condensate” or BEC.
It has a macroscopic de Broglie wavelength (up to 30 μm so it can actually be pho-
tographed with visible light) because the entire assemblage of millions of atoms
functions as a single � wave function. See Fig. 2.

On the down-slope approach to this transition from atomic to Bosonic hierar-
chy lie � superconductivity, � superfluidity, the lowest temperatures yet attained
and a demonstrated matter-wave “laser” (masem?) One of the most remarkable
characteristics of a BEC is its phenomenally large effective group index of re-
fraction (νg ≈ di/dν so slows by as much as 10−8) which, in almost stopping an
incident light beam, may lead to information storage in un-heard of density albeit

Fig. 2 How the de Broglie wave behaves on the downslope of temperature. From W. Ketterle,
Bose–Einstein Condensation: Identity Crisis for Indistinguishable Particles. Quantum Mechanics
at the Crossroads (Berlin: Springer 2007). p. 160
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only in a momentary BEC. Other properties may lead to unprecedentedly fast
multi-processing super-conducting computers, inter alia,from this quite literally
“quintessential” new state of matter.
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Decoherence

E. Joos

The term decoherence is used in many fields of (quantum) physics to describe the
disappearance or absence of certain superpositions of quantum states. Decoherence
is a consequence of the unavoidable interaction of virtually all physical systems
with their environment. In particular, macroscopic objects must be strongly entan-
gled if quantum theory is universally valid [1,2]. Decoherence then explains within
quantum theory why macroscopic objects seem to possess their familiar classical
properties. No additional classical concepts are required for a consistent quantum
description. Decoherence explains, for example, why particles appear localized in
space (hence there is no need for an additional particle concept). Contradictory lev-
els of description (classical and quantum) are no longer needed, instead a consistent
description in terms of a universal � wave function can be pursued.

The basic mechanism of decoherence is the unavoidable and generally irre-
versible disappearance of certain phase relations from the states of (local) systems
by interaction with their environment according to the � Schrödinger equation.
Equivalently, decoherence describes irreversibly increasing entanglement as a con-
sequence of a unitary global dynamics. Phase relations between certain states of a
system are preserved globally (because of the assumed unitarity), but are no longer
locally accessible, thus leading to apparent non-unitarity – or, in other words – to
an apparent violation of the quantum � superposition principle. This non-unitarity
can be described as a disappearance of non-diagonal (in a certain basis) elements
of the � density matrix characterizing the local system. The two most important
consequences of decoherence are suppression of interference and the selection of a
set of preferred (dynamically stable) states.

The mechanisms underlying decoherence phenomena have much in common
with quantum measurements. In the paradigmatic example of a macroscopic mass
point scattering photons (� light quantum), and molecules, recoil is negligible like
in an “ideal” measurement. This scheme also represents the case of “pure” deco-
herence: only the state of the environment changes, depending on the state of the
“measured” object (here the position of the mass point).

Different components |n〉 of the state of the considered system may influence the
environment � in different ways,

(∑
n

cn|n〉
)
|�0〉 t−→

∑
n

cn|n〉|�n(t)〉.

The resulting global superposition still contains phase relations connecting all com-
ponents, but these are now a property of the total state and no longer relevant locally.
Generically, phase relations originating from the initial superposition are distributed
over an increasing number of degrees of freedom, rendering this process effectively
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irreversible. Local observations are operationally characterized by the system’s den-
sity matrix ρS which changes according to

ρS =
∑
n,m

c∗mcn|m〉〈n| t−→
∑
n,m

c∗mcn〈�m|�n〉|m〉〈n| .

Non-diagonal terms are reduced by a factor |〈�m|�n〉| � 1, which represents
the overlap of corresponding environmental states. If these are approaching
orthogonality,

〈�m|�n〉 ≈ δmn,

the density matrix becomes approximately diagonal in this basis,

ρS ≈
∑
n

|cn|2|n〉〈n|.

The result of this interaction is a density matrix which seems to describe an ensem-
ble of states |n〉 with the respective probabilities [3]. However, this density matrix
only represents an apparent (non-statistical) ensemble (“improper mixture”), not
a genuine ensemble of quantum states (� ensembles in quantum mechanics). Co-
herence is not lost but is only delocalized into the larger system. The basis {|n〉}
characterizing dynamically stable states is defined solely by the properties of the
interaction. These states are inert against further decoherence (with respect to the
same basis). A complete treatment of realistic cases has to include the Hamiltonian
governing the evolution of the system itself (as well as that of the environment),
leading to a large variety of consequences [11,12,13].

Some fundamental examples of decoherence are the following.

• Localization and trajectories
Coherence between macroscopically different positions of macroscopic ob-
jects disappears very rapidly because of the strong influence of scattering
processes [2]. Trajectories thus emerge just as � particle tracks in a bubble
chamber as a consequence of the locality of interactions.
In this way the equations of reversible classical mechanics are derivable from
irreversible decoherence processes. In the macroscopic domain, decoherence is
a much faster process than dissipation.

• Molecular configurations and robust states
Most molecules appear to have a shape. Obvious examples are chiral molecules
such as sugar – in contrast to small molecules (such as ammonia) appearing
mostly in energy eigenstates. Parity (energy) eigenstates of a symmetric molec-
ular Hamiltonian would immediately decohere (into local mixtures) because the
shape of the molecule is monitored by the environment. Additional stabilization
may be achieved by the � Zeno effect. The robustness of these molecules
resembles a classical (“macroscopic”) state. Again, in this way classical prop-
erties are created by decoherence.
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• � Superselection rules
Local charges are always accompanied by their Coulomb field (Gauss law). This
may explain the charge superselection rule (usually derived from a kinematical
constraint), if viewed as caused by dynamical coupling between local charge and
Coulomb field. If a charge is decohered by its own field, a charge superselection
rule does not need to be postulated separately. In quantum gravity, superpositions
of different masses should be decohered by coupling to the spatial curvature.

• Quantum and classical fields
Fields are decohered by coupling to matter (charges). � Coherent states are
usually the most stable states [7, 8] under decoherence, therefore they represent
classical fields.

• Quantum gravity and space-time
Entangled superpositions of space-time curvature and matter necessarily emerge
in all versions of � quantum gravity. Even if the precise form of a theory of
quantum gravity is not known, decoherence should explain the classical structure
of spacetime [9,14].

• � Quantum jumps
Exponential decay represents the textbook example for quantum “randomness”,
but an exactly exponential decay law is incompatible with the Schrödinger equa-
tion (this is related to the � Zeno effect). Instead, the Schrödinger equation leads
to superposition of different decay times (as observed in cavities). As soon as
decay fragments interact with the environment, decay becomes irreversible (and
usually exponential). The appearance of “quantum jumps” thus has its origin in
very small, but finite decoherence times.

• Classical and � quantum chaos
According to the � correspondence principle there should exist quantum states
which mimic the behavior found for classically chaotic systems. Already the
breakdown of � Ehrenfest theorems shows that this is not the case. Instead, open
systems show a behavior resembling classical chaos. Omission of decoherence
has been shown to lead to unacceptable � Schrödinger cat like states for large
objects (such as the chaotically tumbling moon Hyperion).

• Quantum Computers
Quantum computing schemes depend decisively on controllable unitary evolu-
tion of certain states (“qubits”). Since decoherence irreversibly delocalizes the
required phase relations, it represents a major challenge to the practical realiza-
tion of quantum computers. Error correction schemes try to reconstruct the lost
coherences by scaling up the system with redundant bits, thereby possibly caus-
ing even larger sensitivity to decoherence.

• Decoherence in the brain
The quantum superposition principle would allow “non-classical” states, like that
of a superposition of a neuron firing and not firing. Quantum coherence effects
in the brain have been repeatedly suggested. Quantitative estimates [10] showed,
however, that the brain is such a “hot” environment that any non-classical states
would decohere on a very small timescale. This dynamical selection of certain
states is important for defining observers (which play a crucial role for some
interpretations) in a quantum framework.
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Decoherence represents a straightforward application of quantum concepts (in
particular, wave function(al)s) to all physical objects. The essential new feature of
quantum states, namely (kinematical) quantum non-locality, is responsible for all
local consequences of � entanglement. Therefore, decoherence does not have any
classical analogue, while it is also based on an arrow of time in the form of a special
(cosmological) initial condition.

Decoherence can explain why and how within quantum theory certain objects
(including fields) appear classical to “local” observers. It can, of course, not explain
conscious observers.

In many situations decoherence leads to a selection of a special set of dy-
namically stable (robust) states, which are relatively stable, thereby representing
“classical” states (in a quantum framework). Classical properties are then not an a
priori attribute of objects, but only come into being through the irreversible interac-
tion with the environment. If all physical states are expressed in terms of quantum
states, all the well-known paradoxes (� errors and paradoxes in quantum mechan-
ics) which arise from intermingling incompatible notions can be avoided. Secondary
concepts, such as “observable” can be derived from the dynamics of quantum states.
Traditional, but ill-defined concepts, such as dualism, � Heisenberg uncertain rela-
tions, or � complementarity principle appear obsolete from this point of view.

Because decoherence acts, for macroscopic systems, on an extremely short time
scale, it appears to work discontinuously, although decoherence is a smooth process.
This is why “events”, “particles”, or “quantum jumps” seem to be observed. Only in
the special arrangement of experiments, where systems are used that lie at the border
between microscopic and macroscopic, can this smooth nature of decoherence be
observed [4, 5, 6].

There are some common misinterpretations of decoherence. First, decoherence
does not mean a disturbance of the system by the environment (“noise”). Quite to
the contrary, in the case of “pure” decoherence, the system disturbs the environment.
The local consequences result solely from quantum � nonlocality.

Phenomena which mimic decoherence also arise in a statistical description using
either an ensemble of differently prepared initial states or different Hamiltonians.
This may lead to similar effects (e.g. disappearance of interference fringes), but has
nothing to do with decoherence proper [11].

Decoherence leads to only an apparent collapse, in contrast to what would be tra-
ditionally expected in a quantum measurement. This apparent collapse is, however,
operationally indistinguishable from a real collapse because of the irreversibility of
decoherence [15]. See also � Experimental Observation of Decoherence.
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Degeneracy

Daniel M. Greenberger

In quantum mechanics, when there is more than one solution to the � Schrödinger
equation for a given energy, the energy level is said to be degenerate. In one dimen-
sion, if V (x) is even, i.e., V (−x) = V (x) (and V (±∞)→ 0), then for bound states
(E< 0, ψ(∞) → 0), there will generally be one solution. For unbound states,
(E> 0, ψ(∞) finite), there are two solutions for a given E, one an even function
of x, and one an odd function of x (ψ(−x) = −ψ(x)), or any linearly independent
combination of the two, so that for unbound solutions there is a two-fold degeneracy.

In more general circumstances, such as in 3-D problems, if there are several de-
generate solutions, and one makes a unitary transformation between any of them,
ψi = Rijψj , then R will commute with the Hamiltonian, [R,H] = 0, and so R,
which usually generates some symmetry group, will be a constant of the motion.
For example, if the (3-D) potential is spherically symmetric, V = V (r), the angu-
lar part of the solution to the Schrödinger equation will be the spherical harmonics,
Y�m(ϑ, ϕ), which are degenerate, and one can transform between them with the
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Raimond, V. Rivasseau, eds. (Birkhäuser 2006) – also quant-ph/0512078

Degeneracy

Daniel M. Greenberger

In quantum mechanics, when there is more than one solution to the � Schrödinger
equation for a given energy, the energy level is said to be degenerate. In one dimen-
sion, if V (x) is even, i.e., V (−x) = V (x) (and V (±∞)→ 0), then for bound states
(E< 0, ψ(∞) → 0), there will generally be one solution. For unbound states,
(E> 0, ψ(∞) finite), there are two solutions for a given E, one an even function
of x, and one an odd function of x (ψ(−x) = −ψ(x)), or any linearly independent
combination of the two, so that for unbound solutions there is a two-fold degeneracy.

In more general circumstances, such as in 3-D problems, if there are several de-
generate solutions, and one makes a unitary transformation between any of them,
ψi = Rijψj , then R will commute with the Hamiltonian, [R,H] = 0, and so R,
which usually generates some symmetry group, will be a constant of the motion.
For example, if the (3-D) potential is spherically symmetric, V = V (r), the angu-
lar part of the solution to the Schrödinger equation will be the spherical harmonics,
Y�m(ϑ, ϕ), which are degenerate, and one can transform between them with the



160 Degeneracy

different components of L, the angular momentum, � Spin; Stern–Gerlach experi-
ment; Vector model which is a constant of the motion, and is also the operator which
generates rotations, and mixes up the Y�m.

Occasionally the symmetry is non-existent, or more usually, not apparent, and
the degeneracy is called “accidental”. A famous example is the Kepler (Coulomb)
problem, with the potential V = −α/r , whose energies are En = −E0/n

2, which
are independent of �. This contrasts with the case for any other potential V = (αrn),
for which E = En�. But for this special potential there is a hidden symmetry that
explains this, and there is another constant of the motion, the Runge-Lenz vector, R,

Rclass. = 1

mα
p× L− r̂,

Rquant. = 1

2mα
(p× L− L× p)− r̂,

where r̂ is the unit vector r/r. The quantum form differs from the classical one by
having been symmetrized, so as to be Hermitian. (An even deeper connection exists,
in that if the system is imbedded in a 4-D Euclidean space, then L and R are the
generators of rotations.)

The connection between the degeneracy of the Hamiltonian and the existence
of � symmetry groups is very profound, and leads, e.g., to the classification and
representations of crystal symmetries.

Also, when one adds a perturbation to a symmetrical system, the perturbation
generally has a lesser symmetry than the original Hamiltonian, and this leads to
the splitting of the degeneracy. In the unperturbed Hamiltonian, any independent,
orthogonal combination of the degenerate solutions is an equally good basis for
describing the system. But under the lesser symmetry of the perturbation, only a
single combination, or subset of combinations of the solutions will still be proper
to describe the system with the perturbation (i.e., will make the perturbation matrix
Vij diagonal).

Furthermore, if there is a symmetry operator A that commutes with both the
unperturbed Hamiltonian, and the perturbation, so that

H0 |n, a〉 = En |n, a〉 , A |n, a〉 = a |n, a〉 ,
[A,H0] = [A,V ] = 0,

then for the perturbation,
〈
n, a′

∣∣V |n, a〉 = δa,a′f (n),

so that symmetries dictate whether or not the perturbation can split the degeneracy.
So, as a general rule, it is the symmetries of the system that determine the struc-

ture of the Hamiltonian, and they are revealed in the degeneracy of the solutions.
For a detailed analysis of the relation between symmetry and degeneracy, see Elliot
and Dawber, below.
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Delayed-Choice Experiments

A.J. Leggett

The phenomenon of � “wave-particle duality” is at the heart of quantum mechanics,
indeed has been described as “the one real mystery” of the subject. If we consider
the standard Young’s slits setup shown in Fig. 1, we may imagine for definiteness
that the experiment is done with electrons (� Double-slit Experiment), then in the
absence of “inspection” the probability of arrival of an electron on the final screen

Fig. 1 The standard Young’s slit setup. We may or may not choose to ‘inspect’ whether a given
electron passes through slit B or slit C; the brackets indicate the optionality of the observation
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D1

D2

Fig. 2 An experiment illustrating “wave-particle duality” for photons. The brackets around the
screen indicate that it may be either left in place (to indicate the “wave” aspect) or removed (to
indicate the “particle” aspect)

shows the usual interference pattern – the electron appears to behave as a wave. If
on the other hand we arrange to inspect which path is followed (e.g. by shining light
on the intermediate slits as in the Heisenberg “gamma ray microscope” thought ex-
periment � Heisenberg microscope; which-way experiments), then the electron is
always found, like a classical particle, to take one route or the other, and under these
conditions no interference occurs at the final screen. If we replace the � electrons
with photons (� light quantum), we expect a similar duality to manifest itself; how-
ever, in this case, since it is very difficult to detect a photon without destroying it,
it is more convenient to try to display the “particle” aspect by removing the final
screen and replacing it by a pair of detectors as indicated in Fig. 2; again we will
find that one detector or the other clicks, never both.

If D1 clicks we can infer that the photon in question came through slit C, if
D2 clicks that it came through B. As is well known, Bohr interpreted experiments of
this type to indicate that the very nature (“wave” or “particle”) of elementary objects
such as electrons or photons depends on the arrangement of the macroscopic exper-
imental apparatus used to examine them; the arrangements needed to see wavelike
behavior on the one hand and particle-like behavior on the other are always mu-
tually exclusive (“complementarity”). This is particularly obvious in the example
of the photon, and for definiteness I will from now on restrict myself to this case,
although an entirely parallel discussion could be given for the case of an electron.

(See Consistent histories, Ignorance Interpretation, Ithaca Interpretation, Many
Worlds Interpretation, Modal Interpretation, Orthodox Interpretation, Transactional
Interpretation).

Is it necessary that the photon should as it were know in advance of entering the
apparatus whether the latter has been set up in the “wave” configuration (Fig. 2) with
the screen S in place or the “particle” one (S removed)? This question was already
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raised by implication [1] within a few years of the birth of quantum mechanics,
and in 1978 John Archibald Wheeler (1911–2008) [2] pointed out that it can be
answered, at least in principle, by an experiment in which we leave the decision as
to which configuration to use until after the � wave packet representing the photon
is well within the apparatus (let us say to the right of point X in Fig. 1). Such an
experiment is called a “delayed-choice” experiment, and several have been done
over the last 30 years, not only on photons but also on hydrogen atoms � Bohr’s
atomic model and neutrons; without exception they have indicated that it does not
matter whether the choice of configuration is made well in advance or only at the
“last moment”, the counting statistics are quite independent of this.

In the case of photons, if the dimensions of the apparatus are of the order of 3 m
(a fairly typical value), the transit time is about 10 ns, and it is therefore essential, in
conducting a meaningful delayed-choice experiment, that the time needed to make
the “choice” should be substantially smaller than this. (For atoms and neutrons the
requirement is somewhat less stringent). This obviously rules out the possibility of
physically inserting or removing a screen as in Fig. 2; however, it turns out that one
can get around this difficulty by exploiting the polarization degree of freedom. (For
a different technique which does not rely on this, see below). The basic idea is to
correlate (or decline to correlate) the path taken by the photon with its polarization,
a choice which can be realized over a few nanoseconds with the help of a device
such as a Pockels cell (which can rotate the plane of polarization by 90◦).

A possible schematic realization is shown in Fig. 3: The photons emitted by the
source are polarized (for example) in the plane of the paper, and in the absence
of the Pockels cell (or if it is in place but not activated) this polarization is main-
tained throughout the experiment for both beams, so that they interfere at BS2 with a
relative phase which is controlled by the phase shifter. Thus, under these conditions
the output of the detector D1 (for example) is a periodic function of the phase differ-
ence introduced by the shifter (“wave” behavior). If on the other hand the Pockels
cell is activated, the polarization of a photon in the lower beam is rotated out of

,BS1

Pockels
Cell

BS2

D1

D2

Phase
shifter

Fig. 3 Schematic realization of a polarization-mediated delayed-choice experiment. The notation
to the right of the Pockels cell indicates that the polarization may, depending on our choice, be
either in-plane or out-of-plane
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the plane of the paper, so is perpendicular to that of the upper beam; the path taken
by a given photon is now effectively “labelled” by its polarization. Under these
conditions there can be no interference at BS2 (which we assume is polarization-
insensitive), and the output of detector D1 is exactly the sum of what it would be
for each of the two beams separately; since for each beam alone the output is inde-
pendent of the position of the phase shifter, the total output of D1 when the Pockels
cell is activated is similarly insensitive to the latter (“particle” behavior). The cru-
cial point is that the cell can be activated after the incoming photon wave packet has
split at BS1.

Over the last twenty years a number of experiments along these general lines
have been done; the one closest to Wheeler’s original proposal is probably that of
ref. [3], which uses a setup similar though not identical1 to that of Fig. 3. In this
experiment the length of the interferometer was 48 m, and the choice as to whether
or not to activate the switching cell was made by a quantum random number gen-
erator (QRNG) close to the far end; with this geometry the photon enters the future
light cone of the random choice event long after it has passed the initial beam split-
ter. The use of the QRNG is designed to ensure that the photon has no way of
“knowing” the choice ahead of time. The results are clear-cut: If one selects those
photons for which the “wave” configuration was realized and plots the dependence
of the output of one of the detectors on the phase shift between the two beams,
one finds a well-defined sinusoidal pattern with visibility of 94%. If on the other
hand one selects those photons which experienced the “particle” configuration, the
corresponding plot is flat within experimental error.

An interesting variant of the “delayed-choice” experiment was reported in
ref. [4]. The schematic setup is shown in Fig. 4: the “source” is prepared in such a
way that there are nonzero mutually coherent amplitudes for a pair of photons to be
emitted back-to-back by either of two regions A and B. Photon no.1 is registered by
the screen S long before photon no.2 hits BS1 or BS2. The point of this arrangement
is that any photon detected by D3 (D4) could only have come from source A(B);
on the other hand, a photon arriving in D1 or D2 could have come from either
source. Under these conditions, if we select only those photons 1 whose partners
2 were detected in (say) D4 (let’s call this the “D4-correlated subensemble” of
photons 1), we find that the distribution on the screen S is flat; on the other hand,
if we select only those whose partners were detected in (say) D1 (“D1-correlated”
subensemble), we obtain a well-defined fringe pattern (with a complementary pat-
tern for those whose partners were detected in D2). At first sight this is puzzling,
since the detection of photon 1 on screen S took place well before the corresponding
photon 2 “knew” whether it would be transmitted or reflected by BS1/2 and thus
whether it will be detected by D3/D4 or by D1/D2.

In fact, there is no real paradox here (or in any of the other delayed-choice ex-
periments); a consistent application of the quantum measurement axioms predicts

1 Note in particular that in contrast to the setup of Fig. 3, in ref. [4] the activation of the electro-
optical cell corresponds to the “wave” configuration and its non-activation to the “particle”
configuration.
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Fig. 4 The experimental arrangement of Kim et al. [4]

precisely the experimentally observed results. In particular, let us consider a case in
which photon no.1 is detected at a point where the pattern corresponding to (say) the
D1-correlated subensemble has a node. When we say that the photon is “detected”,
we imply that it has induced a (quasi-) macroscopic event and thus satisfied what
is usually considered the criterion for having undergone a “measurement”. If at this
point we apply the standard � projection postulate to the two-photon system, we
find that following the projection the � wave function of photon 2 is automatically
such that its amplitude to arrive in D1 is zero, so everything is consistent. What the
“delayed-choice” experiments really illustrate, in a spectacular way, is the pitfalls
of applying the projection postulate at too early a stage in the game, while nothing
has been registered at the macroscopic level and there is still a possibility of mutual
interference of the possible alternatives.2
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Density Matrix

Leslie Ballentine

A matrix representation of the � state operator. So named because in the posi-
tion basis its diagonal elements are equal to the position probability density. This
name is older than the modern term state operator, and is still frequently used in
its place, especially in many-electron theory and � quantum chemistry. The name
density matrix is not entirely accurate, since in the position basis it is not really
a matrix, but rather a function of two continuous variables. If a discrete basis is
chosen (such as the spin basis), then it becomes a genuine matrix, but its diagonal
elements are probabilities rather than densities. � States, pure and mixed, and their
representation.

Density Operator

Werner Stulpe

Density operator, an operator used to describe (mixed) quantum states. A density
operator [1–6], also called statistical operator or – somehow misleading – density
matrix, is a positive trace-class � operator ρ of trace 1 acting in some separable
complex � Hilbert space H; i.e., ρ is a linear operator defined on H with values in
H that satisfies ρ = ρ∗, 〈φ|ρφ〉 � 0 for all φ ∈ H, and tr ρ = ∑i〈φi |ρφi〉 = 1,
φ1, φ2, . . . being a complete orthonormal system in H. In particular, ρ is a com-
pact self-adjoint � operator; in consequence, a density operator has the spectral
decomposition ρ = ∑

i λiPχi (� self-adjoint operator) where λ1, λ2, . . . are the
nonzero eigenvalues of ρ, counted according to their multiplicity and arranged
according to λ1 � λ2 � . . . > 0,

∑
i λi = 1, χ1, χ2, . . . is an orthonormal system
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A matrix representation of the � state operator. So named because in the posi-
tion basis its diagonal elements are equal to the position probability density. This
name is older than the modern term state operator, and is still frequently used in
its place, especially in many-electron theory and � quantum chemistry. The name
density matrix is not entirely accurate, since in the position basis it is not really
a matrix, but rather a function of two continuous variables. If a discrete basis is
chosen (such as the spin basis), then it becomes a genuine matrix, but its diagonal
elements are probabilities rather than densities. � States, pure and mixed, and their
representation.

Density Operator

Werner Stulpe

Density operator, an operator used to describe (mixed) quantum states. A density
operator [1–6], also called statistical operator or – somehow misleading – density
matrix, is a positive trace-class � operator ρ of trace 1 acting in some separable
complex � Hilbert space H; i.e., ρ is a linear operator defined on H with values in
H that satisfies ρ = ρ∗, 〈φ|ρφ〉 � 0 for all φ ∈ H, and tr ρ = ∑i〈φi |ρφi〉 = 1,
φ1, φ2, . . . being a complete orthonormal system in H. In particular, ρ is a com-
pact self-adjoint � operator; in consequence, a density operator has the spectral
decomposition ρ = ∑

i λiPχi (� self-adjoint operator) where λ1, λ2, . . . are the
nonzero eigenvalues of ρ, counted according to their multiplicity and arranged
according to λ1 � λ2 � . . . > 0,

∑
i λi = 1, χ1, χ2, . . . is an orthonormal system
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of corresponding eigenvectors (supplemented by the eigenvectors belonging to the
possible eigenvalue 0, the system χ1, χ2, . . . is complete), and Pχi = |χi〉〈χi | are
the corresponding one-dimensional orthogonal projections (� projection). More-
over, for a bounded linear operator A in H, trρA exists (� operator) and trρA =∑

i λi〈χi |Aχi〉; if in addition A is self-adjoint, then trρA is a real number.
The set S(H) of all density operators is convex, i.e., the convex linear combi-

nation ρ = αρ1 + (1 − α)ρ2 of any ρ1, ρ2 ∈ S(H), 0 � α � 1, belongs to
S(H). The set S(H) is even σ -convex, i.e., for any sequence ρ1, ρ2, . . . of density
operators and any sequence of numbers satisfying 0 � αi � 1 and

∑
i αi = 1,

ρ =∑∞
i=1 αiρi ∈ S(H) where the sum converges in the operator norm and even in

the trace norm (� operator). An extreme point of the convex set S(H) is a density
operator ρ that admits only trivial convex decompositions, i.e., ρ = αρ1+(1−α)ρ2,
ρ1, ρ2 ∈ S(H), and 0 < α < 1 imply ρ1 = ρ2 = ρ. The extreme points of S(H)

are the one-dimensional orthogonal projectionsPψ = |ψ〉〈ψ|, ‖ψ‖ = 1. Physically,
the extreme points Pψ describe the pure states of conventional Hilbert-space quan-
tum mechanics (equivalently, a pure � state can be described by the unit vector ψ
which is uniquely determined up to a phase factor eiα , α ∈ R). A � mixed state is
described by a density operator that is not an extreme point. So S(H) can be con-
sidered as the set of all quantum states and the set exS(H) of the extreme points
of S(H) as the set of all pure states. For ρ ∈ S(H), the statement ρ ∈ exS(H) is
equivalent to ρ = ρ2.

For instance, if ψ1, ψ2, . . . is a nonorthogonal sequence of unit vectors and
α1, α2, . . . a sequence of numbers satisfying 0 < αi < 1 and

∑
i αi = 1, then

ρ =∑i αiPψi , Pψi = |ψi〉〈ψi |, is a density operator with a spectral decomposition
ρ = ∑i λiPχi into mutually orthogonal states Pχi . That is physically, the state ρ

can be prepared both as the � mixture of the states Pψ1 , Pψ2 , . . . in ratio α1 : α2 : . . .
and as the mixture of the states Pχ1 , Pχ2 , . . . in ratio λ1, λ2, . . . . Even the decom-
position of a density operator into orthogonal states is in general not unique, as the
example ρ = 1

2 (Pφ1 + Pφ2) = 1
2 (Pχ1 + Pχ2) = 1

2P shows where φ1, φ2 and χ1, χ2
are two different orthonormal bases of a two-dimensional subspace X of H and P

is the orthogonal projection onto X . In particular, for spin- 1
2 systems, φ1 and φ2

can be the eigenstates (eigenvectors) of the operator Sz of the z-component of spin
whereas χ1 and χ2 can be the eigenstates of Sx . The decomposition of a density
operator ρ ∈ S(H) into mutually orthogonal pure states Pχi corresponds to the
spectral decomposition ρ = ∑i λiPχi , under the condition λ1 � λ2 � . . . > 0
the spectral decomposition is unique if and only if the nonzero eigenvalues λi of ρ
are nondegenerate, i.e., of multiplicity 1. Besides the decomposition into orthogonal
pure states, every � mixed state ρ ∈ S(H) can be decomposed in many ways into
pure states Pψi not being mutually orthogonal [3], so ρ = ∑i λiPχi =

∑
i αiPψi

where 0 < αi < 1 and
∑

i αi = 1.
(Spectral decomposition, see � Ignorance interpretation; Measurement theory;

Objectification; Operator; Probabilistic Interpretation; Propensities in Quantum Me-
chanics; Self-adjoint operator; Wave Mechanics).

For a density operator ρ ∈ S(H) and a bounded self-adjoint operator A sat-
isfying 0 � A � I , 0 � tr ρA � 1 holds; in particular, if Q is an orthogonal� projection, then 0 � tr ρQ � 1. The orthogonal projections can be interpreted
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as ideal (sharp) yes-no measurements performed on quantum systems (� effect),
and trρQ is interpreted to be the probability for the outcome ‘yes’ of the measure-
ment Q in the state ρ. If ρ is a pure state, i.e., ρ = Pψ , then trρQ = 〈ψ|Qψ〉.
Moreover, quantum observables (� observable) are traditionally described by (in
general unbounded) operators A; if E is the spectral measure of A (� self-adjoint
operator) and B a Borel set of the real line (e.g., an interval), then trρE(B) is the
probability that a measurement of A in the state ρ yields a value in B. The mapping
μρ defined by μρ(B) = trρE(B) is a probability measure on the Borel sets of R,
called the probability distribution of the observable A in the state ρ. Furthermore,
if tr ρA exists, it is the expectation value of A (for a definition of tr ρA in the case
of an unbounded operator A, see [7]).

A mixed state ρ = ∑
i αiPψi can be established by preparing the pure states

Pψ1 , Pψ2 , . . . with respective probabilities α1, α2, . . .. This preparation procedure
can be generalized. If a preparation device produces pure states P = Pψ whose
occurrence is subject to a probability distribution μ on the set exS(H) of all pure
states (i.e., μ is a probability measure on the Borel sets of the one-dimensional
orthogonal projections), then the probability for the outcome ‘yes’ of a measure-
ment Q, Q = Q2 = Q∗, is given by l(Q) = ∫exS(H)

trPQ μ(dP). Replacing
Q in this equality by a general bounded self-adjoint operator A ∈ Bs(H) (� op-
erator), l becomes a bounded linear functional on Bs(H). Moreover, l is positive,
i.e., l(A) � 0 for all A � 0, and l is normal, i.e., for every sequence of operators
An ∈ Bs(H) such that An � An+1 and ‖Anφ −Aφ‖ → 0 for all φ ∈ H as n→∞
where A ∈ Bs(H), l satisfies l(An) → l(A) as n → ∞. Just the normal positive
linear functionals on Bs(H) can be represented by positive trace-class operators [6],
that is, l(A) = trρA where ρ � 0. Since l(A) = ∫

exS(H) trPA μ(dP) and μ

is a probability measure, ρ is of trace 1, i.e., ρ is a density operator. Hence, the
probability considered above reads l(Q) = ∫exS(H)

trPQ μ(dP) = trρQ where
ρ describes the underlying preparation procedure which is determined by μ; for-
mally, one can write ρ = ∫exS(H)

P μ(dP ). In general, many different probability
distributions on exS(H) give rise to the same quantum state ρ.

The states of quantum systems consisting of two subsystems with the respective
Hilbert spaces H1 and H2 are described by the density operators acting in the tensor
product H1 ⊗H2 [3, 4, 8]. For every density operator ρ ∈ S(H1 ⊗H2), there exist
a uniquely determined density operator ρ1 ∈ S(H1) such that, for all A ∈ Bs(H1),
trρ(A⊗I) = trρ1A where I is the unit operator of H2; A⊗I are those observables
of the composite systems that concern only their first components. The operator ρ1
is called the reduced state of ρ w.r.t. H1 or the partial trace of ρ w.r.t. H2. The latter
name is related to the explicit representation ρ1 =∑i,j,k〈φi⊗χk| φj ⊗χk〉|φi〉〈φj |
where φ1, φ2, . . . and χ1, χ2, . . . are complete orthonormal systems in H1 and H2,
respectively. Analogously, the reduced state of ρ w.r.t. H2 (the partial trace w.r.t.
H1) is defined. The reduced states of a pure state ρ = Pψ ∈ exS(H1 ⊗ H2) are
pure if and only if ψ is of the form φ ⊗ χ in which case ρ1 = Pφ and ρ2 = Pψ .
If ρ = Pψ where ψ ∈ H1 ⊗H2 is not of the form φ ⊗ χ , i.e., if ρ is an entangled
pure state (� entanglement), then both the reduced states are mixed. In fact, for
every vector ψ ∈ H1 ⊗ H2 there exist orthogonal systems φ1, φ2, . . . in H1 and
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χ1, χ2, . . . in H2 such that ψ = ∑i αiφi ⊗ χi where αi > 0 [3, 4, 2]. If ‖ψ‖ = 1
and ρ = Pψ , then ρ1 = ∑

i |αi |2Pφi and ρ2 = ∑
i |αi |2Pχi . So the pure states

of S(H1 ⊗ H2) yield in general mixed reduced states. More generally, for a state
ρ = ρ1 ⊗ ρ2, the partial traces are just ρ1 and ρ2; for an entangled state ρ (i.e., for
a state ρ ∈ S(H1 ⊗H2) that is not of the form ρ1 ⊗ ρ2), both the partial traces are
mixed states.

A face F of the convex set S(H) is a subset of S(H) being closed under convex
linear combinations as well as under convex decompositions, that is, F ⊆ S(H)

is a convex set such that ρ ∈ F , ρ = αρ1 + (1 − α)ρ2, ρ1, ρ2 ∈ S(H), and
0 < α < 1 imply that ρ1, ρ2 ∈ F . The empty set and the whole set S(H)

are the trivial faces of S(H), and the extreme points of S(H) correspond to the
one-element faces of S(H). The set �(S(H)) of all faces of S(H) can be ordered by
inclusion; it is obvious that the partially ordered set �(S(H)) is a complete lattice.
The same holds true for the set �n(S(H)) of all faces of S(H) that are closed w.r.t.
the trace norm. For every orthogonal projection Q, FQ = {ρ ∈ S(H) | trρQ = 1}
is such a trace-norm closed face. Moreover, the mapping assigning the face FQ to
every Q, is an order isomorphism between the orthocomplemented lattice P(H) of
all orthogonal projections (� projection, quantum logic) and the lattice �n(S(H))

[3]; so �n(S(H)) is, as P(H), an atomic complete orthomodular lattice.
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5. E. Prugovečki: Quantum Mechanics in Hilbert Space (Academic, New York 1971, second edi-

tion 1981; reprint Dover Publications, Mineola 2006)
6. E. B. Davies: Quantum Theory of Open Systems (Academic, London 1976)
7. W. Stulpe: Classical Representations of Quantum Mechanics Related to Statistically Complete

Observables (Wissenschaft und Technik Verlag, Berlin 1997; quant-ph/0610122), p. 91
8. M. Reed and B. Simon: Methods of Modern Mathematical Physics I: Functional Analysis

(Academic, New York 1972, second edition 1980)



170 Diffeomorphism Invariance

Diffeomorphism Invariance

Christian Heinicke

Diffeomorphism invariance refers to the form invariance of tensor(-equations)s un-
der diffeomorphisms ([5], see also � covariance).

A diffeomorphism � is a one-to-one mapping of a differentiable manifold M
(or an open subset) onto another differentiable manifold N (or an open subset).
Moreover, � (and its inverse �−1) is differentiable. The concept of a diffeomor-
phism is intrinsically tied to the concept of a differentiable manifold. Here, we
are mainly concerned with the four-dimensional spacetime manifold. The curves
in Fig. 1 correspond to coordinate lines. There are two interpretations of the action
of a diffeomorphism. A passive diffeomorphism changes one coordinate system to
another one, like a cartesian to a polar coordinate system. Thus, one just changes the
description of one and the same manifold (M = N). An active diffeomorphism cor-
responds to a transformation of the manifold which may be visualized as a smooth
deformation of a continuous medium.

Now let a (tensor) field T be a solution of a diffeomorphism invariant field equa-
tion. By applying a diffeomorphism we obtain a transformed field T̃ which still is a
solution to the field equation.

Passively interpreted, T and T̃ describe one and the same field in different co-
ordinate systems. Passive diffeomorphism invariance is achievable by formulating
the fundamental differential equations of a theory in a coordinate free way. One
may argue that this is a purely mathematical task and involves no physics, i.e.
means no restriction to a theory (Kretschmann, 1917 [2]). But even if the “de-
coordinatization” may seem quite “harmless” the interpretation of the basic terms
of the theory is modified. Moreover, in specific cases, such as in the development of
general relativity, there can emerge substantial generalizations.

Interpreted as active transformation T and T̃ describe two distinct fields in
the same coordinate system. “Distinct” here means that the field is “redistributed”
(or “spread differently”) over the manifold. From this point of view one would
say that the field equation has the property to allow for (local) symmetry or gauge
transformations of the field (� symmetries). Such local symmetries are not ensured
automatically by a coordinate free formulation but have to be enforced dynami-
cally (� gauge theories). Invariance under active diffeomorphisms raises important

Fig. 1 Passive vs.
active diffeomorphism:
re-coordinatization vs.
deformation

Φ

Φ−1
M N
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interpretational questions. Do the (“gauge equivalent”) fields T and T̃ represent
distinct physical situations? If so, does the (diffeomorphism invariant) theory fail
to prescribe the dynamics of the field uniquely? These questions are addressed in
the famous hole-argument, originally put forward by Einstein in 1913 in the con-
text of his search for the theory of general relativity [1]. Later, these difficulties
were circumvented by focusing on (gauge-) invariant observables. Nevertheless, the
values of fields alone can not be used to individuate points of the manifold. This
makes a realistic interpretation of the manifold as spacetime less tenable. Therefore,
diffeomorphism invariance (general covariance) plays an important role in the con-
text of the spacetime structuralism-realism debate [3].

Earman, Stachel, Norton revived the hole argument in view of modern develop-
ments in spacetime and gauge theories. The discussion still continues [4].
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Dirac Equation

Helge Kragh

The Dirac equation is a fundamental wave equation that satisfies the requirements
of the special theory of relativity. Shortly after the appearance of the � Schrödinger
equation, several physicists attempted to extend it to the relativistic domain. The
result – known as the Klein-Gordon-equation � relativistic quantum mechanics –
was however unable to describe � electrons correctly. Paul A.M. Dirac realized that
the formal structure of the Schrödinger equation, the form Hψ = i �∂ψ/∂t , had to
be retained also in a relativistic theory, implying that the � Hamilton operator must
be of the first order in the space derivatives. By “playing around with mathematics”
he derived in late 1927 a wave equation which was linear in both space and time
derivatives. For a free electron he wrote it as (W/c + α · p + βm0c)ψ = 0, where
the quantities α and β were 4×4 matrices. In later literature the matrices were often
designated γμ(μ = 1, 2, 3, 4).
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As Dirac showed in his paper of 1928, the operators or matrices have the math-
ematical properties that γ 2

μ = 1 and, for μ �= ν, γμγν + γνγμ = 0. In fact, it
were these relations that led him to the equation. Dirac had not originally thought of� spin, but discovered that his equation was able to account for the electron’s mag-
netic moment, hence its spin. When it turned out that the equation provided a full
explanation of the hydrogen spectrum (� spectroscopy), including the fine-structure
components, it was quickly accepted by the physics community as the fundamental
equation for the electron and presumably also the proton. Only after World War II,
with the discovery of the Lamb shift, was it shown that the predictions from Dirac’s
theory disagree slightly with the measured spectrum.

Dirac’s relativistic equation led to serious conceptual difficulties, principally be-
cause the wave function has four components rather than the two corresponding to
the electron’s spin states. Its solutions seemingly referred to electrons with negative
energy – entities with no physical meaning. The so-called “±-difficulty” was turned
into a success with Dirac’s theory of the anti-electron (and other anti-particles)
which he developed 1929–31. According to Dirac’s theory of 1931, two of the four
components of the � wave function referred to an electron with positive electrical
charge, soon to be known as a positron. When the positron was detected in cosmic-
ray experiments 1932–33, it was considered a great triumph of the Dirac equation.
In 1995 a plaque was unveiled in Westminster Abbey, commemorating Dirac. It
contains a version of the Dirac wave equation in the compact form iγ · ∂ψ = mψ.
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Dirac Notation

Roderich Tumulka

The “bra”-and-“ket” notation (introduced by Dirac) uses the symbols |ψ〉 and 〈ψ|
for vectors in and linear forms on � Hilbert space.
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In this notation, if ψ is a vector in Hilbert space H then |ψ〉 is just another
notation for ψ , and 〈ψ| means the mapping φ �→ 〈ψ|φ〉, a linear form H → C

defined using the scalar product 〈·|·〉 of H . Turning |ψ〉 into 〈ψ| is a conjugate-
linear operation: 〈φ + ψ| = 〈φ| + 〈ψ| and 〈zψ| = z∗〈ψ| for z ∈ C.

Linear forms are also called co-vectors, and the set of all linear forms is called
the dual space. Thus, 〈ψ| is the co-vector naturally associated with the vector ψ .
The difference between vectors and co-vectors is basically the same as the differ-
ence between a column and a row in matrix theory (linear algebra), or between the
contravariant components uμ and the covariant components uμ of a 4-vector in rel-
ativity theory. The Riesz lemma of functional analysis implies that every continuous
linear form H → C (only the continuous ones are usually considered) is of the
form φ �→ 〈ψ|φ〉 for a suitable ψ ∈ H ; as a consequence, there is a one-to-one
correspondence between vectors and (continuous) co-vectors, and H is, up to com-
plex conjugation, its own continuous dual space.

As the notation suggests, the scalar product 〈φ|ψ〉 is the same as the linear form
〈φ| applied to the vector |ψ〉. That is why Dirac called 〈φ| a “bra” vector and |ψ〉
a “ket” vector: bra + ket = bracket; that is, when written one after the other, they
form the scalar product. When written in the opposite order, |ψ〉〈φ|, they form not
a number but an operator |χ〉 �→ |ψ〉〈φ|χ〉. In particular, if ‖ψ‖ = 1 then |ψ〉〈ψ|
is the projection to the 1-dimensional subspace spanned by ψ . Moreover, if T is an
operator then 〈φ|T |ψ〉 means the same as 〈φ|T ψ〉 or 〈T ∗φ|ψ〉.

The Dirac notation has another advantage: If some vectors ψn are indexed by
some index n then one can write |n〉 instead of |ψn〉, provided there is no dan-
ger of misunderstanding. For example, an � orthonormal basis can be denoted
|1〉, |2〉, |3〉, . . ., so that the matrix elements of an operator T can be written as
Tnm = 〈n|T |m〉, the identity operator as

I =
∑
n

|n〉〈n| , (1)

and the orthonormality relation as

〈n|m〉 = δnm . (2)

An extension of the � Dirac equation concerns generalized orthonormal bases
(such as the position basis in quantum mechanics), which consist of a unitary iso-
morphism H → L2(�) and thus permits us to write every vector ψ ∈ H as a
square-integrable function ψ(q) on some set � (such as � = R3N ), whereas an� orthonormal basis in the ordinary sense permits us to write a vector ψ ∈ H as a
sequence 〈1|ψ〉, 〈2|ψ〉, . . . of numbers, the components of ψ . The extended � Dirac
notation introduces the symbol |q〉 as if the generalized basis was an ordinary basis,
and to treat this symbol as if it denoted a vector in H . (In quantum mechanics, in
fact, |q〉 of the position basis represents the Dirac delta function δ(· − q), which is
not a square-integrable function and thus does not belong to H ; similarly, the kets
of the momentum basis |k〉 represent the non-normalizable functions x �→ eikx .)
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Thus, one writes
ψ(q) = 〈q|ψ〉 , (3)

while the orthonormality relation can be expressed as

〈q|q ′〉 = δ(q − q ′) , (4)

and the identity operator as

I =
∫
|q〉〈q| dq . (5)

See also the contributions on � Rigged Hilbert Spaces.

Double-Slit Experiment (or Two-Slit
Experiment)

Gregg Jaeger

The phenomenon of interference arises in both classical and quantum physics. In
everyday life, more general interference effects can be seen, for example, patterns
formed on the surface of a body of water when the wakes of two passing ships
merge and pass through each other. Mathematically, this effect is due to the addi-
tion of corresponding physical quantities, such as wave height in the case of surface
waves on water, to produce modulated patterns. These patterns can be made to ex-
hibit clear regularities, particularly in simple situations. This effect has most often
been studied by passing light through a pair of slits in a diaphragm, due in particular
to an influential experiment in the early nineteenth century performed by Thomas
Young [4] in which a double-slitted screen was used to produce an interference pat-
tern. This pattern was readily explained in terms of classical light beams as waves
traveling in the classical electromagnetic field. However, there are important differ-
ences between quantum interference and the more familiar effect of interference in
classical physics. In particular, in quantum mechanical situations there are complex
amplitudes, which therefore mathematically involve a phase contribution, that add,
giving rise to characteristically quantum behavior, rather than real-valued intensi-
ties which are sometimes also referred to as amplitudes which add as in the case
of water waves. It is important, from the ontological perspective, to recognize that
quantum mechanical quantities do not directly describe substances, unlike in the
classical ether theory of Christiaan Huygens, for example.

At the time of its appearance, the double-slit experiment of Young was under-
stood to resolve a long-running debate regarding the nature of light as to whether
light is best understood as composed of waves or composed of particles. Robert
Hooke, in his book Micrographia [1] of 1665, had initially suggested that light
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propagation may involve “very short” vibratory motions in some underlying me-
chanical medium, making reference to the mechanical properties of diamond in
particular. However, because Hooke provided no specific experimental evidence
supporting this view, it was not particularly influential in his scientific environment
in which, by then, empirical evidence had already become paramount. At the time,
various phenomena were in need of explanation by making use of one or the other
of these two ontologies, including the observation of rays and shadows, diffraction,
reflection, refraction, the polarization of light, and rainbows. Huygens later emerged
as the primary advocate of what is now identified as the wave ontology, which was
used in his 1690 book Traité de la lumière [2], whereas Isaac Newton was the pri-
mary advocate of the particle ontology, which was used in his Opticks [3] of 1704.
(� Wave-Particle Duality)

Huygens was able to explain the appearance of linearly propagating patterns of
light by considering the net effect of locally originating radial propagation of finite-
speed influences. Mechanically, Huygens described light as a solitary longitudinal
pulse moving at a uniform rate, in contrast to water wave motion, through homo-
geneous material through an elastic ether medium determined by its composition.
He was able within this limited wavelike picture to make headway by explaining
both reflection and refraction. Importantly, however, this picture left no room for a
mathematical description involving a phase. As a result, there were difficulties in
explaining other of the above-mentioned phenomena, rainbows in particular, using
this picture. By contrast, Newton’s corpuscular theory was able to explain rainbows,
as well as reflection and refraction. Famously, Newton first explained the produc-
tion of colored light from white light by prisms. The theory was referred to as the
corpuscular theory because, in it, light beams are represented as many localized in-
dividual bodies of colored matter, which could be variously combined and separated
by media. The separation of variously colored corpuscles by a glass prism provided
an adequate explanation of rainbows.

Newton’s conception of light then held sway for nearly a century, until the ap-
pearance of Thomas Young’s [4] article “Experiments and Calculations Relative to
Physical Optics” in the Philosophical Transactions of the Royal Society of London,
in which the double-slit experiment was reported. In Young’s experiment, light was
allowed to pass through a slit in a diaphragm, after which it then encountered a sec-
ond diaphragm horizontally distanced from the first with two slits equally spaced
vertically about the vertical location of the first slit, and finally impinged on a de-
tection screen in a pattern of light and dark fringes. This sort of apparatus is now
referred to as a Young interferometer. Because, by Huygens’ principle, light con-
tinually expands radially from every point where it is present, it will do so from
each of the three slits; first, the single slit feeds equally the remaining two slits,
after which emanations from these two slits are able to encounter each other. As
a result, light from each of the two slits meets on the detection screen, producing
a distinctive pattern of illuminated and dark points. In this way, the pattern at the
detection screen, particularly the dark regions thereof, can be understood as due to
the addition of contributions from each of the pair of slits. By contrast, when only
one of the two slits was unblocked, no such pattern was seen but only illumination
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symmetrically fading vertically about the position horizontally located directly in
front of the unblocked slit.

At the very turn of the twentieth century, due to the influence of Young’s experi-
mental results and the further development of classical electromagnetic field theory
by James Clerk Maxwell and others, light was believed to be fundamentally wave-
like whereas matter was continued to be understood as fundamentally particulate.
With the advent of quantum mechanics, the understanding of the fundamental na-
ture of both light and matter changed again. This was due equally to the success of
Albert Einstein’s light-particle or photon hypothesis [6], which explained the then
surprising � photoelectric effect, and to Louis de Broglie’s hypothesis [5] that both
light and matter exhibit wavelike behavior in accordance with the relation λ = h/p,

where h is � Planck’s constant and p is momentum; X-ray diffraction experiments
of von Laue [7] and � Davisson–Germer experiment [8] electron diffraction exper-
iment confirmed the latter hypothesis.

Now, after the formal completion of modern quantum theory, quantum inter-
ference as observed in double-slit experiments is understood to arise due to the� superposition of quantum states, which occurs when there is � indistinguisha-
bility in principle by a precise measurement of alternative sequences of quantum
states that originate with a common initial preparation. In the quantum mechan-
ical double-slit experiment (for an instructive, more detailed and yet elementary
discussion, see [16]), elementary systems such as � electrons impinge precisely
in one direction on a double-slit diaphragm and strike a detection screen, much
as in the last stages of Young’s original arrangement (Fig. 1). Take ai(x) to be the
quantum probability amplitude corresponding to the passage through slit i (i = 1, 2)
of a diaphragm toward the vertical spatial point x on the measurement screen ori-
ented precisely perpendicularly to the direction of the initial horizontal beam. The
probability density of later finding these systems at x upon measurement is then
pi(x) = |ai(x)|2. The normalized quantum amplitude for systems being found at x
when both slits are passable, so that either slit might be entered on the way to the
screen, is a12(x) = 1√

2

(
a1(x) + a2(x)

)
, according to the amplitude superposition

principle. The probability density of arrival at a point x of the detection screen upon
measurement is

p12(x) = 1

2

[
|a1(x)|2 + |a2(x)|2

+|a1(x)a2(x)|
(

exp
[
i(θ2(x)− θ1(x))

]+ exp
[
i(θ1(x)− θ2(x))

])]
,

the complex square of a12(x), where the {θi(x)} are the phases of the complex num-
bers {ai(x)} in the polar representation. Integrating p12(x) provides the detection
rates observed in realizations of this ideal experiment.

The important difference between this quantum-mechanical experiment and the
analogous one in which particles are described by classical mechanics is that the
probability density p12(x) �∝ p1(x)+ p2(x) in the quantum case: the density is not
additive, as it is in the classical experiment. The quantum-mechanical predictions
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a

I1 I2 I1 + I2

b

I1, 2

Fig. 1 (a) Particle-like behaviour of particles from a sand blast aimed at two slits. Depending on
whether slit 1 or slit 2 is open, patterns I1 or I2 will form respectively. (b) Wavelike behaviour
of electrons, when both slits are open. Adapted from F. Weinert, The Scientist as Philosopher
(Springer 2004, 58)

are confirmed by observation, even in the case that the systems are sent into this
apparatus only one at a time. Such independency from intensity was first clearly
observed in a related ‘feeble’ light diffraction experiment by G. I. Taylor [9],
and is also exhibited in the interference of massive electrically neutral particles.
The analogue of Young’s experiment was carried out by Jönsson and Möllenstedt
[10, 11], and a conclusive demonstration with individual electrons was achieved by
Tonomura et al. [12]. Further suggested reading regarding historical and concep-
tual issues involving the nature of light and the double-slit experiment are [13–15].
More detail of the very interesting history of the experiment with references to real-
izations with atoms and molecules can be found in the Physics World Editorial of 1
September, 2002 [17].
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Effect

Paul Busch

The term effect was introduced by G. Ludwig [1] as a technical term in his ax-
iomatic reconstruction of quantum mechanics. Intuitively, this term refers to the
“effect” of a physical object on a measuring device. Every experiment is understood
to be carried out on a particular ensemble (“Gesamtheit”) of objects (� ensembles
in quantum mechanics), all of which are subjected to the same preparation proce-
dure; each object interacting with the measuring device triggers one of the different
possible measurement outcomes. Technically, preparation procedures and effects
are used as primitive concepts to postulate the existence of probability assignments:
each measurement outcome, identified by its effect, and each preparation procedure
are assumed to determine a unique probability which represents the probability of
the occurrence of that particular outcome. Thus, an effect can be taken to be the
probability assignment, associated with a given outcome, to an ensemble of objects,
or the preparation procedure applied to this ensemble [3].

In Hilbert space quantum mechanics, an effect is defined as an affine map from
the set of states to the interval [0,1], or equivalently, as a linear operator E whose
expectation value tr[ρE] for any state (� density operator) ρ lies within [0,1]. From
this it follows that E is a positive bounded, hence selfadjoint, � operator.

Two selfadjoint bounded linear operators are said to be ordered as A � B (A
is less than B) if tr[ρA] � tr[ρB] for all states ρ. Thus, an effect E is a positive
bounded operator with the property that O � E � I, where O and I are the null
and identity operators, respectively.

Among the effects are the projection operators (� projection) , P , with the idem-
potency property P 2 = P . They are singled out as those effects for which the
generalized Lüders operation ρ �→ E1/2ρE1/2 is repeatable, that is, tr[EρE] =
tr[E1/2ρE1/2] for all states ρ. The conditionE = E2 can be expressed asEE′ = O ,
where E′ := I − E is the complement effect of E. It is thus seen that for an effect
that is not a projection, there is in general a nonzero probability, in a repeated Lüders
measurement, of obtaining complementary outcomes. By contrast, two complemen-
tary projections P and P ′ = I −P satisfy PP ′ = O , they are mutually orthogonal.
If projections are interpreted as properties, then effects which are not projections are
sometimes called unsharp properties, in an operational sense made precise in [2].

Another characterization of the set of projections is given by the fact that the set
of effects is convex and the extreme elements are exactly the projections. Further
details on mathematical and physical aspects of effects and their application can be
found in [4–6].

D. Greenberger et al. (eds.), Compendium of Quantum Physics: Concepts, Experiments, 179
History and Philosophy, c© Springer-Verlag Berlin Heidelberg 2009
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Ehrenfest Theorems

Erich Joos

The Ehrenfest theorems establish a formal connection between the time dependence
of quantum mechanical expectation values of � observables and the corresponding
classical equations of motion. Although mean values alone are insufficient to derive
classical behavior from quantum mechanics, the validity of the Ehrenfest relations
is an important requirement for a partial derivation of classical physics.

If the system (here a particle in one dimension, with obvious generalization to
more complex systems) is governed by a � Schrödinger equation with Hamiltonian

H = p2

2m
+ V (x),

the mean values for position, momentum and energy obey the relations

d

dt
〈x〉 = 〈p〉

m
,

d

dt
〈p〉 = −

〈
d

dx
V (x)

〉
,

and
d

dt
〈H 〉 = 0.

The mean value of position therefore follows a law of motion similar to Newton’s:

m
d2

dt2
〈x〉 = −

〈
dV

dx

〉
= 〈F 〉 .
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These relations are a special case of the general time-dependence of expectation
values of an observable A(t),

d

dt
〈A〉 = i

h
〈�| [H,A] |�〉 + 〈�| ∂A

∂t
|�〉 ,

which follows immediately from the definition of the expectation value 〈A〉 =
〈�|A |�〉 and Schrödinger’s equation i�∂t |�〉 = H |�〉.

Further considerations:

1. Quite independent of the chosen interpretation of quantum states, the mean value〈
d

dx V (x)
〉

is different from d
dx V (〈x〉). Only if V (x) is a polynomial of degree

2 – that is, for a free particle, motion in a homogenous field and the harmonic
oscillator – does the mean value follow the classical law of motion. For all other
cases, a strongly localized � wave packet is required, a condition which is rapidly
violated for classically chaotic systems. The range of validity of classical equa-
tions is sometimes called “Ehrenfest time”. Beyond this time-scale wave packet
dispersion becomes essential.

2. Historically, Ehrenfest’s theorem played an important role in establishing the
“correspondence limit” of quantum mechanics, that is, the hope (or the re-
quirement) that classical mechanics be contained in quantum mechanics as a
limiting case. This “� correspondence principle” fails, however, for at least two
reasons: As already mentioned, mean values for general wave packets and po-
tentials do not follow classical laws, second, macroscopic systems do not obey a
Schrödinger equation, since they are manifestly open systems.

A spectacular example of failure of the “correspondence principle” is provided
by the rotation of Hyperion, a moon of Saturn. Hyperion’s rotation is chaotic with
an estimated Ehrenfest time of only 20 years.

3. Extension to open systems. For some important classes of open systems, rela-
tions similar to that shown by Ehrenfest can be derived. Mean values are then
calculated from dynamical equations for the density matrix ρ describing the open

system according to d
dt 〈A〉 = d

dt tr (Aρ) = tr
(
A

dρ
dt

)
for a time-independent ob-

servable A. For example, from the equation for “Quantum Brownian motion” (a
particle immersed in a heat bath of temperature T ),

i
∂

∂t
ρ =

[
p2

2m
+ V (x), ρ

]
+ η

2m
[x, {p, ρ}]− iηkBT [x, [x, ρ]] ,

one finds

d

dt
〈x〉 = 〈p〉

m
,

d

dt
〈p〉 = −

〈
d

dx
V (x)

〉
− η

m
〈p〉
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and
d

dt
〈H 〉 = 2η

m

[
kBT

2
−
〈
p2

2m

〉]
.

In this case, motion is damped (with friction constant η), while energy approaches
its equilibrium value. Re-evaluations of the Ehrenfest theorem for open quantum
systems (often described by Lindblad equations derived from a Schrödinger equa-
tion that includes the environment (see � decoherence)) are important for a proper
understanding of the relation between classical and quantum physics.
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Eigenstates, Eigenvalues

See � States pure and mixed, and their Representations.

Einstein Locality

Henry P. Stapp

In 1935 Albert Einstein, in collaboration with Boris Podolsky and Nathan Rosen,
published a landmark paper entitled “Can quantum mechanical description of phys-
ical reality be considered complete?” [1] Einstein had already been engaged for
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several years in a discussion with Niels Bohr about the completeness of quantum
theory. In the1935 paper Einstein did not challenge the claim of the quantum the-
orists that their theory was complete in the pragmatic/epistemological sense that it
gives all possible empirically testable predictions about connections between the
various aspects of “our knowledge.” In the 1935 paper Einstein et. al. effectively
accepted this claim of epistemological completeness, but defined the question they
were addressing to be the completeness of quantum mechanics as a description of
physical reality.

“Physical reality” is a slippery concept for scientists, when it becomes sepa-
rated from empirically testable predictions. Hence Einstein and his colleagues were
faced with the difficult task of introducing this term into the discussion in a way
that could not easily be dismissed as vague metaphysics by a physics community
which, greatly impressed by the empirical successes of quantum mechanics, was
in no mood to be sucked into abstruse philosophical dialectics. Yet Einstein and his
colleagues did succeed in coming up with a formulation that shook the complacency
of physicists in a way that continues to reverberate to this day.

The key to their approach was to tie the needed characterization of physical
reality to a peculiar nonlocal feature of the quantum mechanical treatment of two-
particle systems.

The mathematical rules of quantum theory permit the generation of a state of two
particles that has predicted properties that appear, at least at first sight, to violate a
basic precept of the special theory of relativity, namely the exclusion of instanta-
neous (i.e., faster-than-light) action at a distance. (� Locality)

Quantum theory generally allows any one of several alternative possible mea-
surements to be performed on a particle that lies in some experimental region R.
The choice of the measurement to be performed in R is treated in quantum me-
chanics as a boundary condition that can be “freely chosen” by the experimenter.
According to the Copenhagen interpretation, performing the measurement is sup-
posed to affect the particle being measured in a way such that the observed outcome
specifies the measured property of the state of the particle after the measuring pro-
cess is complete. (See � Born rule; Consistent Histories; Metaphysics in Quantum
Mechanics; Nonlocality; Orthodox Interpretation; Schrödinger’s Cat; Transactional
Interpretation). But then if two alternative possible measurements are mutually in-
compatible, in the sense that either one or the other can be performed, but not both
at the same time, then there is no logical reason why the particle should have at the
same time well defined values of both of the two properties.

The mathematical structure of quantum theory does in fact involve various prop-
erties of a particle that cannot, within that theoretical structure, have simultaneously
well defined values. Potential inconsistencies are evaded by claiming that any two
such theoretically incompatible properties are also empirically incompatible, in the
sense that they cannot be measured simultaneously. But Einstein et. al. constructed
an argument designed to show that the values of certain of these properties are, nev-
ertheless, simultaneous elements of physical reality. Such a demonstration would
render quantum mechanical account incomplete, as a description of physical reality!
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To bring “physical reality” into the discussion, in conjunction with the question
of completeness, Einstein et. al, noted that the basic precepts of quantum theory
ensure that there is a state (� wave function) of two particles that has the following
properties:

1. The two particles lie at the time of a measurement performed on particle 1, in
two large regions that lie very far apart.

2. There is a pair of measurable properties, X1 and P1, which are the location and
the momentum of particle 1, respectively, that are neither simultaneously repre-
sentable nor simultaneously measurable; and also a pair of measurable properties,
X2 and P2, of particle 2 that are, likewise, neither simultaneously representable
nor simultaneously measurable.

3. The prepared state of the two particle system, before the measurement is per-
formed on particle 1, is such that measuring the value of X1 determines the value
of X2, whereas measuring the value of P1 determines the value of P2.

These properties entail that the experimenter in the region where the first particle
lies can come to know either X2 or P2, depending upon which measurement he
chooses to perform. This choice controls physical measuring actions that are con-
fined to the region where particle 1 is located, and this region is very far from the
region where particle 2 is located. Consequently, any physically real property of the
faraway particle 2 should, according to the precepts of the theory of relativity, be
left undisturbed by the nearby measurement process: the distance between the two
regions can be made so great that the physical consequences of performing the mea-
surement on particle 1 cannot reach the region where particle 2 is located without
traveling superluminally: faster than the speed of light � superluminal communica-
tion.

These considerations permit Einstein et. al. to introduce “physical reality” by
means of their famous “criterion of physical reality”:

If, without in any way disturbing a system, we can predict with certainty (i.e., with proba-
bility unity) the value of a physical property, then there exists an element of physical reality
corresponding to this physical property.

If a measurement were to be performed in the region where particle 2 is located
then the quantum theorist could argue that this measurement could disturb the par-
ticle, and hence there would be no reason why properties X2 and P2 should exist
simultaneously. But the situation under consideration allows either of the two (si-
multaneously incompatible) properties of particle 2 to be determined (predicted with
certainty) without anything at all being done in the region where that particle 2 is
located, and hence, according to the ideas of the theory of relativity, “without in any
way disturbing that system.” Thus Einstein and his colleagues infer, on the basis of
their criterion of physical reality, that both properties are physically real. However,
these two properties cannot be represented simultaneously by any quantum mechan-
ical wave function. Hence Einstein et.al. “conclude that the quantum mechanical
description of physical reality given by wave functions is not complete.”
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Anticipating an objection, Einstein et. al. complete their argument by saying:

One could object to this conclusion on the grounds that our criterion of reality is not suf-
ficiently restrictive. Indeed, one would not arrive at our conclusion if one insisted that two
or more physical quantities can be regarded as simultaneous elements of reality only when
they can be simultaneously measured or predicted. On this point of view, since either or
the other, but not both simultaneously, of the quantities P [here P2] or Q [here X2] can be
predicted they are not simultaneously real. This makes the reality of P and Q depend upon
which measurement is made of the first system, which does not disturb the second system
in any way. No reasonable definition of reality can be expected to permit this.

If one examines the situation considered by Einstein et. al. in the explicit formula-
tion of relativistic quantum field theory given by Tomonaga [2] and Schwinger [3]
one finds that the quantum state (wave function) of particle 2 after the measurement
is performed on particle 1 depends not simply on which measurement is performed
on particle 1, but jointly upon which measurement is performed and what its out-
come is.

In a general context it is neither problematic nor surprising that what a person can
predict should depend not only upon which measurement he performs, but also upon
what he learns by experiencing the outcome of that experiment, and hence upon both
which measurement is chosen and performed, and which outcome then appears.

In classical relativistic physics an outcome in one region can be correlated to an
outcome in a faraway region – that is space-like separated from the first – without
their being any hint or suggestion of any faster-than-light transfer of information.
Such correlations can arise from a common cause lying in the earlier (preparation)
region from which each of the two later experimental regions can be reached by
things traveling at the speed of light or less.

In relativistic quantum field theory, as in relativistic classical theory, merely per-
forming the measurement action on particle 1 does not affect any measurable or
predictable property of particle 2. In both the classical and quantum versions the
subsequent outcome pertaining to particle 1 is correlated (through the earlier ini-
tial preparation) to a predictable and measurable outcome pertaining to the faraway
particle 2. Thus, although this experimenter’s choice and his consequent action on
particle 1 have, by themselves, no direct faraway effects, this choice and action-by
determining the physical significance (X1 or P1) of the local outcome, and thereby
also the physical significance (X2 or P2) of the correlated faraway outcome-do in-
fluence the nature of the particular property of the faraway property of particle 2
that is revealed to the experimenter who is performing the measurement on parti-
cle 1, by his experiencing the outcome of the experiment that he has chosen and
performed. But this sort of “influence” would, as in the classical case, fall far short
of any indication of the need for any superluminal action at a distance, or of any
superluminal transfer of information about the nearby free choice to the faraway
region. All that has happened, in both the classical and quantum cases, is that the
nearby experimenter has learned the value of an outcome that is correlated to the
value of the outcome that a particular faraway experiment would have if the faraway
experimenter were to choose to perform that particular experiment.
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To identify what makes the quantum case different from classical case suppose
one has two balls, one red and one green, and one hot the other cold. Suppose they
are shot in opposite directions into two far-apart labs. Simply measuring the color
of the ball reaching the first lab does not immediately disturb in any way anything
in the other lab. But knowing the outcome of this color measurement allows one to
know something about what will be found if color is measured also in the second lab.
But in the classical case this real property of the system that arrives in the second
lab would not be nullified or eradicated if one had chosen to measure temperature
instead of color. It is the claimed nullification of one kind of property of particle 2
or another, on the basis of which kind of experiment is performed on particle 1, that
distinguishes the quantum case from the classical one. It entails the need for some
sort of leaping of the information about which action was chosen and performed
on particle 1 to the region where particle 2 is being measured. The need for this
nullification arises from the fact that no wave function can represent a well defined
value of both X2 and P2.

In spite of this apparent violation of the notion that no information about the
free choice made in region 1 can get to region 2, relativistic quantum field theory
is compatible with the basic requirement of relativity theory that no “signal” can
be transmitted faster than light. A signal is a carrier of information that allows a
receiving observer to know which action was taken by a distant sender. Because
the receiver does not know, superluminally, which outcome was observed by the
sender, she, the receiver, cannot know, superluminally, which action was taken by
the sender. Hence no signal can be sent.

The sender, who knows both which experiment he has freely chosen and per-
formed, and which outcome has appeared, knows, on the basis of his knowledge of
both the theory and this outcome, more about what the receiver will experience than
the receiver herself can know.

Quantum theory, by focusing on knowledge and prediction, is able neatly to sort
out these observer dependent features. The theory carries one step further Einstein’s
idea that science needs to focus on what actual observers can know and deduce on
the basis of their own observations. But quantum theory places a crucial restric-
tion on definability that classical relativistic theory lacks: a person by his choice of
probing action performed in one region can cause one type of property in a faraway
region to become undefined in principle, within the theory, because an incompatible
type of property becomes defined there.

In the book Albert Einstein: Philosopher–Physicist Einstein [4, p. 85] gives a
short statement of his locality condition:

The real factual situation of the system S2 is independent of what is done with the system
S1, which is spatially separated from S2.

The problem of reconciling this condition with quantum theory is that quantum
theory is a theory of predictions (about outcomes of observations) not a theory of
reality. The probing action performed on system S1 by the experimenter does not,
by itself, disturb in any way the real factual system S2. This action, by itself, does
not allow any new prediction to be made about any outcome of any measurement
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made on S2. Hence one may quite reasonably claim that “the real factual situation of
the system S2” is not disturbed by the mere action of performing the faraway mea-
surement. And it is in no way surprising that what kind of predictions one can make
about the faraway correlated system depends upon what kind of nearby measure-
ment is chosen. Einstein’s challenge is to the quantum theoretical claim that if the
quantum state, which pertains to predictions, allows no predictions about a property
then that property is in reality ill-defined.

If one accepts the quantum claim that the property itself is ill-defined if the prop-
erty is ill-defined in the quantum theoretic state then the argument of Einstein et al.
shows that the condition of no-faster-than-light action is violated in quantum theory.
It is violated because the choice made in one region determines, no matter which
outcome occurs, which kind of properties of the faraway particle becomes, within
the quantum framework, ill defined.

The conclusion is that Einstein’s argument leads, within the quantum theoretical
framework, not to a proof of some incompleteness of quantum theory, but rather to a
proof of the existence within theory of a faster-than-light transfer to a faraway region
of the information about which measurement is performed in the nearby region.

This conclusion depends, however, on accepting the basic precept of quantum
theory that if two properties of a system cannot be simultaneously represented by
a wave function and one of these two properties is defined then the other cannot
exist. Einstein rejected that premise. The question thus arises: Can the requirement
of no superluminal transfer of information be upheld if one rejects the quantum
precept that properties that cannot be simultaneously represented by any quantum
state cannot be considered to be simultaneously definite.

This question has been studied by John Bell [5] and others within the special
context of theories that postulate the existence of pertinent real hidden-variables.
(� Bell’s Theorem) Those arguments show that, within this hidden-variable context,
the answer to the question posed at the end of the preceding paragraph is ‘No’!
Once the notion is accepted that decisions as to which measurements are performed
are controlled by free choices that can go either way, it is impossible to reconcile
even merely the predictions of quantum theory for all of the then-allowed alternative
possible measurements with the demand that there be no superluminal transfer of
information about which measurements are freely chosen. (� Nonlocality)
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Electron Interferometry

J.C.H. Spence

Massive-particle interferometry can provide tests of fundamental ideas in quantum
mechanics, due to the presence of mass and charge, not possible with the more
familiar optical interferometry. Most importantly, since the first observation of elec-
tron diffraction in 1927 by Davisson, Germer and Thomson [1] (and the observation
of electron Fresnel edge fringes by Boersch in 1940 [2]), it has been clear that matter
diffracts, according to de Broglie’s 1924 hypothesis. (� Davisson–Germer Experi-
ment) The subsequent demonstration of Young’s pinhole and biprism experiments
(discussed below) with � electrons about fifty years ago has since led to aston-
ishing demonstrations of, for example, the diffraction of beams of buckyballs by a
grating [3] and effects of gravity on neutron interferometry [4]. For neutrons and
electrons, both Fermions, new effects due to � spin and the � exclusion principle
might also be expected, not seen with photons (� light quantum). Perhaps the most
famous experiments to date have been tests of the � Aharonov–Bohm effect us-
ing electrons, and those using neutrons to see the effects of gravity on interference,
but there have been many more (including an electron Sagnac interferometer and
experiments on � decoherence). The separate but closely related field of electron
holography has come to prominence in recent decades, with applications in mate-
rials science and superconducting vortex imaging. Here we briefly review work on
electron interferometry, first reviewed at an early stage by Denis Gabor [5], and also
provide some guidance to the rapidly growing contemporary electron holography
literature. Historically, it is of interest to note that the analysis of multiple scat-
tering, and the role of the mean inner potential, in the experiments of Davisson and
Germer by H. Bethe in his thesis work introduced Floquet’s theorem into condensed
matter physics for periodic structures, leading to the review article which founded
modern condensed matter physics [6]. Bethe and Bloch were both students of A.
Sommerfeld in 1928.
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The construction of an electron interferometer requires a beam-splitter and a
small, bright source of electrons. This should be of sufficiently small size ds to
produce a spatial coherence width Lc which spans the beam-splitter. (Lc ∼ λ/Θc
for a source at distance L = ds/(2Θc) from the beamsplitter). Prior to the devel-
opment of the field-emission electron source in 1968 [7] the use of heated tungsten
wire pointed filaments produced values of Lc < 1 micrometer, so that early workers
understood the need for an extremely small beamsplitting device, which limited de-
velopment of the field. But even before the peak of interest in the Aharonov–Bohm
effect in the 1960s, both amplitude and wavefront dividing beamsplitters had been
demonstrated for electron beams. The first, using Bragg scattering [8], has since
been abandoned in favor of the Mollenstedt and Duker electrostatic biprism, which
may be said to have founded the field of electron interferometry [9].

(The convenient ability to adjust fringe spacing with a biprism using the applied
voltage, and lack of inelastic scattering background favored it over the Bragg beam-
splitter). The biprism uses a micron-sized wire (originally spider’s web, then quartz
fibers) held at a small potential running across the beam (normal to the page at B) as
shown in Fig. 1. The charge on this wire creates a field which deflects rays from the
source S around it such that they appear to come from virtual sources S′ and S′′. In
fact a cone of rays is deflected, so that S′ and S′′, being images of S, are coherent if
S is small. These act as Young’s pin-holes to produce the interference fringes at F by
exact analogy with an optical biprism. For these experiments it was natural to use the
recently developed electron microscope, which produced a very high quality beam
of electrons at a kinetic energy of about E = 100 keV, corresponding to a relativis-
tically corrected � de Broglie wavelength of about λ = 0.004 nm = |k|−1. (The
longitudinal coherence length of an electron beam, Lz ∼ λ E/(2�E) is maximized
by reducing electronic fluctuations �E in the accelerating voltage E. The largest
possible values of Lc and Lz are needed by modern transmission electron micro-
scopes to produce high resolution phase-contrast images of atoms; they therefore
provide the highest quality electron beams for interferometry, together with high
mechanical and thermal stability. Low-energy biprism instruments are discussed
below). The earliest pioneering work on the development of the electron biprism
was undertaken at the University of Tübingen and used to measure Lc and Lz. Soon
after, it became clear that by placing an electron-transparent sample in one arm of
the interferometer at D, an off-axis electron hologram could be formed. (The in-line
geometry was being investigated at the same time by Mulvey, Gabor and Haine in
the UK – Gabor’s original Noble-prize winning proposal for holography was de-
voted to electron interference, not light. The history of electron interferometry is
therefore inextricably linked with that of electron holography). Modern work uses
electron microscopes fitted with a field-emission electron source. This emits elec-
trons from a source size of about ds = 2 nm diameter with a brightness (measured in
particles per unit solid angle per unit area) which exceeds that of current generation
synchrotrons [10]. The dramatic success of electron interferometry is due primarily
to these two inventions – the biprism and the field-emission electron gun.

Using an electron biprism, Feynman’s “only one mystery” of quantum mechanics
can immediately be demonstrated. Figure 2 shows Young’s fringes obtained using
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Fig. 1 The electron biprism

Fig. 2 Young’s fringes formed using coher-
ent electrons of very low intensity, recorded as
a function of increasing exposure time. There
is only one electron in the interferometer at
any instant, yet an interference pattern devel-
ops with time [11]

coherent electrons and a biprism [11]. The important point is that the intensity has
been reduced to such a low value that the electrons arrive one at a time, and the
flight time of the electrons is much shorter than the time between their arrival at the
detector. Nevertheless, the statistical buildup of an interference pattern is observed.
(A similar experiment was undertaken for light by G.I.Taylor in 1909 [12]).

Despite the brightness of field-emission sources, if intense focussing by lenses
is avoided, electron–electron interactions can normally be neglected in an electron
microscope beam, and each electron reaches the detector before the next leaves
the source. Then spin interactions can be neglected and the scalar theory of first-
order optical coherence [29] (for bosons) can be applied to electron interferometry
(fermions). If each of the beams in Fig. 1 are of unity amplitude, the fringe intensity
recorded on the screen at F is then

I (x) = 2+ 2|μ| cos(2πqx + ϕc +�ϕ(x)) (1)

where the complex degree of coherence is μ = |μ| exp(iϕc), q = |k| a (a is
the angle between beams arriving at the detector, controlled by the voltage on the
biprism wire, and setting the period of the fringes) and �φ is the phase difference
along the two optical paths a and b from source to detector point x. The complex
degree of coherence may be expressed as a product of factors describing spatial
and temporal coherence. These factors are proportional to the Fourier transform
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of the source intensity distribution (spatial coherence) and the distribution of wave
numbers (temporal coherence). The biprism therefore offers a method of measuring
both types of coherence. (Temporal coherence measurement requires a variable time
delay to be introduced, by passing one beam along the axis of a cylinder held at a
fixed potential [11]).

To understand the effect of the addition of fields into one or both arms of the
interferometer, we require an expression for the refractive index of a medium with
finite permeability traversed by an electron beam. For the � Aharonov–Bohm effect
we might imagine a solenoid at C in Fig. 1, with axis normal to the page, and return
flux at infinity. (A clear description of the Aharonov–Bohm effect is given in the
undergraduate lectures of R. Feynman [30]). For electron holography, an electron-
transparent thin sample with internal fields might be placed at D. The refractive
index expression was first given by Ehrenberg and Siday in 1949 [13], however the
implications of this paper were not fully appreciated until the work of Aharonov and
Bohm [14] a decade later. The precise form of the interaction had been controversial
at that time. These papers showed that an electron would experience a measurable
phase-shift even in the absence of a magnetic field B = curl A, (or resulting clas-
sical force), provided the vector potential A was non-zero. (This emphasis on the
fundamental nature of potentials coincided with Maxwell’s original formulation of
electrodynamics, and differs from the standard modern form of his equations in
terms of fields, first published by Heaviside long after Maxwell’s death). For poten-
tials weak compared with the accelerating potential, the phase shift is given by

�ϕ = σ

∫

a−b
V (r)dz− 2πe

h

∮

a+b
A(r)ds (2)

for electrostatic potential V , interaction constant σ = 2π |e|/hν and electron veloc-
ity v with charge e. The optical paths a (SaX) and b (SbX) are indicated in Fig. 1.

Since the first test of equation 2 with V = B = 0 at the electron trajectory in
1960, many experimental tests of the Aharnonov–Bohm effect have been published
(see [15] for a review). All confirm the existence of a measurable phase-shift ac-
cording to equation 2 if A is finite. Early objections regarding leakage of fields and
the proximity of the return flux were met in the most sophisticated experiment, in
which a torroidal magnet, coated with superconductor, was inserted into one arm of
an electron interferometer, with the beam passing along its axis. The Meissner effect
in the coating then confines the flux below Tc to within the torroid, and the field on
its axis is zero [15].

The effects of inelastic scattering in one arm of the interferometer have been
analysed in several papers, and the results have important implications for electron
holography. An energy change as small as 4×10−15 eV results in a beat frequency of
1 Hz in the observed fringes, and fringe motion (consistent with the � Heisenberg
uncertainty relations). This effect has been observed [16] using the doppler shift
from a moving electron mirror, or ramped electric or magnetic fields in one path.
(Related effects are observed in the interference fringes observed very briefly due to
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interference between different lasers, if the recording time is less than the beat pe-
riod). For electron holography, this has the remarkable effect that, for long recording
times, we may consider that images reconstructed from off-axis electron holograms
are formed from purely elastic scattering in the sample, since electrons loosing more
than 4×10−15 eV while traversing the sample (e.g. due to phonon excitation) cannot
produce stable time-independent fringes by interference with the reference wave
(which has not lost energy). Electron holography therefore acts as a very efficient
elastic energy filter [16]. There has been considerable discussion in the literature re-
garding � “which way” experiments, in which a small energy loss in one arm might
be used to signal the path taken by an electron [11].

For some purposes a low-energy table-top electron interferometer has advan-
tages. Typical values of �E/E (which controls the temporal coherence) for electron
microscopes operating at hundreds of kilovolts are 10−6, whereas the spatial co-
herence width is proportional to λ, which increases at low energy. But stray fields
and potentials, to which low-energy instruments are extremely susceptible, make
their design very challenging. (The effect of time-dependent stray magnetic fields,
for example, may result in enlargement of the virtual electron source size within
a field-emission tip, resulting in loss of coherence [17]). Such a small instrument
of 30 cm length with high performance has been constructed at the University of
Tübingen [18]. This instrument includes a Wien filter, which imparts a different
group velocity to the � wave packet in one arm of the interferometer, without
introducing a phase difference (the wavepackets in each arm are thus shifted longi-
tudinally). The instrument operates at 150eV−3 keV using a field-emission source,
includes three biprisms, quadrupole lenses (to magnify the fringes) and extensive
magnetic shielding. The fringes are detected on a channel plate, viewed by a charge-
coupled device. Since it is powered by batteries, it may readily be rotated, and so has
been used to form the electron equivalent of a Sagnac interferometer, with the path
SaXbS taking the place of the loop in the Sagnac optical interferometer. The obser-
vation of an electron Sagnac effect [19] demonstrates that the coupling of inertial
potentials and fields is independent of charge.

Most recently, this instrument has been used to demonstrate the electron an-
tibunching effect [20]. Unlike the bunching of photons observed in the Hanbury
Brown and Twiss experiment, the Pauli � exclusive principle for electrons prevents
overlapping wavetrains due to antisymmetrization of the � wave function [21]. The
result is a reduced probability (compared with classical particles) of detecting two
electrons within a coherence time τ = Lc/v. The electron arrival times are more
uniformly distributed than Boltzman classical particles, and fluctuations reduced.
A strong antibunching effect requires crowding of electrons in phase space, yet the
degeneracy of a field-emitter is only about 10−4 (electrons per cell in phase space –
maximum two, with opposite spins), unlike the values of 1015 for lasers (unrestricted
Bosons). The degeneracy (and coherence parameters) may be measured from ob-
servations of Fresnel edge fringes [22]. In addition, electron detectors with time
resolution τ ∼ 10−14 s do not exist. Nevertheless, by detecting the arrival times at
two detectors of an electron beam whose coherence patch spanned both detectors it
has been possible recently to detect electron antibunching by comparing the results
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of coherent and incoherent illumination [20]. Finally, a variant of this instrument
has been used to observe decoherence effects directly [23] (� decoherence, exper-
imental observation of decoherence), as discussed above for inelastic scattering in
electron holography [16]. The transition to classical behaviour of a quantum sys-
tem is supposed to occur as a result of � entanglement of its wave function with
the environment, resulting in an incoherent mixture of states and loss of interfer-
ence effects. Under these conditions of classical behaviour it should be possible to
determine which path the electron took. Anglin and Zurek [24] proposed an inter-
ferometric experiment to test this idea, which has recently been implemented by
electron interferometry. Both beams of the biprism interferometer pass over a resis-
tive plate (tens of microns above it), in which they may induce polarization charges
and Joule heating. The fringes are observed as a function of the height of the beam
above the plate. The fading of the fringes with decreasing gap is clearly seen as cou-
pling with phonon excitations in the plate increases [23]. A variety of more exotic
electron interference experiments have been proposed by M. Silverman [21], such as
those which test many-particle, multivalued wavefunction, and spin effects. These
require a more subtle interpretation of Dirac’s famous dictum that “each electron
interferes only with itself”. The simplest directly observable many-body effect in
electron beams is the Boersch effect, in which Coulomb interactions along the di-
rection of travel broaden the energy distribution. Lateral coulomb repulsion causes
an angular divergence, which degrades the spatial resolution in time-resolved elec-
tron microscopy. At present, as a result of this effect, resolution is limited to a few
nanometers, unlike the Angstrom level of resolution possible in CW mode.

Gabor’s original proposal for electron holography in 1948 had the aim of elim-
inating the aberrations of electron lenses. This aim was finally achieved in 1995,
when, for the first time, atomic-resolution images were reconstructed from an off-
axis electron hologram whose resolution (about one Angstrom) exceeded that of the
same state-of-the-art instrument in its conventional (Scherzer) imaging mode [25].
Since that time, aberration-correction devices have provided a simpler approach
to this resolution, and electron holography has undergone a recent renaissance for
other reasons – including the ability to map out electric and magnetic fields inside
materials and nanostructures, from semiconductor devices to magnetic bacteria, fer-
roelectrics [26] and computer memory elements [27]. Other applications include the
ability to image vortices and their quantization in superconductors at low tempera-
ture, and the ability to image magnetic domain structures in nanoparticles (see [28]
for a review). Most recently, three-dimensional electron holography of internal fields
has been developed, with important implications for semiconductor devices. At the
same time, new solutions to the phase problem have been developed, which allow
“interferometry without an interferometer” by extracting the phase difference in-
formation which is encoded within scattered intensities. It has recently been shown
that this phase information may be extracted if scattering is sampled at the Shannon
sampling interval (for a review of this field, see [31]).
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Electrons

Theodore Arabatzis

The discovery of the electron was a complex and extended process, stretching from
Faraday’s investigation of electrolysis to Millikan’s oil-drop experiments [18]. The
results of four different fields (electrochemistry, electromagnetic theory, � spec-
troscopy, and � cathode rays) converged to support the existence of a novel
subatomic constituent of matter. Faraday’s experiments on electrolysis, interpreted
from the perspective of the atomic theory of matter, implied that electricity has
an atomic structure [4]. That is, electricity appears in naturally occurring units. In
1891 George Johnstone Stoney (1826–1911) named those units “electrons” ( [13],
p. 583, [30]).

In 1894 Stoney’s electrons were appropriated by Joseph Larmor (1857–1942) to
overcome certain empirical and conceptual problems faced by Maxwell’s electro-
magnetic theory ([6], pp. 806 ff.). Larmor’s electrons were supposed to be universal
constituents of matter and were represented as structures in the all-pervading ether.
On the continent a similar electromagnetic theory had been proposed by Hendrik
Antoon Lorentz (1853–1928), who developed a synthesis of British and Continental
traditions in electromagnetism [7]. Lorentz’s theory incorporated Maxwell’s sug-
gestion that electromagnetic phenomena are wave processes in the ether and the
suggestion of continental theorists (e.g., Wilhelm Weber) that these phenomena are
due to the action of charged particles. Lorentz named those particles “ions”, in anal-
ogy with the ions of electrolysis.

A crucial event for the development of Larmor’s and Lorentz’s theories was
an experimentally discovery by Pieter Zeeman (1865–1943). In 1896 Zeeman ob-
served that the spectral lines of sodium widen under the influence of a magnetic field
(� Zeeman effect). Drawing on Lorentz’s theory, he attributed the modification of
the sodium spectrum to the influence of magnetism on the mode of vibration of the
“ions”. From the observed widening he was able to calculate their charge to mass
ratio, which to everyone’s surprise turned out to be three orders of magnitude larger
than that of the electrolytic ions [17]. That was the first indication that Lorentz’s
ions, as well as Larmor’s electrons, were much smaller than ordinary ions. In 1899
Lorentz changed the name of his “ions” to “electrons” [18].
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Electron theories received additional support by the theoretical and experimental
investigation of � cathode rays. The nature of those rays had been the subject of
considerable debate. The controversy subsided in 1897, when J. J. Thomson (1856–
1940) showed that they were composed of “corpuscles”, minute charged particles.
From the electric and magnetic deflections of those particles he calculated their
mass to charge ratio (m/e). It turned out that the value of m/e was three orders of
magnitude smaller than “the smallest value of this quantity previously known, and
which is the value for the hydrogen ion in electrolysis” ( [15], p. 310).

In 1899 Thomson reported measurements of the mass to charge ratio of the par-
ticles produced in the � photoelectric effect as well as by thermionic emission.
Those measurements indicated that the particles in question were identical with the
constituents of cathode rays [16]. Henri Becquerel (1852–1908) reached a similar
conclusion about the identity of the recently discovered β-rays, which were shown to
be “entirely comparable to . . . cathode rays, or masses of negative electricity trans-
ported with great speed” ( [1], p. 210). Thus, by the end of the nineteenth century
the electron had surfaced in a variety of theoretical and experimental contexts.

In the beginning of the twentieth century, β-rays were employed as a tool to
adjudicate between contemporary electromagnetic theories, which gave different
accounts of the electron’s shape and structure. First, the theory developed by Max
Abraham (1875–1922) implied that the electron was a rigid sphere with a uniform
(surface or volume) distribution of charge, whose shape was not affected by its mo-
tion through the ether. Second, according to H. A. Lorentz’s theory of electrons and
Albert Einstein’s relativity theory, the electron was deformable and contracted in
the direction of its motion. Third, Alfred Bucherer (1863–1927) and Paul Langevin
(1872–1946) suggested that a moving electron would be deformed but its volume
would remain constant. All of those theories implied that the mass of the elec-
tron depended on its velocity. However, their quantitative predictions about that
dependence differed. Walter Kaufmann (1871–1947) undertook an experimental re-
search program that aimed at elucidating the nature of the electron’s mass and its
variation with velocity. He determined the velocity dependence of the charge to mass
ratio of β-rays, on the basis of their electric and magnetic deflections. His results
seemed to contradict the predictions of the “Lorentz–Einstein” theory and to fa-
vor the theories of Abraham, Bucherer, and Langevin [5]. Lorentz, for one, thought
“very likely that we shall have to relinquish this idea [of a deformable electron] al-
together” ( [8], p. 213). His pessimism, however, was not vindicated by subsequent
developments. By the mid-1910s the combined efforts of theoreticians and experi-
mentalists had shown that Kaufmann’s results were erroneous [20, 24–26].

The 1910s saw the culmination of a research program that aimed at measuring
the charge of the electron. Its origins go back to the late nineteenth century and
the experimental method devised by C. T. R. Wilson (1869–1959) to obtain artifi-
cial clouds and raindrops. J. J. Thomson employed Wilson’s method to measure the
charge of the “ions” (i.e., electrons) liberated “when a negatively electrified metal
plate . . . is illuminated by ultra-violet light” ( [16], p. 548). Thomson’s work, as well
as subsequent efforts along similar lines, were beset by many uncertainties (e.g., due
to the evaporation of cloud droplets). Their main limitation was that they provided
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information about the statistical average of a great number of individual charges.
Those difficulties were met by Robert Millikan (1868–1953). From 1909 onwards
Millikan was able to get a grip on individual electrons. His meticulous observa-
tions of charged oil drops, moving under the simultaneous action of gravity and an
electric field, enabled him to measure the charge of individual electrons [9]. Those
measurements established that electricity has an atomic structure and eliminated the
possibility of the electron being “a statistical mean of charges which are themselves
greatly divergent” ( [11], p. 58; cf. [23]). Thus, they provided “[t]he most direct and
unambiguous proof of the existence of the electron” ( [10], p. 55].

The electron also played a key role in the development of � atomic models [22].
From 1913 to 1928 a quantum physics of the electron was gradually developed.
Niels Bohr (1885–1962) and Arnold Sommerfeld (1868–1951) imposed restrictive
conditions on the size, shape, and direction in space of the orbit of electrons bound
within the atom. Those conditions were expressed as � quantum numbers, which
“denote the state of the electron in question” ( [12], p. 150). In 1924 Wolfgang
Pauli (1900–1958) attributed a fourth quantum number to the electron in an at-
tempt to come to terms with the complexities of the anomalous Zeeman effect and
the regularities of the periodic table. Furthermore, Pauli formulated an � exclu-
sion principle, which prohibited the coexistence of identical electrons (i.e., with the
same quantum numbers) in the same atom. In 1925 Samuel Goudsmit (1902–1978)
and George Uhlenbeck (1900–1988) proposed a semi-classical interpretation of the
fourth quantum number as a manifestation of � spin, that is, as a self-rotation of
the electron. This interpretation led to several paradoxes (� errors and paradoxes in
quantum mechanics) and was subsequently abandoned [18]. Spin was reconceptu-
alized as a quantum mechanical property with no classical correlate. However, the
incorporation of spin into the new quantum mechanics encountered difficulties, un-
til P. A. M. Dirac (1902–1984) showed in 1928 that spin could be derived from his
relativistic wave equation [27].

During the 1920s the wave character of the electron was also established. In
1923 Louis de Broglie (1892–1987) developed a synthesis of particle and wave
conceptions of matter. The wave properties of matter implied that “[a] group of
electrons that traverses a sufficiently small aperture will exhibit diffraction effects”
( [2], p. 549; transl. in [29], p. 263; � matter waves; � de Broglie wavelength). De
Broglie’s suggestion was confirmed in 1927–28, when Clinton Davisson (1881–
1958) and Lester Germer (1896–1971) in the US and George Paget Thomson
(1892–1975) in England discovered experimentally electron diffraction [3, 14, 28]� Davisson–Germer experiment.
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Ensembles in Quantum Mechanics

Leslie E. Ballentine

The attempt to conceive the quantum-theoretical description as the complete description
of the individual systems leads to unnatural theoretical interpretations, which immediately
become unnecessary if one accepts the interpretation that the description refers to ensembles
of systems and not to individual systems.
– Albert Einstein (1879–1955) [1], p. 671.

This quotation is perhaps the most famous statement of the ensemble interpreta-
tion of quantum mechanics. The role of the ensemble in quantum mechanics ranges
from innocuous to profound, and even controversial.

The innocuous role of the ensemble stems from the fact that quantum mechan-
ics does not predict the actual events, but only the probabilities of the various
possible outcomes (� probability in quantum mechanics) of the various possible
events. In order to compare the predictions of quantum mechanics with experiment,
one must prepare a � state and measure some dynamical variable, and repeat this
preparation–measurement sequence many times. The relative frequencies of the var-
ious outcomes in this ensemble of results can then be compared with the theoretical
probabilities predicted by quantum mechanics. Thus it is natural to say that quantum
mechanics describes the statistics of an ensemble of similarly prepared systems.

Here, as in classical statistical mechanics, one should not confuse the ensemble
of systems with an assembly of systems into a composite. For example, if the system
is a single particle, then the ensemble is a conceptual set of replicas of it, each in its
own environment, whereas the assembly would be a many-particle system. The role
of the ensemble is to enable statistical analysis; its members do not interact with or
influence each other.

The more significant role of the ensemble interpretation is exemplified by� Schrödinger’s cat paradox [2], which involves an unstable atom, a cat, and a
mechanism that releases a poison to kill the cat when the atom decays. The initial
state vector of the system, |φ1〉|live〉, describes an atom in an excited state and a
live cat. The final state vector, after the atom has decayed and the cat is dead, will
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be |φ0〉|dead〉. At an intermediate time equal to one half-life of the unstable atomic
state, the normalized state vector will be

|�〉 = (|φ1〉|live〉 + |φ0〉|dead〉)/√2 (1)

Now how are we to interpret the state vector |�〉, which apparently describes a
coherent superposition of macroscopically distinct components, namely a live cat
and a dead cat? It makes no sense as a realistic description of an individual system.
The paradox is not changed at all if we include the effect of the environment, i.e.� decoherence. In place of (1), we will have

|�〉 = (|φ1〉|live〉|e1〉 + |φ0〉|dead〉|e2〉)/√2 (2)

where |e1〉 and |e2〉 are states of the environment. But (2) is still a coherent superpo-
sition of macroscopically distinct components; indeed, the paradox is even worse,
since we now have a superposition of two environmental states, which is an even
more macroscopic superposition than that in (1).

But if the state vector is regarded only as the generator of probability distributions
for the � observables of an ensemble of similarly prepared systems, then |�〉makes
perfectly good sense. If the experiment is repeated many times, in one half of the
cases the cat will be found to be alive, and in the other half of the cases it will be
found to be dead [4, 5].

The limitations of the ensemble interpretation can be expressed by the question,
“Is that all there is?” The world is made up of individual systems and individual
events, not ensembles and probabilities, so the description of the world by quan-
tum mechanics seems somewhat incomplete. An extention of the theory to describe
individual events, not merely their probabilities, would, indeed, be desirable, but
it would appear to require new fundamental developments that go beyond those
of present day quantum mechanics. A broad review of ensemble interpretations is
given in [6].
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Entanglement

Peter Mittelstaedt

Consider two proper quantum systems S1 and S2 with � Hilbert spaces H1 and H2,
respectively. If S1 and S2 are independently prepared in the pure states ϕ1 ∈ H1 and
ϕ2 ∈ H2, then the compound system S1 + S2 is correctly described in the tensor-
product Hilbert space H1 ⊗H2 by the product state ψ0 = ϕ1 ⊗ ϕ2. In this case, the
state ψ0(S1 + S2) determines uniquely the states ϕ1 and ϕ2 of subsystems S1 and
S2, respectively.

In the general case, the state ψ(S1+S2) of the compound system cannot be writ-
ten as a product of states referring to S1 and S2. (A state of this general kind can be
prepared by a convenient interaction between the two systems for a limited period of
time, as in a scattering process of S1 and S2.) However, even if the state ψ(S1 + S2)

(after the interaction) cannot be written as a product, it can be decomposed with re-
spect to two orthonormal systems in H1 and H2 into a weighted sum of products. In
particular, for any pure state ψ(S1+S2) there exist orthonormal systems ξ(1)i ∈ H1
and η(2)k ∈ H2 that allow for a biorthogonal decomposition [1, 2]

ψ(S1 + S2) =
∑
i

ciξ
(1)
i (S1)⊗ η

(2)
i (S2)

with one summation index i and complex numbers ci . In this state, the two systems
are called entangled provided that the sum consists of more than one term. The en-
tanglement [3] of S1 and S2 means in particular, that the compound state ψ(S1 + S2)

does not provide definite information about pure states of S1 and S2. We can only
say, that the probability pn for finding S1 in the state ξ(1)n(S1) and S2 in the state
η(2)n(S2) is given by the value pn = |cn|2.
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3. ‘Entanglement’ is the English translation of the German word “Verschränkung”, first introduced
by E. Schrödinger: Die gegenwärtige Situation in der Quantenmechanik. Die Naturwis-
senschaften 23, 807–49 (1935)

Entanglement Purification and Distillation

Dagmar Bruß

In quantum mechanics, subsystems of a composite system can exhibit correlations
(� correlations in quantum mechanics) that are stronger than any classical corre-
lations. Quantum correlations are also called entanglement [1]. A mixed quantum
state � consisting of two subsystems (i.e. a bipartite state) can be either separable or
entangled. It is separable [2] if �= ∑i pi | ai〉〈ai | ⊗ | bi〉〈bi |, with pi being proba-
bilities, and entangled otherwise. Entanglement can be quantified via entanglement
measures. Maximally entangled states are pure, and mixing generally decreases en-
tanglement. For further reading on entanglement, see [18–20] and general textbooks
on quantum information, e.g. [21–23].

In quantum information entanglement is viewed as a resource, see protocols such
as quantum teleportation [3], superdense coding [4] or entanglement-based quan-
tum cryptography (� quantum communication) [5]. Therefore, one is interested in
maximally entangled (pure) quantum states. In a realistic scenario, noise due to
interaction with the environment (� decoherence) or imperfect gate operations gen-
erally reduces both purity and entanglement of a given state. However, if one has
several copies of some less than maximally entangled state available, it is possible
that the two parties Alice (A) and Bob (B) concentrate or distill the entanglement,
by acting locally on their parts of the states (in their corresponding laboratories) and
exchanging classical information via a telephone. Thus, by using so-called local
operations and classical communication (LOCC) they can create fewer pairs with
higher entanglement and higher degree of purity. This process is called entangle-
ment purification or entanglement distillation.

In this context, two topics are of interest: First, one wants to find distillation
protocols that are as efficient as possible. Second, one studies the possibility of
distillation. The “distillability problem” is phrased as: given a certain density matrix
�, is it distillable or not?

For pure, but not maximally entangled states, it is possible to increase the entan-
glement by “local filtering” [6]. Here Alice and Bob apply certain local operators,
and with some probability p arrive at a state with higher entanglement. However,
as it is not possible to increase entanglement on average by local operations, with
probability 1 − p the resulting state is less entangled than before. The first purifi-
cation and distillation protocols for mixed states were suggested in [7, 8]. In [7]
the given state � is first brought by random local rotations into a standard form,
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namely a Bell-diagonal state (a mixture of the four maximally entangled Bell states).
Then, Alice and Bob apply local CNOT-gates to two copies of �, and each of them
measures his or her second qubit. If their measurement outcomes agree, the singlet
fidelity of the first pair, i.e. its overlap with |ψ−〉 = 1√

2
(| 01〉 − | 10〉), and thus its

entanglement, has increased. Otherwise this pair has to be thrown away. This pro-
cedure is repeated in an iterative way, thus gradually increasing the entanglement.
Note that this protocol can also be generalised to higher dimensions. However, it is
a very wasteful protocol, concerning the resource of entangled states.

The efficiency of distillation for qubits can be improved by replacing the CNOT
operation by a permutation on more than two qubits. For details on improvements of
distillation protocols, for the link between entanglement distillation and error cor-
rection that led to security proofs in quantum key distribution, and for multipartite
distillation protocols, see the literature given in [20].

A quantum state � is called n-distillable if there exists a number n of copies such
that Alice and Bob can create with LOCC a state that is arbitrarily close to a maxi-
mally entangled state. A quantum state � is called distillable if there exists a number
n for which � is n-distillable. Which quantum states are distillable? At the moment,
this question has been only partially answered. It was found in [9] that all entangled
two-qubit states are distillable. This statement does not hold for higher dimensions.
Clearly, a necessary condition for a quantum state to be distillable is that it is en-
tangled. It has been shown [9] that a further necessary condition for distillability
of � is the non-positivity of the partial transpose of �. The partial transpose [10]
of a composite density matrix is given by transposing only one of the subsystems.
As the definition of a separable state is �sep= ∑i pi | ai〉〈ai | ⊗ | bi〉〈bi |, the partial

transpose of a separable state reads �TA
sep =∑i pi (| ai〉〈ai |)T⊗ | bi〉〈bi |, where the

index T denotes the transpose, and TA denotes the partial transpose with respect
to Alice. As (| ai〉〈ai |)T is some quantum state of Alice, �TA

sep describes a positive
semidefinite density matrix. (A Hermitian matrix σ is called “positive semidefinite”
if 〈ψ |σ |ψ〉 � 0 for all vectors |ψ〉, or, equivalently, if all eigenvalues are greater
or equal zero.) The property �TA � 0 is called positive partial transpose (PPT) of �.
For bipartite systems with low dimensions, namely for composite states of dimen-
sion 2× 2 and 2× 3, positivity of the partial transpose is a necessary and sufficient
condition for separability [11]. For higher dimensions, however, there exist entan-
gled PPT states [12]. They are called bound entangled states, as their entanglement
cannot be distilled. The concept of bound entanglement can be generalised also to
multipartite quantum states.

A necessary and sufficient criterion for distillability of a given bipartite state �

was derived in [13]: “The state � is distillable if and only if there exists |ψ(2)〉 =
c1| e1〉| f1〉 + c2| e2〉| f2〉 such that 〈ψ(2) |(�TA)⊗n|ψ(2)〉 < 0 for some n.” Here,
|ψ(2)〉 is written in the bi-orthogonal Schmidt decomposition, with 〈e1|e2〉 = 0 =
〈f1|f2〉. Thus, |ψ(2)〉 denotes a state with Schmidt rank 2 (i.e. the Schmidt decom-
position has two terms). The matrix (�TA)⊗n denotes the n-fold tensor product of
�TA. The above criterion implies that a state with a positive partial transpose is
undistillable: if �TA � 0, then (�TA)⊗n � 0.
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distillable

PPT entangled: undistillable

separable: undistillable

NPT entangled: undistillable??

Fig. 1 The set of bipartite quantum states and their distillability properties

It is an open question whether non-positivity of the partial transpose (NPT) is
also a sufficient criterion for distillability. Based on a family of states introduced
in [14, 15], there is the (unproven) conjecture that NPT-undistillable states exist.
Somewhat surprising, many copies may be needed for entanglement distillation: it
has been shown [16] that for every n there exists a state that is distillable, but not
n-distillable. This fact illustrates the difficulty of proving the mentioned conjecture,
as one has to take into account the limit n→∞. Our present understanding of how
the set of all bipartite quantum states is decomposed into separable, entangled undis-
tillable and distillable states is summarized in Fig. 1. Experimentally, distillation of
a two-qubit mixed state via local filtering has been achieved [17].

See also creation and detection of entanglement; entropy of entanglement.
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Entropy of Entanglement

Dominik Janzing

An essential feature of an entangled joint state (� entanglement) of two physical
systems A,B is that the state of each subsystem is always mixed even though the
joint state of the bipartite system may be pure. The entropy of the subsystems can
therefore be used to quantify the entanglement of pure bipartite quantum states. For
simplicity, we restrict ourselves to finite dimensions. Every pure state on C� ⊗ Cd

(with d � �) can be written as

|γ 〉 =
d∑

j=1

cj |φj 〉 ⊗ |ψj 〉
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where |φj 〉 and |ψj 〉 are orthonormal vectors defined in the � Hilbert spaces of
system A and B, respectively. The number of summands in this so-called Schmidt
decomposition [3–5] is at most the dimension of the smaller subsystem. The state is
entangled if the number of terms is at least 2. When restricting our attention to one
of the subsystems we no longer can describe its quantum state by a � wave function.
Instead, the “reduced states” of A and B are given by the � density operators

ρA =
d∑

j=1

|cj |2|φj 〉〈φj | and ρB =
d∑

j=1

|cj |2|ψj 〉〈ψj | .

The following argument, which uses basically the von Neumann projection postu-
late, shows why this is the case. A measurement on system B cannot change the
mixed state of A as long as the measurement result is ignored.1 Consider a von
Neumann measurement corresponding to a self-adjoint observable B having the
states |ψj 〉 as (non-degenerate) eigenvectors. A possible choice is

B :=
d∑

j=1

j |ψj 〉〈ψj |.

Given that the measurement result is j , which happens with probability

pj := |cj |2, (1)

the wave function of the joint system has been “collapsed” to the state

|φj 〉 ⊗ |ψj 〉.

The state of A is then given by |φj 〉. When ignoring the measurement result we thus
obtain

ρA :=
d∑

j=1

pj |φj 〉〈φj |.

Using similar measurements on system A we conclude that the state of the right
hand system reads

ρB :=
d∑

j=1

pj |ψj 〉〈ψj |,

1 Since this fact is sometimes blurred by incorrect descriptions of the phenomenon of entanglement,
it should be stressed that such a locality principle still remains true in quantum theory: For distant
subsystems, measurements on B can only change the statistics of experiments performed on A if
the result is communicated to A, where an operation is performed that depends on the result.
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The key observation to quantify entanglement is that the eigenvalues of both
density operators are the same. Hence their von-Neumann entropies (� quantum
entropy) coincide, i.e.,

S(ρB) = S(ρA) = H(p), (2)

where H(p) denotes the Shannon entropy [6] of the probability distribution
(p1, . . . , pd) defined in (1). The entropy thus can considered as a property of
the bipartite state, the entropy of entanglement.

The interpretation of the entropy of entanglement is not obvious. Note that the
state of the joint system is completely known in the sense of being a pure state and
the wave functions of the subsystems are not defined. It would therefore not be
justified to consider the entropy as “missing knowledge” on the states of A and B.

In order to describe an information-theoretic interpretation, we show that the
entropy of entanglement is the maximal amount of classical information that mea-
suring one system can provide about the results of measurements performed on the
second. First consider observablesA and B having the vectors |φj 〉 and |ψj 〉 that ap-
pear in the Schmidt decomposition as non-degenerate eigenvectors. The uncertainty
of the measurement results of A is given by the entropy H(p). However, given the
measurement result of B, the entropy is 0 since both results will always coincide.
Hence the result of B provides the information H(p) about the result of A. The fol-
lowing argument shows that there cannot exist any pair of measurements for which
the mutual information exceeds the entropy of entanglement. Label the results of
an arbitrary measurement performed on B by i in some index set I (for simplicity
we assume I to be countable) and denote the probability to obtain i by qi . Let σi
denote the state of A given that the result of B was i. Due to the so-called Holevo-
bound [1], measurements performed on an unknown quantum state taken from a set
of states {σi | i ∈ I }, each occurring with probability qi , can never provide more
information than

χ := S
(∑

i∈I
qiσi

)
−
∑
i∈I

qiS(σi).

According to our locality arguments above, the mixture
∑

i∈I qiσi coincides with
ρA. Hence we get χ � S(ρA). This shows that the classical information about
the measurement outcomes of A obtained by measurements on B can never exceed
S(ρA). Hence the entropy of entanglement is the maximal classical mutual informa-
tion between measurement results performed on both systems separately. It should
be emphasized that this amount of classical information does not coincide with the
quantum mutual information

I (A : B) = S(ρA)+ S(ρB)− S(ρ),

which is for pure states twice the entropy of entanglement.
An alternative interpretation of entropy of entanglement is that it quantifies the

amount of quantum information that has to be transferred if one party wants to send
his/her part of the entangled state to a third party. To sketch this idea, we consider a
scenario where two partiesA andB share n copies of the entangled state in (2) andB
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wants to forward his part of the entangled states to a third party C such that the state
|γ 〉⊗n is shared by A and C instead of being shared by A and B. A straightforward
way to achieve this would be to transfer the dn-dimensional quantum system from
B to C. However, this is not the most economical method. The key observation for
saving communication resources is the following. The Schmidt decomposition of
|γ 〉 defines in a straightforward way a Schmidt decomposition of the n-fold copy:

|γ 〉⊗n =
∑

1�j1,...,jn�d

cj1 · · · cjn |φj1〉 ⊗ · · · ⊗ |φjn〉 ⊗ |ψj1〉 ⊗ · · · ⊗ |ψjn〉. (3)

This sum may contain dn non-zero coefficients, but often many of them can be
ignored since their total contribution is small. Roughly speaking, we drop those n-
tuples j1, . . . , jn for which the numbers nj of occurrences of index j do not satisfy

∑
j

nj

n
log

nj

n
≈
∑
j

|cj |2log|cj |2.

After formalizing this condition appropriately,2 one can show that the contribution
of such “untypical terms” is negligible for n→∞. The numbersN(n) of remaining
terms satisfy

lim
n→∞

logN(n)

n
= S(ρB).

The entanglement thus can be transferred from B to C using N(n)-dimensional
quantum systems in such a way that the resulting state coincides with the desired one
in the asymptotics n→∞. One can furthermore show that limn→∞ (logN(n))/n <

S(ρB) would not work. Hence S(ρB) quantifies the asymptotic number of qubits
per copy required to transfer the entanglement to C (provided that the entropy is
measured in terms of bits, i.e. is defined using the logarithm to the basis 2.)

The fact that the restriction of pure entangled states to subsystems have non-
vanishing entropy has important implications for quantum thermodynamics as
opposed to classical thermodynamics. If a quantum system couples to an envi-
ronment the joint dynamics can generate entanglement between the two systems.
Hence the entropy of the system can increase. The decisive difference to classical
physics is that this can happen even though the state of the environment is perfectly
known. For this reason, models of the transition of a physical system to its ther-
mal equilibrium do not necessarily require the assumption of incomplete knowledge
about the state of the environment [7, 8]. Assuming that system and environment
is in a pure joint state, strong entanglement is (for an environment being a high-
dimensional quantum system) the typical situation rather than being the exception.
To be more specific we consider B and A as models for the system and its environ-
ment, respectively. If d # � the overwhelming majority of pure states (see [8] for

2 Compare � quantum entropy and the definition of “typical sequences” in classical coding theory
[6] as well as the definition of “typical subspaces” in quantum coding theory [2].



EPR-Problem (Einstein-Podolsky-Rosen Problem) 209

E

details) have the property that the restriction to system B is close to the maximally
mixed state

ρB := 1

d
1.

Imposing some physically natural assumptions on the Hamiltonians of A and B and
their interactions, Ref. [8] derives furthermore a statement that makes the thermo-
dynamical relevance of entanglement even more obvious: almost every pure joint
state lying in the subspace corresponding to some small interval of energy values
has the property that its restriction to B is close to the thermodynamical Gibbs
state.

See also creation and detection of entanglement; entanglement purification and
distillation.
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EPR-Problem (Einstein-Podolsky-Rosen
Problem)

Peter Mittelstaedt

In 1935, Einstein, Podolsky, and Rosen published a paper [1] in which they tried to
show that the quantum-mechanical description of physical reality is not complete.
For the demonstration of this result, the authors made use of two assumptions, the
principle of reality (R) and the principle of � locality (L). These assumptions read:

(R): If, without in any way disturbing a system, we can predict with certainty (i.e.
with probability equal to unity) the value of a physical quantity, then there exists an
element of physical reality corresponding to this physical quantity.
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(L): If two systems can not interact with each other, then a measurement of one
system can not change the state of the other system.

Based on the principles (R) and (L), the authors of the EPR-article tried to
show that quantum mechanics is incomplete. For the demonstration of this result,
they made use of a thought experiment, which was later simplified by Bohm and
Aharonov [2]. The argument reads as follows:

Consider two � spin 1/2 particles S1 and S2 prepared in a 1S0 state Ψ (S1 + S2)

(with total spin 0) but separated such that they no longer interact. If a measurement
of spin σ1(n) of S1 in direction n results in the value s1 = +1/2, then a subsequent
measurement of spin σ2(n) of S2 in the same direction leads with certainty to the
value s2 = −1/2.

For demonstrating the incompleteness of quantum mechanics on the basis of this
thought experiment, we refer to the principles (R) and (L), which from a logical
point of view are both implications. Since systems S1 and S2 are assumed to have
a sufficiently large distance, they can no longer interact. Then, the premise of (L)
is satisfied and thus the conclusion holds that a measurement of σ1(n) at S1 cannot
change S2. Furthermore, since the outcome s1 of a σ1(n)-measurement determines
the value s2 = −s1 of the observable σ2(n), the premise of (R) is satisfied. Hence,
the conclusion of (R) holds too, that is the value s2 of σ2(n) is an objective property
of the system S2 (after preparing the compound system in the state Ψ ). Because this
argument may be applied to the spin observables for any direction n, we conclude
that the value s2 of σ2(n) for any direction n objectively pertains to the system S2
after preparing the state Ψ . Hence, on the one hand the value s2 of σ2(n) in S2 is
objectively determined, even if the observer subjectively does not know it. However,
on the other hand, quantum mechanics does not allow to determining this value but
only its probability. Therefore, quantum mechanics is not complete.

Neither the authors of the EPR paper nor their opponents recognised, that the in-
completeness argument is not correct. Formally, this can be seen in the following
way: Consider the last step of the argument that led to the conclusion of (R)
which states, that for every n the system S2 has an objective value {+1/2, −1/2}
of σ2(n) with probability 1/2. Hence, the subsystem S2 is in a � mixed state
W2(S2) = 1/2 P [φn(2)] + 1/2 P [φ−n(2)] admitting an � ignorance interpretation,
i.e. S2 is in a “proper mixture” [3]. This means that the compound system S1 + S2
with the preparation Ψ is in a mixed state

WΨ (S1 + S2) = 1/2P [φ(1)
n
⊗ φ

(2)
−n] + 1/2P [φ(1)

−n ⊗ φ(2)
n ] (1)

Therefore, for the calculation of the expectation values of the compound system, the
states Ψ and WΨ are equivalent. This claim can easily be checked. For the special
observable

B
(
n′,n′′

) := σ1
(
n′
)⊗ σ2

(
n′′
)

(2)

the expectation values with regard to Ψ and WΨ must be identical.
After a short calculation from this derives

n′ · n′′ − (n · n′)(n · n′′) = 0 (VO) (3)
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as the condition of value objectification (VO) of σ1 and σ2. Except for a few special
triples (n, n′, n′′) this equation is violated in quantum mechanics. Hence, the EPR-
argument does not result in the incompleteness of quantum mechanics, but in a
contradiction. In addition, an elementary calculation shows that from (VO) we can
derive Bell’s inequalities � Bell’s theorem [4]

|n′ · n− n′′| � n · (n− n′′
)
, |n′ · n+ n′′| � n · (n+ n′′

)
(4)

which are known to contradict quantum mechanics for appropriate triples of values.
Of course, the contradiction must be eliminated. Since the reality principle is

fulfilled in quantum mechanics [5], the principle of locality must be abandoned.
The resulting � nonlocality of quantum mechanics has been confirmed in quan-
tum mechanics since 1980 by a great number of experiments. We mention here the
experiments from Aspect [6] to Weihs [7]. See also � Bohm’s approach to EPR;
Causal Inference and EPR.
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Errors and Paradoxes in Quantum Mechanics

Daniel Rohrlich

According to one definition, a paradox is a statement that seems self-contradictory
or absurd but may be true; according to another, a paradox is a true self-contradiction
and therefore false. Let us define paradox to be an apparent contradiction that fol-
lows from apparently acceptable assumptions via apparently valid deductions. Since
logic admits no contradictions, either the apparent contradiction is not a contradic-
tion, or the apparently acceptable assumptions are not acceptable, or the apparently
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and therefore false. Let us define paradox to be an apparent contradiction that fol-
lows from apparently acceptable assumptions via apparently valid deductions. Since
logic admits no contradictions, either the apparent contradiction is not a contradic-
tion, or the apparently acceptable assumptions are not acceptable, or the apparently
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valid deductions are not valid. A paradox can be useful in developing a physical the-
ory; it can show that something is wrong even when everything appears to be right.

Paradoxes in physics often arise as thought experiments. For example, to refute
Aristotle’s statement that a heavy body falls faster than a light one, Galileo [1] in-
vented a paradox: Suppose, with Aristotle, that a large stone falls faster than a small
stone. If the stones are tied together, the smaller stone will then retard the large
one. But the two stones tied together are heavier than either of them. “Thus you
see how, from your assumption that the heavier body moves more rapidly than the
lighter one, I infer that the heavier body moves more slowly.” Such free invention
of paradoxes as thought experiments marks especially the development of twentieth
century physics, i.e. of the relativity and quantum theories.

Both relativity theory and quantum theory are well supplied with paradoxes. In
relativity theory, however, well known paradoxes such as the twin paradox have
accepted resolutions. These paradoxes arise from intuitions, typically about simul-
taneity, that relativity theory rendered obsolete. By contrast, not all well known
paradoxes of quantum theory have accepted resolutions, even today. Below we
briefly review seven quantum paradoxes.

In keeping with our definition above, we do not distinguish between “apparent”
and “true” paradoxes. But we distinguish between apparent and true contradictions.
A true contradiction is a fatal flaw showing that a physical theory is wrong. By
contrast, apparent contradictions may arise from errors; they may also arise from a
conceptual gap in a theory, i.e. some ambiguity or incompleteness that is not fatal
but can be removed by further development of the theory. Thus we can classify [2]
physics paradoxes into three classes: Contradictions, Errors and Gaps. The first three
paradoxes below are examples of a Contradiction, an Error and a Gap, respectively.

1. By 1911, Rutherford and his co-workers had presented striking experimental
evidence (back-scattering of alpha particles, � large-angle scattering; scattering ex-
periments) that neutral atoms of gold have cores of concentrated positive charge.
According to classical electrodynamics, an atom made of � electrons surrounding
a positive nucleus would immediately collapse; but the gold foil in Rutherford’s
experiment evidently did not collapse. This contradiction between experimental ev-
idence and classical theory was not merely apparent: it showed that atoms do not
obey classical electrodynamics. Faced with this evidence, Bohr broke with classical
theory and explained the stability of matter by associating � quantum numbers n =
1, 2, 3, . . . with the allowed orbits of electrons in atoms. Although � Bohr’s model
described well only the hydrogen atom, quantum numbers characterize all atoms.

2. Einstein invented thought experiments to challenge Bohr’s [3] principle
of � complementarity. One thought experiment involved two-slit interference
(� double-slit experiment). (See Fig. 1.) Let a wave of (say) electrons of wave-
length λ, collimated by a screen with a single slit, impinge on a screen with two
slits with separation d . An electron interference pattern – dark lines with separation
D = λL/d – emerges on a third screen a distance L beyond the second. In Fig.
1, however, the experiment is modified to measure also the transverse recoil of the
second screen (the screen with the two slits). Why the modification? According
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Fig. 1 (a) A two-slit interference experiment adapted for measuring the transverse momentum
of the middle screen. (b) The second and third screens seen from above, with interfering electron
paths and corresponding momenta

to Bohr, a setup can demonstrate either wave behavior (e.g. interference) of elec-
trons or particle behavior (e.g. passage through a single slit), but not simultaneous
wave and particle behavior; these two behaviors are complementary (� “wave-
particle duality”) and no setup can simultaneously reveal complementary behaviors.
Einstein’s modified experiment apparently shows electron interference while also
revealing through which slit each electron passes (e.g. an electron passing through
the right slit makes the screen recoil more strongly to the right) and thus contradicts
the principle of complementarity.

To analyze the modified experiment, let p(L) and p(R) denote the momentum of
an electron if it arrives at P via the left and right slits, respectively, and let p(L)

⊥
and p

(R)
⊥ denote the respective transverse components. From a measurement of the
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change in transverse momentum ps of the screen with accuracy �ps � p
(R)
⊥ −p

(L)
⊥ ,

we can infer through which slit an electron passed. But now apply � Heisenberg’s
uncertainty principle to the second screen:

�xs � h/�ps � h/[p(R)
⊥ − p

(L)
⊥ ],

where xs is the transverse position of the second screen. Similarity of triangles in
Fig. 1(b) implies that |p(R) − p(L)| (which equals |p(R)

⊥ − p
(L)
⊥ |), divided by the

electron’s longitudinal momentum p‖, equals d/L. The longitudinal momentum p‖
is h/λ (assuming p‖ large compared to the transverse momentum). Thus

�ps <
d

L
(h/λ).

We obtain �ps < h/D and thus �xs > D. The uncertainty in the transverse posi-
tion xs of the screen, arising from an accurate enough measurement of its transverse
momentum ps, is the distance D between successive dark bands in the interference
pattern, and so the interference pattern is completely washed out. Precisely when
Einstein’s thought experiment succeeds in showing through which slit each elec-
tron passes, it fails to show electron interference; that is, it obeys the principle of
complementarity after all.

3. In 1931, Landau and Peierls [4] considered the following model measurement
of the electric field E in a region. Send a charged test particle through the region;
the electric field deflects the particle, and the change in the momentum p of the
test particle is a measure of E. But an accelerated, charged particle radiates, los-
ing an unknown fraction of its momentum to the electromagnetic field. Reducing
the charge on the test particle reduces radiation losses but then p changes more
slowly and the measurement lasts longer (or is less accurate). On the basis of their
model, Landau and Peierls concluded that an instantaneous, accurate measurement
of E is impossible. They obtained a lower bound �|E| �

√
�c/(cT )2 as the min-

imum uncertainty in a measurement of |E| lasting a time T . Their conclusion is
paradoxical because it leaves the instantaneous electric field E with no theoretical
or experimental definition. However, the Landau–Peierls model measurement is too
restrictive. Bohr and Rosenfeld [5] found it necessary to modify the model in many
ways; one modification was to replace the (point) test particles of Landau and Peierls
with extended test bodies. In their modified model, they showed how to measure
electric (and magnetic) fields instantaneously. Note that the electric field is not a
canonical variable, i.e. it is not one of the generalized coordinates and momenta ap-
pearing in the associated Hamiltonian. (It depends on the time derivative of A, the
electromagnetic vector potential, which is a canonical variable.) The resolution of
this sort of paradox is that quantum measurements of canonical and noncanonical
variables differ systematically [6].

4. Zeno’s paradoxes are named for the Greek philosopher who tried to understand
motion over shorter and shorter time intervals and found himself proving that mo-
tion is impossible. The quantum Zeno paradox [7] (� quantum Zeno effect) seems
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to prove that quantum evolution is impossible. Consider the evolution of a simple
quantum system: a � spin-1/2 atom precesses in a constant magnetic field. If we
neglect all but the spin degree of freedom, represented by the � Pauli spin matrices
σx , σy and σz, the Hamiltonian is

H = μBσz

where the direction of the magnetic field defines the z-axis and μ is the Bohr mag-
neton. Suppose that at time t = 0 the state is

|ψ(0)〉 = 1√
2

[| ↑〉 + | ↓〉]

(where σz| ↑〉 = | ↑〉 and σz| ↓〉 = −| ↓〉). Solving � Schrödinger’s equation

i�
d

dt
|ψ(t)〉 = H |ψ〉,

we obtain the time evolution:

|ψ(t)〉 = e−iHt/�|ψ(0)〉
= 1√

2

[
e−iμBt/�| ↑〉 + eiμBt/�| ↓〉

]
.

At t = 0, a measurement of σx is sure to yield 1; at time t = T ≡ h/4μB, the σx
measurement is sure to yield −1; at intermediate times, a measurement may yield
either result.

At no time does a measurement of σx yield a value other than 1 and −1; the
spin component σx jumps discontinuously from 1 to −1 (� quantum jumps) and
defines a moment in time by jumping. When does the spin jump? We cannot predict
when it will jump, but we can make many measurements of σx between t = 0 and
t = T . The jump in σx must occur between two successive measurements. When
it does, we will know when the jump occurred, to an accuracy �t equal to the time
between the measurements. But now we apparently violate the uncertainty relation
for energy and time:

�E�t � �/2.

Here E is the energy of the measured system and t is time as defined by the system.
(Although t is not an � operator, we can define t via an operator that changes
smoothly in time, and then derive �E�t � �/2 indirectly [8].) The problem is that
the uncertainty�E in the energy cannot be greater than the difference 2μB between
the two eigenvalues of H ; but the measurements can be arbitrarily dense, i.e. �t can
be arbitrarily small.

Since quantum mechanics will not allow a violation of the uncertainty principle,
we may guess that the atomic spin will simply refuse to jump! A short calcula-
tion verifies this guess. Consider N measurements of σx , at equal time intervals,
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over a period of time T . The interval between measurements is T/N . What is the
probability of finding the spin unchanged after the first measurement? The state at
time t = T/N is

1√
2

[
e−iμBT/N�| ↑〉 + eiμBT/N�| ↓〉

]
,

so the probability of finding the spin unchanged is cos2(μBT/N�). Hence the
probability of finding the spin unchanged at time T , after N measurements, is
cos2N(μBT/N�). As N approaches infinity, cos2N(μBT/N�) approaches 1: the
spin never jumps. Here quantum evolution is impossible. But consider a dual exper-
iment: instead of N measurements of σx on an atom in a magnetic field, consider
N measurements of σx cos(2μBt/�)+ σy sin(2μBt/�), at equal time intervals, on
an atom in no magnetic field (H = 0). In the limit N → ∞, the atom precesses:
each measurement of σx cos(2μBt/�)+σy sin(2μBt/�) yields 1. Experiments from
1990 on have progressively demonstrated such � quantum Zeno effect.

5. A thought experiment due to Einstein, Podolsky and Rosen [9] (� EPR prob-
lem) shows how to measure precisely the position xA(T ) or the momentum pA(T )

of a particle A at a given time T , indirectly via a measurement on a particle B that
once interacted with A. The measurement on B is spacelike separated from xA(T ),
and so it cannot have any measurable effect on xA(T ) or pA(T ) (no superlumi-
nal signalling). It is indeed reasonable to assume (� Einstein locality; superluminal
communication) that the measurement on B has no effect whatsoever on xA(T ) or
pA(T ); thus xA(T ) and pA(T ) are simultaneously defined (in the sense that either
is measurable without any effect on the other) and a particle has a precise posi-
tion and momentum simultaneously. Since quantum mechanics does not define the
precise position and momentum of a particle simultaneously, quantum mechanics
does not completely describe particles. EPR envisioned a theory that would be con-
sistent with quantum mechanics but more complete, just as statistical mechanics is
consistent with thermodynamics but more complete.

Almost 30 years after the EPR paper, Bell [10] proved a startling, and – to Bell
himself – disappointing theorem: Any more complete theory of the sort envisioned
by EPR would contradict quantum mechanics! Namely, the correlations of any such
theory must obey � Bell’s inequality; but according to quantum mechanics, some
correlations of entangled states (� entanglement) of particles A and B violate Bell’s
inequality. If quantum mechanics is correct, then there can be no theory of the sort
envisioned by EPR. Experiments have, with increasing precision and rigor, demon-
strated violations of Bell’s inequality and ruled out any theory of the sort envisioned
by EPR.

6. In 1927, at the fifth Solvay congress, Einstein presented “a very simple ob-
jection” to the � probability interpretation of quantum mechanics. According to
quantum mechanics, the state of an electron approaching a photographic plate is an
extended object; the probability density for the electron to hit varies smoothly over
the plate. Once the electron hits somewhere on the plate, however, the probability
for the electron to hit anywhere else drops to zero, and the state of the electron col-
lapses instantaneously. (� Wave function collapse). But instantaneous collapse of an
extended object is not compatible with relativity. A related paradox is the following.
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Fig. 2 Two atoms, produced in an entangled state at O, fly off in opposite directions (solid lines)
in this spacetime figure. Alice measures a spin component of one atom at a; Bob measures a spin
component of the other atom at b. Collapse cannot occur anywhere outside the past light cones of
a and b (dotted lines), hence it cannot occur anywhere outside the intersection of their past light
cones (shaded region)

Figure 2 shows two atoms, prepared in an entangled state at O, flying off in different
directions. (For simplicity, assume that they separate at nonrelativistic speeds.) One
atom enters the laboratory of Alice, who measures a component of its spin at a;
the other enters the laboratory of Bob, who measures a component of its spin at b.
After Alice’s measurement, the atoms are not in an entangled state anymore, hence
collapse cannot occur anywhere outside the past light cone of a. Likewise, collapse
cannot occur anywhere outside the past light cone of b. Hence collapse cannot oc-
cur anywhere outside the intersection of the past light cones of a and b. But then,
in the inertial reference frame of Fig. 2, the state of the atoms just before either
measurement is a product (collapsed) state, not an entangled state. Now this conclu-
sion contradicts the fact that, by repeating this experiment on many pairs of atoms,
Alice and Bob can obtain violations of Bell’s inequality, i.e. can demonstrate that
the atomic spins were in an entangled state until Bob’s measurement. This paradox
shows that there can be no Lorentz-invariant account of the collapse. In general, ob-
servers in different inertial reference frames will disagree about collapse. They will
not disagree about the results of local measurements, because local measurements
are spacetime events, hence Lorentz invariant; but they will have different accounts
of the collapse of nonlocal states. Collapse is Lorentz covariant [11].

7. � Schrödinger’s Cat is a paradox of quantum evolution and measurement. For
simplicity, let us consider just the σz degree of freedom of spin-1/2 atoms and define
a superposition of the two normalized eigenstates | ↑〉 and | ↓〉 of σz:

|�αβ〉 = α| ↑〉 + β| ↓〉;

we assume |α|2 + |β|2 = 1. The � Born probability rule states that a measurement
of σz on many atoms prepared in the state |�αβ〉 will yield a fraction approaching
|α|2 of atoms in the state | ↑〉 and a fraction approaching |β|2 of atoms in the state
| ↓〉. If quantum mechanics is a complete theory, it should be possible to describe
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these measurements themselves using Schrödinger’s equation. We can describe a
measurement on an atom abstractly by letting |�0〉 represent the initial state of a
measuring device, and letting |�↑〉 or |�↓〉 represent the final state of the measuring
device if the state of the atom was | ↑〉 or | ↓〉, respectively. If the Hamiltonian for
the measuring device and atom together is H , during a time interval 0 � t � T that
includes the measurement, then the Schrödinger equation implies

e−i
∫ T

0 Hdt/�| ↑〉 ⊗ |�0〉 = | ↑〉 ⊗ |�↑〉,
e−i

∫ T
0 Hdt/�| ↓〉 ⊗ |�0〉 = | ↓〉 ⊗ |�↓〉.

(The spin states do not change as they are eigenstates of the measured observable
σz.) If the initial spin state is neither | ↑〉 nor | ↓〉 but the superposition |�αβ〉, the
evolution of the superposition is the superposition of the evolutions:

e−i
∫ T

0 Hdt/�|ψαβ〉 ⊗ |�0〉 = α| ↑〉 ⊗ |�↑〉 + β| ↓〉 ⊗ |�↓〉.

The right side of this equation, however, does not describe a completed measure-
ment at all: the measuring device remains entangled with the atom in a superposition
of incompatible measurement results. It does not help to couple additional measur-
ing devices to this device or to the atom; since the Schrödinger equation dictates
linear, unitary evolution, additional devices will simply participate in the superposi-
tion rather than collapse it. Even a cat coupled to the measurement will participate
in the superposition. Suppose the measuring device is triggered to release poison
gas into a chamber containing a cat, only if the spin state of the measured atom is
| ↑〉. The state of the atom, measuring device and cat at time t = T will be a super-
position of | ↑〉 ⊗ |�↑〉 ⊗ |dead〉 and | ↓〉 ⊗ |�↓〉 ⊗ |live〉 with coefficients α and
β, respectively. So we do not know how to describe even one measurement using
Schrödinger’s equation.

Paradoxes 1–4 and 6 and their resolutions are not controversial. Paradoxes 5
and 7, however, do excite controversy. For many physicists, the EPR paradox and
Bell’s theorem remain unresolved because, for them, renouncing the “reasonable”
assumption of EPR is just not a resolution. As one distinguished physicist put it [12],
“Anybody who’s not bothered by Bell’s theorem has to have rocks in his head.” (No
such statement would apply to any well known paradox in relativity theory.)

The Schrödinger Cat paradox has been resolved several times over – with spon-
taneous “collapse” of quantum states [13], nonlocal � “hidden variables” [14],� “many (parallel) worlds” [15] and future boundary conditions [16] (conditions on
the future state in a � “two-state” vector formalism [17]) – but since experiments
are consistent with all these resolutions, there is no one accepted resolution, at least
within nonrelativistic quantum mechanics. The predictions of quantum mechanics
with and without collapse differ, but the differences are (so far) not accessible to
experiment. (There is even a proof [18] that if quantum mechanics is correct and an
experiment could verify that a cat is in the superposition α|dead〉 + β|live〉, i.e. if
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it could verify that collapse has not occurred, the same experiment could transform
the state |dead〉 into the state |live〉, i.e. it could revive a dead cat.) However, it is
doubtful whether all these resolutions can be made relativistic.
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Rosenfeld, eds. R. S. Cohen and J. Stachel (Reidel, Dordrecht, 1979), pp. 357–400; also in
J. A. Wheeler and W. H. Zurek, op. cit. pp. 479–522.

6. Y. Aharonov and J. L. Safko, Measurement of noncanonical variables, Ann. Phys. 91,
279–294 (1975); see also Y. Aharonov and D. Rohrlich op. cit., Chap. 8.

7. B. Misra and E. C. G. Sudarshan, The Zeno’s paradox in quantum theory, J. Math. Phys. 18,
756–763 (1977).

8. Aharonov and Rohrlich, op. cit., Sect. 8.5.
9. A. Einstein, B. Podolsky and N. Rosen, Can quantum-mechanical description of physical real-

ity be considered complete? Phys. Rev. 47, 777–780 (1935).
10. J. S. Bell, On the Einstein–Podolsky–Rosen paradox, Physics 1, 195–200 (1964).
11. Y. Aharonov and D. Z. Albert, Is the usual notion of time evolution adequate for quantum-

mechanical systems? II. Relativistic considerations, Phys. Rev. D29, 228–234 (1984);
Aharonov and Rohrlich op. cit., Chap. 14.

12. Quoted in N. D. Mermin, Is the moon there when nobody looks? Reality and the quantum
theory, Physics Today 38(4), 38–47 (1985).

13. G. C. Ghirardi, A. Rimini and T. Weber, Unified dynamics for microscopic and macroscopic
systems, Phys. Rev. D34, 470–491 (1986); Disentanglement of quantum wave functions: an-
swer to ‘Comment on Unified dynamics for microscopic and macroscopic systems’, Phys. Rev.
D36, 3287–3289 (1987); P. Pearle, Combining stochastic dynamical state-vector reduction with
spontaneous localization, Phys. Rev. A39, 2277–2289 (1989); G. C. Ghirardi, P. Pearle and A.
Rimini, Markov processes in Hilbert space and continuous spontaneous localization of systems
of identical particles Phys. Rev. A42, 78–89 (1990); P. Pearle, Relativistic collapse model with
tachyonic features, Phys. Rev. A59, 80–101 (1999).

14. D. Bohm, A suggested interpretation of the quantum theory in terms of ‘hidden’ variables,
parts I and II, Phys. Rev. 85 166–179 and 180–193 (1952), reprinted in Wheeler and Zurek, op.
cit., pp. 369–82 and 383–96.

15. H. Everett, III, ‘Relative state’ formulation of quantum mechanics, Rev. Mod. Phys. 29,
454–462 (1957), reprinted in Wheeler and Zurek, op. cit., pp. 315–23; J. A. Wheeler, Assess-
ment of Everett’s ‘relative state’ formulation of quantum theory, Rev. Mod. Phys. 29, 463–465
(1957).



220 Exclusion Principle (or Pauli Exclusion Principle)

16. Y. Aharonov and E. Gruss, eprint quant-ph/0507269 (2005); Aharonov and Rohrlich, op. cit.,
Sect. 18.3.

17. Y. Aharonov and L. Vaidman, On the two-state vector reformulation of quantum mechanics,
Phys. Scrip. T76, 85–92 (1998).

18. Aharonov and Rohrlich op. cit., p. 131.

Exclusion Principle (or Pauli Exclusion
Principle)

Michela Massimi

The exclusion principle, introduced by Wolfgang Pauli in 1925 [1], is a fundamental
scientific principle in quantum mechanics. It explains a wide range of phenomena,
from the stability of matter at the level of stars and galaxies to the inner constitution
of particles at the level of coloured quarks. The exclusion principle states that there
cannot be in nature two � electrons, or two protons, or two coloured quarks, or,
more in general, any two fermions (i.e. spin-1/2 particles obeying the � Fermi–Dirac
statistics) in the same dynamic state. Formally, this means that any system consisting
of two or more indistinguishable fermions is expressed by antisymmetric functions
as opposed to symmetric functions. Symmetric functions for two indistinguishable
particles are such that the state vector of the composite system does not change sign
under permutation of space and spin coordinates of the two particles, i.e.

1
/√

2
(∣∣ar1〉⊗

∣∣as2〉+
∣∣as1〉⊗

∣∣ar2〉)

whereas in antisymmetric functions the state vector does change sign under permu-
tation of the space and spin coordinates of the two particles

1
/√

2
(∣∣ar1〉⊗

∣∣as2〉−
∣∣as1〉⊗

∣∣ar2〉)

The exclusion principle then prescribes the mathematical nature of quantum states
allowed for fermions: it excludes all classes of mathematically possible states dif-
ferent from the antisymmetric ones. To say that the state vector of the composite
system is antisymmetric is mathematically equivalent to saying that the dynamic
states of the two particles are different. Although the exclusion principle is nor-
mally associated with the above formulation in terms of antisymmetrization of the
state vector of a composite system, this was not Pauli’s original formulation of the
principle. In fact, the actual origins of the exclusion principle can be traced back to
the Bohr–Sommerfeld old � quantum theory before 1925.
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The principle was indeed introduced by Pauli at the end of 1924 as an “ex-
tremely natural” empirical rule in the attempt to provide an explanation for some
spectroscopic anomalies that had vexed physicists such as Alfred Landé (1888–
1976), Werner Heisenberg (1901–76), Niels Bohr (1885–1962) and Wolfgang Pauli
(1900–1958) in the early 1920s. According to the Bohr–Sommerfeld old quantum
theory, each bound electron in an atom should be characterised in terms of a set
of � quantum numbers describing the energy state, n, the angular momentum, l,
and the orientation with respect to a magnetic field, ml, respectively � Spin; Stern–
Gerlach experiment; Vector model. The Bohr–Sommerfeld theory (� Bohr’s atomic
model) was used to explain the closure of electronic shells in atoms according to the
periodic table, as well as to account for atomic spectra. But by 1921 it became clear
that there were some serious problems with Bohr’s schema for the closure of elec-
tronic shells; nor were the quantum numbers sufficient to account for the complex
spectral lines observed in some chemical elements, such as alkali metals and alkaline
earths, among others. Even more puzzling were some spectroscopic anomalies ob-
served when chemical elements were placed in a weak or strong external magnetic
field: these spectroscopic anomalies were known as anomalous � Zeeman effect
and � Paschen–Back effect, respectively. An understanding of both spectroscopic
anomalies and closure of electronic shells required some drastic changes in the old
quantum theory, and between 1921 and 1924 Alfred Landé, Werner Heisenberg,
Niels Bohr and Wolfgang Pauli all tried to tackle these problems and put forward
different theoretical proposals (see [4, 6]). A conclusive understanding came only
in 1924, when in his three-year long struggle to understand the anomalous Zee-
man effect, Pauli abandoned the previous theoretical models and came up with the
bold idea of introducing a fourth degree of freedom for electrons in atoms, which
he referred to as the electron’s Zweideutigkeit (the “twofold”, or, as is more fre-
quently translated, “two-valued” intrinsic angular momentum of electron). A year
later, Ralph Kronig (1904–1995) and, independently, George E. Uhlenbeck (1900–
1988) and S. Goudsmit (1902–78) reinterpreted this fourth degree of freedom as the
electron � spin, s. In conjunction with the introduction of a fourth degree of free-
dom for the electron, Pauli introduced also a new empirical rule for the closure of
electronic shells.

“I can trace back the closure of groups (. . .) to a single prescription that seems to me
extremely natural. I am thinking of a so strong magnetic field that all electrons can be
characterised through the symbol nk1,m1,m2 . Then it should be forbidden that more than
one electron with the same (equivalent) n belongs to the same values of the three quantum
numbers k1,m1,m2. When an electron corresponds to a given nk1,m1,m2 –state, this state is
occupied.”1

Thus, the exclusion principle was born as an empirical rule for the closure of
electronic shells that Pauli called Ausschließungsregel or meine Ausschlußregel

1 Pauli’s letter to Alfred Landé, 24 November 1924. In [3], p. 180. Note here that n refers to the
so-called principal quantum number defining the energy state of the electron; k is the azimuthal
quantum number (in modern notation l) defining the orbital angular momentum, and m1,m2 are
two magnetic quantum numbers representing the interaction energy with a strong magnetic field.
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(exclusion rule), while Heisenberg teasingly referred to it Pauli’s Verbot der
äquivalenten Bahnen (Pauli’s prohibition of equivalent orbits). Pauli admitted
that ‘we cannot give a closer foundation to this rule, yet it seems to present itself
in a very natural way’. [1, p. 776] There was a long way to go for this empiri-
cal rule to be promoted to the rank of a scientific principle in the new quantum
mechanics after 1925. The history of the exclusion principle is entwined with the
development of quantum mechanics after 1925 as a new theoretical framework
into which Pauli’s rule was built from the ground up. When fifteen years later, in
1940, Pauli proved the � spin–statistics theorem [2], it became clear that not only
electrons but any half-integral spin particle obeyed the Fermi–Dirac statistics and
hence the exclusion principle. The impact of this result for subsequent scientific
developments is striking: for instance, when quarks were introduced in the 1960s,
they were automatically taken as particles obeying the exclusion principle, given
their half-integral spin and the consequent spin-statistics connection established
by Pauli’s theorem. This was the beginning of a research programme that led to
quarks (see � Color Charge Degree of Freedom in Particle Physics; Mixing and
Oscillations of Particles; Particle Physics; Parton Model; QCD; QFT) and hence to� quantum chromodynamics (QCD).

The history of the exclusion principle raises an important philosophical issue:
why and how could Pauli’s empirical rule – tentatively introduced in the context of
the old quantum theory to solve some puzzling spectroscopic phenomena – become
a building-block of quantum mechanics? Answering this question means addressing
the challenging philosophical issue of what a scientific principle is, how it originates
and how it can possibly be experimentally tested and verified. For a philosophical
analysis of these questions in relation to the history of Pauli’s exclusion principle,
see [5].
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Experimental Observation of Decoherence

Maximilian Schlosshauer

In the 1980s, theoretical estimates showed that on macroscopic scales decoherence
occurs extremely rapidly, thus effectively precluding the observation of nonclassi-
cal � superposition states [21–23]. This immediately led to the question of how
we may experimentally observe the continuous action of � decoherence and thus
the smooth transition from quantum to classical. Several challenges have to be
overcome in the design of such experiments. The system is to be prepared in a non-
classical superposition of mesoscopically or even macroscopically distinguishable
states (� Schrödinger-cat state) with a sufficiently long decoherence time such that
the gradual action of decoherence can be resolved. The existence of the superposi-
tion must be verified, and a scheme for monitoring decoherence must be devised that
introduces a minimal amount of additional decoherence. Starting in the mid-1990s,
several such experiments have been successfully performed, using physical systems
such as:

• Cavity QED (atom–photon interactions) [1];
• Fullerenes (C60, C70) and other mesoscopic molecules [2];
• Superconducting systems (SQUIDs, Cooper-pair boxes) [3].

Other experimental domains are promising candidates for the observation of de-
coherence; however, the necessary superposition states have not yet been realized:

• Bose–Einstein condensates [24];
• Nano-electromechanical systems [4].

These five classes of experiments are described below (for a more detailed account,
see, e.g., Chap. 6 of [21]). Such experiments are important for several reasons.
They are impressive demonstrations of the possibility of generating nonclassical
states of mesoscopic and macroscopic objects. They show that the boundary be-
tween quantum and classical is smooth and can be moved by varying the relevant
experimental parameters. For example, by engineering different strengths and types
of environmental interactions, wide ranges of decoherence rates can be obtained
and the system can be driven into different preferred (“environment-superselected”)
bases [5]. The experiments also allow us to test and improve decoherence models.
Finally, they may reveal deviations from unitary quantum mechanics and thus may
be used to test quantum mechanics itself [3]. This would require sufficient shielding
of the system from decoherence so that an observed (full or partial) � wave function
collapse could be unambiguously attributed to some novel nonunitary mechanism in
nature, such as that proposed by the � GRW theory. However, this shielding would
be extremely difficult to implement in practice: The large number of atoms required
for the collapse mechanism to be effective also leads to strong decoherence [6].
None of the superpositions realized in current experiments disprove existing col-
lapse theories [7].
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Cavity QED

In 1996 Brune et al. at Ecole Normale Supérieure in Paris generated a superposition
of radiation fields with classically distinguishable phases involving several photons
(� light quantum) [1, 8, 24]. This experiment was the first to realize a mesoscopic� Schrödinger-cat state and to observe and manipulate its decoherence in a con-
trolled way.

The experimental procedure is as follows. A rubidium atom is prepared in a su-
perposition of distinct energy eigenstates |g〉 and |e〉 corresponding to two circular
Rydberg states. The atom enters a cavity C containing a radiation field containing
a few photons. The field effectively measures the state of the atom: If the atom
is in the state |g〉, the field remains unchanged, whereas if the state is |e〉, the� coherent state |α〉 of the field undergoes a phase shift φ, |α〉 −→ |eiφα〉. The
experiment achieved φ ≈ π. The linearity of the evolution implies that the initial
superposition of the atom is amplified into an entangled atom-field state of the form

1√
2
(|g〉|α〉 + |e〉|−α〉). The atom then passes through an additional cavity, further

transforming the superposition. Finally, the energy state of the atom is measured.
This disentangles the atom and the field and leaves the latter in a superposition of
the mesoscopically distinct states |α〉 and |−α〉.

To monitor the decoherence of this superposition, a second rubidium atom is sent
through the apparatus. One can show that, after interacting with the field superposi-
tion state in cavity C, the atom will always be found in the same energy state as the
first atom if the � superposition has not been decohered. This correlation rapidly de-
cays with increasing decoherence. Thus, by recording the measurement correlation
as a function of the wait time τ between sending the first and second atom through
the apparatus, the decoherence of the field state can be monitored. Experimental
results were in excellent agreement with theoretical predictions. The influence of
different degrees of “nonclassicality” of the field superposition state was also inves-
tigated. It was found that decoherence became faster as the phase shift φ and the
mean number n̄ = |α|2 of photons in the cavity C was increased. Both results are
expected, since an increase in φ and n̄ means that the components in the superposi-
tion become more distinguishable. Recent experiments have realized superposition
states involving several tens of photons [9].

Fullerenes and Other Mesoscopic Molecules

These experiments were carried out by the group of Anton Zeilinger and Markus
Arndt at the University of Vienna [2] and are also described in � Mesoscopic
Quantum Phenomena. Basically, they represent sophisticated versions of the� double-slit experiment. Spatial interference patterns are here demonstrated for
mesoscopic molecules such as the fullerenes C60 and C70 (containing O(1,000)
microscopic constituents), the fluorinated fullerene C60F48 (mass m= 1632 amu),
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and the biomolecule C44H30N4 (m= 614 amu, width over 2 nm). Since the � de
Broglie wavelength of these rather massive molecules is on the order of picome-
ters and since it is impossible to manufacture slits of such small width, standard
double-slit interferometry is out of reach. Instead the experiments make use of the
Talbot–Lau effect, a true interference phenomenon in which a plane wave incident
on a diffraction grating creates an “image” of the grating at multiples of a distance
L behind the grating. In the experiment, the molecular density (at a macroscopic
distance L) is scanned along the direction perpendicular to the molecular beam.
An oscillatory density pattern (the image of the slits in the grating) is observed,
confirming the existence of coherence and interference between the different paths
of each individual molecule through the grating.

Decoherence is measured as a decrease of the visibility of this pattern. Such
decoherence can be understood as a process in which the environment obtains in-
formation about the path of the molecule (see also � Which-way experiment). This
leads to a decay of spatial coherence at the level of the molecule. As described under� Mesoscopic Quantum Phenomena, controlled decoherence induced by collisions
with background gas particles and by emission of thermal radiation from heated
molecules has been observed, showing a smooth decay of visibility in agreement
with theoretical predictions. These successes have led to speculations that one could
perform similar experiments using even larger particles such as proteins, viruses,
and carbonaceous aerosols. Such experiments will be limited by collisional and ther-
mal decoherence and by noise due to inertial forces and vibrations [10].

Superconducting Systems

See also � Superconductivity. The idea of using superconducting quantum two-
state (“qubit”) systems for the generation of macroscopic superposition states goes
back to the 1980s [11]. The main systems of interest are superconducting quantum
interference devices (SQUIDs) and Cooper-pair boxes.

SQUIDs A SQUID consists of a ring of superconducting material interrupted
by thin insulating barriers, called Josephson junctions (Fig. 1a). At sufficiently
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Fig. 1 (a) Schematic illustration of a SQUID. A ring of superconducting material is interrupted
by Josephson junctions, which induce the flow of a dissipationless supercurrent. (b) Decoherence
in a superconducting qubit. The damping of the oscillation amplitude corresponds to the gradual
loss of coherence from the system. Figure adapted with permission from [14]. Copyright 2003 by
AAAS
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low temperatures, electrons of opposite spin condense into bosonic Cooper pairs
(� BKS theory). Quantum-mechanical tunneling of Cooper pairs through the junc-
tions leads to the flow of a persistent resistance-free “supercurrent” around the loop
(Josephson effect), which creates a magnetic flux threading the loop. The collective
center-of-mass motion of a macroscopic number (∼109) of Cooper pairs can then
be represented by a � wave function labelled by a single macroscopic variable,
namely, the total trapped flux Φ through the loop. The two possible directions of
the supercurrent define a quantum-mechanical two-state system with basis states
{|�〉, |�〉}. By adjusting an external magnetic field, the SQUID can be biased such
that the two lowest-lying energy eigenstates |0〉 and |1〉 are equal-weight super-
positions of the persistent-current states |�〉 and |�〉. Such superposition states
involving μA currents flowing in opposite directions were first experimentally ob-
served in 2000 by Friedman et al. [12] and van der Wal [13] using spectroscopic
measurements.

The decoherence of these superpositions was first measured by Chiorescu et al.
[14] using Ramsey interferometry [24]. Two consecutive microwave pulses are ap-
plied to the system. During the delay time τ between the pulses, the system evolves
freely. After application of the second pulse, the system is left in a superposition of
the persistent-current states |�〉 and |�〉 with the relative amplitudes exhibiting an
oscillatory dependence on τ . A series of measurements in the basis {|�〉, |�〉} over
a range of delay times τ then allows one to trace out an oscillation of the occupation
probabilities for |�〉 and |�〉 as a function of τ (Fig. 1b). The envelope of the oscil-
lation is damped as a consequence of decoherence acting on the system during the
free evolution of duration τ . From the decay of the envelope we can thus infer the
decoherence timescale. Chiorescu et al. [14] measured a characteristic decoherence
timescale of 20 ns. Recent experiment have achieved decoherence times of up to
4 μs [15].

Cooper-pair boxes Superpositions states and their decoherence have also been
observed in superconducting devices whose key variable is charge (or phase), in-
stead of the flux variable Φ used in SQUIDs. Cooper-pair boxes consist of a tiny
superconducting “island” onto which Cooper pairs can tunnel from a reservoir
through a Josephson junction. Two different charge states of the island, differing
by at least one Cooper pair, define the basis states. Coherent oscillations between
such charge states were first observed in 1999 [16]. In 2002, Vion et al. [17] reported
thousands of coherent oscillations with a decoherence time of 0.5 μs. Similar results
have been obtained for phase qubits.

Prospective Experimental Domains

Bose–Einstein condensates (BECs) In � Bose-Einstein condensation, a macro-
scopic number of atoms undergoes a quantum phase transition into a condensate
in which the atoms lose their individuality and occupy the same quantum state
[24]. While quantum effects such as interference patterns – created by the over-
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lap of different condensates or by coherently splitting and recombining a single
condensate – have been experimentally observed, the preparation of superposition
states involving macroscopically distinguishable numbers of particles have to date
been unsuccessful. Theoretical studies of decoherence in BECs have played an im-
portant role in qualitatively and quantitatively understanding the challenges and
conditions for the generation of such superpositions (see, e.g., [18]). The domi-
nant source of decoherence was found to be collisions between condensate and
noncondensate atoms. Decoherence models have suggested improved experimen-
tal procedures that may soon enable production of the desired superposition states.
Existing proposals include: Modified condensate traps for faster evaporation of
the decoherence-inducing thermal cloud of noncondensate atoms; creation of su-
perpositions of relative-phase (instead of number-difference) states; environment
engineering to shrink the thermal cloud; and faster generation of the superposition.

Nano-electromechanical systems (NEMS) NEMS are nanometer-to-micrometer-
sized crystalline mechanical resonators, such as a cantilever or beam, coupled to
nanoscale electronic transducers that detect the high-frequency vibrational motion
of the resonator (Fig. 2a) [4]. Despite their macroscopic size, the resonators can
be effectively treated as one-dimensional quantum harmonic oscillators (represent-
ing the lowest, fundamental flexural mode). NEMS are interesting systems from
both applied and fundamental points of view and offer many opportunities for a
study of quantum behavior at the level of macroscopic mechanical systems. In
particular, Armour, Blencowe, and Schwab [19] have proposed a scheme for the
experimental generation of superpositions of two well-separated displacements of
the resonator and a measurement of the decoherence of this superposition (Fig. 2b).
Here, a Cooper-pair box (prepared in a superposition of two charge states |0〉 and
|1〉) is electrostatically coupled to the displacement of the resonator. This creates an
entangled box-resonator state of the form 1√

2
(|0〉|P0〉 + |1〉|P1〉), where |P0〉 and

|P1〉 are distinct center-of-mass states of the resonator. Existence of the superpo-
sition may subsequently be confirmed through interferometric techniques. Due to
strong decoherence, no such superpositions have yet been experimentally realized.
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|P0 P1
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Fig. 2 (a) Nano-electromechanical system built by the Schwab group at Cornell University.
(b) Proposed scheme for creating a superposition of two displacements of the resonator (see text).
Figure reprinted with permission from [20]. Copyright 2004 by AAAS
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Theoretical models of decoherence in NEMS are currently being developed to
suggest improvements to experimental structures that could lead to sufficiently
long-lived spatial superposition states.
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Fermi–Dirac Statistics

Simon Saunders

Fermi–Dirac statistics are one of two kinds of statistics exhibited by � identical
quantum particles, the other being � Bose-Einstein statistics. Such particles are
called fermions and bosons respectively (the terminology is due to Paul Adrien
Maurice Dirac (1902–84) [1]). In the light of the � spin-statistics theorem, and
consistent with observation, fermions are invariably spinors (of half-integral spin),
whilst bosons are invariably scalar or vector particles (of integral spin). See � spin.

In general, in quantum mechanics, the available states of a homogeneous many-
particle system in thermal equilibrium, for given total energy, are counted as
equiprobable. For systems of exactly similar (‘identical’) fermions or bosons, states
which differ only in the permutation of two or more particles are not only counted
as equiprobable – they are identified (call this permutivity). Fermions differ from
bosons in that no two fermions can be in exactly the same 1-particle state. This fur-
ther restriction follows from the Pauli � exclusion principle. The thermodynamic
properties of gases of such particles were first worked out by Enrico Fermi (1901–
54) in 1925 [2], and, independently, by Dirac in 1926 [3].

To understand the consequences of these two restrictions, consider a system of
N weakly-interacting identical particles, with states given by the various 1-particle
energies εs together with their degeneracies – the number Cs of distinct 1-particle
states of each energy εs . From permutivity, the total state of a gas is fully speci-
fied by giving the number of particles with energy εs in each of the Cs possible
states, i.e. by giving the occupation numbers nsk for each s, k = 0, 1, , , , Cs .
We suppose all possible states of the same total energy E and, supposing par-
ticle number is conserved, of the same total number N, are available to the N

particles when in thermal equilibrium, i.e. all sets of occupations numbers that
satisfy:

k=Cs∑
s,k=1

nsk =
∑
s

Ns = N;
∑
s

Nsεs = E. (1)

Since this is quantum mechanics, we suppose that � superpositions of such states
are available to the system as well.

Imposing Pauli’s restriction that no two particles can be in the same 1-particle
state, it follows that the occupation numbers are all zeros and ones and thatCs � Ns.

D. Greenberger et al. (eds.), Compendium of Quantum Physics: Concepts, Experiments, 230
History and Philosophy, c© Springer-Verlag Berlin Heidelberg 2009
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The number of distinct sets of occupation numbers ns0, n
s
1, .., n

s
Cs

that sum to Ns

satisfying this condition is:
Cs !

Ns !(Cs −Ns)! .

Since the occupation number states span the subspace of the total � Hilbert space
to which the Ns particles are confined, this is the dimensionality – the ‘volume’– of
the available spate space for fermions of energy s.

For comparison, if the exclusion principle is not obeyed, the number of distinct
sets of {nsk} that sum to Ns is rather:

(Cs +Ns − 1)!
Ns !(Cs − 1)!

the state-space measure that applies to bosons of energy s. The total number of
distinct sets of occupation numbers for N =∑

s
Ns particles is then for fermions:

P− =
∏
s

Cs !
Ns !(Cs −Ns)!

and for bosons:

P+ =
∏
s

(Cs +Ns − 1)!
Ns !(Cs − 1)! .

By conventional reasoning, the equilibrium coarse-grained distribution is that for
which P± is a maximum. The equilibrium entropy is proportional to the logarithm
of this number, S± = k logP±, where k is Boltzmann’s constant. Using the Stirling
approximation for x % 1, log x! ≈ x log x − x, the two entropy functions are:

S± = k logP± ≈ k
∑
s

[∓Cs logCs −Ns logNs − (∓Cs −Ns) log(Cs ± Ns)].

If this is to be stationary under independent variation of the numbers Ns → Ns +
δNs , subject to the constraints (1), then

0 = δ logP± =
∑
s

[−δNs logNs − δNs log(Cs ± Ns)].

Were the variations δNs completely independent each term in this summand would
have to vanish. Introducing undetermined Lagrange multipliers a, β, for each of the
constraints (1), conclude rather that for each s:

−δNs logNs − δNs log(Cs ±Ns)− α − βεs = 0.
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Rearranging:
Ns = Cs(eα+βεs ± 1)−1. (2)

In the case of light quanta, there is no constraint on particle number and the
multiplier α does not occur. The multiplier β meanwhile has its usual meaning,
β = 1/kT , where T is the absolute temperature. Cs is the number of distinct
1-quanta states in the energy range [εs, εs + dεs ] , where εs = hνs . It is given by:

Cs = 8πV ν2
s dνs/c3 (3)

(obtained either classically, from the wave theory, or by Bose’s method). From (2)
and (3) the Planck � black-body radiation law follows immediately. The numbers
Ns, of (2) are proportional to the radiation energy density in the frequency range
[νs, νs + dνs], which can be directly measured.

The contrast with the statistics of non-identical particles is that in the latter case
(failing permutivity) there is the further question of which of the Ns particles is in
which of the Cs one-particle states (CNs

s possible distributions in all). There is also
the question of how the N particles are partitioned into the occupation numbers
N1,N2, ...Ns, ... . Taking both into account, the total number of distinct states P0
with occupation numbers N1, ..., Ns, .. is:

N !
N1!..Ns !....

∏
s

CNs
s . (4)

By a similar calculation as before, this yields:

Ns = Cse−α−βεs (5)

Evidently (2) (for either sign) and (5) are approximately the same for Cs % Ns

(equivalently, when α + βεs % 1), and the difference in the statistics for identical
and non-identical particles disappears.

At the other extreme, for bosons for which Cs # Ns , from (2) it follows:

Ns = Cs(α + βεs). (6)

For α = 0, and Cs as given by (3), (6) is the Rayleigh–Jeans black-body distribu-
tion; (5) is the Wien distribution. The discovery of � Planck’s constant began with
the puzzle of how to understand these distributions, which yielded the observed
long (Cs # Ns) and short (Cs % Ns ) wavelength behaviour respectively, and with
Planck’s black body formula (2) (with negative sign), obtained by interpolating be-
tween them [10]. The method of counting (4) is associated with Maxwell–Boltzmann
or classical statistics. It was derived, using specifically quantum-mechanical meth-
ods, by Paul Ehrenfest (1880–1933) and George Uhlenbeck (1900–88) immediately
after the discovery of Fermi’s statistics. They concluded that ‘� wave mechanics
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does not yet per se imply the refutation of Boltzmann’s method’ [4, p. 24]. The
difference, in quantum mechanics, resides solely in the assumption of permutivity.
It is an easy slide to think, since classical statistical mechanics delivers the same
statistics as quantum mechanics for non-identical particles, that classical particles
likewise are non-identical (and do not satisfy permutivity), i.e. that the correct clas-
sical count of states P0 is (4). But Josiah Williard Gibbs (1839–1903) had argued
for the permutivity of classical particles long before [6], and for a non-quantized
classical phase space, permutivity makes no difference to the statistics [11]. That is,
computing the volume of classical phase space, subject to permutivity, rather than a
count of equiprobable states, one should use:

P0 =
∏
s

C
Ns
s

Ns ! (7)

rather than (4). The logarithm of P0 as given by (7) yields an extensive entropy
function, as required [12].

Fermi in 1924 was led to assume that no two � electrons could occupy the same
elementary volume in phase space, because only thereby could he obtain agree-
ment with the Sarkur–Stern expressions for the chemical potential and absolute
entropy [5]. That was enough, the following year, to get out a new equation of state,
but little more. Dirac, a few months later, had many more fragments of the nascent
theory of quantum mechanics to hand. He considered the question of how to formu-
late permutivity in terms of � matrix mechanics directly. He was led to the question
by Heisenberg’s dictum: the new mechanics was to be restricted to observable
quantities. In matrix mechanics the observable quantities were the matrix elements,
corresponding to the intensities of the various transition processes giving rise to line
spectra. In the still unresolved problem of the helium atom, the question arose of
how to treat a transition involving both electrons in one-particle states ψn,ψm, of
the form (mn) → (m′n′), and its relation to the transition (mn) → (n′m′). Only
the sum of the two, Dirac noted, was observable. ‘Hence, in order to keep the essen-
tial characteristic of the theory that it shall enable one to calculate only observable
quantities, one must adopt the second alternative that (mn) and (nm) count as only
one state.’ [3, p. 667].

Incorporating this into the matrix mechanics (and in particular in terms of his
theory of uniformizing variables) presented certain technical difficulties, whereas in
wave mechanics the way forward was much easier (an early indicator for Dirac that
Schrodinger’s wave theory may have definite advantages over the matrix mechan-
ics). In the two particle case the state (mn) of the composite system of electrons,
labelled 1 and 2, must be of the form

ψmn = amnψm(1)ψn(2)+ bmnψn(1)ψm(2) (8)

where anm = ±bnm (and superpositions of such). Dirac observed that the antisym-
metric case (anm = −bnm) leads to Pauli’s principle and the symmetric case to the
Bose–Einstein statistical mechanics. He went on to deduce the theory just sketched;
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he thought, as had Fermi, that the new statistics, applying as it did to electrons in
the atom, was likely to apply to material gases as well.

Dirac shortly after remarked on the possibility of alternative (‘more complicated’)
representations of the permutation group, other than the completely symmetrized
(boson) and antisymmetrized (fermion) representations (in 1930, in the first edition
of his Principles). These alternatives lead to a variety of different statistics –
parastatistics – that are not realized in nature (or not in 3+1 dimensions; special
considerations apply to particles effectively restricted to two spatial dimensions). It
was thought, for a time, that they might offer an alternative to the quark model of
deep inelastic scattering, but without success [13].

Werner Heisenberg (1901–76) as well as Dirac had been preoccupied with the he-
lium problem. His earlier papers in 1926 on the helium and related 2-electron spectra
had made use of the Pauli exclusion principle and, for the first time, the Schrödinger
wave mechanics (albeit only as a calculational tool). He too arrived at the two classes
of states (8), but under a somewhat different interpretation from Dirac’s, and with no
understanding of the fact that they gave rise to different statistics. He was led, rather,
to an idea absent from Dirac’s paper – that a two-electron system, each with identi-
cal allowed energies Em(1) = Em(2), En(1) = En(2) (with En > Em), would in
wave-theoretic terms be subject to resonance, with energy En − Em passing from
one electron to the other under the transition (mn) → (nm) (states that Dirac had
identified). Likewise the perturbation due to the electron charge ‘will in general con-
tain terms corresponding to transitions in which the systems 1 and 2 switch places
(‘den Platz tauschen’)’ [7, p. 417].

Thus did the idea of exchange forces first arise. A similar interpretation was
advanced by Walter Heitler (1904–81) and Fritz London (1900–54) the following
year in their treatment of the homopolar bond [8]. But by this time, as Heitler went
on to remark, this question of interpretation had become closely wed to disputes over
other interpretative issues in quantum mechanics, notably over Schrödinger’s con-
tinuous beat picture of emission and absorption processes as compared to Born’s
statistical interpretation [14]. What was being exchanged, Heitler concluded, ‘re-
mained completely unclear.’ ([9, p. 48]).

What was clear was that in any of the symmetric, triplet states of spin, for which
the spatial � wave function must be antisymmetric, the norm of the wave-function
for electron coordinates close together is extremely small (and for coinciding co-
ordinates, vanishes). In this sense electrons in bound states with correlated spins
effectively repel one another. Those with anticorrelated spins, in the antisymmetric
singlet state, have greater amplitudes for small relative distances, for their spa-
tial wavefunction must then be symmetric – the amplitude is much greater than if
there were no overall symmetry requirement on the state (the case of non-identical
fermions). This effect is independent of the Coulomb force altogether, and plays
a key role in ferromagnetism as well as in the chemical bond, as Heisenberg was
shortly to show, again with reference to ‘electron exchange’, and ‘exchange forces’.

Whether interpreted as an exchange force involving the � identity of quantum
particles over time, or as a consequence of permutivity and the Pauli exclusion prin-
ciple, Fermi–Dirac statistics is fundamental to the whole of quantum chemistry and
throughout the physics of the solid state.
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Feynman Diagrams

David Kaiser

Feynman diagrams are a powerful pictorial tool for making calculations in quantum
theory. They were invented by the American theoretical physicist Richard Feynman
(1918–88) during the late 1940s, in the context of � quantum electrodynamics
(QED), physicists’ quantum-mechanical theory of electric and magnetic forces. The
diagrams were intended to provide a shorthand for the famously unwieldy mathe-
matics of QED calculations, in which it had become common, since the 1930s,
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Feynman Diagrams

David Kaiser

Feynman diagrams are a powerful pictorial tool for making calculations in quantum
theory. They were invented by the American theoretical physicist Richard Feynman
(1918–88) during the late 1940s, in the context of � quantum electrodynamics
(QED), physicists’ quantum-mechanical theory of electric and magnetic forces. The
diagrams were intended to provide a shorthand for the famously unwieldy mathe-
matics of QED calculations, in which it had become common, since the 1930s,
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for physicists to mistakenly conflate or omit terms within long series of expres-
sions. Feynman unveiled his new techniques at a private conference in 1948. He
also coached a young protégé, Freeman Dyson (born 1923, at that time a graduate
student at Cornell University in upstate New York, where Feynman taught), in how
to use the diagrams. Feynman and Dyson each published a pair of articles on the
new techniques during 1949 [1].

Feynman’s own route to the diagrams involved a major re-thinking of quantum
mechanics, based on his notion of � path integrals, which he developed for his
dissertation at Princeton University in 1942. Dyson, on the other hand, recognized
that the diagrams could be useful for calculations in � quantum field theory in-
dependent of Feynman’s particular ideas about path integrals. Well into the 1960s,
most applications of Feynman diagrams, and most discussion of them in textbooks,
followed Dyson’s prescriptions, until Feynman’s path integrals entered the main-
stream [4, 5].

As in any quantum-mechanical calculation, the main item of interest is a complex
number, or “amplitude,” whose absolute square yields a probability. For example,
A(t, x) might represent the amplitude that a particle will be found at a point x
at time t . Then the probability of finding the particle there at that time will be
|A(t, x)|2. (See � Born rule)

In QED, amplitudes are composed from a few basic ingredients, each of which
has an associated mathematical expression. Most often, the basic ingredients refer
to the behavior of virtual particles (see � QED) – particles that pop into existence
by “borrowing” energy from the vacuum, as long as they pay that energy back suf-
ficiently quickly, on timescales set by the � Heisenberg uncertainty principle. To
illustrate how the diagrams work, we may write, schematically:

• Amplitude for a virtual electron to travel undisturbed from spacetime point x to
spacetime point y: B(x, y);

• Amplitude for a virtual photon to travel undisturbed from spacetime point x to
spacetime point y: C(x, y);

• Amplitude for an electron and photon to scatter: eD.

Here e is the charge of the electron, which governs how strongly electrons and pho-
tons will interact, and we label coordinates as x = (t, x).

Feynman introduced his diagrams to keep track of all the different ways that
electrons and photons (� light quantum) could interact. The rules for using the dia-
grams are fairly straightforward: at every “vertex,” draw two electron lines meeting
one photon line. Draw all of the topologically distinct ways that electrons and pho-
tons can scatter (subject to this rule of always having two electron lines meet one
photon line). Then build an equation: substitute factors of B(x, y) for every virtual
electron line, C(x, y) for every virtual photon line, and eD for every vertex. Lastly,
because these vertices can occur anywhere in space and time, integrate over all the
spacetime points involving virtual particles.

The diagrammatic accounting scheme is so useful because e is so small: e2 ∼
1/137, in appropriate units. That means that diagrams that involve fewer ver-
tices – and hence fewer factors of this small number, e – tend to contribute more
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to the overall amplitude than complicated diagrams, which contain many ver-
tices and hence many factors of e. Thus physicists can approximate an amplitude,
A, by expanding it in a series of progressively complicated terms, known as a
“perturbation-series expansion.” In principle the series includes an infinite number
of distinct contributions – there are an infinite number of different ways in which
virtual electrons and photons can scatter– but as a practical matter, physicists can
truncate the series at a desired level of accuracy.

For example, consider how an electron is scattered by an electromagnetic field.
Quantum-mechanically, the field can be described as a collection of photons. In the
simplest case, the electron (straight line) will scatter just once from a single photon
(dotted line) at just one vertex (circle at the point x0):

A(1)= eDx0

In this case the electron is real, not virtual, and hence the only contribution comes
from the vertex.

Many more things can happen to the hapless electron. At the next level of
complexity, the incoming electron might shoot out a virtual photon before scat-
tering from the electromagnetic field, reabsorbing the virtual photon at some other
point:

A(2)= e3 òDB(1,0) DB(0,2) DC(1,2)
x0

x1x2

In this more complicated diagram, electron lines and photon lines meet in three
places, and hence the contribution to the overall amplitude from this diagram is
proportional to e3. Thus it is roughly one hundred times smaller in magnitude that
the contribution from the simplest diagram.

Still more complicated things can happen. At the next level of complexity, seven
distinct Feynman diagrams enter:
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a b c

d e f

g

Each diagram – labeled a, b, c, and so on – will contribute a distinct term to
the overall amplitude. All seven of these contributions, deriving from diagrams
that contain five vertices, will be proportional to e5. As an example, consider the
contribution from the diagram labeled a at the upper left. We may label its contri-
bution A(3)

a , meaning that this term enters at the third level of approximation, and
stems from diagram a:

x0

x1x2

x3x4

A(3)
a =e5òDB(1,0) DB(0,2) DC(1,3) D

� B(3,4) DB(4,3) C(4,2)

Similar terms can be written for each of the remaining diagrams at this level of ap-
proximation, leading to terms such as A(3)

b, A(3)
c, right through A(3)

g. The total
amplitude for an electron to scatter from the electromagnetic field may then be
written as the sum of all these terms:

A = A(1) + A(2) + A(3)
a + A(3)

b + A(3)
c + . . .

and the probability for this interaction is |A|2.
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Robert Karplus and Norman Kroll first attempted this type of calculation using
Feynman’s diagrams soon after learning the new techniques from Dyson [2]. Eight
years later, several other physicists found a few algebraic errors in the calculation,
whose correction only affected the fifth decimal place of the original answer. Since
the 1980s, Tom Kinoshita of Cornell University has gone all the way to diagrams
containing eight vertices – a calculation involving 891 distinct Feynman diagrams,
accurate to ten decimal places [3].

Although Feynman diagrams were developed as a tool for calculating the effects
of weakly-interacting forces (such as electromagnetism), the diagrams were quickly
adapted during the 1950s and 1960s to treat all kinds of other interactions, from
the strong nuclear force, to many-body interactions in condensed-matter physics, to
gravitation, and beyond [5]. They have become a ubiquitous element of the physi-
cist’s toolkit.
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Fine-Structure Constant

Helge Kragh

The fine-structure constant is a dimensionless constant of nature, given by α =
e2/�c, in electrostatic cgs units, where e is the elementary charge, � � Planck’s
constant (=h/2π), and c the velocity of light. The number is a measure of the
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strength of electromagnetic interactions. The numerical value of α is known with
great accuracy:

α−1 = 137.035 · 999 · 76± 0.000 · 000 · 50

The name “fine-structure constant” relates to � spectroscopy, but even before
it was revealed in spectra it was realized that the ratio e2/�c might be of theoret-
ical significance. In 1905 Max Planck pointed out that e2 and �c have the same
dimensions and the same order of magnitude. However, if α was ever “discov-
ered” the honour must go to Arnold Sommerfeld, who in 1915–16 extended Niels
Bohr’s theory of the hydrogen atom (� Bohr’s atomic model) to the domain of spe-
cial relativity. He derived the energy levels in the relativistic case and found that
the Hα line would appear as a doublet with a “fine-structure separation” given by
α. Measurements made by Friedrich Paschen confirmed the theory and resulted in
α−1=137.9.

With the emergence of quantum mechanics in 1925–26, it turned out that α
was intimately connected with the electron’s � spin, a relationship fully explained
by Paul A.M. Dirac’s relativistic wave equation of 1928 (� Dirac equation and� relativistic quantum mechanics). Inspired by Dirac’s theory, Arthur S. Eddington
suggested that α was a fundamental quantity connected also to cosmological quan-
tities such as the number of particles in the universe. Moreover, he believed that the
numerical value of α could be derived a priori, and that the result must be an in-
teger: α−1=137. Although experiments disagreed with Eddington’s claim, and his
theory was generally rejected, it led to many attempts to relate α to pure numbers
or other constants of nature. This kind of “alpharology” was particularly popular in
the 1930s and has continued until the present. Although numerology à la Eddington
has today a low reputation, some physicists still believe that it should be possible to
calculate the value of α purely deductively. So far, all attempts have failed.

Because α can be determined from the spectra of distant luminating objects, such
as quasars, it is possible to check if the quantity has varied over cosmological time.
Speculations of a time-varying α go back to the 1930s and in 2001 measurements
from absorption lines in quasars indicated that α might have been smaller in the past.
However, more recent and accurate data suggest that the fine-structure constant is
indeed constant: it had the same value billions of years ago as it has today.
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Franck–Hertz Experiment

Friedel Weinert

In 1913 Bohr took Rutherford’s nucleus model of the hydrogen atom as the basis
for his quantized atom model (� Bohr’s atomic model; Rutherford atom). Although
it was not the first, it was the first successful atom model. A year later, two Berlin
experimenters, James Franck (1882–1964) and Gustav Hertz (1887–1975), unaware
of Bohr’s model and its implications, performed an experiment which later turned
out to be one of its strongest corroborations. For the so-called Franck–Hertz exper-
iment, they were awarded the Nobel Prize for Physics in 1925. In this experiment� electrons are ejected from a cathode, C, into a tube filled with mercury gas (see
Fig. 1). The energy of the electrons can be increased in a controllable manner by
accelerating them towards the positively charged grid, G, through the potential dif-
ference Va. Electrons fly through the grid towards anode A. Between G and A, a
small retarding voltage, Vr, decelerates the electrons. They will only reach the an-
ode A, if their energies V exceed Vr, where they will be recorded by the ammeter A.

Collisions between the atoms and the electrons will occur. Only electrons with
sufficient energy will cause the mercury atoms to make transitions to higher states
of energy. The electrons will lose their energy to the atoms. When Va = 4.9 V, the
curve drops very sharply.

The two experimenters initially thought they had measured mercury’s ionization
potential.

As Bohr pointed out in August 1915 but Franck and Hertz only realized in 1917,
the Bohr atomic model provides a perfect explanation for this behaviour. The elec-
trons near the grid lose all their energy to the mercury atoms and are unable to
overcome the small retarding potential, Vr, to reach the anode. A drop in the current,
Ia, is observed. When Va = 9.8 V, another drop in the curve occurs. The electrons
either excite the atoms to higher energy levels or lose 4.9 V more than once. The
excited mercury atoms in turn will return to their ground energy state and emit pho-
tons with energies corresponding to the energy intake. The experiment displayed

+ +- -

Ia
A

Va Vr

Fig. 1 Franck–Hertz experiment (1914)
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Fig. 2 Frank–Hertz experiment (1914): Dependence of current (Ia) on accelerating potential (Va)

the loss of the electronic energy at discrete levels. Later, more precise experiments
confirmed that the higher states of energy of the atoms corresponded to the discrete
energy levels calculated from the Bohr model. The observable results are shown in
Fig. 2.

As in quantum mechanics there is a traditional distinction between the wave and
the particle picture, we should note that the Franck–Hertz experiment illustrates the
particle picture of quantum mechanical processes. (For the wave-picture � Stern–
Gerlach experiment and � Davisson–Germer experiment) In this experiment the
particle picture gives rise to a probabilistic notion of causality, since we are not in
a position to predict which electron will collide with which mercury atom and how
much energy it will transfer.
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Functional Integration; Path Integrals

Cecile DeWitt-Morette

Definitions

Functional integral is, by definition, an integral over a space of functions. The func-
tions are the variables of integration. When the variables are paths, the functional
integral is usually called a “path integral”. For example, let x be a path parameter-
ized by time t ∈ T , taking its values in a D-dimensional manifold MD , i.e.

x : T →MD by t �→ x(t), (1)

a sum over all paths x is a path integral.
To compute a path integral

∫
X

Dx F(x), x ∈ X, (2)

one needs to define the domain of integration X, a norm on X, a volume element
Dx on X, and choose an integrable functional F on X.

If the variable of integration is a field, a functional integral is sometimes called
“a sum over histories”.
Functional integration is a rich and powerful mathematical technique because the
domain of integration X is an infinite dimensional space. Short of having intuitive
understanding of infinite dimensional spaces of functions, we have extensive studies
of such spaces developed during the last century.

Path Integrals, A Modern Approach to � Quantization

Functional integration entered physics in 1942 in the doctoral dissertation of Richard
P. Feynman, “The Principle of Least Action in Quantum Mechanics” [1]. The goal
was a formulation of � quantum electrodynamics beginning with quantum me-
chanics formulated in terms of the classical action functional S of a given system.
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Schematically, the path integral constructed by Feynman that gives the probabil-
ity amplitude for a particle, known to be at a at a time ta , be found at b at time
tb is

< b, tb | a, ta > =
∫
Xa,b

Dx exp(
i

�
S(x)) (3)

where Xa,b is the space of all paths x from a to b. The paths x were replaced by n
of their values

{x(t1), x(t2), . . . , x(tn)} , x(t) ∈ RD

for n ordered values of ti in the interval [ta, tb].
The path integral is approximated by an integral over (RD)n.
This crude approximation was both beneficial and detrimental.

• It lead Feynman to a powerful formulation of Quantum Electrodynamics in terms
of diagrams, and to the award of the 1965 Nobel prize. The diagrams correspond-
ing to a particular matrix element are both an aid to its calculation and a picture
of its physical process. They rapidly became popular � Feynman Diagrams.

• Unfortunately, the time-slicing approximation is fundamentally deficient because
it ignores the domain of integration. Indeed a functional space is rarely the limit
of RDn when n goes to infinity. It also ignores the topological properties of the
range MD of the paths. In addition, it makes it extremely awkward, not to say
impossible, to implement the two basic techniques for computing integrals: inte-
gration by parts and change of variable of integration.

Gaussian Integrals, Semi-classical Approximations

Gaussian integrals are easily defined by their Fourier transforms.
In one-dimension the Fourier transform of a real gaussian is:

∫
R

dx√
a

exp(−πax2) exp(−2πi x ′x) := exp(−π
x ′2

a
);

the right hand side defines the gaussian on the left.
In D-dimensions the Fourier transform of a real or complex gaussian is:

∫
RD

Dx exp(−π
s
Q(x)) exp(−2πi〈x ′, x〉) := exp(−πsW(x ′)) (4)
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where

Dx = dx1 dx2 . . . dxD (det Qij )
−1/2 , s ∈ {1, i},

Q(x) =
∑
ij

Qij x
ixj ,

W(x ′) = Wij x ′ix ′j ,
∑

QijW
jk = δki , x ′ ∈ RD(dual of RD).

A gaussian functional integral has the same structure. Given a quadratic form W

on the dual space X′ of the domain of integration X, one defines a gaussian volume
element Dx exp(−π

s
Q(x)) by its Fourier transform exp(−πsW(x ′)). Integrating

polynomials with respect to gaussian volume elements follow the same rules in finite
and infinite dimensions. The Feynman diagrams are the graphic representation of
integrals of polynomials with respect to a gaussian volume element.

In order to use gaussian techniques in the integral (3), one expands the action
functional S(x) around its value at a fiducial choice x0 often chosen to be a classical
solution xcl of the Euler–Lagrange equation:

S(x) = S(xcl) + 1

2
S′′(xcl) J.J + 1

3! S
′′′(xcl) J.J.J + . . . (5)

The second variation S′′(xcl) J.J of the action functional S is a quadratic form on
the space of vector fields J on TxclX (tangent space to X at xcl). The calculus of
variation provides powerful techniques [2] for computing gaussian integrals defined
by the second variation of the classical action functional.

If one terminates the expansion (5) at the second variation, the integral (3) is the
semi-classical approximation of the matrix element on the left-hand side.

The second variation is degenerate in many interesting situations: conservation
laws, caustics, etc. . . ; then the contributions of the first, third. . . variations come
into play and provide explicit results. For example, explicit cross sections of glory
scattering of waves (scalar, electromagnetic and gravitation) by black holes can be
obtained from gaussian integrals where the second variation is degenerate. The ex-
plicit result is given in terms of Bessel functions [2].

Geometrical and Topological Applications

From a small seed in 1942, functional integration in Quantum Physics has grown
into a large and widespread tree [2]. Just a few examples corresponding to a variety
of paths and a variety of action functionals:

1. A path

x : R→MD by s �→ x(s)
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is characterized by

• Its analytic properties: it is an element of a space of continuous paths, or a
Sobolev space when the action functional contains a kinetic energy term, or a
space of Poisson paths for solutions of the telegrapher equation and the Dirac
equation.

• Its domain: s can be the time in a fixed time interval, or the time in a path-
dependent time interval (e.g. in an interval terminating at a first-exit time),
or the intrinsic time of a given process, etc. . . The parameter s need not be a
time variable, it can be any ordering parameter, e.g. a scale variable in coarse-
graining problems.

• Its range: MD can be a (pseudo) riemannian manifold, and/or a multiply con-
nected space, or a fibre bundle.
Detailed calculations of all these cases can be found in [2].

2. An action functional

• If S is a Chern–Simons action [3], functional integration provides an intrin-
sic definition of Jones polynomials of knot theory in 3-dimensions, explicit
evaluations of topological invariants and applications to physics.

• S maybe defined on supervariables (commuting and anticommuting vari-
ables). Functional integrals in supersymmetric quantum mechanical systems
can be used for proving the Atiyah–Singer index theorem, for computing the
index [4, 5], and for related results.

Conclusion

From a heuristic tool, functional integration is gradually becoming a mathematical
tool. Path integrals are by now a well-defined, robust tool. A number of explicit
path integrals can be found in [6]. A number of functional integrals in Quantum
Field Theory are mathematically reliable.

The power of functional integrals stems from the fact that function spaces are infi-
nite dimensional. For example, a linear change of variable of integration for x ∈RD

can be useful but it is not spectacular; a linear change of variable of integration for
x ∈ X offers a great variety of possibilities, and uses concepts and techniques from
several areas of analysis [2].
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G
Gauge Symmetry

Holger Lyre

Gauge symmetries characterize a class of physical theories, so-called gauge theories
or gauge field theories, based on the requirement of the invariance under a group of
transformations, so-called gauge transformations, which occur in a theory’s frame-
work if the theory comprises more variables than there are physically independent
degrees of freedom. Gauge � symmetry was firstly acknowledged in Maxwell’s
electrodynamics, where the vector potential shows a freedom of transformation in
the sense that it is not uniquely determined by the Maxwell field equations, but
only up to adding the derivative of a scalar function. Since all three fundamental
quantum field theoretic interactions as well as gravity can be reconstructed within a
gauge theoretic framework, gauge field theories represent the backbone of modern
physics today, that is, the physics of the Standard Model and beyond. � Quantum
field theory; particle physics.

Short History and Core Idea

In modern notation based on four-tensor-valued fields, classical Maxwellian electro-
dynamics is captured by the Lagrangian LE = − 1

4FμνF
μν − jμAμ with a tensor

Fμν = ∂μAν − ∂νAμ comprising the electric and magnetic field strengths and the
vector potential Aμ. The Maxwell field equations follow from the variation of LE

according to Aμ as a dynamic field variable as ∂μFμν = jν and εμνλσ ∂νFλσ = 0
(Bianchi identity of Fμν). While it seems natural to consider Aμ as a basic variable,
the true observable quantity of the theory, the field Fμν , remains unchanged under
gauge transformations of the potential

Aμ(x) → A′μ(x) = Aμ(x)− ∂μα(x). (1)

Here α may be any differentiable scalar function, either constant or dependent on
the spacetime variable x. This amounts to saying that Maxwellian electrodynamics
shows a gauge freedom under both global and local gauge transformations.

The gauge freedom of classical electrodynamics went largely unrecognized. In
1918, however, Hermann Weyl conjectured a unified theory of gravitation and elec-
trodynamics by extending Einstein’s idea of his thus completed general theory of
relativity. Here the Riemannian geometry of spacetime itself becomes dynamical.
However, while in Riemannian geometry the comparison of directions at two points

D. Greenberger et al. (eds.), Compendium of Quantum Physics: Concepts, Experiments, 248
History and Philosophy, c© Springer-Verlag Berlin Heidelberg 2009
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depends on the paths connecting these points, the comparison of lengths does not.
Weyl argued that, in a true infinitesimal geometry, the scale of length should also
undergo a change, such that, under parallel transport, a “gauge measure of length”
(in German: “Eichmaßstab”) should undergo a change d� = Aμ(x)dxμ �, where the
function Aμ should be identified with the Maxwell potential. This latter suggestion
is established by the formalism within which the above formulae of Maxwellian
electrodynamics can be derived including the gauge transformations (1) of the po-
tential, thus leading to a “geometrization” of electromagnetics. Einstein applauded
to the admirable depth and boldness of Weyl’s mathematical invention, but at the
same time recognized the physical failure of the theory, since in Weylian space-
time the length of a rod and speed of a clock would depend on the history, in contrast
to the observed uniquely defined frequencies of the spectral lines of chemical ele-
ments (the second clock effect in Weylian spacetime can also be considered as a
classical analogue of the � Aharonov-Bohm effect).

In 1929, however, and based on earlier work of Fock and London, Weyl found
the correct way to establish the idea of “gauging.” He realized that one must gauge
the internal phase factor of the quantum � wave function in order to get a recipe
to combine a free matter field theory with the theory of electromagnetic interaction.
This recipe is nowadays widely known as the “gauge principle” (see next section). In
fact, his 1929 paper “Electron and gravitation” must in retrospect be considered one
of the cornerstone papers of twentieth century physics, because in it Weyl not only
invented the gauge principle, but also developed the first systematic formulation of
the spinor and tetrad formalism (cf. [36–40] for the history of gauge theories).

Gauge Principle and Yang–Mills Theories

The Lagrangian of the free Dirac matter field LD = ψ̄(iγ μ∂μ−m)ψ admits global
gauge symmetry transformations ψ ′ = eiqαψ which form the unitary group U(1).
From Noether’s first theorem, jμ = qψ̄γ μψ follows as the conserved charge den-
sity current. To construct a U(1) gauge theory the invariance of LD under local
phase transformations

ψ ′(x) = eiqα(x)ψ(x), (2)

also known as gauge transformations of the first kind, is postulated. This postulate
can be fulfilled under the replacement of the usual derivative in LD by the covariant
derivative

∂μ → Dμ = ∂μ + iqAμ(x) (3)

with a vector field Aμ which itself obeys the local gauge transformations (1) of
the second kind. It seems obvious to identify Aμ with the electromagnetic gauge
potential and to end up with the total Lagrangian

LDM = ψ̄(iγ μ∂μ −m)ψ − jμA
μ − 1

4
FμνF

μν (4)
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of the combined Dirac-Maxwell matter and interaction field theory obeying full
local gauge invariance. This is the idea of the gauge principle, its simplest field-
theoretic application leads to an abelian U(1) gauge theory, on which quantum
electrodynamics is based.

In 1954, Yang and Mills extended the idea to non-abelian gauge groups SU(n). In
the Standard Model the theory of electroweak interaction is considered an SUI (2)×
UY (1) of flavor and hypercharge and the theory of strong interaction an SUC(3)
gauge theory of nucleonic color charge. The most important difference to the abelian
case is the appearance of an additional term in the potentials Ba

μ in the field strength
Fa
μν = (∂μB

a
ν −∂νB

a
μ−gnf

abcBb
μB

c
ν ) (with couplings gn and SU(n) structure func-

tions f abc) due to the non-commutativity of the SU(n) generators t̂ a such that only
the product Fa

μν t̂
a transforms homogeneously under local gauge transformations

and that the Lagrangian LYM = − 1
4 FaμνF a

μν includes self-interacting terms pro-
portional to gn∂BB

2 and g2
nB

4. Hence, the gauge bosons themselves carry charge
(cf. [30–35] for modern textbook presentations of gauge theories).

Fibre Bundles and Constrained Systems

The appropriate mathematical description of gauge theories is given within the
enlarged geometrical arena of principal fibre bundles and their associated vector
bundles [2, 31, 32, 34]. A fibre bundle is a structure 〈E,M, π,F,G〉 with bundle
space E, base manifold M, projection map π : E → M, fibre space F and struc-
ture group G. Fibre bundles can be considered as generalizations of the Cartesian
product in the sense that they look locally like M× F (all fibres Fp = π−1(p) at
p ∈ M being homeomorphic to the typical fibre F). A local trivialisation is given
by a � diffeomorphism φi : Ui × F → π−1(Ui ) for some open set Ui ⊂ M. In
order to obtain the global bundle structure the local chart domains Ui must be glued
together with transition functions tij (p) =

(
φ−1 ◦ φj

)
(p). If the fibre is given by

an n dimensional linear vector space Vn the bundle is called a vector bundle. For a
principal bundle P(M,G) the fibre F is identical to the structure group G. To any
principal bundle there exists a totality of associated vector bundles with the same
structure group and transition functions.

In the Lagrangian view of gauge theories one usually considers fibre bundles
over spacetime M as base space with a continuous Lie group, the gauge group G,
as structure group. The connection of the principal bundle P(M,G) is physically
interpreted as the gauge potential, which takes values in the Lie algebra g of G. The
generators represent the gauge bosons. The derivative of the connection, the bundle
curvature, encodes the interaction field strength. The connection can be thought
of as a rule which decomposes the tangent of P into a horizontal and a vertical
part TuP = VuP ⊕ HuP for every u ∈ P, it is defined as a g-valued one-form
projecting TuP to VuP ∼= g. This idea is also expressed by the covariant derivative
(2). Matter fields are defined as (local) sections in some associated bundle E of P,
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usually a vector bundle. A fibre bundle section is defined as a mapping σ :M→ E
and can be thought of as a generalization of a tangent vector field. With π (σ(p)) =
p the section σ(p) ∈ Fp is local. A principal bundle is trivial, if it admits a global
section.

Phenomenological high energy physics mostly uses the Lagrangian formulation
of gauge theories, but for certain purposes, in particular for the formulation of
canonical general relativity, the Hamiltonian approach seems better suited (cf. [33]).
Earman [7, 8] has argued at length for the appropriateness of the Hamiltonian view
also for the purposes of philosophy of physics because of its mathematical rigor.
The transition from the Lagrangian velocity phase space V(q, q̇) to the Hamilto-
nian phase space �(q,p) is mediated by a Legendre transformation. If Noether’s
second theorem applies, the canonical momenta p = ∂L

∂q̇ are not independent and
primary constraints ϕ(q,p) = 0 exist. These constraints generate gauge transfor-
mations (elements of G) which form gauge orbits [p] (equivalence classes of p
under G), such that one ends up with a reduced phase space �̃ = �/G. For in-
stance, in Maxwellian electrodynamics in vacuo the canonical variable 'E is subject
to the constraint div E = 0.

The Interpretation of Gauge Symmetry

A first point of interest is whether local gauge transformations are observable. Text-
books sometimes give the false impression that this could indeed be the case, since
it is for instance possible to change the interference pattern in a � double-slit ex-
periment by inserting a phase shifter. Such a device, however, does not instantiate a
local phase transformation, but rather a relative phase change between the two parts
corresponding to the two slits of the total wave function ψ = ψI + ψII . In partic-
ular, as Brading and Brown [4] have pointed out, the phase of ψI at some point on
the interference screen will be changed under a local gauge transformation by the
same amount as the phase of ψII at that same point.

Philosophy of physics has especially focussed on the logic of the gauge prin-
ciple. There is a certain consensus (cf. [5, 11, 17, 20, 25] that in a wide variety of
the textbook literature the gauge principle is overstated, since it is sometimes said
to “dictate” the interaction from the mere requirement of local gauge invariance.
However, let |x〉 be the position representation of a wave function �(x) = 〈x|φ〉,
where {|φ〉} span an abstract � Hilbert space, then local gauge transformations
|x ′〉 = eiχ(x)|x〉 = Û |x〉 must properly be seen as mere changes in |x〉. Such a
change of representation affects the � operators as well, which generally transform
as Ô ′ = Û ÔÛ+. In the particular case of the derivative or momentum operator one
gets the covariant derivative as a result, which is thus uncovered as a mere change
in the position representation. In fibre bundle terminology, this amounts to saying
that the inhomogeneous term in the covariant derivative (2) includes a flat connec-
tion only, where the corresponding curvature or gauge field strength is still zero.
Hence, no non-vanishing gauge field is enforced by the requirement of local gauge
symmetry.
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Gauge symmetry structure is, as Redhead [24] has dubbed it, mere surplus struc-
ture. Only the gauge-invariant quantities figure as candidates for observable entities.� Quantum Electrodynamics, for instance, is quite aptly characterized as a U(1)
gauge theory, insofar as the U(1)-invariant tensor Fμν can found to be realized in
nature as the electrodynamic field strength. Unfortunately, up to now there seems
to exist no straightforward procedure to identify the symmetries which are gauge as
opposed to other, empirically significant symmetries in a given theoretical frame-
work.

Because of the gauge freedom of constrained Hamiltonian systems there exists no
unique system evolution in phase space, but rather an indeterministic time-evolution
where a unique phase space point pt must be replaced by a gauge orbit [pt ].
Earman [7,8] has pointed out that this breakdown of determinism is a general feature
of the gauge freedom of constraint Hamiltonian systems (in analogy to the notori-
ous “hole argument” based on the Leibniz equivalence of diffeomorphic models of
spacetime theories). The real conceptual problem here is to develop general rules for
deciding whether certain transformations in the mathematical apparatus of physical
theories are gauge transformations or not.

Another philosophical debate concerns the question about the genuine entities
in gauge theories. Here the variety of answers spans a whole spectrum. The gen-
uine candidate for the basic entity in field theories is the field strength as a more or
less directly measurable quantity. In view of the typical gauge-theoretic non-local
effects such as the Aharonov-Bohm effect, many authors favor the gauge potential
as the basic entity (� Aharonov-Bohm effect), which is, however, gauge-dependent
and not directly observable. A third option concerns holonomies or Wilson-loops as
non-separable but gauge-invariant entities ([3], particularly Healey [11–13]). Fur-
ther proposals consider the whole fibre bundle structure [23] or the retarded Greens
function representation of the charge distribution [21] up to the view that we are
dealing with a genuine case of ontological indeterminacy and that we should di-
rect our ontological commitment only at the group theoretic, structural content of
gauge theories in the sense of structural realism [18]. Obviously, the debate about
the ontology of gauge theories has not been settled.

Gauge Theories of Gravity

General relativity can in fact be considered a gauge theory proper, not in the
above sense of a quantum but a classical gauge field theory. An informal ap-
plication of the gauge principle starts from spinless matter following trajectories
described by the geodesic equation d

dτ v
μ(τ ) = 0 with four-velocity vμ in flat

Minkowski spacetime. The formal transition from special to general relativity ba-
sically amounts to replacing partial by covariant derivatives. Geodesic trajectories
on curved spacetime are thus described by d

dτ v
μ(τ )+ {}μνρ vν(τ ) vρ(τ ) = 0, where

the Christoffel symbols of the connection are derived from the metric according
to {}λμν = 1

2 gλσ (∂μgσν + ∂νgσμ − ∂σ gμν). Under coordinate transformations
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x → x ′ the connection transforms inhomogeneously as {}λμν → {}′λμν =
∂x ′λ
∂xρ

∂xσ

∂x ′μ
∂xτ

∂x ′ν {}ρστ + ∂x ′λ
∂xρ

∂2xρ

∂x ′μ∂x ′ν , whereas the Riemann curvature tensor Rκ
λμν =

∂μ{}κλν − ∂ν{}κλμ + {}ρλν{}κρμ − {}ρλμ{}κρν as well as the Ricci tensor Rμν = Rλ
μλν

and the Ricci scalar R = R
μ
μ all transform homogeneously. They can be used in

the Einstein-Hilbert Lagrangian LGR ∼ √−g R, where g is the determinant of the
metric, leading to the Einstein equations.

Here again the mere appearance of Christoffel symbols in the geodesic equation
cannot enforce spacetime to be curved, but rather ensures a covariant, i.e. coordi-
nate independent, representation. Historically, the first attempt to gauge gravity goes
back to Utiyama [26], who considered a gauge theory of the (homogeneous) Lorentz
group. It is a remarkable feature of gravitational gauge theories that the choice of
the kinetic term for the gauge fields and the corresponding gauge group is far less
restricted than in the Yang-Mills case. Cho [6] has developed first a pure transla-
tional gauge field theory with a particular choice of a quadratic Lagrangian. In such
a gauge theory of the four-dimensional translation group R1,3 one does not end up
with a curved Riemann space but rather a flat teleparallel Weitzenböck space, where
the gravitational field strength is represented by the torsion instead of the curvature
tensor. There is an ongoing debate whether both approaches can in fact shown to
be empirically equivalent [10, 22], rendering the ontology of gravity – curvature or
torsion – indetermined [16, 19]. In search of a more fundamental physics various
accounts of extended gauge groups such as for instance affine or super groups have
been considered (cf. [15] and [14] for overviews).

The issue of gauging gravity is also intimately connected to the longstanding
debate about the status of the requirement of general covariance and the distinction
between � covariance and � symmetry groups, whether gauge or not. While any
sensible physical theory should allow for a generally covariant formulation, in gen-
eral relativity the diffeomorphism group seems to play a double role as covariance
and gauge group. A recent discussion, following Anderson’s [1] classic distinction
between dynamic and absolute objects, has been given by Guilini [9].
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Generalizations of Quantum Statistics

O.W. Greenberg

The general principles of quantum theory allow statistics more general than bosons
or fermions. (� Bose-Einstein statistics and � Fermi statistics are discussed in sep-
arate articles.) The restriction to Bosons or Fermions requires the symmetrization
postulate, “the states of a system containing N identical particles are necessarily
either all symmetric or all antisymmetric under permutations of the N particles,” or,
equivalently, “all states of identical particles are in one-dimensional representations
of the symmetric group [1].” Messiah and Greenberg discussed quantum mechanics
without the symmetrization postulate [2]. The spin-statistics connection, that inte-
ger � spin particles are bosons and odd-half-integer spin particles are fermions [3],
is an independent statement. Identical particles in 2 space dimensions are a special
case, “� anyons.” Braid group statistics, a nonabelian analog of anyons, are also
special to 2 space dimensions.

All � observables must be symmetric in the dynamical variables associated with
identical particles. Observables can not change the permutation symmetry type of
the wave function; i.e. there is a superselection rule separating states in inequivalent
representations of the symmetric group and when identical particles can occur in
states that violate the � spin statistics theorem their transitions must occur in the
same representation of the symmetric group. One can not introduce a small violation
of statistics by assuming the Hamiltonian is the sum of a statistics-conserving and a
small statistics-violating term,H = HS+εHV , as one can for violations of � parity,
charge conjugation, etc. Violation of statistics must be introduced in a more subtle
way.

Doplicher et al. [4, 5] classified identical particle statistics in 3 or more space
dimensions. They found parabose and parafermi statistics of positive integer orders,
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which had been introduced by Green [6], and infinite statistics, which had been
introduced by Greenberg [7, 8]. Parabose (parafermi) statistics allows up to p iden-
tical particles in an antisymmetric state (symmetric) state. Infinite statistics allows
any number of identical particles in a symmetric or antisymmetric state.

Trilinear commutation relations,

[[a†
k , al]±, a†

m]− = 2δlma
†
k (1)

with the vacuum condition, ak|0〉 = 0, and single-particle condition, aka
†
l |0〉 =

pδkl |0〉, define the Fock representation of order p parabose (parafermi) statistics.
Green found two infinite sets of solutions of these commutation rules, one set for
each positive integer p, by the ansatz,

a
†
k =

p∑
α=1

b
(α)†
k , ak =

p∑
α=1

b
(α)
k , (2)

where the b
(α)
k and b

(β)†
k are bose (fermi) operators for α = β but anticommute

(commute) for α �= β for the parabose (parafermi) cases. The integer p is the order
of the parastatistics. For parabosons (parafermions) p is the maximum number of
particles that can occupy an antisymmetric (symmetric) state. The case p = 1 corre-
sponds to the usual Bose or Fermi statistics. Greenberg and Messiah [9] proved that
Green’s ansatz gives all Fock-like solutions of Green’s commutation rules. Local
observables in parastatistics have a form analogous to the usual ones; for exam-
ple, the local current for a spin-1/2 theory is jμ = (1/2)[ψ̄(x), ψ(x)]−. From
Green’s ansatz, it is clear that the squares of all norms of states are positive; thus
parastatistics [10] gives a set of orthodox positive metric theories. Parabose or
parafermi statistics for p > 1 give gross violations of Bose or Fermi statistics so
that parastatistics theories are not useful to parametrize small violations of statistics.

The bilinear commutation relation

a(k)a†(l)− qa†(l)a(k) = δ(k, l), (3)

with the vacuum condition, a(k)|0〉 = 0, define the Fock representation of quon
statistics. Positivity of norms requires −1 � q � 1 [11, 12]. Outside this range the
squared norms become negative. There is no commutation relation involving two a’s
or two a†’s. There are n! linearly independent n-particle states in � Hilbert space if
all � quantum numbers are distinct; these states differ only by permutations of the
order of the � creation operators.

For q ≈ ±1, quons provide a formalism that can parametrize small violations of
statistics so that quons are useful for quantitative tests of statistics. At q = 1(−1)
only the symmetric (antisymmetric) representation of Sn occurs. The quon operators
interpolate smoothly between fermi and bose statistics in the sense that as q →
∓1 the antisymmetric (symmetric) representations smoothly become more heavily
weighted.
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Although there are n! linearly independent vectors in Fock space associated with
a degree n monomial in � creation operators that carry disjoint quantum numbers
acting on the vacuum, there are fewer than n! observables associated with such vec-
tors. The general observable is a linear combination of projectors on the irreducibles
of the symmetric group.

A convenient way to parametrize violations or bounds on violations of statistics
uses the two-particle density matrix. For fermions, ρ2 = (1 − vF )ρa + vF ρs ; for
bosons, ρ2 = (1−vB)ρs+vBρa . In each case the violation parameter varies between
zero if the statistics is not violated and one if the statistics is completely violated.
R.C. Hilborn [13] pointed out that the transition matrix elements between symmetric
(antisymmetric) states are proportional to (1± q) so that the transition probabilities
are proportional to (1± q)2 rather than to (1± q).

Several properties of kinematically relativistic quon theories hold, including a
generalization of Wick’s theorem, cluster decomposition theorems and (at least for
free quon fields) the � CPT theorem; however � locality in the sense of the com-
mutativity of � observables at spacelike separation fails [7]. The nonrelativistic
form of locality

[ρ(x), ψ†(y)]− = δ(x − y)ψ†(y), (4)

where ρ is the charge density, does hold.
Greenberg and Hilborn [14] derived the generalization of the result due to

Wigner [15] and to Ehrenfest and Oppenheimer [16] that a bound state of bosons
and fermions is a boson unless it has an odd number of fermions, in which case it is
a fermion generalizes for quons: A bound state of n identical quons with parameter
qconstituent has parameter qbound = qn

2

constituent [14].
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GHZ (Greenberger–Horne–Zeilinger) Theorem
and GHZ States

Daniel M. Greenberger

The GHZ states (Greenberger–Horne–Zeilinger states) are a set of entangled states
that can be used to prove the GHZ theorem, which is a significant improvement
over � Bell’s Theorem as a way to disprove the concept of “elements of reality”, a
concept introduced by � EPR problem (Einstein–Podolsky–Rosen) in their attempt
to prove that quantum theory is incomplete. Conceding that they did not quite know
what “reality” is, EPR nonetheless said that it had to contain an “element of reality”
as one of its properties. This was that if one could discover a property of a system
(i.e., predict it with 100% certainty) by making an experiment elsewhere, that in no
way interacted with the system, then this property was an element of reality. The
argument was that since one had not in any way interacted with the system, then
one could not have affected this property, and so the property must have existed
before one performed one’s experiment. Thus the property is an intrinsic part of the
system, and not an artifact of the measurement one made.

From a common-sense point of view, this proposition seems unassailable, and yet
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GHZ (Greenberger–Horne–Zeilinger) Theorem
and GHZ States

Daniel M. Greenberger

The GHZ states (Greenberger–Horne–Zeilinger states) are a set of entangled states
that can be used to prove the GHZ theorem, which is a significant improvement
over � Bell’s Theorem as a way to disprove the concept of “elements of reality”, a
concept introduced by � EPR problem (Einstein–Podolsky–Rosen) in their attempt
to prove that quantum theory is incomplete. Conceding that they did not quite know
what “reality” is, EPR nonetheless said that it had to contain an “element of reality”
as one of its properties. This was that if one could discover a property of a system
(i.e., predict it with 100% certainty) by making an experiment elsewhere, that in no
way interacted with the system, then this property was an element of reality. The
argument was that since one had not in any way interacted with the system, then
one could not have affected this property, and so the property must have existed
before one performed one’s experiment. Thus the property is an intrinsic part of the
system, and not an artifact of the measurement one made.

From a common-sense point of view, this proposition seems unassailable, and yet
quantum theory denies it. For example, in the Bohm form of the EPR experiment,
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one has a particle that decays into two, that go off in opposite directions. If the
original particle had � spin 0, while each of the two daughters has spin 1/2, then if
the one going to the right has its spin up, the one going to the left will have its spin
down, and vice-versa. So the spin of each of the daughters is an element of reality,
because if one measures the spin of the particle on the right as up, one can predict
with 100% certainty that the other will be spin down, etc. EPR would conclude from
this that, since we did not interfere with the particle on the left in any way, then we
could not have changed its spin, and so it had to have been spin down from the
moment the original particle decayed.

How can quantum theory deny this? By pointing out that since the original spin
was 0, we did not have to measure the spin of the particle on the right as up or down,
but we could have measured it at 90◦ from the vertical. Then the particle on the left
would be 90◦ from the vertical in the opposite direction. In fact we could have mea-
sured the spin of the particle on the right in any direction, and the one on the left
would be opposite it. (This is because in quantum theory, there are only two possi-
bilities for the spin in any direction, up along that direction, or down, opposite it.)
So how could the particle on the left know in which direction we were going to mea-
sure the particle on the right? Therefore the direction of its spin can not be said to
exist until after the spin direction of the particle on the right is measured. Now this
argument also seems unassailable, although it leads to the exact opposite conclusion
from that of EPR, namely that the state of a particle cannot be defined until a mea-
surement is made on it. And so the EPR argument has fascinated physicists since it
was first given, in 1935.

Until Bell’s theorem in 1964, it did not seem that the conflict here was experi-
mentally decidable. But Bell took the EPR argument seriously, and saw that together
with completeness, another postulate of EPR (all elements of reality must have some
counterpart in a complete theory), it implied that there must exist some function
A(α, λ), where α represents the angle along which the spin of the particle on the
right is measured, and λ represents any other parameters that must be set to deter-
mine the outcome of the measurement. (These are now called � hidden variables).
The result of the experiment, the possible values for A, can only be ±1, represent-
ing the two possible outcomes, up or down. There is a similar function representing
the particle on the left, B(β, λ), where β is the angle along which its spin will be
measured, and the value of λ is set by nature when the particle decays.

In any given decay, one can measure the spin of the two particles along any two
directions, α and β, and one will obtain the product A(α, λ)B(β, λ), as the result of
the measurement. Then when one takes the result of many measurements, one will
obtain an average of this product as

E(α, β) =
∫

dλρ(λ)A(α, λ)B(β, λ),

where ρ(λ) is some positive weighting function over the λ’s, since we cannot know
how often each value of λ will occur. The only limitation on this average is that
when β = α, then E = −1, since this is the condition imposed by the fact that
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the original particle has spin 0, and if you measure the two daughters along the
same direction, the spins will be opposite each other. Equivalently, if β = α ± π,
then E = +1. These two cases are known as the “perfect correlation” cases, since
they represent the case where an element of reality exists, and one can predict the
outcome for the product with 100% certainty. (That the function A depends only on
α, and not on β, is known as the � locality, which we have also taken to be true.)

From this form for E(α, β), as a weighted product overA and B, Bell was able to
prove an inequality that the average function,E, had to satisfy, which has come to be
known as the Bell inequality. Any realistic description based on the EPR elements of
reality must obey this inequality. But the quantum theory expectation value violates
this inequality for most sets of angles (α, β), and thus the Bell inequality established
an experimental test to determine whether the EPR postulates were correct or not.
The long experimental history of making the inequality experimentally useful, and
the subsequent confirming of quantum theory is a fascinating tale, but it is not our
concern here. Here we merely note that it is ironical that when β = α, the perfect
correlation case that inspired the controversy, the Bell inequality is not violated.
This is because in this case it is easy to make a realistic model that explains the
result. The violation occurs when one takes arbitrary angles.

The GHZ theorem concerns three particles. It considers only perfect correlations,
so one does not have to take an average over many experiments. In theory one could
use only a single event to prove a contradiction with the EPR result, although in
practice one always needs statistics in an experiment. The GHZ theorem shows that
one can construct three-particle situations in which there are perfect correlations
(meaning that by measuring two particles, one can make a prediction with 100%
certainty what a measurement of the third particle will yield), in which a classi-
cal, realistic interpretation will yield a particular result, while quantum mechanics
predicts the exactly opposite result.

We will give a very clever version of the experiment, due to David Mermin. Con-
sider three spin 1/2 particles. Now look at the four Hermitian operators A,B,C,D,
which represent � observables, and which are defined as

A = σ 1
x σ

2
y σ

3
y , B = σ 1

y σ
2
x σ

3
y , C = σ 1

y σ
2
y σ

3
x , D = σ 1

x σ
2
x σ

3
x .

Here the σ ’s are the � Pauli spin matrices, and the superscripts tell which particle
the matrix operates on, while the subscripts define the component of the spin. All
these � operators commute with each other:

AB = σ 1
x σ

2
y σ

3
y σ

1
y σ

2
x σ

3
y = (σ 1

x σ
1
y )(σ

2
y σ

2
x )(σ

3
y σ

3
y ) = (iσ 1

z )(−iσ 2
z )1

3 = σ 1
z σ

2
z ,

BA = σ 1
y σ

2
x σ

3
y σ

1
x σ

2
y σ

3
y = (σ 1

y σ
1
x )(σ

2
x σ

2
y )(σ

3
y σ

3
y ) = (−iσ 1

z )(iσ
2
z )1

3 = σ 1
z σ

2
z ,

[A,B] = 0 = [A,C] = [B,C],
AD = σ 1

x σ
2
y σ

3
y σ

1
x σ

2
x σ

3
x = 11(−iσ 2

z )(−iσ 3
z ) = −σ 2

z σ
3
z ,

DA = σ 1
x σ

2
x σ

3
x σ

1
x σ

2
y σ

3
y = 11(iσ 2

z )(iσ
3
z ) = −σ 2

z σ
3
z ,

[A,D] = 0 = [B,D] = [C,D].
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(Here 13 means unity for particle 3, which is unity.) Thus all the operators commute
and they can all be measured at the same time, and simultaneously diagonalized.
Finally, their product satisfies the relation

ABCD = σ 1
x σ

2
y σ

3
y σ

1
y σ

2
x σ

3
y σ

1
y σ

2
y σ

3
x σ

1
x σ

2
x σ

3
x

= (σ 1
x σ

1
y σ

1
y σ

1
x )(σ

2
y σ

2
x σ

2
y σ

2
x )(σ

3
y σ

3
y σ

3
x σ

3
x ) = 11(−iσ 2

z )(−iσ 2
z )1

3

= −111213 = −1.

The above is a quantum calculation. From the point of view of a classical, realistic
theory, if one measures σ 1

x , the x component of the spin for particle 1, one will get
m1
x , which = ±1. Thus, if one measures the operator ABCD, one will get

ABCD = (m1
xm

2
ym

3
y)(m

1
ym

2
xm

3
y)(m

1
ym

2
ym

3
x)(m

1
xm

2
xm

3
x) = +1.

The product must be = +1, because every term appears in the product twice. But
quantum mechanically, the product is−1. The reason for the difference between this
and the quantum result, −1, is that even though one can make all the measurements
at the same time quantum mechanically, all the spin components do not commute.
(One must measure the operators A,B, C, and D, not the individual particle spins.)
Thus in principle, we could make this one measurement of ABCD, and distinguish
between the EPR view of reality and the quantum-mechanical one.

What are the quantum mechanical states that simultaneously diagonalize the op-
erators A, B, C, and D? The particles cannot be in one of the states of say σ 1

x ,
because then one could not at the same time measure σ 1

y . So the particle cannot be
in any one state, but must be in a state that is not a simple product of the states of
each of the particles. In other words, it must be in an an entangled state (� entangle-
ment). We call the spin states

∣∣m1
z = +1

〉 ≡ ∣∣↑1
〉
,
∣∣m1

z = −1
〉 ≡ ∣∣↓1

〉
, and simplify

further by leaving out the superscripts for the particles, so that we merely denote the
state

∣∣↑1
〉 ∣∣↓2

〉 ∣∣↑3
〉 ≡ |↑↓↑〉.

Then we can use the properties of the spin states, namely

σx |↑〉 = |↓〉 , σx |↓〉 = |↑〉 ,
σy |↑〉 = i |↓〉 , σy |↓〉 = −i |↑〉 ,
σz |↑〉 = |↑〉 , σz |↓〉 = − |↓〉 ,

to verify that the state |ψ1〉 = 1√
2
(|↑↑↑〉 + |↓↓↓〉) satisfies

A |ψ1〉 = 1√
2
σ 1
x σ

2
y σ

3
y (|↑↑↑〉 + (↓↓↓)) = 1√

2
(− |↓↓↓〉 − |↑↑↑〉) = − |ψ1〉 ,

B |ψ1〉 = 1√
2
σ 1
y σ

2
x σ

3
y (|↑↑↑〉 + (↓↓↓)) = − |ψ1〉 ,

C |ψ1〉 = σ 1
y σ

2
y σ

3
x |ψ1〉 = − |ψ1〉 ,

D |ψ1〉 = σ 1
x σ

2
x σ

3
x |ψ1〉 = + |ψ1〉 .
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So this state diagonalizes each of the operators A, B, C, and D. So does the state
|ψ2〉 = 1√

2
(|↑↑↑〉 − |↓↓↓〉). And in fact so do all the eight states

|ψ1〉 = 1√
2
(|↑↑↑〉 + |↓↓↓〉) , |ψ2〉 = 1√

2
(|↑↑↑〉 − |↓↓↓〉) ,

|ψ3〉 = 1√
2
(|↑↑↓〉 + |↓↓↑〉) , |ψ4〉 = 1√

2
(|↑↑↓〉 − |↓↓↑〉) ,

|ψ5〉 = 1√
2
(|↑↓↑〉 + |↓↑↓〉) , |ψ6〉 = 1√

2
(|↑↓↑〉 − |↓↑↓〉) ,

|ψ7〉 = 1√
2
(|↓↑↑〉 + |↑↓↓〉) , |ψ8〉 = 1√

2
(|↓↑↑〉 − |↑↓↓〉) .

These eight entangled states are called the GHZ states, and the concept can be gen-
eralized to many particles.

The operators A, B, and C form what is called a completely commuting set of
operators, and we could label the states by the eigenvalues of these operators, acting
on the states, so that

A |ψi〉 = ai |ψi〉 , B |ψi〉 = bi |ψi〉 , C |ψi〉 = ci |ψi〉 , ai, bi, ci = ±1,

|ψi〉 ≡ |ai, bi, ci〉 .

(The operator D is redundant, since D = −ABC, and di = −aibici .) Then

|ψ1〉 = |− −−〉 , |ψ2〉 = |+ ++〉 , |ψ3〉 = |+ + −〉 , |ψ4〉 = |− −+〉 ,
|ψ5〉 = |+ −+〉 , |ψ6〉 = |− +−〉 , |ψ7〉 = |− + +〉 , |ψ8〉 = |+ −−〉 .

The GHZ states are entangled, non-local, and from a realistic point of view, acausal,
and as we have seen, even their perfect correlations cannot be explained as elements
of reality. They have been created in the laboratory, not as particles with spin 1/2,
but rather as photon states, where their degrees of freedom, rather than being spin up
or spin down, have been their polarization states, H or V, for horizontal or vertical,
or equivalently, + or −, for circular polarization, and in some cases their position,
rather than polarization, meaning, for example, whether they were transmitted or
reflected by a beam splitter. The Mermin experiment above has been performed,
using photons (� light quantum) by the group of A. Zeilinger in Vienna (see the
bibliography).
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Gleason’s Theorem

Carsten Held

On a � Hilbert space H, the quantum-mechanical trace formula provides a proba-
bility measure. Let {P} be the set of projection operators (� projection) on H and
let, for a given statistical operator W, μ be a function from {P} into [0, 1] defined
by μ(P) = Tr (P · W). Let {Pi} ⊂ {P} be a countable set of mutually orthogo-
nal projection operators. Then, μ(

∑
i P|qi〉) =

∑
i μ(P|qi〉) (countable additivity),

μ(I) = 1, if
∑

i P|qi〉 = I, where I is the identity operator (probability of the cer-
tain event), and μ(P0) = 0, where P0 is the operator projecting on the zero space
(probability of the impossible event). Hence for every particular set {Pi}, μ fulfils
the familiar probability axioms, i.e. is a probability measure. Obviously, μ is not a
probability measure defined on the whole set {P}, since countable additivity is ful-
filled, not for arbitrary, but only for mutually orthogonal elements of {P}. We have,
in effect, defined a generalised probability function, a function on the lattice of pro-
jection operators such that every restriction to a Boolean sublattice is a probability
measure.
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Are there generalised probability functions besides the quantum-mechanical
ones? Given that dim (H)>2, the answer is no. In other words, on a Hilbert space
of dimension greater than two the quantum-mechanical probability measures are
the only ones forming generalised probability functions. This remarkable claim is
the content of Gleason’s Theorem [1]. The theorem is important for the question
whether quantum mechanics is complete in the following sense. Assume that, if
a quantum-mechanical system S is in a pure state |a1〉 such that μ(P|a1〉) = 1
(i.e. the probability that S is found, upon an A-measurement, to have a1 equals
1), then it has the physical property represented by a1 (the eigenvalue of A per-
taining to |a1〉). Completeness can be characterized as the idea that the properties
ascribed to S in this way are the only ones (i.e. the “if” in the previous sen-
tence should be replaced by “if and only if”) and incompleteness as the idea that
there are more. Explicitly, let A, B, . . . be pairwise non-commuting operators
(complementary observables) on S which are non-degenerate and have eigenval-
ues (possible S-properties) a1, a2, . . . , b1, b2, . . . (Non-degeneracy of A means
that if dim (H) = n, then A has n distinct values.) Quantum mechanics prescribes
that S can be in only one of the states |a1〉, |a2〉, . . . , |b1〉, |b2〉, . . . E.g., if S is
in |a1〉, then completeness means that it does not have any value of B and in-
completeness that it does. The latter idea now can be expressed as follows. Every
one of the observables A, B, . . . has one of its values or, equivalently: one of
the |a1〉, |a2〉, . . . gets assigned the number 1, the others the number 0, one of the
|b1〉, |b2〉, . . . gets assigned the number 1, the others the number 0, and so on. Since
each of the sets {|a1〉, |a2〉, . . . }, {|b1〉, |b2〉, . . . }, . . . is an � orthonormal basis of
H, incompleteness becomes the task of assigning 1 to one vector in such a basis and
0 to all others and doing this for all bases of H. Is such an assignment possible or
not? It is easy to see that if it is impossible for a space H with dim (H) = n, then it is
impossible for all spaces H with dim (H) = m � n, all defined over the same field.
And it is comparatively easy to see that if such an assignment is impossible for a
space Rn, an n-dimensional space over the real numbers, then it is impossible over
Cn, a space of identical dimension over the complex numbers (see [6], p. 124, [2],
pp. 323–25). So, an impossibility proof of the incompleteness assumption reduces
to showing that in R3 it is impossible to assign the number 1 to exactly one vector –
in any orthonormal basis – (the number 0 to the two others) and do so consistently
for all bases under the conditions that (a) vectors of different bases but lying in the
same ray get assigned the same number and (b) any vector gets assigned a unique
number, although it can belong to many bases.

The assignment described is indeed impossible, but there are two different ways
to prove this. First, one can show the impossibility directly (i.e. constructively) by
writing out a set of bases that make the assignment impossible. This is the route
taken by the Kochen–Specker Theorem (� Kochen–Specker Theorem). Or one can
exploit Gleason’s Theorem for an indirect proof. It follows immediately from the
theorem that all probability measures on H, with dim (H)>2, are continuous. Es-
pecially, every μ on C3 is continuous and induces a map μ′ on R3 that is also
continuous. Every such μ′ can be visualized as an assignment of values from [0,
1] to all points on the surface of the unit sphere in R3 such that the values vary
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continuously. On the other hand, the map required for realizing the above incom-
pleteness assumption must be discontinuous. Intuitively, when all points on the
surface of the unit sphere in R3 are assigned numbers 1 and 0 only and both val-
ues occur, the map must be discontinuous. So the incompleteness assumption is
refuted.

What should we think about conditions (a) and (b)? Condition (a) is unproblem-
atic and plays no substantial role in the argument. It just reminds us that the space
R3, though intuitively accessible, is not a direct representation of physical space. In
the full quantum-mechanical Hilbert space C3, vectors |a〉 and – |a〉 represent the
same state and the map μ′ on R3 is defined to respect this constraint. A possible
assignment of 0 and 1 values to basis vectors in R3 will likewise have to respect
(a) because R3 is a stand-in for quantum-mechanical C3 where it is respected auto-
matically. Condition (b) seems to explicate a trivial premise of the assignment task.
The task of assigning 1 and 0 to all R3 basis vectors would be trivially possible if
we did not look for an assignment to all vectors, at once. However, this implies that
any vector gets assigned a unique number, although it can belong to many bases
and this condition can be interpreted in terms of the corresponding physics. It is
called the assumption of non-contextuality. Assume that we wish to assign values
to observables beyond the quantum-mechanical allowances. These values might not
be ontologically independent from each other, but it seems reasonable to require
that they are epistemologically independent in the following sense: The value of an� observables does not depend on which other observables are measured in conjunc-
tion with it. In particular, consider a non-degenerate observable A =∑i ai P|ai〉 on
H = Cn. Ascribing some value to A implies ascribing values to all the P|ai〉. (As-
cribing, e.g., ak will ascribe 1 to P|ak〉 and 0 to each P|ai 〉 with i �= k.) But, given
n > 2, there is for an arbitrary eigenvector |am〉 of A a non-degenerate A′ sharing
this eigenvector, but no others, with A. Does the value of P|am〉 depend on whether
it is measured as a function of A or of A′? Answering no means to endorse non-
contextuality, answering yes to reject it. (If n = 3 the eigenvectors of A and A′
can be directly represented as two orthogonal triples in R3 sharing just |am〉.) So,
denying condition (b) (i.e. assuming hidden S properties to be contextual) opens
a loophole in the no-hidden-variables argument from Gleason’s Theorem. An ex-
actly parallel reply can of course be made in connection with the Kochen–Specker
Theorem (� Kochen–Specker Theorem for more discussion).

Gleason’s original proof of his theorem is mathematically involved. An elemen-
tary proof was given by Cooke et al. in 1985 [2]. It is reproduced and extensively
commented by Hughes [4].
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See � quantum computation.

GRW Theory (Ghirardi, Rimini, Weber Model
of Quantum Mechanics)

Roman Frigg

Consider a toy system consisting of a marble and box. The marble has two states,
|�in〉 and |�out〉, corresponding to the marble being inside or outside the box. These
states are eigenvectors of the operator B̂, measuring whether the marble is inside
or outside the box. The formalism of quantum mechanics (QM) has it that not only
|�in〉 and |�out〉 themselves, but any � superposition |�m〉 = a |�in〉 + b |�out〉
where a and b are complex numbers such that |a|2 + |b|2 = 1, can be the state
of the marble. What are the properties of the marble in such a state? This ques-
tion is commonly answered by appeal to the so-called Eigenstate-Eigenvalue Rule
(EER): An observable Ô has a well-defined value for a quantum a system S in state
|�〉 if, and only if, |�〉 is an eigenstate of Ô. Since |�in〉 and |�out〉 are eigen-
states of B̂, EER yields that the marble is either inside (or outside) the box if its
state is |�in〉 (or |�out〉). However, states like |�m〉 defy interpretation on the ba-
sis of EER and we have to conclude that if the marble is in such a state then it
is neither inside nor outside the box. This is unacceptable because we know from
experience that marbles are always either inside or outside boxes. Reconciling this
fact of everyday experience with the quantum formalism is the infamous measure-
ment problem. See also � Bohmian mechanics; Measurement theory; Metaphysics
in Quantum Mechanics; Modal Interpretation; Objectification; Projection Postulate.
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Standard quantum mechanics solves this problem, following a suggestion of von
Neumann’s, by postulating that upon measurement the system’s state is instanta-
neously reduced to one of the eigenstates of the measured observable, which leaves
the system in a state that can be interpreted on the basis of EER (� Measurement
Theory). However, it is generally accepted that this proposal is ultimately unac-
ceptable. What defines a measurement? At what stage of the measurement process
does the � wave function collapse take place (trigger problem)? And why should
the properties of a system depend on actions of observers?

GRW Theory (sometimes also ‘GRW model’) is a suggestion to overcome these
difficulties (the theory has been introduced in Ghirardi et al. [1]; Bell [6] and
Ghirardi [10] provide short and non-technical presentations of the theory; for a
comprehensive discussion of the entire research programme to which GRW Theory
belongs see Bassi and Ghirardi [5]). The leading idea of the theory is to eradicate
observers from the picture and view state reduction as a process that occurs as a
consequence of the basic laws of nature. The theory achieves this by adding to the
fundamental equation of QM, the � Schrödinger equation, a stochastic term which
describes the state reduction occurring in the system. (For this reason GRW the-
ory is not, strictly speaking, an interpretation of QM; it is a quantum theory in its
own right).

A system governed by GRW theory evolves according to the Schrödinger equa-
tion all the time except when a state reduction, a so-called hit, occurs (hits are also
referred to as ‘hittings’, ‘perturbations’, ‘spontaneous localisations’, ‘collapses’,
and ‘jumps’). A crucial assumption of the theory is that hits occur at the level of
the micro constituents of a system (in the above example at the level of the atoms
that make up the marble). The crucial question then is: when do hits occur and what
exactly happens when they occur?

GRW Theory posits that the occurrence of hits constitutes a Poisson process.
Generally speaking, Poisson processes are processes characterised in terms of the
number of occurrences of a particular type of event in a certain interval of time τ ,
for instance the number of people passing through a certain street during time τ .
These events are Poisson distributed if the probability that the number of events
occurring during τ, n, takes value m is given by p(n = m) = e−λτ (λτ)m/m!,
where λ is the parameter of the distribution. One can show that λ is also the mean
value of the distribution and hence it can be interpreted as the average number of
events occurring per unit time. GRW theory sets λ = 10−16 s−1 and posits that this
is a new constant of nature. Hence, in a macroscopic system that is made up of about
1023 atoms there are on average 107 hits per second.

A hit transforms the system’s state into another state according to a probabilistic
algorithm that takes the position basis as the privileged basis (in that the reduction
process leads to a localisation of the system’s state in the position basis). Let |�S〉
be state of the entire system (e.g. the marble) before the hit occurs. When the kth
particle, say, is hit the state is instantaneously transformed into another, more lo-
calised state:

|�S〉 →
∣∣∣�hit

S

〉
= Lk,c |�S〉∥∥Lk,c |�S〉

∥∥ .
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Lk,c, the localisation operator, that has the shape of a Gaussian (a bell-shaped
curve) centred around c, which is chosen at random according to the distribution

pk(c) =
∥∥Lk,c |�S〉

∥∥2; the width σ of the Gaussian is also a new constant of nature,
and it is of the magnitude 10−7 m. The choice of this distribution assures that the
predictions of GRW Theory coincide almost always with those of standard QM
(there are domains in which the two theories do not yield the same predictions, but
these are (so far) beyond the reach of experimental test; see Rimini [15]).

Due to the mathematical structure of QM (more specifically, due to the fact that
|�S〉 is the tensor product of the states of all its micro constituents) the hits at the
micro level ‘amplify’: if the marble is in state |�m〉 and kth particle gets hit, then
the entire state is transformed into a highly localised state, i.e. all terms except one
in the superposition are suppressed. This is GRW’s solution of the measurement
problem. A macro system gets hit 107 times per second and hence superpositions
are suppressed almost immediately; micro systems are not hit very often and hence
retain their ‘quantum properties’ for a very long time.

This proposal faces two important formal problems. First, the � wave function
of systems of identical particles has to be either symmetrical (in the case of Bosons)
or antisymmetrical (in the case of Fermions), and remain so over the course of time.
GRW theory violates this requirement in that wave functions that are symmetric (or
antisymmetric) at some time need not be (and generally are not) symmetric (or an-
tisymmetric) at later times. Second, although hits occur at the level of the system’s
wave function, the fundamental equation of the theory is expressed in terms of the
density matrix. This strikes physicists as odd and one would like to have an equation
governing the evolution of the wave function itself. Both difficulties are overcome
within the so-called CSL model (for ‘continuous spontaneous localization’) intro-
duced in Pearle [3] and Ghirardi et al. [2]. The model belongs to the same family of
proposals as GRW theory in that it proposes to solve the measurement problem by
an appeal to a spontaneous localisation processes. The essential difference is that the
discontinuous hits of GRW theory are replaced by a continuous stochastic evolution
of the state vector in � Hilbert space (similar to a diffusion process).

Another serious problem concerns the nature of GRW hits. Unlike the state
reduction that von Neumann introduced into standard QM, the hits of GRW the-
ory do not leave the system’s state in an exact position eigenstate; the post-hit state
is highly peaked, but nevertheless fails to be a precise position eigenstate. This is
illustrated schematically in Fig. 1. Hence, strictly speaking the post-hit states are not
interpretable on the basis of EER and we are back where we started; this problem
is also know as the ‘tails problem’ (see Albert and Loewer [4]). Common wisdom
avoids this conclusion by pointing out that GRW post-hit states are close to eigen-
states and positing that being close to an eigenstate is as good as being an eigenstate.
This has been challenged by Lewis [12], who presents an argument for the con-
clusion that this move has the undesirable consequence that arithmetic does not
apply to ordinary macroscopic objects. For a critical discussion of this argument see
Frigg [12].

What is the correct interpretation of the theory? That is, what, if anything, does
the theory describe? The answer to this question is less obvious than it might
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Fig. 1 GRW hit

seem. Clifton and Monton [7] regard it as a ‘wave function only theory’ according
to which the world literally is just the wave function that the theory describes.
Monton [14] later criticises this view as mistaken and suggests a variation of the
mass density interpretation originally proposed by Ghirardi et al. [11]. Lewis [12]
points out that all versions of the mass density interpretation lead to a violation of
common sense and should hence not be regarded as a problem-free alternative.

How should we interpret the probabilities that the theory postulates in its
hit mechanism? Are they best interpreted as propensities, frequencies, Humean
chances, or yet something else? Or should the quest for such an interpretation be
rejected as ill-conceived? This question is discussed in Frigg and Hoefer [9] who
come to the conclusion that GRW probabilies can be understood either as single
case propensities or as Humean chances, while all other options are ruled out by
GRW Theory itself. See also � Metaphysics in Quantum Mechanics; Quantum
State Diffusion Theory.
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H
Hamiltonian Operator

Christopher Witte

Hamiltonian operator, a term used in a quantum theory for the linear operator on a
complex � Hilbert space associated with the generator of the dynamics of a given
quantum system. Under most circumstances this operator is assumed to be self-
adjoint, thus having real spectrum. The spectral values are in such a case interpreted
as possible resulting values of an energy measurement performed on the system. The
Hamiltonian operator can then be seen as synonymous with the energy operator,
which serves as a model for the energy observable of the quantum system.

In these two aspects of (a) generating the dynamics and (b) representing the en-
ergy observable, the Hamiltonian operator in quantum theory plays a rôle very
much analogous to that of the Hamiltonian function in classical theories. His-
torically this fact became obvious as soon as modern quantum mechanics was
constituted by Heisenberg, Schrödinger, Dirac and others. Schrödinger himself used
a term for this mathematical object that translates to “the wave operator anal-
ogous to the Hamiltonian function” [5] in comparing his � wave mechanics to
Heisenberg’s � matrix mechanics. Due to this obvious similarity to the Hamilto-
nian function of classical mechanics the symbol H and the names energy operator
or Hamiltonian operator came into use (see, e.g., [1] for a relatively early example).

The concept of a Hamiltonian operator is useful in almost any quantum theory, be
it quantum mechanics or a quantum field theory. Nevertheless, since quantum field
theories are usually considered in a relativistic setting, the meaning of dynamics
is more complicated due to the lack of an absolute time parameter. This problem
can be dealt with in an elegant way by an algebraic approach to such theories (see,
e.g., [4]). In much the same way the measurement process and the concept of energy
of the system need refinement. Especially in approaches to a theory of quantum
gravity the significance of the Hamiltonian operator becomes much different, since
such an operator should rather be seen as a constraint operator than a generator of
dynamics. The concept of an energy operator fails completely to be applicable [6].
To avoid these complications in this encyclopedic overview, we will restrict the
detailed description to the realm of non-relativistic quantum mechanics.

Generator of dynamics. The most simple quantum mechanical systems are
closed, conservative systems. For such systems the homogeneity of time suggests
that their dynamics is induced by a symmetry of the system [2]. By Wigner’s the-
orem such a symmetry can be either a unitary or an anti-unitary operation on
the underlying Hilbert space H. Since the effects of the dynamics should tend
to identity in a measurement context when time steps become small, the oper-
ations must form a weakly continuous one-parameter-group of unitary operators
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U : R → U(H), t �→ U(t), where U(H) denotes the group of � unitary opera-
tors on H. The unitary operators U(t) are called evolution operators, since they
describe evolution of a pure state at time t0 to the state at time t1 by ψ(t0) �→
ψ(t1) = U(t1 − t0)ψ(t0). The term “one-parameter-group” actually means, that
the mapping U is a group homomorphism, such that U(t1)U(t0) = U(t0 + t1) and
U(t)−1 = U(−t). The notion of “weak continuity” refers to the claim that the map-
ping t → 〈φ,U(t)ψ〉 for arbitrary φ,ψ ∈ H be continuous. This kind of continuity
ensures that statistical distributions of arbitrary measurements (more specifically
their moments) vary continuously with time. Stone’s theorem (see, e.g., [7]) states
that such one-parameter-groups are exactly those, which are generated by a � self-
adjoint operator. Explicitly, there is a self-adjoint operator H, the Hamiltonian
operator such that U(t) = exp(−it H /�) for all t ∈ R (exp denoting the operator
exponential function). The Hamiltonian operator can be found from the evolution
operator by differentiation

〈φ,Hψ〉 = i�
d

dt
〈φ,U(t)ψ〉|t=0.

This equation defines the self-adjoint operator H on its domain D(H), which is dense
in, but generally not equal to the Hilbert space H. The domain of the Hamiltonian
is invariant under the action of the evolution operators and the equation above de-
scribes the derivative of the curve ψ(t) = U(t)ψ(0), which a pure quantum state
passes in time:

i�
d

dt
ψ(t) = Hψ(t).

This equation, which describes the infinitesimal generation of the quantum dynam-
ics, is the famous � Schrödinger equation. The dynamics of mixed states follows
according to the definition of mixing directly from the dynamics of pure states:
ρ(t) = U(t)ρ(0)U∗(t). By differentiation this leads to

i�
d

dt
ρ(t) = [H, ρ(t)],

an equation usually called von Neumann equation. Sometimes this equation is also
called quantum Liouville equation, in analogy to the dynamical equation for density
distributions in classical Hamiltonian mechanics.

The � Heisenberg picture of a quantum system models the dynamics in a differ-
ent but equivalent way to the above seen so called � Schrödinger picture. States
are seen as time-independent in the Heisenberg picture, whereas � observables
carry the time dependence of the system. Since the statistical outcome of any mea-
surement performed on the system must not depend on the picture chosen, one
must have for any observable A the identity Tr(ρ(t)A) = Tr(ρ(0)AH (t)) and thus
AH(t) = U∗(t)AU(t) for the time dependent observable in the Heisenberg picture.
From this dynamics one gets the differential equation of motion

i�
d

dt
AH (t) = [AH(t),H]
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for observables, which is correspondingly called the von Neumann equation in the
Heisenberg picture.

The dynamics of nonconservative systems is more complicated in general. In
some important cases the dynamics of the system is still unitary, but the evolution
operators do not form a one parameter group. Instead the more general case is that
of a two-parameter-groupoid U : R × R → U(H), t �→ U(t1, t2) with properties
U(t3, t2)U(t2, t1) = U(t3, t1) and U(t2, t1)

−1 = U(t1, t2). Such systems with a
time dependent Hamiltonian can be seen as analogous to holonomic-rheonomous
classical systems. The infinitesimal generator of such a groupoid is a time dependent
self-adjoint operator H(t) and can be calculated by

〈φ,H(t)ψ〉 = i�
d

dt̃
〈φ,U(t̃ , t)ψ〉|t̃=t .

Nevertheless integration of a time dependent Hamiltonian operator to get back the
evolution operators is non-trivial and must not be done by simply taking the operator
exponential function.

The dynamics of general open quantum systems cannot be modeled in the same
way as seen above. The dynamical mapping ρ(t0) �→ ρ(t1) = V (t1, t0)(ρ(t0)) can
only be given in the � mixed state context, or equivalently as a quantum stochastical
process of pure states, since time evolution doesn’t conserve purity of states (details
can be found, e.g., in [3]).

Energy operator: In classical mechanics the generator of the dynamical group
of a holonomic-scleronomous system is the generator of a symmetry operation. By
Noether’s theorem the generator of such a symmetry is a constant of motion with
the physical interpretation of the total energy of the system. In much the same way
the time-independent Hamiltonian operator of a conservative quantum system can
be seen as a constant of motion, as the statistical distribution of the observable H
is constant, i.e., for any natural number n the expectation value of Hn is constant
in time: i� d

dt Tr(ρ(t)Hn) = Tr([H, ρ(t)]Hn) = 0. By analogy it is justified to
call this observable energy, and the spectrum of H is to be interpreted as possi-
ble outcomes of an energy measurement. Eigenstates of this observable correspond
to preparations of the system with sharp energy values. They are solutions to the
eigenvalue equation Eψ = Hψ , where E is a certain discrete spectral value. This
equation is sometimes called the time-independent Schrödinger equation, and its
solutions show an especially simple time dependence: ψ(t) = ψ(0) exp(iEt/�),
i.e., only a time dependent phase factor is changed. These states are called station-
ary, since statistical distributions of (time-independent) observables in such states
are invariant in time. For energy values E in the continuous spectrum there are no
solutions to the time-independent Schrödinger equation in Hilbert space. Neverthe-
less, in the context of � rigged Hilbert space one can find weak solutions called
improper eigenstates. These have a physical interpretation as scattering states and
are stationary as well.

The spectrum of the Hamiltonian operator is usually bounded from below, i.e.,
there is a lower limit for the energy of the system. This condition is a necessity
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for systems, which can in principle interact with the environment, for otherwise
such systems could act as an infinite source of energy, since they do not admit a
ground state. Also, no thermodynamical equilibrium is possible for systems with
Hamiltonian operator not bounded from below, since the usual expression for the
equilibrium state ρβ = exp(−β H)/Tr(exp(−β H)) would in that case not yield a
well-defined operator for any inverse temperature β > 0.

The analogy to the classical energy function becomes most obvious, if one
chooses the Schrödinger representation for the Hilbert space H = L2(R3n)⊗Hint,
where R3n is the n-particle position space and Hint the space of internal degrees
of freedom (usually � spin). For systems without internal degrees of freedom the
Hamiltonian operator takes the form of a certain kind of partial differential operator,
called Schrödinger operator [8]:

H =
∑
k

(
1

2mk

(
�

i
∇k − qkA(xk)

)2
)
+ V ,

with functions A(x) (exterior magnetic vector potential) and V (x1, . . . , xn) (com-
mon potential) of suitable integrability and differentiability. Since pk = �

i ∇k is the
momentum operator of the k-th particle, this can be seen as the formal translation
of the classical Hamiltonian function of n charged particles with magnetic terms.
Some important special cases of Schrödinger operators will be listed below.

(a) For a single particle in the absence of a magnetic field, one gets the standard
Hamiltonian operator

H = − �2

2m
�+ V ,

with Laplace operator � and single particle potential V (x).
(b) A single electron in an electromagnetic field, taking spin into account, can be

described by a Hamiltonian of the form

H = 1

2m
(
�

i
∇ + eA)2 − eφ + e

m
S · B,

where the electromagnetic potentials φ and A as well as the magnetic field B
are functions of position x and possibly time t . This operator acts on the Hilbert
space H = L2(R3) ⊗ C

2, where the space of internal degrees of freedom of
the spin-1/2 electron can be taken to be C2. The formal scalar product S · B
of a matrix-valued vector and a vector-valued function yields a matrix-valued
function, which admits a natural action as an operator on the tensor product
Hilbert space.

(c) The Hamiltonian operator of an ion or atom of N electrons and a nucleus of
atomic number Z is given by

H =
N∑
k=1

(
− �

2

2m
�k − Ze2

4πε0|xk|

)
+
∑
k< l

e2

4πε0|xk − xl | ,

with nucleus located in the origin of the co-ordinate system.
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(d) The Hamiltonian operator of an electron in an atom, using the central-field
model, but taking into account the spin-orbit coupling, reads

H = − �
2

2m
�+ V (|x|)+ 1

2m2c2|x|
d

d|x|V (|x|)L · S

where V is some effective potential.
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Hardy Paradox

Antonio Acı́n

Since the seminal work by Bell [1], it is known that the results obtained when mea-
suring a quantum state in space separated regions can display some counter-intuitive
form of correlations, often named as quantum � nonlocality. The standard Bell sce-
nario consists of a source emitting a pair of particles to two distant observers, Alice
and Bob, who can choose between m different measurements of n possible out-
comes. The choice of the measurement by Alice and Bob is denoted by x and y,
while a and b label the corresponding measurement outcome, see Fig. 1. By measur-
ing the particles, the parties can estimate the correlations between the measurement
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SourceAlice Bob

a=1,...,n b=1,...,n

x=1,...,m y=1,...,m

Fig. 1 Standard Bell scenario: two distant parties receive correlated quantum particles from a
source. Alice and Bob choose between m possible measurements of n outcomes. The choice of
measurement is labeled by x and y and the obtained outcome by a and b

outcomes, described by a conditional probability distribution p (a, b|x, y). The tim-
ing is such that the particles are emitted at the source before Alice and Bob decide
which measurement to perform. It is also assumed that the parties are situated in
distant labs, so there does not exist any form of communication between them. This
can be guaranteed, for instance, if Alice’s measurement is outside the light-cone de-
fined by Bob’s measurement, and viceversa: Einstein’s special relativity implies that
there cannot be any causal influence between the measurements. Under these con-
ditions, any possible correlation between Alice and Bob’s measurement outcomes
should have been defined at the source.

In what follows, we consider the simplest case where Alice and Bob have to
perform two different Stern Gerlach measurements on two spin-one-half particles.
The measurements are defined by two directions, corresponding to the directions
of the Stern–Gerlach measurement apparatuses for each party, namely â1 and â2
for Alice and b̂1 and b̂2 for Bob, while the outcomes of these measurements are
a1, a2, b1, b2 = ±1. Note that here we replace the previous general notation, that
is a, b, x and y, by the more physical � spin notation given by the direction of the
spin measurements and the ±1 outcomes.

In 1993 Lucien Hardy showed that in this scenario, it is possible to choose a
quantum state of two spin-one-half particles and measurements by Alice and Bob
such that:

1. If Alice measures along the first direction and obtains the result +1, Bob, when
measuring along the first direction also gets +1. This means that p (b1 =
−1|a1 = +1) = 0 which implies p (a1 = +1, b1 = −1) = 0.

2. If Bob measures along the first direction and obtains the result +1, Alice, when
measuring along the second direction also gets +1. This means that p (a2 =
−1|b1 = +1) = 0 which implies p (a2 = −1, b1 = +1) = 0.

3. If Alice measures along the second direction and obtains the result +1, Bob,
when measuring along the second direction also gets +1. This means that
p (b2 = −1|a2 = +1) = 0 which implies p (a2 = +1, b2 = −1) = 0.

4. If Alice measures along the first direction and Bob along the second direction,
sometime their outcomes are a1 = +1 and b2 = −1. This means that p (a1 =
+1, b2 = −1) �= 0.
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â2

â1

b̂2

b̂1

X

Z

Fig. 2 Spin measurements in Hardy’s paradox. The measurements are defined by the direction of
the Stern–Gerlach apparatus. The arrow of each measurement indicates the outcomes associated to
a positive result. If Alice measures â1 and gets the positive outcome, she is projecting Bob’s state
into +b̂1. All these implications are shown by curved arrows in the figure

Using standard quantum concepts and the pictorial representation of spin mea-
surements, it is possible to get an intuition about these measurements. Recall that,
according to Quantum Mechanics, the measurement by one of the parties, say Alice,
on her quantum particle projects the other particle, Bob’s particle, into a quantum
state that depends on Alice’s result. Hardy’s choice of measurements and states is
such that, for instance, when Alice measures along the direction â1 her quantum par-
ticle and obtains the result+1, she is aligning (projecting) the spin of Bob’s particle
along the positive direction defined by b̂1 (see also Fig. 2). Thus, if Bob measures
along this direction, he will always obtain the result+1. The same reasoning applies
to the remaining directions.

Let’s now apply our classical intuition to this situation. As discussed above,
since it is assumed that there is no communication between the particles when
measured, all observed � correlations in quantum mechanics should have been
established at the source. That is, before leaving the source, the parties get some
instructions about which result, +1 or −1, corresponds to the each of the two
measurements. Remember that the choice of measurement by Alice and Bob is
made after the particles leave the source. This is why the particles should carry
information about the two possible measurements by each party. These instructions
are nothing but a list specifying the outcomes for each measurement, for example
{a1 = +1, a2 = +1, b1 = −1, b2 = +1}. Since the scope of these instructions
is to reproduce the observed quantum correlations, they cannot be in contradiction
with properties 1–4 listed above. This means that in all the cases where a1 = +1,
b1 should also be equal to +1 because of property 1. If this was not the case,
p (a1 = +1, b1 = −1) could not be zero. Now, a2 has to be +1 as well, because
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of property 2. But, then, because of property 3, b2 = +1. That is, the chain of im-
plications a1 = +1 → b1 = +1 → a2 = +1 → b2 = +1, see also Figure 2,
implies that the probability of observing a2 = +1, b2 = −1 has to be zero. How-
ever, Hardy’s paradox, and in particular property 4 above, shows that this reasoning
is wrong in the quantum case! More precisely, it is not that the reasoning is wrong
but it is just another manifestation of the fact that quantum � nonlocality cannot be
explained using classical correlations, as first shown by � Bell’s Theorem.

Once the paradox is presented, one can try to “optimize the surprise”, in the sense
of preparing the quantum state and measurements such that p (a1 = +1, b2 = −1)
is maximized. As shown by Hardy [2], the solution to this problem gives p (a1 =
+1, b2 = −1) = 0.09. Interestingly, Hardy’s paradox does not work for the sin-
glet state, which in many senses can be considered as the most correlated quantum
state of two � spin-one-half particles. When the two distant observes share a singlet
state, if Alice measures along â1 and gets the result +1, she knows that Bob’s par-
ticle is projected onto the orthogonal state and, therefore, he will get the opposite
result when measuring along the same direction. In this sense the singlet state has the
strongest form of anti-correlations. Note however that these perfect anti-correlations
appear when Alice and Bob measure along the same direction. Therefore, it is im-
possible to derive the chain of implications that was crucial in the construction of
Hardy’s paradox. The proof, however, works for any other quantum state of two
spin-one-half particles, provided it is not product.

To conclude, Hardy’s paradox provides an alternative and elegant proof of Bell’s
theorem. It is worth mentioning here that, from an experimental point of view, it
does not provide any advantage over other existing versions of this Theorem. In
particular, it is based on combination of events that have zero probability, which is
impossible as soon as we introduce some reasonable form of noise in the system [3].
However, it is perhaps one of the simplest demonstrations of the weirdness and
beauty of quantum correlations.
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Heisenberg Microscope

Marianne Breinig

In 1925 Werner Heisenberg published the first coherent mathematical formula-
tion of quantum theory, now referred to as � matrix mechanics. One year later,
Erwin Schrödinger presented an alternative theory which became known as wave
mechanics. � Wave mechanics was considered the more intuitive theory and was
favored by many physicists of that time. In 1927 Heisenberg published a paper to
show that the predictions of matrix mechanics, which lead to the � Heisenberg un-
certainty relations, should not be considered counterintuitive, but should be viewed
as being built into every measurement.

In the paper Heisenberg introduced a thought experiment to measure the position
of an electron with a microscope which uses high-energy gamma rays for illumina-
tion. By reducing the wavelength of the gamma rays and by increasing the diameter
of the microscope objective, the position of the electron can be measured as accu-
rately as desired. Assuming diffraction-limited optics, the uncertainty in the position
measurement is on the order of �x ∼= λ/(2 sin θ) (Fig. 1).

However, as a gamma ray scatters off the electron whose position is being mea-
sured, into the solid angle subtended by the microscope objective at the position of
this electron, energy and momentum conservation require that the electron recoils.
This � Compton scattering process produces an uncertainty in the momentum of
the scattered electron, since the gamma ray can be scattered into any angle within
the acceptance cone of the objective. The uncertainty in the x-component of the

Fig. 1 Diffraction-limited
optics
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momentum is on the order of �px ∼= (2h/λ) sin θ . The Heisenberg microscope
thought experiment therefore leads to a product of uncertainties �x �px ∼= h.

The thought experiment contains the notion that the uncertainty relation is a re-
sult of a disturbance of the electron by the measurement process. This may lead
to the assumption that without this disturbance the electron could have a well de-
fined position and momentum, which conflicts with our current understanding of
quantum mechanics. The uncertainty principle applies to all quantum objects and
should not be viewed as only the result of us not being able to make an accurate
measurement.
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Heisenberg Picture

Marianne Breinig

In non-relativistic quantum mechanics, the state of a physical system at a fixed time
t0 is defined by specifying a ket |ψ(t0)〉 belonging to the space ε. ε is a complex,
separable � Hilbert space, a complex linear vector space in which an inner product
is defined and which possesses a countable � orthonormal basis. The vectors in such
a space have the properties mathematical objects must have in order to be capable
of describing a quantum system.

In the Heisenberg picture the time evolution of a physical system is described as a
continuous, passive unitary transformation. Passive unitary transformations change
the basis vectors but leave the state vectors unchanged. � Operators are defined
through their action on the basis vectors and therefore change under a passive
unitary transformation.

Let the state vector in the Heisenberg picture be |ψH〉 at t = t0. As the system
evolves, the state vector will not change. The � Schrödinger equation is replaced
by an equation describing the time evolution of any operator �H in the Heisenberg
picture. If the operator does not depend explicitly on time, then

d�H

dt
= 1

i�

[
�H,HH

]
.
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The Heisenberg picture leads to equations similar to the classical equations of
motion and is often used to explore general properties of quantum systems and the
formal analogy between classical and quantum theory.

One can switch from the � Schrödinger picture to the Heisenberg picture at any
time t by applying a unitary transformation. The transformation

|ψH〉 = U(t0, t)|ψS(t)〉 = UT(t, t0)|ψS(t)〉 = |ψS(t0)〉
yields the state vectors |ψH〉 in the Heisenberg picture given the state vector |ψS(t)〉
in the Schrödinger picture, and the transformation

�H(t) = UT(t, t0)�SU(t, t0)

yields the operator �H(t) in the Heisenberg picture given the operator �S in the
Schrödinger picture. This is a change of representation. The matrix elements of any
operator, �, are independent of the representation.

Primary Literature

1. C. Cohen-Tannoudji, B. Diu, F. Laloë: Quantum Mechanics, Volume 1 (Wiley, New York
1977, 312–314)

Heisenberg Uncertainty Relation
(Indeterminacy Relations)

Paul Busch and Brigitte Falkenburg

The term Heisenberg uncertainty relation is a name for not one but three distinct
trade-off relations which are all formulated in a more or less intuitive and vague
way in Heisenberg’s seminal paper of 1927 [1]. These relations are expressions and
quantifications of three fundamental limitations of the operational possibilities of
preparing and measuring quantum mechanical systems which are stated here in-
formally with reference to position and momentum as a paradigmatic example of
canonically conjugate pairs of quantities:

(A) It is impossible to prepare states in which position and momentum are simulta-
neously arbitrarily well localized. In every state, the probability distributions
of these � observables have widths that obey an uncertainty relation.
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(B) It is impossible to make joint measurements of position and momentum. But it
is possible to make approximate joint measurements of these observables, with
inaccuracies that obey an uncertainty relation.

(C) It is impossible to measure position without disturbing momentum, and vice
versa. The inaccuracy of the position measurement and the disturbance of the
momentum distribution obey an uncertainty relation.

Of these three statements, only (A) was immediately given a precise formula-
tion. Heisenberg only proved �(Q,ϕ)�(P, ϕ) = �/2 for the standard deviations
of position Q and momentum P in a Gaussian state ϕ; this was successively gen-
eralized soon afterwards by Weyl, Kennard, Robertson and Schrödinger, and the
most general form for two observables represented as � selfadjoint operators A,B
is given by

�(A, T )2�(B, T )2 � 1
4 |〈[A,B]〉T |2 + 1

4 [〈{A,B}+〉T − 2〈A〉T 〈B〉T ]2. (1)

Here the notation 〈X〉T := tr[TX] is used for the expectation value of an operator
X in a state T , and �(X, T )2 := 〈X2〉T − 〈X〉2T ; further, [A,B] = AB − BA and
{A,B}+ = AB + BA. Relation (1) holds for all states T for which all expectation
values involved are well-defined and finite. For an account of the early formal and
conceptual developments of the uncertainty relation the reader is referred to the
monograph [9].

It should be noted that uncertainty relations can be formulated in terms of other
measures of the widths of the relevant probability distributions; these are sometimes
more stringent than the above, particularly in cases where the standard deviation is
infinite or otherwise an inadequate representation of the width.

The Heisenberg uncertainty relation (1) is commonly called indeterminacy rela-
tion, reflecting the interpretation that this relation expresses an objective limitation
on the definition of the values of noncommuting quantities and not just a limitation
to accessing knowledge about these values. Successful tests of the uncertainty rela-
tion in single-slit and interferometric experiments with neutrons and recently with
fullerenes have been reported in [2–5].

The other two uncertainty relations, (B) and (C), have proved significantly harder
to make precise and prove. Heisenberg only illustrated their validity by means of
idealized thought experiments, such as the � γ -ray microscope experiment and the
single- or � double-slit experiment. Other authors, notably Einstein, Margenau and
Popper, proposed experiments which were intended to demonstrate that the uncer-
tainty relations are only statistically relevant and have no bearing on the properties
of the individual quantum system.

In recent quantum optics, a which way thought experiment was proposed in order
to show that Niels Bohr’s � complementarity principle is more fundamental than the
uncertainty relation (C) [6]. A polemic debate arose about this question [7]. Finally,
a � which way experiment with single atoms showed that for the “complementary”
observables D (path distinguishability) and V (visibility of interference fringes) a
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duality relation holds, which is indeed a generalized type (A) uncertainty relation
[7, 8, 11]. Hence, a debate on (C) could be settled in terms of (A).

A general proof of both (B) and (C) (assuming that these relations are in fact
valid) requires the development of a theory of approximate joint measurements
(� observable) of noncommuting observables, which has become possible on the
basis of the generalized notion of an � observable represented as a positive operator
measure (POM) and the corresponding extended measurement theory. The quality
of the approximation of one observable by means of another can be assessed and
quantified by comparing the associated probability distributions. Similarly, the dis-
turbance of one observable, B, due to the measurement of another one, A, can be
quantified by a comparison of the probability distributions of B immediately before
and after the measurement of A. In the case of position and momentum, the theory
of approximate joint measurements is well developed and has led to rigorous formu-
lations of trade-off relations in the spirit of (B) and (C). The conceptual development
that has led to this result is reviewed in [10]. Work on obtaining formalizations of
(B) and (C) for general pairs of noncommuting observables is still under way.
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Hermitian Operator

See � Hilbert space, Indistinguishability, Operator, Propensities in Quantum
Mechanics, Rigged Hilbert Space in Quantum Mechanics, Self-adjoint operator,
Superposition Principle, Wave Mechanics.

Hidden Variables

B. J. Hiley

Standard quantum mechanics, in the hands of von Neumann, makes the assumption
that the � wave function, ψ(r, t), provides the most complete description of state
of an evolving system. It then uses the Born probability postulate (� Born rule)
and assumes that the probability of finding the system at position r at time t is
given by P = |ψ(r, t)|2. This gives an essentially statistical theory, � probability
interpretation but a statistical theory unlike those found in classical situations where
all the dynamical variables such as position, momentum, angular momentum etc.,
are well defined but unknown.

The dynamical variables of a quantum system are determined by the eigenvalues
of operators called � ‘observables’. Given a quantum state, not all the dynamical
variables have simultaneous values. For example, if the position is sharply defined,
then the momentum is undefined and vice-versa. In other words there exist sets of
complementary variables such that if one set are well defined, the other set are com-
pletely undefined. This is the feature that underlies the � Heisenberg uncertainty
principle.

Furthermore it is assumed that the complementary set of variables cannot even
be postulated to exist with unknown numerical values. Thus � quantum statistics
do not emerge from averaging over a set of unknown parameters. This means that
quantum statistics must have a very different origin from classical statistics and
these statistics are totally different from the statistics that arise, for example, in sta-
tistical mechanics. This surprising result was already noticed by Born when he first
introduced the � probability interpretation. He wrote “But, of course, anybody dis-
satisfied with these ideas may feel free to assume that there are additional parameters
not yet introduced into the theory which determine the individual event” [1]. These
new variables could then be regarded as hidden. This then is one of the ideas lying
behind the search for a hidden variable interpretation of quantum theory.

This point of view was strongly opposed by Bohr on what today would be
regarded as a philosophical argument. For Bohr the � Heisenberg uncertainty re-
lations implied an indivisibility of the quantum of action, which in turn implied
that it was not possible to make a sharp separation between the properties of the
observed system and those of the observing apparatus. In other words, quantum
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Hermitian Operator

See � Hilbert space, Indistinguishability, Operator, Propensities in Quantum
Mechanics, Rigged Hilbert Space in Quantum Mechanics, Self-adjoint operator,
Superposition Principle, Wave Mechanics.

Hidden Variables

B. J. Hiley

Standard quantum mechanics, in the hands of von Neumann, makes the assumption
that the � wave function, ψ(r, t), provides the most complete description of state
of an evolving system. It then uses the Born probability postulate (� Born rule)
and assumes that the probability of finding the system at position r at time t is
given by P = |ψ(r, t)|2. This gives an essentially statistical theory, � probability
interpretation but a statistical theory unlike those found in classical situations where
all the dynamical variables such as position, momentum, angular momentum etc.,
are well defined but unknown.

The dynamical variables of a quantum system are determined by the eigenvalues
of operators called � ‘observables’. Given a quantum state, not all the dynamical
variables have simultaneous values. For example, if the position is sharply defined,
then the momentum is undefined and vice-versa. In other words there exist sets of
complementary variables such that if one set are well defined, the other set are com-
pletely undefined. This is the feature that underlies the � Heisenberg uncertainty
principle.

Furthermore it is assumed that the complementary set of variables cannot even
be postulated to exist with unknown numerical values. Thus � quantum statistics
do not emerge from averaging over a set of unknown parameters. This means that
quantum statistics must have a very different origin from classical statistics and
these statistics are totally different from the statistics that arise, for example, in sta-
tistical mechanics. This surprising result was already noticed by Born when he first
introduced the � probability interpretation. He wrote “But, of course, anybody dis-
satisfied with these ideas may feel free to assume that there are additional parameters
not yet introduced into the theory which determine the individual event” [1]. These
new variables could then be regarded as hidden. This then is one of the ideas lying
behind the search for a hidden variable interpretation of quantum theory.

This point of view was strongly opposed by Bohr on what today would be
regarded as a philosophical argument. For Bohr the � Heisenberg uncertainty re-
lations implied an indivisibility of the quantum of action, which in turn implied
that it was not possible to make a sharp separation between the properties of the
observed system and those of the observing apparatus. In other words, quantum
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phenomena introduced a radically novel notion wholeness, where it is impossible
to make a sharp separation between what is being observed and the means used for
its observation. If this proposition is correct then it is, in principle, not possible to
introduce other, unknown variables belonging to the observed system which could
be integrated over to obtain the required statistics. Technically this is summarised
with the statement that no dispersion free ensembles exist. (� Ensembles in Quan-
tum Mechanics). The existence of such ensembles would imply that it is possible to
make a sharp separation between the observed and the means of observation.

Mathematical support for “no dispersion free ensembles” came from von Neu-
mann, who in his classic book Mathematical Foundations of Quantum Mechanics
claimed to have proved that no dispersion free ensembles could exist without de-
stroying the predictions of the formalism. Von Neumann writes “Nor would it help
if there existed other, as yet undiscovered, physical quantities, in addition to those
represented by the operators in quantum mechanics, because the relations assumed
in quantum mechanics would have to fail already for the by now known quantities
discussed above [His postulates I and II]. It is therefore not, as is often assumed, a
question of a re-interpretation of quantum mechanics – the present system of quan-
tum mechanics would have to be objectively false, in order that another description
of the elementary processes than the statistical one be possible.” [2]

Although there were some objections raised against the precise nature of the
proof, there was a consensus view that von Neumann was right and it was, in fact,
not possible to reproduce the results of the quantum formalism using hidden vari-
ables [19]. In other words it was generally believed that von Neumann’s theorem had
carried the day. Indeed Wiener sums up the situation very nicely. He writes “One
might suppose that it is still possible to maintain that a particle such as an elec-
tron still has a definite momentum and a definite position, whether we can measure
them simultaneously or not, and that there are precise laws of motion into which this
position and momentum enter. Von Neumann has shown that this is not the case, and
that the indeterminacy of the world is genuine and fundamental.” [3]

However in 1952 Bohm [4] produced a counter example to the von Neumann
theorem showing that it was, in fact, possible after all to reproduce exactly all the
results of the quantum formalism by attributing definite values to all the dynami-
cal variables such as position, momentum, angular momentum, etc. To carry this
through consistently and in agreement with the uncertainty principle, it was neces-
sary to assume the values of the complementary set to be definite but unknown. In
other words the complementary set could be assumed to be the ‘hidden variables’. In
this way it was not necessary to add any new exotic variables but merely to assume
that a particle had all its dynamical variables well-defined and having definite val-
ues. It was simply that we could not measure all the values simultaneously so that
the complementary set must remain unknown. Some features of the Bohm model
had been anticipated years before by de Broglie [5, 6] but he had not been able to
counter the objections raised by Pauli [7]. One of the important features of Bohm’s
approach was to answer these objections and show the model provided a consistent
account of quantum phenomena [8, 9].

The appearance of this counter example led to a revival of interest, not only
in hidden variable theories themselves [18], but also in attempts to generalise
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von Neumann’s theorem which clearly did not lead to the type of general conclu-
sions claimed for it by Wiener [3]. It was not until 1966 that Bell [10] pointed out
exactly where the limitations of the von Neumann proof and its subsequent generali-
sations [11–13] lay. Although these authors attempted to assume as little as possible
about quantum mechanics, what they did assume did not apply to a whole raft of
possible hidden variable theories including the model proposed by Bohm.

Specifically they made the restrictive assumption that the dynamical variables
of a system must be simultaneously eigenvalues of all the dynamical � operators
whether they commuted or not. However as we have seen, we can only measure,
and therefore know, the values of a commuting subset of operators in a given
situation so why make that particular assumption? Why not attribute eigenvalues
only to one set of variables, while the values of the complementary set were not
necessarily eigenvalues? This complementary set only become eigenvalues when
measurements corresponding to their operators are actually made. This is what the� Bohm model does.

In this model these new measurements can actually change the values of the
dynamical variables so that they are, in general, no longer eigenvalues of the first
set of operators. In this sense measurement is “participatory” and is not passively
revealing what is already there. Thus the values attributed to the particle depend on a
given context defined by the given experimental arrangement. This supports Bohr’s
view of “the impossibility of a sharp separation between the behaviour of atomic
objects and the interaction with the measuring instruments which serve to define the
conditions under which the phenomena appear.” [14].

Although there is no mathematical way to exclude the type of hidden variable the-
ory introduced by Bohm, there is still a considerable debate as to whether such
theories are physically viable. For example, in the Bohm approach particles in � en-
tangled states are non-locally connected [15]. Indeed it was the Bohm model that
led Bell [10] to ask if all theories that attributed simultaneous well defined values
to all dynamical variables were non-local. What Bell [16] was able to show was
that all local theories must satisfy an inequality (Bell inequalities, � Bell’s theo-
rem), which was not satisfied by the quantum formalism and, more importantly,
experiments were shown to violate the inequality. Even though the Bohm approach
accounts for this � non-locality, there is still a general reluctance to accept such
approaches even when extended to field theories [17].

An excellent review of the history of the evolution of hidden variable theories
will be found in Belinfante [18] and Jammer [19]. For a critical appraisal of hidden
variable theories and their relation to non-locality see Bell [20]. See also Bohm
Interpretation; Bohmian Mechanics.
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Very soon after the formulation of the new quantum mechanics by Werner
Heisenberg (1901–76) and Erwin Schrödinger (1887–1961) its advocates, notably
Niels Bohr (1885–1962) [1], made strong claims that the new theory provided a
complete framework for physics. Nevertheless, conjectures that quantum mechan-
ics does not provide a complete description of physical reality materialized in each
of the two competing (but equivalent, as was eventually recognized) formulations of
the theory by Heisenberg and Schrödinger. The � Heisenberg Uncertainty Principle
– asserting a limitation on the precision of simultaneous determinations of position
and linear momentum – suggested to Albert Einstein (1879–1955) [2] that the uncer-
tainty was due to limitations of customary experimentation, and that two quantum
mechanically incompatible quantities could in principle be shown to have simul-
taneous precise values by more sophisticated measuring procedures. Max Born’s
(1882–1970) � probabilistic interpretation [3] of Schrödinger’s wave function –
that the � wave function Ψ (r, t), where r is position of a particle in three-space
and t is the time coordinate, is connected with a physically observable quantity by
the rule

|ψ(r, t)|2dr = probability that at time t the particle is found
in the interval (r, r+ dr) (1)

– suggested to Louis de Broglie (1892–1987) [4] and Einstein [2] that quantum
mechanics, despite its predictive power is an incomplete physical theory in a man-
ner analogous to the relation between classical statistical mechanics and classical
mechanics. This appeal to an analogy was greatly strengthened by Einstein’s paper
(� EPR) with Podolsky and Rosen [5] in 1935, studying a wave function in which
the positions of particles 1 and 2 are strictly correlated when ψ is expressed in the
position representation, and their linear momenta are strictly correlated when it is
expressed in the momentum representation. They postulate a sufficient condition for
the existence of an element of physical reality: “If, without in any way disturbing
a system, we can predict with certainty (i.e., with probability equal to unity) the
value of a physical quantity, then there exists an element of physical reality cor-
responding to this physical quantity” [5, p. 777]. When this sufficient condition is
applied to the pair of correlated particles 1 and 2, with the tacit assumption that
the outcome of a measurement on one of the particles cannot causally affect the
outcome of a measurement on the other – a consequence of relativistic causality
if the two measurements are events with space-like separation – they inferred that
both position and linear momentum are elements of physical reality of both 1 and 2.
This conclusion suggested models in which the quantum state was regarded as an
incomplete description of physical reality, in need of supplementation by “hidden
variables.” In spite of John von Neumann’s [6] argument of 1932 (influential but
later shown to inconclusive), that a hidden variables model cannot agree with all
of the experimental predictions of standard quantum mechanics, and Bohr’s widely
accepted epistemological critique [7] in1935 of EPR’s argument, the early attraction
of hidden variables survived (undoubtedly because of Einstein’s prestige) at least as
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a heterodox curiosity, but it finally was seriously investigated with greater subtlety
in the latter half of the twentieth century.

Important new subtleties were the distinction between “noncontextual” and “con-
textual” hidden-variable models, first articulated explicitly (though without these
names) by Bell [8] in 1966, and the recognition that these two kinds of models
required different analyses. A noncontextual hidden variables model postulated that
an isolated physical system is characterized by a complete state λ, which is the com-
pendium of the real properties of the system at a definite time – the prototype being
a point in the Gibbsian phase space of a classical mechanical system. When λ is
given, then the result of measuring any property A of the system at the given time
by an ideal measuring apparatus (one that introduces no distortions due to its own
imperfections) is a function A(λ). The outcome of the measurement is assumed to
be independent of other properties B, C, . . . that may be measured simultaneously
with A, and indeed such an independence may be tacitly assumed to be intrinsic to
the ideal character of the measurement process.

The program of noncontextual hidden variables models was demonstrated in
various ways to be incompatible with the predictions of quantum mechanics for a
system associated with a Hilbert space of dimension 3 or greater – by � Gleason [9],
Bell [10], � Kochen and Specker [11], Belinfante [12], Mermin [13], and others. A
particularly simple proof was given by Belinfante and followers concerning a sys-
tem of spin unity (neglecting the configuration space variables of this system), for
which quantum mechanics predicts the following constraint: the measurement of
two of the squared components of spin sx

2, sy
2, sz

2 – where x, y, and z are three
orthogonal directions – will yield value 1 (in units of � Planck’s constant h divided
by 2π) and one of them will yield value 0. In a noncontextual model the complete
state λ will ascribe values to each component of � spin, regardless of what other
components are measured with it. The proof of incompatibility of the noncontextual
hidden variables assignment of definite values to all spin components proceeds by
cleverly choosing an appropriate set of directions n, most belonging to more than
one orthogonal triad of directions in the set, and then showing that the quantum
mechanical constraint on values of sn

2 can be satisfied only if for some n this value
is 1 when n is measured along with r and s in one orthogonal triad and 0 when it
is measured along with r′ and s′ in another orthogonal triad. (The number of direc-
tions considered in this proof is 138. In other proofs fewer directions suffice but the
argumentation is more complex.)

John Stewart Bell (1928–90) gave a new lease on life to the program of hidden
variables by proposing contextuality. In the physical example just considered the
complete state λ in a contextual hidden variables model would indeed ascribe an
antecedent element of physical reality to each squared spin component sn2 but in a
complex manner: the outcome of the measurement of sn2 is a function sn

2 (λ, C)
of the hidden variable λ and the context C, which is the set of quantities measured
along with sn

2. If the context C is the pair (su2, sv
2), then sn

2 (λ, C) is 1, and
if C is (su′2, sv′2) the value is 0. In other words, the demonstration by Belinfante
and his followers of the impossibility of a noncontextual hidden variables theory
for quantum mechanics is converted into a demonstration of the compatibility of
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a contextual theory. Bell argues practically that “the result of an observation may
reasonably depend not only upon the state of the system (including the hidden vari-
ables) but also on the complete disposition of the apparatus” [14].

Two important questions remain concerning contextual hidden variables models:
how do they account for the probabilistic character of quantum mechanical predic-
tions, and what are the constraints on the context C?

The first question is answered by assuming an appropriate probability distribu-
tion ρ over the space Λ of hidden variables. The specification of λ is determined by
the physical circumstances which determine the quantum state of the system – viz.
the mode of preparation of the state and interactions with the environment of the sys-
tem – and when these circumstances are not sufficiently precise to fix λ exactly they
may suffice to determine a distribution ρ over the space Λ. The integral ∫A(λ, C)dρ
over the space Λ will recover the quantum mechanical expectation value of the
quantity A if the contextual hidden variables theory is properly constructed.

As to the second question, a minimum constraint on the context C is that it con-
sist of quantities that are quantum mechanically compatible, that is represented by� self-adjoint operators which commute with each other. If A is a projection oper-
ator P (� projection) of interest, a natural context with this property is a maximal
Boolean algebra of projection operators containing P, studied intensively by Stanley
P. Gudder [15].

Another reasonable constraint on C of great conceptual importance was proposed
by Bell when the system of interest consists of two or more spatially separated
parts, and the physical quantity of interest A concerns one of these parts. C should
not include quantities whose measurements are events with space-like separation
from the measurement of A, since there would be a violation of relativistic lo-
cality if those measurements affected the outcome of the measurement of A. This� locality constraint on the context has been studied intensively by Bell and his fol-
lowers. When the context C satisfies the locality constraint, Bell and his followers
derived inequalities which are violated by the quantum mechanical predictions of a
large class of systems [16]. Consequently, even though contextual hidden variables
models may agree with the predictions of quantum mechanics when the locality con-
straint is not imposed on C, no local contextual hidden variables model can recover
all the quantum mechanical predictions. Very briefly, without providing details, we
can assert that experimental tests of local contextual hidden variables models against
quantum mechanics have strongly supported the latter [17]. See also � Bohm Inter-
pretation, Bohmian Mechanics.
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Hilbert Space

Erhard Scholz and Werner Stulpe

Hilbert space, a generalization of the concept of Euclidean vector space, i.e., of a
finite-dimensional real vector space equipped with a scalar product. A Hilbert space
H [7–12] is a vector space over the real or complex numbers (sometimes over the
quaternions) in which a scalar product is defined and which is complete w.r.t. the
norm induced by the scalar product.

The scalar product in a complex Hilbert space H associates any two vectors
φ,ψ ∈ H with a complex number 〈φ|ψ〉 such that (i) 〈φ|ψ〉 is linear in ψ , i.e.,
〈φ|χ + ψ〉 = 〈φ|χ〉 + 〈φ|ψ〉 and 〈φ|λψ〉 = λ〈φ|ψ〉 where φ, χ,ψ ∈ H and
λ ∈ C, (ii) 〈φ|ψ〉 = 〈ψ|φ〉 where the bar denotes complex conjugation, (iii)
〈φ|φ〉 � 0 for all φ ∈ H, and (iv) 〈φ|φ〉 = 0 if and only if φ = 0; as a con-
sequence of (i) and (ii), the scalar product is antilinear in the first argument, i.e.,
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finite-dimensional real vector space equipped with a scalar product. A Hilbert space
H [7–12] is a vector space over the real or complex numbers (sometimes over the
quaternions) in which a scalar product is defined and which is complete w.r.t. the
norm induced by the scalar product.

The scalar product in a complex Hilbert space H associates any two vectors
φ,ψ ∈ H with a complex number 〈φ|ψ〉 such that (i) 〈φ|ψ〉 is linear in ψ , i.e.,
〈φ|χ + ψ〉 = 〈φ|χ〉 + 〈φ|ψ〉 and 〈φ|λψ〉 = λ〈φ|ψ〉 where φ, χ,ψ ∈ H and
λ ∈ C, (ii) 〈φ|ψ〉 = 〈ψ|φ〉 where the bar denotes complex conjugation, (iii)
〈φ|φ〉 � 0 for all φ ∈ H, and (iv) 〈φ|φ〉 = 0 if and only if φ = 0; as a con-
sequence of (i) and (ii), the scalar product is antilinear in the first argument, i.e.,



292 Hilbert Space

〈φ+χ |ψ〉 = 〈φ|ψ〉+〈χ |ψ〉 and 〈λφ|ψ〉 = λ〈φ|ψ〉. Property (i) refers to the physi-
cists’ convention, according to the mathematicians’ convention the scalar product is
linear in the first argument and antilinear in the second.—For a real Hilbert space,
λ ∈ C in (i) is replaced by λ ∈ R, (ii) reads 〈φ|ψ〉 = 〈ψ|φ〉, and the scalar product
is linear in both arguments.

An important consequence of the properties (i)–(iv) of the scalar product is the
Cauchy-Schwarz inequality, stating that |〈φ|ψ〉| � ‖φ‖ ‖ψ‖ where ‖φ‖ = √〈φ|φ〉.
This inequality becomes an equality if and only if the vectors φ and ψ are linearly
dependent. The properties (i)–(iv) and the Cauchy-Schwarz inequality entail that the
association of every φ ∈ H with the real number ‖φ‖ is a norm, i.e., (i) ‖φ‖ � 0
and ‖φ‖ = 0 if and only if φ = 0, (ii) ‖λφ‖ = |λ| ‖φ‖ where φ ∈ H and λ ∈ C

(λ ∈ R in case of a real Hilbert space), and (iii) the triangle inequality holds, i.e.,
‖φ + ψ‖ � ‖φ‖ + ‖ψ‖ where φ,ψ ∈ H. In the triangle inequality of a norm that
is induced by a scalar product, equality holds if and only if the vectors φ and ψ are
linearly dependent.

The Hilbert-space norm enables one to define some analytical and topological
concepts in H. In particular, a sequence of vectors φn ∈ H converges to the limit
ψ ∈ H if ‖φn − ψ‖ → 0 as n → ∞, i.e., for every ε > 0 there exists a positive
integer N(ε) such that ‖φn − ψ‖ < ε for n � N(ε). A sequence of vectors φn
is called a Cauchy sequence if, for every ε > 0, there exists an N(ε) such that
‖φn − φm‖ < ε for all m,n � N(ε). Every convergent sequence is a Cauchy
sequence; conversely, in the general case of a vector space equipped with a norm, a
Cauchy sequence need not have a limit. By definition, a Hilbert space is complete,
i.e., every Cauchy sequence in H is convergent.

A subset S of a Hilbert space H is called dense in H if every ε-neighborhood of
any ψ ∈ H contains an element φ ∈ S, i.e., for any ψ ∈ H and every ε > 0 there
exists a vector φ ∈ S such that ‖φ − ψ‖ < ε. A Hilbert space is called separable if
there exists a sequence of vectors φn ∈ H being dense in H.

A subset S ⊆ H is called closed if the limit of every in H convergent sequence
of vectors φn ∈ S belongs to S, briefly, if from φn ∈ S and ‖φn − ψ‖ → 0 as
n→ ∞, ψ ∈ H, it follows that ψ ∈ S. A linear submanifold S of a Hilbert space
can be closed (in which case S is often called a subspace of H), but need not (a
finite-dimensional submanifold is closed); a subspace is, with the scalar product in-
herited fromH, a Hilbert space itself. A linear submanifold can be dense inH; dense
submanifolds play an important role as domains of linear operators (� operator).

A real or complex vector space equipped with a norm is called a normed space.
The concepts limit of a sequence, Cauchy sequence, completeness, dense subset
or dense linear submanifold, closed subset or submanifold, and separability apply
more generally to normed spaces. A complete normed space is called a Banach
space. Hilbert spaces are particular Banach spaces, namely those whose norm is
induced by a scalar product.

Two vectors φ,ψ of a Hilbert space H (two subsets S1, S2 of H) are called or-
thogonal to each other if 〈φ|ψ〉 = 0 (if 〈φ|ψ〉 = 0 for all φ ∈ S1 and all ψ ∈ S2).
For a subset S ⊆ H, the orthocomplement S⊥ consists of all vectors χ ∈ H satisfy-
ing 〈χ |φ〉 = 0 for all φ ∈ S; S⊥ is a subspace, i.e., a closed linear submanifold. If
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X is a subspace of H, every vector ψ ∈ H can, according to ψ = φ + χ , uniquely
be decomposed into a vector φ ∈ X and a vector χ ∈ X⊥; that is, the Hilbert space
can be represented as the direct sum H = X ⊕ X⊥. The latter decomposition of
H entails that, for every subspace X , there exists the orthogonal projection onto X
(� projection).

A family of vectors φi ∈ H where i belongs to some index set I , is called
an orthonormal system if 〈φi |φj 〉 = δij . A maximal orthonormal system is called a
complete orthonormal system in H, a Hilbert basis of H, or an � orthonormal basis.
In every Hilbert space, there exists a complete orthonormal system, and different
such systems have the same cardinality, the latter being called the Hilbert-space di-
mension of H. Given a Hilbert basis φi , i ∈ I , every vector ψ ∈ H can be expanded
into the series ψ = ∑

i∈I αiφi where αi = 〈φi |ψ〉 and only countably many αi
are not zero. Different Hilbert spaces are isomorphic, i.e., there exists a one-to-one
correspondence between the spaces that preserves linearity and the scalar products
(� unitary operator), if and only if their bases have the same cardinality.—A Hilbert
space is separable if and only if it has a countable Hilbert basis φ1, φ2, . . .. All
infinite-dimensional separable Hilbert spaces are isomorphic. Although in a separa-
ble infinite-dimensional Hilbert space there exist only countably many mutually or-
thogonal vectors, there always exist uncountably many linearly independent vectors.

The standard realization of a finite-dimensional complex (real) Hilbert space is
the space Cn (Rn). The straightforward infinite-dimensional generalization of Cn

is the separable Hilbert space l2 of the square-summable complex sequences u =
(ξ1, ξ2, . . .), ξi ∈ C,

∑∞
i=1 |ξi |2 < ∞, with the scalar product 〈u|v〉 = ∑∞

i=1 ξ iηi .
The other typical example of a separable infinite-dimensional Hilbert space is the
space L2(M, dx) of the (equivalence classes of the) square-integrable complex-
valued functions on M where M is R, Rn, or a measurable subset of Rn of nonzero
Lebesgue measure and dx indicates the Lebesgue measure; φ ∈ L2(M, dx) satisfies∫
M |φ(x)|2dx <∞, the scalar product is defined by 〈φ|ψ〉 = ∫M φ(x)ψ(x) dx, and

functions differing only on a set of measure zero are considered to be equal. More
generally, if (�,%,μ) is any measure space, the space L2(�,%,μ) of the w.r.t. μ
square-integrable functions on � is a (possibly nonseparable) Hilbert space. Besides
L2(M, dx), an important particular case is the separable Hilbert space L2(R, μ)

where % is the σ -algebra of the Borel sets of R and μ a finite Borel measure.
Hilbert spaces are useful in functional analysis, in classical physics, and in quan-

tum physics where they serve as state spaces of quantum systems. Their study
was initiated in analytical terms by David Hilbert (1862–1943). His student Er-
hard Schmidt (1876–1959) introduced the geometric language of function spaces to
the field. An axiomatic definition of infinite-dimensional separable Hilbert spaces
was given by Johann von Neumann (1903–1957) in one of his first papers on the
foundations of quantum mechanics [1].

The space l2 was introduced by Hilbert in a famous series of publications on
integral operators (1904–1910). He proved that integral operators with a symmet-
ric kernel (those being particular compact self-adjoint operators, � operator) can
be diagonalized by a suitable change of the basis [2]. Moreover, l2 was shown
to be isomorphic to the Hilbert space L2(M, dx) where M is the real line or any
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of its intervals (Riesz-Fischer theorem, 1906). David Hilbert and Erhard Schmidt
further showed that every completely continuous (“vollstetig”) Hermitian opera-
tor in a separable Hilbert space can be diagonalized, i.e., in modern language,
every compact symmetric (self-adjoint) operator has a complete orthonormal sys-
tem of eigenvectors (Hilbert-Schmidt theorem). This result can be generalized to
the spectral theorem for all bounded Hermitian (self-adjoint) operators and even
for unbounded self-adjoint ones (� self-adjoint operator). These insights became
important for quantum theory.

In order to characterize states of a physical system which do not behave pointlike
but appear in some way or other as “spread out” (probabilistically or in the sense of
a classical continuous field), the quantum theorists of the 1920s found sufficiently
useful infinite-dimensional linear spaces for describing and understanding basic
quantum properties of matter. Werner Heisenberg (1901–1976), supported by Pas-
cual Jordan (1902–1980) and Max Born (1882–1970), introduced infinite matrices
(comparable to Hilbert’s matrices in l2, � matrix mechanics) as essential symbolic
representatives for the new quantum mechanics, whereas Erwin Schrödinger (1887–
1961) introduced function spaces (similar to L2(M, dx)) for his wave functions
(� wave function, � wave mechanics) and linear operators as symbolic represen-
tatives. The seemingly different approaches of Heisenberg and Schrödinger were
subsumed in a common formal framework by Paul A. M. Dirac (1902–1984) in his
“bra-ket” formalism to express the duality structure of the underlying normed vec-
tor spaces. On the other hand they could be conceptually unified in the language of
Hilbert spaces. The latter approach, at that time mathematically better founded, was
initiated by David Hilbert, Lothar Nordheim (1899–1985), Johann von Neumann,
and Hermann Weyl (1885–1955) between 1926 and 1928. It was spelt out by von
Neumann in the late 1920s in a series of path-breaking publications.

Central to the usefulness of Hilbert spaces in quantum physics is the peculiar� superposition of quantum probabilities which allows successfully to characterize
pure (� states, pure & mixed) of quantum systems by normed Hilbert-space vectors
or, more precisely, by rays in Hilbert space (a ray is a vector up to any complex
nonzero factor). For mixed states, density matrices (� density operator) in Hilbert
space have to be used [3, 4]. Physical quantities (� observable) can be encoded by
self-adjoint operators and their spectrum, time evolution and symmetries by unitary
group representations (� unitary operator, � symmetry).

The most important operators used by Schrödinger are unbounded and are not
defined on the entire Hilbert space L2(M, dx). Thus the main challenge for von
Neumann was to develop a whole new field of mathematical properties of un-
bounded operators acting in Hilbert space. In particular he succeeded in finding
a convincing generalization of the spectral theorem for bounded Hermitian opera-
tors to the case of unbounded self-adjoint ones. On this basis he concluded Hilbert’s
attempts at a (first) axiomatization of quantum mechanics [4, 5]. His later researches
on a quantum logical interpretation (� quantum logic) of the orthomodular lattice of
the closed subspaces of a separable Hilbert space were less successful in achieving
their original goals. They contributed, however, to a highly consequential research
program for the study and classification of C∗-algebras (� algebraic quantum me-
chanics) [5].
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Challenging questions remain open in the theory of nonseparable Hilbert spaces.
These arise mathematically from infinite tensor products of separable Hilbert spaces
and physically from the study of quantum fields.
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Holism in Quantum Mechanics

Richard Healey

In slogan form, holism is the thesis that the whole is more than the sum of its parts.
Explanatory holism is the view that a satisfactory explanation of the behavior of
a system cannot be given by explaining the behavior of its parts. Property holism
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is the view that the properties of a whole are not wholly determined by those of
its parts. Ontological holism denies that some supposedly composite object has
(proper) parts. Quantum phenomena exhibit holism of at least the first two kinds.

Quantum mechanics is often applied to a system as a whole, even though it is
known to be composed of many subsystems. Such applications supply many in-
stances of explanatory holism. Interference has been experimentally demonstrated
between beams of sodium atoms and of fullerenes (C60 molecules � mesoscopic
quantum phenomena) [11]. The result of these experiments is readily explained
by direct application of quantum mechanics to such composite objects. It would
be futile to try to explain their behavior by applying quantum mechanics to their
quark and lepton components. Many phenomena in condensed matter physics are
explained by applying quantum mechanics directly to systems composed of very
large numbers of atomic or subatomic particles: only in special cases can the theory
be applied at the level of these components [9].

Even when classical physics is applied to the behavior of the solar system by
treating planets as wholes, the planetary motions and interplanetary gravitational
forces are readily understood to be constituted by the motions and gravitational in-
teractions of their constituent particles in a way that permits a simple summation.
But any attempt to analyze the behavior of a compound quantum system into the
behavior of its components encounters a barrier: In quantum mechanics, the state
of a compound system is not always determined by the states of its components:
each such failure of determination in quantum mechanics is an example of state
holism. Schrödinger called the subsystems in such a compound state ‘entangled’
[5]. Assuming a system’s state specifies its properties, state holism implies prop-
erty holism.

Consider two � spin 1/2 particles that emerge from an interaction in the sin-
glet state

| ψs〉 = 1√
2
(|↑〉⊗ |↓〉− |↓〉⊗ |↑〉) (1)

Suppose that before the interaction, the state of the ith particle was represented by
a vector | ψi〉 ∈ Hi (i = 1, 2), where Hi is a 2-dimensional complex vector space.
The state of the pair was then represented by the vector | ψ1〉⊗ | ψ2〉, an element of
the 4-dimensional tensor product space H = H1⊗H2. But while the vector | ψs〉 is
also an element of H1⊗H2, there is no pair of vectors | ϕ1〉 ∈ H1, | ϕ2〉 ∈ H2 such
that | ψs〉 = | ϕ1〉⊗|ϕ2〉. The singlet spin state is entangled: the state of neither par-
ticle may be represented by a vector in its own state space. There is a sense in which
a typical state of a compound system is entangled: the set of entangled vectors in a
tensor product Hilbert space is dense. Moreover, because it must be totally antisym-
metric under particle exchange, every state-vector representing a system composed
of more than one electron is entangled, whether or not these � electrons have pre-
viously interacted.

It is still possible to represent the state of a component of an entangled state, not
by a vector but by a density operator. Consider the more general entangled spin state

| ψ〉 = α (|↑〉⊗ |↓〉 + β |↓〉⊗ |↑〉) : |α|2 + |β|2 = 1 (2)
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Assignment of the reduced density operator W1 = |α|2 |↑〉〈↑| + |β|2 |↓〉〈↓| to the
first particle and W2 = |β|2 |↑〉〈↑| + |α|2 |↓〉〈↓| to the second particle will predict
the same statistics as |ψ〉 for the measurement of any spin magnitude on either
particle alone. (These reduced states are arrived at by “tracing over” the � Hilbert
space of the rest of the system: see e.g. [7].) But note that if one does take Wi to
be the state of the ith particle, then these states do not determine |ψ〉 as the state of
the pair: many other states of the pair are equally compatible with individual states
{W1,W2}, including W1 ⊗W2 and

| ψ〉 = α (|↑〉⊗ |↓〉 − β |↓〉⊗ |↑〉) (3)

If the state of an entangled component is represented by its reduced density operator,
then these states fail to determine the state of the whole system.

A third option is to assign a relative state to each component in an entangled
state. The first particle in (2) would be assigned state |↑〉 relative to state |↓〉 for the
second particle, but state |↓〉 relative to state |↑〉 for the second particle. This option
is favored by the so-called relational interpretation of quantum mechanics [8].

On each of these three options, quantum mechanics implies state holism. All
three conflict with Einstein’s view that, for a pair of separated systems AB

The real state of the pair AB consists precisely of the real state of A and the real state of B,
which states have nothing to do with one another. [4]

Bohm proposed an interpretation of quantum mechanics that seems to accord
better with Einstein’s view [1]. In its “minimal” version this takes the real state of
a system of particles to be completely specified by the positions of all the particles.
Each particle has a determinate trajectory, with velocity determined by the gradient
of the phase of the particles’ � wave function, evaluated at the positions of all
the particles. But this interpretation conflicts with property holism to the extent that
the wave-function (or the resultant velocity field, or “quantum potential”) must itself
be included in the whole system to which quantum mechanics is applied. Bohm
himself stressed the holism of the quantum world [2]. This is in keeping with the
fact that on his interpretation the wave-function never “collapses” on measurement� wave function collapse. Such “collapse” provided Schrödinger with a mechanism
for periodically disentangling quantum states.

The indivisibility of a quantum field manifests a kind of holism. Their indiscerni-
bility, superposability and failure of localization makes field quanta like photons
(� light quantum) poor candidates for distinct parts of the field, suggesting ontolog-
ical holism. If one insists on breaking the field into parts by covering space-time by
open regions (as one does in algebraic quantum field theory), then one has a case of
state holism: states on the local algebras of � observables typically fail to determine
a state on a global space-time algebra.

In the early days of quantum mechanics, Bohr advocated a different kind of
holism. He took the essence of quantum theory to be expressed in

...the so-called quantum postulate, which attributes to any atomic process an essential dis-
continuity, or rather individuality...symbolized by Planck’s quantum of action. [3]
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He took this to imply that

any observation of atomic phenomena will involve an interaction with the agency of ob-
servation not to be neglected. Accordingly, an independent reality in the ordinary physical
sense can neither be ascribed to the phenomena nor to the agencies of observation. (ibid.)

The entire experimental arrangement, including both “atomic” system and mea-
suring device must therefore be treated as an indivisible whole. Neither has a state
independent of the other. The former may be ascribed a quantum state while the
latter must be described classically. But the choice of the experimenter on how to
divide the entire experimental arrangement into these two parts is to an extent arbi-
trary. Any ascription of quantum state is therefore doubly relative – to a choice of
experimental arrangement, and to a subsidiary choice as to how to analyze the entire
arrangement into parts. Only in this doubly relativized sense do quantum systems
or measuring devices have properties. Such properties are not independent of the
arrangement and its division, and cannot therefore be taken to determine the proper-
ties of the whole experimental arrangement. This, too, is incompatible with property
holism.
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I
Identity of Quanta

Simon Saunders

Identity. From very early days of quantum theory it was recognized that quanta were
statistically strange (see � Bose–Einstein statistics). Suspicion fell on the identity
of quanta, of how they are to be counted [1, 2]. It was not until Paul A. Dirac’s
(1902–1984) work of 1926 (and his discovery of � Fermi–Dirac statistics [3]) that
the nature of the novelty was clear: the quantum state of exactly similar particles of
the same mass, charge, and � spin must be symmetrized, yielding states either sym-
metric or antisymmetric under permutations. This is the symmetry postulate (SP).

The SP further implies that expectation values of particle � observables are in-
variant under permutations. The latter looks temptingly like the sort of principle on
which one might hope to found the theory of quantum identity. It is called the in-
distinguishability postulate (IP) – see � indistinguishability. But it turns out to be
weaker than the SP, the principle we are interested in.

The question we shall pose is this: what does the SP tell us about quantum on-
tology? By a large margin, the consensus today is that the founding fathers were
on to something, and that the SP implies or otherwise reflects a failure of particle
identity in quantum mechanics, whether identity over time, or identity at a time (or
identity simpliciter, without regard to time). For quantum mechanics itself, even for
exactly similar particles, does not require the SP; such particles can perfectly well
be described by unsymmetrized states and their superpositions.

Identity over time. It is common to most interpretations of quantum mechanics that
the underlying ontology need not be localized – that particles have no trajecto-
ries. In which case, there may be no good criterion of particle identity over time.
(� See Consistent histories, Ignorance interpretation, Ithaca Interpretation, Many
Worlds Interpretation, Modal Interpretation, Orthodox Interpretation, Transactional
Interpretation).

Of course that cannot be the whole story: unsymmetrized quantum mechanical
systems also lack trajectories, but obey Maxwell–Boltzmann statistics [4]. In fact, it
is already over-simplistic: the existence or otherwise of trajectories is not an all or
nothing affair. It is true that no continuous sequence of 1−particle states defines a
curve in configuration space (or momentum space or any other sub-manifold of the
classical phase space), but there are certainly evolutions under which symmetric and
antisymmetric states define smooth curves (‘orbits’) of 1-particle states in quantum
state space (� Hilbert space) – see � indistinguishability. In terms of these the SP
appears to have only a humble role, as ruling out any further fact as to which particle
is attached to which orbit. The same can be said of the analogous symmetrization
postulate as applied to classical particle trajectories [5].

D. Greenberger et al. (eds.), Compendium of Quantum Physics: Concepts, Experiments, 299
History and Philosophy, c© Springer-Verlag Berlin Heidelberg 2009
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This point has appeared puzzling to some. Doesn’t the SP imply the IP? If par-
ticles can be associated with 1-particle states, or orbits of such, why can’t they be
individuated accordingly, in violation of the IP? Surely in the classical case we can
always distinguish the particle by the trajectory, in violation of the IP? [6, p.7-8].
But this is to confuse the question of which particle is in which state, or sequence
of states, or trajectory, which cannot be determined by any observation according
to the IP, with the question of what distinguishes the states, or sequences of states
or trajectories from each other, which in principle is perfectly observable [7]. The
atoms (1−particle states) in the bottle of helium by the door are distinguishable
from those (1−particle states) in the laser trap in the corner.

The SP then, blocks the question of which particle is in which state, or sequence
of states. Classically, by mean of the trajectories, one can still say of two particles at
two different times if they are the same or different – whether or not they lie on the
same trajectory. In quantum mechanics, where orbits of 1−particle states may not be
defined at all, there can be no such guarantee (this independent of symmetrization).
This and the SP now lead to something new. For the SP implies that given two
exactly similar particles with momenta in directions a and b, the state (a, b) (to use� Dirac notation [3]) is the same as (b, a); we should read these states as unordered
pairs; but now given two particles initially in the state (1, 2), and finally in the state
(a, b), understood as unordered pairs, there will in general be two ways of linking
them - by a transition 1 → a, 2 → b, and the ‘exchange’ transition 2 → a, 1 → b.
If both transition amplitudes are appreciable, they may interfere with each other,
and their relative phase will make a difference to the total transition probability.
The relative phase is in turn different for symmetric states than for antisymmetric
ones [8].

This point was in Richard Feynman’s (1918–1988) view the key to understanding� quantum statistics. The rule is:

Bosons (Amplitude direct)+ (Amplitude exchanged)
Fermions (Amplitude direct)− (Amplitude exchanged).

In Feynman’s notation [9], 〈a|1〉 = a1 is the amplitude for particle 1 to scatter in
direction a, and similarly 〈a|2〉 = a2, etc. The total amplitude is the sum (bosons)
or difference (fermions) of the amplitudes for the two � Feynman diagrams shown
in Fig. 1:

〈a|1〉〈b|2〉 ± 〈b|1〉〈a|2〉 = a1b2 ± b1a2.

1 2

a

b

1 2

a

b

Fig. 1 Feynman diagrams for direct and exchange transition amplitudes
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The probability for bosons as a → b is then lim
a→b

|a1b2 + b1a2|2 = 4|b1b2|2; for

fermions it vanishes. In the case of unsymmetrized particles, one of the processes
〈a|1〉〈b|2〉, 〈b|1〉〈a|2〉 results, with probability |a1b2|2 and |b1a2|2, respectively; in
the limit a → b one cannot tell which has occurred, and the probabilities should
be summed to obtain 2|b1b2|2, exactly half the cross-section for bosons. Bosons,
relative to unsymmetrized particles, act as though they attract one another, whilst
fermions repel.

The point dovetails neatly with the Copenhagen interpretation � Born rule;
Consistent Histories; Metaphysics in Quantum Mechanics; Nonlocality; Orthodox
Interpretation; Schrödinger’s Cat; Transactional Interpretation. According to this,
if the experimental set-up permits the determination of the path (trajectory, orbit),
taken by the particle – as would be possible if the particles differed in their state-
independent properties (but which could also be ensured by other means) – there
could be no interference effects (think of the two-slit experiment). This is reflected
in the formalism by rules for using the measurement postulates: whether we should
first take the absolute square of the amplitudes and then add, or add the amplitudes
and then take the absolute square.

One might wonder if such a close link to the problem of measurement is a virtue
of Feynman’s approach. On the other hand, one could say the link was obvious
from the beginning, purely on the basis of � Bohmian mechanics. In that theory
trajectories are introduced explicitly, but one can still derive the same transition
probabilities, consistent with quantum statistics.

Identity at a Time or Identity Simpliciter. Does the SP pose a still deeper challenge
to the concept of identity? Many think it does, and point to the apparent failure in
quantum mechanics of Gottfried W. Leibniz’s (1646–1716) theory of identity, in
particular his principle of identity of indiscernibles (PII).

Yet the history to this suggestion is curious, for when the PII was first brought up
in the context of the SP, by Hermann Weyl (1885–1955), the principle was supposed
to be vindicated, not undermined:

The upshot of it all is that the electrons satisfy Leibniz’s principium identitatis indiscerni-
bilium, or that the electronic gas is a ‘monomial aggregate’ (Fermi–Dirac statistics). In a
profound and precise sense physics corroborates the Mutakallimûn: neither to the photon
nor to the (positive and negative) electron can one ascribe individuality. As to the Leibniz–
Pauli Exclusion Principle, it is found to hold for electrons but not for photons. [10, p.247].

Quantum mechanics, for Weyl, posed no special problem for Leibniz’s philosophy,
at least as goes fermions.

For those focused on the question of quantities assigned to particles on the basis
of their place in the N−fold tensor product of 1−particle states, these comments
made no sense. They are determined as expectation values of operators of the form

〈�, I ⊗ ...⊗ I ⊗ A⊗ I ⊗ ...⊗ I�〉

(where A is a 1−particle observable). Include by all means other statistical proper-
ties, and marginal probability distributions, likewise attributed to particles or particle
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pairs of k−tuples on the basis of their place in the tensor product structure; if �
is symmetrized, every particle (or particle pair or k−tuple) has exactly the same
1−particle expectation value for A, and the same statistical properties and marginal
probability distributions. It seems, then, that the PII must comprehensively fail in
quantum mechanics, for fermions as well as bosons, as claimed by Henry Margenau
(1901–1997) [11]. Similar conclusions were reached by others in subsequent stud-
ies [12, 13].

There is, however, a rather obvious rejoinder to this argument, namely that by
particles we really mean 1−particle states and properties. Our concern is not with
which particle has which state or property, but with what those states and properties
are. At least in some circumstances, particles may be identified with 1−particle
states. Thus in 2−particle case, for {φi} an � orthonormal basis for the 1−particle
space, consider states of the form:

�
ij
± =

1√
2
(φi ⊗ φj ± φj ⊗ φi), i �= j. (1)

�
ij
+ is symmetric; �ij

− is antisymmetric. In Dirac’s notation, they are states (i, j),
understood as an unordered pair. As such they manifestly describe two particles,
one being state φi , one being state φj ; one having property Pφi , the other property
Pφj (where Pφ is the projection on the state φ). It was understandable for Weyl to
speak of the ‘Leibniz–Pauli Exclusion Principle’, at least in the case of electrons,
in certain circumstances – in atoms subject to sufficiently strong external fields, so
as to completely remove every energy � degeneracy. In that case each electron is
uniquely identified by its four � quantum numbers.

But these are special cases. In the case of superpositions of vectors �ij
± , more

than two 1-particle states are involved; there may be no pair of distinguished prop-
erties, one for each particle. And of course even if there are definite 1-particle states
or properties for each particle, in the case of bosons there could spell trouble: they
may be precisely the same (as with product states φj ⊗ φj ). Even for a state of the
form (1) there may be a difficulty, as with the spherically symmetric singlet state of
spin of two spin- 1

2 particles. This state can be written in many ways:

�0− =
1√
2
(φx+φx− − φx−φx+) =

1√
2
(φ

y
+φ

y
− − φ

y
−φ

y
+) =

1√
2
(φz+φz− − φz−φz+) (2)

where φx± are eigenstates of the x-component of spin, etc., as exploited by Bohm
(1917–1992) in his formulation of the � EPR thought experiment. It seems each
particle must have every component of spin, or none.

We should be clearer on what the PII actually says. It is usually stated as the
principle “it is not possible for there to exist two individuals possessing all their
properties (relational and non-relational) in common” [14, p. 9] (where the princi-
ple is the stronger the fewer the admissible properties and relations). Traditionally,
philosophical debates on this principle have centered on what is to count as admis-
sible: surely not relations involving identity and proper names, which threaten to
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trivialize the PII altogether. But there has been less interest in questions of logical
form, and the meaning of ‘relational properties’. If indeed properties, then they
correspond to complex monadic predicates, presumably involving relations with
other things only through bound quantification. But this is not the only, or the most
important way in which relations are used in predication. Restricted to these, the PII
is unnecessarily stringent. Why not allow that things may be discerned by relations
as well as relational properties? But take this step and it is not obvious that the PII
fails in quantum mechanics.

For the sake of clarity, the point is worth formalizing. Let L be a first-order lan-
guage with a finite primitive vocabulary. Let s and t be L-terms (variables or proper
names). Then the principle stated in terms of relational properties has the form:

s = t =
def

∧
all primitive L-predicates F

[∀∀...∀F(...s...)↔ ∀∀...∀F(...t....)] (3)

where, if F is an n-ary predicate, there are n − 1 quantifiers ∀ (so that ∀∀...∀F is
1-ary). This clearly fails to capture the full generality of relational predication: on
the RHS of (3) should be conjoined conditions of the form:

∀∀...∀[F(...s...)↔ F(...t...)] (4)

Proceeding in this way, one arrives at a definition of identity that, unlike (3), satisfies
the formal axioms of identity and is essentially unique. As such it was championed
by Willard van Orman Quine (1908–2000) [15].

Given this, if s and t are exactly similar, but s �= t , they need not differ in any
relational property, but only if for some F (4) is false. (4) would fail, for example,
if for some dyadic F , F(st) is true and F is irreflexive. F may even be symmetric
too, thus incorporating permutation symmetry [5, 7].

As applied to quantum mechanics, it would then be enough, to discern � elec-
trons in the singlet state of � spin, that they satisfy an irreflexive relation. And so
they do: in the state (2), the relation ‘s has opposite x−component of spin to t’
is clearly irreflexive and clearly true. Indeed, analogous statements hold for every
component of spin, as (2) shows. But this does not imply the electrons each have
any definite component of spin; compare ‘s is one mile apart from t’, which may
be true, for the space-time relationist, even though neither s nor t has any particular
position in space.

A similar relation of anticorrelation for any state of the form (1) is easily
specified:

(Pφi − Pφj )⊗ (Pφi − Pφj )�
ij
± = −�ij

± . (5)

The generalization to superpositions of finitely-many such states is

1

d

d∑
i.j=1

(Pφi − Pφj )⊗ (Pφi − Pφj )

d∑
i �=j=1

cij�
ij
± = −

d∑
i �=j=1

cij�
ij
± (6)
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where cij = cji . Since for fermions the RHS of (6) is the most general state pos-
sible, fermions, at least in finite dimensions, are always discernible. Evidently the
same cannot be said of bosons; symmetric product states, such as φjφj , can be
discerned by these methods only if subject to an evolution which leaves them entan-
gled [16].

The upshot is that violation of the PII is neither sufficient nor necessary for the SP.
But it would be wrong to conclude that the two principles are completely unrelated.
There is, indeed, a very simple sense in which the PII together with exact similarity
implies the SP, for they imply that states of affairs that differ only by permutations
of particles should be identified – in Dirac’s notation, that (a, b) and (b, a) be iden-
tified. But then the same principles should apply to classical statistical mechanics
as well (for classical particles may surely be exactly similar); the explanation of
quantum statistics cannot be traced to these – or not in isolation from other features
of quantum mechanics, whether to do with identity over time, or the discrete nature
of probability measures on Hilbert space [5], in line with early suggestions by Max
Planck (1858–1947) and Hendrik A. Lorentz (1853–1928) [17].

Identity Operator

See � Dirac notation; POVM.

Literature

1. P. Ehrenfest: Welche Züge der Lichtquantuenhypothese spielen in der Theorie der
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2. L. Natanson, Über die statistische Theorie der Strahlung, Physikalische Zeitschrift 12, 659–666
(1911).

3. P.A.M. Dirac: On the theory of quantum mechanics, Proceedings of the Royal Society
(London) A112, 281–305 (1926).

4. P. Ehrenfest and G. Uhlenbeck: Die wellenmechanische Interpretation der Botzmannschen
Statistik neben der neueren Statistiken, Zeitschrift für Physik 41, 24–26 (1927).

5. S. Saunders, On the explanation for quantum statistics, Studies in the History and Philosophy
of Modern Physics 37, 192–211 (2006).

6. A. Bach, Indistinguishable Classical Particles, Berlin: Springer (1995).
7. S. Saunders, Are quantum particles objects? Analysis 66, 52–63 (2006).
8. R. Oppenheimer: On the quantum theory of electronic impacts, Physical Review 32, 361–376

(1928).
9. R. Feynman: The Feynman Lectures on Physics, Vol.III, R. Feynman, R. Leighton and M.

Sands (eds.), Reading, MA: Addison-Wesley (1965).
10. H. Weyl, Philosophy of Mathematics and Natural Science, Princeton: Princeton University

Press (1949).
11. H. Margenau, The exclusion principle and its philosophical importance, Philosophy of Science

11, 187–208 (1944).
12. S. French and M. Redhead, Quantum Physics and the Identity of Indiscernibles, British Journal

for the Philosophy of Science 39, 233–246 (1988).



304 Identity Operator

where cij = cji . Since for fermions the RHS of (6) is the most general state pos-
sible, fermions, at least in finite dimensions, are always discernible. Evidently the
same cannot be said of bosons; symmetric product states, such as φjφj , can be
discerned by these methods only if subject to an evolution which leaves them entan-
gled [16].

The upshot is that violation of the PII is neither sufficient nor necessary for the SP.
But it would be wrong to conclude that the two principles are completely unrelated.
There is, indeed, a very simple sense in which the PII together with exact similarity
implies the SP, for they imply that states of affairs that differ only by permutations
of particles should be identified – in Dirac’s notation, that (a, b) and (b, a) be iden-
tified. But then the same principles should apply to classical statistical mechanics
as well (for classical particles may surely be exactly similar); the explanation of
quantum statistics cannot be traced to these – or not in isolation from other features
of quantum mechanics, whether to do with identity over time, or the discrete nature
of probability measures on Hilbert space [5], in line with early suggestions by Max
Planck (1858–1947) and Hendrik A. Lorentz (1853–1928) [17].

Identity Operator

See � Dirac notation; POVM.

Literature
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2. L. Natanson, Über die statistische Theorie der Strahlung, Physikalische Zeitschrift 12, 659–666
(1911).

3. P.A.M. Dirac: On the theory of quantum mechanics, Proceedings of the Royal Society
(London) A112, 281–305 (1926).

4. P. Ehrenfest and G. Uhlenbeck: Die wellenmechanische Interpretation der Botzmannschen
Statistik neben der neueren Statistiken, Zeitschrift für Physik 41, 24–26 (1927).

5. S. Saunders, On the explanation for quantum statistics, Studies in the History and Philosophy
of Modern Physics 37, 192–211 (2006).

6. A. Bach, Indistinguishable Classical Particles, Berlin: Springer (1995).
7. S. Saunders, Are quantum particles objects? Analysis 66, 52–63 (2006).
8. R. Oppenheimer: On the quantum theory of electronic impacts, Physical Review 32, 361–376

(1928).
9. R. Feynman: The Feynman Lectures on Physics, Vol.III, R. Feynman, R. Leighton and M.

Sands (eds.), Reading, MA: Addison-Wesley (1965).
10. H. Weyl, Philosophy of Mathematics and Natural Science, Princeton: Princeton University

Press (1949).
11. H. Margenau, The exclusion principle and its philosophical importance, Philosophy of Science

11, 187–208 (1944).
12. S. French and M. Redhead, Quantum Physics and the Identity of Indiscernibles, British Journal

for the Philosophy of Science 39, 233–246 (1988).



Ignorance Interpretation of Quantum Mechanics 305

I

13. D. Dieks, Quantum Statistics, Identical Particles and Correlations, Synthese 82, 127–155,
(1990).

14. S. French and D. Krause, Identity in Physics: A Historical, Philosophical and Formal Analysis,
Oxford: Clarendon Press, (2006).

15. W. V. Quine, Set Theory and Its Logic, Cambridge, MA: The Belnap Press of Harvard Univer-
sity Press (1969).

16. F. Muller and S. Saunders, Discerning fermions, British Journal for the Philosophy of Science
59 (2008).

17. O. Darrigol, Statistics and cominbatorics in early quantum theory, II: Early symptoma of indis-
tinghability and holism, Historical Studies in the Physical and Biological Sciences 21, 237–298
(1991).

Ignorance Interpretation of Quantum
Mechanics

Peter Mittelstaedt

Let S be a proper quantum system with � Hilbert space HS that is prepared in a� mixed state given by the self-adjoint operator WS = WS
+ with tr{WS} = 1.

Here, we assume that WS is not a pure state, i.e. WS �= WS
2.

Two kinds of mixed states can be distinguished by their preparation.

(a) A “mixture of states” [1], a “real mixture” [2], or a “Gemenge” [3] is an ensem-
ble �S(pk, ϕk) of pure states ϕk with probabilities pk .

(b) System S is a subsystem of a compound system S∗ = S+ S′ with Hilbert space
H∗ = HS ⊗HS′ that is prepared in a pure state �∗(S+ S′).

In case (a) the mixed state WS = ∑
i pi P[ϕI ] may be considered as a for-

mal description of the “Gemenge” �S(pk, ϕk) in terms of Hilbert space quantum
mechanics. Hence, there are obviously no difficulties for interpreting the state
WS = ∑

i pi P [ϕi] as a description of a system S that is objectively in one of
the states ϕi , which is, however subjectively unknown to the observer who knows
only the probability pi . In this situation, we say that the state WS admits “ignorance
interpretation”.

In case (b) the mixed state of the subsystem S of S∗ is given by the partial trace
WS = tr′ P[�∗] where tr′ denotes the summation over the degrees of freedom of
S′. It is easy to demonstrate that WS = WS

+ with tr {WS} = 1. However, nothing
is known about the decomposition of WS into weighted components correspond-
ing to pure states. If the spectrum of WS is not degenerate, then there is a uniquely
defined spectral decomposition WS =∑ pi P [ψi ] of WS into orthogonal, i.e. mu-
tually exclusive states ψi . The states ψi are eigenstates of the operator WS and the
coefficients pi are the eigenvalues. Hence, for any i ∈ N the eigenvalue equation
WS ψi = pi ψi holds. However, the decomposition of the state WS is by no means



Ignorance Interpretation of Quantum Mechanics 305

I

13. D. Dieks, Quantum Statistics, Identical Particles and Correlations, Synthese 82, 127–155,
(1990).

14. S. French and D. Krause, Identity in Physics: A Historical, Philosophical and Formal Analysis,
Oxford: Clarendon Press, (2006).

15. W. V. Quine, Set Theory and Its Logic, Cambridge, MA: The Belnap Press of Harvard Univer-
sity Press (1969).

16. F. Muller and S. Saunders, Discerning fermions, British Journal for the Philosophy of Science
59 (2008).

17. O. Darrigol, Statistics and cominbatorics in early quantum theory, II: Early symptoma of indis-
tinghability and holism, Historical Studies in the Physical and Biological Sciences 21, 237–298
(1991).

Ignorance Interpretation of Quantum
Mechanics

Peter Mittelstaedt

Let S be a proper quantum system with � Hilbert space HS that is prepared in a� mixed state given by the self-adjoint operator WS = WS
+ with tr{WS} = 1.

Here, we assume that WS is not a pure state, i.e. WS �= WS
2.

Two kinds of mixed states can be distinguished by their preparation.

(a) A “mixture of states” [1], a “real mixture” [2], or a “Gemenge” [3] is an ensem-
ble �S(pk, ϕk) of pure states ϕk with probabilities pk .

(b) System S is a subsystem of a compound system S∗ = S+ S′ with Hilbert space
H∗ = HS ⊗HS′ that is prepared in a pure state �∗(S+ S′).

In case (a) the mixed state WS = ∑
i pi P[ϕI ] may be considered as a for-

mal description of the “Gemenge” �S(pk, ϕk) in terms of Hilbert space quantum
mechanics. Hence, there are obviously no difficulties for interpreting the state
WS = ∑

i pi P [ϕi] as a description of a system S that is objectively in one of
the states ϕi , which is, however subjectively unknown to the observer who knows
only the probability pi . In this situation, we say that the state WS admits “ignorance
interpretation”.

In case (b) the mixed state of the subsystem S of S∗ is given by the partial trace
WS = tr′ P[�∗] where tr′ denotes the summation over the degrees of freedom of
S′. It is easy to demonstrate that WS = WS

+ with tr {WS} = 1. However, nothing
is known about the decomposition of WS into weighted components correspond-
ing to pure states. If the spectrum of WS is not degenerate, then there is a uniquely
defined spectral decomposition WS =∑ pi P [ψi ] of WS into orthogonal, i.e. mu-
tually exclusive states ψi . The states ψi are eigenstates of the operator WS and the
coefficients pi are the eigenvalues. Hence, for any i ∈ N the eigenvalue equation
WS ψi = pi ψi holds. However, the decomposition of the state WS is by no means



306 Indeterminacy Relations

unique since there are infinitely many decompositions of WS into nonorthogonal
states ψi

′. Hence, the operator WS would represent formally an infinite number of
ensembles (� ensembles in quantum mechanics) �(n) (WS) := �(pi

(n), ψi
(n)).

This means that the state WS is not sufficient to determine a particular mixture
�(n)(WS) of states that is actually realized. Even if WS admits “ignorance inter-
pretation” and can be interpreted as the description of some Gemenge �(WS), new
arguments must be added for a complete determination of the Gemenge �(WS) in
question.

Spectral decomposition, see � Density operator; Measurement theory; Objectifi-
cation; Operator; Probabilistic Interpretation; Propensities in Quantum Mechanics;
Self-adjoint operator; Wave Mechanics.

However, the main question is still open. Does a given mixed state admit at all
“ignorance interpretation”? In other words, is it allowed to assume that a system S
with the mixed state WS =∑piP[ϕi] is actually in one of the pure states ϕi , which
is, however, unknown to the observer who knows only the probabilities pi . If this
interpretation of WS were correct, then the mixed state would express the observers
“ignorance” of the actual pure state but not the objective indeterminacy of this state.
It is one of the most fundamental results of quantum mechanics that a mixed state in
general does not admit “ignorance interpretation”. The reason for this result is that
the assumption of a objectively decided pure state leads in general to contradictions
with well established results in quantum mechanics. This can be shown in various
ways and on different levels of generality [4, 5]. See also States, pure and mixed,
and their representations.
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Indeterminacy Relations

See � Heisenberg Uncertainty Relation.
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Indeterminism and Determinism
in Quantum Mechanics

Brigitte Falkenburg and Friedel Weinert

It is an often repeated claim in the literature that quantum mechanics is indeter-
ministic and that it has put an end to the classical notion of causality. From the
impossibility of determining the exact spatio-temporal trajectory of an atomic sys-
tem, for instance, Heisenberg infers ‘the invalidity of the causal law’ in quantum
mechanics [1]. What is tacitly assumed in such views is a chain of reasoning,
which leads from determinism to causality. One form of determinism – predictive
determinism – is the view that a sufficient knowledge of the laws of nature and
appropriate boundary conditions will enable a superior intelligence to predict the
future states of the physical world and to retrodict its past states with infinite pre-
cision. Laplace attributes this capacity to his famous demon: for the demon the
physical world stretches out like the frames of a filmstrip. Each frame is caused by
an earlier frame and in its turn causes a later frame. From the present frame the
Laplacean demon is capable of predicting and retrodicting all other frames. Hence
the demon identifies determinism and causality. ‘We ought to regard the present state
of the universe as the effect of its antecedent state and as the cause of the state that is
to follow’ [9]. Laplace assumes that these states are unique and can be determined
with mathematical precision such that prediction and retrodiction become possible.
The laws of physics are typically expressed in differential equations which describe
the evolution of some physical parameter, P , as a function of time, t . As one state
of a system, S1, evolves to another state, S2, where this temporal evolution is made
precise by the employment of differential equations, it becomes easy to think of
differential equations as precise mathematical representations of causal laws [10].
This is indeed how Einstein presented the matter: ‘The differential law is the only
form which completely satisfies the modern physicist’s demand for causality’ [2].
Although Russell [11] had argued that the ‘law of causality (. . .) is the product of a
bygone age’ he nevertheless admitted causal laws in the form of functional relations
and differential equations into physics.

This functional model of causality enjoyed great popularity amongst physicists.
But the experimental results from quantum mechanics – like the � double-slit ex-
periments – seemed to threaten the Laplacean identification of determinism and
causality. Physicists reacted to this threat in three different ways.

1. An older generation of physicists (Einstein, von Laue, Planck) wished to re-
tain the notion of causality and its identification with determinism. ‘An event
is causally determined when it can be predicted with certainty.’ [3] They
never abandoned the hope of a causal-deterministic understanding of quantum
mechanics.
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2. A second group of physicists (Bohr, Heisenberg, Pauli) concluded that quantum
mechanics had become both indeterministic and acausal. Let us neglect for the
moment that the � Schrödinger equation is a deterministic differential equation
in an abstract � Hilbert space and concentrate instead on the decay law and on� Heisenberg’s uncertainty relations (or indeterminacy relations). Rutherford’s� radioactive decay law is statistical in nature; it expresses the probability of
the disintegration rate of an ensemble of atoms (� ensembles in quantum me-
chanics) rather than the disintegration rate of an individual atom. The latter is
unpredictable in the sense that it can only be expressed by the whole range of
the decay curve of the ensemble. James Jeans therefore concluded that causal-
ity had disappeared from the physical world picture. [4] Due to the discovery
of his indeterminacy relations, Heisenberg arrived at a similar conclusion. The
indeterminacy principle shows that neither the antecedent nor the consequent
conditions of the causality principle, as Heisenberg sees it, can be satisfied: ‘If
we know exactly the determinable properties of a closed system at a given point
in time, we can calculate precisely the future behaviour of the properties of this
system.’ [1] The indeterminacy principle excludes the simultaneous knowledge
of the antecedent conditions of an atomic system by non-commuting � operators
[x], [px], [x], [E], [t]; but it also excludes the precise knowledge of the future
behaviour of the individual system. Bohr [5] agreed with Heisenberg that the in-
determinacy relations spelt the end of the classical notion of causality. He argued
that his notion of � complementarity should be regarded as a generalization of
the notion of causality. Complementarity means that quantum mechanics must
employ both the particle picture � Franck–Hertz experiment and the wave pic-
ture � Davisson–Germer experiment; Stern–Gerlach experiment; Schrödinger
equation to describe the behaviour of atomic systems. But the indeterminacy re-
lations:

�x�p > � (1a)

�E�t > � (1b)

produce, according to Bohr, the following dilemma:

(i) The determination of the spatio-temporal location, x, of atomic particles, say
in a double-slit experiment, leads to an unavoidable disturbance of dynamic
variables, like momentum p.

(ii) The determination of the value of dynamic variables, like energy, E, or mo-
mentum, p, leads to an unavoidable loss of precise coordination regarding the
spatio-temporal location of the particles, i.e. t , x.
Quantum mechanics must employ both the particle and the wave picture but
each leads to a loss of information, as relations (1a,b) show, which prevents
the precise spatio-temporal determination known from classical particles.
Physicists like Bohr, Heisenberg and Pauli were content to conclude that the
indeterminacy relations implied the acausal nature of quantum mechanical sys-
tems. Their argument went through on the assumption of an identification of
determinism with causality.
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(3) This traditional identification, however, harboured the conceptual possibility
of a third response. The philosopher Ernst Cassirer [6] maintained a func-
tional view of causality, claiming that causality (or determinism) is preserved
at the level of Schrödinger’s � wave function, whereas the individual quantum
events or measurement results were indeterministic. Physicists agree that the� Schrödinger equation is a deterministic equation in Hilbert space. Max Born
[7] and Louis de Broglie [8], however, argued, unlike Cassirer that, the notion
of causality could be retained in quantum mechanics, despite its observable
indeterminism, even if the functional view of causality was abandoned. The
Born-de Broglie move had two consequences:

(i) The notions of determinism and causality became disentangled; it was pos-
sible to accept the indeterminism of quantum mechanics without giving up
the notion of causality.

(ii) The notion of causality needed to be modified in order to speak of causal
relations in quantum mechanics.

To illustrate these consequences, consider a schematic representation of the
Davisson–Germer experiment, i.e. de Broglie’s thought experiment. A beam of� electrons is targeted at a crystal; call this phenomenon A. The encounter of the
beam with the surface of the crystal will lead to diffraction effects, B1, B2, B3,
which will be recorded at different points on a recording screen (Fig. 1).

As is well-known the rules of quantum mechanics do not permit a precise pre-
diction of the diffraction effects, i.e. their precise spatio-temporal location. Yet it
is possible to speak of a causal situation in this case for the experiments show that
the observable consequent effects, B1, B2, B3, are dependent on the antecedent con-
dition A. We can speak of a ‘conditional dependence’ because (a) the experimental
situation leads to the identification of a cluster of relevant antecedent and consequent
conditions and (b) the distribution of the occurrence of the consequent conditions is
statistically dependent on the anterior conditions. Such a conditional dependence of
the consequent conditions, B, on the antecedent condition,A, is further emphasized
by the absence of B in the absence of A (indicated in Fig. 1). A conditional depen-
dence, indicated in de Broglie’s thought experiment, is clearly observable in many
of the classic experiments in quantum mechanics: � Davisson–Germer experiment,� Frank–Hertz experiment, � Stern–Gerlach experiment, � large-angle scattering;� scattering experiments; � which-way experiments.

B1

B3

B2
~A ~B1,2,3

Fig. 1 De Broglie’s causal thought experiment
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A consequence of the acceptance of both indeterministic and causal relations
in quantum mechanics is a revised view of these relations: a conditional model
of causality [12]. According to such a conditional model, it is possible (here in
the context of quantum mechanical experiments) to specify a cluster of antecedent
conditions (further specified in terms of necessary and sufficient conditions) and
a cluster of consequent conditions (observable effects in quantum mechanical ex-
periments). It is observed that between the antecedent and consequent conditions
lawlike statistical relations obtain, which specify the probability with which the
consequent conditions may be expected to occur. For instance in the Stern–Gerlach
experiments, when the silver atoms are in the ground state, there is a 50% chance
for the atoms to be deflected either upward or downward, a deflection which, un-
der these conditions, is due to the spin or the intrinsic angular momentum of the
spinning electron in the outer shell of the silver atoms in the atom beam. � Spin;
Stern–Gerlach experiment; Vector model. Hence, given the lawlike statistical de-
pendence between antecedent and consequent conditions, the distribution of the
observable events is specified. On such a conditional model of causality, experi-
ments in quantum mechanics reveal causal relations in the absence of deterministic
predictability of individual events and a traceable mechanism linking particular
causes and effects.

In the famous EPR argument [13], Einstein raised a further concept of causality.
(� Causal Inference and EPR) According to it, there is no causal relation between
two space-like separated events. Hence, the wave function of a compound system
(functional causality) or the predictions obtained from it (probabilistic causal-
ity) come together with the a-causal correlation of events at a space-like distance
(Einstein causality or � Einstein locality). Therefore, quantum mechanics raises the
conceptual problem that there is no longer an unambiguous concept of causality
[14, pp. 316–319].
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confusion the logical relations between the various notions are often obscured, with
unfortunate consequences. This article will use them in the following senses, which
are most useful and (likely) common:

Particles are identical if they share in common all their constant properties, such as mass,
charge, spin and so on: that is, if they agree in all their state-independent or intrinsic prop-
erties. Particles are indistinguishable if they satisfy the indistinguishability postulate (IP).
This postulate states that all observables O must commute with all particle permutations
P : [O,P ] = 0. Put informally, the IP is the requirement that no expectation value of any
observable is affected by particle permutations.

The IP presupposes the following formal structure: assume that we have a system
of n identical quantum particles, and that if n were equal to 1 then the state space
of the system would be H1. The natural assumption for n > 1 is that the state space
H describing the system is a subspace of the tensor product, Hn, of n copies of H1.
That is,

H ⊆ Hn ≡
n⊗

i=1

H1. (1)

We assume that H is closed under the action of arbitrary permutations, P , which
permute the n factors of Hn. Any such operator is a product of ‘particle exchange
operators’ Pij (1 � i, j � n). Pij interchanges the ith and j th copies of H1 in Hn:
for instance (for n = 2),

P12(|φ〉 ⊗ |ψ〉) = |ψ〉 ⊗ |φ〉. (2)

For example, if the particles are either bosons or fermions then the appropriate state
spaces are the symmetric (Pij |�〉 = |�〉) and antisymmetric (Pij |�〉 = −|�〉) sub-
spaces of Hn respectively. Operators that commute with all permutations are called
symmetric. The IP says that only symmetric Hermitian operators are observables;
any non-symmetric Hermitian operators on H do not correspond to observable quan-
tities if the IP holds.

Logical Relations

Oftentimes (e.g., [2], 275–6) an attempt is made to connect identicality and indistin-
guishability by appeal to the fact that in quantum mechanics (QM), unlike classical
mechanics, particles cannot have varying continuous trajectories. Even if a parti-
cle has a definite location at some times, its position will be indefinite at times in
between. Why? States of definite position – eigenstates of position – are neces-
sarily orthogonal, and it is impossible for a system to occupy a continuous series
of orthogonal states. (Any unitary evolution between such states will take a finite
time, and under measurement the probability of collapse to an orthogonal state is
zero.) And of course there is nothing special about position in this regard: even if
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the spectrum of an operator is continuous, no quantum evolution corresponds to a
continuous trajectory through the spectrum.

This line of thought is supposed to lead directly to the conclusion that identical
quantum particles (unlike classical particles) cannot be distinguished by continuous
trajectories (through space or the spectrum of any observable). So there are two
questions: (i) Does this conclusion – call it trajectory indistinguishability – actually
follow? (ii) What do these considerations have to do with indistinguishability as
defined earlier?

Trajectory Indistinguishability

First (i). This argument is supposed to show that quantum particles are trajectory
indistinguishable, without appeal to the IP (from which it follows immediately,
as discussed below). The idea behind the argument is that quantum particles can
only be distinguished by continuous trajectories that are constant – because, as we
just saw, varying continuous trajectories are impossible. But the identicality of the
particles is supposed to preclude their being distinguished by constant properties.
However, there is a fallacy in this line of thought. A property is ‘intrinsic’ if it is
independent of any possible state of the system, not simply if it is a constant of
some particular evolution; so identical particles can be distinguished by constant
trajectories.

For instance, let H1 be a 2-dimensional � Hilbert space spanned by {|λ1〉, |λ2〉},
eigenstates of the time-independent observable A with eigenvalues λ1 and λ2, re-
spectively. Further suppose that H = H1 ⊗ H1, and that all Hermitian operators
are observables and indeed allowed � Hamiltonian operators. Then one possible
evolution of the system is �(t) = |λ1〉 ⊗ |λ2〉 (for all t), in which the particles
are distinguished by their constant ‘trajectories’ – the first always has the value λ1
for A and the other λ2.2 But the values of A are not state independent: there are
states in H in which the value of A for the first particle is not λ1, for instance
(|λ2〉⊗ |λ1〉), and states in which the particles have no definite A value, for instance
(a|λ1〉 ⊗ |λ2〉 + b|λ2〉 ⊗ |λ1〉). So A is not intrinsic, and indeed (supposing the
particles do share their truly intrinsic properties) the example shows that identical
particles can, after all, be trajectory distinguishable.

Note that in this example, the � operators corresponding to the value of A for
the two particles violate the IP, and hence their values would not constitute physi-
cal trajectories if the IP held. Indeed, although identical quantum particles are not
necessarily trajectory indistinguishable, they will be if they are indistinguishable.3

2 A is not an operator on H, so what is meant here is that �(t) is an eigenstate of A ⊗ I with
eigenvalue λ1, and of I ⊗A with eigenvalue λ2. That is, following the standard understanding, the
operator ‘corresponding’ to A for the first particle is A⊗ I , and so on.
3 It is often assumed that all single particle observables have the form I ⊗ . . . ⊗ I ⊗A⊗ I . . . ⊗ I

(which violates the IP), but one might imagine a more general conception. What is essential, how-
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Indistinguishability

In answer to (ii), the impossibility of continuously varying trajectories does not
support indistinguishability in the sense of the IP. The IP is a constraint on which
operators can be observables, but the impossibility of continuously varying trajec-
tories is a fact about all Hermitian operators, whether or not they satisfy the IP.
Hence this impossibility places absolutely no restriction on observables at all, once
we adopt the quantum formalism.

Indeed, there are consistent (though hypothetical) quantum systems of identi-
cal particles that violate the IP: for instance, a collection of identical ‘quantum
Maxwell–Boltzmann’ particles. For n such particles the state space is the full Hilbert
space Hn of (1) – i.e., H = Hn – and every (sufficiently well-behaved) Hermitian
operator is an observable (as in the example above). Note that while this formalism
is commonly used for non-identical particles, a system of n identical particles can
also have Hn as its state space. Such particles are said to obey quantum Maxwell–
Boltzmann or ‘infinite’ statistics.4 This system clearly violates the IP, because some
observables are non-symmetric: [O,P ] �= 0. In this sense then, the particles are
‘distinguishable’.

While it is widely known, at least implicitly, that identicality does not imply the
indistinguishability postulate, it seems rarely to be explicitly acknowledged, with
certain resultant confusions about the nature of identical particles.5 For example,
it seems that the ‘problem of identical particles’ is often taken to be the problem of
understanding how the symmetrization postulate (SP) – that all particles are either
bosons or fermions – can be shown to follow from the indistinguishability pos-
tulate, as if the latter were more secure than the former (e.g., [4]). But there are
no first principle grounds for holding indistinguishability either; certainly not as a
logical consequence of quantum identicality. Thus both the symmetrization and in-
distinguishability postulates are on a very similar footing. As a matter of empirical
fact, all known particles satisfy both, but no purely logical grounds exist for either.
Indeed, the situation is that the SP entails the IP, but not the converse.6 Thus, if

ever, is that an observable representing a property of one particle be related by permutation to the
observable representing the same property of another particle: as A ⊗ I and I ⊗ A are. But the
IP means that permutations leave observables unchanged, in which case there cannot be a pair of
distinct observables representing the same property for a pair of particles: hence no such pair of
particles can have distinct trajectories.
4 Such a system has second-quantized realizations whose particles are known as ‘quons’. See [3]
and references therein.
5 Part of the confusion arises because ‘identicality’ is often used to mean indistinguishability. Al-
though logically unproblematic, this usage obscures the possibility of particles that share their
intrinsic properties, but violate the IP.
6 An operator on Hn leaves the subspace of bosonic states, H+, invariant iff its action on H+ is
the same as that of its projection onto H+; this latter operator necessarily satisfies the IP. Now,
observables for a system of identical bosons must leave H+ invariant, else measurement collapses
will not be well-defined. So not all Hermitian operators on Hn can be bosonic observables, only
those whose action on H+ is the same as that of a symmetric operator; similarly for fermions,
hence SP implies IP.
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one principle explains the other (and if entailment is a form of explanation), it is
symmetrization that explains indistinguishability, not the other way around!

Of course, the fact that all known species of elementary particles are either
bosons or fermions suggests that there may be some reason, some important princi-
ple, explaining why nature does not explore the many other options. Much work has
been devoted to showing which additional principles are necessary to prove the IP
or SP; but none of these principles seem more natural or secure than what is meant
to be shown.

To summarize: It is important to keep clear the relations between the concepts
of identicality, trajectory indistinguishability and indistinguishability (and sym-
metrization). First, identicality entails neither trajectory indistinguishability nor
indistinguishability (though the former follows from the latter); the impossibility
of continuously varying trajectories in QM is nothing but a red herring. Second, the
SP implies the IP, but not the converse. So, to summarize the summary,

SP⇒ IP⇒ Trajectory Indistinguishability

but none of these follow from identicality.

Approximate Distinguishability

It is important to note that one can sometimes treat indistinguishable particles as
‘approximately’ distinguishable.

First, which properties are to count as intrinsic is a system-relative matter. Con-
sider a system of two � electrons that are in distinct constant spin-z eigenstates,
one � spin up and the other spin down, so that the spins function as intrinsic
distinguishing properties for the particles. Now, this may seem surprising since the
particles in question are identical fermions at a fundamental level, and hence their
states are antisymmetric under the exchange operatorP12. Antisymmetrization (and,
similarly, symmetrization for identical bosons) implies that the z-spins can never
distinguish particle 1 – that is, the particle associated with the first ‘slot’ in the ten-
sor product space – from particle 2 – the one associated with the second slot. For
example, their state cannot be something like | ↑ 〉⊗ | ↓ 〉⊗ |ψ〉, in which particle 1
is the spin-up electron and particle 2 the spin-down electron, and |ψ〉 represents the
non-spin portion of the two particle state. Suppose, however, that the Hilbert space
of the system in question is spanned by states of the form

(| ↑ 〉 ⊗ |α〉)⊗ (| ↓ 〉 ⊗ |β〉)− (| ↓ 〉 ⊗ |β〉)⊗ (| ↑ 〉 ⊗ |α〉), (3)

The SP can be derived from the conjunction of the IP and the assumption that the representation
of the permutation group is 1-dimensional on H: P |�〉 = λ|�〉. The point is that there is no
independent justification for the latter conjunct, which can be consistently relaxed, as we shall see
the final section.
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(in which, for example, the first term assigns spin-up and the non-spin state |α〉 to
particle 1, and spin-down and the non-spin state |β〉 to particle 2). Then we can
‘distinguish’ a spin-up particle from a spin-down particle in the following sense. In
a state such as (3), |α〉 (|β〉) is associated with spin-up (spin-down) in both terms.
Hence we can simply denote the state by |α〉⊗ |β〉 in which it is understood that the
‘new’ particle 1 – that associated with the first slot in the new notation – is spin-up
and the new particle 2 – that associated with the second slot – is spin-down. So al-
though the state is antisymmetric at a fundamental level, in this effective description
we have two particles that are distinguished by their spins. Since the electrons are
identical in the fundamental sense, and distinguished by constant properties in the
effective description of this system, it would perhaps be more accurate to say, not
that the electrons are approximately distinguishable, but that they are approximately
non-identical.7

Second, while particles cannot be distinguished by continuously varying, exact
positions, they can by continuously varying approximate positions. In the classi-
cal limit, identical particles have � wave function that are peaked in space with
little overlap for some period; they are approximately trajectory distinguishable.
Quantum mechanics does allow such states to evolve in a continuous way, with
the peaks moving through space – as the existence of the classical limit demands.
(And of course similar points hold for other observables.) If the particles in question
are identical bosons or fermions, then these approximately distinct trajectories will
serve to distinguish in just the way that spins did for the two electrons: we will be
able to give an effective description of states in which the new ith slot is associated
with the ith spatial trajectory. This is exactly what goes on for instance when we
refer to an electron localized in a particular region of space, distinct from all other
electrons.8

Why It Matters

Carefully distinguishing the concepts discussed in this article reveals a wider range
of possibilities for multi-particle quantum systems, as is now briefly explained.

Messiah and Greenberg [6] were the first to exploit systematically the fact that
the IP (which they called ‘identicality’!) was not sufficient for the symmetrization
postulate. Specifically, they relaxed the latter postulate and considered more general
state spaces. Building on this work, Hartle, Stolt and Taylor (e.g., [7]) showed how
to classify all types of identical, indistinguishable quantum particle statistics (com-
patible with a principle of ‘cluster decomposition’) according to the transformation
properties of their state spaces under the action of particle permutations. However,
they considered only observables satisfying the IP, which we have just seen to be

7 Although the particles in the example of p. 313 are not fermions, they are – just for the evolution
described – non-identical in a similar sense.
8 Related issues in both classical and quantum mechanics are discussed in [5].
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an ad hoc restriction on observables. Thus, one may ask: ‘Does also relaxing the IP
allow an even richer classification of statistics by the transformation properties of
states and observables under the action of particle permutations?’

And indeed it does, as Espinoza et al. [8] have recently shown. Bose and Fermi
particles – what are usually called ‘quanta’ – are of course still examples of the types
now classified, as are parastatistical particles and quantum Maxwell–Boltzmann
particles, and a countable infinity of others. In every case categorized by Hartle,
Stolt and Taylor (except for bosons and fermions which necessarily satisfy the in-
distinguishability postulate) there is an associated distinguishable case now possible
in which non-symmetric observables are allowed. Any two systems with different
statistics – whether they differ in the transformation properties of their states or
observables or both – will have different partition functions and hence different
thermodynamic behaviors. In particular, whether the indistinguishability postulate
holds makes a real physical difference for a system of identical particles – or at least
it would were we to discover identical yet distinguishable particles in nature.
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The interaction-free measurements proposed by Elitzur and Vaidman [1] (EV IFM)
is a quantum mechanical method to find an object that interacts with other systems
solely via its explosion without exploding it. In this method, an object can be found
without “touching it”, i.e. without any particle being at its vicinity.
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an ad hoc restriction on observables. Thus, one may ask: ‘Does also relaxing the IP
allow an even richer classification of statistics by the transformation properties of
states and observables under the action of particle permutations?’

And indeed it does, as Espinoza et al. [8] have recently shown. Bose and Fermi
particles – what are usually called ‘quanta’ – are of course still examples of the types
now classified, as are parastatistical particles and quantum Maxwell–Boltzmann
particles, and a countable infinity of others. In every case categorized by Hartle,
Stolt and Taylor (except for bosons and fermions which necessarily satisfy the in-
distinguishability postulate) there is an associated distinguishable case now possible
in which non-symmetric observables are allowed. Any two systems with different
statistics – whether they differ in the transformation properties of their states or
observables or both – will have different partition functions and hence different
thermodynamic behaviors. In particular, whether the indistinguishability postulate
holds makes a real physical difference for a system of identical particles – or at least
it would were we to discover identical yet distinguishable particles in nature.

Literature

1. E. Castellani (ed.): Interpreting Bodies: Classical and Quantum Objects in Modern Physics
(Princeton University Press, Princeton, NJ 1998).

2. J.M. Jauch: Foundations of Quantum Mechanics (Addison-Wesley, New York 1968).
3. O.W. Greenberg: Particles with Small Violations of Fermi or Bose Statistics. Phys. Rev. D 43,

4111-20 (1991).
4. Bros, A.M.L. Messiah and D.N. Williams: Theoretical Basis of the Symmetrization Postulate.

Phys. Rev. 149, 1008–9 (1966).
5. S. Saunders: On the Explanation for Quantum Statistics. Stud. Hist. Philos. Mod. Phys. 37,

192-211 (2006).
6. A.M.L. Messiah and O.W. Greenberg: Symmetrization Postulate and Its Experimental Founda-

tion. Phys. Rev. 136, B248-67 (1964).
7. J.B. Hartle, R.H. Stolt and J.R. Taylor: Paraparticles of Infinite Order. Phys. Rev. D 2, 1759-60

(1970).
8. R. Espinoza, T.D. Imbo and M. Satriawan: Identicality, (In)distinguishability and Quantum

Statistics. In preparation and UIC preprint (2003).

Interaction-Free Measurements
(Elitzur–Vaidman, EV IFM)

Lev Vaidman
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The basic idea of the method is as follows. A quantum test particle is being split
into a � superposition of two separated states. One of these states is being split
again into a superposition of two output states while the other is being split into a
(different) superposition of the same output states. The phases of the various parts
are tuned in such a way that there is a destructive interference at one of the outputs.
At this output there is a detector. This is the EV device ready for action.

The simplest EV device is the Mach–Zehnder interferometer, Fig. 1. To use it,
the device should be placed in such a way that only one of the intermediate states

a

b

Fig. 1 The Elitzur–Vaidman scheme (a) When the interferometer is empty and properly tuned,
photons do not reach the detector. (b) If the exploding object is present, the detector has the prob-
ability 25% to detect the photon sent through the interferometer, and in this case we know that the
object is inside the interferometer without exploding it
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a

b

Fig. 2 The Kwiat et al. scheme. (a) If the cavities are empty, the photon after N bouncing moves
completely from the left cavity to the right cavity. (b) If the object is present in the second cavity,
after the same N bounces it will remain in the first cavity with probability close to 1 for large N

interacts with the object. If the object is present, the destructive interference is
spoiled and the detector might click announcing that the object is present. In this
case, no explosion has occurred, since the particle can be found only in one place.
The particle can also be “found” by the object, so in half of the cases the object
explodes. The probability of finding the object on the first run is just one quarter, so
the efficiency of the method is low, but given that the detector clicks, the object is
present with certainty.

The EV method was improved using the � quantum Zeno effect [2] and the
probability of the explosion could be made arbitrary small. This, however, requires
more time: the quantum test particle has to traverse the interaction region many
times. Conceptually, the simplest implementation of this improvement is a device
consisting of two identical cavities A and B connected by a highly reflective wall,
see Fig. 2. If we place a photon in one cavity, the evolution brings it to another cavity
after N bounces in one cavity. At this moment, a detector tests for the presence of
the photon in cavity A. This is the device which is ready for action. We place it
in such a way that the interaction region of possible explosive object is cavity B.
The detector will click with probability close to 1. (The probability for the failure,
which is an explosion of the object, is of the order of 1/N). It will not click for sure
if the object is absent.

Setups similar to the EV device were considered before by Renninger [3] and
Dicke [4]. However, they did not realize the effect because in their analysis the
object and the test particle were reversed: they pointed out the peculiar property that
the EV test particle changes its state while the EV explosive object (their measuring
device) has not changed at all, it was a negative result experiment.

The EV method can find in an interaction-free manner not only exploding ob-
jects, but any opaque object. This experiment, however, is somewhat more difficult
to implement. For finding an explosive device we could use, instead of a single
particle source, a weak laser beam. If the click happens before the explosion, we
know that the object is there. For an opaque object, we need a single particle source:
if we get a click sending only one photon, we know that there is a opaque object
somewhere inside the interferometer and that it did not absorb any photon.
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One of the most paradoxical features of the EV IFM is that the test particle in
some sense never passes in the vicinity of the interaction region. How can we get
information about a region when nothing passed through it and nothing came out of
it? Indeed, when we hear the click announcing the presence of the object, there is
no record of any kind in our world showing that the test particle was near the object.

A way to resolve this paradox is to note that of our intuition regarding causality
in our world is based on physical laws. These laws, however, describe our Universe
which includes many worlds, including the one in which the test particle visited
the interaction region (and there was an explosion). In this picture it is easy to
understand why there is no interaction free method for finding out that the interac-
tion region is empty. Since there is no parallel world in which an explosion occurs,
we cannot verify that the region is empty without passing through it.

Let us consider now what happens when the EV IFM device is used for finding
a quantum object. If the � wave function of the quantum object spreads over space
such that only part of it overlaps with the interaction region, the successful EV
IFM localizes the object to the interaction region without changing its internal state
(without exploding it). The momentum of the object is changed in this procedure.
In this respect it is no different from any other nondemolition measurement of the
projection on the interaction region. The name “energy exchange free measurement”
frequently associated with the EV proposal, thus does not reflect the unique features
of the EV IFM [5, 6].

Energy exchange is relevant for the Penrose modification of the EV IFM [5],
in which the goal is different: We are to distinguish between objects which explode
whenever their trigger is touched and duds where the trigger is locked to the object
which do not explode. The dud serves as a mirror in the Mach–Zehnder interfer-
ometer which produces a destructive interference in its detector. A good exploding
device cannot serve as a mirror and thus the detector might click announcing that
the object is not a dud. Penrose’s explanation of the core of the IFM is counter-
factual [7, p. 135]: the object caused the detector to click because it could have
exploded, although it did not. This is the origin of the name counterfactual compu-
tation [8, 9] for a quantum computer which yields the outcome without “running”
the algorithm. Note, however, that as we cannot establish the absence of an object
in an interaction-free manner, we cannot have a counterfactual computation for all
possible outcomes [10].

In Penrose’s IFM, when the detector clicks, we can claim, as before, that the
quantum test particle was not at the vicinity of the exploding object. However, when
the EV IFM device is used for finding a quantum object, the click of the detector
does not ensure that the quantum test particle was not present in the interaction re-
gion. It might that the whole quantum wave of the test particle passes the interaction
region. This happens when the observed quantum object is the “test particle” of the
EV IFM measuring the presence of the original test particle. This setup is known as
Hardy’s paradox. This consideration shows that the claim that the EV IFM localizes
quantum objects to the interaction region is strictly speaking incorrect. But limita-
tion is minor: anyone observing the location of the object (and not a superposition
of localized states) after the EV IFM announcement about its location, will find that
EV IFM method is not mistaken.
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a

b

Fig. 3 The Paul and Pavičić scheme. (a) If the cavity is empty, the photon passes through it with
very high probability. (b) If the object is present in the cavity, the photon is reflected with very high
probability

There have been numerous experiments performing the EV IFM. The original
EV scheme was first implemented in laboratory by Kwiat et al. [2]. (� Quantum
Interrogation) Later, Kwiat et al. also performed an experiment of their improved
scheme which combines the EV setup with the Zeno Effect [12] reaching efficiency
of about 70%. Technical problems make further improvement difficult. It is not easy
to tune the optical cavities and it is very difficult to put the photon into the first
cavity at a particular moment for starting the process.

When the goal is a practical application of the EV IFM, the best approach is
the Paul and Pavičić setup [13] which is, essentially a Fabry Perot interferometer,
Fig. 3. There is only one cavity build with almost 100% reflecting mirrors, which
is tuned to be transparent when empty. If, however, there is an object inside the
cavity, it becomes almost 100% reflective mirror which allows finding the object
without exploding it. The method has a conceptual drawback that in principle the
photon can be reflected even if the cavity is empty, thus, detecting reflected photon
cannot ensure presence of the object with 100% certainty. But this drawback has no
meaning for actual experiment because noise in an ideal setup is usually larger. This
method was first implemented in a laboratory by Tsegaye et al. [14] and recent ex-
periment reached the efficiency of 88% [15]. The method has a potential to improve
controlled-not gate for quantum information processing [16].

Applying the EV device for imaging semitransparent objects [17–19] hardly pass
the strict definition of the IFM in the sense that the photons (� light quantum) do
not pass in the vicinity of the object, but they achieve a very important practical
goal, since we “see” the object significantly reducing the irradiation of the object:
this can allow measurements on fragile objects.

The EV IFM is one of the quantum paradoxes (� Errors and Paradoxes in
Quantum Mechanics. It is a task which cannot be performed in the realm of classical
physics, but can be done in the framework of quantum theory. Progress in exper-
imental demonstrations of the method shows that it has a potential for practical
applications. See also � Quantum Interrogation.
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16. M. Pavičić, Phys. Rev. A 75, 032342 (2007).
17. J. S. Jang, Phys. Rev. A 59, 2322 (1999).
18. G. Mitchison, and S. Massar, Phys. Rev. A 63, 032105 (2001).
19. H. Azuma, Phys. Rev. A 74, 054301 (2006).

Interpretations of Quantum Mechanics

See � Consistent histories, Ignorance interpretation, Ithaca Interpretation, Many
Worlds Interpretation, Modal Interpetation, Orthodox Interpretation, Transactional
Interpretation.

Invariance

K. Mainzer

Invariance, in general, means that quantities or objects do not change with respect to
transformations [7]. Invariance of quantities and objects can be distinguished from� covariance which refers to form invariance of laws and equations [8]. In mathe-
matics, a function of coordinates is called invariant with respect to a transformation
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T , if the function remains unchanged by application of T to the coordinates. In ge-
ometry, for example, lengths and angles are invariants with respect to orthogonal
transformations of Cartesian coordinates. Double proportions are invariants of pro-
jective transformations. In physics, basic quantities like energy, linear momentum,
or angular momentum are invariants, because their conservation results from the� symmetry properties of the interactions under global space and time continuous
transformations.

Examples of continuous transformations are the translation in space, the rotation
around a given axis, and the translation in time. For a particle of mass m moving in
a one-dimensional space, its classical motion is governed by Newton’s equation

mẍ = F.

If the interaction force F derives from an energy potential U(x), that is F = −dU
dx ,

and if the potential is constant, i.e. independent of x, then mẍ = 0. Integration gives
mẋ = C, where C is a constant. Therefore, the invariance of U(x) under the space
translation

Ta : x ′ → x = x + a

leads to the conservation of the linear momentummẋ. The parameter a can take any
real value, hence Ta is a continuous transformation. In a similar way, one can show
that the invariance of a potential under continuous rotations in space leads to the con-
servation of the angular momentum and the invariance under translation in time
leads to the principle of energy conservation. These crucial connections between the
symmetries of a system and the conservation laws are the consequences of a gen-
eral theorem, Emmy Noether’s theorem: If a Lagrangian theory is invariant under
a N-parameter continuous transformation (in the sense that the Lagrangian func-
tion is invariant) then the theory possesses N conserved quantities [1]. Noether’s
theorem is not only true in classical and relativistic physics [9]. According to the� correspondence principle, it also holds in quantum physics.

Historically, Noether’s theorem from 1918 did not come immediately into
the view of quantum physicists. The reason is that early quantum mechanics
emphasized the Hamiltonian frame work in mechanics and the new formulation of
symmetries being associated with unitary or antiunitary representations of groups
in the Hilbert spaces of states (� symmetry). All three classical text books on
group theory and quantum mechanics, namely those by Hermann Weyl (1928) [2],
Eugene Paul Wigner (1931) [3], and Bartel Laendert van der Waerden (1932) [4]
did not deal with Lagrangian equations of action integrals and their invariance
properties. In non-relativistic quantum mechanics the fundamental � observables
are position operators QA and momentum operators PA. The Hamilton � operator
H = H(QA, PA, t) depends on them. Time t is only a parameter. (� Time in
quantum mechanics). The Lagrangian framework was rediscovered with the rise
of � quantum field theory and elementary � particle physics. For the thirties of
the last century there is only a paper of Moisei A. Markov [5] which explicitly
and systematically applied Noether’s theorem to the currents of a Dirac particle in
an external electromagnetic field. After some textbooks on classical field theory
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quoting Noether’s paper the breakthrough came with Edward L. Hill’s exposition
of Noether’s results in 1951 [6] which was quoted in textbooks on quantized fields
in the fifties of the last century.

In general, quantum field theory refers to independent field operators uA(x
i)

(A = 1, 2, . . .) as fundamental quantities of the theory. The Galilean coordinates
xi are parameters. There is a formal correspondence

t → xi,

QA (t)→ uA

(
xi
)
= uA

(
xμ, t

)
.

The coordinates xμ describe the continuum of the space of position. Therefore,
quantum field theory can be considered a quantum mechanical system with non-
countably-infinite many degrees of freedom. In the Lagrangian theory of fields the
operator of Lagrangian density plays a central role. It has the same external form like
the classical Lagrange density. A classical Lagrange density function can be differ-
entiated in the usual way with respect to field functions and their derivatives. The
derivation of an operator with respect to operators is in general problematic because
of the non-commutativity of the operators. But with appropriate rules of partial dif-
ferentiation, the results of Noether’s theorem can be transferred to quantum field
theory [10].
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Ithaca Interpretation of Quantum Mechanics

Jeffrey A. Barrett

The Ithaca Interpretation of quantum mechanics was proposed by the physicist
N. David Mermin (*1935) as an attempt to understand quantum mechanics by sup-
posing that the only proper subject of physics is correlations between � observables.
Further, while correlations are taken to have physical reality, that which they corre-
late is not. Quantum mechanics with no dynamical collapse is then taken to be an
entirely adequate physical theory since it can be understood as describing correla-
tions without correlate.

Mermin’s presentation of the Ithaca Interpretation starts by taking quantum me-
chanics without the collapse postulate as given. (� Wave function collapse). He
then seeks to infer what physical reality must be in order for this theory to be taken
as providing a complete and accurate physical description. What Mermin refers to
as the Theorem of the Sufficiency of Subsystem Correlations, the SSC Theorem,
plays a central role in characterizing what he takes to be the essential structure of
quantum-mechanical states – Mermin cites Wootters [3] for an earlier proof of the
theorem.

The SSC Theorem says that the mean values of the products of subsystem observ-
ables, over a particular resolution of a system into subsystems, suffice to uniquely
determine the quantum-mechanical state of a given system. Mermin understands
this to mean that the quantum-mechanical state of a complex system is nothing more
than a coding of the correlations, or joint probabilities, between the observables of
its subsystems. And since the quantum-mechanical state of a system determines
the correlations between observables of its subsystems and nothing more, he con-
cludes that the quantum-mechanical description of the reality extends only to such� correlations. On the assumption that the quantum-mechanical state of a system
provides a complete description of physical reality, since the state determines the
joint probabilities for observables of its subsystems but not the probabilities of phys-
ical properties in fact obtaining, Mermin concludes that physical reality consists in
correlations without there being any physical correlata described by the correlations.
Once one recognizes that physics, properly conceived, concerns correlations with-
out correlata, he argues, one recognizes that the quantum-mechanical description is
entirely adequate as a complete and accurate description of the physical world since
it fully characterizes precisely these correlations.

Using quantum mechanics to determine the proper subject of physics, then judg-
ing the adequacy of quantum mechanics as a physical theory using the standard of
adequacy derived from the theory itself is clearly circular, but Mermin argues that
there are historical precedents for such an argument. Just as electrodynamics taught
us that it is possible to have physical fields without there being any physical medium
to support them, quantum mechanics teaches us that it is possible to have physical
correlations without there being any physical correlata to support them. The argu-
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ment is that one should listen to what quantum mechanics is trying to tell us rather
than to try to impose our intuitions concerning the interpretation of joint probabili-
ties and the nature of probabilistic explanation on quantum mechanics. The central
question then in judging the adequacy of the Ithaca Interpretation concerns the de-
gree to which one should be willing to allow a physical theory to determine the
explanatory standards for its own assessment.

Part of the puzzle here is that Mermin recognizes that the quantum measurement
problem remains a problem in the context of the Ithaca Interpretation. He concedes
that “When I look at the scale of the apparatus I know what it reads. Those ab-
surdly delicate, hopelessly inaccessible, global system correlations obviously vanish
completely when they connect up with me” He insists, however, that explaining the
particular outcome of a measurement when there are no physical correlata (and,
for that matter, explaining why we have to update our probability calculations af-
ter performing a measurement) “is a puzzle about consciousness which we should
not get mixed up with the efforts to understand quantum mechanics as a theory of
subsystem correlations in the non-conscious world” ([1], 759).

One way to understand the argument would be to suppose that while Mermin
takes quantum mechanics to provide a complete and accurate description of physical
reality, he does not take physical reality to determine the mental states of observers.
Indeed, on the Ithaca Interpretation of quantum mechanics, reality is explicitly
defined to be “physical reality plus that on which physics is silent, its conscious
perception” ([1], 766). This distinction allows one, if one wished, to locate correlata
as features of the nonphysical conscious world and thus to explain how it is possible
to know the result of a measurement when physical reality consists in only corre-
lations without correlata. The cost of this line of explanation would, it seems, be a
commitment to a strong variety of mind-body dualism.
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J
jj-Coupling

Klaus Hentschel

The � vector model provides various ways of calculating the vectorial sum of all
the contributing angular momenta li (� Spin; Stern–Gerlach experiment; Vector
model) and � spins si = 1/2 for atoms with more than one � electron. Either all
the li are first summed up to one L, and then combined with S = ∑i si , or all the
li and si are first summed up separately to ji with J =∑i ji . The noncommutativ-
ity of � operators makes these two procedures in general non-equivalent, yielding
different combinatorics, and thus different energy levels and transitions. The first
possibility is called � Russell–Saunders coupling (valid for the lighter, hydrogen-
like atoms � Bohr’s atom model). The latter is called jj-coupling, yielding the better
approximation for heavier atoms and for the energetically higher terms. jj-coupling
assumes a strong interaction between each li and the corresponding si of each elec-
tron. There is thus no definite L and S, but only a well-defined J which also implies
that the prohibition of intercombinations with �S ± 1 is no longer in place, and
the only � selection rules applying for jj-coupling are �J = 0 or ±1, and similar
for the individual ji . The � Landé g-formulae also have to be revised for this case;
see [1].
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Kaluza–Klein Theory

Daniela Wuensch

Theodor Kaluza (1885–1954) set forth his idea of unifying gravitation and elec-
tromagnetism within five-dimensional space-time in a paper from the beginning
of 1919. It was presented by Albert Einstein (1879–1955) to the Berlin Academy
of Science and published in its Sitzungsberichte in 1921 under the title “Zum
Unitätsproblem der Physik” [4]. Having received the manuscript from the author
in April 1919, Einstein was so impressed with the idea of unifying the basic forces
in a five-dimensional space that he used it himself up to the mid-1940s in eight of
his own papers.

Kaluza’s idea of unifying gravitation and electromagnetism goes back to David
Hilbert’s (1862–1943) unification program and to the pioneering work of two
of his pupils: Hilbert sought unification within a four-dimensional space by
having electromagnetism come from gravitation in 1915 [2]. His pupil Gunnar
Nordström (1881–1923) explored unification within a five-dimensional unwarped
(Minkowskian) space in the foregoing year [7]. The unification attempt by Hermann
Weyl (1885–1955) in 1918, finally, was to apply a gauge transformation within a
four-dimensional space with a generalized non-Riemannian metric [10]. Although
Nordström was the first to introduce a five-dimensional space, it was Kaluza’s
theory from 1919 that proposed a realistic unification of the two interactions. Nord-
ström’s theory predated the general theory of relativity (1915) so the gravitation
was derived from electromagnetism within a space described by a Minkowskian flat
metric. As a consequence, it could not explain phenomena like light deflection and
was therefore condemned as a prerelativistic theory.

Kaluza’s idea, which was to serve as the model for the design of all unified theo-
ries in higher-dimensional spaces, was as follows: Within a five-dimensional space
(with a Riemannian metric) there exists a unique five-dimensional gravitational
force that upon projection onto the four-dimensional space of our experience splits
into two phenomena: our familiar natural forces, being four-dimensional Einsteinian
gravitation (known from the general theory of relativity), and Maxwellian elec-
tromagnetism. Thus in Kaluza’s theory – as in all modern higher-dimensional
unified theories, and unlike Nordström’s – the fundamental force is gravitation. It,
according to Kaluza, is the originator of electromagnetism. (Modern-day higher-
dimensional unified theories attribute all the other forces to gravitation as well.)
Electromagnetism is thus an effect of the fifth dimension. The fifth components of
the metric tensor gμ5(μ = 1, 2, 3, 4) are identical to the Maxwellian electromag-
netic field Aμ. Kaluza was able to show that the five-dimensional momentum p5
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is proportional to the electric charge ρ0, which offers a possible explanation for
electric charge as a five-dimensional effect.

Kaluza applied his “cylinder condition” in order to explain why the fifth dimen-
sion is not perceptible in any phenomena of our experience. It states that the first
derivative of all physical quantities after the fifth dimension must be null:

∂f (x)

∂x5
= 0

This condition determines the structure of the five-dimensional Kaluza space, in that
the fifth dimension forms the cylinder’s central axis. The points on the cylinder’s sur-
face correspondingly make up our familiar four-dimensional space. Einstein found
fault with this preference for the fifth dimension because it limits the covariance
within five-dimensional space. He also argued for a then radical conception of field
theory that makes all particles interpretable as condensations of a field. Kaluza’s the-
ory should, he thought, yield the � electron as a product of its unified field, which
was not the case.

In 1926 Oskar Klein (1894–1977) succeeded in linking Kaluza’s theory [4] with
quantum mechanics [5,6]. He quantified the fifth components of momentum accord-
ing to the rule:

p5 = n× h

l

(n = quantum number, h = � Planck’s constant, l = period of the fifth dimension,
i.e., the circumference of a tiny circle).

It differed from Kaluza’s theory in the following way [12]: Instead of having the
fifth dimension form the central axis of a cylinder of infinite extension, Klein had it
curled up (“compactified”) into a tiny circle of magnitude l = 10−30 cm.

l = hc
√

2k

e

(c = velocity of light, e = electron charge, k = Einstein’s gravitational constant)
The term “Kaluza–Klein theory” was first used in 1933 by Oswald Veblen (1880–

1960) [9], who together with Banesh Hoffmann (1906–1986) had given the theory
its projective form in 1930 [3]. The theory became a purely formal construct in
which the five-dimensional space is no longer attributed any physical reality. It
serves instead as a mathematical space from which the real four-dimensional space
emerges as a projection. Pascual Jordan (1902–1980) and André Lichnerowicz
(1915–1998) were among the proponents of this construct from 1945 on.

Wolfgang Pauli (1900–1958) and others working on quantum mechanics rejected
the five-dimensional Kaluza–Klein theory in the mid-1930s, however, because it
offered no way to quantify field theories [13].

Two new interactions were discovered during the 1930s, the weak and the strong
interactions. Gauge theories – an idea Hermann Weyl originally developed in 1918
and generalized in 1929 – were the first to prove successful in unifying the three
natural forces: electromagnetism, the weak and strong forces, by means of common
symmetry properties.
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In the continued search for a new theory to unify all four natural forces, the
Kaluza–Klein theory was rediscovered in the 1960s. Bryce S. DeWitt (1923–2004)
came up with the idea of combining the � symmetry transformation contained in
gauge theories with the higher-dimensionality of physical space in the Kaluza–Klein
theory in 1963 [1].

Three advocates of superstring theory: In 1975, J. Scherk (1946–1979), together
with H. J. Schwarz (born in 1941), E. Crammer (born in 1942) and J. Scherk (in
1976) and in 1976 E. Crammer (born in 1942) together with J. Scherk introduced the
idea that the higher dimensions should be regarded as true physical dimensions “on a
par with the four observed dimensions.” [11, p. 412] They suggested that the obvious
differences between the four observed dimensions and the extra microscopic ones
could arise from a spontaneous breakdown in the vacuum symmetry, i.e., from a
process of ‘spontaneous compactification’ of the extra dimensions (curling up as
the universe cooled).

At the beginning of the 1980s the initiator of the superstring revolution, Edward
Witten (born in 1951), explored in his article “Search for a Realistic Kaluza–Klein-
Theory” (1981) [11] whether the theory could serve as a conceptual basis for the
unification of all the natural forces. “This theory,” he exclaimed, “is surely one of
the most remarkable ideas ever advanced for unification of electromagnetism and
gravitation” [11, p. 415]. Thus Kaluza–Klein theories began to be considered as the
potential beginning of a paradigm shift.

Kaluza–Klein theories still serve as a model for superstring theory as well as
for the M-theory propounded by Edward Witten in 1995 which endows space
with eleven dimensions. It is based on Kaluza’s idea that apparently different
natural forces may be unified by introducing additional spatial dimensions, with
the unifying force being higher-dimensional gravitation. It also takes up Klein’s
idea of compactifying additional dimensions and explains why the additional di-
mensions are not perceptible: Their extremely small size makes them technically
immeasurable.

Lisa Randall (born in 1962) and Raman Sundrum (born in 1964) developed a new
form of unification in 1999 that does not use the Kaluza–Klein model but reverts
back to Kaluza’s original idea of a fifth dimension of infinite extension [6].
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7. G. Nordström: Über die Möglichkeit, das elektromagnetische Feld und das Gravitationsfeld zu
vereinigen. Physikalische Zeitschrift 15, 504–506 (1914)

8. L. Randall: Warped Passages: Unraveling the Mysteries of the Universe’s Hidden Dimensions.
(Ecco: New York 2005)

9. O. Veblen: Projektive Relativitätstheorie. (Springer: Berlin 1933)
10. H. Weyl: Gravitation und Elektrizität. Sitzungsberichte der Königlich Preußischen Akademie

der Wissenschaften zu Berlin 465–478 (1918)
11. E. Witten: Search for a Realistic Kaluza–Klein Theory. Nuclear Physics B 186, 412–428 (1981)

Secondary Literature

12. D. Wuensch and H. Goenner: Kaluza’s and Klein’s Contributions to Kaluza-Klein theory. Pro-
ceedings of the Tenth Marcel Grossmann Meeting July 20 to 26, 2003, Rio de Janeiro, Brasil,
2041–2047 (World Scientific: Singapore, 2005)

13. D. Wuensch: Der Erfinder der fünften Dimension. Theodor Kaluza, Leben und Werk.
(Termessos: Göttingen 2007)

Kochen–Specker Theorem

Carsten Held

Quantum mechanics generates, for chosen � observables and state assignments,
measurement outcome predictions. What does it mean to ask whether the theory
completely describes the systems it in fact describes? Assume that, if a quantum-
mechanical system S is in a pure state |a1〉 such that prob (a1) = 1 (i.e., the
probability that S is found, upon an A-measurement, to have a1 equals 1), then it
has the physical property represented by a1 (the eigenvalue of A pertaining to |a1〉).
Completeness then can be characterized as the idea that the properties ascribed to S
in this way are the only ones and incompleteness as the idea that there are more. The
possible S properties not derivable from S’s quantum-mechanical state are usually
called � hidden variables.

Incompleteness (i.e., the presence of hidden variables) can be related to S’s
description in � Hilbert space H as follows. In every orthogonal set of vectors
spanning H and thus representing a non-degenerate observable, there is one vec-
tor representing a possessed property and thus being ascribed the number 1, the
others the number 0. We now ask the question whether such an assignment (repre-
senting incompleteness) is possible. This is a mathematical problem that turns out
to be reducible to the Hilbert space R3 (the familiar three-dimensional space over
the real numbers) and for this space to the task of assigning the number 1 to exactly
one vector, in any � orthonormal basis (the number 0 to the two others), under the
condition that vectors of different bases but lying in the same ray get assigned the
same number. Call such an assignment a 0–1 valuation.



Kochen–Specker Theorem 331

K
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Carsten Held

Quantum mechanics generates, for chosen � observables and state assignments,
measurement outcome predictions. What does it mean to ask whether the theory
completely describes the systems it in fact describes? Assume that, if a quantum-
mechanical system S is in a pure state |a1〉 such that prob (a1) = 1 (i.e., the
probability that S is found, upon an A-measurement, to have a1 equals 1), then it
has the physical property represented by a1 (the eigenvalue of A pertaining to |a1〉).
Completeness then can be characterized as the idea that the properties ascribed to S
in this way are the only ones and incompleteness as the idea that there are more. The
possible S properties not derivable from S’s quantum-mechanical state are usually
called � hidden variables.

Incompleteness (i.e., the presence of hidden variables) can be related to S’s
description in � Hilbert space H as follows. In every orthogonal set of vectors
spanning H and thus representing a non-degenerate observable, there is one vec-
tor representing a possessed property and thus being ascribed the number 1, the
others the number 0. We now ask the question whether such an assignment (repre-
senting incompleteness) is possible. This is a mathematical problem that turns out
to be reducible to the Hilbert space R3 (the familiar three-dimensional space over
the real numbers) and for this space to the task of assigning the number 1 to exactly
one vector, in any � orthonormal basis (the number 0 to the two others), under the
condition that vectors of different bases but lying in the same ray get assigned the
same number. Call such an assignment a 0–1 valuation.
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Indeed, a 0–1 valuation is impossible on R3. This can be shown either, by re-
ductio ad absurdum, from Gleason’s Theorem ([11]; � Gleason’s Theorem), or
constructively, by finding finitely many R3 vectors such that no 0–1 valuation is pos-
sible. In 1967, Kochen and Specker ([1]) explicitly presented such a set for the first
time, whence finite vector sets without a 0–1 valuation are generally called Kochen–
Specker (KS) sets. It is immediately obvious that a KS set must contain vectors not
only from many bases, but many interlocking ones, i.e., bases sharing one vector.
The decisive first step of Kochen and Specker’s result then is to prove that a set of 10
vectors can form a certain structure of orthogonality relations (see [1], p. 68, [22],
p. 126, [12] Fig. 1) only if two of these vectors, v1 and v2, make an angle smaller
than sin−1 (1/3). Now, it turns out that there is no 0–1 valuation of this set where v1 is
assigned the number 1 and v2 the number 0, so in any larger set containing this one,
if v1 is assigned the number 1, then so must be v2. This is the heart of Kochen and
Specker’s argument (since in a hidden-variables construction vectors assigned 1 and
0 should be allowed to be arbitrarily close). Indeed, this initial step of the proof had
been established independently by John Bell, a year earlier ( [3], pp. 7–8), draw-
ing directly on Gleason’s Theorem. For this reason, some researchers refer to the
result as the Bell–Kochen–Specker Theorem ( [8], [18]). Kochen and Specker’s ar-
gument involves a quite complicated structure consisting of 15 (partly interlocking)
copies of the 10-vector set just described (see [1], p. 69, [22], p. 130, [12] Fig. 2).
Finally, the original KS set contains 117 vectors. In later proofs, inconsistency has
been achieved using KS sets with only 33 (Bub, [6]) or 31 (Conway and Kochen,
described in [21], p. 114) vectors. Moving up to R4, we can find a KS set with only
18 vectors (Cabello et al., [7]). It has recently been argued ( [16, 20]) that all these
arguments, except Cabello et al., tacitly refer to many more vectors so that the KS
sets in question are actually larger. What is at issue here is that a traditional KS set
contains only those vectors necessary to show the impossibility of a 0–1 valuation,
but by choosing these we have tacitly chosen more. E.g., the original KS 10-vector
set is a subset of a set of five interlocking bases, i.e. a set of 15 vectors ( [20] Fig. 6
(i), (ii)), but five of these vectors can be ignored in the argument. Now, if we really
construct these sets starting from one basis and rotating it stepwise into the others,
we will inevitably drag along vectors we do not explicitly need to show a 0–1 valua-
tion to be impossible. This question of the actual size of a concrete Kochen–Specker
set is important not so much for determining the record of the smallest such set, but
for an experimental realisation, which actually involves procedures equivalent to
basis rotations.

It is crucial to analyse in what sense an advocate for incompleteness is committed
to the impossible task of producing a 0–1 valuation for a KS set. There are two very
different ways in which this question may be taken. Consider first the observation
that a KS set contains many triples (or higher n-tuples) of vectors, but that (identi-
fying a tuple with a set of projection operators (� projection) corresponding to one
maximal, i.e. non-degenerate, observable) in any quantum-mechanical experiment
only one of these triples can be measured. Initially, this seems an irrelevant point.
The hidden-variables program essentially is about whether quantum system S can
possess properties prior to measurement such that a faithful measurement procedure
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would reveal just the properties predicted by quantum mechanics. KS sets are finite
sets of vectors such that S cannot simultaneously possess the pertaining properties,
be they jointly measurable or not. It has been observed, however, that any R3 basis
vector, corresponding to a possible S property, can be arbitrarily well approximated
by another vector with only rational coordinates. So for any finite measurement res-
olution, there is a rational approximation to a KS set vector that is indistinguishable
from it and might have been measured instead. Now, sets of rational vectors, ap-
proximating any KS set, have a 0–1 valuation [15, 17]. Indeed, the whole set of R3

basis vectors with purely rational coordinates possesses such a valuation [10]. So,
one might defend an incompleteness interpretation of quantum mechanics assuming
that only rational vectors have values. In the attempt to measure certain two vectors
one would be measuring (perhaps faithfully) not the two intended real vectors but,
unwittingly, two of their rational approximations. These vectors would not all stand
in the strict orthogonality relations imposed for a KS set, hence would not be the
members of such a set. However, due to the ineluctably finite measurement preci-
sion the situation would seem empirically indistinguishable from the one described
in quantum mechanics. On a closer look, however, this impression dissolves. Quan-
tum mechanics makes exact statistical predictions for vectors standing at specific
angles (like v1 and v2 in Kochen and Specker’s 10-vector set) also when such vectors
have only rational coordinates. A 0–1 valuation for a set of only rational vectors, in
order to meet these predictions in one place, must violate them in another (see [7]).
So, even if it were reasonable for a hidden-variables interpretation to assume that
we live in a “toy universe” ([19], p. 3), where only rational vectors have values, the
fixation of such values would lead to predictions at odds with quantum mechanics.
There is no evidence that quantum mechanics fails in these cases, so these artificial
constructions ultimately do not diminish the Kochen–Specker Theorem’s force of
ruling out hidden-variables interpretations of the theory (see also [2, 5]).

There are sets of purely rational basis vectors allowing a 0–1 valuation such
that KS sets are arbitrarily well approximated, which have an interesting property:
Every basis vector in such a set belongs to only one basis, so there are in fact no
strictly interlocking bases in these sets. On the other hand, the original Kochen–
Specker Theorem and all simplified versions make crucial use of interlocking bases.
It is crucial to all these arguments that a vector gets assigned a unique number,
regardless of the fact that it can be (and, for the Kochen–Specker arguments to
get started, always is) a member of several different bases. This opens a second
way in which the hidden-variables proponent might reject the 0–1 valuation task.
The assumption that every vector is assigned a unique number is generally called
non-contextuality because then the value is considered to be independent of which
basis the vector belongs to. In physical terms this means that whether S possesses
a certain property is independent of the context of other observables considered to
have certain values. It turns out that any vector in any one basis corresponds to an
observable, say C = f (A), that is the function of one maximal observable A, but C
can also be the function of another maximal observable B (i.e., C = g (B)), with A
and B not being jointly observable. Non-contextuality is the idea that the value of C
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does not depend on whether we determine it via a measurement suitable to measure
A or another incompatible one, suitable to measure B.

It is sometimes said that the arguments from Bell’s Theorem ([4]; � Bell’s The-
orem) and the Kochen–Specker Theorem prove the unconditional completeness of
quantum mechanics. As we have seen, there is one way to deny this: one has to deny
noncontextuality, i.e., one must subscribe to contextual hidden variables. This is not
a well-researched possibility. However, it can be shown that quantum mechanics and
completeness, both reasonably formalized, are in a fundamental conceptual conflict
and in a sense inconsistent [13]. So, contextual hidden variables interpretations de-
serve serious interest, after all.

There are two main ways to think about contextual hidden variables (� hidden
variable models). The value of an observable might be contextual because it changes
depending on which other observables are measured in conjunction with it (causal
contextuality; see [22] p. 133–34, [12], Sect. 5.3). This idea is directly opposed
to a basic motivating idea of the hidden-variables program, namely the idea that
measurement faithfully reveals existing values, and accordingly it has not drawn
much interest, in the literature. Alternatively, f(A) and g(B) might simply be taken
to be different observables, although they are represented by the same mathematical
object, operator C (ontological contextuality; see [22] p. 135, [12], Sect. 5.3). What
we would reasonably require of such a position is that it physically motivates or
explains in which sense these observables, though represented by the same operator,
are different and no promising proposal has hitherto been made.
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Landé’s g-factor and g-formula

Klaus Hentschel

In 1919, the young theoretician Alfred Landé (1888–1976) in Frankfurt am Main
showed in his habilitation thesis that satisfactory agreement could be reached be-
tween observed splittings of spectral lines in the � Zeeman effect if one assumed
that, in general, � electrons contribute more to the total energy of the system than
had been expected according to classical electron theory.

Instead of μ·B = μ0mJ, set μ·B = g μ0 mJ with μ the electron’s magnetic mo-
ment, μ0 Bohr’s magneton: μ0 = −e�/2m and mJ the magnetic quantum number.
The so-called Landé g-factor thus describes deviations of experimentally observed
magnetic moments from the classical case with g = 1. According to Landé, in
general

g = (L+ 2S)g · J/J 2 = 1+ J (J + 1)S(S + 1)− L(L+ 1)

2J (J + 1)

Under the assumption of what later came to be called � Russell-Saunders coupling,
Landé could also derive the ratio of the intervals in a Zeeman multiplet. A physical
explanation of the foregoing has to make use of the then widely popular � vec-
tor model.

In the � vector model (more fully described in [1] or [2]), the total angular mo-
mentum J is the vectorial sum J = L+S, with L angular momentum of the electrons,
and S the spin. � Spin; Stern–Gerlach experiment; Vector model.

Then the total magnetic moment of the atomic system is given by μ = μ0 (L+
2S). Because the spin contributes twice as much to the total magnetic moment as
does the orbit, μ is not parallel to J, but precesses around J. In an external magnetic
field B, the component of magnetic moment μ in the direction of J yields a con-
tribution of −μJ · B. Now, after a short calculation, Landé’s g-factor as defined by
g = μ · B/μ0 mJ results:

g = (L+ 2S)g · J/J 2 = 1+ J (J + 1)S(S + 1)− L(L+ 1)

2J (J + 1)

Thus, retrospectively, Landés g-formula appears to be a straightforward conse-
quence of quantum mechanics. But Landé arrived at this formula without that later
knowledge, in a single-handed effort to come to grips with observed regularities in
the splitting of spectral lines, emitted in a magnetic field, the so-called � Zeeman
effect.
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According to Landé’s own reminiscences: “Thus, working quite alone in Frank-
furt am Main without encouragement from colleagues, I found the key, the g-factor,
which then opened the drawer with the g-formula in it, while whole groups of older
physicists, even the great atomist Sommerfeld, remained in the dark” . . . “I cracked
the magnetic code of atomic structure by the g-factor, followed its applications in
the g-formula.”
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3. A. Barut: Alfred Landé, in: Physiker und Astronomen in Frankfurt (Neuwied: Metzner, 1989),
38–45, also available online as http://www.physik.uni-frankfurt.de/paf/paf38.html
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Large-Angle Scattering

Brigitte Falkenburg

In the � scattering experiments of � particle physics, large-angle scattering in-
dicates the recoil of the scattered “probe” particles at an impenetrable small or
point-like scattering center. In the history of subatomic physics, it happened twice
that unexpected large-angle scattering was observed in a crucial experiment. Both
discoveries are based on a classical or � semi-classical model of the atomic nucleus
(� Rutherford atom).

Rutherford Scattering

In order to investigate subatomic structure, Ernest Rutherford (1871–1937) scat-
tered α particles from radioactive radiation sources off thin gold foil. In 1909,
Rutherford’s assistants Hans Geiger (1882–1945) and Ernest Marsden (1889–1970)
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performed scattering experiments with low energy α-particles of around 5 MeV.
They observed unexpected backward scattering at an angle of >90◦.

Rutherford spent two years calculating the probability of multiple backward
scattering in several atomic models � Rutherford atom. The homogeneous charge
distribution of Thomson’s plum pudding model of the atom (� atomic models) could
not explain Geiger’s and Marsden’s discovery. Finally Rutherford derived his fa-
mous formula for the Coulomb scattering, i.e., the scattering of a charged particle
at a point-like positive charge described by a Coulomb potential [1]. Rutherford’s
atomic model with a point-like nucleus explained the backward scattering in terms
of the differential cross section (� scattering experiments)

dσ/dθ = (�c/4E)2(ZZ′α)2 sin−4 θ

2
,

with the scattering angle θ , where E is the kinetic energy of the probe particles,
Z,Z′ are the charge numbers of the probe particles and the atomic nucleus, and α

is the fine structure constant. The formula predicts a non-negligible probability of
large-angle scattering.

The prediction of the formula was confirmed in subsequent scattering ex-
periments which measured the angular distribution of the scattered α-particles
[5, 6]. Rutherford’s model included an additional term for the shielding by the
electrons which turned out to be negligible. The experiments were neither sensitive
to deviations from Rutherford’s formula due to strong interactions between the
α-particles and the gold nucleus, nor to quantum mechanical effects. For the
Coulomb potential, the quantum mechanics of scattering results in Rutherford’s
formula, too.

Pointlike Nucleon Constituents

In 1968, a similar discovery recurred in a high-energy scattering experiment at
the SLAC (Stanford Linear Accelerator). Large angle scattering was observed for
inelastic electron-nucleon scattering [2, 8]. The measured total cross section (� scat-
tering experiments) turned out to be scale invariant, i.e., the crucial dimensionless
quantity obtained from it did not depend on the scattering energy of the probe
particles (� nucleus models). In a far-reaching formal analogy to the Rutherford
scattering, James Bjorken (∗1934) and Richard P. Feynman (1918–1988) interpreted
this scale invariance as evidence for pointlike scattering centers within the protons
and neutrons that constitute the atomic nucleus [3, 4, 7]. Their interpretation was
based on the heuristic idea that the higher the energy of the probe particles is, the
smaller structures can be measured in a � scattering experiment. Bjorken and Feyn-
man concluded that the scale invariance of the measured cross section indicated
pointlike partons within the proton and neutron, i.e., particles that carry fractional
charges and certain fractions of the proton or neutron momentum (� parton model).
After carrying out other scattering experiments of a similar type and after accumu-
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lating much more additional experimental evidence, these “partons” were identified
with the quarks of the quark model established in 1963 (� Rutherford atom; Quarks,
see � Color Charge Degree of Freedom in Particle Physics; Mixing and Oscillations
of Particles; Particle Physics; Parton Model; QCD; QFT) [8].
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Light Quantum

Klaus Hentschel

The light quantum concept comprises 12 layers of meaning which matured at very
different times, thus refuting the simplistic legend that Albert Einstein (1879–1955)
singlehandedly discovered them all in 1905. Einstein’s “heuristic point of view” was
actually regarded with extreme skepticism until 1922. Today’s understanding of the
subject takes for granted that light quanta:

• Are particle-like and localized
• Propagate at a finite velocity
• Have equal velocity for all colors (i.e., frequencies)
• Transmit energy E

• Transmit momentum p = E/c (giving rise to radiation pressure)
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• Have energy E correlated with their frequency ν (E ∼ ·ν)
• Obey strict � quantization in their energy E (i.e., E = hν with � Planck’s

constant)
• Are emitted and absorbed by matter
• Exhibit � wave-particle duality
• Transmit angular momentum with � spin 1
• Exhibit � indistinguishability with other light quanta of same E and spin orien-

tation
• Obey the � Bose–Einstein statistics.

The term ‘photon’ was introduced in late 1926 by the American physical chemist
Gilbert Lewis (1875–1946), that is roughly 20 years after Einstein’s famous paper
from 1905 and 1 year after the discovery of electron spin in 1925. The other layers of
meaning of the word ‘light quanta’ have complex histories of their own, extending
variously back in time and tightly intertwined with other strands of the history of� quantum theory to 1925.

Corpuscularity or Particle Characteristics

We find particle theories of light, in the broadest sense of the word, as far back
as the atomists of Ancient Greece, but Sir Isaac Newton (1643–1727) first con-
ceived a more developed model of this type. His early papers in the Royal Society’s
Philosophical Transactions conceal his basic conception of light as a corpuscle.
Nevertheless, his Principia from 1687 as well as the queries in his Opticks from
1704 provide clear hints at this projectile model. His Mathematical Principles of
Natural Philosophy, for instance, derive light diffraction from a stronger attraction
of light particles to the denser medium, and in query 29 of Opticks he asks: “Are
not the Rays of Light very small Bodies emitted from shining Substances?” ( [9],
p. 370; cf. also Principia, book I, Sect. XIV § 141ff.).

When critics tried to nail him down on this projectile model of light, Newton
replied with his distinction between facts and hypotheses. “that light is a body [. . .],
it seems, is taken for my Hypothesis. ‘Tis true, that from my Theory I argue the
Corporeity of Light; but I do it without any absolute positiveness, as the word
perhaps intimates; and make it at most but a very plausible consequence of the
Doctrine, and not a fundamental Supposition.”1 Newton knew perfectly well that
he could not prove without an element of doubt that the corpuscular model of light
was right. Unlike the Cartesians, he was adverse to hypothesizing out of the blue,
but that did not stop him from frequently making heuristic use of such hypotheses
and models.

1 Newton’s reply to Hooke, 1672, reprinted with Hooke’s attacks in I.B. Cohen (ed.) Isaac New-
ton’s Papers & Letters on Natural Philosophy (Cambridge, Mass.: Harvard Univ. Press, 1958),
quotes from pp. 118f.
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Newton’s cautious wording in his essays on light are remarkably similar to Ein-
stein’s in his paper from 1905 on ‘A heuristic point of view concerning the produc-
tion and transformation of light’. Albert Einstein (1879–1955) writes: “monochro-
matic radiation of low density. . . behaves as if it were composed of mutually
independent energy quanta.” ( [5], 2, p. 161) This fictionalistic as-if conjunctive
reveals the same intellectual reserve with which Newton enveloped his projectile
model. Just like Newton, Einstein also had a more urgent statement to defend, a
statement that was likewise more phenomenological than the light-quantum model:
namely, the equation E = h · ν. The underlying model of light was left in the back-
ground.

Just two years before Einstein’s 1905 paper, the director of the Cavendish labora-
tory in Cambridge, Joseph John Thomson (1856–1940), had also speculated about
corpuscular localized field quanta in an effort to explain two anomalies in the prop-
agation of � x-rays, which Röntgen had discovered in late 1895: (1) the extremely
directed and point-like effects of these hard rays, then referred to as “needle” ra-
diation; and (2) the fact that its intensity does not diminish as 1/r2 but remains
almost the same even over longer distances, if occasional ionization of directly
hit gas molecules is disregarded. In his Autobiography, Robert Millikan still refers
to the “Thomson–Planck–Einstein conception of localized radiant energy (i.e., the
corpuscular or photon conception of light)” rather than ‘Einstein’s light quanta’.
Speculations about the corpuscularity of specific types of radiation are thus older
than Einstein’s” heuristic point of view” from 1905.

Constancy of the Velocity of Light

Like Newton, Einstein also considered the corpuscularity of light in connection with
its propagation velocity. The constancy of its propagation velocity was, as we know,
one of the axioms of his paper which appeared three months later in the Annalen der
Physik: ‘On the Electrodynamics of Moving Bodies’ [2]. Before Einstein arrived at
his postulate of the constancy of light velocity in a vacuum, he carefully considered
its dependence on the velocity of its emitter, as suggested in the projectile theory of
light. We know this from his correspondence with Paul Ehrenfest as well as from his
comments on contemporary papers by Walter Ritz (1878–1909), who was working
on exactly such types of emission theories. Einstein’s postulate of a constant velocity
of light in all inertial systems was a direct consequence of the failure of emission the-
ories. This is a concealed but interesting link between the famous papers from 1905.
“Turn the problem into a postulate, that’s how you get by”, Einstein later joked.

Energy and Momentum Transfer (Radiant Pressure)

The insight that light can transfer energy and momentum also has a long history
extending back into the early modern period [22]. In 1905, the existence of radiation
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pressure had just recently been established experimentally by Pjotr Lebedev (1866–
1912) and confirmed to an accuracy of 1% by Ernest Fox Nichols (1869–1924) and
Gordon Ferrie Hull (1870–1956). The decisive papers fall exactly within the period
when Einstein was studying articles in the Annalen der Physik, among other physics
journals, during his free time as an examiner at the Swiss Patent Office. Remarks
in his papers show that he knew about the “just recently experimentally confirmed
light pressure, which plays such an important role in the theory of radiation” ([5],
2, pp. 300, 483, 565).

Proportionality Between Energy and Frequency

If Einstein had relied on the literature, he would have missed the correlation between
the energy and frequency of light. Both Lebedev and Nichols & Hull assumed from
classical electrodynamics that the energy of light was always proportional to its
intensity: E ∼ I ∼ H 2 + D2. Lebedev explicitly writes in 1901: “These pres-
sure forces of light are directly proportional to the impinging amount of energy and
independent of the color of light.” Nichols and Hull thought they were able to con-
firm this two years later (1903), because their measurements of the light pressure
initially suggested (independently of the filters chosen) a frequency-independent
energy proportional to the light’s intensity. This false conclusion is generally con-
cealed in the professional folklore. Einstein’s extraordinary sense for the validity
of experimental results saved him from being led astray. Instead of just relying on
this one experimental strand, he linked experimental results from the most disparate
areas of scientific inquiry. Each of these individual strands might have led to a dead
end, but woven together they yielded a dense fabric: Einstein realized that “the ob-
servations on black-body radiation, photoluminescence, the generation of cathode
rays from ultraviolet light and other groups of phenomena concerning the generation
or transformation of light would appear better comprehensible under the assump-
tion that the energy of light was discontinuously distributed.” The third of these
experimental strands was the � photoelectric effect. Experimentalist Philipp Lenard
(1862–1947) had assumed that UV radiation acts only as a trigger to release charges
(see [18,19]). Einstein’s interpretation suggested” that the excited light is composed
of energy quanta [. . .]. The generation of cathode rays by light can be understood in
the following way. Energy quanta penetrate into the surface layer of the body and
their energy is transformed at least in part into the kinetic energy of electrons. [. . .]
Furthermore, it has to be assumed that upon leaving the body each electron must
expend work P (characteristic of the body)” ([1], p. 145f.). According to Einstein,
the maximum kinetic energy of these ‘electricity quanta’ was therefore hv − P .

Lenard had not sought this frequency dependence according to his own model.
He had found a slight dependence of the limiting potential on the type of light
used but had not followed up on this hint. Ten years had to go by before Robert A.
Millikan (1868–1953) verified Einstein’s prediction experimentally beyond doubt.
He had expressly set out to refute Einstein’s prediction: “I spent ten years of my
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life testing that 1905 equation of Einstein’s and, contrary to all my expectations, I
was compelled in 1915 to assert its unambiguous verification in spite of its unrea-
sonableness since it seemed to violate everything we knew about the interference
of light.” This shows that contrary to the claims of certain sociologists of science,
experimenters do not always confirm what they anticipate. Even after publishing his
findings in 1916, Millikan continued to have qualms about Einstein’s light quantum,
this “bold, not to say reckless hypothesis”.

Quantization

For Max Planck (1858–1947), energy � quantization only served as an emergency
solution to prevent that the interaction between radiation and resonator lead to an
increasing dominance of oscillations of ever diminishing frequency in the radiation
field. Planck conceived the energy of electromagnetic radiation as continuous be-
cause Maxwellian electrodynamics is a continuum theory. In Planck’s � quantum
theory, discontinuity is only at play during the process of energy transmission from
the radiation field to the oscillator.

This is where Einstein found fault. In a frequently quoted letter to his friend
Conrad Habicht (1876–1958) from May 1905, Einstein announced a “very rev-
olutionary” paper. For the first time, quantization was explicitly not limited to
resonators or the interaction between matter and the field, but also was required
of the energy of the electromagnetic field itself: “the energy of a propagating ray of
light emitted from one point [is] not continuously distributed over an augmenting
space but is composed of a finite number of energy quanta localized in points in
space, which move without dividing and can only be absorbed and generated as a
whole” ([1], p. 133).

A terminological and conceptual broadening soon followed: ‘light energy
quanta’ (partitioning into packets of energy) became ‘light quanta’ (light as a
particle-like phenomenon). Just as with Planck’s energy quantization in 1900 and
later with the so-called � Bose-Einstein statistics in 1924/25, here also we see a
gradual realization of the radical implications of this step. While in 1905 Einstein’s
emphasis lay on energy considerations, a particle-like conception emerges in Ein-
stein’s letter to Sommerfeld from Sept. 29, 1909, where he speaks of “the ordering
of the energy of light around discrete points which move with light velocity” ( [5], 5,
doc 179). So by then the first seven levels have been spelled out. The momentum of
light quanta only came into play in Einstein’s Salzburg talk of 1909, and even more
explicitly so in his paper on induced emission in 1916. According to Einstein’s
mental model, the interaction between matter and the field would consist of the
emission and subsequent absorption of such quantized packets of energy: This idea
reappears in Bohr’s model of the atom. Unlike � Bohr’s atomic model of a later
date, Einstein’s paper of 1905 offers no specific model of this process.

How did Einstein argue for the existence of light quanta of energy or at least
for their plausibility? He resorted to his typical strategy of following two separate
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derivations at the same time. He analysed a single system according to two different
theoretical methods as far as he could. In a second step, he sought to equate the
physical expressions obtained by these two different paths. This is only possible if
E = hν is true. q.e.d. (cf. [13, 16] for details).

By juxtaposing an ideal gas obeying Boltzmann statistics with radiation in the
Wien limit, Einstein thus arrived at the light quantum hypothesis: “monochromatic
radiation of low density [at the Wien limit] acts as if it were composed of mutually
independent quanta of energy of the magnitude (Rβν)/N · ν[= h · ν]”. ([1], p. 143)
As is typical of Einstein’s thinking, the originality of this consideration lay in the
new way of linking different chains of reasoning; here, classical combinatorics with
statistical mechanics of Boltzmann and Gibbs and radiation theory of Wien and
Planck. This derivation also reveals another characteristic of Einstein’s thinking:
the constant vacillation between micro- and macro-physics as encapsulated in S =
k ln W , which Einstein termed the Boltzmann formula and used to its fullest in both
directions.

Einstein’s correspondence with Lorentz and his Salzburg lecture of 1909 show
that he certainly had a quite fully developed model of light quanta: “For the time
being the most natural interpretation seems to me to be that the occurrence of elec-
tromagnetic fields of light is associated with singular points just like the occurrence
of electrostatic fields according to the electron theory. It is not out of the question
that in such a theory the entire energy of the electromagnetic field might be viewed
as localized in these singularities, exactly like in the old theory of action at a dis-
tance. I more or less imagine each such singular point as being surrounded by a field
of force which has essentially the character of a plane wave and whose amplitude
decreases with the distance from the singular point.” ([4], p. 581).

Einstein shied away from explicitly discussing this conceptual model because he
had encountered three profound problems in its development:

1. How to explain interference, implying deviations from a point-like structure.
2. How to interpret partial reflection: the splitting of photons is impossible!
3. Problems with particle characteristics of light quanta: if they transmit energy,

then they do have mass according to E = mc2, but no massive particle can have
the velocity of light.

While the solution to the third enigma was, of course, to assume a vanishing rest
mass of the photon, the other two problems proved to be much harder, as they were
intimately linked with the thorny issue of � wave-particle duality.

Reception of the Light Quantum

Strangely enough, one of the first advocates of the light quantum hypothesis was the
later antirelativist and Nazi proponent Johannes Stark (1874–1957). His arguments
were foremost experimentally based (see, e.g., [14, 20]):
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1. Photoelectric effect
2. Shortwave limit of X-ray � bremsstrahlung
3. Intensity minimum of the Doppler effect
4. (generally:) discrete excitation energy of atoms
5. (personally:) his tendency to go against generally accepted opinions

But Stark had to swallow criticism for his support of the light quantum. Arnold
Sommerfeld (1868–1951) and many others remained skeptical. In a letter dated 4
Dec. 1909, Sommerfeld reflected on: “the really very hypothetical and uncertain
light quantum theory [. . .] Not as if I were doubting the significance of the quantum
of action. But the form in which you present it (light quantum) appears, not just
to me but also to Planck, very daring.” Max Planck was similarly skeptical. In the
Annalen der Physik of January 1910 he wrote: “I cannot at the moment acknowledge
compelling proof in favor of the corpuscular theory of light any more for J. Stark’s
experiments on X-rays than for A. Einstein’s deductions.”

The great majority of physicists at that time were even more reluctant, particu-
larly Planck. He saw “no compelling reason” for abandoning Maxwell’s equations
along with its continuum physics. His skepticism of the light quantum hypothesis
was shared by many others.

Conclusion

A complex concept like ‘light quantum’ does not emerge at once. Some of its lay-
ers of meaning are very old. Others only became evident in Einstein’s paper of
1905; the full-fledged concept of photons only emerged at the end of 1926. Some
physicists had already realized some of these layers on their own. But this does
not diminish the profundity of Einstein’s insight that the energy in a field of ra-
diation is strictly quantized (1905) and that light quanta also carry momentum
(1909). No one else had the courage or the far-reaching intellectual perspicuity
for these two bold steps. Furthermore, Einstein’s Salzburg talk was a first step to-
wards � wave-particle duality, later further elaborated by Louis and Maurice de
Broglie, Niels Bohr and others (� Born rule; Consistent Histories; Metaphysics
in Quantum Mechanics; Nonlocality; Orthodox Interpretation; Schrödinger’s Cat;
Transactional Interpretation of quantum mechanics). But Einstein’s most important
achievement was drawing together all these individual insights into a first quantum
theory of radiation. As with his theory of relativity, his greatest strength lay in track-
ing down heuristically fruitful ideas from the large reservoir of then conceivable
options, consistently shedding elements that did not agree and weaving these previ-
ously separate strands into theories that were not just consistent but also empirically
adequate.
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Locality

Henry P. Stapp

Locality: The locality assumption is sometimes called “local causes”. It is the re-
quirement that each physical event or change has a physical cause, and that this
cause can be localized in the immediate space-time neighborhood of its effects. A
collision of two billiard balls or the mechanical connections between the parts of a
steam engine are clear examples. A more subtle example is the feature of classical
electromagnetism that any change in the velocity of a moving charged particle can
be regarded as being caused by the action upon this particle of the electric and mag-
netic fields existing in the immediate space-time neighborhood of that particle at the
moment at which the change in velocity occurs, and that any change in the electric
and magnetic fields are likewise caused by physically describable properties that are
located very close to where that change occurs.

This idea that all physical effects are consequences of essentially “contact” in-
teractions was part of the intellectual milieu, stemming from the ideas of Rene
Descartes, in which Isaac Newton worked while creating the foundations of modern
physics. However, his universal law of gravitational attraction was stated as a law of
instantaneous action over astronomical distances, a clear violation of the idea that all
physical effects have local causes. Newton tried unsuccessfully to devise some local
mechanical idea of how gravity worked, but in the end asserted his famous “hypoth-
esis non fingo” (I feign [pretend to make] no hypothesis [about how gravity works])
[1, p. 671]. He relied, instead, on the empirical success of his simple inverse-square-
law postulate to account for a huge amount of empirical data. Yet as regards basic
metaphysics he wrote: “That one body can act upon another at a distance through
the vacuum, without the mediation of anything else, by and through which their ac-
tion and force my be conveyed from one to another, is to me so great an absurdity
that I believe that no man who has in philosophical matters a competent faculty of
thinking can ever fall into it.” [1, p. 636]. This statement is a trenchant formulation
of the notion of locality. It took more than two centuries of development before Ein-
stein came up with an explanation, in terms of the idea distortions of space-time that
allowed the requirement of locality to be met for gravity. Einstein’s special theory
of relativity imposes the condition that no localized measurable output can depend
upon the character of a localized physical input before a point moving at the speed
of light can travel from the smallest region in which the input is localized to the
smallest region in which the output is located. This locality condition is required to
hold in any classical physical theory that is called “relativistic”.

This idea of locality is fairly simple and straightforward in classical physics,
because in that setting everything has a material basis and all causal effect are associ-
ated with transfers of momentum or energy, which moves about in a continuous way.
In quantum theory the fundamental substrate of change is more ephemeral, having
the character of information expressed as changing potentialities for observable



348 Loopholes in Experiments

events to occur. These potentialities normally change in a continuous way, but, in
conventional quantum mechanics, they change abruptly in association with the oc-
currence of an observable (or actually observed) event. And a “cause”, such as the
performance of a freely chosen measurement in one region, can have an instant far-
away effect without any energy or momentum traveling from the region of the cause
to the region of the effect.

In the quantum context a suitable definition of locality pertains to information:
Locality requires that no information about which measurement is freely chosen
and performed in one space-time region can be present in another space-time region
unless a point traveling at the speed of light or less can get from the first region
to the second. Or in terms of outcomes: no statement whose truth is determined
solely by which outcomes appear in one space-time, under conditions freely chosen
in that region, can be true if one experiment is freely performed in a region that
is space-like-separated from the first region, but be false if another experiment is
freely chosen there. The term “freely chosen” means only that in the argumentation
this choice is not to be constrained in any way. Locality defined in either of these
ways appears to be violated in relativistic quantum field theory. These violations are
discussed the entries � Nonlocality and � Einstein locality.
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Introduction

Shortly after John S. Bell’s proof of his celebrated theorem (� Bell’s Theorem) in
1964 [6] experiments started [13] that tried to check whether nature actually was
as counterintuitive as the theorem implied. At the same time it became clear that it
would be very difficult to carry out an experiment that tested Bell’s original version
of the inequality, because it had been derived using very stringent assumptions.
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The first difficulty was with Bell’s assumption of perfect correlations. That is, if
the measurement functions of the hidden variable model are A(a, λ) and B(b, λ),
where λ denotes the hidden variable, a and b the analyzer directions, Bell had as-
sumed that they obey A(a, λ) = −B(a, λ). This assumption, however, is difficult to
justify, because no real experiment will ever live up to it.

Upon realizing this Clauser, Horne, Shimony, and Holt (CHSH) (� Bell’s theo-
rem) [11] were able to derive an inequality without assuming perfect correlations.
This version of the inequality is the best known one and it reads

|E(a, b)+ E(a, b′)| + |E(a′, b)− E(a′, b′)| � 2, (1)

where a, a′, b, b′ are two choices of a measurement parameter on each side and
E(a, b) = p++(a, b)+p−−(a, b)−p+−(a, b)−p−+(a, b) is a correlation between
the measurement results obtained on the two sides of the experiment. The quanti-
ties p are either theoretically predicted or experimentally determined probabilities
of the binary outcomes +1 and −1. Entangled quantum systems can violate this
inequality with the l.h.s. attaining values of up to 2

√
2. In the same work, CHSH re-

alized that there was another problem. The detection efficiencies for visible photons
(� light quantum) were too small and one wouldn’t be able to violate the inequality
experimentally.

This was the first discovery of what has since been called loopholes in attempted
experimental refutations of objective local theories. In the following we will see that
there are two main loopholes, efficiency and locality. Besides these, there is a range
of other, lesser known issues. To date, no experiment was able to achieve closure of
all loopholes.

John S. Bell had his own view of a generic experiment to test the inequality that
avoids the use of any microscopic description. It is shown in Fig. 1, which is drawn
following his Fig. 7 in Ref. [7]. In this picture, all we have is an elongated apparatus
with a central “go” trigger signal input and an “experiment ready” indicator, as well
as a signal input and a result output at each of the two ends. The parameters of the
measurements a and b are injected a short time before the results are expected to
occur.

Fig. 1 Adapted version of
J. S. Bell’s schematic of a
general EPR set-up [7]

+1/−1

b

yes/no

go

+1/−1

a
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Efficiency

While this idealized picture requires no microscopic description, it leaves no room
for the cases where either one or both outputs do not yield an result. The effect
of particle loss in real experiments [16] is usually treated by adding a hypothetical
third (inconclusive) outcome “0” in addition to the ±1. Then, if η is the conditional
probability of getting a ±1 on the one side when we detected ±1 on the other side,
Eq. (1) is modified to read

|E(a, b)+ E(a, b′)| + |E(a′, b)− E(a′, b′)| � 4

η
− 2, (2)

where the correlations E now include the 0 outcome. For values of η smaller than
2(
√

2−1) ≈ 83% the r.h.s. of inequality (2) becomes bigger than 2
√

2, the maximal
value attainable by measurements on entangled quantum systems and a violation of
the inequality is impossible.

Since 83% is still very difficult to achieve, experiments with lower efficiencies
are often interpreted with the help of auxiliary assumptions. Events with conclusive
results on both sides are called coincidences. The fair sampling assumption stip-
ulates that the coincidences represent an unbiased (fair) sample of the underlying
distribution in question. Using this assumption all the quantities required for Eq. (1)
are then derived from the set of coincidences only and they can violate the inequal-
ity, regardless of the efficiency.

The fair sampling assumption is not the only way of treating inefficiency and
the somewhat weaker hypothesis of “no enhancement” introduced by Clauser and
Horne [10] uses additional measurements in which the analyzers (filters) are re-
moved in order to bound the possible dependence of the detection probability on
the analyzer direction. This bound is then a limitation for any objective local the-
ory that tries to explain the experimental results. While we won’t delve further into
this particular assumption, it should be noted that in the same Ref. [10] Clauser
and Horne also introduced a version of Bell’s inequality, the CH inequality, which
turned out to admit a lower detection efficiency threshold. Eberhard [12] showed
that non-maximally entangled quantum systems could violate this inequality even
at efficiencies as low as 2/3 when they are the same on both sides. Recent stud-
ies [8,9] of the asymmetric case, where one side may detect their particle with close
to 100% efficiency reduces the requirement for detection efficiency at the other side
to 1/2. These results are interesting, because in experiments with one atom and one
photon the atomic state may be measured with close to 100% efficiency.

Pearle [23] was the first to show that objective local theories can exploit the
efficiency loophole by making the local hidden variable determine the detection
probability dependent on the analyzer setting. Obviously this is not compatible with
the fair sampling assumption. But even experimentally one has to be careful not to
introduce analyzer dependent bias. Such a bias can even lead to “superviolations”,
in particular when doing binary outcome measurements on higher dimensional
systems [22].
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Setting the analyzer direction in an experiment usually involves mechanical
rotation, electro-optical or acousto-optical switching or phase shifting. All these
processes tend to have side effects, such as beam deviation, distortion or attenu-
ation. Therefore it is experimentally difficult to have perfectly unbiased detection
efficiency. To allow for some variation, a relaxed version of the fair-sampling as-
sumption [2] allows a local variation of the detection efficiency with the analyzer
setting, but excludes nonlocal influences.

While various researchers have been trying to construct a loophole-free exper-
iment [14, 15], to date only the experiments by Rowe et al. [24] and Matsukevich
et al. [21] closed the detection efficiency loophole. Instead of the more common op-
tical experiments they used entangled pairs of ions in a traps. Since the ions could
be stored for days, the efficiency in the traditional sense is 100%. In these experi-
ments, the limiting factors for the violation were the finite state preparation fidelity
and the measurement errors, both of which were good enough to yield a clean re-
sult that refutes objective local theories. While in Ref. [23] the two ions were only
separated by about 3 μm, too close even to measure each ion’s state separately, Ref.
[24] extended this distance to about 1m by storing the two ions in separate traps and
entangling them using emitted photons to project the ions into an entangled state.

Since the measurements on the ions are slow for locality one would need a large
separation of several kilometers between the two sides of a Bell experiment. It seems
unlikely that two optical fiber-connected ion traps separated by such a distance could
be built very soon. Therefore efforts are still underway to improve the detection effi-
ciency of optical photons [25]. So far, the highest reported experimental efficiencies
for optical experiments were about 30% [3, 19].

Locality

In Ref. [7], Bell expressed his view that more important than detection efficiency
would be to implement a dynamic experiment, in which the analyzers were switched
just before the measurement. More precisely, the time interval of the series of events
in which a. a decision is made on a setting, b. that setting is implemented, and c.
the particle is detected (an irreversible process with macroscopic consequences hap-
pens) needs to be much smaller than L/c, where L is the length of the apparatus (see
Fig. 2). In this way, one can be sure that information about the setting on the one side
cannot influence the measurement of a particle on the other, since the two series of
events a-c on either side are spacelike separated. Since the source of the particles
will always be timelike separated from the events a-c it does not matter where the
source is placed, or how fast the particles fly [29]. Yet, in order to enforce the in-
dependence of the random number generators (or the freedom of choice) one has
to place them outside the forward lightcones of the source, which was implemented
for the first time in a recent experiment [25].

The first experiment to attempt this was Aspect’s [4] (� Aspect Experiment),
in which he employed fast acousto-optic switches to choose an analyzer direction
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Fig. 2 Spacetime diagram
of a Bell experiment. The
whole measurement process
(indicated by the bold black
double arrows) including
a. the random decision on a
setting, b. the implementa-
tion of the setting, and c. the
macroscopic registration of
the event, must be spacelike
separated from the corre-
sponding process on the other
side
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on both sides. The switches were controlled by periodic signals, because it wasn’t
reasonably possible at the time to build fast enough random number generators.
Two experiments in the 1990s went beyond Aspect’s by including fast and random
switching [29] and very large (10 km) separation [27].

In connection with the proposals for completely loophole-free experiments, it
seems that it would be very difficult to achieve spacelike separation for any length
L that is less than 10 m. This is because we don’t only have to consider the rates
at which we can generate random numbers (1 GHz seems to be quite a challenge
here), but also the various delays and latencies that occur in signal generators and
detectors. The sum of these delays is unlikely to be less than a few nanoseconds,
corresponding to a length L of a few meters.

Other Loopholes

Randomness and Free Will

Closely related to � locality is the question of randomness. Bell’s theorem only
makes sense, if we believe that regions of spacetime or subsystems can in fact be
isolated, so that they can be truly independent of what is going on elsewhere. Pro-
ponents of objective local theories frequently deny the existence of randomness that
is independent from the Bell experiment in question. This constitutes a loophole
but at the cost of serious consequences for the ways in which we can describe the
world altogether. Since one should apply the same logic to all situations this reason-
ing brings us very close to an all-encompassing determinism, in which there are no
independent events in the whole universe.

To take this to the extreme, nothing in the experiments prevents us from replacing
the random number generators with humans who decide on the analyzer setting [18].
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If the humans aren’t allowed to be independent then there is no free will. Amazingly,
this could actually be testable in a few years from now, if a source of entangled
photon pairs can be put into an earth orbit, so that the separation between the two
observer stations L corresponds to a signalling time of the order of seconds, i.e.
within human response times. The current distance record for Bell experiments is
144 km [28].

Coincidences

In any experiment that doesn’t have perfect efficiency, it will be necessary to deter-
mine which detections on one side belong to the detections on the other side. This
can open up a further loophole, albeit one that is closely connected to the efficiency
one. The decision on whether a certain event has a partner event on the other side is
customarily made by imposing a coincidence time window. The size of this window
is usually fitted to the relative timing spread between events on either side of the
experiment, caused by the finite timing resolution of the detectors and circuits.

Difficulties can arise when the relative timing is different for different experi-
mental channels on one side. In this case a fixed coincidence window can lead to a
bias, because it may reject more events in one channel than another. This effect and
the fact that objective local theories can exploit it, has been called the coincidence
loophole [20]. The bias may even introduce an apparent nonlocal influence, caused
by the coincidence post-selection based on settings on the far side [2].

Remedies for this loophole include pulsed experiments where the pairs are pro-
duced in narrow pulses with long spaces in between. Then, coincidences can be
counted naturally, without an artificial window as long as all the timing errors are
small compared to the pulse repetition period.

Accidentals

In the earlier tests of Bell’s inequality it was customary to subtract background
rates — so called accidental coincidences. Accidentals occur in a situation of low
detection/collection efficiency, high detector noise and poor timing resolution. In
such a situation, there is a chance that two events, of different origin are registered
simultaneously. For example, one detector could observe a noise click, whereas the
other one receives an actual signal. Since these events are typically independent of
parameter settings they form a more or less uniform background rate. Frequently,
these rates have been measured by recording event pairs that occur with a large
time delay between the two sides in addition to the simultaneous events (coinci-
dences). One would then subtract from every rate the accidental rate and calculate
the correlations from the corrected rates. With the advent of experiments based on
spontaneous parametric down-conversion sources and better detectors, this practice
has become obsolete.



354 Loopholes in Experiments

Double Detections

In an ideal Bell experiment there is always one and only one answer to a mea-
surement. In the discussion of detection efficiency we have seen that events are
frequently missed. A lesser known fact is that multiple detections can occur in the
case of an experiment that has detectors in both output channels of an analyzer.
In optical experiments these events stem from detector noise and from double pair
emissions, as a consequence of the thermal emission statistics of the usual photon
pair sources. Various treatments have been suggested, such as removal of double
events or performing a random choice. Since double detections are usually negligi-
ble, any procedure will work and hardly change the result.

Memory

Another potential loophole [1] is the so-called memory loophole. It claims that
because experiments are done by averaging over repetitions in time rather than si-
multaneous measurements on an � ensemble, an objective local theory could exploit
the results of previous measurements to achieve a violation of a Bell inequality test.
However, it was shown [5, 17] that even for relatively small numbers of repetitions
the achievable violations are very small.
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Lüders Rule

Paul Busch and Pekka Lahti

The Lüders rule describes a change of the state of a quantum system under a se-
lective measurement: if an � observable A, with eigenvalues ai and associated
eigenprojections Pi , i = 1, 2, . . . , is measured on the system in a � state T , then
the state transforms to T̃k := PkT Pk/tr [T Pk] on the condition that the result ak was
obtained. This rule was formulated by Gerhart Lüders (1920–95) [1] as an elabora-
tion of the work of John von Neumann (1903–57) [2] on the measurement process
and it is an expression of the � projection postulate, or the collapse of the wave
function (� wave function collapse).

From the perspective of quantum � measurement theory, the Lüders rule char-
acterizes just one (albeit distinguished) form of state change that may occur in
appropriately designed measurements of a given observable with a discrete spec-
trum. In general, the notion of instrument is used to describe the state changes of a
system under a measurement, whether selective or not. The Lüders instrument IL
consists of the operations ILX of the form ILX(T ) =

∑
ai∈X PiT Pi , and it is char-

acterized as a repeatable, ideal, nondegenerate measurement [3, Theorem IV.3.2],
see also [8, Theorem 4.7.2]. In such a measurement, with no selection or reading
of the result, the state of the system undergoes the transformation T �→ IL

R
(T ) =∑

i PiT Pi = ∑i tr [T Pi ]T̃i , the projection postulate then saying that if ak is the
actual measurement result, this state collapses to T̃k .

Lüders measurements offer an important characterization of the compatibility of� observables A,B with discrete spectra: A and B commute if and only if the ex-
pectation value of B is not changed by a nonselective Lüders operation of A in any
state T [1]. This result is the basis for the axiom of local commutativity in rela-
tivistic quantum field theory: the mutual commutativity of observables from local
algebras associated with two spacelike separated regions of spacetime ensures, and
is necessitated by, the impossibility of influencing the outcomes of measurements in
one region through nonselective measurements performed in the other region.

The Lüders rule is directly related to the notion of conditional probability in
quantum mechanics, conditioning with respect to a single event. According to� Gleason’s theorem [4], the generalized probability measures μ on the projec-
tion lattice P(H) of a complex � Hilbert space H with dimension dim(H) � 3 are
uniquely determined by the state operators through the formula μ(P) = tr [T P ]
for all P ∈ P(H). For any μ and for any P such that μ(P) �= 0 there is a
unique generalized probability measure μP with the property: for all R ∈ P(H),
R � P , μP (R) = μ(R)/μ(P ). The state operator defining μP is given by the
Lüders form: if μ is determined by the state T , then μP is determined by the state
PT P/tr [T P ] [5].
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The Lüders rule is also an essential structural element in axiomatic reconstruc-
tions of quantum mechanics. As shown in [6], it occurs in various disguised forms
as an axiom in � quantum logic; for example, it plays a role in the formulation of
the covering law; see also [9, Chapter 16], [10].

The Lüders rule has a natural generalization to measurements with a discrete
set of outcomes a1, a2, . . . , represented by a positive operator measure such that
each ai is associated with a positive operator Ai . The generalized Lüders instru-
ment, defined via the operations T �→ ILX(T ) = A

1/2
i T A

1/2
i , is known to have

approximate repeatability and ideality properties [7]. The Lüders theorem extends
to generalized measurements under certain additional assumptions [11] but is not
valid in general [12].

The Lüders rule is widely used as a practical tool for the effective modeling of
experiments with quantum systems undergoing periods of free evolution separated
by iterated measurements. It is successfully applied in the � quantum jumps ap-
proach [13]. The single- and � double-slit experiments with individual quantum
objects are the classic illustrations of the physical relevance of the Lüders rule.
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Magnetic Resonance

Antoine Weis

Magnetic resonance (MR) is an important experimental technique by which the� spin orientation of an isolated particle (atom, ion, nucleus, electron, neutron,
. . .) or the macroscopic polarization of an ensemble of particles (� ensembles in
quantum mechanics) can be manipulated in a controlled way.

In general, a particle with a spin S has a magnetic moment μ oriented either
parallel or antiparallel to S. The spin manipulation in MR relies on the coupling
of μ to one or more external magnetic fields B0 via the interaction Hamiltonian
H = −μ · B0. If μ is not along B0 then the interaction induces a precession of S,
and hence of μ, around B0 at the Larmor frequency defined by

ω0 = μ · B
�

≡ γ |B0| , (1)

where the gyromagnetic ratio γ connects the magnetic field to the associated pre-
cession frequency. For an ensemble of particles, the spin polarization P is defined
as the quantum mechanical expectation value P = 〈S〉 = 〈Sx, Sy, Sz〉 of the spin
operators Si, and the (macroscopic) ensemble magnetization correspondingly as
M = 〈μ〉.

Figure 1 shows a typical arrangement of a magnetic resonance experiment involv-
ing a static magnetic field B0 and a much weaker magnetic field B1(t), perpendicular
to B0 and rotating around B0 at a frequency ωrf. The index rf stands for radio-
frequency, as many of the original magnetic resonance experiments were carried
out in that frequency range. The apparatus consists of a polarizer which orients the
spins of the particles in an initially unpolarized sample. The magnetic resonance
proper takes place in the central part in which the spin orientation is flipped and
finally the analyzer measures the number of particles whose spin has undergone
a reversal (spin flip). The insert on the upper left shows the geometry of the MR
process in a frame rotating around the field B0 at the frequency ωrf. In that frame
the B1 field becomes static. At the same time a rotating observer experiences, as

D. Greenberger et al. (eds.), Compendium of Quantum Physics: Concepts, Experiments, 359
History and Philosophy, c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1 Typical components of an apparatus for performing and detecting magnetic resonance

Fig. 2 Spin dynamics in the rotating (a,b) and laboratory (c) frames: off resonance case ωrf �= ω0
(a) and on-resonance case ωrf = ω0 (b,c)

a consequence of the Larmor theorem, a fictitious magnetic field Bf = −ωrf/γ

which partially compensates B0. The dynamics of the spin flip process consists in
the precession of the polarization, initially oriented along +ẑ, around the field Btot
as shown in Figs. 2a, b.

When the resonance condition ω0 = ωrf is met the fictitious field Bf compen-
sates the external field B0 exactly and Btot = B1 (Fig. 2b). In this case the spin flip
probability, i.e., the probability to find a negative value of Sz becomes maximal.

In the rotating frame the precession around the total field occurs at the effective

Rabi frequency �eff =
√
ω2

1 + (ω0 − ωrf)2, where ω1 = γ B1 is the Rabi frequency
associated with the field B1. On resonance, the polarization precesses at the fre-
quency ω1 around B1, a motion referred to as Rabi nutation or Rabi flopping. If one
transforms back to the laboratory frame by rotating the (static) rot. frame at the fre-
quency−ωrf around B0 the polarization will follow the trajectory shown in Fig. 2c,
in which one recognizes the fast precession, at ωrf, and the slow nutation, at ω1.

In pulsed MR experiments the B1 field is applied as a pulse of a duration τ. If the
duration is chosen such that ω1τ = π/2 (= π) one speaks of a π/2 − (π−) pulse
respectively. In the former case the spin is flipped from the +ẑ direction to the x-y
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plane, while in the latter case the spin makes one half of a Rabi nuation cycle moving
it from +ẑ to −ẑ. In 1949 N. Ramsey introduced a variant of MR spectroscopy
in which the rf field is applied as two spatially (or temporally) separated phase–
coherent π/2-pulses. This so-called method of separated oscillatory fields yields a
considerable of the resonance linewidths.

Remarks

1. The apparatus shown in Fig. 1 is close to the original set-up used by I. I. Rabi
to observe magnetic resonance. Here, preparation, MR, and detection occur as
three spatially separated steps. Other variants use a static sample and apply the
three steps in a time sequential order (pulsed MR).

2. The external magnetic field B0 lifts the � degeneracy of the atomic levels coupled
by the MR transition. In atoms, level degeneracies can also be lifted by internal
magnetic fields, leading, e.g., to fine structure and hyperfine structure splittings,
between whose multiplet components one can drive MR transitions. In that case
no external field B0 is needed.

3. The first (polarizing stage) can be realized in different ways. In an atomic beam
one can use a Stern–Gerlach magnet (� Stern–Gerlach experiment) to select a
given polarization state. Alternatively, the Boltzmann factor exp (−μ · B0/kT )

in a large field and/or at low temperature yields a small, but finite polarization,
used, e.g., in nuclear magnetic resonance imaging or NMR/ESR spectroscopy.
In dilute samples, such as gases of paramagnetic atoms, the process of optical
pumping with spin polarized light can be used to achieve a large degree of spin
polarization.

4. The dynamics of the magnetic resonance process is described by the Bloch
equations

⎛
⎝Ṗx

Ṗy

Ṗz

⎞
⎠ =

⎛
⎝Px

Py

Pz

⎞
⎠×

⎛
⎝ ω1

0
ω0 − ωrf

⎞
⎠−

⎛
⎝ γ2Px

γ2Py

γ1(Pz − P0)

⎞
⎠ , (2)

where γ1 and γ2 are the longitudinal and transverse spin relaxation rates respec-
tively, and where P0 is the equilibrium polarization achieved in the polarizing
stage. The steady state polarization P has a longitudinal component Pz given by

Pz/P0 = γ2
2 + (ω0 − ωrf)

2

(ω0 − ωrf)2 + γ2
2(1+ ω2

1/γ1γ2)

= 1− γ2
2

(ω0 − ωrf)2 + γ2
2(1+ ω2

1/γ1γ2)

ω2
1

γ1γ2
. (3)
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5. For practical reasons the rotating field B1(t) is often realized as a linearly oscil-
lating field. The counter-rotating component of that field leads to a small shift of
the resonance frequency, known as Bloch–Siegert shift.

6. The detection of the spin flip can occur as in Fig. 1 by measuring the number
of particles in the specific spin states, or alternatively by detecting the magnetic
field radiated during the magnetic resonance transition by pick-up coils. In dilute
gases the same light beam used to polarize the medium can be used to detect the
magnetic resonance (ODMR = optically detected magnetic resonance).

7. One speaks of nuclear magnetic resonance (NMR) or electron spin resonance
(ESR), also called electron paramagnetic resonance (EPR), when the magnetic
moments involved in the MR are of nuclear or electronic origin, respectively.

8. The treatment given above is a purely classical treatment, valid for an ensem-
ble of spins (or a single spin) interacting with a classical radiation field. The
fully quantum treatment of the problem, i.e., the interaction of a single two-level
system with a single mode of the radiation field is treated by the Jaynes–
Cummings model.

Applications

Equation 1 points to the possible applications of MR. If μ is known the measure-
ment of ω0 is equivalent to a measurement of B0 (magnetometry). Conversely, if B0
is known, MR allows one to determine μ. This is used for the precision measure-
ment of the magnetic moments of elementary particles, nuclei, atoms, and molecules
(metrology) or their possible alterations by fundamental interactions (electric dipole
moments of elementary particles). A spatial variation of the field B0 leads to a cor-
responding spatial encoding of the resonance frequencyω0. In medicine this is used
in magnetic resonance imaging (MRI), where controlled field gradients yield spa-
tially resolved MR signals from the body tissue (actually from the protons’ magnetic
moments), which allows one to infer the proton density, and hence the hydrogen
content of the tissue. MR also plays an important role in analytical chemistry, where
one uses the fact that the local field seen, e.g., by protons of large organic molecules
depends on their position within the molecular structure (chemical shift). Atomic
clocks, presently the most precise timekeepers, are based on a MR transition be-
tween the two hyperfine levels of the 133Cs ground state. The clock mechanism
consists in locking a microwave oscillator to the hyperfine frequency of the atom
(metrology). MR plays an important role in recent developments such as the evapo-
rative cooling of atoms on the way to a � Bose–Einstein condensate or the selective
manipulation of q-bits in � quantum computation. The physics of MR is common
for all two-level quantum systems interacting with a time dependent perturbation.
The equivalent equations in the case of an optical transition in a two level atom are
known as the optical Bloch equations or Maxwell–Bloch equations.
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Many Worlds Interpretation of Quantum
Mechanics

Jeffrey A. Barrett

Hugh Everett III developed his relative-state formulation of quantum mechanics
while a graduate student in physics at Princeton University [5–7]. It was a reaction
to his belief that the standard von Neumann–Dirac collapse formulation of quantum
mechanics could not be consistently applied to systems which, like the universe,
contained observers. Everett proposed solving the quantum measurement problem
by dropping the collapse postulate from the standard formulation of quantum me-
chanics then deducing the empirical predictions of the standard collapse theory as
the subjective experiences of observers who were themselves treated as physical
systems described by the theory. While it remains unclear precisely how Everett in-
tended for this to work, the relative-state formulation of quantum mechanics is often
taken to be identical to Bryce DeWitt’s popular many-worlds interpretation of Ev-
erett [1,2,4]. (See also � Bohmian mechanics; Measurement theory; Metaphysics in
Quantum Mechanics; Modal Interpretation; Objectification; Projection Postulate).

On Everett’s relative state formulation of quantum mechanics observers were to
be thought of as automatically functioning machines possessing recording devices
that could be correlated with their environments. Everett’s goal then was to deduce
the appearance of the statistical predictions of quantum mechanics with the col-
lapse postulate, as physical records in the memory of the observer, from pure wave
mechanics without the collapse postulate: “We are then led to the novel situation in
which the formal theory is objectively continuous and causal, while subjectively dis-
continuous and probabilistic. While this point of view thus shall ultimately justify
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our use of the statistical assertions of the orthodox view, it enables us to do so in a
logically consistent manner, allowing for the existence of other observers” [7, p. 9].

Consider an observer M measuring a system S initially in a � superposition of
states corresponding to different values φi of the observable being measured. The
initial state of the composite system is

|“ready to measure”〉M ⊗
n∑

i=1

αi |φi〉S. (1)

Here M is determinately ready to make a measurement, but, given the standard
eigenvalue-eigenstate link, the object system S, has no determinate value for the
observable being measured.

If we assume that M has the disposition to perfectly correlate its memory with
the state of the system being observed, then it follows from the linearity of the
deterministic dynamics that the state of the composite system after M’s interaction
with S will be

n∑
i=1

αi |“the result is φi”〉M ⊗ |φi〉S. (2)

Everett confesses that this post-measurement state is puzzling: “As a result of the
interaction the state of the measuring apparatus is no longer capable of indepen-
dent definition. It can be defined only relative to the state of the object system. In
other words, there exists only a correlation between the states of the two systems. It
seems as if nothing can ever be settled by such a measurement” [6, p. 318]. And he
describes the problem one faces in interpreting pure � wave mechanics: “This in-
definite behavior seems to be quite at variance with our observations, since physical
objects always appear to us to have definite positions. Can we reconcile this feature
of wave mechanical theory built purely on [the deterministic linear dynamics] with
experience, or must the theory be abandoned as untenable?” [6, p. 318].

Everett then presents his solution to this problem of indeterminate measurement
records in pure wave mechanics:

It is . . . an inescapable consequence that after the interaction has taken place there will
not, generally, exist a single observer state. There will, however, be a superposition of the
composite system states, each element of which contains a definite observer state and a
definite relative object-system state. Furthermore . . . each of these relative object system
states will be, approximately, the eigenstates of the observation corresponding to the value
obtained by the observer which is described by the same element of the superposition. Thus,
each element of the resulting superposition describes an observer who perceived a definite
and generally different result, and to whom it appears that the object-system state has been
transformed into the corresponding eigenstate. In this sense the usual assertions of [the
collapse postulate] appear to hold on a subjective level to each observer described by an
element of the superposition” (1973, p. 10).

The fundamental relativity of quantum-mechanical states is the central principle of
Everett’s formulation of quantum mechanics. On this principle there are typically
no simple state or property attributions to subsystems of a composite system in
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an entangled state; rather, property attributions to one subsystem must typically
be made only relative to property attributions to the other subsystems of a com-
posite system. In the post-measurement state above, M recorded “the result is φi”
relative to S having property φ1 but recorded “the result is φ2” relative to S having
property φ2, etc. Similarly, there is no simple matter of fact concerning which prop-
erty S has. S has property φ1 relative to M recording “the result is φi” but S has
property φ2 relative to M recording “the result is φ2”, etc.

While the notion of a relative state is clear enough; it remains unclear how Everett
meant for the principle of the relativity of states to explain an observer’s apparent
determinate measurement records and how the statistical predictions of the standard
formulation of quantum mechanics were to be derived from pure wave mechanics
together with this principle. An observer will have different, but correlated, records
relative to different properties of the measured system, but this is not by itself
sufficient to derive the standard predictions of quantum mechanics as appearances
to the observer insofar as it does not explain why it seems to the observer that she
has recorded a single, fully determinate measurement result.

Bryce DeWitt’s [3] popular interpretation of Everett seeks to explain just this.
On the most straightforward version of DeWitt’s many-worlds or, perhaps bet-
ter, splitting-worlds interpretation, there is one world corresponding to each term
in the expansion of the post-measurement state when written in a specified pre-
ferred basis, and the preferred basis is chosen so that each term in the expansion of
the post-measurement state describes a world where there is in fact a determinate
measurement record (Fig. 1). Given the preferred basis presupposed above, the post-
measurement state describes n worlds, since there are n terms in the expansion of
the state in this basis: one world where M determinately records “the result is φi”,
another where M determinately records “the result is φ2”, etc.

M(ready1, ready2) ⊗ [α1S1(↑) + β1S1(↓)] ⊗[α2S2(↑) + β2S2(↓)]

[M(↑1, ready2) ⊗ S1(↑)] ⊗ [α2S2(↑) + β2S2(↓)] [M(↓1, ready2) ⊗ S1(↓)] ⊗ [α2S2(↑) + β2S2(↓)]

M(↑1, ↑2) ⊗ S1(↑) ⊗ S2(↑) M(↑1, ↓2) ⊗ S1(↑) ⊗ S2(↓) M(↓1,↑2) ⊗ S1(↓) ⊗ S2(↑)

Measurement 2A Measurement 2B

World 1B

World 2A World 2B World 2C World 2D

Initial World

Measurement 1

World 1A

M(↓1,↓2) ⊗ S1(↓) ⊗ S2(↓)

Fig. 1 Sequential measurements in the splitting worlds interpretation. On DeWitt and Graham’s
interpretation of probability, coefficients are represented in the proportion of each type of world.
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In the introduction to their anthology on Everett’s theory, DeWitt and Graham
explain that Everett’s interpretation of quantum mechanics

denies the existence of a separate classical realm and asserts that it makes sense to talk about
a state vector for the whole universe. This state vector never collapses and hence reality as
a whole is rigorously deterministic. This reality, which is described jointly by the dynami-
cal variables and the state vector, is not the reality we customarily think of, but is a reality
composed of many worlds. By virtue of the temporal development of the dynamical vari-
ables the state vector decomposes naturally into orthogonal vectors, reflecting a continual
splitting of the universe into a multitude of mutually unobservable but equally real worlds,
in each of which every good measurement has yielded a definite result and in most of which
the familiar statistical quantum laws hold (1973, p. v).

DeWitt admits that the constant splitting of worlds whenever the states of systems
become correlated is counterintuitive: “I still recall vividly the shock I experienced
on first encountering this multiworld concept. The idea of 10100 slightly imperfect
copies of oneself all constantly spitting into further copies, which ultimately become
unrecognizable, is not easy to reconcile with common sense. Here is schizophrenia
with a vengeance” (1973, p. 161). But while the theory is counterintuitive, it does
provide a direct explanation for why it seems to an observer that she has record a
particular determinate measurement result, something that was unclear in Everett’s
original account. The explanation here is because each copy of the observer does
in fact have a determinate record: in the post-measurement state above there are n

observers, each occupying a different world and each with a perfectly determinate
measurement record.

A standard complaint against such many-worlds formulations of quantum me-
chanics is that they are ontologically extravagant. One would presumably only
ever need one physical world, our world, to account for our experiences. On the
other hand, postulating the actual existence of a different physical world corre-
sponding to each term in the quantum-mechanical state may allow one to explain
our determinate measurement records while taking the standard deterministically-
evolving quantum state to be in some sense a complete and accurate description
of the physical facts. The explanatory tradeoff here is between the theoretical ele-
gance of the linear dynamics alone and the metaphysical extravagance of branching
worlds.

A more serious problem for many-worlds formulations is that, in order to explain
determinate measurement records, the theory requires one to choose a preferred ba-
sis so that observers can be thought to have determinate measurement records in
each term of the quantum-mechanical state as expressed in this basis in order to
account for their determinate experiences. The problem is that not just any basis
will do this – one needs to select a preferred basis that makes records determi-
nate given how observers have in fact chosen to record their measurement results,
but it is unclear what basis would make our most immediately accessible physical
records, those records that determine our experiences and beliefs, determinate in
every Everett world.

It has been suggested that � decoherence considerations might resolve the pre-
ferred basis problem. On this proposal, rather than stipulating an ad hoc preferred
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basis, one would seek to explain how the interactions between measuring devices
and their environments serve to select the basis that determines what worlds there
are. One might, for example, argue that the environments of measuring devices
will quickly become correlated to their pointer variables, then stipulate that such
correlations select a preferred basis that guarantees that the values of the pointer
variables will determinate in each Everett world. Note that decoherence consider-
ations alone do not explain the determinate measurement records; rather, since an
observer gets a determinate result in each Everett world, it is whatever stipulation
one adopts concerning how environmental interactions determine what worlds there
are that ultimately explains the determinate measurement records. General decoher-
ence considerations are then to provide justification for the particular stipulation one
adopts.

Perhaps the most difficult problem for many-world formulations concerns the
statistical predictions of quantum mechanics and how probability is understood in
the theory. The standard collapse theory predicts that M will record “the result is
φi” with probability |αi |2, but it is unclear how one is to make sense of this when
M in fact gets every possible measurement result in some world. (� Wave function
collapse). It will not do to simply claim that our world is typical since, if there is one
world for each term in the preferred basis expansion of the post-measurement state,
the standard � quantum statistics will typically fail to hold in most worlds. There
are several proposals for solving such problems, but it remains unclear whether any
of the current proposals will ultimately prove satisfactory [1, 2, 8].
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Matrix Mechanics

Henry Stapp

The theoretical ideas formulated in the seventeenth century by Isaac Newton (1643–
1727) and Galileo (1564–1642) reigned as the fundamental scientific precepts until
the year 1900, when Max Planck’s (1858–1947) work on the emission of light from
a hole in a heated hollow sphere showed that something was fundamentally amiss.
Planck’s work identified a new constant of nature, called Planck’s quantum of action
(� Planck’s constant), that was alien to classical physics, and that evidently needed
to be integrated into a revised physics, to be called quantum mechanics. A big step
toward this new physics seemed to be model of the atom devised in 1913 by Niels
Bohr (1885–1962) (see � Bohr’s atomic model). It was a space-time picture of the
atom in which the � electrons instead of spiraling inward and gradually radiating
away their energies, as demanded by classical physics, were usually confined to
stable orbits, which were specified in terms of Planck’s quantum of action.

The very strange thing about this model was that no light was emitted by the
circling electron when it was in one of these orbits. Light was emitted, instead,
when an electron jumped from one orbit to another. However, its frequency was not
some average of the frequencies of the light that classical physics predicted should
be emitted from the electron of each of the two orbits: it was, instead, the difference
of these two frequencies.

A large amount of experimental data was being collected at that time about the
energy levels of various atoms, and about the rates at which the transitions between
different levels occurred (� spectroscopy, � quantum jumps). The excitations of
atoms from various states to more excited states could be induced by the absorp-
tion of light, and the theory of this absorption and re-emission of light was called
dispersion theory.

Intensive efforts to construct a rationally coherent quantum mechanics were be-
ing pursued by many groups, including most prominently those led by Niels Bohr
in Copenhagen, Max Born (1882–1970) in Göttingen, and Arnold Sommerfeld
(1868–1951) in Munich. But the key breakthrough was made by Werner Heisenberg
(1901–1976).

Heisenberg was a prodigy. He entered the University of Munich in 1920 at age
18, and received his Ph. D 3 years later. In 1921 he published with Sommerfeld’s
approval a bold and original paper on the anamolous � Zeeman effect, and in 1922
had co-authored two papers with Sommerfeld, and had closely collaborated on an-
other with Max Born. In September of 1924 he began a stay in Copenhagen where he
collaborated with Bohr and co-authored a paper on dispersion theory with Bohr’s as-
sistant Hendrik Kramers (1894–1952). Thus when he returned to Göttingen in April
of 1925 he was only 23, but had spent the better part of 5 years working intensively
in close collaboration with the leaders of the field.

The state of affairs was at that point extremely muddled, with the Copenhagen-
based Bohr–Kramers–Slater dispersion theory recently falsified by data. Also, a
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recent closely reasoned paper by Heisenberg’s close colleague, Wolfgang Pauli
(1900–1958), argued that the entire program of basing the theory on space-time
pictures akin to Bohr’s model was a “swindle”, and called for a new mathematical
foundation: “It seems to me. . .without doubt that not only the dynamical concept
of force, but also the kinematic concept of motion of classical theory, will have to
experience profound modification. . . .I believe that the energy and momentum val-
ues of the stationary states are much more real than “orbits”. (Pauli to Bohr, 12
December 1924).

Armed with all this deep knowledge and wise council, and influenced by
Einstein’s 1905 success in shedding unhelpful intuitions and biases concerning
space and time by focusing on observable properties, Heisenberg tried to find a new
foundation for atomic physics based not on a space-time picture of what was going
on, but rather on mathematical connections between observable quantities. The� observables in the abundant and accurate data pertaining to the dispersion of light
were energy levels of the “stationary states”, whatever they were, and transition
amplitudes between these states. The transition amplitudes refer to two states and
thus form a square array. In order to establish some sort of correspondence with the
classical idea of an atom Heisenberg needed arrays corresponding to the variable
of classical physics, such as momentum, position, acceleration, etc. and needed to
form the analogs of products of these “quantities”. He constructed what seemed
to be the needed rules, by comparing to some apparently valid rules of dispersion
theory, and discovered that, for certain quantities X and Y, XY was different from
YX. This troubled Heisenberg, but did not deter him.

Because atomic systems are complicated, Heisenberg considered first a one-
dimensional anharmonic oscillator, obtained by adding an extra force term.

The results for that case, and in particular his proof that energy was strictly
conserved – it was a violation of strict energy conservation that had doomed
the Bohr–Kramers–Slater theory � BKS theory – convinced him that he had found
the basic structure he needed. Its subsequent successful applications to innumerable
physical situations by thousands of physicists, with no proven failures. has borne
out his optimism.

Born was quick to point out that the arrays of numbers, with their rule of mul-
tiplication, were objects already well studied by mathematicians. They are called
“matrices”, and the quantum theory based on them was, for a time, called “ma-
trix mechanics”, particularly to distinguish it from what appeared at first to be an
alternative quantum mechanics devised by Erwin Schrödinger, and called “wave
mechanics”. The two theories were eventually shown to be formally equivalent by
Schrödinger, whose approach did seem to provide a space-time description of the
kind that Heisenberg and Pauli had deemed impossible. However, Heisenberg, Pauli,
and Bohr held that the Schrödinger wave was an abstract formal structure that could
be used to compute observable quantities, because of the proved formal equivalence,
but that it could not be regarded as describing an actually existing space-time struc-
ture, because of the “� quantum jumps” that the wave needs to undergo in order to
keep it in line with human experience.
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Because of the formal equivalence of the two forms, the two names “matrix me-
chanics” and “wave mechanics” have largely fallen out of use now, being replaced
by the more inclusive name “quantum mechanics”.

The see how these ideas work in actual practice one may consider the simplest
case, in which the quantum system being examined has just two states, labeled by
an index i that can take two alternative possible values, 1 or 2. Then the relevant
arrays are sets of four (complex) numbers zij where the two indices i and j each
can take, independently, the value 1 or 2. If one has two such sets zij and wij then
an array called (zw)ij is defined by the rule (zw)ij = zi1w1j + zi2w2j .This is the
standard rule of matrix multiplication, in this two dimensional case.

Pauli defined four 2-by-2 matrices of interest:

(σ0) defined by ((σ0)11 = 1, (σ0)12 = 0, (σ0)21 = 0, (σ0)22 = 1),
(σ1) defined by ((σ1)11 = 0, (σ1)12 = 1, (σ1)21 = 1, (σ1)22 = 0),
(σ2) defined by ((σ2)11 = 0, (σ2)12 = −i, (σ2)21 = i, (σ2)22 = 0),
(σ3) defined by ((σ3)11 = 1, (σ3)12 = 0, (σ3)21 = 0, (σ3)22 = −1).

Laborious computations can then be simplified by writing matrices of interest as
linear combination: a = a0σ0+a1σ1+a2σ2+a3σ3, and using the following results:

for any i, σiσi = σ0; σ0σi = σiσ0 = σi; σ1σ2 = iσ3; σ2σ1 = −iσ3.

These results follow directly from the definitions and multiplication rules speci-
fied above. Notice that in the last two equations the order in which the matrices are
multiplied matters.

The rule that connects the mathematical symbols to our observations is this:
Each elementary observation upon the system is associated with a “projection

operator” P. (Projection operators P must satisfy PP = P). (� Projection).
Let P1 be the projection operator that corresponds in the mathematics to our

knowledge that an associated set of preparation conditions have been met.
Let P2 be the projection operator that corresponds in the mathematics to the con-

dition that a subsequent observation fulfills an associated set of conditions. Then
the predicted probability that a system known to be prepared in accordance with the
conditions corresponding to P1 at time t = 0 will be observed at time t > 0 to fulfill
the conditions corresponding to P2 is

Trace P2 (exp− iHt) P1 (exp iHt) ,

where H is the matrix that corresponds to energy, here assumed to have no explicit
dependence on time, and for any X, Trace X = X11 + X22, for this 2-by-2 case.
(I use units in which Planck’s constant of action is 2π.)

Suppose, for example, that P1 = (1 + σ3)/2, which corresponds the prepared
system’s being in the state i = 1, and that P2 = (1 − σ3)/2, which corresponds to
the system’s being observed to be in the state i = 2. Suppose H = e σ1.
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Using the fact (deducible from the power series expansion of exp x) that
exp(−ietσ1) = (cos et − iσ1 sin et) one can easily deduce just from the rules
given above that the probability identified above is (sin et)2. The calculation is
carried out without referring to any space-time picture of what is going on.
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Matter Waves

Bruce R. Wheaton

Among the audacious proposals in the evolution of natural philosophy, Louis de
Broglie’s (1892–1987) claim in 1923 that atoms possess a wave-property sits at top
rank. Substantial matter had from ancient times been ascribed to particles like those
we encounter everyday. While there was always doubt whether light is material or
a disturbance in a medium (see � wave-particle duality) there had never been much
doubt about matter. A noteworthy, late nineteenth century exception in the wake of
Maxwellian success in field theory came to be called “the electromagnetic world-
view,” based on Kantian idealism, that described ponderable matter as secondary
properties of the primary æther.

However, Albert Einstein’s (1879–1955) tri-partite recasting of matter, light, and
time in 1905 gave a molecular explanation in accord with that of Jean Perrin (1870–
1942) to long-observed � Brownian motion, and atoms prevailed. In the 1920s,
practical concerns of physicists in France led to de Broglie’s recognition of a para-
dox, particularly in the domain of � x-rays, when he tried to bring coherence to
both new theories: of the quantum and of relativity.

France may seem an unlikely locale and 31-year old Louis de Broglie an even
more unlikely source for so earth-shaking an inspiration. But under the tutelage of
elder brother Maurice (1875–1960), Louis and a cadre of young physicists tried
to apply the new fin-de-siècle discoveries in physics to improve French industrial
process control. Entirely privately funded, and virtually independent of academic
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to apply the new fin-de-siècle discoveries in physics to improve French industrial
process control. Entirely privately funded, and virtually independent of academic



372 Matter Waves

Fig. 1 M. de Broglie & A. Dauvillier’s sample at C, irradiated with x-rays, emits electrons into
the normal magnetic field that are sorted by velocity onto photoplate PP’. From M. de Broglie, Les
rayons x (Paris, 1922), 142

physics, Maurice’s “Laboratoire française des rayons-x” drew talent from all of Eu-
rope. For our purposes the most important was Alexandre Dauvillier (1892–1979),
whose passion was the x-ray � photoelectric effect. Together with Maurice, he
showed experimentally by the 1921 Solvay congress, that x-rays must be absorbed
by matter in discrete quantum units, using β-ray spectroscopy to measure velocities
of emitted � electrons (Fig. 1). In all cases the corpuscular behavior of e-m radi-
ation prevailed. Charles Ellis (1895–1980) presented equivalent results for nuclear� γ-rays at the same session.

“Little Louis” heard all of the Solvay discussions and tried to bring coherence to
what he called the “dual wave-particle nature of radiation.” He turned to Einstein’s
other two remarkable products of 1905, the � light-quantum and relativity theory. In
brief, relativity predicts that time intervals on a moving particle will appear length-
ened to a stationary observer: that makes an observed frequency lower. But quantum
theory predicts a moving particle possesses more energy and exhibits a higher fre-
quency. Louis found a clever, most perplexing, way to reconcile this conundrum.
“We debated the most pressing and baffling issues of the time,” Louis recalled to his
elder brother, “particularly the interpretation of results in your experiments on the
x-ray photoeffect.”

Louis’ inspiration in 1923 was to posit a virtual wave that accompanies (actually
precedes) every particle of matter. He had turned Einstein’s light-quantum on its
head: if light can be corpuscular, matter can be undulatory. Every particle of matter,
he posited, has a guiding “phase wave” that travels faster than the particle such that
vpvw = c2. The advantage is that these two oscillations maintain constructive inter-
ference at a moving point in space that essentially defines the observed trajectory of
the particle. His hypothesis owed much to prior work by Vito Volterra (1860–1940),
Marcel Brillouin (1854–1948) and Erwin Schrödinger (1887–1961) on theories of
“retarded potentials.” Louis’ phase wave travels faster than the velocity of light, has
wavelength λ = h/p, carries no energy, and so he referred to it as an onde fictiv.
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But this wave has a physical significance beyond a mere calculating device. On its
basis he derived the action-integral representation of stable electron orbits in the
Bohr atom (each revolution a standing wave-like band), and explained the contem-
poraneous Compton–Debye effect. This influential experiment on generalized x-ray
scattering also confirmed the corpuscular nature of x-rays. The audacious proposal
of an inescapable wave-property of atoms “stuck the issue right under the nose” of
Erwin Schrödinger who clarified the concept into the new � wave mechanics in
1926. Louis’ phase wave of 1923 also predicted diffraction of an electron beam,
experiments corroborated by 1929 leading to his Nobel Prize.
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See � Bohmian mechanics; Measurement theory; Objectification; Projection
Postulate.
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Measurement Theory

Paul Busch and Pekka Lahti

The term measurement theory refers to that part of a physical theory in which the
empirical and operational content of the concepts of the theory is determined. Mea-
surements are analyzed both as operational procedures defining the � observables
of the theory and as physical processes which are themselves subject to the laws of
physics.

In classical physics, measurements are performed in order to determine the values
of one or several observables of the physical system under consideration. Classical
physics allowed the idealized notion that every physical quantity has a definite value
at any time, and that this value can be determined with certainty by measurement
without influencing the object system in a significant way. By contrast, in quantum
mechanics both features fail to hold without strong qualifications. Accordingly, in
their seminal paper of 1935 [1], Einstein, Podolsky and Rosen used elements of this
description as a sufficient criterion of physical reality, applicable both in classical
and quantum mechanics:

“If, without in any way disturbing a system, we can predict with certainty (i.e., with proba-
bility equal to unity) the value of a physical quantity, then there exists an element of physical
reality corresponding to that physical quantity.”

As far as observable elements of reality represented by quantum mechanics are
concerned, this condition must also be regarded as necessary. Hence, an observable
is understood to have a definite value if the probability that a measurement indi-
cates a particular value of the observable is equal to one. In quantum mechanics,
this can only be satisfied if the system is in an eigenstate of the observable associ-
ated with the value in question. Moreover, it turns out that in quantum mechanics
the interaction between a measuring apparatus and the measured system is gener-
ally not negligible. This leads to the necessity of reconsidering what it means that
a measurement determines the value of an observable. Here this question is dis-
cussed for the case of an observable represented by a selfadjoint operator A (acting
on a complex separable � Hilbert space H) with nondegenerate discrete spec-
trum {a1, a2, . . . }, associated � orthonormal basis of eigenvectors {ϕ1, ϕ2, . . . },
and spectral decomposition A = ∑i aiPi , where Pi = |ϕi〉〈ϕi | denotes the pro-
jection onto the one-dimensional subspace spanned by ϕi . (Spectral decomposition,
see � Density operator; Ignorance interpretation; Objectification; Operator; Prob-
abilistic Interpretation; Propensities in Quantum Mechanics; Self-adjoint operator;
Wave mechanics).

A minimal requirement for a physical interaction process between an object sys-
tem and an apparatus to qualify as a measurement of A is the so-called calibration
condition: whenever the system is in an eigenstate, the apparatus should indicate
the corresponding eigenvalue unambiguously after the interaction has ceased. In
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quantum mechanics, a measurement is modeled by representing the apparatus by a
Hilbert space HA, the pointer observable as a selfadjoint operator Z acting on HA

and the coupling between object and apparatus as a unitary operator U acting on
the tensor product Hilbert space H⊗HA of the total system. Together with the ini-
tial apparatus state TA, these elements, collected into a quadruple 〈HA, TA,U,Z〉,
constitute a measurement scheme.

Assuming, for simplicity, that the apparatus initially is in a pure state, described
by a unit vector φ, the calibration condition can be formalized as follows: the mea-
surement scheme has to be such that for any eigenstate ϕi of A there is an associated
(normalized) eigenstate φi of the pointerZ so thatU effects the following transition:

ϕi ⊗ φ → U(ϕi ⊗ φ) = ψi ⊗ φi. (1)

Here ψi is some normalized vector state in H, and the φi are mutually orthogonal.
Thus, if the observable A initially has a definite value ai , the pointer observable of
the apparatus will indicate this value with probability equal to one, in accordance
with the � Born probability rule. If condition (1) is satisfied for all ϕi , the given
measurement scheme is called a premeasurement of A.

If the system is initially in a vector state ϕ which is not an eigenstate of A, then
ϕ is a � superposition of eigenstates of A, that is, ϕ = ∑i ciϕi with more than
one of the ci nonzero. Together with the linearity of U , the rule (1) still determines
unambiguously the final state of the total system:

ϕ ⊗ φ =
∑
i

ciϕi ⊗ φ → Uϕ ⊗ φ =
∑
i

ciψi ⊗ φi . (2)

The final state is a superposition of mutually orthogonal states, and the probability
for the pointer to indicate a value ai is equal to |ci |2 = |〈ϕ|Piϕ〉|2, thus justifying
the Born probability interpretation of the latter expression.

This simplified description also highlights the fundamental dilemma of quantum
measurement theory known as the quantum measurement problem, the problem of
objectification, or the collapse problem: if an observable A does not have a definite
value, then according to quantum mechanics, a premeasurement of A will leave the
object-plus-apparatus system in an entangled state in which the pointer observable
does not have a definite value – in stark contrast to the fact that every real mea-
surement ends with a definite pointer position. This leaves one with the following
alternative: on the one hand, if one requires that quantum mechanics should include
an account of its measuring processes – that is, this theory should be semantically
complete – then it turns out that the occurrence of definite measurement outcomes
contradicts the quantum mechanical account of the measurement dynamics – that
is, this theory is semantically inconsistent; on the other hand, if one requires seman-
tical consistency, then quantum mechanics cannot be semantically complete [8]. In
the first case, a modification of the axioms of quantum mechanics is required. In the
second case, there is no consistent quantum measurement theory, unless an appro-
priate reinterpretation of what it means for an observable to have a definite value
can be found.
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There is an enormous amount of literature dealing with the quantum mea-
surement problem, and as yet there is no generally accepted resolution. Rigorous
technical presentations of the problem and the spectrum of interpretational options
are found, for example, in [9] and [10], whereas philosophical aspects are discussed
in [11]. A valuable cross-section of the older literature until 1980 is reprinted in the
volume [12]. Interestingly, the founders of quantum mechanics (e.g., [2, 3]) identi-
fied the reality of the collapse of the wave function (� wave function collapse) or
state vector but did not regard it as a conceptual problem. It was von Neumann in
1932 [4] who pointed out the tension between the collapse process as a random event
and the deterministic (unitary, linear) Schrödinger dynamics of a closed system.
Somewhat later, Schrödinger [5] conceived his infamous � Schrödinger cat paradox
to highlight the apparent absurdity of the possibility, suggested by quantum mechan-
ics, of observing macroscopic systems in superpositions of states corresponding to
such discernible situations as a cat being dead or alive.

Adopting the collapse postulate has since been taken by many as a pragmatic
way of suspending the measurement problem. Following this route, there remains
the task for quantum measurement theory to show that quantum mechanics entails
the possibility in principle of measuring any of its observables. For an observable
represented as a POVM (� observable), the above calibration condition is generally
not applicable. However, whenever that condition does apply, it implies the repro-
duction of probabilities for the object observable in terms of the pointer statistics.
This latter condition, called probability reproducibility condition [9], can always
be taken as the defining criterion for a measurement scheme to constitute a mea-
surement of a given observable. This characterization of the measurements of an
observable implements the Born interpretation (� Born rule) of the quantum me-
chanical probabilities and the idea that any observable is identified by the totality of
its statistics. The formal implementation of these ideas, which constitute the math-
ematical framework of quantum measurement theory, are briefly summarized in the
text box below.

Tools of Quantum Measurement Theory

Every measurement scheme 〈HA, TA,U,Z〉 defines a unique observable of the
object system. If the pointer observableZ is represented as a POVM on the (Borel)
sets of R (say), then for each state T of the object system, the following defines a
probability measure on the real line (X denotes any Borel subset of R and I is the
identity operator):

X �→ tr[UT ⊗ TAU
∗I ⊗ Z(X)] ≡ tr[T E(X)]. (3)

This equation, valid for all states T , entails the existence of a positive operator
E(X) associated with each set X; moreover, the fact that X �→ tr[TE(X)] is a
probability measure for each T ensures that E : X �→ E(X) is a POVM on the
(Borel) subsets of R.
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It is a fundamental theorem of the quantum theory of measurement that for
every observable there are measurement schemes (in fact, infinitely many) such
that (3) is fulfilled for all object states T [6].

With the existence of premeasurements for any observable thus secured,
another task of quantum measurement theory is the description of the effect of
a measurement on the object system. Given a measurement scheme for an ob-
servable E, one can ask for the probabilities of the outcomes of any subsequent
measurement. If F is another POVM on the (Borel) subsets of R, to be measured
immediately after the E measurement, the sequential joint probability for obtain-
ing a value of E in a set X and a value of F in a set Y is

tr[UT ⊗ TAU
∗F(Y )⊗ Z(X)] ≡ tr[IX(T )F (Y )]. (4)

This relation, valid for all states T , all observables F and all X,Y , determines
a unique non-normalized object state IX(T ); substituting for F(Y ) the identity
operator, it is seen that tr[IX(T )] = tr[TE(X)]. Dividing the joint probability in
(4) by the latter probability gives the conditional probability for the occurrence of
an outcome in Y given that the first measurement led to an outcome in X. Thus
IX(T ) can be taken to play the role of the final object state in accordance with
the collapse postulate. The map T �→ IX(T ) is known as a (quantum) operation,
and X �→ IX is an operation-valued measure called the instrument induced by the
given measurement scheme [7].

Any instrument arising from a measurement scheme has the property of
complete positivity: that is, for any operation IX, if extended to a linear map
In ⊗ IX acting on the trace class operators of the Hilbert spaces Cn ⊗ H, the
extended map is positive for each n. It is another fundamental theorem of quan-
tum measurement theory that every completely positive instrument can be realized
by some (in fact, infinitely many) measurement schemes [6].

With the conceptual tools of measurement theory outlined in the above box, it has
become possible to eliminate some long-standing myths and corroborate a number
of equally long-standing folk truths. For example, it has long been held without
questioning that any measurement collapses the object system into an eigenstate of
the measured observable. Measurements with that property are called repeatable. In
the example leading to (1), repeatability is achieved by putting ψi = ϕi ; but it is by
no means necessary to assume that every measurement has this property. Moreover,
according to a theorem due to Ozawa [6], in order for an observable to admit a
repeatable measurement, this observable must be discrete, that is, have a countable
set of values.

The realization that measurements necessarily disturb the object system was
made early on in the history of quantum mechanics. However, the nature of that
“disturbance” and its quantification have remained the subject of much debate until
recently, when it was realized that the notion of instrument allows a rigorous and
effective description of the state changes due to measurements. Yet another funda-
mental theorem of quantum measurement theory is given by the statement that there
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is no measurement which does not change at least some of the states of the system
under investigation: a measurement scheme that leaves unchanged all states of the
object defines a trivial observable, that is one whose probability measures do not
depend on the state. Thus, there is no information gain in quantum measurements
without some disturbance.

The trade-off between information gain and disturbance in quantum measure-
ments has been recognized as a resource for novel applications of quantum mea-
surements, particularly in quantum cryptography, � quantum communication a
sub-field of the new area of quantum information science. This is one example for
the importance of quantum measurement theory as an applied discipline besides its
foundational role.

Applications of quantum measurement theory ranging from nondemolition mea-
surements and analyses of basic experiments to open quantum systems and quantum
tomography are covered, for instance, by the monographs [13–17].
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Mesoscopic Quantum Phenomena

Markus Arndt

Quantum physics was first developed to understand the properties of small individ-
ual objects such as photons (� light quantum), atoms and molecules. And many
features of quantum physics, such as the discreteness of energy levels, the � super-
position of mutually exclusive states, quantum interference or � entanglement are
usually not directly accessible to our human senses. Colloquially we therefore often
separate between microscopic and macroscopic in the sense of ‘being observable or
unobservable by the unaided eye’ rather than in the more physical sense where mi-
croscopic would refer to objects in the micrometer size range. In physics, the notion
of mesoscopic quantum phenomena is generally used for systems with dimensions
somewhere in the middle (in Greek: meso = middle) between the microscopic and
the macroscopic world. In practice, mesoscopic systems mostly range between a
few and a few hundred nanometers. They are large enough to contain many particles
and can therefore be described by average properties, such as density or conductiv-
ity. On the other hand they are small enough for their lateral extensions to match
characteristic lengths, such as the coherence length or the mean free path. Meso-
scopic quantum systems therefore often exhibit unique physical properties such as
size-dependent electronic properties, transport phenomena and more. The following
examples select some of the most quoted mesoscopic quantum phenomena [6,9–11].

Mesoscopic Quantum Confinement

Quantum dots are zero-dimensional nanostructures in the sense that they confine
the quantum wave function in all three directions [1]. This has to be contrasted
with for instance one-dimensional quantum wires, two-dimensional electron gases
atomic ensembles (� ensembles in quantum mechanics) or three-dimensional bulk
solids. Quantum dots are often referred to as artificial, ultra-cold trapped atoms,
since they exhibit a size-dependent discrete energy spectrum. Optical transition lines
in small dots are blue-shifted with respect to those in larger dots. Q-dots realize
the textbook example of a particle in the box: strong confinement leads to strong
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wavefunction curvature, high momentum and large energy splittings. Q-dots can be
realized lithographically, or with a suitable arrangement of interfaces between dif-
ferent materials. Colloidal semiconductor nanocrystals may measure up to about
10 nm. Self-assembled quantum dots on surfaces range between 10 and 50 nm.
Lithographically patterned or self-assembled semiconductor dots may extend to
100 nm. Quantum dots are for instance the basis for blue lasers, single-photon emit-
ters, fluorescent markers in biology and many other applications.

Mesoscopic Quantum Conductance

Singe electron capacitors and single electron transistors When two conductors are
separated by a thin insulating barrier, current flow is forbidden classically, while� tunnelling is still allowed quantum mechanically. Mesoscopic devices with lateral
extensions around 100 nm and a barrier thickness of about 1 nm exhibit interesting
conductance properties as their electric capacity gets as small as 1 Femtofarad.

A single electron transistor can then be formed by sandwiching a conducting
island between two such junctions and by capacitively connecting it to a third gate
electrode. A positive voltage to the gate electrode will lower the energy levels of
the island and an electron can tunnel first onto the island and then further on to
the drain electrode. The charging of the island with a single electron can already
suffice to raise the voltage (U = e/C) such that a second electron cannot enter the
same transistor at the same time. In order to observe such a Coulomb blockade the
device temperatures has to be about 1 K, sufficient to suppress thermal excitations.

Josephson Effects In a Josephson device two superconducting leads are separated
by a thin insulator material. The appearance of an electric DC current across the
tunnelling junction in the absence of any external electromagnetic field is known
as the DC Josephson effect [2]. This current is a genuine quantum phenomenon,
and uniquely determined by the phase difference of the quantum � wave functions
on either side of the insulator. By adding a fixed voltage, the quantum phase will
start oscillating in time and the applied DC voltage therefore induces an alternating
current (AC Josephson effect).

Mesoscopic Electron Interference

Diffraction of free � electrons has been known since the experiments by Davisson
and Germer (� Davisson–Germer experiment) in 1927. More recent experiments
have proven that � electron interferometry in mesoscopic systems is equally feasi-
ble, interesting and sometimes unavoidable. In order to maintain coherence, pertur-
bations have to be minimized and such experiments are done in low-dimensional
electron systems with semi-conductor wave guides or in strong external magnetic
fields. These demonstrations show that electron coherence can extend up to one
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micrometer in cold solids and mesoscopic electron interferometers have for in-
stance been applied to explore the � Aharonov–Bohm effect, � Berry-phase or� decoherence. (Cf. � environmental observation of decoherence). Natural inter-
ference of electron wave functions is also at the basis of universal conductance
fluctuations [9–11]: mesoscopic systems exhibit ballistic electron transport when
their impurity content is sufficiently low and the elastic mean free path of the charge
carriers at least comparable to the size of the system. The terminal conductance may
then exhibit reproducible fluctuations on the order of the quantum of conductance
e2 h−1 when the chemical potential, magnetic field or impurity configuration is
varied. These fluctuations arise from quantum-interference effects due to the phase-
coherent electron transport.

Anderson Localization was also first established in the context of mesoscopic dis-
ordered media: it describes the observation that the diffusive spreading of waves can
be suppressed in randomly disordered media, because of interference between mul-
tiple scattering path-ways. When applied to microwaves in chaotic potentials, this is
a classical wave phenomenon. For electrons in solids this is a genuine mesoscopic
quantum phenomenon [3, 9–11].

The integer and fractional � Quantum Hall effects also fall into the category of
mesoscopic quantum transport phenomena. They are observed in two-dimensional
electron systems at low temperatures and in strong magnetic fields. The Hall con-
ductance in such a configuration is quantized in integer or fractional unities of
e2 h−1, with the electron charge e and the � Planck’s constant h [4].

New Directions in Mesoscopic Quantum Physics

Quantum ‘Mechanics’: With the improvements of nanotechnologies and cooling
technologies it has recently become possible to cool nanomechanical cantilevers
with masses in the nanogram regime close to their quantummechanical ground
state [5]. Cold cantilevers are also promising for new schemes heading towards
mesoscopic entanglement [13].

For a long time, mesoscopic quantum phenomena counted generally as a sub-
field of condensed matter physics. Over recent decades, however, photonic, atomic
and molecular systems have been extended to truly mesoscopic dimensions:

Atomic Bose–Einstein condensates [6] (� Bose–Einstein condensation) can be
composed of more than one million atoms and exhibit coherence lengths well
beyond the micrometer scale. Many studies with ultra-cold degenerate atomic en-
sembles are concerned with the classification of quantum phenomena according to
their dimensionality. Long-range order can be observed in three-dimensional sys-
tems at low temperature (BEC). In two-dimensional systems long-range order is
destroyed by thermal fluctuations at any finite temperature. But superfluid quasi-
condensates can still be observed, which are related to a short-range topological
order. Also in one dimension, mesoscopic atom clouds exhibit a quantum phe-
nomenon: strongly interacting bosons may form a Tonks–Girardeau gas.
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A mesoscopic superposition of photonic field states can be created by sending
Rydberg atoms through a coherent field trapped in a microwave cavity. The interac-
tion between atoms and microwave photons can be designed such that the phase of
the photon field can simultaneously point into two different directions after the inter-
action. With several dozens of photons in the cavity this is a mesoscopic realization
of a � Schrödinger cat. The fragility of such large superposition states can be traced
by monitoring their decay as a function of time and as a function of the ‘distance’
between the mutually exclusive states in the superposition. These experiments [7]
beautifully illustrate many aspects of decoherence theory [12].

In macromolecule interferometry, complex many-body systems can be shown to
exhibit the behaviour of delocalized matter waves with transverse coherence widths
of the order of a micrometer [8]. Massive molecules, such as the fullerenes C60
and C70 or even biomolecules still show this phenomenon. They are composed of
several dozens of atoms and exhibit quantum motion even though they may attain
internal temperatures as high as 1,000 K. A major interest in such experiments is the
understanding of the transition between quantum and classical behaviour.

Fullerenes are mesoscopic quantum objects in the sense that they exhibit many
bulk properties of classical objects and still behave quantum mechanically when
appropriately prepared. The bulk behavior manifests itself in collective excitations,
such as plasmons, excitons or the large number of vibrational modes which are sta-
tistically excited according to a microcanonical temperature. But also the thermal
emission of photons, electrons and molecular fragments at elevated temperatures
have similarities with thermal radiation, glow emission and evaporation of bulk me-
dia. The � de Broglie wavelength and coherence length of fullerenes in a thermal
beam at 900 K amounts to only a few picometers, which is a few hundred times
smaller than the molecule itself. Because of all that one might be tempted to identify
a fullerene with a classical body. And yet it can be shown that C60 can delocal-
ize over several micrometers and exhibit de Broglie quantum interference when
diffracted at mechanical gratings.

It is interesting to explore how quantum coherence is destroyed on the way to-
wards complex and larger bodies. In particular the interaction between the molecules
and their environment has raised a lot of interest: Collisions with residual gas
molecules but also photons emitted by the hot fullerenes themselves can reveal
which-path information inside the interferometer. This also leads to decoherence via
entanglement between the fullerene and the colliding or emitted particles. Figure 1
shows the experimental setup of a near-field matter wave interferometer for C70 as
recently realized in Vienna. And it demonstrates the mesoscopic quantum nature
of the experiment: Under high-vacuum conditions and at sufficiently low internal
temperature the visibility of the molecular interference fringes is high and demon-
strate the quantum nature of the fullerene. At increasing pressure of the residual gas
or high internal temperature, the coupling to the environment becomes so strong that
the intrinsic quantumness becomes effectively unobservable.
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Metaphysics of Quantum Mechanics

Craig Callender

Quantum mechanics, like any physical theory, comes equipped with many meta-
physical assumptions and implications. The line between metaphysics and physics
is often blurry, but as a rough guide, one can think of a theory’s metaphysics as
those foundational assumptions made in its interpretation that are not usually di-
rectly tested in experiment. In classical mechanics some examples of metaphysical
assumptions are the claims that forces are real, that inertial mass is primitive, and
that space is substantival. The distinctive feature of these claims is that they are all
rather far removed from ordinary tests of the theory. Newton defended all three of
the above claims at one time or other, whereas Mach attacked each one; however,
both scientists agreed on enough of the formalism and its connection to experiment
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to predict (e.g.) the same periods for given pendulums. What they disagreed about
were the ingredients necessary to use classical mechanics to explain and understand
the world.

Controversy engulfed the metaphysics of classical mechanics soon after its ori-
gin. Newton’s idea of forces proved extremely contentious among the scientists of
his time. Although metaphysical assumptions need not be controversial, quantum
mechanics is also no stranger to metaphysical dispute. If anything, here the situa-
tion is more undecided because the theory was born with two different formalisms
(Heisenberg’s � matrix mechanics, wave functions) and no clear interpretation.
Heisenberg [1] originally offered a merely instrumental understanding of his formal-
ism (later he opted for an interpretation employing discontinuous quantum jumps),
whereas Schrödinger [2] viewed his theory as having physical content: it described,
he thought, the evolution of continuous matter waves. The formalisms subsequently
proved to be equivalent, but the metaphysical pictures could hardly have been more
different. Soon thereafter, Bohr’s � complementarity thesis took shape, � Heisen-
berg’s uncertainty principle was discovered, and Born provided a � probabilistic
interpretation of the wavefunction. The combination of these three theses formed
the essential core of the so-called Copenhagen interpretation. Associated especially
with Bohr [3], the Copenhagen interpretation is itself the subject of active interpre-
tation [10], and few advocates of the theory agree on all of the theses commonly
associated with it. (See � Born rule; Consistent Histories; Nonlocality; Ortho-
dox Interpretation; Schrödinger’s Cat; Transactional Interpretation). Nevertheless,
if correct, it makes dramatic metaphysical assumptions. These include the ideas
that measurement brings into being the measured property as opposed to revealing
it, that there is a “complementarity” between dynamic and kinematic aspects of the
world, and that all properties of atoms are inherently contextual – that is, irreducibly
relative to a measuring apparatus.

Stepping back from its history, we see that the basic ontology of the quantum
world is very much undetermined. Thanks to the infamous measurement prob-
lem [7,8] we have an extra layer of assumptions that might be called metaphysical –
although in another sense these assumptions are simply the ordinary claims of any
physical theory. The reason for this extra layer is that one must first solve the
measurement problem and then provide the best interpretation of that solution. Ex-
periment cannot yet decide among these theories, and in some cases, never will.
Thus the choice of solution is not directly tested in experiment, nor are some of
assumptions made by any given solution. The metaphysics of quantum mechan-
ics thus hangs on both a particular solution to the measurement problem and then
the best interpretation of that solution. (For measurement problem, see � Bohmian
mechanics; Measurement theory; Modal Interpretation; Objectification; Projection
Postulate).

Working in the Schrödinger formalism, the measurement problem arises from
the (1) linearity of the equation evolving the wave function, and (2) the claim that the� wave function or quantum state is representationally complete – that is, that there
are properties of kind A in the world if and only if the quantum state is in an eigen-
state of the operator, believed to represent that property. If linear dynamical evolu-
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tion of the quantum state is uninterrupted, then the � superpositions of microscopic
states necessary for quantum predictions will evolve into superpositions of macro-
scopic states. And if the quantum state offers a complete representation of what there
is, then the systems described by these macroscopic superpositions do not have any
definite measurable properties. Since measurements seem to have determinate out-
comes, we appear to have an inconsistency between the theory and experience.

Putative solutions to this problem fall naturally into three classes. The first class
consists of theories (sometimes dubbed “hidden variable theories”) denying that
the quantum state is representationally complete. In addition to the wavefunction
evolving according to some linear equation, there are posited what J.S. Bell [7]
calls “beables” (as opposed to � observables) and a dynamics for these beables.
Beables are the basic ontology of the theory. In classical electromagnetism, they
are the electric and magnetic fields; in Newtonian mechanics, the beables are the
particles. In quantum mechanics, typically particle or field ontologies are posited.
The ontology is dualistic: interpreted realistically, there are both beables and wave-
functions in the world. The best-known version of this kind of reaction was first
discovered by de Broglie but later developed by Bohm [5]. According to this theory,
there are in addition to wavefunctions particles with always-determinate trajectories
evolving in three-dimensional space, governed by an equation that is a function of
the system’s wavefunction. Even within a solution in this class one finds varying
metaphysical pictures [7, 12]. One can find deterministic and indeterministic Bohm
theories, particle and field-based theories, theories that treat � spin as a beable and
ones that do not – even theories that do not treat fermions as beables. Some believe
the wavefunction is part of reality, others that it is nomological, and still others treat
it instrumentally.

The second class of solutions are unified in their claim that the evolution of the
quantum state is not always linear. So-called “collapse” theories state that upon mea-
surement there is an instantaneous � wavefunction collapse from a superposition to
an eigenstate (when the state is expanded in the relevant basis for the observable
being measured). Proposals for what triggers this collapse include the “classical-
ity” of the device (some Bohrians – although perhaps not Bohr [10]), non-physical
minds (Wigner) [11], and in more recent theories, such as GRW [4] (after Ghirardi,
Rimini and Weber), certain thresholds being reached in the system’s mass density
or particle number.

Again, even within one class of putative solutions, we find a diverse array of pos-
sible metaphysical assumptions. In some theories the wavefunction represents an
objective part of reality, in others our state of knowledge. Even within a particular
solution, say, � GRW [4], there are a variety of metaphysical pictures available.
In one especially radical interpretation of GRW, there is nothing but a sometimes-
collapsing wavefunction evolving in 3N-dimensional state space, where N is the
number of “constituents” of the system. On this view, 3-dimensional objects like
us are aspects of the universal wavefunction that have grown “clumpy” in 3N-
dimensional configuration space. According to the “mass density” theory, there is
a continuous distribution of mass throughout spacetime, and the mass density at a
point is a function of the wavefunction. Yet according to the “flash ontology” the-
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ory, the basic ontology is one of primitive spacetime events that are the loci of GRW
collapses [11].

The third class of solutions tries to explain away the mismatch between macro-
scopic superpositions and experience by neither supplementing the wavefunction
description of the world nor interrupting its linear evolution. Originally developed
by Everett [6], advocates of the so-called relative-state interpretation claim that
our experience supervenes upon macroscopic superpositions in a way that is more
complicated than one normally thinks. According to the “many worlds” version,
quantum measurements literally split the world into two or more mini-worlds – one
corresponding to each possible measurement outcome. The most interesting ver-
sions of Everettian theories, however, do not add anything to the wavefunction but
instead discover different observers as emergent from complex relations encoded in
the wavefunction of the world [13]. It is hardly necessary to say that the metaphysi-
cal implications of this view for our conception of ourselves, the external world and
probabilities—to name just three topics – are quite dramatic.

Finally, it is worth mentioning that there is a very different group (e.g. [9]),
inspired by Bohr that treats quantum mechanics instrumentally. These thinkers
consider the wavefunction to be solely an epistemic device that gives observers
information about the probabilities of finding various outcomes. Collapse of the
wavefunction is viewed as merely the modification of one’s subjective credence in
light of new information. Because the wavefunction does not represent a genuine
state of a real physical system, and these theorists are silent about what the informa-
tion is information about, the theory offers no physical picture of the world.

In general, no matter the solution to the measurement problem, we expect
any non-instrumental version of quantum mechanics to provide answers to vari-
ous metaphysical questions. Is the wavefunction epistemic or ontological? What is
the basic ontology (i.e. beables) of the theory? Do we live in � Hilbert space or
four-dimensional spacetime? What is the mechanism responsible for the non-local
quantum correlations? What is the interpretation of the probabilities given to us by
Born’s rule? Do measurements create or reveal the measured properties? Answers
to these questions will hang on both the best solution to the measurement problem
and the best interpretation of that solution. It is important not to confuse these two
issues. For instance, it is commonly said that quantum mechanics implies that atoms
don’t have determinate trajectories; but strictly speaking, these conclusions follow
only from some versions of some interpretations. The original Bohm theory is an
empirically adequate (for non-relativistic phenomena) counterexample to this claim,
for instance.

The same warning applies to what is one of the most vexed metaphysical
questions surrounding quantum mechanics, the question of determinism. (� Indeter-
minism and determinism in quantum mechanics) A physical theory is deterministic
if, roughly, given a complete state of the universe at any one time, a unique past
and future follow. With suitable assumptions classical mechanics is deterministic.
With the advent of quantum mechanics, many of the theory’s founders famously
declared that determinism was “dead”. The Schrödinger evolution of the wavefunc-
tion is deterministic; however, the collapse of the wavefunction is stochastic, so the



388 Metaphysics of Quantum Mechanics

full theory is indeterministic. Quantum mechanics proved, they thought, that “God
plays dice”. However, as we have just seen, this claim is interpretation-dependent.
There are plenty of no-collapse interpretations of quantum mechanics, e.g. Everett,
Bohm, and some versions of these are deterministic. The question of whether “God
plays dice” is still open.

(See Consistent histories, Ignorance interpretation, Ithaca Interpretation, Many
Worlds Interpretation, Modal Interpetation, Orthodox Interpretation, Transactional
Interpretation).

Interestingly, the many interpretations of quantum mechanics illustrate why
the line between metaphysics and physics is sometimes blurry. Given current
technology, there is no way to experimentally decide between, say, a Wignerian col-
lapse theory (“human consciousness causes collapse � Wigner’s friend”) and one
or more versions of GRW (“reaching a threshold of particle number in the system
makes collapse likely”). But in principle these theories do issue different predictions
for some observables. In this sense, the metaphysics of today may be the physics of
tomorrow. In addition, even before any crucial experiment is performed—and it is
not clear that there ever will be such between certain pairs of interpretations—we see
that science can have a real bearing on these metaphysical disputes. Scientists value
more than good predictions. They also prize simplicity, unification, consilience and
other theoretical virtues. Even if there is no test between two given interpretations,
there may be good reasons to adopt one over another. One interpretation may pos-
sess a symmetry others do not, resolve a problem others cannot, or uniquely extend
to a promising new theory (say, some version of � quantum gravity).
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Mixed State

Peter Mittelstaedt

The most general state of a proper quantum system S with � Hilbert space HS is
given by a self-adjoint positive operator with trace 1, i.e. by an operator

WS = WS
+ � 0 with tr {WS} = 1.

It can be shown that these positive trace class 1 operators form a convex set
T1
+(HS) [1].
Two kinds of states must be distinguished. If WS is idempotent, i.e. WS = WS

2,
then WS is a pure state given by an projection operator P[ϕ] where ϕ ∈ HS is an
element of HS. If, however, WS �= WS

2, then WS describes a mixed state. As any
self-adjoint operator, a mixed state WS can be decomposed according to its spectral
decomposition

WS =
∑
i

wi P[Mi]

with real numbers wi such that 0 � wi � 1 and projection operators P (� pro-
jection), which project on subspaces Mi of HS. It must be emphasised, however,
that the decomposition is not uniquely defined, since there are many other, non-
orthogonal decompositions of WS. If, in addition, the operator WS has a degenerate
spectrum, there are also infinitely many orthogonal decompositions.

There are two kinds of mixed states of S given by an operator WS =∑
i wi P [ϕi] with 0 � wi � 1, which are distinguished by their preparation.

(a) Mixture of states

Assume that a preparation apparatus does not work completely accurately
and prepares systems with states ϕ1, ϕ2, ϕ3 . . ., say, with a priori probabilities
p1, p2, p3 . . ., which depend on the construction of the apparatus. In this case, any
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single system is actually in one of the states ϕi , which one, however, is not known
to the observer who knows only the probabilities. This very special kind of a mixed
stated is called a “mixture of states” [2], or “real mixture” [3] or a “Gemenge” [4]. A
“Gemenge”�S(pk, ϕk) is a classical mixture of states ϕk with weightspk . Formally,
it can be described by the state operator WS =∑k wk P[ϕk], since this mixed state
operator leads to the same statistical predictions as the “Gemenge” �S(pk, ϕk).

(b) � Mixed state (in general)

Let S = S1 + S2 be a compound system with � Hilbert space H that consists of
two subsystems S1 and S2 with Hilbert spaces H1 and H2, such that H = H1⊗H2
is the tensor product Hilbert space. If S is prepared in a pure state �(S), then the
subsystems S1 and S2 are in the reduced mixed states W(S1) = tr2 {P[�(S)]} and
W(S2) = tr1{P[�(S)]}, where “trk” denotes the partial trace with respect to sys-
tem Sk . To say that the subsystem S1 is in a mixed state W(S1) means, that we
consider only those properties of the total system S that are concerned with the
degrees of freedom of system S1, neglecting in this way all possible correlations
between S1 and S2. (� Entanglement). The state W(S1) is a genuine mixed state
except when �(S) is a product state � = ϕ(S1) ⊗ ψ(S2). In this special situation
W(S1) is the pure state P[ϕ(S1)]. In general, W(S1) does not admit an “� ignorance
interpretation”. The mixed state W(S1) is also called – somewhat misleadingly –
“improper mixture” [3]. See also � density operator; objectification; states in quan-
tum mechanics; states, pure and mixed and their representation.
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Mixing and Oscillations of Particles

Andrzej K. Wróblewski

In 1955 Murray Gell-Mann and Abraham Pais analyzed the behaviour of neutral
particles under the operation C of charge conjugation which changes every par-
ticle into its anti-particle [1]. According to the proposed scheme of classification

of K mesons, the neutral kaon K0 was assumed to possess an anti-particle K
0

distinct from itself (at that time these particles were called θ0 and θ
0
, respectively).
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Gell-Mann and Pais were able to show that in that case the neutral kaon must be
considered to be a “particle mixture”, exhibiting two distinct lifetimes and different

decay modes. The two mesons K0 and K
0
, are states of definite strangeness S = +1

and S = −1, and they are produced as such in the strong interactions which con-
serve strangeness. However, when these neutral particles then propagate through
empty space both can decay to pions by the weak interactions, with |�S| = 1.

Their mixing can occur via virtual intermediate pion states, e.g. K0 � 2π � K
0
.

These are second-order�S = 2 weak transitions. In the modern language of quarks
and intermediate bosons, the transitions occur between valence quarks, as shown in
Fig. 1. (Quarks, see � Color Charge Degree of Freedom in Particle Physics; Particle
Physics; Parton Model; QCD; QFT).

At that time it was believed that the particles which decay by the weak inter-
actions were eigenstates of combined parity CP . These eigenstates are quantum

mechanical linear superpositions of the K0 and K
0
,

| K1〉 = [| K0〉+ | K0〉]/√2 of CP = +1,

| K2〉 = [| K0〉− | K0〉]/√2 of CP = −1.

Conservation of CP required the K1 to decay into two pions and the K2 into three
pions. Because of the large difference in available kinetic energy in two-pion and
three-pion decays, the K2 was expected to have much longer lifetime. In essence
Gell-Mann and Pais predicted that only half of the neutral kaons underwent the de-
cay into two pions which was well known at that time, while the other half remained
undetected. These bold predictions of Gell-Mann and Pais were soon confirmed ex-
perimentally. In 1957 Leon Lederman and his group discovered a long-lived neutral
kaon decaying into three pions [2]. The mean lifetime of K2 was about 500 times

Fig. 1 Feynman diagrams explaining the oscillations between K0 and K
0
. Similar ”box” dia-

grams account for the oscillations of neutral charm mesons D0 �D
0

and neutral bottom mesons

B0 �B
0
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longer than that of K1. In the following year the change in time of the nature of the
neutral particle produced in association with the &0 hyperon was detected [3]. The
particle, initially the K0 of strangeness +1, was observed to interact with matter to
produce another hyperon, thus proving to be a strangeness −1 particle. Yet another
experimental confirmation of the particle-mixture theory was the observation of re-
generation of the short-lived neutral K meson [4].

Thus, an initially pure beam of K0 will turn into its anti-particle K
0
while prop-

agating, which will turn back into the original particle, and so on. This is called
particle oscillation (strangeness oscillation, or more generally, flavour oscillation).
On observing the weak decay into leptons, it was found that a K0 always decayed

into the electron, whereas the anti-particle K
0

decayed into the positron. Analysis
of the time dependence of this semileptonic decay also showed the phenomenon of
flavour oscillation and allowed the extraction of the mass splitting between the K1
and K2. In 1964 Jim Christenson, James Cronin, Val Fitch, and René Turlay dis-
covered that CP invariance was violated in the decays of long-lived neutral kaons
[5]. Thus, the short-lived neutral kaon KS and the long-lived neutral kaon KL had

to be redefined as | KS〉 = [(1 + ε) | K0〉 + (1 − ε) | K0〉]/
√

2(1+ ε2) and

| KL〉 = [(1+ ε) | K0〉 − (1− ε) | K0〉]/
√

2(1+ ε2), where ε is a small parameter
responsible for CP symmetry breaking.

After the discovery of the charm quark and the bottom quark, physicists have

been searching for the flavour oscillations of neutral charm mesons D0 � D
0
and

neutral bottom mesons B0 � B
0
. The lifetimes of these mesona are of order of

a picosecond which makes the experiments much more difficult than those with
neutral kaons. The mixing of neutral B mesons was first studied in 1987 and that of
neutral D mesons was discovered only in 2007.

The mixing of quarks was first considered by Nicola Cabibbo in 1963 [6]. At
that time only three quarks, u, d , and s were known. In order to explain observed
differences in branching ratios of semileptonic decays of strange particles Cabibbo
proposed that the d and s quarks are mixed and it is the mixture d′ = d cos θC +
s sin θC which takes part in the weak interactions. The mixing angle θC = 12.7◦ is
called the Cabibbo angle. Later Makoto Kobayashi and Toshihide Maskawa [7] gen-
eralized this idea to the three families of quarks. In the Standard Model (� Quantum
field theory, particle physics) the mixing of quarks is described by a 3 × 3 matrix
called the CKM matrix after its proponents Cabibbo, Kobayashi and Maskawa. It

is written as

⎛
⎝ d ′
s′
b′

⎞
⎠ . = VCKM

⎛
⎝d

s

b

⎞
⎠. The elements of the CKM matrix have been

determined in a large number of experiments.
In 1957 Bruno Pontecorvo, inspired by the paper of Gell-Mann and Pais [1],

pointed out that if lepton number is not absolutely conserved and neutrinos have
finite masses, then mixing may occur between neutrino ν and its anti-particle, anti-
neutrino ν, so that neutrino could be a “mixed” particle [8]. At that time only one
neutrino was known. In 1962 Ziro Maki, Masami Nakagawa, and Shoichi Sakata
generalized Pontecorvo’s idea to the case of three families of leptons [9]. We
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know now that the neutrino oscillation data can consistently be described within
a three-neutrino mixing scheme with massive neutrinos, in which the flavor states
να(α = e, μ, τ ) are mixed with the mass states νi(i = 1, 2, 3) via the unitary
3 × 3 Pontecorvo-Maki-Nagakawa-Sakata lepton mixing matrix (PMNS matrix).
The mass states νi(i = 1, 2, 3) propagate with slightly different frequencies be-
cause of their mass differences. If at the start there is a pure νe beam, oscillations
would occur and at subsequent times one would have admixtures of νe with νμ and
ντ (� Particle physics). The oscillations of neutrinos originating from interactions
of high energy cosmic ray particles in earth’s atmosphere were discovered in 1998
by the Super-Kamiokande Collaboration [10]. Neutrino oscillations also provided
the explanation of the deficit of neutrinos coming to earth from the sun as observed
in several experiments which were sensitive only to νe produced in thermonuclear
reactions in the sun’s interior. It was experimentally confirmed that in the passage
to the earth some of these electron neutrinos changed into muon neutrinos which
could be detected by the Solar Neutrino Observatory in Canada [11].

Primary Literature

1. M. Gell-Mann, A. Pais, Behavior of Neutral Particles Under Charge Conjugation, The Physical
Review 97, 1387 (1955)

2. K. Lande, E. T. Booth, J. Impeduglia, L. Lederman, Observation of Long-Lived Neutral V
Particles, The Physical Review 103, 1901 (1957)

3. E. Boldt, D. O. Caldwell, Y. Pal, θ0
1 - θ0

2 Mass Difference, Physical Review Letters 1, 150 (1958)
4. R. H. Good, R. P. Matsen, F. Muller, O. Piccioni, W. M. Powell, H. S. White, W. B. Fowler,

R, W. Birge, Regeneration of Neutral K Mesons and Their Mass Difference, The Physicial
Review 124, 1223 (1961)

5. J. H. Christenson, J. W. Cronin, V. L. Fitch, R. Turlay, Evidence for the 2π Decay of the K0
2

Meson, Physical Review Letters 13, 138 (1964).
6. N. Cabibbo, Unitary Symmetry and Leptonic Decays, Physical Review Letters 10, 531 (1963)
7. M. Kobayashi, T. Maskawa, CP-Violation in the Renormalizable Theory of Weak Interactions,

Progress in Theoretical Physics 49, 652 (1973)
8. B. Pontecorvo, Mesonium and Anti-Mesonium (in Russian), Soviet Journal Experimental and

Theoretical Physics 33, 549 (1957); Inverse β−Processes and Non-Conservation of Lepton
Charge (in Russian), ibidem 34, 247 (1958)

9. Z. Maki, M. Nakagawa, S. Sakata, Remarks on the Unified Model of Elementary Particles,
Progress in Theoretical Physics 28, 870 (1962).

10. Y. Fukuda et al., (Super-Kamiokande Collaboration), Evidence for Oscillations of Atmospheric
Neutrinos, Physical Review Letters 81, 1562 (1998).

11. Q. R. Ahmad et al., (SNO Collaboration), Direct Evidence for Neutrino Flavor Transforma-
tion from Neutral-Current Interactions in the Sudbury Neutrino Observatory, Physical Review
Letters 89, 011301 (2002)

Secondary Literature

12. H. Frauenfelder, E. M. Henley: Nuclear and Particle Physics (Benjamin, Reading, Mass. 1975,
507–50)

13. D. H. Perkins, Introduction to High Energy Physics, 4th Edition, Cambridge University Press
2000.



394 Modal Interpretations of Quantum Mechanics

Modal Interpretations of Quantum Mechanics

Meir Hemmo

Modal interpretations seek to solve the measurement problem within no collapse
quantum mechanics and to account for the nonlocal � correlations in quantum me-
chanics in EPR- and Bell-type scenarios in a way that might be compatible with
special relativity. Various modal interpretations have been proposed, from the mid
1970s onwards, by Van Fraassen [1, 2], Kochen [3], Healey [4], Dieks [5], Bub [6],
and others. These versions are quite different from each other. We present below
some of their main, and in some cases shared, features.

Consider the scheme of a generic measurement of the z-spin of a spin half parti-
cle. Suppose that the composite system, particle plus pointer, is initially prepared at
t = 0 in the state

|�0〉 =
(
α|−z〉 + β|+z〉

)
⊗ |ψ0〉, (1)

where |α|2 + |β|2 = 1 and we assume that α �= β. Here the |±z〉 are the z-spin
eigenstates and |ψ0〉 is the ready state of the pointer. Suppose that the interaction
correlates, respectively, the |±z〉 states with the eigenstates |ψ±〉 of the pointer
observable. We assume that the time evolution is described by the � Schrödinger
equation alone, i. e. there is no collapse of the state, as modal interpretations require.
This means that the interaction maps the initial state at t = 0 to the superposition at
the final time t = 1:

|�1〉 = α|+z〉 ⊗ |ψ+〉 + β|−z〉 ⊗ |ψ−〉, (2)

in which there is a one-to-one correlation between the � spin states |±z〉 and the
pointer states |ψ±〉. But due to the entanglement in (2) one can only assign reduced
states to the particle and to the pointer which are quantum mechanically mixed:

ρ1 = α2|+z〉〈+z| + β2|−z〉〈−z|
ρ2 = α2|ψ+〉〈ψ+| + β2|ψ−〉〈ψ−|. (3)

This is the scenario in which the measurement problem (or � Schrödinger’s cat
paradox) arises in standard quantum mechanics. See also � Bohmian mechanics;
Measurement theory; Metaphysics in Quantum Mechanics; Objectification; Pro-
jection Postulate. On the standard theory, an observable is assigned one of its
eigenvalues if and only if the system is in the corresponding eigenstate (this is some-
times called the eigenstate-eigenvalue link). And so, if (2) were the final state after
the measurement, the pointer observable (and also the z-spin) would have no defi-
nite value, and so the measurement would have no definite outcome. To solve this
problem, the so-called � projection postulate or the collapse of the state in measure-
ment is introduced in the standard theory: that is, the state (2) collapses onto one of
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its components |+z〉⊗|ψ+〉 or |−z〉⊗|ψ−〉with respective probabilities |α|2 or |β|2
as given by the � Born rule.

Assuming that quantum states don’t collapse in measurement, how could we
understand the state (2) and the quantum mechanical probabilities for collapses in a
way that is consistent with our experience of definite pointer readings? Van Fraassen
[1, 2] observed that any decomposition of the � mixed state of, say, the pointer in
the post-measurement state (2) can be interpreted as describing a set of what he
calls possible value states of the pointer. The quantum mechanical (Born) proba-
bility can then be understood, not as describing the effects of collapses as in the
standard theory, but rather as describing our ignorance with respect to the actual
value state of the pointer when it is in the mixed state (3) generated by (2). By this
Van Fraassen in fact rejects the standard interpretation of quantum states via the
eigenstate-eigenvalue link (in fact, only its ‘only if’ direction). On his proposal, the
quantum state doesn’t fix (with probability one) the value state of the pointer, nor
does it completely determine the set of the possible value states. The quantum state
has a dynamical role (and is called dynamical state) in generating the probabilities
over the possible value states and in restricting the possible sets of values states (in
future interactions). But of course this latter restriction is not enough since a mixed
state is not uniquely decomposable as a mixture of pure states (� states, pure and
mixed) (with an ignorance interpretation of the probabilities) and moreover not all
decompositions of, say the pointer’s mixed state can be possible at the same time,
on pain of a Kochen-Specker contradiction. And so the question in Van Fraassen’s
approach is which amongst all the possible sets of value states allowed by the quan-
tum state correspond to the actual circumstances in our world (this is the origin of
the term modal interpretation.) Van Fraassen’s proposes various conditions to this
effect in what he calls the Copenhagen Variant of the modal interpretation (see [2]).

Kochen [3] proposed an interpretation which can be seen as a more restric-
tive modal interpretation than Van Fraassen’s (Kochen doesn’t refer to his view as
modal). On his proposal the sets of the possible properties of the particle and of the
pointer in our example are determined by the quantum state (2) as follows. Accord-
ing to the biorthogonal decomposition theorem (for proof see [7, 8]), the expansion
in which the state (2) is written in terms of the biorthogonal bases states, |±z〉 and
|ψ±〉 on the factor spaces, always exists and is unique whenever the coefficients
are not equal. So we can consider the biorthogonal expansion in (2) as depicting
uniquely the sets of the possible properties (or value states) of the pointer and of the
particle together with the quantum mechanical probability distribution over these
properties. (Degenerate cases of equal probabilities might be treated as unphysical
having ‘measure zero’.) And as in Van Fraassen’s approach we can interpret the
quantum probabilities as reflecting ignorance about the values actually possessed
by the particle and the pointer without collapsing the state (2). Kochen developed a
relational view which is meant to justify the choice of the biorthogonal expansion
of (2) as somehow preferred by relying on the symmetry of this expansion. He calls
this symmetric relation witnessing.

The idea that the biorthogonal expansion of states like (2) has a distinguished
physical role in depicting the actual value states of quantum systems has been
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developed in great detail with an explicit realistic interpretation of quantum me-
chanics by Healey [4] and Dieks [5] (with interesting insights and differences). In
Healey’s approach the biorthogonal expansion plays an important role in assign-
ing properties that are in general holistic (i.e. properties that are not inherited from
the properties of the subsystems; see below) to composite systems. For example,
if we add the description of the pointer’s interaction with the environment in our
measurement scheme above, the final state will be:

|�2〉 = α|+z〉 ⊗ |ψ+〉 ⊗ |E+〉 + β|−z〉 ⊗ |ψ−〉 ⊗ |E−〉, (4)

where the environment states |E±〉 relative to the pointer states |ψ±〉 become very
quickly approximately orthogonal for almost any initial state of the environment
(this is one feature of environmental � decoherence, see [9]). And now Healey
assigns properties via Kochen’s prescription to any bi-partition of the three subsys-
tems, e. g. particle+ pointer and environment, pointer and particle+ environment,
etc., where the holistic properties of composite systems are assigned to the
composites independently of the properties of the subsystems that make them up.
For example, in the state (4) the composite properties of, say the particle+ pointer
turn out to be close (in inner product) to the products of the properties of the particle
and of the pointer alone (this is due to the decoherence of the pointer), whereas the
property of the total system particle+pointer+environment which is just their quan-
tum state isn’t even nearly a product property. In Healey’s approach such properties
play an essential role in accounting for EPR- and Bell-type � nonlocality.

Vermaas and Dieks [10] generalised Kochen’s prescription by adopting a rule
that prefers the spectral (or diagonal) decomposition of the reduced density opera-
tors corresponding to quantum mechanically mixed states. The spectral resolution
of a � density operator always exists and is unique by the spectral theorem (because
density operators are self-adjoint; see any textbook on functional analysis). And this
means that every system can be assigned value states directly via its quantum state,
so that one need not rely on the quite restrictive bi-partition form of the biorthogonal
expansion. And moreover, Kochen’s prescription turns out to be a special case of the
spectral theorem for a composite of two systems in a pure state. This can be seen
in our example above, where the reduced states in (3) of the pointer and of the par-
ticle are already written in their spectral form. But the Vermaas–Dieks prescription
can be applied also in the triple case above in state (4) in order to assign properties
directly to the three subsystems. Under certain idealized assumptions about the in-
teraction with the environment, the properties assigned to the pointer via the spectral
resolution of its reduced state will be close to the pointer states in (3) in correspon-
dence with our experience. And in this sense the Vermaas–Dieks prescription (as
well as Kochen’s) turns out to be empirically adequate. But again, this is not the
most general case (see below).

In standard quantum mechanics spectral and biorthogonal decompositions don’t
seem to have the special role assigned to them in modal approaches (as ‘markers’
of properties). And so it is natural to ask in this context what is special from a
physical point of view about these choices. Of course, as we just mentioned, the
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question might turn out to bear on empirical considerations, and indeed we shall
come back to it shortly. (For various attempts to justify these rules, see Baccia-
galuppi [8], Dieks and Vermaas [11], Healey and Hellman [12], Bub [6], Vermaas
[13] Ruetsche [14] and Bub and Clifton [15], and references therein.) But it is impor-
tant to note that what characterises modal approaches is not some particular choice
of value states but rather that some such choice is made (sometimes under certain
conditions), and that the quantum mechanical probability distribution has nothing
to do with collapses but rather expresses ignorance about the actual value states. In-
deed, there are other modal approaches with entirely different ways of defining the
value states. For example, in Bub’s approach [6] the value states are assigned only
to macroscopic systems that interact with their environment, and they correspond
to � observables that commute with the decoherence Hamiltonian. In our exam-
ple above, this means that only the pointer is assigned extra value states, and these
will be, by construction, the |ψ±〉 (since the pointer observable commutes with the
decoherence Hamiltonian). This idea has been also developed by Hemmo [16,17]
and applied to the � consistent histories approach. In yet other versions the value
states are selected by entropy minimisation (Spekkens and Sipe [18]), or in various
relational ways (Bene and Dieks [19], Berkovitz and Hemmo [20]).

It is clear that modal interpretations solve the measurement problem for ideal
measurements which have final states like (2), since for example, the reduced state
of the pointer (taken by partial tracing) is diagonal in the pointer basis as can be seen
from (3). However, the measurement problem immediately re-appears if we relax
idealizations and allow for imperfect correlations and disturbances in the measure-
ment interaction. It has been noticed by Albert and Loewer [21] that for nearly
degenerate initial states (e. g. states in which α and β in (1) are almost equal) slight
imperfections in the measurement are enough to make the final state of the pointer
not even nearly diagonal in the pointer basis. And this just means in modal inter-
pretations that the measurement has no determinate pointer readings. Bacciagaluppi
and Hemmo [22] showed that the problem might be avoided if one takes into account
the decoherence interaction of the pointer with the environment as in (4), but, again,
only under certain idealizations, this time on the decoherence interaction. It has been
shown by Bacciagaluppi [23] that in continuous models of decoherence (with posi-
tion being the pointer observable) it is the continuous nature of the interaction with
the environment itself which seems to result in extreme near � degeneracy. And
under these circumstances the modal recipe seems to break down, since it picks out
delocalised � wave functions for the pointer. Obviously, this result strongly under-
mines modal interpretations in the versions sketched above. For more details on this
problem, see Bacciagaluppi [8], Hemmo [16], Bub [6], Dieks and Vermaas [11],
Healey and Hellman [12] and Vermaas [13] and references therein. Similar prob-
lems arise in the attempts to generalise these versions to quantum field theory (see
Dieks [24], Butterfield and Halvorson [25] and for criticism Earman and Reutche
[26]). Other versions of the modal interpretation, for example, versions relying on
decoherence (Bub [6], Hemmo [17]) and the relational versions (Bene and Dieks
[19], Berkovitz and Hemmo [20]) are unaffected by this problem.
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Another consequence of modal interpretations is that composite systems do
not inherit their properties from their subsystems (this is sometimes called fail-
ure of property composition). Although, as we said, for macroscopic systems in
decoherence situations (as in (4)) property composition can be recovered, in general
the properties assigned to a composite system are not products of the properties of
its subsystems, in fact they do not generally have the form of product properties at
all. It has been shown by Bacciagaluppi [27] and Clifton [28] that the introduction
of property composition (together with the fact that the � Hilbert space of com-
posite systems can be factorised into factor spaces in many different ways) leads
to a Kochen-Specker contradiction. Therefore, properties in different factorisations
cannot be pasted together (see also Butterfield and Halvorson [25]). This problem
prompted the so-called atomic modal interpretation (Bacciagaluppi and Dickson
[29]) in which the above rules are applied only to a class of fundamental atomic
systems, whereas composites of atomic systems inherit their properties from their
subsystems by composition.

We saw up to now that in modal interpretations the complete physical state of a
system is given by a pair of states at each time: the generally mixed quantum state
and the actual value state of the system. The time evolution of the quantum state of
a system is fixed deterministically by the Schrödinger evolution of the state of the
total system. And this evolution is supposed to generate an ignorance probability
distribution over the value states at all times. But, there seems to be no connection
between the evolution of the quantum state of the system and the value states that
actually obtain at a time. The problem arises already in our simple example above.
The particle has a spin + value in some direction at t = 0 in state (1), and by the
modal recipe, it has a +z or −z value at t = 1 in state (2). We know that state (1)
evolves to state (2) by the Schrödinger equation. But this evolution doesn’t explain
what is it that brings about the +z or −z value at t = 1. In standard quantum me-
chanics the connection between the quantum state and the outcomes we observe is
made by the collapse postulate and the Born rule. But here we don’t know whether
and how the value state at t = 1 depends on the value state at t = 0. It seems that
in the modal recipe some connection of this sort is missing. And obviously the fact
that the probability distribution over the value states is given by the quantum proba-
bilities is in equal need of explanation: given that the probabilities reflect ignorance,
why are they distributed in accordance with Born’s rule?

Following Bell’s [30] stochastic dynamics for hidden variable theories, Baccia-
galuppi and Dickson [29] proposed a class of general dynamics for the value states
that answers these questions. According to their proposal modal interpretations are
in fact hidden variable theories where the dynamics of the value states is in general
stochastic, and it yields the quantum probability distribution over the value states
at any given time, just as desired. Bacciagaluppi, Donald and Vermaas [31] have
further shown that the evolution of value states can be naturally defined to follow
a continuous path in Hilbert space. These two results have more or less solved the
problem of dynamics for modal interpretations in the spectral resolution versions.
An alternative view which relies on sets of decoherent histories and their probabil-
ities has been proposed by Hemmo [17]. An explicitly nonlocal dynamics which



Modal Interpretations of Quantum Mechanics 399

M

depends on the measure of � entanglement of the state of a system has been pro-
posed by Berkovitz and Hemmo [20] in the context of relativity theory.

Modal interpretations reproduce the quantum mechanical correlations in EPR
and Bell-type experiments, and so they are nonlocal in Bell’s sense, just like stan-
dard quantum mechanics. But are they consistent with relativity theory, in the sense
that they satisfy relativistic (Lorentz) invariance? In this context no-go theorems
have been proved by Dickson and Clifton [32], Arntzenius [33] and Myrvold [34]
given some locality conditions on the dynamics of the properties and certain mesh-
ing conditions on their assignment by all Lorentz frames. Dickson and Clifton
require local properties of spacelike separated systems in Bell-type situations to
evolve under local dynamical laws. If no measurements are carried out, a condition
they call stability requires the properties to evolve deterministically. If measure-
ments are carried out the local transition probabilities are determined by the local
reduced state of each system, such that all Lorentz frames agree on the local tran-
sition probabilities (this is called invariant transition probabilities). They show that
modal interpretations with such local dynamics are committed to Bell-type inequal-
ities, and therefore cannot reproduce the quantum mechanical predictions.

Myrvold arrived at a similar result by considering four intersecting hyperplanes
in Minkowsky spacetime, also in a Bell-type situation. The joint probabilities of
the properties of spatially separated systems at the regions of intersection of the
hyperplanes are just the Born probabilities, as determined by the quantum state
on each hyperplane. Myrvold then argues that relativistic invariance requires that
these joint probabilities be mutually consistent. And he shows, on the assumption
that the dynamics of the properties satisfies a certain locality condition (roughly,
that local properties remain invariant under transformations that leave the reduced
state of the system unchanged), that this is impossible for some quantum states and
evolutions. This is again, a Bell-type scenario: given a locality condition (on the dy-
namics), there is no joint probability distribution over the properties, which yields
as marginals the quantum mechanical predictions on all hyperplanes.

The dynamics by Bacciagaluppi and Dickson [29] is local in the above sense, and
therefore seems to be ruled out by the no-go theorems. Berokovitz and Hemmo [20]
proposed a nonlocal dynamics which gets around the no-go theorems, but in which
the value states and the transition probabilities turn out to be hyperplane-dependent.
Versions in which properties are assigned to systems only under certain decoher-
ence conditions also seem to get around these theorems (see e. g. Dieks [35]). But
the crucial and persisting and still open question is whether these or other modal
interpretations can be extended to a genuine relativistic theory.

Literature

1. B. Van Fraassen: Quantum Mechanics: An Empiricist View (Clarendon Press, Oxford 1991,
Chap. 9)

2. B. Van Fraassen: The Einstein-Podolsky-Rosen Paradox. Synthese 29, 291–309 (1974)



400 Modal Interpretations of Quantum Mechanics

3. S. Kochen: A New Interpretation of Quantum Mechanics. In Symposium on the Foundations
of Modern Physics, ed. by P. Lahti, and P. Mittelstaedt (World Scientific, Singapore 1985,
151–69)

4. R. Healey. The Philosophy of Quantum Mechanics: An Interactive Interpretation (Cambridge
University Press, Cambridge 1989)

5. D. Dieks: Resolution of the Measurement Problem Through Decoherence of the Quantum State.
Phys. Lett. A 142, 439–46 (1989)

6. J. Bub: Interpreting the Quantum World (Cambridge University Press, Cambridge 1997)
7. E. Schrödinger: Discussion of Probability Relations Between Separated Systems. Proc. Cam.

Philol. Soc. 31, 555–563 (1936)
8. G. Bacciagaluppi: Topics in the Modal Interpretation of Quantum Mechanics (Cambridge

University, PhD thesis, 1996)
9. E. Joos, H.D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, I.-O. Stamatescu: Decoherence and the

Appearance of a Classical World in Quantum Theory (Springer, Berlin 2003)
10. P. Vermaas, D. Dieks: The Modal Interpretation of Quantum Mechanics and Its Generalization

to Density Operators. Found. Phys. 25, 145–58 (1995)
11. D. Dieks, P. Vermaas (eds.): The Modal Interpretation of Quantum Mechanics (Kluwer,

Dordrecht 1998)
12. R. Healey, G. Hellman (eds.): Quantum Measurement, Decoherence and Modal Interpreta-

tions: Minnesota Studies in the Philosophy of Science 17 (University of Minnesota Press,
Minneapolis 1998)

13. P. Vermaas: A Philosopher’s Look at Quantum Mechanics: Possibilities and Impossibilities of
a Modal Interpretation (Cambridge University Press, Cambridge 1999)

14. L. Ruetsche: On the Verge of Collapse: Modal Interpretation of Quantum Mechanics (Univer-
sity of Pittsburgh, PhD thesis, 1995)

15. J. Bub, R. Clifton: A Uniqueness Theorem for ‘No Collapse’ Interpretations of Quantum Me-
chanics. Stud. Hist. Philos. Mod. Phys. 27, 181–219 (1996)

16. M. Hemmo: Quantum Mechanics Without Collapse: Modal Interpretations, Histories and
Many Worlds (Cambridge University, PhD thesis, 1996)

17. M. Hemmo: Quantum Histories in the Modal Interpretation. In Dieks and Vermaas [11],
253–77 (1998)

18. R. Spekkens, J. Sipe: A Modal Interpretation of Quantum Mechanics Based on a Principle of
Entropy Minimization. Found. Phys. 31, 1431–64 (2001)

19. G. Bene, D. Dieks: A Perspectival Version of the Modal Interpretation of Quantum Mechanics
and the Origin of Macroscopic Behavior. Found. Phys. 32, 645–71 (2002)

20. J. Berkovitz, M. Hemmo: Can Modal Interpretations of Quantum Mechanics Be Reconciled
with Relativity. Philos. Sci. 72, 789–801 (2005)

21. D. Albert, B. Loewer: Wanted Dead Or Alive: Two Attempts to Solve Schrödinger’s Paradox.
In A Fine, M. Forbes, L. Wessels (eds.), PSA 1990, vol 1, 277–85 (East Lansing, Michigan,
1990)

22. G. Bacciagaluppi, M. Hemmo: Modal Interpretations, Decoherence and Measurements. Stud.
Hist. Philos. Mod. Phys. 27, 239–77 (1996)

23. G. Bacciagaluppi: Delocalised Properties in the Modal Interpreration of a Continuous Model
of Decoherence. Found. Phys. 30, 1431–1444 (2000)

24. D. Dieks: Events and Covariance in the Interpretation of Quantum Field Theory. In Ontolog-
ical Aspects of Quantum Field Theory, ed. by M. Kuhlmann, H. Lyre and A. Wayne (World
Scientific, Singapore 2002, Chap. 11)

25. J. Butterfield, H. Halvorson (eds.): Quantum Entanglement: Selected Papers, by Rob Clifton
(Clarendon Press, Oxford 2004)

26. J. Earman and L. Ruetsche: Relativistic Invariance and Nodal Interpretations. Philos. Sci. 72
(4), 557–83 (2005)

27. G. Bacciagaluppi: A Kochen-Specker Theorem in the Modal Interpretation of Quantum Me-
chanics. Int. J. Theor. Phys. 34, 1205–16 (1995)

28. R. Clifton: Why Modal Interpretations of Quantum Mechanics Must Abandon Classical Rea-
soning About the Values of Observables. Int. J. Theor. Phys. 34, 1302–12 (1995)



Modal Interpretations of Quantum Mechanics 401

M

29. G. Bacciagaluppi, M. Dickson: Dynamics for Modal Interpretations. Found. Phys. 29,
1165–201 (1999)

30. J. S. Bell: Beables for Quantum Field Theory. Speakable and Unspeakable in Quantum Me-
chanics (Cambridge University Press, Cambridge 1987, pp. 173–80)

31. G. Bacciagaluppi, M. Donald, P. Vermaas: Continuity and Discontinuity of Definite Properties
in the Modal Interpretation. Helv. Phys. Acta 68, 679–704 (1995)

32. M. Dickson, R. Clifton: Lorentz-Invariance in Modal Interpretations. In Dieks and Vermaas
[11] 9–48 (1998)

33. F. Arntzenius: Curiouser and Curiouser: A Personal Evaluation of Modal Interpretations. In
Dieks and Vermaas [11], 337–77 (1998)

34. W. Myrvold: Modal Interpretations and Relativity. Found. Phys. 32, 1773–84 (2002)
35. D. Dieks: Consistent Histories and Relativistic Invariance in the Modal Interpretation of Quan-

tum Mechanics, Phys. Lett. A 265, 317–325 (2000)



N
Neutron Interferometry

Helmut Rauch

Neutrons are elementary massive particles consisting of one “up” and two “down”
quarks; but in neutron interference experiments they exhibit wave features only. In
this case, the � wave function describing thermal neutrons can be split, reflected
and superposed coherently by means of dynamical Bragg diffraction from a perfect
silicon single crystal. The coherent beam parts are widely separated, and they can be
influenced individually by nuclear, magnetic or gravitational interaction. This tech-
nique has first been tested 1974 at a small 250 kW TRIGA reactor in Vienna [1].
The monolithic design of such interferometers guarantees the parallelism of the
reflecting lattice planes up to a fraction of their lattice distance, which is a nec-
essary condition for coherent beam splitting. This experimental method has been
adapted from X-ray interferometry developed earlier [2]. The figure shows various
types of such interferometers as they are used now at several neutron sources around
the world.

A well balanced and insulated interferometer can provide interference fringes
with a contrast higher than 90% (see figure). The intensity modulation due to rel-
ative phase shifts between the coherent beams can be achieved by any material
or magnetic or gravitational field. The related interaction for neutrons with wave-
length λ can be described by an index of refraction n which causes a phase shift
χ = (1 − n) k D = −NbcλD where k = 2π/λ denotes the k-number, N the parti-
cle density, bc the coherent scattering length and D the thickness of the material

I ∝
∣∣∣ψ I + ψ II

∣∣∣2 ∝ 1+ cosχ

D. Greenberger et al. (eds.), Compendium of Quantum Physics: Concepts, Experiments, 402
History and Philosophy, c© Springer-Verlag Berlin Heidelberg 2009
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Neutron interferometry always takes place in the regime of self interference since
the phase space density of existing neutron sources is rather small, with the
consequence that during a certain time interval there is only one neutron within
the interferometer while the following one is still in a uranium nucleus of the
reactor fuel.

The main scientific achievements during the years of applying and developing
this neutron interferometric technique were:

• The verification of the 4π-symmetry of spinor wavefunctions (� Berry’s Phase)
• The observation of the Earth gravitational and rotational effect
• The observation of coherent spin superposition
• The observation of the neutron Fizeau effect
• The observation of the magnetic Josephson effect
• The observation of the topological � Aharonov–Casher and the scalar� Aharonov–Bohm effect
• The observation of single and multiple photon exchange within time-dependent

magnetic fields
• The experimental separation of the geometric and dynamical phases

A detailed description of these experiments can be found in the book “Neutron In-
terferometry”, [3].

More recently, quantum contextuality could be verified which implies an entan-
glement of external (beam path) and internal (� spin) degrees of freedom for a single
particle system. In this connection, the � Kochen–Specker Theorem has been tested
indicating that a measurement of commuting � observables depends on the order
in which the measurements have been done [4]. Several recent investigations have
also dealt with non-adiabatic and non-cyclic phases and they show that nowadays
the complete quantum state can be measured. Neutron phase tomography has been
developed as well, providing a kind of non-interaction imaging technique. Broad
interest have found investigations directed towards decoherencing and dephasing
effects (� decoherence) since the separated beams can be exposed to various fluc-
tuating conditions (magnetic noise fields, etc.). The transition from a pure to a� mixed state and several state retrieval methods have also been investigated. The
sensitivity against fluctuating and dissipative forces of coherent and non-classical� Schrödinger cat-like states is an important topic in order to understand how a
classical world emerges from the quantum mechanical properties of nature.

Perfect crystal neutron interferometers can be seen as relatively robust
macroscopic quantum devices since the whole system operates under ordinary
atmospheric conditions and environmental effects have to become rather strong to
destroy the typical quantum behaviour. Neutron interferometry can be considered
as a pioneering step preparing the path towards interferometry and quantum optics
with even heavier particles like atoms, molecules, fullerenes, etc. (� Mesoscopic
quantum phenomena). Nowadays neutron interferometry has been established as a
laboratory tool for basic quantum phenomena.
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No-Cloning Theorem

Stefan Weigert

There is no quantum-mechanical device which outputs a perfect copy of an arbitrary
pure quantum state |ψ〉 while leaving the original intact. Such an apparatus would
be described by a unitary operator Û acting as

Û |ψ〉 ⊗ |0〉 = |ψ〉 ⊗ |ψ〉 ,
where |0〉 is a fixed ‘blank’ input state. However, due to the linearity of the
operator Û this equation is consistent only if the input states |ψ〉 are pairwise or-
thogonal. A contradiction arises if one requires that the device work correctly for
non-orthogonal states as well. It is also impossible to duplicate (or broadcast) non-
commuting mixed states.

Two proofs of the No-Cloning theorem [1, 2] have been published in 1982, both
triggered by a claim that the use of entangled states (� entanglement) would al-
low one to transmit information with supraluminal speed. However, the proposed
scheme cannot be implemented since it relies on the perfect cloning of quantum
states. Considering the elementary nature of its proof, the No-Cloning theorem and
its generalization to mixed states [3] have been discovered surprisingly late.

The No-Cloning theorem captures a fundamental aspect of the structure of quan-
tum mechanics. Its limiting character plays an important role in the theory of
quantum information. For example, the theorem forbids to copy the information
carried by a state |ψ〉 at the end of a � quantum computation. Thus, although
desirable, no safety copies of the result embodied in the state |ψ〉 can be made,
it cannot be distributed to other parties or multiplied for � quantum state recon-
struction. At the same time, the security of quantum cryptography (� quantum
communication) relies on the No-Cloning theorem: if two parties establish a se-
cret key by exchanging quantum states through a quantum channel, eavesdroppers
are not able to reliably copy the states unknown to them. The theorem is consistent
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No-Cloning Theorem

Stefan Weigert

There is no quantum-mechanical device which outputs a perfect copy of an arbitrary
pure quantum state |ψ〉 while leaving the original intact. Such an apparatus would
be described by a unitary operator Û acting as

Û |ψ〉 ⊗ |0〉 = |ψ〉 ⊗ |ψ〉 ,
where |0〉 is a fixed ‘blank’ input state. However, due to the linearity of the
operator Û this equation is consistent only if the input states |ψ〉 are pairwise or-
thogonal. A contradiction arises if one requires that the device work correctly for
non-orthogonal states as well. It is also impossible to duplicate (or broadcast) non-
commuting mixed states.

Two proofs of the No-Cloning theorem [1, 2] have been published in 1982, both
triggered by a claim that the use of entangled states (� entanglement) would al-
low one to transmit information with supraluminal speed. However, the proposed
scheme cannot be implemented since it relies on the perfect cloning of quantum
states. Considering the elementary nature of its proof, the No-Cloning theorem and
its generalization to mixed states [3] have been discovered surprisingly late.

The No-Cloning theorem captures a fundamental aspect of the structure of quan-
tum mechanics. Its limiting character plays an important role in the theory of
quantum information. For example, the theorem forbids to copy the information
carried by a state |ψ〉 at the end of a � quantum computation. Thus, although
desirable, no safety copies of the result embodied in the state |ψ〉 can be made,
it cannot be distributed to other parties or multiplied for � quantum state recon-
struction. At the same time, the security of quantum cryptography (� quantum
communication) relies on the No-Cloning theorem: if two parties establish a se-
cret key by exchanging quantum states through a quantum channel, eavesdroppers
are not able to reliably copy the states unknown to them. The theorem is consistent
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with quantum teleportation (� quantum communication) since the unknown input
state is destroyed irretrievably once the process has been completed.

Quantum cloning machines have been devised to produce one or more approx-
imate copies of an unknown quantum state [4]. To achieve optimal cloning the
devices take into account the number N of identically prepared (unknown) input
states, the number M of desired output copies, whether pure or mixed states are to
be duplicated, and whether the cloner is required to work for arbitrary input states,
i.e. universally, or for a limited set of input states only. Optimal cloning machines
are conceptually linked to � quantum state reconstruction and the impossibility to
use quantum correlations (� correlations in quantum mechanics) for signaling.
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Nonlocality

Henry Stapp

Nonlocality: In quantum mechanics the term “nonlocality” refers to an apparent
failure of a certain relativity-theory-based � locality assumption. This assumption
is that no information about which experiment is freely chosen and performed in
one space-time region can be present in a second space-time region unless a point
traveling at the speed of light (or less) can reach the second region from the first.
This assumption is valid in relativistic classical physics. Yet quantum theory per-
mits the existence of certain experiments in which this locality assumption seems to
fail. Einstein called the faster-than-light effect evidently entailed by conventional
(Copenhagen) quantum theory “spooky action at a distance”. (For Copenhagen
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interpretation, see � Born rule; Consistent Histories; Metaphysics in Quantum Me-
chanics; Orthodox Interpretation; Schrödinger’s Cat; Transactional Interpretation.)

The simplest of the experiments pertinent to this issue involve two measurements
performed in two space-time regions that lie so far apart that nothing traveling at
the speed of light or less can pass from either of these two regions to the other.
The experimental arrangements are such that an experimenter in each region – or
perhaps some device that he has set up – is able to choose between two alternative
possible measurements. The locality assumption then demands, for each region, that
the truth of statements exclusively about the outcomes of the possible measurements
performed in that region be independent of which experiment is “freely chosen” in
the other (faraway) region.

The first actual experiment exhibiting these features was carried out by Aspect,
Grangier, and Roger [1] � Aspect Experiment. Dozens of other such experiments
have been carried out since, and the validity of the quantum predictions appears to
be borne out.

The significance of this nonlocality property of quantum theory is clouded by
several considerations. The first is that although the conventional quantum precepts
do appear to entail the need for some sort of sub rose, behind-the-scenes, faster-
than-light transfer of information (� Einstein Locality), this effect cannot be used
to send a superluminal signal: no one can use this effect to transfer, superluminally,
information that he or she possesses to a faraway colleague � superluminal commu-
nication. This limitation on signal velocity, together with other relativistic features
of the actually verifiable predictions of the theory, allows relativistic quantum field
theory to be called “relativistic” in spite of the apparently entailed faster-than-light
transfer of information.

It might seem contradictory to assert first that locality fails, and hence that infor-
mation about which experiment is freely chosen and performed in a first region is
present in a second region, yet then to assert that the experimenter in the first region
cannot use this feature to send information to a colleague in the second region. The
resolution of the puzzle is that the dependence of faraway measurable properties
on the choice made by the nearby experimenter arises only via nature’s choice of
the outcome of the nearby experiment. The faraway colleague, lacking all knowl-
edge about which outcome occurs in the sender’s region, must treat that outcome as
unknown. This leads to a quantum theoretical averaging over these outcomes that
exactly eliminates all dependence upon the sender’s free choice of anything that the
receiving colleague can observe.

A second clouding consideration is this: in order to analyze the consequences of
the non-dependence of some property upon a free choice one must consider, theo-
retically, or logically, within one argument, the consequences of various alternative
choices. But, in the cases of interest, only one of the alternative possibilities can
actually occur in any one existing empirical/experimental situation. Thus the argu-
ment needed to demonstrate the existence of faster-than-light transfer of information
requires some sort of counterfactual reasoning that involves considering in one ar-
gument the predictions about outcomes of several experiments that cannot all be
actually performed.
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A logical opening to counterfactual argumentation is provided by the precepts of
quantum theory themselves. Bohr often emphasized the freedom of experimenters
to choose which experiment is actually performed. This freedom to choose is im-
portant in quantum theory for the following reason: the quantum state (� wave
function) of a physical system provides the basis for predictions about outcomes
of whichever experiment is freely chosen and performed: predictions for various
alternative possible choices are given by the theory, even though only one of the al-
ternatives can be realized physically. On the other hand, the structure of the quantum
mathematics entails that the outcomes of certain pairs of measurements, between
which the experimenter is considered free to choose, cannot be simultaneously rep-
resented within this mathematics. This theoretical limitation upon the theoretically
representable outcomes is reconciled with the claim of the pragmatic or epistemo-
logical completeness of quantum theory by noting that whenever the outcomes of
the two measurements cannot be theoretically represented simultaneously then the
two experiments also cannot be physically performed simultaneously. Hence the
theoretical and physical limitations match, and completeness can be claimed.

The validity of this way of arguing for the completeness of the theory was
brought into question by a 1935 paper by Einstein, Podolsky, and Rosen � EPR
Problem. Because these authors were endeavoring to prove an internal inconsis-
tency of the quantum precepts, they were careful not to assume that, contrary to the
precepts of quantum theory, the outcomes of mutually incompatible measurements
were simultaneously well defined. On the contrary, they used the quantum prohibi-
tion on well defined values of mutually incompatible properties to deduce that they
could influence by their nearby choice which of two faraway mutually incompatible
properties was real. Thus what they actually proved was that Copenhagen precepts
entailed the existence of faster-than-light transfer of information, though not faster-
than-light signaling.

In 1964 John Bell published a follow-up to the 1935 paper of Einstein et al.
Because it was, specifically, the Copenhagen prohibition against well defined val-
ues for the outcomes of mutually incompatible measurements that allowed Einstein
et al. to deduce the need for faster-than-light transfer of information, Bell [2] in-
quired whether dropping that Copenhagen precept could extinguish the need for
faster-than-light information transfer. Bell forthrightly contravened the Copen-
hagen ban on determinate outcomes of mutually incompatible measurements by
introducing “deterministic hidden variables”. These � hidden variables specify,
simultaneously, the outcomes of all of the alternative possible experiments under
consideration. Bell then showed [� Bell’s Theorem] that, within this deterministic
hidden variable structure, one cannot reconcile the validity of the predictions of
quantum theory (in these experiments) with the locality assumption that the out-
comes in each region be independent of which experiment is performed in the other
(faraway) region.

The hidden-variable machinery introduced by Bell is actually superfluous: all
that is really needed is the assumption that in any given empirical instance, prior to
the independent choices made by the experimenters in the two far-apart region, any
one of the allowed pairs of choices could occur, and that for each such pair of choice
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(of which pair of measurement is performed) some long sequence of N pairs of num-
bers represent outcomes that could occur in the pair of regions if N repetitions of the
selected pair of measurements were performed. The existence of such sequences of
pairs of numbers specifying possible outcomes follows from Bell’s hidden-variable
machinery. But they refer only to performable actions and observable outcomes.
Thus they can be stated without bringing in any notions of “microscopic”, “invisi-
ble”, or other “hidden” variables. The assumption that such a set of pairs of numbers
specifying outcomes exists is called “counterfactual definiteness”. This assumption
cannot be consistently reconciled with the assumed validity of the predictions of
quantum theory for each of the measurement possibilities available to the experi-
menters, if one demands also that outcomes in each region be independent of which
experiment is chosen and performed in the faraway region [3].

Bell [4] and others [5] went on to consider, instead of deterministic local hidden-
variable theories, rather probabilistic local hidden variable theories. But, as shown
by Stapp [6], and independently by Fine [7], this change does not substantially
change the situation, because the two detailed formulations are, from a logical point
of view, essentially equivalent.

The locality assumption fails, therefore, under either of these two opposing con-
ditions on outcomes: either the Copenhagen prohibition of well defined values of
outcomes of mutually incompatible measurements, or the counterfactual definite-
ness assumption that for each of the two times two, or four, possible combinations
of measurements available to the experimenters, some set numbers represents out-
comes that could occur if that pair of measurement were to be selected by the
experimenters.

In both of these two cases some special conditions pertaining to outcomes are
imposed.

The question thus naturally arises whether locality fails also under the weaker
assumptions that, for some selected experimental situation, the predictions of quan-
tum theory are valid and the two choices (one made in each of two very far apart
regions, and determining which measurement will be performed in that region) can
be treated as two independent free variables.

The answer is affirmative! Under experimental conditions described by Hardy [8]
there are again two far apart experimental space-time regions, labeled R and L, and
in each region an experimenter chooses between a first or second possible measure-
ment and he observes and records there whether the first or second possible outcome
of the single measurement that he performs occurs. In some specific frame of refer-
ence the space-time region L will be earlier than the space-time region R. Quantum
theory makes four pertinent predictions. The first two prediction combine with the
locality condition that “the outcome observed and recorded in the earlier space-time
region does not depend upon which measurement is chosen and performed later” to
prove, under the condition that the first of the two alternative possible measurements
is chosen in the earlier region, the truth of the following statement [9]:

SR: If performing the first measurement in the later region gives the first of the
two possible outcomes, then performing, instead, the second measurement would
(necessarily) give the first of the two possible outcomes of that second experiment.
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Under the condition that the first measurement is performed in the earlier region,
the first two predictions of quantum theory in the Hardy case are:

1. If the first measurement is performed in the later region and the first possible
outcome appears there, then the first possible outcome must have appeared in the
earlier region.

2. If the second measurement is performed in the later region and the first possi-
ble outcome appeared in the earlier region, then the first possible outcome must
appear in the later region.

Notice that the first of these two predictions is analogous in form to the predic-
tions used by Einstein, Podolsky, and Rosen, in their argument, except that here the
possible outcomes are just two in number, rather that a continuum. But the second
prediction, which is again a prediction with certainty (probability unity), in the ide-
alized limit that is being considered here, pertains to the case in which the pairing of
measurements in the two regions is different from what it was for the first prediction.
This crossing of the pairings creates a potent new logical situation.

Combining these two predictions with the assumption that changing the choice
of which experiment was performed in the later region cannot affect what already
happened earlier in the faraway region entails the truth of SR.

The second two predictions hold under the condition that the second measure-
ment is performed in the earlier region. They are:

3. If the first possible outcome appears in the earlier region and the first measure-
ment is performed in the later region, then the first possible outcome will appear
in the later region

4. If the first possible outcome appears in the earlier region and the second mea-
surement is performed in the later region, and then the second possible outcome
will sometimes occur in the later region,

Quantum theory predicts that no matter which of the measurements under con-
sideration is performed, each possible outcome will occur half the time. Thus the
common premise of (3) and (4) is sometimes satisfied. Combining these two pre-
dictions with the assumption that changing the choice of which experiment was
performed in the later region cannot affect what already happened earlier in the
faraway region entails that SR. sometimes fails: the assertion SR is false.

The fact that statement SR about outcomes of measurements performable in the
later region is true if the first possible measurement is chosen and performed in
the earlier region but is false if the second possible measurement is chosen and
performed in that earlier region means that information about which experiment is
performed in the earlier region must be present in the later region. This conclusion
contradicts the locality condition that information about which choice is freely made
by an experimenter in one region cannot be present in a second region unless the
second can be reached from the first by traveling no faster than light.

David Mermin [10] gives a rather compelling argument that the predictions
of quantum theory are very mysterious if one tries to deny the existence of su-
perluminal information transfer. Shimony [11] and Jarrett [12], like most other
contributors to the nonlocality issue, tie their analyses to Bell’s theorem, and hence
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to hidden-variable reality” assumptions that conflict with the precepts of quantum
theory. Hence it is not clear that it is the locality assumption, rather than the reality
assumption, that fails.

Jarrett and Shimony call by the names “locality” and “parameter independence”,
respectively, a certain property that is satisfied by the predictions of quantum theory,
and that is entailed by the requirement of no superluminal signaling. Using Jarrett’s
weak definition (i.e., weak locality requirement) one would call quantum theory
“local”. However, Shimony emphasizes that because entangled states of well sepa-
rated bodies exist “there is a peculiar kind of quantum nonlocality in nature. To get
to the crux of the matter I have defined locality to be the requirement of no superlu-
minal transfer of information about which measurements are chosen and performed
by experimenters, and taken nonlocality to be the failure of that condition. Accord-
ing to this definition, conventional (Copenhagen) quantum theory and relativistic
quantum field theory are nonlocal, though in a way that does not allow superlumi-
nal signaling.
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Nuclear Fission

Hanne Andersen

Nuclear fission is a process in which a heavy nucleus splits into two much lighter
nuclei. For some very unstable nuclei fission can happen spontaneously, but that is
a very rare event. Usually, the process is induced by the excitation of the nuclei by
bombarding them with particles or with gamma rays. Heavy nuclei have a greater
neutron/proton ratio than the lighter nuclei, and the fragments will therefore contain
too many neutrons. To reduce the excess of neutrons, two or three neutrons will be
emitted by the fragments immediately, and the fragments will then decay by β-decay
until stable isotopes are reached.

Nuclear fission was discovered in the 1930s when nuclear physics was still a
young research field. At this time, a completely new realm of phenomena opened
up when researchers discovered that radioactivity could be induced in heavy ele-
ments when bombarding them with neutrons. Initially, it had been discovered by
Irene Curie (1897–1956) and her husband Fréderic Joliot (1900–1958) in 1934 that
when bombarding light elements with alpha particles, these would transmute into ra-
dioactive isotopes of near-by elements. Because of the positive charge of the alpha
particles, Curie and Joliot could only induce radioactivity in light elements. How-
ever, Enrico Fermi (1901–1954) soon realized that neutron bombardment could be
used to induce radioactivity in heavy elements. After a series of experiments, Fermi
and his collaborators reported that for a large number of elements of any atomic
weight, neutron bombardment would produce unstable elements which emitted β-
particles. Fermi’s team therefore concentrated on the heavy nuclei thorium and
uranium, since their general instability might give rise to successive disintegrations.
For uranium, the last element in the periodic table as it was then known, such a series
of β-emissions would lead to elements that did not exist in nature, and it attracted
the attention of scientists around the world when Fermi’s group reported that they
had identified the first such transuranic element by chemical analysis of one of the
decay products.

The German chemist Ida Noddack (1896–1978) objected that no conclusion of
this sort could be drawn on the basis of the chemical analyses conducted by Fermi’s
team. She imagined that maybe a nucleus could break apart into several light el-
ements, but the chemical analyses that the Fermi group had made were based on
the assumption that the element had an atomic number close to that of uranium and
did not take the possibility of light elements into account. However, Noddack’s sug-
gestion that the nucleus could split did not comply with the physical model of the
nucleus that was accepted among her contemporaries. In his quantum mechanical
theory of α-decay from the late 1920s, George Gamow (1904–1968) had shown that
if nuclear disintegration was treated as a � tunneling phenomenon, only particles up
to the size of the α-particle were energetically capable of tunneling through the po-
tential barrier. This result had been tacitly accepted among nuclear physicists to such
an extent that the possibility of larger decay products were never even mentioned.
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Diagrams used to illustrate disintegration were only suited for illustrating the trans-
formation of one nucleus into another nucleus of almost the same size. Similarly,
most notations could only represent the idea that a projectile hit a nucleus which, as
a result, transformed into another nucleus by the emission of a particle. Noddack’s
suggestion did not fit with this way of thinking, and it remained ignored by other
scientists in the field.

Other groups of scientists soon began pursuing Fermi’s line of research. Not only
Curie and Joliot in Paris started similar experiments, also a group in Berlin consist-
ing of the physicist Lise Meitner (1878–1968) and the two chemists Otto Hahn
(1879–1968) and Fritz Strassmann (1902–1980) went into the race of discovering
new transuranic elements. This research was based on two assumptions. Nuclear
physics dictated that the nuclear changes would always be very small and that the
chemical analyses of the decay products could therefore be focused on just a few
heavy elements. Further, although it was at the time disputed whether there would
be a second series like the lanthanides in the periodic table, it was still assumed that
the transuranic elements would chemically resemble the transition elements.

Based on these assumptions several new transuranic elements were identified,
but most results were complex and required a variety of new hypothesis to be ex-
plained. Some transmutations led to extraordinarily long beta decay series which
were difficult to understand. Other processes were not supposed to be energeti-
cally possible. Likewise, too many decay series seemed to originate from the same
isotope. As these anomalies accumulated, it became increasingly difficult to in-
tegrate them all into a picture that made sense, and it was reported in several
publications that the results were troubling and difficult to reconcile with standard
concepts of the nucleus.

Finally came the anomaly that led to the discovery of nuclear fission. Hahn and
Strassmann had identified a particular daughter element as radium in a precipita-
tion process where it behaved like the alkaline earth element barium. However, on
December 19th, 1938 Hahn and Strassmann discovered that they could not separate
the product that they assumed to be radium from its barium carrier. The element they
had produced did not just behave chemically like barium, it was barium. But then
the original nucleus had not just transmutated into another heavy nucleus, instead
it had simply split into much lighter elements. In a series of letters to Meitner, who
had had to flee from Germany, Hahn described that although he knew that it was
ruled out by the laws of physics, as a chemist he had to conclude that the nucleus
had been divided.

Meitner discussed the results of Hahn and Strassmann with her nephew, the
physicist Otto Frisch (1904–1979). On the basis of another model of the nucleus
which had been advanced by the Danish physicist Niels Bohr (1885–1962) in
1936 and which treated the nucleus as an oscillating droplet, Meitner and Frisch
conceived the explanation that adding energy by neutron bombardment, these oscil-
lations could become so violent that the drop would divide into two smaller drops.
Further, they pointed out that for heavy nuclei the surface tension produced by the
short range nuclear forces was so effectively reduced by the increased nuclear charge
that only relatively little energy was required to produce such critical deformations.
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Thus, instead of considering quantum-mechanical tunnel-effects that would neces-
sarily be extremely small for the large masses involved, Meitner and Frisch offered
an explanation that was essentially classical. This explanation was consolidated fur-
ther a few months later when Bohr and Wheeler offered quantitative computations
of the qualitative ideas suggested by Meitner and Frisch.

However, this new discovery had far-reaching consequences for all the pre-
vious results on transuranic elements. New categorizations of all the previously
examined processes had to be made, now distinguishing transuranic elements from
fission products by their lack of recoil. Thus, Fréderic Joliot in Paris and Edwin M.
McMillan (1907–1991) at Berkeley both developed experiments in which they mea-
sured the energy of the fission fragments by observing the distances they travelled
from each other as a result of their mutual recoil.

Once fission had been discovered, a number of new research questions immedi-
ately suggested themselves. Most importantly, the splitting of a heavy nucleus into
two light nuclei would produce a few free neutrons. If the released neutrons could
cause new nuclei to split, a continuous chain reaction might occur. How to sustain
such a chain reaction became another new research question. Due to the difference
between the binding energy of a heavy nucleus and that of its fission products energy
is also produced in the process. With the world at the edge of war, this research ques-
tion gradually became more and more important and eventually gave rise to what
has later become one of the prime examples of modern big science: the Manhattan
project’s creation of the first atomic bomb.
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Nuclear Models

Brigitte Falkenburg

The atomic nucleus is made up of protons and neutrons, where the latter are made up
of quarks (� particle physics). It is a complex compound system which is held to-
gether by the strong interaction and may change its charge by radioactive processes
due to the (electro)weak interaction, giving rise to � nuclear fission and fusion. Due
to the complexity of the nuclei and their constituents (the nucleons, the proton and
neutron), there are several nuclear models. It is remarkable that quantum mechanical
and � semi-classical models co-exist with the quark � parton model of � quantum
field theory. Quarks, see � Color Charge Degree of Freedom in Particle Physics;
Mixing and Oscillations of Particles; Particle Physics; Parton Model; QCD; QFT.

History

In the classical Rutherford model of the atom (� Rutherford atom; Bohr’s atom
model), the atomic nucleus is a classical point charge which generates a Coulomb
potential. Ernest Rutherford (1871–1937) first found deviations from his scattering
formula (� large angle scattering) in 1909, when he made scattering experiments
with α particles and hydrogen. He interpreted them in his classical model as indica-
tions of nuclear force effects. At that time it was already clear that the atomic nucleus
must have a complex structure. In 1932, James Chadwick (1891–1974) discovered
the neutron. In the same year, Werner Heisenberg (1901–1976) proposed a dynamic
symmetry of the neutron and proton in view of the charge independence of the nu-
clear forces, giving rise to the concept of “isospin” [4]. In the 1930s, Carl Friedrich
von Weizsäcker (1912–2007) developed the liquid droplet model. In the late 1940s,
Maria Göppert–Mayer (1906–1972), Hans D. Jensen (1907–1973) and Eugene
P. Wigner (1902–1995) developed the nuclear shell model [1, 2]. In the 1950s,
Robert Hofstadter (1915–1990) investigated the structure of heavy and light nuclei
by measuring their electromagnetic form factors in � scattering experiments [3].
In the 1960s and 1970s, the quark model of the proton and neutron was developed
in terms of group theory (� symmetry; particle physics, the quark–parton model
was developed on the basis of electron-nucleon scattering, and the quark model was
established (� large angle scattering, parton model, scattering experiments).

Liquid Droplet Model and Shell Model

The liquid droplet model and the shell model are based on the quantum mechanics
of a many-particle system. According to the liquid droplet model, a heavy nucleus
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behaves like a Fermi gas. As � spin 1/2 particles, the protons and neutrons obey
Pauli’s principle, i.e., they are in different quantum states and behave independently.
According to the nuclear shell model, the nuclei form a periodic system of stable
and unstable energy states. In both models, there is a sum rule for the mass and
energy of the nucleus and its constituent parts. The nucleus mass differs from the
mass of its protons and neutrons by the binding energy.

Form Factors

The Rutherford model of the atom and Rutherford’s scattering formula are the ba-
sis for describing the nucleus as a non-pointlike structure in terms of form factors
[5]. In the classical model of scattering, an internal structure of the scattering cen-
ter is described by an extended charge distribution ρ(r) rather than a point charge.
In the non-relativistic case, the form factor is the Fourier transform of the charge
distribution. For the Coulomb potential, the classical description of the scattering
gives exactly the same result as the quantum mechanics of scattering. Based on
this exact � correspondence, the classical concept of the form factor could be ex-
tended to quantum mechanics. In this way, a semi-classical model of the nucleus is
obtained, according to which the charge distribution generated by a quantum me-
chanical many-particle system corresponds to a classical charge distribution. The
classical form factor describing the nucleus is then combined with the quantum
mechanics of scattering. According to this semi-classical model, a pointlike scatter-
ing center has a form factor 1 which does not depend on the momentum transfer of
the scattering. In � scattering experiments, pointlike particles give rise to “scaling”
behaviour, i.e., to a dimensionless effective cross section that does not depend on the
energy of the scattered probe particles, while non-pointlike structures or extended
charge distribution give rise to “scaling” violations, i.e., an energy dependence of
the dimensionless quantity extracted from a measured cross section.

The Quark–Parton Model

In high energy physics, the above semi-classical model was extended to the rela-
tivistic domain, giving rise to the “structure functions” of the proton and neutron.
The unexpected discovery of � large-angle scattering and “scaling behaviour” of
electron-nucleon scattering in 1968 gave rise to the quark–parton model of the pro-
ton and neutron [6]. The quark–parton model is a constituent model of the nucleons
proton and neutron. It gives sum rules for the mass-energy, momentum and spin of
the quarks and the proton or neutron. Scaling violations in certain kinematic do-
mains indicate that there are further nucleon constituents, namely quark-antiquark
pairs generated by virtual processes of quantum field theory and gluons, i.e., the ex-
change particles of the strong interaction or quanta of � quantum chromodynamics.
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Peter Mittelstaedt

The Concept of Objectification

In quantum mechanics, the term “objectification” is used for the attribution of a
state or of the value of an observable to a quantum system. Correspondingly, the
concepts of strong and weak objectification are used by some authors for state attri-
bution and value attribution, respectively. Objectification may refer to the situation
before the measurement (the preparation) and to the situation after a measurement
(the reading). In particular, the so-called “problem of objectification” is concerned
with the situation after the measuring process. It is also called the “measurement
problem”. See also � Bohmian mechanics; Measurement theory; Metaphysics in
Quantum Mechanics; Modal Interpretation; Projection Postulate.

This problem has a long history. Already in his book “Mathematische
Grundlagen der Quantenmechanik” of 1932, J. von Neumann [1] observed, that
a first and preliminary theory of the quantum measurement process does not lead to
the objectification of the measurement result such, that the object system possesses
the measured value of the observable in question after the measurement. For cor-
recting this obvious deficiency of quantum mechanics, von Neumann introduced the
“projection postulate” as a new and additional requirement for quantum mechanics.
In contrast, Heisenberg [2] argued that the indispensability of the separation be-
tween the quantum object and the apparatus after the measurement is the real origin
for the impossibility to objectifying the values of the system and of the apparatus –
but not a deficiency of quantum theory.

Objectification in the Quantum Measurement Process

The quantum theory of � measurement, first conceived by J. von Neumann (ref
[1], 233–238) and further developed my many authors [3, 4, 7] considers the object
system S as well as the measurement apparatus M as proper quantum systems. The
measurement of an observable A, with discrete and nondegenerate values Ai and
eigenstates ϕ (Ai) is treated in three steps.1 In the first step, the preparation, the
systems S and M are dynamically independent and prepared in pure states ϕ and �,

1 For sake of simplicity we mention here the only simplest version of the measurement process.
Generalisations can be found in the literature, e.g. in ref. [3] and [4].
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respectively. In the second step, the premeasurement, the interaction Hamiltonian
Hint(A) between systems S and M is turned on for some time interval �t . If the
interaction Hint(A) is suited for a measurement of the observable A, then the prepa-
ration state �(S +M) = ϕ ⊗ � of the compound system S +M will be changed
within the time interval �t to the state after the premeasurement

� ′(S+M) = exp{−(i/�)Hint(A)�t}�(S+M) =
∑

ciϕ (Ai)⊗�i,

where �i are eigenstates of the pointer observable that refer to pointer values Zi .
The coefficients ci are given by the scalar products ci = (ϕ(Ai), ϕ). It can be
shown that for any observable A there exists an interaction Hint(A) that provides a
state � ′(S+M) after the premeasurement with the bi-orthogonal decomposition as
shown here.

In the third step of the measurement, objectification and reading, the systems S
and M are again dynamically independent but still correlated. Considered as sub-
systems of S+M in the entangled state � ′(S+M), S and M can be described by the
correlated � mixed state W ′

S =
∑ |ci |2 P[ϕ(Ai)], W ′

M = ∑ |ci |2 P[�i], respec-
tively. There are two kinds of mixed states. Formally, a mixed state is a self-adjoint
positive operator W with trace 1. As any self-adjoint operator it can be decomposed
according to its spectral decomposition as W = ∑ wi P[ϕI] with 0 � wi � 1.
(The states W ′

S and W′
M discussed here are already written in their spectral de-

composition). The two kinds of mixed states are distinguished by their preparation.
a) If object systems are prepared in states ϕi , say, with a priori probabilities wi ,
then any single system is said to be in a mixed state W = ∑

wi P[ϕI], i.e. it
is in one of the states ϕi with probability wi . This very special kind of a mixed
state is called a “mixture of states” [4], a “real mixture” [8], or a Gemenge [2]. It
is a classical mixture which can, however, formally be described by the operator
W =∑ wi P[ϕI]. b) If a compound system S = S1 + S2 of subsystems S1 and S2
is prepared in a pure state �(S), then the subsystem S1, say, is in the reduced mixed
state W(S1) = tr2{P[�(S)]} where “tr2” denotes the trace with respect to system
S2. The state W(S1) is a mixed state which does, however, in general not admit
an “� ignorance interpretation”. It is also called “improper mixture” [8]. Spec-
tral decomposition, see � Density operator; Ignorance interpretation; Measurement
theory; Operator; Probabilistic Interpretation; Propensities in Quantum Mechanics;
Self-adjoint operator; Wave Mechanics.

The two mixed states W′
S and W′

M that appear in the third step of the measuring
process are improper mixtures of this kind, which do not admit ignorance interpre-
tation. This means, that it is not allowed to say that the system S with the state W′

S
is actually in one of the states ϕ(Ai), but the observer does not know the state. In
other words, neither the state ϕ(Ai), nor the value Ai can be attributed to the system,
which means that the measuring result cannot be objectified. The opposite assump-
tion, that the system S were in a state ϕ(Ai) and would possess the value Ai , leads
to a contradiction with the statistical predictions of quantum mechanics. – The same
conclusions hold, mutatis mutandis, for the state W′

M of the apparatus M, and for
the state �i and the value Zi of the pointer.
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The impossibility to objectify the values Ai of the measured observable and even
the values Zi of the pointer observable, is called the “measurement problem”. There
are many attempts to solve this problem, either within the framework of quantum
mechanics or by convenient generalisations or modifications of this theory.2

Objectification of Unsharp Observables
and Unsharp Objectification

The most promising attempt to solve the problem of objectification within the well
known quantum mechanics in � Hilbert space consists of a generalisation of the
concept of an observable to unsharp � observables. Formally, the projection-valued
or (PV) measures, which correspond to � self-adjoint operators, are replaced in
this attempt by the more general positive operator valued (POV) measures. Orig-
inally, the expectation of the advocates of this attempt was, that in spite of the
non-objectification theorems for (PV) observables3 at least unsharp (POV) observ-
ables can be objectified.

However, within the quantum theory of measurement that is formulated in terms
of (POV) observables, it could be shown that neither system objectification nor
pointer objectification can be obtained. There was only a small chance to achieve
pointer objectification, if even for the pointer observable an unsharp (POV) observ-
able is used. This situation is also called “unsharp objectification” [5, 6]. However,
reading of an unsharp pointer observable corresponds to a situation, where pointer
states which belong to different pointer values, are no longer strictly orthogonal.
Thus, “one cannot claim with certainty, that the reading one means to have taken is
reproducible on a ‘second look’ at the pointer”.4 Hence, even if unsharp objectifi-
cation could be achieved in this way, we would loose the reliability of the results of
our reading.
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Objective Quantum Probabilities

Storrs McCall

Objective quantum probabilities represent the polar opposite to the Bayesian ap-
proach to quantum probabilities, which assumes probabilities to be subjective
degrees of belief. In the objective theory, probabilities of quantum events are part
of the physical world, and take their values independently of what human beings
believe. The first objective theory was Karl Popper’s propensity theory of prob-
abilities, which identified propensities as the dispositional properties of particles
to assume certain states under given conditions [1]. The propensity theory placed
Popper squarely on the “particle” side of de Broglie’s and Bohr’s � wave-particle
duality. Propensities, however, suffered from the defect that Popper was unable to
specify where in the physical world the values of his propensities lay. The present
theory deals with this problem in locating precise quantum probability values in
space-time structure.

Imagine that a spin-1/2 particle with direction of � spin at an angle of 60◦ to the
vertical is passed through an “HV apparatus”, a vertically-oriented Stern–Gerlach
magnet with two exit channels which separates particles into a “spin-up” stream
(direction of spin v or vertical) and a “spin-down” stream (direction of spin h or hori-
zontal). The spin-60◦ particle has a probability of cos2 30◦ = 3/4 of emerging in the
spin-up channel. In the objective theory, this value is encoded in space-time structure
in the following way. Imagine that at the time the particle enters the apparatus the
4-dimensional manifold divides into non-mutually-accessible future branches, and
that on 75% of these branches the particle is measured spin-up and that on 25% it is
measured spin-down. Figure 1, part (i), depicts a simple instance of this branching
in space-time.

The future branches represent possible outcomes of the experiment, and the
relative proportionality of sets of branches containing different kinds of outcome
represent the probabilities of each outcome. But when the particle has exited from
the apparatus there is only one actual outcome, and this “passage from potential-
ity to actuality” (Heisenberg [2]) is represented by the progressive vanishing of all
branches but one in space-time structure (Fig. 1 part (ii)). There will, of course,
always be many more branching surfaces and future branches higher up on the se-
lected branch.
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Part (ii): time t+ t’Part (i): time t

Fig. 1 At time t , 75% are spin-up branches and 25% spin-down branches. Hence the probability
of a spin-up branch being randomly selected as the sole surviving “actual” branch is 0.75

The emergence of actuality, and the progressive vanishing of all but one fu-
ture branch, is one of the two principal differences between the present theory and
the � many worlds interpretation of quantum mechanics. The other is that in the
many-worlds theory the probabilities of the different future outcomes are “put in by
hand”, whereas in the objective theory probability values are represented by branch-
proportionality. The probability of a spin-up or a spin-down outcome is determined
by the proportionality of the spin-up and spin-down branch subsets relative to the
set of all branches above a given branching surface. (In the example above, this is
the totality of spin-up and spin-down branches when the particle measured by the
HV apparatus has spin-orientation 60◦). The latter set is symmetric in the sense that
each branch has an equal chance of being selected as the actual branch. The breaking
of this symmetry and the selection of the actual branch models the collapse of the
superposition, i.e. the superposition of vertically-oriented and horizontally-oriented
spin-states which describes the state of the particle when it enters the apparatus.
Collapse in branching space-time is constituted by random branch selection of the
actual branch.

In the example given of the particle with spin-orientation 60◦ the probabilities of
the different future outcomes were 3/4 and 1/4, and it might be asked whether only
rational probability values, corresponding to proportions among finite sets of dif-
ferent outcomes, can be objectively represented. The answer is no. Although Georg
Cantor has shown that there can be no fixed proportions among subsets of a denu-
merably infinite set, there exist non-denumerably infinite sets of branches with a
tree-like structure which possess subsets with proportionality corresponding to any
real number between 0 and 1 [3]. Under appropriate initial conditions, the proportion
of spin-up branches in some experiment will be precisely cos2 20◦, an irrational
number.
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In relativistic 4-dimensional Minkowski space-time, the surfaces along which
branches split are 2-dimensional spacelike hypersurfaces. These are constant-time
hyperplanes in different frames of reference, and since the number of different
inertial frames is unlimited, so will be the number of families of parallel hyper-
surfaces along which space-time branching occurs. Each of these families partitions
space-time. The hypersurfaces in them criss-cross one another, and make the over-
all branching structure very complex. The complexity is necessary if we are to have
a way of relativistically transforming the description of a quantum process in one
frame of reference to a description of the same process in another frame [4]. The
fact that branching is along spacelike hypersurfaces greatly increases the number of
branches, since in one and the same set of branches there may be found, for example,
proportionalities (and hence probabilities) for the outcomes of a � Stern–Gerlach
experiment in Montreal, for the possible transition from one energy state to another
of a hydrogen atom in Alpha Centauri, and for the pending death of a mosquito in
Mexico. The probability values of all these different events are Lorentz-invariant,
remaining the same no matter which hypersurface they sit upon.

An important consequence of the space-time modelling of objective quantum
probabilities, and in particular the splitting of branches along spacelike hypersur-
faces, is the light shed by this approach on the nonlocal correlations and influences
seen in the EPR � Aspect experiment. If two entangled photons (� light quan-
tum) with parallel polarization emitted by an atomic cascade are sent through a
pair of aligned two-channel HV analyzers, either both photons will pass h or both
will pass v. If the analyzers are misaligned, the left analyzer being HV and the
right one oriented at an angle ϕ to the vertical, as in Fig. 2, the probabilities of
the joint measured outcomes (v, ϕ+), (v, ϕ−), (h, ϕ+), and (h, ϕ−) are respectively
p(v, ϕ+) = p(h, ϕ−) = 1/2 cos2 ϕ, p(v, ϕ−) = p(h, ϕ+) = 1/2 sin2 ϕ [5].

When ϕ = 30◦, 1/2 sin2 ϕ = 1/8 and 1/2 cos2 ϕ = 3/8. Let A and B denote
the polarization measurement events on the left and right photons respectively. A
branching space-time diagram yielding the probability values for the joint outcomes
(v, ϕ+), (v, ϕ−), (h, ϕ+), and (h, ϕ−) is given in Fig. 3.

From the diagram, p(v) = p(v, ϕ+)+p(v, ϕ−) = 3/8+1/8 = 1/2, and p(ϕ+) =
p(v, ϕ+)+ p(h, ϕ+) = 3/8+ 1/8 = 1/2. Consequently p(v, ϕ+) �= p(v)× p(ϕ+),
which is to say that the outcome v on the left is not independent of the outcome ϕ+
on the right. The EPR experiment provides an instance of the “distant correlations”
of observed outcomes that have intrigued and baffled students of quantum physics
for the last 70 years.

Since the two photons in the entangled quantum state are flying apart from each
other at the speed of light, the two measurements at A and B will be spacelike sepa-
rated events. Their outcomes are correlated, but the correlation cannot be explained

+ 
−

φHV
v
h

S

Fig. 2 Two entangled photons leave a source S and enter left and right polarization analyzers
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Fig. 3 The relative
proportions of possible joint
measurement outcomes when
φ = 30◦
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in terms of “� hidden variables”, or instruction sets which travel with the photons.
The problem becomes particularly acute when a frame of reference is chosen in
which A occurs before B, or vice versa. If the stochastic outcome of the left mea-
surement is v, then the probability of the right photon being measured ϕ+ is 3/4.
But if the left outcome happens to be h, then the probability for ϕ+ on the right is
1/4. How does the information about the outcome on the left get communicated to
the photon on the right, so that it “knows” its probability of being measured ϕ+?
Barring superluminal signalling (� superluminal communication), which would re-
quire causal influences travelling faster than light, there exists no apparent answer
this question.

That being said, an explanation of the distant EPR correlations based on branch-
ing space-time structures is possible, when splitting takes place along spacelike
hypersurfaces. Figure 3 is a picture of such a structure relative to a frame of ref-
erence in which the left and right measurement events are simultaneous. Figure 4
pictures the same experiment in a frame in which A occurs before B. Since A and B
are spacelike separated events, such a frame always exists.

In Fig. 4, splitting occurs along a constant-time hypersurface on which A occurs,
but relative to which B is future. The photon at A has a 50% probability of being
measured v or h. If it is measured v, the branches on which it is measured h vanish
instantaneously, along the whole length of the hypersurface. On the sole remaining
v-branch, the probability of the right photon being measured ϕ+ is 3/4. If, however,
the stochastic outcome of the left measurement had been h, then all v-branches
would have vanished, and the probability of the right photon passing ϕ+ would
have been 1/4 instead of 3/4.

Figure 5 is a picture of the same EPR experiment in a frame in which the right
measurement B occurs before A. As before, branch attrition explains how the
right outcome ϕ+ or ϕ− instantaneously affects the probabilities for the outcome
on the left. The conclusion is that branch attrition along spacelike hypersurfaces
or hyperplanes provides an objective, realistic explanation of the instantaneous
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Fig. 4 In a frame in which A occurs before B, the probabilities for the right outcome depend upon
the outcome of the left measurement
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Fig. 5 When B occurs before A, the dependence is reversed. The probability of the left outcome
depends on the right outcome

information transfers which underlie the distant correlations of the EPR experiment.
These information transfers do not involve superluminal signalling, since nothing
travels from B to A or vice versa. Nevertheless, information is effectively transferred
by the instantaneous vanishing of the non-actual branches along hypersurfaces. See
also � Probability in Quantum Mechanics; Propensities in Quantum Mechanics.
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Observable

Paul Busch and Pekka Lahti

The term observable has become the standard name in quantum mechanics for what
used to be called physical quantity or measurable quantity in classical physics. This
term derives from observable quantity (“beobachtbare Grösse”), which was used by
Werner Heisenberg in his groundbreaking work on � matrix mechanics [1] to em-
phasize that the meaning of a physical quantity must be specified by means of an
operational definition. Together with a state (� states in quantum mechanics), an ob-
servable determines the probabilities of the possible outcomes of a measurement of
that observable on the quantum system prepared in the given state. Conversely, ob-
servables are identified by the totalities of their measurement outcome probabilities.
Examples of observables in quantum mechanics are position, velocity, momentum,
angular momentum, spin, and energy. � Spin; Stern–Gerlach experiment; Vector
model.

In elementary quantum mechanics, the observables of a physical system are rep-
resented by, and identified with, selfadjoint operators A acting in the � Hilbert
space H associated with the system. For any pure states of the system (� states,
pure and mixed), represented by a unit vector ψ ∈ H, the probability pA

ψ(X) that a
measurement of A leads to a result in a (Borel) set X ⊂ R is given by the inner prod-
uct of ψ with EA(X)ψ , that is, pA

ψ(X) = 〈ψ|EA(X)ψ〉; here EA(X) is the spectral

projection of A associated with the set X, and the map X �→ EA(X) is called the
spectral measure of A. The probability measures pA

ψ , with ψ varying over all pos-
sible pure states of the system, determine the observable A. The expectation, or av-
erage

∫
x dpA

ψ(x), of the measurement outcome distribution of an observable A in a
state ψ can be expressed as 〈ψ|Aψ〉 whenever ψ is in the domain of the operator A.
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Paul Busch and Pekka Lahti

The term observable has become the standard name in quantum mechanics for what
used to be called physical quantity or measurable quantity in classical physics. This
term derives from observable quantity (“beobachtbare Grösse”), which was used by
Werner Heisenberg in his groundbreaking work on � matrix mechanics [1] to em-
phasize that the meaning of a physical quantity must be specified by means of an
operational definition. Together with a state (� states in quantum mechanics), an ob-
servable determines the probabilities of the possible outcomes of a measurement of
that observable on the quantum system prepared in the given state. Conversely, ob-
servables are identified by the totalities of their measurement outcome probabilities.
Examples of observables in quantum mechanics are position, velocity, momentum,
angular momentum, spin, and energy. � Spin; Stern–Gerlach experiment; Vector
model.

In elementary quantum mechanics, the observables of a physical system are rep-
resented by, and identified with, selfadjoint operators A acting in the � Hilbert
space H associated with the system. For any pure states of the system (� states,
pure and mixed), represented by a unit vector ψ ∈ H, the probability pA

ψ(X) that a
measurement of A leads to a result in a (Borel) set X ⊂ R is given by the inner prod-
uct of ψ with EA(X)ψ , that is, pA

ψ(X) = 〈ψ|EA(X)ψ〉; here EA(X) is the spectral

projection of A associated with the set X, and the map X �→ EA(X) is called the
spectral measure of A. The probability measures pA

ψ , with ψ varying over all pos-
sible pure states of the system, determine the observable A. The expectation, or av-
erage

∫
x dpA

ψ(x), of the measurement outcome distribution of an observable A in a
state ψ can be expressed as 〈ψ|Aψ〉 whenever ψ is in the domain of the operator A.
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The statistical meaning of quantum observables was first recognized by Max
Born [2] who proposed that, in the position representation, the absolute square |ψ|2
of the ‘� wave function’ ψ gives the probability density of observing a quantum
object at a given point (� Born rule). This idea was systematically elaborated by
John von Neumann [3] who formulated and proved the spectral theorem for selfad-
joint (hypermaximal hermitian) operators and applied it to obtain the interpretation
of expectations as statistical averages given above.

In his seminal paper on the uncertainty relations [4] Werner Heisenberg argued,
among other things, that

all concepts which can be used in classical theory for the description of a mechanical system
can also be defined exactly for atomic processes in analogy to classical concepts.

This statement can be substantiated in precise form by virtue of the mathematical
fact that for any value x in the spectrum of a selfadjoint operator A and for each
ε > 0 there is a state ψ such that pA

ψ((x − ε, x + ε)) = 1. In particular, if A has
an eigenvalue a, that is, there is a state ψ such that Aψ = aψ , then in such an
eigenstate of A a measurement of A is certain to yield the value a. Such a situation
is commonly described by saying that observable A has a definite value if the state
of the system is an eigenstate of A. The generic situation in quantum mechanics,
however, is that most observables have no definite value in a given pure state.

It is a basic feature of quantum mechanics that there are pairs of observables,
such as position and momentum, which do not commute. This fact, which lies at the
heart of the � complementarity principle and � Heisenberg uncertainty relation,
reflects a fundamental limitation on the possibilities of assigning definite values to
observables and to the possibilities of measurements in the quantum world. For ex-
ample, among the pairs of observables with discrete spectra there are those that do
not commute, and this implies that they do not share a complete system of eigen-
vectors. Then A has eigenstates that are not eigenstates of B. Moreover, according
to a theorem due to von Neumann [5], observablesA,B are jointly measurable, that
is, they have a joint observable (see below), if and only if they commute.

The idea of identifying an observable (with real values) with the totality of the
outcome probabilities in a measurement does not single out spectral measures, but
is exhausted by the wider class of (real) positive operator (valued) measures, or
semispectral measures. A positive operator measure is a map E : X �→ E(X) that
assigns to every (Borel) subset X of R a positive operator E(X) in such a way
that for every pure state ψ the map X �→ pE

ψ(X) := 〈ψ|E(X)ψ〉 is a probability
measure. This definition extends readily to cases where the measurement outcomes
are represented as elements of Rn or more general sets. Excellent expositions of the
definition and properties of positive operator measures can be found, e.g., in [8, 9].

Observables represented by positive operator measures which are not projection
valued are referred to as generalized observables, or unsharp observables, while
spectral measures and generally all projection valued measures are called standard,
or sharp observables. Commonly used acronyms for positive operator measures are� POVM or POM.
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The generalized representation of observables as positive operator measures was
discovered by several authors in the 1960s (e.g., [6, 7, 10–13]) and has by now
become a standard element of quantum mechanics. It has greatly advanced the math-
ematical coherence and conceptual clarity of the theory. For instance, the problem
of the (approximate) joint measurability of noncommuting observables such as po-
sition and momentum and the relevance of the � Heisenberg uncertainty relations
to this question is now fully understood; for a survey, see, e.g. [14].

Two (real) POMs E,F are jointly measurable if and only if there is a third POM,
G, defined on the (Borel) subsets of R2, which has E and F as marginals, that is,
E(X) = G(X×R) and F(Y ) = G(R×Y ) for all (Borel) subsets X,Y of R. For the
joint measurability of two unsharp observables E,F , their mutual commutativity
is sufficient but not necessary. If one of the observables is sharp, then the joint
measurability implies commutativity.

As two noncommuting standard observables are never jointly measurable, one
can only try to approximate them (in a suitable sense) by some other observables
which in turn may be jointly measurable. This turns out indeed to be possible as has
been well demonstrated in the cases of position and momentum or spin components.

Finally, the introduction of POMs has widely increased the applicability of quan-
tum mechanics in the description of realistic experiments (see, e.g., [15, 16]), and
POMs are now in full use also in the relatively new fields of � quantum computa-
tion and information, see, e.g., [17, 18]. See also � PVOM; Rigged Hilbert Spaces;
Superselection Rules; Wave function collapse.
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One- and Two-Photon Interference

Paul G. Kwiat

Taylor’s version of Young’s double-slit experiment with an attenuated light source is
often hailed as one of the key experiments demonstrating quantum mechanical inter-
ference [1]. Although it would be incorrect to say it is not quantum – all optical inter-
ference effects have their origin at the quantum level – it is now generally accepted
that such experiments are not non-classical. They usually allow a semi-classical
description in which the detector is treated quantum mechanically, but the field is
treated classically. In fact, such descriptions can also account for a host of other
“quantum” phenomena, such as resonance fluorescence and the photoelectric effect
[2,3]. For single-photon interference, one can readily convert from the classical field
to the quantum mechanical description simply by relating the probability of a photon
being detected at a given location and time to the intensity of the classical field.

The need for a quantum description of the light – the need for “photons” (� light
quantum) – arises when one considers higher-order photon statistics, e.g., involving
coincidences between 2 or more detectors. In fact, this is now the method of choice
for characterizing would-be single-photon sources [4]: send the light onto a beam-
splitter and measure the coincidence rate between the detectors in each output. For
a true single-photon input – formally described as an n = 1 Fock number state –
the coincidence rate will fall to zero (at equal detection times), a very non-classical
effect (a classical field would necessarily cause detections in both output ports).1

1 More precisely, one measures g(2)(0), the second-order correlation function, equal to the number
of coincidence counts in a given time interval, divided by the product of the singles counts (at the
two detectors) in that interval. For an n-photon Fock state, g(2)(0) = 1–1/n.
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Taylor’s version of Young’s double-slit experiment with an attenuated light source is
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ference [1]. Although it would be incorrect to say it is not quantum – all optical inter-
ference effects have their origin at the quantum level – it is now generally accepted
that such experiments are not non-classical. They usually allow a semi-classical
description in which the detector is treated quantum mechanically, but the field is
treated classically. In fact, such descriptions can also account for a host of other
“quantum” phenomena, such as resonance fluorescence and the photoelectric effect
[2,3]. For single-photon interference, one can readily convert from the classical field
to the quantum mechanical description simply by relating the probability of a photon
being detected at a given location and time to the intensity of the classical field.

The need for a quantum description of the light – the need for “photons” (� light
quantum) – arises when one considers higher-order photon statistics, e.g., involving
coincidences between 2 or more detectors. In fact, this is now the method of choice
for characterizing would-be single-photon sources [4]: send the light onto a beam-
splitter and measure the coincidence rate between the detectors in each output. For
a true single-photon input – formally described as an n = 1 Fock number state –
the coincidence rate will fall to zero (at equal detection times), a very non-classical
effect (a classical field would necessarily cause detections in both output ports).1

1 More precisely, one measures g(2)(0), the second-order correlation function, equal to the number
of coincidence counts in a given time interval, divided by the product of the singles counts (at the
two detectors) in that interval. For an n-photon Fock state, g(2)(0) = 1–1/n.
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Currently there is great interest in developing such single-photon sources, for
applications in metrology and quantum information processing (� quantum com-
munication). For example, the original quantum cryptography protocols assumed
the key material was transmitted using single-photon states [5], so as to deny any
potential eavesdropper the possibility of “tapping” the line. More recently, sources
of single photons “on-demand” are a critical resource for realizing scalable optical
quantum computing [6]. At present a number of physical systems are being explored
as single-photon sources. In the first category, a single quantum emitter – e.g., an
atom, ion, or quantum dot – is excited, and consequently decays, either sponta-
neously or in a driven transition, emitting precisely one photon in the process. Much
effort is directed to using cavities to tailor the mode into which the photon is prefer-
entially emitted [7]. A second strategy is to employ systems that always emit pairs
of photons: using one photon as a “trigger” then heralds the presence of the other
photon. Examples include 2-photon transitions in atoms, or most prevalent, pair
sources from nonlinear optics, e.g., spontaneous parametric down-conversion [8,9].
In the down-conversion process, a high-energy pump photon splits – via the inter-
action in a non-linear crystal – into two daughter photons, traditionally called the
“signal” and “idler” (Fig. 1).

Following earlier experiments (by Clauser et al. [10]), Grangier et al., performed
the first interference experiment using a light field in a single-photon Fock state [11],
based on a two-photon atom cascade as mentioned above. One photon was used as
a trigger to condition the presence of the other photon, which was then directed
to a Mach-Zehnder interferometer. The resulting interference fringes, built up one
photon at a time, displayed a visibility >98%, verifying Dirac’s statement that a
single photon interferes with itself [12]. The same technique has been routinely
adopted to down-conversion sources, and used to demonstrate, e.g., � Berry’s phase
at the single-photon level [13].

Once one has single photons, the concept of the trajectory of the photon inside
an interferometer becomes well defined. One finds that the existence of any which
way information,2 labeling which path a photon took, will reduce the contrast of

s

Fig. 1 In a basic demonstration of single-photon interference [11], a two-photon cascade source
S is used to conditionally prepare a single photon, which is directed into a Mach-Zehnder in-
terferometer. Even though at most one of the two interferometer detectors fires at a given time,
high-visibility interference fringes are observed, supporting Dirac’s dictum that in such experi-
ments “each photon then interferes only with itself” [12]. (Fig. based on [11])

2 This information may be due to entanglement to another photon or atom, or simply an entangle-
ment between the path and some other degree of freedom, e.g., polarization of the single photon.
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interference fringes,3 quantitatively described by V2+D2 � 1, where V is the fringe
visibility, and D is the distinguishability of the paths [14]; the inequality holds if the
which-way quantum marker (� which-way experiment) is initially in a mixed (i.e.,
uncertain) state [15, 16].

Curiously, the distinguishing information can sometimes be subsequently re-
moved, by making a suitable measurement on the which-path system. This phe-
nomenon, in which interference can be recovered, is known as a � “quantum
eraser” [17], and has now been demonstrated in many experiments (e.g., [16,18,19]).
Note that the interference is only revealed by correlating the detections of the photon
with particular measurement results on the which-way marker, thereby preventing
any superluminal signalling (� superluminal communication).

One recent experiment of this sort directed photons emitted from a single excited
nitrogen-vacancy color center (in a diamond nanocrystal) into a Mach–Zehnder in-
terferometer [20]. Waveplates were used to set the photon polarization in the two
paths to horizontal and vertical. The output of the interferometer was directed
through a rapidly switchable polarization analyzer, and then to a single-photon
detector. Results showed that the measurement could either reveal which-way in-
formation (by analyzing in the horizontal-vertical basis) or could recover fringes
or anti-fringes (by analyzing in the ± 45◦ basis). Moreover, the experiment had a� delayed-choice aspect [21] – the choice in which basis to measure the photon was
made after the photon � wave packet had already passed the initial beamsplitter of
the interferometer; however, this did not affect the results.

Another interesting series of experiments arises when the interfering photon can
originate in more than one source. In the first of these experiments [22] light beams
from two independent single-mode lasers demonstrated interference fringes, even
when the intensities were so low that only a single photon was in the interferome-
ter at any given time. From a wave perspective this is hardly surprising – e.g., one
has no trouble accepting that signals from two radio towers can interfere. The under-
standing at the quantum level is that there is no way, even in principle, to distinguish
from which laser a given photon originated, due to the fact that the quantum state of
the laser itself is negligibly altered by emission of a photon.

However, a quite different result can be obtained for a more ‘quantum’ light
source. Consider, for example, trying to interfere the signal photons from two inde-
pendent down-conversion crystals, by superposing the photons’ spatial modes on a
beamsplitter (see Fig. 2a). In this case there is no interference, because the simulta-
neous emission of the twin idler photon from one of the crystals labels which source
a given signal photon came from; even if one does not measure the idler photon, the
mere possibility that one could in principle make such a measurement is enough to
prevent interference. However, it is possible to arrange the crystals in such a way
that this information is not available (Fig. 2b): by directing the idler mode of the
first crystal to pass through the second crystal and completely overlap the second

3 Following Feynman, to calculate the probability of any outcome, we must add the probability am-
plitudes of indistinguishable processes that lead to this outcome, and then take the absolute square.
If the processes are in principle distinguishable, then we simply add the probabilities directly.
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Fig. 2 (a) One does normally not observe single-photon interference when the signal modes from
two down-conversion crystals are combined, because the idler photons carry distinguishing infor-
mation about which crystal produced a given signal photon. (b). However, if the idler modes are
made to overlap, this information is in principle unobtainable. (c). Interference in the signal singles
rate is observable as any of the phases in the overall experiment are adjusted (A), unless the idler
mode between the crystals is blocked (B). Data reprinted with permission from Fig. 2 in Ref. [23]:
Copyright (1991) by the American Physical Society

crystal’s idler mode, any process-labeling by these photons can be eliminated. The
consequence is that single-photon interference fringes are once again observable
in the output of the beamsplitter combining the two signal modes (Fig. 2c); this
interference occurs as any of the path lengths in the experiment are varied [23].
Experiments have also demonstrated that if a time-dependent gate is introduced in
the idler arm between the two crystals, the observation of interference of the signal
photons depends on the state of the gate at the time when the idler photon ampli-
tude was passing through it [24]: A closed gate – allowing which-path information
– destroys the interference.

Allowing for more than one photon opens the way for a multitude of purely quan-
tum multi-photon interference effects. Here we will only discuss two of the main
2-photon interference phenomena. The most well-known and arguably the most
important example is the Hong–Ou–Mandel interferometer [25]. Two identical
photons are directed to opposite sides of a 50–50 beamsplitter, so each individually
has a 50% likelihood to be transmitted or reflected4 (Fig. 3). If these were classical
light fields, then sometimes both of the detectors at the outputs would fire simulta-
neously, corresponding to the possibility that both fields were transmitted or both
reflected. However, following Feynman, we must add the probability amplitudes
of indistinguishable processes. In the Hong–Ou–Mandel interferometer, the two
indistinguishable processes that could lead to a coincidence detection (both photons
being transmitted, with net probability amplitude 1√

2
1√
2
= 1

2 , and both being

reflected, with net probability amplitude i√
2

i√
2
= − 1

2 ) completely destructively

interfere5. Hence, if the photons arrive at the beamsplitter simultaneously, there is a

4 There is no single-photon interference, because each photon is not in a superposition of being in
the upper and lower path; also, there is no definite phase relationship between the two photons.
5 The extra factors of “i”—π/2 phase shifts—are required to satisfy unitarity and conservation of
probability/energy.
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a b c

Fig. 3 (a) In the Hong–Ou–Mandel interferometer [25], two identical photons are directed onto
opposite sides of a 50–50 beamsplitter, aligned so that the reflected and transmitted modes
completely overlap. (b) If the photons arrive at the beamsplitter simultaneously, the ‘transmitted-
transmitted’ and ‘reflected-reflected’ processes destructively interfere with each other. (c) A dip is
observed in the observed coincidence rate (data from [9])

s

Fig. 4 Schematic of a two-photon interference effect [29], in which each of the down-conversion
photons is directed into an unbalanced Mach-Zehnder interferometer. Although the path imbalance
precludes any single-photon interference, two-photon interference fringes (depending on the sum
of the relative phases in the interferometers) may be observed, due to the indistinguishability of the
processes in which both photons take the short paths and both take the long paths in their respective
interferometers

dip in the coincidence rate (Fig. 3c) as both photons then take the same output port.
The Hong–Ou–Mandel interference effect has now been used to enable precision
relative timing measurements [25, 26], and is the central technique to enable Bell-
state analysis for quantum teleportation [27, 28] (� quantum communication) and
various quantum logic gates [6].

As a final example of 2-photon interference, each of the signal and idler pho-
tons can be directed into its own, quite imbalanced, Mach–Zehnder interferometer
(Fig. 4). In this case, no interference is observable in any of the singles rates be-
cause the interferometer imbalance is much larger than the coherence length of
the photons. However, if the two interferometers are matched to each other, in-
terference fringes can be observed in the coincidence rates between detectors at
the outputs of each interferometer: For continuous-wave pumping, processes in
which both photons take the short paths or both take the long paths in their respec-
tive interferometers – corresponding to two different emission times for the pair
– are in principle indistinguishable, and thus interfere. One observes coincidence
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interference fringes which depend nonlocally on the sum of the phases in both inter-
ferometers [29]. This 2-photon interference effect has been used to demonstrate the� nonlocality of quantum mechanics (i.e., producing violations of a suitable Bell’s
inequality; � Bell’s theorem) [30, 31], and forms the basis of some entanglement-
based on quantum cryptography implementations [32, 33].
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mechanics, the formalism that is now referred to as standard quantum mechanics [5],
was thought to be too specific by the founding fathers themselves. One of the ques-
tions that obviously was at the origin of this early dissatisfaction is: ‘Why would
a complex � Hilbert space deliver the unique mathematical structure for a com-
plete description of the microworld? Would that not be amazing? What is so special
about a complex Hilbert space that its mathematical structure would play such a
fundamental role?’

Let us turn for a moment to the other great theory of physics, namely general rel-
ativity, to raise more suspicion towards the fundamental role of the complex Hilbert
space for quantum mechanics. General relativity is founded on the mathematical
structure of Riemann geometry. In this case however it is much more plausible that
indeed the right fundamental mathematical structure has been taken. Riemann de-
veloped his theory as a synthesis of the work of Gauss, Lobatsjevski and Bolyai on
non-Euclidean geometry, and his aim was to work out a theory for the description
of the geometrical structure of the world in all its generality. Hence Einstein took
recourse to the work of Riemann to express his ideas and intuitions on space time
and its geometry and this lead to general relativity. General relativity could be called
in this respect ‘the geometrization of a part of the world including gravitation’.

There is, of course, a definite reason why von Neumann used the mathematical
structure of a complex Hilbert space for the formalization of quantum mechanics,
but this reason is much less profound than it is for Riemann geometry and gen-
eral relativity. The reason that Heisenberg’s matrix mechanics and Schrödinger’s� wave mechanics turned out to be equivalent is that the first made use of l2, the
set of all square summable complex sequences, and the second of L2(R

3), the set of
all square integrable function of three variables, and the two spaces l2 and L2(R

3)

are canonical examples of a complex Hilbert space. This means that Heisenberg and
Schrödinger were working already in a complex Hilbert space, when they formu-
lated matrix mechanics and wave mechanics, without being aware of it. This made
it a straightforward choice for von Neumann to propose a formulation of quantum
mechanics in an abstract complex Hilbert space, reducing � matrix mechanics and
wave mechanics to two possible specific representations.

One problem with the Hilbert space representation was known from the start.
A (pure) state of a quantum entity is represented by a unit vector or ray of the
complex Hilbert space, and not by a vector. Indeed vectors contained in the same
ray represent the same state or one has to renormalize the vector that represents the
state after it has been changed in one way or another. It is well known that if rays
of a vector space are called points and two dimensional subspaces of this vector
space are called lines, the set of points and lines corresponding in this way to a
vector space, forms a projective geometry. What we just remarked about the unit
vector or ray representing the state of the quantum entity means that in some way
the projective geometry corresponding to the complex Hilbert space represents more
intrinsically the physics of the quantum world as does the Hilbert space itself. This
state of affairs is revealed explicitly in the dynamics of quantum entities, that is built
by using group representations, and one has to consider projective representations,
which are representations in the corresponding projective geometry, and not vector
representations [6].
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The title of the article by John von Neumann and Garett Birkhoff [1] that we
mentioned as the founding article for operational quantum axiomatics is ‘The logic
of quantum mechanics’. Let us explain shortly what Birkhoff and von Neumann do
in this article. First of all they remark that an operational proposition of a quantum
entity is represented in the standard quantum formalism by an orthogonal projection
operator or by the corresponding closed subspace of the Hilbert space H. Let us de-
note the set of all closed subspaces of H by L(H). Next Birkhoff and von Neumann
show that the structure of L(H) is not that of a Boolean algebra, the archetypical
structure of the set of propositions in classical logic. More specifically it is the dis-
tributive law between conjunction and disjunction

(a ∨ b)∧ c = (a ∧ c) ∨ (b ∧ c) (1)

that is not necessarily valid for the case of quantum propositions a, b, c ∈ L(H).
A whole line of research, called � quantum logic, was born as a consequence of
the Birkhoff and von Neumann article. The underlying philosophical idea is that, in
the same manner as general relativity has introduced non-Euclidean geometry into
the reality of the physical world, quantum mechanics introduces non-Boolean logic.
The quantum paradoxes (� errors and paradoxes in quantum mechanics) would be
due to the fact that we reason with Boolean logic about situations with quantum
entities, while these situations should be reasoned about with non-Boolean logic.

Although fascinating as an approach [7], it is not this idea that is at the origin
of quantum axiomatics. Another aspect of what Birkhoff and von Neumann did in
their article is that they shifted the attention on the mathematical structure of the
set of operational propositions L(H) instead of the Hilbert space H itself. In this
sense it is important to pay attention to the fact that L(H) is the set of all oper-
ational propositions, i.e. the set of yes/no experiments on a quantum entity. They
opened a way to connect abstract mathematical concepts of the quantum formalism,
namely the orthogonal projection operators (� projection) or closed subspaces of
the Hilbert space, directly with physical operations in the laboratory, namely the
yes/no experiments.

George Mackey followed in on this idea when he wrote his book on the mathe-
matical foundations of quantum mechanics [2]. He starts the other way around and
considers as a basis the set L of all operational propositions, meaning propositions
being testable by yes/no experiments on a physical entity. Then he introduces as an
axiom that this set L has to have a structure isomorphic to the set of all closed sub-
spaces L(H) of a complex Hilbert space in the case of a quantum entity. He states
that it would be interesting to invent a set of axioms on L that gradually would make
L more and more alike to L(H) to finally arrive at an isomorphism when all the
axioms are satisfied. While Mackey wrote his book results as such were underway.
A year later Constantin Piron proved a fundamental representation theorem. Starting
from the set L of all operational propositions of a physical entity and introducing
five axioms on L he proved that L is isomorphic to the set of closed subspaces L(V )

of a generalized Hilbert space V whenever these five axioms are satisfied [3]. Let us
elaborate on some of the aspects of this representation theorem to be able to explain
further what operational quantum axiomatics is about.
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We mentioned already that Birkhoff and von Neumann had noticed that the set
of closed subspaces L(H) of a complex Hilbert space H is not a Boolean alge-
bra, because distributivity between conjunction and disjunction, like expressed in
(1), is not satisfied. The set of closed subspaces of a complex Hilbert space forms
however a lattice, which is a more general mathematical structure than a Boolean
algebra, moreover, a lattice where the distributivity rule (1) is satisfied is a Boolean
algebra, which indicates that the lattice structure is the one to consider for the
quantum mechanical situation. To make again a reference to general relativity, the
lattice structure is indeed to a Boolean algebra what general Riemann geometry is
to Euclidean geometry. And moreover, meanwhile it has been understood why the
structure of operational propositions of the world is not a Boolean algebra but a
lattice. This is due to the fact that measurements can have an uncontrollable influ-
ence on the state of the physical entity under consideration [4]. Hence the intuition
of Birkhoff and von Neumann, and later Mackey, Piron and others, although only
mathematical intuition at that time, was correct.

Axiomatic quantum mechanics is more than just an axiomatization of quantum
mechanics. Because of the operational nature of the axiomatization, it holds the po-
tential for ‘more general theories than standard quantum mechanics’ which however
are ‘quantum like theories’. In this sense, we believe that it is one of the candidates
to generate the framework for the new theory to be developed generalizing quantum
mechanics and relativity theory [4]. Let us explain why we believe that operational
quantum axiomatics has the potential to deliver such a generalization of relativ-
ity theory and quantum mechanics. General relativity is a theory that brings part
of the world that in earlier Newtonian mechanics was classified within dynamics to
the geometrical realm of reality, and more specifically confronting us with the pre-
scientific and naive realistic vision on space, time, matter and gravitation. It teaches
us in a deep and new way, compared to Newtonian physics, ‘what are the things that
exists and how they exist and are related and how they influence each other’. But
there is one deep lack in relativity theory: it does not take into account the influence
of the observer, the effect that the measuring apparatus has on the thing observed.
It does not confront the subject-object problem and its influence on how reality is. It
cannot do this because its mathematical apparatus is based on the Riemann geom-
etry of time-space, hence prejudicing that time-space is there, filled up with fields
and matter, that are also there, independent of the observer. There is no fundamental
role for the creation of ‘new’ within relativity theory, everything just ‘is’ and we
are only there to ‘detect’ how this everything ‘is’. That is also the reason why gen-
eral relativity can easily be interpreted as delivering a model for the whole universe,
whatever this would mean. We know that quantum mechanics takes into account in
an essential way the effect of the observer through the measuring apparatus on the
state of the physical entity under study. In a theory generalizing quantum mechan-
ics and relativity, such that both appear as special cases, this effect should certainly
also appear in a fundamental way. We believe that general relativity has explored
to great depth the question ‘how can things be in the world’. Quantum axiomatics
explores in great depth the question ‘how can things be acted in the world’. And
it does explore this question of ‘action in the world’ in a very similar manner as
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general relativity theory does with its question of ‘being of the world’. This means
that operational quantum axiomatics can be seen as the development of a general
theory of ‘actions in the world’ in the same manner that Riemann geometry can
be seen as a general theory of ‘geometrical forms existing in the world’. Of course
Riemann is not equivalent to general relativity, a lot of detailed physics had to be
known to apply Riemann resulting in general relativity. This is the same with op-
erational quantum axiomatics, it has the potential to deliver the framework for the
theory generalizing quantum mechanics and relativity theory.

We want to remark that in principle a theory that describes the possible actions
in the world, and a theory that delivers a model for the whole universe, should not
be incompatible. It should even be so that the theory that delivers a model of the
whole universe should incorporate the theory of actions in the world, which would
mean for the situation that exists now, general relativity should contain quantum
mechanics, if it really delivers a model for the whole universe. That is why we
believe that Einstein’s attitude, trying to incorporate the other forces and interactions
within general relativity, contrary to common believe, was the right one, globally
speaking. What Einstein did not know at that time was ‘the reality of � nonlocality
in the micro-world’. Nonlocality means non-spatiality, which means that the reality
of the micro-world, and hence the reality of the universe as a whole, is not time-
space like. Time-space is not the global theatre of reality, but rather a crystallization
and structuration of the macro-world. Time-space has come into existence together
with the macroscopic material entities, and hence it is ‘their’ time and space, but it
is not the theatre of the microscopic quantum entities. This fact is the fundamental
reason why general relativity, built on the mathematical geometrical Riemannian
structure of time-space, cannot be the canvas for the new theory to be developed.
A way to express this technically would be to say that the set of events cannot be
identified with the set of time-space points as is done in relativity theory. Recourse
will have to be taken to a theory that describes reality as a kind of pre-geometry, and
where the geometrical structure arises as a consequence of interactions that collapse
into the time-space context. We believe that operational quantum axiomatics can
deliver the framework as well as the methodology to construct and elaborate such a
theory.

Mackey and Piron introduced the set of yes/no experiments but then immedi-
ately shifted to an attempt to axiomatize mathematically the lattice of (operational)
propositions of a quantum entity, Mackey postulating right away an isomorphism
with L(H) and Piron giving five axioms to come as close as possible to L(H).
Also Piron’s axioms are however mostly motivated by mimicking mathematically
the structure of L(H). In later work Piron made a stronger attempt to found oper-
ationally part of the axioms [8], and this attempt was worked out further in [9], to
arrive at a full operational foundation only recently [4].

Also mathematically the circle was closed only recently. There do exist a lot of fi-
nite dimensional generalized Hilbert spaces that are different from the three standard
examples, real, complex and quaternionic Hilbert space. But since a physical entity
has to have at least a position observable, it follows that the generalized Hilbert
space must be infinite dimensional. At the time when Piron gave his five axioms
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that lead to the representation within a generalized Hilbert space, there only ex-
isted three examples of generalized Hilbert spaces that fitted all the axioms, namely
real, complex and quaternionic Hilbert space. Years later Hans Keller constructed
the first counterexample, more specifically an example of an infinite dimensional
generalized Hilbert space that is not isomorphic to one of the three standard Hilbert
spaces [10]. The study of generalized Hilbert spaces, nowadays also called ortho-
modular spaces, developed into a research subject of its own, and recently Maria
Pia Solèr proved a groundbreaking theorem in this field. She proved that an infinite
dimensional generalized Hilbert space that contains an orthonormal base is isomor-
phic with one of the three standard Hilbert spaces [11]. It has meanwhile also been
possible to formulate an operational axiom, called ‘plane transitivity’ on the set of
operational propositions that implies Solèr’s condition [12], which completes the
axiomatics for standard quantum mechanics by means of six axioms, the original
five axioms of Piron and plane transitivity as sixth axiom.

An interesting and rather recent evolution is taking place, where quantum struc-
tures, as developed within this operational approach to quantum axiomatics, are
used to model entities in regions of reality different of the micro-world [13–20].
We believe that also this is a promising evolution in the way to understand deeper
and more clearly the meaning of quantum mechanics in all of its aspects. See also� algebraic quantum mechanics; relativistic quantum mechanics.
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Operator

Werner Stulpe

Operator, a technical term that is used for a mapping associating elements of some
more or less abstract space uniquely with elements of the same or some other ab-
stract space. If X and Y are such spaces (e.g., vector spaces or spaces of functions),
an operator from X to Y (or from X into Y) assigns exactly one element ψ ∈ Y to
every element φ belonging to some specified subset DA of X ; one writes ψ = Aφ.
The set DA is called the domain of A, the set of all elements ψ ∈ Y of the form
ψ = Aφ, φ ∈ DA, is called the range of A. If B is a second operator from Y to Z
such that RA ⊆ DB , then the product BA is defined by the successive application of
A and B, i.e., BAφ = B(Aφ) where DBA = DA and RBA ⊆ RB . An operator A
from X into Y is called invertible if Aφ1 = Aφ2, φ1, φ2 ∈ DA, implies φ1 = φ2; in
this case the inverse operator A−1 is defined to be that operator that takes ψ ∈ RA,
ψ = Aφ, back to the uniquely determined φ ∈ DA. So DA−1 = RA, RA−1 = DA,
and A−1ψ = φ for ψ = Aφ; furthermore, A−1Aφ = φ and AA−1ψ = ψ .

In quantum physics, linear operators acting in a complex � Hilbert space H play
a dominant role [1–7]. An operator A in H, i.e., from H to H, is called linear if (i)
DA is a linear submanifold of H, (ii) A(φ + χ) = Aφ + Aχ for all φ, χ ∈ DA,
and (iii) A(λφ) = λAφ for all complex numbers λ ∈ C and all φ ∈ DA. As
a consequence, the range RA is also a linear submanifold of H. An operator in
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H satisfying conditions (i), (ii), and (iii’) A(λφ) = λAφ where λ is the complex
conjugate of λ, is called antilinear.

A linear operator A acting in H is called bounded if ‖Aφ‖ � c‖φ‖ for some
real number c � 0 and all φ ∈ DA (for the definition of the norm ‖φ‖ of a vector
φ ∈ H, � Hilbert space). A (not necessarily linear) operator A is continuous if from
‖φn−φ‖ → 0 as n→∞, φn ∈ DA, and φ ∈ DA it follows that ‖Aφn−Aφ‖ → 0
as n → ∞. A linear operator is continuous if and only if it is bounded. A (not
necessarily linear) operator A is said to be closed if from ‖φn−φ‖ → 0 as n→∞,
φn ∈ DA, and ‖Aφn − ψ‖ → 0 as n → ∞ it follows that φ ∈ DA and ψ = Aφ.
Since the closure of the linear submanifold DA is a Hilbert space itself, we can
assume that either DA = H or that DA �= H is dense in H (� Hilbert space). So,
for linear operators, the following cases can be distinguished:

1. DA = H and A is bounded. Then A is continuous and closed.
2. DA = H and A is closed. Then, according to the so-called closed-graph theorem,

A is bounded and continuous.
3. DA = H and A is not bounded (equivalently, not continuous, resp., not closed).

This possible case is only of pathological interest.
4. DA �= H, DA is dense in H, and A is bounded. Then A is continuous, not closed,

but can uniquely be extended to a bounded linear operator defined on H.
5. DA �= H, DA is dense in H, and A is not bounded (resp., not continuous), but

closed.
6. DA �= H, DA is dense in H, and A is not bounded and not closed. Such an

operator can be closable, i.e., A can have a closed extension. A closable operator
A always has a smallest closed extension, called its closure A.

For a bounded linear operator A in H, the smallest number c such that ‖Aφ‖ �
c‖φ‖ holds for all φ ∈ DA, is called its operator norm ‖A‖. Let B(H) be the set of
all bounded linear operators defined on H (i.e., DA = H). According to (A+B)φ =
Aφ+Bφ and (λA)φ = λAφ where A,B ∈ B(H), λ ∈ C, and φ ∈ H, an addition of
the operators of B(H) and a multiplication by numbers is defined. So B(H) becomes
a complex vector space and, equipped with the operator norm, a complex Banach
space (� Hilbert space). Moreover, since operators A,B ∈ B(H) can be multiplied,
the product AB being an element of B(H) satisfying ‖AB‖ � ‖A‖ ‖B‖, B(H) is a
Banach algebra with some additional structure (� algebraic quantum mechanics).

An operator A ∈ B(H) is called compact if, for a bounded sequence of vectors
φn ∈ H, the sequence Aφn contains a convergent subsequence. The set C(H) of all
compact operators is a norm-closed subspace of B(H) and an ideal of B(H), i.e.,
A ∈ C(H) and B ∈ B(H) implies AB,BA ∈ C(H).

A linear operator A in a Hilbert space H with domain DA dense in H (including
the case DA = H) is called symmetric or Hermitian if 〈φ|Aψ〉 = 〈Aφ|ψ〉 for all
φ,ψ ∈ DA. A densely defined linear operator in H is symmetric if and only if
the scalar products 〈φ|Aφ〉, φ ∈ DA, are real. A symmetric operator defined on H
is necessarily bounded. The concept of the symmetry of a linear operator can be
sharpened to that of self-adjointness which is defined below.
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A real or complex number λ is said to be an eigenvalue of a linear operator A
acting in H if there is a nonzero vector φ ∈ DA such that Aφ = λφ, φ is called
an eigenvector. The set of all eigenvectors belonging to the same eigenvalue is,
together with the zero vector, a linear submanifold, the eigenspace; the eigenspaces
of A are closed if A ∈ B(H) or if A is closed. Finitely many eigenvectors belonging
to different eigenvalues are linearly independent. It is possible that a linear operator
has no eigenvalues; however, it can also happen that an operator even in a separable� Hilbert space has a continuum of eigenvalues (in this context, eigenvalues are
understood precisely as defined here, the so-called improper eigenvalues are not
considered). A compact operatorA ∈ C(H) has at most countably many eigenvalues
with zero as only possible accumulation point where the eigenspaces belonging to
nonzero eigenvalues are finite-dimensional. A symmetric or � self-adjoint operator
in a separable Hilbert space also has at most countably many eigenvalues, these are
real and the eigenspaces are orthogonal (� Hilbert space) to each other. In general,
such an operator does not have a complete orthonormal system of eigenvectors,
instead a self-adjoint operator has a so-called spectral decomposition which is a
generalization of the case of a complete orthonormal system of eigenvectors and
which is essential for quantum mechanics.

(Spectral decomposition, see � Density operator; Ignorance interpretation; Mea-
surement theory; Objectification;Probabilistic Interpretation; Propensities in Quan-
tum Mechanics; Self-adjoint operator; Wave mechanics.)

Most of the concepts and statements mentioned until now are also valid for op-
erators acting in a complex or real Banach space X (� Hilbert space) or even for
operators from one Banach space X to some other Banach space Y (in the case of
a real Banach or Hilbert space, the condition λ ∈ C must be replaced by λ ∈ R,
and there are no antilinear operators). The eigenvalue problem, of course, makes
sense only for linear operators acting in X , and symmetric or � self-adjoint opera-
tors exist only in a Hilbert space H (in the case of a real Hilbert space, the criterion
〈φ|Aφ〉 ∈ R for the symmetry of a densely defined linear operator A does not ap-
ply). Furthermore, the set B(X ) of all bounded linear operators defined on a Banach
space X , with values in X , is a Banach algebra with a less rich structure than B(H).
In the more general context of operators between different Banach spaces, the set
B(X ,Y) of all bounded linear operators defined on X , with values in Y , is again a
Banach space, but no longer an algebra, and the subspace C(X ,Y) of the compact
operators is not an ideal.

For a linear operator A in a Hilbert space H with dense domain DA, the adjoint
operator A∗ is defined as follows. The domain DA∗ of A∗ consists of all vectors
φ ∈ H for which there exists a vector χφ such that 〈φ|Aψ〉 = 〈χφ |ψ〉 holds for
all ψ ∈ DA; since DA is dense in H, χφ is uniquely determined, and A∗φ = χφ ,
φ ∈ DA∗ , concludes the definition of A∗. In particular, 〈φ|Aψ〉 = 〈A∗φ|ψ〉 for all
ψ ∈ DA and all φ ∈ DA∗ . The adjoint A∗ is a closed linear operator, but the linear
submanifold DA∗ is in general not dense in H; in fact, DA∗ is dense if and only if
A is closable in which case A = A∗∗ (by definition, A∗∗ = (A∗)∗). For A ∈ B(H),
A∗ is also bounded with domain DA∗ = H. A densely defined linear operator in H
is symmetric if and only if A∗ is an extension of A (briefly written as A ⊆ A∗), i.e.,
A∗ coincides with A on DA, but possibly has a larger domain.
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A densely defined linear operator in H is called self-adjoint (� self-adjoint op-
erator) if A = A∗, i.e., 〈φ|Aψ〉 = 〈Aφ|ψ〉 for all φ,ψ ∈ DA = DA∗ . A bounded
self-adjoint operator must necessarily be defined on H. For a linear operator defined
on H, the concepts of symmetry and self-adjointness are equivalent; a self-adjoint
operator defined on H is bounded. A self-adjoint operator A ∈ B(H) is said to be
positive, briefly written as A � 0, if 〈φ|Aφ〉 � 0 for all φ ∈ H. If A ∈ B(H) is
positive, the equation B2 = BB = A has a unique positive solution B ∈ B(H);

B is called the square root of A and is denoted by B = A
1
2 . The set Bs(H) of all

bounded self-adjoint operators on H form a real Banach space; defining A � B for
A,B ∈ Bs(H) by B − A � 0, Bs(H) becomes partially ordered, in fact, Bs(H) is
an ordered Banach space.

For a positive operator A ∈ Bs(H), the � trace trA = ∑∞
i=1〈φi |Aφi〉 is well-

defined, i.e., independent of the complete orthonormal system φ1, φ2, . . . of H (in
this context, assume that H is an infinite-dimensional separable complex Hilbert
space, the finite-dimensional case is trivial); trA can be infinite. An arbitrary op-

erator A ∈ B(H) is called a trace-class operator if tr (A∗A) 1
2 < ∞ (observe that

A∗A � 0). For a trace-class operator, the trace trA = ∑∞
i=1〈φi |Aφi〉 exists and

is well-defined. The set C1(H) of all trace-class operators is a linear submanifold

of B(H) and, equipped with the trace norm ‖A‖1 = tr (A∗A) 1
2 , a complex Ba-

nach space. The trace defines a linear functional on C1(H) (i.e., a linear operator
with range C) which satisfies trA∗ = trA. If A ∈ C1(H) and B ∈ B(H), then
AB,BA ∈ C1(H) where trAB = trBA and |trAB| � ‖A‖1‖B‖. Moreover, ac-
cording to &B(A) = trAB a bounded linear functional &B on the Banach space
C1(H), i.e., an element of the dual space (C1(H))∗, is defined, and by virtue of
the association B �→ &B the spaces B(H) and (C1(H))∗ are norm-isomorphic.—
The space C1

s (H) of the self-adjoint trace-class operators is, by means of the trace
norm and the partial order inherited from Bs(H), an ordered real Banach space. If
A ∈ C1

s (H) and B ∈ Bs(H), then trAB is real and the dual space (C1
s (H))∗ is

norm-isomorphic to Bs(H).
A Hilbert–Schmidt operator is an element A ∈ B(H) for which trA∗A < ∞.

The set C2(H) of all Hilbert-Schmidt operators is a Hilbert space where the scalar
product is given by 〈A|B〉 = trA∗B, A,B ∈ C2(H); so the Hilbert-Schmidt norm

reads ‖A‖2 = (trA∗A) 1
2 . The following statements hold: C1(H) ⊆ C2(H) ⊆

C(H) ⊆ B(H); C1(H), C2(H), and C(H) are linear submanifolds as well as ideals
of the algebra B(H); whereas C(H) is closed w.r.t. the operator norm, C1(H) and
C2(H) are not closed (provided that dimH = ∞), but dense in C(H); for the Ba-
nach spaces (C1(H), ‖ · ‖1), (C2(H), ‖ · ‖2), (C(H), ‖ · ‖), and (B(H), ‖ · ‖) the
dualities (C(H))∗ ∼= C1(H), (C1(H))∗ ∼= B(H), and (C2(H))∗ ∼= C2(H) are valid.

Like linear operators acting in a finite-dimensional vector space, operators A ∈
B(H) have matrix representations. Assume that H is an infinite-dimensional sepa-
rable Hilbert space; let φ1, φ2, . . . be a complete orthonormal system in H. Then,
for χ ∈ H, χ = ∑∞

i=1 αiφi and ψ = Aχ = ∑∞
i=1 βiφi where αi = 〈φi |χ〉

and βi = 〈φi |Aχ〉. Moreover, βi =
〈
φi

∣∣∣A
(∑∞

j=1 αjφj

)〉
= ∑∞

j=1〈φi |Aφj 〉αj .

The complex numbers aij = 〈φi |Aφj 〉 are called the matrix elements of A w.r.t.
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φ1, φ2, . . ., and βi = ∑∞
j=1 aij αj , i = 1, 2, . . . , is called the matrix representa-

tion of ψ = Aχ . One can write

(
β1
β2
.
.
.

)
=
(

a11 a12 . . .

a21 a22 . . .

.

.

.

.

.

.
. .
.

)(
α1
α2
.
.
.

)
where the column

vectors are elements of the Hilbert space l2 since ‖ψ‖2 = ∑∞
i=1 |αi |2 < ∞ and

‖Aψ‖2 = ∑∞
i=1 |βi |2 < ∞.—If A is an unbounded operator with domain DA

dense in H, then ψ = Aχ , χ ∈ DA, has a matrix representation w.r.t. φ1, φ2, . . .

whenever φ1, φ2, . . . belongs to DA as well as to DA∗ . Moreover, φ1, φ2, . . . ∈ DA∗
and φ1, φ2, . . . ∈ DA entail that DA∗ is dense in H, A∗∗ = A exists, and
φ1, φ2, . . . ∈ DA∗∗ . So the action of A∗ can also be represented in matrix form, the
matrix elements a∗ij of A∗ satisfy a∗ij = aji . In particular, every symmetric or self-
adjoint operator enables a matrix representation of ψ = Aχ if χ, φ1, φ2, . . . ∈ DA.
The matrix elements of a symmetric or self-adjoint operator satisfy aij = aji , i.e.,
the matrix elements constitute a Hermitian matrix.
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Orthodox Interpretation of Quantum Mechanics

Henry Stapp

Eugene Wigner, in a paper entitled The Problem of Measurement [1], used the
term “orthodox interpretation” to identify the interpretation spelled out in mathe-
matical detail by John von Neumann in his book Mathematische Grundlagen der
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7. E. Prugovečki: Quantum Mechanics in Hilbert Space (Academic, New York 1971, second edi-

tion 1981; reprint Dover Publications, Mineola 2006)

See also � Creation and Annihilation Operators� Density Operator� Projection� Self-Adjoint Operator� State Operator� Unitary Operator

Orthodox Interpretation of Quantum Mechanics

Henry Stapp

Eugene Wigner, in a paper entitled The Problem of Measurement [1], used the
term “orthodox interpretation” to identify the interpretation spelled out in mathe-
matical detail by John von Neumann in his book Mathematische Grundlagen der



Orthodox Interpretation of Quantum Mechanics 445

O

Quantenmechanik [2]. Von Neumann, in the chapter on the measuring process,
shows how to expand the quantum mechanical description of a system to include
the physical variables of the measuring device, or, more generally, the physical vari-
ables of any system that interacts with an original system of interest. He then gives
a detailed analysis of the process of measurement.

Von Neumann calls the unitary evolution of the quantum state (or wave function)
generated by the � Schrödinger equation by the name “process 2”. The process-2
quantum mechanical evolution is a mathematical generalization of the deterministic
evolution of a dynamically closed system in classical physical theory. The quantum
mechanical process 2, like its classical counterpart, is deterministic: given the quan-
tum state at any time, the state into which will evolve at any later time via process 2
is completely fixed.

Von Neumann considers an (idealized) situation involving a sequence of phys-
ically described measuring devices each performing a good measurement on the
outcome variables of the preceding device, leading eventually to the retina, then to
the optical nerves, and finally to the higher brain centers directly associated with
the consciousness of the observer. There is no apparent reason for the process 2 to
fail at any point, provided the full environment (essentially the entire physically de-
scribed universe) is included in the physical system. But in general the process 2
evolution will lead to a state in which the higher brain centers directly associated
with consciousness will have non-negligible components corresponding to different
incompatible experiences, such as seeing the pointer of a measuring device simul-
taneously at several distinct positions.

Von Neumann notes that “It is entirely correct that the measurement or the related
process of subjective perception is a new entity relative to the physical environment
and is not reducible to the latter. Indeed, it leads into the intellectual inner life of the
individual, which is extra-observational by its very nature (since it must be taken for
granted by any conceivable observation or experiment).”

To tie the quantum mathematics usefully to human experience von Neumann
invokes another process, which he called “process 1”. Process 1 partitions the state
into a particular collection of components each corresponding to a distinct possible
experience, but only one of which will survive the “� wave function collapse” or
the “reduction of the � wave packet” associated with process of measurement or
observation.

Wigner proves that process 1 can never be a consequence of process 2 alone:
some other process, not the quantum analog of the deterministic classical law of
evolution, must come in. As in the classical case, one must of course respect the
condition that the quantum system be dynamically closed. This means that if any
macroscopic element is included in the quantum mechanically described system
then one must effectively include the whole universe, due to the non-negligible
effects of the environment upon a macroscopic system.

Von Neumann notes that, in line with the precepts of the Copenhagen interpreta-
tion, “we must always divide the world into two parts, the one being the observed
system, the other the observer”, and that “quantum mechanics describes the events
which occur in the observed portion of the world, so long as they do not interact
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with the observing portion, with the aid of process 2, but as soon as such an in-
teraction occurs, i.e., a measurement, it requires an application of process 1.” (For
Copenhagen interpretation see � Born rule; Consistent Histories; Metaphysics in
Quantum Mechanics; Nonlocality; Schrödinger’s Cat; Transactional Interpretation.)

The von Neumann/Wigner approach is, in this regard, not identical to the Copen-
hagen interpretation specified by Bohr and Heisenberg, who, in keeping with their
pragmatic epistemological stance, resist treating the entire physical universe as a
quantum system obeying the linear deterministic unitary law. Bohr ties this limi-
tation in the applicability of the normal quantum rules to the fact that any attempt
to obtain sufficient knowledge about any living organism, in order to enable us to
make useful predictions, would probably kill the organism. Hence “the strict appli-
cation of those concepts adapted to our description of inanimate nature might stand
in a relationship of exclusion to the consideration of the laws of the phenomena of
life” [3]. This argument is effectively a cautious suggestion that the breakdown of
process 2 might be associated with biological systems: i.e., with life. But von Neu-
mann says “there arises the frequent necessity of localizing some of these processes
at points which lie within the portion of space occupied by our own bodies. But
this does not alter the fact of their belonging to the ‘world about us’, the objective
environment referred to above.”

Wigner’s suggestion for dealing with this gross mismatch between the process-2
generated activities of our brains and the contents of our streams of conscious ex-
periences, evidently stems from a desire to have a rationally coherent ontological
understanding of nature herself; an understanding of the reality that actually exists.
Noting that process 1 is associated with the occurrence of observable events, and
hence the implied need for an observer, Wigner suggest that the breakdown of pro-
cess 2 is due to the interaction of the physically described aspects of nature with
the consciousness of a conscious being [4]. (� Wigner’s Friend) This physically
efficacious consciousness stands outside the physically described aspects of nature
controlled by process 2. Von Neumann calls it the observer’s “abstract ego”.

Conscious experiences are certainly real, and real things normally have real ef-
fects. The most straightforward conclusion would seem to be that process 1 specifies
features of the interaction between the brain activities that are directly associ-
ated with conscious experiences and the conscious experiences with which those
activities are associated.

This solution is in line with Descartes’ idea of two “substances”, that can inter-
act in our brains, provided “substance” means merely a carrier of “essences”. The
essence of the inhabitants of res cogitans is “felt experience”. They are thoughts,
ideas, and feelings: the realities that hang together to form our streams of conscious
experiences. But the essence of the inhabitants of res extensa is not at all that of the
sort of persisting stuff that classical physicists imagined the physical world to be
made of.

They are indeed represented in terms of mathematically described properties
assigned to space-time points, but their essential nature is that of “potentialities
for the psycho-physical events to occur”. These events occur at the interface be-
tween the psychologically and physically described aspects of nature, and the laws
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governing their interaction are given by von Neumann. The causal connections be-
tween “potentialities for psychologically described events to occur” and such events
themselves are easier to comprehend and describe than causal connections between
the corresponding features of classical physics. For, both sides of the duality are
conceptually more like “ideas” than like “rocks”.
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Orthonormal Basis

Roderich Tumulka

Orthonormal basis (plural orthonormal bases): a set B of vectors in Euclidean or
Hilbert space such that every vector can be written as a (finite or infinite) linear
combination of vectors from B, while all vectors from B have length 1 and any two
of them are orthogonal. The number of vectors in B then equals the dimension of
the space, which can be finite or infinite.

In the infinite-dimensional � Hilbert spaces considered in quantum physics, the
appropriate sense of linear combination is that of a convergent series

ψ =
∞∑
n=1

cn φn, (1)

where B = {φ1, φ2, . . .} and cn are complex coefficients, called the expansion
coefficients of ψ relative to B. (A basis in the sense that linear combinations are
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convergent series is called a Schauder basis, whereas a basis in the sense that lin-
ear combinations can only involve finitely many terms is a called a Hamel basis.)
Thus, an orthonormal basis in (separable) Hilbert space is a set B = {φ1, φ2, . . .} of
vectors such that every vector ψ can be written in the form (1), and

〈φn|φm〉 = δnm, (2)

where 〈·|·〉 is the scalar product in Hilbert space, δnm = 1 if n = m and δnm = 0
otherwise.

A set of vectors that satisfies (2) but does not permit us to represent every vec-
tor in the form (1) is called an orthonormal set or orthonormal sequence; it is an
orthonormal basis of a closed subspace. The word “orthonormal” means pairwise
orthogonal (〈φn|φm〉 = 0 for all n �= m) and normalized (〈φn|φn〉 = 1 for all n).
A set of vectors that permits us to represent every vector ψ in the form (1) is called
a complete set; if for every ψ the coefficients cn are unique then the set is called a
basis, but not orthonormal if it does not satisfy (2). A complete orthonormal set is
the same as an orthonormal basis.

If, relative to an orthonormal basis {φ1, φ2, . . .}, ψ has expansion coefficients
cn – as expressed in (1) – and ψ ′ has expansion coefficients c′n then

〈ψ|ψ ′〉 =
∞∑
n=1

c∗n c′n , (3)

where ∗ denotes the � complex conjugate. The coefficients can be computed ac-
cording to

cn = 〈φn|ψ〉 . (4)

Just as a vector ψ is represented, relative to an orthonormal basis, by a se-
quence of numbers cn, an � operator T is represented by an (infinite) matrix
Tnm = 〈φn|T φm〉. An operator T is diagonal in an orthonormal basis if Tnm = 0
for n �= m. A self-adjoint operator T can be diagonalized (i.e., an orthonormal
basis can be found in which T is diagonal) if and only if T has pure point spec-
trum. To diagonalize a self-adjoint operator T with continuous spectrum, one needs
the concept of a generalized orthonormal basis: in this case, the basis elements
are themselves not contained in the Hilbert space. For example, the generalized
orthonormal basis diagonalizing the quantum-mechanical position operator on the
Hilbert space L2(R) of square-integrable functions consists of Dirac delta functions,
not contained in L2(R), and the generalized orthonormal basis diagonalizing the
momentum operator consists of plane waves eikx , which are not square-integrable
either. A generalized orthonormal basis can be defined rigorously as a unitary iso-
morphism between the given Hilbert space and L2(�,μ), where � is the index set
of the generalized basis (� = R in the examples above), and μ is a measure on �

(the Lebesgue volume measure in the examples above).
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Less frequently in quantum physics, one has to deal with Hilbert spaces of un-
countable dimension, so-called non-separable Hilbert spaces. For such spaces, an
orthonormal basis should be understood as a set B of vectors that is orthonormal
(i.e., 〈φ|φ〉 = 1 and 〈φ|χ〉 = 0 for every φ, χ ∈ B with φ �= χ) and that is com-
plete in the sense that for every vector ψ there exist φ1, φ2, . . . ∈ B such that ψ can
be written as a countable linear combination of φ1, φ2, . . . as in (1). One should dis-
tinguish the concept of an orthonormal basis in a non-separable Hilbert space from
that of a generalized orthonormal basis in a separable Hilbert space.



P
Parity

Andrzej K. Wróblewski

The term is used in two ways, first, as the operation P of spatial inversion, and
the second as a numerical quantity associated with the system. Parity in the second
sense is a multiplicative quantum number (� Quantum numbers) which could be
+1 or −1. In quantum mechanics the operation of spatial inversion is described by
equation P �(

−→
r ) = P �(−−→r ), where the unitary parity operator P acting on a� wave function � has only two eigenvalues P = +1 or P = −1 which correspond

to even and odd parity, respectively.
By convention, protons and neutrons have been assigned the same positive in-

trinsic parity. The intrinsic parity of the pion has been established experimentally
to be negative. The total parity of the system of particles is the product of their in-
trinsic parities and the spatial parity given by (−1)l , where l denotes the angular
momentum of the wave function of the system. Thus the parity of a particle of spin
l decaying into two pions is just (−1)l and that of a particle of spin l decaying into
three pions equals (−1)l+1.

History of parity began in 1924, when Otto Laporte (1902–1971), and indepen-
dently Henry Norris Russell (1877–1957), analyzed the structure of the spectrum of
iron and titanium and found that there were two kinds of energy levels, such that
the transitions never occurred between levels of the same kind but always between
levels of the first and the second kind. No convincing explanation of the existence
of two types of levels was found within the framework of the old quantum theory.
Then, in 1927, Eugene Wigner (1902–1995) analyzed Laporte’s finding and showed
that the two types of levels and the selection rule followed from the invariance of
the Schrödinger equation (� Schrödinger equation) under the operation of inver-
sion of coordinates x −→ −x, y −→ −y, z −→ −z. This property was originally
called “Spiegelung”, at least until 1933, when the term was still used by Pauli. The
name “parity” appeared later. In 1935, Condon and Shortley used the term “parity
operator” in their book on atomic spectra.

In modern language the two types of energy levels found by Laporte and Rus-
sell are states of positive and negative parity. The electric dipole transitions between
states of the same parity are forbidden by parity conservation in electromagnetic in-
teractions. The intrinsic parity of the emitted photons (� light quantum) is negative
and in order for the total parity of the system to be conserved the parity of the atomic
state must change.

The concept of parity conservation was quickly accepted by physicists. As the au-
thors of a well-known textbook [13] put it: ‘Since invariance under space reflection

D. Greenberger et al. (eds.), Compendium of Quantum Physics: Concepts, Experiments, 450
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is intuitively so appealing (why should a left- and a right-handed system be differ-
ent?), conservation of parity quickly became a sacred cow’.

Complications appeared in the early 1950s. Several new “mesons”, i.e. parti-
cles with mass intermediate between the electron and the proton, were discovered
(� Particle physics). When more precise data became available, the two particles
Kπ3 ≡ τ± −→ π±+ π++ π− and Kπ2 ≡ θ± −→ π±+ π0 appeared to have
almost identical masses and lifetimes, although their parities seemed to be different.
The decay properties of the θ were simple. The decay θ0 −→ π0 + π0 has been
observed. The Bose–Einstein statistics (� Quantum statistics) requires the system
of two neutral pions to have even parity and therefore even orbital momentum l. The
intrinsic parity of the θ must be even and its spin (� Spin) must be zero. The spin of
the τ meson was established to be even. Because of the decay into three pions the τ
parity was found to be negative. This became known as the tau-theta puzzle. There
were several attempts to solve it. Of course it could have been just a coincidence:
two different particles of almost identical mass and lifetime but different parities.
But usually physicists are wary when they encounter coincidences.

In August, 1955, Tsung Dao Lee (b. 1926) and Jay Orear [1] proposed to explain
the tau-theta puzzle by assuming that there are two different particles; the heavier
one decays rapidly into the lighter: τ −→ θ + γ or θ −→ τ + γ . This hypothesis
had soon to be rejected because of negative results of the search for the supposed
γ rays. In December, 1955, Lee and Chen Ning Yang (b. 1922) came forward with
another explanation [2]. All particles with odd strangeness S were assumed to be
“parity doublets”, that is, two particles with opposite parity. The θ+ and τ+ were
assumed to have the same spin but opposite parity (such as, e.g. 0+ and 0−). Thus,
in particular, for the reaction π++n −→ &0

1+θ+, one obtained a reaction of equal
amplitude by taking the parity conjugation of all the particles π++n −→ &0

2+τ+.
Here &0

2 was the parity conjugated state of &0
1.

One of its main topics of discussion during the Sixth Annual Rochester Confer-
ence in April, 1956, was the rapidly growing field of the new elementary particles, in
particular, the tau-theta puzzle. However, no convincing solution was found. A few
weeks later Lee and Yang discussed the possibility that parity could be violated
in weak processes. After consultations with Chien Shiung Wu (1912–1997) from
Columbia, an expert in beta decay, they soon discovered that nobody has ever proved
that parity conservation was valid for weak interactions. They presented analysis of
the problem in the paper submitted on June 22, 1956 [3]. Several possible exper-
imental tests of parity conservation in β decay were listed in this paper. Lee and
Yang suggested to measure the angular distribution of the � electrons coming from
β decays of oriented nuclei, e.g. Co60. If θ is the angle between the orientation of
the parent nucleus and the momentum of the electron, an asymmetry of distribution
between θ and 1800 – θ constitutes an unequivocal proof that parity is not conserved
in β decay. The angular distribution of the β radiation was assumed to be of the form
I(θ )dθ = (constant)(1 + a cos θ) sinθ dθ . If a �= 0, one would then have a positive
proof of parity nonconservation in β decay. Lee and Yang also proposed to study the
distribution of the angle θ between the μ momentum and the electron momentum
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Fig. 1 The direction of rotation and the spin of rotating object are reversed by mirror reflection.
Thus, if parity is conserved, the emission of electrons at angles θ and π − θ must be the same

in the decay processes π −→ μ+ ν, μ −→ e + ν + ν, starting from a π meson at
rest. If parity is not conserved the distribution would not in general be identical for
θ and π − θ .

Chien Shiung Wu resolved to try an experiment even before Lee and Yang sub-
mitted their paper for publication. The idea of an experiment with Co60 was simple
only in theory (Fig. 1). In order to make the measurement possible the radioactive
nuclei must be aligned (polarized) so that their spins pointed in the same direction.
It required very low temperatures, otherwise the thermal motion of the nuclei would
destroy the alignment. Wu combined forces with Ernest Ambler (b. 1923) whose
group at the National Bureau of Standards in Washington was involved in a nuclear
orientation work.

The Co60 nucleus emits both β and γ rays. The degree of polarization can be
measured by the anisotropy of the γ radiation, which is emitted more in the polar
direction than in the equatorial plane. The β particles from 60Co could not penetrate
any substantial thickness of matter. For this reason Wu and her collaborators had
to locate the radioactive nuclei in a very thin layer of only 0.002 inch on a surface
of cerium magnesium (cobalt) nitrate. The β counter had to be placed inside the
demagnetization cryostat. The β particles emitted by 60Co nuclei were detected by
scintillations in a thin anthracene crystal located inside the vacuum chamber about
2 cm above the 60Co source. The scintillations were transmitted through a glass
window and a Lucite light pipe 4 feet long to a photomultiplier located at the top of
the cryostat.
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The paper [3] by Lee and Yang was published only on October 1, 1956, but its
contents was known earlier because of a circulated preprint. Most physicists re-
jected the idea of parity nonconservation as too fantastic and adverse to universally
accepted notions on symmetries in physics.

First readings confirming parity violation were obtained by Wu’s team on De-
cember 27, but the results were not consistently reproducible in the following days.
They announced success only on January 9, 1957, after everything had been checked
and rechecked. A few days earlier, during a discussion among Columbia physicists
over a meal in a cafe on Friday, January 4, Leon Lederman (b. 1922) learned about
Wu et al. preliminary results. He quickly realized that it was possible to check Lee
and Yang’s ideas about decay processes π −→ μ + ν, μ −→ e + ν + ν, by using
the muon beam from the cyclotron at the Nevis Laboratory of Columbia University.
He explained the idea over the phone to his colleague, Richard Garwin (b. 1928).
It took Garwin, Lederman, and Lederman’s graduate student Marcel Weinrich, just
little over 48 hours to prepare and carry out the experiment with a muon beam from
the university cyclotron. The two papers [4, 5] from Columbia University were sub-
mitted for publication on January 15.

The chain of decays π −→ μ + ν, μ −→ e + ν + ν was studied also at the
University of Chicago. Valentine Telegdi (1922–2006) read a preprint of Lee and
Yang paper in August and, not knowing about Wu et al. effort, began an experi-
ment similar in many respects to that of Lederman. With his postdoctoral researcher,
Jerome Friedman (b. 1930), he exposed nuclear emulsion to a π+ beam of the
University of Chicago synchrocyclotron. They scanned the emulsions for charac-
teristic π −→ μ + ν events. In each case the scanner followed the muon to the
end of its range and measured the angle of the positron emission. Their paper [6]
was submitted for publication on January 17, two days after the two papers from
Columbia. With 2000 π −→ μ −→ e events Telegdi and Friedman were able to
determine that the electron emission indeed followed the linear law of the form 1+a

cosθ , postulated by Lee and Yang, and determined a = 0.174± 0.038.
At the beginning of 1957 an experiment similar to that of Wu et al. has also been

done in Leyden with 58Co, which is a positron emitter [7]. It decays into 58Fe and
emits a positron and a neutrino 58Co−→ 58Fe+ e++ν. In this case the positron was
found to be preferentially emitted along the direction of the nuclear spin (magnetic
field) (Fig. 2).

There were numerous experiments checking parity nonconservation in various
circumstances. Good review of these works can be found in [14], whereas a popular
account of the theory is given in [15]. Parity nonconservation effects have been well
explained by the two-component theory of the neutrino proposed independently by
Landau (1908–1968) [8], Salam (1926–1996) [9], and Lee and Yang [10]. Massless
neutrinos were assumed to possess a “handedness” to their spin. All neutrinos in
nature were found to spin in a left-handed sense relative to their direction of flight,
whereas antineutrinos were right-handed.

The discovery that parity is not conserved in weak interactions increased interest
in the discrete symmetry operations, the charge conjugation C and time reversal T .
It was shown that relativistic locality required invariance of the Lagrangian of any
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Fig. 2 Comparison of beta decays of 60Co and 58Co. The electrons from the 60Co decay are emit-
ted preferentially into the hemisphere opposite to the nuclear spin s, whereas the positrons from
the 58Co are emitted preferentially along the spin of the nucleus. It illustrates the left-handedness
of neutrinos and right-handedness of antineutrinos

system under the combined operation CPT , irrespective of order of the three op-
erations (� CPT theorem). The two-component theory of the neutrino allowed a
natural formulation of a CP -conserving, but P - and C- violating, weak interaction.
Then, in 1964, the unexpected discovery of CP nonconservation in kaon decay [11]
took the physics community by surprise. It followed from the CPT theorem that
time reversal symmetry must also be violated. It was indeed confirmed in 1998 by
experiments at CERN [12].
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Particle Physics

Kim Milton

The first discovered of what we would now call an elementary particle is the elec-
tron; although its discovery was a long and complicated process, J. J. Thomson’s
experiments of 1897 played a decisive role, since he was the first to obtain a quanti-
tative value for e. Remarkably, precision experiments conducted last year (2006) [1]
show that the electron still possesses no structure other than that demanded by quan-
tum mechanics and relativity – it is a point particle. The proton, as the nucleus of
the hydrogen atom, was identified as soon as the Rutherford scattering experiment
demonstrated the � model of the atom (� large-angle scattering); its partner in the
nucleus, the neutron, was discovered by Chadwick in 1932. (For a review of the
history of particle physics told in words of some of its creators, see Ref. [13]. See
also Refs. [14, 15].)

Antiparticles were theoretically predicted by P.A.M. Dirac in 1928 on the basis
of his famous � Dirac equation describing the relativistic electron, or more gener-
ally, any particle carrying � spin �/2 [2]. At first he thought the positive proton was
the antiparticle to the negative electron, but then he was convinced that the antipar-
ticle had to have the same mass as the particle (this is now seen as a consequence
of the famous � CPT theorem). The positron was actually discovered in 1933 by
Anderson, Blackett, and Occhialini [3]. The antiproton was found in 1955 [4].

Nuclear forces were studied extensively in the 1930s, aided immeasurably by
the use of Lawrence’s cyclotron. It was clear that new forces beyond those known
since ancient times, gravity and electromagnetism, had to come into play in order to
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Kim Milton

The first discovered of what we would now call an elementary particle is the elec-
tron; although its discovery was a long and complicated process, J. J. Thomson’s
experiments of 1897 played a decisive role, since he was the first to obtain a quanti-
tative value for e. Remarkably, precision experiments conducted last year (2006) [1]
show that the electron still possesses no structure other than that demanded by quan-
tum mechanics and relativity – it is a point particle. The proton, as the nucleus of
the hydrogen atom, was identified as soon as the Rutherford scattering experiment
demonstrated the � model of the atom (� large-angle scattering); its partner in the
nucleus, the neutron, was discovered by Chadwick in 1932. (For a review of the
history of particle physics told in words of some of its creators, see Ref. [13]. See
also Refs. [14, 15].)

Antiparticles were theoretically predicted by P.A.M. Dirac in 1928 on the basis
of his famous � Dirac equation describing the relativistic electron, or more gener-
ally, any particle carrying � spin �/2 [2]. At first he thought the positive proton was
the antiparticle to the negative electron, but then he was convinced that the antipar-
ticle had to have the same mass as the particle (this is now seen as a consequence
of the famous � CPT theorem). The positron was actually discovered in 1933 by
Anderson, Blackett, and Occhialini [3]. The antiproton was found in 1955 [4].

Nuclear forces were studied extensively in the 1930s, aided immeasurably by
the use of Lawrence’s cyclotron. It was clear that new forces beyond those known
since ancient times, gravity and electromagnetism, had to come into play in order to
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hold the nucleus together, overcoming the strong Coulomb repulsion of its positive
protons. Yukawa in 1935 proposed the existence of a mesotron (now meson); the
exchange of which between protons and neutrons could explain the strong nuclear
force [5]. (This was analogous to the explanation of electromagnetism through the
exchange of the massless photon between charged particles � QED.) However, un-
like electromagnetism strong nuclear forces have a very short range (∼10−15 m),
and so, by the � Heisenberg uncertainty principle, must correspond to the exchange
of a massive particle some 200 times heavier than the mass of an electron. Indeed, in
1938 Neddermeyer and Anderson discovered a particle of mass∼100 MeV,1 which
we now call the muon. However, these particles turned out to be not strongly inter-
acting, and resulted in a period of confusion, which was only resolved in 1947, when
what we now call the pion, indeed Yukawa’s mesotron, was discovered by Lattes,
Occhialini, and Powell at a mass of about 140 MeV. The pion (π) could decay into
a muon (μ) plus a neutrino (ν),

π± → μ± + ν,

where the superscripts denote the charges of the particles. The neutral, massless,
neutrino had been proposed by Pauli in 1930 to explain the apparent failure of the
conservation of energy in the so-called β-decay of the neutron,

n→ p + e− + ν̄,

where the overbar signifies that is actually an antineutrino that is produced here.
(This is called β-decay because the electron was earlier called a β-ray.)

So the muon was the first “unwanted” particle discovered. (I.I. Rabi once said,
“who ordered that?”) It turned out to be the first member discovered of the second
generation or family. As new accelerators were built after the Second World War,
such as Berkeley’s Bevatron and Brookhaven National Laboratory’s Cosmotron, a
proliferation of new particles, mostly very strongly interacting and very unstable,
living only maybe 10−23 s, were discovered. Many of these particles carried a
new quantum number called “strangeness,” conserved by the strong interactions –
therefore the lightest of these lived much longer. By the late 1960s hundreds of
strongly interacting particles, dubbed hadrons, had been discovered. Some were
fermions, like the electron, having spin equal to an integer plus one-half times �;
these were called baryons. Those whose spins where integers times �, bosons, were
called mesons. (The � spin statistics theorem is reflected here: Only one fermion
can occupy a given quantum state, while any number of bosons can do so. The latter
allows for the phenomenon of � Bose condensation, which is responsible for � su-
perconductivity and � superfluidity.) This proliferation of particles represented a
crisis for particle physics, for not all these states could be elementary constituents
of matter.

1 In particle physics, it is customary to adopt “natural units” in which c = �= 1.
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Many efforts were made to bring order out of this chaos. The first great success
came to Gell-Mann in 1961 [6] (there were of course precursors and competitors)
who proposed, not too seriously, the quark model as a mathematical way to organize
the various particles under a symmetry group called SU(3), the group of 3× 3 uni-
tary matrices having determinant one. The reality of quarks was not taken seriously
until the late 1960s, when high-energy scattering experiments at Stanford (“deep-
inelastic scattering”) suggested, somewhat like the Rutherford model of the atom,
that point-like constituents existed inside the proton and neutron, which were first
called partons, but are now recognized as quarks [7]. Quarks, see � Color Charge
Degree of Freedom in Particle Physics; Mixing and Oscillations of Particles; Parton
Model; QCD; QFT.

The next step was taken by Schwinger [8], Glashow [9], Weinberg [10], and
Salam [11], who discovered (1957–71) that electromagnetic and weak nuclear
forces (those responsible for β decay) could be “unified” into a single theory, the
so-called electroweak unification. It is represented by the product of two groups,
SU(2)×U(1). To understand the strong nuclear force, Greenberg introduced the idea
of “color,” a new quantum number carried by quarks, and shortly after the success of
the electroweak theory, Gell-Mann and others proposed that color SU(3) (not to be
confused with the flavor SU(3) mentioned in the previous paragraph) would be the
underlying symmetry of the strong interactions between the quarks, and thus was
born quantum chromodynamics or � QCD.

The resulting picture is called the Standard Model (SM) of particle physics.
(� Quantum field theory). Matter is composed of fermions, quarks and leptons,
the latter being particles that feel the electroweak forces but not the strong ones.
The leptons consist of charged particles, like the electron and muon, and neutral
particles of very small mass, the neutrinos. The forces are carried by bosons: the
photon, and its weak partners, W± and Z0, and gluons, which come in eight color
states. The quarks and lepton occur in pairs, grouped in three families:

(
u

d

) (
c

s

) (
t

b

)

(
e

νe

) (
μ

νμ

) (
τ

ντ

)

The masses of the quarks and leptons are given in Table 1. Neutrino masses are very
small, but now known to be nonzero. The neutrino flavor eigenstates, which couple

Table 1 Approximate masses of quarks and charged leptons in millions of electron volts, MeV.
Masses for the quarks are the so-called current algebra masses, not constituent masses.

mu ∼ 2 mc ∼ 1200 mt = 174,000
md ∼ 6 ms ∼ 100 mb = 4200

me = .511 mμ = 106 mτ = 1777
mνe �= 0 mνμ �= 0 mντ �= 0
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to the weak interactions, are not the same as the mass eigenstates. This leads to the
phenomenon of neutrino mixing. This is a bit complicated to describe for three kinds
of neutrinos. If we make the approximation of two-state mixing, the probability of
a neutrino of type α turning into a neutrino of type β is [16]

P(να → νβ) = sin2 2θαβ sin2
(

1.27�m2
αβ(eV2)

L(km)

E(GeV)

)

Recent observations appear to give for the values of the parameters here, the mixing
angles θαβ and the mass differences �m2

αβ = m2
α −m2

β ,

�m2
21 ≈ 8× 10−5 eV2, �m2

32 ≈ 2× 10−3 eV2,

sin2 2θ12 ∼ 0.86, sin2 2θ23 > 0.92, sin2 2θ13 < 0.19

Interactions are mediated by gauge bosons, which have the following properties
(m is the mass, and S the spin):

8 Gluons: g mg = 0, S = 1

3 Electroweak bosons: W±, Z0

mW = 80.4 GeV, mZ = 91.2 GeV, S = 1

1 Photon: γ, mγ = 0, S = 1

1 Graviton: g, mg = 0, S = 2

(Here, for completeness, we make reference to gravity, which is not actually de-
scribed by the Standard Model.) The group-theory structure of the interactions
within the Standard Model are given by the product of three unitary groups:

SU(3)× SU(2)× U(1)

The mathematics of this group gives reaction rates that are completely in accord
with experiment.

We do not know where the masses of the elementary particles come from. In the
Standard Model, the masses are accommodated by another particle, the Higgs bo-
son. The Higgs boson is the only element of the Standard Model not yet discovered:
Since it has yet to be seen, mH > 115 GeV. The expectation is that the Higgs boson
will be discovered at the Large Hadron Collider (LHC).

Although there is no evidence that the Standard Model breaks down even at
the highest energies, and in fact, QED is valid to fantastic precision, and Newto-
nian gravity holds to ∼50 μm [12] (both these limits were greatly extended during
the past year), parameters (masses and couplings) in the Standard Model are un-
explained. Therefore many physicists speculate that new physics lies beyond the
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Standard Model. The most popular extension is supersymmetry (SUSY), which
is the hypothesis that for every fermion there is a partner boson, and vice versa.
However, at present, there is no evidence for SUSY particles, and in fact strong
evidence against SUSY (coming from limits on the electric dipole moment of the
electron and neutron). It is hoped that supersymmetric partners to SM particles will
be found at the LHC. Other more exotic possibilities, such as signatures for large
extra dimensions (also rendered less likely by the precision gravity tests), will be
searched for there as well. See also Color Charge Degree in Particle Physics.
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Particle Tracks

Brigitte Falkenburg

Particle tracks are sequences of adjacent position measurements caused by sub-
atomic particles. As quantum phenomena to which the particle picture applies
(� Franck–Hertz experiment), they constitute the empirical basis of � particle
physics. The dynamic properties of the underlying particles are measured by means
of a semi-classical measurement theory. The generation of particle tracks, how-
ever, is explained in the wave picture by the quantum mechanics of scattering.� Davisson–Germer experiment; Stern–Gerlach experiment; Schrödinger equation.

History

In 1912 particle tracks were first observed and photographed in Wilson’s cloud
chamber. They stemmed from radioactive radiation sources. For α-rays only a con-
tinuous track was visible, while for β-rays (� electrons) the individual measurement
points could be clearly distinguished [1]. Since the 1920s, Wilson’s cloud chamber
helped to investigate particle tracks from cosmic rays, the most famous being the
positron track observed by Anderson in 1932 [2]. Since the 1950s, particle tracks
are also generated in the accelerator experiments of high energy physics.

Measuring Devices

The first decades of particle physics were based on various methods of taking pho-
tographs [3]. The cloud chamber developed by Charles T.R. Wilson (1869–1959)
was filled with over-saturated steam. Charged particles ionize the hydrogen atoms� Bohr’s atom model of the steam, giving rise to observable condensation droplets.
In the 1940s, nuclear emulsions made it possible to record the tracks of charged par-
ticles from cosmic rays and to develop their pictures photographically with a very
high spatial resolution (of 1 μm). In the bubble chamber, developed in the 1950s by
Donald A. Glaser (∗1926) for the � scattering experiments performed in particle
accelerators, the ionization gives rise to gas bubbles in liquid hydrogen instead of
condensation droplets in steam. The bubble chamber made it possible to detect and
photograph a variety of particle tracks at the same time.

In modern electronic particle detectors, the particle tracks are no longer ob-
servable on a photograph. They are recorded electronically and reconstructed by
computer programs. For example, a drift chamber detects and amplifies the electric
currents caused by the passage of charged particles through a grid of wires. In this
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way, the observable particle tracks of the first decades of particle physics have been
replaced by electronic data and their reconstruction. Only after a lengthy process
of data analysis by means of reconstruction programs do they become visible on a
computer display.

Measurement Theory

Particle tracks have characteristic phenomenological features, above all, the density
of the measurement points, the curvature in a magnetic field, the track length, and
the temporal order of the single position measurements (i.e., the flight direction).
They give important hints for particle identification. In the first decades of particle
physics, they made it possible to estimate the mass and charge of unknown particles.
The flight direction can be inferred from the energy loss along a track which results
in a characteristic increase of the track curvature. (In this way, Anderson identified
the positive electrons as a particle with the electron’s mass and charge, of opposite
sign.)

In order to measure the dynamic properties of the underlying particle, the points
of a particle track in space-time are connected or “fitted” by the trajectory of a
massive charged particle. The trajectory is the data model [10] of a particle track.
This data model is based on the classical model of a massive charged particle of

mass m, charge q , and momentum
→
p = m

→
v , which loses energy along the track

due to subsequent inelastic collisions with the detector atoms. In the model, the
track ends when the particle is stopped. The track length indicates the kinetic energy
lost during the passage of the particle through the detector. An empirical law, the
so-called energy-range relation, connects the kinetic energy of a massive charged
particle to its range (or track length) in different materials.

Based on this model, the particle tracks taken in an experiment are analyzed
by means of a semi-classical measurement theory. This measurement theory
contains [12]:

1. The classical Lorentz force F = q/c (E + →
v ×B). It describes the momentum

change of a massive charged particle in an external electric field E or magnetic
field B. According to the Lorentz force, the momentum of a particle of known
mass and charge can be determined from the track curvature.

2. The laws of relativistic kinematics for particles of high energy, in particular, the
law of energy-momentum conservation.

3. A dissipation term �E/�x for the average energy loss �E per finite detector
length �x along the track [5]. The differential energy loss dE per path length
dx obtained from dE/dx ≈ �E/�x is combined with the Lorentz force, giving
rise to a differential equation for the mean momentum decrease due to energy
dissipation along the track of a charged particle.

4. The empirical energy-range relation for charged particles in a given material,
giving rise to a rough estimate of the average energy loss �E/�x. The average
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range in a given material was measured for charged particles of known energy,
for many materials [1, 23].

5. Quantum electrodynamic predictions for the dissipation of energy and the deflec-
tion of charged particles by subatomic scattering processes. They are based on
the quantum mechanics of scattering [4] and the � quantum electrodynamic de-
scription of ionization, � bremsstrahlung, pair creation, and multiple scattering
[5, 6].

6. Quantum mechanical conservation laws for � spin, � parity, isospin and other
internal dynamic properties of subatomic particles, associated with the group
theoretical definition of particles as the irreducible representations of � symmetry
groups.

The quantum electrodynamic laws which enter the measurements are supported
by empirical laws. These empirical laws make it possible to test the quantum
electrodynamic formulae independently. During the phase of consolidation of quan-
tum electrodynamics, experimenters like Anderson exerted substantial effort to
determine the mass and charge of particles by improvements in such independent
semi-empirical measurement procedures. After the consolidation of quantum elec-
trodynamics, the semi-empirical methods remained in the measurement theory. To
the present day, they make it possible to perform several consistency checks on the
measurements.

Mott’s Idealized Quantum Mechanical Model

Strictly speaking, however, quantum mechanics is incompatible with the classical
trajectories of the above measurement theory. So, how do they fit together?

Shortly after the development of quantum mechanics it was shown that the gen-
eration of particle tracks in a Wilson chamber is perfectly compatible with quantum
mechanical scattering theory. As Werner Heisenberg (1901–1976) stressed in his
1930 book on quantum mechanics, the probability of α-particle deflection due to
repeated ionization of molecules in the vapour is non-zero only if the connecting
line of the two molecules runs parallel to the velocity direction of the α-particles
[7]. The calculation was first carried out by Nevill F. Mott (1905–1996) in 1929
[8], based on Born’s 1926 quantum mechanics of scattering which gave rise to the� probabilistic interpretation of quantum mechanics [4]. According to quantum me-
chanics, the scattering is not due to the impact of a particle but to the diffraction of
a wave, lacking the classical trajectory of a deflected particle and the corresponding
classical impact parameter. The squared � wave function predicts the probability of
particle detections at a certain scattering angle.

Mott calculated the probability for two subsequent collisions of an α-particle
and a hydrogen atom � Rutherford atom with the effect of the ionization of both
atoms. The ionized atoms give rise to observable measurement points, where the
observation of a droplet is a position measurement. But the observation of the
particle deflection given by straight lines drawn between the adjacent droplets is a
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momentum measurement. Heisenberg showed in 1930 that the uncertainty relation
for position and momentum holds for any ionization process along the track. Due
to the finite size of the water molecules in the Wilson chamber, the position and
momentum measurement cannot both be sharp [7]. The inaccuracy of the position
measurement for individual measurement points of a particle track and the measure-
ment error of the particle momentum obtained from a curved particle track using the
expression for the Lorentz force are typically more than 12 (!) orders of magnitude
larger than � Heisenberg’s uncertainty relation.

Thus, the quantum mechanical explanation of single measurement points of
a particle track is in perfect correspondence to the classical particle picture,
the only difference being the unobservable classical path between the position
measurements.

Mott’s and Heisenberg’s calculations neglect the energy loss associated with the
ionization processes that give rise to the observable measurement points. The parti-
cle is described as if it did not transfer a definite amount of energy to the hydrogen
atom when ionizing it. The calculations deal with the amplitudes of inelastic col-
lisions, but they are performed as if the momentum state of the charged particle
remained unaffected by the energy transfer that gives rise to ionization. This ‘un-
realistic’ neglect of the momentum transfer is reasonable, since the energy loss of
an α-particle due to ionization of hydrogen atoms is very small compared to the
kinetic energy of the α-particle. Therefore the momentum of an α-particle remains
practically unchanged along its track in the Wilson chamber.

Under such idealized conditions, the classical and quantum descriptions of a
track agree for any sequence of measurement points. This � correspondence be-
tween the classical and the quantum cases holds not only for the straight particle
tracks calculated by Mott and Heisenberg but also for the curved tracks in a mag-
netic field. For a weak external field, the � Schrödinger equation for a stationary
beam of particles predicts approximately the classical beam deflection which is de-
scribed by the Lorentz force [11].

Realistic Tracks with Energy Loss

In the case of a substantial amount of energy loss along a particle track, the agree-
ment between the classical and the quantum descriptions vanishes. Nevertheless,
the � semi-classical model has to be maintained for the data analysis of individual
particle tracks.

The first quantum mechanical calculation of non-negligible energy loss was
given by Hans Bethe (1906–2005) in 1930 [5, 12]. Bethe’s � semi-classical model
adds classical assumptions about the individual scattering processes along a parti-
cle track to Born’s quantum mechanics of scattering. The calculation is performed
in time-dependent perturbation theory. It results in a formula for the quantum me-
chanical expectation value 〈E〉, the mean energy loss per atom and per incoming
particle (in the limit of infinitely many incoming particles, Nin → ∞). Then the
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result is applied to the scattering processes along an individual particle track, giv-
ing rise to an expression for the mean energy loss �E per length �x of matter.
Hence, the � semi-classical model assumes that the expectation value 〈E〉 means
the average energy loss of a charged particle by successive scatterings from many
detector atoms along an individual track, normalized to the number of atoms per
path �x.

Mott’s and Bethe’s calculations hold for the non-relativistic domain. According
to Bethe’s 1930 results, energy loss due to ionization is small and the shape of par-
ticle tracks is smooth. For relativistic particles, however, the semi-classical picture
breaks down. � Quantum Electrodynamics predicts that a particle does not lose
its energy smoothly. Due to quantum fluctuations, the energy loss along a particle
track may become completely irregular and extreme deviations from the classical
path may occur. Several kinds of processes may give rise to large fluctuations in the
energy loss. In addition to energy loss due to ionization, quantum electrodynamics
predicts processes of � bremsstrahlung and pair creation, that is, the emission of
a photon or an electron–positron pair, respectively. These processes are associated
with large fluctuations in the energy loss along a particle track. They give rise to
irregular deflections which violate the classical shape of a track predicted by Mott
in 1929 and presupposed also by Bethe in his 1930 energy loss calculation. In the
data analysis of modern high energy � scattering experiments, these fluctuations
have to be corrected at the probabilistic level.
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Parton Model

O.W. Greenberg

The parton model pictures hadrons as a collection of pointlike quasi-free particles.
The model describes the cross section for high-energy scattering of hadrons with
another particle as an incoherent sum of the cross sections of the pointlike partons
in the hadron with the other particle. The hadronic factors in the cross sections
are parametrized by “structure functions.” The parton model expresses the structure
functions in terms of parton distribution functions that give the longitudinal momen-
tum distribution of the partons in the given hadron. The parton distribution functions
are found from experimental data in a given process and are used in the description
of other processes (Fig. 1).

The prototype process for the parton model is eN → e′X, where e and e′ are
the incident and scattered electron, N is the target nucleon, and X is the set of
final state hadrons. The particles in the final state X are not measured, so the cross
section is for the sum over all hadronic final states, an “inclusive” cross section. This
contrasts with an “exclusive” cross section in which the final states are restricted
to a specific subset. In the prototype process, eN → e′X, the kinematics of the
inclusive scattering depends on the momentum transfer q = k−k′ from the electron
to the hadrons and the invariant mass, W , of the hadronic final state, where W 2 =
(p+q)2 = M2+2Mν+q2, and M is the mass of the target nucleon or other hadron.
Here k and k′ are the energy-momentum 4-vectors of the incident and scattered
electron, p is the energy-momentum 4-vector of the target hadron, and ν = E −E′
is the energy transfer to the target hadron in its rest frame.

J.D. Bjorken [1] predicted that the hadronic factor in the cross section would
depend only on the ratio x = (−q2)/(2p · q) = (−q2)/(2Mν), rather than on
ν and −q2 separately, on the basis of an algebra of local currents. This prop-
erty, called “scaling,” was expected to hold in the “deep inelastic” limit in which
the energy transfer and momentum transfer are much larger than the target hadron
mass. R.P. Feynman [2] interpreted scaling in terms of constituents of the nucleon
that he called “partons.” Bjorken and E.A. Paschos [3, 4] gave early discussions
of electron-nucleon and neutrino-nucleon scattering in the deep inelastic limit. The
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Fig. 1 Parton Model; ep→ e′X. e(e′) is the incident (scattered) electron. γ is the exchanged
photon. p is the incident proton. X is the final hadronic state

Bjorken x can be identified with the fraction of the longitudinal hadron momentum
carried by a given parton.

C.G. Callan and D.J. Gross [5] showed that the commutators of the electric cur-
rent give information about the carriers of electric charge. Subsequent data on deep
inelastic scattering showed that the carriers of charge have � spin 1/2 and can be
identified with quarks, � Color Charge Degree of Freedom in Particle Physics; Mix-
ing and Oscillations of Particles; Particle Physics; QCD; QFT (see [6] for early data
and [7,8] for recent data in the references). Other sum rules together with data show
that the charged partons carry only about 1/2 of the energy-momentum of the nu-
cleon. The other half is carried by gluons and other neutral particles. Several reviews
discuss sum rules below (see A.J. Buras [9], C. Bourrely and J. Soffer [10] and F.
Close [22] in the references).

Surprisingly, scaling sets in at rather low energy and momentum transfer, so-
called “precocious” scaling. [11] The paper of Bloom and Gilman also pointed out
a duality between resonances and smooth scaling behavior which later led to the
dual resonance model and even later to string theory. The partons are identified with
the “valence” quarks that account for the electric charge, isospin and strangeness
of the hadron, and with “sea” quarks that correspond to extra quark-antiquark pairs
as well as with “gluons,” which are quanta of the color gauge group that mediate
quark interactions and have zero electric charge, isospin and strangeness. S.D. Drell,



Parton Model 467

P

D.J. Levy and T.-M. Yan extended the parton model to hadron-hadron scattering and
gave the celebrated Drell-Yan mechanism for the production of lepton pairs (see [12]
in the references for a review).

More detailed processes, such as semi-inclusive processes in which some of the
final state hadrons are measured, require parton fragmentation functions [13], as
well as parton distribution functions, for their description. The fragmentation func-
tions account for the conversion of partons into hadrons in the final states. Gross
and Wilczek [14] and H. Georgi and Politzer [15] showed that quantum chromo-
dynamics predicts logarithmic corrections to scaling. The DGLAP formalism [16]
expresses these corrections in parton language.

Scattering experiments with polarized beams and targets give information that
cannot be obtained from unpolarized experiments. The EMC experiment with po-
larized muons scattering on polarized protons [17] led to the “spin crisis,” that only
about 1/4 of the spin of the proton is carried by quarks [18] (see reviews in [19]).

Feynman gave arguments that partons don’t interact with each other in first ap-
proximation because in the limiting infinite momentum frame there is a separation
of scales between the (slow) parton-parton interactions and the (fast) interaction
with the scattered lepton. [13] The running of coupling constants that follows from
asymptotic freedom � Color Charge Degree of Freedom in Particles Physics; QCD;
QFT provides further understanding of the mystery that quarks are permanently
confined in hadrons viewed at low energy, but are quasi-free viewed as partons at
high energy. [20, 21]

R.E. Taylor, H.W. Kendall and J.I. Friedman describe the pathbreaking ex-
perimental discoveries that stimulated the invention of the parton model [6].
P.M. Nadolsky et al. [7] and J. Blumlein et al. [8] analyse recent data on parton
distributions � nuclear models.
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Paschen–Back Effect

Klaus Hentschel

In 1921, two experimental physicists in Tübingen, Friedrich Paschen (1865–1947)
and Ernst Back (1881–1959), observed that with strongly increasing magnetic field
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Paschen–Back Effect

Klaus Hentschel

In 1921, two experimental physicists in Tübingen, Friedrich Paschen (1865–1947)
and Ernst Back (1881–1959), observed that with strongly increasing magnetic field
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Fig. 1 Diagrammatic sketch of the changes occurring in a principal doublet as the field is in-
creased; where π or σ is enclosed in brackets, this component fades in a strong field
Source: Chris Candler, Atomic Spectra (Cambridge, Cambridge Univ. Press 1937; London, Hilger
& Watts 21964, 86)

strength, the complicated multiplets of the anomalous � Zeeman effect change
into the simpler patterns typical of the normal Zeeman effect (see Fig. 1). Initially,
this observation remained inexplicable. With the discovery of � spin in late 1925,
however, and the realization that the anomalous Zeeman effect is characteristic of
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systems with spin S > 0, whereas the normal Zeeman effect governs atoms with
a total S= 0, the Paschen–Back effect could be understood as a decoupling of S
and orbital angular momentum L, since the influence of the total spin becomes
neglectable for diminishing spin-orbit coupling. (See also � Russell–Saunders cou-
pling, � jj-coupling, Stern–Gerlach experiment and � vector model).
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Pauli Exclusion Principle

See � exclusion principle.

Pauli Spin Matrices

Roderich Tumulka

The Pauli spin matrices are the following 3 complex 2× 2 matrices:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (1)

These matrices represent the spin observables along the x- (respective y- and z-)axis
of physical 3-space for a spin- 1

2 particle, relative to an � orthonormal basis of spin
space consisting of eigenvectors of σz. (Spin observables are measured, e.g., in the� Stern–Gerlach experiment.) The spin observable along any direction in physical
3-space defined by the unit vector n = (nx, ny, nz) is given, relative to the same
basis, by

σn = nx σx + ny σy + nz σz = n · σ (2)

with σ = (σx, σy, σz). The spin observable is related to the angular momentum
observable Jn along n according to

Jn = �

2 σn + Ln, (3)
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where Ln = n · L is the n-component of the orbit angular momentum operator
L = q× p. � Spin; Stern–Gerlach experiment; Vector model.

The Pauli spin matrices, named after Wolfgang Pauli (1900–1958), are self-
adjoint (= Hermitian) and unitary. Each of them (as well as σn for every unit vector
n) has trace equal to zero, determinant equal to −1, and eigenvalues 1 and −1.

The Pauli matrices belong to the fundamental structure of spin space, as spin
space is defined to be a 2-dimensional complex vector space Hspin ∼= C

2 coupled to
physical 3-space by a law specifying how the elements of spin space transform under
rotations. The law involves the Pauli matrices and asserts that the rotation through
the angle ϕ ∈ R about the axis spanned by the unit vector n ∈ R3 transforms the
vector ψ ∈Hspin from spin space into

ψ ′ = ±e−(i/2)ϕσnψ . (4)

(Exponentiation of a matrix can be defined by means of the power series ex =∑
xk/k!.) As a consequence, for the rotation through an infinitesimal angle δϕ one

can write, neglecting higher order terms in δϕ,

ψ ′ = ψ − i
2δϕ σn ψ . (5)

From this equation one can read off that the matrix −(i/2)σn (acting on ψ) repre-
sents the rate of change of ψ per angle when rotating around n.

Expressing these facts in a technical way, spin space is endowed with an ir-
reducible projective representation of the rotation group SO(3) (the set of all
orthogonal real 3 × 3 matrices with determinant 1), called the “spin- 1

2 represen-
tation.” Using the fact that SO(3) can be “unfolded” yielding the group SU(2) (the
set of all unitary complex 2×2 matrices with determinant 1), the irreducible projec-
tive representation of SO(3) can be translated into an irreducible representation
of SU(2), in fact the natural representation on C2 defined by matrix multipli-
cation. In this translation, the rotation by ϕ about n corresponds to the matrix
±e−(i/2)ϕσn ∈ SU(2), where the sign ambiguity arises from the “unfolding.” The
Lie algebra su(2) associated with the Lie group SU(2) consists of the infinitesimal
generators of SU(2), and thus of all matrices of the form −(i/2)ϕσn, and that is
the 3-dimensional real vector space of all traceless skew-adjoint 2 × 2 matrices, of
which iσx, iσy, iσz form a basis.

The Pauli matrices satisfy the commutation relations

[σi, σj ] = 2iσk (6)

if ijk is any cyclic permutation of xyz. Except for the factor 2, these relations are the
same as those of any angular momentum operators; the reason is that these are
the defining relations of the Lie algebra su(2), which is also the Lie algebra of
the rotation group SO(3), and thus are relations characteristic of rotations in
physical 3-space.
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Higher spins: For spin-s particles, s ∈ 1
2 Z, the matrices analogous to the Pauli

spin matrices are 3 complex (2s + 1) × (2s + 1) matrices. Higher dimensions: If
physical space had dimension d instead of 3, there would be d(d − 1)/2 Pauli spin
matrices, as that number is the dimension of the rotation group SO(d).
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Secondary Literature

2. R. U. Sexl, H. K. Urbantke: Relativity, Groups, Particles. (Springer-Verlag, New York, 2001)

Photoelectric Effect

Bruce R. Wheaton

When electromagnetic radiation strikes a metal, � electrons are released. This
simple statement hides a considerable history stretching back to Galvani and not
plumbed entirely to this day.

In its initial form, the effect was discovered by Heinrich Hertz (1857–94) during
his path-breaking corroboration of Maxwell’s laws in 1887. He was using spark-
discharges in one part of his laboratory in Karlsruhe to stimulate other, much weaker
ones, in another. To see the weaker ones he began to shield his eyes from the bright
primary spark, then, inspired, realized that the length of the weak ones diminished
when the blue primary spark light failed to reach the secondary electrodes. He called
it “a peculiar and surprising property of the spark,” showed by elimination that the
ultra-violet light of the primary eased the secondary sparks from the metal elec-
trodes, and put the matter out for others to investigate because it deterred him from
his Maxwellian objective.

Many took up the challenge with telling results. Wilhelm Hallwachs (1859–1922)
in Dresden gave it its modern form when he found that ultra-violet light from almost
any source will discharge a negatively-charged zinc plate. Augusto Righi (1850–
1920) in Padua named the device a “coppia fotoelettrica.” By 1889 both Hallwachs
and Righi showed that a neutral plate will acquire a positive charge from the action.
One must note here that the concept of the “electron” did not exist except in a few
prescient minds at the time, so the active mechanism remained unclear.
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That circumstance changed in the mid-1890s with the pioneering investigations
of ion-currents by Joseph John Thomson (1856–1940) at the famous Cavendish Lab-
oratory in Cambridge. He studied � cathode-rays in the newly possible vacuum:
streams of negative electricity visible and accessible to quantitative study within
those glass vacuum tubes. Convinced that there was a negatively-charged “corpus-
cle” constituting the beam, he sought all means to measure its properties. In 1898,
after proclaiming its existence by a clever determination of its charge/mass ratio
using crossed electric and magnetic fields, he eagerly sought its charge; the photo-
electric effect made it possible.

If his electrons were emitted from the plate AB in Fig. 1, passing them through a
magnetic field would bend them into cyclodial trajectories.1 Were he then to probe
the region of the plate with an electrical collector CD, the height of their cycloid

A B

L

K

D
F

C
E

Fig. 1 Thomson shone uv light though a quartz plate EF at the bottom of the device, irradiating
plate AB. He then moved AB closer to grid CD until it first collected charge. From Thomson
(1899), p. 550

1 This is true for electrons emitted on one side of normal to the plate, those emitted on the other
side describe tortured paths not pictured but that never reach the full excursion from plate AB.
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Fig. 2 Cycloidal paths of corpuscles emitted from plate AB on one side of the normal. From [11,
p. 88]

(hence their velocity) was easily measured, as in Fig. 2. So the photoeffect gave
the first accurate determination of the charge e in 1899. This was 7 years before
Millikan’s oil-drop experiment.

Philipp Lenard (1862–1947) was convinced, like his mentor Hertz, that the cath-
ode rays were ætherial disturbances. So in 1902 he tried and failed to disprove
Thomson’s results. In the most far-reaching study of photoelectric emission to the
time, he found that the velocity of emitted cathode rays seemed entirely independent
of the intensity of radiation, but only depended on the type of light used. He did not
say it depended on the frequency or color of the light and concluded that there was
therefore no conversion of radiant energy to electron kinetic energy occurring in
the effect, but that some sort of resonant action of the light would “trigger the re-
lease of electrons” from metal atoms with the energy they had possessed within the
atom. Until he finally rejected this “triggering” action in 1911, his views formed the
majority opinion amongst physicists because the energy of released photo-electrons
seemed entirely too great to have collected from a wave-front of radiation in the very
short time (<10−3 s.) which Alexandr Stolyetov (1839–96) in Moscow had found it
to occur in 1889.

Far in the background lay the heretical proposal in 1905 by the unknown Albert
Einstein (1879–1955) that there must be a particulate nature to ultra-violet light. In
1905, as part of his recasting of physics, he derived a linear law for the electric po-
tential that stopped the fastest released electrons as proportional to the frequency, not
the intensity of the incident light. This “quantum transformation relation” or (QTR)
side-stepped the æther altogether in favor of a � “light-quantum” interpretation of
ultra-violet (and visible) radiation. In reaction to Planck’s statistical “quantum” of
1900, Einstein’s physical light-quantum carried energy proportional to frequency,
and was absorbed in quantum units. Einstein was well aware of Lenard’s findings
but explained them in an entirely different (he said “truly revolutionary”) manner.
Why “revolutionary”? Were light a continuous wave, how did the atom know when
enough energy had been absorbed?

In 1913, Einstein’s light-quantum was judged “erroneous” by leading German
physicists. Even in 1916, when Millikan showed Einstein’s linear photoeffect law to
be entirely accurate empirically, the idea was almost universally rejected (even by
Millikan.) But Einstein received the 1921 Nobel Prize for the idea when tides began
to turn. The � Compton Effect and Louis de Broglie’s hypothesis of � matter waves
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Fig. 3 Millikan’s unambiguous 1916 demonstration of Einstein’s predicted linear law for the pho-
toelectric effect in lithium. From [9, p. 240], by permission

fairly convinced the next generation that Einstein had been right all along. See also� “light-quantum”, � “wave-particle duality” and � “quantum theory”.
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4. Ph. Lenard: Über die lichtelektrische Wirkung. Ann. Phys. (4th ser.), 8, 149–98 (1902)
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Pilot Waves

Basil James Hiley

The notion of a pilot wave was first proposed by Louis de Broglie (1892–1987)
in his doctorate thesis in 1924 [1] and eventually published in 1927 [2]. Earlier
experiments on the � photoelectric effect showed the need to introduce the notion
of a ‘packet’ of electromagnetic energy, the photon, into what had till then been
thought to be a purely wave phenomena. How then was it possible to bring together
the particle and the wave, two apparently contradictory physical notions into one
theory?

De Broglie summarised his ideas in what he called “the theory of the double solu-
tion”. In this approach he proposed that the equations of � wave mechanics would
admit two kinds of solution. One solution would be a continuous wave solution,
� , and the other would be a singular solution which would represent the physical
“particle”. This singular solution would be localised and incorporated within the
extended wave phenomena. De Broglie’s brilliant perception [3] was that this idea
could be applied, not only to photons (� light quantum), but to quantum particles in
general, namely those with non-zero rest mass. What was missing was the general
non-linear wave equation which would unite wave behaviour with particle behaviour
in one comprehensive theory.

To a first approximation, de Broglie [10] argued that we can treat the two so-
lutions separately provided we find some way of locking the particle to the �

wave, which he assumed would satisfy the � Schrödinger equation. To achieve
this de Broglie first noticed that a particle has an internal energy, m0c

2 = hν0,
so that it can be compared with a small clock of proper frequency ν0. When the
particle is in motion with a velocity v, relativity tells us that its frequency would
be ν = ν0(1 − v2/c2)1/2. This is different from the frequency of a wave which
transforms as ν1 = ν0/(1 − v2/c2)1/2. However combining these two results gives
ν1 = ν(1− v2/c2), a relation which we will now exploit.

How does this result ‘lock’ the wave and particle aspects together? Notice that
an observer will see the moving particle represented by a wave ψ = sin(2πν1t). If
at time t = 0 there is agreement between the internal phase of the particle described
by ψ and the phase of the wave � , then we want this agreement in phase to persist
throughout the movement of the particle.

At time t , the particle will have moved a distance x = vt from its original posi-
tion. Its internal motion will then be represented by ψ = sin[2π(x/v)ν1]. Now the
�-wave at this point will be given by
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� = sin[2πν(t − xv/c)] = sin[2π(x/v)ν(1− v2/c2)].

Using the relation ν1 = ν(1 − v2/c2), we find the �-wave is given by � =
sin[2π(x/v)ν1], which is exactly the same as the internal motion represented by
ψ . In this way the particle is locked to the wave, so that the wave can be regarded
as “piloting” the particle.

In pursuing the idea, de Broglie [10] then analysed the singularity further and
found that the velocity of the particle could be given by v = ∇φ/m where φ was
the phase of the wave. He regarded this as a fundamental formula and called it “the
guidance formula”. Furthermore he immediately recognised the similarity with the
classical Hamilton-Jacobi theory of classical mechanics in which there appears a
canonical relation p = ∇S, where S was the classical action. It is through this
relation that de Broglie had anticipated the 1952 � Bohm model [4].

De Broglie was invited to present these ideas at the 1927 Solvay Congress held in
Brussels, which he did under the title “The Pilot-Wave Theory”. The paper was not
well received and the alternative � probabilistic interpretation of Bohr and others
was preferred by most of those present. During the course of the conference Pauli
[5] raised detailed objections to the work, which de Broglie was unable to answer
at the time and he was disappointed that Einstein did not support his ideas. As a
consequence de Broglie stopped working on this approach.

However de Broglie did take up his ideas again [6, 10] after David Bohm (1917–
92) [4] published his papers containing an analysis of the � Schrödinger equation
that exploited formulae similar to those presented in the pilot-wave theory. The sig-
nificant feature of Bohm’s work for de Broglie was that Pauli’s specific objections
had been answered. Furthermore the papers also outlined how the ideas could be
extended to deal with, not only many of the troubling paradoxes of the standard in-
terpretation (� errors and paradoxes in quantum mechanics), but also how to extend
these ideas to � quantum field theory.

More recently Dürr, Goldstein and Zangı́ [7] have proposed a new way of de-
riving the guidance condition. They begin by assuming the velocity of the particle
is determined by the � wave function, ψ so that v = vψ . Then by also assum-
ing Galilean invariance, together with vaψ = vψ and time-reversal symmetry,
vψ∗ = vψ , they were able to derive the de Broglie guidance condition,

vψ = �

m
/∇ψ

ψ
= ∇φ

m
.

where φ is again the phase of the wave. Dürr et al. called their approach “Bohmian
mechanics”, a rather unfortunate terminology as Bohm himself had argued against
the notion of “mechanics” as underlying quantum phenomena, arguing that his pre-
ferred term was “quantum non-mechanics” [8], a position he maintained throughout
his life [9].

However the possibility of a mechanical explanation of quantum phenomena is
a legitimate area for exploration and shows how far one can take these ideas with-
out the need to follow the more exotic interpretations of the formalism discussed
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elsewhere in this compendium. In fact approaches based on such considerations do
provide a consistent and coherent account of quantum phenomena, removing many
of the paradoxes thrown up by the even more conventional approaches. Nevertheless
there has been a general reluctance amongst the majority of physicists to embrace
the approach based on the notion of a pilot wave.

A comprehensive survey of the pilot wave theory can be found in de Broglie
[10, 11].
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2. L. de Broglie: La méchanique ondulatoire et la structure atomique de la matiére et du rayon-
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equilibrium between matter and radiation in a cavity, Planck used a model now
called Planck’s resonator. Its entropy was defined as

S = − E

av
ln

E

ebv
,

where v is the frequency of the radiation and “a and b stand for two univer-
sal positive constants.” (Planck 1899, p. 465) Planck had already calculated
the value for constant b (now designated h) in “thermodynamic fashion” as
b = 6.885 × 10−27erg sec. The current best value for h is 6.27 × 10−27 erg sec
or 6.626× 10−34 J s.

By the way, Planck also showed that the second constant a is defined by h/k,
where k is Boltzmann’s constant and depends on the definition of temperature. With
h and k one can calculate very precisely the values for Loschmidt’s constant (L) and
the electric elementary quantum (e) from heat radiation measurements.

In the same paper from May 1899 Planck also pointed out that this new funda-
mental constant of nature opens up the possibility of combining the gravitational
constant (G) and the velocity of light (c) “to define units for length, mass, time
and temperature which keep their meaning for any time and any civilization, even
extraterrestrial and unhuman ones. Therefore one can designate them as ‘natural
units’.” ([1], p. 480; [2], p. 121)

Soon thereafter, during the fall of 1900, Planck noticed that the meaning of b
resp. h was not restricted to metrology or the foundation of natural units. By way
of explanation by a new radiation formula – the so-called � Planck’s radiation law,
which replaced Wien’s law – the constant h again plays a central role. For the energy
of Planck’s resonators, which regulate the exchange of energy between matter and
radiation in a cavity, one had to postulate:

E = hv

This introduction of discrete levels of energy and its revolutionary character for the
physical understanding of nature was not yet fully understood at that time. Initially,
it merely agreed with the available measurement data. Planck himself first spoke of
discrete energy levels of his resonators in 1908. That is why the beginning of our
modern understanding of the quantum character of atomic processes and the crucial
role of h is signified less by Planck than by Albert Einstein and his hypothesis of� light quanta from 1905 as well as his and Paul Ehrenfest’s analysis of Planck’s
radiation law in 1905/06. It took an additional decade for the revolutionary charac-
ter of Planck’s quantum hypothesis and Planck’s constant to become fully clear and
quantum physics to become a central part of modern physical research. This was not
the work of Planck and his generation but of a younger one, the founders of quan-
tum mechanics during the 1920. With this theory and the � Heisenberg uncertainty
principle, the fundamental role of h for our understanding of the atomic world was
fully elucidated.
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POVM (Positive Operator Value Measure)

Roderich Tumulka

POVM: positive-operator-valued measure, also called generalized observable.
A mathematical object, consisting of a family of operators on � Hilbert space,
that occurs in quantum theoretical formulas for the probability distribution of the
random outcome of a quantum mechanical experiment. The concept of POVM
contains, as a special case, that of � observables represented by � self-adjoint
operators.

Overview

Outline of Definition. The word “measure” in “positive-operator-valued measure” is
understood in the sense of mathematical probability and measure theory [5], where
it means “additive set function”. A set function E(·) is a function whose argument
is a set (rather than a number, or a point in space). Possible arguments are subsets �
of a basic set �. Typical relevant examples of � include the real line R, n-space Rn,
or finite sets. A set function is called additive if for any two disjoint sets �1,�2 it
is true that

E(�1 ∪�2) = E(�1)+ E(�2). (1)

(The full mathematical definition, see below, requires slightly more.)
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Examples of measures include probability measures, for which E(�) is a number
between zero and one, giving the probability that a given random variable assumes
a value in the set �. For a POVM, E(�) is a (bounded) positive operator on a
Hilbert space H . An � operator T is called positive if 〈φ|T φ〉 � 0 for all φ ∈H ;
this is also sometimes called positive semi-definite in the literature; every (bounded)
positive operator is self-adjoint. Finally, it is part of the definition of a POVM that
it is normalized in the sense that E(�) = I , where I is the identity operator on
H , Iψ = ψ . In case � is a finite (or countable) set, E(�) can be expressed by
singletons:

E(�) =
∑
ω∈�

E({ω}). (2)

(Below we write E{ω} instead of E({ω}).)

Probabilities from POVMs. From a POVM E(·) on a set � one can create probabil-
ity measures on � in the following way: Given any vector ψ ∈ H with ‖ψ‖ = 1,
then

Pψ(�) = 〈ψ|E(�)|ψ〉 (3)

defines a probability measure Pψ(·) on �. To see this, note that 〈ψ|E(�)|ψ〉 is a
nonnegative real number since E(�) is a positive operator, and

Pψ(�) = 〈ψ|E(�)|ψ〉 = 〈ψ|I |ψ〉 = ‖ψ‖2 = 1. (4)

Physical Role. The physical relevance of POVMs is based on the following main
theorem about POVMs: For every quantum physical experiment E whose possible
outcomes lie in a space �, there exists a POVM E(·) on � such that, whenever the
experiment E is carried out on a quantum system with state vector ψ , the random
outcome Z has probability distribution given by

P(Z ∈ �) = 〈ψ|E(�)|ψ〉 . (5)

Observables. When all operatorsE(�) are projection operators (� projection) then
E(·) is also called a PVM or projection-valued measure. The widespread concept of� observables as represented by self-adjoint operators is contained in the concept of
POVM as the special case of a PVM on � = R. The self-adjoint operator A usually
called the “observable” is obtained from E(·) by setting

A =
∫

R

E(dλ) λ . (6)

Conversely, given A, the spectral theorem for self-adjoint operators provides the
right hand side of this equation, that is, provides the unique PVM E(·) on R that
makes this equation true. Thus, the self-adjoint operator A summarizes the entire
information encoded in the PVM E(·) in just one operator.
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Examples

Observables as represented by self-adjoint operators correspond to the simplest
cases of quantum experiments, usually connected with “ideal measurements.”
POVMs are necessary for more complex experiments.

Time of Arrival. Send a particle towards a detector and measure the time at which the
detector clicks. As a consequence of the main theorem about POVMs, the statistics
of the random result, depending on the initial wave function of the particle, is given
by a POVM, i.e., is of the form (5). Since this POVM is a “proper POVM”, i.e., not
a PVM, there is no self-adjoint operator summarizing it; in other words, there is no
“time operator”. (� Time in quantum mechanics).

Sequence of Ideal Measurements. Readers familiar with the formalism of ideal
quantum measurement of an observable (self-adjoint operator) A may consider a
sequence of such measurements, first one corresponding to A1, then another corre-
sponding to A2, and so on, up to An. Suppose that these measurements are carried
out one immediately after another, so that we can neglect the unitary time evolution
in between. Suppose further that the Ai have purely discrete spectrum. Note that the
operators Ai need not commute with each other, as they are not measured simulta-
neously, but in a specified order. The sequence of outcomes forms a vector in R

n,
whose distribution is given by a POVM E(·) that can be constructed from the PVMs
Ei(·) associated by (6) with Ai as follows:

E
{
(λ1, . . . , λn)

} = E1{λ1}1/2 · · ·En{λn}1/2En{λn}1/2 · · ·E1{λ1}1/2. (7)

(The powers 1/2 can be omitted asP 1/2 = P for every projectionP ; however, in the
above form the equation still defines a POVM E(·) when the Ei(·) are themselves
proper POVMs.)

In case the Ai commute with each other, E(·) is a PVM on Rn. In this sense,
a PVM can represent a family of commuting observables. In particular, the three
position operators Qx,Qy,Qz of non-relativistic quantum mechanics of a single
particle together give rise to the following PVM P(·) = E(·) on R3:

P(�)ψ(x, y, z) =
{
ψ(x, y, z) if (x, y, z) ∈ �,

0 otherwise.
(8)

However, when the Ai do not commute then E(·) is not a PVM but a proper POVM.
To make the setting more general, we can allow that the choice of second observ-

able A2 depends on the outcome of the first measurement. To take this into account,
replace Ei{λi} in (7) by Ei,λ1,...,λi−1{λi}.
Position Measurements with Constraints. In some cases, not all square-integrable
functions on R

3 are possible as physical wave functions of a single particle, but only
those from a suitable subspace Hphys [2, 4]. For example, photon � wave function
are functions � : R3 → C3 obeying the constraint ∇ ·� = 0. As another example,
Dirac wave functions ψ : R3 → C4 are usually regarded as physical only if they
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consist exclusively of Fourier components with positive energy, in other words, if
they lie in the positive spectral subspace Hphys of the Dirac Hamiltonian. In this
case, the usual position operators and the associated PVM as in (8) often map phys-
ical state vectors into unphysical ones, and are thus not defined as operators on the
physical Hilbert space Hphys. The problem is solved by replacing the “generalized
position observable” P(·) with P̃ (·) defined by

P̃ (�) := Pphys P(�)Pphys, (9)

where Pphys denotes the projection to Hphys. Then P̃ (�) is an operator on Hphys,
and P̃ (·) is a proper POVM on R3.

Fuzzy Measurements. An ideal detector, when detecting the particle in the region
� ⊆ R3, would collapse the wave function ψ(x, y, z) to the function in (8). Real
detectors, however, might, for example, cut off the wave function in an unsharp
way, corresponding to a proper POVM P̃ (·) that arises from the PVM P(·) of (8)
by smearing out (convolving) with a “bump function” f (for example a Gaussian):

P̃ (�) =
∫
�

d3x

∫
R3

P(d3y) f (y − x). (10)

The Main Theorem About POVMs

It is not difficult to understand the main theorem; here is a simple argument [3].
Suppose the experiment E begins at time t1 and ends at time t2, and suppose the
quantum state of system and apparatus at time t1 is �(t1) = ψ ⊗ φ. We make three
assumptions: (1) The time evolution from t1 to t2 is given by a unitary operator U .
(2) The � Born rule, according to which the probability distribution of the configu-
ration Q at time t2 is given by 〈�(t2)|P(·)|�(t2)〉 with P(·) the position PVM as in
(8). (3) The outcome Z is a function f of the configuration Q at time t2. Then, for
� ⊆ �,

P(Z ∈ �) = P
(
Q ∈ f−1(�)

) = 〈�(t2)|P(f−1(�))|�(t2)〉 (11)

= 〈ψ ⊗ φ|U∗P(f−1(�))U |ψ ⊗ φ〉 = 〈ψ|E(�)|ψ〉 (12)

with
E(�) = 〈φ|U∗P(f−1(�))U |φ〉, (13)

where the scalar product in (13) is a partial scalar product in the Hilbert space of
the apparatus. It can be shown that (13) defines a POVM.
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Mathematical Aspects

Definition. The mathematical definition of POVM contains some details we have
omitted above. The family of sets � for which E(�) is defined is required to be
a σ -algebra, i.e., closed under the complement operation � �→ � \ � and under
forming countable intersections. A POVM E(·) is further supposed to be σ -additive,
i.e., additive for any countable union of pairwise disjoint sets �1,�2, . . . ,

E
( ∞⋃
i=1

�i

)
=

∞∑
i=1

E(�i), (14)

where the series on the right hand side is required to converge weakly, i.e.,
∑〈ψ|E

(�i)ψ〉 converges for everyψ ∈H . (Then it automatically also converges strongly,
i.e.,

∑
E(�i)ψ converges for every ψ ∈H .)

Integration. Just as integrals can be defined relative to a probability measure P,∫
P(dω) f (ω), one can define integrals relative to a POVM. Such integrals have

occurred above in (6) and (10). One can define them by

〈
ψ

∣∣∣
∫

E(dω) f (ω)
∣∣∣ψ
〉
=
∫
〈ψ|E(dω)|ψ〉 f (ω) . (15)
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Probabilistic Interpretation of Quantum
Mechanics

Brigitte Falkenburg and Peter Mittelstaedt

The probabilistic interpretation of quantum mechanics is based on Born’s 1926
papers and von Neumann’s formal account of quantum mechanics in � Hilbert
space. According to Max Born (1882–1970), the quantum mechanical � wave func-
tion � does not have any direct physical meaning, whereas its square |�|2 is a
probability [1] � Born rule, probability in quantum mechanics. According to Jo-
hann von Neumann (1903–1957), the scalar product (�,O�) of the pure states �
and O� is the expectation value of the observable O , with spectral decomposition
O = ∑OiP(Oi), in the state � . The products (�,P(Oi)�) give the probabilities
of the possible measurement outcomes Oi [2].

(Spectral decomposition, see � Density operator; Ignorance interpretation; Mea-
surement theory; Objectification; Operator; Propensities in Quantum Mechanics;
Self-adjoint operator; Wave mechanics).

The probabilistic interpretation holds for all quantum theories, i.e., for non-
relativistic or � relativistic quantum mechanics as well as for quantum field theory.
In general, the probabilities for transitions between two quantum states are calcu-
lated from the density matrix of a quantum system. In � quantum field theory, this is
the S-matrix. The squared S-matrix element or scattering amplitude gives the tran-
sition probability of a certain type of particle interaction. In this way, the S-matrix
is directly related to the effective cross section of particle reactions in � scattering
experiments.

In view of the probabilistic interpretation, it has been discussed for decades
whether quantum theory refers to individual quantum systems or only to ensembles
of identically prepared systems. The laws provided by the theory are statistical and
they are experimentally confirmed to a very high degree of accuracy. But our scien-
tific language is concerned with individual systems: with the properties of a system,
its preparation, its development in time, and the measurement of its objective � ob-
servables. The difficulties in understanding the physical behavior of an individual
system on the basis of an essentially statistical theory gave rise to von Neumann’s
quantum theory of � measurement [2], to the � hidden variable theories, and to
the � many worlds interpretation. The latter had an enormous impact [3] on re-
cent attempts to make the relation between individual quantum systems and their
probabilistic behavior more precise, in the quantum theory of measurement [5–7].

Born’s Derivation

In order to interpret the wave function, Born generalized the � Schrödinger equation
from bound states inside the atom to a scattering problem, laying the grounds for
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the quantum mechanics of scattering, too [1]. He applied the Schrödinger equation
to the stationary wave of an asymptotically free quantum state, in � correspon-
dence to the scattering of classical particles at the Coulomb potential. Born’s model
employs � wave-particle duality in the following sense. The scattering process is
calculated in the wave picture � Davisson–Germer experiment; Stern–Gerlach ex-
periment; Schrödinger equation, whereas the scattering outcomes are interpreted in
the particle picture � Franck–Hertz experiment.

In the wave picture, a plane wave ϕin is diffracted by a hydrogen atom � Bohr’s
atom model in the ground state �0. In first approximation, the diffraction results in
a superposition of spherical waves ϕnm(q) with amplitudes fnm(θ) (which today are
called the scattering amplitudes, in the quantum theory of scattering):

ϕout =
∑
nm

cnm

∫
fnm(θ) ϕnm(q) d�.

Here, q is the momentum transfer to the atom, nm indicates the state of the atom
after a transition from an electron from state n to state m, θ is the propagation
angle, and the integration is taken over the solid angle �. Due to the momentum
transfer, the superposition ϕout is entangled with the ground state �0 and the excited
states �nm(q) of the atom. A momentum transfer q may give rise to the excitation
of an electron in state n to the mth level. Accordingly, the momentum transfer is
quantized. This explains the results of the � Franck–Hertz collision experiment.

In the particle picture which applies to the detection of scattered particles, θ
is the scattering angle related to the momentum transfer q by q = |p − p′| cos θ .
Here, p, p′ is the particle momentum before and after the scattering. Born stated the
scattering outcomes in terms of an Ausbeutefunktion �nm(q) which is identical to
the differential cross section (� scattering experiments) of the scattering:

�nm(q) = c2
nm|fnm(θ)|2.

Finally, Born argued that the calculation is only consistent with the empirical scatter-
ing results if the squared amplitudes |�nm(q)|2 of the outgoing waves are interpreted
as the probabilities for the scattering of particles of momentum p′ = p−q into direc-
tion θ . This interpretation relates the squared amplitudes of the partial waves ϕnm(q)
to the relative frequencies of the particles measured in direction θ . The relation be-
tween both quantities is a correspondence rule in an empiricist sense [8], i.e., a rule
for relating a theoretical concept to an observable quantity (in contradistinction to
Bohr’s � correspondence principle, which establishes inter-theoretic relations).

Problems of Born’s Approach

Born established the probabilistic interpretation by plausible reasoning, but obvi-
ously he did not give any proof. The probabilistic interpretation is merely opera-
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tional, without being anchored in the axiomatic foundations of quantum mechanics.
(In von Neumann’s approach, it is established by the problematic � projection pos-
tulate [2].) Born’s model relates the squared amplitude of the scattered wave to the
observed particle detections. Here, “scattered wave” means the asymptotic behav-
ior of the diffracted wave ϕout, considered a long time after the interaction between
the incoming plane wave ϕin and the atom, as if after the interaction there was no� entanglement between ϕout and the atom wave function � .

Following Born, the quantum mechanical wave function determines the proba-
bilistic ensemble (� ensembles in quantum mechanics), whereas the measurement
outcomes are the individual events. This gave rise to a widespread pragmatic view
of � wave-particle duality, according to which the waves show up in the quantum
probabilities and the particles in the individual events [9].

In order to say more about the obscure relation between the wave and particle
pictures employed in the above model, Born’s papers [1] suggested also some philo-
sophical ideas beyond the probabilistic interpretation. He suspected whether there
might be quantities that causally fix the measurement outcomes, giving, however, a
tentative answer in the negative. And he characterized Schrödinger’s wave function
� in terms of a ghost-like particle-guiding field or pilot wave and the transfer of
energy or momentum in terms of corpuscle propagation. These ideas, which stem
from Albert Einstein (1879–1955) [10], were later taken up in the � hidden vari-
ables approach [4].

Born’s derivation of the probabilistic interpretation has crucial gaps. First, (theo-
retical) probabilities and (empirical) relative frequencies are different. Probabilities
may only be identified with relative frequencies in the limit of infinitely many events
or measurement outcomes. Born neglected this point. Second, there is no explana-
tion of how a statistical law may emerge from an interaction of individual quantum
systems. Third, the quantum mechanics of scattering cannot explain why finally in-
dividual particles are detected. The quantum theory of measurement addressed these
questions, providing answers for the first and second (see below), whereas the third
gap, the notorious measurement or objectification problem, remains (� ignorance
interpretation, measurement theory) [6,7].

The Split-Beam Experiment

Let us consider the split-beam experiment of Fig. 1, which has been realized both
with photons (� light quantum) and with neutrons. The state ϕ of the incoming
photon is split by a beam splitter BS1 into two orthogonal components described by
orthonormal states ϕ(B) and ϕ(¬B). The two parts of the split beam are reflected
at two (fully reflecting) mirrors M1 and M2 and recombined with a phase shift δ
at a second beam splitter BS2. In the experiment there are two mutually exclusive
measuring arrangements: If the detectors D1 and D2 are in the positions (DB

1 , DB
2 )

one observes which way (B or ¬B) the photon came. If the detectors are in the
position (DA

1 , DA
2 ) one observes the interference pattern, i.e., the intensities which
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Fig. 1 Photon split-beam experiment with beam splitters BS1 and BS2, two fully reflecting mirrors
M1 and M2, a phase shifter PS providing a phase shift δ, and two detectors D1 and D2 in mutually
exclusive positions (DA

1 , DA
2 ) and (DB

1 , DB
2 )

depend on the phase δ. In this experiment the object system S is prepared in the state
ϕ (which belongs to the two-dimensional Hilbert space H2 = C2). There are two
non-commuting observables, the path observable B with eigenstates ϕ(B), ϕ(¬B)
and the interference observable A with eigenstates ϕ(A) and ϕ(¬A). The probability
for B (to register a photon in DB

2 ) and for ¬B (to register a photon in DB
1 ) reads

p(ϕ,B) = p(ϕ,¬B) = 1/2.

The probability for A (to register a photon in D1) and for ¬A (to register a photon
in D2) reads

p(ϕ,A) = cos2(δ/2) and p(ϕ,¬A) = sin2(δ/2),

respectively. [7] This means that the relative frequency of photons detected at D1 is
approximately given by cos2(δ/2) and the relative frequency of photons detected at
D2 by sin2(δ/2).

The Measurement Process

The quantum mechanical probabilities in the split-beam experiment refer to the state
of the system after the measurement. According to the � measurement theory, we
consider both the object system S and the apparatus M as proper quantum systems
with Hilbert spaces HS and HM, respectively. Let us further assume that the systems
S and M are prepared in pure states ϕ ∈ HS and � ∈ HM. A measurement process
of the observable A and in particular of the observable P(A), which is given by the
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projection operator P[ϕ(A)] of the eigenstate ϕ(A), can be described by a unitary
operator UA acting on the tensor product state ϕ

⊗
� of the compound system

S+M. After the measurement process the compound system is in the pure state
UA(ϕ

⊗
�), whereas the object system is given in the reduced � mixed state

WS(ϕ,A) = cos2 δ/2 P[(ϕ(A)] + sin2 δ/2 P[(ϕ(¬A)],
i.e., by a weighted sum of projection operators P[ϕ(Ai)] of states ϕ(Ai) with Ai ∈
{A,¬A}.

The Probability Reproducibility Condition

The interpretation of the � mixed state WS(ϕ,A) of the object system after the pre-
measurement is usually given by the following probability reproducibility condition.
The (formal) probability distribution p(ϕ,Ai), Ai ∈ {A,¬A} induced by the prepa-
ration ϕ and the measured observable P(A) is reproduced in the statistics of the
post-measurement values (ZA, Z¬A) and states (�A,�¬A) of the pointer. In case
of repeatable measurements, i.e., when a realistic interpretation of the observables
is possible, this means that p(ϕ,Ai) is also reproduced in the statistics of the states
(ϕ(A), ϕ(¬A)).

On the basis of these arguments we can now formulate the main problem. Let
an ensemble of systems S be given, which before the measurement are identically
prepared and after the premeasurement of A in the reduced � mixed state WS(ϕ,A).
Is it then possible to justify that the (formal) probability p(ϕ,Ai) is reproduced in
the statistics of the measurement results A and ¬A, respectively?

In order to answer this question, consider a large number of identically prepared
systems Si in states ϕi which are not eigenstates of the observable P(A). Let us fur-
ther assume that the unitary operator UA used for a measurement of the observable
P(A) fulfills the calibration postulate for repeatable measurements. Then we know
that a measurement of the observable P(A) in case of the particular preparation ϕ(A)
leads with certainty to the states �A and ϕ(A) showing the result A. Are we able to
show, on the basis of this probability free interpretation of quantum mechanics, that
for arbitrary preparations ϕ �= ϕ(A), ϕ �= ϕ(¬A), the formal probability p(ϕ,Ai)
induced by ϕ and P(A) is reproduced in the statistics of the measuring outcomes
Ai? If this is the case, then the probability reproducibility condition is a theorem of
the probability free theory and no longer an additional postulate.

The Emergence of Statistical Laws in Quantum Mechanics

Let us consider N independent systems Si with identical preparation ϕi as a com-
pound system SN in the tensor product state

(ϕ)N = ϕ1 ⊗ ϕ2 ⊗ ...⊗ ϕN, (ϕ)N ∈ H(SN),
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where H(SN ) is the tensor product of N Hilbert spaces H(Si). A premeasurement of
A transforms the initial state ϕi of each system Si into the mixed state

Wi = p(ϕi,A) P[(ϕi,A)] + p(ϕi,¬A) P[(ϕi,¬A)]

with eigenstates ϕi(Ak) of A corresponding to results Ak . If A is measured on each
system Si , then the measurement result is given by a sequence {Al(1), ...Al(N)} of
system properties Al(i) and states ϕ(Al(i)), respectively, with an index sequence
l : = {l(1), l(2), ...l(N)} such that Al(i) ∈ {Ak} = {A,¬A}.

In the N-fold tensor product Hilbert space H(SN ) of the compound system SN ,
the special states (ϕ)Nl = ϕ(1)(Al(1)) ⊗ ... ⊗ ϕ(N)(Al(N)) with ϕ(i)(Al(i)) ∈ H(Si )
form an � orthonormal basis. The relative frequency f N(k, l) of outcomes Ak ∈
{A,¬A} in the state (ϕ)Nl is then given by f N(k, l) = 1/N

∑
δl(i),k. We can now

define in H(SN ) an operator “relative frequency of systems with properties Ak” by

fN
k := %fN(k, l) P[(ϕ)Nl ],

where the sum is taken over all sequences l. The eigenvalue equation of this operator

f N
k (ϕ)Nl = f N(k, l)(ϕ)Nl

then shows that the relative frequency of the measurement result Ak is an objective
property of SN in the state (ϕ)Nl and given by f N(k, l). The eigenvalue equation
can also be written in the equivalent form

tr{P[(ϕ)Nl ](f N
k − f N(k, l))2} = 0.

After a premeasurement of P(A) a system Si is in a mixed state Wi . If N premea-
surements of P(A) are performed, then the state of the compound system SN is given
by the N-fold tensor product state

(W)N = W 1 ⊗W 2 ⊗ ...⊗WN

of these mixed states Wi . One easily verifies that the expectation value of fN
k in

this product state is given by p(ϕ, Ak). However, in general the state (W)N is not
an eigenstate of the relative frequency operator f N

k with eigenvalue p(ϕ, Ak). This
means that

TN
k : = tr{(W)N(f N

k − p(ϕ,Ak))
2} �= 0

and that the relative frequency of outcomes Ak is not an objective property of the
system SN in the state (W)N . In contrast to this somewhat unsatisfactory result
one finds that for large values of N the post-measurement product state (W)N of the
compound system SN becomes an eigenstate of the operator fN

k and the value of
the relative frequency of results Ak approaches the probability p(ϕ,Ak). Indeed, one
finds after some tedious calculations [3, 5, 7]
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TN
k : = 1/N p(ϕ,Ak)(1− (ϕ,Ak))

and thus one finally obtains the desired result

lim
N→∞ tr{(W)N(f N

k − p(ϕ,Ak))
2} = 0.

This means that in the limit of an infinite number N of systems the state (W)N is
an eigenstate of the operator f N

k of the relative frequency of results Ak and that the
compound system SN possesses the relative frequency p(ϕ,Ak) of Ak as an objective
property. In order to ensure this way of reasoning against mathematical objections
one has to guarantee that the overwhelming majority of index sequences l = {li}
are random sequences and that the contribution of the non-random sequences can
be neglected [5,7].
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Probability in Quantum Mechanics

Abner Shimony

The concept of probability played an important role in the very beginning of � quan-
tum theory, when Max Planck (1858–1947) postulated the discrete emission and
absorption of radiation in a � black body radiation. The quantum statistical me-
chanics developed by Planck and his successors has extraordinary consequences
treated elsewhere in this Compendium. Here, however, the emphasis will be upon
the unprecedented role of probability in the quantum mechanical treatment of the
state of a physical system, which will be discussed first in the � wave mechanical
formulation of Schrödinger, and then in the more abstract and general � Hilbert
space formulation.

The thesis of Louis de Broglie (1892–1987) of 1924 [1] postulated that waves
are associated with � electrons and that a discrete atomic state is determined by the
occurrence of an integral number of wave lengths in a circular trajectory about the
atomic nucleus. Erwin Schrödinger (1887–1961) [2] systematized and generalized
de Broglie’s idea in the first of his series of papers on � wave mechanics.

Schrödinger assumed that the wave associated with a system of electrons is a
complex-valued function ψ whose argument r = (r1, . . . , rN) is positioned in an
N-dimensional configuration space R (N = 3 in the case of a single electron). If the� state ψ of the system of electrons is stationary with energy E, then ψ was assumed
to satisfy the time-independent differential equation

[∑
n
(2mn)

−1(−i�∂/∂rn)2 + V (r1, . . . , rN)
]

ψ(r) == Eψ, (1)

where V is the potential energy as a function of position in configuration space.
In later papers in the series Schrödinger [3] wrote a time-dependent equation for
ψ (r, t), explored analogies to Hamilton’s comparison of appropriately formu-
lated classical mechanics and optics, and developed methods for solving his wave
mechanical equations. He also examined [4] the conceptual relations between his
wave mechanics and Heisenberg’s [5] formulation of quantum mechanics (� matrix
formulation).

The fourth of Schrödinger’s pioneering papers [6] on wave mechanics suggested
that ψ∗ψ be interpreted as a “weight function” of a charge distribution. In particular,
if ψ is the wave associated with an electron, then e[ψ(r)]∗ψ (r), where e is the elec-
tric charge of the electron, was interpreted as the electron’s charge density at r. But
this interpretation was difficult to reconcile with the evidence for the indivisibility of
the electron and the quantum mechanical predictions of the spatial spreading of an
unbound electron. In a quantum mechanical analysis of collision phenomena Max
Born (1882–1970) [7] proposed an alternative interpretation of the wave function
which was almost universally accepted: that [ψ(r)]∗ψ (r)dr is the probability that
the system be found in the infinitesimal region dr about r; in other words [ψ(r)]∗ψ
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(r) is a probability density of position in configuration space. To ensure that the
probability of finding the system anywhere in configuration space is unity, which is
the conventional representation of certainty in probability theory, it suffices to mul-
tiply ψ(r) by a scalar independent of r such that the integral of this density over R
is unity.

Various pioneers, among them London [8] and Dirac [9], gave prescriptions for
extracting information about the probability distributions of other quantities than
position from the wave function ψ. Typically in their prescriptions ψ is expanded in
a complete orthonormal set of functions φn(r), each square integrable over R,

ψ(r) =
∑

n
cnφn(r),

∑
n
|cn|2 = 1 (2)

where ∫
R
[φn(r)]∗φm(r)dr = δmn(orthonormality) (3a)

and
Aφn(r) = anφn(r), (3b)

with A a self-adjoint linear operator on function space. Physically A represents an
observable quantityA, the eigenvalues an being the values of A in the physical states
represented respectively by the φn(r). The physical interpretation of the expansion
(2) is that the probability of finding the quantity A to have value a when the particle
is prepared in the state represented by ψ is

Probψ(A = a) = %′|cn||2, with the sum %′ taken over all n such that

an = a. (4)

Lacking in the foregoing generalized probabilistic interpretation of the � wave
function is the procedure for associating self-adjoint linear operators A with phys-
ical quantities A. The pioneers treated this problem by an intuitive combination of
analogies to classical mechanics with Heisenberg’s analysis of the relation of mo-
mentum to position. A rigorous treatment, notably by George Whitelaw Mackey
(1916–2006) [10], applies the theory of induced representations of groups.

Although Schrödinger’s expression of the quantum mechanical state as a function
of position in configuration space – the wave function – was extraordinarily valuable
both intuitively and practically, it lacked mathematical generality and rigor. A series
of investigations by David Hilbert, Lothar Nordheim, and John von Neumann [11],
most notably the last [12], used the theory of Hilbert space to achieve a more general
and more abstract formulation of quantum mechanics than Schrödinger’s.

A Hilbert space is a vector space endowed with an inner product (for quantum
mechanical purposes usually taken to be complex), with a norm, and complete in
this norm. A vector space is a set of elements closed under the operation of vector
addition + and multiplication of vectors by scalars, which are elements of a field
F, and with standard behavior of the null vector 0 and of the scalars 0 and 1. (In
standard quantum mechanics F is taken to be the set C of complex numbers.) A
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complex inner product on the vector space V is a mapping of ordered pairs φ,χ of
vectors in V into C, denoted by 〈φ|χ〉, satisfying the following conditions:

1. 〈φ|φ〉 � 0 and equals 0 only if φ = 0
2. 〈φ|χ〉 = 〈χ|φ〉∗, where ∗ represents complex conjugation.
3. 〈φ|χ〉 = a.〈φ|χ〉 for any scalar a.
4. 〈φ|χ+ σ〉 = 〈φ|χ〉 + 〈φ|σ〉.

A norm on V is introduced without further postulation by the definition

φ → ||φ|| = |〈φ |φ〉|1/2. (5)

A Cauchy sequence in V relative to this norm is a sequence {φn}with the property
that for any positive ε there is an integer M such that

||φn − φm|| < ε (6)

for n and m greater than M. The space V is complete if every Cauchy sequence φn
converges in the norm to some vector φ in V. In common applications of quantum
mechanics the Hilbert space associated with a system is assumed to be separable,
that is, to have a denumerable basis from which a sequence can be constructed by
addition and scalar multiplication to converge in the norm to any given vector in V.

An idealized but illuminating bridge between the quantum mechanical view of
physical systems and the Hilbert space formulation is the concept of a “logic of
questions”, discussed by various authors including Birkhoff and von Neumann [13],
Piron [14], Mackey [15], and Varadarajan [16]. A physical system can be charac-
terized by systematically answering yes-no questions about its properties, whose
answers assert or deny attributions to the system. According to empiricist science
the answers to these questions are determined by measurements, but the entire set
of questions can be endowed with a rigorous structure only if the measurements are
ideally accurate and error free. The idealized set of questions, which will be called
the logic of questions, is assumed to be a complete orthocomplemented lattice.
A lattice L is (1) a partially ordered set of elements: i.e., there is a binary rela-
tion such that for all elements q < r and r < q imply q = r; q < r and r < s

imply q < s; and q < q; (2) there is unique element 0 such that 0 < q for all ele-
ments q, and a unique element 1 such that q < 0 for all q; and (3) for any nonempty
finite subset F of L there exist in L a unique least upper bound and a unique greatest
lower bound of F with respect to the ordering relation <, denoted by ∨qεF and∧qεF

respectively. L is orthocomplemented if there is a one-one mapping q → q⊥ such
that q⊥⊥ = q , q < r implies r⊥ < q⊥, the least upper bound of q and q⊥ is 1,
and the greatest lower bound of q and q⊥ is 1. A lattice is complete if the restriction
of finiteness of F in condition (3) is replaced by denumerable infinity. When the
abstract structure of a complete orthocomplemented lattice is applied to the logic
of questions the element 1 is interpreted as the question whose answer is necessar-
ily ‘yes’ and the element 0 is interpreted as the question whose answer is necessarily
‘no’; the orthocomplementation operation generates from the question q the ques-
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tion q⊥ whose answer under any circumstances is the opposite of the answer to q in
the same circumstances.

With these preliminaries, the Hilbert space formulation of quantum mechanics
(if one sets aside simplifications like particles of finite spin whose properties in
configuration space are deliberately neglected) can be compactly formulated: (I) the
logic of questions of a quantum mechanical system is isomorphic to the lattice of
closed linear subspaces of a Hilbert space H [17].

Equivalently, the logic of questions is isomorphic to the lattice of projection oper-
ators on H, where P is a projection operator if it is a linear operator on H, self-adjoint
in the sense that for all pairs of vectors φ,χ 〈φ|Pχ〉 = 〈Pφ|χ〉, and idempotent in the
sense that P 2 = P .

The formulation can be strengthened by inserting the adjectives “separable
infinite-dimensional” before “Hilbert space” for all cases in which the system is
explicitly located in a configuration space, omitting these adjectives only when the� spin aspects of the system are studied as a convenient simplification in abstraction
from configuration aspects.

It should be noted that the explicit construction of the isomorphism asserted in
Axiom (I) is mathematically intricate, using the theory of induced representations
of groups (see Mackey [10]), as indicated in the paragraph after Eq. (4).

In usual textbook expositions of quantum mechanics there is not only an ax-
iom relating the logic of questions to the lattice of projections on the Hilbert space
but another axiom giving a Hilbert space characterization of the states which as-
sign probabilities to the questions: it is assumed that a pure state S (later to be
contrasted with a � mixed state) is represented many-one by non-null vectors in
the Hilbert space H, or more elegantly one-one by a one-dimensional subspace
E(φ) = {φ}, which consists of all scalar multiples of an arbitrary non-null vec-
tor φ associated with the state. Then (II) the probability that question Q has answer
‘yes’ when the state is represented by φ, or equivalently by the one-dimensional sub-
space E{φ), is 〈φ|Q|φ〉/〈φ|φ〉, where Q is the projection operator associated with
the question Q; and of course this expression is simplified when φ has norm unity.

A remarkable theorem of Andrew Mattei Gleason (*1921) (� Gleason’s theo-
rem) [18] shows that assumption (II) of the preceding paragraph is almost superflu-
ous. If the Hilbert space has dimension greater than 2, then the only states S in the
sense of probability measures on the lattice of questions which satisfy the standard
axioms of probability – non-negativity, ascription of probability unity to the iden-
tity operator I, and additivity of the probability assigned to the least upper bound of
mutually orthogonal questions – have the form

Prob(Q has answer yes/S) =
∑

n
pn〈φn|Q|φn〉, (7)

where the pn is a sequence of non-negative real numbers summing to unity, and the
φn are mutually orthogonal vectors each of unit norm. If there is only one term φ1
in the right-hand side of (7),

Prob(Q has answer yes/S) = (φ1|Q|φ1), (8)
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then the state S is a pure state, represented in H in only one way except for the trivial
recourse to scalar multiples of φ1; if there is more than one term in the right-hand
side of (7), the state S is mixed and can be represented non-trivially in different ways.

Heisenberg [19] emphasizes a great conceptual difference between the probabil-
ities expressed by the coefficients pn in (7) and that expressed by the inner product
(φ1|Q|φ1) in (8). He calls the former “subjective” because they do not express an
intrinsic indefiniteness of the constitution of the system, but rather a kind of partial
knowledge and partial ignorance on the part of the scientist, as is the case with the
probabilities occurring in classical statistical mechanics. The inner product in (8) he
calls “objective”, because it does not stem from ignorance on the part of the scientist.
Indeed, the vector φ1 represents the state of the system an sich, maximally character-
ized. The fact that some of the questions Q have neither ‘yes’ nor ‘no’ as answers but
probabilities intermediate between these extremes, characterizes the system itself
and only derivatively the scientist’s knowledge of the system. Heisenberg suggests
the name “potentiality” for this modality of objective reality, which is intermediate
between full actuality and mere logical possibility. Although he borrowed this name
from Aristotle, he actually generalized Aristotle’s embryological sense of “poten-
tiality” and introduced a radically new philosophical concept, which may very well
be the most profound contribution of quantum mechanics to philosophy. See also� Objective Quantum Probabilities; Propensities in Quantum Mechanics.
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Projection

Werner Stulpe

Projection, an idempotent linear � operator defined on a vector space with values
in that vector space. That is, a linear operator P acting in a real or complex vector
space V is called a projection if (i) DP = V , DP being the domain of P , and (ii)
P 2 = P . For a projection P , I − P is also a projection, I being the unit operator.
Defining X = RP and Y = RI−P where RP and RI−P denote the ranges of P
and I − P , a projection P induces the decomposition of the vector space V into the
linear submanifolds X and Y according to the direct sum V = X ⊕Y . That is, every
vector ψ ∈ V can be written as a sum ψ = φ + χ where φ ∈ X , χ ∈ Y , and φ, χ
are uniquely determined (in particular, the zero vector is the only vector contained
in both, X and Y). Conversely, given a decomposition of V into the direct sum of
any two complementary submanifolds X and Y , V = X ⊕Y , then a projection P is
defined according to Pψ = φ where ψ = φ+χ , φ ∈ X , χ ∈ Y; P is the projection
onto X w.r.t. Y . A projection P in a Banach space V need not be continuous, i.e.,
need not be bounded (� operator); a projection onto X w.r.t. Y is continuous if and
only if X and Y are closed submanifolds of the Banach space V [1].

In the context of Hilbert spaces (� Hilbert space), the concept of a projection can
be sharpened to that of an orthogonal projection [1–5], the latter being a projection
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Projection

Werner Stulpe

Projection, an idempotent linear � operator defined on a vector space with values
in that vector space. That is, a linear operator P acting in a real or complex vector
space V is called a projection if (i) DP = V , DP being the domain of P , and (ii)
P 2 = P . For a projection P , I − P is also a projection, I being the unit operator.
Defining X = RP and Y = RI−P where RP and RI−P denote the ranges of P
and I − P , a projection P induces the decomposition of the vector space V into the
linear submanifolds X and Y according to the direct sum V = X ⊕Y . That is, every
vector ψ ∈ V can be written as a sum ψ = φ + χ where φ ∈ X , χ ∈ Y , and φ, χ
are uniquely determined (in particular, the zero vector is the only vector contained
in both, X and Y). Conversely, given a decomposition of V into the direct sum of
any two complementary submanifolds X and Y , V = X ⊕Y , then a projection P is
defined according to Pψ = φ where ψ = φ+χ , φ ∈ X , χ ∈ Y; P is the projection
onto X w.r.t. Y . A projection P in a Banach space V need not be continuous, i.e.,
need not be bounded (� operator); a projection onto X w.r.t. Y is continuous if and
only if X and Y are closed submanifolds of the Banach space V [1].

In the context of Hilbert spaces (� Hilbert space), the concept of a projection can
be sharpened to that of an orthogonal projection [1–5], the latter being a projection
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that is self-adjoint (� operator, � self-adjoint operator). That is, a linear operator
P in a complex (or real) Hilbert space is an orthogonal projection if (i) DP = H,
(ii) P = P 2, and (iii) P = P ∗. An orthogonal projection is a positive (� operator)
bounded operator with norm (� operator) ‖P‖ = 1 for P �= 0; X = RP and
Y = RI−P are subspaces of H (i.e., closed linear submanifolds), and Y is the
orthocomplement of X (� Hilbert space). Thus, an orthogonal projection induces
the orthogonal decomposition H = X ⊕ X⊥. Conversely, every subspace X of H
induces the orthogonal decomposition H = X ⊕ X⊥ of the Hilbert space H and
in consequence the definition of an orthogonal projection P according to Pψ = φ

where ψ = φ+χ , φ ∈ X , χ ∈ X⊥; P is the orthogonal projection onto X . Hence,
there is a one-one correspondence between the orthogonal projections in H and the
subspaces of H. In the sequel, ‘projection’ means ‘orthogonal projection’ in H.

Let P1 and P2 be projections projecting onto the subspaces X1 and X2, respec-
tively. The product P1P2 is zero if and only if X1 and X2 are orthogonal to each
other, i.e., X2 ⊆ X⊥1 ; equivalently, the sum P1+P2 is a projection, P1+P2 projects
onto X1 ⊕ X2. The product P1P2 is a projection if and only if P1 and P2 com-
mute, i.e., P1P2 = P2P1, P1P2 projects onto X1 ∩ X2; P1P2 = P2P1 is equivalent
to the existence of three mutually orthogonal projections E1, E2, and F such that
P1 = E1 + F and P2 = E2 + F . The difference P1 − P2 is a projection if and
only if X1 ⊇ X2, P1 − P2 projects onto X1 1 X2 = X1 ∩ X⊥2 ; X1 ⊇ X2 is
equivalent to P2 = P1P2. If P1, . . . , Pn are projections onto mutually orthogo-
nal subspaces, say, Xi , then the sum

∑n
i=1 Pi is the projection onto the direct sum⊕n

i=1 Xi . If P1, P2, . . . is an infinite sequence of projections onto mutually orthogo-
nal subspaces Xi , then, by Pφ =∑∞

i=1 Piφ where φ ∈ H, a projection P is defined
which projects onto

⊕∞
i=1 Xi . In the latter case, the infinite sum

∑∞
i=1 Pi does not

converge in the operator norm (unless in the trivial case that Pi = 0 for all i > N),
instead it converges strongly, i.e., (

∑∞
i=1 Pi)φ =∑∞

i=1 Piφ for all φ ∈ H.
As a subset of the ordered real Banach space Bs(H) (� operator) of the bounded� self-adjoint operators in H, the set P(H) of all projections inherits the partial or-

der of Bs(H). That is, P1 � P2, P1, P2 ∈ P(H), if and only if 〈φ|P1φ〉 � 〈φ|P2φ〉
for all φ ∈ H. The statement P1 � P2 is equivalent to X1 ⊆ X2 where X1 = RP1

and X2 = RP2 . The partially ordered set P(H) is a complete lattice with the zero
operator as its smallest element and the unit operator as its greatest element, and the
association of every element P ∈ P(H) with P⊥ = I −P is an orthocomplementa-
tion of P(H). Thus, (P(H),�,⊥) is a complete orthocomplemented lattice which,
in addition, is orthomodular and atomic (� quantum logic); P(H) is isomorphic to
the orthocomplemented lattice of the subspaces of the Hilbert space H where the
set of the subspaces is ordered by the set-theoretic inclusion.

If P is a projection onto X and φ1, φ2, . . . a complete orthonormal system in
X (� Hilbert space, � orthonormal basis), then Pψ = ∑i〈φi |ψ〉φi , ψ ∈ H. If
X is one-dimensional and φ a unit vector in X , one writes P = |φ〉〈φ| (� Dirac
notation); so, if the dimension of X is greater than one, P =∑i |φi〉〈φi | where the
sum, if it is infinite, converges strongly. In particular, one writes I = ∑i |φi〉〈φi |
where φ1, φ2, . . . is a complete orthonormal system of H.
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Projection Postulate

Sheldon Goldstein

In quantum mechanics, the state of a system is given by its � wave function, a
vector ψ in the � Hilbert space of the system. The behavior of the wave function is
governed by two dynamical laws [1, 2]: (1) When the system is closed, i.e., when
it does not interact with its environment, its wave function evolves according to� Schrödinger’s equation

i�∂ψ/∂t = Hψ, (1)

where H is the Hamiltonian of the system. (2) When a measurement is performed
on the system in state ψ , its wave function changes in a different way; it “collapses,”

ψ �→ Pψ/‖Pψ‖, (2)

to its (normalized) projection onto the subspace of its Hilbert space associated with
the result of the measurement. Here P is the corresponding � projection operator,
and the denominator provides the normalization, with ‖ · ‖ the Hilbert space norm,
‖ψ‖2 = 〈ψ|ψ〉, given by the inner product 〈 · | · 〉 with which the Hilbert space is
equipped. This transition occurs with probability ‖Pψ‖2, the probability of the cor-
responding result. This rule is called the projection postulate; the associated change
of quantum state (2) is usually referred to as the � wave function collapse or as the
reduction of the state vector.

Strictly speaking, the projection postulate governs, not any measurement, but
only the most basic sort of measurement, called an ideal measurement, one which
changes the wave function as little as possible consistent with obtaining the rel-
evant information. In the simplest case, of an ideal measurement of a quantum
observable A – a self-adjoint operator on the Hilbert space of the system – with
non-degenerate spectrum λα and corresponding � orthonormal basis of eigenvec-
tors |A = λα〉 ≡ |λα〉,

A |λα〉 = λα |λα〉, (3)
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Fig. 1 Illustration of the Projection Postulate – the transition (4) from Cα |λα〉 + Cβ |λβ〉 (with
Cα > 0 and Cβ > 0) to |λα〉

we have that P = |λα〉〈λα |, so that (2) becomes

ψ �→ |λα〉 (4)

(up to an irrelevant phase factor) when the result of the measurement is λα , and this
occurs with probability |〈λα|ψ〉|2 (Fig. 1). In other words, if

ψ =
∑

cβ |λβ〉 (with
∑

|cβ |2 = 1), (5)

then according to the projection postulate, an ideal measurement of A in the state ψ
will yield the result λα and wave function |λα〉 with probability |cα|2.

It should perhaps be stressed that what is intended by “result” in the projection
postulate is the fine-grained result, corresponding to a single eigenvalue λα . For ex-
ample, if the measurement yields the result that A is in the interval (a, b) (and this
interval contains more than one eigenvalue λβ ), the after-measurement wave func-
tion will of course not be given by (2) with P the projection operator corresponding
to (a, b),

P =
∑

a<λβ<b

|λβ〉〈λβ |, (6)

but rather will be the eigenstate |λα〉 belonging to the specific eigenvalue λα found
in the measurement – the fine-grained result. Nonetheless, if instead of an ideal
measurement of A itself an ideal measurement or determination of whether or not
A is in (a, b) were performed, the use of (6) would indeed be appropriate.
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In standard quantum theory, the projection postulate plays a crucial but contro-
versial role: crucial, because standard quantum theory makes contact with physics
and the results of experiments via the measurement axioms of quantum theory, the
most important of which is the projection postulate; and controversial, because the
projection postulate appears to conflict with Schrödinger’s equation. This appar-
ent conflict is the notorious measurement problem of quantum mechanics, or, what
amounts to the same thing, the paradox of � Schrödinger’s cat. See also � Bohmian
mechanics; Measurement theory; Metaphysics in Quantum Mechanics; Modal In-
terpretation; Objectification.

A variety of proposals have been put forward for resolving the measurement
problem. For many of these, whether in fact they do solve the problem remains
highly controversial. Two proposals that clearly resolve the measurement problem
are the � GRW theory and the � pilot-wave formulation of quantum mechan-
ics (� Bohmian mechanics). In the former, collapse of the wave function during
measurement is achieved, and the projection postulate recovered, by a stochas-
tic modification of the Schrödinger dynamics on the microscopic level [3]. (See
Consistent histories, Ignorance interpretation, Ithaca Interpretation, Many Worlds
Interpretation, Modal Interpretation, Orthodox Interpretation, Transactional Inter-
pretation).

The cleanest resolution is provided by Bohmian mechanics. In Bohmian mechan-
ics, arguably the simplest version of quantum mechanics, the projection postulate
emerges in a straightforward manner as a consequence of the measurement-like
interactions between system and apparatus that are present when an ideal measure-
ment occurs [4]. A critical ingredient in this derivation is the notion of the wave
function of a subsystem of a larger system, a notion made possible by the additional
structure, beyond the wave function, present in Bohmian mechanics, namely the
actual configuration Q of the larger system.
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4. D. Dürr, S. Goldstein, N. Zanghı̀: Quantum Equilibrium and the Role of Operators as
Observables in Quantum Theory, Journal of Statistical Physics 116, 959–1055 (2004), quant-
ph/0308038

Secondary Literature

5. D. J. Griffiths: Introduction to Quantum Mechanics (Benjamin Cummings, San Francisco 2004)
6. R. Shankar: Principles of Quantum Mechanics (Springer, Berlin 1994)



502 Propensities in Quantum Mechanics

Propensities in Quantum Mechanics

Mauricio Suárez

Propensities are probabilistic dispositions, and there is a long history of informal
appeals to dispositional terms in connection with quantum mechanics, going all the
way back to the founding of the discipline. A dispositional account of quantum prop-
erties is, for instance, arguably implicit in the early quantum theory in Bohr’s model
of the atom, since transitions between quantum orbitals can be described as stochas-
tic processes that bring about certain values of quantum properties with certain
probabilities. Similarly, on the orthodox Copenhagen interpretation, measurements
do not reveal pre-existent values of physical quantities, but bring about values with
some well-defined probability. (See � Born rule; Consistent Histories; Metaphysics
in Quantum Mechanics; Nonlocality; Orthodox Interpretation; Schrödinger’s Cat;
Transactional Interpretation). Then, in addition, starting in the 1950s there has
been a succession of attempts to employ explicit dispositional notions, such as
propensities, in order to resolve the paradoxes of quantum mechanics (� errors and
paradoxes in quantum mechanics). Two stand out: Henry Margenau’s latency inter-
pretation, and Karl Popper’s propensity interpretation of quantum probability.

Margenau’s Latency Interpretation

Different interpretations of quantum mechanics can be in general fruitfully dis-
tinguished in terms of the answers they provide to the paradigmatic question
concerning the general interpretation of superposed states. Suppose that the state of
a quantum system is ψ , a � superposition of eigenstates of the Hermitian operator
that represents the observable Q. The standard interpretational rule within orthodox
quantum mechanics, the eigenstate/eigenvalue link (e/e link) states that a system in
state ψ can be said to have a value of a property Q if and only if ψ is an eigenstate
of the Hermitian operator that represents the property. The paradigmatic question
regarding these states is then the following: What does it mean – with respect to the
property represented by the observable Q – for a quantum system to be in state ψ

which is not an eigenstate of the Hermitian operator that represents Q? Propensity
views of quantum mechanics vary greatly in their details but they all coincide in
their answer to the paradigmatic interpretational question: It means that the system
possesses the propensity to exhibit a particular value of Q if Q is measured on this
system in state ψ .

In an excellent pioneering article Henry Margenau [1] argued in favour of la-
tent quantities, or latencies. Margenau’s key contribution was the basic template
for propensity views. Suppose that state ψ can be written as a linear combination
ψ = Σncn|νn〉 of the eigenstates νn of the latent observable represented by Q with
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spectral decomposition given by Q = Σnan|νn〉〈νn|. Margenau then answered the
paradigmatic interpretational question very precisely as follows: a system in state ψ
has a latent property Q if and only if it possesses a propensity to manifest eigenvalue
ai with probability |ci |2 in a measurement of Q.

(Spectral decomposition, see � Density operator; Ignorance interpretation; Mea-
surement theory; Objectification; Operator; Probabilistic Interpretation; Self-adjoint
operator; Wave mechanics).

However, Margenau went beyond the basic template in some unhelpful ways.
For instance he conflated the possession of a property with the manifestation of a
value of the property – a distinction that makes no sense for categorical properties,
but is essential in order to understand dispositional property ascriptions in general.
A failure to draw this distinction led Margenau to inappropriately link the actuali-
sation of latent properties with their existence. So in the absence of a measurement
of position, for instance, an electron has no value of position, and as a consequence
it has no position at all. This conflation renders Margenau’s attempt to solve the
quantum paradoxes largely unsuccessful, and brings about additional difficult issues
related to the � identity of quantum objects.

The conflation is unfortunately present also in Heisenberg’s well known appeal
to Aristotelian potentialities [2], but can be avoided by distinguishing carefully the
possession of a propensity from its manifestation. To be coherent a propensity view
must deny a common presupposition behind the (e/e link), namely that it is legit-
imate to ascribe a property to a system if and only if the system takes a value of
the property. It would then follow in accordance with the (e/e link) that a system
possesses a property if and only if the system’s state is an eigenstate of the oper-
ator that represents the property. But any coherent propensity (or more generally
dispositional) account must ascribe a property without manifestation.

Popper’s Propensity Interpretation of Quantum Probability

Karl Popper’s propensity interpretation of quantum mechanics is surely his most
important contribution to the philosophy of physics. Popper conceived the propen-
sity interpretation of quantum mechanics as both a milestone of his philosophical
career, and a key to his philosophical system. He defended it in a large number of
his writings, and over a very large period of time (for instance Popper [3, 4]). It
was a milestone since it was a consideration of the nature of quantum phenomena
that led him to abandon the frequency theory of probability, and adopt instead a
propensity interpretation for objective probabilities in general. And it was a key to
Popper’s philosophical system because the propensity interpretation of probability
i) resolved the paradoxes of quantum mechanics; ii) re-established the possibility of
a thoroughly realist interpretation of the quantum theory, of physics, and of science
in general; and iii) provided strong empirical confirmation in favour of the propen-
sity interpretation of the calculus of probability.

However, Popper’s account is subject to three lethal objections that render it
untenable. The first criticism was raised by Neal Grossman [5], and shows that
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Popper’s account confuses quantum mixtures and superpositions. In essence the
problem is that for any observable Q every superposed state ψ = ∑

n cn|νn〉
can be shown to be statistically indistinguishable from an appropriate mixture
W∞

n=1 = Σn|cn|2|νn〉〈νn | over the eigenstates {|νn〉} of the operator that corre-
sponds to Q. Since Popper identifies propensities with probability distributions, he
has no option but to identify the propensities generated by both states. Yet both states
are different, as is shown in any experiment that measures any observable other than
Q on systems in these states.

The second difficulty was first raised by Peter Milne [6], and is related to the
notion of interference of propensity waves invoked by Popper in order to account
for the � double-slit experiment. Popper’s identification of propensities with whole
experimental set-ups entails that any small change in the experimental set-up, such
as the closing of a slit, essentially brings about a change in the propensity ascribed.
Milne employed this fact to refute Popper’s account of interference experiments,
such as the two slit experiment. Popper’s account entails that in each of the experi-
ments A and B with one or the other slit open a different propensity ascription “A”
and “B” is in order. The interference pattern that results in the experiment with both
slits open is then just the result of the interference of both propensities “A” and “B”.
But Milne shows that there is no reason on Popper’s account to expect propensities
“A” and “B” to be co-present in the interference experimental set-up, since this is
distinct from both A and B.

The final objection to Popper’s propensity account is Humphrey’s notorious para-
dox [7], which shows that propensities are not in general probabilities, and vice
versa, since propensities are time-asymmetric but conditional probabilities are not.
Together these three objections essentially refute Popper’s propensity interpretation
of quantum probabilities.

New Prospects for Propensities

The failure of propensity accounts in the past sometimes gives all propensity inter-
pretations a bad name in the philosophy of physics. But this is essentially unfair
since, as we have seen, it is not propensities per se that have been shown to be
inapplicable to quantum mechanics, but rather particular uses of them. It remains
possible to apply propensities to quantum mechanics in more appropriate ways. In
particular propensity accounts could abandon the ideal of interpreting probabilities
in general. Instead propensities can be used to explain certain probabilities. Some of
the presuppositions underlying the (e/e link) will also need to be confronted. Finally,
it must be possible to ascribe propensities to quantum systems in the absence of any
experimental set-up. Three recent accounts that go some way towards meeting these
goals are Maxwell [8], Thompson [9] and Suárez [10]. See also � Objective Quan-
tum Probabilities; Probability in Quantum Mechanics.
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Protective Measurements

Lev Vaidman

Protective measurement [1] is a method for measuring an expectation value of an
observable on a single quantum system. The quantum state of the system can be
protected by a potential, when the state is a nondegenerate energy eigenstate with a
known gap to neighboring states, or via � quantum Zeno effect by frequent projec-
tion measurements.

Apart from protection, the procedure consists of a standard von Neumann mea-
surement with weak coupling which is switched on and, after a long time, switched
off, adiabatically. The interaction Hamiltonian for protective measurement of O is:

Hint = g(t)PO, (1)

where P is a momentum conjugate to Q, the pointer variable of the measuring de-
vice. The interaction Hamiltonian is small as in weak measurements, [2, p. 845]. In
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both cases the initial state of the pointer is such that 〈Q〉in = 0, 〈P 〉in = 0. In weak
measurement, the weakness is due to small uncertainty in P which requires a large
uncertainty of the pointer variable Q. Thus, although for the final � wave function
of the pointer, 〈Q〉fin = 〈�|O|�〉, a single measurement does not allow obtaining
significant information about 〈�|O|�〉. In protective measurement, the pointer is
well localized at zero, which requires large uncertainty in P and the weakness is
due to a small value of the coupling g(t). The coupling to the measurement device
is weak, yet long enough so that we still have

∫
g(t)dt = 1. The result is again

〈Q〉fin = 〈�|O|�〉, but this time, the pointer is well localized, so we can learn the
value of the expectation value from a single experiment. This is so if during the
measurement, the quantum state of the system remains close to |�〉. Given the adi-
abatic switching of the measurement interaction, its small value, and the protection
of the state, this is indeed the case.

One of the basic results of quantum mechanics is that when a measurement of a
variable O with eigenvalues oi is performed on a quantum system described by the
state |�〉, the probabilities pi for obtaining outcome oi satisfy:

〈�|O|�〉 =
∑

pioi. (2)

This is why the expression 〈�|O|�〉 is called the expectation value of O . In protec-
tive measurements we obtain this value not as a statistical average, but as a reading
of a measuring device coupled to a single system.

A sufficient number of protective measurements performed on a single system
allow measuring its quantum wave function. This provides an argument against the
claim that the quantum wave function has a physical meaning only for an ensem-
ble of identical systems. Therefore, protective measurements have some merit even
when the protection is achieved via frequent projection measurements on the state
|�〉 with no new information obtained during the whole procedure. If the protection
of the state is via a known energy gap to any orthogonal state, then the protection
measurement provides new information: we can find the whole wave function. Thus,
protective measurement of the quantum wave function of an ion in a trap can yield
the the trap’s potential.

Numerous objections to the validity and meaning of protective measure-
ments have been raised [4–8]. The validity of the result was questioned due to
misunderstanding of what the protective measurement is [9–11]. The issue of mean-
ing: “Is the wave function of a single particle an ontological entity?” [3] is open
to various interpretations. Some will say ‘yes’ even before hearing about protec-
tive measurement, others say ‘no’ just because protective measurements are never
100% reliable. The protective measurement procedure is not a proof that we should
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advantages and disadvantages of various interpretations. For example, the Bohmian
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ment can “draw” the whole wave function of an ion in a ground state of a trap, since
the Bohmian position of the ion hardly changes during the measurement [12, 13].
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The protective measurements method can be extended to pre- and post-selected
systems described by a � two-state vector formalism 〈�| |�〉 [14]. It requires
separate different protections for the forward and backward evolving quantum states
which are achieved by pre- and post-selection of quantum states of systems which
provide the protection [15]. The outcome of such protective measurements is not the
expectation value, but the � weak value, 〈�|O|�〉〈�|�〉 [2, p. 845]. A realistic setup for
such protective measurement is a weak coupling to a variable of a decaying system
which is post-selected not to decay [16].

Theoretical analysis of protective measurements leads to deeper understanding of
quantum reality while its experimental realization (which seems feasible in a near
future) might be useful for more effective gathering of information about quantum
systems [17].
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Q
Quantization (First, Second)

Helge Kragh

If there is a second quantization, presumably there is also a first quantization. The
latter term refers to the ordinary application of the � Schrödinger equation to phys-
ical objects characterized by � wave functions, while the surrounding environment
(such as an electromagnetic field) is treated classically. In second quantization the
environment is treated quantum-mechanically – the field is quantized – and the wave
function is considered as a dynamical system subject to quantization. To put it dif-
ferently, one takes the wave function of an already quantized system and turns it
into an � operator.

The method of second quantization goes back to works of Paul A.M. Dirac and
Pascual Jordan in 1927. Dirac used a kind of second quantization to the electro-
magnetic field by identifying the coefficients of the Fourier expansion of the field
as photon � creation and annihilation operators. He showed that there is a close
connection between quantum fields and statistics, and derived in this way that pho-
tons obey � Bose-Einstein statistics. Jordan went considerably further, in part alone
and in part in works together with coauthors. Whereas Dirac restricted his ap-
proach to photons (� light quantum), Jordan quantized � matter waves given by
the Schrödinger equation, first non-relativistically and, with Eugene Paul Wigner in
1928, relativistically. Jordan’s quantization could be performed in two ways, lead-
ing either to � Bose-Einstein or � Fermi-Dirac statistics. In the latter case it gave a
quantum-mechanical justification of Pauli’s � exclusion principle.

It was Jordan’s field-quantization method that was taken up by other physicists
and used in quantum field theory. It is also in Jordan’s paper of 1927 that the name
“second quantization” first appears. Dirac, who did not appreciate Jordan’s method
of second quantization, did not consider the discreteness of matter a property de-
ducible from quantum mechanics. Jordan, on the other hand, claimed ambitiously to
have derived from quantization of matter fields the very existence of particles. “The
basic fact of electron theory, the existence of discrete electric particles, appears. . . as
a characteristic quantum phenomenon,” he wrote in 1927; “indeed, it means exactly
that matter waves occur only in discrete quantum states.”

Second quantization was discussed by Pauli at the 1927 Solvay congress. Ein-
stein did not like the idea and later told Oskar Klein that “second quantization, that
is sin squared.” In spite of some opposition, Jordan’s method was developed by
several physicists in the years around 1930. It was applied by Wolfgang Pauli and
Werner Heisenberg in their relativistic quantum theory of wave fields 1929–30 and
given a new formulation by V. Fock in 1932. Fock’s version allowed the translation
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of the formalism of second quantization into the language of conventional quantum
mechanics, which helped making the method more acceptable.
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Quantization (Systematic)

N.P. Landsman

The term quantization (in the sense described here) refers to attempts to con-
struct a mathematical description of a quantum system from its formulation as a
classical system (which is supposed to be known). Such attempts go back to the
pioneers of the old quantum theory (Planck, Einstein, Bohr, Sommerfeld); see [16]
and � Quantization: (First, Second). (The opposite procedure is the subject of the� quasi-classical limit.)

The modern era of quantization theory started with Heisenberg’s famous paper
[5] from 1925, in which he proposed the idea of a ‘quantum-theoretical reinterpre-
tation (Umdeutung) of classical observables.’ All later work on quantization may be
said to consist of various different implementations of this idea.

The first successful such implementation consisted of the position and momen-
tum � operators introduced by Schrödinger [9], i.e. q̂j = xj and p̂j = −i�∂/∂xj ,
seen (in modern parlance) as unbounded operators on the � Hilbert space L2(R3).
Substituting these expressions into the classical Hamiltonian yields the left-hand
side of the � Schrödinger equation. These operators satisfy the so-called canonical
commutation relations

[p̂j , q̂k] = −i�δkj , (1)

along with [p̂j , p̂k] = 0 and [q̂j , q̂k] = 0. This fact formed the basis of the various
equivalence proofs of � matrix mechanics and � wave mechanics that were given
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at the time by Schrödinger, Dirac, and Pauli; the first genuine mathematical proof
of this equivalence is due to von Neumann [8].

Approaches to quantization that are based on the canonical commutation rela-
tions are usually called canonical quantization. Dirac [3, 4] made the important
observation that the canonical commutation relations resemble the Poisson brackets
in classical mechanics. He suggested that a quantization map f �→ Q(f ) (in which
a function f on phase space, seen as a classical observable, is replaced by some
operator on a Hilbert space interpreted as the corresponding quantum observable)
should satisfy the condition

i

�
[Q(f ),Q(g)] = Q({f, g}). (2)

This is indeed the case for f (p, q) = pj or qk and g(p, q) likewise, provided we
follow Schrödinger in putting Q(pj ) = p̂j and Q(qj ) = q̂j . For more complicated
observables, however, Dirac’s condition turns out to hold only asymptotically as
� → 0. For example, in the first systematic account of the quantization of a particle
moving in flat space, Weyl [11] proposed that a function f on classical phase space
R2n corresponds to the operator

Q(f )�(x) =
∫

R2n

dnpdnq

(2π�)n
eip(x−q)/�f

(
p, 1

2 (x + q)
)
�(q). (3)

on L2(Rn). This reproduces Schrödinger’s position and momentum operators, but
satisfies (2) only if f and g are at most quadratic in p and q (and according to the
so-called Groenewold–van Hove theorem prescriptions different from Weyl’s will
not fare better). This violation of Dirac’s condition is well understood now, since is
has been recognized that the essence of the process of quantization is that it yields
a deformation of the classical algebra of � observables [1, 2]. The idea of deforma-
tion quantization is particularly relevant to physics in the framework of � algebraic
quantum theory [14, 17] (see also [13] for other aspects of Weyl quantization).

The quantization problem on phase spaces other than R2n (or, more generally,
cotangent bundles of Riemannian manifolds, to which Weyl’s quantization method
is easily generalized [14]) has to be treated by different means. In fact, even on flat
space one can sympathize with Mackey’s lamentation that ‘Simple and elegant as
this model [i.e. canonical quantization] is, it appears at first sight to be quite arbitrary
and ad hoc. It is difficult to understand how anyone could have guessed it and by
no means obvious how to modify it to fit a model for space different from Rn.’
([15], p. 283). Mackey himself explained and generalized canonical quantization on
the basis of symmetry arguments that apply whenever a symmetry group G acts on
configuration space Q (with associated phase space T ∗Q); for flat space Q = R3

ones takes G = E(3) = SO(3) � R3, the Euclidean symmetry group of rigid
translations and rotations. Mackey’s generalization of the canonical commutation
relations (1) consists of his notion of a system of imprimitivity. Given an action of
a group G on a space Q, such a system consists of a Hilbert space H , a unitary
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representation U of G on H , and a projection-valued measure E �→ P(E) on Q

with values in H , such that

U(x)P (E)U(x)−1 = P(xE), (4)

for all x ∈ G and all (Borel) sets E ⊂ Q. One notices that position and momentum
are assigned a quite different role in this procedure: the former are replaced by
the projection-valued measure E �→ P(E), whereas the latter are treated as the
(infinitesimal) generators of symmetries. Each irreducible system of imprimitivity
provides a valid quantization of a particle moving on Q. Mackey’s imprimitivity
theorem classifies all possibilities; for example, for Q = R3and G = E(3) one finds
that each irreducible representation of SO(3) yields a possible quantization. This is
Mackey’s explanation of � spin. More generally, if Q = G/K is a homogeneous
G-space with stability group K , then each irreducible representation of K induces
a system of imprimitivity and hence a quantization of the system (and vice versa).
Let us note that the modern way of understanding this method involves groupoids
and their C∗-algebras, which not only lead to a vast generalization of Mackey’s
approach but in addition put it under the umbrella of deformation quantization [14].

Geometric quantization is a method that starts from the symplectic (or, in
old-fashioned language, ‘canonical’) structure of phase space. This method was in-
dependently introduced by Kostant [6] and Souriau [10] and is still being developed;
cf. [12, 18]. Although its formalism is quite general, geometric quantization is most
effective in the presence of a Lie group acting canonically and transitively on phase
space. If successful, the method then yields a representation of the Lie algebra of
this group, whose elements play the role of quantum observables.

The procedure starts with a phase space M (i.e. a symplectic manifold), and as
a first step towards a quantum theory one constructs a map f �→ Qpre(f ) from
functions on M to operators on the Hilbert space L2(M). This map turns out to
satisfy Dirac’s condition (2) exactly. In the special case M = R2n, it is given by

Qpre(f )� = −i�{f,�} +
⎛
⎝f −∑

j

pj
∂f

∂pj

⎞
⎠�, (5)

where {f,�} is the Poisson bracket (which makes sense if � ∈ L2(R2n) is as-
sumed differentiable). Unfortunately, the Hilbert space is wrong and the ensuing
representation of the canonical commutation relations Qpre(qk) = qk + i�∂/∂pk
and Qpre(pj ) = −i�∂/∂qj is highly reducible: it contains an infinite number of
copies of the Schrödinger representation on L2(Rn). The second step of the method
therefore involves a procedure to cut down the size of the Hilbert space L2(M) by
a certain geometric technique, but through this step only some of the operators (5)
remain well defined. Those that are still satisfy (2), however, which fact lies at the
basis of the construction of Lie algebra representations from geometric quantization.
Despite some successes in that direction, with considerable impact on mathematics,
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the method of geometric quantization remains unfinished and somewhat unsatisfac-
tory for physics.

Like geometric quantization, phase space quantization starts with the Hilbert
space L2(M), but instead of (5) one constructs a quantization map f �→ Qp(f ) by

Qp(f ) = pfp, (6)

where p is a suitable projection operator on L2(M) (so that the operator Qp(f )

effectively acts on pL2(M)). This projection is constructed from a so-called re-
producing kernel K on L2(M), and has the form p�(z) = ∫

M
dwK(z,w)�(w).

This kernel, in turn, comes from a family of � coherent states - here construed
as maps z �→ �z from M to the set of unit vectors in an auxiliary Hilbert
space H - by means of K(z,w) = (�z,�w) (the inner product in H ). See [12,
14]. The best-known example is M = R2n with coherent states ��

(p,q)(x) =
(π�)−n/4 exp((−(x−q)2+ ip(2x−q))/2�) in H = L2(Rn), yielding what is often
called Berezin quantization QB on R2n. It has the advantage over Weyl quantization
and geometric quantization of being positive (in the sense that (�,QB(f )�) � 0
for all � whenever f � 0) and bounded (i.e. QB(f ) is a bounded operator if f is a
bounded function on M).

Quantization theory remains a very active area of research in physics and math-
ematics [12]. See also � Functional integration; path integrals.
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11. H. Weyl: Gruppentheorie und Quantenmechanik (S. Hirzel, Leipzig 1928). Translated as: The

Theory of Groups and Quantum Mechanics (Dover, New York 1931).



514 Quantum Chaos

Secondary Literature

12. S.T. Ali & M. Englis: Quantization methods: a guide for physicists and analysts. Rev. Math.
Phys. 17, 391–490 (2005).

13. D.A. Dubin, M.A. Hennings & T.B. Smith: Mathematical Aspects of Weyl Quantization and
Phase (World Scientific, Singapore 2000).

14. N.P. Landsman: Mathematical Topics Between Classical and Quantum Mechanics (Springer,
New York 1998).

15. G.W. Mackey: The Scope and History of Commutative and Noncommutative Harmonic Anal-
ysis (American Mathematical Society, Providence 1992).

16. J. Mehra & H. Rechenberg: The Historical Development of Quantum Theory. Vol. 1: The Quan-
tum Theory of Planck, Einstein, Bohr, and Sommerfeld: Its Foundation and the Rise of Its
Difficulties (Springer, New York 1982).

17. M.A. Rieffel: Quantization and C∗-algebras. Contemp. Math. 167, 66–97 (1994).
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Quantum Chaos

Stefan Weigert

The term Quantum Chaos designates a body of knowledge which has been estab-
lished in an attempt to understand the implications of Classical Chaos for quantum
systems. Classical Mechanics successfully describes many aspects of the macro-
scopic world in a phenomenological way. Chaotic behaviour being ubiquitous, its
presence begs for an explanation in terms of (non-relativistic) quantum mechanics,
the fundamental theory to describe matter. Only the deterministic part of the quan-
tum time evolution generated by � Schrödinger’s equation is of interest here while
the probabilistic element introduced by quantum � measurements is ignored.

An autonomous classical Hamiltonian system with N � 2 degrees of freedom
is either integrable or non-integrable. The time evolution of integrable systems is
quasi-periodic, hence simple: N global constants of motion exist which force tra-
jectories in phase space to evolve on tori of dimension N . The distance between
initially close trajectories increases at most linearly with time; the Lyapunov expo-
nent, a measure for the rate of divergence of nearby trajectories, is equal to zero.
In the vast majority of cases, however, fewer than N constants of motion exist and
the system is non-integrable. A typical trajectory now may explore a larger part of
phase space while still evolving deterministically. Due to their highly complicated –
apparently chaotic – time evolutions, trajectories with similar initial conditions tend
to diverge at an exponential rate. This property makes long-term predictions of the
system’s dynamics unreliable if not effectively impossible.

A considerable amount of studies relevant to Quantum Chaos revolve around
three questions: (1) Is it possible to (approximately) quantize classically chaotic



514 Quantum Chaos

Secondary Literature

12. S.T. Ali & M. Englis: Quantization methods: a guide for physicists and analysts. Rev. Math.
Phys. 17, 391–490 (2005).

13. D.A. Dubin, M.A. Hennings & T.B. Smith: Mathematical Aspects of Weyl Quantization and
Phase (World Scientific, Singapore 2000).

14. N.P. Landsman: Mathematical Topics Between Classical and Quantum Mechanics (Springer,
New York 1998).

15. G.W. Mackey: The Scope and History of Commutative and Noncommutative Harmonic Anal-
ysis (American Mathematical Society, Providence 1992).

16. J. Mehra & H. Rechenberg: The Historical Development of Quantum Theory. Vol. 1: The Quan-
tum Theory of Planck, Einstein, Bohr, and Sommerfeld: Its Foundation and the Rise of Its
Difficulties (Springer, New York 1982).

17. M.A. Rieffel: Quantization and C∗-algebras. Contemp. Math. 167, 66–97 (1994).
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systems by exploiting their phase-space structure? (2) What are quantum mechani-
cal manifestations–also known as precursors or signatures–of Classical Chaos? (3)
Does a rigorous distinction between regular and chaotic quantum systems exist?

To answer these questions, quantum systems from many branches of physics
and chemistry have been studied afresh from a new perspective. They include nu-
clei, atoms and molecules in the presence of strong electromagnetic fields, and
microwaves in cavities, for example. The approaches to explore the properties of
these systems range from experimental and numerical to rigorously mathematical.

For a long time, complicated dynamical behaviour has been assumed (tacitly) to
require many interacting constituents such as the molecules of a gas. Their large
number justifies the use of powerful statistical methods. Dynamical chaos, however,
results from non-linear interactions between only a few degrees of freedom. This
fundamental property of Classical Mechanics has been widely recognized only in
the second half of the 20th century, when it became one of the driving forces to
study quantum mechanical counterparts of classical systems with effectively unpre-
dictable time evolution.

Widely studied models include quantum particles restricted to move in two-
dimensional regions known as billiards, pairs of coupled spins or a single period-
ically driven spin. Reducing the continuous time evolution of a classically chaotic
system to an iterated map has proved advantageous in many cases. Maps are simple
to formulate but capture essential features of the dynamics. A thoroughly studied
example is the (classical or quantum) standard map describing a kicked rotor. Many
other systems such as an electron in a one-dimensional hydrogen atom in the pres-
ence of a periodically modulated electric field give rise to the same or structurally
similar maps. (� Bohr’s atom model).

(1) If a quantum system has a classically chaotic limit, it is usually hard to extract
useful information from its � Schrödinger equation. Often, extensive numerical cal-
culations are the only means to determine (the spatial structure, say, of) excited
states and the corresponding energy levels. A substantial amount of work has thus
been devoted to generalize the torus quantization, an early method to ‘quantize’
classical systems which precedes and thus bypasses � Schrödinger’s equation. Its
original formulation relies on the phase space of the system being foliated entirely
by tori. This structure, however, only exists if the system is integrable, i.e. it must
possesses as many global constants of motion as it has degrees of freedom. The fo-
liation is destroyed if a perturbation is added to the system, and only a skeleton
of closed trajectories known as periodic orbits continues to exist. Einstein real-
ized in 1917 that the quantization conditions are not generally applicable [1]. The
new approach, initiated in the early 1970s, relies on the fact that, even in a non-
integrable system, isolated periodic orbits survive and continue to determine the
quantum properties of the system to a large extent. To see this, one uses the � path-
integral formulation of quantum mechanics. The resulting trace formula provides an
alternative and often efficient road to (approximately) quantize a classically chaotic
system [2].
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(2) The statistics of energy levels exhibit striking differences for different quan-
tum systems. After appropriate normalization, the spacings between the energy
eigenvalues of systems with a classically regular limit are described well by a Pois-
son distribution: small spacings dominate. The small spacings are suppressed for
systems with a chaotic classical limit, resulting in a distribution derived by Wigner
in 1951 to statistically describe observed energy spectra of nuclei [3]. The overall
shapes of the distributions are universal in the sense that they only depend on sym-
metry properties such as the presence or absence of time reversal invariance of the
system. It turns out that the spectra of random matrices, with matrix elements drawn
from specific distributions determined by the symmetries, have very similar spec-
tral properties [4]. This confirms the intuitively appealing picture that a Hamiltonian
describing a quantum system with a classically chaotic limit correspond to a matrix
with ‘random’ entries.

The spatial structure of energy eigenstates of a quantum system may also an-
ticipate whether it has a classically chaotic counterpart or not [5], as do scattering
amplitudes. It is the classical periodic orbits which, to a large extent, determine
the properties of both bounded and open quantum systems in the � quasi-classical
regime defined by S/� # 1, where S is the value of the classical action associated
with a typical periodic orbit.

The Anderson model of conduction in a one-dimensional disordered solid pre-
dicts that its energy eigenstates are confined to only small parts of the available
space. Mathematically, the quantum standard map is structurally identical to the An-
derson Hamiltonian if discrete time is thought to label lattice sites [6]. The resulting
dynamical localization is used to explain that electron diffusion in a driven hydro-
gen atom [7] deviates from classically expected behaviour: the atom is ultimately
not ionized since the diffusion is suppressed quantum mechanically.

(3) Ideally, a concept such as Quantum Chaos should rest upon a definition which
is inherently quantum mechanical: it should not depend on properties of quantum
systems which emerge only in the classical limit. The challenge is to put each (non-
relativistic) quantum system with only a few degrees of freedom, say, in one of two
disjoint classes using quantum mechanical concepts only. So far, no such division
entailing sets of systems with provably different properties has been agreed upon [8].

Another fundamental aspect is the question to what degree � Schrödinger’s equa-
tion, as a linear equation, is capable to generate complicated time evolutions. Is it
conceivable that the evolution of a quantum state is as difficult to predict as a tra-
jectory of a classically chaotic system, typically resulting from coupled non-linear
differential equations? An appropriate Fourier transform of such a trajectory will
reveal a continuous spectrum of frequencies, an unmistakable sign for the trajec-
tory being highly irregular. If a similar approach is taken within a time-independent
quantum system, the resulting spectrum will be determined by the energy eigenval-
ues of the system which are a discrete set if the quantum system has bound states
only. This observation explains why externally driven quantum systems and scat-
tering processes are promising candidates when searching for chaotic behaviour in
quantum mechanics.
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The tendency of quantum mechanics to suppress chaos is supported by a phase
space perspective: quantization can be thought of as introducing a ‘granular’ struc-
ture � quantization. Its scale relates to the non-commutativity of position and
momentum operators measured by the value of � Planck’s constant �. Thus, the
evolution of arbitrarily fine structures in phase space, a hallmark of Classical Chaos,
appears forbidden. Nevertheless, the time evolution of a quantum system may be as
difficult to predict as a classical irregular trajectory if commuting observables such
as two (or more) position operators undergo a complicated dynamics in configura-
tion space [9].
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Quantum Chemistry

Ana Simões

When introducing the International Journal of Quantum Chemistry in 1967, the
Swedish quantum chemist Per-Olov Löwdin (1916–2000) defined the then forty-
year old discipline in the following manner:

Quantum chemistry deals with the theory of the electronic structure of matter: atoms,
molecules, and crystals. It describes this structure in terms of wave patterns, and it uses
physical and chemical experience, deep-going mathematical analysis, and high-speed elec-
tronic computers to achieve its results. Quantum mechanics has rendered a new conceptual
framework for physics and chemistry, and it has led to a unification of the natural sciences
which was previously inconceivable; the recent development of molecular biology shows
also that the life sciences are now approaching the same basis.

Quantum chemistry is a young field which falls between the historically developed areas of
mathematics, physics, chemistry, and biology.

Written at a time in which quantum chemistry was experiencing intense network-
ing and growing internationalization and was exploring the potential of a promising
instrument – the electronic digital computer – at the same time as extending its
domain to molecules of biological interest, the definition bears witness to the chal-
lenges posed by this recent juncture when contrasted with the previous state of
things. It calls attention to the subject-matter of quantum chemistry – the eluci-
dation of the electronic make-up of atoms, molecules and aggregates of molecules;
the interplay of inputs from theory, experiment, mathematics and computation in
building the methodological apparatus of quantum chemistry; its relationship with
the neighboring disciplines of mathematics, physics, and biology; and finally the
assessment of the role of quantum mechanics in providing a unifying framework
for the natural sciences and eventually for the life sciences. The influence of quan-
tum chemistry was to extend to all branches of chemistry, from physical, organic,
analytical, and inorganic chemistry to biochemistry.

Evidence of the difficulties encountered in positioning the new field in rela-
tion to neighboring areas such as chemistry, physics and mathematics lies in the
multiplicity of names attributed to the field extending well into the period when
Löwdin founded the journal. Extra evidence includes the different names assigned
to chairs occupied by its practitioners, the titles of journals used as outlets for their
publications or the descriptions of courses taught on the subject. The new field has
been called mathematical chemistry, quantum theory of valence, molecular quantum
mechanics, theoretical chemistry, chemical physics as well as the now standard
quantum chemistry. Although hard to ascertain, the first appearance of the desig-
nation ‘quantum chemistry’ in the literature is probably due to Arthur Erich Haas
(1884–1941), the professor of physics at the University of Vienna who published in
1929 Die Grundlagen der Quantenchemie, a collection of four lectures delivered to
the Physico-Chemical Society in Vienna.



Quantum Chemistry 519

Q

Löwdin wrote this passage forty years since the German physicists Walter Heitler
(1904–1981) and Fritz London (1900–1954) published their 1927 joint paper usu-
ally considered as marking the birthday of quantum chemistry. Heitler and London
extended Heisenberg’s quantum-mechanical treatment of the two indistinguishable� electrons in the helium atom (1926) to the quantum-mechanical explanation of the
formation of the hydrogen molecule. They started with a � wave function that took
into consideration the � indistinguishability of the two electrons and minimized
the system’s energy by using perturbation theory. They obtained two values for
the energy expressed as a function of three integrals – Coulomb integral, exchange
integral and overlap integral – and showed that attraction between the two atoms
occurred only when electrons had opposite spins (‘electron pairing’), giving rise to
a covalent bond. Covalent bonds were thus shown to be pure quantum-mechanical
effects and � spin became one of the most significant indicators of valence behav-
ior. Despite a selection of the simplest of all molecules, the rationale behind this first
successful attempt to solve an intrinsically chemical problem – understanding why
and how atoms combine to form molecules – was to treat it as a many-body prob-
lem, which they handled by means of the integration of � Schrödinger’s equation.
The difficulty in solving Schrödinger’s equation for molecular systems exactly lay
at the heart of quantum chemistry.

This state of affairs was soon encapsulated in Paul A.M. Dirac’s 1929 dictum to
the effect that ‘the underlying physical laws necessary for the mathematical theory
of a large part of physics and the whole of chemistry are [now] completely known,
and the difficulty is only that the exact application of these laws leads to equations
much too complicated to be soluble’. This statement has been cited frequently by
historians and philosophers of science in the context of discussions on the hypo-
thetical reduction of chemistry to physics. Chemists, however, took it as a historical
prediction (not a philosophical claim) proven wrong due to the inability to foresee
the importance of exact computations for chemistry. Extending this argument, one
may well claim that Dirac was unable to foresee that a new breed of chemists would
emerge sharing a culture very different from the reductionist culture of physicists
but taking seriously the perspectives opened up by the use of quantum mechanics.
By embracing different methodological and ontological commitments, they suc-
cessfully devised semi-empirical approximate methods which became a constitutive
feature of quantum chemistry in its first decades, and which had to face the challenge
of an era of wholly theoretical (ab initio) computations following the extensive use
of electronic digital computers after World War II.

While Heitler and London attempted unsuccessfully to extend their pioneering
work to polyelectronic molecules using group theory to help generalize results
derived by perturbation methods, other German physicists tried to understand
quantum-mechanically the nature of the chemical bond. Friedrich Hund (1896–
1997) classified the electronic quantum states of diatomic molecules and Erich
Hückel (1896–1980) built a theoretical model for the benzene molecule. By the
late 1930s, they all had abandoned the field as it proved impossible to treat in an
analytical manner Schrödinger’s equation for molecules including more than three
electrons.
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In the meantime, the Americans Linus Pauling (1901–1992) (Nobel Prize 1954),
John Clarke Slater (1900–1976) and Robert Sanderson Mulliken (1896–1986)
(Nobel Prize 1966) developed a different perspective for the quantum-mechanical
explanation of the chemical bond. While German physicists thought the theories
of the chemical bond should be derived from first principles firmly grounded on
the postulates of quantum mechanics, Americans acknowledged the importance
of quantum mechanics and, at the same time, aimed at developing semi-empirical
methods dependent on the formulation of short-cut rules based on a sort of induction
from available data (which in many instances they gathered themselves) together
with the introduction of concepts which facilitated the making of approximations.

Pauling’s valence bond approach, envisioning molecules as aggregates of atoms
bonded together along privileged directions, was meant to extend classical struc-
ture theory. Both Slater (1931) at M.I.T. and Pauling (1931–1933) at Caltech built
on Heitler and London’s 1927 valence bond paper, but outlined a semi-empirical
approach based on the idea of hybridization of atomic orbitals to form bond or-
bitals possessing directional character. In this way they explained the formation of
molecules such as water and methane. Pauling subsequently attempted to understand
the formation of more complex molecules, dealing with the stability of aromatic and
conjugated compounds. In molecules such as benzene, for which no single struc-
ture seemed to represent adequately all its properties, Pauling suggested that the
molecule could be represented as a hybrid of two or more conventional forms, a
situation he dubbed ‘resonance among several valence-bond structures’. Introduced
in ‘The Nature of the Chemical Bond’ series, the ‘theory of resonance’ was further
developed and presented to a wider audience in the famous book The Nature of the
Chemical Bond (1939).

Clarification of the relations between electronic states and the structure of molec-
ular spectra (1928–1932) was the basis on which Mulliken grounded his rejection
of the ontological foundation of classical valence theory. He refused to reduce a
molecule to an aggregate of atoms, and built it instead from nuclei and electrons.
Reasoning by analogy with Bohr’s building-up principle, Mulliken considered that
molecules were formed by feeding electrons into orbitals encircling two or more
nuclei. Electrons were delocalized in the sense that there was a non-zero proba-
bility of finding them near more than one nucleus. The assignment of quantum
numbers to electrons in molecules was achieved by exploring the relations to the
united-atom description and the separated-atom description put forward by Hund,
and the classification of molecular orbitals in polyatomic molecules applied group
theory (1932–1935). New auxiliary concepts were introduced such as promoted
and unpromoted electrons, bonding, non-bonding and anti-bonding electrons, and
varying bonding power of electrons. Mulliken’s approach was semi-empirical in the
sense that the relative order of energy states was obtained from quantum mechanics
but energy levels were dependent on spectroscopic and thermochemical data.

To highlight the choice of opposite methodological stances, noted already by
John H. van Vleck (1899–1980) and Albert Sherman (1907–38) in their 1935 review
paper, historians of science have suggested that the usual division appearing in the
chemical literature and in textbooks between the Heitler–London–Slater–Pauling
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valence bond method (VB) and the Hund–Mulliken method of molecular orbitals
(MO) should be replaced by another dichotomy – Mulliken–Pauling–Slater versus
the Heitler–London-Hund.

In the meantime, John Lennard-Jones (1894–1954), the British physicist from
Cambridge University who was soon to hold the Plummer Chair in Theoreti-
cal Chemistry (1932), had introduced the physical simplification of representing
molecular orbitals as linear combinations of atomic orbitals (LCAO) (1929), a step
that proved crucial to the subsequent mathematization of MO theory. Together
with Douglas R. Hartree (1897–1958) and Charles Alfred Coulson (1910–1974),
who was to become the first holder of the Chair of Theoretical Chemistry at the
University of Oxford (1972), these British theoreticians played a decisive role in the
further development of quantum chemistry. All strongly influenced by Mulliken’s
legacy, they perceived the problems of quantum chemistry first and foremost as cal-
culational problems; and by devising novel calculational methods they tried to bring
quantum chemistry within the realm of applied mathematics.

Until the 1950s VB theory dominated quantum chemistry for reasons that were
not due to its empirical adequacy, explanatory power or predictive ability when
compared with MO theory; they rather depended on contrasting rhetorical skills
and personal characteristics of the advocates of both theories. The ascendancy of
the MO theory was largely associated with the contributions of Coulson, its advo-
cate who rivalled with Pauling in rhetorical and pedagogical skills. His textbook
Valence (1952) counterbalanced the approach set previously in The Nature of the
Chemical Bond. Furthermore, MO theory profited from being easily adapted to the
classification of the excited states of molecules – one of the realms of molecular
spectroscopy – and, above all, was suitable for computer programs. In fact, in the
period right after the end of World War II, quantum chemists were eager to take
advantage of electronic digital computers in the computation of molecular wave
functions and energy levels.

Considered a ‘watershed’, the international program outlined at the Shelter Island
Conference (1951) clarified chemical concepts such as electron pairs, bond ener-
gies and bond orders, hybridization and chemical reactivity. But, above all, it aimed
at obtaining formulas for the troublesome multi-central integrals which acted as
‘bottlenecks’ to the integration of Schrödinger’s equation in the ab initio manner.
These formulas thus became available to the community of quantum chemists in
standardized tables. While at first dependent on human computers aided by desk
calculators, the program soon evolved to articulate an efficient cooperative network
that took advantage of the slowly increasing number of electronic digital comput-
ers available to the international community. Computers turned into an essential
tool to calculate the time-consuming integrals of the increasingly sophisticated ver-
sions of the MO method (Pariser–Parr–Pople, Self Consistent Field, Hartree–Fock,
Configuration Interaction, etc.) and in many instances replaced laboratory experi-
ments as sources of new data, especially in the investigation of molecules otherwise
inaccessible to experimentation.

By 1959 a conference convened in Boulder, Colorado, debated the impact of
computers in quantum chemistry. In an after-dinner speech delivered at the end of
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the conference, Coulson announced the splitting of the community into two dis-
tinct groups – those interested in exact calculations in molecules including up to 20
electrons (ab-initionists) and those still faithful to semi-empirical methods, those
loath to abandon conventional chemical concepts and those claiming that chemistry
was still an experimental science built around quite elementary concepts. The split
resulted from diverging views concerning the use of large-scale electronic comput-
ers, and pointed to deep, perhaps irreconcilable, divisions among the practitioners
of quantum chemistry (Group I included the ab-initionists, those who explored the
potentialities of electronic computers, while Group II included the a posteriorists
who did not bet on the importance of electronic computers for quantum chemistry).
In 1965, John A. Pople (1925–2004) (Nobel Prize 1988) illustrated these divisions
with a chart, later known as the ‘hyperbola of quantum chemistry’, which depicted
the inverse relationship between the size of the molecules under study and the so-
phistication of computational methods.

Also reflecting on the impact of computers, the French quantum chemist Alberte
Pullman (1920-) whose group was extending MO theory to biological molecules,
predicted the merging of the two groups into a single group of ‘ab initio for every-
body’ (1970). Sensing that in the near future ever more powerful but also cheaper
computers would become available to increasingly large fractions of the quantum
chemical community, she pressed theoreticians to abandon their ‘ivory tower of
abstractions’ to venture into the exploration of real problems of chemistry, rang-
ing from the hydrogen molecule to biological macromolecules. In fact, by 1990
Martin Karplus (1930-) suggested replacing the two-dimensional Pople diagram by
a three-dimensional one including as an extra dimension the estimated accuracy of
calculation for the system under consideration. At the same time, he changed the
linear scale of the axis in Pople’s diagram representing the size of the molecule
(which covered 1–100 electrons) by a logarithmic scale going up to 106 electrons.
This change highlighted the possibility of conducting ab initio computations at a
satisfactory accuracy for reasonably complex molecules and their reactions. Fur-
thermore, Karplus recognized that density functional methods appeared to violate
the ‘hyperbola of quantum chemistry’ in the sense that they fall within the range of
accuracy and sophistication of Hartree-Fock type calculations but handle molecules
with a larger number of electrons within available computer time.

Having these recent developments in mind, one wonders whether Dirac’s 1929
prediction has been fulfilled to a significant degree. One wonders further whether the
divorce in the quantum chemical community that haunted the perceptive Coulson in
time converged into a peaceful cohabitation and eventually into a successful mar-
riage of the two different cultures of practitioners.
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Quantum Chromodynamics (QCD)

Kim Milton

Quantum chromodynamics (QCD) is the theory of the strong interaction between
the quarks that constitute the strongly interacting particles, the hadrons, consisting
of baryons and mesons. (� Particle Physics. Quarks, see � Color Charge Degree of
Freedom in Particle Physics; Mixing and Oscillations of Particles; Particle Physics;
Parton Model; QFT). It is modeled on the extremely successful theory of � electrons
and photons, quantum electrodynamics (� QED). However, unlike the latter, which
is tested now to 10th order in the strength of the electric charge of the electron, it is
not easy to compare QCD with experiment. This is not only because the coupling is
strong, not weak as in electrodynamics, but also because of the related fact that the
fundamental components of the theory, the quarks and the force-carrying gluons,
have never been directly seen, and are generally believed to be unattainable because
of the phenomenon of confinement.

Yukawa [1] was the first to start to understand the strong force in terms of his
posited “mesotron,” what we now call the pion. He believed that the strong nu-
clear force between protons and neutrons in the nucleus could be understood in
terms of the exchange of a mesotron between these particles, the short range of
the nuclear force reflecting the fact that the mass of the mesotron was around
100 MeV c−2. However, by the end of the 1950s dozens of strongly interacting par-
ticles, most rapidly decaying, had been discovered in cosmic rays and accelerators,
and these could not all be fundamental. Physicists searched for various schemes to
unite the zoo of particles, and Gell-Mann [2] and Zweig [3] independently came
up with the quark model, which was first not taken very seriously except as a way
to describe the group theory that organized the hadrons. This group was called by
Gell-Mann the eightfold way, but in fact it was simply SU(3), the group of three
by three unitary matrices with determinant one. The fundamental representation of
the group was realized by three quarks, what we now call up, down, and strange.
(Now we know there are six “flavors” of quarks, up, down; charm, strange; and top,
bottom; grouped in three families or generations of two each.) The quarks had frac-
tional charge; up had charge +2/3, down had charge −1/3 in units of the electron
charge, and each carried � spin �/2.

The quark model could be used to classify all the observed strongly interacting
particles: baryons, like the proton and neutron, were composed of three quarks, and
mesons, like the pion, were composed of a quark and an antiquark. No other combi-
nations seemed then, or now, to appear in nature. (The recent flap over pentaquarks
has ended with no believable evidence for exotic states.) However, it supplied no
dynamics, and it left open the question of why quarks were not seen.

The next major step was supplied by Greenberg [4], who noted that to consis-
tently describe baryons in the quark model required a new quantum number, called
color, since three “charges” were required, called, say, red, green, and blue. The
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simplest example is the famous � baryon resonance, which comes in four charge
states,−1, 0, 1, 2. The �++ state should be composed of three up quarks, each hav-
ing charge +2/3. The spin of the � was 3/2, precisely what one would expect by
adding the spins of the three up quarks in a symmetrically aligned state. Correspond-
ingly, the spatial wave function should have zero orbital angular momentum, and
should therefore be symmetric as well. But the � wave function of a fermion must
be totally antisymmetric under interchange of the constituent coordinates, so if it is
symmetric in space, and symmetric in spin, it must be antisymmetric in something
else, color. Such a state is one with no net color, the antisymmetrical combination
of red, green, and blue. So the rule became, only those states are allowed which are
color singlets; these are just the mesons and baryons described above.

The mathematics of this is that the color group is also SU(3) (no relation to the
flavor SU(3) group introduced in the eightfold way); the quarks are triplets under
color, and in terms of irreducible representations of SU(3), labeled by their dimen-
sionality, baryons and mesons are described by

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1; 3⊗ 3̄ = 8⊕ 1,

the singlet in each case corresponding to the color part of a hadron wavefunction.
Still there was no dynamics. That came from earlier work in the 1950s, when

Yang and Mills [5] discovered non Abelian gauge theories (quantum electrodynam-
ics is an Abelian gauge theory). The great success of these theories came with the
electroweak synthesis (� Particle Physics), carried out by Schwinger [6], Glashow
[7], Weinberg [8], and Salam [9]. As soon as that approach was seen to be successful
and consistent in 1971 [10], it was natural to apply it to the quark model. However,
how could that theory be consistent with the confinement property that only color
singlet states appear in nature? The answer came with the work of Politzer [11],
Gross, and Wilczek [12], who showed that a non Abelian gauge theory like that
based on SU(3) would have the property of asymptotic freedom: � Color Charge
Degree of Freedom in Particles Physics; QFT. That is, the force becomes strong at
large distance (low energies) but weak at short distance (high energies). This is just
what is needed to explain the quark model, where inside the nucleons (neutrons and
protons) the quarks are nearly free, but they can never get more than about 10−15 m
away from each other. This was also quite consistent with the deep-inelastic experi-
ments which had appeared by 1970 which showed nearly free point-like constituents
within the nucleons [13].

Gell-Mann is usually attributed as author of QCD [14]. The theory is governed
by a Lagrangian density very similar to that of QED,

LQCD = −1
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The difference between QCD and QED is that in the former there are eight colors
of gluon fields, which are represented by the index a (repeated indices are to be
summed over). The sum over f represents summing over the different flavors of
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quarks; each flavor of quark has three components in color space, and the eight
matrices λa live in that space:
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The matrices satisfy the group property
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where the f abc are the structure constants of the SU(3) group. The non Abelian field
strength is constructed in terms of potentials as follows,

Fa
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ν − ∂νA

a
μ + gf abcAb

μA
c
ν.

Note that the theory states that, unlike photons (� light quantum), gluons carry
color, and hence couple to each other.

As in QED, Feynman rules can be readily written down to describe how to carry
out perturbative calculations in powers of the coupling constant g. (A readable dis-
cussion is in [17]). These are, however, somewhat more complex than those in QED,
and by themselves, of somewhat limited utility. Perturbation theory does not capture
the confinement property, and in any case we do not want to calculate scattering
amplitudes for free quarks, but for observable particles, the hadrons. To do this,
semiempirical models are used to construct form factors and structure functions, so
there are rather few direct tests of QCD itself. The structure functions encode our
ignorance about the real wavefunction of hadrons. Moreover, because g is rather
large, g2/4π�c ranging from 0.1 to 2 depending on the process (remember that the
strength of the coupling decreases as the energy of the process increases), higher
corrections may in fact turn out to be larger that the leading terms, so perturbation
theory is intrinsically unreliable. There are various methods to reduce this unreliabil-
ity (for example, what is called analytic perturbation theory [15]), and lattice gauge
theory [16] is a viable approach to transcend perturbation theory, but it may be fair
to say that QCD, although nearly universally believed true, is not yet a quantitative
model of strong interactions.
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values zero or one. In the computers and optical fibers of today’s information and
communication technology, the bits are carried by electric currents or light beams,
corresponding to macroscopic fluxes of � electrons or photons (� light quantum)
respectively, and they are stored in memories of various kinds, for example, mag-
netic. Although the basic physics which underlies the operation of a transistor or
a laser is quantum physics, each elementary bit corresponds to a large number of
elementary quantum systems, and its behavior can be described classically due to
the strong coupling to the environment.

In the past twenty years, physicists have been able to manipulate with an increas-
ing accuracy individual quantum objects, such as photons, atoms, neutrons. . . This
opens the way for using quantum two-state systems to exchange, store and process
information, by selecting two orthogonal states spanning the � Hilbert space of
states: using � Dirac’s notation for the state vectors, one of the states, |0〉, encodes
the value zero of the bit, the other one, |1〉, the value one. In this article, we shall
discuss three aspects of quantum communication: quantum cryptography, quantum
dense coding and quantum teleportation.

An elementary example of quantum two-state system is given by photon polar-
ization, where one may choose a basis of linearly polarized states and associate,
by convention, the vertical polarization (2) with the value zero of the bit and the
horizontal polarization (↔) with the value one. Storing information with individ-
ual photons is still far beyond present technical capabilities, but transmission of
information is easy to implement. The two people exchanging information being
conventionally called Alice and Bob, Alice may send Bob individual photons which
are either vertically polarized, or horizontally polarized. Any message written in bi-
nary language is a series of 0s and 1s, and the message 0110101 will be encoded in
the sequence of photon polarizations 2↔↔2↔2↔, which will be sent via, for
example, an optical fiber. To read the message (see Fig. 1), Bob uses a polarizing
beamsplitter to separate the photons of vertical and horizontal polarization, and two
detectors tell him whether the photon was horizontally or vertically polarized: each
photon carries one bit of information. Although this technique has a rather poor ef-
ficiency compared to standard bit transmission via photon pulses in optical fibers, a

Detector

P P

laser
Alice Bob(a) (b)

Attenuator

Fig. 1 Schematical depiction of the BB84 protocol. A laser beam is attenuated such that it sim-
ulates individual photons. A laser is used for practical reasons: it would be safer to use a single
photon source, but these sources are not yet available commercially. A birefringent plate selects
the polarization, which can be rotated by means of Pockels cells P. The photons are either verti-
cally/horizontally polarized (a) or polarized at ±45o (b)
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few hundreds of kbit s−1 as compared to tens of Gbit s−1, we shall see later on that
it can be modified in order to ensure the security of the transmission.

A quantum two-state system which can be used to store, process or transmit bits
of information is called a quantum bit, or qubit: see [4]–[6] for an overview. We may
hope for some gain by going from bits to qubits, because, in contrast to classical bits,
we can build linear � superposition |ϕ〉 of states |0〉 and |1〉, for example vertically
and horizontally polarized states, | 2〉 ≡ |0〉 and | ↔〉 ≡ |1〉

|ϕ〉 = cos
θ

2
|0〉 + e iφ sin

θ

2
|1〉 (1)

Since the angles θ and φ in (1) can vary continuously, it may seem that a qubit
contains much more information than a classical one (in fact an infinite amount of
information!). However, we must use an orthogonal basis for measurement, and the
result of the measurement will always be zero or one, whatever the basis, so that
our hopes of getting more from a qubit than from a classical bit look unfounded.
This pessimistic observation is confirmed by Holevo’s theorem [1]: N qubits may
transmit at most N bits of information. Fortunately, � entanglement will allow us
to bypass this theorem.

The simplest application of quantum communication is quantum cryptography,
as it uses only single qubits, at least in its most elementary version. Moreover, it is
the only application which is now coming on the market. ‘Quantum cryptography’
is a catchy phrase, but it is somewhat inaccurate. A better terminology is quantum
key distribution (QKD). In fact, there is no encryption of a message using quantum
physics; the latter is used only to ensure that the key needed in secret key systems
of encryption is not intercepted by a spy, so that quantum cryptography solves the
problem of secure key distribution. Of course, this problem does not exist in public
key systems, such as RSA (Rivest, Shamir and Adleman) encryption, whose secu-
rity relies on the difficulty of finding the prime factors of a large integer. As we have
seen, a message, encrypted or not, can be transmitted using the two orthogonal lin-
ear polarization states of a photon, but, in addition, we shall make use of the basic
laws of quantum physics in order to be sure that the message has not been inter-
cepted. Two complementary (incompatible) bases are chosen at random by Alice,
for example {| 2〉, | ↔〉} and {| ↔〉, | ↔〉}, where

| ↔〉 ≡ |+〉 =
1√
2

(| 2〉 + | ↔〉) | ↔〉 ≡ |−〉 = 1√
2

(| 2〉 − | ↔〉) (2)

to send Bob photons of four types, either polarized vertically (2) or horizontally (↔)
in the first basis, or polarized along axes rotated by ±45o in the second basis: ( ↔)
or ( ↔), corresponding to the values zero and one of the bit respectively. Similarly,
Bob analyzes the photons sent by Alice using the same orthogonal bases chosen at
random. After recording a sufficient number of photons, Bob publicly announces
the sequence of bases he has used, but not his results. Alice compares her sequence
of bases to Bob’s and publicly gives him the list of bases identical with his. About
half of the bits, those corresponding to a different choice of bases, are rejected, and
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then Alice and Bob are certain that the values of the other bits are the same. These
are the bits which will be used to construct the key, and they are known only to Bob
and Alice, because an eavesdropper only knows the list of bases and not the results.
The protocol we have described is called BB84, from the names of its inventors
Bennett and Brassard [2].

We still need to be sure that the message has not been intercepted and that the
key it contains can be used without risk. Alice and Bob choose at random a subset of
their key and compare publicly not only their choice of bases, but also the bit values.
The consequence of interception of the photons by a spy would be a reduction of the
correlation between the values of their bits. The security of the protocol depends on
the fact that a spy cannot find out the polarization state of a photon unless he knows
beforehand the basis in which it was prepared. Of course, the raw process which
we have just described does not take into account the possibility of errors, which
must be corrected thanks to a classical error correcting code, while a second classi-
cal process, called privacy amplification, ensures the secrecy of the key, even if an
eavesdropper has been able to correctly guess some of the bits. As optical fibers do
not allow one to control the direction of polarization over large distances, in practice
qubits are encoded in the phase of the photon � wave function, and Mach-Zehnder
interferometers are used to fix the phase at one end of the line and to measure it at
the other end. Rates of transmission of 50 kbit s−1 have been reached over distances
up to 100 km. Other quantum cryptography protocols have been proposed, which
use either three incompatible bases, or entangled states.

Let us now turn to multi-qubit systems, which will be used for dense coding
and teleportation. Unlike the classical case, most of the information contained in
a generic quantum mechanical system is stored in the form of � correlations be-
tween its subsystems. Dense coding and teleportation make essential use of these
correlations. Let us recall that a two-qubit state which cannot be written as a tensor
product is called an entangled state. A convenient orthogonal basis in the Hilbert
space HA ⊗ HB of two qubits A and B is the so-called Bell’s basis, made of the
four Bell states

|�0〉 = 1√
2
(|0A ⊗ 0B〉 + |1A ⊗ 1B〉) = (σ0A ⊗ IB)|�0〉 (3)

|�1〉 = 1√
2
(|1A ⊗ 0B〉 + |0A ⊗ 1B〉) = (σ1A ⊗ IB)|�0〉 (4)

|�2〉 = 1√
2
(−|1A ⊗ 0B〉 + |0A ⊗ 1B〉) = (iσ2A ⊗ IB)|�0〉 (5)

|�3〉 = 1√
2
(|0A ⊗ 0B〉 − |1A ⊗ 1B〉) = (σ3A ⊗ IB)|�0〉 (6)

where σ0 = I and the σis are the � Pauli spin matrices.
Dense coding and teleportation rely on the use of measurements in the Bell basis.

How to perform such a measurement is not a priori obvious because one is limited to
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measuring individual qubits. The first step consists of disentangling the Bell states
thanks to a quantum logic gate called a control-NOT, or cNOT gate. Quantum logic
gates are unitary operations acting in the Hilbert space of one or several qubits. The
cNOT gate is a two-qubit quantum gate, acting in HA⊗HB which has the following
action on a two-qubit state

cNOT|xA ⊗ yB〉 = |xA ⊗ (xA ⊕ yB)〉 (7)

where xA, yB = 0, 1 and⊕ is addition modulo 2; x is the control bit and y the target
bit. It is important to observe that the cNOT gate is not a tensor productMA⊗MB of
two operators MA and MB : this is precisely the reason why this gate may transform
a tensor product |ϕA ⊗ ϕB〉 into an entangled state, or vice-versa.

We also need the Hadamard gate H, which is a unitary transformation on indi-
vidual qubits; when H is applied to an eigenstate |0〉 or |1〉 of σ3, the result is an
eigenstate |±〉 (2) of σ1, σ1|±〉 = ±|±〉

H|0〉 = 1√
2

(|0〉 + |1〉) = |+〉, H |1〉 = 1√
2

(|0〉 − |1〉) = |−〉 (8)

and conversely, since H2 = I , H|+〉 = |0〉, H|−〉 = |1〉.
To measure in the Bell basis, we first apply a cNOT gate, followed by a Hadamard

gate on qubit A. A measurement of the two qubits sketched in Fig. 2 (a) will give
a result in the form (xA, yB) and the four possible results will be in one-to-one
correspondence with the Bell states

|�0〉 ⇐⇒ (0A0B) |�1〉 ⇐⇒ (0A1B) |�2〉 ⇐⇒ (1A1B) |�3〉 ⇐⇒ (1A0B)

(9)

Dense coding works as follows (Fig. 2 (b)): Alice and Bob share an entangled
pair AB of qubits, for example in the state |�0〉. Alice wants to send Bob two bits of

¾iA

qubit A

qubit B

Bob

S

Alice

S
A

A

A

B C

a b c

H

B

Bob
classical

Alice

Fig. 2 (a) Measurement in the Bell basis: a cNOT gate, where A is the control bit and B the
target bit, is followed by a Hadamard gate applied on qubit A. The diagrams are read from left to
right, in the direction opposite to that of the operator products. (b) Dense coding: Alice applies
σiA on qubit A and Bob performs a Bell measurement on the AB pair. S is a source of entangled
particles. (c) Quantum teleportation: Alice makes a Bell measurement on theAB pair. The classical
communication channel is represented by a dashed line
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information by exchanging only one qubit, the two bits being encoded in a number
i, i = 0, 1, 2, 3. She applies to qubit A the operator σiA, i = 0, 1, 2, 3, see (3)-(6).
Then Bob receives one of the four states (3)–(6) and he measures the AB pair in
the Bell basis, as explained above. From the measurement result, he will be able to
find the value of i. Dense coding seems to bypass Holevo’s theorem, but there is no
contradiction, because the assumptions needed in the proof of the theorem explicitly
exclude that Alice and Bob share an entangled pair.

Quantum teleportation [3] allows one to transport quantum information from
one location to another, without any physical transfer of the associated quantum-
information carrier. To give an example of another physical realization of qubits, let
us assume that the qubits are now carried by the � spin states of spin 1/2 particles,
and that Alice wishes to transfer to Bob the information about the spin state |ϕA〉 of
a particle A (Fig. 2(c))

|ϕA〉 = λ|0A〉 + μ|1A〉 |λ|2 + |μ|2 = 1 (10)

which is unknown to both partners, without sending him this particle directly. The
principle of information transfer consists of using an auxiliary pair of entangled
particles B and C of spin 1/2 shared between Alice and Bob. Particle B is used
by Alice and particle C is sent to Bob (Fig. 2 (c)). Particles B and C may be, for
example, in the entangled spin state |�BC

0 〉. The initial three-particle state |�ABC〉
can be written in terms of the Bell states of the AB pair

|�ABC〉 =1

2
|�AB

0 〉 ⊗ (λ|0C〉 + μ|1C〉)+ 1

2
|�AB

1 〉 ⊗ (λ|1C〉 + μ|0C〉)

+ 1

2
|�AB

2 〉 ⊗ (λ|1C〉 − μ|0C〉)+ 1

2
|�AB

3 〉 ⊗ (λ|0C〉 − μ|1C〉)
(11)

Alice measures the previously unentangled AB pair in the Bell basis: the mea-
surement projects particle C in a state which is directly linked to its result. If, for
example, Alice finds the state |�AB

1 〉, then she knows that Bob is going to receive
particle C in the state

|ϕC〉 = λ|1C〉 + μ|0C〉
and she will be able to inform Bob by a classical channel (for example, a telephone)
of the quantum state of qubit C. If necessary, Bob can apply a suitable rotation
in order to recover the original state (10). Notice that Bob ‘knows’ the spin state
of particle C only once he has received the result of Alice’s measurement. This
information must be sent by a classical channel, at a speed at most equal to that of
light. There is therefore no instantaneous transmission of information at a distance.
As possible applications, quantum teleportation could be used to build quantum
relays for long distance quantum cryptography, or to provide a way for distant qubits
in a quantum computer to interact without the requirement of physical proximity.
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3. C. Bennett, G. Brassard, C. Crépeau, R.Jozsa, A. Peres and W. Wootters: Teleporting an un-
known quantum state via dual classical and EPR channels, Phys. Rev. Lett. 70, 1895 (1993)

Secondary Literature

4. M. A. Nielsen and I. L. Chuang: Quantum computing and quantum information (Cambridge
University Press, Cambridge 2000)

5. M. Le Bellac: A short introduction to quantum computation and quantum information
(Cambridge University Press, Cambridge 2006)

6. G. Jaegger: Quantum information: an overview (Springer 2007)

Quantum Computation

Michel LeBellac

By using specific properties of quantum mechanics: � superposition principle and� entanglement, quantum computers can outperform classical ones when carrying
out certain type of computation, see [5]–[7] for an overview. The basic information
unit processed by a quantum computer is the qubit, a two-state quantum system
living in a � Hilbert space where one can choose an � orthonormal basis of two
vectors |0〉 and 1〉. If we wish to store in a qubit register an integer x, 0 � x � 2n−1

x = 2n−1xn−1 + 2n−2xn−2 + · · · + 2x1 + x0 (1)

with xi = 0 or xi = 1, we need n qubits from which we construct the tensor product
state

|x〉 = |xn−1 ⊗ xn−2 ⊗ · · · ⊗ x1 ⊗ x0〉 (2)

State vectors of the form (2) form a basis of the 2n-dimensional space H⊗n called
the computational basis, and it might be concluded, because of the superposition
principle, that an n-qubit register is able to encode 2n states at the same time. How-
ever, a measurement of the n-qubits will give only one result corresponding to one
of the states (2), and the challenge of quantum computation is to use interference
and entanglement in order to exploit this exponentially growing information.
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U(t; t0)

tt0

|0

|0

Fig. 1 Schematic depiction of the basic principle of a quantum calculation. n qubits are prepared
in the state |0〉. They undergo a unitary and deterministic evolution in the space H⊗n from time
t = t0 to time t described by a unitary operator U(t, t0) acting in H⊗n. The wiggly arrows represent
interactions with external classical fields. A measurement of the qubits (or a subset thereof, the first
three in this figure) is made at time t

A calculation performed on a quantum computer is shown schematically in
Fig. 1, where n qubits are all prepared in the state |0〉 at time t = t0: this is the prepa-
ration stage of the quantum system. The qubits then undergo a unitary quantum
evolution described by a unitary operator U(t, t0) acting in H⊗n which performs
the desired operations, for example, the calculation of a function. The experimental
difficulty is to avoid unwanted interactions with the environment, otherwise � de-
coherence would make the evolution nonunitary: if the qubits interact with the
environment, the unitary evolution occurs in a Hilbert space which is larger than
H⊗n, because it includes the degrees of freedom of the environment along with
those of the qubits. Interactions with external classical fields are compatible with
unitary evolution and they are indeed needed to manipulate qubits by Rabi oscil-
lations, which is the most common way of acting on computational qubits. Once
the quantum evolution has been completed, a measurement is made on the qubits
(or on a subset thereof) at time t in order to obtain the result of the calculation.
An important point is that intermediary states of the calculation cannot be observed
between t0 and t , because any measurement would modify the unitary evolution:
the qubits can be measured at the entrance and at the exit of the box of Fig. 1, but
not inside it. Another essential point is that the unitary evolution is reversible: if
we know the state vector at time t , we can recover the state vector at time t0 us-
ing U−1(t, t0) = U(t0, t). As a consequence, classical algorithms, which contain
irreversible logic gates, cannot be directly transposed to quantum ones. One needs
first to transform these algorithms into reversible (classical) ones, which can be done
with little reduction in efficiency.

The most general quantum evolution is a unitary transformation in H⊗n, and
the most general quantum logic gate is a 2n × 2n unitary matrix operating in H⊗n.
A theorem of linear algebra states that any unitary transformation in H⊗n can be
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decomposed into a product of cNOT gates and unitary transformations on one qubit.
In practice, in addition to the Hadamard and cNOT gates, one-qubit gates called the
phase gate Uph and the π/8 gate are also frequently encountered

Uph =
(

1 0
0 i

)
Uπ/8 =

(
1 0
0 e iπ/4

)
(3)

Any unitary operation in H⊗n can be approximated with arbitrary accuracy by a
combination of cNOT gates and a small number of one-qubit gates, for example
the Hadamard gate H and the two one-qubit gates (3). Schematically, a quantum
algorithm works as follows: an input register of n-qubits stores an integer x, 0 � x �
2n − 1, and an output register stores m-qubits, 0 � y � 2m − 1. An elementary
example of a quantum circuit is drawn in Fig. 2: this circuit has the following action
on the initial state vector |x1⊗x0⊗y1⊗y0〉, where x1 and x0 are stored in the input
register, y1 and y0 in the output register

|x1 ⊗ x0 ⊗ y1 ⊗ y0〉 → |x1 ⊗ x0 ⊗ (y1 ⊕ x0 ⊕ 1)⊗ (y0 ⊕ x1 ⊕ x0)〉 (4)

where⊕ is addition modulo 2. If the function f (x) is given by

f (0) = 2 f (1) = 3 f (2) = 1 f (3) = 0 (5)

then the action of the circuit can be summarized by

|x⊗ y〉 → Uf |x⊗ y〉 = |x ⊗ [y⊕ f (x)]〉 (6)

where ⊕ is now addition modulo 2 without carry over. The transformation Uf is
clearly a unitary operation, since U2

f = I . For a generic function f (x), Uf will be
built in analogy to (6).

Quantum parallelism relies on using linear combinations of vectors of the com-
putational basis, obtained by application of the Hadamard gate H. Indeed, if we

x0

x1 x1

x0

y1 ⊕ x1 ⊕ 1

y0 ⊕ x1 ⊕ x0

¾1
y1

y0

Fig. 2 An elementary quantum circuit with three cNOT gates (x1 and x0 = control bits, y1 and
y0 = target bits) and a one-qubit gate σ1 which computes the function f (x) (5)
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apply H to the input register in the state |0⊗n〉 before Uf , the state vector of the final
state will be, by linearity,

|�fin〉 = Uf |(H⊗n 0⊗n)⊗ 0⊗m〉 = 1

2n/2

2n−1∑
x=0

|x⊗ f (x)〉 (7)

In principle, this state vector contains the 2n values of the function f (x) (not neces-
sarily all of them different). For example, if n = 100, it contains the ∼1030 values
of f (x): it is this exponential growth of states which allows quantum parallelism to
deal efficiently with some exponentially complex problems. A measurement can of
course give only one of these values, but it is nevertheless possible to extract useful
information about the relations between the values of f (x) for an ensemble (� en-
sembles in quantum mechanics) of different values of x, of course at the price of
losing the individual values. A classical computer, on the other hand, would have to
evaluate f (x) for all these values of x independently. The art of quantum computing
is to construct an interference pattern in which the desired result stands out with a
reasonable probability against a small background.

Two broad classes of quantum algorithm have been identified so far. The first
class, to which belongs Grover’s algorithm, allows quadratic speed up with respect
to classical algorithms. Grover’s algorithm [1], for example, is able to find an en-
try in an unstructured data base of N elements in ∼√N steps, while a classical
algorithm needs an average of N/2 steps. This class of algorithm exploits the su-
perposition principle, but not entanglement. Shor’s algorithm [2] belongs to the
second class, and makes essential use of entanglement. Its purpose is to find the
prime factors of an integer N . If implemented some day (in a distant future) on
an actual quantum computer, this algorithm would be able to break the widely
used RSA encryption, whose security relies on the difficulty of factoring large
numbers. As of today, the best algorithm running on a classical computer needs
∼exp[1.9 ln1/3 N ln ln2/3 N] computational steps to find the prime factors. Since
the number of steps grows faster than any polynomial in lnN , the number of bits
which specify the size of the problem, it has been conjectured that factorization
is an exponentially complex problem, also called an “intractable” problem. On the
contrary, the problem becomes of polynomial complexity with Shor’s algorithm,
where the number of computational steps is∼(lnN)3. Finally one should also men-
tion that quantum computers could be used to simulate efficiently quantum systems,
but it is somewhat frustrating that no new really interesting quantum algorithm has
been discovered in the past ten years, which could be added to Grover’s and Shor’s
algorithms.

As in classical computers, errors may arise in processing or storing informa-
tion, and it is necessary to develop error correcting codes. Classical error correcting
codes are based on redundancy: for example, one makes three copies of each bit and
retrieves the correct value by a majority rule. Classical error correcting codes can-
not be directly transposed to qubits, first because the � no-cloning theorem forbids
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reproducing an unknown qubit state, and second because errors may affect continu-
ous variables. For example, in the general qubit state

|ϕ〉 = cos
θ

2
|0〉 + e iφ sin

θ

2
|1〉 (8)

noise could lead to continuous variations of the angles θ and φ. Fortunately, these
errors can be kept under control by taking care of a finite, and in fact small set of
errors. Error correcting codes have been developed, which are based on seven qubits
(Steane) or nine qubits (Shor) and are able to deal with all kinds of error.

Quantum algorithms have had an important impact on the theory of algorithmic
complexity. We assume, as is usually done, the validity of the strong version of the
Church-Turing thesis: any computational model can be simulated efficiently, that is
with at most a polynomial increase in the number of computational steps, by a uni-
versal probabilistic Turing machine. Then, it is possible to define two main classes
of algorithmic complexity. The first class is the polynomial class P, that of prob-
lems which can be solved with a number of computational steps that is polynomial
in the number of bits characterizing the size of the problem: these problems are
called “tractable”. The second class is the NP class, that of problems in which a
trial solution can be checked in a polynomial number of steps. Clearly, P⊂NP, and
a celebrated conjecture, which to this day remains unproven, states that P �= NP,
which means that there exist problems that are termed intractable. Numerous com-
plexity classes have been identified, such as that of NP complete problems: finding a
polynomial algorithm to solve one NP complete problem, for example the “traveling
salesman problem”, would automatically imply a polynomial solution for any NP
problem. Quantum computers are important because they make the strong version
of the Church-Turing thesis questionable. In fact, if factorization is an intractable
problem (as suggested by experience but is still unproven), then Shor’s algorithm
contradicts this strong version. Using a quantum computer it is possible to find the
prime factors of an integer N by a number of steps which is a polynomial in lnN ,
whereas a classical computer can only do this in an exponential number of steps.
However, it must be acknowledged that factorization is not NP complete.

A final important issue is that of physical realizations of quantum computers. The
storage and processing of quantum information requires physical implementations
of qubits possessing the following properties (di Vincenzo criteria [3]):

(i) they must be scalable, that is, capable of being extended to a sufficient number
of qubits, with well defined qubits

(ii) they must have qubits which can be initialized in the state |0〉
(iii) they must have qubits which are carried by physical states of sufficiently long

lifetime, so as to ensure that the quantum states remain coherent throughout the
calculation

(iv) they must possess a set of universal quantum gates: unitary transformations
on individual qubits and a cNOT gate, which are obtained by controlled
manipulations
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(v) there must be an efficient procedure for measuring the state of the qubits at the
end of the calculation (readout of the results).

The main enemy of quantum computers is interaction with the environment leading
to decoherence, a consequence of which is the loss of the phase in the � super-
position of qubits. The calculations must be performed in a time less than the
decoherence time τdec. If a quantum gate takes a time τop, the figure of merit for
a quantum computer is the ratio

nop = τdec

τop
.

This is the maximum number of operations that the quantum computer can perform.
There are at present two main avenues of research: realizations using as qubits

degrees of freedom carried by individual atoms or ions, which are “clean” systems,
at least in principle, but not easily scalable, and realizations based on solid state
technology, using as qubits collective degrees of freedom such as superconducting
circuits or quantum dots, which are “dirty” systems, but more easily scalable be-
cause one can adapt conventional microchip technology. The present state of the
art does not allow experimenters to manipulate more than three of four qubits in a
fully controlled way (seven with a NMR based quantum computer [4], which how-
ever is not scalable), and, barring an unexpected technological breakthrough, it will
take many years before a reasonably powerful quantum computer sees the light of
the day.
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Quantum Electrodynamics (QED)

Kim Milton

The theory of quantum electrodynamics was born immediately following the for-
mulation of quantum mechanics. In 1927 Dirac put Maxwell’s classical theory
of electromagnetism together with Planck’s and Einstein’s ideas of quanta [1].
The following year he came up with his famous equation describing a relativis-
tic electron [2], and with that all the ingredients for a quantum field theory of an
electron interacting with photons (� light quantum) were present. In two deci-
sive papers in 1929 Heisenberg and Pauli [3, 4] developed a consistent theory of
quantum electrodynamics. (For a detailed history of the development of quantum
electrodynamics, see [17]. For scientific biographies of Julian Seymour Schwinger
(1918–94) and Richard Feynman (1918–88), who solved the problems of QED,
see [18, 19].)

Thus the equations governing quantum electrodynamics were formulated
throughout the 1930s, which followed from the following Lagrangian density:

L = −1

4
FμνFμν − ψ̄

[
m+ γ μ

(
1

i
∂μ − eAμ

)]
ψ,

where Aμ is the four-vector potential describing the photon, in terms of which the
electromagnetic field strength is constructed, Fμν = ∂μAν − ∂νAμ, and ψ is the
electron field, ψ̄ = ψ†γ 0. Here appear the 4 × 4 Dirac matrices, which satisfy
the anticommutation relation

{γ μ, γ ν} = −2gμν,

in the metric gμν = diag (−1, 1, 1, 1). In the canonical � quantization scheme, we
regard the fields as operator-valued, satisfying the canonical equal-time commuta-
tion relations in the radiation gauge where ∇ · A = 0:

[A⊥i (x, t),E⊥j (y, t)] = −i

(
δij − ∇i∇j

∇2

)
δ(x− y),

{ψ†
α(x, t), ψβ(y, t)} = δαβδ(x − y).

Here, Ei = F 0i , and ⊥ denotes the transverse part, ∇ · E⊥ = 0, while α, β are
Dirac indices. The second relation is an anticommutation relation for the electron
field, reflecting the fact that it is a Fermion.

However, when people tried to calculate using this theory, assuming an expansion
in the small parameter called the fine structure constant, α = e2/4π�c = 1/137, all
but the most trivial processes turned out to be divergent. There were some notable
successes during this period, perhaps most important being the Euler-Heisenberg
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Fig. 1 The light-by-light
scattering graph, where the
solid line represents an elec-
tron. The wavy lines represent
photons

Lagrangian that describes exactly the quantum motion of an electron in a constant
background electromagnetic field [5]. Among other processes, this represents the
scattering of light by light, a phenomenon not directly yet observed, although
present as an internal process in the well-tested theory of the anomalous magnetic
moment of the electron. This scattering process can be represented pictorially by
what we would now call a � Feynman diagram, see Fig. 1. Here the loop repre-
sents an electron, as a virtual particle, one that does not satisfy the ordinary balance
between energy and momentum,

E2 �= m2c4 + p2c2.

Thus, it can only propagate for a short distance and for a short period of time.
Oppenheimer and many others struggled with the theory of quantum electrody-

namics, but little progress was made until after the second world war, when using
techniques developed during the war experimentalists established that two predic-
tions of the Dirac theory of the electron were invalid. One was that the 2s1/2 and
2p1/2 states of the hydrogen atom should be degenerate, that is, have equal energy;
the nondegeneracy is called the Lamb shift, after it was conclusively established by
Willis Lamb [6]. The second turned out to be an deviation from the Dirac g-factor
of the electron, its anomalous magnetic moment, unexpectedly discovered by Nafe,
Nelson, and Rabi [7], and by Kusch and Foley [8]. This set the stage for solving the
theory, and in Schwinger’s words, showed that “electrodynamic effects were neither
infinite nor zero, but finite and small, and demanded understanding.”

So after these results were announced at the Shelter Island conference in June
1947, theoretical developments rapidly followed. Based on discussions at the
meeting, Bethe published a nonrelativistic calculation of the Lamb Shift [9]. By De-
cember, Schwinger had a relativistic calculation of this effect (with some incorrect
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details), and most importantly had calculated the anomalous magnetic moment of
the electron [10],

μ = e

2mc
gS,

where S is the spin operator for the electron, and the g-factor, to first order in α, was

g

2
= 1+ α

2π
.

The correction to the Dirac value gD = 2 was in perfect agreement with experi-
ment. A quantitative theory of quantum electrodynamics had been achieved. What
Schwinger had done in this famous 1-page paper was to isolate the infinities that
occurred in the calculations into redefinitions, or � renormalization, of the mass
and charge of the electron.

Feynman rapidly caught up, and based on the propagator methods he had begun
to develop in his Ph.D. thesis at Princeton, derived a pictorial method of calculating
processes in QED. Although initially meeting with disbelief, the method turned out
to be simpler than Schwinger’s earlier methods, and is now the universal formulation
of perturbative quantum field theory: the famous Feynman diagrams [11,12]. Before
Feynman’s papers appeared, Dyson had established that the methods of Schwinger
and Feynman, although appearing so different, were actually mathematically equiv-
alent [13, 14], although Feynman had already demonstrated that equivalence to his
own satisfaction.

The Feynman rules for quantum electrodynamics are exhibited in Fig. 2. The
lines represent the particle propagators, and the vertices interactions. In addition,
for external on-shell lines one must supply an appropriate � wave function: for the
photon a polarization vector eμpλ, and for the electron, a spinor upσ or u∗pσ γ 0. Fur-
thermore, a factor of −1 must be supplied for each closed Fermion loop, reflecting
the statistics of Fermions. By putting these components together in all possible
ways, one arrives at the quantum-mechanical amplitude for a process. Thus, for
example, the � Feynman diagram that corresponds to the famous Schwinger cor-
rection to the magnetic moment of the electron is shown in Fig. 3. By using the

Fig. 2 Feynman rules for
QED

k μ

p1p2

= −ieγμ(2π)4δ(p1 − p2 + k)

= −i
m+γp−iε

= −i
m−γp

m2+p2−iε

p

k = −i
k2−iε
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Fig. 3 Feynman diagram
giving rise to the electric and
magnetic form factors of the
electron in order α

k

p′1p1

p2 p′2

q

above rules the amplitude corresponding to this graph is given by (in momentum
space with k = p1 + p′1 = p2 + p′2)

−e3
∫

d4p2

(2π)4
ψ̄(−p1)γ

μm− γ · p2

m2 + p2
2

γ λAλ(k)
m+ γ · p′2
m2 + p′22

γμ
1

(p1 − p2)2
ψ(−p′1).

A calculation of a few pages yields the result for the g-factor of the electron:

g − 2

2
= α

2π
.

Since 1949, progress in QED has been considerable. A great many processes
have been calculated, and agreement with experiment is spectacular. With the aid
of computers, even the O(α5) corrections to g − 2 have been computed. Last
year [15, 16] a new precision experiment has yielded the most exquisite test of
quantum electrodynamics to date. Because the experiment is more accurate than
other measurements of the fine structure constant α, it can be used to determine that
constant most precisely. The experiment is consistent with the statement that the
electron is a point particle down to an incredible distance of 6× 10−24 m.
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Quantum Entropy

Dominik Janzing

The von Neumann entropy of a quantum system with density operator ρ is given
by [2]

S(ρ) := −tr(ρ logρ). (1)

Let
ρ =

∑
j∈I

pj |ψj 〉〈ψj | (2)

be a decomposition of ρ into mutually orthogonal pure states where I is a countable,
but possibly infinite, index set. Then we obtain

S(ρ) = H(p), (3)

where

H(p) := −
∑
j∈I

pj logpj
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is the Shannon entropy [5] of the probability distribution given by (pj )j∈I . This is
exactly the uncertainty of the measurement results when an observable is measured
that has |ψj 〉〈ψj | as its spectral projections [6]. For an arbitrary non-degenerate
observable with spectral projections |φj 〉〈φj | the probabilities of the measurement
outcomes are given by

qj := 〈φj |ρ|φj 〉 ,
and satisfy H(q) � H(p). Von Neumann entropy is conserved under unitary trans-
formations U since they preserve the eigenvalues. This is in particular true for the
dynamical evolution Ut of a closed physical system [7] induced by its Hamilto-
nian H :

ρt := UtρU
†
t = e−iH tρ eiHt .

However, in many-particle systems with non-trivial interactions, such a formal con-
servation of entropy is only of limited practical relevance. This is because there
may be no feasible non-degenerate measurement for which the uncertainty of
measurement results attains S(ρt ) even though such a measurement may have ex-
isted for the initial state ρ. In a many-particle system, observables with spectral
projectionsUt |ψj 〉〈ψj |U†

t could correspond to an arbitrarily complex measurement
procedure. This can happen, for instance, if the dynamics Ut creates sophisticated
quantum correlations between the particles (� correlations in quantum mechanics).
For every feasible measurement the system then would behave like a system with
higher entropy and we observe entropy increase on the phenomenological level.

Apart from such a “practical view”, it has been argued that complexity aspects
are also relevant from the fundamental point of view: Zurek [3] defines the physical
entropy of a classical system as the sum of the Shannon entropy (formalizing the
missing knowledge about the state) and the algorithmic information content (algo-
rithmic randomness, i.e. the Kolmogorov complexity) present in the available data
about the system. Mora et al. [4] describes a quantum generalization of Kolmogorov
complexity and discusses also its thermodynamical relevance.

The interpretation of von Neumann entropy deserves further attention. Equations
(2) and (3) may, at first glance, suggest the interpretation that one of the pure states
|ψj 〉 is present and S(ρ) quantifies the missing knowledge about which one is the
true one. However, this ignores first that the decomposition of ρ into pure states is in
general not unique and, second, that ρ can also be the state of a subsystem of a pure
entangled state (� entropy of entanglement). The scenario below shows that S(ρ)
has nevertheless an information theoretic meaning in the sense that it quantifies the
resources required to transmit a quantum state in the same way as Shannon entropy
quantifies the resources required to transmit a classical message.

To sketch this analogy, we assume a sender uses k different symbols 1, . . . , k to
transmit a classical message. If the symbol j is chosen with probability pj and the
total message consists of n symbols we expect that the number nj of occurrences of
j satisfy for large n

nj

n
≈ pj i.e.

∑
j

nj

n
log

nj

n
≈
∑
j

pj logpj . (4)
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Using a precise version of (4), right, coding theory (see [5] for details) defines the
set of typical sequences and shows that the numbers N(n) of such sequences satisfy

1

n
logN(n)→ H(p) . (5)

The definition of typical sequences is chosen such that the probability for obtaining
an untypical one tends to zero for n→∞. In this limit, the same message can thus
be encoded into H(p) bits per symbol (provided that all logarithms are defined
with respect to the basis 2). One can also show that H(p) bits per copy are really
necessary.

Now we consider a scenario where the sender transmits the quantum state |ψj 〉
with probability pj . A message of length n is then given by a quantum state

|ψ〉 := |ψj1〉 ⊗ |ψj2〉 ⊗ · · · ⊗ |ψjn〉 .
If all states |ψj 〉 are mutually orthogonal, the above arguments suggest that we can
restrict the attention to typical states |ψ〉, i.e. those whose numbers nj of occur-
rences of the states |ψj 〉 satisfy condition (4), right. They span a � Hilbert space of
dimension N(n) satisfying again the asymptotical condition (5).

However, the more interesting case is when the sender uses non-orthogonal sig-
nal states. From the point of view of an observer who does not know which one of
the states |ψj 〉 has been chosen, the sender emits the density operator

ρ =
k∑

j=1

pj |ψj 〉〈ψj |.

The density operator for n signal states is then given by

ρ⊗n.

Let ρ = ∑k
i=1 qi |φi〉〈φi | be a decomposition of ρ into mutually orthogonal states.

Even though the pure states |φj 〉 do not have any direct intuitive meaning since this
set can be completely disjoint from the set of signal states, it turns out that they
are useful for an mathematical analysis of the resource requirements: The density
operator ρ⊗n can be written as a mixture of states of the form

|φ〉 = |φi1〉 ⊗ |φi2〉 ⊗ · · · ⊗ |φin〉.
In analogy to the arguments above, we consider only those states φ for which the
sequence of indices is typical. They span a subspace whose dimensionsN(n) satisfy
the asymptotical condition (5) with H(q) instead of H(p).

This shows that the number of quantum bits required per copy is asymptoti-
cally given by H(q) = S(ρ) and not by H(p). In other words, the entropy of the
probability measure determining the choice of the signal states is not relevant. In-
stead, the quantum entropy of the corresponding mixture determines the required
resources [1] even though the eigenstates of the mixture do not have any direct
physical interpretation.
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Quantum Eraser

Basil James Hiley

To understand the notion of a quantum eraser we need first to consider the inter-
ference produced when light falls on a pair of slits. As long as we think of light
as being a wave phenomenon, there is no problem in understanding how the phase
difference between the wave arriving at a point on the screen from one slit and the
wave arriving from the second slit gives rise to the interference effects.

The problem arises when we learn that the wave consists of photons (� light
quantum), a problem that becomes more acute when the incident beam consists only
of a few photons arriving per second. If the photon is a localised packet of energy
then the question as to which slit the photon passed through becomes inevitable.
This question becomes even more pertinent when one realises that particles like� electrons, neutrons and even atoms produce exactly the same interference patterns
using pairs of slits of the appropriate size.

The obvious way to explore this situation further is to see if we can set up some
form of experiment to find through which slit each particle actually passes. In this
way we might be able to understand how the interference pattern arises. Unfortu-
nately what we find is that for all experiments that give a definite answer for each
particle, the interference pattern disappears. This means that once we know which
way the particle goes, we lose the interference pattern. Alternatively if we have no
means of knowing which way the particles go, then we get a sharp interference
pattern. This phenomenon is known as � ‘wave-particle’ duality.

One of the earlier ways of explaining the loss of interference was to argue that
any attempt to determine which way the particle went would induce a series of
random phase changes in the beam. These phase changes arise because in order to
‘see’ where the particle is, some form of scattering would have to be used. It is this
scattering that produces the random phase changes which would clearly destroy the
interference pattern [1].
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Fig. 1 Two-slits with cavity in place

This explanation underwent a radical reappraisal when it was discovered that it
was possible to store which-way information in a microwave cavity without induc-
ing any random phases into a beam of atoms. (� which-way experiments) Thus,
rather than subjecting the atoms to a scattering process, they are simply allowed to
give up any internal excitation energy to the microwave cavity through which they
pass. This process does not produce any phase change to the centre of mass � wave
function. Will we see any interference effects in this case? The answer is ‘no’. [2].

This new experimental arrangement allowed for a new possibility. Would it be
possible to erase the which-way information? If this is possible, would we then
recover interference? Scully and Drühl [3] were the first to show that it should in-
deed be possible to recover interference effects. The principle is as follows: suppose
a pair of microwave cavities are placed in front of the two-slit system as shown in
the figure. As an excited atom passes through one of the cavities it will give up its
internal energy leaving the cavity in an excited state. If we now repeat this for many
atoms we will potentially know through which slit each atom has passed. The result
of such an experiment shows that there are no interference fringes.

Suppose now we want to ‘erase’ the which-way information. We can do this
by removing the common wall of the microwave cavities and inserting a radiation
detector as shown in the figure. The function of this detector is to become excited
when the cavity state is a symmetric combination of the two individual cavity fields,
and becomes de-excited when this combination is anti-symmetric. In both cases the
which-way information is lost.

Let us repeat the first experiment, recording the arrival position of each atom on
the screen. Now at any time after noting the atom’s final position, we can remove the
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common wall of the cavities and insert the radiation field detector. Once the detec-
tor responds, we lose the which-way information for that particular atom. We note
whether the cavity detector is excited or de-excited in each case. By repeating this
procedure we can produce two ensembles of atoms, one corresponding to the po-
sitions of the atoms arriving at the screen when the cavity detector is found to be
excited and the other corresponding to those positions where the cavity detector is
in its de-excited state.

We find each of these � ensembles exhibit interference fringes, the maxima of
one set corresponding to the minima of the other set. In other words by erasing the
which-way information we have regained the interference. Furthermore if we super-
impose these two patterns, we find the fringes exactly ‘cancel’ each other, producing
a uniform distribution with no evidence of interference. A clear illustration of these
effects has been brought out using the Bohm model [4].

This example illustrates a general principle that when which-way data is known,
interference disappears, but as the which-way data becomes unavailable, interfer-
ence appears. It is the process of the destruction of this which-way information that
is referred to as the ‘quantum erasure’.

In this brief account, we have only discussed the two-slit experiment, but the
principle applies to any system that offers binary alternatives such as the Stern–
Gerlach magnet (� Stern–Gerlach experiment), polarised light, the Mach-Zehnder
interferometer (� Consistent Histories) and so on. A more detailed discussion of
these other examples, together with a detailed quantitative account of this type of
experiment can be found in Englert and Bergou [5]. In this paper the practical use
of the eraser to maximise fringe visibility, is discussed.

We conclude this discussion with a final word of warning about the meaning of
the words ‘eraser’ and ‘delayed choice’ which have been misunderstood. The situ-
ation has not been helped by statements like ‘the past is undefined and undefinable
without the observation [in the present]’ [7]. These words, ambiguous at best, have
sometimes been mistakenly taken to mean that somehow the past dynamical be-
haviour of the atoms can be affected by what we decide to do at some later time.
This is not the case. Bohr [6] himself makes this very clear. He stresses that when
we come to interpret experimental results predicted by the quantum formalism “it is
essential that the whole experimental arrangement be taken into account”.

In the cases we have discussed above, we have two distinct experimental arrange-
ments: (1) the arrival of atoms with two distinct separate cavities in place and (2) the
arrival of atoms with one large cavity containing a radiation field detector. The fact
that we can remove the common wall cavities and insert a field detector in the first
experiment at a later time still means we have two distinct experiments. The word
‘eraser’ arises simply because we have changed the experimental conditions, the
change, of course can be ‘delayed’ indefinitely provided the cavity modes remain
stable. There is no question of the dynamics of the atoms being changed as a result
of any delay in changing the experimental conditions.
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Quantum Field Theory

Frank Wilczek

Quantum field theory is the application of quantum mechanics to systems whose
degrees of freedom depend continuously on space and time. In the quantum me-
chanics of a point particle, states are specified by � wave function ψ(x), which
gives the probability amplitude to find the particle at the position x. In quantum
field theory, states are specified by a wave function �(φ(x)) which specifies the
probability amplitude for the field φ to be in the configuration φ(x).

Quantum field theory was first developed to enable the application of quan-
tum mechanics to theories that obey the special theory of relativity, specifically
Maxwell’s electrodynamics and Dirac’s electron theory. Relativistic theories of in-
teracting point particles are awkward to construct. The limiting speed of propagation
c means that the influence felt by a given particle due to a second particle depends
on where that second particle was in the past. Thus to evolve the state of set of par-
ticles, it is not sufficient to know their present positions. Fields avoid this difficulty,
because the state of the field reflects the propagating influences as they propagate.

Quantum field theory is the framework in which the regnant theories of the elec-
troweak and strong interactions, which together form the Standard Model � particle
physics, are formulated. � Quantum Electrodynamics (QED), besides providing a
complete foundation for atomic physics and chemistry, has supported calculations of
physical quantities with unparalleled precision. The experimentally measured value
of the magnetic dipole moment of the muon,

(gμ − 2)exp. = 233 184 600 (1680)× 10−11, (1)
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for example, should be compared with the theoretical prediction

(gμ − 2)theor. = 233 183 478 (308)× 10−11. (2)

In � Quantum Chromodynamics (QCD) we cannot, for the foreseeable future,
aspire to comparable accuracy. Yet QCD provides different, and at least equally im-
pressive, evidence for the validity of the basic principles of quantum field theory.
Indeed, because in QCD the interactions are stronger, QCD manifests a wider vari-
ety of phenomena characteristic of quantum field theory. These include especially
running of the effective coupling with distance or energy scale and the phenomenon
of confinement. QCD has supported, and rewarded with experimental confirmation,
both heroic calculations of multiloop diagrams and massive numerical simulations
of (a discretized version of) the complete theory.

The techniques of quantum field theory have also proved fruitful for describing
the dynamics of many interacting particles, in the same spirit that hydrodynamics
emerges as a fruitful description of systems of many interacting atoms. Impres-
sive applications include � superconductivity, the low-temperature behavior of the
quantum liquids He3 and He4, and the theory of second-order phase transitions.
Although for reasons of space and focus I will not attempt to do justice to this as-
pect here, the continuing interchange of ideas between condensed matter and high
energy theory, through the medium of quantum field theory, is a remarkable phe-
nomenon in itself. A partial list of historically important examples includes global
and local spontaneous symmetry breaking, the � renormalization group, effective
field theory, � solitons, instantons, and fractional charge and statistics.

Quantum Field Theory and Reality

What are the essential features of quantum field theory?
This question has no sharp answer. Theoretical physicists are very flexible in

adapting their tools, and no axiomization can keep up with them. However I think
it is fair to say that there are two characteristic, core ideas of quantum field theory.
First: The basic dynamical degrees of freedom are operator functions of space and
time – quantum fields, that obey appropriate commutation relations. Second: The
interactions of these fields are local in space and time. Thus the equations of mo-
tion and commutation relations governing the evolution of a given quantum field at
a given point in space-time should depend only on the behavior of fields and their
derivatives at that point. One might find it convenient to use other variables, whose
equations are not local, but in the spirit of quantum field theory there must always
be some underlying fundamental, local variables. These ideas, combined with pos-
tulates of � symmetry (e.g., in the context of the standard model, Lorentz and gauge
invariance) turn out to be amazingly powerful, as will emerge the discussion below.

The field concept came to dominate physics starting with the work of Faraday
in the mid-nineteenth century. Its conceptual advantage over the earlier Newtonian
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program of physics, to formulate the fundamental laws in terms of forces among
atomic particles, emerges when we take into account the circumstance, unknown
to Newton (or, for that matter, Faraday) but fundamental in special relativity, that
influences travel no faster than a finite limiting speed. For then the force on a given
particle at a given time cannot be deduced from the positions of other particles at that
time, but must be deduced in a complicated way from their previous positions. Fara-
day’s intuition that the fundamental laws of electromagnetism could be expressed
most simply in terms of fields filling space and time was of course brilliantly vindi-
cated by Maxwell’s mathematical theory.

The concept of � locality, in the crude form that one can predict the behavior of
nearby objects without reference to distant ones, is basic to scientific practice. Prac-
tical experimenters – if not astrologers – confidently expect, on the basis of much
successful experience, that after reasonable (generally quite modest) precautions to
isolate their experiments from the environment they will obtain reproducible results.

The deep and ancient historic roots of the field and locality concepts provide
no guarantee that these concepts remain relevant or valid when extrapolated far
beyond their origins in experience, into the subatomic and quantum domain. This
extrapolation must be judged by its fruits. That brings us, naturally, to a second
question:

What does quantum field theory add to our understanding of the world, that was
not already present in quantum mechanics and classical field theory separately?

Undoubtedly the single most profound fact about Nature that quantum field the-
ory uniquely explains is the existence of different, yet indistinguishable, copies of
elementary particles. Two � electrons anywhere in the Universe, whatever their
origin or history, are observed to have exactly the same properties. We understand
this as a consequence of the fact that both are excitations of the same primary reality,
the electron field. The same logic, of course, applies to photons (� light quantum)
or quarks (see � Color Charge Degree of Freedom in Particle Physics; Mixing and
Oscillations of Particles; Particle Physics; Parton Model; QCD); or even to compos-
ite objects such as atomic nuclei, atoms, or molecules. The indistinguishability of
particles is so familiar, and so fundamental to all of modern physical science, that
we could easily take it for granted. Yet it is by no means obvious. For example, it
directly contradicts one of the pillars of Leibniz’ metaphysics, his “principle of the
identity of indiscernables,” according to which two objects cannot differ solely in
number. Maxwell thought the similarity of different molecules so remarkable that
he devoted the last part of his Encyclopedia Brittanica entry on Atoms – well over
a thousand words – to discussing it. He concluded that “the formation of a molecule
is therefore an event not belonging to that order of nature in which we live ... it must
be referred to the epoch, not of the formation of the earth or the solar system ... but
of the establishment of the existing order of nature ...”.

The existence of classes of indistinguishable particles is the necessary logical
prerequisite to a second profound insight from quantum field theory: the assign-
ment of unique quantum statistics to each class. Given the � indistinguishability of
a class of elementary particles, and complete invariance of their interactions under
interchange, the general principles of quantum mechanics teach us that solutions
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forming any representation of the permutation symmetry group retain that property
in time; but they do not constrain which representations are realized. Quantum field
theory not only explains the existence of indistinguishable particles and the invari-
ance of their interactions under interchange, but also constrains the symmetry of the
solutions. For bosons only the identity representation is physical (symmetric wave
functions), for fermions only the one-dimensional odd representation is physical
(antisymmetric wave functions). One also has the � spin statistics theorem, accord-
ing to which objects with integer spin are bosons, whereas objects with half odd
integer � spin are fermions. Of course, these general predictions have been verified
in many experiments. The fermion character of electrons, in particular, underlies the
stability of matter and the structure of the periodic table.

A third profound general insight from quantum field theory is the existence of
antiparticles. This was first inferred by Dirac on the basis of a brilliant but obso-
lete interpretation of his equation for the electron field, whose elucidation was a
crucial step in the formulation of quantum field theory. In quantum field theory, we
reinterpret the Dirac wave function as a position (and time) dependent operator. It
can be expanded in terms of the solutions of the � Dirac equation, with operator
coefficients. The coefficients of positive-energy solutions are operators that destroy
electrons, and the coefficients of the negative-energy solutions are operators that
create positrons (with positive energy). With this interpretation, an improved ver-
sion of Dirac’s hole theory emerges in a straightforward way. (Unlike the original
hole theory, it has a sensible generalization to bosons, and to processes where the
number of electrons minus positrons changes.) A very general consequence of quan-
tum field theory, valid in the presence of arbitrarily complicated interactions, is the� CPT theorem. It states that the product of charge conjugation, � parity, and time
reversal is always a symmetry of the world, although each may be – and is! – vi-
olated separately. Antiparticles are strictly defined as the CPT conjugates of their
corresponding particles.

The three outstanding facts we have discussed so far: the existence of indistin-
guishable particles, the phenomenon of � quantum statistics, and the existence of
antiparticles, are all essentially consequences of free quantum field theory. When
one incorporates interactions into quantum field theory, two other profound features
of the physical reality get brightly illuminated.

The first of these is the ubiquity of particle creation and destruction processes.
Local interactions involve products of field operators at a point. When the fields are
expanded into � creation and annihilation operators multiplying modes, we see that
such interactions correspond to processes wherein particles can be created, annihi-
lated, or changed into different kinds of particles.

This possibility arose, of course, arose in the primeval quantum field theory,
quantum electrodynamics, where the primary interaction arises from a product of the
electron field, its Hermitean conjugate, and the photon field. Processes of radiation
and absorption of photons by electrons (or positrons), as well as electron–positron
pair creation, are encoded in that product. But because the emission and absorption
of light is such a common experience, and electrodynamics is such a special and
familiar classical field theory, this correspondence between formalism and reality
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initially did not make a big impression. The first conscious exploitation of quantum
field theory’s potential to describe processes of transformation was Fermi’s the-
ory of beta decay. He turned the procedure around, by inferring from the observed
processes of particle transformation the nature of the underlying local interaction
of fields. Fermi’s theory involved creation and annihilation not of photons, but of
atomic nuclei and electrons (as well as neutrinos) – the traditional ingredients of
“matter.” It began the process whereby classic atomism, involving stable individual
objects, was replaced by a more sophisticated and accurate picture. In this picture
it is only the fields, and not the individual objects they create and destroy, that are
permanent.

The second is the association of forces and interactions with particle exchange.
When Maxwell completed the equations of electrodynamics, he found that they sup-
ported source-free electromagnetic waves. Thus the classical electric and magnetic
fields took on a life of their own. Electric and magnetic forces between charged
particles are explained as due to one particle acting as a source for electric and mag-
netic fields, which then influence other charged particles. Given that particles arise
as excitations of quantum fields, Maxwell’s discovery corresponds to the existence
of real photons, while the mediation of forces through fields corresponds to the ex-
change of virtual photons.

This logic applies generally. Thus the connection between interactions and the
exchange of particles is a general feature of quantum field theory. It was used by
Yukawa to infer the existence and mass of pions from the range of nuclear forces, in
electroweak theory to infer the existence, mass, and properties of W and Z bosons
prior to their observation, and in QCD to infer the existence and properties of gluon
jets prior to their observation.

The two additional outstanding facts we just discussed: the possibility of particle
creation and destruction, and the association of particles with forces, are essentially
consequences of classical field theory supplemented by the connection between
particles and fields we learn from free field theory. Indeed, classical waves with
nonlinear interactions will change form, scatter, and radiate, and these processes
exactly mirror the transformation, interaction, and creation of particles. In quantum
field theory, they are properties one sees already in tree graphs.

The foregoing major consequences of free quantum field theory, and of its for-
mal extension to include nonlinear interactions, were all well appreciated by the late
1930s. The deeper properties of quantum field theory, which will form the subject
of the remainder of this paper, arise from the need to introduce infinitely many de-
grees of freedom, and the possibility that all these degrees of freedom are excited as
quantum-mechanical fluctuations. From a mathematical point of view, these deeper
properties arise when we consider loop graphs.

From a physical point of view, the potential pitfalls associated with the existence
of an infinite number of degrees of freedom first showed up in connection with the
problem which led to the birth of quantum theory, that is the ultraviolet catastro-
phe of blackbody radiation theory. Somewhat ironically, in view of later history,
in that context the crucial contribution of the quantum theory was to remove the
disastrous consequences of the infinite number of degrees of freedom possessed
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by classical electrodynamics. The classical electrodynamic field can be decom-
posed into independent oscillators with arbitrarily high values of the wavevector.
According to the equipartition theorem of classical statistical mechanics, in ther-
mal equilibrium at temperature T each of these oscillators should have average
energy kT . Quantum mechanics alters this situation by insisting that the oscilla-
tors of frequency ω have energy quantized in units of �ω. Then the high-frequency
modes are exponentially suppressed by the Boltzmann factor, and instead of kT re-
ceive [�ω exp(−�ω/kT )]/[1 − exp(−�ω/kT )]. The role of the quantum, then, is
to prevent accumulation of energy in the form of very small amplitude excitations
of arbitrarily high frequency modes. It is very effective in suppressing the thermal
excitation of high-frequency modes.

But while removing arbitrarily small amplitude excitations, quantum theory
introduces the idea that the modes are always intrinsically excited to a small extent,
proportional to �. This so-called zero point motion is a consequence of the uncer-
tainty principle. For a harmonic oscillator of frequencyω, the ground state energy is
not zero, but 1

2 �ω. In the case of the electromagnetic field this leads, upon summing
over its high-frequency modes, to a highly divergent total ground state energy. For
most physical purposes the absolute normalization of energy is unimportant, and so
this particular divergence does not necessarily render the theory useless.1 It does,
however, illustrate the dangerous character of the high-frequency modes, and its
treatment gives a first indication of the leading theme of renormalization theory: we
can only require – and generally will only obtain – sensible, finite answers when we
ask questions that have direct, operational physical meaning.

The existence of an infinite number of degrees of freedom was first encoun-
tered in the theory of the electromagnetic field, but it is a general phenomenon,
deeply connected with the requirement of locality in the interactions of fields. For
in order to construct the local field ψ(x) at a space-time point x, one must take a
superposition

ψ(x) =
∫

d4k

(2π)4
eikxψ̃(k) (3)

that includes field components ψ̃(k) extending to arbitrarily large momenta. More-
over in a generic interaction

∫
L =

∫
ψ(x)3 =

∫
d4k1

(2π)4

d4k2

(2π)4

d4k3

(2π)4
ψ̃(k1)ψ̃(k2)ψ̃(k3)(2π)4δ4(k1 + k2 + k3)

(4)
we see that a low momentum mode k1 ≈ 0 will couple without any suppression
factor to high-momentum modes k2 and k3 ≈ −k2. In this sense, local couplings
are “hard.” Because locality requires the existence of infinitely many degrees of

1 One would think that gravity should care about the absolute normalization of energy. The zero-
point energy of the electromagnetic field, in that context, generates an infinite cosmological
constant. This might be canceled by similar negative contributions from fermion fields, as occurs
in supersymmetric theories, or it might indicate the need for some other profound modification of
physical theory.
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freedom at large momenta, with hard interactions, ultraviolet divergences similar to
the ones cured by Planck, but driven by quantum rather than thermal fluctuations,
are never far off stage. The deeper physical consequences of quantum field theory
arise from this circumstance.

First of all, it is much more difficult to construct nontrivial examples of inter-
acting relativistic quantum field theories than purely formal considerations would
suggest. One finds that consistent quantum field theories form a quite limited class,
whose extent depends sensitively on the dimension of space-time and the spins of
the particles involved. Their construction is quite delicate, requiring limiting pro-
cedures whose logical implementation leads directly to renormalization theory, the
running of couplings, and asymptotic freedom. � Color Charge Degree of Freedom
in Particles Physics; QCD.

Secondly, even those quantum theories that can be constructed display less
symmetry than their formal properties would suggest. Violations of naive scaling
relations – that is, ordinary dimensional analysis – in QCD, and of baryon num-
ber conservation in the standard electroweak model are examples of this general
phenomenon. The original example, unfortunately too complicated to explain fully
here, involved the decay process πo → γ γ , for which chiral symmetry (treated
classically) predicts much too small a rate. When the correction introduced by quan-
tum field theory (the so-called ‘anomaly’) is retained, excellent agreement with
experiment results.

These deeper consequences of quantum field theory, which superficially might
appear rather technical, largely dictate the structure and behavior of the so-called
standard model – and, therefore, of the physical world.

Formulation

The physical constants � and c are so deeply embedded in the formulation of rel-
ativistic quantum field theory that it is standard practice to declare them to be the
units of action and velocity, respectively. In these units, of course, � = c = 1. With
this convention, all physical quantities of interest have units which are powers of
mass. Thus the dimension of momentum is (mass)1 or simply 1, since mass×c is a
momentum, and the dimension of length is (mass)−1 or simply -1, since �c/mass is
a length. The usual way to construct quantum field theories is by applying the rules
of � quantization to a continuum field theory, following the canonical procedure of
replacing Poisson brackets by commutators (or, for fermionic fields, anticommuta-
tors). The field theories that describe free spin 0 or free spin 1

2 fields of mass m,μ

respectively are based on the Lagrangian densities

L0(x) = 1

2
∂αφ(x)∂

αφ(x)− m2

2
φ(x)2 (5)

L 1
2
(x) = ψ̄(x)(iγ α∂α − μ)ψ(x). (6)
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Since the action
∫

d4xL has mass dimension 0, the mass dimension of a scalar
field like φ is 1 and of a spinor field like ψ is 3

2 . For free spin 1 fields the Lagrangian
density is that of Maxwell,

L1(x) = −1

4
(∂αAβ(x)− ∂βAα(x))(∂

αAβ(x)− ∂βAα(x)), (7)

so that the mass dimension of the vector field A is 1. The same result is true for
nonabelian vector fields (Yang-Mills fields).

Thus far all our Lagrangian densities have been quadratic in the fields. Local in-
teraction terms are obtained from Lagrangian densities involving products of fields
and their derivatives at a point. The coefficient of such a term is a coupling constant,
and must have the appropriate mass dimension so that the Lagrangian density has
mass dimension 4. Thus the mass dimension of a Yukawa coupling y, which mul-
tiplies the product of two spinor fields and a scalar field, is zero. Gauge couplings
g arising in the minimal coupling procedure ∂α → ∂α + igAα are also evidently of
mass dimension zero.

The possibilities for couplings with nonnegative mass dimension are very re-
stricted. This fact is quite important, for the following reason. Consider the effect
of treating a given interaction term as a perturbation. If the coupling κ associated to
this interaction has negative mass dimension −p, then successive powers of it will
occur in the form of powers of κ&p, where & is some parameter with dimensions of
mass. Because, as we have seen, the interactions in a local field theory are hard, we
can anticipate that & will characterize the largest mass scale we allow to occur (the
cutoff), and will diverge to infinity as the limit on this mass scale is removed. So
we expect that it will be difficult to make sense of fundamental interactions having
negative mass dimensions, at least in perturbation theory. Such interactions are said
to be nonrenormalizable.

The standard model is formulated entirely using renormalizable interactions. If
nonrenormalizable interactions occur in an effective description of physical behav-
ior below a certain mass scale, then the theory must change its nature – presumably
by displaying new degrees of freedom – at some larger mass scale. The fact that
the standard model contains only renormalizable operators signifies that it does not
require modification up to arbitrarily high scales (at least on the grounds of diver-
gences in perturbation theory).

Moreover, all the renormalizable interactions consistent with the gauge symme-
try and multiplet structure of the standard model do seem to occur – “what is not
forbidden, is mandatory”. There is a beautiful agreement between the symmetries
of the standard model, allowing arbitrary renormalizable interactions, and the sym-
metries of the world. One understands, for example, why strangeness is violated
but baryon number is not. (The only discordant element is the so-called θ term of
QCD, which is allowed by the symmetries of the standard model but is measured
to be quite accurately zero. A plausible solution to this problem exists. It involves a
characteristic very light axion field.)
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The power counting rules for estimating divergences assume that there are no
special symmetries canceling off the contribution of high energy modes. They do
not apply, without further consideration, to antisymmetric theories, in which the
contributions of boson and fermionic modes cancels, nor to theories derived from
supersymmetric theories by soft supersymmetry breaking. In the latter case the scale
of supersymmetry breaking plays the role of the cutoff &.

The power counting rules, as discussed so far, are too crude to detect divergences
of the form ln&2. Yet divergences of this form are pervasive and extremely signifi-
cant, as we shall now discuss.

Running Couplings

The problem of calculating the energy associated with a constant magnetic field, in
the more general context of an arbitrary nonabelian gauge theory coupled to spin 0
and spin 1

2 charged particles, provides an excellent concrete illustration of how the
infinities of quantum field theory arise, and of how they are dealt with. It introduces
the concept of running couplings in a natural way, and leads directly to qualitative
and quantitative results of great significance for physics. The interactions of concern
to us appear in the Lagrangian density

L = − 1

4g2
GI

αβG
Iαβ + ψ̄(iγ νDν − μ)ψ+ φ†(−DνD

ν −m2)φ (8)

where GI
αβ ≡ ∂αA

I
β − ∂βA

I
α − f IJKAJ

αA
K
β and Dν ≡ ∂ν + iAI

νT
I are the standard

field strengths and covariant derivative, respectively. Here the f IJK are the structure
constants of the gauge group, and the T I are the representation matrices appropriate
to the field on which the covariant derivative acts. This Lagrangian differs from
the usual one by a rescaling gA → A, which serves to emphasize that the gauge
coupling g occurs only as a prefactor in the first term. It parameterizes the energetic
cost of nontrivial gauge curvature, or in other words the stiffness of the gauge fields.
Small g corresponds to gauge fields that are difficult to excite.

From this Lagrangian it would appear that the energy required to set up a mag-
netic field BI is just 1

2g2 (B
I )2. That is the classical energy, but in the quantum

theory it is not the whole story. A more accurate calculation must include the effect
of the imposed magnetic field on the � zero-point energy of the charged fields. Ear-
lier, we met and briefly discussed a formally infinite contribution to the energy of
the ground state of a quantum field theory (specifically, the electromagnetic field)
due to the irreducible quantum fluctuations of its modes, which mapped to an in-
finite number of independent harmonic oscillators. Insofar as only differences in
energy are physically significant, we could ignore that infinity. But the change in
the zero-point energy in response to a magnetic field is reflected in the work it takes
to impose the field, and is a measurable effect.
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Postponing momentarily the derivation, let me anticipate the form of the an-
swer, and discuss its interpretation. Without loss of generality, I will suppose that
the magnetic field is aligned along a normalized, diagonal generator of the gauge
group. This allows us to drop the index, and to use terminology and intuition from
electrodynamics freely. If we restrict the sum to modes whose energy is less than a
cutoff &, we find for the energy

E(B) = E + δE = 1

2g2(&2)
B2 − 1

2
ηB2(ln(&2/B)+ finite) (9)

where

η = 1

96π2 [−(T (Ro)−2T (R 1
2
)+2T (R1))]+ 1

96π2 [3(−2T (R 1
2
)+8T (R1))], (10)

and the terms not displayed are finite as & → ∞. The notation g2(&2) has been
introduced for later convenience. The factor T (Rs) is the trace of the representation
for spin s, and basically represents the sum of the squares of the charges for the
particles of that spin. The denominator in the logarithm is fixed by dimensional
analysis, assuming B % μ2,m2.

The most striking, and at first sight disturbing, aspect of this calculation is that
a cutoff is necessary in order to obtain a finite result. If we are not to introduce a
new fundamental scale and compromise locality, we must remove reference to the
arbitrary cutoff & from our description of physically meaningful quantities. This
is the challenge addressed by the renormalization program. Its guiding idea is the
thought that if we are working with experimental probes characterized by energy
and momentum scales well below &, we should expect that our capacity to affect,
or be sensitive to, the modes of much higher energy will be quite restricted. Thus
one expects that when attention is restricted to low energy-momentum processes, all
explicit reference to the cutoff & can be removed.

In our magnetic energy example, for instance, we see immediately that the dif-
ference in susceptibilities

E(B1)/B
2
1 − E(B0)/B

2
0 = finite (11)

is independent of & as &→∞. Thus once we measure the susceptibility, or equiv-
alently the coupling constant, at one reference value of B, the calculation gives
sensible, unambiguous predictions for all other values of B.

This simple example illustrates a much more general result, the central result of
the classic renormalization program. It goes as follows. A small number of quan-
tities, corresponding to the couplings and masses in the original Lagrangian, that
if calculated formally would diverge or depend on the cutoff, are chosen to fit ex-
periment. They define the physical, as opposed to the original, or “bare,” couplings.
Thus, in our example, we can define the susceptibility to be 1

2g2(B0)
at some refer-

ence field B0. Then we have the physical or renormalized coupling
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1

g2(B0)
= 1

g2(&2)
− η ln(&2/B0). (12)

(In this equation I have ignored, for simplicity in exposition, the finite terms. These
are relatively negligible for large B0. Also, there are corrections of higher order in
g2.) This of course determines the “bare” coupling to be

1

g2(&2)
= 1

g2(B0)
+ η ln(&2/B0). (13)

In these terms, the central result of perturbative renormalization theory is that
after bare couplings and masses are reexpressed in terms of their physical, renor-
malized counterparts, the coefficients in the perturbation expansion of any physical
quantity approach finite limits, independent of the cutoff, as the cutoff is taken
to infinity. (To be perfectly accurate, one must also perform wave-function renor-
malization. This is no different in principle; it amounts to expressing the bare
coefficients of the kinetic terms in the Lagrangian in terms of renormalized val-
ues.) The question whether this perturbation theory converges, or is some sort of
asymptotic expansion of a soundly defined theory, is a separate issue. This loophole
is no mere technicality, as we will soon see.

Picking a scale B0 at which the coupling is defined is analogous to choosing
the origin of a coordinate system in geometry. One can describe the same physics
using different choices of normalization scale, so long as one adjusts the coupling
appropriately. We capture this idea by introducing the concept of a running coupling
defined, in accordance with (12), to satisfy

d

d lnB

1

g2(B)
= η. (14)

With this definition, the choice of a particular scale at which to define the coupling
will not affect the final result.

It is profoundly important, however, that the running coupling does make a
real distinction between the behavior at different mass scales, even if the original
underlying theory was formally scale invariant (as is QCD with massless quarks),
and even at mass scales much larger than the mass of any particle in the theory.

The distinction among scales, in a formally scale-invariant theory, embodies
the phenomenon of dimensional transmutation. Rather than a range of theories,
parametrized by a dimensionless coupling, we have a range of theories differing
only in the value of a dimensional parameter, say (for example) the value of B at
which 1/g2(B) = 1.

Clearly, the qualitative behavior of solutions of (14) depends on the sign of η.
If η > 0, the coupling g2(B) will get smaller as B grows, or in other words as we
treat more and more modes as dynamical, and approach closer to the bare charge.
These modes were enhancing, or antiscreening the bare charge. This is the case of
asymptotic freedom.
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In asymptotically free theories, we can complete the renormalization program in
a convincing fashion. There is no barrier to including the effect of very large energy
modes, and removing the cutoff. We can confidently expect, then, that the theory is
well-defined, independent of perturbation theory. In particular, suppose the theory
has been discretized on a space-time lattice. This amounts to excluding the modes
of high energy and momentum. In an asymptotically free theory one can compen-
sate for these modes by adjusting the coupling in a well-defined, controlled way as
one shrinks the discretization scale. Very impressive nonperturbative calculations in
QCD, involving massive computer simulations, have exploited this strategy. They
demonstrate the complete consistency of the theory and its ability to account quan-
titatively for the masses of hadrons.

In a nonasymptotically free theory the coupling does not become small, there is
no simple foolproof way to compensate for the missing modes, and the existence of
an underlying limiting theory becomes doubtful.

Now let us discuss how η can be calculated. The two terms in (10) correspond
to two distinct physical effects. The first is the convective, diamagnetic (screening)
term. The overall constant is a little tricky to calculate, and I do not have space to do
it here. Its general form, however, is transparent. The effect is independent of spin,
and so it simply counts the number of components (one for scalar particles, two
for spin-1/2 or massless spin-1, both with two helicities). It is screening for bosons,
while for fermions there is a sign flip, because the zero-point energy is negative for
fermionic oscillators.

The second is the paramagnetic spin susceptibility. For a massless particle with
spin s and gyromagnetic ratio gm the energies shift, giving rise to the altered zero-
point energy

�E =
∫ E=&

0

d3k

(2π)3

1

2
(

√
k2 + gmsB +

√
k2 − gmsB − 2

√
k2). (15)

This is readily calculated as

�E = −B2(gms)
2 1

32π2
ln(

&2

B
). (16)

With gm = 2, s = 1 (and T = 1) this is the spin-1 contribution, and with gm = 2,
s = 1

2 , after a sign flip, it is the spin- 1
2 contribution. The preferred moment gm = 2

is a direct consequence of the Yang-Mills and Dirac equations, respectively.
This elementary calculation gives us a nice heuristic understanding of the un-

usual antiscreening behavior of nonabelian gauge theories. It is due to the large
paramagnetic response of charged vector fields. Because we are interested in very
high energy modes, the usual intuition that charge will be screened, which is based
on the electric response of heavy particles, does not apply. Magnetic interactions,
which can be attractive for like charges (paramagnetism) are, for highly relativistic
particles, in no way suppressed. Indeed, they dominate numerically.
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Though I have presented it in the very specific context of vacuum magnetic
susceptibility, the concept of running coupling is much more widely applicable.
The basic heuristic idea is that in analyzing processes whose characteristic energy-
momentum scale (squared) is Q2, it is appropriate to use the running coupling at
Q2, i.e., in our earlier notation g2(B = Q2). For in this way we capture the dynami-
cal effect of the virtual oscillators which can be appreciably excited, while avoiding
the formal divergence encountered if we tried to include all of them (up to infi-
nite mass scale). At a more formal level, use of the appropriate effective coupling
allows us to avoid large logarithms in the calculation of Feynman graphs, by nor-
malizing the vertices close to where they need to be evaluated. There is a highly
developed, elaborate chapter of quantum field theory which justifies and refines this
rough idea into a form where it makes detailed, quantitative predictions for concrete
experiments. Calculations of two- and even three-loop graphs with complicated
interactions among the virtual particles are needed to do justice to the attainable
experimental accuracy.

An interesting feature visible in Fig. 1 is that the theoretical prediction for the
coupling focuses at large Q2, in the sense that a wide range of values at small

Fig. 1 Comparison of theory and experiment in QCD, illustrating the running of couplings. Sev-
eral of the points on this curve represent hundreds of independent measurements, any one of which
might have falsified the theory. Figure from Schmelling, hep-ex/9701002
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Q2 converge to a much narrower range at larger Q2. Thus even crude estimates of
what are the appropriate scales (e.g., one expects g2(Q2)/4π ∼ 1 where the strong
interaction is strong, say for 100 MeV �

√
Q2 � 1 GeV) allow one to predict the

value of g2(M2
Z) with ∼10% accuracy. The original idea of Pauli and others that

calculating the fine structure constant was the next great item on the agenda of the-
oretical physics now seems misguided. We see this constant as just another running
coupling, neither more nor less fundamental than many other parameters, and not
likely to be the most accessible theoretically. But our essentially parameter-free ap-
proximate determination of the observable strong interaction analogue of the fine
structure constant realizes a form of their dream.

The electroweak interactions start with much smaller couplings at low mass
scales, so the effects of their running are less dramatic (though they have been
observed). Far more spectacular than the modest quantitative effects we can
test directly, however, is the conceptual breakthrough that results from applica-
tion of these ideas to unified models of the strong, electromagnetic, and weak
interactions.

The different components of the standard model have a similar mathematical
structure, all being gauge theories. Their common structure encourages the spec-
ulation that they are different facets of a more encompassing � gauge symmetry,
in which the different strong and weak color charges, as well as electromagnetic
charge, would all appear on the same footing. The multiplet structure of the quarks
and leptons in the standard model fits beautifully into small representations of uni-
fication groups such as SU(5) or SO(10). There is the apparent difficulty, however,
that the coupling strengths of the different standard model interactions are widely
different, whereas the symmetry required for unification requires that they share
a common value.The running of couplings suggests an escape from this impasse.
Since the strong, weak, and electromagnetic couplings run at different rates, their
inequality at currently accessible scales need not reflect the ultimate state of af-
fairs. We can imagine that spontaneous symmetry breaking – a soft effect – has
hidden the full symmetry of the unified interaction. What is really required is that
the fundamental, bare couplings be equal, or in more prosaic terms, that the run-
ning couplings of the different interactions should become equal beyond some large
scale.

Using simple generalizations of the formulas derived and tested in QCD, we can
calculate the running of couplings, to see whether this requirement is satisfied in
reality. In doing so one must make some hypothesis about the spectrum of virtual
particles. If there are additional massive particles (or, better, fields) that have not yet
been observed, they will contribute significantly to the running of couplings once
the scale exceeds their mass. Let us first consider the default assumption, that there
are no new fields beyond those that occur in the standard model. The results of this
calculation are displayed in Fig. 2.

Considering the enormity of the extrapolation this calculation works remarkably
well, but the accurate experimental data indicates unequivocally that something is
wrong. There is one particularly attractive way to extend the standard model, by
including supersymmetry. Supersymmetry cannot be exact, but if it is only mildly
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Fig. 2 Running of the couplings extrapolated toward very high scales, using just the fields of the
standard model. The couplings do not quite meet. Experimental uncertainties in the extrapolation
are indicated by the width of the lines. Figure courtesy of Dienes

broken (so that the superpartners have masses � 1 TeV) it can help explain why
radiative corrections to the Higgs mass parameter, and thus to the scale of weak
symmetry breaking, are not enormously large. In the absence of supersymmetry
power counting would indicate a hard, quadratic dependence of this parameter on
the cutoff. Supersymmetry removes the most divergent contribution, by cancelling
boson against fermion loops. If the masses of the superpartners are not too heavy,
the residual finite contributions due to supersymmetry breaking will not be too
large.

The minimal supersymmetric extension of the standard model, then, makes semi-
quantitative predictions for the spectrum of virtual particles starting at 1 TeV or so.
Since the running of couplings is logarithmic, it is not extremely sensitive to the
unknown details of the supersymmetric mass spectrum, and we can assess the im-
pact of supersymmetry on the unification hypothesis quantitatively. The results, as
shown in Fig. 3, are quite encouraging.

A notable result of the unification of couplings calculation, especially in its
supersymmetric form, is that the unification occurs at an energy scale which is enor-
mously large by the standards of traditional � particle physics, perhaps approaching
1016−17 GeV. From a phenomenological viewpoint, this is fortunate. The most com-
pelling unification schemes merge quarks, antiquarks, leptons, and antileptons into



564 Quantum Field Theory

Fig. 3 Running of the couplings extrapolated to high scales, including the effects of supersym-
metric particles starting at 1 TeV. Within experimental and theoretical uncertainties, the couplings
do meet

common multiplets, and have gauge bosons mediating transitions among all these
particle types. Baryon number violating processes almost inevitably result, whose
rate is inversely proportional to the fourth power of the gauge boson masses, and
thus to the fourth power of the unification scale. Only for such large values of the
scale is one safe from experimental limits on nucleon instability. From a theoretical
point of view the large scale is fascinating because it brings us from the internal
logic of the experimentally grounded domain of particle physics to the threshold of� quantum gravity.
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Quantum Gravity (General) and Applications

Claus Kiefer

What is Quantum Gravity?

Quantum theory is a general theoretical framework to describe states and interac-
tions in Nature. It does so successfully for the strong, weak, and electromagnetic
interactions. Gravity is, however, still described by a classical theory – Einstein’s
theory of general relativity, also called geometrodynamics. So far, general relativity
seems to accommodate all observations which include gravity; there exist some phe-
nomena which could in principle need a more general theory for their explanation
(Dark Matter, Dark Energy, Pioneer Anomaly), but this is an open issue.

Quantum gravity would ultimately be a physical theory, both mathematically
consistent and experimentally tested, that accommodates the gravitational interac-
tion into the quantum framework. Such a theory is not yet available. Therefore, one
calls quantum gravity all approaches which are candidates for such a theory or suit-
able approximations thereof. The following sections will first focus on the general
motivation for constructing such a theory, and then introduce the approaches which
at the moment look most promising.

Why Quantum Gravity?

No experiment or observation is known which definitely needs a quantum theory of
gravity for its explanation. There exist, however, various theoretical reasons which
indicate that the current theoretical framework of physics is incomplete and that one
needs quantum gravity for its completion. Here is a list of such reasons:

• Singularity theorems: Under general conditions, it follows from mathematical
theorems that spacetime singularities are unavoidable in general relativity. The
theory thus predicts its own breakdown. The two most relevant singularities are
the initial cosmological singularity (‘Big Bang’) and the singularity inside black
holes. Since the classical theory is then no longer applicable, a more compre-
hensive theory must be found – the general expectation is that this is a quantum
theory of gravity.

• Initial conditions in cosmology: This is related to the first point. Cosmology
as such is incomplete if its beginning cannot be described in physical terms.
According to modern cosmological theories, the Universe underwent an era of
exponential expansion in its early phase called inflation. While inflation gives a
satisfactory explanation for issues such as structure formation, it cannot give, by
itself, an account of how the Universe began. Nor is it clear how likely inflation
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indeed is. A thorough understanding of initial conditions should shed some light
on this as well as on the origin of irreversibility, that is, on the arrow of time.

• Evolution of black holes: Black holes radiate with a temperature proportional
to �, the Hawking temperature, see below. For the final evaporation, a full the-
ory of quantum gravity is needed since the semi-classical approximation leading
to the Hawking temperature then breaks down. This final phase could be of as-
trophysical relevance, provided small relic black holes from the early Universe
(‘primordial black holes’) exist.

• Unification of all interactions: All nongravitational interactions have so far been
successfully accommodated into the quantum framework. Gravity couples uni-
versally to all forms of energy. One would therefore expect that in a unified theory
of all interactions, gravity is described in quantum terms, too.

• Inconsistency of an exact semi-classical theory: All attempts to construct a fun-
damental theory where a classical gravitational field is coupled to quantum fields
have failed up to now. Such a framework is here called an ‘exact semi-classical
theory’; it corresponds to the limit where the quantum fields propagate on a clas-
sical background spacetime.

• Avoidance of divergences: It has long been speculated that quantum gravity may
lead to a theory devoid of the ubiquitous divergences arising in quantum field
theory. This may happen, for example, through the emergence of a natural cutoff
at small distances (large momenta). In fact, modern approaches such as string
theory or loop quantum gravity (see below) provide indications for a discrete
structure at small scales.

Quantum gravity is supposed to be a fundamental theory which is valid at all scales.
There exists, however, a distinguished scale where one would expect that typical
quantum-gravity effects can never be neglected. This scale is found if one combines
the gravitational constant (G), the speed of light (c), and the quantum of action
(�) into units of length, time, mass (and energy). In honour of Max Planck, who
presented these units first in 1899, they are called Planck units. Explicitly, they read

lP =
√

�G

c3
≈ 1.62× 10−33 cm , (1)

tP =
√

�G

c5 ≈ 5.40× 10−44 s , (2)

mP =
√

�c

G
≈ 2.17× 10−5 g ≈ 1.22× 1019 GeV/c2 . (3)

They are called Planck length, Planck time, and Planck mass, respectively.
Structures in the Universe usually occur at scales which are simple powers of the

gravitational ‘fine-structure constant’

αg =
Gm2

pr

�c
=
(
mpr

mP

)2

≈ 5.91× 10−39 , (4)
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where mpr denotes the proton mass. Stellar masses and stellar lifetimes can be de-
rived, in an order-of-magnitude estimate, from this number. Its smallness is respon-
sible for the irrelevance of quantum gravity in usual astrophysical considerations.

Structural Issues of Quantum Gravity

Quantization of gravity means quantization of geometry � quantization. But which
structures should be quantized, that is, to which structures should one apply the� superposition principle? Following Chris Isham, one can do this at each order of
the following hierarchy of structures:

Point set of events → topological structure → differentiable manifold → causal
structure→ Lorentzian structure.

Those structures that are not quantized remain as absolute (nondynamical) enti-
ties in the formalism. One would expect that in a fundamental theory no absolute
structure remains. This is referred to as background independence of the theory.
Still, however, most of the approaches to quantum gravity contain at least the first
three structures as classical entities.

A particular aspect of background independence is the ‘problem of time,’ which
arises in any approach to quantum gravity. On the one hand, time is external in or-
dinary quantum theory; the parameter t in the � Schrödinger equation is identical
to Newton’s absolute time – it is not turned into an operator and is presumed to be
prescribed from the outside. This is true also in special relativity where the absolute
time t is replaced by Minkowski spacetime, which is again an absolute structure.
On the other hand, time in general relativity is dynamical because it is part of the
spacetime described by Einstein’s equations. Both concepts cannot be fundamen-
tally true, so a theory of quantum gravity would entail important changes for our
understanding of time.

Experimental Status

One of the main problems in searching for a theory of quantum gravity is the lack of
a direct experimental hint. For example, in order to probe the Planck scale directly,
present-day accelerators would have to be of galactic size. Direct tests are therefore
expected to arise from astrophysical or cosmological observations. However, some
speculative theories with higher dimensions allow for the possibility of an experi-
mental test at the Large Hadron Collider (LHC), which starts to operate at CERN in
2009.

Experiments are available only for the level of external Newtonian gravity inter-
acting with micro- or mesoscopic systems (� Mesoscopic Quantum Phenomena).
Examples are neutron and atom interferometry. On the level of quantum field the-
ory on a curved spacetime, a definite, but not yet tested prediction was made: black
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holes emit thermal radiation. This is the Hawking effect, named after the physicist
Stephen Hawking (*1942) who derived it in 1974. For a Schwarzschild black hole
of mass M , the temperature is

TBH = �c3

8πkBGM
≈ 6.17× 10−8

(
M4
M

)
K , (5)

where kB denotes Boltzmann’s constant. The black hole shrinks due to Hawking
radiation and possesses a finite lifetime. The final phase, where γ -radiation is be-
ing emitted, could be observable. The temperature (5) is unobservably small for
black holes that result from stellar collapse. One would need primordial black holes
produced in the early Universe because they could possess a sufficiently low mass.
For example, black holes with an initial mass of 5× 1014 g would evaporate at the
present age of the Universe. In spite of several attempts, no experimental hint for
black-hole evaporation has been found.

Since black holes radiate thermally, they also possess an entropy, the
‘Bekenstein–Hawking entropy,’ which is given by the expression

SBH = kBc
3A

4G�
= kB

A

4l2P
, (6)

where A is the surface area of the event horizon. For a Schwarzschild black hole
with mass M , this reads

SBH ≈ 1.07× 1077kB

(
M

M4

)2

. (7)

Since the Sun has an entropy of about 1057kB, this means that a black hole resulting
from the collapse of a star with a few solar masses would experience an increase in
entropy by twenty orders of magnitude during its collapse. It is one of the challenges
of any theory of quantum gravity to provide a microscopic explanation for this en-
tropy, that is, to derive (6) from a counting of microscopic quantum gravitational
states.

Due to the equivalence principle, there exists an effect related to (5) in flat
Minkowski space. An observer with uniform acceleration a experiences the stan-
dard Minkowski vacuum not as empty, but as filled with thermal radiation with
temperature

TDU = �a

2πkBc
≈ 4.05× 10−23 a

[cm

s2

]
K. (8)

This temperature is often called the ‘Davies–Unruh temperature,’ named after the
physicists Paul Davies (*1946) and William Unruh (*1945). It, too, has not yet been
experimentally tested, but efforts are being made in this direction.
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What are the Main Approaches?

The main present approaches to find a theory of quantum gravity can be classified
according to the following scheme.

• Quantum general relativity: The most straightforward attempt, both conceptu-
ally and historically, is the application of ‘quantization rules’ to classical general
relativity. One further distinguishes the following subapproaches:

– Covariant approaches: These are approaches that employ four-dimensional
covariance at some stage of the formalism. Examples include perturbation
theory, effective field theories, renormalization-group approaches, and path
integral methods (such as Regge calculus or dynamical triangulation). For ex-
ample, in the path integral one sums over all suitable four-dimensional metrics
in order to arrive at a quantum gravitational Green function or wave func-
tional. Pioneers of the covariant approach include Léon Rosenfeld, Matvei
Bronstein, and Bryce DeWitt.

– Canonical approaches: Here one makes use of a Hamiltonian formalism and
identifies appropriate canonical variables and conjugate momenta. Examples
include quantum geometrodynamics (where gravity is described in metric
form) and loop quantum gravity (where gravity is described by a connec-
tion integrated around a closed loop). They are characterized by a constraint
equation of the form

H� = 0 , (9)

where H denotes the full Hamilton operator for the gravitational field as
well as all nongravitational fields; � is the full wave functional for these de-
grees of freedom. In the geometrodynamical approach, this equation is called
the Wheeler–DeWitt equation, in honour of the physicists John Archibald
Wheeler (1911–2008) and Bryce DeWitt (1923–2004), who first discussed
this equation in detail. The loop approach goes mainly back to work by Ab-
hay Ashtekar (*1949), Lee Smolin (*1955), and Carlo Rovelli (*1956).

As can be recognized from the stationary form of equation (9), these the-
ories are explicitly timeless, that is, devoid of any classical time parameter.
They thus solve the ‘problem of time’ by getting rid of time at the fundamen-
tal level. This should happen in the other approaches, too, but the situation is
there much less clear.

• String theory: This is the main approach to construct a unifying quantum frame-
work of all interactions. The quantum aspect of the gravitational field only
emerges in a certain limit in which the different interactions can be distinguished
from each other. All particles have their origin in excitations of fundamental
strings. The fundamental scale is given by the string length; it is supposed to be
of the order of the Planck length, although the Planck length is here a derived
quantity.

String theory was originally developed as a theory of hadrons. While its un-
suitability in this field became soon clear, it was later devised as a theory for the
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physics at the Planck scale. Among the pioneers who introduced string theory in
the gravitational context are Joël Scherk and John Schwarz.

• Other attempts such as the quantization of topology or the theory of causal sets.

In perturbation theory, the important concept of the graviton emerges. In this
approximation one decomposes the metric, gμν , into a background part, ḡμν , and a
‘small’ perturbation, fμν ,

gμν = ḡμν +
√

32πG

c4
fμν . (10)

Only the perturbation is being quantized. The important assumption is the presence
of an (approximate) background with respect to which standard perturbation theory
(formulation of Feynman rules, etc.) can be applied. In this approximate framework
the quantum aspects of gravity are encoded in a spin-2 particle propagating on the
background – the graviton, which arises from fμν . The ensuing perturbation theory
is, however, nonrenormalizable: at each order in the expansion with respect to G,
new types of divergences occur which have to be absorbed into appropriate param-
eters that in turn have to be fixed by measurement. Nevertheless, one can derive in
the low-energy limit concrete effects from perturbation theory. One is the quantum
gravitational correction to the Newtonian potential between two masses m1 and m2,

V (r) = −Gm1m2

r

(
1+ 3

G(m1 +m2)

2rc2 + 41

10π

G�

r2c3

)
. (11)

Another is the decay rate of excited states in atomic physics through emission of
gravitons; for example, the decay rate in hydrogen from the 3d level to the ground
state is

�g = Gm3
ecα

6

360�2
≈ 5.7× 10−40 s−1, (12)

where α is the fine-structure constant and me the electron mass. This corresponds to
a life-time of

τg ≈ 5.6× 1031 years, (13)

which is too large to be measurable. The problem of nonrenormalizability in pertur-
bation theory is avoided by string theory.

Quantum general relativity as well as string theory have found applications
for quantum black holes and for quantum cosmology. Both approaches have,
for restricted situations, proposed a microscopic explanation for the black-hole
entropy (6). The corresponding microscopic states are either those of spin networks
(in loop quantum gravity) or D-branes (in string theory). On the other hand, a clear
picture of black-hole evaporation is elusive, although there is strong evidence in
all approaches that there is no fundamental loss of information during this process.
As for quantum cosmology, preliminary results exist for a wide range of topics:
singularity avoidance, initial conditions, origin of structure, and the arrow of time.
Direct effects may be seen in the anisotropy spectrum of the cosmic background
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radiation, but the situation is presently unclear. It should also be mentioned that
both string theory and loop quantum gravity predict that space is discrete at very
small scales (near the string length or the Planck length, respectively), with possible
observational relevance.

A central issue is also the recovery of established physical theories as approx-
imations from quantum gravity. Quantum geometrodynamics gives at least on the
formal level a picture of how a semi-classical time parameter and the limit of quan-
tum field theory in a background spacetime emerge as approximations (using a type
of scheme similar to the Born–Oppenheimer approximation in molecular physics).
This includes the classical behavior of spacetime due to decoherence (� decoher-
ence, experimental observation of decoherence; time in quantum mechanics). The
situation in loop quantum gravity is not yet fully clear. As for string theory, it has
not yet succeeded to achieve one of its major goals – the recovery of the Standard
Model of � particle physics.
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fact that, independently of the material and the exact geometry of the Hall sample,
these quantized values can be reproduced with such high accuracy, has been found
only in recent years.

The Phenomenon and its Discovery

The quantized Hall effect (QHE) was discovered early in February 1980, when
Klaus von Klitzing performed a series of experiments at the high-field magnet-
laboratories in Grenoble, France, in order to investigate the transport properties
of silicon based metal-oxide-semiconductor field-effect-transistors (MOSFET’s),
which up to now form the basic building blocks of highest-integrated electrical
circuits. The aim was to improve on the mobility of charge carriers in these de-
vices. This requires to understand, which kind of scattering processes (caused by
surface roughness, interface charges, impurities, etc.) has the strongest effect on
the motion of the � electrons in the thin conducting layer at the interface be-
tween silicon and silicon-oxide, which is only a few nanometers thick. To this
end, G. Dorda (Siemens AG) and M. Pepper (Plessey Company) had provided spe-
cially prepared Si–MOSFET’s (Fig. 1), which allowed for four-point-measurements
on the conducting layer so that, in the presence of a perpendicular magnetic field, its
usual (longitudinal) resistance Rxx = Ux/Ix and its Hall resistance Rxy = Uy/Ix
could be determined independently. The electron density in the conducting layer
could be changed by a suitable gate voltage. To suppress disturbing scattering pro-
cesses due to the electron–phonon interaction, the experiment was carried out at low
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Fig. 1 Typical silicon-MOSFET for the measurement of the xx- and xy-components of the mag-
netoresistance tensor of the conducting layer underneath the gate. For a fixed current between the
source (S) and drain (D) contacts, the potential differences between the contacts P–P and H–H are
directly proportional to the resistances Rxx and Rxy , respectively. A positive gate voltage increases
the charge carrier density underneath the gate
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longitudinal resistance
at B= 0 T
at B= 19,8 T
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at B= 19,8 T 

electron density (~gate voltage)

Fig. 2 The first experiment showing the quantized-Hall-effect, performed at liquid-He temper-
atures. Without magnetic field the electric resistance of the Si–MOSFET (blue curve) decreases
monotonously with increasing gate voltage, since the electron density increases linearly with the
gate voltage. At a magnetic field of 19.8 T, the Hall resistance (black) shows pronounced plateaus at
values of the gate voltage, for which the longitudinal resistance (red) vanishes. The marker points
to the quantized Hall plateau around filling factor ν = 4

temperatures (typically 4.2 K) and at high magnetic fields (several Tesla). As func-
tion of the electron density (gate voltage) the Hall resistance Rxy showed plateaus
while simultaneously the longitudinal resistance Rxx vanished (see Fig. 2). The
important discovery was that the plateau values did not depend on any specific pa-
rameters of the experiment, not on source-drain or gate voltage, not on the magnetic
field or any geometry factors, and that they can be written as Rxy = h/(ie2), where
h is � Planck’s constant, e is the elementary charge, and i = 1, 2, 3, . . . is an
integer [1].

There have been many attempts to understand this result, and it is instructive to
compare it with the “classical” description of the Hall effect. It has been known
since 1966 that the electrons, forced by a positive gate voltage towards the inter-
face between the silicon crystal and an oxide layer, may form a two-dimensional
electron system (2DES) [2]. For these electrons the energy of motion perpendicular
to the interface is quantized and if, at sufficiently low temperature, only the lowest
quantum state is partially occupied and separated from the next quantized state by
an energy much larger than the thermal energy, then the motion perpendicular to the
interface is frozen out and only the free motion parallel to the interface is possible.
This is the situation of a 2DES. The knowledge about transport and optical proper-
ties of 2DES’s at the time of the discovery of the QHE has been reviewed by Ando,
Fowler, and Stern [24].
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If one assumes that in the 2DES electric current density and field distribution are
homogeneous between the voltage contacts, one obtains from the resistance values
the components

�xx = RxxW/L, �xy = Rxy (1)

of the magneto-resistivity tensor ''�, which relates the local current density j in the
2DES and the local electric field E by E = ''� · j.

Classically, a high magnetic field 'B = (0, 0, B) perpendicular to an ideal,
non-interacting 2DES forces the electrons to move uniformly on circular orbits (cy-
clotron motion). An additional homogeneous in-plane electric field E = (Ex, 0, 0)
leads to a “Hall drift” with velocity 'vD = E × 'B/B2 = (0, vD, 0), where
vD = −Ex/B. Multiplying with the surface density ns of the 2DES and with the
electron charge, we obtain the Hall current density j = −ens 'vD . Thus, if there
is no scattering of the electrons, the classical consideration yields �xx = 0 and
�xy = B/(ens). This indicates already that under the condition of the QHE the
conduction electrons move without being scattered.

Due to the Landau quantization, the periodic cyclotron motion is restricted to
discrete energy values. In the ideal case then the energy spectrum of the 2DES con-
sists of discrete energy levels with gaps, which are given by the cyclotron energy
and the � Zeeman spin-splitting, which both increase with increasing magnetic
field. Also the degeneracy of the Landau levels increases with increasing magnetic
field: the number of states per Landau level (and per spin direction) and per area is
nL = B/�0, with the magnetic flux density B (which usually is just called mag-
netic field) and the magnetic flux quantum�0 = h/e. In a homogeneous 2DES with
area density ns the filling factor of the discrete (Landau and spin) levels becomes
ν = ns/nL = (h/e)ns/B. For an ideal 2DES without scattering, the calculation of
the Hall resistivity is not affected by the Landau quantization, so that one obtains

�xy = B/(ens) = h/(νe2). (2)

Thus, the plateau values of the QHE correspond to integer values of the filling
factor, ν = i, i.e. to a situation in which a certain number of the discrete but
macroscopically degenerate energy levels is completely occupied, while all other
levels are empty. In this situation the occupied states are separated from the empty
states by a finite energy gap, which at sufficiently low temperatures can not be
bridged by thermal excitations, i.e. no (quasi-elastic) scattering, and, as a conse-
quence, no damping or dissipation processes are possible in the 2DES.

Surprisingly these “integer-quantized” values �xy = h/(ie2) are observed as
values of the global Hall resistance RH = Rxy not only for the discrete values
of the ratio ns/B, which correspond to an integer filling factor of the 2DES, but in
wide intervals around these values, provided the temperature is low enough. Figure 2
shows the experimental curves with the characteristic plateaus in the Hall resistance
Rxy and the corresponding zeroes in the longitudinal resistance Rxx , which revealed
the quantized Hall effect [1].
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The fact, that the values of the resistances Rxx and Rxy are unchanged over fi-
nite intervals of the gate voltage (in the plateau regions), led to the presumption,
that there the electrostatically induced electrons occupy “localized states”, which
do not contribute to the electronic transport. A large amount of work about localiza-
tion and other “reservoir models”, which assume that a part of the induced electrons
does not participate in the electronic transport, has been published in the past [25].
But these are interpretations of the QHE, which usually rely on additional assump-
tions, e.g. that the 2DES is essentially homogeneous and can be described by a
position-independent resistivity tensor. If this were correct, one should expect that
edge effects lead to a dependence of the measured resistance values on the sample
width. This is, however, not the case.

The plateau values of the Hall resistance do not depend on the presence or
absence of such localized states, and are with very high accuracy given by the
relation Rxy = h/(ie2) (i = 1, 2, 3, . . . ). They are independent of details of
the experimental setup, and especially of geometrical details. Since in the plateau
regime the longitudinal resistance vanishes, Rxx = 0, the exactly quantized value
is obtained for the Hall resistance, even if the Hall voltage is measured between
contacts on both sides of the sample, which are not located exactly opposite to each
other (see Fig. 1). The plateau values are even independent of the semiconductor ma-
terial, which contains the 2DES. For instance, in GaAs/(AlGa)As hetero-structures,
where the 2DES occupies states which result from the conduction-band minimum
of GaAs near the �-point, and each Landau level splits into two levels with opposite� spin, one observes the same values as in Si-MOSFET’s, where each Landau level
splits into four states, since in addition to the spin-splitting one has a valley-splitting.
[Whereas isotropic, unstressed silicon has six equivalent, degenerate conduction-
band minima, only two of them (those with heavy effective masses in the direction
perpendicular to the Si/SiO2 interface) contribute to the bound states occupied by
the 2DES, and the degeneracy of their energy levels is lifted, since the interface de-
stroys the inversion symmetry.] This lifted fourfold degeneracy of the Landau levels
has been identified in the experiment [1] shown in Fig. 2.

Nowadays the QHE discovered by K. von Klitzing in 1980 is usually called
the “Integer Quantum Hall Effect” (IQHE), in order to distinguish it from the
“Fractional Quantum Hall Effect” (FQHE), which was discovered in 1982 on
high-mobility GaAs/AlxGa1−xAs hetero-structures and shows plateaus of the Hall
resistance with values RH = h/(f e2), where f is a fraction of simple integer num-
bers with odd-integer denominator [3]. The most prominent examples are f = 1/3
and f = 2/3, but many others have been reported, too. [The high mobility was
achieved by “modulation doping”, a method which separates the donors, needed
to provide the electrons for the 2DES, by a spacer from the 2DES, in order to re-
duce the scattering of the electrons by the ionized-donor potentials.] The FQHE
was again an unexpected discovery. Whereas the IQHE was believed to be a single-
particle effect, for which the mutual Coulomb interactions between the electrons
of the 2DES are unimportant, the FQHE was attributed to such interactions, which
may at fractional filling of the Landau levels lead to collective ground-states with
strong correlations. For simple fractions such correlated ground-states have been
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calculated [4] soon after the discovery of the FQHE. In 1998 Dan C. Tsui, Horst L.
Störmer and Robert B. Laughlin were awarded the Nobel Prize for the discovery of
the FQHE and its explanation.

In the subsequent years the number of publications containing the keyword
“quantum Hall effect” in the title or the abstract increased drastically, to about one
publication per day at present. In the meantime, the QHE is discussed not only
within solid state physics, but also in nearly all other areas of modern physics. The
spectrum of published papers extends from “Quantum Computing” in quantum-
Hall-systems to “Quantum-Hall-Quarks”, and even to a higher-dimensional QHE in
string-theory. Up to now more than ten books have been published on the Quantum-
Hall-Effect [26].

Quantized Hall Effect and Metrology

The most important equation in connection with the quantized Hall resistance,
UH = (h/ie2) · I , was confirmed in the first experiment with such a high accu-
racy, that even the finite input impedance (1 M�) of the x-y-recorder, used for
the voltage measurement, had to be taken into account as a correction. An accu-
rately reproducible electric resistance, independent of the geometry of the device
and of microscopic details of its material, was, of course, of great importance
for metrological institutes as a new and universal resistance standard. Therefore,
this new quantum phenomenon (the occurrence of Planck’s constant h makes this
obvious) was submitted for publication under the title “Realization of a Resis-
tance Standard based on Fundamental Constants”. At that time, however, it seemed
more important to improve the value of Sommerfeld’s fine-structure constant α,
given by α−1 = (h/e2)(2/μ0c) = 137.036 . . . , where the magnetic field constant
μ0 = 4π 10−7 N/A2 and the velocity of light in vacuum, c = 299 792 458 m/s, had
and have today fixed values. Therefore the publication appeared under the title “New
Method for High-Accuracy Determination of the � Fine-Structure Constant based
on Quantized Hall Resistance” [1].

In the meantime the importance of the QHE as the basis of a resistance standard
has been fully appreciated [27]. Its applicability relies on the facts, that the plateaus
measured (at fixed magnetic field) as a function of the electron density (see Fig. 2),
or (at fixed electron density) as a function of the magnetic field (see Fig. 3), are
extremely flat, and that the quantized Hall resistance (around filling factor ν = 1)
apparently has always the fundamental value h/e2 = 25 812.807 . . . �. After the
discovery of this macroscopic quantum effect, the experiment has been repeated
in many metrological institutes with much higher accuracy as can be achieved in
a research lab. The effect proved to be extremely stable and reproducible. Obvi-
ously the remaining inaccuracy of resistance measurements results mainly from
the uncertainty in the reproduction of the SI ohm. Due to the internationally ac-
cepted definitions of the fundamental SI units second (s), meter (m), kilogram
(kg), and ampere (A), all mechanical and electric quantities are well defined.
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Fig. 3 Typical traces of the Hall resistance Rxy and of the longitudinal resistance Rxx of a 2DES
as measured as a function of the magnetic field B on samples of average quality. The zeros of Rxx

coincide with the plateaus of Rxy at the quantized values h/(i ·e2). At small B-values one observes
the classical Drude behavior: Rxy ∝ B, Rxx = constant

However, the fundamental unit ampere can be reproduced only with a relatively
large error of the order of 10−6, if it is calculated, according to its definition, from
the force between two current-carrying wires. As a consequence, the derived unit
1� = 1 s−3 m2 kg A−2, which depends on all fundamental units, is available only
with an error, which is even larger than 10−6.

Nowadays the SI unit ohm is known with a smaller error than the fundamental
unit ampere, because a resistance can be realized as the ac-impedance |Z(ω)| =
1/(ωC) of a capacitance C. Since the capacitance C of a capacitor depends only
on its geometry (with vacuum as dielectric medium), the SI-ohm can be realized by
using only the fundamental units of time (to measure the frequency ω/2π) and of
length (to calculate C for a so called calculable Thompson–Lampard-capacitor [5]).
As these units are known with very high accuracy, also the SI-unit ohm can be
realized with an error as low as 10−7. Using this and the QHE, one can obtain the
fine-structure constant with the same accuracy.

The quantized Hall resistance is, however, more stable and better reproducible
than any resistance that has been calibrated in SI-units. Therefore, the Comité
Consultatif d’Electricité suggested to take as value of the von-Klitzing constant
RK = h/e2 exactly 25 812.807�, with the notation RK−90. This value RK−90 =
25 812.807� has been accepted since 1. 1. 1990 as the reference value for resis-
tance calibrations, and is now denoted as conventional von-Klitzing constant [6].
Direct comparisons by different national institutes showed that the reference val-
ues deviated [7] by less than 2 · 10−9, provided the published rules for reliable
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measurements had been obeyed [8]. Unfortunately this high reproducibility and
stability of the quantized Hall resistance can not be used immediately for a cor-
respondingly accurate determination of the fine-structure constant, since the value
of the quantized Hall resistance in SI-units is not known so accurately. Only in
connection with other experiments, e.g. high-precision measurements (and calcu-
lations) of the anomalous magnetic moment of the electron, of the gyro-magnetic
ratio of the proton, or of the neutron mass, does one obtain a best fit for the value
of the fine-structure constant with an error of only 3.3 · 10−9. This leads to a
value RK = (25812.807449± 0.00086)� for the von-Klitzing constant (CODATA
2002) [27]. Very accurate values of fundamental constants (especially of α) are im-
portant in view of speculations about a possible time-dependence of some of the
fundamental constants. Experimental indications of a cosmic evolution of the fine-
structure constant α are under dispute, but could not be confirmed till now. The rate
of change |∂α/∂t| is – if non-zero at all – less than 10−16 per year.

A combination of quantized Hall effect and Josephson-effect (which allows to
express the electric voltage in units of h/e) makes it possible to relate the electric
power (which depends on Planck’s constant h) with the mechanical power (which
depends on the mass m). Measurements with a so called Watt balance yield the
best value for Planck’s constant [9], provided the mass is accurately known on the
basis of the “International Prototype Kilogram” (which is not stable in time). Al-
ternatively, one could fix the value of Planck’s constant and thereby obtain a new
realization of the unit of mass (just as the fixing of the velocity of light led to a
new realization of the unit of length). At present suggestions are under discussion,
to fix exactly not only the Planck constant h, but also the elementary charge e (and,
thereby, the quantized Hall resistance). This would replace and allow to abandon the
definitions of the basic units “kilogram” and “ampere”, which have been valid up to
now, but are unstable in time (kg) and hard to realize with satisfactory precision (A).

Physics of the Integer-Quantized Hall Effect

Bulk Effects and Edge States

A particle with electric charge q (q = −e for electrons), moving with velocity 'v in
a homogeneous magnetic field 'B, is subjected to the Lorentz force 'F = q('v × 'B),
perpendicular to both 'v and 'B. In a current-carrying, three-dimensional, laterally
confined conducting layer of thickness d in a perpendicular magnetic field B this
leads to charge accumulation and depletion at opposite lateral boundaries and,
thereby, to a Hall voltage UH = RH(B) · I (named after Edwin Hall, who described
this effect in 1879 for the first time). Within the Drude model, which describes the
charge carriers as a classical gas, the Hall resistance is given by

RH = −B/(qnqd), (3)
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and reveals important properties of the conductor: the density nq of free charge
carriers and the sign of their charge (q = +e for holes and q = −e for electrons).

For a two-dimensional electron system the product nqd = ns reduces to the
area density and the Hall resistance simplifies to RH = B/(ens). Indeed the Hall
resistance increases at small magnetic fields linearly with increasing B (see Fig. 3),
and its slope allows to determine the area density ns of the 2DES. Only at relatively
high magnetic fields do the plateaus with the quantized values RH = h/(νe2) occur,
where ν equals an integer number i = 1, 2, 3, . . . (or a fraction in the case of
the FQHE). Here we see a fundamental difference between the Hall resistance at
low and at high magnetic fields: while at low B-values RH depends on material
parameters like electron density ns , the quantized plateau values at high B-values
are absolutely independent of material properties.

A corresponding behavior is observed for the longitudinal resistivity. The clas-
sical Drude theory yields the B-independent value �xx = m*/(e2nsτ ), which
depends, in addition to the electron density ns , on the effective mass m* of the
electrons and the momentum relaxation time τ , which describes the scattering
of electrons, at low temperatures predominantly by randomly distributed impuri-
ties. Indeed a B-independent resistance Rxx is observed in the experiment at low
B-values (see Fig. 3). At somewhat higher B-values Shubnikov-de Haas (SdH) os-
cillations occur, with an amplitude, which increases with increasing B until the
minima of the SdH oscillations reach the value zero. At still higher B-values the
QHE sets in, and the plateau values of Rxy are accompanied by vanishing Rxx ,
which no longer contains information about the material parameters m*, ns , and τ .

The vanishing of Rxx in the plateau regimes of the QHE means that the occur-
rence of the quantized Hall plateaus is accompanied by a dissipationless current flow
along the Hall bar. This does, however, not mean that there is no dissipation at all in
the system. In fact the two-point resistance, which is measured by the voltage-drop
between the current-carrying contacts S (source) and D (drain), equals (in the regime
of the QHE) the Hall resistance, i.e. the electric powerRHI

2 is dissipated. This Joule
heat is produced at opposite corners of the sample near the current-carrying contacts,
as could be visualized by means of the fountain effect with liquid helium [10].

The question remains, how can we understand the occurrence of plateaus in
the Hall resistance with the quantized values, and the simultaneous disappearance
of dissipation in the bulk of the sample? In the following we will concentrate on
the case of GaAs-based heterostructures, to avoid complications due to the multi-
valley conduction-band-structure of silicon. A homogeneous magnetic field B in
z-direction, perpendicular to the plane of the 2DES, leads to Landau quantization
of the cyclotron motion, so that in the ideal case (neglecting collision broaden-
ing effects due to scattering) the electrons occupy Landau levels at discrete energy
eigenvalues

εn,± = (n+ 1/2)�ωc ± (g*/2)μBB, (4)

with the cyclotron energy �ωc = �eB/m*, the Landau level index n = 0, 1, 2, , . . . ,
the spin � quantum numbers ±1, the Bohr magneton μB = e�/(2me), and the
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effective Landé factor g*. Each of these energy levels is macroscopically degener-
ate, with nL = eB/h states per unit area. Since the � degeneracy of the levels,
as well as their distance, increases with increasing B, at constant density the elec-
trons will, with increasing B, be redistributed to lower Landau levels. This leads,
as a function of B, to a saw-tooth-like shape of the Fermi energy (i.e., at finite
temperature the chemical potential μch), which follows in the ideal case the en-
ergy of a partly occupied Landau level until this is totally depleted, then it jumps
to the next lower level and follows this with increasing B, and so on. If scattering
and level broadening effects, and also finite temperature, are taken into account,
the increasing parts of the function μch(B) are no longer strictly linear, but qual-
itatively the saw-tooth-behavior survives as long as the energy gaps between the
collision-broadened Landau levels are much larger than the thermal energy kBT , as
could be confirmed experimentally by employing a metallic single-electron transis-
tor as local electrometer [11].

The chemical potential jumps from one Landau level to an adjacent one exactly
at those values of the magnetic field B, at which the filling factor ν = ns/nL as-
sumes integer values, ν = i. At these values the occupied states are separated from
the empty states by an energy gap, which is much larger than kBT , so that, accord-
ing to the Pauli principle, no scattering processes are possible. In this situation any
reasonable quantum theory of magneto-transport in a 2DES yields [24]

Rxx = 0, Rxy = h/(ie2), (5)

i.e. the values of the free 2DES without any interactions. Does this (trivial) result
explain the IQHE? Certainly not! So far we have tacitly assumed a homogeneous
2DES, and then the result (5) applies only to isolated values of the magnetic field.
The problem is to understand, why it applies with extreme accuracy to B-intervals
of finite width, the plateaus.

Theories, which try to explain the QHE as property of the resistivity tensor of an,
on the average, homogenous (and infinite) sample (e.g. localization theories) have
already been mentioned. If, at a certain density, such a theory would yield the result
(5) in a certain B-interval, application to a sample of finite width W must take into
account that this result can not be valid in a depletion region (typically of width
δ � 100 nm) near the sample edges, where the electron density drops to zero. Then
one has to expect to measure deviations from the quantized values, which are of the
order δ/W . This is for realistic values of W (�1 mm) many orders of magnitude
larger than the accuracy with which the quantized values can be reproduced in ex-
periments. In addition to such theoretical arguments, there are many experimental
hints, that the assumption of a homogeneous sample is neither correct nor important
for the explanation of the QHE.

There are many experimental indications that, in the plateau regime of the IQHE,
the interior of the sample is not important: it can be partly removed or, by suitable
gates, tuned to another electron density, without changing the quantized value of the
measured Hall-resistance. Also the exact arrangement of the contacts plays a minor
role (see Fig. 4). This has been interpreted as indication that the relevant currents
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Fig. 4 The measured value of the quantized Hall resistance does not depend on variations of the
electron density in the interior of the sample, e.g. depletion or accumulation by a gate (provided the
gate does not reach from one edge to the opposite one). Even etching a hole through the sample has
no effect. Also the precise position of the voltage contacts (H) is irrelevant, provided the current
carrying contacts S and D are located between them

flow near the sample edges. The edge channel picture of the IQHE, elaborated by
M. Büttiker [12] since 1988, proved to be very successful for the description of the
resistances measured on complicated samples with many gates and contacts, and
found its way into textbooks [28]. We will, however, focus on a somewhat differ-
ent microscopic picture of the IQHE, which evolved from more recent theoretical
and experimental investigations of the position dependence of electron and current
density in (narrow) Hall bars.

Compressible and Incompressible Regions

As already mentioned, for a long time it was general belief that Coulomb inter-
actions were unimportant for the understanding of the IQHE. However in 1992,
D.B. Chklovskii, B.I. Shklovskii, and L.I. Glazman [13] pointed out that, in a real
2DES with lateral confinement, in which the electron density decreases from a finite
bulk value to zero near the edges, electronic screening effects become extremely
important in high magnetic fields, where the magnetic length � = (�/eB)1/2 =
(10 T/B)1/2 · 8.11 nm is much smaller than the lengths scale, on which electron
density and confinement potential vary. About a decade later it turned out that im-
mediate consequences of these screening effects can be measured experimentally,
and open a new approach to the understanding of the QHE.

If one neglects screening effects under these conditions, the Landau bands show a
spatial dispersion given by the external confinement potential, bending upwards near
the edges. If in the bulk of the sample several Landau levels are occupied, the den-
sity profile drops like a step-function towards zero at the edges, with wide plateaus
(given by the separation of adjacent Landau bands at the Fermi level), which corre-
spond to the integer filling factor of the occupied bands and are separated by steep
steps of a width given by the extent of the Landau wavefunctions, which is of the
order �. This is unrealistic, since this electron density profile would change strongly
with changing magnetic field, which would cost a lot of Coulomb energy.
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In the idealized case of small collision broadening and low temperature, the
(thermodynamic) density of states (∂ns/∂μch) is extremely high, if the chemical
potential falls onto a Landau energy, and is nearly zero, if it falls into a gap between
such energies. In the first case screening is nearly perfect, since it costs no energy to
change the position of electrons. In the second case no screening is possible since
occupied and empty electron states are separated by the large (as compared with
kBT ) energy gap. In an inhomogeneous sample with sufficiently high bulk density
one meets both situations. There are “compressible” regions in which screening is
nearly perfect, so that the total, screened potential (i.e. the sum of the external con-
finement potential and the Hartree potential produced by the spatial distribution of
the 2DES) is flat and one of the Landau energy levels is “pinned” (within kBT ) to
the Fermi level (i.e. the electrochemical potential μ*

ch, which is constant, if the inho-
mogeneous 2DES is in thermal equilibrium). In addition there are “incompressible”
regions, in which μ*

ch falls between adjacent Landau bands, so that there no redis-
tribution of electrons is possible and the density is constant, since the filling factor
of the Landau levels there has a fixed integer value.

In the case of idealized Hall bars (translation invariance in one direction) these
regions become parallel stripes. Compressible stripes, in which adjacent Landau
bands are pinned to μ*

ch, are usually separated by an incompressible stripe across
which the total potential varies by the amount of the energy difference between these
two bands. Chklovskii et al. [13] have evaluated these ideas for a 2DES in a half-
plane geometry for the idealized case of zero level broadening and zero temperature,
and under some simplifying assumptions (only in-plane charges, perfect screening
where ns(y) > 0), which allowed analytical calculations. For instance, for a 2DES
with bulk filling factor ν and metal gate at y < yedge the distance yν = |y − yedge|
of the (center of the) innermost incompressible stripe with filling factor int(ν) and
its width aν are given by

yν = d0

1− [int(ν)/ν]2 , aν = 4yν
ν

√
int(ν)a*B
πd0

, (6)

where the length d0 depends on the average electron density, a*B is the effective
Bohr radius, and int(ν) is the integer part of ν. Experiments using single-electron
transistors as electrometer succeeded to make this stripe-structure in the depletion
regime of a 2DES visible [14, 15]. A schematic plot of such a stripe-structure is
shown in Fig. 5.

These calculations have soon been applied to a simplified Hall-bar geometry [16]
and generalized to a self-consistent thermodynamic equilibrium theory [17, 18], in
which the screened potential is calculated from the electron density by solution of
Poisson’s equation and the electron density is calculated from the total effective
potential V (y) in a Hartree-type approximation,

n(y) =
∞∑
n

∑
s=±

∫
dY

2π�2
|ψ(s)

n,Y (y)|2f
(
εn,s(Y )− μ*

ch

)
. (7)
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Fig. 5 Sketch of the density of states D(ε) without and with applied magnetic field B, and of the
resulting relation between chemical potential and electron density, μch(ns ), for a homogeneous
2DES (left half of the figure). Also shown are sketches of the density profile near the sample edge
and, on the right side, the compressible regions (with states near the Fermi level) are indicated as
dark, incompressible regions as white stripes

Here εn,s(Y ) are the energy eigenvalues with normalized wavefunctions �(x, y) =
L
−1/2
x exp(ixkx)ψ

(s)
n,Y (y) and Y = �2kx , f (E) = 1/[1 + exp(E/kBT )] is the

Fermi-Dirac distribution function, and μ*
ch is the electrochemical potential, which

is constant in thermodynamic equilibrium. If the potential V (y) varies slowly on
the scale �, one may neglect the spatial extent of the wavefunctions, |ψ(s)

n,Y (y)|2 ≈
δ(y − Y ), and replace the energy eigenvalues by εn,±(Y ) = εn,± +Vconf(Y ), where
εn,± are the energy eigenvalues (4) of the homogeneous system without confinement
potential. This leads to the often used Thomas-Fermi approximation

n(y) =
∫

dεD(ε)f
(
ε − μch(y)

)
, (8)

where D(ε) is the density of states (DOS) of the homogeneous 2DES (here the
Landau DOS), and μch(y) = μ*

ch−V (y) is the position-dependent chemical poten-
tial. This approach allowed to demonstrate how the incompressible stripes evolve
with decreasing temperature [17, 18]. The possible relevance of the incompressible
stripes for the QHE was, however, still not clear.

A major breakthrough was achieved when a low-temperature scanning-force-
microscope was developed and employed to measure Hall-potential-profiles, i.e.
the change of the potential landscape due to a fed-in current Ix , as compared to
the thermodynamic equilibrium state (Ix = 0) [19, 20]. Figure 6 shows typical
Hall-potential-profiles measured on narrow samples of 10 to 15μm width (because
of the restricted scanning area) for different magnetic fields (i.e. average filling
factors) in the regime of a quantized Hall plateau (QHP). The profiles show very
different position dependences: (a) For B-values well above a QHP the Hall poten-
tial drops linearly across the whole sample, i.e. the Hall electric field is constant and
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Fig. 6 Hall-potential profiles for several magnetic fields (characterized by filling factors ν), which
were measured across the narrow part of the sample sketched in the upper left part of the figure.
For comparison, the Hall resistance Rxy in this magnetic field region is also shown, after [19, 20].
The ν-dependent characteristics of the potential profiles are the following. Type (a): linear potential
variation; type (b): non-linear drop in the center, very close to integer filling factor; (c): potential
drop only cross incompressible stripes, constant Hall potential in the interior; (d): partial drop near
the edges and linear variation in the interior of the sample. Right panel: calculated Hall-potential
profiles for an idealized 15μm wide sample (low current, linear response) after [21]

the current is spread over the whole sample (as one would expect from the Drude
theory). (b) As the magnetic field is lowered and enters the upper edge of the QHP,
the Hall potential drops in a non-linear (and sometimes even non-monotonous) man-
ner in the center of the sample. Although in this region extremely small changes of
the magnetic field may lead to considerable changes of the potential profile, one
measures the quantized value for the Hall resistance. (c) At lower B-values well
inside the QHP the Hall potential is constant in the center of the sample and drops
only across two stripes, which move with decreasing B towards the sample edges
and become narrower. The current now flows exclusively through these stripes. (d)
For B slightly below the lower edge of the QHP still some fraction of the Hall po-
tential drops near the edges, but a linear variation in the center region sets in. With
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Fig. 7 Color-coded plot of Hall-potential profiles, measured for a large interval of magnetic fields,
which covers several quantum-Hall plateaus. As can be seen in the magnification, the Hall voltage
drops at the positions of the innermost incompressible stripes, described by (6), after [19, 20]

further decreasing B, the fraction dropping near the edges decreases to zero and
the linear behavior (a) is recovered, until the upper edge of the QHP with the next
higher integer filling factor is reached and behavior (b) sets in. This kind of behavior
repeats itself for each QHP, as is shown in Fig. 7. [19,20] But what is the reason for
these different types of Hall-potential-profiles?

The position and the B-dependence of the stripes observed in the case (c)
seemed to be in good agreement with the position and B-dependence predicted
for the incompressible stripes. This motivated model calculations of the current
distribution in narrow Hall-bars under high magnetic fields [21, 22]. An external
non-equilibrium current Ix =

∫
dyjx(y) was applied to the idealized Hall-bar (with

translation invariance in x-direction). The resulting current density j and the “driv-
ing electric field” E = ∇μ*

ch(x, y) were assumed to satisfy a local ohmic relation

E(y) = ''�(y) · j(y). The local resistivity tensor ''�(y) = [''σ(y)]−1 was taken from a
calculation of the conductivity tensor for a homogeneous 2DES by replacing its fill-
ing factor ν by the local value ν(y). The feedback of the applied current on the
selfconsistent electrostatic potential, which is measured in experiment, was cal-
culated under the assumption of local equilibrium [22]. These calculations, and a
critical examination of the validity of the Thomas-Fermi approximation [21], lead
to the following picture for an idealized Hall-bar with translation invariant, symmet-
ric external confinement potential Vconf(y) = Vconf(−y).

At high temperatures (kBT � 0.3 �ωc) magnetic quantum effects are smeared
out and the Drude theory holds: the current is distributed over the whole sample, the
Hall electric field is constant, i.e. the Hall potential varies linearly across the sam-
ple. At low temperatures (kBT � 0.01 �ωc) a strong dependence on the magnetic
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field B is found. If B is so high, that everywhere in the sample the filling factor
is less than one, ν(y) < 1, the 2DES is compressible, the current is distributed
over the whole sample and the Hall potential varies linearly across the sample (very
similar to the result of the Drude theory). As the magnetic field is lowered, the fill-
ing factor ν(y) = 1 is reached for a value B = B1 in the center y = 0 of the
sample. For B � B1 an incompressible stripe (IS) evolves in the center, which
broadens rapidly with decreasing B until it splits into two stripes, since a com-
pressible stripe occurs in the center. With further decreasing B the two IS’s move
towards the sample edges and become narrower. Their position and width is rea-
sonably well approximated by the analytical expressions (6) as long as they are
sufficiently wide. But at a B-value B̂1 the width of the IS’s becomes zero, and in
the interval B̂1 > B > B2 no IS’s exist, where B2 is the B-value at which an
IS with local filling factor ν(y) = 2 evolves in the middle of the sample. At still
lower B-values, this IS broadens, then splits into two IS’s, which shrink while mov-
ing towards the edges and vanish, before an IS with the next integer value of the
filling factor occurs, and so on. At sufficiently high temperature T , the longitudi-
nal resistivity, and as a consequence the current density, is finite everywhere in the
2DES. As T is lowered, at positions with integer values of the filling factor the lon-
gitudinal resistivity becomes small while the current density becomes large. This is
the situation (d) observed in the experiment: partial drop of the Hall voltage near
the edges and linear variation in the center. If, at sufficiently low temperature, IS’s
with integer filling factor evolve, the total applied current flows in these stripes, so
that the longitudinal resistance Rxx of the sample vanishes. Since only IS’s with
the same value of the local filling factor exist, the Hall resistance Rxy assumes the
quantized value, with an error which becomes exponentially small in the limit of
low temperature [21].

This leads to a simple and consistent interpretation of the experimental results
[19, 20] on narrow etched Hall-bars, if one takes into account that the donor dis-
tribution, and as a consequence the confinement potential, will exhibit fluctuations
in both spatial directions [29]. Due to such fluctuations, the IS’s will no longer be
parallel to the sample edges. They may be bended and their width may fluctuate. If
one starts with situation (a) of Fig. 6 and lowers B, the upper edge of the QHP cor-
responding to filling factor ν = i will be reached if a percolating IS with this filling
factor occurs between source and drain contact, which is not necessarily at B = Bi .
Whereas for the idealized case at B � Bi a broad IS is calculated, in reality the cor-
responding incompressible region may contain compressible islands. These islands
will have a large effect on the effective potential in their immediate surroundings,
but they will not affect the measured value of the quantized Hall resistance. The
effect of such compressible islands is indicated schematically in Fig. 8.

The model calculations also revealed some other features, which are confirmed
by the experiments on narrow samples. Since the high-B edge of a QHP is deter-
mined by a wide incompressible region in the center of the sample, while the low-B
edge is determined by narrow incompressible regions near the sample edges, the
latter are much more sensitive to perturbations. For example, with increasing tem-
perature the QHP’s melt from the low-B edge, while they are much more stable at
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Fig. 8 Schematic sketch of the development of the compressible (grey) and of the innermost
incompressible (white) regions in a real, inhomogeneous 2DES during a sweep of the magnetic
field over a quantized Hall plateau. Around the integer value of the (average) filling factor (close
to the high-B edge in narrow samples) the plateau is stabilized by disorder and inhomogeneities,
near the low-B edge it is stabilized by incompressible stripes near the sample edges

the high-B edge. Increasing the applied current beyond the linear response regime
leads to asymmetry of the two incompressible stripes [22], which depends on the
current direction. A corresponding asymmetry can be seen in the experimental volt-
age curves.

Summary

In the nearly three decades since its discovery many models have been developed
to explain the quantized Hall effect. The focus was put either on the sample edge
or on the bulk, but both regions are of importance for the QHE. As an electro-
chemical potential difference is applied between source (S) and drain (D) contact
(i.e. in x-direction), the potential of S is carried by a compressible region along
one edge, the potential of D is transferred by a compressible region along the other
edge. The electrochemical potential difference acts thus as Hall voltage across the
Hall bar (y-direction). If the interior of the sample between S and D consists of
a connected incompressible region with integer filling factor i, maybe interrupted
by local islands with another filling factor, the electric field Ey(y) resulting from
the Hall voltage drives the Hall current dissipationless (perpendicular to the elec-
tric field) through the incompressible region in the interior of the sample. Since the
Hall voltage drops only across incompressible regions with the same filling factor
i, one measures the quantized value RH = h/(ie2) for the Hall resistance. The
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details of the voltage drop are not relevant. Inhomogeneities of the electron density
and, eventually, localization of electrons by potential fluctuations, guarantee that,
for moderate changes of the average electron density (at fixed magnetic field) or
of the magnetic field (at fixed average electron density), a connected incompress-
ible region with this filling factor i remains present in the interior of the sample:
the quantized value of the Hall resistance occurs as a plateau. The current distri-
bution varies strongly during such changes, since the landscape of compressible
and incompressible regions changes strongly. The quantized value of the Hall re-
sistance, however, remains unchanged, as long as the compressible regions along
opposite sample edges are separated by incompressible regions and, therefore, their
electrochemical potentials remain constant. These incompressible regions hinder
the exchange of electrons between opposite edges of the sample, i.e. they suppress
“backscattering”. Between two contacts on the same sample edge no voltage drop
can be measured, i.e. Rxx = Ux/Ix = 0. This does not require that the whole in-
terior of the sample is incompressible. Well developed incompressible stripes near
the sample edges are sufficient to suppress this backscattering and to keep the outer-
most compressible regions on their potentials. Then the total applied current flows
through these incompressible stripes, while the compressible regions between these
stripes do not contribute to the current transmission. As a consequence, the potential
is constant in the interior and drops only across the incompressible stripes. This is
the situation near the low-B edges of the quantum Hall plateaus.

These ideas, stimulated by and explaining the scanning force-microscope ex-
periments, [19, 20] make it plausible why even on finite samples with impurities
the quantized values of the Hall resistance can be measured with extraordinary
precision: they occur when percolating incompressible regions exist. On these in-
compressible regions the quantized values of the resistivity are realized, and the
externally applied current is forced to flow only through these regions (only then
the entropy production of the stationary non-equilibrium state is minimized) [29].
An extension of the model calculations to wider samples, and a more rigorous
justification of its basic assumptions, seem desirable. Also the mechanisms lead-
ing to a breakdown of the quantized Hall effect above a critical current and, related
to that, heating effects in the quantized Hall regime [23], require additional work.

The actual research in the field of quantized Hall effect, deals however mainly
with correlation effects, which become increasingly important with increasing qual-
ity (and mobility) of the two-dimensional electron systems, and lead to the discovery
of more and more incompressible many-electron states, visualized by new fractional
quantum Hall plateaus. Phenomena like � Bose–Einstein condensation, skyrmion-
type excitations, fractional charges, vanishing longitudinal resistance induced by
microwave radiation, as well as stripe- and bubble-like phase-textures in higher
Landau levels are surprising discoveries of recent years and indicate that also for
the future the quantized Hall effect will remain an actual and interesting field of
research.
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Quantum Interrogation

Paul G. Kwiat

The notion of a “negative-result” measurement was first discussed by Renninger [1]
and later by Dicke [2]. As a simple example, consider a single photon incident on
a beamsplitter, with a 100% efficient detector in the reflected port; if we somehow
know that the photon amplitude has already encountered the detector, and yet no
detection has taken place, then this non-detection certainly “collapses” the original
superposition of the photon � wave function solely into the transmitted path. Elitzur
and Vaidman (EV) [3] suggested a modified system in which a second beamsplit-
ter is used to recombine the two paths (see Fig. 1). In the absence of any object in
one arm of the interferometer, complete destructive interference of the two paths
leads to a zero probability that a detector at one of the ports fires. On the other
hand, the presence of a non-transmitting object necessarily inhibits the destructive
interference (as there is then only one path by which the photon can reach the recom-
bining beamsplitter) so that sometimes this “dark” detector will fire. This indicates
the presence of the object, even though the detected photon most certainly did not
travel the path containing the object, in essence an “interaction-free” measurement.1

(� Interaction-free Measurement)
This simple scheme was experimentally verified using single photons (� light

quantum) (conditionally prepared via parametric down-conversion), achieving a

1 We prefer the more general term “quantum interrogation”, which allows for the possibility that
the photon does pass through the path with the object, e.g., if the object is semi-transparent or only
partially blocks the arm of the interferometer.
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Fig. 1 (a). In the absence of an object in the interferometer, each incident photon is detected at
D1, i.e., D2 never fires. (b). A non-transmitting object disrupts the interference, so D2 now receives
photons, unambiguously indicating the presence of the object, even though any detected photon
must have taken the bottom path in the interferometer. (c). Varying the beamsplitter reflectivities
enables one to optimize the efficiency, approaching the 50% limit possible with this technique (data
from [5])

∼ 33% efficiency for detecting the presence of an opaque object in an interaction-
free way [4]. Another experiment verified that by adjusting the reflectivity of the
interferometer beamsplitters, one could achieve an efficiency approaching 50%
(Fig. 1c), and by incorporating a focused beam, demonstrated the basic elements
of a reduced-absorption imaging method [5]. Similar quantum interrogation experi-
ments have now been performed with neutrons [6] and even proposed as a means to
read out superconducting qubits without any energy exchange [7].

Although it was originally thought that 50% efficiency was the best one could
achieve, in fact a method based on the � quantum Zeno effect (QZE) allows much
better performance: In principle in a lossless setup, one can detect the presence of a
non-transmitting object all the time, with no chance of absorption by the object! The
basic idea of the QZE [8] is that repeated strong measurements of a quantum system
can continually project it into its initial state, thereby inhibiting the otherwise slow
evolution out of this state. As a simple example, consider the arrangement shown
in Fig. 2a. A single photon with initial horizontal polarization is cycled N times
through a Michelson interferometer (with a polarizing beamsplitter (PBS)). In each
cycle, a waveplate is used to rotate the polarization by a small amount �θ = π/2N .
In the absence of an object in the interferometer, the photon polarization rotates
stepwise from horizontal to vertical. On the other hand, the presence of a non-
transmitting object in the vertical polarization arm of the interferometer will inhibit
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Fig. 2 (a). Conceptual scheme incorporating the quantum Zeno effect to realize high-efficiency
quantum interrogation. An initially horizontally (H) polarized photon is allowed to circulate N

times (experiencing a rotation by π/2N each cycle) before being removed and its polarization an-
alyzed. In the absence of the object, the photon will have vertical (V) polarization. In the presence
of an object in the V arm, the final polarization of the photon will be H, with a negligibly small
probability the photon is absorbed. (b). Plot of efficiency vs. number of cycles for ideal lossless
system (solid curve), and one with ∼95% loss (dashed curve), corresponding to experimental data
(diamonds) (from [9])

this evolution. Now after N cycles, the photon has a high probability cos2N(π/2N)

of still being horizontally polarized. As N becomes very large (and the correspond-
ing effective coupling between the horizontal and vertical-polarization arms of the
interferometer becomes very small) the probability that the photon remains in its
initial horizontal polarization state approaches 1, while the probability the photon is
ever absorbed by the object approaches zero.2 Therefore, by simply observing the
final state of the polarization of the photon one can determine in an interaction-free
way whether or not there was a (non-transmitting) object present. Such a scheme
has been implemented [9], achieving efficiencies of∼75%.

A related method involves shining monochromatic light into a highly resonant
optical cavity, with mirrors of very high reflectivity R ≈ 1 − ε. In the absence of
any object in the interferometer, the incident field will, after a transient period, expe-
rience full constructive interference for transmission, i.e., essentially all the incident
light will be transmitted. On the other hand, if there is an opaque object in the cavity,
this will prevent the necessary coherent build up of fields that would otherwise lead
to destructive interference for reflection off the entrance mirror; now the incident
light simply bounces off the cavity, with probabilityR. Thus, detection of a reflected
(transmitted) photon indicates the presence (absence) of a non-transmitting object
in the cavity. Such a scheme has been experimentally realized [10], achieving an
interaction-free detection probability up to 88%. By using a scanning system, one
can also generalize this technique to 2-D imaging; in particular, Inoue and Bjork
were able to “image” the silhouette of a piece of film without exposing the film
itself [11].

2 The presence of loss in the rest of the system actually prevents one from reaching the limit
N →∞, so in any real system the maximum efficiency is strictly <1.



594 Quantum Interrogation

One topic of interest is whether or not the quantum interrogation techniques can
be useful when the object is partially transmitting; certainly any sort of imaging
would be much more valuable if a “grayscale” for absorption could be obtained.
By making enough measurements, it is always possible to distinguish between a
transparent object and one with some absorption – multiple passes through the latter
object cause it to effectively look more opaque [12]. However, in general two partial
transparencies cannot be perfectly distinguished [13].

Finally, one of the more intriguing applications of the methods of quantum inter-
rogation is to the topic of � quantum computation. Mitchison and Jozsa [14] showed
that if one can put a quantum computer into a superposition of “running” and “not
running”, it is possible to gain information about the result even in instances when
the algorithm did not run – a “counterfactual quantum computation” (CFQC). The
mere fact that the computer could have run is enough to disrupt interference (in
the same way that the presence of an opaque object disrupts the interference in
Fig. 1). This EV-style approach has been experimentally realized [15] using a sim-
ple beamsplitter to put an incident photon into a superposition of passing through
or not passing through an optical implementation of Grover’s search algorithm [16]
(� quantum computation); an efficiency – likelihood of a CFQC – of 32% was at-
tained. Although the original method only works a fraction of the time and only on
certain possible results, a more complicated system based on the QZE approach –
many weak measurements (� weak value and weak measurements) – was predicted
to again recover high efficiencies [15].
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Quantum Jump Experiments

Howard J. Carmichael

The notion of � quantum jumps entered quantum physics in 1913, in the year Niels
Bohr (1885–1962) proposed a quantized model of the � Rutherford atom and a
prescription for obtaining the Rydberg formula for the emission spectrum of atomic
hydrogen � Bohr’s atom model. It is inherent in the simple relation [1]

Wτ2 −Wτ1 = hν,

which equates a difference in electron binding energies in initial and final atomic
stationary states to the energy of an emitted quantum of radiation of frequency ν.
Atomic stationary states are labeled by an integer τ , and Bohr speaks of “the pass-
ing of the system from a state corresponding to τ = τ1 to one corresponding to
τ = τ2”; this passing is the quantum jump, Planck’s constant and it proceeds with
the emission of a quantum of radiation of energy hν, where h is � Planck’s constant;
the reverse jump accompanies absorption. In 1916 Einstein (1879–1955) raised the
quantum jump to the level of a genuine principle of quantum dynamics. By propos-
ing probabilistic rules for the absorption and emission (spontaneous and stimulated)
of radiation quanta, Einstein managed to arrive at a dynamical explanation of the
Planck formula for the spectrum of � black-body radiation [2]. This so-called A and
B theory [13, 14] continues in wide use today, providing the basis for rate-equation
models of the interaction of light and quantized matter; although, its founding upon
the quantum jump, adopted as a fundamental event, is superceded by the quantum
mechanics of Schrödinger (1887–1961) and Heisenberg (1901–1976).
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In quantum mechanics the Bohr–Einstein quantum jump is generalized as the
quantum transition, the probabilistic change from an initial (prepared) state to a
final (observed) state – from ket vector |i〉 to ket vector |f 〉. In 1985 Cook and
Kimble [3] suggested an experiment to demonstrate the original � quantum jump
between atomic stationary states, building upon the electron shelving idea of Hans
Dehmelt [4] and recently developed methods for trapping and cooling single atomic
ions. Dehmelt received the Nobel prize for developing the ion trap in 1989. His
electron shelving idea was proposed in 1975, as an amplifying mechanism for the
detection of a weak transition in single-atom � spectroscopy. It is illustrated by the
energy-level diagram of Fig. 1. Two radiative transitions in a mercury ion are rep-
resented. The 194nm-transition is strong and dipole-allowed, while the transition at
281.5nm is a metastable dipole-non-allowed transition and weak. If both are excited
by near-resonant radiation, the dominant effect will be the scattering of a steady
stream of photons (� light quantum) – some 108 per second – on the strong tran-
sition. An equally important feature is to be noted, though; occasional transitions
(quantum jumps) occur on the weak transition, and these “shelve” the electron in
the 5d96s2 2D5/2 stationary state, temporarily turning off the strong-transition flu-
orescence. The fluorescence is therefore predicted to be intermittent, and its abrupt
turning off and on records quantum jumps on the weak 281.5nm-transition. With
a metastable lifetime on the order of 0.1s, interruptions in the strong-transition
fluorescence are readily observed, even if only 0.1% of the photon stream can be col-
lected and counted. A series of observations were made in 1986 with single trapped
barium [5, 6] and mercury [7] ions, and in 1995 quantum jumps of a single terrylene
(C30H16) molecule were observed through intermittent fluorescence [8].

Related but slightly different methods were used to observe quantum jumps in
other systems. In 1999 Peil and Gabrielse observed quantum jumps between Landau
levels [15] of an electron bound in a cyclotron orbit [9]. In their experiment there

Fig. 1 Simplified energy-level diagram for Hg II
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is no fluorescence signal monitoring the initial and final stationary states. To realize
an equivalent monitoring, a coupling of the cyclotron motion – which takes place
in a plane perpendicular to an applied magnetic field – to a harmonic oscillation
along the axis of the magnetic field is used. The resonance frequency of the axial
motion depends upon the cyclotron energy; it therefore shifts abruptly when the
electron makes a quantum jump. The scheme realizes a so-called QND (quantum
nondemolition) measurement [16] of the cyclotron energy which is observed con-
tinuously over time. A similar QND method was used to observe quantum jumps
of a radiation oscillator (a mode of the electromagnetic field) in a superconducting
microwave cavity [10]. In this experiment the quantum jumps record the “birth” (en-
ergy increase) or “death” (energy decrease) of a photon in the cavity. Compared with
the observation of quantum jumps through intermittent fluorescence, here the roles
of atom and photon are reversed, with the number of photons monitored by Ram-
sey interferometry [17] carried out on a stream of Rydberg atoms passing through
the cavity. A frequency shift that depends on photon number is recorded through a
phase shift of the Ramsey fringe.

In quantum mechanics, evolution according to the � Schrödinger equation is
continuous and nothing jumps [17]. The interpretation of quantum jump experi-
ments must therefore face the question: in what sense is the discontinuous jump of
Bohr and Einstein observed? Figure 2 illustrates a segment of intermittent fluores-
cence from a simulation of an electron shelving experiment. Gaps in the record of
photons scattered on the strong transition (marked by vertical lines) indicate periods
where the electron is shelved in the 5d96s2 2D5/2 stationary state (Fig. 1). In a naive
interpretation, the electron jumped into this state at the beginning of each gap. An
analysis like that of Cook and Kimble [3] which holds for excitation by incoherent

Fig. 2 Quantum trajectory simulation of intermittent fluorescence
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radiation incorporates the jump explicitly, as it uses Einstein’s phenomenological
model to describe the emission and absorption of radiation quanta. Such an analysis
is inappropriate for coherent (laser) excitation, however, since coherence in excita-
tion implies the creation, according to the � Schrödinger equation, of a coherent� superposition of atomic stationary states:

cg(t)|g〉 + cs(t)|s〉 + cw(t)|w〉,

where g, s, w denote ground, strong, weak, and cg(t), cs(t), cw(t) are some time-
dependent complex numbers. A resolution of the appearance of quantum jumps
with the superposition of atomic stationary states is reached by incorporating the
measurement process, i.e., the recording of the strong-transition fluorescence, into
the Schrödinger evolution. The central element is the notion of a null measure-
ment – here the non-appearance of an anticipated photon scattered on the strong
transition. Porrati and Putterman [11] pointed out the importance of this idea, and
it is the central ingredient of the quantum trajectory treatment of photon scattering
[18–20] used to generate Fig. 2. In quantum trajectory theory one simulates a record
of scattered photon times while simultaneously evolving the state of the ion as a
superposition of stationary states. The exploded time-scale in Fig. 2 shows what is
revealed about the start of a gap in the monitored strong-transition fluorescence.
After a last photon is recorded (of course known to be “last” in retrospect only),
the probability |cw(t)|2 that the ion occupies the shelved state eventually begins to
grow and evolves continuously to |cw(t)|2 = 1. The interpretation is that |cw(t)|2
represents an expectation that the ion is in the shelved state, an expectation condi-
tioned upon the information available in the monitored fluorescence. As scattered
photons continue not to appear, the expectation eventually grows to a certainty; no
actual “jump” into the shelved state is confirmed. Typically, the period of uncer-
tainty corresponds to the time required for the scattering of a few tens of photons
on the strong transition. Similar commentary applies to all quantum jump experi-
ments: though a quantum jump is inferred, the abruptness of the observed change of
state is set by the finite time resolution of the measurement and no violation of the
continuous quantum mechanics of Schrödinger and Heisenberg is confirmed.
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his colleague Hendrik Antoon Lorentz (1853–1928) on 25 August 1913. “If this is
the way to reach the goal, I must give up doing physics.” The assumption of ‘quan-
tum jumps’, i.e., an � electron’s sudden and unpredictable transition between two
stable orbits around the nucleus, was an integral part of Bohr’s model. Bohr’s men-
tor Ernest Rutherford (1871–1937) in Manchester raised doubts about it in a letter to
Bohr, dated 20 March 1913: “How does an electron decide what frequency it is go-
ing to vibrate at when it passes from one stationary state to the other? It seems to me
that you would have to assume that the electron knows beforehand where it is go-
ing to stop.” Knowing that was indeed imperative in Bohr’s semi-classical model of
emission and absorption, because the electromagnetic wave of frequency v (linked
to the energy difference �E between two stationary states by E = hv) must ‘start
radiating’ as soon as the electron ‘jumps’ (cf. also Fig. 1). According to Ruther-
ford, Bohr’s effort to combine a discontinuous quantum process of emission and
absorption with a classical continuum model of radiation as electromagnetic waves
thus raised deep problems concerning causality � indeterminism. These problems
stayed with semi-classical � quantum theory to its bitter end and were even aggra-
vated in the quantum mechanics of 1925/26.

Bohr’s solution was simply to declare classical electrodynamics out of order. The
problem that any charged particles (such as � electrons on their ‘orbits’ around the
positively charged nucleus) must continually loose energy (Larmor’s theorem) was
thus done away with.1 He was so bold as to stipulate that the atom only radiates
during ‘jumps’ between energy levels and refused to go into further detail about the
physical processes involved. Instead he sought a suitable phenomenological descrip-
tion, concentrating on � observables before and after a given measurement. Because
particularly for the � Stark effect and � Zeeman effect the number of combinator-
ically possible transitions between energy levels exceeds the number of observed
spectral lines, � selection rules had to be imposed to reduce the number of admis-
sible ‘jumps’. As long as the interaction between different electrons of one atom is

Fig. 1 Bohr atom model with
quantum jump of the electron
from the n = 3 to the n = 2
orbit. The energy difference
�E between the two orbits
is emitted as photonic energy
of hv. Source: Wikimedia
Commons

1 After hearing a talk on Bohr’s atomic model in the Zurich physics colloquium, Max von Laue
(1879–1960) rose and said: “That’s all nonsense; Maxwell’s equations are correct under all circum-
stances, and an electron orbiting around a positive nucleus is bound to radiate.” (Quoted in [2], 86)
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not too large, only those transitions take place where just one of the electrons makes
a “jump”, i.e., only one alters its orbital quantum number l by ±1 (see, e.g., [1, 2nd
ed.], p. 85). After initial protest, the scientific community learned to live with prob-
lems of interpretation by simply ignoring them as best as possible and developing a
rather instrumentalistic attitude (� quantum theory, crisis period). A deeper under-
standing of selection rules and other features of the semi-classical atomic models
only became possible after the discovery of � spin and the advent of quantum me-
chanics in 1925/26. Formerly useful mental models like electron ‘orbits’, ‘jumps’,
etc. no longer made sense because of � Heisenberg’s uncertainty relation. See also� quantum jump experiments.
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Quantum Logic

Peter Mittelstaedt

The Early History of Quantum Logic

Already in his pioneering work “Mathematische Grundlagen der Quantenmechanik”
of 1932, J. von Neumann mentioned that projection operators (� projection) in� Hilbert space correspond to elementary propositions in quantum mechanics, and
that also the logical connectives ∧ (and), ∨ (or), and ¬ (not) can adequately be ex-
pressed in terms of projection operators. Compared to classical logic, the calculus
of propositions, that is based on projection operators, is essentially restricted by the
mutual commensurability or incommensurability of the propositions in question.

This calculus was investigated more in detail in the work of G. Birkhoff and J.
von Neumann in 1936 [1]. In terms of lattice theory, the authors could show, that
the lattice of quantum mechanical propositions is given by an orthocomplemented
lattice that is not distributive and in general also not modular. The title of their paper
“The logic of quantum mechanics” indicates the similarity and distinctness between
this “logic” and the well known classical proposition logic, which is given by a
Boolean lattice LC .

The lattice of quantum mechanical propositions that correspond to projection
operators in Hilbert space, was further elaborated by Piron [2] and Jauch [3] and
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found to be an orthocomplemented, orthomodular lattice LQ with a zero-element 0
and a unit element I. In addition, the lattice of projection operators is atomic and
it fulfils the covering property. Together with these additional properties, the lattice
will be denoted here by LQ

∗.

Is Quantum Logic a Genuine Logic?

The propositional logic L Q which corresponds to the lattice LQ is often called
“quantum logic”. At first, this terminology is merely based on the analogy with
the classical propositional logic L C, which corresponds to a Boolean lattice, i.e.
to an orthocomplemented, distributive lattice LC. However, at this stage of the dis-
cussion, it is by no means clear, whether the structure L Q is at all a logic in the
genuine sense of this concept. This problem can be treated by recourse to the oper-
ational justification of intuitionistic and classical logic by means of a semantic that
refers to calculi [4] or to dialogs [5]. Making use of the mutual incommensurability
of elementary quantum mechanical propositions one finds, that these elementary
propositions are only “restrictedly available” in a calculus [6] or in a dialog [7].
On the basis of a “quantum dialog game” with a “restricted availability” of ele-
mentary propositions, a calculus L Qi for an “intuitionistic quantum logic” can be
established. It can be shown that the calculus L Qi is consistent and complete with
respect to the semantic of quantum dialogs [8]. Under the additional assumption that
elementary propositions are value definite, i.e. fulfil generally the law A ∨ ¬A = I
of the excluded middle (tertium non datur) – we arrive at the calculus L Q of full
quantum logic.

The Lindenbaum-Tarski algebra of the calculus L Q is an orthocomplemented,
orthomodular lattice with universal bounds 0 and I, which we denoted here by LQ.
The Lindenbaum-Tarski algebra of the calculus L Qi of intuitionistic quantum logic
is also a lattice LQi, but this structure 1 is of less interest, since there are no physi-
cal reasons to dispense with the value definiteness of elementary propositions. The
calculus L Q can be further elaborated. If we assume, that the elementary propo-
sitions refer to one single quantum system, then we arrive at a calculus L ∗

Q, the
Lindenbaum-Tarski algebra of which is the lattice LQ

∗ mentioned above with the
additional properties of atomicity and the covering property [9].

Irrespective of the successful logical reconstruction of the lattice LQ
∗ and the

completeness and consistency of the logical calculi L Qi and L Q, Jauch and Piron
[10] had argued that the lattice LQ must not be considered as a logic, since the
operation of material implication “A→B” cannot be expressed by ¬A ∨ B as in
a Boolean lattice. The material implication is indispensable for the application of
the modus ponens lawin logical inference. However, it could be shown [11] that the
slight generalisation ¬A ∨ (A ∧ B) of the formula mentioned fulfils in LQ almost
all requirements that are fulfilled by ¬A ∨ B in LC. Moreover, it could be shown

1 The lattice LQi is described in detail in P. Mittelstaedt (1978), chapter V.
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that in the lattice LQi of intuitionistic quantum logic for any two elements A and B
there exists a uniquely defined generalised material implication A→B, which can,
however, not be expressed by the other connectives ∧, ∨, and ¬ [12]. If value def-
initeness of elementary propositions is presupposed, the proposition A→B agrees
with the proposition ¬A ∨ (A ∧ B) mentioned above.

Hence, the calculi L Q and L Qi fulfil the most important requirements of a logical
calculus. The difference between these calculi and the calculi L C and L i of classical
and intuitionistic logic is, that in the traditional calculi for any two propositions A
and B the compound propositions A → (B → A) and B → (A → B) are formally
true, whereas in the quantum logical systems L Q and L Qi these propositions are
formally true if and only if the propositions A and B are commensurable. In L Q the
difference to L C can also be expressed by the fact that for two propositions A and
B the distributive law A = (A ∧ B) ∨ (A ∧ ¬B) is formally true in L C but not in
L Q

2, [18].

The Bottom-Top Reconstruction of Quantum Mechanics

On the basis of the logical reconstruction of the lattice LQ
∗ described above, a

bottom-top reconstruction of quantum mechanics in Hilbert space was envisaged by
several authors. Starting from a formal language of quantum physics it seemed to be
possible to proceed in a few steps to quantum logic, to the lattice LQ

∗ and finally to
the lattice LH of closed subspaces of Hilbert space. The last step was strongly moti-
vated by the Piron-McLaren theorem3 [2, 13, 14] which states that a lattice LQ

∗ (of
length at least 4) is isomorphic to the lattice LH(D) of closed subspaces of a Hilbert
space H(D) over a division ring D, where D is given by the real, the complex, or
the quaternion numbers. If the real and the quaternion numbers could be excluded
by experimental evidence, we would arrive at the Hilbert space H over the complex
numbers and thus at quantum mechanics in Hilbert space.

However, the lattice LQ
∗ does not restrict the choice of the division ring per

se to the real, the complex and the quaternion numbers. Quite surprisingly, Keller
[15] proved a negative result in 1980. There are lattices LQ

∗ that fulfil all the
conditions of the Piron-McLaren theorem but nevertheless allow for non-classical
Hilbert spaces over non-Archimedean division rings. This unexpected result was
considered by some authors as demonstrating the fundamental impossibility of the
quantum logic approach to quantum mechanics in a Hilbert space over the complex
numbers. Hence, the bottom-top reconstruction of quantum mechanics mentioned,
was supposed to be impossible4 [19, 20]. However, this discouraging conclusion
has been contradicted by an important result by Solèr that allows for a purely
lattice-theoretical characterisation of classical Hilbert spaces. In fact, every lattice

2 Cf. P. Mittelstaedt, (1978) and (2005), Chapter 13.
3 Cf. Piron (1964), McLaren (1965), and Varadarajan (1968).
4 For more details cf. Dalla Chiara et al. 2001, pp. 48–50 and Dalla Chiara et al. 2004, pp. 72–74.
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which satisfies in addition to the conditions of the Piron-McLaren theorem also
the so-called “angle bisecting condition” [16], is isomorphic to a classical Hilbert
lattice [17].

Although this mathematical result provides some hope to achieve one day the
main goal of quantum logic, the bottom-top reconstruction of classical Hilbert lat-
tices, this goal is still far away. The missing link is an operational condition for
quantum mechanical propositions that finally leads – within the lattice-theoretical
formulation of quantum logic – to the “angle-bisecting condition” mentioned above.
Only if this “operational Solèr condition” can be formulated and justified by plau-
sible physical reasoning, the quantum logical reconstruction of quantum mechanics
could be considered as finally established.
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Quantum Mechanics

See: Born rule; Heisenberg picture; Schrödinger picture; Schrödinger equation; Un-
certainty relation; Orthodox interpretation; relativistic quantum mechanics; wave
mechanics.

Quantum Numbers

Klaus Hentschel

Within the context of the � atomic model by Niels Bohr (1885–1962), observ-
able spectrum lines of frequency ν are described as � quantum jumps of bound� electrons between quantized energy levels En according to the rule: νnm =
(En − Em)/h, with h = a quantum of action, � Planck’s constant. With the
small correction for the so-called reduced mass, the energy En of each electron
orbit around the atomic core is given as:

En = 2π2e4mM

h2(m+M)
· 1

n2

m = the mass of the electron; M = the mass of the atomic core; n is the first (or
“main” quantum number) mainly determining the energy level of each electron,
aside from small corrections mostly relevant to precision � spectroscopy and de-
scribed by other subsequently introduced quantum numbers.

As the analogy between the planetary orbits around a massive sun and electron
orbits around the positively charged nucleus already implies, these electron orbits
would generally not be circles but ellipses. However, within the framework of classi-
cal mechanics, all ellipses generated from the circle by adiabatic transformations are
energetically equivalent to the circle, so Bohr initially thought that other orbit forms
would be reducible to simple circular orbits. But Arnold Sommerfeld (1868–1951),
a theoretical physicist trained as a mathematician and familiar with Einstein’s the-
ory of relativity, noted that electrons on highly eccentric orbits increase speed when
approaching the nucleus. Relativistically, this leads to a slight increase in their mass
and thus to a slight drop in energy of the respective orbit against a circular orbit.

faster slower

In order to describe this, Sommerfeld introduced another azimuthal quantum
number l (sometimes also called k or nϕ), describing the degree of eccentricity of the
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electron orbit, with a the largest and b the smallest diameter (see, for instance, [5]).
Classically, all eccentricities ε = b/a are permissible, but within the early � quan-
tum theory another � quantization condition is imposed and only certain orbits are
allowed for which

32

31 22

b
a

33

Jϕ =
2π∫

0

pϕdρ = nϕ · h ≡ l·h

and the eccentricity ε = b/a

b

a
= nϕ

n
= l

n
with l < n

When an external field is imposed on the atom, these ellipses can orient them-
selves in various ways with respect to the field (for instance, a magnetic field
causing the � Zeeman effect or an electric field leading to the � Stark effect).
Again, classically, all angles between orbit and external field would be permis-
sible, but in quantum theory only certain angular orientations α are allowed (see
also � Stern–Gerlach experiment and � vector model). Systematic analysis of data
from the � spectroscopy of Zeeman multiplets showed that all permissible orien-
tations could be labelled with one additional magnetic quantum number m, with
|m| � l, thus m = −l,−l+ 1,−l+ 2. . ., 0, 1, 2. . . l− 2, l− 1, l; and for the angle
α: cos α = m/1 and |m| � |l| � |n|.

As is explained in more detail in the article on � spin, in January 1925 Wolfgang
E. Pauli (1900–1958) first expressed this mechanically indescribable ambiguity as a
new quantum number μ, later redubbed s = ±1/2 (for doublets). Each electron was
described by a set of four � quantum numbers:

energy mechanical
ambiguity

n, l, m, m (or s)

orientation of
electron ellipse

ellipse
eccentricity

j = l + swith quasi-vectorial addition 
(   vector-model) 

With this set of four different quantum numbers n, l, m, and s (sometimes alterna-
tively n, l, j, and s), it was possible to classify all electrons in bound states around
an atom’s positively charged core. In order to achieve a perfect fit with the number
of atoms in each row of the periodic table, Pauli had to introduce another constraint
on the shell structure: no two electrons of an atom may have all the four quantum
numbers in common, the Pauli principle (� exclusion principle):
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There can never be two or more equivalent electrons in the atom in which the values of all
[four] quantum numbers. . . concur within a strong field. . . If in the atom there is an electron
for which these quantum numbers. . . have specific values, then this state is occupied. [2,
p. 776]

The electron configuration of each atom was constructed of shells, starting
from the lowest possible energy level, i.e., the lowest main quantum numbers
n = 1, 2, . . ., and so on. For each given n, there will be n − 1 different eccen-
tricities l, and for each l, there will be 2l+1 different space orientations, and finally
two different spin orientations.

For n = 1, l = 0, therefore, only two electrons are in the lowest shell; for n = 2,
l will either be 1, with m = −1, 0, or −1, or l will be 0. Altogether, because spin
orientation yields another factor 2, we have 2×(3+1) = 8 electrons in the next shell,
for n = 3, the resulting total will be 2×(5+3+1) = 18 and so on. We thus see that
the resulting series of so-called golden numbers 2, 8, 18, 32, . . . , perfectly fits the
structure of the periodic table of the elements, with only two chemical elements in
the first row (hydrogen and helium), eight in the second row (starting with lithium
and ending with neon), etc. Bohr and Pauli had succeeded in deriving the usual
period lengths of the periodic table. The arrangement of the periodic system of the
elements thus seemed to make a little more sense again, at least as far as the main
groups were concerned. But it came at the cost of a “classically indescribable kind of
ambiguity”; and Pauli’s prohibition of any duplication among the quantum numbers
occupying a given state was no better justifiable according to classical theory and
only understood within the context of the � Fermi–Dirac statistics of later quantum
mechanics.
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Quantum State Diffusion Theory (QSD)

Mauricio Suárez

Quantum state diffusion (QSD) is possibly the most sophisticated collapse inter-
pretation on offer today. It is closely related to the Ghirardi–Rimini–Weber (GRW)
style-theories (� GRW), but it assumes that free particles are idealisations. Accord-
ing to QSD all physically real particles are subject to a degree of interaction with
their environment. The fundamental equation of QSD is the linear master equation,
which looks just like the � Schrödinger equation, but with additional terms besides
the usual Hamiltonian [1, pp. 44–45]:

dρ/dt = −i/h[H,ρ] +∑j (Lj ρ Lj
∗ − 1/2 Lj

∗Lj ρ− 1/2 ρLj
∗ Lj ), where the

Lindblad operators Lj may or not be Hermitian.
The two limiting cases are:

1. LINDBLAD: The environmental interaction dominates and the Hamiltonian in-
ternal dynamics is negligible (these are “wide open systems” � decoherence):

dρ/dt =
∑
j

(Lj ρ Lj
∗ − 1/2 Lj

∗ Lj ρ − 1/2 ρ Lj
∗ Lj ).

2. SCHRÖDINGER: The environmental interaction is negligible and the
Hamiltonian dynamics dominates (“completely isolated systems”):

dρ/dt = −i/h [H, ρ] .

So QSD recovers the Schrödinger equation for the idealisation of a completely iso-
lated system. In general, however, the full linear master equation applies, and the
resulting diffusion process for the quantum state on the Bloch sphere is similar to� Brownian motion in 3-d physical space. A measurement is typically modelled
within QSD as a wide open system interaction with a macroscopic measuring de-
vice [2]. Thus QSD predicts a transition from a pure state (� states, pure and mixed)
to a � mixed state for the pointer position, which it claims solves the measure-
ment problem. See also � Bohmian mechanics; Measurement theory; Metaphysics
in Quantum Mechanics; Modal Interpretation; Objectification; Projection Postulate.
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Stefan Weigert

Quantum state reconstruction, or state reconstruction for short, aims at identifying
an unknown quantum state (� states in quantum mechanics) on the basis of exper-
imentally accessible data. The Quantum Optics community usually refers to this
inverse problem as quantum (state) tomography while the expression quantum state
estimation is often used in the field of � Quantum computation. Reconstruction pro-
cedures depend on the physical context defined by the system carrying the unknown
state, the experimentally accessible � observables, the size of the � ensemble of
systems prepared in the unknown state, and the precision of the measured data.

A two-level system (such as a spin-1/2, a qubit, or the two polarizations of a
photon) prepared in a state with density matrix ρ̂ is sufficient to illustrate the idea of
state reconstruction. With two non-negative eigenvalues summing to one, the density
matrix is a positive operator, and it depends on three real parameters. In the Bloch
representation, the parameters combine to a real vector n with length |n| � 1,

ρ̂ = 1

2

(
I+ n · σ̂ ) ,

where I denotes the identity operator, and the components of the spin operator σ̂ are
given by the � Pauli matrices σ̂x , σ̂y , and σ̂z. This parametrization of the density
matrix ρ̂ is immediately useful for state reconstruction since the components of the
vector n coincide with the expectation values of the � Pauli matrices in the state ρ̂,

nj = Tr[σ̂j ρ̂] ≡ 〈σ̂j 〉ρ , j = x, y, z .

The three observables σ̂x , σ̂y , and σ̂z are informationally complete: any state ρ̂ of the
two-level system is determined uniquely by the values of the measured expectations
〈σ̂x〉ρ , 〈σ̂y〉ρ , and 〈σ̂z〉ρ . No pair of observables allows one to reconstruct the state
of a two-level system but many other triples (and larger sets) of observables exist
which are also informationally complete. This flexibility is highly desirable from
an experimental point of view. Specific reconstruction procedures will take into ac-
count any additional information: if a system is known to reside in a pure state
(� states, pure and mixed), for example, it will be sufficient to measure a smaller
number of expectation values.

The reconstruction of a quantum state in a laboratory is necessarily based on
expectation values which are known only approximately: any ensemble used to
measure an expectation value such as 〈σ̂x 〉ρ is finite, and any measuring appa-
ratus invariably introduces uncertainties. Consequently, the collected data will be
compatible with a continuous family of quantum states. The reconstruction is com-
plicated by the fact that unacceptable density matrices with negative eigenvalues
may arise upon inverting the information contained in experimentally observed
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mean values. To determine the ‘best’ candidate among the acceptable states re-
quires additional selection criteria such as the maximum-likelihood method, for
example.

In 1933, W. Pauli raised he question [1] whether the probability distributions
|〈q|ψ〉|2dq (to find a particle located near position q) and |〈p|ψ〉|2dp (to find the
particle with a momentum close to p) determine a single pure state |ψ〉. This is an
early instance of quantum state reconstruction, with a negative answer: in general,
there is a family of pure states, called Pauli partners, which give rise to the same
Pauli data.

E. Schrödinger suggested in 1935 to think of the � wave function as a catalogue
of expectations, that is, a tool which succinctly holds the information about the ex-
pectation value of any observable [2]. In nuce, this remark contains the concept of
quantum state reconstruction. Knowing the expectation values of all observables ef-
fectively means to know the quantum state, and only a technical problem remains
to be solved, namely to identify an informationally complete set of observables, or
quorum. Given such a quorum it becomes possible to express Schrödinger’s equa-
tion in terms of expectation values only – thereby eliminating any reference to the
wave function or density matrix of the system [3].

The tomography of classical objects has inspired a successful method of quan-
tum state reconstruction. Quantum tomography is based on the Wigner function
(� Wigner distribution), an intuitively appealing way to represent the state ρ̂ of a
quantum particle. This real function resembles a classical probability distribution
for two real variables q and p although it may take negative values and, therefore,
cannot be observed experimentally. It is not difficult, however, to derive marginals
from the Wigner function which are legitimate probability distributions. As shown
in 1989, suitable families of marginals provide sufficient information to recover the
Wigner function and, a fortiori, the unknown state ρ̂ [4]. The marginals can be mea-
sured through optical homodyning, a well-established technique of quantum optics,
as has been demonstrated experimentally in 1993 [5].

Regarding the efficiency of different reconstruction schemes, some quantitative
results are known for states residing in a d-dimensional space. Given a finite ensem-
ble of quantum systems in one and the same state, the statistical error is minimal if
measurements are performed with respect to d + 1 sets of mutually unbiased bases,
each containing d observables [6]. So far, the required set of observables has been
found to exist only if the dimension d equals the power of a prime number.

To extract maximal information about an unknown state of which N copies of
are provided, it is often advantageous to go beyond the traditional framework of� projective measurements, using � positive operator-valued measurements in-
stead. Within the field of quantum cloning (� no-cloning theorem), the quality of
a given reconstruction procedure is measured by the fidelity which compares the
estimated state to the original one.
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Quantum Statistics

Arianna Borrelli

In quantum statistics, the behaviour of quantum systems with a large number of
degrees of freedom (e.g. an assembly of many particles) is investigated with the
help of statistical considerations [1]. Although in principle analogous to classical
statistical mechanics, the statistics of quantum systems requires more caution than
the classical one.

There are two main differences between the classical and the quantum case, and
they are linked to the � Heisenberg uncertainty principle and to the � indistin-
guishability of quantum particles of the same kind. According to the uncertainty
principle, even the most complete description of the state of a quantum system
will not allow unique predictions for the values of all observable quantities. This
intrinsically quantistic uncertainty has to be carefully combined with the classical
uncertainty due simply to our ignorance of the state of the system. This task is ac-
complished by employing the formalism of � state operator and � density matrix.

Moreover, when two or more quantum particles of the same kind (e.g. photons� light quantum; � electrons) are present in a system, the number of the sys-
tem’s possible states must be determined by a counting procedure different from
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the classical one.

There are two main differences between the classical and the quantum case, and
they are linked to the � Heisenberg uncertainty principle and to the � indistin-
guishability of quantum particles of the same kind. According to the uncertainty
principle, even the most complete description of the state of a quantum system
will not allow unique predictions for the values of all observable quantities. This
intrinsically quantistic uncertainty has to be carefully combined with the classical
uncertainty due simply to our ignorance of the state of the system. This task is ac-
complished by employing the formalism of � state operator and � density matrix.

Moreover, when two or more quantum particles of the same kind (e.g. photons� light quantum; � electrons) are present in a system, the number of the sys-
tem’s possible states must be determined by a counting procedure different from
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the one employed in the classical case. This requirement is variously described
as“indistinguishabiliy”,“� identity” or “permutivity” of quantum particles.

The earliest forms of quantum statistics to emerge were two counting procedures
for indistinguishable particles which established themselves as physically signifi-
cant around the middle of the 1920s: the statistics of � Bose–Einstein (1924) and
that of � Fermi-Dirac (1925–1926). From the late 1920s onward, with the develop-
ment of the formalism of the state operator, a more general formulation of quantum
statistics became possible [2, 3].

In quantum mechanics, having maximum information about a system means
knowing that it is in a pure state (� states, pure and mixed) described by a specific
state vector |ψ〉 in � Hilbert space. In this case, only quantum uncertainty enters
the picture. Otherwise, the system is said to be in a � mixed state characterized by
a probability distribution over all possible state vectors |ψα〉, and it is described by
a state operator ρ. Given an � orthonormal basis |i〉, any vector |ψα〉 can be written
as

|ψα〉 =∑i a
α
i |i〉.

A mixed state can thus be defined by a probability distribution P(α) over the sets
{aα}. The relevant state operator ρ is then represented in the basis |i〉 by the density
matrix:

ρij =∑α P (α) a
α
i a

α ∗
j = 〈aia∗j 〉,

where 〈〉 represents the average according to the distribution P(α). The diagonal
elements ρii of the density matrix give the probability of finding the system in the
state |i〉. Using state operator and density matrix, the average value of any observ-
able can be computed keeping into account both quantum and statistical uncertainty
at the same time [4].

To perform quantum statistical computations, it is necessary to make some initial
assumptions on P(α). In analogy to the classical case, all possible pure states of a
system are considered equally probable if no other information is available (postu-
late of equiprobability). For quantum systems in thermal equilibrium, the density
matrix ρij is assumed to be diagonal when the chosen basis vectors |i〉 are energy
eigenstates. If the energy of the system is conserved, this means that ρ will not
change with time. A sufficient condition for having 〈aia∗j 〉 = 0 for i �= j is for the
relative phases of the coefficients ai to be distributed randomly (postulate of random
phases). See also � Generalization of Quantum Statistics.
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Quantum Theory, 1914–1922

� Bohr’s Atomic Model� Specific Heats� Spectroscopy

Quantum Theory, Crisis Period 1923–Early 1925

Klaus Hentschel

Niels Bohr’s (1885–1962) atomic model as one of the cornerstones of pre-1925� quantum theory was incredibly successful for a whole decade, from 1913 to
roughly 1922. � The Bohr–Sommerfeld atomic model allowed a qualitative un-
derstanding of the basic spectrum series of hydrogen � Bohr’s atom model and
hydrogen-like atoms. It was also possible to extend this basic model to incorporate
additional, subtle effects such as the correction of the Rydberg constant due to the
effective mass calculation of atomic nucleus plus � electron, or relativistic correc-
tions due to the very high orbital velocity of strongly bound electrons close to the
nucleus. The � semi-classical models also explained the observed splitting of spec-
trum lines in electric and magnetic fields (� Stark effect, � Zeeman effect). X-ray
spectra also fell into place with the work by Henry Moseley (1887–1915) and oth-
ers on � quantum jumps of electrons from inner orbits (see [1, 5, 7, 9–12]). Around
1920, Bohr and his collaborators in Copenhagen were busy explaining how to build
up the periodic system using the idea of successively filling available places in an
electron orbit or shell ([1] vol. 4, [13]). Closed shells were linked to the ‘golden’ or
‘magic’ numbers 2, 8, 18, 32. An even more intricate form of this ‘number mysti-
cism’, as some of the actors jestingly called this playing with fitting formulae devoid
of physical interpretation, seemed to allow at least a partial mapping of the compli-
cated spectrum line splittings observed in the anomalous Zeeman effect, for instance
(� Landé g-factors and further refs. given there).

By the early 1920s various problems emerged, however, that turned out not to be
treatable within the framework of Bohr’s and Sommerfeld’s quantum theory, despite
the relentless efforts of the � Sommerfeld school in Munich and competing groups
in Göttingen, Copenhagen, and Leiden. The spectrum line intensities of the Zeeman
and Stark � multiplets, for instance, could not be calculated satisfactorily, nor did
many of the heavier atoms seem to follow the patterns of hydrogen-type atoms.
The model could thus not be extended further and an impasse seemed to have been
reached ([14–16]). Worse still, persistent anomalies surfaced pointing to aggravating
discrepancies between theory and experimental data, which had already reached a
relative margin of error of 10−8 and better in precision � spectroscopy.
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In 1922 Werner Heisenberg (1901–76), then still studying under Arnold Sommer-
feld (1868–1951) in Munich, started trying to account for even-numbered multiplets
and other subtleties in this “Zeeman botany in quantum sauce” (another ironic term
of the time) by introducing semi-integral � quantum numbers n. The usual formula
for multiplicity m = 2n+1 of uneven multiplets was thus formally extended to even
ones like the infamous doublets in alkali spectra ( [6, 8]). But what did these half-
integral quantum numbers correspond to? In late 1924, Wolfgang Pauli (1900–58)
started to toy with the idea of a “mechanically unaccountable duplicity” or ambigu-
ity (klassisch nicht beschreibbare Zweideutigkeit), a strange precursor to the idea of� spin (which only emerged at the end of 1925—too late to rescue the old � quan-
tum theory from its internal problems, but of crucial importance for later quantum
mechanics).

It was at this time that Heisenberg wrote to his teacher Sommerfeld: “This state
of physics really doesn’t appeal to me” (4 Jan. 1923, in [2], p. 134; cf. also [6]). Two
years later, the situation had deteriorated even further. Wolfgang Pauli was utterly
disgusted. He wrote to Ralph de Kronig (21 May 1925, in [4], p. 216):

“Physics is very much stuck in a rut again at the moment; it is far too hard for me, at least,
and I wish I were a film comedian or the like and had never heard of physics”.

Always a bit ahead of others about the state of affairs, Pauli wrote to Sommerfeld
on Dec. 6, 1924 ([4], p. 182, [2] p. 177):

“The conceptual models are in serious crisis now, you know, of a principal nature, which I
believe will end in another radical sharpening of the contrast between classical and quantum
theory. [. . .] the concept of definite, clear electron orbits within the atom are [probably]
hardly maintainable. One gets the impression from all models now that we’re speaking an
inadequate language for the simplicity and beauty of the quantum world.”

Bohr wrote even more pointedly in late 1924: “I have the feeling that we stand at
a turning point, since now the extent of the entire swindle has been characterized so
exhaustively” (22 Dec. 1924, German transl. of the orig. Danish in [4], p. 195; all
English translations by Ann M. Hentschel).

The increasing frustration and mounting uncertainty about the further trajectory
emboldened physicists to venture down unconventional paths. Even unheard-of, rad-
ically new ways out of the dilemma were tried. It became permissible to break with
everything, even with former sacred cows like integral values for quantum numbers
(Heisenberg in 1924) and the law of conservation of energy (see the entry on the
short-lived � Bohr–Kramers–Slater theory of 1924).

But what could one cling to in this search for a new framework? What could be
the stable foundations of an otherwise radically new quantum theory? The answer
that Heisenberg and Pauli gave was crystal clear, naive though it was: empiri-
cal facts, i.e. in their understanding, experimentally verifiable, multiply confirmed
statements about observable quantities such as energy intervals, frequencies or line
intensities (all directly based data from � spectroscopy), ionisation levels and low-
est binding energies (data from � scattering experiments, gas-ionisation and spark
spectra, for instance).



Quantum Theory, Crisis Period 1923–Early 1925 615

Q

This new, somewhat positivistic insistence on � observables, as they were soon
called, was not surprising. Pauli, in particular, had grown up in the ‘anti-
metaphysical’ context of fin-de-siècle Vienna. Actually, he was the god-son of
Vienna’s foremost apostle of phenomenalist thinking, the physicist-philosopher
Ernst Mach (1836–1916). Pauli was thus the first to stop referring to electron orbits,
perhaps reminding himself of what Mach had always asked when someone in his
presence talked about atoms as something immediately given: “Hab’s aans g’sehn?”
Have you ever seen one? Like atoms, electron orbits around the atomic core also
were only indirectly inferred from a complicated chain of hypothetico-inductive
reasoning and were thus by no means directly perceptible. Who could guarantee
that electron orbits actually existed? So Pauli decided to scrap this ‘metaphysical’
concept and to concentrate on observables:

“The relativistic doublet formula seems to me to show beyond doubt now that not just the
dynamical concept of force [Hertz] but also the kinetic concept of motion in classical theory
will have to undergo profound modifications. (That is why I also avoided the term ‘orbit’ in
my paper throughout.) As this concept of motion is based on the correspondence principle,
above all theoreticians must work on clarifying it. I think that energy and momentum values
of stationary states are something much more real than ‘orbits’. [. . .]

We must not bind the atoms in the chains of our prejudices – to which, in my opinion, also
belongs the assumption that electron orbits exist in the sense of ordinary mechanics – but we
must, on the contrary, adapt our concepts to experience” (Pauli to Bohr, 12 Dec. 1924, [4],
188f.)

For a while Heisenberg remained skeptical about this radical suggestion and tried
other avenues (including the half-integer quantum numbers), but he failed to reach
closer agreement with the observed intensities of spectrum lines. In June 1925 he
gave up and decided to implement Pauli’s demand for “a profound modification
of the classical concept of motion”. In describing the state of a mechanical sys-
tem, he consistently only used observable oscillation frequencies and amplitudes
and represented them by an integral of quantities in quantum theory. As Max Born
(1882–1970) was quick to point out, Heisenberg was applying a type of mathematics
totally new to him: matrix algebra.

In his pathbreaking paper about ‘a quantum-theoretical reinterpretation of kine-
matical and mechanical relations’, Heisenberg wrote in July 1925 [3]:

“In this situation it seems more advisable to completely abandon all hope of observing the
hitherto unobservable quantities (like location, revolving time of the electron), [. . .] and to
try to develop a quantum-theoretical mechanics analogous to the classical mechanics, in
which only relations between observables occur.”

Heisenberg is more explicit in a letter to Pauli from 9 July 1925, in which he en-
closed his manuscript for critique before submitting it for publication ( [4], p. 231):

“It really is my conviction that an interpretation of the Rydberg formulas in the sense of
circular or elliptic orbits in classical geometry do not make the slightest physical sense and
my whole pathetic efforts go toward completely stamping out the concept of orbits, which
cannot be observed anyway, and to replace them suitably.”

Thus � matrix mechanics was born and with it the first step toward a new gener-
ation of theories all somewhat equivalent to each other, also including Schrödinger’s
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� wave mechanics, Born’s and Wiener’s operator mechanics and Dirac’s q-algebra.
They are subsumed under the label quantum mechanics, which this dictionary uses
throughout to label the bundle of new theories that emerged since the summer of
1925.

Why is this relatively short episode in the much longer history of quantized
theories so important to deserve its own entry here? First of all, it contains some
of the most exciting moments the history of twentieth century physics has to of-
fer. Secondly, this episode is significant also from a philosophical point of view.
To understand the course of events leading from the old, stable and semi-classical
quantum theory of 1913 to 1922 to the new, equally successful and even more stable
paradigm of quantum mechanics of post 1925, Thomas Kuhn’s (1922–1996) model
of scientific revolutions comes to mind. It describes such transitions between stable,
but mutually incompatible paradigms. According to Kuhn, this transition should be
preceded by a crisis of the old paradigm, with ever growing numbers of anomalies
and mounting frustration among practitioners of the old craft. This is precisely what
happened here, so this episode actually provides one of the best fits in the history
of science for the general pattern described by Kuhn’s model of scientific revolu-
tions. In particular, the final stage of the old quantum theory between late 1922 and
early 1925 encompasses various characteristics of a deep crisis of a reigning but
threatened paradigm in Kuhn’s sense:

• A hectic proliferation of various different ad-hoc models and schemes,
• Futile efforts to find correspondence rules between these various ad-hoc schemes,
• An inability to supplant the traditional phenomenological approach with causal

reasoning,
• A sort of ‘anything goes’ mentality as a result of these problems,
• Deep disappointment with the current state of the discipline.

The fit within Kuhn’s scheme is incomplete, though. Rather than being fully incom-
mensurable, the old quantum theory and the new quantum mechanics were more
intricately related to each other (see � correspondence principle, � quantum statis-
tics). But many years were needed before this was fully understood.
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theme was the mysterious nature of the new quantum world that emerged in the
early years of the twentieth century.

Planck had set the stage for the � quantization of matter late in 1900, when he
accurately described � black-body radiation by assuming that “energy elements”
of size hν were partitioned among a collection of “resonators,” oscillating elec-
tric dipoles in equilibrium with an electromagnetic field. He had adopted these
finite energy elements, which he borrowed from an 1877 paper by Ludwig Boltz-
mann (1844–1906), in order to explain the latest measurements from the nearby
Physikalisch-Technische Reichsanstalt (� Black Body). But in his three short pa-
pers, Planck said nothing about their physical interpretation. Did he intend them to
have merely a formal significance? Did he believe they were consistent with ear-
lier physical theory? Or had already he begun to grasp their implications, however
dimly and tentatively? His contemporaries found it hard to understand him, as have
later historians. Nevertheless, over the next decade it became clear that his energy
elements, or quanta as they came to be called, represented a sharp and irretrievable
break with earlier theory. The “quantum revolution” that over the last century has
fundamentally altered our understanding of nature was underway.

In 1907, Einstein found a new arena for Planck’s resonators: Using the statisti-
cal mechanics that he had developed starting in 1902, he calculated the � specific
heat of a solid at low temperatures, picturing the solid as a collection of quantized
resonators. He found that the molar specific heat fell off from its equipartition value
of 3R at high temperatures, where R is the gas constant, and approached zero as
the temperature approached absolute zero. In 1907, Einstein could appeal only to
limited data for the specific heat of diamond. But over the next several years his
theory was brilliantly confirmed by the experiments on the specific heats of solids
conducted by Walther Nernst (1864–1941) and his students in Berlin.

Nernst had begun these measurements seeking confirmation for his 1906 Heat
Theorem, which concerned the equilibrium point of chemical reactions. But as he
learned that his measurements also supported Einstein’s predictions, he became an
enthusiastic promoter of quantum theory. He played a leading role in organizing
the first Solvay Conference, which met in Brussels in November, 1911 and brought
together about twenty of Europe’s leading physicists to ponder the implications of
the new quantum ideas. This conference in turn helped persuade the physics com-
munity of their importance.

Thus by the end of 1911, Planck’s resonators – quantized simple harmonic os-
cillators – were widely seen as essential to an understanding of both black-body
radiation and the specific heats of solids. About the same time, a second material
system emerged: the rotator, a rotating “dumbbell” consisting of two point masses
that could be either rigidly connected, or joined by a spring. Physicists and physi-
cal chemists applied this model to both molecular spectra and the specific heats of
diatomic gases.

Once again, Nernst and his assistants led the way. In a February 1911 paper,
published well before the first Solvay Conference, Nernst argued that the quantum
theory might shed light on long-standing puzzles in the specific heats of gases. Why,
for example, do the specific heats of monatomic gases show no rotational degrees of
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freedom? Why, for most diatomic gases, did additional degrees of freedom gradually
appear, well above room temperature.

Nernst speculated that the rotational energy of diatomic gases might show quan-
tum effects by falling off at low temperatures, and singled out hydrogen as a
particularly promising candidate for investigation. Early in 1912, Arnold Eucken
(1884–1950), one of Nernst’s assistants who had been closely involved in the exper-
iments on the specific heats of solids, published measurements of the specific heat of
hydrogen gas down to 35 K. In what must have been a thoroughly gratifying result,
Eucken found that the specific heat fell sharply from 5/2 RT per mole to 3/2 RT, just
what one would expect if the rotational degrees of freedom were freezing out.

In the same 1911 paper, Nernst developed a theoretical framework for rotating
diatomic molecules. Surprisingly from a modern point of view, he did not quantize
the rotator. Instead, he argued that rotating molecules would exchange harmonic
oscillator quanta with quantized Planck resonators with which they were in equi-
librium. Nernst’s theory was flawed, but Einstein adopted a corrected version and
outlined it briefly in his 1911 Solvay report.

In 1912, Niels Bjerrum (1879–1958), a Danish chemist working in Nernst’s lab-
oratory, applied quantum concepts to molecular spectra. Building on earlier work
by Lord Rayleigh (1842–1919) and Paul Drude (1863–1906), he argued that vi-
brational absorption peaks appearing in the infrared should be broadened due to
the effects of rotation. In contrast to Nernst, Bjerrum quantized the energies and
frequencies of the rotators, perhaps following a tentative suggestion by Hendrik
Antoon Lorentz (1853–1928) at the first Solvay Conference. Bjerrum’s conjecture
was confirmed in 1913, when Eva von Bahr (1874–1962), a Swedish physicist work-
ing in Heinrich Rubens’ (1865–1922) laboratory in Berlin, found sharp peaks in
the absorption spectrum of hydrogen chloride (HCl). These peaks not only con-
firmed the quantization of rotational motion, but provided yet another strong piece of
evidence for quantum theory generally. Bjerrum and others thought that these peaks
corresponded directly to quantized molecular rotation frequencies. This point of
view persisted for many years, even after Niels Bohr interpreted the frequencies of
atomic spectral lines as the differences between the energies of atomic energy states.

A third problem emerged from efforts to apply both Nernst’s Heat Theorem and
quantum theory to ideal gases, in order to find the equilibrium point of chemical
reactions. Some scientists tried to quantize translational motion directly. Others
assumed only that gases were in equilibrium with quantized solids. These efforts
resulted in multiple derivations of the Sackur–Tetrode equation and calculations
of the “entropy constant” by Otto Sackur, Hugo Tetrode, Otto Stern, Planck, and
others. Some of the earliest work involving indistinguishable particles in quantum
theory grew out of these efforts, which continued for many years beyond 1913. This
paragraph no more than touches on a long and complex history.

All of these problems involved a quantum theory of matter, in which Maxwell’s
theory of electricity and magnetism still held sway. Einstein, however, in a 1905
paper that he called “very revolutionary” in a letter to his friend Conrad Habicht,
put forward the radical suggestion that light consists of “a finite number of energy
quanta that are localized in points of space, move without dividing, and can be
absorbed or created only as a whole.” He justified this point of view through an
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extended analogy between the entropies of an ideal gas and of black-body radiation,
and pointed to several experimental effects, among them the � photoelectric effect,
that, he argued, could best be explained by these independent particle-like � light
quanta.

But light is a wave in Maxwell’s theory, and experiments on diffraction and
interference could be explained only by wavelike behavior. Most physicists were
therefore reluctant to challenge Maxwell’s highly successful theory of electromag-
netism. Einstein was virtually alone in his advocacy of light quanta for nearly
twenty years, until Arthur Compton’s experiments made them inescapable in the
early 1920s (� Compton effect).

Nevertheless, light quanta and their connection to black-body radiation remained
at the center of Einstein’s thoughts. An essential tool, as he probed the nature of this
new quantum world, was the analysis of fluctuations that had first appeared in his
pre-1905 papers on statistical mechanics. In 1909, he considered fluctuations in the
energy of electromagnetic radiation described by the Planck radiation law, as well
as fluctuations in the momentum of a mirror in equilibrium with such radiation. The
resulting equations had two terms: One was consistent with fluctuations due to wave
interference, the other with Einstein’s particle-like light quanta. Einstein spoke of “a
kind of fusing of the wave and emission theories of light.”

In 1910 Einstein and Ludwig Hopf (1884–1939) extended this analysis to mo-
mentum fluctuations in a gas of resonators in equilibrium with a Maxwellian
electromagnetic field. But this time, in a complex calculation that reduced the role
of equipartition to a bare minimum, they took the radiation energy density as an
unknown and applied equipartition only to the translational motion of the gas – a
seemingly incontestable assumption. They found that the resulting energy density
obeyed the impossible Rayleigh–Jeans law (� Black-body radiation). The challenge
posed by Planck’s new radiation law seemed more inescapable than ever. Fluctua-
tions also figured in the famous 1916 paper in which Einstein introduced his famous
A and B coefficients in a new and influential derivation of Planck’s radiation law.

Fluctuations played a more ambiguous role in 1913, when Einstein and Otto
Stern (1888–1969) proposed a theory to describe the specific heat of hydrogen, de-
veloping Einstein’s brief sketch at the first Solvay Conference (see above). They
were also investigating the implications of Planck’s new zero-point energy, intro-
duced in 1911 as part of his “second quantum theory” (� Black-body radiation,� Zero-point energy). Following Nernst, Einstein and Stern did not quantize the
rigid rotator. Instead, they assumed that all rotators at a given temperature had the
same rotational frequency, and equated the kinetic energy, 1/2J (2πν)2, where J is
the moment of inertia and ν the rotational frequency of the rotator, to the average en-
ergy of a Planck resonator with the same frequency,hν/

(
ehν/kT − 1

)+hν/2, where
the second term is the zero-point energy, and h and k are, respectively, Planck’s and
Boltzmann’s constants. The rotational frequency is thus a perfectly continuous func-
tion of temperature. A calculation with no zero-point energy yielded an impossible
curve for the specific heat. But a second calculation with a zero-point energy of
hν/2 resulted in excellent agreement with Eucken’s data – ironically, far better than
anyone else would achieve for well over a decade.
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Einstein and Stern said almost nothing about a physical interpretation. But a sec-
ond and almost unrelated section of their paper makes clear that they did not adopt
Nernst’s picture of a rotator exchanging harmonic oscillator quanta with Planck’s
resonators. There they repeated Einstein and Hopf’s calculation, again featuring a
gas of resonators in equilibrium with a Maxwellian electromagnetic field. But now
they added a zero-point energy hν (not hν/2) to the average resonator energy. And
this time, instead of the impossible Raleigh–Jeans law, they found Planck’s radia-
tion law, from which the average energy of the Planck resonators could be extracted
without first quantizing those resonators!

Einstein and Stern touched only lightly on the implication that zero-point en-
ergies might lie behind quantum phenomena, “without recourse to any kind of
discontinuities,” as they put it. They hoped that further work might remove the
discrepancy between the different zero-point energies in the two calculations, but
nevertheless said it was “doubtful that other difficulties could be overcome without
the assumption of quanta.”

Within a few months, Einstein had abandoned this approach. And in spite of
the good agreement with Eucken’s measurements, no one else took it up. Indeed,
only a few months later, Paul Ehrenfest (1880–1933) followed Lorentz’s lead and
published an account of the specific heat of hydrogen in which the rotators were
quantized, much as Bjerrum had done for molecular spectra a year earlier.

Einstein himself could easily have taken this route. Lorentz, however tentatively,
had shown the way at the first Solvay Conference, and the calculation itself was
virtually identical to Einstein’s 1907 calculation of the specific heats of solids. That
he did not do so, and instead followed the route outlined above, shows just how
fluid and uncertain the state of quantum theory remained, more than a decade after
Planck’s first tentative introduction of the quantum into physics.
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Quantum Zeno Effect

Erich Joos

The Quantum Zeno Effect describes the slowing down of the evolution of a quantum
system under repeated measurements. In the limit of arbitrarily dense measurements
motion would be completely inhibited.

The now popular name “quantum Zeno effect” (or “Zeno paradox”) was in-
troduced by Misra and Sudarshan in 1977 [1]. The effect has been described
independently by many authors. (It can even be traced back to von Neumann’s
1932 treatise “Mathematical foundations of quantum theory”.) Other names used
are “Turing’s paradox”, “watched pot behavior”, or “watchdog effect”.

The quantum Zeno effect only appears “paradoxical” or surprising, if the in-
fluence of measurements on a quantum system is not properly taken into account.
Many systems (in particular, exponentially decaying systems) are not influenced at
all by repeated measurements. This can be understood by a closer analysis of the
dynamics of repeated measurements [2].

Let a system be prepared in its “undecayed” state |u〉 at some initial instant t = 0.
Unitary evolution leads to a � superposition of this undecayed state with some
orthogonal (“decayed”) states |dk〉, with amplitudes au and adk , respectively,
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|�(t)〉 = exp(−Ht) |u〉
= au(t) |u〉 +

∑
dk �=u

adk (t) |dk〉 .

The (“survival”) probability of finding the system still “undecayed” (i.e. in the state
|u〉) at a later time t > 0 is

P(t) = |au(t)|2
= | 〈u| exp(−iHt) |u〉 |2.

Expanding the exponential in powers of t gives

P(t) = 1− (�H)2t2 +O(t4)

with
(�H)2 = 〈u|H 2 |u〉 − 〈u|H |u〉2 .

If the measurement performed on the same unstable system is carried out not just
once, but is repeated N times in the interval [0, t], the probability that it will be
found undecayed in all N measurements is then given by

PN(t) ≈
[

1− (�H)2
(
t

N

)2
]N

> 1− (�H)2t2 = P(t).

The non-decay probability is always increased, that is, the decay is suppressed; in
the limit of arbitrarily dense measurements it comes to a complete halt,

PN(t) = 1− (�H)2 t
2

N
+ . . .

N→∞−→ 1.

Thus under continuous measurement the system would not move at all.
A demonstration of the quantum Zeno effect was performed by Itano et al. in an

experiment [3] with Be+ ions confined in a Penning trap (see Fig. 1).
In this setup the population of two levels is measured by coupling them to a third

atomic level which decays rapidly by emitting fluorescence light. The first two levels
represent the “measured object”, the third level together with the emitted photons
(� light quantum) play the role of the measurement device.

As is evident from the above derivation of the quantum Zeno effect, the quadratic
time dependence of transition probabilities in the short-time limit is important [4, 5].
This approximation is valid for a sinusoidally oscillating system (as in the Itano
experiment), but may often be only a poor approximation. The most important coun-
terexample is represented by exponentially decaying systems, where it has long been
known that the quadratic limit holds only for a very short timescale (now sometimes
called Zeno time). Indeed, if the decay probability were exactly exponential,

P(t) = exp(−�t),
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Fig. 1 Level structure for an experiment demonstrating the quantum Zeno effect. The Rabi os-
cillations of the transition between levels 1 and 2 (driven by a resonant radiofrequency field) are
monitored by exciting the optical transition 1 → 3 resulting in light emission from level 3 through
spontaneous emission. In this way the 1 ↔ 3 transition together with the emitted light acts like a
(nearly ideal) measurement device discriminating between levels 1 and 2

there would be no Zeno effect at all, since trivially

PN(t) =
(

exp

(
−� t

N

))N
= exp(−�t).

Clearly, the Zeno effect is a consequence of measurement dynamics, again
emphazing the well-known fact that a quantum measurement cannot be simply
understood as information increase. A related discussion refers to the so-called� interaction-free measurements [6], which in fact represent strong measurement-
like interaction and can be understood as a special case of the quantum Zeno effect
[7, 8]. One should also note, that “negative-result measurements” (where a measure-
ment device does not “fire”) also contribute to the Zeno effect [9].

A more precise description of the dynamics behind the Zeno effect can be
achieved by replacing the phenomenological collapse rule by a dynamical model
for the measurement process [2,7,10,11,12]. From this perspective, the Zeno effect
can be viewed as the limiting case of very strong � decoherence, that is, very strong
measurement-like interaction of a quantum system with other degrees of freedom
[13]. (� Experimental observation of decoherence). Since decoherence destroys
phase relations at the system of interest, its motion (which in unitary quantum
theory completely relies on coherence) would come to a standstill, if coherence
were completely absent. If the density matrix ρ is exactly diagonal for all times,
ραβ = ρααδαβ , the von Neumann equation immediately yields Zeno freezing:

i
d

dt
ραα =

∑
β

(
Hαβρβα − ραβHβα

) ≡ 0.
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Measurement models allow not only the discussion of the apparent contradiction
between Zeno effect and exponential decay (described by rate equations) [2], but
also a more realistic treatment of the small-time behavior, where system-dependent
features may lead to interesting effects (such as the so-called “anti-Zeno effect”
[7, 13].

The Zeno effect may find application in the field of quantum computing, where
it could possibly be used to constrain the motion of a system to certain subspaces of
its � Hilbert space [14]. It may also be of relevance for the stability of molecules,
where (already small) transition rates between spatial configurations may be further
reduced by the influence of the natural environment.
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Quasi-Classical Limit

N.P. Landsman

The quasi-classical limit of quantum mechanics refers, roughly speaking, to the
limit � → 0. Of course, � is a dimensionful constant, but in practice one studies
the semi-classical regime of a given quantum theory by forming a dimensionless
combination of � and other parameters; this combination then re-enters the theory
as if it were a dimensionless version of � that can indeed be varied.

The oldest example of this procedure is Planck’s radiation formula � black body
radiation; Planck’s constant. Indeed, the observation of Einstein [5] and Planck [8]
that in the limit �ν/kT → 0 this formula converges to the classical equipartition law
may well be the first use of the � → 0 limit of quantum theory; note that Einstein
put �ν/kT → 0 by letting ν → 0 at fixed T and �, whereas Planck took T → ∞
at fixed ν and �.

Another example is the one-particle � Schrödinger equation, where one may
pass to dimensionless parameters by introducing a typical energy scale ε and a typ-
ical length scale λ. In terms of the dimensionless variable x̃ = x/λ, the rescaled
Hamiltonian H/ε is then dimensionless and contains � through the dimensionless
variable �̃ = �/λ

√
2mε. In particular, large mass means effectively small �.

Finally, as perhaps first remarked by Bogoliubov [1], averages of N single-
particle operators satisfy commutation relations in which � has been replaced by
�/N , so that the limit � → 0 is effectively equivalent to the limit N → ∞. This
remark lies at the basis of the quantum theory of macroscopic observables (see [19]
and references therein).

The quasi-classical limit has two separate aims, which should be sharply distin-
guished conceptually (although there is considerable overlap in the mathematical
techniques that are used):

1. The approximation of solutions to the quantum-mechanical equations of motion
(e.g. the Schrödinger equation) by solutions of the corresponding classical equa-
tions.

2. The derivation of classical mechanics, and more generally the explanation of the
appearance of the classical world, from quantum theory.
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The first application is mathematically sophisticated but is conceptually quite
straightforward. The best-known technique is the WKB approximation, which goes
back to Wentzel [11], Kramers [7] and Brillouin [3] in 1926. In the case of the time-
independent Schrödinger equation, one postulates that the wave function has the
form

�(x) = a�(x)e
i
�
S(x), (1)

where S is independent of �, substitutes this Ansatz into the Schrödinger equa-
tion, and expands in powers of �. At lowest order this yields the (time-independent)
Hamilton-Jacobi equationH(∂S/∂x, x) = E, whereH is the classical Hamiltonian.
This equation is supplemented by the so-called (homogeneous) transport equation

(
1

2
�S +

∑
k

∂S

∂xk

∂

∂xk

)
a0 = 0. (2)

Higher-order terms in � yield further, inhomogeneous transport equations for the
expansion coefficients aj (x) in a� =

∑
j aj�

j . These can be solved in a recursive
way, starting with (2). There are various problems with this method, the main ones
being convergence and the fact that in most cases of interest the Ansatz (1) is only
valid locally (in x), leading to problems with caustics. These problems have been
addressed in a sophisticated field of mathematics called microlocal analysis [15, 18,
21]. The WKB method is of little use for chaotic systems and has to be replaced by
techniques surrounding the so-called Gutzwiller trace formula; see [16, 14].

Another insight dating back to the early days of (mature) quantum theory is� Ehrenfest’s Theorem from 1927 [4], which states that for any wave function �

(in the domain of the position operator and of ∂V (x)/∂xj , where V is the potential)
one has

m
d2

dt2
〈xj 〉(t) = −

〈
∂V (x)

∂xj

〉
(t), (3)

where the brackets 〈· · · 〉(t) denote expectation values in the time-dependent state
�(t). This looks like Newton’s second law, with the tiny but crucial difference that
this law should have (∂V /∂xj)(〈x〉(t)) on the right-hand side. For further develop-
ments in this direction see [17], as well as the literature on microlocal analysis just
cited. In particular, Egorov’s Theorem in microlocal analysis is closely related to
Ehrenfest’s: it states that for a large class of Hamiltonians and classical observables
f one has Q(f )(t) = Q(ft ) + O(�). Here Q(f ) is the Weyl quantization of f
(� Quantization) and the left-hand side evolves according to the quantum equation
of motion, whereas the right-hand side follows the classical one.

The last early idea we mention is the Wigner function (� Wigner distribution),
introduced in 1932 [12]. Namely, each wave function � (or, more generally, each
density matrix) defines a function W� on classical phase space, defined by

W�(p, q) =
∫

Rn

dnv eipv�(q + 1
2 �v)�(q − 1

2 �v). (4)
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This function has the property

(�,Q(f )�) =
∫

R2n

dnpdnq

(2π)n
W�(p, q)f (p, q), (5)

where ( , ) is the inner product in the Hilbert space L2(Rn) and Q(f ) is the
Weyl quantization of f as before. Thus the Wigner function transforms quantum-
mechanical expectation values into classical ones, with the proviso that W� may fail
to be positive and therefore cannot strictly be interpreted as a classical phase space
distribution. Nonetheless, it is an extremely effective tool for studying the � → 0
limit [13].

The second application of the quasi-classical limit, i.e. to the explanation of the
classical world, is a very deep and largely unsolved problem (cf. [19]) for a survey).
To their credit, also here many of the key ideas date back to the founders of quantum
mechanics.

Bohr’s � correspondence principle [2, 10] was, in its original form, not con-
cerned with the classical limit of electronic orbits (but rather with the emitted
radiation, which for wide orbits behaves approximately classically). However, at
a later stage it was transformed into the general idea that large quantum numbers
should give rise to classical behaviour. Applied to atoms, this idea works if it is com-
bined with Schrödinger’s suggestion that particle behaviour emerges from � wave
mechanics by looking at � wave packets [9] (see [20] for a modern account). In
particular, semi-classical motion emerges if a localized wave packet is formed as
a superposition of tens of thousands of energy eigenfunctions with similarly large� quantum numbers. Such a wave packet initially follows a time-evolution with
almost classical periodicity, but subsequently spreads out after a number of orbits.
During this second stage the (Born) probability distribution approximately fills the
classical orbit. On a much longer time scale one sees wave packet revival, in that the
wave packet recovers its initial localization. Then the whole cycle starts once again.
See [22] for a popular account and [23] for a technical review. Another success-
ful application of the correspondence principle is to the classical limit of quantum
partition functions [24].

Heisenberg’s famous 1927 paper [6] not only contained his uncertainty rela-
tions, but also suggested that the classical world emerged from quantum mechanics
through observation: ‘Die Bahn entsteht erst dadurch, daß wir sie beobachten.’
(‘The trajectory only comes into existence because we observe it.’) This idea has
to be combined with the quasi-classical limit in order to have the beginning of
an explanation of classical physics from quantum theory. Here modern methods
of � decoherence and � consistent histories play an important role.
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5. A. Einstein: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristis-
chen Gesichtpunkt. Ann. Phys. 17, 132–178 (1905).
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Radioactive Decay Law (Rutherford–Soddy)

Friedel Weinert

The formulation of the radioactive decay law, in 1902, by Ernest Rutherford
(1871–1937) and Frederick Soddy (1877–1956) was part of a number of discoveries
around the turn of the century, which paved the way to the establishment of quantum
mechanics, as the physics of the atom. In November 1895, W. Röntgen (1845–1923)
discovered � X-rays; in 1896 A. H. Becquerel (1852–1908) discovered radioac-
tivity during an investigation of phosphorescence in uranium salts; finally in 1897
J.J. Thomson (1856–1940) discovered the � electron. Rutherford and Soddy based
their formulation of the radioactive law on the ‘emanation theory’ of radioactive
decay. According to this theory, radioactivity is an ‘atomic’ phenomenon, which
is accompanied by ‘chemical’ changes. Note that in 1902, Rutherford had not yet
inferred from large-angle � scattering experiments that the atom had a nucleus
(� Rutherford atom). One chemical element, Rutherford and Soddy explained, was
transformed into another by emitting charged particles: α-particles or β-particles.
Around that time Rutherford already knew that radioactivity manifested itself in
the form of ‘alpha rays’ or ‘beta rays’, which proved to consist of particles. Prior
to his discovery of the nucleus model of the atom (1911), Rutherford regarded
alpha particles as ionized helium atoms. α-particles are helium nuclei with an exit
velocity of approximately 107m s−1 (with energies ranging between 4–9 MeV) and
positive charge so that they experience deflections in electric and magnetic fields.
β-particles are � electrons with emission velocities, which range between 108m s−1

and 0.999c, and negative charge so that they, too, experience deflections in electric
and magnetic fields. (Beta decay reveals a continuous energy spectrum up to a maxi-
mum E0, depending on the type of nucleus involved; the kinetic energy Q can range
from a few keV into the region of MeV.) Rutherford and Soddy emphasized that the
‘chemical’ changes had their seat within the atom and not on the molecular level.
Today radioactivity denotes the ability of certain nuclei to undergo transformations
through the emanation or emission of radiation. (Rutherford and Soddy were aware
that this process can include γ-radiation – light of very short wavelength –, which
is not deflected in electric or magnetic fields.) Rutherford and Soddy could not
say what caused the emission of the subatomic particles from the atomic nuclei.
The radioactive elements, their theory stipulated, ‘must be undergoing spontaneous
transformation’ [1, 493]. In terms of the classical notion of determinism, the em-
anation theory did not permit the precise prediction of the time and trajectories of
emitted particles. The theory was based on the formulation of statistical laws, which
give rise to � indeterminism.

D. Greenberger et al. (eds.), Compendium of Quantum Physics: Concepts, Experiments, 630
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Fig. 1 Rutherford’s curve
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The decay law states the probability of decay in a given ensemble (� ensembles
in quantum mechanics), N0, of radioactive material for a given period of time, t .
Note that α-decay occurs in nuclei with high atomic weight, A (A = N +Z, where
N is the number of neutrons and Z the number of protons); β-decay only occurs
in nuclei, in which the number of neutrons, N , is greater than the number of pro-
tons, Z.) In the original words of Rutherford and Soddy, ‘if I0 represents the initial
activity and It the activity after time t , (then)

It

I0
= e−λt

where λ is a constant and e the base of natural logarithm’ [1, 482]. The decay con-
stant λ can be rewritten as λ = ln/ T1/2

, where T1/2
is the half-life, i.e. the period in

which half of the given N0 of radioactive material will decay. (Fig. 1)
As we know today, the half-life of radioactive elements ranges from seconds to

millions of years. The decay law is not statistical in the nineteenth century sense
of reflecting our degree of ignorance of the specific boundary conditions, under
which individual atoms in an ensemble of radioactive elements will decay, but in the
twentieth century sense of reflecting a genuinely indeterministic process in nature,
which gives rise to statements about the average decay rate of a given ensemble
of atoms. This means that the decay rate of individual atoms equals the decay rate
of the ensemble. The statistical nature of this law is illustrated, using Rutherford’s
original data, as in Fig. 1.

The discovery of the radioactive decay law was an important step on the road
to a questioning of the classical notions of causality and determinism, as they were
often presupposed in classical physics. � Indeterminism.
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Relativistic Quantum Mechanics

Helge Kragh

Attempts to establish a relativistic quantum mechanics – an integration of � quan-
tum theory and the theory of relativity – predate the emergence of quantum
mechanics in the 1920s. Shortly after Niels Bohr had proposed his � atom model
in 1913, he and a few others realized that � quantum theory might be improved
by using relativity rather than classical mechanics. These efforts culminated in
1916–17 when Arnold Sommerfeld in Munich devised a modified version of Bohr’s
model by incorporating the relativistic variation of the mass of an electron moving
around an atomic nucleus. That is, rather than assuming the mass to be constant,

Sommerfeld adopted the expression m(v) = m0(1–v2/c2)−1/2, where v is the elec-
tron’s velocity and c the velocity of light. The result was an expression of the energy
levels in hydrogen-like atom � Bohr’s atom model that predicted a fine structure
with a separation in frequency proportional to α2Z2, where α is the fine-structure
constant and Z the nuclear charge (or atomic number). Sommerfeld’s theory re-
ceived experimental support from measurements in both the optical and the X-ray
region, and the confirmation was widely seen as a triumph of the Bohr-Sommerfeld
atomic model as well as the special theory of relativity.

A few physicists believed that gravitation theory, in the form of Einstein’s general
theory of relativity, had to be incorporated in atomic theory. The Kepler motion of� electrons around an atomic nucleus was analyzed by means of general relativity
by Georg Jaffé, Mandoval Vallarta and others in 1922–25; however, their works
were ignored by most mainstream physicists who believed that general relativity
was of no importance in atomic physics. In a paper of 1922, Erwin Schrödinger
applied Hermann Weyl’s extension of Einsteinian general relativity to atomic theory.
Although Schrödinger’s paper would later come to appear as prescient, at the time
his work attracted no more attention than other theories in the same tradition.

Louis de Broglie’s innovative theory of 1922–23, which postulated the existence
of � matter waves, was solidly founded on the (special) theory of relativity. Ac-
cording to de Broglie, quantum theory and special relativity theory were unified by
the relativistic formula mc2 = hν = hc/λ, or λ = h/p (where λ is the wavelength
associated with the momentum p of some particle, whether a � light quantum or
an � electron). In late November 1925 Schrödinger reached the decision that to
transform de Broglie’s hypothesis into a wave theory of atomic structure he would
need a wave equation governing the behaviour of de Broglie’s somewhat mysterious
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matter waves. Since de Broglie’s hypothesis was thoroughly relativistic, naturally
Schrödinger sought for a wave equation that satisfied the requirements of the special
theory of relativity: its form had to be Lorentz invariant. At new year’s time he had
found such an equation for the amplitude connected with the electron, and after hard
mathematical work he succeeded in solving it in the case of the hydrogen atom.

Schrödinger calculated (what came to be known as) the energy eigenvalues and
from these he derived the energy spectrum of hydrogen. Although his calculations
gave a fine structure for the red Hα line, it did not fit with the experimentally
confirmed Sommerfeld theory: Schrödinger’s � wave mechanics yielded a fine-
structure separation of the Hα doublet nearly thrice the observed value. Conse-
quently he was forced to use the non-relativistic approximation, and it was this form
– since then known as the � Schrödinger equation – that he reported in his famous
series of papers in the spring of 1926. The relativistic eigenvalue equation for an
electron in the electrostatic field of potential ϕ reads

�
2c2�ψ + [(E − eϕ)2 −m0c

4]ψ = 0

where � = h/2π. Shortly after the appearance of Schrödinger’s � wave mechanics,
the equation was derived by several physicists, including Oskar Klein, Wolfgang
Pauli, Vladimir Fock, Walter Gordon, de Broglie, and Schrödinger himself. Klein,
ignorant about Schrödinger’s unpublished derivation, may have been the first to de-
rive the equation, which he framed in the context of a five-dimensional unification of
wave mechanics, electromagnetism and general relativity. Whatever the parentage,
Schrödinger’s relativistic equation came to be known as the Klein-Gordon equation.
The corresponding time-dependent equation for a free electron reads

�
2c2�ψ + �

2∂2ψ/∂t2 = m0c
4ψ

The equation is Lorentz invariant and reduces to the ordinary Schrödinger equation
in the limit v/c→ 0. But is it the right equation for an electron?

There were two problems that indicated that this was not the case. First, the
equation did not result in the right doublet splitting of the lines in the hydrogen
spectrum. Second, it did not incorporate the electron’s � spin, which by the fall of
1926 had become accepted by most physicists and somehow had to be understood in
terms of quantum mechanics. The problems seemed to have no solutions within the
Klein-Gordon framework, but in Germany an alternative approach was followed,
namely by including relativistic effects as corrections to the non-relativistic theory.
This method led to a partial success in the spring of 1926, when Pascual Jordan and
Werner Heisenberg, developing ideas due to Wolfgang Pauli, succeeded to derive
the fine-structure formula in a first-order approximation. They added to the usual
Hamiltonian not only a perturbation term describing the relativistic correction to the
kinetic energy but also a term referring to the spin of the electron. However, in spite
of its empirical success the phenomenological Jordan–Heisenberg–Pauli theory was
not entirely satisfactory. Since relativity was added as a first-order correction, the
theory was not genuinely relativistic; moreover, the spin effect was introduced in an
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ad hoc manner, being grafted to the theory rather than explained by it. An entirely
satisfactory theory would not only be able to account for the doublet phenomena
but also explain them in the sense of deducing them from the basic principles of
relativity and quantum mechanics.

The quantum-mechanical understanding of spin improved with the theories in-
dependently proposed by Pauli and Charles Darwin in the spring of 1927. However,
these theories did not go substantially beyond the phenomenological level of the
Jordan-Heisenberg-Pauli theory and they failed to combine spin and relativity. In
spite of their importance, they did not offer a solution to the still more delicate prob-
lem of integrating quantum mechanics with the theory of relativity. Such a solution,
based on an entirely novel approach, came in early 1928.

Paul Dirac reasoned that according to the general principles of quantum me-
chanics the formal structure of the Schrödinger equation – meaning the expression
Hψ = i�∂ψ/∂t – must be retained in any future unification of relativity and the
quantum theory of electrons. This ruled out the Klein-Gordon equation and implied
that the relativistic wave equation had to be of the first order in the space derivatives.
Dirac’s reasoning suggested the starting procedure

i�∂ψ/∂t = c

√
m2

0c
2 + p2

1 + p2
2 + p2

3ψ

where p1 = −i�∂/∂x, etc. By “playing around with mathematics” he found a way
to linearize the square root, i.e. to write it in the form α1p1+α2p2+α3p3+α4m0c.
The α-coefficients were matrices of the same kind as those Pauli had introduced in
his spin theory, but they had four rows and columns (whereas Pauli’s were 2 × 2
matrices).

Dirac’s paper, entitled “The Quantum Theory of the Electron,” appeared in the
Proceedings of the Royal Society in January 1928. It is noteworthy that originally
he did not think of the electron’s spin. It was only after having found the wave equa-
tion that he discovered that it, in an extended form where the electromagnetic field
was taken into account, included a term representing the magnetic moment of the
electron. Since this quantity is given by the spin vector, the electron’s spin appeared
as a consequence of the theory. Dirac proved that his equation satisfied Lorentz
invariance, and he also showed that its first approximation led to the approximate
fine-structure formula. He did not attempt to find the exact solution but supposed
that it would result in the same energy spectrum that Sommerfeld had found more
than a decade earlier. This was indeed the case, such as shown by Gordon and
Darwin in the spring of 1928.

Dirac’s theory of the electron was received with enthusiasm by his colleagues and
had a revolutionary effect on quantum physics. It was primarily for this work that
he was awarded the Nobel Prize in 1933. Although the theory was very much the
result of Dirac’s genius, it (or something like it) would most likely have been found
by other physicists even had he not presented the theory in January 1928. Several
physicists tried at the time to construct a relativistic spin quantum theory, and some
of them, such as Jordan and Hendrik Kramers, came close to the goal. Kramers
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obtained an approximate quantum description of a relativistic spinning electron in
terms of a second-order wave equation and later proved that his equations were
equivalent to Dirac’s linear equation.

The new theory of relativistic quantum mechanics was quickly explored by
physicists and mathematicians. For example, the Dirac matrices and the properties
of the Dirac wave function were studied by Hermann Weyl, Bartel L. van der
Waerden, John von Neumann and others. Several theoretical physicists – including
Weyl, Fock and Georges Lemaı̂tre – transformed the wave equation in forms
that could be incorporated into the framework of general relativity. Gregory Breit
showed in 1928 that the Dirac matrices can be understood as velocities in the sense
that dxμ/dt = cαμ (μ = 1, 2, 3). Because of the property α2

μ = 1 the result seemed
to lead to the paradoxical conclusion that a free electron will always move with the
velocity of light (v = ±c), a paradox that was taken up by Schrödinger in 1930 in
his theory of the so-called Zitterbewegung of the electron (a microscopic, rapidly
oscillatory motion superposed on the electron’s “macroscopic” velocity).

Dirac’s theory of the electron also inspired cosmological thinking, if only indi-
rectly. Arthur Eddington was greatly impressed by the � Dirac equation which he
elevated to a status of universal significance and used to derive relationships between
cosmic and atomic constants. Based on his own interpretation of the Dirac equation,
he calculated the value of the fine structure constant and related it to the number
of protons in the universe. The general idea of integrating quantum mechanics, cos-
mology and general relativity was pursued also by the Russian physicist Matvei
Bronstein who in 1933–36 discussed unified “cGh physics” and examined the quan-
tum limits of general relativity at what later would be called the Planck length,

lP = (hG/c3)
1/2. However, Bronstein’s works attracted little attention at the time.

From an empirical point of view, Dirac’s theory faced successes as well as prob-
lems. On the one hand, it proved successful in the study of relativistic scattering
processes, first investigated by Nevill Mott in Cambridge and Klein and Yoshio
Nishina in Copenhagen. On the other hand, some of the predictions that followed
from Dirac’s theory disagreed with experiment. For example, the theory, believed to
apply also to protons, predicted a value of the proton’s magnetic moment that was
nearly three times smaller than the measured value. It also led Mott to predict that
free electrons should be polarized, yet experiments failed to detect the effect. (After
more than a decade’s confusion, it turned out that the early experiments were wrong.
Free electrons are polarized, in agreement with the Mott-Dirac prediction.)

The most serious problem of the Dirac equation was the “ ± difficulty” referring
to the fact that the equation formally included solutions with negative energies. Of
the four components of the wave function, two referred to positive-energy states and
two to negative-energy states. In late 1929 Dirac believed he had found a solution
to the problem. He assumed a world of negative-energy states occupied by an infi-
nite number of electrons and argued that the few unoccupied states – the “holes” –
would appear as observable physical entities, particles with positive energy and
positive charge. He originally suggested that the holes were protons, but was unable
to account for their large mass and also the stability of ordinary matter (where pro-
tons and electrons would presumably annihilate to gamma rays). This first theory of
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antiparticles was universally met with skepticism. It caused Schrödinger to propose
an alternative relativistic theory of the electron which avoided the ± difficulty and
retained the empirically confirmed results of Dirac’s theory. However, Schrödinger’s
theory was shortlived. Not only did it face experimental difficulties, it also failed to
obey strict Lorentz invariance, and for these reasons it was not considered a valid
alternative to Dirac’s theory.

Dirac’s shortlived idea of representing protons as antielectrons was philosophi-
cally appealing because of its unitary character. In 1930 all matter was believed to
consist of protons and electrons; thus, if the proton was a vacant negative-energy
state – an electron in disguise – Dirac would in effect have reduced the known el-
ementary particles to just one fundamental entity, the electron. However, what he
referred to as “the dream of philosophers” remained a dream. In a remarkable paper
of 1931, mainly dealing with the possible existence of magnetic monopoles, he ad-
mitted that the proton could not be the antiparticle of the electron. As an alternative
he suggested the existence of a new elementary particle with the same mass and spin
as the electron, but of opposite charge. He thought that such hypothetical particles
existed somewhere in nature and that they might be produced in collision processes
involving two gamma photons (� light quantum). Moreover, because the proton
was now a separate species of particle, it would probably have its own antiparticle,
a negatively charged proton.

The hypothesis of antielectrons was considered speculative, but the situation
changed dramatically in 1932–33 when Dirac’s particle was detected in cosmic ray
experiments. Although Carl Anderson found cloud chamber tracks from positive
electrons in 1932, at first he failed to identify them correctly and it was only in
1933 that he realized that he had discovered the positive electron or “positron,” as
he called it. However, Anderson did not identify his positron with Dirac’s antielec-
tron, which he probably was unaware of. The correct identification positive electron
= positron = antielectron came later in 1933 when Patrick Blackett and Guiseppe
Occhialini analyzed cosmic ray data. Naturally, the discovery of the positron greatly
enhanced the status of Dirac’s theory of antiparticles, and that in spite of widespread
opposition to his interpretation in terms of holes. In 1934 Robert Oppenheimer and
Wendell Furry, and independently Enrico Fermi, showed that antiparticles could be
accounted for by quantum field theory without introducing the Dirac “sea” of unob-
servable negative-energy particles.

The great success of the Dirac equation caused interest in the older Klein-Gordon
equation to fade away. That the Klein–Gordon equation is really as good as any
quantum-mechanical equation, was made clear only in 1934 when Pauli and Victor
Weisskopf revived the Klein–Gordon theory. If interpreted correctly, namely as a
field theory for Bose-Einstein particles, there is nothing wrong with the Klein-
Gordon theory, Pauli and Weisskopf argued. They proved that concepts such as
pair creation, annihilation and antiparticles could be established without accepting
the idea of a vacuum filled with negative-energy particles. Ever since, the Klein-
Gordon equation has proved an indispensable tool in quantum field theory. See also� algebraic quantum mechanics; operational quantum mechanics.
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Renormalization

Arianna Borrelli

Procedures of renormalization are used in � quantum field theory to deal with
divergent integrals appearing in perturbative calculations of order higher than the
lowest one. These ill-defined expressions would seem to render perturbative com-
putations meaningless, thus depriving quantum field theory of an essential tool for
obtaining phenomenological predictions. However, in some theories it is possible to
circumvent this problem and formally compensate for the divergencies, obtaining
for observable quantitites finite predictions which closely match experimental data.
This was shown to be possible for � QED in the late 1940s, when the development
of renormalization procedures resulted in agreement between theoretical estimates
and experimental measurements of the fine and hyperfine structure of the hydrogen
spectrum (� spectroscopy; Bohr’s atom model).

The central idea of renormalization is to systematically isolate and remove the
divergencies by means of a redefinition (renormalization) of the nonperturbed field
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equation and of its parameters, usually referred to as “bare” masses and charges.
Bare parameters are not observable and can therefore be assumed to have exactly
those values – finite or infinite – which are needed to compensate for the diver-
gencies. If all infinities can be eliminated by imposing only a finite number of
renormalization conditions based on experimental data, the theory is said to be
renormalizable. Renormalizability is a nontrivial feature of a theory, because it im-
plies that the potentially infinite number of divergencies occurring in its perturbative
expansion can be eliminated at all orders by iterating the same subtraction scheme.
Beside QED, other renormalizable theories are � QCD and the Standard Model� quantum field theory; particle physics for electro-weak interactions.

Renormalization is a successful technique for deriving phenomenological predic-
tions, but some foundational questions regarding it remain open [6, 8, 10, 12]. The
divergent expressions are integrals over the four-momenum pμ of functions which,
for pμ → ∞, do not converge to zero rapidly enough to be integrable (ultravio-
let divergencies). Therefore, their presence could be taken to mean that QED and
other theories work for low energies, but fail at high energies, where they should be
replaced by models in which no divergencies occur, e.g. string theories � quantum
gravity. On the other hand, the fact that the divergencies turn out to be renormal-
izable might be physically significant. In this case, renormalizability would be a
feature which quantum field theories should be expected to possess. Historically,
the principle of renormalizability has played a central role in determining the de-
velopment of quantum field theories. Finally, there is the problem that proofs of
renormalizability are based on pertubative arguments, but evidence that the relevant
perturbative expansions actually converge is lacking – in fact, there are indications
that this might not always be the case.

Renormalization procedures can be carried out in a number of different ways [3].
The first step is always what is called “regularization”. Regularizing a theory means
modifying it in such a way, that divergent expressions become finite. For example,
integrals may be modified so, as to extend only up to some high-energy cutoff &,
or the number of space–time dimensions of the theory may be changed from 4 to
d = 4− ε, thus rendering logarithmically divergent integrals finite in the ultraviolet
region. Once the regularized, but potentially divergent, expressions have been iso-
lated and eliminated according to some predetermined scheme, the regularization
parameter (e.g. &, ε) can be removed, formally recovering the original theory mi-
nus the divergencies. In regularizing a theory, special care must be taken to preserve
all its � symmetries. However, this is not always possible, so that in the end renor-
malization may result in anomalous terms (anomalies) violating some symmetry of
the nonrenormalized model. Anomalies are not just formal artefacts of the theory:
for example, the axial anomaly has been shown to contribute to the decay rate for
π0 → γ + γ .

The final, finite results of regularization and renormalization procedures depend
in part on arbitrary choices, from which however observable prediction are expected
to be independent. Formally, this means that renormalized expressions have to sat-
isfy specific renormalization group equations, a condition which in turn provides
physically relevant information, for example that, in QCD, interactions between
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quarks decrease in intensity in the limit of very short ranges (asymptotic freedom).� Color Charge Degree of Freedom in Particles Physics; Mixing and Oscillations
of Particles; Particle Physics; Parton Model QCD; QFT.

The occurrence of divergencies in quantum field theory had been noted al-
ready in the 1930s, but it was only in 1947–1948 that a number of scientists
came to the idea that, by subtracting the infinities, one might obtain physically
meaningful results. The development of renormalization theory was an essential
part of the construction of QED, whose main actors were Sin-itiro Tomonaga
(1906–1979), Julian Schwinger (1918–1994), Richard Feynman (1919–1988), and
Freeman Dyson (1923–) [9]. Important stimuli for the development of renormaliza-
tion theory came from a conference held on Shelter Island in 1947, where Hendrik
Kramers (1894–1952) showed how mass renormalization could be used to circum-
vent divergencies, and where new experimental results on the hydrogen spectrum
were presented. In 1949, Dyson outlined a proof of renormalizability of QED [1],
which was complemented by other authors in the 1950s and 1960s. After the success
of QED, attempts were made to formulate renormalizable quantum-field-theoretical
models for weak interactions. In 1971, Gerard ’t Hooft (1946–), working within
the research program of his tutor Martin Veltmann (1931–), proved that this could
be done using nonabelian � gauge theories [2]. In 1999, the two scientists shared
the Physics Nobel Prize for this result. In the early 1970s, renormalization group
techniques were employed to show that QCD possesses the property of asymptotic
freedom, helping establish it as a model for strong interactions. For this achieve-
ment, David J. Gross (1941–), H. David Politzer (1949–) and Frank Wilczek (1951–)
were awarded the 2004 Nobel Prize in Physics.
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Rigged Hilbert Spaces in Quantum Physics

J-P. Antoine, R. Bishop, A. Bohm, and S. Wickramasekara

Introduction

A rigged Hilbert space (RHS) is the mathematical space underlying � Dirac no-
tation of quantum mechanics. There are two versions of RHS’s used in quantum
theory, the Schwartz space version and the Hardy space version. The Schwartz space
version gives mathematical meaning to bras, kets and the Dirac basis vector expan-
sion, as well as describes the quantum mechanical � observables by an algebra of
everywhere defined (continuous) operators. The Hardy space version provides the
mathematics that unifies quantum scattering, resonance and decay phenomena in
an exact theory. It gives meaning to Lippmann–Schwinger kets and Gamow vec-
tors, and results in an exact lifetime-width relation τ = �/�, which in the Hilbert
space theory was only justified as a Weisskopf–Wigner approximation. This theory
of resonances leads to a semigroup time evolution, thus overcoming the problems
with causality and exponential catastrophe. The relativistic version of Hardy space
theory leads to semigroup representations of Poincaré transformations into the for-
ward lightcone. These representations allow, for the first time, the mass and width
a relativistic resonance, such as the Z◦-boson, to be unambiguously defined from
fundamental principles.

Prehistory: From Matrices and Differential Operators
to Algebras of Observables and Dirac Kets

In their early work, Born and his school (Heisenberg [1], Jordan [2], Wiener [3] and
others), developed an approach to quantum mechanics using matrices for physical
observables, commonly called � matrix mechanics. Alternatively, Schrödinger [4]
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developed a wave equation for quantum mechanics using differential operators.
Dirac [5, 6] realized that the algebraic relations for the “dynamical variables” were
the important features that determined the properties of the operators. This observa-
tion suggested starting with an algebra of observables represented by abstract linear
operators and then looking for a linear space in which they could act.

For certain algebras of observables, this linear space would be a finite dimen-
sional scalar product space, e.g., the (2j + 1)-dimensional space Rj for angular
momentum states. Linear operators corresponding to observables were represented
by Hermitian matrices on this scalar product space, e.g., the (2j +1)× (2j +1) an-
gular momentum matrices on Rj . Hilbert had generalized finite dimensional scalar
product spaces to infinite dimensions so that the vectors φ would be represented as
linear combinations of basis vectors |n)

φ =
∞∑
n=1

|n)(n|φ), (1a)

with coordinates (n|φ) that are square summable sequences:

(φ, φ) =
∞∑
n=1

|(n|φ)|2 <∞. (1b)

In this way, an infinite dimensional complex vector space � with a scalar product
(ψ, φ) was introduced. Therewith, the convergence of infinite sums and continuity
of linear operators in � became as important questions as the algebraic relations
between observables. The observables such as energy, momentum, position and an-
gular momentum, which were defined by their algebraic (commutation) relations,
have as their mathematical image linear operators H (energy), P (momentum),
Q (position) and J (angular momentum) on this vector space � . The elements
φ of � are interpreted as representing physical states, and the matrix elements
squared |(n|φ)|2 = (φ|n)(n|φ) as quantum mechanical probabilities. For instance,
if |n) = |En) is an eigenvector of the observable H with eigenvalue En, i.e.,
H |En) = En|En), then |(En|φ)|2 is the probability of obtaining the value En in
a measurement of energy H in the state φ. Once infinite dimensional vector spaces
were introduced, it became evident that great care must be exercised when dealing
with linear operators. For instance, whether for a given φ ∈ � , the vectors such as
Pφ and Qφ also fulfill the defining condition (1b) is a subtle question that required
serious analysis.

Quantum mechanics has not only discrete eigenvalues, like the En in the compo-
nents (En|φ) of the vectors φ, but also continuous values E, 0 � E <∞, leading to
a continuum of components φ(E) = (E|φ), the energy wave functions. As another
example, the solution of the Schrödinger differential equation ψ(x) is a function of
continuous position x ∈ R3 and its Fourier transform ψ̃(p) is a function of momen-
tum p ∈ R3.

To include continuous energies and other continuous observable values, it is nec-
essary to generalize (1a) and (1b) to continuous superpositions:



642 Rigged Hilbert Spaces in Quantum Physics

φ =
∫

dE|E)(E|φ), (ψ, φ) =
∫

dE (ψ|E)(E|φ), (2a)

In analogy to (1b), one is tempted to require that the (E|φ) are square integrable
functions

(φ, φ) =
∫ ∞

0
dE(φ|E)(E|φ) =

∫ ∞

0
dE|φ(E)|2 <∞, (2b)

and similarly for the position and momentum wavefunctions

(ψ,ψ) =
∫

dxψ∗(x)ψ(x) <∞, (ψ̃, ψ̃) =
∫

dpψ̃∗(p)ψ̃(p) <∞. (2c)

The interpretation of |(En|φ)|2 as probability motivates the interpretation of the
quantity |(E|φ)|2 as probability density, for which, as for other densities in physics,
one expects to use a smooth function. This is the theory that Hilbert, von Neumann
and Nordheim [7] were working on in the 1926–1927 period.

If the integrands in (2) representing probability densities are smooth (or even
piecewise continunous), then the integrals (2) are the usual Riemann integrals. How-
ever, the space of Riemann square integrable functions is not topologically complete
(with respect to the norm topology defined by (2b)) [8], a property that leads to
serious mathematical difficulties. In order to obtain a complete space (i.e., every
Cauchy sequence of vectors has a limit element in the space), von Neumann chose
for integrals of (2) Lebesgue integrals. The resulting topologically complete, in-
finite dimensional vector space is called a (realization of the) Hilbert space H,
which contains the algebraic inner product space as a (dense) subspace, � ⊂ H.
This Hilbert space theory was an enormous mathematical accomplishment. It led
to a demonstration of the equivalence between the mathematical frameworks of� matrix mechanics and � wave mechanics (in the sense that each is a concrete real-
ization of an abstract Hilbert space) and to the first mathematical theory of quantum
physics [9].

However, there are some conceptual and computational difficulties with the
Hilbert space theory, of which the following two are particularly significant. First,
with Lebesgue integrable functions, the concept of a well defined value of the func-
tion φ(E) = (E|φ) at a given E does not have a meaning as it does for continuous
functions. This in turn means that the symbol |E) cannot be given a meaning at
each value of E for 0 � E < ∞. Thus, in the position representation, although
Schrödinger had assumed that � wave function must be continuous on both phys-
ical and metaphysical grounds, the Hilbert space theory implicitly rejected these
assumptions and associated wave mechanics with the much larger space of func-
tions, which includes such pathological functions as those that are discontinuous
everywhere. Second, not all quantum mechanical observables (e.g., not both P and
Q) could be represented by continuous operators defined everywhere in H.

Undisturbed by von Neumann’s arguments, Dirac proposed a formalism for
quantum physics with great computational capacity and broad predictive power. The
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essential features of Dirac’s formalism, often referred to as the bra-ket formalism,
are the following:

1. Physical observables are represented by linear operators in a scalar product space
� and these operators form an algebra. Therefore, it makes sense to arbitrarily
add and multiply operators to form new operators.

2. For a given quantum physical system, there exist complete systems of commuting
observables (CSCO) in the algebra of observables. The system of eigenvectors
for a chosen CSCO furnishes a basis for the space � , i.e., every vector φ ∈ �

can be expanded with respect to the eigenvectors of the CSCO.
For instance, let H , J 2 and J3 be such a CSCO for a spherically symmetric
Hamiltonian H (where the Ji are the angular momentum operators). This CSCO
has common eigenvectors |Ejj3〉:

H |Ejj3〉 = E|Ejj3〉, (3a)

J 2|Ejj3〉 = j (j + 1)|Ejj3〉, J3|Ejj3〉 = j3|Ejj3〉. (3b)

The energy eigenvalues may be discrete En so that every φ ∈ � can be
expanded as

φ =
∑
Enjj3

|Enjj3)(Enjj3|φ), (4a)

or continuous 0 � E �∞ so that

φ =
∑
jj3

∫ ∞

0
dE|Ejj3〉〈Ejj3|φ〉, (4b)

or both so that

φ =
∑
Enjj3

|Enjj3)(Enjj3|φ)+
∑
jj3

∫ ∞

0
dE|Ejj3〉〈Ejj3|φ〉. (4c)

For discreteEn, the |Enjj3) are the usual eigenvectors fulfilling the orthogonality
conditions

(En′j
′j ′3|Enjj3) ≡

(|En′j
′j ′3), |Enjj3)

) = δn′nδj ′j δj ′3j3
, (5)

where δn′n, δj ′j and δj ′3j3
are the Kronecker deltas. For continuousE, the |Ejj3〉 are

the Dirac kets. They are not in the space � or the Hilbert space H ⊃ � . They are
new eigenvectors which, instead of (5), fulfill the “Dirac orthogonality condition”

〈E′j ′j ′3|Ejj3〉 = δ(E′ − E)δj ′j δj ′3j3
, (6)

where δ(E′ − E) is defined as the mathematical object that fulfills the identity
∫

dE′δ(E′ − E)〈E′jj3|φ〉 = 〈Ejj3|φ〉 (7)
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for all “well-behaved energy wave functions” 〈Ejj3|φ〉 = φjj3(E) ≡ φ(E). The
comparison of (7) with the equation

∑
n′

δn′n(En′jj3|φ) = (Enjj3|φ) (8)

fulfilled by δn′n shows that δ(E′ − E), often called the Dirac delta function, is the
analogue of Kronnecker’s δn′n for continuous variables.

The property (7) for δ(E′ − E) cannot be fulfilled by any proper function of E′.
Instead, it was mathematically defined by (7) for a class of functions {φ(E)} and
called a distribution by Schwartz [10]. Subsequently, this led to a new area of math-
ematics called distribution theory and ultimately to RHS’s.

From Dirac Kets to Gamow Vectors: Schwartz Space
vs. Hardy Space Triplets

Dirac’s quasi-mathematical formalism used many postulated or tacitly assumed
properties that are not definable for elements of the Hilbert space. For instance, the
eigenkets (3a) with continuous eigenvalues, introduced by Dirac in [5,6] and further
developed in his books [11] (the first and third editions in 1930 and 1947, respec-
tively), were not mathematically well defined. However, textbooks have continued
to use both Dirac delta functions and kets ever since Dirac’s bra-ket formalism.
Though it lacked a rigorous mathematical foundation, this formalism has been used
by physicists because of its many postulated features and its calculational conve-
nience: the observables are treated like an algebra of linear operators on the entire
space of physical states � and, hence, could be handled like continuous operators;
every Hermitian observable has a complete set of eigenkets (4); the wave functions
are well-behaved smooth functions; each state vector φ corresponds to one wave
function φ(E) = 〈E|φ〉 rather than to a whole equivalence class of functions which
may differ from one another on a set of Lebesgue measure zero (for instance, on all
rational numbers). These features constitute an enormous simplification over von
Neumann’s Hilbert space theory.

There is a wide range of choice for the set of wavefunctions {φ(E)} admissible
within the Dirac formalism. This leaves the Dirac formalism largely undefined but
also flexible. The standard choice, if one is at all concerned with these mathemat-
ical subtleties, is the space of infinitely differentiable functions that, along with all
their derivatives, vanish at infinity faster than any inverse polynomial. This func-
tion space, now called the Schwartz space S, also plays an important role in the
distribution theory of Schwartz [10]. With the development of distribution theory,
the delta symbol in (6), which was completely outside of any rigorous mathematical
framework for almost two decades after its introduction, could be given a mathemat-
ical meaning as a continuous antililear functional on the Schwartz function space S.
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The theory of distributions of Schwartz was an important inspiration to Gel’fand
and his collaborators for developing a new mathematical structure during 1955–
1959 [12], which they called a rigged Hilbert space (RHS). Later, along with
Maurin [13], they proved the Dirac basis vector expansion (4) as the nuclear spectral
theorem.

A rigged Hilbert space is a triplet of spaces

� ⊂ H ⊂ �×, (9)

where H is a Hilbert space, � is a dense subspace of H, endowed with a locally
convex topology τ� that is stronger than the norm topology inherited from H (i.e.,
a stronger notion of convergence), and �× is the space of continuous antilinear
functionals on �. Each space in (9) is dense in the next one, and all embeddings are
linear and continuous.

The original motivation for introducing RHS’s in quantum mechanics was to
provide a rigorous formulation of Dirac formalism. This was done in the 1960s,
independently by Antoine [14–16], Bohm [17, 18], Roberts [19, 20], and jointly by
Kristensen, Meljbo and Poulsen [21], with many later contributions, e.g., [22–28].
The essential result of these papers was to show that, with a suitably constructed
rigged Hilbert space, physical states can be represented by elements of the space �
and observables by an algebra of continuous linear operators in �. The construction
then allows basis vectors |E〉 of (2) and (6), which are undefined in the Hilbert
space theory for continuousE, to be well defined as elements of the dual space �×.
A detailed mathematical analysis of these developments may be found in the next
entry [29].

As mentioned above, the standard choice for allowed wavefunctions 〈E|φ〉 are
Schwartz functions, i.e., an RHS where the space � is realized by the Schwartz
function space S. The Schwartz RHS provides the mathematical foundation of the
quantum theory that describes the structure and spectra of stationary states, and
the time symmetric evolution of states which is given by a one parameter group
U(t). With a suitable generalization of this construction, it is possible to obtain
differentiable representations of all finite dimensional compact and non-compact Lie
groups [14–20, 30–33]. Particularly relevant among these are the symmetry groups
of spacetime, both non-relativistic and relativistic.

However, the Schwartz RHS is not sufficient for a quantum theory of scattering
and decay where one analytically continues the S-matrix into the complex en-
ergy plane [34–36]. In the empirical description of resonance phenomena, one uses
the energy (or, in the relativistic case, the invariant mass) values of the complex
plane and works with Gamow vectors [37] which are associated with the com-
plex eigenvalues of the Hamiltonian. One also uses Lippmann–Schwinger kets with
±iε energy in the denominator [38–40]. The Schwartz RHS accommodates neither
Lippmann–Schwinger kets nor exponentially decaying Gamow kets and thus cannot
provide a relation between the lifetime of decay τ and the width � (or, the complex
pole position) of a resonance.
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To obtain a mathematical theory that unifies quantum resonance and decay
phenomena, one needs to take a step beyond the confines of Dirac’s formalism
or the Schwartz RHS theory. What is remarkable is that this step beyond the
Schwartz space theory can be taken within the general mathematical framework of
RHS’s. Specifically, this theory requires a careful mathematical distinction between
the set of prepared in-states and the set of observed out-states (more precisely,
out-observables). In the discussions on the foundations of quantum theory, a distinc-
tion is made between the notions of states φ, which are prepared by a preparation
apparatus, and observables & = |ψ〉〈ψ|, which are registered by a detector. In
terms of these states and observables, the theory predicts the Born probabilities
|(φ,&(t)φ)|2 for an observable & in a state φ. These probabilities are to be com-
pared with the normalized detector counts of events N(t)

N
. In scattering theory, one

makes a distinction between in-states φ+ and out-states ψ− for which one uses
separate basis vector expansions:

φ+ =
∫ ∞

0
dE |E+〉〈+E|φ+〉 and ψ− =

∫ ∞

0
dE |E−〉〈−E|ψ−〉, (10)

where |E±〉 = |E ± iε〉 are considered to be two different Lippmann–Schwinger
kets fulfilling the two different Lippmann–Schwinger equations.

However, in the mathematical foundations of quantum mechanics, the set of state
vectors {φ} is identified with the set of observable vectors {ψ}, usually by associ-
ating both with the same Hilbert space H. Similarly in scattering theory, the kets
|E±〉 of expansions (10) are thought of as two sets of basis vectors for the same
vector space. In contrast, in the RHS’s theory of scattering and decay phenomena,
one generalizes the Schwartz RHS theory of Dirac’s formalism to a theory with two
RHS’s, one for the set of prepared in-states {φ+},

{φ+} = �− ⊂ H ⊂ �×− 6 |E+〉 (11+)

and the other for the set of detected out-observable vectors {ψ−},

{ψ−} = �+ ⊂ H ⊂ �×+ 6 |E−〉 (11−)

where H is the same Hilbert space. One now distinguishes mathematically between
states {φ+} = �− and observables {ψ−} = �+ and relates them to Lippmann–
Schwinger kets |E+〉 ∈ �×− and |E−〉 ∈ �×+, respectively. Thus, the RHS theory
elevates the physical content of the notions of state and observable vectors into a
mathematical principle.

From this pair of RHS’s for state and observable vectors, a mathematically
consistent theory of resonance scattering and decay phenomena can be obtained
by letting the spaces �− and �+ to be defined in their energy representation by
Hardy spaces on the lower and upper complex semiplanes, respectively [41–44]. In
particular, the energy wavefunctions 〈+E|φ+〉 = φ+(E) and 〈−E|ψ−〉 = ψ−(E)
in (10) are smooth, rapidly decreasing Hardy functions on the lower and upper com-
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plex semiplanes. The basis kets |E±〉 can now be well-defined as elements of the
dual spaces �×∓, and therewith Dirac-type basis vector expansions (10) of φ+ and
ψ− can be rigorously obtained in terms of |E±〉 by way of the nuclear spectral
theorem. The theory based on RHS’s (11) also contains exponentially decaying
Gamow vectors and Breit–Wigner resonance amplitudes as well-defined mathe-
matical concepts [45]. This Hardy space theory has been subsequently extended
to relativistic resonances and decaying states [46]. One of the important outcomes
of the relativistic extension is the unique and unambiguous definition it provides for
the mass and width of a relativistic resonance, a much debated problem since the
early 1990s.

One particularly important aspect in which the Hardy-type RHS’s differ from
the Schwartz-type RHS’s entails the class of allowed representations of symmetry
groups, including non-compact spacetime symmetry groups. In the Schwartz-type
construction, the unitary representations of Lie groups in the Hilbert space H can be
restricted to � and extended to �× to obtain differentiable representations in these
spaces [33]. Thus, quantum mechanical symmetry transformations represented by
groups can be well accommodated in the Schwartz-type RHS’s, and many of the el-
ements of the algebra of observables arise as the derivatives of these representations
in � and �×. In contrast, Hardy-type RHS’s do not furnish representations of the
spacetime symmetry groups. In particular, in the non-relativistic version, the time
evolution in �± is given by one parameter semigroups U±(t) with t � 0. In the rel-
ativistic version, the spacetime evolution in �± is given by semigroups U±(I, a),
where a are spacetime four vectors with a0 � 0 and a2 � 0, i.e., by representations
of the Poincaré semigroup into the forward lightcone [46, 47]. These semigroup
representations encode the fundamental causal structure of physics. The search for
a consistent mathematical theory that unifies resonance and decay phenomena un-
wittingly leads to quantum mechanical causality.

Summary and Conclusion

Originally, the RHS was an offspring of the Dirac formalism of quantum me-
chanics. After the pioneers of quantum physics had arrived at an algebra of
observables [1–5], von Neumann was the first to give a rigorous mathematical
meaning to quantum theoretical notions, such as states and observables [9], using
the Hilbert space of Lebesgue square integrable functions and self-adjoint opera-
tors in it [7, 9]. This was a monumental achievement of the human intellect, but it
resulted in a rather complicated mathematical structure mainly because it involved
physically unintuitive Lebesgue integration and unbounded operators. The vast
majority of practicing physicists remained unaware of these mathematical subtleties
and complications. In their practical calculations, physicists treated the Hilbert
space theory of quantum physics like a theory of continuous (bounded) operators
in a linear scalar product space and carried out all integrals as Riemann integrals.
Although most physicists were not using the full mathematical formalism of the
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Hilbert space, some properties that could not be derived without the precise math-
ematics of the Hilbert space did enter the standard body of knowledge. One such
example is the unitary (hence reversible) time evolution that could be derived as the
solution to the dynamical Schrödinger equation only under the precise Hilbert space
structure. Nevertheless, physicists took this to be universally true and incorporated
it into their practical calculations.

Irrespective of von Neumann’s Hilbert space theory, Dirac [5, 11] proposed and
developed (in two stages, in the first edition of [11] in 1930 and the third edition
in 1947) his bra-ket formalism. In this formalism, every physical observable is rep-
resented by an everywhere defined “Hermitian” operator that has a complete set
of eigenvectors with discrete or continuous eigenvalues, and every state vector is
a (discrete and/or continuous) superposition of these eigenvectors (4). For contin-
uous eigenvalues, in analogy to the Kronecker-δ, Dirac introduced the δ symbol
that bears his name today. Ever since its introduction, most physicists have used the
Dirac formalism as their theory of quantum mechanics.

Schwartz (1950) gave a proper mathematical content to the Dirac-δ and other
similiar “generalized functions” with his theory of distributions [10]. Later,
Grothendieck (1966) introduced a specific topological vector space called nu-
clear vector space [48]. On this basis, Gel’fand and his school [12] and Maurin [13]
developed the Rigged Hilbert Space. The main mathematical purpose of these
Schwartz-type RHS’s (9) was to provide a theory of unitary representations of
non-compact Lie groups. The generator of each non-compact subgroup of such
a representation has continuous eigenvalues of the type envisioned by Dirac, and
RHS’s provide the tools to handle the eigenvalue problem for these generators. In
particular, with RHS’s, Dirac kets could be defined as elements of �×, i.e., con-
tinuous antilinear functionals on �, and Dirac’s basis vector expansion (2) and (4)
could be proved as the nuclear spectral theorem. Within the Schwartz-type RHS’s
(9), the Schrödinger and Heisenberg dynamical equations can be solved as vector
valued differential equations in � (or in �×). The resulting time evolution of states
and observables is given by a continuous one parameter group of operators, just as
in the Hilbert space.

Going from the one parameter time evolution group to more general non-compact
Lie groups, the topology (the meaning of convergence) of the space� is defined by a
countable family of scalar products (φ,ψ)n = (φ,�nψ), where � is the Laplacian
of the group, also known as the Nelson operator [49], and (φ,ψ)n=0 = (φ,ψ)

is the Hilbert space inner product [44]. This topology is stronger than the Hilbert
space topology, and with respect to it, the generators of the group, and therefore the
enveloping algebra, are represented by continuous operators in �. By duality, there
is also a representation of the enveloping algebra as well as the group by continuous
operators in the space �×, where the topology is the weak-* topology. Eigenkets of
the generators of non-compact subgroups of these representations exist as elements
of the space �×, e.g., the eigenkets |x〉 of position operators Q, or |p〉 of the
momentum operators P with eigenvalues x ∈ R3 and p ∈ R3, respectively. In
contrast, it is not possible to obtain a representation of the enveloping algebra of a
non-compact group by continuous operators in a Hilbert space.
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Structure and spectra of microphysical systems is one aspect of quantum theory
for which the Schwartz-type RHS’s provide a complete solution. The other aspect
of quantum theory is scattering, resonance and decay phenomena along with the
dynamics governing their evolution. In heuristic treatments of scattering, the mathe-
matical subtleties of the Hilbert space theory were ignored. Instead, solutions of the
Schrödinger equation with purely outgoing boundary conditions were advocated
[50,51]. Mathematically undefined kets |E±〉 with infinitesimal imaginary part±iε
of energy were used to obtain, respectively, the incoming and outgoing solutions
of Lippmann–Schwinger equations [38–40]. Resonance and decaying states were
intuitively associated with an asymmetric “irreversible” time evolution [52–54].

While these heuristic methods were adequate for some physical applications,
when they were compared with the precise mathematical consequences of the
Hilbert space, one was necessarily led to contradictions. For instance, heuristic
Gamow vectors [37] and rigorous unitary time evolution are mutually contradic-
tory, as exemplified by the exponential catastrophe [55]. Furthermore, the deviations
from the exponential decay law [56, 57], another mathematical consequence of the
structure of the Hilbert space, leads to inconsistencies with Einstein causality [58].

Thus it was clear that for a description of resonance and decay phenomena, it
was necessary to go beyond the time symmetric mathematical theory based on the
Hilbert space, or on the Schwartz-type RHS theory. But many of the empirical no-
tions, like Gamow states and Lippmann–Schwinger kets, have been very successful
for the description of scattering and decay. Therefore, what was needed was a math-
ematical structure that incorporated and legitimized these useful heuristic notions
of resonance scattering and decay. Hardy-type RHS’s precisely provide this math-
ematical framework in the same way as the Schwartz-type RHS’s had provided the
framework for Dirac’s formalism.

With the Hardy RHS’s (11±), it is possible to define mathematical entities
having the same useful properties as the heuristic Gamow vectors and Lippmann–
Schwinger kets. Because of shared characteristics, the new entities were called by
the same names. In the Hardy RHS’s, these new mathematically well defined entities
provide a rigorous mathematical theory that unifies resonance scattering and decay
phenomena and predicts the lifetime-width relation τ = �

�
as an exact identity, not

just as an approximation based on the Weisskopf–Wigner methods. In the relativis-
tic version, the theory provides a unique, unambiguous, gauge invariant definition
of mass and width of a resonance [46].

The new theory of Hardy-type RHS’s retains the useful heuristic features of pre-
vious descriptions of resonance scattering and decay phenomena and eliminates the
contradictory mathematical consequences based on the Hilbert space theory. Salient
among the latter is unitary evolution, which is now replaced by an asymmetric, semi-
group evolution. Though it emerges in the mathematical theory as a consequence of
the axioms suggested by the experimental and phenomenological properties of res-
onances and decaying states, the semigroup evolution can be looked at primarily as
a manifestation of the fundamental causal structure of the physical world [59–61].
See also � Time in quantum mechanics.
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10. L. Schwartz: Théorie des Distributions, I–II, (Hermann, Paris, 1957, 1959). New edition,
revised and augmented [First published in 1950–1951]

11. P. A. M. Dirac: The Principles of Quantum Mechanics (Clarendon Press, Oxford, 1930), 3rd
edn. (Clarendon Press, Oxford, 1947)

12. I. M. Gel’fand, N. Y. Vilenkin: Generalized Functions IV: Applications of Harmonic Analysis
(Academic Press, New York, 1964). [Translation of the 1961 Russian edition]

13. K. Maurin: General Eigenfunction Expansions and Unitary Representations of Topological
Groups. (Polish Scientific Publishers, Warsaw, 1968)

14. J-P. Antoine: Formalisme de Dirac et problèmes de symétrie en Mécanique Quantique, Thèse
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J-P. Antoine, A. Bohm, and S. Wickramasekara

Introduction

As explained in the preceding entry [1], the original motivation for introducing
Rigged Hilbert Spaces (RHS) in quantum mechanics was to provide a rigorous for-
mulation of the � Dirac notation. This was done in the 1960s, independently by
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Antoine [2–4] Bohm [5, 6], Roberts [7, 8], and jointly by Kristensen, Meljbo and
Poulsen [9], with many later contributions, e.g. [10–14] (Actually, the idea to use
an RHS in the formulation of quantum mechanics was suggested to JPA in 1962 by
Bargmann, then on sabbatical in Zürich).

We recall that a rigged Hilbert space is a triplet of spaces

� ⊂ H ⊂ �×, (1)

where H is a Hilbert space, � is a dense subspace of H, endowed with a locally
convex topology τ� that is finer than the norm topology inherited from H (i.e.,
a stronger notion of convergence), and �× is the space of continuous antilinear
functionals F(φ) on �. By duality, each space in (1) is dense in the next one and all
embeddings are linear and continuous. Standard examples of rigged Hilbert spaces
are the Schwartz distribution spaces over R or RN , namely S ⊂ L2 ⊂ S× or
D ⊂ L2 ⊂ D× [15–17].

As discussed in [1], Dirac’s formalism undergoes some rather subtle modifica-
tions to achieve rigor; nevertheless, its formal features that are used in quantum
theory are largely reproduced by a RHS � ⊂ H ⊂ �× with � given, in the sim-
plest case, by the abstract Schwartz space. To show how and why this RHS structure
provides a rigorous meaning to Dirac’s formalism, we have to describe the mathe-
matics involved in more detail. In particular, we must describe how to choose the
space � for a given physical system, then make the link with the measurement pro-
cess and finally discuss the realization of symmetries in this new framework.

Mathematical Properties of the RHS

Given the Hilbert space H of (1), the choice of the space � is not yet fixed, but
it depends on the system at hand. In general, � is required to fulfill the following
conditions:

(1) � should be complete with respect to τ�; that is, every Cauchy sequence con-
verges to an element of �.

(2) � should be reflexive; that is, the dual of the dual of � can be identified with �,
(�×)× 7 �. In most cases, � can be obtained as the intersection of a countable
family of Hilbert spaces, � = ∩n∈NHn. It is then a Fréchet space.

(3) � should be nuclear. In the case where � = ∩n∈NHn, this means that, for each
n, there is an m > n such that the embedding Hm → Hn is a Hilbert–Schmidt
operator.

Next, we must fix our notation. For F ∈ �×, F(φ) will denote the value of F at
the vector φ ∈ �. If F ∈ H, we normalize the duality form by requiring F(φ) =
(φ|F), where (·|·) denotes the scalar product of H (recall that F is antilinear). This
motivates the notation F(φ) ≡ 〈φ|F 〉 for any φ ∈ � and F ∈ �×, with the obvious
convention 〈F |φ〉 = 〈φ|F 〉∗, such that 〈φ|F 〉 = (φ|F) for F ∈ H ⊂ �×. That is,
the functional 〈φ|F 〉 is an extension of the Hilbert space scalar product.
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The motivation for the nuclearity property (3) above is that it allows one to ex-
ploit the nuclear spectral theorem of Gel’fand and Maurin [16, 17], which says the
following: Let A be a closed linear operator in H, which maps � into itself continu-
ously with respect to τ�. Then A may be transported by duality to a linear operator
A× : �× → �×, which is an extension of the usual adjoint operator A† in the
Hilbert space, namely:

A×F(φ) = F(Aφ), for allφ ∈ � and for all F ∈ �×, (2)

which we also write

〈φ|A×F 〉 = 〈Aφ|F 〉, ∀φ ∈ �, F ∈ �×. (3)

For such an operator, the vector ξλ ∈ �× is called a generalized eigenvector of A,
with eigenvalue λ ∈ C, if it satisfies

〈φ|A×ξλ〉 ≡ A×ξλ(φ) = λ∗ξλ(φ) ≡ λ∗〈φ|ξλ〉, for all φ ∈ �. (4)

This equality can also be written in the Dirac notation as

A×|ξλ〉 = λ∗|ξλ〉, |ξλ〉 ∈ �×. (5)

Now assume that A has a self-adjoint extension A0 in H with a non-degenerate
spectrum, and that � is nuclear and complete. In this case, A× is an extension
of both A and A0 (collectively, Â). Then the nuclear spectral theorem asserts
that A (or Â) possesses a complete orthonormal set of generalized eigenvectors
ξλ ∈ �×, λ ∈ R. This means that, for any two φ,ψ ∈ �, one has

〈φ|ψ〉 =
∫

R

ξλ(φ) ξλ(ψ)∗ dμ(λ)

≡
∫

R

〈φ|ξλ〉 〈ξλ|ψ〉 dμ(λ) (6)

for some measure μ on R. For quantum mechanical operators A, the measure μ

may be split into a discrete and an absolutely continuous part such that (6) can be
written as

〈φ|ψ〉 =
∑
i

〈φ|λi〉〈λi |ψ〉 +
∫
〈φ|λρ〉〈λρ |ψ〉ρ(λ)dλ, (7)

where the {λi} are the discrete eigenvalues ofA inH, |ξλ〉〈ξλ|dμ(λ) = |λρ〉〈λρ |ρ(λ)
dλ, where ρ(λ) is a non-negative integrable function and the integral extends over
the absolutely continuous Hilbert space spectrum of A. Then, the Dirac kets are
|λ〉 = |λρ〉√ρ(λ).
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The net result of this theorem is to put the eigenvalues and the points of the
continuous spectrum of A on the same footing — exactly what is usually assumed
in the Dirac formulation of quantum mechanics. Indeed, using Dirac’s notation, (6)
and (7) are written as a decomposition of the identity:

I =
∫

R

|ξλ〉〈ξλ| dμ(λ) =
∑
i

|λi〉〈λi | +
∫

R

dλ |λ〉〈λ|, 〈λ|λ′〉 = δ(λ− λ′), (8)

with the proviso that this quantity makes sense only between two vectors of �.
In other words, I must be understood as the (linear) embedding of � into �×, or
equivalently as a sesquilinear form on �×�.

Actually the symbol |ξλ〉〈ξλ| in (8) may be interpreted as a genuine projection
operator from � onto the λ-component in the decomposition, combining von Neu-
mann’s direct integral approach with the nuclear spectral theorem. According to von
Neumann, the self-adjoint operatorA determines a decomposition of H into a direct
integral of one-dimensional spaces H(λ):

H 7
∫ ⊕

R

H(λ) dμ(λ), (9)

which “diagonalizes” A:

f ∼ {f (λ)}, f (λ) ∈ H(λ), with ‖f ‖2 =
∫

R

|f (λ)|2 dμ(λ), (10)

Af ∼ {λf (λ)}. (11)

As already mentioned, the difficulty with this formulation is that H(λ) is not a
subspace of H if λ is a point of μ-measure zero. This is why there are no true
eigenvectors associated to the points of the continuous spectrum.

However, if the space � in (1) is nuclear, then the map τλ : φ �→ φ(λ), φ ∈ �,

φ(λ) ∈ H(λ), is continuous and nuclear for μ-almost all λ. Therefore, one may
write

τλφ = φ(λ) = 〈φ|ξλ〉h(λ), where ξλ ∈ �×, h(λ) ∈ H(λ). (12)

Then the dual mapping τ ′λ : H(λ) → �× is continuous as well and it allows us
to identify each vector ξ ∈ H(λ) with a functional ξ̃ = τ ′λξ ∈ �×. Finally, the
combined map χλ = τ ′λτλ, which is a nuclear operator mapping � into �×, acts as
a projection operator onto the eigensubspace �×λ corresponding to the eigenvalue λ.

If the spectrum of the self-adjoint operator A0 has non-trivial multiplicity, i.e.,
dimH(λ) > 1, as in the case of a spherically symmetric Hamiltonian described in
(4.c) of [1], then the whole machinery still goes through. The map τλ of (12) reads as

τλφ = φ(λ) =
∑
n

〈φ|ξλ,n〉hn(λ), (13)
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where ξλ,n ∈ �× and {hn(λ), n = 1, 2, . . .dimH(λ)} is a basis of H(λ). Thus the
expansion (8) becomes

I =
∫

R

∑
n

|ξλ,n〉〈ξλ,n| dμ(λ)

=
∑
i,n

|λi,n〉〈λi,n| +
∫

R

dλ
∑
n

|λ, n〉〈λ, n|, 〈λ, n|λ′, n′〉 = δ(λ− λ′)δn,n′ .

(14)

Yet a word of caution is necessary here. If one is interested only in the spectral
properties of A, one may require that the spectrum of A in �× consists exactly of
the points of its spectrum in H. If this is the case, one says that (1) is a tight rigging
for A. Tight riggings are by no means guaranteed for a given operator A, as can be
seen from the sufficient conditions given in [18–21]. On the other hand, there are
important cases where one actually needs generalized eigenvalues that do not belong
to the Hilbert space spectrum of A. As we can see in [1] and [22], scattering theory
is a major example, where resonances are associated with complex eigenvalues of
the Hamiltonian, with Gamow vectors as generalized eigenvectors. As operators in
the � Hilbert space, these Hamiltonians are self-adjoint and as such their Hilbert
space spectra are real. Therefore, a tight rigging would not permit a description of
resonance states by complex eigenvectors. However, in the more general case, it is
possible to construct rigged Hilbert spaces such that self-adjoint Hamiltonians have
complex generalized eigenvalues [23–25].

As mentioned in [1], the von Neumann approach to quantum mechanics has
conceptual and mathematical difficulties. For instance, many of the � operators
representing physical observables, such as position and momentum fulfilling the
commutation relations

[
Qi, Pj

] = iδij I , are necessarily non-continuous operators.
(In general, the generators of unitary representations of non-compact subgroups of
a Lie group are non-continuous, i.e., unbounded.) Unbounded operators cannot be
defined on the whole Hilbert space and as such there are subtle issues associated
with choosing an appropriate dense domain in which they can be well-defined. This
is the reason why Dirac’s notion of an algebra of observables is difficult to realize
in the Hilbert space theory. Furthermore, not all � self-adjoint operators can be in-
terpreted as physical � observables and not all elements of the Hilbert space can be
interpreted as states. In the Hilbert space, there are physical vectors that represent
preparable states and many other vectors that do not. Furthermore, there are gener-
alized vectors associated with quantum measurements, which are not elements of
the Hilbert space.

As the point of departure for the rigged Hilbert space theory, one can consider the
construction of the space� in (1) in such a way that physical observables are defined
as continuous, bounded operators in �. One starts with the Hilbert space theory and
identifies a common, dense, invariant domainD on which the “relevant” observables
of the theory are defined. In particular, one chooses a distinguished (“labeled” [7])
family O of observables, which have both a meaningful physical interpretation (in
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terms of measurements, say) and a mathematical definition (as self-adjoint operators
with a dense invariant domain D in H). Hence, O is an algebra of operators on D.
Then, one equips this domain with a suitable (“projective”) topology that makes all
the elements of O continuous operators and calls the resulting topological vector
space �. Taking duals, one obtains a RHS � ⊂ H ⊂ �×, defined by the system.
A simple example is the algebra generated by P , Q and I for the harmonic oscillator
[26]. For unitary representations of all finite dimensional non-compact Lie groups,
an RHS can be constructed in a similar way [27]. The space � constructed this way
is nuclear for a large class of representations [27]. Therefore, the nuclear spectral
theorem applies and yields a rigorous formulation of Dirac’s bra-and-ket formalism
for which the Dirac kets appear as generalized eigenvectors of operators (generators)
for non-compact subalgebras. These results are routinely used by physicists, but they
cannot be justified solely in Hilbert space.

The simplest class of examples in non-relativistic quantum mechanics is that of
a particle, either free or in a nice potential V . The labeled observables are position
Q, momentum P and energy H = P2/2m + V (Q). The corresponding RHS is
S(R3) ⊂ L2(R3) ⊂ S×(R3). The most well-recognized representative of this class
of examples is the harmonic oscillator potential mentioned above [26].

As a byproduct of the RHS formulation, a new interpretation of quantum mea-
surements suggests itself. Given the RHS just constructed, it seems natural to
interpret � as the space of physical states, i.e., states that can be prepared in actual
experiments (notice that, since the Hamiltonian H is certainly an element of O, all
the states in � automatically have a finite energy, since they belong to the domain
of H ). Now an element of �× is an antilinear functional on �, i.e., a procedure
that associates a number to each state, while preserving the linear structure. This is
clearly related to a measurement apparatus or a reference frame.

Group Representations

Ever since the work of Wigner and others [28–34], unitary representations of groups
have been used to describe � symmetry transformations in quantum physics. In par-
ticular, the famous symmetry representation theorem of Wigner [33] and Bargmann
[34] asserts that the symmetry transformations of a physical system are represented
in the state vector space, taken to be a Hilbert space H, by unitary (or antiunitary)
operators. Therefore, if G is the (Lie) group of symmetry transformations of a phys-
ical system, then what is of interest in quantum theory is a unitary representation U

of G in the Hilbert space H of the system. For instance, symmetry transformations
of non-relativistic and relativistic spacetime are described in quantum physics by
unitary representations of the Galilei group and Poincaré group, respectively.

If U is a unitary representation of a symmetry group G, then U(g), g ∈ G,
should transform physical states into physical states, continuously, and similarly for
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observables |FE〉〈FE | or |ψ〉〈ψ| representing measurement apparatuses. Thus one
should have two other realizations of U , in addition to U itself, namely:

• One in �, denoted U�. This representation is the restriction of U in H to �:
U�(g)φ = U(g)φ for g ∈ G, φ ∈ �.

• And one in �×, denoted U×� . This is the extension of U† from H to �×:
U×� (g)F = U†(g)F for g ∈ G, F ∈ H.
The two representations U� and U×� are contragredient of each other. That is,

〈U×
�
(g−1)F |U�(g)φ〉 = 〈F |

(
U×

�
(g−1)

)×
U�(g)φ〉

= 〈F |U�(g
−1)U�(g)φ〉 = 〈F |U(g−1)U(g)φ〉

= 〈F |φ〉, ∀ g ∈ G,φ ∈ �,F ∈ �×, (15)

which corresponds to the unitarity of U acting in H:

(
U†(g−1)f |U(g)h

)
= (U(g)f |U(g)h) = (f |h) , ∀ g ∈ G and f, h ∈ H. (16)

As is easily verified, this definition implies that U×� is an extension of both U
†
� and

U†, as it should in view of (1).
As we have said, in general the space � is supposed to be a reflexive Fréchet

space. For consistency, we must assume that the representation U� is continuous in
�, that is, the map g �→ U�φ is continuous from G to �, for every φ ∈ �. Then the
contragredient representation U×� is automatically continuous in �× [35]. Notice
that rigged Hilbert spaces of this type have also been used in pure group theory,
namely in the decomposition of unitary representations of non-compact groups like
SU(1,1) or SOo(2,1) [36, 37].

From Group to Semigroup Representations

According to the results of Wigner and Bargmann for Hilbert space and the sub-
sequent extensions of these results to rigged Hilbert spaces as outlined above,
spacetime transformations of a quantum system are given by representations of the
Galilei or Poincaré group. As a special case, we now consider the one-parameter
time evolution group U†(t). Applied to an in-state vector φ+ (see [1, Sec.III]),
we get

φ+(t) = e−iHtφ+ = U†(t)φ+, with −∞ < t <∞. (17)

This follows as the solution of the Schrödinger equation (21) when it is solved under
the Hilbert space boundary condition. Similarly, the time evolution of an operator
&− representing an observable is given by

&−(t) = eiHt&−e−iHt = U(t)&−U†(t)(
or, ψ−(t) = eiHtψ− for &− = |ψ−〉〈ψ−|

)
, with −∞ < t <∞, (18)
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as follows from the solution of the Heisenberg equation (22) under the Hilbert space
boundary condition. The U(t) as well as U†(t) = U−1(t) with −∞ < t < ∞
form a group of unitary operators in Hilbert space. With this unitary time evolution,
the Born probabilities for an observable &− in the state φ+(t) (or, equivalently, of
&−(t) in φ+) can be calculated as

Pφ+(t)(&−) = Tr
(
U†(t)|φ+〉〈φ+|U(t)&−

)
= Tr

(
|φ+〉〈φ+|U(t)&−U†(t)

)
(� Schrödinger picture) (� Heisenberg picture)

for all −∞ < t < +∞.

(19)
The Bargmann–Wigner theorem is based on the assumption that for every trans-

formation of the observable relative to the state, there exists an inverse transforma-
tion also of the observable relative to the state. This assumed symmetry of time
translations is encoded in the unitary group U(t) of (18). However, such inverse
time translations are physically impossible since an observable can be measured on
a state φ+ only after the state has been prepared, say at a finite time t0 (which can
be set to t0 = 0). That means that the probability for an observable &−(t) in the
state φ+,

Pφ+(&
−(t)) = Tr

(
|φ+〉〈φ+|U(t)&−U†(t)

)
(20)

makes sense only for t � t0 = 0 at which time the state φ+ has been prepared.
This is a manifestation of causality and it implies that the time evolution of an

observable relative to the state is physically defined only for t � 0. Therefore, the
time translations of the state relative to the observable, or equivalently, also of the
observable relative to the state, should be represented in the mathematical theory
by a semigroup, rather than a unitary group. From this observation we infer that the
time evolution must be given by semigroups U(t), t � 0 in (17) and U†(t), t � 0
in (18) [38].

Although there is no direct experimental reason in favor of unitary group rep-
resentations for time evolution, unitary evolutions are intrinsic to the mathematical
structure of Hilbert space. In particular, a theorem due to Stone and von Neumann
states that every self-adjoint operator A generates a unitary group U(α), −∞ <

α < +∞, such that i dU(α)
dα

∣∣∣
α=0

= A. For the time evolution of the state φ+(t), this

means (17) is the solution to the Schrödinger dynamical equation

i�
dφ+(t)

dt
= Hφ+(t) under the boundary condition φ+(t) ∈ H, (21)

while for the time evolution of the observable &−(t) = |ψ−(t)〉〈ψ−(t)|, (18) is the
solution to the Heisenberg dynamical equation

i�
dψ−(t)

dt
= −Hψ−(t) under the boundary condition ψ−(t) ∈ H. (22)
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Put differently, if one solves these dynamical differential equations under the bound-
ary conditions of the Hilbert space, then one always gets unitary group solutions.
Similarly, if we solve these equations under the boundary conditions of the Schwartz
RHS. That is, the solutions to the differential equations (21) and (22) under the con-
ditions φ+ ∈ � andψ− ∈ � are still of the form (17) and (18) with−∞ < t < +∞
(though, due to the topological structure of � and �×, the continuity and differen-
tiability of these representations are different from those of unitary representations
in the Hilbert space). Thus, although it has the many advantages outlined above,
the RHS (1) of Dirac’s formalism given by Schwartz RHS does not overcome the
causality problem of Hilbert space quantum mechanics. The solution to this prob-
lem, along with a consistent theory of quantum scattering and decay phenomena
is given by an extension of the RHS framework using smooth, rapidly decaying
Hardy functions in place of the Schwartz functions of (1). This Hardy space theory
is described in the accompanying article [22].
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15. L. Schwartz: Théorie des Distributions, I–II. (Hermann, Paris, 1957, 1959). New edition, re-

vised and augmented [First published in 1950–951]
16. I. M. Gel’fand, N. Y. Vilenkin: Generalized Functions IV: Applications of Harmonic Analysis.

(Academic Press, New York, 1964). [Translation of the 1961 Russian edition]
17. K. Maurin: General Eigenfunction Expansions and Unitary Representations of Topological

Groups. (PWN Polish Scientific Publishers, Warsaw, 1968)
18. D. Babbitt: Rep. Math. Phys. 3, 37–42 (1972)
19. D. Fredricks: Rep. Math. Phys. 8, 277–93 (1975)
20. K. Napiorkowski: Bull. Acad. Pol. Sci. 22, 1215–218 (1974)
21. K. Napiorkowski: Bull. Acad. Pol. Sci. 23, 251–52 (1975)
22. A. Bohm, N. L. Harshman: Rigged Hilbert spaces and time asymmetric quantum theory, this

volume
23. A. Bohm: Lett. Math. Phys. 3, 455–61 (1979)



660 Rigged Hilbert Spaces and Time Asymmetric Quantum Theory

24. A. Bohm: J. Math. Phys. 22, 2813–823 (1981)
25. M. Gadella: J. Math. Phys. 24, 1462–469 (1983)
26. A. Bohm, M. Gadella: Dirac Kets, Gamow Vectors and Gelfand Triplets, Springer Lecture

Notes in Physics, vol. 348. Springer, New York (1989)
27. A. Bohm: J. Math. Phys., 8, 1551–558 (1967), Appendix B
28. E. P. Wigner: Z. Phys. 40, 492 (1927)
29. E. P. Wigner: Z. Phys. 43, 642 (1927)
30. E. P. Wigner: Z. Phys. 45, 602 (1927)
31. F. Hund: Z. Phys. 43, 788 (1927)
32. H. Weyl: The Theory of Groups and Quantum Mechanics, 2nd edn. (Dover, 1950), (First

edition, 1931)
33. E. P. Wigner: Group Theory and Its Applications to Quantum Mechanics and Atomic Spectra,

1st edn., 1931. (Academic Press, New York, 1952)
34. V. Bargmann: J. Math. Phys. 5, 862–68 (1964)
35. F. Bruhat: Bull. Soc. Math. France 84, 97–205 (1956)
36. B. Nagel: in Studies in Mathematical Physics (Proc. Istanbul 1970), pp. 135–54, ed. by A.O.

Barut (ed.) (Reidel, Dordrecht and Boston 1970)
37. G. Lindblad, B. Nagel: Ann. Inst. H. Poincaré 13, 27–56 (1970)
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Rigged Hilbert Spaces and Time Asymmetric
Quantum Theory

A. Bohm and N.L. Harshman

Rigged Hilbert Spaces and Dirac’s Bra-Ket Formalism

The rigged Hilbert space (RHS) is a triplet of linear topological spaces

� ⊂ H ⊂ �×, (1)

which is obtained from a linear space with scalar product � by completing it with
respect to three topologies. A topology τ specifies the definition of convergence,
and when a space is completed with respect to a topology τ , the τ -limit elements of
Cauchy sequences are adjoined to the space. For example, in (1) the space H is an
abstract Hilbert space, i.e. it is the completion of � with respect to the topology τH
given by the norm ||φ|| = √(φ, φ). The space � is the completion with respect to a
stronger topology τ� and the space �× is the space of continuous functionals on �.
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Rigged Hilbert Spaces and Time Asymmetric
Quantum Theory

A. Bohm and N.L. Harshman

Rigged Hilbert Spaces and Dirac’s Bra-Ket Formalism

The rigged Hilbert space (RHS) is a triplet of linear topological spaces

� ⊂ H ⊂ �×, (1)

which is obtained from a linear space with scalar product � by completing it with
respect to three topologies. A topology τ specifies the definition of convergence,
and when a space is completed with respect to a topology τ , the τ -limit elements of
Cauchy sequences are adjoined to the space. For example, in (1) the space H is an
abstract Hilbert space, i.e. it is the completion of � with respect to the topology τH
given by the norm ||φ|| = √(φ, φ). The space � is the completion with respect to a
stronger topology τ� and the space �× is the space of continuous functionals on �.
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The linear space with scalar product � is the space that most physics texts and
papers call “the Hilbert space”. The space �× is the space one needs in order to
give a mathematical meaning to the formalism that Dirac introduced in the first edi-
tion (1930) of his book [1], and which he simplified in the third edition (1947) [2]� Dirac notation. The space H is the space that von Neumann introduced in his
Hilbert space formulation of quantum mechanics in 1932 [3], where he remarked
that Dirac’s formalism [1] is “scarcely surpassed in brevity and elegance” but “in
no way satisfies the requirements of rigor.” An example of a Hilbert space, also
called a realization of the abstract Hilbert space, is the space of Lebesgue square
integrable functions L2. Unfortunately, in this space one cannot define the scalar
product of functions with the commonly used Riemann integrals; instead one must
use Lebesgue integrals to obtain the complete Hilbert space L2 (and not just a real-
ization of the linear space �).

Von Neumann’s Hilbert space provides a mathematically rigorous formulation
of quantum mechanics, but it has some physically unintuitive features. For instance,
a state is represented not by a single wave function, but by a class of Lebesgue
square integrable functions that differ from each other on a set of measure zero,
which could even be the set of rational numbers. In contrast, physicists measure
probability distributions at only a finite number of points and then interpolate the
data with smooth functions. This practice suggests that states are better represented
by functions φ(E) that have the following properties: they are continuous, infinitely
differentiable, and they and their derivatives decrease for E → ∞ faster than any
inverse power of E. These properties define the Schwartz function space.

The standard example, used in quantum mechanics [4–6], group representa-
tions [7–11] and axiomatic quantum field theory [12], is the following RHS (1):
the space � is realized by the space of Schwartz functions on the positive real line
S(R+). The space H is realized by Lebesgue square-integrable functions L2(R+)
and the space �× is realized by the space of tempered distributions S×(R+), which
includes generalized functions like the Dirac delta defined below.

In quantum mechanical applications of RHSs, the space � is identified as the
space of physical states, i.e. those states that can be prepared and measured by ex-
periments. The � observables that act as linear operators on the physical states
should be represented by continuous linear operators in � and the set of these ob-
servables are represented by an algebra of � operators. That means observables can
be multiplied and added without worrying about domain questions since they are all
defined everywhere in �. This feature is of enormous importance for practical cal-
culations, but cannot be implemented in the Hilbert space even for the basic algebra
of observables generated by position Q, momentum P , and energy H operators that
fulfill the Heisenberg commutation relations

(QP − PQ) = [Q,P ] = i� (2a)

and

H = P 2

2m
+ V (Q). (2b)
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Within the Dirac formalism it is tacitly assumed that observables can be added
and multiplied. This means that the space � must be constructed such that the
observables form an algebra of linear operators defined on the linear space of
states �. (3)

Observables are measured by numerical values; therefore the operators that rep-
resent them should have eigenvalues and eigenvectors. One can prove, however,
that for certain operators, such as P and Q in (2a), there are no eigenvectors in the
Hilbert space. Nonetheless, Dirac postulated that the observables (like P , Q, and H

in(2a), but also more generally) have a complete set of eigenvectors, the Dirac kets.
These kets were postulated to have the following two properties:

(i) On them, the observables have a set of eigenvalues that are discrete, continuous,
or a combination of continuous and discrete:

H |E〉 = E|E〉, with 0 � E <∞ and/or E ∈ {E1, E2, ..., En, ...} (4a)

P |p〉 = p|p〉, with −∞ < p <∞ (4b)

Q|x〉 = x|x〉, with −∞ < x <∞. (4c)

This means the kets are labeled by the eigenvalues such as x, p, and E.
(ii) These vectors provide a basis system and every vector ψ ∈ � can be uniquely

represented by a linear combination of these basis vectors.

As an example of the second point, consider the case that H has only a discrete
set of eigenvectors |En〉. Then every ψ is expanded as

|ψ〉 =
∑
n

|En〉cn =
∑
n

|En〉〈En|ψ〉, (5a)

where the coordinates or components cn = 〈En|ψ〉 are complex numbers. The ba-
sis vectors |En〉 are orthonormal (orthogonal and normalized) if H is self-adjoint
(H = H †), i.e.

(|Ei〉, |Ej 〉) = 〈Ei |Ej 〉 = δij =
{

1 i = j

0 i �= j
. (5b)

The norm of every state vector ψ is finite and is calculated as

(ψ,ψ) =
∑
n

〈ψ|En〉〈En|ψ〉 =
∑
n

|〈En|ψ〉|2 =
∑
n

|cn|2 <∞. (5c)

This holds, for instance, if H in (2b) has the particular form of a quantum oscillator
with mass m and spring constant k:

H = P 2

2m
+ 1

2
kQ2 (6)
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with En = �ω(n + 1/2) (n = 0, 1, . . .) and where ω = √k/m. The equations (5)
are the infinite dimensional generalizations of the basis vector expansion of a three
dimensional vector x =∑3

i=1 eixi .
In general one cannot find for every self-adjoint operator such as H or P a com-

plete set of eigenvectors such that (5) holds. However, in the RHS (1) realized by
the Schwartz space

S(R) ⊂ L2(R) ⊂ S×(R), (7)

for every vector ψ ∈ � and every self-adjoint operator, the continuous analogues of
(5a) hold:

|ψ〉 =
∫ ∞

−∞
dp |p〉〈p|ψ〉 =

∫ ∞

−∞
dp |p〉ψ(p), (8a)

|ψ〉 =
∫ ∞

−∞
dx |x〉〈x|ψ〉 =

∫ ∞

−∞
dx |x〉ψ(x), (8b)

|ψ〉 =
∑
n

|En〉〈En|ψ〉 +
∫ ∞

0
dE |E〉〈E|ψ〉=

∑
n
|En〉cn +

∫ ∞

0
dE |E〉ψ(E) .(8c)

The kets |x〉, |p〉, and |E〉 exist as generalized eigenvectors of the operators Q,
P , and H (or any other self-adjoint operator representing an observable). They are
elements of �× and the eigenvalue equations (4) are defined to mean

〈ψ|H×|E〉 ≡ 〈Hψ|E〉 = E〈ψ|E〉 for all ψ ∈ �, (9)

and similarly for |p〉, |x〉, etc. The coordinates or wave functions 〈E|ψ〉 = 〈ψ|E〉∗
are elements of the Schwartz space S(R), not of L2(R), and the generalized basis
vector expansions (8) do not hold for every ψ ∈ H but only for every ψ ∈ �. The
operator H×, called the conjugate operator of H , is defined generally for all linear
continuous operators A on φ by

〈Aψ|F 〉 = 〈ψ|A×|F 〉 (10)

for all ψ ∈ � and all F ∈ �×. Since the space � is constructed such that the
physical observables are represented by continuous operators on the space �, the
conjugate A× is a continuous operator in �×. The conjugate A× is an extension
of the Hilbert space adjoint A†: A† ⊂ A×. The observables form an algebra of
operators in � as well as in �×. In contrast, in the Hilbert space H, one cannot have
a continuous algebra of observables even for the canonical commutation relations
(2a). For an example of how to construct the Schwartz space for the operator algebra
of (2a) and (6) see [13], Sect. 1.

The continuous analogue of (5c) is now

(ψ,ψ) =
∫ ∫

dE dE′〈ψ|E〉(|E〉, |E′〉)〈E′|ψ〉, (11)
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but for this to make sense one needs the continuous analogue (|E〉, |E′〉) of the
Kronecker delta δnm of (5b). This is obtained if one takes the generalized scalar
product (|E′〉, ψ) (precisely, the functional 〈E′| at any element ψ ∈ �):

〈E′|ψ〉 =
∫ ∞

0
dE 〈E′|E〉〈E|ψ〉. (12)

By treating the new symbol 〈E′|E〉 introduced in (12) as though it were a scalar
product like (5b) but extended to continuous values, the object 〈E′|E〉 has the prop-
erty that it maps the function ψ(E) ∈ S(R+) by integration over the positive real
axis to its specific value ψ(E′) at a particular energy E′. A mathematical object
with such a property did not exist in the mathematics of the 1920s and 1930s, but
only achieved rigorous definition when Schwartz created the theory of distributions
or generalized functions 20 years later [14]. Dirac’s formalism was unhindered by
all these mathematical complications. He postulated the properties (4) and (8), and
since (5b) held for the discrete case, he introduced the Dirac delta “function”

〈E′|E〉 = δ(E − E′) (13)

and stipulated that it fulfill (12). It is not truly a function, but it is a distribution and
an element of S×(R+).

The requirements expressed in (3), (12), and (13) form the basis of Dirac’s for-
malism for quantum mechanics. Inspired by this, first Schwartz created the theory
of distributions [14]. Then, extending this work, the Gel’fand school [15, 16] in-
troduced into mathematics the RHS for the spectral analysis of � self-adjoint and
unitary operators. Their nuclear spectral theorem is the mathematical version of
Dirac’s continuous basis vector expansion (8). The RHS is the mathematical struc-
ture in which various assumption of Dirac’s formalism, e.g. (2a), (4), (8c), (12), and
(13), can be realized [4–11].

Thus, the Dirac formalism has been given a mathematical meaning by the
Schwartz-RHS. The RHS’s of quantum physical systems are constructed such that
the fundamental observables, like momentum, energy, and position (and many more,
such as angular momentum and intrinsic observables like charges and isospin usu-
ally connected with groups of transformations of space time and of charge spaces)
are represented by an algebra of continuous operators. Then one chooses a complete
commuting system of observables. For the oscillator this is just one operator, for ex-
ample H , P or Q, and the Dirac basis vector expansion for the operator is like (5a),
(8a), or (8b) for the oscillator. For other quantum systems, for example a particle
in a spherically symmetric potential of the three dimensional space, the complete
system of commuting observables consists of three operators, either the momentum
operators P1, P2, and P3 or the Hamiltonian H and angular momentum operators
J2 and J3, and possibly some other set of observables that measure, for example,
the internal properties and whose eigenvalues are collectively labeled as η. Then the
Dirac basis vector expansion (nuclear spectral theorem) is
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ψ =
∑
jj3η

∫
dE |E, j, j3, η〉〈E, j, j3, η|ψ〉. (14)

The energy wave functions 〈E, j, j3, η|ψ〉 = ψjj3η(E) are Schwartz space func-
tions if we use for the RHS the abstract Schwartz space.

Hardy Space Triplets for Resonance Scattering and Decay

The Schwartz-RHS gives a mathematical justification for the Dirac formalism. It
defines the Dirac kets, justifies the algebraic manipulation of the observables, and
proves the continuous basis vector expansion (8). However, it does not provide a
mathematical theory of scattering, resonances, and decaying states, and neither does
the Hilbert space formulation. The description of resonances and decay phenomena
in standard quantum mechanics is provided by the Weisskopf–Wigner approxima-
tions [17, 18] and it is well-known to experts that “there does not exist...a rigorous
theory to which these various methods can be considered and approximation” [19].
This is connected with the Stone–von Neumann theorem [20, 21] which states that
the solutions of the � Schrödinger equation in H are given by the time-symmetric
unitary group U†(t) = exp(−iHt) (or by the unitary group U(t) = exp(iHt)) for
all times −∞ < t < ∞. In the RHS formulation using the Schwartz space, the
space � (and not H) is the set of physical states. That means one has to solve the
Schrödinger equation

i
dφ(t)

dt
= Hφ(t) (15)

under the boundary condition that φ ∈ �. Note that � and H have different defi-
nitions of convergence, therefore the limits involved in taking the derivative of φ in
the space � is different from taking the limit in H. The τH-limit is defined by one
norm, whereas the τ�-limit is stronger and given by countably infinite number of
norms. Thus the solutions of (15) in � do not have to be the same as the solutions
in H [22], but for the Schwartz-RHS, the solutions to (15) also have the group time
evolution property:

φ(t) = e−iHtφ, for all −∞ < t <∞ and for all φ ∈ �. (16)

Therefore, the Hilbert space axiom of standard (von Neumann) quantum theory,

set of physical states = {φ} = H = Hilbert space, (17)

as well as the Schwartz space axiom of the mathematical theory for the Dirac for-
malism,

set of physical states = {φ} = � = abstract Schwartz space, (18)
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lead to the same reversible time evolution. The time evolution of the prepared states
fulfills (16) and there will exist a state φ(t) for every t > 0 and also for every t < 0.

The physical quantities measured in experiments with quantum systems are the
Born probabilities. For instance, the probability to measure an observable & =
|ψ〉〈ψ| in the state φ is given by the Born probability |〈ψ|φ(t)〉|2, and according
to (16), this is predicted for every time −∞ < t < ∞. However, this contradicts
causality; a quantum mechanical state must be prepared first at some time t0 before
the observable can be measured in this state at times t > t0. That means Born proba-
bilities |〈ψ|φ(t)〉|2 can be measured only for t > t0. Consequentially, the evolution
(16) makes physical sense only for t � t0. In other words, instead of the unitary
group solution, one should find solutions that obey semigroup evolution

φ(t) = e−iH(t−t0)φ, for only t > t0. (19)

Such solutions do not exist in the Schwartz space � or in the Hilbert space H.
The time t0 before which “the state is defined completely by the preparation”

has already been mentioned by Feynman [23]. Gell-Mann and Hartle [24] applied
this idea to the probabilities of histories for the expanding universe considered as a
closed quantum system. They did not derive (19); they restricted the time evolution
in (16) to t > t0 (where t0 is the time of the big bang) by fiat, violating the Hilbert
space and Schwartz space axioms (17) and (18). Other examples of systems with a
physically well-defined t0 are quasi-stable particles produced by the strong interac-
tions that decay on a much slower time scale via the weak interaction [25]. That the
decay of excited atoms and of elementary particles is a time asymmetric (sometimes
also called irreversible) process has also been remarked in textbooks [26–28].

In the Hilbert space formulation of quantum mechanics [3], one cannot distin-
guish between vectors φ describing states and vectors ψ describing observables like
& = |ψ〉〈ψ| (or more general observables like A =∑n an|ψn〉〈ψn|). One assumes
that

set of states = {φ} = H = set of observable vectors = {ψ} (20)

and the time evolution for both is given by a unitary group for all times t . In the Dirac
formalism based on (18), one also identifies the set of state vectors and observables
vectors: {φ} = � = {ψ} (21)

and one has a single basis vector expansion such as (14) (or (8)) and one space
of continuous antilinear functionals (kets) |E〉 = |E, j, j3, η〉 ∈ �×. In contrast,
two sets of basis vectors are used in the heuristic conventional treatment of scatter-
ing theory. These are the plane wave in-states |E+〉 and out-“states” |E−〉 that are
solutions of the Lippmann–Schwinger (LS) equation and are given by

|E±〉 = |E ± iε〉 = |E〉 + 1

E −H ± iε
V |E〉, (22)

where ε → +0, (H − V )|E〉 = E|E〉, and V represents the scattering poten-
tial [29–31]. The± iε in the LS equation (22) implies that the energy wave functions
(ψ−(E))∗ = 〈−E|ψ−〉∗ = 〈ψ−|E−〉 and φ+(E) = 〈+E|φ+〉 are the boundary
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values of analytic functions in the lower complex energy semi-plane (for complex
energy z = (E + iε)∗ = E − iε, immediately below the real axis on the second
sheet of the S-matrix). In analogy to the Dirac expansion (8c), the |E±〉 are taken as
basis systems for the Dirac basis vector expansions

|φ+〉 =
∫ ∞

0
dE |E+〉〈+E|φ+〉, (23a)

and

|ψ−〉 =
∫ ∞

0
dE |E−〉〈−E|ψ−〉. (23b)

The ± iε in the phenomenological LS equation (22) suggests that the energy wave
functions 〈−E|ψ−〉 are Schwartz functions that can be analytically continued into
the upper half complex energy plane (second sheet of the S-matrix) and the 〈+E|φ+〉
are Schwartz functions analytic in the lower complex plane. Since the sets of vec-
tors {φ+} and {ψ−} are defined by the sets of wave functions {〈+E|φ+〉} and
{〈−E|ψ−〉}, it suggests that there are two RHS’s involved. One RHS

{φ+} = �− ⊂ H ⊂ �×− (24a)

is used for the set of state vectors {φ+} (in-states), which are defined by the prepa-
ration apparatus, such as an accelerator. Another RHS

{ψ−} = �+ ⊂ H ⊂ �×+ (24b)

is used for the set of observable vectors {ψ−} (out-states, or better, out-observables),
which are defined by the registration apparatus, such as a detector. The vectors φ+
and ψ− are very similar to the in- and out-states in the S-matrix element of tradi-
tional scattering theory [32–34]:

〈−ψ|φ+〉 = (ψ−, φ+) = (ψout, Sφin) = (ψout, φout). (25)

To specify the properties of the wave functions 〈−E|ψ−〉 and 〈+E|φ+〉 and
therewith the spaces �+ and �− of vectors ψ− and φ+, one checks under which
mathematical conditions on the spaces {〈−E|ψ−〉} and {〈+E|φ+〉} one can derive
reasonable physical consequences from the hypothesis (24). A reasonable physical
consequence would be a unification of resonance scattering and decay phenomena.
One starts with the definition of a resonance by the S-matrix pole at the complex
energy zR = ER − i�/2. From the pole, one seeks the requirements that will allow
the derivation of two important signatures of time asymmetry: the Breit–Wigner
amplitude for resonance scattering

aBW
j (E) = Ri

E − (ER − i�/2)
(26a)
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and the exponentially decaying Gamow vector φG for the unstable states. The
Gamow vector must be a ket φG = |(ER−i�/2)−〉 = |(ER−i�/2), j, j3, η

−〉 ∈ �×+
(it is not in H, where exponentially decaying states are precluded [35]) with the
eigenvalue property

〈Hψ−|(ER− i�/2)−〉≡〈ψ−|H×|(ER− i�/2)−〉=(ER− i�/2)〈ψ−|(ER− i�/2)−〉
(26b)

for all ψ− ∈ �+. Here H× is the unique extension of H † = H to the space �×+.
Further, φG must have the exponential semigroup evolution

〈e−iHtψ−|(ER − i�/2)−〉 ≡ 〈ψ−|e−iH×t |(ER − i�/2)−〉
= eiERte−�t/2〈ψ−|(ER − i�/2)−〉 (26c)

for all ψ− ∈ �+ but only for t � 0 since the decaying state must first be prepared
at a time t = t0 = 0 before it can decay.

The results (26a)–(26c) can be obtained if one assumes that in addition to being
Schwartz functions, the energy wave functions can be analytically continued into
either the upper- or lower-half complex energy plane (second sheet) [36]. Precisely,
the analytically continued wave functionsψ−(z) = 〈−z|ψ−〉 and φ+(z) = 〈+z|φ+〉
are smooth Hardy functions 1 on the complex semiplanes C+ and C−, respectively:

φ+(E) = 〈+E|φ+〉 ∈ (H2− ∩ S)|R+ (27a)

ψ−(E) = 〈−E|ψ−〉 ∈ (H2+ ∩ S)|R+ . (27b)

The mismatch in signs between the wave function and the smooth Hardy spaces is
for historical reasons: the ‘±’ of the wave functions is the convention in scattering
theory and has an independent origin from the ‘±’ of the Hardy space analyticity
requirements.

1 A precise definition of the smooth Hardy space is that a function ψ−(E) is in H2+ ∩ S if and
only if: (i) ψ−(E) belongs to the Schwartz space S , (ii) ψ−(E) admits analytic continuation,
ψ−(z) = ψ−(E + iy), to the upper half plane (y > 0), and (iii) For any straight line in the upper
half plane parallel to the real line, there exists a positive number K > 0 such that for all positive
y > 0 the integral

∫∞
−∞ |ψ−(E + iy)|2 dx < K is uniformly bounded by K , which means that the

bound is valid for a particular K and any y > 0. This integral is the usual Riemann integral and
the constant K depends on the specific function ψ−(E). The definition for H2− ∩ S is identical,
just replacing the upper half plane by the lower half plane. Since any function in H2± ∩ S is an
analytic continuation of a function on the real line, it is automatically determined by its values
on any interval in the real line and viceversa. In particular, any function in H2± ∩ S is totally
determined by its values on the positive half line and conversely. The spaces H2± ∩ S|R+ are the
spaces of functions in H2±∩S , restricted to the positive semiaxis, i.e., in the functions in H2±∩S|R+ ,
we have ignored their values on the negative part of the real line. This shows a one to one onto
correspondence between the spaces H2± ∩ S and H2± ∩ S|R+ .
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With the pair of Hardy function spaces (27) one can construct a pair of Gel’fand
triplets of function spaces

(H2∓ ∩ S)|R+ ⊂ L2(R+) ⊂
(
(H2∓ ∩ S)|R+

)×
(28)

and show that these Hardy function spaces are locally convex nuclear spaces [37].
Therefore, the Dirac basis vector expansions (23) are fulfilled as the nuclear
spectral theorem for the Hardy space triplets (24). The time asymmetry (19) is
the mathematical consequence of the Paley–Wiener theorem [38] in the same
way the unitary group evolution is the consequence of the Stone–von Neumann
theorem [20, 21].

Therewith (27) is an axiom for the mathematical theory of quantum physics that
distinguishes mathematically between prepared (in-)states described by the RHS
(24a) and registered observables described by the RHS (24b) in the same way as
the experimentalists distinguish between the preparation apparatus of a state and
the detector of an observable. It provides a unified description of resonance and
decay phenomena and it leads to asymmetric, semigroup time evolution. Without
the mathematical notion of the RHS this time asymmetric quantum theory could not
have been conceived. See also � Time in quantum mechanics.

The authors would like to acknowledge fruitful discussion with Manuel Gadella.
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Russell–Saunders Coupling

Klaus Hentschel

The � vector model provides various ways of calculating the vectorial sum of all
the contributing angular momenta li and � spins si = 1/2 for atoms with more than
one � electron. (� Spin; Stern–Gerlach experiment; Vector model). Either all the
li are first summed up to one L, and then combined with S = ∑i si , or all the li
and si are first summed up separately to ji with J = ∑i ji . The noncommutativ-
ity of � operators makes these two procedures in general non-equivalent, yielding
different combinatorics, and thus different energy levels and transitions. The first
possibility is called Russell–Saunders coupling (also referred to as L-S coupling or
strong coupling because it assumes that the interaction of L and S to form a joint
J for each electron is much stronger than between different � electrons). For mag-
netic dipole radiation, the � selection rules are: �J = ±1 or 0, and similar for
�L and �M with the additional constraint that a transition from M = 0 to M = 0
is forbidden for �J = 0. The selection rule �S = 0 leads to a prohibition of in-
tercombinations. Russell-Saunders coupling is valid for the lighter, hydrogen-like
atom � Bohr’s atom model, for which the multiplet splitting is small compared to
the energy difference of the levels with the same electron configuration but different
L. For heavier atoms and for the energetically higher terms, � jj-coupling yields the
better approximation. Transition cases between the two couplings also occur (see,
e.g. [2], 175f.).
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The identification of the “corpuscle” (later renamed � “electron”) by J.J. Thomson
(1856–1940) in 1897 inspired the design of atomic models by the British school of
mechanistic physics. The obvious initial assumption, based on relative weights, was
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that atoms consisted of thousands of elementary particles whose measured ratio of
charge to mass (e/m) was about 2000 times that of the hydrogen atom � Bohr’s
atom model (e/m)H as known from electrolysis. Further information came from the
spontaneous emission of rays from radioactive substances. These were the alpha and
beta rays distinguished by Rutherford in 1898 and identified as material particles
through bending in a magnetic field: by 1900 it was known that (e/m)β = (e/m),
and therefore that the beta ray probably was identical with the corpuscle, and by
1904 that (e/m)α = (1/2)(e/m)H and therefore (if eα was not smaller than e) that
the alpha particle was heavier than a hydrogen atom.

Around 1900 physicists began to direct alpha and beta particles from naturally
radioactive substances onto various targets to see what would happen. Thomson
evaluated the results for beta particles on the assumption that the observed devi-
ations in their paths arose from a large number of very small pushes exerted on
them by individual corpuscles constituting the target atoms. However, observation
did not agree with theory on the original assumption that the number of � elec-
trons n in an atom of relative atomic weight A (AH = 1) was around 1000A. By
1906 Thomson had discovered that to bring his theory of multiple scattering into
approximate agreement with the facts, he had to assume that n ≈ 3A.

This result was important, for two reasons. For one, it gave the positive charge
in or on the atom a more substantial role than it had in � Thomson’s atom model,
where it was merely a property of the assembled electrons. Then he had ascribed
the entire weight of the atom to its electrons; by reducing their number by three
orders of magnitude, he had necessarily to ascribe most of the weight of the atom
to its positive charge. Still, there should be many electrons even in very light atoms.
Rutherford had proved by 1908 that eα = −2e and that the alpha particle is a helium
atom minus two electrons. It followed from these results and the previous findings
e ≈ 3A and (e/m)α = (1/2)(e/m)H that AHe ≈ 4 and nα ≈ 10, that is, that
the alpha particle retained some ten electrons and, presumably, was a structure of
atomic dimensions.

Against this background, Thomson’s former student Ernest Rutherford (1871–
1937), by then (1910) professor of physics at the University of Manchester, inves-
tigated the scattering of alpha particles � large-angle scattering. He took up the
subject not from a desire to devise a better atomic model, but in order to improve
his method of deducing the charge carried by an alpha particle. The experiments
were not entirely reproducible owing, in Rutherford’s opinion, to the scattering of
alpha particles from the walls of the tubes that confined them. He assigned two of
his assistants, Hans Geiger (1882–1945) and Ernest Marsden (1889–1970), to deter-
mine the extent of the scattering in order to be able to correct for it. � Large-angle
scattering; scattering experiments.

Geiger and Marsden showed that one of every 8000 alpha particles was turned
through more than 90 degrees by collisions on a platinum or gold target. Ruther-
ford’s intuition refused to accept that Thomson’s atoms could reflect alpha particles,
supposed to be of atomic size, by a series of collisions with atomic electrons. There
were not nearly enough of them (n ≈ 3A!). In his first efforts to calculate the proba-
bility of a reflection, Rutherford drew the alpha particle as if it were an atom; but as
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Fig. 1 Rutherford’s diagram for large-angle single scattering (Source: Wikimedia Commons). The
force centre, considered at rest, is at S; the hyperbola PAP′, of which S is the external focus, is the
path of the alpha particle; p, the “impact parameter,” is the perpendicular dropped from the focus
to the original direction of the incoming particle. If the force between the particle and the nucleus
is attractive, the same trajectory can be produced with the internal focus S′ as force centre. For a
time Rutherford thought that the nucleus might be negative, and the force on the alpha particle an
attraction. (Rutherford’s draftsman erred in making the distance OA, where O is the crossing of
the asymptotes, less than OS; S′ lies to the right of A at a distance OS′ = OS.)” Source: Wikipedia
Commons

he progressed, he seems to have assimilated it to a beta particle, that is, to a charged
mass point. This tacit assumption in effect introduced the � nuclear model for the
helium atom; for, if an alpha particle was a point with a double positive charge, the
helium atom, evidently of atomic dimensions, must have two electrons in orbits very
large in comparison with the central charge.

Assuming that a platinum or gold target had the same structure as a helium atom,
but with a central point charge of 100e, Rutherford could derive the Geiger-Marsden
result on the further supposition that the widely scattered alpha particles received
their entire deviation in a single stroke from a large central charge occupying a
very small volume, and not from many slight deflections in encounters with the
atomic electrons. That recovered at the high end of the periodic table the relation
n ≈ A/2 required for helium in order that the alpha particle be a point charge in the
scattering calculation (APt ≈ 200). Thus the primary evidence Rutherford offered
for his nuclear model rested not only on the Geiger-Marsden experiments but also
on a novel “single-scattering” approach opposed to the “multiple scattering” theory
developed by Thomson.
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The difference in atomic weight between elements in a row in the periodic ta-
ble of the elements averages about two units; hence, according to Rutherford’s
approximation n ≈ A/2, �n ≈ �A/2 ≈ 1. That deduction inspired and anchored
the concept of atomic number. Assigning then to each element an atomic number Z
equal to its place in the table, and assuming that chemists had not missed any ele-
ments (or had left the right number of spaces for ones unknown),�Z = 1 ≈ �n. In
Rutherford’s theory, Ze represents the central atomic charge or, as it soon was called,
nucleus; the charge on the hydrogen nucleus ZHe should be e if no fractional elec-
tronic charge exists. Apparently chemists had succeeded in arranging the elements
by their weight only by luck, only because, in general, the sequence of A is usually
that of Z. Anomalies occur at K/A, Ni/Co, and I/Te, where arrangement by A in-
verts the chemical order. In the nuclear model, Z, which numbers the electrons in a
neutral atom, indicates chemical properties. Organizing the table by Z rather than A

removed the three anomalies and brought the discovery that atomic weight does not
control chemistry. A given chemical behaviour might be compatible with a range of
atomic weights. Hence the coeval discovery of the principle of isotopy in the exis-
tence of radioactive elements with the same chemistry and different atomic weights
found a perfect representation in the Rutherford atom. The electronic structure and
Z determined chemical behaviour, the weight of the nucleus its radioactivity.

Rutherford’s group at Manchester included several people who worked out the
consequences of isotopy and atomic number, particularly Henry Moseley (1887–
1915), George de Hevesy (1885–1960), and Niels Bohr (1885–1962). Bohr also
made good use of a consequence of the nuclear atom that most physicists thought
its chief demerit. The hydrogen atom with a single orbiting electron is radically
unstable: if obliged to follow the ordinary laws of mechanics and electrodynamics,
the electron would either fall into the nucleus by radiating away its energy or be
driven out of the atom by any passing electromagnetic disturbance. Bohr insisted
on this plain fact, which the plenary atoms of Thomson disguised, to ground his
argument that microphysics required a principle foreign to ordinary physics in order
to account for the stability of atoms. His dictum that atomic electrons whose mo-
tions satisfied a certain condition incorporating Planck’s quantum would be stable
against radiation loss and mechanical perturbations made it possible to bring the
precise measurements of � spectroscopy to bear on the nuclear model and thereby
to open up the subatomic quantum world. See also � Atomic models, Bohr’s atom
model.
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Scattering Experiments

Brigitte Falkenburg

The scattering experiments of subatomic physics probe subatomic structure. The
scattering of well-known “probe particles” at some unknown structures gives rise
to two kinds of results: (i) � large-angle scattering and the discovery of pointlike
structures inside the atom (� Rutherford atom); (ii) the production of stable and
unstable particles, which are identified from characteristic particle tracks, scattering
events and resonances. In a scattering experiment, a particle beam of well-known
mass m and charge q is extracted with well-known momentum p and energy E

from a particle accelerator. In a fixed-targetm experiment, the particles are scattered
at some bulk of matter. In a collider experiment, two particle beams are crossed
in a small interaction zone and scattered off each other. The scattering results are
obtained by measuring the kinematic and dynamic properties of scattered particles
and counting their relative frequencies. The effective cross section obtained from
these relative frequencies corresponds to the transition probability of a quantum
mechanical scattering process.

History

In the earliest scattering experiments, radiation from a radioactive source was col-
limated and sent to some target [1]. The measurement results were obtained by
counting the relative frequency of particles scattered into direction θ . Around 1908,
Ernest Rutherford (1871–1937) and his assistants scattered α-particles at thin alu-
minium or gold foil and detected them using a simple scintillation method. As
discovered in 1903, a screen laminated with zinc sulfide starts to phosphoresce in
total darkness when it is exposed to α-rays. Observed with a magnifying glass, this
glow could be resolved into a variety of single light flashes. In 1909, they found un-
expected large-angle scattering. In 1911, Rutherford postulated the atomic nucleus
as a pointlike scattering center inside the atom described by a Coulomb potential� Rutherford Atom. Niels Bohr (1885–1962) developed this into his � Bohr’s
atomic model.

Scattering experiments at particle accelerators started in the 1950s [2]. In a
particle accelerator, charged particles (� electrons, protons, or heavy ions) are ac-
celerated by means of electric and/or magnetic fields to high energies. The first
cyclotron, designed by Ernest Lawrence (1901–1958) in 1929 and running in 1930,
had magnetic poles of diameter 10 cm. A later 9-in. model accelerated protons

D. Greenberger et al. (eds.), Compendium of Quantum Physics: Concepts, Experiments, 676
History and Philosophy, c© Springer-Verlag Berlin Heidelberg 2009
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beyond 1 MeV. After the second world war, the era of the big machines began.
The size of the machines was rapidly increased in order to increase the beam en-
ergy. In the 1950s, the first proton synchrotrons were built. They generated beams
of 1–10 GeV. In the 1970s, 500 GeV were reached. Current machines (2007) gener-
ate beams of the order of 1–14 TeV, the LHC (large hadron collider) at CERN will
reach 14 TeV.

The bubble chamber, developed in 1952, was a particle detector and a hydrogen
target, too. In order to increase the efficiency, later experiments used heavy targets
equipped with electronic particle detectors (photomultipliers, spark chambers, drift
chambers, C̆erenkov counters, etc.) These detectors made the collider experiments
possible.

The scattering experiments in the 1950s–1970s showed that the atomic nucleus
is not pointlike [2, 3]. In the 1950s, the form factors of protons and neutrons were
measured. In addition, the resonances of many unstable particles were detected, giv-
ing rise to an increasing “particle zoo” which was tamed in terms of group theory. In
1967, large-angle scattering recurred in a collider experiment at the Stanford Linear
Accelerator (SLAC), indicating the quark constituents of the nucleon. In 1974, the
J/�-resonance confirmed the current standard model of particle physics by estab-
lishing the prediction of a “charmed” particle. (� Quantum field theory). The high
energy scattering experiments of the 1980s and 1990s measured further particles
of the standard model, namely the b and t quark and the vector bosons W±,
Z0 of the electro-weak interaction. The current scattering experiments at the LHC
are designed to finding the last “missing link” of the standard model, the Higgs
boson, and particles beyond the standard model [4].

Scattering Models

1. Classical model: Charged massive particles, described as mass points, are scat-
tered at some potential without or with energy transfer, giving rise to elastic or
inelastic scattering. For elastic scattering, the trajectory of a particle is described
by the impact parameter b which depends on the scattering angle θ and the kinetic
energy E of the particle before and after the scattering. θ and E can be measured.
b is characteristic of classical scattering, it is the minimum distance of the scattered
particle to the scattering center or potential source (see � Rutherford atom).

2. Quantum mechanical model: A particle beam of well-defined energy is pre-
pared as a � wave function in a momentum state that corresponds to a plane wave.
The scattering process is described by the quantum mechanics of scattering, in
Born approximation plus eventually some higher order(s) of perturbation theory.
The scattering is described in the wave picture � Davisson–Germer experiment;
Stern–Gerlach experiment; Schrödinger equation, whereas the measurement results
are described in the particle picture � Franck–Hertz experiment. Here, the usual� probabilistic interpretation of quantum mechanics applies. The quantum mechan-
ical expectation value for a certain scattering outcome gives the probability of this
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kind of scattering process, which empirically corresponds to the relative frequency
of particle detections of this kind, for a large number of scattering events.

3. Relation between both models: In the quantum mechanical model, there is
neither a trajectory nor an impact parameter of the individual scattered particles. For
the Coulomb potential, however, the quantum mechanical and the classical model
give exactly the same probabilistic prediction, namely Rutherford’s formula.

Beam Energy and Spatial Resolution

Why were the machines made bigger and bigger in order to generate beams of higher
and higher energies? Due to the formal analogy between the wave equations of quan-
tum mechanics and optics, the spatial resolution of a particle beam is analogous to
that of the microscope: The smaller the wavelength of the rays of an observation
instrument, the smaller the structures that can be observed. Indeed the beam mo-
mentum p corresponds to a � de Broglie wavelength λ = 2π�/p. With increasing
beam energy E or beam momentum p, the de Broglie wavelength λ of the scattered
“probe” particles decreases. Therefore, the higher the beam energy is, the better
the spatial resolution of a scattering experiment will be, and hence the smaller the
spatial structures which may be measured.

The idea behind the design of collider experiments is also to increase the scatter-
ing energy. A fixed target is at rest in the laboratory, whereas a collider experiment
brings two beams of high energy and opposite momentum into collision. In the

Fig. 1 Collider experiment: JADE detector for the measurement e+e− collisions, DESY [4, 3rd
edn., p. 63; by permission of the author.]
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center-of-gravity frame of the scattering process, in a collider experiment the beam
energy is much higher.

The Effective Cross Section

The characteristic quantity of the scattering is the effective cross section or (scatter-
ing) cross section. In the classical model, it is calculated from the angle dependence
of the impact parameter b. It has the dimension of an area and is expressed in units
of Barn (1 Barn = 10−24 cm2). In particle physics, the differential and total cross
section are distinguished.

The differential cross section dσ/dΩ is proportional to the probability of the
scattered particles per scattering angle θ respectively a corresponding infinitesimal
solid angle dΩ . As an empirical quantity, dσ/dΩ is measured from the relative
frequency of particles which are scattered into a finite solid angle �Ω . In the the-
oretical model, dσ/dΩ is defined from the number of particles N sc scattered into
the differential solid angle dΩ that belongs to the scattering angle θ , per differential
surface dF and per scattering center and taken in the formal limit of infinitely many
incoming particles (NC = number of scattering centers):

dσ

dΩ
= lim

Nin→∞
N sc

NinNC
· dF

dΩ
.

The formal limit expresses the difference between probability and relative fre-
quency, i.e., the unavoidable gap between a probabilistic quantity and its empirical
basis. Here, probability is understood as the limit of relative frequency for very big
event numbers.

The number N in of incoming particles per differential surface dF is usually
unknown, just as the number of scattering centers NST. Without these numbers,
dσ/dΩ is only known up to some normalization factor. In the classical model,
dσ/dΩ depends on the impact parameter b as follows:

dσ

dΩ
= b

sin θ
· | db

dθ
|

For the Coulomb potential V (r) = C/r , Rutherford’s formula is obtained (large
angle scattering).

The total cross section σ is obtained by integrating dσ/dΩ over all solid angles.
It expresses the probability of a certain kind of scattering process. It is a measure
for the “hit ratio” of some kind of particle reaction. In a simple mechanical model,
the total cross section may be illustrated as the effective surface of the reaction, that
is, as the area of an extended and impenetrable scattering center, at which negligibly
small probe particles bounce off just like balls at the slats of a garden fence. The
expression “effective cross section” or “scattering cross section” stems from this
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simple mechanical model. In general, σ or dσ/dΩ depends not only on geometric
quantities, but in addition on the kinetic energy of the probe particles and an eventual
energy transfer, in accordance with the relation between the beam energy and the
spatial resolution explained above.

In quantum mechanics, the effective cross section is defined as an abstract prob-
abilistic quantity. In a scattering experiment, the effective cross section is measured
from the relative frequency of scattering events of a given type. In the effective
cross section of a kind of particle reaction, quantum field theory meets experiment.
For a given kind of subatomic scattering process, σ and dσ/dΩ are proportional to
the quantum mechanical transition probability respectively to the corresponding el-
ement of the S-matrix. The cross section of a particle reaction is calculated from the
S-matrix of the interaction term of a quantum field theory. The S-matrix gives the
transition probabilities of initial quantum states to final quantum states. The initial
quantum states correspond to the incoming particles of a scattering experiment, i.e.,
the beam particles and the target nuclei. The final quantum states correspond to the
outgoing diffracted wave or the scattered particles which are detected.

Data Analysis

The data analysis of a scattering experiment proceeds in the following steps [5].
Position measurements are made. They give rise to � particle tracks. The particle
tracks are interpreted in terms of scattering events. The particle tracks and scatter-
ing events are analyzed in terms of mass, charge, momentum, and various other
kinematic and dynamic quantities. The numbers of scattering events of a certain
dynamic type are counted. In a high energy scattering experiment, relativistic kine-
matics is used. From the relative numbers of scattering events for a given momentum
transfer finally the differential or total cross section of a certain particle reaction is
determined. Standard statistical methods are used to correct systematic errors of the
measurement, as far as possible, and to determine the measurement errors.
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Schrödinger Equation

Marianne Breinig

In non-relativistic quantum mechanics, the state of a physical system at a fixed time
t0 is defined by specifying a ket |ψ(t0)〉 belonging to the space ε. ε is a complex, sep-
arable � Hilbert space, a complex linear vector space in which an inner product is
defined and which possesses a countable, � orthonormal basis. In the � Schrödinger
picture the time evolution of the state vector is governed by a partial differential
equation called the Schrödinger equation,

(i�∂/∂t)|ψ(t)〉 = H(t)|ψ(t)〉,

which is a recipe for calculating |ψ(t)〉 when |ψ(t0)〉 is known. Here H is the� Hamiltonian operator for the system.
The Schrödinger equation was developed by Erwin Schrödinger (1887–1961) in

1926 in coordinate representation, where the state vector is represented by a wave
function ψ(r,t). Schrödinger’s original aim was to find a consistent mathematiza-
tion of De Broglie’s intuitive vision of the � electrons as standing � matter waves
around the nucleus. Like Louis de Broglie (1892–1987), Schrödinger hoped that
the � quantization of electron orbits would thus be reinterpretable as the result of
the condition that the electron waves around the nucleus are mutually reinforcing
themselves, i.e. as a periodicity constraint between the orbit 2πr equal to integral
multiples of their hypothetical wavelength λ. Because he knew from spectroscopic
fine structure effects (� spectroscopy and Bohr-Sommerfeld’s model � Bohr’s
model) that the velocity of the electrons around the nucleus was actually quite
high, he first attempted a relativistically invariant description, taking account of the
velocity-dependence of electron mass. A preserved Schrödinger-manuscript writ-
ten during a ski holiday in Arosa during Dec. 1925/ Jan. 1926 shows that he thus
first ended up with an equation surprisingly close to the Klein-Gordon-equation,
found one year later by Oskar Klein (1894–1977) and Walter Gordon (1893–1939)
and then instrumental in Dirac’s � relativistic quantum mechanics of 1930. But
in early 1926, Schrödinger gave up his effort to formulate a theory of electrons
as standing waves in relativistically invariant terms and instead tried a simpler
non-relativistic variant (on the detailed reconstruction of Schrödinger’s pathway to
the equation named after him, differing strongly from the much more formal and
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Marianne Breinig

In non-relativistic quantum mechanics, the state of a physical system at a fixed time
t0 is defined by specifying a ket |ψ(t0)〉 belonging to the space ε. ε is a complex, sep-
arable � Hilbert space, a complex linear vector space in which an inner product is
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(i�∂/∂t)|ψ(t)〉 = H(t)|ψ(t)〉,

which is a recipe for calculating |ψ(t)〉 when |ψ(t0)〉 is known. Here H is the� Hamiltonian operator for the system.
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and then instrumental in Dirac’s � relativistic quantum mechanics of 1930. But
in early 1926, Schrödinger gave up his effort to formulate a theory of electrons
as standing waves in relativistically invariant terms and instead tried a simpler
non-relativistic variant (on the detailed reconstruction of Schrödinger’s pathway to
the equation named after him, differing strongly from the much more formal and
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downright obtuse derivation presented his first papers [1], see his selected corre-
spondence with various physicists [5] and various historical studies [6–10], partic-
ularly [7] and [8] for a close analysis of the surviving Schrödinger manuscripts and
his detour via � relativistic quantum mechanics).

Assuming that the electrons, interpreted as de Broglie matter waves, would sat-
isfy a classical wave equation, �ψ + k2ψ = 0 for the amplitude ψ of their wave
motion around the nucleus, Schrödinger then inserted

k = 2π
λ
,⇒ �ψ + 4π2

λ2
ψ = 0,

with λ as hypothetical wavelength of the electron matter waves.
After inserting the de Broglie relation between electron wavelength λ and mo-

mentum mν, λ = h/mν, he must have obtained

�ψ + 4π2m2ν2

h2 ψ = 0.

Inserting of the classical relation between total energy E, potential energy U and
kinetic energy T = (1/2)mν2 then yielded a simple non-relativistic wave-equation

E − U = 1

2
mν2, �ψ + 8π2m

h2
(E − U)ψ = 0.

Until June 1926, Schrödinger still believed the ψ-function to be a real-valued func-
tion until he realized that he definitely needed complex-valued solutions of the type
ψ(t) ∼ ψ0 · exp(2π iE t/h).

Because Schrödinger’s wave-mechanics, as it was soon called, promised a much
more intuitive understanding, allowed a much simpler and faster calculation of so-
lutions for various standard potentials V (r) and also yielded solution for problems
uncalculable for the competing formalisms of Heisenberg’s � matrix mechanics
and Born & Wiener’s operator mechanics with which it was then also proven to
be physically equivalent in 1926/27, the vast majority of physicists soon only used
Schrödinger’s approach which dominated the further development of quantum me-
chanics until 1930.

In more general terms, for a single particle the Schrödinger equation has the form

(−�
2/(2m))∇2ψ(r, t) + U(r, t)ψ(r, t) = i�∂ψ(r, t)/∂t.

The state vector |ψ(t)〉 encodes all the information the rest of the world, called
the observer, can have about the system at time t . A � measurement changes the
information the observer has about the system and therefore changes the state vector.
Between measurements, the state vector changes deterministically.

In free space (U(r, t) = 0), plane waves of the form ψ(r, t) = A exp(i(k·r−ωt))
are possible solutions of the Schrödinger equation as long as �ω = �2k2/(2m). But
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a plane wave is not square-integrable, it is not a proper wave function. Since the
Schrödinger equation is a linear equation, the � superposition principle applies,
and a linear combination of plane wave solutions is also a solution.

ψ (r, t) =
∑
k

ak exp (i (k · r)− ωt) ,

as long as for each k we have �ωk = �2k2/(2m).
Since k is a continuous variable, the most general solution is not a sum, but an

integral;

ψ (r, t) =
∫

g(k) exp (i (k · r)− ωt) d3k,

where the function g(k) can be complex, g(k) = |g(k)| exp(iα(k)), and where
α(k) determines the phase of the plane wave. Such a � wave function is called
a three-dimensional � wave packet and can represent any non-pathological square-
integrable wave function. Proper wave functions of free particles are wave packets.

The Schrödinger equation can be solved analytically and exactly only for a
few simple systems. Approximation methods and numerical techniques are usually
combined to find approximate solutions. If the Hamiltonian does not contain time
explicitly, then separation of time and space coordinates is possible. Any state vec-
tor |ψ(t)〉 can be expanded in terms of the � eigenstates of the Hamiltonian {|ψn〉},
where H|ψn〉 = En|ψn〉.

|ψ(t)〉 =
∑
n

cn(t)|ψn〉.

The eigenvalue equation for the � Hamiltonian operator H|ψn〉 = En|ψn〉 is called
the time-independent Schrödinger equation. In � wave mechanics it is solved in
coordinate representation.

Since the Schrödinger equation is a linear equation, there exists an operator,
called the evolution operator U(t, t0), that transforms |ψ(t0)〉 into |ψ(t)〉.

The properties of this evolution operator follow from its definition and the
Schrödinger equation.

• U(t0, t0) = I .
• (i�∂/∂t)U(t, t0)|ψ(t0)〉 = H U(t, t0)|ψ(t0)〉 for any |ψ(t0)〉.

Therefore (i�∂/∂t)U(t, t0) = H U(t, t0).
Properties (a) and (b) completely define the evolution operator.

• |ψ(t)〉 = U(t, t ′)|ψ(t ′)〉, |ψ(′)〉 = U(t ′, t ′′)|ψ(t ′′)〉. Therefore |ψ(t)〉 =
U(t, t ′)U(t ′, t ′′)|ψ(t ′′)〉 = U(t ′, t ′′)|ψ(t ′′)〉.
We can generalize toU(tn, t1)=U(tn, tn−1)U(tn−1, tn−2) . . .U(t3, t2) U(t2, t1).
Let t ′′ = t . Then U(t, t ′)U(t ′, t) = I, and interchanging the role of t ′ and t ,
U(t ′, t)U(t, t ′) = I. Therefore U(t, t ′)−1 = U(t ′, t).

• The Schrödinger equation yields
d|ψ(t)〉 = |ψ(t + dt)〉 − |ψ(t)〉 = −(i/�)H(t)|ψ(t)〉dt. Therefore
|ψ(t + dt)〉 = [I− (i/�)H(t)]|ψ(t)〉dt, and U(t + dt, t) = I− (i/�)H(t)dt
is the infinitesimal evolution operator.
U†(t + dt, t) = I+ (i/�)H(t) dt since I and H are Hermitian.
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U†(t + dt, t) U(t + dt, t) = U(t + dt, t) U†(t + dt, t) = I, since for an
infinitesimal operator we neglect terms higher than first order in dt . The infinites-
imal evolution operator is a � unitary operator. Therefore U(t, t0), which is a
product of infinitesimal evolution operators, is unitary.

U†(t, t0) = U−1(t, t0) = U(t0, t).

• If H does not explicitly depend on time, then we can solve (i�∂/∂t)U(t, t0) =
H U(t, t0) for U(t, t0). We find U(t, t0) = exp(−iH(t–t0)/�).

If H does not explicitly depend on time, the evolution operator simplifies finding the
time dependence of the state vector after the eigenstates of H have been found. The
state vector at time t0 is expanded in terms of these eigenstates and the wave vector
at time t is calculated from

|ψ(t0)〉 =
∑
n

cn(t0)|ψn〉, |ψ(t)〉 =
∑
n

cn(t0) exp(−iEn(t − t0)/�|ψn〉.

In the Schrödinger picture the time development of the state vector is entirely deter-
ministic provided that the system is left undisturbed

|ψ(t2)〉 = U(t2, t1)|ψ(t1)〉.

In coordinate representation this yields for a single particle

〈r2|ψ(t2)〉 = 〈r2|U(t2, t1)|ψ(t1)〉 =
∫

d3r1〈r2|U(t2, t1)|r1〉〈r1|ψ(t1)〉,

or
ψ(r2, t2) = d3r1〈r2|U(t2, t1)|r1〉ψ(r1, t1).

〈r2|U(t2, t1)|r1〉 = K(r2, t2; r1, t1) is called the propagator for the Schrödinger
equation and can be interpreted as the probability amplitude that a particle that at t1
is located precisely at r1 will be found at r2 at time t2. The propagator is the Green’s
function for the time-dependent Schrödinger equation

[(−�
2/(2m))∇2

2+U(r2)− i�∂ψ(r, t)/∂t2]K(r2, t2; r1, t1) = i�δ(t2− t1)δ(r2−r1).

We may write U(t2, t1) = U(t2, tan) U(tan, tan−1) . . . U(ta2, ta1) U(ta1, t1),
i.e. we may divide the time interval t2 − t1 into subintervals. Then, by inserting the
closure relation for each subinterval we obtain

K(2, 1) =
∫

d3ran

∫
d3ran−1 . . .

∫
d3ra2

∫
d3ra1 K(2, an)K(an, an−1) . . .

K(a2, a1)K(a1, 1).
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K(2,1) can be interpreted to be the coherent superposition of the probability ampli-
tudes associated with all possible space-time paths starting at 1 and ending at 2.

This concept of the propagator as the coherent � superposition of the probabil-
ity amplitudes has led to Feynman’s postulates, a new formulation of the postulate
concerning the evolution of a physical system.
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Schrödinger’s Cat

Henry Stapp

Erwin Schrödinger and Werner Heisenberg were the originators of two approaches,
known respectively as “� wave mechanics” and “� matrix mechanics”, to what is
now called “quantum mechanics” or “quantum theory”. The two approaches appear
to be extremely different, both in their technical forms, and in their philosophical un-
derpinnings. Heisenberg arrived at his theory by effectively renouncing the idea of
trying to represent a physical system, such as a hydrogen � Bohr’s atom model for
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example, as a structure in space–time, but instead, following the lead of Einstein’s
1905 theory of relativity, representing only empirically observable properties, such
as the transition amplitudes between the stationary states of the atom. These ampli-
tudes can be arranged in square arrays of numbers. In Heisenberg’s scheme these
arrays, and other like them, are combined according to certain rules that were later
recognized by Max Born to be the rules of matrix multiplication. The whole scheme
is abstract and mathematical, and avoids using any space–time picture of what is go-
ing on at the atomic level. Schrödinger, on the other hand, represented the electron
in an atom by a cloudlike wave surrounding the nucleus. This is a space–time struc-
ture that, superficially at least, is more in line with the classical physical theories of
the eighteenth and nineteenth centuries.

Niels Bohr invited Schrödinger to come to Copenhagen to present his ideas, and
to discuss this subject with himself, Heisenberg, and others. Schrödinger arrived
in Copenhagen on October 1st, 1926, and was immediately intensively engaged by
Bohr and the others in a “debate” that lasted for days. Eventually, Schrödinger be-
come ill, and was confined in Bohr’s home to a bed, upon which Bohr sat, continuing
the discussion. Schrödinger finally exclaimed “If all the quantum jumping is here
to stay, then I am sorry that I ever became involved in quantum mechanics”. Bohr
replied, “But we are glad that you did!”

This “quantum jumping” (� quantum jumps) was the key issue. Schrödinger [1]
represented the electron in an atom by a wave that obeyed an equation similar to
the one obeyed by the waves occurring in classical electromagnetic theory, or by
the waves on the ocean. (� Schrödinger picture) He believed that his waves would
have a “realistic” interpretation similar to what had come before in physics. But the
Copenhagen group argued that his wave must be viewed as an abstraction that could
be used to compute results of measurements, but that could not be “real” in the same
sense that the waves in classical physics could be imagined to be real. In particu-
lar, the wave had to undergo sudden jumps when a measurement was performed
that revealed new knowledge or information. (� Wave function collapse; see also� ensembles in quantum mechanics). (Copenhagen interpretation. See � Born rule;
Consistent Histories; Metaphysics in Quantum Mechanics; Nonlocality; Orthodox
Interpretation; Transactional Interpretation).

The problem was how to understand these “jumps”. They are required to occur
because if one accepts that our measuring devices, along with our own bodies and
brains, and the entire surrounding physical universe, are made of atoms, then this
whole lot, taken as a whole, should be subject to the laws of atomic physics. But
these laws entail that the states, first of our measuring devices, and then of our
bodies and brains, will generally evolve into continuous smears that represent a
mixtures of “all possibilities” for what might happen, in stark contrast to the partic-
ular possibilities that we experience as actually happening. For example, in the case
of a radio-active nucleus surrounded by an instrument that detects, and signals, the
detection of the decay of the nucleus, the evolving quantum state of the world will
eventually contain contributions associated with the continuum of times at which
the decay might possibly be detected by the instrument. And the state will contain
also contributions associated with the continuum of times at which the brains of the
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observers of the instrument might possibly register the signal associated with the
detection, rather than just the part corresponding to the time that observer actually
experiences the signal.

The straight-forward way out of this difficulty would be to introduce into the
physical theory some new physical process that would, at some level between
“atomic size” and “macroscopic size”, manage to bring the properties at the macro-
scopic quantum scale into line with what we normally see. That would mean that the
present orthodox theory, which lacks the specification of any such process, would
be fundamentally incomplete, and that correct predictions would depend in the end
on the details of this currently unspecified process.

Bohr, Heisenberg, and Pauli, thinking along the lines initiated by Einstein, rec-
ognized that a neater solution, much more in line with Ockham’s razor, could be
constructed by stipulating, economically, that no such new physical process exists,
and by then using, instead of such a process, the fact the space–time structures
that are needed for the description of relationships between our observations are
the space–time structures occurring in our observations themselves. The theory is
then formulated as a set of rules connecting our observation to the symbols in the
quantum mathematical formalism.

Bringing the knowledge of observers into the theory in this essential and explicit
way is a huge departure from the ideas of classical physics, where the external phys-
ical world is imagined to have, independently of all observers, the space–time
properties that observers can “see” if they happen to look. Their observations play
no essential role. Of course, Einstein had broken the ice with his focusing on the
readings on clocks and rulers that idealized observers could “see”. But behind the
quantum shift was also the emphasis on the (long-standing) philosophical view that
the proper mission of science is to provide us with useful tools, rather than with the
philosophical satisfaction of believing that we know the truth about nature. Clas-
sical mechanics deceived scientists and philosophers for more than two centuries
into believing that it provided them with an essentially true picture of reality. The
founders of quantum theory sought to avoid making the same mistake.

The quantum shift in perspective was proclaimed in the opening words of Bohr’s
1934 book:

The task of science is both to extend the range of our experience and reduce it to order.

Later on he elaborates:

In our description of nature the purpose is not to disclose the real essence of phenomena,
but only to track down as far as possible relations between the multifold aspects of our
experience. ([2] p. 18)

. . . the formalism does not allow pictorial representation along accustomed lines, but aims
directly at establishing relations between observations obtained under well defined condi-
tions. ([3] p. 71)

. . . we must recognize above all, that even when phenomena transcend the scope of clas-
sical physical theories, the account of the experimental arrangement and the recording of
observations must be given in plain language, suitably supplemented by technical physical
terminology. This is a clear logical demand, since the very word “experiment” refers to a
situation where we can tell others what we have done and what we have learned. ([3] p. 72)
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These quotes emphasize the fact that, according to the Bohr/Copenhagen view,
a space–time description comes into the quantum mechanical theory through us;
through our own descriptions of our probing actions and the feedbacks we receive.
There is in orthodox (Copenhagen) quantum mechanics no specification of any
observer-independent process that endows even large measuring devices with the
essentially-classical space–time structure that we all intuitively believe each macro-
scopic device possesses, even when we are not seeing or otherwise sensing it. Thus
if a system is confined to a black box that blocks our being able to have any knowl-
edge of its contents, beyond what follows from our knowledge of the preparation,
then the quantum theoretic representation of the contents of the box will be just
the quantum state that evolves from the prepared state via the Schrödinger equation
governed evolution.

It is within this context that Schrödinger proposed his diabolical experiment.
(Fig. 1) He places his cat in a black box containing a radio-active source that triggers
a device that has a 50% chance to release the contents of a pellet of cyanide that,
if released, will kill the otherwise health cat. Under these conditions, the evolution
in accordance with the Schrödinger equation of what’s in the box will eventually
generate a state representing a 50–50 mixture of one part corresponding to a dead
cat and another part corresponding to an alive cat. Since no one can observe what is
happening inside the box, and since the theory does not allow any endowing of any
space–time properties except via observation and Schrödinger evolution, the theory
is left in the posture of having to retain, until someone looks inside the box, both
the dead-cat part and the alive-cat part. (Interaction with the environment renders
certain interference experiments unfeasible, but does not eliminate either part.)

This situation seems highly counter-intuitive. But it poses no problem for the
Copenhagen view, which specifies that the entire theory is naught but a set of rules
designed to allow predictions about relationships between observations to be calcu-
lated (See � Matrix Mechanics for an example.) The cat situation is in accord with
what Bohr and company had said all along: Schrödinger’s wave is an abstraction

Fig. 1 Source: B.S. De Witt and N. Graham (eds.): The Many Worlds Interpretation of Quantum
Mechanics (Princeton 1973, 156). Reproduced by permission of Princeton University Press
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that can be used to compute expectations about human experiences, but it cannot ra-
tionally be imagined to be real in sense that the waves in classical physical theories
could be imagined to be real.

Heisenberg suggested, later on, that the quantum state could be interpreted as an
“objective tendency” for an observational event to occur. There is no problem with
the idea that there is in the box a “state” that represents both a tendency for the cat
to be found completely dead when some person looks, and also an equally weighted
tendency for the cat to be found to be completely healthy, with no tendency for any
other possibility to be found.

Because science is regarded as a cooperative human endeavour, cats are not in-
cluded among the “we” who “can tell others what we have done and what we have
learned”.

The rational coherence of Bohr’s position rest squarely on his premise that
the purpose of science is to provide us with useful practical tools, not to explain
essences. Schrödinger’s cat highlights this fact.
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Schrödinger Picture

Marianne Breinig

In non-relativistic quantum mechanics, the state of a physical system at a fixed time
t0 is defined by specifying a ket |ψ(t0)〉 belonging to the space ε. ε is a complex,
separable � Hilbert space, a complex linear vector space in which an inner product
is defined and which possesses a countable, � orthonormal basis. The vectors in
such a space have the properties mathematical objects must have in order to be
capable of describing a quantum system.

In the Schrödinger picture the time evolution of the state vector is governed by
the � Schrödinger equation,

(i�∂/∂t)|ψ(t)〉 = H(t)|ψ(t)〉,
which is a recipe for calculating |ψ(t)〉 when |ψ(t0)〉 is known. The Schrödinger
equation is linear. The correspondence between |ψ(t)〉 and |ψ(t0)〉 is therefore linear.
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There exists a linear operator that transforms |ψ(t0)〉 into |ψ(t)〉.
|ψ(t)〉 = U(t, t0)|ψ(t0)〉.

The operator U(t, t0) is called the evolution operator. The evolution operator is
a � unitary operator. If H does not explicitly depend on time, then U(t, t0) =
exp(−iH(t–t0)/�). If |ψ(t0)〉 is expanded in terms of eigenstates of H, i.e. if

|ψ(t0)〉 = %n an(t0)|En〉,
where H|En〉 = En|En〉, then

|ψ(t)〉 =
∑
n

an(t0) exp(−iEn(t − t0)/�)|En〉 =
∑
n

an(t) |En〉.

Time evolution is a unitary transformation. All unitary transformations are changes
of representation. We distinguish between active and passive unitary transforma-
tions. Active transformation change all state vectors while leaving the basis vectors
unchanged. � Operators are defined through their action on the basis vectors and
therefore do not change under an active transformation. Passive transformations
change the basis vectors and therefore change the operators, but leave the state vec-
tors
unchanged.

In the Schrödinger picture the time evolution of a physical system is a contin-
uous, active unitary transformation. The state vector is transformed, it evolves in
time. The basis vectors are not changing. All operators are constant in time, unless
they contain time explicitly. The Schrödinger equation describes the evolution of a
physical system in a particular representation.
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model achieved pretty good agreement between theoretical predictions or retro-
dictions and experimental data. The situation was more complicated for some of the
heavier atoms, however, or when external electric or magnetic fields were present
(see � Stark effect and � Zeeman effect). In such cases, by no means all com-
binatorically possible transitions between the various energy levels are actually
observable. Many theoretically possible spectral lines were missing, thus leading
to quite complicated spectral patterns. In order to explain such observed patterns
and the absence of other spectrum lines, Bohr and his co-workers as well as some
members of the � Sommerfeld school in Munich introduced what are called selec-
tion rules (Auswahlregeln).

In terms of the Bohr/Sommerfeld � quantum numbers n, m, l and j , one of
these rules stipulated that the magnetic quantum number m, linked to the num-
ber of components into which a spectral line split in the � Zeeman effect, has to
change by units of ±1 or remain unchanged, i.e., �m = ±1 or 0. In addition, the
transition m = 0 → m = 0 is also forbidden. Similar constraints were also estab-
lished for l and j , i.e., �l = ±1 and �j = ±1. During the semi-classical phase of� quantum theory, such phenomenological rules were physically uninterpretable.
Physicists simply stipulated them ad hoc, in a consciously instrumentalistic atti-
tude (� quantum theory, crisis period). A deeper physical understanding of these
selection rules in terms of the conservation of total angular momentum – an ex-
act � symmetry strictly obeyed by all quantum systems – only became possible
after the introduction of the concept of � spin in late 1925. � See also Stern–
Gerlach experiment; Vector model. Because electrons are spin 1/2 particles and� light quanta (photons) have spin 1, the emission of a photon against the elec-
tron’s axis of rotation is compensated by the spin-flip of the electron in order to
preserve the overall angular momentum of the system (hence �m = ±1). A tran-
sition with �m = 0 is possible only if the emission is tilted with respect to
the electron’s axis of rotation, thus explaining the different state of polarization
of the emitted photons and the requirement that in this case m has to differ
from 0 (i.e., the electron has to precess around the axis; cf., e.g., [1], pp. 84ff.,
153ff.).

Similar ad hoc rules to explain “restrictions on the nature and scope of possi-
ble measurements” were also introduced into elementary particle theory by Wick,
Wightman and Wigner [2], Heisenberg [3] et al., there called � super-selection
rules.1 In some versions of Everett’s � many world interpretation, probabilistically
defined selection rules also exist for quantum histories.

1 According to Wick et al. [2, p. 103], “a superselection rule operates between subspaces [of the
total Hilbert space], if there are neither spontaneous transitions between their state vectors (i.e., if a
selection rule operates between them), and if, in addition to this, there are no measurable quantities
with finite matrix elements between their state vectors.”
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Self-Adjoint Operator

Werner Stulpe

Self-adjoint operator, a sharpening of the concept of a symmetric operator. A linear� operator A acting in a complex � Hilbert space H and defined on a dense linear
submanifold DA is called symmetric or Hermitian if 〈φ|Aψ〉 = 〈Aφ|ψ〉 for all
φ,ψ ∈ DA. A densely defined operator in H is symmetric if and only if the scalar
products 〈φ|Aφ〉, φ ∈ DA, are real.

The adjoint A∗ of a densely defined linear operator A is defined as follows. The
domain DA∗ of A∗ consists of all vectors φ ∈ H for which there exists a vector
χφ ∈ H such that 〈φ|Aψ〉 = 〈χφ |ψ〉 for all ψ ∈ DA; since DA is dense in H, χφ is
uniquely determined, and A∗φ = χφ concludes the definition of A∗. In particular,
〈φ|Aψ〉 = 〈A∗φ|ψ〉 for all ψ ∈ DA and all φ ∈ DA∗ . The adjoint is a closed
(� operator) linear operator, but the submanifold DA∗ need not be dense in H; DA∗
is dense in H if and only if A is closable in which case A = A∗∗ (by definition,
A∗∗ = (A∗)∗). A densely defined linear operator A is called self-adjoint if A = A∗,
i.e., 〈φ|Aψ〉 = 〈Aφ|ψ〉 for all φ,ψ ∈ DA = DA∗ .

A densely defined linear operator is symmetric if and only if A∗ is an extension of
A (briefly written as A ⊆ A∗), that is, A∗ coincides with A on DA, but possibly has
a larger domain. It can be shown that a symmetric operator satisfies A ⊆ A∗∗ ⊆ A∗
where A∗∗ is the closure (� operator) of A. Thus, for a closed symmetric opera-
tor, A = A∗∗ ⊆ A∗ holds true, and for a self-adjoint operator, A = A∗∗ = A∗.
A symmetric operator is called essentially self-adjoint if its closure A = A∗∗ is
self-adjoint; an essentially self-adjoint operator satisfies A ⊆ A∗∗ = A∗. A nec-
essary and sufficient criterion for the self-adjointness of a symmetric operator A is
that RA+iI = RA−iI = H, where I is the unit operator and RA+iI , for instance,
the range of the operator A + iI which is defined on DA; a criterion for the es-
sential self-adjointness of A is that RA+iI and RA−iI are dense in H.—For a linear
operator with domain DA = H the concepts of symmetry and self-adjointness are
equivalent; a symmetric or self-adjoint operator defined on H is necessarily bounded
(� operator).
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An (unbounded) symmetric operator need not have a self-adjoint extension; if
a self-adjoint extension exists, it is in general not unique. A symmetric operator A
has exactly one self-adjoint extension if and only if A is essentially self-adjoint.
Self-adjointness is a crucial property of an operator since only self-adjoint opera-
tors always have a spectral decomposition as pointed out below. The Hamiltonian
operators of quantum mechanics (� Hamiltonian operator) are often given as essen-
tially self-adjoint differential expressions.

(Spectral decomposition, see � Density operator; Ignorance interpretation; Mea-
surement theory; Objectification; Operator; Probabilistic Interpretation; Propensi-
ties in Quantum Mechanics; Wave Mechanics).

As an example, let the simple differential operator P0 = −i d
dx be defined

on DP0 = {ψ ∈ L2([a, b], dx) |ψ absolutely continuous, ψ ′ ∈ L2([a, b], dx),
ψ(a) = ψ(b) = 0} (absolutely continuous functions are in particular differentiable
almost everywhere). The domain DP0 is a dense submanifold of L2([a, b], dx) and
can alternatively be characterized according to DP0 = {ψ ∈ L2([a, b], dx) | ∂ψ ∈
L2([a, b], dx), ψ(a) = ψ(b) = 0} where ∂ψ is the derivative of ψ in the sense of
distributions; the linear operator P0 in L2([a, b], dx) is unbounded and closed. By
integration by parts, P0 is symmetric. The adjoint P ∗0 is again given by P ∗0 = −i d

dx ,
but on the domain DP ∗0 = {ψ ∈ L2([a, b], dx) | ∂ψ ∈ L2([a, b], dx)} which is
larger than DP0 ; P ∗0 is also closed, but not symmetric. So P0 is not self-adjoint;
nevertheless, P0 has infinitely many self-adjoint extensions, namely, Pα = −i d

dx on
DPα = {ψ ∈ L2([a, b], dx) | ∂ψ ∈ L2([a, b], dx), ψ(a) = eiαψ(b), α ∈ R}.

The multiplication operator Q0 on DQ0 = L2([a, b], dx) defined by (Q0ψ)(x)

= xψ(x) is bounded and self-adjoint where ‖Q0‖ = max{|a|, |b|}. The multi-
plication operator Q in L2(R, dx), defined on DQ = {ψ ∈ L2(R, dx) | idRψ ∈
L2(R, dx)} by Qψ = idRψ , i.e., by (Qψ)(x) = xψ(x), is unbounded and self-
adjoint. The differential operator P = −i d

dx in L2(R, dx), defined on DP={ψ ∈
L2(R, dx) | ∂ψ ∈ L2(R, dx)}, is also unbounded and self-adjoint. The same holds

for the Laplace operator H0 = −� = −
(

∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3

)
in L2(R3, dx), de-

fined on DH0 = {ψ ∈ L2(R3, dx) | ∂iψ, ∂i∂jψ ∈ L2(R3, dx), i, j = 1, 2, 3}. As a

final example, the Schrödinger operator
◦
H = −�+V (x) = −�+V (x1, x2, x3) in

L2(R3, dx) where V is a suitable real-valued function, can be defined on the dense
linear submanifold C∞0 (R3) (consisting of the infinitely differentiable complex-
valued functions on R

3 with compact support); under relatively general conditions

on the function V ,
◦
H is essentially self-adjoint, its self-adjoint extension H has the

domain DH = DH0 , and the spectrum (see the fourth of the following paragraphs)
of H is bounded from below.

In the sequel, let H be a separable � Hilbert space; for a nonseparable Hilbert
space some of the following statements must slightly be modified. The eigenvalues
(� operator) of a symmetric or self-adjoint operator, if there are any, are real, there
are at most countably many ones, and the corresponding eigenspaces are orthogo-
nal (� Hilbert space) to each other; in general, such an operator does not have a
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complete orthonormal system of eigenvectors. A compact (� operator) self-adjoint
operator A does have countably many eigenvalues with 0 as only possible accumu-
lation point. Each nonzero eigenvalue is of finite multiplicity, i.e., the corresponding
eigenspace is finite-dimensional. The eigenspaces are mutually orthogonal, more-
over, A has a complete orthonormal system of eigenvectors which is obtained
by choosing an � orthonormal basis in each eigenspace and joining these bases.
Correspondingly, a compact self-adjoint operator has the spectral decomposition
A = ∑∞

i=1 λiPφi where λ1, λ2, . . . are the nonzero eigenvalues of A, counted ac-
cording to their multiplicity and arranged according to |λ1| � |λ1| � . . . > 0,
φ1, φ2, . . . is an orthonormal system of corresponding eigenvectors, Pφi = |φi〉〈φi |
are the corresponding one-dimensional orthogonal projections (� projection), and
the sum converges in the operator norm (� operator) or is finite (in the latter
case, 0 must be an eigenvalue of infinite multiplicity, provided that H is infinite-
dimensional).

A bounded self-adjoint operator need not have any eigenvalue. Instead, every
bounded or unbounded self-adjoint operator has a spectral decomposition. A spec-
tral measure E is a mapping that assigns an orthogonal � projection E(B) to
each Borel set B of the real line R such that (i) E(∅) = 0, E(R) = I and (ii)
E
(⋃∞

i=1 Bi

)
φ = ∑∞

i=1 E(Bi)φ for every sequence of mutually disjoint Borel sets
B1, B2, . . . and all φ ∈ H; as a consequence, the projections E(Bi) are orthogo-
nal to each other. Furthermore, the mapping associating each Borel set B with the
number 〈ψ|E(B)ψ〉 is a probability measure if ψ ∈ H is a unit vector. The spectral
theorem for self-adjoint operators now states that there is a one-one correspondence
between the self-adjoint operators A in H and the spectral measures such that (i)
DA =

{
ψ ∈ H

∣∣ ∫
R
λ2 〈ψ|E(dλ)ψ〉 <∞} and (ii) 〈ψ|Aψ〉 = ∫

R
λ 〈ψ|E(dλ)ψ〉

for all ψ ∈ DA; the self-adjoint operator is uniquely determined by the scalar
products 〈ψ|Aψ〉, ψ ∈ DA. The representation (ii) of A is called its spectral
decomposition.

The concept of spectral measure is closely related to the concept of spectral fam-
ily. A spectral family F is a function assigning an orthogonal projection F(λ) to
each real number λ such that (i) F(λ) � F(μ) for λ � μ, (ii) limλ→∞ F(λ)φ = φ

and limλ→−∞ F(λ)φ = 0 for all φ ∈ H, and (iii) limε→0 F(λ + ε)φ = F(λ)φ for
all λ ∈ R and all φ ∈ H; the function associating each real number λ with the num-
ber 〈ψ|F(λ)ψ〉 is a cumulative distribution function if ψ is a unit vector. A spectral
measure E defines a spectral family according to F(λ) = E((−∞, λ]), conversely,
there exists exactly one spectral measure such that E((λ,μ]) = F(μ) − F(λ).
Using the spectral family corresponding to the spectral measure of a self-adjoint op-
erator, the integrals in the spectral theorem can be considered as Riemann–Stieltjes
integrals, e.g., 〈ψ|Aψ〉 = ∫∞−∞ λ d〈ψ|F(λ)ψ〉.

The spectrum σA of a self-adjoint operator A is a subset of R that can be charac-
terized by the spectral measure E of A or by the corresponding spectral family F .
A real number λ belongs to the spectrum of A if and only if, for every ε > 0,
E((λ − ε, λ + ε)) �= 0 (equivalently, λ is a point of increase of F ). A real number
is an eigenvalue of A if and only if E({λ}) �= 0 (equivalently, F is discontinuous
at λ in the sense that limε→0 F(λ − ε)φ �= F(λ)φ for some φ ∈ H); λ is a point
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of the spectrum that is not an eigenvalue if and only if E((λ − ε, λ + ε)) �= 0 for
every ε > 0 and E({λ}) = 0 (equivalently, λ is a point of increase of F and F is
continuous at λ). Finally, λ is not a point of the spectrum if and only if there exists
an ε > 0 such that E((λ− ε, λ+ ε)) = 0 (equivalently, λ is a point of constancy of
F ). The spectrum of a self-adjoint operator is a closed subset of the real line and for
bounded self-adjoint operators a compact set.

For a self-adjoint operator A with spectral measure E and for a complex-valued
Borel-measurable function f on the real line, a closed operator f (A) can be defined
by (i) Df (A) =

{
ψ ∈ H

∣∣ ∫
R
|f (λ)|2 〈ψ|E(dλ)ψ〉 <∞} and (ii) 〈ψ|f (A)ψ〉 =∫

R
f (λ) 〈ψ|E(dλ)ψ〉 where Df (A) is dense in H. The association of the functions

f and the operators A with the operators f (A) is called the functional calculus
of the self-adjoint operators. If f is real-valued, then f (A) is self-adjoint, and the
spectral measure of f (A) is given by Ef (A)(B) = E(f−1(B)) where f−1(B) =
{λ ∈ R | f (λ) ∈ B}. If is f bounded,f (A) is bounded. If A is bounded, the set of all
operators f (A) where f is a continuous complex-valued function, is the C∗-algebra
generated by A, i.e., the smallest C∗-algebra containing A; this C∗-algebra is a
commutative C∗-algebra of (bounded) operators. The continuous functions f need
not be bounded since, in the definition of f (A), it is sufficient to integrate over the
spectrum of A which is compact if A is bounded. If A is a bounded self-adjoint
operator, the set of all f (A) where f is a bounded measurable function, is the von
Neumann algebra generated by A (� algebraic quantum mechanics).

Another version of the spectral theorem states that every self-adjoint operator
is unitarily equivalent to a multiplication operator acting in some Hilbert space
of square-integrable functions or in a direct sum of such Hilbert spaces. A vector
χ ∈ H is called a cyclic vector for A, A being a self-adjoint operator, if the sub-
manifold generated by the vectors E(B)χ where B is a Borel set of R and E the
spectral measure of A, is dense in H. Let A be a self-adjoint operator with a cyclic
vector χ (which need not exist in general), and let μχ be the measure defined on
the Borel sets of R by μχ(B) = 〈χ |E(B)χ〉. Then there exists a � unitary operator
U from H onto the Hilbert space L2(R, μχ ) of the μχ -quadratically integrable
functions such that (i) DA = {

ψ ∈ H
∣∣ ∫

R
λ2|(Uψ)(λ)|2 μχ(dλ) <∞

}
and (ii)

(UAU−1φ)(λ) = λφ(λ) where φ = Uψ for some ψ ∈ DA. The realization of A
as a multiplication operator in L2(R, μχ) is not unique (since the cyclic vector χ
is not unique) and is called a spectral representation of A. If the finite measure μχ

is equivalent to the Lebesgue measure dλ, i.e., if μχ and dλ have the same sets of
measure zero, then A can be represented as a multiplication operator in the Hilbert
space L2(R, dλ) of the Lebesgue-quadratically integrable functions. For a self-
adjoint operator A with no cyclic vector, there is also a spectral representation. In
this case there exist countably many vectors χ1, χ2, . . . ∈ H and a unitary operator
U from H onto the direct sum L2(R, μχ1) ⊕ L2(R, μχ2) ⊕ . . . such that UAU−1

is again a multiplication operator, i.e., (UAU−1φ)(λ) = λφ(λ) where φ = Uψ is
an element of the direct sum and ψ ∈ DA.

As an example, let A be a (bounded or unbounded) self-adjoint operator in H
with a spectrum consisting entirely of eigenvalues; equivalently, A has a complete
orthonormal system of eigenvectors. Let λi be the eigenvalues and Pi the orthogonal
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projections onto the corresponding eigenspaces. Then the spectral measure EA of
A is given by EA(B)φ = ∑

{i|λi∈B} Piφ, B being a Borel set of R and φ ∈ H,
and the spectral decomposition reads Aψ = ∑i λiPiψ , ψ ∈ DA. The self-adjoint
differential operators Pα mentioned above are of the type of the operator A. As
another example, the spectral measure EQ of the self-adjoint operator Q introduced
above is given by EQ(B)φ = χBφ where χB(x) = 1 for x ∈ B, χB(x) = 0 for
x �∈ B, and φ ∈ L2(R, dx); the spectrum σQ of Q is R. The spectral measure
of the operator Q0 reads EQ0(B)φ = χB∩[a,b]φ where φ ∈ L2([a, b], dx); σQ0 =
[a, b]. Finally, the differential operatorP is unitarily equivalent to the multiplication
operator Q, more precisely, P = F−1QF and DP = {ψ ∈ L2(R, dx) |ψ =
F−1φ, φ ∈ DQ} where F is the � unitary operator of the Fourier transform, so
EP (B) = F−1EQ(B)F and σP = R. Furthermore, FPF−1 = Q is an instance of
the general statement of the preceding paragraph.

The spectral representation of a self-adjoint operator A can be related to a gener-
alized eigenvector problem of A encompassing the so-called improper eigenvalues
and eigenvectors. For a rigorous treatment of quantum mechanics, the concept of
improper eigenvalues and eigenvectors is not necessary; however, for calculational
purposes it is sometimes useful to work with this concept which is mostly done in a
formal, heuristic manner. For instance, if A has no proper eigenvalues, the points λ
of the spectrum of A are improper eigenvalues where the improper eigenvectors φλ,
Aφλ = λφλ, are not elements of the Hilbert space H. Moreover, there exists a com-
plete orthonormal system of improper eigenvectors. If, in addition, A has a cyclic
vector χ ∈ H and the measure μχ defined above is absolutely continuous w.r.t. the
Lebesgue measure, then the improper eigenvalues are of multiplicity 1, a complete
orthonormal system of improper eigenvectors φλ satisfies 〈φλ|φμ〉 = δ(λ−μ), δ be-
ing the δ-distribution, and every vectorψ ∈ H can be written as ψ = ∫

σA
α(λ)φλ dλ

where σA is the spectrum of A and α(λ) = 〈φλ|ψ〉, α ∈ L2(σA, dλ).—A sound
mathematical basis for the concept of improper eigenvalues and eigenvectors is pre-
sented in [8]; beyond that, the improper eigenvectors can, under some conditions
on A, be interpreted as eigenfunctionals in the context of the so-called Gelfand
triples [9].

If A is a self-adjoint or only symmetric operator and if φ1, φ2, . . . is a complete
orthonormal system in H that belongs to the domain DA, then the statement ψ =
Aχ , χ ∈ DA, can be expressed by the matrix representation (� operator) βi =∑

j aijαj , i = 1, 2, . . ., where αj = 〈φj |χ〉, βi = 〈φi |ψ〉, and aij = 〈φi |Aφj 〉. The
matrix elements satisfy aij = aji , i.e., they form a Hermitian matrix.
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Semi-classical Models

Markus Arndt

The Notion of Semi-classicality

Within the literature on quantum physics the word “semi-classical” is used both very
often and with different meanings. But three situations are most commonly encoun-
tered: Firstly, quantum systems that are approximated by classical models at high� quantum numbers. Secondly, the mathematical description of composite systems
which can be simplified by dividing the problem into a classical and a quantum
sector. And finally, open quantum systems which reveal classical properties in their
interaction with a complex environment.

The various definitions of semi-classicality apply to a vast range of physical
systems, covering quantum optics [1], atomic physics [2], molecular physics [3],
mesoscopic and solid state physics [4] or even � quantum gravity [5]. A recent
and comprehensive resource letter by Gutzwiller [6] provides nearly four hundred
commented references to important papers on that subject. And a number of these
papers have been collected and reprinted in [7].

Systems at High Quantum Numbers

It has been proven in countless experiments, that quantum physics is the correct
theory for describing the world of elementary particles, atoms and molecules. It
is also widely believed, that quantum theory is equally correct in the macroscopic
world. However, in many cases the use of classical models is simpler and already
fully sufficient for the description of observed phenomena. This is why Niels Bohr
suggested the � correspondence principle, which should connect the two worlds in
the limit of sufficiently high quantum numbers [8]. In this sense, quantum theory
should become “semi-classical”.

A good example for this is the hydrogen atom: When Bohr built his first atom
model � Bohr’s atom model [8], aiming at the quantitative understanding of atomic
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spectra, he started from the assumption that � electrons were circulating around
the nucleus on trajectories similar to those of planets around the sun. However, he
had to complement this classical model by the quantum hypothesis that the elec-
tron can only travel with discrete angular momenta. Such a trajectory picture is
incompatible with energy conservation, as circulating charges inevitably emit elec-
tromagnetic radiation, but Bohr’s analysis allowed to explain the observed atomic
spectra surprisingly well.

In 1926, Schrödinger solved the inconsistencies of this “semi-classical” view by
assigning a stationary complex � wave function, of amplitude A and phase φ, to
the atomic electrons. The square modulus |A|2 of this function then describes the
probability to find the electron in a particular state. The hydrogen ground state is
then correctly represented by a spherical wavefunction rather than a circular race
track for electrons. The quantum picture thus differs markedly from Bohr’s first
“semi-classical” view.

However, it turns out that the quantum and the classical description approach
each other again in Rydberg atoms, i.e. in atoms excited to high electron ener-
gies [9]. When the atom’s valence electron is excited to a high electronic quantum
number n, a high orbital angular momentum l and a high magnetic quantum number
m, with l = |m| = n − 1, the electron’s wavefunction is again rather well local-
ized on a tight torus which resembles a lot the original idea of a classical electron
trajectory.

Such “circular” Rydberg states are the most classical atomic states that can ac-
tually be prepared in the lab. They couple only weakly to the nuclear core but
very efficiently to external fields. They are therefore very interesting in laboratory
demonstrations of fundamental quantum information phenomena [10].

A second example for classical physics as a limiting case of quantum theory can
also be identified for continuous variable systems. Similarly to the case of optics,
where wave optics is approximated by geometrical ray optics for sufficiently short
wavelengths, one may also find a classical approximation for the motion of a quan-
tum object at high momentum and correspondingly short � de Broglie wavelength.

This idea is implemented in the Wenzel–Kramers–Brillouin (WKB) method,
which is a “semi-classical” technique for solving the � Schrödinger equation:

i�
∂

∂t
ψ(x, t) =

[
− �2

2m
�+ U(x)

]
ψ(x, t). (1)

If we rewrite the wavefunction of a propagating particle in the exponential form

ψ(x, t) ≡ A(x) · eiS(x,t )/�. (2)

and insert this into (1), we find two expressions for the real and imaginary part, and
in particular:

∂S

∂t
+ (∇S)2

2m
+ U = �2

2m

�A

A
. (3)
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Equation (3) is usually identified as a classical limit of the quantum description,
since for � → 0 it corresponds to the Hamilton–Jacobi equation. In classical physics
it describes both the flow of interaction free particles in an external potential U(x),
and the physics of ray optics as a limiting case for the propagation of electro-
magnetic waves. Of course it is not physically possible to reduce a fundamental
constant to zero, but classical mechanics represents a good approximation to quan-
tum physics as long as the phase and amplitude of the wave vary sufficiently slowly.

Division into Classical and Quantum Sectors

Frequently, semi-classical models represent also a mathematical simplification of a
problem which can be achieved by dividing a complex system into at least two parts.
One of these parts is sufficiently simple and sufficiently important to be treated by
quantum theory, while the other subsystem may still be described using classical
physics.

For instance, “semi-classical gravity” usually describes an approach to � quan-
tum gravity in which matter fields are taken to be quantum while the gravitational
field is treated classically.

A typical example from quantum optics is the atom-photon interaction, which
can be treated at different levels of classicality. In general, the Hamiltonian of the
atom–light system reads:

Ĥtot = Ĥatom + Ĥfield + Ĥint.

But depending on the experimental situation, it may be sufficient to choose the math-
ematical treatment to be fully classical, semi-classical or fully quantum mechanical.

a. Classical matter and classical light: In most situations of our everyday life, we
can rely on a purely classical treatment of both the atoms and the light. This is for
instance the case when we irradiate a solid lump with light from a lamp. As soon
as we know the intensity and color of the light, as well as the absorption coefficient
and the heat capacity of the solid, we can for instance determine the temperature
increase in the irradiated solid. This does not require any detailed knowledge of the
underlying quantum properties.

b. Classical light field coupled to quantized internal atomic states: Of course,
matter is actually composed of discrete atoms, and each of them has an infinite
set of quantized energy levels. But in the interaction with monochromatic light it is
often justified to approximate atoms as two-level quantum systems, when the pho-
ton energy EL is resonant with the energy difference between the excited state |e〉
and the ground state |g〉: EL = �ωL 7 Ee − Eg = �ωA. In this simplified situation
the atom is described by the Hamiltonian

Hatom = 1

2
�ω(|e〉〈e| − |g〉〈g|). (4)
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The presence of the monochromatic light field of amplitude E = E0 · cos(ωt) is
included in the time-dependent external potential

Ĥint = −d̂ · E,

where the dipole operator d̂ = d|g〉〈e| + d∗|e〉〈g| describes the quantum transi-
tion between the two atomic levels. It is proportional to the dipole matrix element
d = −e〈e|r|g〉, and thus a real quantum entity. But the electric field amplitude
E=√2I/cε0 can still be related to the light intensity using classical electrodynamics.
This procedure is very often justified, as an intensity as little as 1 mW already
corresponds to a photon flux of about ∼1016 photons per second. The quantum
granularity of the photon field, i.e. the addition or removal of a few photons from
the beam, can then be safely neglected. The semi-classical Hamiltonian then reads

Ĥtot = Ĥatom + Ĥint.

This atom–light interaction model is for instance relevant in most practical situations
related to the description of atomic spectra or optical atom traps [11].

c. Quantum atom and quantum light: A full quantum treatment becomes neces-
sary, when only a few photons (� light quantum) are strongly coupled to a few
atomic levels. A typical example is that of two-level atoms inside a cavity, i.e. in
experiments testing cavity � quantum electrodynamics [10, 12]. The presence of
the cavity dramatically enhances the interaction between photon and atom. A single
photon inside the cavity may then suffice to cause internal or external state changes
of the atom. The photonic Hamiltonian is then described by

Hfield = �ωâ
†
â, (5)

with the photon � creation and annihilation operators â
†

and â. The interaction
Hamiltonian now includes the electric field of a single photon of frequencyω within
the volume V :

Ê = √(�ω)/(ε0V )(â + â†).

Open Quantum Systems, Coupled to a Complex Environment

Open quantum systems, i.e. systems in interaction with a complex environment, are
also often denoted as semi-classical systems. Here the name refers to the fact that
most of the unique quantum features – such as � superposition and � entanglement
– seem to vanish after contact with the experimentally uncontrollable many-body
system.

Decoherence theory [13, 14] elucidates how the coupling between a quantum
system S and its environment E reduce the coherence within the quantum system
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and leads to the appearance of classical properties. Recent experimental examples
from quantum optics, are coherent photon states in a lossy cavity [15] or molec-
ular � de Broglie wavelength interacting with their environment through thermal
photons or collisions with residual gas atoms [16].

Interestingly, � decoherence only leads to “semi-classical” phenomena: no quan-
tum phase relation is actually lost. The quantum correlations (� correlations in
quantum mechanics) only extend to and get entangled with an enormously larger
system of many particles in a complex environment. And this is the reason why
we cannot trace and retrieve them any more. In this sense, the apparent classicality
turns out to be a result of our finite information handling capacities but one might
still think of the underlying world as being ruled by quantum theory.

Literature

1. P. Meystre, Murray III Sargent: Elements of Quantum Optics (Springer, Heidelberg, 2006)
2. B. G. Englert: Semiclassical Theory of Atoms, Lecture Notes in Physics (Springer, Heidelberg,

1988)
3. M. S. Child: Semiclassical Mechanics with Molecular Applications, Int. Ser. of Monographs

on Chemistry (Clarendon Press, Oxford, 1991)
4. M. Brack, R. Bhaduri: Semiclassical Physics, Frontiers in Physics (Addison-Wesley, Reading,

MA, 1997)
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Shor’s Algorithm

See � quantum computation.

Solitons

A. Seeger

Historical Background

The soliton concept has in common with other mathematical concepts such as vec-
tors, tensors, matrices that it arises not only in mathematics but also in numerous
other fields, including physics, chemistry, biology as well as various branches of
engineering science (see, e.g., [1]). It is therefore not surprising that, depending on
the field, the same name denotes different objects or properties and that a simple
definition comprising the entire current usage cannot be given.

The name soliton has its origin in hydraulics. In 1834, the Scottish engineer–
scientist John Scott Russell (1808–1882), while studying the movement of ships on
the Union Canal between Edinburgh and Glasgow, discovered what he described
as a ‘large, solitary, progressive wave’ [2]. This ‘heap of water’ originated when
a fast-moving ship was suddenly stopped. The swell, however, travelled along the
channel with essentially constant shape and with a velocity

V = [g(H + h0)]1/2 (1)

that depended only on the height H of the water level and the amplitude h0 of the
swell (g = 9.81 m s−2). Russell realised the difference between the ‘solitary wave
of translation’, as he also called the phenomenon, and the more common oscillatory
waves which do not involve transport of matter over long distances. He was con-
vinced of the fundamental nature of his discovery but could not give a convincing
theoretical explanation based on, say, Stokes’ equations of fluid dynamics. After
many attempts by British and French scientists – either fruitless or only partially
successful – the French mathematician Joseph Valentin Boussinesq (1842–1929)
solved the problem in 1872 by demonstrating that a fourth-order partial differential
equation for the height h(x, t) of the water level in a shallow canal has the solution

h = h0 Sech2[(3h0/4H 3)1/2(x − V t)], (2)

the speed V being given by (1) [3]. Equation (2) accounted very well indeed for
Russell’s numerous observations as well as later experimental work.
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In 1895, apparently without being aware of the work of Boussinesq and other
French scientists, the Dutch mathematician Dieterik Johannes Korteweg (1848–
1941) and his Ph.D. student, Gustav de Vries, showed that the solitary wave
described by (1, 2) is a solution of a simpler evolution equation with first-order
t- and second-order x-derivatives, now known as KdV equation [4]. It could have
easily been derived from the forth-order Boussinesq equation by assuming that the
shape of the wave was time-independent and by considering only waves travel-
ling in one direction in space (say, in the +x-direction). In numerical studies of
the KdV equation, Zabusky and Kruskal [5] noted that the ‘solitary wave’ (2) pos-
sesses certain persistence properties. When two such waves with different speeds
meet, they get temporarily modified but eventually emerge unchanged from the col-
lision. Clearly inspired by Russell’s nomenclature, Zabusky and Kruskal introduced
the expression ‘soliton’ in the title of their paper, which dealt not with fluids but
with so-called collisionless plasmas. Subsequent analytical investigations showed
that the persistence is a consequence of a non-linear superposition theorem obeyed
by the solutions of the KdV equation. From the mathematical point of view, the
validity of such a theorem is an indispensable feature of a solitonic system.

It is a widespread but unjustified claim that the developments just described mark
the discovery of solitonic behaviour. (As one of many examples in the literature, see
Fokas and Zakharov [25]: “The fascinating new world of solitons and of integrable
behaviour was discovered by Kruskal and Zabusky”.) For a thorough and objec-
tive discussion of the subject the reader is referred to the thesis of M. Heyerhoff
[6], which also covers the nineteenth century work on Russell’s ‘solitary wave’ and
relevant work on differential geometry referred to below. The essential aspects of
solitonic behaviour were discovered in the period 1951–53 in a study not of the KdV
equation but of the Bour–Enneper equation [7]. (For the name and its alternative
Sine-Gordon equation see the next-but-one section.) These analytical investigations
preceded the corresponding work on the KdV equation by more than a decade. In
contrast to the Galilei-invariant KdV, the Bour–Enneper equation is Lorentz invari-
ant and therefore of particular interest for quantum field theories. Hence, the present
essay concentrates on it.

Non-linear Wave Equations with Particle Solutions

In the summer of 1924, Prince Louis de Broglie (1892–1987, Nobel Prize for
physics 1929), working in Paris in the private laboratory of his elder brother Maurice
de Broglie, proposed that the motion of relativistic particles is guided by ‘phase
waves’ [8]. In their search for a wave equation that fits de Broglie’s ideas, Klein
[26], Schrödinger [27], Fock [28], Gordon [29], and Kudar [30] proposed as a
Lorentz-invariant wave equation for particles of mass m the linear partial differ-
ential equation

�ψ − ∂2ψ/∂2(ct)2 = (2π/h)2m2c2ψ, (3)
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where h = 6.626× 10−34 Js denotes Planck’s constant and c the ‘limiting speed’
(in the present case the speed of light in vacuum). Depending on the context, (3) is
known as one-dimensional Helmholtz equation, Schrödinger–Gordon equation [9],
or Klein–Gordon equation � relativistic quantum mechanics. For various reasons
– one of them being the failure to account for the electron � spin and the effects
going with it – (3) and its extension to charged particles in an electromagnetic field
[9] were soon found to be unsuitable for the description of � electrons. For the
one-electron problem it was successfully replaced by the � Dirac equation. Never-
theless, the Schrödinger–Gordon equation remained of interest for the description
of spin-zero bosons, in particular of the electrically charged pi-mesons, π+ and π−.

A natural question to ask is whether non-linear generalisations of (3) can be
found that yield ‘particle-like’ solutions. This is indeed the case. If on the right-hand
side of (3) the dependent variable ψ is replaced by (2πmc/h)f (ψ), where the non-
linear function f (ψ) satisfies certain conditions to be specified presently, restriction
of the spatial variation of ψ to the x-dimension followed by the substitution

z = (1− V 2/c2)−1/2 (x − ct) (4)

leads to
dψ2/dz2 = f (ψ) (5)

with the solution
∫
[F(ψ)]−1/2dψ = ±21/2z, F (ψ) =

∫
f (ψ)dψ. (6)

Suppose now that f (ψ) is a differentiable function with simple zeros, with
df (ψ)/dψ > 0 at more than one zero, e.g. at . . . < ψ−1 < ψ0 < ψ1 < . . . .
The constant of integration in (62) may be chosen in such a way that F(ψ) has
double zeros at ψ0 and ψ1. With this choice, a solution ψ = ψ(z) obtained by
inverting (61) represents a kink or an antikink, depending on the choice of the sign
in (61), both with the kink height

ak := ψ1 − ψ0. (7)

The name kink for this type of configuration was introduced by Shockley [31] in
the context of dislocations in crystals but has since found more widespread usage.
As shown in Fig. 1, positive kinks are transitions from an (almost) constant solu-
tion ψ = ψ0 at large negative z to an (almost) constant solution ψ = ψ1 at large
positive z. More generally, in the language to be introduced below, kinks connect
adjacent ground states of systems with degenerate ground states.

Kinks resulting from non-linear generalisations of (3) may travel with constant
speed |V | either in the + x(V > 0) or in the −x(V < 0) direction as if they were
relativistic particles subject to the Lorentz contraction. From the field-theory point
of view, they are excitations of the ground states of the system whose energy,

E = (1− V 2/c2)−1/2 Ek, (8)
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Fig. 1 Shape of a +-kink connecting the dislocation segments lying in the valleys ψ = ψ0 and
ψ = ψ1

is concentrated in a narrow spatial region, called kink width wk. If between ψ0 and
ψ1 the function F(ψ) has just one maximum, Fmax, a natural measure of the kink
width is

wk := [(1− V 2/c2)/2Fmax]1/2 ak. (9)

A general expression for the rest energy Ek of a kink will be given in (30).
It is trivial that the sum of two or more solutions of the equations obtained by

replacing the right-hand side of (3) with a non-linear function f (ψ) cannot be ex-
act solutions of these equations. It may be an approximate solution as long as the
individual solutions do not overlap, i.e. if neighbouring kinks are many kink widths
apart. Until about 1950 it was undisputed consensus among physicists that analo-
gous statements hold for all finite-amplitude excitations of non-linear systems. It
was believed that such excitations could not permanently co-exist and that their
coupling through the non-linearity necessarily results in gradual dissipation of their
kinetic energy (in the case of kinks to phonon-type excitations).

A Non-linear Wave Equation with Soliton Solutions

Towards the middle of 1950, the present writer noted that in the context of the dif-
ferential geometry of surfaces with constant negative Gaussian curvature, known as
pseudospherical surfaces [10, 11], the non-linear partial differential equation

∂2ω/∂ξ∂η = sinω (10)

had been extensively studied in the second half of the nineteenth century. (The name
comes from the fact that while the Gaussian curvature of spheres is K ≡ +1, that
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of pseudo-spherical surfaces is K ≡ −1. In the application to pseudo-spherical sur-
faces, the co-ordinate lines ξ = const. and η = const . are the asymptotic lines on
these surfaces, ω = ω(ξ, η) denoting the angle between these lines.) He realised that
quite a few of the nineteenth-century results might have far-reaching consequences
in physics, in particular in the theory of dislocations [12]. The transformation

x = ξ+, η, t = ξ − η (11)

gives us
∂2ω/∂x2 − ∂2ω/∂t2 = sinω. (12)

With ω = 2πψ/ak, the dimensionless generalisation (12) of the Klein–Gordon
equation satisfies the conditions for the existence of kink solutions. These are easily
found to read

ω = ±4 arctg{(1− V 2)−1/2(x − V t)}. (13)

The kink velocity V is measured in units of the limiting speed c, which need not
necessarily be identical with the speed of light.

The significance of (10), (12) for pseudospherical surfaces was noted by the
German mathematician Alfred Enneper (1830–1885) in 1868/70 [32]. Already
in 1862, (10) had been encountered by the French mathematician Edmond Bour
(1832–1866) in another branch of the differential geometry of surfaces [33]. Hence,
the name Bour–Enneper equation for (10), (12) appears more appropriate than the
wide-spread denomination Sine-Gordon equation, particularly since the equation
has no relationship to W. Gordon and the name Sine-Gordon was originally intended
to be a private joke (see Heyerhoff [6], Chap. 4). In hindsight, from the point of
view of physics the key discovery was made by the Swedish mathematician Albert
Victor Bäcklund (1845–1922). In 1882 he demonstrated [13] that from a known so-
lution ω = ω0(ξ, η) of the second-order differential equation (10) further solutions
ω = ω1(ξ, η) may be obtained by integrating the following system of first-order
differential equations:

1

2

∂(ω1 − ω0)

∂ξ
= 1+ sin σ

cos σ
sin

[
ω1 + ω2

2

]
,

1

2

∂(ω1 + ω0)

∂η
= 1− sin σ

cos σ
sin

[
ω1 − ω2

2

]
. (14)

The integrability condition of this system is

∂2ω0/∂ξ∂η = sinω0, (15)

i.e. the equation which, by assumption, is satisfied by ω0(ξ ,η). By means of the
substitution

y = tg(ω1/4) (16)
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the system (14) may be transformed into the following pair of Riccati equations:

∂y/∂ξ = (a y2 + b y + c), ∂y/∂η = (a′y2 + b′y + c′). (17)

The explicit form of the coefficients a, a′, etc. are given, e.g., in [14], together
with the corresponding expressions in the (x, t) co-ordinate system. Since these
expressions are substantially more complicated than (14), it is indeed advisable
to perform intermediate calculations in the light-cone co-ordinates (ξ, η) rather
than in the ‘physical’ co-ordinates (x, t). The rationale of this is that the lines
ξ = const., η = const. are the characteristics of (14).

The system (14) constitutes a so-called total differential equation. Its integrability
condition (15) is necessary and sufficient for the general solution of the system (14)
to be of the form

�σ (ω1; ξ, η) = C1, (18)

where C1 is a constant of integration. Thus, the solutions ω = ω1 of (15) that may
be derived from a given ‘starting solution’ ω0, called Bäcklund transforms of ω0,
constitute a two-parameter family with parameters σ and C1. As is well known, by
means of the substitution y = Y ′/Y , where Y ′ denotes the partial derivatives of Y ,
the Riccati-type system (17) may be transformed into a set of two linear equations
for Y (ξ, η). This indicates that the Bäcklund transforms of a given solution are su-
perposable, although not linearly but according to a law that is related to the addition
theorem of the tangent function. For a non-linear partial differential equation this is
a highly exceptional property.

The (non-linear) superposability of Bäcklund transforms is made explicit by the
relationship

tg[(ω3 − ω0)/4] = cos[(σ1 + σ2)/2]
sin[(σ1 − σ2)/2] tg[(ω1 − ω2)/4] (19)

Here ω0 denotes the starting solution, ω1 and ω2 are its Bäcklund transforms with
parameters σ1 or σ2, respectively, and ω4 is the solution of (10), (12) resulting from
the ‘superposition’ of ω1 and ω2. We illustrate the power of the preceding approach
by two simple examples [7]. Further examples can be found in the literature [7, 14].

(1) Take ω0 ≡ 0 (mod 2π) as starting solution. Its Bäcklund transforms are

ωj = 4arctg {γj exp[(x − t sin σj )/ cosσj ]} (j = 1, 2). (20)

(19) gives us

ω3 = arctg

{
cos
[
σ1+σ2

2

]
sin
[
σ1−σ2

2

] γ1 exp ε1 − γ2 exp ε2

1+ γ1γ2 exp(ε1 + ε2)

}
(21)

with
εj ≡ (x − t sin σj )/ cosσj = (1− V 2

j )
−1/2 (x − Vj t). (22)
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In (20), γj denotes constants of integration that replace the constants Cj (j = 1, 2)
on the right-hand side of (18).

The way in which the solution ω3 was constructed suggests that it represents two
kinks that move with speeds V1 and V2. In analogy to the Einstein–Minkowski de-
scription in relativity theory, we may ascribe to each of them a world line in the
x − t plane, i.e. a relationship between their locations xj (j = 1, 2) and time t . As
long as the two kinks are sufficiently far apart, their world lines are straight with
slopes V1 and V2. If V1 �= V2, at some time t the two kinks collide and interact
with each other. Figure 2 illustrates this for the collision at t ≈ 0 of a kink that was
originally at rest at the position x = −�x1/2 with a second kink that approaches
the region of collision at x ≈ 0 with the speed V2 > 0. The ‘world region of in-
teraction’, in which it is difficult or even impossible to discern the individual kinks,
is indicated as a circle in the x − t plane. The amazing feature of Fig. 2 is that, in
striking contrast to the pre-1950 expectations referred to in Sect. 2, there is no trans-
fer of kinetic energy to other excitation modes of the system, e.g. to non-harmonic
oscillations. Furthermore, the collision does not alter the distribution of the total en-
ergy and of the particle momentum among the kinks. After the collision there are
still two kinks with velocities V = 0 and V = V2. Since kinks on a given dislo-
cation line are indistinguishable (a feature they have in common with elementary
particles), we cannot distinguish between the view-point that “there has been no ex-
change of kinetic energy between the kinks” or the classical-mechanics description
“moving kink has come to rest after having transferred its entire kinetic energy to
its collision partner”. In any case, the statement “the kinks do not interact at all”
would be wrong. The world lines at large positive t are not the prolongation of the

Fig. 2 Two stages of the movement of a dislocation line in a periodic potential of period ak. On the
left, a dislocation begins to overcome the energy barrier locally by forming an incipient kink pair.
Under the action of an applied stress a positive and a negative kink move in opposite x-directions,
thereby shifting the dislocation line gradually from one valley to the next (right). The shading
indicates the areas swept out by the dislocation in these steps
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lines at large negative t but have been shifted with respect to them by �x1 and �x2.
The original German name of �xj was ‘Treffstrecke’ [7], translated into English as
recoil distance [13]. The concept is closely related to the concept of ‘time delay’ in
the theory of quantum scattering processes [34]. According to Donth (see [13] for
further details and illustrations) the recoil distances in kink–kink collisions are

|�xj | = 1/2 cos σj ln | cos{1/2(σ1 + σ2)}/ sin{1/2(σ1 − σ2}| (j = 1, 2). (23)

(2) Starting again from ω0 ≡ 0 (mod2π), we choose σ1, σ2 as complex conjugates
and write

σ1 = σ ′ + i σ ′′, σ2 = σ ′ − iσ ′′, (24)

where σ ′and σ ′′ are real numbers. Without loss of generality, the choice γ1= γ2= 1
in (20) leads to

ω3 = 4arctg[H Sech(B1x + B2t) sin(D1x +D2t)]. (25)

The (real) parameters H,B1, B2,D1, and D2 are given in terms of σ ′ and σ ′′ in
[7, 13]. For a general choice of the parameters, (25) represents � wave packet with
phase velocity

Vph = −Cosh σ ′′/ sin σ ′ (26)

and group velocity
Vgr = − sin σ ′/Cosh σ ′′ = 1/Vph. (27)

If we choose σ ′ = 0, the group velocity vanishes, and we get the so-called breather
mode

ω3 = 4arctg[Sech(x/Cosh σ ′′) sin(t Tghσ ′′)/Sinh σ ]

= 4arctg

⎧⎨
⎩
(
1−Ω2

)1/2

Ω

sin (Ωt)

cosh
[(

1−Ω2
)1/2

x
]
⎫⎬
⎭ . (28)

The breather mode of the Bour–Enneper equation is a localised oscillation with cir-
cular frequency Ω = Tghσ ′′ and amplitude 4arccos Ω . In the limiting case Ω # 1,
it describes a kink–antikink pair with a total energy slightly less than that of two
separate kinks at rest (in the dimensionless units of the Bour–Enneper equation
equal to 16) and zero total momentum. Starting from rest, the two kinks attract
each other, move towards each other, and annihilate. At this stage the total energy
has been transformed into kinetic energy. From thereon the process is reversed. The
kinks are recreated and move away from each other until they reach the position of
maximal separation. This configuration may be obtained from the starting config-
uration by interchanging the two members of the kink–antikink pair. Energetically,
the situation is the same as at the start, hence the cycle just described is repeated
with opposite sign of ω. The period of the entire oscillation cycle is thus 2π/Ω .
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In the limit σ ′′ → ∞ the above solutions reduce to the travelling-wave solutions
of the Klein–Gordon equation, from which Eigenschwingungen (‘normal-mode
vibrations’) can be formed. (Non-linear generalisations of standing small-amplitude
vibrations with soliton properties can also be obtained from the Bour–Enneper equa-
tion [35–37]. The breather solution is one example.) The familiar normal-mode
vibrations and the solitonic modes have in common that they can be superposed
indefinitely without destroying their identity. In the original publication [7] this
property led to the denomination “Eigenbewegungen” (“normal motions”) for the
solitonic solutions of the Bour–Enneper equation, with a subdivision into “transla-
torische Eigenbewegungen” (σj real) and “oszillatorische Eigenbewegungen” (σj

pairwise complex conjugate). The corresponding English names translational soli-
tons and oscillatory solitons have not yet found general usage.

Appearance and Significance of the Bour–Enneper
Equation in Physics

The first branch of physics in which (12) appeared was crystal plasticity [38]. Up
to the present, the application to kinks in dislocations is of particular importance
[15, 39]. It may be illustrated by a model whose ‘ground state’ is a flexible string
lying in one of the ‘valleys’ of a horizontal corrugated iron sheet that is imagined to
be large enough for border effects to be negligible. The string represents a disloca-
tion with line tension γd and effective mass md per unit length, the corrugated iron
the so-called Peierls relief [39, 40], a periodic variation of the energy of a disloca-
tion as a function of its location in the crystal lattice. An external shear stress that
tends to push pre-existing dislocations through the Peierls relief may be modelled by
slightly tilting the sheet. The plastic deformation of a crystal caused by the applied
stress proceeds by moving segments of the dislocations into an adjacent valley, thus
creating kink–antikink pairs as shown in Fig. 2.

Owing to the periodicity of the Peierls relief, the model just described is a sys-
tem with degenerate ground states since at zero stress its energy is independent of
the valley in which the dislocation/string happens to be located. Kinked dislocations
may be considered as excited states that connect two distinct ground states. The ex-
citation energy (the kink formation energy Ek) consists of two contributions. (1) A
kink increases the potential energy of a dislocation because the segment connecting
the two valleys is lifted up the hill separating them. (2) The total dislocation length
is increased, hence work has to be done against the line tension.

Once a kink pair has been formed, the plastic deformation will proceed further,
since the applied stress will drive the kinks apart and cause them to slip along the
dislocation line. In this way, the shifting of a dislocation line from one Peierls valley
to an adjacent one is effected by overcoming an energy barrier that is much lower
than that required for shifting the entire dislocation line as a whole. This is analo-
gous to the overcoming of the shear strength of perfect crystals by the formation of
dislocations.
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Fig. 3 World-line diagram representing the collision at time t ≈ 0 of a kink at rest at the position
x = −�x1/2 with a kink of the same sign moving with high speed in the +x-direction. The circle
represents the ‘world region of interaction’, in which the identity of the kinks is partially lost. After
the collision both kinks re-appear unchanged, one of them having been displaced by �x1 to the
position x = �x1/2. The other kink resumes its former speed but along a world line that has been
shifted by �x2

For a quantitative treatment of the present model, the simplest assumption is that
the energy of the string varies as UP = U0 sin2(πu/ak), where u is the displace-
ment of the string and ak the period of the ‘Peierls potential’ UP (cf. Fig. 2). With
the assumption |du/dx| # 1 (realistic in metals, Fig. 2 being foreshortened), this
leads to

γd∂
2u/∂x2 −md∂

2u/∂t2 = dUP/du = (πU0/ak) sin(2πu/ak), (29)

hence, with appropriate normalisation, to the Bour–Enneper equation (10), (12).
Among the soliton solutions of (29) are single kinks of height ak, sequences of
equidistant kinks, and standing or running waves of finite amplitude. Kink–antikink
pairs in unstable equilibrium, appearing in overcoming of the Peierls barriers
(Fig. 2), may be obtained by adding on the right-hand side of (29) a constant term
accounting for the applied stress [14].

In summary, the importance of (12), (15), (29) in physics is due to the following
features.

1. The equations admit kink and antikink solutions, a topological property that they
share with other non-linear equations as discussed in Sect. 2.

2. They possess solitonic solutions. Their characteristic is that they may be su-
perimposed notwithstanding the strong non-linearity on the right-hand side of
the equations and, thus, possess particle properties. The interactions of these
‘particle solutions’ mediated by the non-linearity are minimal in the sense that
from collisions the solutions emerge without having altered their ‘shape’ or their
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momentum. Since ‘particles’ of the same ‘charge’ are indistinguishable (see
Sect. 5), the only permanent effect of a collision is a parallel displacement of
their world lines.

3. The coincidence of properties (1) and (2) justifies calling the solutions (13) topo-
logical solitons. The difference from the non-topological KdV solitons (2) has
far-reaching consequences when the mathematical results are to be applied to
‘real’ situations, since there will always be small violations of the assumptions on
which the Bour–Enneper or the Korteweg–deVries equations are based. Whereas
topological solitons remain kinks even if their kinetic energy is gradually trans-
ferred to oscillatory modes, Russell’s “heap of water” will gradually be dispersed
even if the conditions leading to the Boussinesq solution (2) are only mildly
violated.

4. Equations (12), (15), (29) are Lorentz-invariant and possess particle–antiparticle
solutions, in contrast to the Galilei-invariant KdV equation. Hence they may
serve as models of relativistic field theories.

5. Owing to their particle-like properties, topological solitons are suitable objects
of statistical thermodynamics and quantum theory [16–19]. Selected examples
will be given in the next section.

Energetics, Statistical Thermodynamics, and Quantum Theory

Within the framework of the model outlined above, the rest energy of a single kink,
Ek, may be calculated without having to evaluate the solution ψ(z). Since the con-
tributions (1) and (2) referred to in the preceding section turn out to be equal for any
choice of F (ψ) satisfying the requirements of Sect. 2, Ek can be expressed explicitly
in terms of F (ψ) as [39]

Ek = (2γd Fmax)
1/2ak

υ=1∫

υ=0

[F(akυ)/Fmax]1/2dυ. (30)

In the special case of (12), the dimensionless integral in (30) equals π−1.
Kink generation not only increases the energy of the system but also affects its

phonon frequencies and hence its entropy. These changes may be calculated by
considering small deviations ϕ(x, t) from an exact solution of the underlying partial
differential equation, e.g. the kink solution ωk(x, t) of (12). First-order perturbation
theory leads to the linear equation

∂2ϕ/∂x2 − ∂2ϕ/∂t2 − cosωk ϕ(x, t) = 0. (31)

Transforming ωk(x, t) to the time-independent z-frame (4) permits the ansatz

ϕ(z, t) = ϕ(z) exp(± iΩt) (32)
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which gives us a time-independent Schrödinger equation for ϕ(z) and a dispersion
relation for the wave-like solutions of (31). Comparison with the dispersion relation
of the one-dimensional Helmholtz equation,

Ω = (k2 + 1)1/2, (33)

where k is a dimensionless wave number, allows us to calculate the vibration fre-
quencies of a kinked string. From these the ‘entropy of formation’ of kinks, Sk, is
obtained by evaluating the partition function of a set of harmonic oscillators [14, 20].

The dispersion relation (33) is identical with that of Yukawa’s meson theory [21].
Its quantisation leads to particles with finite rest mass, Yukawa’s U-particles, which
in nuclear physics are now identified with π-mesons. In the context of kinks in
dislocations the corresponding quanta are called ‘heavy phonons’ [20]. In a quan-
tum picture, the short-range interaction between kinks in the same dislocation may
thus be described as due to the exchange of the heavy phonons between colliding
kinks. As will be discussed in the next paragraph, their ‘light’ counterparts, acoustic
phonons with zero rest mass, are responsible for the long-range interaction between
kinks but have virtually no effect on Sk.

Since dislocation lines are embedded in 3-dimensional elastic media and sur-
rounded by long-range strain fields, modelling them as elastic strings may be
inadequate in some circumstances. The long-range interaction between kinks is an
important example. It arises from the deviation of a dislocation from a straight line
caused by a kink. The resulting modification of the dislocation strain fields leads to a
pseudo-Coulomb interaction between kinks in the same dislocation line, resulting in
an interaction energy±γ0ak

2/2q between two kinks in the same, otherwise straight,
dislocation separated by the distance q[41]. (γ 0 is closely related to the line tension
γ d introduced in (29), the ratio γ d/γ 0being of the order of magnitude unity but never
less than one.) Thus, we may carry further the analogy between elementary particles
and kinks by considering the quantity (γ 0/2)1/2ak as a pseudo-charge of the kinks.
The massless acoustic phonons of the elastic medium then play the same role as the
photons (� light quantum) in the electrostatic interaction in elementary � particle
physics. The change-over from the pseudo-Coulomb interaction at large kink sepa-
rations to the Yukawa-type interaction at small separations has been experimentally
confirmed in detail in experiments involving the formation of kink–antikink pairs
during the plastic deformation of metals [42].

In working out the equilibrium density of the kinks from the change of the free
energy of the system, we have to take into account that, owing to the translational in-
variance of (4), (5), equation (31) has always a zero-frequency mode. It corresponds
to the motion of kinks along the Peierls valley direction. This Goldstone mode con-
tributes to the free energy as a one-dimensional gas of non-interacting particles of
mass mk = Ek/c

2, called soliton gas. Here the ‘limiting speed of the energy’ c is the
speed with which the heavy phonons of large wavelengths propagate along straight
dislocation lines lying in Peierls valleys.

In contrast to the phonon modes just discussed, periodic soliton solutions with
finite amplitudes such as the breather solution (28) cannot be quantised as harmonic
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oscillators. The appropriate procedure is the quantisation in terms of action vari-
ables [22]. We illustrate this by considering the breather solutions at rest. They
form a one-parameter family,

ω = 4 arctg{tg(I/16) Sech[x sin(I/16)] sin[t cos(I/16)]}, (34)

with the relationship
Ω = cos(I/16) (35)

between the breather frequencyΩ and the parameter I . The breather energy is given
by [7, 14]

Ebreather = 2Ek(1−Ω2)1/2 = 2Ek sin(I/2Ek), (36)

hence the breather frequency by

Ωbreather = ∂Ebreather/∂I. (37)

Equation (37) is the classical relationship between frequency, energy, and action
variable [23] if we identify 2πI with the action variable of a closed orbit in clas-
sical mechanics. We may thus map the breather motion, which originated from a
field-theory description, on the one-dimensional motion of a mass point [24]. This
allows us (1) to quantise breather modes by the Bohr–Sommerfeld–Einstein quan-
tisation rule, (2) to make use of the adiabatic invariance of the action variable of a
periodic system subject to a perturbation that varies at most slowly during the period
2π/Ω , and (3) to treat thermally activated rate processes involving breather-type mo-
tions by means of Kramers’ rate theory [17, 43]. On the other hand, the field-theory
description permits the coupling between breather and phonon modes and thus the
radiation damping of driven breathers to be treated quantitatively [24].

The current difficulties in formulating a theory of elementary particles intended
to comprise not only the strong and the electroweak force but also gravitation are
widely attributed to the fact that the established theories treat the elementary par-
ticles as point-like. Among the motivations for the development of string theories
of elementary-particle physics � quantum gravity is the desire to replace the con-
ventional point particles by extended entities, the ‘strings’ or ‘brans’. Attempts to
avoid the concept of point-like elementary particles by considering non-linear field
equations have a long history, going back at least as far as to the work of 1912 of
the German physicist Gustav Mie (1868–1957) and connected, in particular, with
the name of Albert Einstein (1879–1955). In the present context, the most interest-
ing work is that of the British physicist Tony Hilton Royle Skyrme (1922–1987),
summarised competently in a biography by Dalitz [19]. Skyrme came across (12)
in 1958 [44] when studying the Strong Interaction between nucleons. In computer
experiments with Perring [45, 46] published in 1962, i.e. well before the analo-
gous work of Zabusky and Kruskal [5] on the KdV equation, he rediscovered the
breather solution of the Bour–Enneper equation and the collision properties found
analytically already in the early 1950s [7]. It took a further decade until the signifi-
cance of Skyrme’s ideas for elementary-particle physics was fully recognised.
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In the analogy between kinks and elementary particles, topological solitons do
play the role of ‘extended particles’. Their ‘world lines’ should therefore be replaced
by ‘world tubes’ with a diameter of the order of magnitude of the kink width wk [cf.
(9)]. Divergences that may appear in approximate expressions can be avoided by
recourse to more fundamental descriptions based on, say, atomic models of crystals.
Since the future of the string theories is still open, it is too early to speculate to what
extent the soliton properties of the Bour–Enneper equation might help in visualising
the outcome.
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3. J. V. Boussinesq: Théorie des ondes et des remus qui se propagent le long d’un canal rectangu-
laire horizontal, en communiquant au liquide contenu dans le canal des vitesses sensiblement
pareilles de la surface au fond. J. Math. Pures Appl. (2) 17, 55 (1872)

4. D. J. Korteweg, G. de Vries, Philos. Mag. 39, 422 (1895)
5. N. J. Zabusky, M. D. Kruskal, Phys. Rev. Letters 15, 240 (1965)
6. M. Heyerhoff: Die frühe Geschichte der Solitonentheorie. Dr. rer. nat. thesis (Universität Greif-

swald, Greifswald 1997)
7. A. Seeger, H. Donth, A. Kochendörfer, Z. Physik 134, 173 (1953)
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15. A. V. Bäcklund: Om ytor med konstant negativ krökning (Lunds Universitets Års-skrift XIX,
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Sommerfeld School

Michael Eckert

The development of scientific specialties is often related to scientific schools-from a
historical perspective as much as from an epistemological vantage point. Quantum
mechanics is not exceptional in this regard; its emergence was to a large extent
a product of the scientific schools of Niels Bohr in Copenhagen, Max Born in
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Specific Heats

Clayton Gearhart

The equipartition theorem states that the average energy associated with each sep-
arable, quadratic term in the Hamiltonian results in a thermal energy of 1/2 RT per
mole, where R is the gas constant and T the absolute temperature. This theorem,
which emerged early in the history of kinetic theory in the nineteenth century, was
quickly found to be in sharp disagreement with experiment, particularly for gases.

Thus, for a monatomic ideal gas with three translational and three rotational de-
grees of freedom, the equipartition theorem predicts that the thermal energy per
mole is 3 RT, and the specific heat at constant volume CV is 3R. This result is of-
ten expressed in terms of γ , the ratio of the specific heats at constant pressure and
volume. For this case, γ = CP /CV = 4/3, since for one mole of an ideal gas,
CP = CV + R. The same result obtains for a diatomic gas if the two gas atoms are
rigidly connected. If they are instead connected by a massless spring (with quadratic
terms in both kinetic and potential energy), one finds CV = 4R, and γ = 5/4.

Experiments told a different story. Experiments on monatomic gases over a wide
range of temperatures consistently found CV = 3/2R, or γ = 5/3, corresponding to
three translational degrees of freedom. Apparently, monatomic gases did not rotate.
Experiments at room temperature on common diatomic gases such as oxygen and
nitrogen yielded γ = 7/5, corresponding to three translational and two rotational
degrees of freedom. One rotational degree of freedom was missing; and apparently
the molecules did not vibrate. At higher temperatures, however, the specific heat
steadily increased, suggesting an inexplicable gradual onset of additional degrees of
freedom. To make matters worse, atomic and molecular spectra hinted at additional
internal degrees of freedom that did not contribute to specific heats.

Nineteenth-century physicists were perplexed and alarmed by these discrep-
ancies. James Clerk Maxwell (1831–1879) in 1875 said that they constituted
“the greatest difficulty yet encountered by the molecular theory.” Lord Kelvin
(1824–1907) in 1901 considered them one of the “two clouds” hanging over
nineteenth-century physics. Ludwig Boltzmann (1844–1906) in his Lectures on
Gas Theory argued that the energy of rotation about an axis of symmetry would
not change in collisions, or would at best change very slowly. And Max Planck,
in the preface to his 1897 thermodynamics text, spoke of “Obstacles, at present
insurmountable” standing in the way of kinetic theory.

The situation with solids was more promising. As early as 1818, the French
scientists Pierre Louis Dulong (1785–1838) and Alexis Thérèse Petit (1791–1820)
showed that the specific heats of most solids were about 6 cal mole−1K−1, or 3R,
a value that, as Boltzmann pointed out, agreed nicely with the equipartition law.
The few exceptions occasioned little concern: The specific heat of diamond, for ex-
ample, was about 1.5 cal mole−1K−1 at room temperatures, but fell to 0.76 at 220 K,
and approached the equipartition value only at temperatures well above 1000 K.
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This state of affairs changed as a result of two developments. First, the ability
to liquefy gases such as oxygen and nitrogen in the late 1870s, and hydrogen in
the late 1890s, permitted scientists to measure the specific heats of matter at low
temperatures. This advance was in large part due to Sir James Dewar (1842–1923) in
England, and later, to Heike Kamerlingh Onnes (1853–1926) in Leiden and Walther
Nernst (1864–1941) in Germany. Second, the development of quantum theory in the
early years of the twentieth century showed a way out of the dilemmas posed by the
equipartition theorem (� Quantum theory, early period, � Black-body radiation).

Thus in 1907, Albert Einstein used Max Planck’s quantized resonators to predict
that the specific heats of solids should fall off from the value 3R at room temperature
to zero at low temperatures – the equipartition theorem, which assumes continuous
energies, no longer holds in quantum theory. For confirmation, Einstein could point
only to the specific heat of diamond. But over the next several years his theory was
brilliantly confirmed by the experiments on the specific heats of solids conducted by
Walther Nernst and his students in Berlin. They developed new and innovative ex-
perimental techniques, including platinum thermometers and vacuum calorimetry,
as they learned to measure specific heats accurately over a wide range of tempera-
tures down to the temperature of liquid hydrogen. By 1910, Nernst and his students
had measured the specific heats of numerous solids, and shown that they did indeed
approach zero at low temperatures, much as predicted by Einstein’s theory. More
quantitatively accurate theories were soon developed by Max Born (1882–1970)
and Theodore von Kármán (1881–1963), and by Peter Debye (1884–1966).

Nernst also took the lead in measuring the specific heats of gases. In 1911, he
noted that quantum theory might well be the key to understanding the discrepancies
between the equipartition theorem and the measured specific heats. He proposed
hydrogen as a particularly promising candidate for investigation, and the following
year his assistant, Arnold Eucken (1884–1950), used a vacuum calorimeter to show
that the specific heat of hydrogen gas at constant volume fell from just under the
equipartition value of 5/2 R at room temperature to 3/2 R at about 40 K. The ro-
tational degrees of freedom had frozen out due to quantum effects, much as Nernst
had predicted.

Over the next 15 years, numerous theorists attempted to find quantitatively ac-
curate theories for the specific heat of hydrogen. These attempts were notably
unsuccessful until the development of modern quantum mechanics beginning
in 1925. Finally, in 1927, the American physicist David Dennison (1900–1976)
showed how to use the quantum mechanical theory of indistinguishable particles to
find an accurate description of the specific heat of hydrogen.

It is remarkable that so commonplace a quantity as the specific heat should have
played such a central role in early quantum theory. Moreover, the experimental and
theoretical study of specific heats played an important part in the physics, chemistry,
and technology of the nineteenth and twentieth centuries in ways that extend far
beyond quantum theory, although a full treatment is beyond the scope of this essay.
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Spectroscopy

Klaus Hentschel

Spectroscopic data, together with � scattering experiments, were probably the most
important experimental input to the development of � quantum theory and early
quantum mechanics. Not a discipline in its own right (see [6]), spectroscopy was
practiced within chemistry, optics and astrophysics and has a history extending far
back. Discontinuous features in the spectra of sunlight and from the flames of vari-
ous substances were the subject of intense study throughout the nineteenth century.
As early as 1815, the Munich optician Joseph Fraunhofer (1787–1826) published
a detailed map of the solar spectrum exhibiting about 350 dark lines. He realized
these dark lines could serve as useful markers for specific colors in the otherwise
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continuous solar spectrum. His specific application was for gauging precision mea-
surements of the refractive indices of various types of glass being manufactured
at the glass-works under his purview (see [7]). Other maps of wider range and
greater detail followed (see [8]). In 1859, Gustav Robert Kirchhoff (1824–1887)
and Robert Wilhelm Bunsen (1811–1899) discovered the exact coincidence of dark
absorption lines in the solar spectrum with bright emission lines in the spectra of
various chemical elements heated to incandescence. Only then could the two very
different types of spectra be correctly interpreted as due to absorption and emission.
The Bunsen-burner flame was colorless, so a correlation between the presence of
certain spectrum lines with specific chemical elements in samples of unknown con-
stitution became feasible: Spectrum analysis was born and quickly matured into one
of the most active research fields of the latter half of the nineteenth century. Detailed
tables were compiled: Heinrich Kayser (1853–1940) and Henry Augustus Rowland
(1848–1901), for instance, catalogued tens of thousands of spectrum lines and re-
lated them to the known chemical elements. Roughly a dozen new elements (e.g.,
caesium, rubidium and indium) were discovered by investigating the tell-tale spec-
trum lines not yet correlated with any element. Detailed examinations of the spectra
of various gases in a discharge tube revealed groups of lines of similar appearance
nonrandomly distributed over the spectrum, which came to be known as series and
bands (Fig. 1).

Sharp, principal and diffuse series were distinguished (whence the later S, P
and D designations) in the hydrogen spectrum, in particular. Many of these series
spectra were also detected in the spectrum of the sun and other stars. Employing
geometric analogy, the Basel mathematics teacher Johann Jakob Balmer (1825–
1898) hit upon a formula for the wavelength λ of these series lines as a function
of an integer variable n: λn = h · n2/(n2 – 4). He realized that other series were
possible if 4 = 22 is replaced with other squares in the denominator. Such series
were later identified by Friedrich Paschen (1908), Frederick S. Brackett (1922) and
August Herman Pfund (1924) in the infrared, and by Theodore Lyman (1914) in the
ultraviolet. An inquiry into the relation between these various series lines led Walter
Ritz (1878–1909) to suggest the so-called combination law, according to which the
difference between any two series-line frequencies yields another series line. But
deeper understanding of these various pieces of the puzzle had to await the rise of
Niels Bohr’s � atomic model.

“As soon as I saw Balmer’s formula,” Niels Bohr (1885–1962) later said, “the
whole thing was clear to me.” The Danish spectroscopist Hans Marius Hansen

Fig. 1 The first known series of hydrogen as depicted by William Huggins (1880)
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(1886–1956) had just told him about the Balmer series of hydrogen in February
1913, freshly returned from a postdoc stay at Göttingen, where he had been conduct-
ing experiments with the � Zeeman effect on lithium together with Woldemar Voigt
(1850–1919). Bohr made a last-minute revision to his paper for the Philosophical
Magazine to start with a discussion of emission and absorption lines in the hydrogen
spectrum and a derivation of the Rydberg constant R according to his new atomic
model (see, e.g., [11]). From � Bohr’s atom model, Bohr had already derived energy
E as a function of nucleus mass m and charge Ze(with n a natural number):

En = R ·mZ2e4/n2

In order to obtain the formula for the Balmer spectrum-line frequencies v:

v = v0
m2 − 4

m2
= v0 − 4v0

m2
,

Bohr just had to apply Einstein’s assumption that E = hv and:

v ∼ E1 − E2 = const

(
1

n2
1

− 1

n2
2

)

The frequencies of series lines were thus not directly correlated with the oscilla-
tory motion of � electrons around the nucleus, as had always been assumed; they
were rather related to differences between the initial and final energy level E. The
emission or absorption of a spectral line was equivalent to a � quantum jump by
an electron between stable orbits at different energy levels. This reinterpretation of
spectra so comprehensible to us today was a veritable Gestalt switch as defined by
Thomas Kuhn (1922–1996). “When [Einstein] heard this he was extremely aston-
ished and told me: ‘Then the frequency of the light does not depend at all on the
frequency of the electron. . . this is an enormous achievement. The theory of Bohr
must then be right.’ ” (From G. Hevesy’s letter to Bohr, 23 Sep. 1913 [1, vol. 2, p.
533]).

Within a matter of years, Bohr’s considerations totally transformed spectroscopy.
Instead of plotting spectrum maps, spectroscopists reinterpreted all spectrum lines
as transitions between different energy levels and constructed term diagrams (like
Fig. 2). Each spectrum line provided a clue to the existing stable energy levels of
electron orbits around the nucleus of a given element and the allowed transitions
between them. In 1913 Henry Moseley (1887–1915) managed to explain series reg-
ularities in X-ray spectra. He showed that their frequencies ν were also dependent
on nuclear charge Z, but not as ν ∼ Z2 as in the Balmer series, but ∼ (Z– 1)2. This
strict regularity led to the discovery of several new chemical elements: technetium,
promethium and rhenium. In the following year Bohr realized that his formula for
the hydrogen series lines could also be adapted to the helium spectrum if Z = 1
is replaced by Z = 2. Thus the long-known Pickering spectrum series in certain
stellar spectra was explained and soon also observed in a discharge tube filled with
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Fig. 2 Energy levels of the hydrogen atom with the series lines (Candler 1937, p. 7)
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pure helium gas. By 1915, Bohr himself and others also succeeded in explaining
the observed line splitting of atoms radiating in magnetic and electric fields, the� Zeeman and � Stark effects. Since, in general, there were fewer spectrum lines
observed than were combinatorically possible, special � selection rules were set
for transitions. Only with the advent of the concept of � spin in late 1925 were
these phenomenological rules better understood as arising from angular momentum
conservation, with electrons being spin 1/2 particles and the � light quantum (or
photon) carrying spin 1. A merely descriptive spectroscopy was thus replaced by
explanatory hypotheses based on � Bohr’s atomic model. Quantum mechanics as
formulated in 1925/26 yielded formulas for the spectral series and other regularities
fully equivalent to the semi-classical Bohr–Sommerfeld atomic model in first order,
and only slightly differing in higher orders of perturbation theory (see, e.g., [13]).
Spectroscopic data were again crucial in its development. See also � Spin echo.
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Spin

Klaus Hentschel

According to quantum mechanics, spin—the intrinsic angular momentum of an
electron, nucleus, or elementary particle at rest—is a decidedly nonclassical con-
cept. The � spin statistics theorem of � quantum statistics distinguishes bosons
and fermions obeying � Bose–Einstein statistics or � Fermi–Dirac statistics, re-
spectively, depending on whether the particle’s spin is an even or odd multiple
of h̄/2, with h̄ = h/2π (h being � Planck’s constant). The convoluted history
of the concept of spin nevertheless reaches back into the final � crisis period of
the old � quantum theory, linked to the semi-classical � atomic model by Niels
Bohr (1885–1962), Arnold Sommerfeld (1868–1951) and their collaborators (the� Sommerfeld school).

In the early 1920s, precise experimental data from � spectroscopy, particu-
larly regarding the anomalous � Zeeman effect, forced researchers to deviate
from the rule imposed by the Bohr–Sommerfeld atomic model that all � quan-
tum numbers must be integers. Experiments by Miguel A. Catalán (1894–1957)
made evident that many spectrum lines were finely split by magnetic fields into
so-called multiplets with 2l + 1 equidistant components, l being the azimuthal
quantum number. These multiplets were thus described by a new magnetic quan-
tum number m, and the rule |m| � l stating that permissible states have to be
between +m,m − 1,m − 2 . . .0,−1,−2 . . . and −m. This yields 2m + 1 differ-
ent states, a perfect fit with the observed (2m + 1)-multiplet. Semi-classically, m
could be interpreted as the component of l in the direction of the exterior magnetic
field (both in units of h/2π), so the orientation of the electron orbits relative to the
magnetic field was space quantized—only a few discrete orientations were permit-
ted. Likewise, transitions between states had to be restricted to �m = ±1, 0 by
a superimposed � selection rule. What about doublet lines with only two visible
components? Applying the standard multiplet rule would lead directly to l = 1/2,
implying m = ±1/2, hence half-integer quantum numbers. Alfred Landé (1888–
1976) was the first to dare to operate with half-integer � quantum numbers in search
of an explanation for doublets in alkali spectra and other anomalies in the � Zeeman
effect [see 14, 15].

But how to interpret these strange half-integral quantum numbers? In 1922, the
young Werner Heisenberg (1901–1976), then still in the clutches of the � Som-
merfeld school in Munich, speculated that this half-integer value would result from
a time-average over an integer multiple of a quantized angular momentum, con-
tributing 50% to the outer shell and 50% to the atomic core [1]. Heisenberg &
Sommerfeld [2] also tried to explain the anomalous Zeeman effect in terms of a
magnetic interaction of the outermost bound electron (the so-called Leuchtelektron)
with the magnetic momentum of the stronger-bound � electrons closer to the atomic
core (the Rumpfelektronen). However, this model would lead one to expect a strong
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correlation between � Landé’s g factors and the atomic charge number Z of the
respective element, which was at odds with observation.

Another young student of Sommerfeld, Wolfgang Pauli (1900–1958), devised a
different, equally bold approach to explain such doublet structures. Pauli [3] con-
cluded that the “Rumpf ”-electrons of the closed shell should have no effective
angular momentum at all. Instead, he imposed a mysterious “mechanically inde-
scribable ambiguity” on the outermost electron (“a characteristic ambiguity of the
“Leuchtelektron” not describable by classical theory”) as a hypothetical alternative
explanation to the doublet structure. This ambiguity also led to two possible orien-
tations for the outermost electron relative to the external magnetic field. This in turn
yielded the doublet splitting of alkali spectra and similar atoms.

In January 1925 Pauli first expressed this mechanically indescribable ambiguity
as a new quantum number μ = ±1/2 (for doublets), and Δμ = 0 or ±1 as a new� selection rule. Each electron was thus described by a set of four � quantum
numbers n, l,m and μ (sometimes alternatively called n, l, j and s). The elec-
tron configuration of each atom was constructed of shells, starting from the lowest
possible energy level. Pauli’s new constraint imposed on the shell structure that no
two electrons of an atom have all the four quantum numbers in common: the Pauli
principle (or � exclusion principle):

“There can never be two or more equivalent electrons in the atom in which the values of all
[four] quantum numbers. . . concur within a strong field. . . If in the atom there is an electron
for which these quantum numbers. . . have specific values, then this state is occupied.” [4,
p. 776; cf. 17]

In this way Pauli succeeded in deriving the usual period lengths of 2, 8, 18,
32, . . . from the periodic table. The arrangement of the periodic system of the ele-
ments thus seemed to make a little more sense again, at least as far as the main
groups were concerned. But it came at the cost of a “classically indescribable kind of
ambiguity”; and Pauli’s prohibition of any duplication among the quantum numbers
occupying a given state, was no better justifiable according to classical theory and
only understood within the context of the � Fermi–Dirac statistics of later � quan-
tum mechanics.

So we are already very close to the discovery of electron spin, and yet still so far
away. Pauli refused to address the problem of how this ambiguity would be com-
prehended within the classical model (e.g., as an intrinsic angular momentum): He
argued that this feature was “classically indescribable” because the electron’s rota-
tional velocity around its own axis was too large (according to Pauli it was greater
than c). Instead Pauli, godchild of the positivist Ernst Mach, held a very instrumen-
talistic conception—he just introduced one more model into the discussion that he
himself did not quite believe in:

“It scarcely needs emphasis that further development of the theory must show to what extent
such a conception hits the mark and whether it can be elaborated further. This interpretation
faces major obstacles, particularly with regard to its natural connection with the correspon-
dence principle. Furthermore, there is surely much correct about the conventional view,
which reflects certain features of the phenomena better than the one tentatively suggested



728 Spin

here. In a following note it will be shown, on the other hand, however, that the latter inter-
pretation proves to be more physically useful in describing other aspects of the phenomena.
Perhaps the final solution to the problems set forth here will lie in the direction of a middle
road between these two interpretations.” [5, correspondence, early 1925]

The constantly growing set of quantum numbers and phenomenologically deter-
mined criteria like Sommerfeld’s � selection rules and � Landé’s g-factors led
to acceptable agreement between theory and experiment. Nevertheless it left an
unpleasant aftertaste of mere ad hoc description without any deeper understand-
ing of the reasons behind all these rules. Physicists described their predicament
humorously as “term zoology” and “Zeeman botany”. Sommerfeld spoke of “num-
ber mysteries”; Runge ironically referred to “witches times-tables of quantum
physics”.

But not everyone thought like Pauli. In early 1925, Ralph de L. Kronig (1904–
1995) concluded from a letter by Pauli that the electron must have an intrinsic
angular momentum in order to explain the peculiar ambiguity not describable ac-
cording to classical conceptions. Pauli repudiated this idea off-hand on the following
arguments:

1. A factor 2 was missing between the calculated doublet splitting and observational
data.

2. The magnetic moment of an atomic nucleus was too small.
3. The rotation velocity of such a spinning electron was incredibly high. Calculated

on the basis of classical assumptions, it yielded superluminal velocities along the
electron’s periphery � superluminal communication.

Completely unaware of this exchange which prevented Kronig from pursuing
this idea further, two young postdocs in Leyden, George Eugene Uhlenbeck (1900–
1988) and Samuel Abraham Goudsmit (1902–1978), took as an explanation of the
anomalous Zeeman effect the assumption that

(1) Each individual electron bears a magnetic moment M that can be generated
from an intrinsic rotation with angular momentum (spin S)

M = 2 · e

2mc
S

(2) Quantitatively, this magnetic moment is twice the amount expected in a naive
semi-classical model

Thus the magnetic and mechanical moment should differ by a factor 2 from the
value valid for an atomic system with a point charge of e/2mc, that is, the quotient
of the Bohr magneton. The resulting fact that the total angular momentum of J and
μ (total magnetic moment) were not parallel explained why the distances between
various magnetic levels in the anomalous Zeeman effect differed in size depending
on the term (� vector model) (Fig. 1).
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Fig. 1 Vector model of electron spin. Source: Stöckler Taschenbuch der Physik 2000, 769.
Reprinted by permission of the publisher

The consideration by Uhlenbeck and Goudsmit in the summer of 1925 was basi-
cally very simple. Pauli had already noticed in 1924/25 that there are four quantum
numbers; but within a semi-classical framework, for a single electron, this could
only mean:

4 degrees of freedom = 3 translational degrees+ 1 internal degree of freedom

For a point-like or extremely small particle this in turn pointed to an intrinsic
rotation!

The first reaction to the paper by Uhlenbeck and Goudsmit on record was by
Hendrik A. Lorentz (1853–1928). In a letter from Oct. 19, 1925 he noticed (as Pauli
had with respect to Kronig’s earlier proposal) that there were problems with the
rotational velocity ν of such a spinning electron, because

μ ∼ e

m
·
(ν
r

)

which led to ν ∼ 10 · c, or approximately ten times the velocity of light, which is
physically impossible. But the brief note by the two Dutch physicists had already
been irretrievably submitted to Die Naturwissenschaften. In reply to their worried
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request for advice, their mentor Paul Ehrenfest (1880–1933) consoled them with the
words: “You are both young enough to afford a stupidity like that.” [9, 10, 11]

So the bold hypothesis of an electron spin found its way into print even though
no one dared to believe it at that point. The remaining quantitative problem with the
missing factor 2 for the doublet separation (which Pauli had already pointed out to
Kronig) was only clarified in early 1926. Lewellyn Hilleth Thomas (1903–1992)
explained it as arising from a missed Lorentz transformation from the spinning
electron’s frame of reference against the laboratory system. By that time, the ‘old’
semi-classical quantum theory by Bohr, Sommerfeld and their pupils had already
been replaced by the modern quantum mechanics of Heisenberg and Schrödinger,
which led to a much deeper—nonclassical—understanding of spin from the sym-
metries and statistics of the quantum systems.

Although spin was thus first ‘discovered’ at the end of 1925 and only acknowl-
edged by the scientific community in 1926, that is, after the development of quantum
mechanics, it was nevertheless a product of the old semi-classical style of model-
ing that still took angular momentum, orbits and mechanical models seriously. The
Pauli principle and spin remain integral parts of the new quantum mechanics but
their historical roots lay in the old Bohr-Sommerfeld form of quantum theory. Like
the � electron, the concept of spin thus also had a pretty complicated early ‘biog-
raphy’ [20], but it is still very much alive today. See also � partity; quantum field
theory; spin echo.
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eine Forderung bezüglich des innern Verhaltens jedes einzelnen Elektrons. Die Naturwis-
senschaften 13, 953–954 (1925)

7. N. Bohr, R. de L. Kronig, J.C. Slater: Spinning electrons and the structure of spectra. Nature
117, 264–5, 550, 587 (1925)

8. L. H. Thomas: The motion of the spinning electron. Nature 117, 514 (dated Feb. 20, publ. April
10, 1926)

9. S. Goudsmit: Die Entdeckung des Elektronenspins. Physikalische Blätter 21, 445–453 (1965)
10. G. Uhlenbeck, S. Goudsmit: in Physics Today (June 1976), 40–48.
11. S.A. Goudsmit: The discovery of the electron spin (talk in 1971): http://www.lorentz.

leidenuniv.nl/history/spin/goudsmit.html (last accessed May 28, 2007).



Spin Echo 731

S

Secondary Literature

12. F. Hund: Geschichte der Quantentheorie (BI, Mannheim 1984, 4th ed. 1996, Chaps. 9–10)
13. M. Jammer: Conceptual History of Quantum Mechanics (McGraw Hill, New York 1966, sect.

3.3–3.4)
14. P. Forman: The doublet riddle and atomic physics circa 1924. Isis 59, 156–174 (1968)
15. D. Serwer: Unmechanischer Zwang Pauli: Heisenberg and the rejection of the mechanical

atom, 1923–1925. Historical Studies in the Physical Sciences 8, 189–256 (1977)
16. O. Darrigol: C-numbers and Q-numbers (Univ. of California Press, Berkeley 1992, Chaps. 8–9)
17. B.L. van der Waerden: Exclusion principle and spin, in M. Fierz, V.F. Weisskopf (eds.) Theo-

retical Physics in the Twentieth Century (Interscience, New York 1960, pp. 199–244)
18. N. Robotti: Quantum numbers and electron spin. Archives Internationales d’Histoire des Sci-

ences 40, 305–331 (1990)
19. M. Morrison: Spin—all is not what it seems. Studies in the History and Philosophy of Modern

Physics 38, 527–557 (2007)
20. T. Arabatzis: Representing Electrons, A Biographical Approach to Theoretical Entities

(University of Chicago Press, Chicago 2006), esp. Chap. 8.

Spin Echo

Antoine Weis

Spin echo is a technique, introduced in 1950 by Erwin Hahn, for suppressing
inhomogeneous line broadening effects in � magnetic resonance spectroscopy. The
width of a magnetic resonance line (in the low rf power limit ω2

1 # γ1γ2) is deter-
mined by the transverse relaxation time T2 = 1/γ2 (cf (3) of � magnetic resonance).
An inhomogeneous magnetic field B0 produces an inhomogeneously broadened line
which can be understood as the superposition of many lines with narrow widths γ2.
The spin echo technique overcomes the loss of spectral resolution due to the inho-
mogeneous broadening.

Consider a system of N spins, initially aligned along z. At time t = 0 the spins
are tipped by a π/2-pulse to the y direction, and the (inhomogeneous) magnetic field
B0 = B0(x, y)

1
z drives their precession in the x–y plane. Because of the field inho-

mogeneity �B, the different spins precess at different angular frequencies (Fig. 1),

and the macroscopic transverse polarization components Px,y =
N∑
i=1

〈
S(i)x,y

〉
decay

because of the collective dephasing (Fig. 2, left).
Although the ensemble averaged polarization vanishes for times larger than the

inhomogeneous dephasing time T ∗2 ∝ 1/�B, the phase memory of the individual
spins will survive for a longer time T2 % T ∗2 and the spins can be made to rephase
following the application of a π-pulse at time t = T after the initial π/2-pulse that
started the dephasing. Such a pulse rotates all the spin vectors by 180◦ around
the x-axis, which, for spins in the x–y plane, is equivalent to a reversal of their
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Fig. 1 Precession of N = 3 initially aligned spins in an inhomogeneous magnetic field

Fig. 2 Decay of the transverse spin polarization in the x–y plane due to inhomogeneous dephasing
(left). The π-pulse after time T reverses the y-components of the individual spins and the spins
rephase to a maximum transverse polarization at time t = 2T

y-components (Fig. 2, center). As a consequence the faster precessing spins (here
S3 and S2) will catch up again with the slower spins, so that after the time t = 2T
all spins are again completely in phase, yielding a maximal transverse polarization,
which for later times of course will decay again because of the inhomogeneity. The
reappearance of a finite polarization from an apparently depolarized sample is called
a spin echo.

The echo pulse amplitude is smaller than the starting amplitude, i.e., the initial
transverse polarization due to the (homogeneous) T2 relaxation. From the variation
of the echo amplitude as a function of the time interval T one can thus infer T2.

An interesting variant of spin echo spectroscopy was developed for neutrons and
has become known under the name of neutron spin echo spectroscopy. The investi-
gation of inelastic neutron scattering via phase shifts requires highly monochromatic
neutrons. This requirement is rendered obsolete by using the echo technique which
rephases neutrons of different velocities, so that all velocities contribute to the
signal, yielding a large gain in statistics and sensitivity.
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Similar echo phenomena can be observed in any multilevel quantum system
subject to inhomogeneous relaxation, such as, e.g., in two-level atom and ions, for
which echoes occur in the optical spectral range, where they are then called photon
echoes. See also � magnetic resonance; spectroscopy; spin.
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Spin Statistics Theorem

Arianna Borrelli

The term spin-statistics theorem is used to indicate theoretical explanations of the
connection exhibited by non-relativistic quantum systems of identical particles be-
tween the particles’ � spin and their quantum-statistical behaviour. In such systems,
particles of integer spin follow � Bose–Einstein statistics, while particles of half-
integer spin obey � Fermi–Dirac statistics. High-precision experiments have not
revealed any violations of this rule [8]. In the framework of relativistic � quantum
field theory, it is possible to show that, under the assumption that all particles are ei-
ther bosons or fermions (symmetrization postulate), the spin-statistics connection is
a consequence of basic physical postulates such as relativistic � invariance, positive
energy or time-reversal invariance.

From 1936 until today, a number of proofs of the connection between spin and
statistics have been offered, with varying degrees of rigour and generality and
imposing on the theory different physical requirements and limitations [10–12].
The proof which eventually entered textbook-tradition was given by Wolfgang
Pauli (1900–1958) in 1940, and relied on results obtained previously by his assis-
tant Markus Fierz (1912–2006) (1939) [1]. In the 1960s, the term “spin-statistics
theorem” established itself to indicate these demonstrations, even though they
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are usually not equivalent to each other. The term was introduced by Raymond
F. Streater (1936–) an Arthur S. Wightman (1922–) in their summary of axiomatic
quantum field theory (1964) [7].

In its quantum-relativistic formulation, the theorem states that, when quantizing
a field ψ(x) (i.e. when formally transforming it into an � operator), one is not free
to choose at will between commutation and anticommutation relations, but has to
impose the one or the other according to the way in which the field ψ(x) transforms
under a change of the relativistic reference frame (Lorentz transformation). If the
“wrong” choice is made, the quantized theory will not fulfil physically significant
requirements such as positive energy, positive probability, invariance under time-
reversal, or the condition that the influence of interactions should not propagate
faster than light (� locality).

In the non-relativistic limit, the Lorentz transformation properties of ψ(x) de-
termine its behaviour with respect to space rotations, and therefore the spin of the
corresponding particles: scalar fields have spin 0, vectors have spin 1, Dirac-spinors
have � spin 1

2 , and so on. The choice between commutation and anticommuta-
tion relations translates into the � symmetry or antisymmetry of the non-relativistic
many-particle � wave function, and determines whether the particles will obey
Bose–Einstein or Fermi–Dirac statistics. The connection between spin and statistics
observed in non-relativistic quantum systems is thus shown to be a consequence of
imposing physical requirements in the relativistic framework.

All versions of the spin-statistics theorem have to make some initial assump-
tions on the mathematical form of the theory. For example, some authors deal only
with the lowest spin values (0, 1

2 , 1), some only with noninteracting particles, others
weaken the requirement of relativistic invariance. The proofs of the spin-statistics
connection reflect both the history of quantum field theory and the different ap-
proaches to it, variously giving priority to rigorous axiomatic structure, maximum
generality, minimal requirements, or the simplicity of the arguments.

Early proofs, including Pauli’s 1940 paper, relied on mathematical procedures
whose legitimacy was only proved years later, and sometimes also on manipulations
which are today regarded as illegitimate. From the late 1940s onward, with the de-
velopment of the mathematical apparatus of quantum field theory, more rigorous and
elaborated proofs were formulated. Interest in the subject has remained lively and,
in 2000, a conference was devoted to “The spin-statistics connection and commu-
tation relations”, summarizing the many theoretical and experimental developments
in the field, with particular attention to possible violations of the symmetrization
postulate.

In his 1940 paper, Pauli proved the spin-statistics connection for noninteract-
ing fields corresponding to any spin value by requiring positive energy and locality
[1, 10, 12]. He assumed the generic field ψ(x) to obey linear differential equations
whose solutions could be expressed as a superposition of plane waves ei(kμxμ). Using
the classification of the representations of the Lorentz group introduced by Bartel
van der Waerden (1903–1996), Pauli was able to classify the behaviour of all pos-
sible candidates to the role of energy-momentum operator and show that, if ψ(x)

corresponded to half-integer spin values, the energy function would not be positive
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definite. From this he concluded, as Fierz had done before him, that a field ψ(x)

with half-integer spin had to be quantised with anticommutation relations so that,
by using the ensuing � exclusion principle, an infinite number of negative-energy
states could be regarded as being already occupied. In this way, one would in the
end recover a physical system with positive energy.

To prove the second part of the theorem, Pauli implemented locality by requiring
that � operators derived from ψ(x) and associated to physical quantities should
commute for spacelike separations, i.e. for events which, in some reference frame,
occur at the same time in two different places. He showed that, when a field with
integer spin was quantized according to anticommutation rules, this condition would
lead to a relation implying that the field is identically zero. This result was based on
a mathematical argument whose legitimacy was proved only years later.

In 1949, Richard Feynman (1919–1988) used his newly developed computational
techniques for � QED to show that the spin-statistics-connection follows from the
requirement that probability values must be � 1 [2]. In 1964, Steven Weinberg
proved the spin-statistics theorem both for fermions and for bosons by requiring that
quantized fields should either commute or anticommute for spacelike separations
[6, 13].

In the context of axiomatic quantum field theory, much attention has been de-
voted to the spin-statistics theorem and to its relationship with the invariance of the-
ories with respect to the combination of time-reversal, charge-conjugation and parity
transformation (� CPT-theorem). Julian Schwinger (1918–1994) endeavoured to
determine the conditions under which both the spin-statistics theorem and the CPT-
theorem would obtain (1958) [3]. Gerhard Lüders (1920–1995) and Bruno Zumino
(1923–) (1958) and, contemporarily but independently, Nicholas Burgoyne (1932–
1958) instead proved the spin-statistics theorem on the basis of postulates such as
Lorentz invariance, positive energy and positive metric of the � Hilbert space, and
then used it as a starting point to prove the CPT-theorem [4, 5].

Works on the spin-statistics theorem have relied on increasingly complex mathe-
matical arguments, and some authors have attempted to find what they felt would be
a “simple” demonstration. Ian Duck (1933–) and George Sudarshan (1931–) have
historically reviewed the subject from this point of view, and Sudarshan has of-
fered a proof based on rotational invariance (1997) [11]. In the last decades, various
authors have investigated the spin-statistics connection outside the boundaries of
standard relativistic quantum field theory, for example in non-relativistic quantum
mechanics, supersymmetry or superstrings, often relying on topological arguments.
Most recently, a formulation of the spin-statistics theorem for classical mechanics
has been proposed (J. A. Morgan 2004) [9].
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Squeezed States

Martin Bodo Plenio

In this section we will discuss some basic properties of so-called squeezed quantum
states. These states are characterized by the property that they will exhibit fluctua-
tions for some physical observable quantities that are smaller than the fluctuations
when the same quantity is measured on the vacuum state. Such states, often for
optical fields, have applications in various areas of physics ranging from enhanced
measurement precisions to quantum information processing.

A pure squeezed state [1] may be represented as a � wave function in position
space where it takes the form

〈x|ψsq〉 = ψsq(x) = [2π(�x)2]−1/4exp

[
−
(
x − 〈x〉

2�x

)2

+ i
〈p〉x

�

]
, (1)

where

(�x)2 = 〈x2〉 − 〈x〉2 where 〈f (x)〉 =
∫ ∞

−∞
|ψ(x)|2f (x)dx. (2)
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Fig. 1 The Wigner functions of the vacuum state which is a specific example of a coherent state
(left hand side) and of a squeezed state (right hand side) whose variance in one quadrature compo-
nent is suppressed below the vacuum level by a factor of 3 at the expense of increasing the variance
in the other quadrature component by a factor of 3

(�x)2 and (�p)2 represent the uncertainties in the measurement of the observ-
ables x and p. For particles these may be position and momentum while for light
fields these are the in-phase and out-of-phase components, also known as position
and momentum quadrature components. The above formulae share great similar-
ity with � coherent states. In fact, coherent states represent the special case when
�x = �p = √

�/2. Thus, for squeezed states, the uncertainty of one quadrature
component, e.g. position x may be reduced at the expense of the other, e.g. mo-
mentum p. Coherent and squeezed states may be visualized neatly employing the� Wigner distribution, and two examples are shown in Fig. 1. The fact that the vari-
ance, for example in position, is reduced below the vacuum level has applications
in precision measurements as the reduced uncertainty allows for a more precise de-
termination of position. Squeezed states gained considerably more attention when
it was suggested that squeezed light might be used to achieve better sensitivity in
the interferometric detection of gravitational waves [2]. This stimulated the devel-
opment of experimental methods for the generation of squeezed states of light [3].
The generation of squeezed states of light requires non-linear optical effects such as
parametric oscillation and second harmonic generation. As these non-linearities are
often weak this makes the generation of substantial levels of squeezing difficult to
achieve.

Another area in which squeezed states are of increasing relevance is that of
optical quantum communication in the continuous variable regime [4, 5]. Here, a
fundamental aim is the generation of � entanglement in the form of two-mode
squeezed states such that each light mode is accessible to a different possible distant
party. In the Fock state representation these states take the form

|reiφ〉 =
√

1

cosh r

∞∑
n=0

√
(2n)!
n!

(
−1

2
eiφ tanh r

)n
|n〉|n〉. (3)
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This state exhibits strong correlations as for example a photon number measure-
ment in one mode determines the outcome of a photon number measurement in
the other mode. Two-mode squeezed states form the basic resource for � quan-
tum communication protocols such as quantum state teleportation. Various methods
for the generation of such states exist. A simple method consists of sending two
single mode squeezed states of the type described above onto the two inputs of a
beam-splitter making sure that one squeezed state exhibits squeezing along the x

quadrature while the other exhibits exactly the same degree of squeezing but along
the p quadrature. The output of the beam-splitter will then be a two-mode squeezed
state as in (3).

The distribution of two-mode squeezed states, and therefore entanglement, gen-
erally suffers from noise and the development of methods to combat the effects of
noise and to improve the squeezing and entanglement in such states is an active area
of research today [6, 7].
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Standard Model

See � Quantum field theory; Particles Physics.

Stark Effect

Klaus Hentschel

In late 1913 Johannes Stark (1874–1957), the professor of experimental physics
at the technical university of Aachen who would later champion the Aryan
physics movement, discovered the effect of electric fields on spectral lines. This
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beam-splitter making sure that one squeezed state exhibits squeezing along the x

quadrature while the other exhibits exactly the same degree of squeezing but along
the p quadrature. The output of the beam-splitter will then be a two-mode squeezed
state as in (3).

The distribution of two-mode squeezed states, and therefore entanglement, gen-
erally suffers from noise and the development of methods to combat the effects of
noise and to improve the squeezing and entanglement in such states is an active area
of research today [6, 7].
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phenomenon is usually referred to as the Stark effect, though some Italian authors
prefer to call it ‘Stark-Lo Surdo effect’, because Antonio Lo Surdo (1880–1949)
independently also found this long-sought electric analogue to the magnetic � Zee-
man effect. Both discoverers worked with specially constructed discharge tubes.
Stark’s tube allowed stable electric fields of up to 100,000 V cm−1. In numerous
experiments during the course of the next decade, Stark demonstrated the following:

• The spectrum lines in the Balmer series of hydrogen split up into several
components

• The number of these components increases with the series number
• Splitting and polarization of Balmer lines is symmetric to the original line
• The splitting seemed to be asymmetric for some other elements
• The distances between the hydrogen spectral-line components (in units of fre-

quency or wave-number) are all integer multiples of a smallest line distance
• The splitting interval � increases proportionally with the electric field F

(i.e., �∼F for not too small or too large F)
• For very small electric fields and atoms not subject to a permanent dipole mo-

ment, � actually increases by the second power of F (‘quadratic Stark effect’)
• For very strong electric fields F ∼ 1,000,000 V cm−1, the splitting is asymmet-

ric, as was found experimentally by two Japanese physicists in 1918 and derived
theoretically by Arnold Sommerfeld in 1921 (‘Stark effect of second order’)

Mathematical techniques from perturbation theory to make corrections for Kepler
ellipses induced by remote third masses were already well developed at the time.
Applying these techniques, Paul Sophus Epstein (1871–1939) in Munich (a mem-
ber of the � Sommerfeld School) and the astrophysicist Karl Schwarzschild
(1873–1916) in Potsdam succeeded independently of each other in incorporat-
ing this effect in the � atomic model of Niels Bohr (1885–1962) and Arnold
Sommerfeld (1868–1951).

In analogy to the � Zeeman effect, they interpreted the Stark effect as a splitting
of energy levels of initial and final states, in this case induced by the external elec-
tric field, i.e., as a vanishing of the degeneracy in normal hydrogen. Put intuitively,
eccentric orbits of the � electrons start to differ in energy from less eccentric or-
bits due to the external electric field. The problem is described mathematically in
parabolic coordinates (ξ , η, ψ), with ψ as the angle off the z-axis which is parallel
to the external electric field F .

y2

ξ
+ 2x = ξ

y2

η
− 2x = η

The main � quantum number n is then the sum of three quantum numbers nξ , nη,
nψ linked to the three degrees of freedom of the system. Because ψ is a cyclic
coordinate, nψ � 1, i.e., nψ = 0 is forbidden (analogous to the discussion of � fine
structure). Intuitively put, this means that the electron has to revolve around the
z-axis).
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Thus the main quantum number n = nξ + nη + nψ = nξ + nη + m + 1,
with nψ = 1, 2, 3, . . . ⇔ m = 0, 1, 2, . . . and m the so-called azimuthal quantum
number m = nψ − 1. After elaborate calculations (cf. [1, Chap. 6, Sect. 2]), one
obtains for the energy of the orbit as a function of the quantum numbers and the
field:

−E(n, nη, nξ , F ) = 2π2μZ2e4

h2n2
+ 3hF

8π2μZe
n(nη − nξ )

The first expression on the right-hand side of the equation recovers the normal
Balmer term; the second term describes the energetic splitting ∼F and ∼n(nη–nξ ).
After insertion of initial state (1) and final state (2), the splitting �ν of spectral lines
in terms of frequency results as

�ν = 3h · F
8π2μZe

[n2(nη − nξ )2 − n1(nη − nξ )1]

These formulas thus correctly describe � as proportional to the field F , and sym-
metric to �ν = 0, because for each allowed transition (nη, nξ , m)1, (nη, nξ , m)2,
there also exists an inverse transition. Additional � selection rules had to be set so
as not to get too many components: �m = 0 or 1, with the additional constraint of
excluding m = 0 → m = 0 sufficing to explain the observed number of compo-
nents and splitting patterns. The observed polarization of the �m = ±1 components
also agreed well with what was expected classically for light emitted from moving
charges: circular polarization for observations vertical to the field. The outcome
was a perfect � semi-classical model to explain the normal Stark effect for hydro-
gen and similar simple atoms. In 1920, Bohr’s assistant Henrik Anthony Kramers
(1894–1952) showed that Epstein’s and Schwarzschild’s approximation was only
good as long as the exterior electric fields were large compared with the relativis-
tic fine structure of the unperturbed energy levels. For small F and atoms without
permanent dipole moment, � was proportional to the 2nd power of the electric
field. This ‘quadratic Stark effect’ and a smooth transition from the quadratic to the
normal Stark effect for an increasingF were confirmed experimentally by Rudolf
Ladenburg (1882–1952) in Breslau in 1924.

The Stark effect of second order was found by the two guest researchers at
the laboratory of the Mt. Wilson observatory, Toshio Takamine (1885–1959)
and Noboru Kokubu. Experimenting with an unusually high electric field of
147,000 V cm−1, they found an asymmetric shift of 0.8 Å of the middle com-
ponent towards the red instead of the normal symmetric splitting. Upon hearing
about their result from Bohr, Arnold Sommerfeld used second-order perturbation
calculations to derive this asymmetric shift. This Stark effect of second order
was also responsible for the so-called pole effect, an asymmetric line broadening
well-known to spectroscopists (cf. [8,9], pp. 357–366). After the advent of quantum
mechanics, Erwin Schrödinger (1887–1961) was the first to show that very sim-
ilar results could be derived for the Stark effect within this new framework. The
resulting formulas were virtually equivalent for the normal Stark effect, whereas
small deviations between the old semi-classical Sommerfeld formulas and the new
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Fig. 1 Comparison between experimental results (above) and theoretical calculations (below) for
the splitting of the hydrogen Hδ line in an electric field (observed vertically). From [3, p. 473]

quantum mechanical formulas existed for the second and third-order Stark effect.
By 1929 it had become clear that quantum mechanics yielded better agreement with
experimental precision measurements (see, e.g., [10]), even though it took much
longer for a perfect match between theory and experiment to be reached.
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States in Quantum Mechanics

Leslie E. Ballentine

The most general meaning of the term state is a manner of existing, a combination
of attributes belonging to a thing (paraphrased from the Oxford English Dictionary).
In physics the term state has various, more specific meanings in thermodynamics,
in classical mechanics, and in quantum mechanics, but all include the notion that a
knowledge of the state is sufficient to make predictions about the future behavior of
the system.

A pure state (� states, pure and mixed) is one that is specified or controlled as
precisely as possible. In classical mechanics a pure state is specified by a point in
phase space, i.e. by the values of all position and momentum variables. In quan-
tum mechanics a pure state is specified by a � wave function or state vector in� Hilbert space. In both classical and quantum mechanics the motion of the state
is deterministic, in the sense that the specification of the initial state determines a
mathematically unique trajectory of future states.

However, the dissimilarities between the classical and quantum pure states are
even more significant. The specification of the classical state uniquely determines
all observable properties of the system, as functions of the position and momentum
variables. But the connection between the quantum state and observation is only
probabilistic; the state vector does not determine the values of the � observables,
but only the probabilities of the various possible values. The same classical state
leads necessarily to the same observable events, but a new preparation of the same
quantum state may lead to quite different observable outcomes. Thus, even though
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the time evolution of the state vector is deterministic, the appearance of events is
not. It is the connection between the quantum state and the observable events that
is indeterministic, notwithstanding the deterministic nature of the � Schrödinger
equation. That the link between the state and the observable events is only statistical,
is the most significant difference of quantum mechanics from classical mechanics.
But if we recognize that the prediction of future events must be probabilistic, then
the quantum state fulfills the basic notion of state as being sufficient for predictions
about the future behavior of the system. Indeed, the probabilities for all observable
properties are uniquely determined by the quantum state. � Probability in quantum
mechanics.

When we consider general states, comprising both pure and � mixed states,
then the analogy between classical and quantum states becomes closer. A general
classical statistical state is described by a probability distribution on phase space,
ρc(q, p), where q and p are the coordinates and momenta. A pure state is recov-
ered in the extreme limit in which all probability is concentrated on a single point;
all other probability distributions are mixed states. A general quantum state is de-
scribed by a � state operator (also called a � density matrix), ρ, which is a positive
Hermitian operator with unit trace. A pure state with state vector |ψ〉 is obtained
if ρ = |ψ〉〈ψ|. The use of general states makes the comparison between classical
and quantum mechanics easier because the results of both theories are expressed in
terms of probabilities and averages. The average value of an observable, represented
by the quantum operator A or the classical function A(q, p), is given by Tr(ρA) in
quantum mechanics, and by

∫
ρc(q, p)A(q, p)dqdp in classical mechanics. The

equations of motion for the quantum and classical state functions are very similar.
The former involves the commutator with the Hamiltonian, ∂ρ/∂t = −(i/�)[H,ρ],
and the latter involves the Poisson bracket, ∂ρc/∂t = {Hc, ρc}PB. By contrast,
Newton’s equation for a single classical orbit bears no similarity to Schrödinger’s
equation for a state vector.

But more important than these formal similarities and differences is a very sub-
stantial difference. Two classical orbits that begin close together in phase space can,
in time, become widely separated from each other, but two state vectors that are
initially close in Hilbert space will not separate at all because the unitarity of the
time-development operator implies that 〈ψ1(t)|ψ2(t)〉 remains constant. This fact
was once considered to be a serious obstacle to the emergence of classical me-
chanics as a limiting case of quantum mechanics. But the obstacle disappears if the
proper analog of a quantum state is a classical statistical state, since the overlap
of two nearby classical probability distributions,

∫
ρc1(q, p, t)ρc2(q, p, t)dq dp, is

independent of t , as is the overlap of two quantum state operators, Tr(ρ1(t)ρ2(t)).
Thus the classical limit of a quantum state should be regarded as an � ensemble of
classical trajectories, rather than a single trajectory [1].

The concept of a quantum state in the modern theory is very different from
that in the early quantum theory (� Quantum theory, early period). N. Bohr postu-
lated that, from the continuum of classical atomic orbits, a � quantization condition
selected a discrete subset of permitted states, between which discontinuous � quan-
tum jumps took place. The old Bohr-orbit theory proved to be inadequate, and was
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replaced by Schrödinger’s wave equation (� wave mechanics; Schrödinger equa-
tion). But the notion of permitted states lingered on, with the stationary solutions
(energy eigenstates) of Schrödinger’s equation taking on the role of the “permit-
ted” orbits of the old theory. That notion is quite obsolete. There are now plenty of
experiments [2–4] that demonstrate the physical significance of the nonstationary
solutions to Schrödinger’s equation, which are therefore every bit as “permitted” as
are the stationary solutions.
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States, Pure and Mixed,
and Their Representations

Leslie E. Ballentine

The concept of state in quantum mechanics, considered abstractly, is a means of cal-
culating probabilities and averages for all � observables. States can be given many
different mathematical representations. The most familiar are the � wave function
�(x) and the state vector |�〉 in � Hilbert space, but these describe only pure
states. A general quantum state is represented by a � state operator, ρ, (also called a� statistical operator, or � a density matrix), which is a positive Hermitian operator
with unit trace. That is to say, it must satisfy the three conditions,

Trρ = 1 , ρ = ρ† , 〈u|ρ|u〉 � 0 for all vectors |u〉. (1)

The average value of an observable, represented by the operatorA, is given by 〈A〉 =
Tr(ρA). � Gleason’s theorem shows that, under broad but non-trivial conditions,
this state operator provides the most general means of introducing a probability
measure in Hilbert space. The distinction between “pure case” (reiner Fall) and
“mixed case” (Gemenge) was introduced by Hermann Weyl (1885–1955) [1].

A pure state with state vector |ψ〉 is obtained if ρ is a one-dimensional projection
operator, ρ = |ψ〉〈ψ|, in which case the expression for the average reduces to
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〈A〉 = 〈�|A|�〉. A pure state operator can be identified by a variety of mathematical
conditions [2]. The most useful is that, in addition to (1), it also satisfies Tr(ρ2) = 1.
The set of all operators satisfying (1) is a convex set, with the pure states being the
extremal members.

Non-pure states are commonly called � mixed states because they can be repre-
sented as convex combinations of pure states (which need not be orthogonal),

ρ =
∑
i

wi |�i〉〈�i | , 0 � wi � 1. (2)

However, this representation of ρ as a mixture of pure states cannot be taken lit-
erally, since every non-pure state has infinitely many different representations as a
mixture of the form (2). These have been fully classified [3].

The distinction between pure and mixed states should not be confused with the
distinction between eigenstates and superpositions. Let A be a Hermitian opera-
tor that represents some physical observable. Corresponding to A there is a set of
solutions to the equation

A|ai〉 = ai |ai〉 (3)

The vectors {|ai〉} are called the eigenvectors of the operatorA, and the real numbers
{ai} are called the eigenvalues. Eigenvectors are mathematically special because the
action of the operator A leaves their direction unchanged, and only multiplies them
by the eigenvalue. According to the fundamental postulates of quantum mechanics,
the eigenvalues are the possible values of the observable, and for the state ρ the
probability of obtaining the particular value ai in a measurement of the observable
will be 〈ai |ρ|ai〉. (We assume, for simplicity, that the set of eigenvalues is discrete,
and that the eigenvectors are normalized so that 〈ai |ai〉 = 1.)

Now suppose that the state operator ρ is chosen to be the projection operator
ρ = |ai〉〈ai〉, or equivalently, that the state vector is |ψ〉 = |ai〉. Evidently, the
measurement will yield the value ai with probability one. Such a state is called an
eigenstate of the observable A. Conversely [4], if the measurement yields the value
ai with probability one, and if the set of eigenvalues is nondegenerate (ai �= aj for
i �= j ), then the state must be the eigenstate represented by the vector |ai〉.

A superposition state vector can be formed as a linear combination of
eigenvectors,

|ψ〉 =
∑
i

ci |ai〉 (4)

This is sometimes, misleadingly, refered to as a ‘mixture’ of the eigenstates. Such
terminology is to be deplored, since |ψ〉 is a pure state. The term ‘mixture’ should
be reserved for state operators of the form (2).

The state operator can be given a matrix representation (the density matrix) by
choosing a particular set of basis vectors, the “position” and “momentum” repre-
sentations being common examples. By writing the “position” density matrix as
〈q− 1

2x|ρ|q+ 1
2x〉, and Fourier transforming with respect to the difference variable x

while keeping the centroidal variable q constant, we obtain the Wigner function
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(� Wigner distribution), which is a representation of the state operator that is in-
termediate between the position and momentum representations, and bears a partial
similarity to a classical phase space distribution.
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State Operator

The most general representation of a quantum state. See the articles States, Pure
and Mixed, and their Representations and States in Quantum Mechanics. The terms� statistical operator and � density matrix are also used.

Statistical Operator

An alternative term for the � state operator, used mainly in quantum statistical
mechanics.

Stern–Gerlach Experiment

Friedel Weinert

The Stern–Gerlach experiments (SG experiments) were prepared and carried out by
Otto Stern (1888–1969) and his junior collaborator Walther Gerlach (1889–1979)
between 1921 and 1925. [1–6] According to modern textbook interpretations the
experiments established experimentally the so-called � quantization of angular mo-
mentum and therefore the discreteness of the magnetic moment of atomic particles� Spin; Vector model. This phenomenon is known as ‘space quantization’ (Rich-
tungsquantelung) of angular momentum. As indicated below, the actual historical



746 Stern–Gerlach Experiment

(� Wigner distribution), which is a representation of the state operator that is in-
termediate between the position and momentum representations, and bears a partial
similarity to a classical phase space distribution.

Literature

1. H. Weyl: Quantenmechanik und Gruppentheorie. Zeitschrift für Physik 46, 1–46 (1927)
2. L. E. Ballentine: Quantum Mechanics – A Modern Development (World Scientific, Singapore

1998, Sect. 2.3)
3. L. P. Hughston, R. Jozsa, W. K. Wooters: A Complete Classification of Quantum Ensembles

having a given Density Matrix. Phys. Lett. A 183, 14 (1993)
4. Ref. [2], Sect. 2.4.

State Operator

The most general representation of a quantum state. See the articles States, Pure
and Mixed, and their Representations and States in Quantum Mechanics. The terms� statistical operator and � density matrix are also used.

Statistical Operator

An alternative term for the � state operator, used mainly in quantum statistical
mechanics.

Stern–Gerlach Experiment

Friedel Weinert

The Stern–Gerlach experiments (SG experiments) were prepared and carried out by
Otto Stern (1888–1969) and his junior collaborator Walther Gerlach (1889–1979)
between 1921 and 1925. [1–6] According to modern textbook interpretations the
experiments established experimentally the so-called � quantization of angular mo-
mentum and therefore the discreteness of the magnetic moment of atomic particles� Spin; Vector model. This phenomenon is known as ‘space quantization’ (Rich-
tungsquantelung) of angular momentum. As indicated below, the actual historical



746 Stern–Gerlach Experiment

(� Wigner distribution), which is a representation of the state operator that is in-
termediate between the position and momentum representations, and bears a partial
similarity to a classical phase space distribution.

Literature

1. H. Weyl: Quantenmechanik und Gruppentheorie. Zeitschrift für Physik 46, 1–46 (1927)
2. L. E. Ballentine: Quantum Mechanics – A Modern Development (World Scientific, Singapore

1998, Sect. 2.3)
3. L. P. Hughston, R. Jozsa, W. K. Wooters: A Complete Classification of Quantum Ensembles

having a given Density Matrix. Phys. Lett. A 183, 14 (1993)
4. Ref. [2], Sect. 2.4.

State Operator

The most general representation of a quantum state. See the articles States, Pure
and Mixed, and their Representations and States in Quantum Mechanics. The terms� statistical operator and � density matrix are also used.

Statistical Operator

An alternative term for the � state operator, used mainly in quantum statistical
mechanics.

Stern–Gerlach Experiment

Friedel Weinert

The Stern–Gerlach experiments (SG experiments) were prepared and carried out by
Otto Stern (1888–1969) and his junior collaborator Walther Gerlach (1889–1979)
between 1921 and 1925. [1–6] According to modern textbook interpretations the
experiments established experimentally the so-called � quantization of angular mo-
mentum and therefore the discreteness of the magnetic moment of atomic particles� Spin; Vector model. This phenomenon is known as ‘space quantization’ (Rich-
tungsquantelung) of angular momentum. As indicated below, the actual historical



746 Stern–Gerlach Experiment

(� Wigner distribution), which is a representation of the state operator that is in-
termediate between the position and momentum representations, and bears a partial
similarity to a classical phase space distribution.

Literature

1. H. Weyl: Quantenmechanik und Gruppentheorie. Zeitschrift für Physik 46, 1–46 (1927)
2. L. E. Ballentine: Quantum Mechanics – A Modern Development (World Scientific, Singapore

1998, Sect. 2.3)
3. L. P. Hughston, R. Jozsa, W. K. Wooters: A Complete Classification of Quantum Ensembles

having a given Density Matrix. Phys. Lett. A 183, 14 (1993)
4. Ref. [2], Sect. 2.4.

State Operator

The most general representation of a quantum state. See the articles States, Pure
and Mixed, and their Representations and States in Quantum Mechanics. The terms� statistical operator and � density matrix are also used.

Statistical Operator

An alternative term for the � state operator, used mainly in quantum statistical
mechanics.

Stern–Gerlach Experiment

Friedel Weinert

The Stern–Gerlach experiments (SG experiments) were prepared and carried out by
Otto Stern (1888–1969) and his junior collaborator Walther Gerlach (1889–1979)
between 1921 and 1925. [1–6] According to modern textbook interpretations the
experiments established experimentally the so-called � quantization of angular mo-
mentum and therefore the discreteness of the magnetic moment of atomic particles� Spin; Vector model. This phenomenon is known as ‘space quantization’ (Rich-
tungsquantelung) of angular momentum. As indicated below, the actual historical



Stern–Gerlach Experiment 747

S

context, in which the experiments were carried out, is more complex. Quantization
of angular momentum means that particles like � electrons orbit the nucleus only in
certain permitted planes. The experiments demonstrated, for the first time, the idea,
proposed by Arnold Sommerfeld (1868–1951) in 1916, of the quantization of the
orbital planes of the electron in the atom. The orbital planes of electrons do not only
possess discrete sizes and shapes. These orbital planes must also be inclined in cer-
tain ways. They must have discrete spatial orientations in relation to a co-ordinate
system like an external magnetic field. The size, shape and orientation of the orbital
planes are indicated by � quantum numbers (n, l,ml). In addition it became clear in
1925 that a quantum number for intrinsic angular momentum, s, was needed. These
quantum numbers specify the state of the atoms in an atom beam. When a beam of
atoms is sent through a non-uniform magnetic field, this discrete spatial orientation
will be revealed on a screen mounted behind the magnet. Stern and Gerlach there-
fore ran these experiments on beams of silver atoms in inhomogeneous magnetic
fields. The purpose of the SG experiments is to maximize the effect of magnetic
field gradients, ∂Bz/∂z, on the silver atoms. It is necessary for the magnetic field
to be inhomogeneous so that the magnetic moments of the particles feel a net force
acting on them. In fact, in a non-uniform magnetic field, with gradient ∂Bz/∂z, the
magnetic dipole moments, μ, experience both a torque, which makes them align
with the magnetic field, Bz, but also a net force, which leads to their displacement.
In a typical Stern–Gerlach experiment, the magnetic field will split the beam into
two parts and send the silver atoms either into the upper or the lower beam. Two
scenarios can be distinguished:

1. The beam of silver atoms – silver atoms have 47 electrons – is sent through the
magnet but the magnet is switched off. A screen mounted behind the magnet will
record the impact of the atoms. When the magnet is switched off, one central
trace will be recorded after the passage of the atom beam (l = 0,ml = 0)
because no deflection is experienced by the atoms in this state (Fig. 1).

2. The magnet is now switched on when the beam of atoms is sent through. De-
pending on the precise state of the atom beam, specified by its quantum numbers,

ml=0

−½+½

+½
ms

−½

Fig. 1 The Stern–Gerlach experiments 1921–25
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and assuming the simplest case, two traces will appear on the screen. The effect
of the magnet will be an intensity shift. When the magnet was switched off the
intensity maximum was in the centre of the screen. But with the magnet switched
on, this central intensity maximum will become a minimum. The central trace
will disappear and two clearly separated traces will appear, deflected upwards
and downwards respectively (Fig. 1). With the magnet switched on, the magnet
will cause the atom beam to split exactly into two halves (under appropriate con-
ditions). This shift will happen only if the magnetic gradient is large enough to
cause the displacement of the magnetic moments.

On the modern theory, an electron has orbital angular momentum, L, and spin
angular momentum, S. The total angular momentum, J , is the sum of L and S:

J = L+ S. (1)

Generally, the magnetic moment, μ, is related to J through the expression

μ = −e
2m

J. (2)

The SG experiment detected two traces, in violation of equation (2). The silver
atoms were in their ground state (orbital angular momentum l = 0, ml = 0 and
hence no deflection is expected; spectroscopic notion 2S1/2

) but the splitting was
due to the magnetic moment of the spin angular momentum of the electron (ms =
±1/2�) in the z-direction (direction of the magnetic field). When l = 0, it follows
from expression (1) that we are left with the value for S = 1/2� for intrinsic spin, so
that the beam splits into two and leaves two traces.

The historical situation was more complicated than this textbook account. [13]
Strictly speaking, Stern and Gerlach believed that they had found Sommerfeld’s
quantization of angular momentum, L. They did not realize that the observed space
quantization was due to the magnetic moment of the spinning electron (hence S).
The two experimenters believed that their experiments had decidedly disproved
the classical Lamor theory, which was based on continuous values for magnetic
moments. They thought their experiments confirmed Sommerfeld’s old quantum
theory (1916), which postulated, in addition to the usual quantum numbers for the
size and shape of orbits, a spatial orientation of the ‘Keplerian’ orbits of the elec-
trons around the nucleus. The discovery of spin angular momentum of the electron
came in 1925, when George Eugene Uhlenbeck (1900–1988) and Samuel Abra-
ham Goudsmit (1902–1978) proposed the concept of � spin. Contrary to frequently
made claims in modern physics textbooks, Stern and Gerlach were not surprised by
their results (splitting of beam into two traces) because this is just what Sommer-
feld’s theory told them to expect. Today many features of the Stern–Gerlach and the� double-slit experiments reappear in so-called � which-way experiments.

The Stern–Gerlach experiments are also interesting from a philosophical point of
view. First, they demonstrate the relative robustness of experimental results and their
relative independence from the theoretical conceptions, on which they are based.
Secondly, they tell us that the often-quoted acausality of quantum mechanical pro-
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cesses is not supported by the SG experiments. It is not difficult to apply Mill’s
‘method of difference’, a form of eliminative induction, to this situation to establish
its causal nature. The only difference between otherwise two identical situations,
including the preparation of the atoms in identical atomic states, specified by the
quantum numbers, lies in the behaviour of the magnet. If it is not switched on
and there is no magnetic field, one central trace appears; if it is switched on and
a magnetic field is applied to the passing atoms, two traces appear in the simplest
case (l = 0). The set of causal conditions is closed. There are no other interfering
factors to be considered. We are therefore justified in concluding that the creation
of the non-uniform magnetic field is the cause, given the initial state of the atoms,
of the splitting of the atomic beam into two parts. As is customary in quantum me-
chanics, no claim is made about the behaviour of the individual atoms making up
the beam. Since the initial orientation of their magnetic moment is random it is not
possible to predict, which way they will turn under the influence of the magnet.
But statistical predictions can be made about the behaviour of the whole beam. The
rules of quantum mechanics specify how atom beams in different states behave. For
instance, if l �= 0 an odd number of traces will appear on the screen. The SG ex-
periments show that causal relations obtain in the quantum domain but they are not
deterministic. Hence causality and the pair � indeterminism-determinism must be
distinguished.
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9. R. Harré: Great Scientific Experiments (Oxford University Press, Oxford 1983, Part III, B)
10. R. I. G. Hughes: The Structure and Interpretation of Quantum Mechanics. (Harvard University

Press, Cambridge, MA 1989, 1–8)



750 Superconductivity

11. M. Jammer: The Conceptual Development of Quantum Mechanics (McGraw Hill, New York
1966)

12. M. Morrison: Spin: All is not what it seems. Studies in History and Philosophy of Modern
Physics 38, 529–57 (2007)

13. F. Weinert: Wrong Theory – Right Experiment: The Significance of the Stern–Gerlach Exper-
iments. Studies in History and Philosophy of Modern Physics 26, 75–86 (1995)

14. W. Walter: Otto Stern: Leistung und Schicksal. Gesellschaft Deutscher Chemiker, Fachgruppe
Geschichte der Chemie: Mitteilungen 3, 69–82 (1989)

15. R. Heinrich, H.-R. Bachmann: Walther Gerlach (Deutsches Museum, Munich1989, esp.
48–54)

Superconductivity

Kostas Gavroglu

Electrical Resistance in the Very Cold

The first systematic studies of the dependence of electrical resistance on temper-
ature had been undertaken by L.P. Cailletet (1832–1913), E. Bouty (1846–1922)
and Z.F. Wroblewski (1845–1888) in 1885. Their researches led them to the as-
sertion that it would not be unreasonable to expect a zero value for the resistance
for a temperature higher than −273◦C. The next set of exhaustive measurements of
the electrical resistance of various metals were performed by James Dewar (1842–
1923) and John Ambrose Fleming (1849–1945). In 1896 they completed a study of
the resistance of mercury at liquid air temperature, and their results indicated that
the resistance of mercury could vanish at zero degrees Kelvin.

After having liquefied helium in 1908, Heike Kamerlingh Onnes (1853–1926), in
1911, at Leiden, measured the resistance of platinum and that of pure mercury at he-
lium temperatures. He found that at 3K the value of the resistance of pure mercury
became 0.0001 times the value of the resistance of solid mercury at 0◦C, extrap-
olated from the melting point. Later that year the phenomenon was reaffirmed at
4.19K. By 1913 it was realized that impurities did not play any role in hindering the
disappearance of the ordinary resistance, and the phenomenon was for the first time
called the “superconductivity” of mercury [22]. In 1914 Kamerlingh Onnes discov-
ered that an external magnetic field could disturb superconductivity by “generating
resistance” in lead and tin. It was, also, found that superconductivity was destroyed
when current above a certain threshold value passed through the superconductor.

Eduard Riecke (1845–1915) and Paul Drude (1863–1906) [12] treated the elec-
tric current in a metal as a drift of an electron gas under the influence of an electric
field. H.A. Lorentz’s (1853–1928) theory of electrical conduction had as a start-
ing point the statistical theory of Maxwell and Boltzmann, and he investigated the
dynamics of the collision processes. Nevertheless, his theory could not account for
the rapid fall of resistance at extremely low temperatures.
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In 1924 Lorentz drew attention to a remark originally made by Maxwell concern-
ing perfect electrical conductors: If a conductor has no resistance there will be no
electric field inside it even when there is a current flowing. The physical meaning of
this result was that any change of the external magnetic field induced currents on the
surface of the metal, and the magnetic field of these currents inside the metal com-
pensated the change of external field, thus keeping the field “frozen-in” the metal.
This physical assumption was regarded as being so self-evident that there was no
systematic experimental study of the phenomenon.

It was Felix Bloch (1905–1983) who in 1928 proposed a satisfactory electron
theory of conduction on the basis of � wave mechanics. The � electrons in a metal
were considered to be uncoupled, though the field in which any one electron moved
was found by an averaging process over the other electrons. If the metal was at abso-
lute zero, its lattice determined a periodic potential field for the electronic motions,
and the electrical resistance by the immobile lattice was zero. The resistance con-
sisted of the “impurity resistance” and the resistance due to the thermal motion of
the atoms. According to Bloch’s analysis of the motion of an electron in a perfect
lattice, all the electrons in a metal could be considered to be “free”, but it did not
necessarily follow that they were all conduction electrons. This theory accounted
for metals, semi-conductors and insulators but not for superconductors. Bloch tried
unsuccessfully to solve the problem in 1928–1929. He showed that the most stable
state of a conductor, in the absence of an external magnetic field, was a state with
no currents. But, superconductivity was a stable state displaying persistent currents
without external fields: “This brought me to the facetious statement that all theo-
ries of superconductivity can be disproved, later quoted in the more radical form of
“Bloch’s theorem”; Superconductivity is impossible.” [4]

In 1932, W.H. Keesom (1876–1976) with J.N. van den Ende found a jump
of the � specific heat at the critical temperature of tin. This prompted Paul
Ehrenfest (1880–1933), to introduce the notion of phase transition of second order.
A.J. Rutgers suggested its application to superconductivity. C.J. Gorter proceeded
to calculate the difference in the Gibbs function of a superconductive sample in zero
magnetic field and of the same sample in the normal state. At about the same period
Lev Landau (1908–1968) attempted to show that the resulting superconductive state
can have lower free energy than the state of random motion. Assuming uniform
saturation current density, Landau showed that it is possible to find a balanced
system of local currents which will be electrodynamically stable.

The End of Old Certainties

At the beginning of November 1933 there appeared a short letter in Naturwis-
senschaften by Walther Meissner (1882–1974) and R. Ochsenfeld (1901–1993)
which presented strong evidence that, contrary to every expectation and belief of the
past twenty years, a superconductor expelled the magnetic field. Superconductors
were found to be diamagnetic. The letter noted several experimental arrangements,
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involving a pair of solid tin or lead cylinders or a cylindrical lead tube. In each case
the sample was cooled below its transition point in a constant magnetic field. When
the transition point was reached a sharp increase of flux was registered. Meissner and
Ochsenfeld concluded that the magnetic flux in the specimen did not remain con-
stant, but the lines of force were driven out of the superconductor, thereby increasing
the flux in its neighbourhood. It appeared that the magnetic field was pushed out
after the transition to the superconducting state and the magnetic flux became zero.
The phenomenon of transition to the superconducting state turned out to be a re-
versible phenomenon: It did not matter whether the transition to the superconducting
state had been realized in the presence of an external magnetic field or in the absence
of such a field.

Gorter immediately sent a note to Nature, suggesting B = 0 to be a general
characteristic of superconductivity. This meant that the condition B = 0 assumed in
the thermodynamical treatment was not a restrictive hypothesis. In other words, after
the Meissner-Ochsenfeld result, a superconductor could be regarded as a perfect
conductor as well as a perfect diamagnet.

The Theory of Fritz and Heinz London

The first successful theory of superconductivity was formulated by Fritz London
(1900–1954) and Heinz London (1907–1970). The Londons assumed that the dia-
magnetism must be taken to be an intrinsic property of an ideal superconductor, and
not merely a consequence of perfect conductivity. They proposed that superconduc-
tivity demanded an entirely new relation in which the current was connected not
with the electric, but with the magnetic field. The breakthrough came when they
realised that the original acceleration equation proposed by Heinz in his doctor-
ate and which involved a relation between time derivatives of the current and the
magnetic field, could be integrated without having to add a constant of integration.
Such an assumption would lead to the electrodynamics of a superconductor which
were consistent both with the zero resistance and the Meissner effect. By the end
of September 1934, Fritz and Heinz London had formulated the phenomenologi-
cal theory of the electrodynamics of a superconductor which was published in the
Proceedings of the Royal Society on November 13, 1934.

The “obvious” thing to do with the Meissner-Ochsenfeld result was to try to fit
it into Maxwell’s electrodynamics, but with the permeability changing to zero, the
equations became indeterminate. The first such attempt to supplement Maxwell’s
equation was made by F. Becker, F. Sauter and C. Heller. They argued that in a
superconductor, or rather in a body without any resistance, one cannot have any
change of magnetic field, and they pointed out that, because of the inertia of the
electrons, an applied electric field would accelerate them steadily. But the Londons
objected to such an approach, feeling that the equations proposed by Becker, Heller
and Sauter implied more than “is verified by experiment”. What they proposed can
be summarised as follows.
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Maxwell’s second equation of the electrodynamic field took the form

dH/dt = −c curlE = 0 (1)

and after integration
H = H0

where H was the field in the specimen when the latter lost its resistance. If there are
n electrons per cm3 of mass m, charge e and velocity v, the current density j = neν,
and

E = (4πλ2/c2)δJ/δt (2)

where λ is a constant. Taking curls on both sides of (1) and using Faraday’s law

(4πλ2/c2)curlJ = −δH/δt (3)

Substituting in Maxwell’s equation curl H = (4π/c)J,

λ2∇2δH/δt = δH/δt (4)

Integrating with respect to time, (4) became

λ2∇2(H−H0) = (H−H0) (5)

where H0 is an arbitrary field–the field which happened to be inside the body when it
last lost its resistance. The general solution of (4), therefore, meant that, practically,
the original field persisted in the superconductor for ever. Fritz and Heinz, however,
noted that equation (1) implied more.

From the magnetic properties of a perfect conductor the simpler result δH/δt = 0
(1) was obtained instead of (4). The novelty of (4) was in showing that the value
δH/δt = 0 (or H = H0) was also to be found only at a depth inside the metal
greater than λ. Indeed, the solutions of this equation decreased exponentially as one
receded from the surface, where they were fitted into the values of the external field.
There was no point in developing this form of the theory any further, for equation (3)
merely led to equation H = H0 with the modification that the magnetic field pene-
trated the body to a small but finite depth. The Londons proposed that the connection
between magnetic field H and current density Js for the pure superconductive case
may be given by the equation

(4πλ2/c2)curlJ = −H (6)

Equation (6) can be obtained by time integration from (3) if it is assumed that the
constant of integration is zero (H0 = 0) and it was considered as a completion
of Becker, Heller and Sauter’s formalism by fixing the integration constant of the
magnetic field according to the Meissner effect.

Equation (6) led to
λ2∇2H = H (7)
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For large specimens, the characteristic feature of the solutions of this equation is
that they decay exponentially into the interior of the specimen. At a distance λ from
the surface the field is practically zero. Meissner’s experimental result is represented
by (6) with one restriction, namely that the magnetic flux decreases, not abruptly on
the surface, but continuously in a very small interval below the surface. Equations
(2) and (6) described the zero resistance and the Meissner effect respectively.

Equation (6) says more than (3), so far as it includes the Meissner effect. Pro-
ceeding from (6) to (3) by differentiating with respect to time, it is not possible to
deduce (2). Nevertheless, the following weaker statement is obtained from (3).

curl((4πλ2/c2)J− E) = 0

which shows that
(4πλ2/c2)J− E = gradμ

where μ is a scalar. On the other hand (2) leads not to (6) but only to its time
derivative (3). Thus, the propositions (2) and (6) “posses, so to speak, the same
degree of generality”. [24]

It is not, then, unreasonable to take (6) to be “more fundamental” than (2), and
this was an indication that a supercurrent could be regarded as a kind of diamagnetic
current. In examining the relation between the behaviour of a ring and the Meissner
effect, Fritz London showed that (6) can be expressed in such a way as to provide
some clues for what was required of a fundamental theory of superconductivity.
He suggested that the entire superconductor behaves as a “single big diamagnetic
atom”. He then went on to argue that if the ground state eigenfunction is “rigid” and,
thus, not modified very much by an applied magnetic field, the current density will
be proportional to the vector potential and, thus, give the equation which describes
the Meissner effect.

Fritz and Heinz London supposed “the electrons to be coupled by some form
of interaction. Then the lowest state of the electron may be separated by a finite
distance from the excited ones” [24]. This may the earliest suggestion of an energy
gap. In 1935 Fritz London showed that the average momentum of the electrons did
not change in a superconductor when the field was applied, and he suggested that the
reason may be a long range order which maintained the local average value of the
momentum constant over large distances in space. This order would be maintained
even in the presence of the magnetic field. The ordered ground state was regarded as
a single quantum state extending throughout the metal. It was these considerations
which led London to present for the first time his views about superconductivity as a
macroscopic quantum phenomenon.

When London talked of a “macroscopic” interpretation he meant a phenomeno-
logical theory whose interpretation depended on a “microscopic” mechanism which
set it apart from that used to explain ordinary conduction. The differentiating char-
acteristic of this new microscopic mechanism was the macroscopic dimensions of
the stationary waves.
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Some Further Developments in the Theory of Superconductivity

The need to clarify the character of the electron-electron interaction was becoming
more and more urgent. This was so, especially, since it was, still, very difficult to
understand why the independent electron model of metals worked so well.

One of the first definite proposals for such an interaction was due to
W. Heinsenberg (1901–1976). In 1947 Heisenberg suggested that the singular
part of the Coulomb interaction could lead to superconductivity. Heisenberg as-
sumed that in an electrically neutral metal, the first-order perturbation caused by
this interaction vanished and that only the second-order perturbation was signifi-
cant. For the lowest temperatures, Heisenberg suggested that there might be a very
large number of “current threads” which are randomly distributed and did not give
rise to a macroscopic current. However, if these current threads form a monocrys-
tal by freezing, then the macrocurrent will persist in such a system. From such
considerations, Heisenberg was able to derive the basic equations of the Londons.

In 1950 V.L. Ginzburg and Landau proposed a model where the energy needed
to produce a change in the superconducting state over any distance was explicitly
included in the theory. They worked out the thermodynamics of their model by
defining a parameter ω, which was a measure of order in the superconducting phase
and which was zero above the transition temperature. They, then, identified ω with
the square of an effective � wave function � , which they set equal to the concen-
tration of the superconducting electrons. � did not describe a single particle, but
the motion of the superconducting condensate as a whole. Their theory predicted
correctly the dependence of critical field upon the temperature. When the effective
wave function was considered constant, the Ginzburg–Landau theory gave the Lon-
don equations.

Since the discovery of superconductivity there had been a widely and firmly
held belief that the ion masses, being so much larger than the electron masses,
could not play an important role in the establishment of the superconductive state.
H. Frohlich in 1950 conceived the idea that just the “opposite of the ‘dictum’ con-
tains the truth.” [10] The � quantum field theoretical treatment showed that the
kinetic energy of the ions attached to a moving electron may be much smaller than
the kinetic energy of the electron. Frohlich applied the field theoretic methods to the
interaction of the electrons in a metal with the lattice vibrations, and he found that
the interaction would lead to an attraction between the electrons. At the same time,
and independently of what was predicted by these theoretical developments, experi-
ments were undertaken to determine whether or not there was, in fact, a dependence
of critical temperature on isotopic mass. These experiments showed, surprisingly at
the time, that the critical temperature varied inversely with the square root of the
isotopic mass.

Frohlich’s 1950 paper was followed by John Bardeen (1908–1991) attempt to
formulate an interaction between electrons and phonons as the basis of a theory of
superconductivity. His model had many similarities with that of Frohlich. Neverthe-
less, the predicted condensation energy was too large. Also in such a case, where
the properties of the state were dramatically altered, the use of perturbation theory
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was unjustified and M.R. Schafroth had shown that the theory could not lead to
the Meissner effect. Nevertheless, most members of the community believed that in
the assumption that electron-phonon interaction should be somehow responsible for
superconductivity.

In 1952 Frohlich used a canonical transformation in order to circumvent
the deadlocks of perturbation theory. He proposed an effective electron-phonon
interaction without taking into account the Coulomb repulsion whose effects, it
was possible, to shadow the Frohlich interaction. In 1955 Bardeen and D. Pines
showed that this was not the case: for pairs of electrons whose energies were within
a characteristic phonon energy of the Fermi surface, this attractive interaction would
dominate the repulsive screened Coulomb interaction.

At about the same time Ginsburg and Schafroth, noted that such electron pairs
would obey � Bose-Einstein statistics. Schanfroth together with Blatt and Butler, in
1957 suggested that by choosing the form of the interaction between the particles, a
Fermi gas would behave like a gas made up of charged bosons.

An important result was derived by L.N. Cooper in 1956. He showed that if there
is an effective attractive interaction, a pair of quasi-particles above the Fermi sea
will form a bound state no matter how weak the interaction. Thus, in the presence of
attractive interactions, the Fermi sea which describes the ground state of the normal
metal is unstable against the formation of such bound pairs.

Bardeen, Cooper and J.R. Schrieffer made the decisive step for the formulation
of a microscopic theory of superconductivity. In 1957 they showed how to general-
ize the Cooper pair states to the many-body problem at absolute zero and derived
an expression for the ground state energy difference between normal and super-
conducting states and for the energy gap at t = 0 K. They, then, extended their
theory to obtain the excitation spectrum and made detailed calculations for vari-
ous thermal and transport properties at temperatures above absolute zero showing
that it was the second-order phase transition between electrons which caused them
to couple to the phonons. In 1972 all three received the Nobel Prize for physics.
John Bardeen became the first person to have received the Nobel Prize twice in the
same field.
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Superfluidity

Kostas Gavroglu

The Peculiar Properties of Helium

Ever since 1911 – three years after the liquefaction of helium – when Heike Kamer-
lingh Onnes (1853–1926) discovered that helium had a maximum density at about
2 K, there were various indications that at that temperature “something happens to
helium.” By the end of the 1930s the phenomena associated with liquid helium
below 2.19 K would defy all the attempts to describe, let alone understand, the be-
haviour of liquid helium by classical hydrodynamics.

In 1930 Keesom (1876–1976) and van der Ende [1], quite accidentally, observed
that liquid helium-II (liquid helium below 2.19 K) passed with remarkable ease
through extremely small leaks – something which was not possible for higher tem-
peratures, even for gaseous helium. This observation indicated an enormous drop
of the viscosity when helium was below 2.19 K. During 1932, Keesom and Clu-
sius reported that the � specific heat curve had “an extremely sharp maximum”
although there was no latent heat for the transition from helium-I (liquid helium
above 2.19 K) to helium-II, but they could not figure out the “inner causes” for such
a transition. Keesom decided to repeat the same measurements more accurately and
in the paper he wrote with his daughter Anna Petronella, they proposed, after Paul
Ehrenfest’s (1880–1933) suggestion, for the first time the term “lambda point” to
indicate the transition from helium-I to helium-II. They, then, attempted to measure
the heat conduction in helium-II. They found that below the lambda-point “the heat
conductivity is about 200 times that of copper at ordinary temperatures, or about
14 times that of very pure copper at liquid hydrogen temperatures. Hence liquid
helium-I was by far the best heat conducting substance we know.”1

When some years later, in 1935, the viscosity of helium was measured by
Wilhelm, Misener and Clark in Toronto and in 1938 by Keesom and MacWood [2] in
Leiden using the method of rotating disks, it was found that the change in viscosity
was continuous, and even though it became less with the fall of temperature, it did
not differ appreciably from that of helium-I. But the difference when compared to
the results derived by the capillary method was about one million. Such an enormous
difference in viscosity by the two different, yet equivalent methods could not be
understood in the framework of classical hydrodynamics. More accurate viscosity
measurements by Pyotr Kapitza (1894–1984) confirmed the earlier results and he
used the term superfluidity to characterize this strange behaviour of helium.

“Perhaps the strangest of all the properties” was reported by Allen (1908–
2001) and Jones in February 1938. Allen and Jones [3] wanted to extend the heat

1 Keesom and Keesom (1936), 360.
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conductivity experiments to lower and lower temperature differences and for that
matter used an apparatus consisting of a reservoir capillary. When they supplied
heat to the inner vessel, they saw that the inner helium level, far from being de-
pressed, seemed to rise above that of the reservoir. The rise increased with heat input
and, for constant input, with falling temperature. This was the “thermomechanical
effect”, a mass flow of helium opposing the heat current. In one of their experi-
ments they used a powder-filled bulb, open at the bottom and with a narrow orifice
at the top. When they heated the powder by shining a light on it, they observed a
jet of liquid helium rising from the upper end to a height of several centimeters.
The phenomenon was named fountain effect. Extremely small temperature differ-
ences between the reservoir and inner vessel were sufficient to produce a very large
convection. It seemed, thus, impossible to treat the hydrodynamical and calorific
properties of liquid helium-I independently.

In 1939 Daunt and Mendelssohn in Oxford and Kikoin (1908–1984) and Lasarew
in Kharkov found that liquid helium flowed from one container to another inside it
(or outside it depending on the relative height of the liquid helium surface) by means
of a film of thickness of the order of 100 atoms formed on the walls. Such films, of
course, are formed by any liquid which wets a solid surface, but the viscosity of
an ordinary liquid is such that the film forms slowly and there is practically no
movement. Helium-II is the only fluid which, owing to its superfluidity, forms a
swiftly moving film.

A Strange Phenomenon Explained by an Even Stranger
Mechanism

In November of 1937 the Centenary Conference for Van der Waals took place in
Amsterdam. Among the speakers of the Conference was Mayer who had attempted
to solve the general problem for any law of central force between the molecules.
Kahn and Uhlenbeck showed that Mayer’s treatment could be shown to be formally
analogous to Einstein’s equations for the ideal Bose gas – for which Einstein had
predicted a condensation phenomenon. It was this work by Mayer which directed
Fritz London’s attention to the Einstein condensation paper.

In Fritz London’s (1900–1954) proposed model each helium atom moved nearly
free in the self-consistent periodic field formed by the other atoms similar to the way� electrons move in a metal according to Bloch’s theory – but with a crucial differ-
ence. The helium atoms obeyed � Bose–Einstein statistics, whereas the electrons
in metals obeyed � Fermi–Dirac statistics. As a first step London disregarded the
self-consistent field altogether and considered the ideal Bose–Einstein gas. Einstein
had already discussed in 1924 a peculiar condensation phenomenon of this gas. But,
because of Uhlenbeck’s observation in his doctoral thesis “in the course of time the
degeneracy of the Bose–Einstein gas has rather got the reputation of having only an
imaginary existence.”2

2 London (1938a), 644.
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Liquid helium-II, despite its high degree of “order,” instead of being close to a
“liquid” or solid crystal, is, owing to its extremely large volume, much closer to a
gas than to an ordinary liquid. This gas-like nature combined with the high degree of
order of helium-II prompted London to look closely into the possibilities provided
by the phenomenon of Bose–Einstein condensation. But, since all real gases had
been condensed in temperatures higher than the temperature where the ideal Bose–
Einstein gas started this condensation phenomenon, the mechanism appeared to be
“devoid of any practical significance.”3

Fritz London’s short paper in Nature was published on April 9, 1938 [4]. He
started with a critique of Frohlich’s scheme to account for the lambda transition
as an order–disorder transition and directed his attention to an entirely different
interpretation of this strange phenomenon. For an ideal Bose–Einstein gas the con-
densation phenomenon represented a discontinuity of the derivative of the specific
heat. Such a discontinuity was experimentally observed for liquid helium.

In his paper published in the Physical Review in December 1938 [5] London
attempted to provide an explanation for the transport properties. Below a certain
temperature that depends on the mass and density of the particles, a finite fraction
of them begins to collect in the lowest energy state, that is they assume zero mo-
mentum. The remaining particles have a velocity distribution similar to a classical
gas, flying about as individuals. Since both components – the “condensed” and the
“excited”– occupy the total volume of the container as if one was dissolved into the
other, there is no condensation in the ordinary sense. “But if one likes analogies,
one may say that there is actually a condensation, but only in momentum space and
not in ordinary space”4. There was, then, an equilibrium of two phases. One con-
tained the molecules of momentum zero and occupying in the space of momenta, a
zero volume. The second phase contained molecules with a distribution over all the
momenta as it was found in temperatures higher than the transition temperature. No
separation of phases was to be found in ordinary space.

The Two-Fluid Model

Laszlo Tisza, a Hungarian born physicist, proceeded in 1938 to formulate the
two-fluid model for superfluidity. Tisza’s first step was to examine the concept of
viscosity in liquids and gases in view of the discrepancy between the methods of
measurement of viscosity and he concluded that this was not a kinetic coefficient
of an unusual value, but the breakdown of the viscosity concept: there was no
Navier–Stokes equation with a viscosity parameter! Tisza’s paper in Nature on May
21, regarded helium-II [6] as a mixture of two (completely interpenetrating) compo-
nents, the normal and the superfluid. These components or “fluids” are distinguished
by different hydrodynamical behaviour, in addition to the difference in their heat

3 London (1938b), 947.
4 London (1938b), 951.
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contents. A very narrow capillary (acting as an ‘entropy filter’) was permeable only
to the superfluid flow, but not to the normal fluid. While the uncondensed normal
fluid is supposed to retain the properties of an ordinary liquid (it is identical with
helium-I), the condensed superfluid fraction of helium-II is meant to be incapable of
taking part in dissipation processes. At absolute zero, the entire liquid is supposed
to be a superfluid consisting of condensed atoms, while at the transition temperature
this component vanishes. An oscillating disk in helium-II experienced friction by
the normal fluid while a fine capillary allowed the superfluid to pass without experi-
encing friction. Similarly, an interpretation was provided for the thermo-mechanical
effect. Since in this model the temperature of a volume of helium-II simply meant
a relative concentration of the two fluids, a change in this concentration could be
registered as either a cooling or a heating. Absorption of heat had the effect of in-
creasing the concentration of the viscous component and also the osmotic pressure
at the expense of the superfluid which was sucked into the cell.

This explanation led to the prediction of the inverse effect, namely that helium
forced through a fine capillary should be richer in superfluid and, therefore, exhibit
a drop in temperature. This effect known as “mechano-caloric effect” was observed
in 1939 by Daunt and Mendelssohn. The anomalously high heat transport in helium-
II was also consistent with the assumptions of the two-fluid model. The important
thing here was that the superfluid and viscous components may have different flow
velocities, giving rise to an “internal convection” which was connected with an en-
ergy transfer without any mass transfer. This internal convection accounted for the
super heat-conductivity. Tisza predicted that the thermomechanical effect ought to
have an inverse: a superfluid transfer from vessel A to B should lead to heating A
and cooling B. This was readily verified.

A few months later in another short note presented to the Academie des Sciences
in Paris, Tisza went much further; he recognized that this model implied a very
strange feature, namely that in liquid helium-I the temperature would obey a wave
equation. Tisza called these waves “temperature waves” – they would later be known
as “second sound” and the temperature dependence of their velocity would be a
decisive test of the validity of the two fluid model.

The Soviet Union, Kapitza and Landau

The phenomenal development of low temperature physics in the Soviet Union
is justifiably tied to the career of Pyotr Kapitza. In fact, excluding some areas
of applied physics, low temperature physics became the trademark of Soviet
physics – especially during the war years. Kapitza and Lev Landau (1908–1968)
were the towering figures. In 1941 Kapitza [7] published the results of his extensive
measurements on the behaviour of the two kinds of helium. He put forward the
hypothesis that the abnormal heat conductivity was due to heat transferred by
convection currents. It was calculated that to explain the values of thermal con-
ductivity observed by Keesom and Keesom in 1936 [8], the convection velocity
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must be assumed to be about 50 m s−1. Kapitza decided to measure this velocity,
but his experiments yielded a heat transfer at least 20 times greater than that mea-
sured by Keesom. Consequently the convection velocity had to be of the order of
1,000 m s−1! It became quite obvious that the then accepted mechanisms for heat
transfer could not be of much help in explaining such large convection velocities.

But it was “an accidental observation” [7]5 which gave their work an impetus
in a totally new direction. Kapitza found that the pressure pulsations transmitted
from the helium pipeline of the laboratory into the helium in the capillary caused
substantial changes in the thermal conductivity. Kapitza suggested the possibility of
two spatially separated mass currents, flowing into the bulb of the surface layer of
the inner perimeter of the tube and outflowing through the center of the tube. In or-
der to explain the great thermal conductivity of helium-II on the basis of this pattern
of movement, Kapitza suggested that there is a difference between the heat function
of helium in this film and in the free state, and thus the difference in heat content
between the two mass currents was accounted for by the Van der Waals forces of
the capillary wall on the surface of the layer of the liquid. This hypothesis led to the
prediction that the thermal conductivity of helium would be strictly normal in the
absence of surface phenomena. Subsequent experiments showed that the entropy of
liquid helium flowing through the narrow tubes was, indeed, zero. This had been al-
ready predicted by both Tisza and London, but Kapitza thought that these schemata
could not provide a “rigid theoretical basis”6 for his observations and pointed to the
theory of liquid helium proposed by Landau and published in the same year as his
experiments.

Landau attempted to construct a � quantum theory of liquids by direct� quantization of the hydrodynamical variables such as the density, the current
and the velocity without explicit reference to the interatomic forces. He considered
the quantized states of the whole liquid instead of the single atoms, and started
with the state of the fluid at absolute zero, which he considered as its ground state.
Excitation of vorticity would represent departure from the zero temperature states.
Departure from the ground state could also arise from the excitation of one or more
units of sound-wave energy or “phonons.” In this way, Landau constructed the en-
ergy spectrum of a liquid from two types of excitations; to the phonons of the solid
body he added a spectrum of “rotons” which defined the elementary excitations of
the vortex spectrum. Thus in Landau’s theory, helium became a background liquid
in which excitations moved, and there existed only one fluid: liquid helium. In a
way, the ground states and the excitations played the role of the superfluid and
the normal state respectively. The excitations were the normal state because they
may be scattered and reflected, and hence, showed viscosity. The fluid associated
with the ground state was superfluid because it could not absorb a phonon from
the walls of the tube or a roton unless it was flowing with a velocity greater than
the velocity of sound or a “critical velocity” respectively. Below the lesser of these
two velocities the flowing helium would not interact with the walls and, hence,

5 Kapitza (1980), 24.
6 Ibid., 638.
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would be superfluid – unless, as Landau pointed out, some other mechanism, as yet
undetermined, limited the flow.

Landau’s formalism led to two different equations for the propagation of sound,
and, hence, to two velocities for sound. One of them was related to the usual velocity
due to compressibility while the other depended strongly on the temperature. This
was the same phenomenon as Tisza’s thermal or temperature waves. Landau named
them “second sound.” The first and unsuccessful attempt to generate and detect
second sound waves was made with acoustic apparatus by Shalnikov and Sokolov.
They failed and that was interpreted by London to mean that Landau’s theory was
“born refuted.” The failure to observe second sound acoustically was explained in
1944 by Lifshitz (1915–1985) who made a more detailed theoretical analysis of
second sound waves and showed that if one used the usual mechanical methods
for generating sound, then “second sound” is masked by the ordinary sound. But a
plate with a periodically varying temperature would radiate only the “second sound.”
Using such a “radiator,” Peshkov in 1944 was able to demonstrate the existence of
standing thermal waves for the first time.

These results were communicated to the International Conference which took
place at Cambridge in the spring of 1946 [9] devoted to low temperature physics and
elementary � particle physics, even though, the scientists from the Soviet Union
did not attend the Conference and where London gave the opening paper titled
“The present state of the theory of liquid helium.” London insisted that both su-
perconductivity and superfluidity were manifestations of quantum mechanisms on
a macroscopic scale and that the decisive test between his and Tisza’s approach and
Landau’s schema would be the study of the low temperature properties of helium-3
where the absence of superfluidity would be ascribed to the role of statistics.

“Second Sound” at Very Low Temperatures

Peshkov’s new measurements for the second sound velocities between 1.36 and
2.19 K, were not in agreement with Landau’s prediction for this temperature range.
Landau proceeded to modify the energy spectrum of the phonons after the results.
The measurements appeared to agree with Tisza’s predictions, but the predictions
of Tisza and Landau were approximately similar down to 1K, but sharply diverged
below 1K. The velocity first went through a maximum for which both theories gave
identical results, and then went through a minimum rising sharply as the temperature
approached absolute zero.

Pellam’s measurements in 1949 below 1.4K, showed an increase in velocity and
differed considerably from Peshkov’s. It was the experiments of Maurer and Herlin
in 1949 [10] that settled the issue of the temperature dependence of the second sound
velocity below 1K. Using the pulse method initiated by Peshkov, they were able to
lower the temperature to 0.85K and observe an increase of velocity starting at about
1.1K. The results were quite unambiguous and could have been used to corroborate
Landau’s approach – if it weren’t for the new experiments, completed at the same
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time, which tried to detect superfluidity in a pure liquid sample of He3, and found
negative indications down to 1.05K. Maurer and Herlin appeared to believe that
the results were not necessarily contradicting the predictions of the Bose–Einstein
hypothesis, but they felt that further refinements should be introduced in the model
to account for the second sound velocity results. Few months later Pellam and Scott
[11] would also observe the increase of the second sound velocity in the very low
temperature range, and would be of the same opinion as to the relevance of these
measurements to distinguish between the two competing theories.

The measurements that corroborated Landau’s theory came from the Mond
Laboratory at Cambridge. In 1950 Atkins and Osborne [12], using two different
demagnetizations, were able to measure velocities down to 0.17K. They found that
there was a marked increase that could be extrapolated to 0K and found it to equal
Landau’s prediction.

The Importance of Liquid He3

In 1949 measurements on the viscosity of He3 were reported from Argonne National
Laboratory. The viscosity was measured by letting He3 pass through a fine slit, and it
did not show any discontinuity down to 1.05K. London felt that these measurements
had confirmed the dependence of superfluidity on statistics and decided to send a re-
view article to Nature. He no longer insisted on the difference of the second-sound
velocity at temperatures around 1K, but rather on the implications of the statistics.
He believed that what the reported absence of superfluidity of He3 settled, was the
issue concerning the necessity of the assumption of Bose–Einstein statistics for any
theory professing to provide an explanation for the properties of helium-II. William
Fairbank (1917–1986) examined the extent to which He3 behaved as an ideal Fermi–
Dirac gas, by measuring the strengths of the He3 nuclear magnetic resonance signals
as the temperature of the liquid He3 was reduced. When measurements were re-
sumed below 1.2K there was a definite departure from the predictions of the Curie
law and the liquid appeared to behave as an ideal Fermi–Dirac gas having a de-
generacy temperature of 0.45K. Furthermore, one of the best known results derived
by Fairbank was the discovery of the flux quantization, predicted by London, by
detecting macroscopic quantization of the magnetic field outside a superconductor.

By 1956 Richard Feynman (1918–1988) was able present a theory synthesizing
the views of London and Landau. Considering all previous theories as phenomeno-
logical, his microscopic theory did not “supplant the phenomenological theories. It
turns out to support them.”7 He showed that despite the strong forces of interaction
between helium atoms which could have undermined the ideal gas approximation
by London, they did indeed allow the Bose–Einstein condensation. He also showed
that some of Landau’s assumptions which were rather empirical could be justified
quantum mechanically and that the rotons were a kind of quantum mechanical ana-
log of a microscopic vortex ring.

7 Feynman (1953a), 1291.
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Superluminal Communication in Quantum
Mechanics

Daniel J. Gauthier

One consequence of the special theory of relativity is that no information can be
transmitted between two parties in a time shorter than it would take light, propagat-
ing through vacuum, to travel between the parties. That is, the speed of information
transfer is less than or equal to the speed of light in vacuum c. Hypothetical faster-
than-light (superluminal) communication is very intriguing because causality would
be violated [8]. Causality is a principle where an event is linked to a previous cause;
superluminal communication would allow us to change the outcome of an event af-
ter it has happened. I’m sure all of us at one point in our lives would like a cell-phone
with superluminal capabilities!

Soon after Einstein published the theory of relativity, scientists began the search
for examples where objects or entities travel faster than c. There are many known
examples of superluminal motion [8], yet explaining, in simple terms, why such mo-
tions do not violate the special theory or allow for superluminal communication can
be exceedingly difficult. Also, approximations used to solve models of the physical
world can lead to subtle errors, sometimes resulting in predictions of superluminal
signaling. For these reasons, studying superluminal signaling can be an interesting
exercise because it often reveals unexpected aspects of our universe or the theories
we use to describe its behavior.

The possibility of superluminal motions in classical physics have been known
for over a century. For example, the group velocity of a pulse of light propagat-
ing through a dispersive dielectric can exceed c, where the group velocity gives
(approximately) the speed of the peak of the pulse [10]. There exists a simple math-
ematical proof demonstrating that such behavior cannot be used for superluminal
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communication, but this proof sheds little insight on recent experiments that re-
port clear evidence fast group velocities. One current explanation is that points of
non-analyticity are created on the optical waveform at each moment when new in-
formation is encoded on the optical carrier, and that these points travel precisely at
c [6]. Other points on the waveform (such as the pulse peak) convey no new infor-
mation that cannot already be determined from the non-analyticity point and hence
fast motion of the waveform in between points of non-analyticity do not violate the
special theory. Another example of apparent superluminal motion occurs in certain
expanding galaxies, known as superluminal stellar objects [12]. This motion can
be explained by considering motions of particles whose speed is just below c (i.e.,
highly relativistic) and moving nearly along the axis connecting the object and the
observer. Hence, these are not superluminal motions after all.

Quantum mechanics also appears to provide a mechanism for superluminal com-
munication because of its nonlocal characteristic. A measurement performed on a
system � wave function collapse at all locations simultaneously [11], an effect that
does not occur in classical physics and hence deserves further consideration with
regards to superluminal communication.

One gedanken experiment that has received recent attention involves correlated
particles generated by an Einstein–Podolsky–Rosen (� EPR problem) source. For
concreteness, let’s consider a system that generates two correlated photons (� light
quantum) that travel in opposite directions and have zero total angular momentum.
Furthermore, two observers, Alice and Bob, are located on opposite sides and at
large distances from the source. They are equipped with optical components that
can analyze the state of polarization of the arriving photons. Bob is slightly further
away from the source than Alice, and we want to establish a one-way superluminal
communication link from Alice to Bob.

In one scenario, Alice places a special type of polarizing beam splitter that spa-
tially separates one state of linear polarization (say vertical, V) from the other state
of polarization (horizontal, H). The output ports of the polarizing beam splitter
are directed to single-photon detectors. Bob has an identical apparatus, which is
at a great distance from Alice, and he aligns the axis of his polarizing beam split-
ter the same as Alice’s. Because of the fact that their total angular momentum of
the photons is zero, whenever Alice measures V, the wavefunction collapses and
Bob is assured of measuring H essentially instantaneously after Alice performs her
measurement. Similarly, Bob will measure V whenever Alice measures H. In this
configuration, the polarization beam splitters and single-photon detectors perform
measurements in the “linear” basis.

Alice and Bob can also perform measurements in the “circular” basis, where the
analysis apparatus will determine whether the photons are left circular (LC) polar-
ized or right circular (RC) polarized. This measurement can be performed by placing
a birefringent plate – known as a quarter-wave plate – in front of the polarizing beam
splitters, where the optical axis of the plate is orientated at 45 degrees to the axis
of the linear polarizing beam splitter. The birefringent plate converts incident circu-
larly polarized light into either H or V linearly polarized light, which is subsequently
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analyzed by the polarizing beam splitter and detectors. With the waveplate in the
system, Bob is assured to measure LC (RC) whenever Alice measures RC (LC).

The communication scheme is based on a change of measurement basis. By in-
serting the waveplate in the setup or not, Alice can force Bob’s photon to be either
linear or circular polarized. Thus, Alice can transmit binary information to Bob by
inserting – or not – the waveplate in her apparatus. All he has to do is to deter-
mine with certainty whether Alice was using the linear or circular basis. The first
hitch with this scheme is a well known classical result – the only way to measure
whether a optical beam is linear or circular polarized is to analyze it both with linear
and circular polarizers. In other words, Bob would have to send the photon through
the linear-basis apparatus and the circular-basis apparatus. Unfortunately, one ap-
paratus destroys the incident photon as a result of the measurement and hence it is
unavailable to send on the other.

A clever way to get around this problem is for Bob to “clone” the incident photon
so there are two copies, where one copy will be sent to a linear-basis apparatus and
the other is sent to a circular-basis apparatus. The process of stimulated emission of
radiation is thought to clone an incident photon, so scientists first considered plac-
ing an optical amplifier in the path of the photon (an optical amplifier increases the
number of photons via the stimulated emission process) [5, 9]. Unfortunately, an op-
tical amplifier adds additional photons – via the process of spontaneous emission –
to the beam path and these additional photons have an arbitrary state of polarization
[4]. These “junk” photons destroy the benefits of the amplifier and hence prevent
Alice from communicating with Bob via the nonlocal characteristics of quantum
mechanics.

The problem with the superluminal communication scheme is much deeper that
it appears from the discussion above. The very linearity of quantum mechanics pre-
vents the cloning of an arbitrary quantum state, a result of the � no-cloning theorem.
Thus, any device – not just an optical amplifier – fails to clone the incident photon
and hence the communication scheme fails [2, 4, 7].

Other researchers have wondered whether an imperfect copy of the incident
photon would be sufficient for superluminal communication. The best or optimal
quantum copying machine has been identified [1]; even with the best possible copy-
ing apparatus, the quantum communication scheme just barely fails. This failure is
nicely summarized by Gisin [3] in his 1998 paper: “Once again, quantum mechanics
is right at the border line of contradicting relativity, but does not cross it. The peace-
ful coexistence between quantum mechanics and relativity is thus re-enforced.” See
also � Einstein locality; locality; nonlocality.
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Superposition Principle
(Coherent and Incoherent Superposition)

Marianne Breinig

In non-relativistic quantum mechanics, the state of a physical system at a fixed time
t is defined by specifying a ket |ψ(t)〉 belonging to the space ε. ε is a complex,
separable � Hilbert space, a complex linear vector space in which an inner product
is defined and which possesses a countable � orthonormal basis. Every measurable
physical quantity is called an observable and is described by a Hermitian opera-
tor acting in ε. The only possible results of a measurement are the eigenvalues of
the Hermitian operator associated with the measurement, and immediately after the
measurement the state ket is a corresponding eigenstate. Every Hermitian operator
has at least one basis of orthonormal eigenvectors. Every state vector |ψ(t)〉 can
therefore be written as a linear superposition of eigenvectors of any observable. If
two Hermitian operators commute a common eigenbasis can be found. If they do
not commute, then no common eigenbasis exists.

Let {|an〉} be an orthonormal basis of eigenvectors of the operator A,

A |an〉 = an| an〉. (1)
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For simplicity assume that the eigenvalues are not degenerate. Let |ψ1〉 and |ψ2〉 be
two normalized eigenvectors of the operator B with eigenvalues b1 and b2, respec-
tively.

B|ψ1〉 = b1|ψ1〉,B|ψ2〉 = b2|ψ2〉. (2)

If B is the Hamiltonian H, then b1 = E1 and b2 = E2. If A and B do not commute,
i.e. [A,B] �= 0, then |ψ1〉 and |ψ2〉 are linear superpositions of eigenvectors of A.
Assume that [A,B] �= 0 and that a measurement at t = 0 determines |ψ(0)〉 =
|ψ1〉. If B is the Hamiltonian, then the measurement determines that the system
is in a stationary state. The probability that a subsequent measurement of A will
yield the eigenvalue an is P1(an) = |〈an|ψ1〉|2. Similarly, if |ψ(0)〉 = |ψ2〉 then
P2(an) = |〈an|ψ2〉|2. Now consider a system in a normalized pure state (� states,
pure and mixed)

|ψ〉 = λ1|ψ1〉 + λ1|ψ2〉, 〈ψ|ψ〉 = 1, |λ1|2 + |λ2|2 = 1. (3)

If B is the Hamiltonian, then the system is not in a stationary state, it is in a coherent
superposition of stationary states.

The probability that a measurement of B will yield b1 is |〈ψ1|ψ〉|2 = |λ1|2. The
probability that a measurement of B will yield b2 is |λ2|2. The probability that a
measurement of A will yield an is

P (an) = |〈an|ψ〉|2

= 〈an|ψ〉〈ψ |an〉 =| λ1|2P1 (an)+|λ2|2P2 (an)

+2Re(λ1λ
∗
2 × 〈an|ψ1〉〈ψ2|an〉)

�= |λ1|2P1 (an)+|λ2|2P2 (an) . (4)

The last term in the expression for P(an) describes interference effects. If a system
is in a pure state which is a coherent superposition of eigenstates of an observable
B and we measure an observable A which does not commute with B, then we must
take interference effects into account when predicting the result of a measurement.
We may consider P(an) = |〈an|ψ〉|2 as the square of the probability amplitude
〈an|ψ〉 = 〈an|λ1ψ1〉 + 〈an|λ2ψ2〉. The probability amplitude is the weighted sum
of the probability amplitudes 〈an|ψ1〉 and 〈an|ψ2〉. To obtain the probability P(an)
for a linear superposition of states, we take the square of the weighted sum of the
probability amplitudes, not the sum of the squares.

A pure state is not a statistical mixture of states. The concept of a statistical
mixture of states (� mixed state) is used when dealing with incomplete informa-
tion about the initial state of a system. Assume it is only known that the system
is in one of the eigenstates {|ψk〉} of the operator B and that it has the probability
pk (

∑
k pk = 1) of being in the pure state |ψk〉. If B is the Hamiltonian, the system

then is in an incoherent superposition of stationary states. If the system is in a sta-
tistical mixture of the states |ψ1〉 and |ψ2〉 with weights p1 = |λ1|2 and p2 = |λ2|2
respectively, then the probability of measuring an is P(an) = |λ1|2 P1(an) + |λ2|2
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P2(an). Interference effects are absent for an incoherent superposition or a statistical
mixture of states. We cannot describe a statistical mixture using an “average state
vector”. In general, when dealing with a statistical mixture, probabilities enter at
two levels. The initial information about the system is given in terms of probabili-
ties, and the predictions of Quantum Mechanics are probabilistic.

A simple example:
Let the operator B be the Hamiltonian of the system, B = H, b1 = E1, b2 = E2,

and let |ψ(0)〉 = λ1|ψ1〉 + λ1|ψ2〉. Then |ψ(t)〉 = λ1 exp(−iE1t/�)|ψ1〉 + λ2
exp(−iE2t/�)|ψ2〉, and

P (an)= |λ1|2 P1 (an)+ |λ2|2 P2 (an)

+2Re(λ1λ
∗
2 × exp(−i (E1 − E2) t/�)〈an|ψ1〉〈ψ2|an〉)

P(an) now is time dependent and oscillates with a frequency ν12 = (E1 − E2)/h.
We observe quantum beats.

Primary Literature

1. C. Cohen-Tannoudji, B. Diu, F. Laloë: Quantum Mechanics, Volume One (Wiley, New York
1977)

Secondary Literature
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Superselection Rules

Domenico Giulini

General Notion

The notion of superselection rule (henceforth abbreviated SSR) was introduced in
1952 by Wick (1909–1992), Wightman, and Wigner (1902–1995) [9] in connection
with the problem of consistently assigning intrinsic parity to elementary particles.
They understood an SSR as generally expressing “restrictions on the nature and
scope of possible measurements”.

The concept of SSR should be contrasted with that of an ordinary � selec-
tion rule (SR). The latter refers to a dynamical inhibition of a certain transition,
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usually due to the existence of a conserved quantity. Well known SRs in Quantum
Mechanics concern radiative transitions of atoms. For example, in case of electric
dipole radiation, they take the form �J = 0, ±1 (except J = 0 → J = 0) and
�MJ = 0, ±1. They say that the � quantum numbers J,MJ associated with the
atom’s total angular momentum may at most change by one unit. But this is only true
for electric dipole transitions, which, if allowed, represent the leading-order contri-
bution in an approximation for wavelengths much larger than the size of the atom.
The next-to-leading-order contributions are given by magnetic dipole and electric
quadrupole transitions, and for the latter �J = ±2 is possible. This is a typical
situation as regards SRs: They are valid for the leading-order modes of transition,
but not necessarily for higher order ones. In contrast, a SSR is usually thought of
as making a more rigorous statement. It not only forbids certain transitions through
particular modes, but altogether as a matter of some deeper lying principle; hence
the “Super”. In other words, transitions are not only inhibited for the particular dy-
namical evolution at hand, generated by the given � Hamiltonian operator, but for
all conceivable dynamical evolutions.

More precisely, two states ψ1 and ψ2 are separated by a SR if 〈ψ1 | H | ψ〉 = 0
for the given Hamiltonian H . In case of the SR mentioned above, H only contains
the leading-order interaction between the radiation field and the atom, which is the
electric dipole interaction. In contrast, the states are said to be separated by a SSR
if 〈ψ1 | A | ψ2〉 = 0 for all (physically realisable) � observables A. This means
that the relative phase between ψ1 and ψ2 is not measurable and that coherent su-
perpositions of ψ1 and ψ2 cannot be verified or prepared. It should be noted that
such a statement implies that the set of (physically realisable) observables is strictly
smaller than the set of all � self-adjoint operators on � Hilbert space. For example,
A =| ψ1〉〈ψ2 | + | ψ2〉〈ψ1 | is clearly self-adjoint and satisfies 〈ψ1 | A | ψ2〉 �= 0.
Hence the statement of a SSR always implies a restriction of the set of observables
as compared to the set of all (bounded) self-adjoint operators on Hilbert space. In
some sense, the existence of SSRs can be formulated in terms of observables alone
(see below).

Since all theories work with idealisations, the issue may be raised as to whether
the distinction between SR and SSR is really well founded, or whether it could, after
all, be understood as a matter of degree only. For example, dynamical � decoher-
ence is known to provide a very efficient mechanism for generating apparent SSRs,
without assuming their existence on a fundamental level [11] [14].

Elementary Theory

In the most simple case of only two superselection sectors, a SSR can be char-
acterised by saying that the � Hilbert space H decomposes as a direct sum of
two orthogonal subspaces, H = H1 ⊕ H2, such that under the action of each ob-
servable vectors in H1,2 are transformed into vectors in H1,2 respectively. In other
words, the action of observables in Hilbert space is reducible, which implies that
〈ψ1 | A | ψ2〉 = 0 for each ψ1,2 ∈ H1,2 and all observables A. This constitutes
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an inhibition to the � superposition principle in the following sense: Let ψ1,2 be
normed vectors and ψ+ = (ψ1 + ψ2)/

√
2, then

〈ψ+ | A | ψ+〉 = 1
2

(〈ψ1 | A | ψ1〉 + 〈ψ2 | A | ψ2〉
) = Tr(ρA), (1)

where
ρ = 1

2

(| ψ1〉〈ψ1 | + | ψ2〉〈ψ2 |
)
. (2)

Hence, considered as state (expectation-value functional) on the given set of ob-
servables, the � density matrix ρ corresponding to ψ+ can be written as non-trivial
convex combination of the (pure) density matrices for ψ1 and ψ2 and therefore
defines a � mixed state rather than a pure state (� states, pure and mixed). Relative
to the given observables, coherent � superpositions of states in H1 with states in
H2 do not exist.

In direct generalisation, a characterisation of discrete SSRs can be given as fol-
lows: There exists a finite or countably infinite family {Pi | i ∈ I } of mutually
orthogonal (PiPj = 0 for i �= j ) and exhaustive (

∑
i∈I Pi = 1) � projection

operators (P †
i = Pi , P 2

i = Pi ) on Hilbert space H, such that each observable com-
mutes with all Pi . Equivalently, one may also say that states on the given set of
observables (here represented by density matrices) commute with all Pi , which is
equivalent to the identity

ρ =
∑
i

PiρPi . (3)

We define λi := Tr(ρPi) and let I ′ ⊂ I be the subset of indices i for which λi �= 0.
If we further set ρi := PiρPi/λi for i ∈ I ′, then (3) is equivalent to

ρ =
∑
i∈I ′

λiρi , (4)

showing that ρ is a non-trivial convex combination if I ′ contains more than one
element. The only pure states are the projectors onto rays within a single Hi . In
other words, only vectors (or rays) in the union (not the linear span)

⋃
i∈I Hi can

correspond to pure states. If, conversely, any non-zero vector in this union defines
a pure state, with different rays corresponding to different states, one speaks of an
abelian superselection rule. The Hi are then called superselection sectors or coher-
ent subspaces on which the observables act irreducibly. The subset Z of observables
commuting with all observables is then given by Z := {∑i aiPi | ai ∈ R

}
. They

are called superselection- or classical observables.
In the general case of continuous SSRs H splits as direct integral of an uncount-

able set of Hilbert spaces H(λ), where λ is an element of some measure space &,
so that

H =
∫
&

dμ(λ)H(λ) (5)
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with some measure dμ on &. Observables are functions λ �→ O(λ), with O(λ) act-
ing on H(λ). Closed subspaces of H left invariant by the observables are precisely
given by

H(�) =
∫
�

dμ(λ)H(λ) , (6)

where � ⊂ & is any measurable subset of non-zero measure. In general, a single
H(λ) will not be a subspace (unless the measure has discrete support at λ).

In the literature, SSRs are discussed in connection with a variety of superselection-
observables, most notably univalence, overall mass (in non-relativistic QM), electric
charge, baryonic and leptonic charge, and also time.

Algebraic Theory of SSRs

In � Algebraic Quantum Mechanics, a system is characterised by a C∗–algebra
C. Depending on contextual physical conditions, one chooses a faithful represen-
tation π : C → B(H) in the (von Neumann) algebra of bounded operators on
Hilbert space H. After completing the image of π in the weak operator-topology on
B(H) (a procedure sometimes called dressing of C [12]) one obtains a vonNeumann
sub-algebra A ⊂ B(H), called the algebra of (bounded) observables. The physical
observables proper correspond to the self-adjoint elements of A.

The commutant S ′ of any subset S ⊆ B(H) is defined by

S ′ := {A ∈ B(H) | AB = BA ,∀B ∈ S} , (7)

which is automatically a von Neumann algebra. One calls S ′′ := (S ′)′ the von Neu-
mann algebra generated by S. It is the smallest von Neumann sub-algebra of B(H)

containing S, so that if S was already a von Neumann algebra one has S ′′ = S; in
particular,

(
π(C)

)′′ = A.
SSRs are now said to exists if and only if the commutant A′ is not trivial, i.e.

different from multiples of the unit operator. Projectors in A′ then define the sec-
tors. Abelian SSRs are characterised by A′ being abelian. A′ is often referred to
as gauge algebra. Sometimes the algebra of physical observables is defined as the
commutant of a given gauge algebra. That the gauge algebra is abelian is equiva-
lent to A′ ⊆ A′′ = A so that A′ = A ∩ A′ =: Ac, the centre of A. An abelian
A′ is equivalent to Dirac’s requirement, that there should exist a complete set of
commuting observables [7] (cf. Chap. 6 of [14]).

In � Quantum Logic a quantum system is characterised by the lattice of propo-
sitions (corresponding to the closed subspaces, or the associated projectors, in
Hilbert-space language). The subset of all propositions which are compatible with
all other propositions is called the centre of the lattice. It forms a Boolean sub-lattice.
A lattice is called irreducible if and only if its centre is trivial (i.e. just consists of
0, the smallest lattice element). The presence of SSRs is now characterised by a
non-trivial centre. Propositions in the centre are sometimes called classical.
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SSRs and Conserved Additive Quantities

Let Q be the operator of some charge-like quantity that behaves additively un-
der composition of systems and also shares the property that the charge of one
subsystem is independent of the state of the complementary subsystem (here we
restrict attention to two subsystems). This implies that if H = H1⊗H is the Hilbert
space of the total system and H1,2 those of the subsystems, Q must be of the form
Q = Q1 ⊗ 1 + 1 ⊗ Q2, where Q1,2 are the charge operators of the subsystems.
We also assume Q to be conserved, i.e. to commute with the total Hamiltonian that
generates time evolution on H. It is then easy to show that a SSR for Q persists
under the operations of composition, decomposition, and time evolution: If the den-
sity matrices ρ1,2 commute with Q1,2 respectively, then, trivially, ρ = ρ1 ⊗ ρ2
commutes with Q. Likewise, if ρ (not necessarily of the form ρ1 ⊗ ρ2) commutes
with Q, then the reduced density matrices ρ1,2 := Tr2,1(ρ) (where Tri stands for
tracing over Hi ) commute with Q1,2 respectively. This shows that if states violating
the SSR cannot be prepared initially (for whatever reason, not yet explained), they
cannot be created though subsystem interactions [10]. This has a direct relevance for� measurement theory, since it is well known that an exact von Neumann measure-
ment of an observable P1 in system 1 by system 2 is possible only if P1 commutes
with Q1, and that an approximate measurement is possible only insofar as system 2
can be prepared in a superposition of Q2 eigenstates [2].

As already indicated, the foregoing reasoning does not explain the actual ex-
istence of SSRs, for it does not imply anything about the initial nonexistence of
SSR violating states. In fact, there are many additive conserved quantities, like
momentum and angular momentum, for which certainly no SSRs is at work. The
crucial observation here is that the latter quantities are physically always understood
as relative to a system of reference that, by its very definition, must have certain
localisation properties which exclude the total system to be in eigenstate of relative
(linear and angular) momenta. Similarly it was argued that one may have superposi-
tions of relatively charged states [1]. A more completeaccount of this conceptually
important point, including a comprehensive list of references, is given in Chap. 6
of [14].

SSRs and Symmetries

Symmetries in quantum mechanics are often implemented via unitary ray- repre-
sentations rather than proper unitary representations (here we discard anti-unitary
ray-representations for simplicity). A unitary ray-representation is a map U from the
symmetry group G into the group of � unitary operators on Hilbert space H such
that the usual condition of homomorphy,U(g1)U(g2) = U(g1g2), is generalised to

U(g1)U(g2) = ω(g1, g2) U(g1g2) , (8)
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where ω : G × G → U(1) := {z ∈ C | |z| = 1} is the so-called multiplier that
satisfies

ω(g1, g2)ω(g1g2, g3) = ω(g1, g2g3)ω(g2, g3) , (9)

for all g1, g2, g3 in G, so as to ensures associativity: U(g1)
(
U(g2)U(g3)

) =(
U(g1)U(g2)

)
U(g3). Any function α : G → U(1) allows to redefine U �→ U ′

via U ′(g) := α(g)U(g), which amounts to a redefinition ω �→ ω′ of multipliers
given by

ω′(g1, g2) = α(g1)α(g2)
α(g1g2)

ω(g1, g2) . (10)

Two multipliers ω and ω′ are called similar if and only if (10) holds for some func-
tion α. A multiplier is called trivial if and only if it is similar to ω ≡ 1, in which
case the ray-representation is, in fact, a proper representation in disguise.

The following result is now easy to show: Given unitary ray-representations
U1,2 of G on H1,2, respectively, with non-similar multipliers ω1,2, then no
ray-representation of G on H = H1 ⊕ H2 exists which restricts to U1,2 on H1,2
respectively. From this a SSR follows from the requirement that the Hilbert space
of pure states should carry a ray-representation of G, since such a space cannot
contain invariant linear subspaces that carry ray-representations with non-similar
multipliers.

An example is given by the SSR of univalence, that is, between states of integer
and half-integer � spin. Here G is the group SO(3) of proper spatial rotations.
For integer spin it is represented by proper unitary representations, for half integer
spin with non-trivial multipliers. Another often quoted example is the Galilei group,
which is implemented in non-relativistic quantum mechanics by non-trivial unitary
ray-representations whose multipliers depend on the total mass of the system and
are not similar for different masses.

Such derivations have sometimes been criticised (e.g. in [15]) for depending cru-
cially on one’s prejudice of what the symmetry group G should be. The relevant
observation here is the following: Any ray-representation of G can be made into a
proper representation of a larger group Ḡ, which is a central extension of G. But no
superselection rules follow if Ḡ rather than G were required to be the acting sym-
metry group on the set of pure states. For example, in case of the rotation group,
G = SO(3), it is sufficient to take Ḡ = SU(2), its double (and universal) cover.
For G the 10-parameter inhomogeneous Galilei group it is sufficient to take for Ḡ
an extension by the additive group R, which may even be motivated on classical
grounds [6].

SSRs in Local Quantum Field Theories

In � quantum field theory SSRs can arise from the restriction to (quasi) local ob-
servables. Charges which can be measured by fluxes through closed surfaces at
arbitrarily large spatial distances must then commute with all observables. A typ-
ical example is given by the total electric charge, which is given by the integral
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over space of the local charge density ρ. According to Maxwell’s equations, the
latter equals the divergence of the electric field E, so that Gauß’ theorem allows to
write

Q = lim
R �→∞

∫
‖x‖=R

(n · E)dσ , (11)

where n is the normal to the sphere ‖x‖ = R and dσ its surface measure. If A is
a local observable its support is in the causal complement of the spheres ‖x‖ = R

for sufficiently large R. Hence, in the quantum theory, A commutes with Q. It is
possible, though technically far from trivial, that this formal reasoning can indeed
be justified in Local � Quantum Field Theory [8]. For example, one difficulty is
that Gauß’ law does not hold as an operator identity.

In modern local quantum-field theory [13], representations of the quasi-local al-
gebra of observables are constructed through the choice of a preferred state on that
algebra (GNS-construction), like the Poincaré invariant vacuum state, giving rise
to the vacuum sector. The superselection structure is restricted by putting certain
selection conditions on such states, like e.g. the Doplicher–Haag–Roberts (DHR) se-
lection criterion for theories with mass gap (there are various generalisations [13]),
according to which any representation should be unitarily equivalent to the vacuum
representation when restricted to observables whose support lies in the causal com-
plement of a sufficiently large (causally complete) bounded region in spacetime.
Interestingly this can be closely related to the existence of � gauge groups whose
equivalence classes of irreducible unitary representations faithfully label the supers-
election sectors. Recently, a systematic study of SSRs in “locally covariant quantum
field theory” was started in [5]. Finally we mention that SSRs may also arise as a
consequence of non-trivial spacetime topology [3].

Environmentally Induced SSRs

The ubiquitous mechanism of � decoherence effectively restricts the local verifi-
cation of coherences [14]. For example, scattering of light on a particle undergoing
a � double-slit experiment delocalises the relative-phase information for the two
beams along with the escaping light. Hence effective SSRs emerge locally in a
practically irreversible manner, albeit the correlations are actually never destroyed
but merely delocalised. The emergence of effective SSRs through the dynamical
process of decoherence has also been called einselection [11]. For example, this
idea has been applied to the problem of why certain molecules naturally occur in
eigenstates of chirality rather than energy and � parity, i.e. why sectors of different
chirality seem to be superselected so that chirality becomes a classical observable.
This is just a special case of the general question of how classical behaviour can
emerge in Quantum Theory. It may be asked whether all SSRs are eventually of
this dynamically emergent nature, or whether strictly fundamental SSRs persist on
a kinematical level [14]. The complementary situation in theoretic modelling may
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be characterised as follows: Derivations of SSRs from axiomatic formalisms lead
to exact results on models of only approximate validity, whereas the dynamical ap-
proach leads to approximate results on more realistic models.

SSRs in Quantum Information

In the theory of � quantum communication a somewhat softer variant of SSRs is
defined to be a restriction on the allowed local operations (completely positive and
trace-preserving maps on density matrices) on a system [4]. In general, it therefore
leads to constraints on (bipartite) � entanglement. Here the restrictions consid-
ered are usually not thought of as being of any fundamental nature, but rather for
mere practical reasons. For example, without an external reference system for the
definition of an overall spatial orientation, only “rotationally covariant” operations
O : ρ �→ O(ρ) are allowed, which means that O must satisfy

O
[
U(g)ρU†(g)

] = U(g)O(ρ)U†(g) ∀g ∈ SO(3) , (12)

where U is the unitary representation of the group SO(3) of spatial rotations in
Hilbert space. Insofar as the local situation is concerned, this may be rephrased
in terms of the original setting of SSRs, e.g. by regarding SO(3) as gauge group,
restricting local observables and states to those commuting with SO(3). On the
other hand, one also wishes to consider situations in which, for example, a local
bipartite system (Alice and Bob) is given a state that has been prepared by a third
party that is not subject to the SSR.
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Symmetry

K. Mainzer

Symmetry concepts play a central role in physics [13]. The � invariance (� covari-
ance) properties of a system under specific symmetry transformations can either be
related to the conservation laws of physics or be able to establish the structure of the
fundamental interactions. This is the most essential aspect of symmetry as it con-
cerns the basic principles of physics and the interactions themselves and not only
the properties of a particular system [14].

In geometry, figures or bodies are called symmetrical when they possess com-
mon measures or proportions. Thus the Platonic bodies can be rotated and turned
at will without changing their regularity. Similarity transformations, for example,
leave the geometric form of a figure unchanged, i.e. the proportional relationships
of a circle, equilateral triangle, rectangle, etc. are retained, although the absolute
dimensions of these figures can be enlarged or decreased. Therefore one can say
that the form of a figure is determined by the similarity transformations that leave
it unchanged (invariant). In mathematics, a similarity transformation is an example
of an automorphism [12]. In general an automorphism is the mapping of a set (e.g.
points, numbers, functions) onto itself that leaves unchanged the structure of this set
(e.g. proportional relations in Euclidean space). Automorphisms can also be charac-
terized algebraically in this way: (1) Identity I that maps every element of a set onto
itself, is an automorphism. (2) For every automorphism T an inverse automorphism
T ’ can be given, with T ·T ’ = T ’·T = I . (3) If S and T are automorphisms, then so
is the successive application S · T . A set of elements with a composition that fulfils
these three axioms is called a group. The symmetry of a mathematical structure is
determined by the group of those automorphisms that let it unchanged (invariant).
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Symmetry transformations can be classified in two classes: continuous and dis-
crete transformations. Continuous transformations are in turn divided into global
and local transformations. By definition, a symmetry transformation is said to be
continuous if the set of parameters, which are necessary to describe the transforma-
tion, range over a continuous set of values. Examples of continuous transformations
are the translation in space, the rotation around a given axis, and the translation
in time. These symmetry transformations are global because once the transforma-
tion of a given point in space has been fixed, then the transformation at all other
points in space is also fixed. Basic principles of physics like linear momentum con-
servation, angular momentum conservation and energy result from the symmetry
properties of the interactions under global space and time continuous transfor-
mations [15]. According to Emmy Noether’s theorem [1], a Lagrangian theory
possesses N conserved quantities, if the theory (i.e. the Lagrangian function) is
invariant under a N-parameter continuous transformation. Noether’s theorem is not
only a cornerstone of classical physics, but, by the � correspondence principle, of
quantum physics as well.

The state space of a quantum system is a � Hilbert space of finite or countably-
infinite dimension. A quantum state is a one-dimensional subspace of the state
space H . Any normalized vector in the one-dimensional subspace of a state can be
used to represent this state, and is called a state vector. The original formulation of
quantum mechanics assumed a one-to-one correspondence of one-dimensional sub-
spaces of the state space with physical states, implying the unrestricted validity of
the � superposition principle for state vectors. This requirement is equivalent to the
exclusion of � superselection rules. A statement that selects some vectors, adding
that they are physically unrealizable as state vectors is called a superselection rule. If
there are superselection rules, then there exist subspaces of the state space that can-
not be connected to each other by any observable. Not all � self-adjoint operators
on the state space are therefore � observables [16].

Ignoring superselection rules, the states of a quantum system span a projective
Hilbert space. Every vector ψ in the Hilbert space H determines a one-dimensional
subspace, called the ray ψ̄. The inner product of two rays ψ̄ and ϕ̄ is defined by

〈
ψ̄
∣∣ ϕ̄〉 =

∣∣〈ψ ∣∣ ϕ〉∣∣∥∥ψ
∥∥ · ‖ϕ‖

The set of all rays in H is called the projective Hilbert space H̄ associated with the
Hilbert space H. A symmetry transformation of quantum mechanics is an automor-
phism of the projective Hilbert space H̄ associated with the state space H . Thus
the symmetry of quantum mechanics is given by the automorphism group Aut(H̄ ).
A theorem of Eugene P. Wigner [2] asserts that the automorphism group Aut(H̄ )
can be represented by the group of � unitary operators acting on the state space H.
Let H1 and H2 be Hilbert spaces and F be a mapping from H1 into H2. Then F is
called linear if F (aψ+ bϕ) = aFψ+ bFϕ
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F is called antilinear if F (aψ+ bφ) = a∗Fψ+ b∗Fφ
F is called isometric if

∥∥Fψ
∥∥ = ∥∥ψ

∥∥
for all ψ and ϕ from H1 and all complex numbers a and b. If the range of a linear
isometric operator F : H1 → H2 is the whole space H2, then F is called unitary.
An antiunitary operator F : H1 → H2 is an antilinear isometric operator having the
range H2. Wigner’s theorem implies that two realizations of quantum mechanics
whose state spaces are connected by a unitary or antiunitary transformation are from
a logical point of view equivalent. Historically, the fact that symmetries in quantum
mechanics are described by projective unitary representations has been known since
Hermann Weyl. In his book on Gruppentheorie und Quantenmechanik (1928) he
stated: ‘The pure case or state is (. . .) more properly represented by the ray than by
the vector, and we must therefore operate in the ray field in system space rather than
in the vector field.’ [2] Wigner published his theorem in his textbook (1931) without
full proof. A complete proof was given by V. Bargmann (1954) [4].

In quantum physics, all the properties of a system can be derived from the state or� wave function associated with that system. The absolute phase of a wave function
cannot be measured, and has no practical meaning, as it cancels out the calculations
of the probability distribution. Only relative phases are measurable in an interfer-
ence experiment. Therefore it is possible to change the phase of a wave function
without leading to any observable effect. Formally a phase transformation of the
wave function ψ(x, t) can be written as

ψ (x, t)→ ψ′ (x, t) = eiαψ (x, t)

with the parameter (phase) α of the transformation. If α is constant, i.e. the same for
all points in space-time, the equation expresses the fact that once a phase convention
has been made at a given point in space-time, the same convention must be adopted
at all other points. This is an example of a global transformation applied to the field
ψ(x, t). If α = α(x, t) is a function of space and time, then such a transformation
will not leave invariant any equation of ψ(x, t) with space or time derivatives. This is
in particular true for the � Schrödinger equation or any relativistic wave equation for
a free particle. In order to satisfy the invariance under a local phase transformation
it is necessary to modify the equations in some way, which describe the form of
interaction. Such modifications will introduce additional terms, which describe the
interaction of the particle with external fields. The question if and which force of
interaction is realized can only be decided empirically. This is the gauge principle or
principle of local symmetry. Historically, the principle of gauge invariance (� gauge
symmetry) dates back to a (false) idea of Weyl who assumed a deeper dependence
between the laws of matter and electromagnetism [5].

A discrete symmetry transformation is described by parameters ranging over a
discrete set of values. Examples are symmetry operations that leave unaffected a
crystal by reflections through planes, inversions with respect to a centre point and
rotations around a given axis with angles 2π/n(n = 2, 3, 4 or 6) corresponding to
the periodicity of the crystal lattice. In elementary � particle physics, there are three
discrete transformations for interactions between leptons and quarks: the charge
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conjugation C, the parity transformation P , and the time reversal T . In a charge
conjugation operation

C : qα → −qα
All the particles of a system are replaced by their antiparticles and therefore all
charges qα change sign. The parity transformation

P : r →−r

corresponds to a space inversion relative to a point. In a system of Cartesian coor-
dinates, a point with coordinates (x, y, z) transforms into (−x, −y, −z) under the
parity operation. The position vector r changes sign under a space inversion. The
time reversal operation

T : t → −t
corresponds to the inversion of the time variable t . The laws of physics are invari-
ant with respect to T . Symmetry of time means that it is physically impossible
to distinguish between forward and backward moving in time. Quantum theory of
fields requires the invariance of the fields and interactions under the combined trans-
formations of the three operations CPT. The CPT-theorem was proved by Wolfgang
Pauli in 1957 [6]. If one of the three symmetries is violated, then, according to the� CPT-theorem, one of the other two symmetries has also to be violated. For ex-
ample, the violation of parity P requires that C or T be violated. If the invariance
under the combination of two transformations holds, then the invariance under the
third transformation must also hold. For example, the invariance under CP implies
the invariance under T and vice-versa. The decay of Kaons is the only known ex-
ample of time violation T which is enforced by a CP-violation. Further on, the
CPT invariance implies that the masses and the lifetime of a particle is identical to
those of antiparticles. CPT invariance has been empirically confirmed to very high
precision [17].

Before 1956, it was assumed that � parity was a fundamental symmetry of
physical processes. In 1956, Tsung Dao Lee and Chin Ning Yang examined the
question of whether processes driven by the weak interaction would distinguish left
or right [7]. Their famous experiments performed in the beta decay of 60Co, and in
the weak decays of pions and muons, π+ → μ+ + νμ and μ+ → e+ + νe + v̄μ
not only provided the empirical support to the suggestions of Lee and Yang but also
showed that parity violation was an universal property of the weak interaction.

The observation of parity violation was soon incorporated in the theory of weak
interaction and is now a part of modern unified theory of electro-weak interac-
tions, the Standard Model � quantum field theory; particle physics. Actually, the
fundamental physical forces of interaction can be characterized by local gauge
symmetries. The unitary group U(n) and the special unitary group SU(n) refer to
the unitary transformation of a n-dimensional complex coordinate space [12]. In
the standard model, gravitation, electromagnetic, weak and strong interaction are
represented by local Poincaré-, U (1)-, SU(2)-, and SU(3)- gauge groups. The re-
search program of unified theories tries to unify the fundamental forces step by
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step in states of higher energy characterized by unified local symmetries. In 1954,
the Yang-Mills theory tried at first to unify proton and neutron by a gauge the-
ory of isospin-symmetry [8]. But the Yang-Mills theory only predicted massless
gauge particles of interaction in contradiction to empirical observations. Later on,
J. Goldstone [9] and P. Higgs [10] introduced the mechanism of spontaneous sym-
metry breaking (Higgs’ mechanism) in order to give appropriate gauge particles the
desired mass. The intuitive idea is that a symmetric theory can have asymmetric
consequences. For example, the equations of a ball and the wheel of a roulette are
symmetric with respect to the rotation axis, but the ball always keeps lying in an
asymmetric position. In a first step, electromagnetic and weak forces could already
be unified at very high energies in an accelerator ring. For energies of more than
100 Gigaelectron–Volts and distances less than 10−16 cm, there would be a perfect
U(1)× SU(2) symmetry, in which the W± and Zo field quanta would be exchanged
as rapidly as the photon. Their transformations are described by the same symmetry
groupU(1)× SU(2). At a critical value of lower energy the symmetry spontaneously
breaks apart into two partial symmetries U (1) of electromagnetic force and SU(2)
of weak interaction. The gauge particles of weak interaction get their mass by the
Higgs mechanism, the photon of electromagnetic interaction remains massless.

After the successful unification of electromagnetic and weak interaction physi-
cists try to realize the “big” unification of electromagnetic, weak and strong forces,
and in a last step the “superunification” of all four forces. There are several re-
search strategies of superunifications such as supergravity and superstring theories.
Mathematically they are described by extensions of richer structures of local sym-
metries and their corresponding gauge groups. On the other hand the variety of
elementary particles is actualized by spontaneous symmetry breaking. The concept
of local symmetry and symmetry breaking play an immense role in cosmology.
During cosmic expansion and cooling temperature, the initial unified supersymme-
try of all forces broke apart into the subsymmetries of physical interactions, and
the corresponding elementary particles were crystallized in phase stages leading to
more variety and complexity.

The phases of cosmic expansion are determined by properties of symmetry
breaking. For example, in the case of weak interaction, neutrinos occur only as
a left-handed helix, but not as a right-handed one which means parity violation.
This kind of antisymmetry or dissymmetry seems also to be typical for molecular
structures of life. Protein analysis shows that amino acids have an antisymmetri-
cal carbon atom and occur only in the left-handed configuration. Weak interaction
takes part in the chemical bonds. Thus, cosmic parity violation of weak interaction
is assumed to cause the selection of chiral molecules. The reason is that the left-
handed (L) and right-handed (D) examples of chiral molecules can be distinguished
by a tiny parity violating energy difference�Epv. The energetically stable examples
(e.g., L-form of amino acids) are preserved. But, this assumption is only based on
theoretical calculations (e.g., Hartree–Fock procedures in physical chemistry). We
still miss exact measurements of experiments because of the tiny small parity viola-
tion energy difference �Epv (e.g., 4 · 10−14 (hc)cm−1 (H2O2), 1 · 10−12 (hc)cm−1

(H2S2)), although there are proposed experiments with spectroscopic methods [11].
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From a philosophical point of view, the epistemic question arises whether sym-
metry only concerns syntactic and semantic properties of scientific theories and their
models, or whether they are real structures of the world. Empirical structuralism
defends a strict empiristic view [18]: symmetry only refer to syntactical and seman-
tic properties of mathematical structures which are inventions of the human mind.
But if they are only syntactical and semantic constructions, why do observations,
measurements and predictions display these regularities? It seems to be a wonder
or miracle. Hilary Putnam put it in the “no miracle-argument” of scientific realism:
“The positive argument for realism is that it is the only philosophy that doesn’t make
the success of science a miracle” [19]. Structural realism assumes that mathematical
structures refer to real structures of the world, independent of syntactical and seman-
tic representations in the human mind. The question is which mathematical terms
and models refer to ontological structures [20]. In general, the gauge principle only
determines the form of the coupling term of physical interaction. But the existence
of a physical force is an empirical question which, of course, cannot be derived from
an a priori demand of local symmetry. A gauge group characterizes a physical in-
teraction mathematically in terms of local symmetry. It is epistemically remarkable
that only gauge-invariant quantities have observable effects. Local phase transfor-
mations do not change any measurable observable. Therefore, the gauge principle
or demand for local symmetry can epistemically be considered as a filter of observ-
ables in a theory of physical interactions ([21] cf. [22]).
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T
Time in Quantum Theory

H.D. Zeh

In quantum mechanics, time is understood as an external (‘classical’) concept. So
it is assumed, as in classical physics, to exist as a controller of all motion – either
as absolute time or in the form of proper times defined by a classical spacetime
metric. In the latter case it is applicable to local quantum systems along their world
lines. According to this assumption, time can be read from appropriate classical or
quasi-classical ‘clocks’.

This conception has to be revised only when general relativity, where the spatial
metric becomes a dynamical object, is itself quantized [1] – as required for con-
sistency (see IV). The thereby achieved ‘quantization of time’ does not necessarily
lead to a discretization of time – just as the � quantization of free motion does not
require a discretization of space. On the other hand, the introduction of a funda-
mental gravitational constant in addition to � Planck’s constant and the speed of
light leads to a natural Planck time unit, corresponding to 5.40 10−44 sec. This may
signal the need for an entirely novel conceptual framework – to be based on as yet
missing empirical evidence. A formal (canonical) quantization of time would also
be required in non-relativistic Machian (‘relational’) dynamical theories [4], which
consistently replace the concept of time by some reference motion. If quantum the-
ory is universally valid, all dynamical processes (including those that may serve as
clocks or definers of time) must in principle be affected by quantum theory. What
does this mean for the notion of time?

Historically, the dynamics of quantum systems seemed to consist of individually
undetermined stochastic � ‘quantum jumps’ between otherwise ‘stationary’ states
(energy eigenstates) – see [2] for an early review of the formalism and the attempt
of an interpretation. Such stochastic events are observed in quantum measurements,
in particular. For this reason, von Neumann [3] referred to the time-dependent� Schrödinger equation as a ‘second intervention’, since Schrödinger had originally
invented it to describe consequences of time-dependent external ‘perturbations’ of a
quantum system. Note, however, that atomic clocks are not based on any stochastic
quantum events, even though they have to be designed as open systems in order to
allow their permanent reading (representing ‘measurements’ of the clock – see IV).

In a consistent � Schrödinger picture, all dynamics is described as a time
dependence of the quantum states, while the � observables are fixed formal kine-
matical concepts (see also Sect. 2.2 of [5]). The time dependence according to
the � Schrödinger equation can be completely understood as an interference
phenomenon between different stationary states |m〉, which possess individually
meaningless phase factors exp(iωmt). Their superpositions are able to describe
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time-dependent quantum states |α(t)〉 in the form

|α(t)〉 : =
∫

dqψα(q, t)|q〉 =
∑

m
cm exp(iωmt)|m〉.

The � wave function ψα(q, t) is here used to define the time-dependent state |α(t)〉
in abstract � Hilbert space (cf. � rigged Hilbert spaces). The Hilbert space basis |q〉
diagonalizes an appropriate observable Q. The time dependence of a quantum state
is in fact meaningful only relative to such a fixed basis, as demonstrated by means
of the wave function in the above definition.

In non-relativistic quantum mechanics, the time parameter t that appears in the
Schrödinger wave function ψ(q, t) is identified with Newton’s absolute time. So
it is presumed to exist regardless of how or whether it is measured. The letter q
represents all variables qi(i = 1. . .I ) that form the required configuration space.
The special case of a point mass, where q ≡ x, y, z corresponds to a single space
point, has often led to confusion of the wave function with a time-dependent spatial
field (relativistically a field on spacetime). It is essentially this misconception that
has led to the meaningless search for a time operator T in analogy to the position
operator of a particle. However, time t is here not a dynamical variable. InN-particle
mechanics, for example, the configuration space variables q are equivalent to N

space points (that is, I = 3N variables). In quantum field theory, the amplitudes of
all fields Φ(x, y, z) at all space points even form a continuum. These field variables
are thus distinguished from one another by their spatial arguments, which thereby
assume the role of ‘indices’ to Φ, just as i for the variables qi [6]. Therefore both,
space and time, are assumed to be absolutely defined classical preconditions for
kinematics and dynamics – even though they appear in the formalism in different
ways.

If the variables q are field amplitudes, the canonical quantization of n fields leads
to a time-dependent wave functional Ψ [Φ1(x, y, z), . . ., Φn(x, y, z), t], rather than
to n field operators on spacetime. This conclusion holds relativistically, too (see III).
The corresponding Hilbert space readily includes superpositions of different ‘par-
ticle’ numbers (‘occupation numbers’). For bosons, the latter are simply oscillator
quantum numbers for the eigenmodes (first postulated by Planck, and later explained
by Schrödinger by the numbers of nodes of their wave functions). The ultimate uni-
versal local Hilbert space basis is hoped to be found in unified field theory.

Schrödinger’s general wave function ψ(q, t) may be Fourier transformed with
respect to all its arguments – in spite of their different interpretations. This transfor-
mation defines wave numbers k in the configuration space and frequencies ω. They
may be rescaled into canonical momenta (in general different from conventional,
that is, spatial momenta) and energies by means of Planck’s constant. The Fourier
transformation gives rise to a formal ‘time operator’, T := i∂/∂ω, that allows one
to define a continuous shift operation for frequencies: U(�ω) := exp(i�ωT ). It
does not in general transform a solution of the Schrödinger equation into another
solution, since this would require a continuous and unbounded energy spectrum.
Pairs of Fourier variables are subject to the Fourier theorems,
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�q�k � 1 and �t�ω � 1,

which apply to all functions ψ(q, t) – regardless of the existence of any dynamical
law or a Hamiltonian H . These � Heisenberg uncertainty relations between corre-
sponding variables must have physical consequences when applied to solutions of
the Schrödinger equation. Those based on the Fourier theorem relating time and fre-
quency are usually interpreted as representing a ‘time-energy uncertainty relation’
(see [7]). Well known, for example, is the spectral line width required for metastable
states. A ‘time uncertainty’ can also be defined by the finite duration of a preparation
or measurement process.

II. The situation is somewhat obscured in the � Heisenberg picture. In the
algebraic Born-Heisenberg-Jordan quantization procedure, ‘observables’ were in-
troduced in formal analogy to the classical dynamical variables, such as q(t)

and p(t), while quantum states were not regarded as dynamical objects. Observ-
ables would assume definite values only in appropriate measurements or discrete
‘quantum events’ (von Neumann’s first intervention – historically related to Bohr’s
quantum jumps between his discrete classical orbits). Time durations are then of-
ten defined operationally by means of pairs of such events – not according to the
Schrödinger dynamics. The latter is here merely regarded as a tool for calculating
probabilities for the occurrence of events, which are then assumed to represent the
only real quantum phenomena.

Note that in the Heisenberg picture certain properties of quantum states seem to
represent some hidden time dependence. For example, the kinetic energy operator in
the Schrödinger picture (the Lapacean) measures the curvature of the wave function
ψ(q, t) at given time t – not any quantitiy related to motion, such as classical kinetic
energy. Its non-vanishing minimum (achieved for a wave function that does not
change sign) is in the Heisenberg picture interpreted as representing ‘zero point
fluctuations’ of the corresponding variables q .

This picture has led to much confusion – including the search for a ‘time ob-
servable’ T that would depend on the specific system Hamiltonians H by obeying
commutation relations

[T ,H ] = i�,

in analogy to position and momentum observables (see the Introduction of [8] for a
review). However, since realistic Hamiltonians possess a ground state, their spectra
are bounded from below, and a time operator obeying this commutation relation can-
not possess a spectrum represented by all real numbers (as pointed out by Wolfgang
Pauli [2]). It may nonetheless be related to time intervals between certain pairs of
events that can be measured at a system characterized by the Hamiltonian H .

A formal equivalence between the Schrödinger and a Heisenberg picture for
the purpose of calculating expectation values of measurement results is known to
hold for isolated, unitarily evolving systems (which are exceptions in reality). For
asymptotically isolated objects participating in a scattering process one may use the
interaction picture, where part of the Hamiltonian dynamics is absorbed into the ob-
servables characterizing asymptotic states. This includes the ‘dressing’ of quantum
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fields. However, macroscopic systems always form open systems; they never be-
come isolated, even when dressed. Such systems may approximately obey effective
non-unitary dynamics (master equations). In principle, this dynamics has to be de-
rived from the unitary (Schrödinger) evolution of an entangled global quantum state,
that would have to include all ‘external interventions’. Under realistic assumptions
this leads to permanently growing � entanglement with the environment – locally
observed as � decoherence [5].

This extremely fast and in practice irreversible process describes a dislocalization
of quantum superpositions. It thereby mimics � quantum jumps (events): compo-
nents which represent different macroscopic properties (such as different pointer
positions or different registration times of a detector) are almost immediately dy-
namically decoupled from one another. None of them is selected by decoherence
as the only existing one. Pauli, when arguing in terms of the Heisenberg picture,
regarded such events as occurring ‘outside the laws of nature’, since they withstood
all attempts of a local dynamical description. In the global Schrödinger picture, the
time-asymmetry of this dynamical decoupling of components (‘branching’) can be
explained in terms of the time-symmetric dynamics by means of an appropriate ini-
tial condition for the wave function of the universe – the same condition that may
also explain thermodynamical and related time asymmetries (‘arrows of time’) [9].
In essence, this initial condition requires that non-local entanglement did not yet
exist just after the big bang, and therefore has to form dynamically (‘causally’). The
resulting asymmetry in time may give rise to the impression of a direction of time.

III. In � quantum field theory, a Schrödinger equation that controls the dy-
namics of the field functionals may well be relativistic – containing only local
interactions with respect to the space-dependent field variables (in this way facil-
itating the concept of a Hamiltonian density in space). A wave function(al) obeying
a relativistic Schrödinger equation never propagates faster than light with respect to
the underlying presumed absolute spacetime. Recent reports of apparently observed
superluminal phenomena (� superluminal communication) were either based on
inappropriate clocks, or on questionable interpretations of the wave function. For
example, the exact energy eigenstate of a particle, bound to an attractive potential in
a state of negative energy E = −|E|, would extend to spatial infinity according to
exp(−√|E|r) outside the range of the potential. It has therefore been claimed to be
able in principle to cause effects at any distance within any finite time [10]. How-
ever, if the wave function of the bound system forms dynamically (according to the
Schrödinger equation rather than by quantum jumps), it can only subluminally ap-
proach the exact eigenstate with its infinite exponential tail. This time-dependence
requires a minimum energy spread that is in accord with the time-frequency Fourier
theorem. Similar arguments hold relativistically also for particle number eigen-
states, which cannot have sharp spatial boundaries because of Casimir-type effects
(� Casimir effect) (in principle observable for moving mirrors); all bounded sys-
tems must relativistically be in superpositions of different particle numbers.

In the theory of relativity, proper times assume the role of Newton’s absolute
time for all local systems, that is, for those approximately following world lines in
spacetime. However, quantum states are generically nonlocal (entangled), and they
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do not consist of or define local subsystem states. One may then introduce auxiliary
time coordinates (arbitrary spacetime foliations) in order to define the dynamics of
global states on these artificial ‘simultaneities’. A Hamiltonian (albeit of very com-
plex form – in general including a whole field of Coriolis-type forces with effective
‘particle’ creation and annihilation terms) would nonetheless exist in this case. As
these artificial simultaneities may be assumed to propagate just locally, one speaks
of ‘many-fingered time’. Dynamical evolution in quantum theory is in general lo-
cally non-unitary (to be described by a master equation) because of the generic
nonlocal entanglement contained in the unitarily evolving global quantum state.
Unitary evolution may therefore be confirmed only in exceptional, quasi-isolated
(microscopic) systems.

IV. According to Mach’s ideas, no concept of absolute time should be required
or meaningful. Any time concept could then be replaced by simultaneity relations
between trajectories of different variables (including appropriate clocks) – see [4]
and Chap. 1 of [9]. Classically, timeless trajectories qi(λ), where λ is an arbitrary
parameter, are still defined. Mach’s principle requires only that the fundamental dy-
namical laws are invariant under reparametrizations of λ. In quantum theory, the
wave function cannot even depend on such a time-ordering parameter, since there
are no trajectories any more that could be parametrized. This fact excludes even
dynamical successions of spatial geometries (the dynamical states of general relativ-
ity), which would form a foliation of spacetime. On the other hand, any appropriate
variable q0 that is among the arguments of a time-less wave function ψ(q) may
be regarded as a more or less appropriate global physical clock. According to the� superposition principle, superpositions of different values q0 – that is, of differ-
ent ‘physical times’ – would then have to exist as real physical states (just as the
superpositions of different values of any other physical variable).

In conventional quantum mechanics, superpositions of different times of an event
are well known. For example, a coherently decaying metastable state (that can be
experimentally confirmed to exist by means of interference experiments in the case
of decay fragments only weakly interacting with their environment) is a superpo-
sition of different decay times. Similarly, the quantum state for a single variable
x and a clock variable u, say, would have to be described by a wave function
ψ(x, u). This means that the classical dependence of x on clock time u, defined
by their time-less trajectory x(u), is replaced by the less stringent � entanglement
between x and u that is defined by such a wave function [11]. The clock variable
u becomes quasi-classical only when it is pertinently decohered, such that super-
positions of different times u always remain dislocalized (locally inaccessible). The
same conclusion holds for the mentioned superposition of different decay times if its
corresponding partial waves (� wave packet forming thin spherical shells in space
unless reflected somewhere) are decohered from one another.

Atomic clocks, in particular, are based on the time-dependent superposition
of two close atomic energy eigenstates (defining ‘beats’). These oscillating states
would immediately be destroyed by decoherence whenever they were measured
(read). Therefore, they have to be dynamically correlated with the � coherent state
of a maser field that is in resonance with them. This time-dependent coherent state is
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known to be ‘robust’ against decoherence – including genuine measurements [12].
So it permits the construction of a quasi-classical atomic clock that can be read.
Exactly classical clocks would be in conflict with the uncertainty relations between
position and momentum of their ‘hands’.

The above-described consequences of Mach’s principle with respect to time do
indeed apply in general relativity to a closed universe. Spatial geometries on a time-
like foliation of spacetime, which would classically determine all proper times [13],
are now among the dynamical variables q (arguments of the wave function) –
similar to the mentioned clock variable u. Moreover, material clocks intended to
‘measure’ these proper times within a given precision would have to possess a min-
imum mass in order to comply with the uncertainty relations [14], while this mass
must then in turn disturb the spacetime metric.

A time coordinate t in general relativity is a physically meaningless parame-
ter (such as λ – not u – in the above examples). Invariance of the theory under
reparametrization, t → f (t), requires a ‘Hamiltonian constraint’: H = 0 [1, 15].
In its quantum mechanical form, HΨ = 0, this leads to the trivial Schrödinger dy-
namics ∂Ψ/∂t = 0, where Ψ is now a wave functional on a configuration space
consisting of spatial geometries and matter fields. As this consequence seems to
remain valid for all unified theories that contain � quantum gravity, one has to con-
clude that there is no time on a fundamental level; all dynamics is encoded in the
static entanglement described by Ψ . Surprisingly, though, the time-less Wheeler-
DeWitt equation [1],

Hψ = 0,

(also called an Einstein-Schrödinger equation) becomes hyperbolic for Friedmann
type universes – similar to a relativistic wave equation on spacetime (see Sect. 2.1
of [9]). This allows one to formulate a complete boundary condition for Ψ in the
form of an ‘intrinsic initial condition’ [16]. It requires Ψ and its first derivative to
be given on a ‘time-like’ hypersurface, defined according to the hyperbolic form of
the kinetic energy operator contained in H (now a d’Alembertian), in this universal
configuration space (DeWitt’s ‘superspace’). For example, such initial data can be
freely chosen at a small value of the expansion parameter a of the universe. A low-
entropy condition at a → 0 then leads to an ‘intrinsic arrow of time’: total entropy
on time-like hypersurfaces must grow (for statistical reasons) as a function of the
size of the universe – regardless of any external concept of time.

Quasi-classical time can here only be recovered within the validity of a Born-
Oppenheimer approximation with respect to the square root of the inverse Planck
mass [15], while spatial geometry, which defines all fundamental physical clocks, is
strongly entangled with, and thus decohered by, matter [17]. In analogy to the co-
herent set of apparent light rays that approximately describe the propagation of one
extended light wave in space in the limit of short wave lengths (geometric optics),
quasi-classical times are defined separately for all quasi-trajectories in superspace.
Each of them then defines a dynamically autonomous quasi-classical world (an
‘Everett branch’ of the global wave function in unitary description) – including
a specific quasi-classical spacetime. As � ‘Schrödinger cat’ states evolve abun-
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dantly out of microscopic superpositions in measurement-type interactions, there
cannot be just one quasi-classical world (analogous to just one light ray in geomet-
ric optics) according to the Schrödinger dynamics. Material clocks, such as atomic
clocks, require further (usually not quite as strong) decoherence to become quasi-
classical.
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Trace

Roderich Tumulka

Trace of an operator: The sum of the diagonal elements of the operator’s matrix
representation. The “trace” is a number that can be associated with an operator T
on � Hilbert space, and is usually denoted tr(T ), tr T , Tr(T ), or Tr T . It can be a
complex number, or +∞, or can be undefined (because it is of the type ∞−∞).
The set of operators whose trace is a finite complex number is called the trace class.

Definition (1) The trace of an n× n matrix A = (aij )i,j�n is defined as the sum of
the entries on the main diagonal:

tr(A) =
n∑

i=1

aii . (1)

(In the sum convention of general relativity, this is written a i
i .) For an n×m matrix

with unequal number of rows and columns there is no concept of trace.
(2) For a (linear) operator T on a finite-dimensional vector space, tr(T ) is defined

as the trace of its matrix representation relative to an arbitrary basis. It can be shown
that the value of tr(T ) does not depend on the choice of the basis.

(3) For an infinite matrix A = (aij )i,j∈N, the trace is defined as the series (infinite
sum)

tr(A) =
∞∑
i=1

aii, (2)

provided it converges.
(4) For an operator T on a (separable) Hilbert space H , one would like to define

its trace as the trace of its matrix representation relative to an arbitrary orthonormal
basis {φ1, φ2, . . .}, that is

tr(T ) =
∞∑
n=1

〈φn|T φn〉. (3)

However, the series may not converge, or may converge for one � orthonormal basis
and not for another. That is why one splits the definition in two steps [1]. If T is a
positive operator (i.e., 〈ψ|T ψ〉 � 0 for every ψ ∈ H ) then its trace is defined by
(3), which is either a nonnegative real number or +∞; it can be shown that this
value does not depend on the choice of the orthonormal basis. This definition is
extended to non-positive operators as follows. An operator T belongs to the trace
class if the positive operator |T | = √

T ∗T has finite trace (where T ∗ denotes the
adjoint operator of T ); for such T we can define the trace by (3), as it can be shown
that the series converges (to a finite complex number) and its value is independent
of the orthonormal basis. Every trace class operator is bounded.
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Properties (1) The trace is linear:

tr(S + T ) = tr(S)+ tr(T ), tr(λT ) = λ tr(T ) (4)

for all operators S, T from the trace class and all λ ∈ C. (S + T and λT belong to
the trace class, too.)

(2) The trace is invariant under cyclic permutation of factors:

tr(AB · · · YZ) = tr(ZAB · · · Y ). (5)

(We assume here that at least one of the factors A,B, . . . , Z belongs to the trace
class and the others are bounded; in that case, also AB · · · YZ belongs to the trace
class.) In particular tr(AB) = tr(BA) and tr(ABC) = tr(CAB), which is, however,
not always the same as tr(CBA).

(3) If an operator T can be diagonalized, i.e., if there exists an orthonormal basis
of eigenvectors, then tr(T ) is the sum of the eigenvalues, counted with multiplicity
(= degree of degeneracy).

(4) The trace of the adjoint operator T ∗ is the complex-conjugate of the trace of
T : tr(T ∗) = tr(T )∗.

(5) The trace of a self-adjoint operator T (in the trace class) is real: tr(T ) ∈
R. A self-adjoint operator lies in the trace class if and only if it is bounded, its
spectrum is discrete, all nonzero eigenvalues have finite multiplicity, and the sum of
the eigenvalues (with multiplicity) is finite (i.e., converges absolutely).

(6) The trace of a positive operator T � 0 is nonnegative: tr(T ) � 0.

Trace Formula in Quantum Theory When an observable, given by the self-adjoint
operator T , is measured on a system with density matrix ρ then the probability that
the outcome Z lies in the set � ⊆ R is

P(Z ∈ �) = tr(ρ P�) (6)

with P� the spectral projection of T corresponding to the spectrum in �.
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Transactional Interpretation of Quantum
Mechanics

John G. Cramer

Interpretations of quantum mechanics provide an account of the meaning of the
quantum formalism and guidance on how to use the formalism to connect with
nature and to make predictions on the outcome of experiments. The first interpre-
tation was the Copenhagen interpretation, developed by Heisenberg and Bohr the
late 1920s. It has become the orthodox view of the meaning of the quantum formal-
ism, but it has lead to an uncomfortably large number of interpretational paradoxes
(� Errors and paradoxes in quantum mechanics) associated with relativity conflicts,� wave-particle duality, wave function collapse, and quantum � nonlocality.

The transactional interpretation of quantum mechanics [1, 2] is a leading al-
ternative to the Copenhagen interpretation. The transactional interpretation (TI) is
explicitly nonlocal and is able to explain all of the interpretational paradoxes. It
is relativistically invariant, so that it can be used with the relativistic wave equa-
tions as well as the � Schrödinger equation. It uses the retarded (�) and advanced
(�*) wave function solutions of these equations in a “handshake” that provides
a rationale for understanding the formal structure of quantum � wave mechanics
and for treating quantum � wave functions as physically present in space. In fact,
the advanced-retarded transactions are “visible” in the quantum wave-mechanics
formalism.

The logical development of the transactional interpretation starts with the time-
symmetric classical electromagnetism of Dirac [3], and Wheeler and Feynman [4,5],
which describes electromagnetic processes as exchanges between retarded (normal)
and advanced (time-reversed) electromagnetic waves. The transactional interpreta-
tion applies the time-symmetric Wheeler–Feynman view to the quantum mechanical
wave function solutions of the electromagnetic wave equation. The lessons learned
about electromagnetic quantum waves are then extended to wave functions describ-
ing the behavior of massive particles (e.g., � electrons, protons, etc.) by applying
the same interpretation to their relativistic wave equations. Finally, the Schrödinger
equation is included as a nonrelativistic reduction of the relativistic wave equations
in the limit of small velocities.

The transactional interpretation views each quantum event as a “handshake” or
“transaction” process extending across space–time that involves the exchange of ad-
vanced and retarded waves to enforce the conservation of certain quantities (energy,
momentum, angular momentum, . . . ). It asserts that each quantum transition forms
in four stages: (1) emission, (2) response, (3) stochastic choice, and (4) repetition to
completion.

The first stage of a quantum event, illustrated in Fig. 1, is the emission of an “offer
wave” by the “source,” which is the object supplying the quantities transferred. The
offer wave is the time-dependent retarded quantum wave function � , as used in
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Fig. 1 Schematic view of
emission stage

Fig. 2 Schematic view of
response stage

standard quantum mechanics. It spreads through space–time until it encounters the
“absorber,” the object receiving the conserved quantities.

The second stage of a quantum event is the response to the offer wave by any
potential absorber (there may be many in a given event). Such an absorber produces
an advanced “confirmation wave” �*, the complex conjugate of the quantum offer
wave function � . The confirmation wave travels in the reverse time direction and
arrives back to the source at precisely the instant of emission with an amplitude of
��*. In transactions involving “entangled” waves, i.e., emission of two or more
waves linked by a conservation law (e.g., conservation of momentum or angular
momentum), the corresponding confirmation waves must match so that the conser-
vation law is implemented (Fig. 2).

The third stage of a quantum event is the stochastic choice exercised by the
source in selecting one from among the possible transactions. It does this in a lin-
ear probabilistic way based on the strengths ��*of the advanced-wave “echoes”
it receives from the potential absorbers. However, in order to avoid transactional
inconsistencies pointed out by Maudlin [6], the probabilistic decision must be
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hierachical, with the decision to select or not select transactions from small space–
time intervals occurring “before” any transactions from larger space–time intervals
are allowed to form.

The final stage of a quantum event is the repetition to completion of this process
by the source and absorber, reinforcing the selected transaction repeatedly until the
conserved quantities are transferred and the potential quantum event becomes a real
event.

The application of the transactional interpretation in resolving interpretational
quantum paradoxes is discussed in detail in references [1] and [7]. Briefly, conflicts
with relativity are eliminated because the TI is relativistically invariant. Paradoxes
associated with wave-particle duality and the � Heisenberg uncertainty relations
are resolved and clarified because the offer wave is wavelike and can be quite gen-
eral, but the completed transaction is particle-like and must localize and project out
specific components of the offer wave function. Collapse paradoxes are resolved
because formation of the transaction provides an account of the process called
“wave function collapse” in the Copenhagen interpretation (Fig. 3). And perhaps
most important, the TI accounts of the quantum nonlocality of entangled states
as resulting from dual transactions for the entangled states that are required to
be consistent at the emission location, enforcing conservation laws and explaining
the nonclassical “EPR” link between widely separated measurements on entangled
particles.

Because all of the consistent interpretations of quantum mechanics describe the
same quantum formalism, and that formalism makes all of the testable predictions,
there is no way of using experimental tests to choose between interpretations. It is
possible that an interpretation can be falsified by finding it to be inconsistent with the
quantum formalism [8]. In the absence of such falsification, however, the choice be-
tween interpretations must be made on the basis of other criteria: parsimony, absence
of paradoxes, ease of use, and facility for using the interpretation to speculate and
extrapolate.

Fig. 3 Schematic view of
completed transaction
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If rated on the basis of these criteria, the transactional interpretation gets a very
high score. It does well with parsimony because “extra” assumptions of the Copen-
hagen interpretation, in particular, the � Born rule and wave function collapse, are
implicit in the transactional interpretation and do not require extra assumptions [1].
As mentioned above, the transactional interpretation resolves essentially all of the
interpretational paradoxes raised by the Copenhagen interpretation. It is easy to use
because waves and transactions, assumed to be physically present in space, can be
diagrammed (see [1] and [7] for examples). Its use for speculation and extrapolation
is more subjective, but many practicing physicists have reported finding it useful in
areas like quantum optics and � quantum computation.

Therefore, the transactional interpretation should be seriously considered as
a useful and powerful alternative to the orthodox Copenhagen interpretation.
See � Born rule; Consistent Histories; Metaphysics in Quantum Mechanics;
Nonlocality; Orthodox Interpretation; Schrödinger’s Cat.
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Tunneling

Günter Nimtz and Brian Clegg

Tunneling represents the most fundamental process in physics. According to our
present understanding tunneling started the universe about 13 billions years ago.
Nowadays we know that tunneling is involved in radioactivity and in nuclear fu-
sion – the latter effect is heating the sun. Tunneling is the process of molecular
inversion motion in chemistry and is important in modern microelectronic devices.
Physicists introduced the name tunneling for a classical forbidden process, which
the theory of quantum mechanics explained around 1927: A ball, for instance, can-
not overcome a hill if its kinetic energy is less than the hill’s gravitational potential
energy. In this case the ball rolls back. However, quantum mechanics explained that
the ball has a tiny probability of getting to the other side of the hill. Similarly, an
α-particle leaves the attractive nuclear potential well despite having a small energy,
thereby producing radioactivity. In figures 1 and 2 an α-particle is illustrated as a
wave packet embedded in a valley between two hills, which represent the attractive
nuclear forces. The energy of the particle is assumed to be too small to overcome the
tops of the hills. However, radioactivity, which was observed a 100 years ago, i.e.,
the decay of an atomic nucleus, is explained by quantum mechanics as a probability
that a low energy particle is observed at the other side of the hill.

The explanation of alpha-decay as quantum mechanic tunneling followed around
1928 by George Gamow and simultaneously, but independently, by Edward U.
Condon and Ronald W. Gurney. Incidentally, in 1927, Friedrich Hund was the first
to notice the possibility of the phenomenon of tunneling, which he called barrier
penetration, in a calculation of the ground state in a double-well potential. The phe-
nomenon arises, for example, in the inversion transition of the ammonia molecule.

Radioactivity is accompanied by the release of energy, which is the source of
nuclear power stations. The opposite process takes place in the sun and enabled
nuclear fusion by tunneling of protons, penetrating the repelling Coulomb forces.
This process ends up producing Helium and setting heat free. It provide the heat
source of the sun and produces the terrific power of the atomic hybrid hydrogen
bomb.

In quantum mechanics, see for instance Merzbacher [9] and Gasiorowicz [10],
the one-dimensional stationary � Schrödinger equation describes the tunneling
mechanism of � wave packet by the relations

d2�

d2x2
+ 2m/�2(W − U0) = 0, (1)

k2 = k2
0 − (2mU0/�

2), (2)

k2
0 = (2mW/�2), (3)
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α

? ?

Fig. 1 Illustrating the α-particle decay of a nucleus. The α-particle is embedded between the
‘hills’ of the attractive nuclear forces. However, there is a small probability to leave the well by
tunneling. What happens inside the hill?
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Fig. 2 Details of the right hand side of figure 1. The force components of the nuclear valley in
which an α-particle is embedded are given. There is a minuscule probability of tunneling through
the potential barrier
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Fig. 3 Illustrating (1) of the wave function �(r). Between x = 0 and a is located the potential
barrier and the tunneling region

where � is the wave function of the wave particle in question,W the particle energy,
U0 the barrier height, m the particle mass, � the � Planck’s constant, k and k0 are
the wave numbers (i.e., 2π times the reciprocal wave lengths) in the potential barrier
and in free space, respectively. Figure 3 displays the solution of the wave function
�(r). In the case of W < U the wave number k is imaginary. This special solution
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of the Schrödinger equation is called tunneling. With k being imaginary, the time
becomes zero or equivalently the wave packet velocity becomes infinite inside a
barrier. The tunneling solution of the Schrödinger equation represents an action at a
distance: an incoming signal leaves the barrier at the same instant.

Zero-time tunneling was calculated for � electrons by Hartman, by Low and
Mende, and by Leavens and McKinnon, for instance [1–3]. A critical analysis of the
many tunneling time expressions since 1930 is presented in Ref. [4]. The conclusion
of this theoretical investigation is that the phase time result originally obtained by
Wigner and Hartman are the best expressions to calculate a tunneling time. This
statement was confirmed in photon and phonon experiments and recently by Eckle
et al. in the electron ionization tunneling process in helium [5, 6].

The zero-time behavior in barriers was observed first in photonic tunneling ex-
periments by Enders and Nimtz [7]. Such experiments represent the optical analogy
to quantum mechanical tunneling as was discussed by Sommerfeld [11]. The tunnel-
ing process is not completely described by the Maxwell theory for electromagnetic
waves, where the tunneling solutions are called evanescent modes. The more sophis-
ticated � quantum electrodynamics describes photonic tunneling by virtual photons
(� light quantum) in agreement with experiments as reported recently [8].

Thus a particle with an energy smaller than that of the surrounding barrier can
penetrate it, i.e., can tunnel through it with a minuscule but finite probability. Amaz-
ingly, the particle does not spend time inside the barrier, the barrier represents a
zero-time space. The particle enters and leaves the barrier space at the same instant.
The zero-time tunneling is a near field effect, which is observable over distances
comparable with the extension of the particle. Tunneling violates the relativistic
(Einstein) causality, which does not allow a signal to travel faster than the velocity
c of light in vacuum and it violates the Einstein relation W 2 = c2 p2, where W is
the energy and p is the photon momentum. However, tunneling does not allow the
construction of time machines. So-called primitive causality is not violated: effect
always follows cause, an ironic result considering the noncausal nature of quantum
mechanics as was proved in Ref. [7].
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Two-State Vector Formalism

L. Vaidman

The two-state vector formalism (TSVF) [1] is a time-symmetric description of the
standard quantum mechanics originated in Aharonov, Bergmann and Lebowitz [2].
The TSVF describes a quantum system at a particular time by two quantum states:
the usual one, evolving forward in time, defined by the results of a complete
measurement at the earlier time, and by the quantum state evolving backward in
time, defined by the results of a complete measurement at a later time.

According to the standard quantum formalism, an ideal (von Neumann) measure-
ment at time t of a non-degenerate variable A tests for existence at this time of the
forward evolving state |A = a〉 (it yields the outcome A = a with certainty if this
was the state) and creates the state evolving towards the future:

|�(t ′)〉 = e−
i
�

∫ t ′
t Hdt |A = a〉, t ′ > t. (1)

(In general, the Hamiltonians H(t) at different times do not commute and a time
ordering has to be performed.)

In the TSVF this ideal measurement also tests for backward evolving state
arriving from the future 〈A = a| and creates the state evolving towards the past:

〈�(t ′′)| = 〈A = a|e i
�

∫ t ′′
t Hdt , t ′′ < t. (2)

Apart from some differences (discussed below) following from the asymmetry
of the memory arrow of time, one can perform similar manipulations of the forward
and backward evolving states. In particular, neither can be cloned and both can be
teleported.

Given complete measurements, |A = a〉 at t1 and |B = b〉 at t2, the complete
description of a quantum system at time t , t1 < t < t2, is the two-state vector [3]:

〈�| |�〉, (3)

where the states 〈�| and |�〉 are obtained using (1, 2).
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The two-state vector provides the maximal information regarding the way the
quantum system can affect at time t any other system. In particular, the two-state
vector describes the influence on a measuring device coupled with the system at
time t . An ideal measurement of a variable O yields an eigenvalue on with proba-
bility given by the Aharonov, Bergman, Lebowitz (ABL) rule:

Prob(on) = |〈�|PO=on |�〉|2∑
j |〈�|PO=oj |�〉|2

. (4)

This is, essentially, a conditional probability. We consider an ensemble (� ensem-
bles in quantum mechanics) of pre- and post-selected quantum systems with the
desired outcomes of the measurements at t1 and t2. Only those systems (and all
of them) are taken into account. Intermediate measurement (or the absence of it)
might change the probabilities of the outcomes of the post-selection measurement
at time t2, but this is irrelevant: it only changes the size of the pre- and post-selected
ensemble given the size of the pre-elected ensemble at t1.

Note that the ABL rule simplifies the calculation of probabilities of the out-
come of intermediate measurements. In the standard approach we need to calculate
the time evolutions between time t and t2 of all states corresponding to all pos-
sible outcomes of the intermediate measurement, while in the TSVF we have to
calculate evolution of only one (backward evolving) state.

The pre- and post-selected quantum system (described by the two-state vector)
has very different features relative to the system described by a single, forward
evolving quantum state. The Heisenberg Uncertainty Principle does not hold: non-
commuting � observables might be simultaneously well defined, i.e. each observ-
able might have a dispersion-free value provided that it was the only one measured
at time t . As an example, consider a � spin- 1

2 particle in a field free region. Assume
that σz was measured at t1, σx at t2 and both were found to be 1. When at time t ,
an outcome of a measurement of a variable (if measured) is known with certainty,
it is named an element of reality [8]. Thus, in the above example, both σz = 1 and
σx = 1 are such elements of reality.

For pre- and post-selected systems there might be apparently contradicting ele-
ments of reality. Consider now a spin- 1

2 particle which can be located in two boxes,
A and B, which is described by the two-state vector:

〈�| |�〉 = 1

3
(〈A,↑z| + 〈A,↓z| − 〈B,↑z|) (|A,↑z〉 + |A,↓z〉 + |B,↑z〉) , (5)

(where |A,↑z〉 represents the particle in box A with spin ↑z). Then, there are two
elements of reality: “the particle in box A with spin up” and “the particle in box A

with spin down”. Indeed, the measurement of the projection PA↑ has the outcome
PA↑ = 1 with certainty, and the outcome of the other projection (if measured in-
stead) is also certain: PA↓ = 1. This can be readily verified using the ABL rule or
the standard formalism.
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Obviously, the measurement of the product of the projections is certain too:
PA↑ PA↓ = 0, so this example shows also the failure of the product rule: at time t

we know with certainty that if A is measured, the outcome is a, and if B is measured
instead, the outcome is b, but nevertheless, the measurement of AB is not ab. (The
product rule does hold for the standard, pre-selected quantum systems.)

This example is mathematically equivalent to the three-box paradox [4] in which
a single pre- and post-selected particle can be found with certainty both in box A if
searched there and in box B if searched there instead. These bizarre properties of
elements of reality generated much controversy about the counterfactual usage of
the ABL rule (� Counterfactuals in Quantum Mechanics). It should be stressed that
“elements of reality” should not be understood in the ontological sense, but only in
the operational sense, given by their definition.

The most important outcome of the TSVF is the discovery of weak values of
physical variables [5]. When at time t , another system couples weakly to a variable
O of a pre- and post-selected system 〈�| |�〉, the effective coupling is not to one
of the eigenvalues, but to the weak value:

Ow ≡ 〈�|O|�〉
〈�|�〉 . (6)

The weak value might be far away from the range of the eigenvalues, and this can
lead to numerous surprising effects, described in the entry � Weak Value and Weak
Measurement.

There is an important connection between weak and strong measurements. If the
outcome of a strong measurement O = oi is known with certainty, the weak mea-
surement has to yield the same value, Ow = oi . The inverse is true for dichotomic
variables: if the weak value is equal to one of the two eigenvalues, a strong mea-
surement should give this outcome with certainty.

In both strong and weak measurements, the outcome manifests via the shift of
the pointer variable. For strong measurements it might be random, but for weak
measurements it is always certain (and equals to the weak value). Sometimes it is
called “weak-measurement elements of reality” [9].

A generalization of the concept of the two-state vector (with natural general-
izations of the ABL rule and weak value) is a “superposition” of two-state vectors
which is called a generalized two-state vector [4]:

∑
i

αi〈�i | |�i〉. (7)

A quantum system described by a generalized two-state vector requires pre- and
post-selection of the system together with an ancilla which is not measured between
the pre- and post-selection.

Systems described by generalized two-states vectors might have more unusual
properties. The � Heisenberg uncertainty relation breaks down in even more
dramatic way: we can have a set of many non-commuting observables having
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dispersion-free values and not just the trivial case of two, one observable defined
by pre-selection and another by post-selection. An extensively analyzed example of
this kind is “the mean king problem” [6, 7] in which we have to know all observ-
ables of the set of the non-commuting observables for all possible outcomes of the
post-selection measurement.

Another natural multiple-time non-local generalization is to consider 2N-state
vector (or generalized 2N-state vector) which provides a complete description of
how a (composite) system can affect other systems coupled to it in N space-time
points. Preparing and testing such 2N-state vectors require multiple-time and
non-local measurements. (Note that causality puts some constrains on such mea-
surements [10].) An incomplete description in which we associate only one (forward
or backward) evolving state with some space-type points is also of interest. For ex-
ample, two spin- 1

2 particles in an entangled “state” which evolves forward in time
for one particle and backward for the other particle, can be completely correlated:

1√
2
(|↑〉A 〈↑|B + |↓〉A 〈↓|B) . (8)

Here, the measurements of the spin in components in any direction yield the same re-
sult for both particles. There is no pre-selected quantum system with such property.

The TSVF is a time symmetric approach. However, there are some differences
between forward and backward evolving quantum states: we can always create a
particular forward evolving quantum state, say |A = a〉. We measure A, and if the
outcome is a different eigenvalue than a, we perform an appropriate transformation
to the desired state. We cannot, however, create with certainty a particular backward
evolving quantum state, since the correction has to be performed before we know the
outcome of the measurement. The difference follows from the time asymmetry of
the memory arrow of time. This asymmetry is not manifest in the ABL rule and the
weak value, because the outcome of measurement is the shift of the pointer during
the measurement interaction and this is invariant under changing the direction of
time evolution. The shift is between zero and the outcome of the measurement and
this is where the memory arrow of time introduces the asymmetry. The state “zero”
is always in the earlier time: we do not “remember” the future and thus we cannot
fix the final state of the measuring device to be zero.

The TSVF is equivalent to the standard quantum mechanics, but it is more
convenient for analyzing the pre- and post-selected systems. It helped to discover
numerous surprising quantum effects. The TSVF is compatible with almost all in-
terpretations of quantum mechanics but it fits particularly well the � many-worlds
interpretation. The concepts of “elements of reality” and “weak-measurement ele-
ments of reality” obtain a clear meaning in worlds with particular post-selection,
while they have no ontological meaning in the scope of physical universe which in-
corporates all the worlds. Finally, the TSVF provides a framework for a modification
of quantum mechanics [11] in which the backward evolving state is actually exists
now, and it is not just a useful tool for describing pre- and post-selected systems. In
this radical proposal there is no collapse and there are no multiple worlds.
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Uncertainty Principle, Indetermincay Relations

See � Heisenberg uncertainty relations.

Unitary Operator

Werner Stulpe

Unitary operator, a sharpening of the concept of an isometric operator. A linear� operator J defined on a complex (real) Banach space X (� Hilbert space) with
values in some complex (real) Banach space Y is called isometric or an isometry
if it preserves the norm, i.e., ‖Jφ‖ = ‖φ‖ for all φ ∈ X . An isometric operator
is bounded (� operator) with norm ‖J‖ = 1, invertible, and the range RJ is a
closed (� Hilbert space) submanifold of Y which is, even in the case Y = X , in
general smaller than Y (if X and Y have the same finite dimension, then RJ = Y).
The inverse operator J−1 is an isometry with domain DJ−1 = RJ and the range
RJ−1 = X . Two Banach spaces X and Y are called (norm-) isomorphic if there
exists an isometry from X to Y such that RJ = Y .

An isometric operator J defined on a complex (real) Hilbert space H with values
in some complex (real) Hilbert space K automatically preserves the scalar products
also, i.e., 〈Jφ|Jψ〉 = 〈φ|ψ〉 for φ,ψ ∈ H. Such an operator is called unitary [1–6]
if H and K are complex Hilbert spaces and if its range is K. That is, a linear operator
U from some complex Hilbert space H to some other complex Hilbert space K is
unitary if (i) DU = H, (ii) 〈Uφ|Uψ〉 = 〈φ|ψ〉 for φ,ψ ∈ H, and (iii) RU = K.
The inverse U−1 is also unitary where, in the case of H = K, U−1 = U∗ holds (the
assumption H = K is not necessary, but corresponds to the definition of the adjoint
operator given in the section � operator).

The following example shows that an isometric operator acting in a complex
Hilbert space is in general not unitary. Let φ1, φ2, . . . be a complete orthonormal
system of an infinite-dimensional separable � Hilbert space H. For every vector
ψ ∈ H, ψ =∑∞

i=1 αiφi ,
∑∞

i=1 |αi |2<∞, define Jψ =∑∞
i=1 αiφ2i ; J is isometric

since ‖Jψ‖2 =∑∞
i=1 |αi |2 = ‖ψ‖2, but J is not unitary since RJ �= H. In particu-

lar, the Hilbert space H is isomorphic to the subspace (closed submanifold) spanned
by φ2, φ4, . . .. An important example of a unitary operator is the Fourier transform
in the Hilbert space L2(R, dx) of the square-integrable functions on R. For func-
tions φ ∈ L2(R, dx) that are also integrable (i.e., for φ ∈ L2(R, dx) ∩ L1(R, dx)),
one can define the Fourier transform φ̃ of φ by φ̃(k) = 1√

2π

∫
R
φ(x)e−ikxdx and the
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Fourier transform F by Fφ = φ̃. Since φ̃ ∈ L2(R, dx) and F is a densely defined,
norm-preserving linear operator, F can uniquely be extended to an isometry defined
on L2(R, dx) with values in L2(R, dx); moreover, since the range of this isometry is
L2(R, dx),F becomes a unitary operator (Fourier–Plancherel theorem). The preser-

vation of the scalar product reads explicitly
∫
R
φ(x)ψ(x) dx = ∫

R
φ̃(k)ψ̃(k) dk

where φ,ψ ∈ L2(R, dx).
The (pure) states and � observables of a sort of quantum systems are traditionally

described by the unit vectors of a Hilbert space H and by the self-adjoint operatorsA
acting in H, respectively. Given a unitary operator U from H to some other Hilbert
space K, the state vectors ψ ∈ H, ‖ψ‖ = 1, can be transformed according to ψ ′ =
Uψ and the observables according to A′ = UAU−1. Under this transformation, the
physically meaningful expectation values remain invariant: 〈ψ ′|A′ψ ′〉 = 〈ψ|Aψ〉.
The representation of the states and observables by unit vectors and self-adjoint
operators in H is unitarily equivalent to the representation by vectors and operators
in K. This is applied in the context of representations of quantum mechanics (e.g.,
configuration-space or momentum-space representation, matrix representations) as
well as in the context of pictures of quantum dynamics (Schrödinger, Heisenberg,
and interaction picture).

Given a � self-adjoint operator A in H with spectral measure E, for each t ∈ R

a unitary operator eitA is defined by 〈ψ|eitAψ〉 = ∫
R

eitλ〈ψ|E(dλ)ψ〉, ψ ∈ H. The
family of the unitary operators Ut = eitA, t ∈ R, satisfies (i) U0 = I , (ii) Us+t =
UtUs = UsUt for all s, t ∈ R, and (iii) ‖Utφ − φ‖ → 0 for all φ ∈ H as t → 0.
A family of unitary operators Ut with t ∈ R and the properties (i)–(iii) is called a
strongly continuous one-parameter group of unitary operators. To each such one-
parameter group there exists a uniquely determined self-adjoint operator A such
that Ut = eitA (Stone’s theorem). Thus, there is a one-one correspondence between
the self-adjoint operators A in H and the strongly continuous one-parameter groups
of unitary operators Ut ; A is called the infinitesimal generator of Ut , t ∈ R. The

derivative d
dt Utφ

∣∣∣
t=0

= limh→0
Uhφ−φ

h
, the limit being taken in the norm of H,

exists if and only if φ ∈ DA where d
dt Utφ

∣∣∣
t=0

= iAφ. Moreover, for all φ ∈ DA and

all t ∈ R, Utφ ∈ DA and d
dt Utφ = iAUtφ. If the self-adjoint operatorA is bounded,

then in addition Ut = eitA = ∑∞
n=0

(it )n

n! A
n holds, the infinite sum converging

w.r.t. the operator norm. Furthermore, the one-parameter group Ut , t ∈ R, is norm-
continuous and d

dt Ut = iAUt , the derivative also being taken in the operator norm.
The energy observable of a sort of quantum systems is described by its � Hamil-

tonian operator H . The self-adjoint operator H also determines the time develop-
ment of the states; in fact, − 1

�
H is the generator of the time translations, i.e., every

state ψ0 ∈ H, ‖ψ0‖ = 1, at time t = 0 determines the state at any time t ∈ R

according to ψt = e− i
�
Htψ0. If ψ0 ∈ DH , then ψt ∈ DH for all t ∈ R, and ψt

satisfies i�ψ̇t = Hψt ; the latter ordinary differential equation in Hilbert space is the
abstract version of � Schrödinger’s equation.

In quantum mechanics, symmetry transformations (� symmetry) are also repre-
sented by unitary operators. For instance, in the Hilbert space L2(R, dx) (� Hilbert
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space) of � wave function of particles moving in one spatial direction, a unitary
operator Ua is defined by (Uaψ)(x) = ψ(x − a) where ψ ∈ L2(R, dx) and a ∈ R;
Ua describes the translation of the states ψ , ‖ψ‖ = 1, by a. The strongly con-
tinuous one-parameter group {Ua}a∈R has the infinitesimal generator −P = i d

dx ,
the differential operator P (� self-adjoint operator) is, up to the factor �, the mo-
mentum operator in the one-dimensional configuration-space representation. In this
representation the multiplication operatorQ (� self-adjoint operator) is the position
operator, and 1

�
Q is the infinitesimal generator of a one-parameter group {Ub}b∈R of

unitary operators; Ub describes the boost of the momentum of the states by b. In the
Hilbert space L2(R3, dx) of � wave function on three-dimensional configuration
space, a spatial rotation of the states is described by the unitary operator defined by
(URψ)(x) = ψ(R−1x) where R is a rotation of R3 and ψ ∈ L2(R3, dx). The fam-
ily {UR}R∈SO(3) is a unitary representation of the rotation group SO(3). Euclidean
transformations which associate every x ∈ R3 with Rx + a, a ∈ R3, give rise to the
unitary operators UR,a defined by (UR,aψ)(x) = ψ(R−1(x − a)).

The action of a unitary operator U can, since U is bounded, represented in
matrix form (� operator). As a consequence of U−1 = U∗, the matrix elements
uij = 〈φi |Uφj 〉, φ1, φ2, . . . being a complete orthonormal system in H, satisfy∑

j uij ukj = δik as well as
∑

j ujiujk = δik; i.e., the matrix elements constitute a
unitary matrix.

In the context of Hilbert spaces, partial isometries are sometimes of interest.
Given two Hilbert spaces H and K, a partial isometry from H to K is a linear
operator J from H to K such that (i) DJ = H, (ii) ‖Jφ‖ = ‖φ‖ for all φ belonging
to some subspace X of H, and (iii) Jφ = 0 for all φ ∈ X⊥. So H = X ⊕ X⊥,
K = RJ ⊕ R⊥J , ψ = φ + χ where ψ ∈ H, φ ∈ X , and χ ∈ X⊥; Jψ = Jφ, J
acts as an isometry on X and as a unitary operator between X and RJ (note that, as
a closed submanifold, RJ itself is a Hilbert space).
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V
Vector Model

Klaus Hentschel

The vector model was developed around 1920 to describe the intricate coupling of
angular momentum L (� Spin; Stern–Gerlach experiment) and � spin S to elec-
tric and magnetic fields (either inside the atom or to external fields imposed by
experimenters in � spectroscopy). Both L and S are modeled as vectors in three-
dimensional space; their vectorial sum, the total angular momentum, is J = L+ S.

According to space quantization � Stern–Gerlach experiment as first postulated
by Arnold Sommerfeld (1868–1951) in 1916, not all possible orientations of these
vectors relative to the electric or magnetic field (defining the direction of the z-axis)
are allowed. The projection of the angular momentum L onto the z-axis ought to
be multiples of �. This restriction also leads to similar restrictions of the orientation
of J and explains the symmetric splitting of spectral lines into multiplets in the
normal � Zeeman effect and � Stark effect in the most natural way. For atoms with
more than one electron, various ways of calculating the vectorial sum Jof all the
contributing angular momenta li and spins si = 1/2 are possible. Either all the li
are summed up first to one L, and then combined with S =∑isi , or all the li and
si are first summed up separately to ji with J =

∑
i ji (as shown in Fig. 1). Because

Fig. 1 Landé’s vector model: The orbit angular momentum vector L and the atomic core mo-
mentum vector R (later redubbed spin S) add up vectorially to the total momentum vector J. R, L
and J have to be imagined precessing around the external magnetic field (whose axis is by con-
vention always drawn vertically upwards). The component of J parallel to the magnetic field
determines the magnetic moment m of the atom which can only take quantized values because
of � space quantization. Source: Friedrich Hund, Geschichte der Quantentheorie (Mannheim: BI
Wissenschaftsverlag, 1984, 118; by permission of the publisher)
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of the noncommutativity of � operators, these two procedures are in general not
equivalent with each other. The first is called � Russell-Saunders-coupling, valid
for the lighter atoms, the latter � jj-coupling yielding the better approximation for
heavier atoms and for the energetically higher terms.

It turned out that in order to get satisfactory agreement with observable line split-
tings, the length of the vector L actually had to be proportional to the square root
of L(L + 1), with similar expressions for other vectors such as S and J. For
Alfred Landé (1888–1976), who first suggested this in 1919 within the framework
of Bohr’s and Sommerfeld’s semi-classical � Bohr atom model, this procedure was
admittedly fully ad hoc. Problems with this model even triggered a crisis of � quan-
tum theory between ca. 1923 and early 1925. Strange half � quantum numbers were
postulated by Werner Heisenberg (1901–76) and Wolfgang Pauli (1900–58) in early
1925, foreshadowing the concept of spin only to emerge in late 1925. A deeper un-
derstanding of this strange “numerology” in the “Zeeman salad” (both expressions
by representatives of the � Sommerfeld school) had to await the development of
formal quantum mechanics in 1925/26, in which the square of any � observable
A is defined as the two-fold action of an operator Â on a state vector, yielding its
eigenvalue ain the first step, and a + 1 in the second, thus Â2 yields a(a + 1) and
not a2.
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Wave Function

Helge Kragh

The wave function of a quantum-mechanical system is the quantity that allows
calculation of the various outcomes of an experiment or observation involving
the system. It characterizes the system’s physical state. The wave function ψ was
introduced as a central element in Erwin Schrödinger’s � wave mechanics in the
spring of 1926, whereas a similar quantity did not exist in the earlier versions of
quantum mechanics due to Werner Heisenberg, Max Born, Pascual Jordan and Paul
A.M. Dirac. But it was soon demonstrated that the various versions are mathe-
matically equivalent and that the wave function can be translated into � matrix
mechanics as a state vector.

Schrödinger introduced in a formal way the wave function in the very beginning
of the first communication of “Quantisierung als Eigenwertproblem,” where he just
called it “a new unknown ψ.” It appeared in his fundamental wave equation and
had to satisfy certain mathematical criteria, but its physical meaning was unclear.
What is waving? What is it waving in? It was tempting to ask such questions, but
it was soon realized that they carried no meaning. Schrödinger initially required ψ
to be real, but in his fourth communication he admitted that the “mechanical field
scalar ψ” was in general a complex quantity. This alone indicated that the wave
functions could not be given a physical existence in the same sense as, say, water
waves. In addition, the wavelike processes defined by ψ took place in the system’s
configuration space, not in the ordinary space.

Schrödinger initially thought of particles as represented by � wave packets, and
then, when the idea did not work, attempted to describe the electrical charge in
terms of ψ. This interpretation, too, had to be abandoned, and later in 1926 Max
Born proposed the � probability interpretation that since then has been generally
accepted. According to Born, ψ has not itself any direct physical meaning, although
the absolute square |ψ|2 = ψ∗ψ has. The quantity represents neither a particle nor
a charge density, but a probability density: |ψ|2dV is the probability that the system
is in the state ψ and localized in the volume element dV .

Ever since the birth of wave mechanics it has been discussed which kinds of
physical systems can be assigned a wave- or ψ-function. Niels Bohr always em-
phasized that measuring apparatus and like macroscopic objects are “classical” and
cannot be described by a wave function, whereas Schrödinger famously assigned
a wave function to a cat locked up in a sealed box (� Schrödinger’s cat). Arthur
Stanley Eddington was willing even to describe the universe in terms of ψ, an idea
which later was taken up in so-called quantum cosmology by Bryce DeWitt, James
Hartle, Stephen Hawking and others.
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Wave Function Collapse

I.-O. Stamatescu

Under “collapse of the wave function” (or “state vector reduction”) one understands
the ‘sudden’ change of the system’s state in a measurement. This change is not
reducible to classical “information gain”, but is a genuine quantum mechanical con-
cept, directly related to the concept of quantum state. It is especially relevant if we
consider that quantum mechanics describes the behaviour of individual systems. In
the following we shall first describe the role of the collapse as a formal concept in
this context, then we shall discuss some variants of physical approaches to collapse.
We shall comment on the notion of “individual systems” in quantum mechanics at
the end of this article.

Collapse in the formalism of quantum theory. (Figure 1).

Fig. 1 Time evolution, E, of ψ and collapse, C, adapted from R. Penrose, The Road to Reality
(2005, 823)
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The notion of state of a system is a fundamental concept in physics. In classical
physics all quantities which can be measured upon the system (� “observables”:
e.g., positions and momenta of a point particle) can, in principle, be simultaneously
assigned precise values and this uniquely defines the state. There is therefore a one
to one relation between states and observations. In quantum theory, however, only a
subset of observables can be fixed at any given moment. A maximally determined
state obtains by fixing a maximal set of simultaneously measurable (“compatible”)
observables, e.g., the position components. But there will be other observables, here
the momenta, which do not posses definite values in this state. Relating states to
observations is therefore a more special and not trivial procedure.

This also implies that the concept of � measurement becomes essential. Here
we shall only refer to an ideal measurement, which is understood as any physical
arrangement by which a particular observable concerning the system of interest is
fixed to some well defined value. But if the initial state of the system was such
that it did not determine this particular observable beforehand, this indeterminacy
will show up as irreproducibility of the result when repeating the experiment under
the same conditions (same apparatus and identically “prepared” systems). Only the
relative frequency of these results can be associated to a probability distribution de-
termined by the initial state (quantum effects show up here as interference terms and
non-trivial correlations when performing correlated measurements, which cannot be
understood classically � correlations in quantum mechanics). After the measure-
ment, however, the state of the system must be such that the measured observable
is no longer undetermined but has now been fixed to the measured value, hence the
state has changed abruptly and randomly with the given probability distribution. We
speak of collapse of the state anterior to the measurement onto the state in which
the measurement leaves the system.

The formalism of quantum theory allows to write any given state as a � super-
position of other states, in particular of such states where the observable of interest
has well defined values. Collapse, or state reduction means then the survival after
measurement of only that state out of the superposition for which the value of the
observable matches the result of the measurement.

In as much, therefore, that we can speak of individual systems and measurements,
collapse is a logically necessary ingredient in the formalism. The representation
of states as vectors in a � Hilbert space makes the above considerations transpar-
ent and well defined: linear combinations of vectors realize the superposition of
states, with the coefficients giving the weights and their square modulus the corre-
sponding probabilities. Here collapse appears as a sudden and generically random
change in the state vector, as opposed to the continuous, deterministic transfor-
mations of the latter due to the various physical interactions the system may be
subjected to. Accordingly, in this setting the axioms of quantum mechanics include
a measurement and collapse postulate (von Neumann’s “first intervention”), besides
the definition of states as vectors in a Hilbert space (which incorporates the su-
perposition principle), the definition of observables and expectation values and the
dynamical evolution equations (von Neumann’s “second intervention”).
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In the following we shall be slightly more formal. The reader who does not want
to be bothered with technical detail may go directly to the Physical approaches.

The quantum mechanical Hilbert space is a generically infinitely-dimensional
linear space over the complex field, with an inner scalar product and the associated
norm and distance and which is complete under this norm. The states of a physical
system are represented as vectors in this space and physical interventions upon the
system as � operators acting on these vectors. In particular observables are repre-
sented as hermitean operators, in accordance with the reality of measurements. We
can use ortho-normalized bases and any vector can be decomposed in such a basis as

|ψ〉 =
∑
n

cn |ϕn〉, 〈ϕm|ϕn〉 = δmn, (1)

where we used in the Dirac bracket notation (� Dirac notation) for the vectors and
scalar products (for all these concepts see the corresponding articles). In the follow-
ing we shall only consider so-called pure states (� states, pure and mixed) and use
normalized vectors ‖ψ‖ = 1 with ‖ · ‖ : the Hilbert space norm. The expectation
of any operator A in the state |ψ〉 is then 〈ψ|A|ψ〉 and all information about possi-
ble observations onto the system in this state is contained in the “density operator”
(“� density matrix”)

ρ = |ψ〉 〈ψ| =
∑
n,m

cn c
∗
m |ϕn〉 〈ϕm|. (2)

with the help of which we can obtain expectation values for any observable.
If we choose the basis vectors |ϕn〉 above to be eigenstates of some observable A

A |ϕn〉 = an |ϕn〉, (3)

then a measurement of A upon the system in state |ψ〉 will produce some value,
say an0 , with probability 〈ϕn0 | ρ |ϕn0〉 = |cn0 |2 and leave the system in the state
ϕn0 . This means an abrupt change of the state vector which can be seen as a sudden
“rotation” of the latter aligning it with one of its components, chosen randomly with
the mentioned probability:

|ψ〉 =
∑
n

cn |ϕn〉 −→ |ψ ′〉 = |ϕn0〉. (4)

This “reduction of the state vector” (collapse, or von Neumann’s “first interven-
tion”) is to be contrasted with the deterministic dynamical evolution of the state
vector due to physical interactions (von Neumann’s “second intervention”), realized
by a � unitary operator acting continuously in time, (written in differential form this
is the � Schrödinger equation):

|ψ(t)〉 = U(t, t0) |ψ(t0)〉. (5)



816 Wave Function Collapse

Physical approaches to collapse
The conceptual differences between von Neumann’s first and second interven-

tions have led to many interpretational problems. In standard quantum theory the
collapse of the wave function is associated with the measurement but the moment of
its occurrence (the “Heisenberg cut”) can be anywhere between the actual interac-
tion of the system with the apparatus and the conscious registration of the result. If
the observer is considered external this appears to introduce a subjective element in
the theory, with corresponding ambiguities (� “Wigner’s friend”). These problems
have prompted many attempts to give the collapse a more physical ground. These
attempts can be divided in three classes: “no collapse” (in deterministic extensions
which reproduce quantitatively quantum theory), “apparent collapse” (in quantum
theory itself within a certain interpretation) and “dynamical collapse” (in the frame
of theories which approximate quantum theory).

The first class essentially corresponds to the � hidden variables theories. In this
case there is no collapse at all, the state precisely determines every observable and
the spread of results in a repeated experiment is due to the different values taken by
the “hidden variables” which make that we in fact deal with different initial states
each time, the difference escaping however our control (is hidden). An elaborated
theory hereto has been set up by D. Bohm 1952 and has been further developed
thereafter. It is a celebrated theorem established by J. S. Bell 1964 that demanding
agreement with quantum theory requires non-local hidden variables. This is brought
to a quantitative test in the so called Bell inequalities � Bell’s theorem for correlated
measurements which should be fulfilled for local hidden variable theories. Experi-
ments up to date appear to violate these inequalities and show agreement with the
quantum mechanical predictions. Non-local hidden variables, though allowed by
this test, contradict a basic principle of physics – � locality. This, and difficulties in
pursuing this program for realistic physical theories diminishes the attractiveness of
hidden variable theories.

In the second case the accent is on illuminating the physics of the measurement
process. We shall here discuss the so called environmental decoherence argument
as raised by H. D. Zeh 1970 and W. H. Zurek 1981. The measurement is realized
by some physical interaction with an “apparatus” understood as a quantum system.
The discussion uses the observation that quantum systems which in some way form
a compound have to be considered as “entangled”, which means that in a generic
state of the compound system the component systems do not possess a separate
state. This is a generic feature of quantum theory and means among others that, in
principle, the notion of isolated system is only an approximation whose goodness
depends on the physical situation. Now, a measurement implies an � entanglement
between the system and the apparatus. Moreover, since the latter essentially is a
macroscopic system, it unavoidably will be entangled with an environment which is
not accessible to our observations (e.g., light scattered from the pointers and leaving
the experimental arrangement). Observations upon the system imply therefore an
averaging over the states of the environment which are associated with different
“pointer” states of the apparatus and are macroscopically different. This leads to the
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loss of observable interference between the different states of the apparatus. This
simulates therefore a classical statistics.

To be more specific (again, these technical aspects can be skipped), if ϕ{1}n , ϕ{2}n

are bases for the two component systems in a binary compound (say, two atoms in
a molecule) a generic state of the latter is

|�〉 =
∑
m,n

cmn |ϕ{1}m 〉 |ϕ{2}n 〉

=
∑
n

cn |ψ{1}n 〉 |ϕ{2}n 〉, (6)

where for the second equation we used a certain redefinition of the states. This
total wave function generally does not factorize, hence it does not allow any of the
two systems to be in a definite state. With ‘1’ designating an apparatus and ‘2’ a
system to be measured (6) is also a model for the physical interactions during a
measurement process:

|�〉 =
∑
m,n

cmn |ϕ{app}
m 〉 |ϕ{sys}

n 〉

=
∑
n

cn |ψ{app}
n 〉 |ϕ{sys}

n 〉. (7)

The apparatus is entangled both with our system and with the environment. Let us
consider the apparatus as being such that the total wave function can be written as

|�〉 =
∑
n

cn |φ{env}
n 〉 |ψ{app}

n 〉 |ϕ{sys}
n 〉, (8)

where the environmental states |φ{env}
n 〉 differ macroscopically and are therefore or-

thogonal. Since we have no access to the situation of the environment (we cannot
make correlated experiments involving the states of the environment), according to
the quantum mechanical formalism any information we can obtain about the system
is contained in the “reduced density matrix” where the environmental situation has
been “traced out”:

ρred =
∑
k

〈φ{env}
k | |�〉 〈�| |φ{env}

k 〉

=
∑
n

|cn|2 |ψ{app}
n 〉 |ϕ{sys}

n 〉 〈ψ{app}
n | 〈ϕ{sys}

n |. (9)

At variance to the general case (2), ρred is diagonal, which implies that we cannot
observe the typical quantum mechanical interference between the different possible
issues of the measurement.
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This consequence – the simulation of a classical statistics – of the “unavoidable
entanglement” with an uncontrollable environment stays at the basis of the effect
called � decoherence which is a specific quantum mechanical effect implying no
further hypothesis. It is always present, independently of interpretations, of mea-
surement models, etc. and is well defined in each physical situation. Its relevance for
the measurement is to “de-correlate” the various possible results, as shown above,
which therefore appear as distributed according to a classical ensemble. This does
not replace collapse (which requires the choice of just one of these possible results,
accompanied by the corresponding acquirement by the system of the correspond-
ing wave function, after the interaction with the apparatus has ceased). However, it
makes possible an alternative point of view, that of an “apparent collapse”. The basis
for this point of view is the so called “relative state interpretation” of quantum me-
chanics proposed by H. Everett III 1957, according to which all possible outcomes
of each measurement coexist but that due to the local nature of the observations
their histories form different branches of the evolution of the total system (in end
effect, the world). (� Many worlds interpretation). The role of decoherence effects
at measurement is now to ensure that no local observations can put into evidence
correlations between the different branches, which are thus completely “unaware”
of each other. From the point of view of one given branch the other components
of the wave function appear therefore as irretrievably lost. Although the system is
still entangled with the rest of the universe and therefore does not possess in princi-
ple a wave function for itself, any observations upon the system within one branch
give the same results as if formal collapse had occurred (the observer is viewed
as part of the quantum world and thus his consciousness follows the same branch-
ing pattern). This perspective calls for cosmological arguments. A picture of these
steadily branching histories is however difficult to realize and, for instance in the so
called “many-worlds” representation, somewhat unintuitive. Related interpretations
are provided, e.g., in the � consistent histories approach of R.B. Griffith 1984 and
M. Gell-Mann and J. B. Hartle 1990.

Finally, the class 3 models define collapse as a genuine physical effect. This
obtains as a supplementary postulate, which, in the formulation of G. C. Ghirardi,
A. Rimini and T. Weber 1975, (� GRW Theory) states that the wave function of any
spatial degree of freedom collapses spontaneously in a random manner, thereby fix-
ing this degree of freedom to a value randomly chosen with the distribution given by
the wave function before collapse (“spontaneous collapse” or “spontaneous localiza-
tion” hypothesis). There are also other possibilities to achieve a dynamical collapse,
for instance turning the Schrödinger equation into a stochastic differential equation
through the addition of a non-linear noise term as proposed by P. Pearle 1976. In
this case the collapse is only approximate, the collapsed wave function retaining an
exponentially falling tail. The main features are, however, similar, namely:

– Even if for each degree of freedom the collapse occurs extremely rarely, the
apparatus being a macroscopic object will be steadily subject to collapses. Since
the (microscopic) system to be measured becomes entangled with the apparatus,
see (7), the collapse acting in the latter and retaining some term, say |ψ{app}

n0 〉
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of the superposition automatically selects the corresponding component vector of
the system, |ϕ{sys}

n0 〉, fixing in this way the corresponding observable and leaving
the system in a pure state. Therefore this model explains measurement.

– Collapse as a physical random process is not compatible with quantum mechan-
ics in the sense that it leads to measurable deviations from the predictions of the
latter. The details (parameters) of this process can be, however, so tuned, that
these effects are detectable only for macroscopic systems, where they are wel-
come, but not for microscopic systems, where to a good precision the standard
quantum mechanical predictions should hold.
To be more specific, in the discrete random collapse model, for instance, with
a frequency of spontaneous collapses of, e.g., 10−17s−1 the wave function of a
microscopic system will collapse about once in 1010 years, the age of the uni-
verse, while a macroscopic body with typically 1023 degrees of freedom would
undergo a collapse as often as 106 times per second. This is compatible both
with the behaviour of atoms, with the action of an apparatus and with the local-
ized appearance of macroscopic objects, for which the successive spontaneous
localizations of internal degrees of freedom soon pins down the center of mass
of the body. Similar effects are obtained in the noisy dynamics models.

– The collapse is assumed to act on spatial degrees of freedom (“spontaneous local-
ization”) which is reasonable since usual interactions are local. It seems difficult,
however, to obtain relativistic generalizations of the model, in particular for local
quantum field theories.

Replacing the formal postulate of “collapse in the measurement” by the postulate
of “general stochastic evolution” of the wave function appears somewhat arbitrary
and one would like to have corroboration from further observations. This, however,
appears very difficult, since the predicted new physics has similar signature with
environmental decoherence and would be masked by the latter even if present. As
long as we have no independent evidence for such a universal stochastic dynamics
its postulate remains however ad hoc.

Note that none of these proposals really solves the problem, namely to provide
a non-formal explanation for the collapse and the measurement process of standard
quantum mechanics: either we modify the theory in an in principle measurable way
(even if we may tune the parameters to ensure that the difference does not show up in
practice), or we only provide an “as if” effect (even if the difference to true collapse
might be of only cosmological relevance). This has prompted Bell to speak of “good
for all practical purposes” in connection with some of these (and others) “solutions”.
Finally, non-local hidden variables might not be seen as a real alternative. But even
if not solving the problem the various theoretical studies contributed very much to
illuminate it.

As already mentioned, the problem of collapse is relevant in an interpretation
of quantum theory pertaining to individual events. Many of the conceptual prob-
lems can be discarded in a statistical interpretation which states that wave function,
collapse, etc. are only mathematical instruments which allow us to make statistical
predictions, and the latter are the only place where theory meets the real world. It
may appear, however, that this ”economical” point of view unnecessarily impov-
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erishes the theory. In fact statistics is not a real “thing” or event in itself, but is a
conclusion drawn from the observation of many single events. The theory does refer
to the latter individually and in some special cases does this in an unambiguous way,
for instance when it predicts probability 0 or 1 for a certain event. These are incen-
tives to assume that it does account for individual events generally, even if we cannot
make an intuitive picture of this reference. It would seem, in some sense, quite a mir-
acle and in fact unintuitive to have the extraordinary explanatory power of quantum
theory based on a lucky choice of theoretical “instruments” completely detached
from reality. This does not mean that wave functions, etc. should exist as such in
reality, but that there are things and a structure in reality which support such abstrac-
tions. On the other hand it seems rather difficult to grasp this structure. Its features,
as they might be suggested by the theory, do not appear unambiguous and easily
understandable. The foregoing discussion of the collapse illustrates these problems.

Bell’s inequalities. (See also � Bell’s theorem)

The non-classical character of the correlation in the expectations concerning cor-
related measurements on two entangled subsystems which do not possess states of
their own, i.e., if it is not possible to rewrite (6) as a product of two factors, can
be quantitatively exhibited in corresponding experiments. Assume we measure the
properties A, A′ on system ‘1’ and B, B ′ on ‘2’, that is, we use the observables
(hermitean operators) {O} = {A⊗ B, A′ ⊗ B, · · · } and construct the quantity:

�(A,A′;B,B ′) ≡ |E(AB)− E(AB ′)| + |E(A′B)− E(A′B ′)|, (10)

where E denote the corresponding expectations in the given state of the total system:

E(O) = 〈�|O|�〉. (11)

Then we have (we choose ‖O‖ � 1, i.e., ‖Oψ‖ � ‖ψ‖, ∀ψ):

�(A,A′;B,B ′) = |〈�|A(B − B ′)|�〉| + |〈�|A′(B + B ′)|�〉| (12)

= |〈A�|(B − B ′)�〉| + |〈A′�|(B + B ′)�〉|
� ‖A�‖.‖(B − B ′)|�‖ + ‖A′�‖.‖(B + B ′)�‖
� ‖(B − B ′)�‖ + ‖(B + B ′)�‖
�
√

2[‖(B − B ′)�‖2 + ‖(B + B ′)�‖2] (13)

=
√

4[‖B�‖2 + ‖B ′�‖2] � 2
√

2. (14)

If we were dealing with a classical problem, that is the expectations were taken
with respect to a classical ensemble:

Ec(O) =
∫

Odμ, (15)
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with dμ a (positive semidefinite) probability measure and {O} real valued functions
(assumed to be less than 1 in absolute value) we would have instead:

�c(A,A
′;B,B ′) = |Ec(A(B − B ′))| + |Ec(A

′(B + B ′))| (16)

� Ec(|A|.|B − B ′|)+ Ec(|A′|.|B + B ′|) � Ec(|B − B ′|)| + Ec(|B + B ′|)
= Ec(|B − B ′| + |B + B ′|) � 2, (17)

since the general inequality:

‖a‖ + ‖b‖ �
√

2(‖a‖2 + ‖b‖2) (18)

which was used in (13) could be replaced by the equality:

|a| + |b| = |a + b.sgn(ab)| (19)

if a, b are real numbers. The inequality (12,14) can be saturated if B, B ′ (A, A′) do
not commute and the subsystems are non-trivially correlated, i.e., |�〉 does not fac-
torize and the subsystems are not in pure states. Notice that (16,17) would also hold
if our quantum mechanical problem were reducible to a classical one (local hidden
variables). These are the well known Bell’s inequalities, 1980, and the experimental
evidence to date seems to violate the bound (16,17) and to support (12,14).
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Wave Mechanics

Marianne Breinig

In 1926 Erwin Schrödinger published a consistent mathematical theory of quantum
mechanics, which became known as wave mechanics. He developed a partial dif-
ferential equation, the � Schrödinger equation, which now is considered the basic
equation of non-relativistic quantum mechanics. Although wave mechanics was
soon shown to be equivalent to � matrix mechanics, the competing theory of
quantum mechanics developed by Werner Heisenberg in 1925, many physicists fa-
vored wave mechanics, because they considered it more intuitive and because the� Schrödinger equation was often easier to solve than the Heisenberg equation.

The Schrödinger equation,

(−�
2/(2m))∇2ψ(r, t)+ U(r, t)ψ(r, t) = i�∂ψ(r, t)/∂t,

describes the time evolution of the wave function ψ(r,t) which characterizes a non-
relativistic particle of mass m, without internal structure, whose potential energy is
given by U(r, t). It can be generalized to a many-body equation

∑
i

[(−�
2/(2mi))∇2

i ψ(r1, r2, . . . , t)]

+U(r1, r2, . . . , t)ψ(r1, r2, . . . , t) = i�∂ψ(r1, r2, . . . , t)/∂t.

Consider a single particle. The � wave function ψ(r, t) contains all the informa-
tion the rest of the world, called the observer, can have about the particle at time t ,
without interacting with the particle. An interaction is called a � measurement. It
changes the information the observer has about the particle and therefore changes
the wave function. Between measurements the wave function evolves determini-
stically.

The wave function is interpreted as the probability amplitude of the particle’s
presence. |ψ(r, t)|2 is the probability density. (� Born rule) The probability that
a particle at time t will be found in a volume element d3r located about r is
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dP(r, t) = |ψ(r, t)|2d3r . For a single particle the total probability of finding it
anywhere in space at time t is equal to 1. (In non-relativistic Quantum Mechan-
ics material particles, unlike photons (� light quantum), are neither created nor
destroyed.) Therefore ∫

all space

|ψ (r, t)) |2d3r = 1.

A proper wave function must be square-integrable and therefore normalizable.
The Schrödinger equation implies local conservation of probability. The proba-

bility current density is given by

j(r, t) = 1

m
Re

[
ψ∗ (r, t)

�

i
∇ψ (r, t)

]
,

and the equation

− ∂

∂t
|ψ (r, t) |2 = ∇ · j (r, t) ,

which expresses local conservation of probability, can be obtained multiplying the
Schrödinger equation by ψ*(r,t) and its complex conjugate by −ψ(r,t) and adding
the two equations.

To make predictions about the outcome of a measurement, we must operate on
the wave function with an � operator. Every measurable quantity or observable is
associated with a Hermitian operator. For example, the operator for the x-component
of the momentum px is the differential operator (�/i)∂ /∂x. We have to take the par-
tial derivative of the wave function with respect to x and then multiply by (�/i). The
operator for the energy E is i�∂ /∂t . It is also a differential operator. The operator
for the position x is x. We have to multiply the wave function by x. If the opera-
tor for a particular observable A operates on a wave function ψ(r, t) and the result
of this operation is the wave function ψ(r, t) multiplied by a real constant, then
the wave function is said to be an eigenfunction of the operator and the constant is
one of its eigenvalues. A measurement of the observable at time t will for certain
yield the eigenvalue. There will be no uncertainty about the outcome of the mea-
surement. If the operator for a particular observable A operates on a wave function
ψ(r, t) and the result of this operation is NOT the wave function ψ(r, t) multiplied
by a real constant, then the wave function is NOT an eigenfunction of the operator
and there is uncertainty about the outcome of a measurement. The result of every
measurement of an observable will be one of its eigenvalues. But if the wave func-
tion ψ(r, t) is NOT an eigenfunction of the operator, then all we can predict is the
probability of measuring any of the possible eigenvalues. We then can predict the
average value of repeated measurements on identically prepared systems, but we
cannot predict the outcome of an individual measurement.

Given the normalized wave function ψ(r, t), the expression for the mean value
of an observable A is < A >= ∫ d3rψ∗ (r, t)Aψ (r, t).
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The root mean square deviation �A = √< A2 > − < A >2 characterizes the
dispersion of the measurement around < A >. It is a measure of the spread that one
should expect in the result of a measurement of the observable A.

The principle of spectral decomposition states that any wave functionψ(r, t) can
be expanded in terms of the eigenfunctions of any observable. Let {ψ i

a (r)} denote the
set of orthonormal eigenfunctions of the observable A, and let A ψ i

a (r) = aψ i
a (r).

If the eigenvalue a is degenerate, then the superscript i denotes different eigenfunc-
tions with the same eigenvalue a. Any wave function ψ(r, t) can be written as

ψ (r, t) =
∑
a,i

cia(t)ψ
i
a (r) , with

∑
a,i

|cia(t)|2 = 1.

The cia(t) are the expansion coefficients. If the observable A is measured, the
result of the measurement will belong to the set of eigenvalues {a}. Spectral
decomposition, see � Density operator; Ignorance interpretation; Measurement the-
ory; Objectification; Operator; Probabilistic Interpretation; Propensities in Quantum
Mechanics; Self-adjoint operator.

The probability that a measurement of A at time t will yield the eigenvalue a′ is

Pa′ =
∑
i

|ci
a′(t)|2,

If a measurement of A yields a′, then the wave function immediately after the mea-
surement is ψa′ (r, t) =

∑
i

ci
a′(t)ψ

i
a′ (r).

The Schrödinger equation describes how the wave function evolves between
measurements. To determine the wave function ψ(r, t0) at some initial time t0, we
have to measure a complete set of commuting observables, i.e., a set of observables
that have a unique set of common eigenfunctions. The results of the measurements
at t0 then specify the wavefunction ψ(r, t0) completely.

The Schrödinger equation for a particle moving in one dimension through a re-
gion where its potential energy is a function of position only has the form

(−�
2/(2m))∇2ψ(r, t)+ U(r)ψ(r, t) = i�∂ψ(r, t)/∂t.

We are often interested in finding the eigenfunctions of the energy operator
i�∂ /∂t , i.e., we are interested in finding the wave functions of a particle whose en-
ergy can be predicted with certainty. For an eigenfunction of the energy operator we
have

i�∂ψ(r, t)/∂t = Eψ(r, t).

Therefore
ψ(r, t) = ψ(r)exp(−iEt/�).

For eigenfunctions of the energy operator the Schrödinger equation becomes time
independent.

(−�
2/(2m))∇2ψ(r)+ U(r)ψ(r) = Eψ(r, t).
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The operator (−�2/(2m))∇2 + U(r) is called the Hamiltonian operator H, and
the time-independent Schrödinger equation is often abbreviated as

Hψ(r) = Eψ(r).

The possible solutions ψ(r) of the time-independent Schrödinger equation are
the eigenfunctions of the � Hamiltonian operator. The corresponding wave func-
tions ψ(r, t) are obtained by just multiplying ψ(r) by exp(−iEt/�), where E is the
appropriate eigenvalue for each eigenfunction of H. The wave function of a parti-
cle whose energy E can be predicted with certainty is of the form ψ(r, t) = ψ(r)
exp(-iEt/�).

The probability density then is given by

|ψ(r, t)|2 = ψ(r)exp(−iEt/�)ψ∗(r)exp(iEt/�) = |ψ(r)|2.

The probability of finding the particle with well defined energy at a particular
position r is therefore independent of time. The probability current density is zero.
The particle is said to be in a stationary state.

The Schrödinger equation is a linear equation. There exists a linear operator that
transforms ψ(r, t0) into ψ(r, t).

ψ(r, t) = U(t, t0)ψ(r, t0).

The operator U(t, t0) is called the evolution operator. The evolution operator
is a unitary operator. If H does not explicitly depend on time, then the Schrödinger
equation yields U(t, t0) = exp(−iH(t−t0)/�). If an arbitrary wavefunctionψ(r, t0)
is expanded in terms of eigenfunctions of H, i.e., if

ψ(r, t0) =
∑
n

cnψn(r),

with Hψn(r) = Enψn(r), then

ψ(r, t) =
∑
n

cnexp(−iEn(t − t0)/�)ψn(r) =
∑
n

cn(t)ψn(r).

This yields the wave function at any time t .
A simple example:
Assume we want to solve the Schrödinger equation in one dimension,

(−�
2/(2m))∂2ψ(x)/∂x2 + U(x)ψ(x) = Eψ(x).

Defining k2
1 = 2mE/�2, k0(x)

2 = 2mU(x)/�2, and k(x)2 = k2
1 − k0(x)

2 we
can simplify the notation.

∂2ψ(x)/∂x2 + k(x)2ψ(x) = 0,
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Let us solve this equation for the “infinite square well.” We assume U(x) = 0
for x = 0 to L, and U(x) = infinite everywhere else. A particle cannot penetrate a
region with infinite potential energy, there is no chance that we can find it there, and
its wave function in that region is zero. We put the particle in a one-dimensional box,
out of which it has no chance of escaping. In the region from x = 0 to x = L the
potential energy U(x) = 0. The particle can freely move inside the box. Therefore
k0(x) = 0 and k(x)2 = k2

1. Possible wave functions for the particle must satisfy the
equation

∂2ψ(x)/∂x2 + k2ψ(x) = 0,

and they must be zero at x = 0 and x = L, because the eigenfunctions of H must be
continuous and the wave function is zero outside the region from x = 0 to x = L.
Real solutions of the Schrödinger equation which are zero at x = 0 and x = L

are ψ(x) = A sin(kx), with kL = nπ, with n = 1, 2, 3, . . .. The possible values
of k are kn = nπ/L, the possible values of the energy are En = �2k2

n/(2m) =
n2π2�2/(2mL2). The potential and the first five possible energies a particle can have
are shown in Fig. 1. units are used (Fig. 1).

The energy of a particle in an infinite square well is quantized. If we measure
the energy we can only measure one of the eigenvalues, En = n2π2�2/(2mL2),
n = 1, 2, 3,. . . . The confinement of the particle leads to energy � quantization. If
we measure En, then right after the measurement the wave function of the particle is

ψn(x, t) = An sin(nπx/L)exp(−iEnt/�).

The square of the normalized wave function |ψn(x, t)|2 = |ψn(x)|2 = A2
nsin2

(nπx/L) is equal to the probability per unit length of finding the particle with energy
En at position x. To normalize the wave function we have to choose A2

n = 2/L.
Then ∫+∞−∞ |ψ(x, t)|2dx = 1, and the total probability of finding the particle inside
the well is 1.

A particle in an infinite square well does not have to be in an eigenstate of the
energy operator. If we measure the position of a particle in the well and find it at

Fig. 1 Energy levels of a
particle in a 1D “infinite
square well”
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some position x, then right after the measurement the particle is in an eigenstate of
the position operator. Its energy is unknown, we can at most determine its average
energy and the probability of measuring one of its eigenenergies in a subsequent
measurement. Right after our measurement, the particle is in a � superposition of
energy eigenstates. Let us investigate one of those superpositions.

Assume a particle of mass m moves in one dimension in a square well with walls
of infinite height a distance L apart and that the particle is known to be in a state
consisting of an equal admixture of the two lowest energy eigenstates of the system.

P(x, t) = |ψ(x, t)|2 is the probability per unit length of finding the particle at
position x as a function of time.

ψ(x, t) = 2−1/2[ψ1(x, t)+ ψ2(x, t)], with

ψ1(x, t) = (2/L)1/2 sin(πx/L) exp(−(i/�)E1t),

ψ2(x, t) = (2/L)1/2 sin(2πx/L) exp(−(i/�)E2t),

and E1 = π2�2/(2mL2), E2 = 4π2�2/(2mL2).

Therefore

|ψ(x, t)|2 = (1/2)|ψ1(x, t)+ ψ2(x, t)|2
= (1/L)| sin(πx/L) exp(−(i/�)E1t)+ sin(2πx/L) exp(−(i/�)E2t)|2
= (1/L)[sin2(πx/L)+ sin2(2πx/L)
+2 sin(πx/L) sin(2πx/L) cos((E2 − E1)t/�)].

P(x, t) is no longer independent of time, the probability per unit length of finding
the particle at x is changing with time. The probability current density at position
x is

j (x, t) = (�/m)Re((−i)ψ∗(x, t)∇(ψ(x, t)

= (π�/(mL2)) sin(πx/L)(1− cos(2πx/L)) sin((E2 − E1)t/�)

and we can verify that −∂|ψ(x, t)|2/∂ t = ∂j(x, t)|/∂x.
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Wave Packet

Helge Kragh

A wave packet is a concentrated train of (quantum) waves of various wavelengths
or momenta with the property that the packet is confined within a small region of
space. Such a packet can be constructed by adding a very large number of waves so
chosen that their sum interferes destructively everywhere except in a small region. If
harmonic waves of different momenta are superposed, the packet can be expressed
in the form ψ(x) = ∫ A(k)eikxdk where k = p/� and A(k) is the amplitude corre-
sponding to the wave number k.

Although speculative attempts to identify atoms with systems of standing waves
can be found back in the nineteenth century, in a quantum context it was Schrödinger
who invented wave packets and related them to atomic particles. In his second
communication on � wave mechanics Schrödinger discussed the possibility of
constructing a wave group or packet equivalent to a pointlike particle, such as an
electron, and in a subsequent paper of 1926 he provided a more elaborate discus-
sion in which he introduced the � superposition principle. Analyzing the case of
a one-dimensional harmonic oscillator, Schrödinger constructed for the first time a
wave packet as an exact solution of the � Schrödinger equation. Making use of the
superposition principle, he constructed a wave packet of the form ψ =∑ anψn/n!,
where a is a large number, ψn are the eigenstates, and 0 � n � ∞. The result-
ing wave packet, he showed, remains compact as time goes on and it has an energy
which is exactly the same as the one of the classical oscillator. Schrödinger’s wave
packet was a “minimum uncertainty wave packet,” the first example of what later
became known as “� coherent states.” He believed that this result would be valid
also for electrons moving in atomic orbits and, if so, that it indicated that perhaps
electrons and other particles are wave packets. At the end of his paper he foresaw
that it was only a matter of time until “the representation by wave mechanics of the
hydrogen atom” � Bohr’s atom model would be achieved.

However, in letters to Schrödinger from June 1926, Lorentz demonstrated that
a permanent wave packet cannot be constructed for an atomic electron and that
Schrödinger’s success with the harmonic oscillator was accidental. “In the present
form of your theory you will be unable to construct wave packets that can repre-
sent electrons moving in very high Bohr orbits,” Lorentz wrote. It is unknown how
Schrödinger reacted, but most likely Lorentz’ critique contributed to a change in his
ontology: by the fall of 1926 Schrödinger concluded that his original belief in the
primacy of waves was not an integral part of wave mechanics.

Some of Lorentz’s objections were independently made by Heisenberg in his
famous paper of 1927 in which he introduced the � Heisenberg uncertainty prin-
ciple, which he derived by means of arguments based on wave packets. According
to Heisenberg, “Schrödinger’s reasoning is only viable for the case of the harmonic
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oscillator treated by him; in all other cases a wave packet spreads out in the course
of time over the whole immediate neighborhood of the atom.” He observed that the
peculiar properties of the wave packet Schrödinger had found was a consequence of
the fact that the energy levels of the harmonic oscillator are equally spaced (namely,
given by En = (n + 1/2)�ω). Moreover, Heisenberg found that the size of the
probability wave packet – ψ ψ* rather than ψ – representing a freely moving parti-
cle would increase indefinitely with the time.

Wave packets were not only important in the chain of arguments that led Heisen-
berg to his uncertainty relations, they also played a crucial role in Bohr’s physical
interpretation of quantum theory and his formulation of the � complementarity prin-
ciple in the fall of 1927 where he used wave packets to represent both � light quanta
and � electrons. The problem with the wave packet picture illustrated to Bohr that
“the contrast between the wave theory superposition principle and the assumption
of the individuality of particles” was irremediable. At that time, Schrödinger had
abandoned his wave ontology and no longer thought of electrons as constituted by
wave packets.

The papers by Schrödinger and Heisenberg were discussed by several physicists
in 1927–1928, including George Darwin, Earle Kennard and Arthur Ruark, who all
recognized that electrons cannot be represented just as wave packets. Or, as Kennard
expressed it, “the electron must always be assigned a greater degree of reality than
that of a wave packet.”

As indicated by the title of Schrödinger’s paper of 1926, “The Continuous Tran-
sition from Micro- to Macromechanics,” his aim was to understand the behaviour of
macroscopic bodies from quantum principles. Although wave packets would not do
as representations of subatomic particles, in 1927 Paul Ehrenfest showed that there
were no corresponding problems with spreading wave packets (Fig. 1) in the case of
macroscopic bodies. As an example he calculated the time it would take for a par-
ticle of mass m and represented by a probability wave packet of width Δ to spread

Fig. 1 Example of a wave packet. Source: Wikimedia Commons
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out to double its initial size. His result was T ∼= Δ
√
m/�. Because of the smallness

of � Planck’s constant (� = 1.05× 10−34 Js) this means that the doubling time is
nearly infinite for a macroscopic particle. For a particle of linear size Δ = 0.001 cm
and mass m = 1 g, the doubling time is about 10,000 times the age of the universe.

Another important work, relating to Schrödinger’s and Ehrenfest’s, was due
to Peter Debye, who showed that � wave packet, simulating mass and charge
points, can be constructed also without using the special expansion coefficient that
Schrödinger had used in his treatment of the harmonic oscillator. Debye discussed
in 1927 the behaviour of wave packets of one degree of freedom for any kind of
force, and found that their maxima move in accordance with the classical laws. His
work was one of many that aimed at showing the correspondence-like connection
between quantum mechanics and classical physics.
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Wave-Particle Duality: Some History

Bruce R. Wheaton

Our modern understanding of light is the result of dispute since the scientific revo-
lution of the seventeenth century. The roots of that contention, however, precede the
contributions of Aristotle, and I daresay the final story has yet to be written.

Following Plato and his student Aristotle, what we see in our lives are “sec-
ondary” qualities that originate from an unseen world of “primary” events. In their
view whatever the primary causes of sound should seem similar to the water, and
of matter to the rocks we encounter in life. The earlier philosophers tended to find
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guidance from a single entity: Thales from water with its waves lapping the shores;
Anaximines sowed the seeds of all within all, a proto-atomic hypothesis later devel-
oped by Demokratus and Leucretius. For Aristotle, light was special. It can coexist
in the celestial and earthly world, thus it could not be compounded of Empedokles’
four elements. He refers to light as a process, an “actualization” of a latent property.
Light thus occurs instantaneously, since it is not propagated. That light delineates
straight lines underlay surveying and observational astronomy, and made both ac-
cessible to geometry, like mechanics, in the ancient world.

Aristotle’s worldview dominated natural speculation throughout the middle ages.
But the distinction between the discrete and the continuous is an important philo-
sophical issue that has driven epistemological discussion in the west since the
pre-Socratics. Its modern locus in quantum physics is only the most recent man-
ifestation. It informed discussion of the contrast amongst Empedokles’ elements;
figures in Aristotle’s Platonic distinction between what we observe and the un-
derlying primary qualities of things; of theological issues in the middle ages; of
renaissance mathematics upon the introduction of numerical al-jebra in conflict
with Greek continuity; of nascent optics; of electron/field physics after Maxwell;
and its modern quantum guise will be diverted and changed in the future. These
conflicting views, a Hegelian dichotomy, had competed for hegemony in western
natural philosophy since before Aristotle.

Even with the remarkable advances in medieval study of optical properties of
lenses for eyeglasses, the telescope, the microscope; discovery of Snell’s law of re-
fraction (1621); even later successful attempts to measure the speed of light (Roemer
1676); one finds little inquiry into the nature, rather than the properties, of light even
in writings of masters like Averroes, Witelo, and Kepler. Descartes, for example,
pictured the cosmos a plenum in which light is the pressure exerted by motion of
its parts at a distance from the eye. Before refined devices existed to measure the
quantitative properties of light, the issue remained one of smoke and mirrors.

But with the revolution in science of the seventeenth century, all changed. Ma-
terialism rose ascendant, so observed secondary properties, even of light, tended
to be ascribed to unperceived atoms. Thus natural philosophers of the eighteenth
century set themselves the goal of verifying what many took to be Isaac Newton’s
corpuscular theory of light (henceforth CT) in its finest manifestations.

Newton’s Opticks (1704 and later editions) capped his efforts beginning in 1672
to extend mathematical analysis to include refraction, diffraction, and color. Newton
ascribed the observed periodicity (“Newton’s rings”) to “fits of transmission” by
what otherwise must be something like particles of light, particles that differ in their
three spatial dimensions; and he assigned different particle-like characteristics to
each color of light as its “connate property.” By this he explained the peculiarity of
the beam splitting in two on transmission through calcite, long-known as a useful
navigating tool called “Iceland spar.”

Leonhard Euler’s Nova theoria lucis et colorum (1746) represents the crest of
the opposing undulatory theory (UT) in the eighteenth century. He proposed a truly
periodic wave where light frequencies parallel the harmonies of sound. But in this
period when wave interference was barely recognized, the ability of any wave to
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yield observed rectilinear propagation raised grave difficulties, and Euler’s ideas
were not widely embraced even on the continent. The battleground would be the
fine points of light in its interaction with matter. Rectilinear propagation and re-
flection favored the CT, in accord with senses of taste and touch. Refraction and
diffraction constituted as seemingly fatal a difficulty for any CT as rectilinear prop-
agation posed for the UT, based on senses of sight and hearing.

Christaan Huygens (1629–95), struck by the incompatibility of geometric con-
tinuity with algebraic discreteness, had offered an elegant explanation of both
properties in 1678 that light is best portrayed as an irregular sequence of dis-
continuous impulses propagating in a medium (not UT.) Newton’s authority had
bullied most philosophers of the eighteenth century to overlook Huygens’ penetrat-
ing objections. The devil clearly lay in the details and the battle soon focused on
polarization which seemed explainable on both accounts to the kinetic ontology of
the time, now to be described.

The “Laplacian school” in early nineteenth century France accorded conceptually
coherent explanation of reflection, refraction, diffraction, and polarization in terms
of gravity-like forces acting within atomic ‘atmospheres’ of subtle caloric fluid. Us-
ing crystals as analyzers, Etienne Malus found that sunlight can be polarized just
by reflecting off materials like glass and water. This eliminated the atomic atmo-
sphere necessary to Pierre-Simon Laplace’s position and dulled Ockham’s razor to
an extent that began to offend, even in France.

Educated in Scotland, English dissenter Thomas Young studied medicine in
Göttingen and took interest in hearing and the acoustical waves of sound as dis-
cussed by, among others, Euler. His detailed studies of the physiology of the eye
soon turned up so many parallels between observable properties of sound and light
that he was led to Newtonian heresy before 1800. Young proposed an UT he sought
to authenticate as the “true” Newtonian view, an ambiguity, like the sense of smell,
somewhere between particles and waves.

Young developed many practical demonstrations for public lectures in London
of his belief that, like sound, light is a longitudinal wave. He demonstrated that,
like acoustic sound, hydrodynamic water waves passed through a double aperture
show marked interference effects, producing no disturbance where the crests of one
align with the troughs of the other, as in Fig. 1 � double-slit experiment. And he
extended this analogy to light with little idea of the medium in which it propagated,
but thereby calculating the approximate wavelength of light by 1803.

Throughout these public claims, Young apologized that the water waves, being
transverse, were only an approximation to the longitudinal waves of light and sound.
His qualitative results made their way despite the Napoleonic wars to the director
of the Bureau des Longitudes, François Arago (1786–1853) who passed the issue
to his cadet. Augustin Fresnel (1788–1827), son of a mason in Normandy, given
the most rigorous scientific education available anywhere in the world at the Ecole
Polytéchnique, found the CT untenable in principle. Mathematically adept, Fresnel
saw through the mathematical haze to the physical failure of the Laplacian program.
Because Fresnel had come to his revelation in ignorance of Young’s but armed with
differential equations, a crucial difference emerged. From the first Fresnel admitted
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Fig. 1 Young’s ripple tank results of interference of equal frequencies from A & B: low at C & E,
high at D & F. From Young, Course XX, 267 (1807)

a transverse component in polarization-induced color changes in thin crystals, he
came by 1821 to realize that the transverse tail must be wagging the longitudinal
dog. Polarization is most realistically treated mathematically as interference of two
waves moving along the same line but separated by a 90◦ (λ/4) phase shift; their
interference in an analyzing crystal produces the observed result.

This implied that wave direction could as readily be thought to lie orthogonal
to the physical motion of the aetherial medium. Indeed, were the transverse com-
ponent to rotate rapidly enough about that direction of wave motion, the polarizing
asymmetry would vanish and appear as unpolarized light. Lacking the acoustic base
from whence Euler and Young proceeded, Fresnel’s mathematical analysis of in-
terference could now stand on purely transverse waves. Figure 2 is his version of
Young’s experiment, except here the two sources A and B are the diffracted waves
at the edges of obstacle AB. In Young’s hydrodynamic image the water goes up
and down while the wave proceeds along the surface; he had been apologizing for a
decade about the inaccuracy of his ripple tank, so Fresnel’s transverse waves came
as a lightning bolt.

Fresnel’s 1816 “Mémoire sur la diffraction de la lumière” is the foundation of the
classical UT of light; it led to remarkable tools like � spectroscopy to analyze the
chemical nature of the stars. That paragon combination of theory and experiment,
Heinrich Hertz declaimed in 1889 that “for all practical purposes, the wave theory
of light is a certainty.” Despite the immense advances that acceptance of the UT’s
enlightened legacy brought, it too would shift out of favor in the twentieth century.

Cracks in the UT began to appear, almost unnoticed, in the 1880s with the fa-
mous aether-drift experiments of Americans Albert Michelson and Edward Morley
that seemed to find no aether in which light could propagate. But the most chal-
lenging troubles followed concurrent improvements in vacuum technology that led
to cathode discharge tubes and to discovery of � X-rays in 1895. The most rele-
vant explanation of this “new form of radiation” was a resuscitation of Huygens’
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Fig. 2 Fresnel’s mathematical reconstruction of Young’s double-slit experiment, where the
sources A & B are the waves from a single source diffracted at the edges of obstacle C. Fresnel
was able to show that the lines of equal interference (like F1 & F2 are hyperbolic). From Verdet,
ed. Oeuvres d’Augustin Fresnel, vol. 1, p. 95, Paris: Imp. imp., 1866

disconnected impulse model of light, now from the pen of George Stokes. Today we
have an acoustic analogy to this early view of X-rays (and Huygens’ of light): the
sonic boom. Constructed by superposition of wake vibrations in the continuum of
the atmosphere, it has nonetheless a localized effect on the ground. You hear it as if
it were a pistol shot. It combines the UT and the CT in a trice and its possibilities,
other than the pregnant Cherenkov radiation (� Bremsstrahlung), have been largely
ignored by physicists and left to SST designers.
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Wave-Particle Duality: A Modern View

Bruce R. Wheaton

Our understanding of light is the result of dispute since the scientific revolution of
the 17th century. Students of physics today are taught “wave-particle duality”: belief
based on otherwise conflicting experiments that electromagnetic radiation is a peri-
odic wave that, at high frequencies, exhibits increasingly localized concentration of
energy. It is a wave with particle characteristics: something akin to energy that under
some circumstances exhibits interference like periodic waves, and under others acts
like a stream of bullets.



Wave-Particle Duality: A Modern View 835

W

Primary Literature

1. Aristotle: De anima, 418–419
2. I. Newton: Opticks. A brief preliminary version (Moxon, London 1670) caused so much ran-

corous contention with Robert Hooke that Newton withheld publication to (Smith and Walford,
London 1704) after Hooke’s death. With important later additions, the prime source is the 4th
edn. of 1730 readily available (Dover, New York 1979)

3. Th. Young: Bakerian lecture: Experiments and calculations relative to physical optics. Royal
Society of London Philosophical Transactions 94, 1–16 (1804)

4. Th. Young: Course of lectures on natural philosophy (Johnson, London 1807, Vol. 1, on hydro-
dynamics p. 290; on sound pp. 389–96; on light pp. 464ff; the double-slit is plate XX, figure
267). The remarkable Baconian encyclopaedic approach of the man can be divined merely by
reading his short introduction and analytical table of contents

5. A. Fresnel: Oeuvres completes (ed. Verdet Paris: Imp. imp., 1866 vol. 1, 9–33; 89–122*; 129–
170). *This appeared in Annales de chemie et physique 1, 239–81 (1816); all were published
in the Comptes rendus of the Academie, but not until after Fresnel was elected a member in
1823, four years before his death from tuberculosis

Secondary Literature

6. S. Boffi, M. D’Anna: Le radici del dualismo onda-corpuscolo (Bibliopolis, Napoli 1999)
7. R. McCormmach: J. J. Thomson and the structure of light. British Journal of the History of

Science 3, 362–387 (1967)
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In optics, Newton’s corpuscular theory (CT) of light was later challenged by a
purely periodic undulatory theory (UT) espoused by Young and Fresnel. With the
discovery in 1895 of � x-rays, the then accepted UT came under new attack, particu-
larly in their now-measurable electrical effect on gases. J. J. Thomson, was alarmed
that light, like x-rays, seemed to ionize precious few of the atoms it encountered.
Were either a UT product propagating spherically, more atoms should be ionized
than he could find. He suggested light itself might be “directed radiation” sometimes
called “needle rays,” and began to wonder around 1909 whether very weak light
would still show classical � double-slit experiment. The experiment, performed by
Geoffrey Taylor with yellow light of such low intensity the photographic exposure
took a week, nonetheless produced the classic pattern of fringes.

It seemed that only evidence for interference of x-rays would clear up the mat-
ter and decide in favor of the UT, but it was not to be. Walther Friedrich & Paul
Knipping’s claim to find x-ray crystal interference in 1912 coincided with the aban-
donment of the last classical attempt to explain the optical � photoelectric effect.
On the one hand 1912 brought the UT into greater coherence with x-rays. On the
other it forced acceptance of the new quantum transformation relation (QTR) on the
absorption of light by metals; that is, of Einstein’s widely-rejected � light-quantum
from 1905.

It was one thing to claim that light is emitted in quantum units, but an entirely
different matter to understand how it could possibly be absorbed only in quanta.
How does an atom ‘know’ that it has absorbed enough UT light? It seemed impos-
sible, but Einstein might be right that light is in some way corpuscular. What tipped
the balance in the early 1920s also came from � x-rays. When they ionize a gas,� electrons are released. But two paradoxes had been found in this process. (� Er-
rors and paradoxes in quantum mechanics). If x-rays are spherically propagating
electromagnetic effects, they spread their effect over increasingly larger spherical
shells centered on their point of production. If there is enough energy at any point
in a shell to ionize an atom, all atoms at that distance should be ionized, yet too few
electrons were being found: a paradox of “quantity.” The ones released should only
receive 1/4πd3 the total energy in the shell at distance d , yet those few electrons
had far too much kinetic energy: a paradox of “quality.”

Clearly the � light-quantum could no longer be ignored. The most influential
experiments were done on generalized x-ray scattering results in the U.S. by Arthur
Compton (� Compton effect), on the x-ray � photoeffect in France by Maurice de
Broglie, and on similar γ -ray phenomena in Britain by Charles Drummond Ellis
(1895–1980). In all cases the corpuscular behavior of electromagnetic radiation
prevailed: see � matter waves.

In 1928 Werner Heisenberg reconciled and codified the incommensurability in-
herent in the new quantum mechanics in the form of his “indeterminacy principle”� Heisenberg uncertainty relations. Although he formulated it to rationalize the
non-commuting properties necessitated by his � matrix mechanics, in its most
fundamental form regarding position and momentum it speaks directly to wave-
particle duality. To be monochromatic, a wave must extend to infinity. When
interpreted as a probability, such a � wave function spreads the likelihood of finding
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the associated particle also over infinite dimension. Correspondingly, if the position
of, say, an electron is precisely fixed by experiment, its � wave packet is con-
strained to a small spatial dimension, and the Fourier expansion of such a small
‘wavelet’ leaves its frequency indeterminate. L. De Broglie’s � matter-wave me-
chanics relationship λ = h/p fixes the momentum of the electron to that frequency,
so �x�p ∼ h as Heisenberg’s principle requires.

These considerations were most troubling to atom-architect Niels Bohr, whose
adherence to classical principles was as rock beneath his physics. He rationalized
the wave-particle divide in a tribute to Volta in 1927 as characteristic of different,
co-existing physical systems that “complement” one another at their intersection.
Others, like Einstein, would not go even that far and rejected the anti-deterministic
consequences required by the new quantum mechanics. A series of objections
followed over the years: � Einstein-Podolsky-Rosen paradox; Bohm’s qualitative� hidden variables; L. de Broglie’s theory of the double-solution; all intended
(without success) to show that determinism persists, perhaps only hidden to human
perception, and that wave-particle duality is a chimera. In 1964 John Bell quantified
Bohm’s hidden variable hypothesis, showing that were measurement of the state of
one particle formerly entangled with that of another to fix that of the other before
its measurement, certain Bell inequalities, must hold. (� Bell’s theorem). Careful
experiments on correlated � spin determinations of parts of former molecules, and
on locations of formerly associated photons (� light quantum) failed to exhibit those
inequalities, hence corroborating the orthodox quantum mechanical view.

The latter prescient example is double-slit interference, like Young showed to be
true for light. (See part 1 supra.) If it were possible, without disturbing the interfer-
ence pattern, simultaneously to determine through which slit the “particle” traveled,
the thrust of Heisenberg’s principle could be parried. Einstein proposed a double-slit
thought experiment in which the recoil of the slits themselves might signal which
was penetrated, and it was promptly challenged by Bohr, acting to defend what
came to be called the “Copenhagen interpretation.” � Born rule; Consistent His-
tories; Metaphysics in Quantum Mechanics; Nonlocality; Orthodox Interpretation;
Schrödinger’s Cat; Transactional Interpretation.

From the 1927–8 electron crystal scattering results by Davisson (USA) and G.
Thomson (UK) right up to the 1960s, classical double-slit interference of electrons
remained in the “Gedankenexperiment” realm. Then Jönsson in Tübingen found a
clever means to produce slit masks of unprecedented minuteness (ca 1 μ). Figure 1
shows the result for double-slit interference of an electron beam, the first direct
corroboration that the Young result still obtains.

These considerations have led more recently to attempts to determine which aper-
ture an electron has passed through without disturbing the wave interference pattern
that results. Bohr had argued persuasively that, according to his � correspondence
principle, this was not possible, even after Einstein posited his recoiling slit thought
experiment to do so. However with recent development of micromasers, a proposal
(Scully et al. 1991) to detect “which way” (which slit) an excited rubidium atom
(85Rb) passes through a system of micromaser cavities might answer: one of the two
masers will detect an emitted microwave photon and leave which-way information,



838 Wave-Particle Duality: A Modern View

Fig. 1 Electron-optical
two-slit interference. Source:
Zeitschrift für Physik 155
(1959), 427–74

see Fig. 2. (� Which-way experiments). On this view, the non-interference pattern
expected by Bohr is the � superposition of two identical interference patterns 180◦
(λ/2) apart in phase: one due to photons whose “which way” slit is determined,
the other caused by those whose “which way” information is not determined. Ac-
cording to the experimenters it is due to ‘the correlation of the centre-of-mass wave
function to the photon degrees of freedom in the cavities that is responsible for the
loss of interference.’ [10, p. 114]

More recently, refined experiments resulted in a curious inversion of the Braggs’
classic 1913 research program to determine material crystal structure using inci-
dent x-rays. In 1998 excited rubidium atoms were projected onto a “lattice” of
standing-beam light-waves. [4] When a second quantum system was added to the
microwave interferometer it was able to store pathway information in the atom beam
with the result that the interference pattern disappeared. While the effect appeared
to be below the Heisenberg threshold, the conclusion was that it was due to cor-
relations (an environmental form of � “entanglement”) between the microwave
detector and quantum-kinetic motion within the rubidium beam itself. These possi-
bilities have naturally led to controversy, raising the interesting question of whether� complementarity trumps indeterminacy (� Heisenberg’s uncertainty relation),
and final conclusions remain, if at all, in the future.
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Weak Value and Weak Measurements

Lev Vaidman

The weak value of a variable O is a description of an effective interaction with that
variable in the limit of weak coupling. For a pre- and post-selected system described
at time t by the two-state vector 〈�| |�〉 [1], the weak value is [2]:

Ow ≡ 〈�|O|�〉
〈�|�〉 . (1)

Contrary to classical physics, variables in quantum mechanics might not have
definite values at a given time. In the complete description of a usual (pre-selected)
quantum system, the state |�〉 yields probabilities pi for various outcomes oi of (an
ideal) measurement of the variable O . Numerous measurements on an � ensemble
of identical systems yield an average – expectation value of O:

∑
pioi . Since

pi = |〈O = oi |�〉|2, the expectation value can be expressed as 〈�|O|�〉. If the
coupling to the measuring device is very small, this expression is related directly
to the response of the measuring device, and the measurement does not reveal the
eigenvalues oi and their probabilities pi . Specifically, 〈�|O|�〉 is the shift of the
quantum state of the pointer variable of the measuring device, which, otherwise, is
not distorted significantly due to the measurement interaction.

For pre- and post-selected quantum system, the response of the measuring device
or any other system coupled weakly to the variable O , is the shift of the quantum
state by the weak value (1). The coupling can be modeled by the von Neumann
measurement interaction

H = g(t)PO, (2)

where g(t) defines the time of the interaction,
∫
g(t) = 1, and P is conjugate

to the pointer variable Q. The weakness of the interaction is achieved by choos-
ing the � wave function of the measuring device so that P is small. Small value
of P requires also a small uncertainty in P , and thus a large uncertainty of the
pointer variable Q in the initial state and consequently, a large uncertainty in the
measurement. Therefore, usually, we need a large ensemble of identical pre- and
post-selected quantum systems in order to measure the weak value.

For rare post-selection, when |〈�|�〉| # 1, the weak value (1) might be far
away from the range of the eigenvalues of O , so it clearly has no statistical meaning
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as an “average” of oi . If we model the initial state of the pointer by a Gaussian
�MD

in (Q) = (Δ2π)−1/4e−Q2/2Δ2
with large Δ ensuring small P , the final state, to a

good approximation, is the shifted Gaussian �MD
fin (Q) = (Δ2π)−1/4e−(Q−Ow)

2/2Δ2
.

The standard measurement procedure with weak coupling reveals only the real part
of the weak value, which is, in general, a complex number. Its imaginary part can
be measured by observing the shift in P , the conjugate to the pointer variable [3,4].

The real part of the weak value is the outcome of the standard measurement pro-
cedure at the limit of weak coupling. Unusually large outcomes, such as � spin
100 for a spin− 1

2 particle [2], appear from peculiar interference effect (sometimes
called Aharonov–Albert–Vaidman (AAV) effect) according to which, the superpo-
sition of the pointer wave functions shifted by small amounts yields similar wave
function shifted by a large amount. The coefficients of the superposition are univer-
sal for a large class of functions for which the Fourier transforms is well localized
around zero.

In the usual cases, the shift is much smaller than the spread Δ of the initial state
of the measurement pointer. But for some variables, e.g., averages of variables of a
large ensemble, for very rare event in which all members of the ensemble happened
to be in the appropriate post-selected states, the shift is of the order, and might be
even larger than the spread of the quantum state of the pointer [5]. In such cases the
weak value is obtained in a single measurement which is not really “weak”.

One can get an intuitive understanding of the AAV effect, noting that the coupling
of the weak measurement procedure does not change significantly the forward and
the backward evolving quantum states. Thus, during the interaction, the measuring
device “feels” both forward and backward evolving quantum states. The tolerance of
the weak measurement procedure to the distortion due to the measurement depends
on the value of the scalar product 〈�|�〉.

Since the quantum states remain effectively unchanged during the measurement,
several weak measurements can be performed one after another and even simulta-
neously. “Weak-measurement elements of reality” [6], i.e., the weak values, provide
self consistent but sometimes very unusual picture for pre- and post-selected quan-
tum systems. Consider a three-box paradox in which a single particle in three boxes
is described by the two-state vector

1

3
(〈A| + 〈B| − 〈C|) (|A〉 + |B〉 + |C〉) , (3)

where |A〉 is a quantum state of the particle located in box A, etc. Then, there are the
following weak-measurements elements of reality regarding projections on various
boxes: (PA)w = 1, (PB)w = 1, (PC)w = −1. Any weak coupling to the particle
in box A behaves as if there is a particle there and the same is true for box B.
Finally, a weak measuring device coupled to the particle in box C is shifted by the
same value, but in the opposite direction. The coupling to the projection onto all
three boxes, PA,B,C = PA + PB + PC “feels” one particle: (PA + PB + PC)w =
(PA)w + (PB)w + (PC)w = 1.
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There have been numerous experiments showing weak values [7–11], mostly of
photon polarization and the AAV effect has been well confirmed. Unusual weak
values were used for explanation peculiar quantum phenomena, e.g., superluminal
velocity of tunneling particles [12,13]. (� Superluminal communication; tunneling).

When the AAV effect was discovered, it was suggested that the type of an am-
plification effect which takes place for unusually large weak values might lead to
practical applications. Twenty years later, the first useful application has been made:
Hosten and Kwiat [14] applied weak measurement procedure for measuring spin
Hall effect in light. This effect is so tiny that it cannot be observed without the
amplification.
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Werner States

Antonio Acı́n

In our macroscopic world, correlations are established by means of a set of clas-
sical instructions, that could be agreed in advance or come from a source. Using
these pre-established instructions, distant parties that are unable to communicate
can behave in a correlated manner. Assume for instance a scenario where two dis-
tant parties are asked different questions from a set of m possible questions with
n possible answers. We denote by x and y the question asked to Alice and Bob,
while a and b label their responses. The correlations between the parties will be
described by a joint probability distribution p (a, b|x, y). If the parties received in
advance correlated instructions, denoted by λ, but are not able to communicate, the
probability distributions can generically be written as

pc(a, b|x, y) =
∑
λ

p (λ)p (a|x, λ)q(b|y, λ). (1)

In what follows, correlations of this form are called local, since they can be repro-
duced by means of a (local) model that uses only classical correlations, given by λ,
and local responses, namely p (a|x, λ) and q(b|y, λ).

Are these correlations modified if the parties share a quantum state of two par-
ticles, ρAB , instead of classical instructions? Here, after receiving the question, the
parties apply a local measurement, which depends on the question, on each particle
and decide the response depending on the obtained result. Any probability distribu-
tion that can be obtained in this way can be written, using the standard � Born rule
for probabilities, as

pq(a, b|x, y) = Tr(ρABM
x
a ⊗M

y

b ), (2)

where Mx
a and My

b are the operators describing the measurements by Alice and Bob.
Interestingly, not all the probability distributions having this quantum origin can be
written as (1), which means that � correlations in quantum mechanics are more
powerful than their classical counterparts.

All this discussion is nothing but a reformulation of the well-known fact that
quantum states violate Bell’s inequalities [1]. Indeed, beyond their clear fundamen-
tal importance, Bell’s inequalities can also be understood as constraints satisfied
by all probability distributions achievable by means of shared classical correlations
(1). � Bell’s Theorem, then, represents a seminal result for the understanding of
quantum mechanics, but also shows that quantum states can be used to establish
correlations between distant parties that are not achievable by classical means. A
quantum state is said to display non-local correlations when it leads to the violation
of a Bell’s inequality.
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A natural question then emerges: Do all quantum states contain non-local
correlations? It is relatively easy to see that (i) all entangled pure states (� states,
pure and mixed) that are not of product form, |ψ〉 �= |α〉 |β〉 violate a Bell’s inequal-
ity [2], while (ii) measurements on separable states, i.e. states that can be written
as a mixture of product states ρAB = ∑i pi |αi〉 |βi〉 〈αi | 〈βi |, always allow a local
description. Remarkably, there exist entangled mixed states, i.e. states that are not
separable, whose measurement correlations can also be described by a local model.
Thus, these states, despite being entangled, do not violate any Bell’s inequality. The
first examples of such states were derived in 1989 by Werner [3]. These states are
now known as Werner states and play a fundamental role in foundations of quantum
mechanics and quantum information theory.

Werner states, ρw, are those states belonging to a composite space Cd ⊗ Cd that
remain unchanged when the two parties apply the same unitary operation, (U ⊗
U)ρw(U ⊗U)† = ρw. For the sake of simplicity, we restrict here the considerations
to the simplest case of two-dimensional systems, d = 2. In this case, Werner states
are given by the mixture of a singlet state,

∣∣ψ−〉 = (|01〉−|10〉)/√2, and completely
depolarized noise,

ρw = p
∣∣ψ−〉 〈ψ−∣∣+ (1− p)

11

4
. (3)

Werner proved that these states are entangled whenever p > 1/3. If Alice and
Bob perform local � spin measurements on directions n̂A and n̂B, the obtained
correlations read

p (a, b|n̂A, n̂B) = 1− p × ab× n̂A · n̂B

4
. (4)

Here, n̂A and n̂B represent the labels for the local measurements by Alice and Bob,
while the measurement outcomes are a, b = +1,−1. The goal is to be able to
reproduce this probability distribution by means of classical correlations. Werner
built a local model achieving this. It works as follows: the classical correlations
are given by normalized real vectors, n̂λ ∈ R3. Alice’s response is governed by
the overlap between the received vector and the vector defining her measurement,
pw(+1|n̂A, λ) = (1 + n̂A · n̂λ)/2, as in the quantum case. Bob’s response is equal
to +1 if n̂A · n̂λ < 0, otherwise is −1. Putting all these things together, one can see
that the obtained correlations are the same as in the quantum case (4) with p = 1/2.
Therefore, Werner states with 1/3 < p � 1/2 have a local description despite being
entangled.

It is clear that Werner’s result represents a seminal and surprising achievement:
the fact that a state is entangled is not sufficient to display non-local correlations.
Since Werner’s original derivation, a few results have been able to generalize his
findings to other situations. Among them, there is the extension of Werner’s model
to completely general measurements [4] or to tripartite states [5]. At this point, it is
worth mentioning that even if the correlations between measurement outcomes on a
quantum state admit a local description, this state may have some hidden forms of� non-locality: for instance, it may display non-local correlations after sequences
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of local measurements [6,7] or be useful when performing quantum teleporation [8]� quantum communication. To conclude, the relation between � entanglement and
non-locality is fascinating and full of open questions!
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Which-Way or Welcher-Weg-Experiments

Paul Busch and Gregg Jaeger

The issue of the � wave-particle duality of light and matter is commonly illus-
trated by the � double-slit experiment, in which a quantum object of relatively
well defined momentum (such as a photon, electron, neutron, atom, or molecule)
is sent through a diaphragm containing two slits, after which it is detected at a cap-
ture screen. It is found that an interference pattern characteristic of wave behaviour
emerges as a large number of similarly prepared quantum objects is detected on the
screen. This is taken as evidence that it is impossible to ascertain through which
slit an individual quantum object has passed; if that were known in every individ-
ual case and if the quantum objects behaved as free classical particles otherwise, an
interference pattern would not arise.

The notion that a description of atomic objects in terms of definite classical par-
ticle trajectories is not in general admissible is prominent in Werner Heisenberg’s
seminal paper [1] of 1927 on the � Heisenberg uncertainty principle; there he notes:
“I believe that one can fruitfully formulate the origin of the classical ‘orbit’ in this
way: the ‘orbit’ comes into being only when we observe it.” In the same year, in
his famous Como lecture, Niels Bohr introduced the � complementarity princi-
ple, which entails that definite particle trajectories cannot be defined or observed
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ticle trajectories is not in general admissible is prominent in Werner Heisenberg’s
seminal paper [1] of 1927 on the � Heisenberg uncertainty principle; there he notes:
“I believe that one can fruitfully formulate the origin of the classical ‘orbit’ in this
way: the ‘orbit’ comes into being only when we observe it.” In the same year, in
his famous Como lecture, Niels Bohr introduced the � complementarity princi-
ple, which entails that definite particle trajectories cannot be defined or observed
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for atomic objects because according to it their spatiotemporal and causal descrip-
tions are mutually exclusive [2]. Bohr cited the uncertainty relation as a symbolic
expression of complementarity but recognized that this relation also offered room
for approximately defined simultaneous values of position and momentum. Still in
the same year, at the 1927 Solvay conference, Albert Einstein questioned the im-
possibility of determining the path taken by an individual particle in a double-slit
interference experiment [21]; he proposed an experimental scheme wherein he con-
sidered it possible to infer through which slit the particle passed, without thereby
destroying the interference pattern by measuring the recoil of the double-slitted di-
aphragm. This was the first instance of a welcher-weg or which-way experiment. As
Bohr reported in his 1949 tribute to Einstein [3], he was able to demonstrate that
Einstein’s proposal was in conflict with the principles of quantum mechanics.

In subsequent years, different variants of such a welcher-weg experiment were
considered as thought experiments illustrating the mutual exclusive options of either
determining the path of a quantum object or observing its interference behaviour. Al-
though Einstein’s proposal of measuring the recoil of the double-slit system to infer
the path was shown by Bohr to lead to an uncertainty of the slit location sufficient to
blur the interference pattern, Feynman [22] later argued that any attempt to observe
the path of an electron by shining light on it will lead to random momentum kicks
on it in line with the uncertainty principle, thus washing out the interference.

A more rigorous quantum mechanical model and analysis of Einstein’s which-
way thought experiment was undertaken by Wootters and Żurek in 1979 [4]. The
initial slit through which the photons are sent is suspended with a spring, and its
centre-of-mass motion is described quantum mechanically as that of particle sub-
jected to a harmonic potential. This allows for a choice of measurements that can
be performed on the slit once the photon (� light quantum) has passed it and pro-
ceeds through the double-slit system towards the final screen. If an (approximate)
measurement of the position of the slit is made, it is found that the photons imping-
ing on the final screen build up an interference pattern; on the other hand, if the
momentum of the initial slit is determined sufficiently precisely so as to allow the
determination of the photon’s path, the interference pattern does not develop. The
fact that both choices are possible after the photon has passed the screen is due to
quantum correlations (� entanglement) developing between states of the photon and
the initial screen; the experiment can thus be considered an instance of Wheeler’s� delayed-choice experiment [5]. (For a recent experimental realization, see [6].)

Wootters and Żurek also gave an information-theoretic characterization of the
trade-off between the quality of the path determination and the concurrent degrada-
tion of the interference contrast. They noted that even at 99% path certainty, there
is still an interference pattern with a crest to valley ratio of 3/2. In this way, they
demonstrated that Bohr’s initially strict notion of complementarity is compatible
with the notion of graded or quantitative complementarity (to which Bohr had al-
ready hinted in 1927 [2]), under which the exclusivity of the experimental options
for path determination and interference observation are characterized more precisely
and reconciled in a certain sense. This conclusion was subsequently corroborated by
demonstrations of the joint approximate measurability of noncommuting observ-
ables, such as complementary path and interference observables measured in the
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context of Mach-Zehnder interferometry. (Examples and references can be found in
the review [23].) In the 1980s, the discovery of novel information-theoretic uncer-
tainty relations (e.g., [7–9]) and a related Mach-Zehnder interferometric which-way
experiment performed with laser light [8] boosted interest in the investigation of
quantitative wave-particle duality.

In the Wootters-Żurek model, path information is obtained by effecting a mo-
mentum exchange between the photon and the initial slit screen. In 1991, Scully,
Englert and Walther proposed a radically new variant [10]. In their experiment,
each laser-excited atom of a beam passes through an initial double-slit diaphragm
and its possible paths are then directed through two auxiliary microwave cavities
that can be configured so as to allow the path information to be obtained before
it exits another double-slit diaphragm (see Figure 1). This allows entanglement to
arise between atomic-path and cavity occupation states. The interaction involved
is too weak to lead to any significant momentum transfer, which therefore cannot
account for the destruction of the final interference pattern. As also shown in [10],
the interference pattern can be restored if a suitable observable of the auxiliary sys-
tem not commuting with the path indication operator is precisely measurable in
an alternative configuration. Because the path information that would be present is
then no longer available, this phenomenon is called quantum erasure; it was first de-
scribed by Scully and Drühl in 1982 [11]; an experimental realization incorporating
the delayed-choice feature was reported in [12].

The Scully–Englert–Walther apparatus allowing one to switch between two such
configurations is a modification of the � double-slit experiment. By appropriately
switching between configurations, information associated with one or the other
non-commuting observable is erased. In the standard double-slit experiment, in
the configuration with both slits open, strong quantum interference is observed for
the input pure state (� states, pure and mixed) |ψ〉 = 1√

2
(|ψ1〉 + |ψ2〉), where

|ψi〉 is the state corresponding to entry with certainty into slit i = 1, 2, even when
elementary particles enter one by one; there are two paths that the initially pre-
pared members of the � ensemble could take from preparation to the measurement.
In another configuration where only one of the two slits is available at a time, so
that complete path information is obtained, then no interference pattern appears on
the detection screen; there is only one path history possible from preparation to
point of detection for each particle. In these two configurations, non-commuting� observables are measured, one in each case.

The Scully–Englert–Walther experiment adds an auxiliary system capable of be-
coming entangled with the primary quantum system. The enlarged apparatus allows
alternation between the above two cases, with the option to make the choice of con-
figuration at any time before the final screen is contacted. The auxiliary system can
definitively indicate, although indirectly, which slit was entered by the primary sys-
tem by exploiting state entanglement [10, 14]. The primary and auxiliary systems
are arranged so as to interact in such a way that phenomena which would have oc-
curred in one configuration are not exhibited in the other. The incoming quantum
ensemble is that of a beam of Rydberg atoms rather than of elementary particles,
a laser is introduced as the first apparatus element and is oriented perpendicularly
to the atom beam so as to allow its excitation, an auxiliary system consisting of
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Fig. 1 Apparatus for quantum erasure: A modified version of the standard � double-slit appara-
tus, where two intermediate microcavities with internal shutters (dark dashed lines) and a radiation
absorber (thick solid line) have been introduced and excited atoms are input that de-excite with cer-
tainty within one of the cavities. (a) Atom detections when shutters are opened; path information is
unavailable because radiation is indiscriminately absorbed. (b) Atom detections when the radiation
absorber is unreachable, so that radiation is selectively contained in one cavity or the other; path
information, which is incompatible with interference, is available. Opening the shutters, even after
each atom has passed the double-slitted diaphragm, effectively erases path information, which is
irretrievable from the common radiation absorber, taking case (b) to case (a)

a pair of micro-cavities is placed after it, and an additional double-slit diaphragm
placed after the cavities, as shown Fig. 1. The two micro-cavities are each of a length
such that the atoms will de-excite with extremely high probability between the their
entrances and exits. Each cavity will therefore capture any radiation emitted from
atoms entering it, allowing the atoms of the beam to become entangled with the
cavity pair before entering the remainder of the system. The two cavities constitut-
ing the auxiliary system are adjacent but separated by a wall covered on each side
by shutters which, when opened, allow captured radiation to be absorbed from ei-
ther cavity without the discriminating from where it came. Rapid switching of the
shutters between open and closed positions allows the choice of configuration to be
delayed until very near the time each atom strikes the screen.

In order to allow path information to be stored, the laser of this new apparatus
is sufficiently powerful that, when turned on, it will excite every one of the beam
atoms from its ground state to its excited state. The state of the atomic system is thus
prepared as |ψ(r)〉|j 〉 = 1√

2
(|ψ1(r)〉+|ψ2(r)〉)|j 〉, where the position coordinate of

the elementary particles of the standard experiment is replaced by that of the atomic
center-of-mass position coordinate r and the atomic internal states are written |j 〉,
j = 0, 1, the ground and excited states, respectively. Without the laser on, all atoms
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are in the ground state |0〉. The atom beam is then described by the pure product
state |ψ(r)〉|0〉, so that its squared magnitude, the probability density of detected
atoms at the final screen position r = R is

p(R) = 1

2

[(||ψ1(R)〉|2+||ψ2(R)〉|2
)+ (〈ψ2(R)|ψ1(R)〉+〈ψ1(R)|ψ2(R)〉

)]〈0|0〉,
with 〈0|0〉 = 1, that is, one finds the sort of interference pattern observed in the stan-
dard double-slit experiment when both slits are available. With the laser is turned on
and the shutters kept closed, with the atoms prepared in |ψ(R)〉|1〉, atomic radiation
is deposited into one of the cavities and the state of the enlarged system must be
considered, namely,

|�〉 = 1√
2

(|ψ1〉|0〉|1C10C2〉 + |ψ2〉|0〉|0C11C2〉
)

= 1√
2

(|ψ1〉|1C10C2〉 + |ψ2〉|0C11C2〉
)|0〉

where the subscripts {Ci} indicate the cavity pair with eigenstates |kC1 lC2〉, with
k = 0, 1 indexing the occupation eigenvalue of cavity 1 feeding slit 1 and l = 0, 1
indexing that of cavity feeding slit 2.

Thus, with the laser turned on and cavity shutters kept closed, the external atomic
state and the occupation state of the two-cavity system become entangled, whereas
the internal atomic state factors out. The probability density for arrival of atoms at
point R on the screen is that shown in case (b) of Figure 1:

p = 1

2

[
(||ψ1〉|2 + ||ψ2〉|2)+ 〈ψ1|ψ2〉〈1C10C2|0C11C2〉
+〈ψ1|ψ2〉)〈0C11C2|1C10C2〉

]〈0|0〉
where here, as in the previous equation, the position argument R in p(R), |�(R)〉,
and |ψi(R)〉 has been omitted but is implied. Then, 〈1C10C2|0C11C2〉 = 0 and
〈0C11C2|1C10C2〉 = 0 imply that the terms including them are zero. The observed
interference pattern of atoms striking the final screen is thus p(R) = 1

2 ||ψ1(R)〉|2+
1
2 ||ψ2(R)〉|2, a simple probability sum corresponding to state mixture; the introduc-
tion of the cavities which selectively interacting with passing atoms depending on
their proximity to each slit allows for distinguishability in principle of the paths of
the atoms as long as their interior shutters are kept closed. The atomic detection pat-
tern can be understood to occur because the enlarged system contains entangled sub-
systems. However, the path information encoded in this de facto two-cavity memory
can readily be erased by switching instead to the configuration in which the internal
shutters of the two cavities are opened, which allows the stored radiation to reach the
photon absorber. In that case, because the radiation in the cavities from which path
information might be retrievable is instead lost from them to the absorber, taking
both cavity states to their ground states |0C10C2〉, which then factor out:
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|�〉 = 1√
2

(|ψ1〉|0〉|0C10C2〉 + |ψ2〉|0〉|0C10C2〉
) = 1√

2

(|ψ1〉 + |ψ2〉
)|0〉|0C10C2〉.

The path information is therefore no longer encoded in them. Interference reappears,
as in case (a) of Fig. 1:

p = 1

2

[(||ψ1〉|2 + ||ψ2〉|2
)+ (〈ψ2|ψ1〉 + 〈ψ1|ψ2〉

)]〈0|0〉〈0C10C2 |0C10C2〉.

The first realization of a welcher-weg experiment with individual atoms simi-
lar to the proposal of Scully, Englert and Walther was obtained by Dürr, Nonn and
Rempe in 1998 [15]. It is shown there that neither mechanical momentum transfers
nor the position-momentum uncertainty relation are relevant for the explanation of
the destruction of interference. Nevertheless duality relations have been found that
describe a quantitative trade-off between the quality of path determination and in-
terference visibility [16–18] which have been shown to be instances of appropriate
uncertainty relations [23].

A neutron-interferometric double resonance experiment involving neutrons and
photons allowing simultaneous observation of interference and individual energy
losses have also been used to test Einstein’s related ‘Einweg’ assumption, in dis-
cussions with Bohr, that particles take single definite paths despite these paths
being unknown to experimenters [19, 24]. For a penetrating philosophical discus-
sion of the issues and debates arising from the seminal paper of Scully, Englert and
Walther [10] the reader is referred to [25].
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In contrast to classical physics, the language of quantum mechanics involves� operators and � wave functions (or, more generally, � density operators). How-
ever, in1932, Wigner formulated quantum mechanics in terms of a distribution
function W(q, p), the marginals of which yield the correct quantum probabilities
for q and p separately [1]. Its usefulness stems from the fact that it provides a
re-expression of quantum mechanics in terms of classical concepts so that quantum
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15. Dürr, S./Nonn, T./Rempe, G.: Origin of quantum-mechanical complementarity probed by a

‘which-way’ experiment in an atom interferometer. Nature 395, 33-37 (1998).
16. Jaeger, G./Shimony, A./Vaidman, L.: Two interferometric complementarities. Physical Review

A 51, 54-67 (1995).
17. Englert, B.-G.: Fringe Visibility and which-way information: An inequality. Physical Review

Letters 77, 2154-2157 (1996).
18. Englert, B.-G./Bergou, J.A.: Quantitative quantum erasure. Optics Communications 179, 337-

355 (2000).
19. Vigier, J.-P. /Rauch, H.: Proposed neutron interferometry test of Einstein’s ‘Einweg’ assump-

tion in the Bohr-Einstein controversy. Physics Letters A 151, 269-275 (1990).

Secondary Literature

20. Wheeler, J.A./Zurek, W.H. (eds.), Quantum theory and measurement (Princeton, New Jersey,
1983).

21. Bacciagaluppi, G./Valentini, A.: Quantum mechanics at the crossroads: Reconsidering the 1927
Solvay Conference (Cambridge University Press, UK, 2009).

22. Feynman, R./Leighton, R./Sands, M.: The Feynman Lectures on Physics Vol. III (Addison
Wesley, 1965).

23. Busch, P./Shilladay, C.R.: Complementarity and uncertainty in Mach-Zehnder interferometry
and beyond. Physics Reports 435, 1-31 (2006).

24. Rauch, H./Werner, S.: Neutron interferometry (Oxford, 2000).
25. Falkenburg, B.: Particle Metaphysics – A Critical Account of Subatomic Reality (Springer

2007, Sec. 7.4 and 7.5.).

Wigner Distribution

R.F. O’Connell

In contrast to classical physics, the language of quantum mechanics involves� operators and � wave functions (or, more generally, � density operators). How-
ever, in1932, Wigner formulated quantum mechanics in terms of a distribution
function W(q, p), the marginals of which yield the correct quantum probabilities
for q and p separately [1]. Its usefulness stems from the fact that it provides a
re-expression of quantum mechanics in terms of classical concepts so that quantum
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mechanical expectation values are now expressed as averages over phase-space
distribution functions. In other words, statistical information is transferred from
the density operator to a quasi-classical (distribution) function. Wigner [1] pre-
sented a specific form for W(p, q), while recognizing that other possibilities exist,
depending on the conditions which are imposed on W . Wigner’s choice has the
virtue of mathematical simplicity but it has the feature that it may take negative
values, with the result that several authors have investigated non-negative distribu-
tion functions. However, we regard negative values of W as a manifestation of its
quantum nature and the fact that it “... cannot be really interpreted as the simul-
taneous probability for coordinates and momenta...” [1] Wigner’s original paper
was concerned with using W for the specific purpose of calculating the quantum
correction for thermodynamic equilibrium. The recognition of its more general
applicability stems mainly from the work of Groenewold [2] and Moyal [3], who
investigated the correspondence between physical quantities and quantum operators
and showed, in particular, that the correspondence is not unique and moreover, that
the distribution functions obtained by the Weyl correspondence [4] are the Wigner
functions. Moyal also showed how the time dependence of W and other such
functions (– which arise from alternative association rules other than Wigner-Weyl
but which lead to the same physical results) may be determined without using the� Schrödinger equation. In fact, Moyal’s paper was a landmark contribution as,
in essence, “...it establishes an independent formulation of quantum mechanics in
phase space” [5]. As for all quantum formulations, Ballentine [6] has shown that
the development of the classical limit of the Wigner distribution is a subtle process,
especially in view of the fact that, in general, W(q, p) has negative parts. Turning
to specifics, we present some basic results developed in the original pioneering
papers [1–4, 28] but conveniently presented in a comprehensive review by Hillery
et al. [7]. Thus, in one-dimensional space (generalization to n dimensions being
straightforward), for a � mixed state represented by a density matrix ρ̂,

W(q, p) = 1

π�

∫ ∞

−∞
dy〈q − y|ρ̂|q + y〉e2ipy/�, (1)

whereas, for a pure state (� states, pure and mixed) represented by a wave function
ψ(q),

W(q, p) = 1

π�

∫ ∞

−∞
dyψ∗(q + y)ψ(q − y)e2ipy/�. (2)

However, in order to calculate correct expectation values and ensemble averages
(� ensembles in quantum mechanics), it is also necessary to specify the classical
function A(q, p) corresponding to a quantum operator Â as

A(q, p) =
∫

dz eipz/�〈q − 1

2
z|Â|q + 1

2
z〉, (3)
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so that
∫ ∫

dq dp A(q, p) = 2π� Tr(Â). This ensures that

∫
dq
∫

dp A(q, p)B(q, p) = (2π�) Tr(ÂB̂), (4)

and ∫
dq
∫

dp A(q, p)W(q, p) = Tr(ρ̂Â(q̂, p̂)), (5)

so that, in particular, we see that W(q, p) derived from the density matrix, is
(2π�)−1 times the phase space operator which corresponds to the same matrix. Fol-
lowing these original papers, [1–4,28] there were many papers devoted to extending
the framework and overall understanding of distribution functions. In addition, dis-
tributions other than those of Wigner were introduced, notable those of Kirkwood,
Cahill and Glauber, Glauber, Sudarshan and Husimi (all of which are reviewed
in [8], where it is noted that some of these are everywhere non-negative) and
Cohen [9] and all require classical functions different from that given in (3) in
order to ensure consistency. It is clear that all distribution functions are not mea-
surable, despite some claims to the contrary in the literature, where in fact what
is observed are the marginal q probabilities from which values of W(q, p) are in-
ferred but one could equally have inferred values for other distribution functions.
The earliest applications of the Wigner function were in the arena of statistical
mechanics but, more recently, among the diverse areas in which theW function
was found to be useful we mention hydrodynamics [10], plasmas [11], quantum
corrections for transport coefficients [12], collision theory [13] and signal analy-
sis [14]. However, we feel that the overwhelming majority of applications are to
be found in quantum systems where fluctuations and dissipation are playing an
important role. In this context, the 1984 review of the W function by Hillery et
al. [7] made extensive reference to its relevance in quantum optics, which is un-
derlined by the more recent books of Scully and Zubairy [15] and Schleich [16].
Complementary to this work is the application of the W function to a variety of
problems in quantum statistical mechanics, where effects associated with the anal-
ysis of quantum systems in a heat bath (including the radiation field heat bath)
are of the essence. As examples of the usefulness of the W function in this con-
text we note its role in obtaining the simplest approach to solving the initial value
quantum Langevin equation and, concomitantly, the solution to an exact master
equation [17] and also its role in the investigation of � Schrödinger cat superposi-
tions [18]. However there are limitations to the usefulness of the W function (some
of which were discussed by Moyal [3]), notably for particles with � spin and for rel-
ativistic particles. Finally, we mention the excellent and comprehensive overview of
selected papers on quantum mechanics in phase space, with emphasis on the Wigner
function [5].
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Wigner’s Friend

Henry Stapp

Eugene Wigner published, in 1961, a widely reprinted article [1] entitled “Re-
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consciousness in quantum theory. But if consciousness is basic then the question
immediately arises: Whose consciousness? To explore this issue Wigner considers
a situation in which his “friend”, rather than he himself, is observing the effects of
an atomic process, the radiation of a visible photon.

In order to formulate the problem Wigner first explains the entry of consciousness
into physical theory:

When the province of physical theory was extended to encompass microscopic
phenomena, through the creation of quantum mechanics, the concept of conscious-
ness came to the fore again: it was not possible to formulate the laws of quantum
mechanics without reference to the consciousness. [2] All that quantum mechanics
purports to describe are probability connections between subsequent impressions
(also called ‘apperceptions’) of consciousness, and even though the dividing line
between the observer, whose consciousness is being affected, and the observed
physical object can be shifted towards one or the other to a considerable degree [3],
it cannot be eliminated.

His reference [2] is to von Neumann’s work (� orthodox interpretation) on
the shifting of the boundary between those aspects of nature that are described
in the mathematical language of quantum theory, and those that are described in
the psychological language by means of which we describe our actual and possible
conscious experiences. The job of quantum theory is to make predictions about con-
nections between such experiences. His reference [3] was to Heisenberg’s famous
pronouncement:

The conception of objective reality . . . evaporated into the . . . mathematics that represents
no longer the behavior of elementary particles but rather our knowledge of this behavior.

The concept of “our knowledge” is reasonably clear insofar as “we are able to communicate
to others what we have done and what we have learnt” [4].

But in practice different people often know different things.
The thought experiment considered by Wigner involves, essentially, an atomic

state that emits a visible photon into an optical system that directs the rays emitted
from the atom in certain directions into the retina of the eye of Wigner’s friend, and
directs the rays emitted in other direction to some other place. The � wave function
of the atom plus the photon will be a � superposition of components corresponding
to different directions of the photon emission. If the interaction of the photon with
the retina, and of the retina with the brain of the friend – who is presumed to be
attending to what she is seeing – is now included in the physical description, then
the state of his friend’s brain generated by the purely physical laws of motion would
include a part that corresponds to her observing the flash and another part corre-
sponding to her not observing the flash. When Wigner asks his friend whether she
saw the flash, then, upon his registering of her response, the wave function (quantum
state) that represents his knowledge of her brain and body will suddenly jumps to
one state or the other. Yet before he learned about her reaction his representation of
her state was in a combination of the “I observed a flash” and “I observed no flash”
alternatives.



856 Wigner’s Friend

Wigner is willing to admit that, if the purely physically described laws entail it,
then an unobserved inanimate measuring device could exist in a state that represents
a combination of two macroscopically different states. However, although solipsism
may be a logical possibility, “everyone believes that the phenomena of sensation
are widely shared by organisms that we consider to be living”. And, accordingly,
his friend will surely report that she did [or did not] experience the flash [as the
case may be] before she reported that fact to him. Wigner concludes from these
considerations that his friend was “not in a state of suspended animation” before he
learned about her state: he concludes that her quantum state became one or the other
of these two alternatives when she became conscious of the flash, not when he came
to know what she reported.

Wigner asserts that “The preceding argument for the difference in the roles of
inanimate tools of observation and observers with consciousness – hence for a vio-
lation of physical laws where consciousness plays a role – is entirely cogent so long
as one accepts the tenets of orthodox quantum theory and all their consequences.”

Wigner proposes, then, that “the being with a consciousness must have a different
role in quantum mechanics than the inanimate measuring device.” He proposes, in
essence, that the occurrence of a conscious experience is an objective reality that
is correlated to a change in an objective wave function. “Our knowledge” can then
be interpreted to be the aggregate of the conscious knowledge of all systems that
possess consciousness (Fig. 1). This allows quantum theory to be regarded as an
objective theory that describes the interaction between an objective physical aspect
that is described in terms of the mathematical language of quantum theory, and an
objective mental aspect that is described in terms of the concepts of thoughts, ideas,
and feelings – i.e., in terms of the concepts of psychology. This move allows what
had originally been a fundamentally anthropocentric, pragmatic, subjective theory to
be elevated into a nonanthropocentric objective theory of an objective reality having
physically described aspects and psychologically described aspects related in the
specific way specified by the � orthodox interpretation quantum theory spelled out
by John von Neumann [2].
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Fig. 1 (a) An illustration of Wigner’s argument that the role of ‘a conscious being’ is different
from that of an inanimate measuring device. The first step is to assume that the state of the atom
plus the photon is the superposition: α�1 + β�2. (b) The second step is to treat Wigner’s friend as
an unobserved inanimate measuring device that has two states: either it registers the photon, χ1or
it does not χ2. According to the orthodox interpretation of quantum mechanics the state of the
combined system after interaction is a linear superposition of states: α(�3 × χ1) + β(�4 + χ2);
or if the interaction with the environment is taken into account, the mixture of (�3 × χ1),
with probability |α|2 plus (�4 × χ2), with probability |β|2. [�3 is the atomic part of �1 and �4is
the atomic part of �2.] Thus the device prior to any observation of it has part corresponding to
the photon’s being registered, and a part corresponding to the photon’s not being registered. (c)
But now suppose that the initially unobserved (by Wigner) observational device is a conscious
human being, e.g., Wigner’s friend. Wigner asks the question, and his friend answers that she saw
the flash [or did not see the flash] before she let Wigner know whether or not she saw it. Wigner
concludes his friend was not in a state of suspended animation prior to when he learned which state
she was in. He concludes that the state of the combined system of atom plus his conscious friend,
after she had experienced the outcome, was either definitely or (�3 × χ1) or definitely (�4 × χ2),
not a combination of the two. Wigner’s proposal is a move away from the Copenhagen idea that
the quantum state represents knowledge available to a community of communicating observers,
who have a common knowledge that is useful for making predictions about their combined future
experiences. Wigner suggests that each conscious being is able to collapse one single objective
quantum state, regardless of whether the information is actually physically shared. It is a move
away from an essentially subjective pragmatic interpretation toward a more objective absolute one
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X
X-Rays

Bruce R. Wheaton

Modern physics began with the discovery of X-rays in 1896 by Wilhelm Conrad
Röntgen (1845–1923), an event well described. Less known is the important role
X-rays played in the earliest introduction of quantum concepts. Their early impulse
interpretation forced consideration in 1896 of quantity of impulses, unlike during
the prior century of thought about radiation. This set the stage for a sea change in
concepts of radiation.

Improvements in vacuum technology from the 1850s had led to cathode dis-
charge tubes and X-rays. These were an “entirely new form of radiation” that could
pass right though opaque matter. Many hypotheses emerged in explanation, the most
profound a resuscitation of Christiaan Huygens (1629–95) disconnected impulse
model of light, now from the pen of George Gabriel Stokes (1819–1903). Each col-
lision of a cathode-beam electron at the anode gives rise to a single such impulse
propagating away, only the vast number of impacts gives rise to the seeming contin-
uous flow of the X-rays. They lack periodicity just as would be expected of white
light comprised of a continuum of frequencies.

Within 4 years Dutch physicists demonstrated diffraction of X-rays from a slit,
implying a wavelength of 1 Å (10−4 that of light), which seemed to argue against
the accepted impulse model. This challenged the young Arnold Sommerfeld (1868–
1951) in Göttingen, who in 1900 showed impulses could diffract but would show no
fringes. He concluded that a continuum of electromagnetic disturbances exists, from
periodic waves of light to aperiodic impulses of X-rays and the γ-rays discovered
that year by Paul Villard (1860–1934). By 1905 it was clear that X-rays propagate
with the speed of light.

X-rays passing through a gas release electrons in numbers and velocities easily
measured. But there seemed to be too few (quantity) and those had more energy
(quality) than was expected. Both paradoxes led many to the view that, unlike light,
X-rays do not spread their energy isotropically into the aether, but concentrate it in
specific directions. And the case for γ-rays was even stronger, so that several of their
investigators began to argue forcefully that γs are actual material particles.

In response, Charles Barkla’s (1877–1944) experiments on secondary X-rays
stimulated from elements by X-rays showed them to be polarized and have peri-
odic properties “characteristic” of the scattering material as one of two components;
the other an inhomogeneous X-ray component soon to be called the Bremsenanteil.
This led to lively controversy in the English literature between William Henry Bragg
(1862–1942) and Barkla, in the German between Johannes Stark (1874–1957) and
Sommerfeld about the physical nature of X-rays.
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On the surface, all seemed resolved in favor of periodic waves when, in 1912,
X-rays directed through a crystal showed unmistakable interference effects. But the
new crystal metric simultaneously provided the most accurate yet indication that
X-rays transfer energy only in quantum units.

The next decade, largely in response to the successes of the � Bohr atom,
saw little consideration of the “nature” of X-rays except amongst experimental-
ists. Millikan was astonished in 1916 to corroborate Albert Einstein’s (1879–1955)
equation for the � photoelectric effect. Precise new techniques developed to mea-
sure β-particle � electrons from � radioactive decay law were applied to secondary
electrons released by X-rays and by γ-rays. The newly invented Coolidge X-ray tube
provided rays of unprecedented stability for precise tests. And in William Duane’s
(1872–1935) Harvard laboratory in 1918 his student came very close to corroborat-
ing Einstein’s photoeffect law for X-rays.

But in the periphery of physics in post-war Europe, these issues carried weight. In
particular, the interns in the private laboratory of Maurice de Broglie (1875–1960)
in Paris took “atoms of light” very seriously indeed. The X-ray photoeffect, now
amenable to precise quantitative study with the β-ray spectrometer, became subject
of intense research by Alexandre Dauvillier (1892–1979). His results convinced
de Broglie that X-rays “must be corpuscular” or “energy must be concentrated in
points on the surface of the wave.” The elder de Broglie presented his findings at the
third Solvay Congress in Paris 1921, where (with corroborating γ -ray findings from
Charles Ellis (1895–1980)) they dominated discussion at the entire meeting.

It is well-known that Maurice’s younger brother Louis de Broglie (1892–1987)
turned this seeming paradox into his hypothesis of � matter waves in 1923. His
reconciliation of � wave-particle duality led directly to Erwin Schrödinger’s (1887–
1961) � wave mechanics, one of the two statements of the new � quantum
mechanics of 1926. Schrödinger’s arose from radiation theory, Werner Heisenberg’s
(1901–1976) � matrix mechanics from concerns with atomic theory; another corol-
lary of wave-particle duality.
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radiation and to light. Philosophical Magazine (6th ser.) 19, 301–13 (1910)



X-Rays 861

X

Secondary Literature
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Z
Zeeman Effect

Klaus Hentschel

Pieter Zeeman (1865–1943) had been searching for the influence of magnetic fields
on spectral lines since 1892. Michael Faraday’s (1791–1867) demonstration of the
rotation of the plane polarization of light in electric fields had led Faraday himself
and several other experimenters to expect such an influence. But Zeeman only suc-
ceeded in late 1896, after having installed a strong Rühmkorff electromagnet and
a large concave grating, which latter he had obtained personally from its inven-
tor Henry Augustus Rowland (1848–1901). For discovering the effect bearing his
name, Zeeman obtained the Nobel Prize for physics of 1902, together with the the-
oretical physicist Hendrik Antoon Lorentz (1853–1928), who provided its classical
theoretical interpretation.

Initially, in late October 1896, Zeeman could only observe a diffuse line broad-
ening that had actually been predicted by Joseph Larmor’s (1857–1942) � electron
theory. But in November, Zeeman was able to confirm a prediction by his Leiden
colleague, Lorentz, concerning the polarization of the two fringes. In the spring of
1897, Zeeman first recorded distinct splittings of spectral lines into doublets and
triplets. These features became understandable by interpreting the splitting as due
to a precession of � electrons under the influence of the external magnetic field. As
negatively charged particles, electrons have to precess around the axis of a magnetic
field H at the so-called Larmor frequency νL= 1/2 e/m H/c. There were three pos-
sibilities: the external magnetic field was either (i) parallel or (ii) antiparallel or (iii)
orthogonal to the electron’s axis of precession. All other cases could be explained
as linear � superpositions of these three basic cases. In case (i), the energy of the
electron is increased, in (ii) decreased, and in (iii) unchanged. Hence a splitting into
three components ought to result, and the splitting should be proportional to the
strength of the magnetic field. Even the size of the observed triplet splitting was of
the right order of magnitude, given a specific charge e/m of the electron of roughly
1.6 · 107 e.m.u. J.J. Thomson had just determined this through electric and magnetic
deviation of � cathode rays and inferred the existence of “corpuscles” in them.

So, this normal Zeeman effect was explained fairly well by classical Larmor–
Lorentz electron theory. In Niels Bohr’s (1885–1962) atomic model, this normal
Zeeman triplet could also be derived. Because of the external magnetic field, not
all elliptic orbits of similar eccentricity were energetically equivalent any more.
Depending on the inclination of the electron’s orbit with respect to the magnetic
field, the energy is slightly increased, decreased or unchanged (for orthogonal
orientation). Space quantization (� Stern–Gerlach experiment) restricts this orbit
inclination to only a few permitted angles, labeled by a new ‘magnetic’ � quantum
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number m = −1, 0 or +1, thus leading to a splitting into three energy levels. As
Arnold Sommerfeld (1861–1949) showed in 1916, other symmetric splittings into
an odd number of components could be handled similarly, with M = 2J + 1 as the
so-called multiplicity of the normal Zeeman splitting (cf. Fig. 1). Using the � corre-
spondence principle, Bohr’s assistant Hendrik Anthony Kramers (1894–1952) also
tried to derive the relative intensities of the various multiplet components, but agree-
ment with observations was insufficient.

In the winter of 1897/98, Thomas Preston (1860–1900) in Dublin, Alfred Cornu
(1841–1902) in Paris and Albert Michelson (1852–1931) in Chicago, independently
found “anomalous” splittings of spectral lines into quartets, sextets, octets, and
even more complicated patterns. Such splittings, which soon became known as the
anomalous Zeeman effect, remained absolutely mysterious in the classical electron
theory and deeply problematic for � Bohr’s atomic model as well.

It was also unclear why the anomalous Zeeman effect changed over to the normal
effect under very large magnetic field strengths, as Friedrich Paschen (1865–1947)
and Ernst Back (1881–1959) found in 1912. Around 1920, Carl Runge (1856–1927)
in Göttingen and Alfred Landé (1888–1976) in Tübingen did manage to describe the
complicated anomalous Zeeman patterns phenomenologically. Carl Runge showed
that the splittings �ν followed a numerological rule with q1 and q2 integer numbers
smaller than the “Runge denominators” r1 and r2: (see Fig. 2 for an example)

�ν = q

r
·�νL = q1

r1
�νL − q2

r2
�νL ⇒ q

r
= q1r2 − q2r1

r1r2

Landé introduced the � Landé g-factors with strange coefficients ∼ m(m + 1),
etc., but both of these approaches remained ad hoc. Persistent problems with the
anomalous Zeeman effect substantially contributed to the crisis of � quantum theory

Hν

Hα

σ π  σ π σ σπ   
Δν Δν Δν Δν Δν Δν
↔ ↔ ↔ ↔ ↔ ↔

Hβ

π parallel
σ orthogonal polarization

Fig. 1 Sommerfeld’s 1916 description of the normal Zeeman effect for the splittings of the hy-
drogen Balmer series lines Hα, Hβ and Hγ (� spectroscopy) including their state of polarization
relative to the direction of the magnetic field)

Fig. 2 Example of a complicated anomalous Zeeman splitting (for Runge denominators ri = 3
and 5 in Runge’s rule, leading to q = 0, ±1, ±2, ±3, ±5, ±6, ±8, ±9, ±10, ±12, ±13, ±15),
i.e., 23 components!
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c.1923 – early 1925. Only after the introduction of the concept of � spin in late 1925
and the development of quantum mechanics could the observed splittings and rela-
tive intensities for the anomalous Zeeman effect be properly derived and physically
understood as the result of gyroscopic forces of the electron’s magnetic moment
μ = −eh/2mc, i.e. one full Bohr magneton and not half a Bohr magneton, as would
be expected from classical electron theory (see [9, pp. 97ff., 108] [6]).
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7. P. Forman: Alfred Landé and the anomalous Zeeman effect, 1919–1921. Historical Studies in
the Physical Sciences 2, 153–261 (1970)

8. K. Hentschel: Die Entdeckung des Zeemaneffekts als Beispiel für das komplexe Wechselspiel
von wissenschaftlichen Instrumenten, Experiment & Theorie. Physikalische Blätter 52, 1232–
1235 (1996)

9. G. Herzberg: Atomic Spectra and Atomic Structure (Prentice Hall, New York 1937; Reprint
Dover Publications 1944)

Zero-Point Energy

Peter W. Milonni

The concept of zero-point energy first appeared in 1912, when Max Planck (1858–
1947) published his “second theory” of � black-body radiation [1]. In this theory the
energy of a harmonic oscillator of frequency ν in thermal equilibrium at temperature
T is equal to
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E(T ) = hν

ehν/kT − 1
+ 1

2
hν , (1)

where h and k are, respectively, the Planck and Boltzmann constants. The second
term on the right is the zero-point energy, i.e., the energy at zero temperature, where
all motion should cease and the energy should be zero according to classical physics.
The assumptions about the emission and absorption of radiation that led to Planck’s
expression were not justified by the fully developed quantum theory that came later,
but (1) turned out to be correct. Zero-point energy was invoked shortly after Planck’s
work by Einstein and Stern [2], who used it to explain the observed temperature de-
pendence of the specific heat of molecular hydrogen, and by Debye [3], who noted
that zero-point energy of the atoms of a crystal lattice would cause a reduction in
the intensity of the diffracted radiation in X-ray diffraction even as the temperature
approached absolute zero. In 1924 Mulliken [4] provided direct evidence for the
zero-point energy of molecular vibrations by comparing the band spectra of B10O
and B11O: the isotopic difference in the transition frequencies between the ground
vibrational states of two different electronic levels would vanish if there were no
zero-point energy, in contrast to the observed spectra. A year later the zero-point
energy of a harmonic oscillator was deduced from Heisenberg’s � matrix mechan-
ics [5] and shortly thereafter from � Schrödinger’s equation. The energy levels of a
harmonic oscillator of frequency ν are given according to quantum theory by

En = (n+ 1

2
)hν , n = 0, 1, 2, 3, ... . (2)

For an oscillator with spring constant k and mass m, ν = √
k/4π2m and the

zero-point energy E0 =
√
h2k/16π2m is seen to be largest for small masses. Thus,

because of their small masses, He3 and He4 do not solidify at small pressures as
T → 0 because their zero-point motion prevents crystallization.

Zero-point energy is important in the quantum theory of radiation, according to
which each field mode of frequency ν has zero-point energy 1

2hν. This allows the
interpretation of the van der Waals interaction between two atoms, for instance,
in terms of a change in the zero-point energy of the electromagnetic field. More
generally the presence of matter modifies the zero-point field energy in a way that
depends on the nature and distribution of the matter, and this can result in small
but measurable forces between macroscopic bodies. The best known example of
this consequence of zero-point field energy is the Casimir force between uncharged,
perfectly conducting plates. � Casimir effect.

Although zero-point energy is an integral part of basic quantum theory [6–8],
it leads to a profound difficulty when considered in the context of general rela-
tivity. Any energy density of the vacuum contributes to a cosmological constant
of the type introduced by Einstein in order to obtain static solutions to his field
equations. The zero-point energy density of the vacuum, due to all quantum fields,
is extremely large, even when we cut off the largest allowable frequencies based
on plausible physical arguments. It implies a cosmological constant larger than the
limits imposed by observation by about 120 orders of magnitude. This “cosmologi-
cal constant problem” remains unresolved.
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English/German/French Lexicon of Terms1

English German French

Angular momentum Drehimpuls moment angulaire

Annihilation operator Vernichtungsoperator opérateur d’annihilation

Bell inequalities Bellsche Ungleichung Inégalités de Bell

Blackbody radiation Hohlraumstrahlung,
Schwarzkörperstrahlung

rayonnement du corps noir

Brownian motion Brownsche Bewegung,
Brownsche Molekularbewegung

Mouvement brownien

Collapse of wavefunction Kollaps or Reduktion der
Wellenfunktion

réduction de la fonction d’onde

Creation operator Erzeugungsoperator opérateur de création

Decaying states zerfallende Zustände états se désintégrant

Delayed choice experiment Experiment mit
verzögerter Wahl

Experience à choix retardé

Detached observer aussenstehender Beobachter observateur détaché

Double-slit or two-slit
experiment

Doppelspalt – Experiment Expérience des fentes d’Young
or Expérience à doubles fentes

Entanglement Verschränkung Intrication

Excitation states Anregungszustände états d’excitation

Excited states angeregte Zustände états excités

Gauge theories Eichtheorien théorie de jauge

Hidden parameters verborgene Variable variables cachés

Improper mixture Gemisch mélange impropre

Large-angle scattering Rückwärtsstreuung diffusion à grand angle

1 Many thanks to Michel Le Bellac for his help with French terms.
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English German French

Many-worlds interpretation Viele-Welten-Interpretation interprétation multimondes

Measurement problem Messproblem problème de la mesure

Mixture of states Gemenge vrai mélange

Observable,
non-commuting

Observable, nichtvertauschbare Observable non-commutantes

Observable, physical
quantity, measurable
quantity

Observable, physikalische
Grösse, Messgrösse,
beobachtbare Grösse

Observable propriété physique,
propriété mesurable

Occam’s razor Occams Rasiermesser rasoir d’Occam

Operator, self-adjoint Operator, selbstadjungierter opérateur autoadjoint

Pauli exclusion principle Pauli-Prinzip, Paulisches
Ausschliessungsprinzip

Principe de Pauli

Pilot wave Führungswelle onde pilote

Plum pudding model Rosinenkuchenmodell modèle du gâteau aux raisins

Pure state reiner Fall état pur

Quantum eraser Quantenlöscher/Quantenradierer gomme quantique

Relative states interpretation relative Zustände Interpretation théorie de la relativité des états

Schrödinger equation Schrödinger-Gleichung èquation de Schrödinger

Smeared-out states verschmierte Zustände états étalés ou non-localisés

Space quantization Richtungsquantelung quantification de l’espace

Spin Spin Spin

State Zustand État

State reduction Zustandsreduktion réduction d’état

Superposition Superposition or kohärente
Überlagerung

superposition

Superselection Rules Superauswahlregeln règle de supersélection

Trace Spur Trace

Tunnel effect Tunneleffekt effet tunnel

Wave function Wellenfunktion fonction d’onde

Wave packet Wellenpaket paquet d’ondes

Wave-particle duality Welle-Teilchen Dualismus dualité onde-particule

Which way experiments welcher-weg Experimente Mesure de chemin (suivi)



Selected Resources for Historical Studies

The following resources are recommended as starting points for those actively
researching the history of quantum physics and quantum mechanics:

1. Paul Forman, John Heilbron, Thomas S. Kuhn and Lily Allen (Eds.): Sources
for History of Quantum Physics, American Philosophical Society, Memoirs
vol. 68 (1967), also available online as http://www.amphilsoc.org/library/
guides/ahqp/

2. Bruce Wheaton (Ed.): Inventory of Sources for History of 20th Century Physics:
Report and Microfiche Index to 700.000 Letters, Stuttgart: GNT, 1993 (the
most complete finding aid for unpublished letters to and from twentieth cen-
tury physicists).

3. Bartel van der Waerden (Ed.) Sources of Quantum Mechanics, Edited with a
Historical Introduction, New York: Dover, 1968 (contains English translation
of many key papers in the history of quantum theory and quantum mechanics).

4. Max Jammer, Friedrich Hund, Helmut Rechenberg and Jagdish Mehra, among
others, have published books of various length, detail and quality about the
history of quantum mechanics which are all still available in print. Jammer’s
Conceptual Development of Quantum Mechanics (New York: AIP 1989 [1st ed.
1966]) or Friedrich Hund’s History of Quantum Theory, London: Harrap 1975
(German orig. 1972) are a good start for beginners even though they are not up
to date in all historical details. More specific themes are covered in greater depth
in studies, for instance, by Bruce Wheaton: The Tiger and the Shark: Empiri-
cal Roots of Wave-Particle-Dualism (Cambridge: Cambridge University Press
1992), Olivier Darrigol: From C-numbers to Q-numbers. The Classical Anal-
ogy in the History of Quantum Mechanics (Berkeley: University of California
Press, 1992), and James Cushing: Quantum Mechanics and the Copenhagen
Hegemony (Chicago: University of Chicago Press 1994). For the experimen-
tal basis of early quantum theory, the best study remains Hans Kangro: Early
History of Planck’s Radiation Law (London: Taylor & Francis 1976).

5. www.nobel.org for the cv’s, the laudatios and talks by all Nobel prize laureates.
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6. Guide to the archival collections in the Niels Bohr Library of the Ameri-
can Institute of Physics, College Park, MD: American Institute of Physics,
1994 and supplement 1996 as well as their online finding aids to be found at
http://www.aip.org/history/

7. http://www.aip.org/history/ with various excellent online exhibitions, for in-
stance on Marie Curie, Albert Einstein, Werner Heisenberg, and Andrej
Sakharov as well as on the discovery of the electron, cyclotrons and supercon-
ductivity, to name just a few; furthermore, there are links to the International
Archival Catalog (ICOS), an excellent visual archive of photographs and films,
oral history interviews, and links to other Archival Finding Aids (with name
and subject search).

8. http://www.alberteinstein.info/ with digitized Einstein manuscripts and a
searchable archival database. The multivolume Collected Papers of Albert
Einstein, appearing at Princeton University Press have already reached the
early 1920s and include all of his papers and nearly all of his correspondence
in annotated form.

9. Other collected works are available on Niels Bohr (Amsterdam: North Holland,
1972–2006), Erwin Schrödinger (Vienna: Austrian Academy of Sciences),
Werner Heisenberg (Berlin: Springer, 1984–1993) and Eugene Paul Wigner
(New York: Springer, 1992–1998), to name just a few prominent examples.

10. The online version of the Sommerfeld correspondence edition: http://www.lrz-
muenchen.de/∼Sommerfeld/ with summaries of all known letters to and from
Arnold Sommerfeld. The full text of c.600 selected letters can be found in the
two-volume edition by Michael Eckert and Karl Märker (Eds.) Arnold Sommer-
feld: Wissenschaftlicher Briefwechsel, Stuttgart: GNT, 2 Vols.: 2000 and 2004,
see http://www.gnt-verlag.de/de/?id=53

11. Wolfgang Pauli’s Scientific Correspondence has been edited by Karl von
Meyenn in a multivolume edition (Berlin: Springer, 1979–2005), now cover-
ing the time span 1919–1958. A select edition of letters on wave mechanics
has been edited by Karl Przibram under the title: Briefe zur Wellenmechanik:
Schrödinger, Planck, Einstein, Lorentz (Vienna: Springer 1963). For many
other quantum physicists, such painstaking editorial work has yet to be done,
however.

12. http://www.malvine.org/ This online search engine for unpublished corres-
pondence and manuscripts by all kinds of authors, not just physicists, allows
name searches in archives and repositories all over Europe.
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tion with D. Dürr and S. Goldstein, on the emergence of
quantum randomness in Bohmian mechanics. E-mail:
zanghi@ge.infn.it

H. Dieter Zeh studied physics in Braunschweig
(Brunswick) and Heidelberg, where he began work on
theoretical nuclear physics. After continuing his re-
search in California, he returned to the University of
Heidelberg, where he later became professor of theoret-
ical physics. His studies of collective motion in nuclei
led him to address the quantum-to-classical transition
in general, and in particular the quantum measurement
problem, which is in turn related to many aspects of
irreversibility (arrows of time). During this work, Zeh
recognized and formulated the universal and unavoid-

able role of uncontrollable quantum entanglement, thus becoming a founder of the
area now known as decoherence. E-mail: zeh@uni-heidelberg.de


