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1

Introduction

Quantum information is concerned with using the special features of quantum
physics for the processing and transmission of information. It should, however,
be clearly understood that any physical object when analyzed at a deep enough
level is a quantum object; as Rolf Landauer has succinctly stated, “A screwdriver
is a quantum object.” In fact, the conduction properties of the metal blade of a
screwdriver are ultimately due to the quantum properties of electron propagation
in a crystalline medium, while the handle is an electrical insulator because the
electrons in it are trapped in a disordered medium. It is again quantum mechanics
which permits explanation of the fact that the blade, an electrical conductor, is
also a thermal conductor, while the handle, an electrical insulator, is also a thermal
insulator. To take an example more directly related to information theory, the
behavior of the transistors etched on the chip inside your computer could not
have been imagined by Bardeen, Brattain, and Shockley in 1947 were it not for
their knowledge of quantum physics. Although your computer is not a quantum
computer, it does function according to the principles of quantum mechanics!
This quantum behavior is also a collective behavior. Let us give two examples.
First, if the value 0 of a bit is represented physically in a computer by an uncharged
capacitor while the value 1 is represented by the same capacitor charged, the
passage between the charged and uncharged states amounts to the displacement
of 10* to 10° electrons. Second, in a classic physics experiment, sodium vapor
is excited by an electric arc, resulting in the emission of yellow light, the well
known “yellow line of sodium.” However, it is not actually the behavior of an
individual atom that is observed, as the vapor cell typically contains 10° atoms.
The great novelty since the early 1980s is that physicists now know how to
manipulate and observe individual quantum objects — photons, atoms, ions, and so
on — and not just the collective quantum behavior of a large number of such objects.
It is this possibility of manipulating and observing individual quantum objects
which lies at the foundation of quantum computing, as these quantum objects can
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be used as the physical support for quantum bits. Let us emphasize, however,
that no new fundamental concept has been introduced since the 1930s. If the
founding fathers of quantum mechanics (Heisenberg, Schridinger, Dirac, .. .) were
resurrected today, they would find nothing surprising in quantum information,
but they would certainly be impressed by the skills of experimentalists, who have
now learned how to perform experiments which in the past were referred to as
“gedanken experiments” or “thought experiments.”

It should also be noted that the ever-increasing miniaturization of electronics
will eventually be limited by quantum effects, which will become important at
scales of tens of nanometers. Moore's law ! states that the number of transistors
which can be etched on a chip doubles every 18 months, leading to a doubling
of the memory size and the computational speed (amounting to a factor of 1000
every 15 years!). The extrapolation of Moore’s law to the year 2010 implies that
the characteristic dimensions of circuits on a chip will reach a scale of the order
of 50 nanometers, and somewhere below 10 nanometers (to be reached by 20207?)
the individual properties of atoms and electrons will become predominant, so that
Moore’s law may cease to be valid ten to fifteen years from now.

Let us take a very preliminary look at some characteristic features of quantum
computing. A classical bit of information takes the value 0 or 1. A quantum bit,
or qubit, can not only take the values 0 and 1, but also, in a sense which will be
explained in the following chapter, all intermediate values. This is a consequence
of a fundamental property of quantum states: it is possible to construct linear
superpositions of a state in which the qubit has the value 0 and of a state in which
it has the value 1.

The second property on which quantum computing is based is entanglement.
At a quantum level it can happen that two objects form a single entity, even at
arbitrarily large separation from each other. Any attempt to view this entity as
a combination of two independent objects fails, unless the possibility of signal
propagation at superluminal speeds is allowed. This conclusion follows from
the theoretical work of John Bell in 1964, inspired by the studies of Einstein,
Podolsky, and Rosen (EPR) in 1935, and from the experiments motivated by
these studies (see Section 4.5 below). As we shall see in Chapter 5, the amount
of information contained in an entangled state of N qubits grows exponentially
with N, and not linearly as in the case of classical bits.

The combination of these two properties, linear superposition and entangle-
ment, lies at the core of quantum parallelism, the possibility of performing a large
number of operations in parallel. However, the principles of quantum parallelism
differ fundamentally from those of classical parallelism. Whereas in a classical

! Moore's law is not a law based on theory, but rather an empirical staterment which has been observed o hold
over the last forty years.
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computer it is always possible to know (at least in principle) what the internal
state of the computer is, such knowledge is in principle impossible in a quan-
tum computer. Quantum parallelism has led to the development of entirely new
algorithms such as the Shor algorithm for factoring large numbers into primes,
an algorithm which by its nature cannot be run on a classical computer. It is in
fact this algorithm which has stimulated the development of quantum computing
and has opened the door to a new science of algorithms.

Quantum computing opens up fascinating perspectives, but its present limita-
tions should also be emphasized. These are of two types. First, even if quantum
computers were available today, the number of algorithms of real interest is at
present very limited. However, there is nothing which prevents others from being
imagined in the future. The second type of limitation is that we do not know
if it will someday be possible to construct quantum computers large enough to
manipulate hundreds of qubits. At present, we do not know what the best phys-
ical support for qubits will be, and we know at best how to manipulate only
a few qubits (a maximum of seven; see Chapter 6). The Enemy Number One
of a quantum computer is decoherence, the interaction of qubits with the envi-
ronment which blurs the delicate linear superpositions. Decoherence introduces
errors, and ideally a quantum computer must be completely isolated from its
environment. This in practice means the isolation must be good enough that any
errors introduced can be corrected by error-correcting codes specific to qubits.

In spite of these limitations, quantum computing has become the passion of hun-
dreds of researchers around the world. This is cutting-edge research, particularly
that on the manipulation of individual quantum objects. This work. in combination
with entanglement, permits us to speak of a “new quantum revolution™ which is
developing into a veritable quantum engineering. Another application might be
the building of computers designed to simulate quantum systems. And, as has
often happened in the past, such fundamental research may also result in new
applications completely different from quantum computing, applications which
we are not in a position to imagine today.







2
What is a qubit?

2.1 The polarization of light

Our first example of a qubit will be the polarization of a photon. First we briefly
review the subject of light polarization. The polarization of light was demonstrated
for the first time by the Chevalier Malus in 1809. He observed the light of the
setting sun reflected by the glass of a window in the Luxembourg Palace in Paris
through a crystal of Iceland spar. He showed that when the crystal was rotated,
one of the two images of the sun disappeared. Iceland spar is a birefringent
crystal which, as we shall see below, decomposes a light ray into two rays
polarized in perpendicular directions, while the ray reflected from the glass is
(partially) polarized. When the crystal is suitably oriented one then observes the
disappearance (or strong attenuation) of one of the two rays. The phenomenon of
polarization displays the vector nature of light waves, a property which is shared
by shear sound waves: in an isotropic crystal, a sound wave can correspond either
to a vibration transverse to the direction of propagation, i.e., a shear wave, or
to a longitudinal vibration, i.e., a compression wave. In the case of light the
vibration is only transverse: the electric field of a light wave is orthogonal to the
propagation direction.

Let us recall the mathematical description of a planar and monochromatic scalar
wave traveling in the z direction. The amplitude of vibration u(z, ) as a function
of time ¢ has the form

u(z, 1) = uycos(wt —kz),
where w is the vibrational frequency, k is the wave vector (k = 27/, where A
is the wavelength), related by @ = ck, where c is the propagation speed, here the
speed of light. It can be immediately checked that a maximum of u(z, t) moves

at speed w/k = ¢. In what follows we shall always work in a plane at fixed z, for
example, the z = 0 plane where

u(z=0,1) = u(r) = uycoswt.




] What is a qubit?

When an electromagnetic wave passes through a polarizing filter (a polarizer),
the vibration transmitted by the filter is a vector in the xOy plane transverse to
the propagation direction:

E.=E,cosfcoswt,

(2.1)

E, = Eysin fcos wt,

where 6 depends on the orientation of the filter. The light intensity (or energy)
measured, for example, using a photoelectric cell is proportional to the squared
electric field I EE} (in general, the energy of a vibration is proportional to the
squared vibrational amplitude). The unit vector ! pp in the xQy plane

p=(cos#,sinf), E= Eypcoswt, (2.2)

characterizes the (linear) polarization of the electromagnetic wave. If § = 0 the
light is polarized in the x direction, and if # = 7r/2 it is polarized in the y direction.
Natural light is unpolarized because it is made up of an incoherent superposition
(this important concept will be defined precisely in Chapter 4) of 50% light
polarized along Ox and 50% light polarized along Oy.

We shall study polarization quantitatively using a polarizer-analyzer ensemble.
We allow the light first to pass through a polarizer whose axis makes an angle
6 with Ox, and then through a second polarizer, called an analyzer, whose axis
makes an angle o with Ox (Fig. 2.1), and write

n=(cosa,sina). (2.3)

Analyzer

Polarizer

Figure 2.1 A polarizer—analyzer ensemble.

! Throughout this book, unit vectors of ordinary space ' will be denoted by a hat: p=p/p, i =n/n, ...
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At the exit from the analyzer the electric field E’' is obtained by projecting the
field (2.1) onto 7:

E'=(E-f)a = Egcoswt(p-i)h
= Eycos wt(cos fcosa +sin @ sin a)n (2.4)
= Eycos wrcos(f — a)n.
From this we obtain the Malus law for the intensity at the exit from the analyzer:

I'=TIcos* (0 — a). (2.5)

Linear polarization is not the most general possible case. Circular polarization
is obtained by choosing # = /4 and shifting the phase of the y component by
+/2. For example, for right-handed circular polarization we have

E,
E = %co%wr,
E E (2.6)
E = -2 cos(wt . = 2 Sinewt
V2 2/ V2

The electric field vector traces a circle of radius |Ey| jﬁ in the xOy plane. The
most general case is that of elliptical polarization, where the tip of the electric
field vector traces an ellipse:

E, = Eycosfcos(wt —6,) = EgRe [cos ﬂe_i“‘”_’s-‘)] =FEyRe ()I. e‘“‘") .
o _ (2.7)
E, = Eysinfcos(wr —8,) = EyRe [sin Be_’(“'""ﬂ] =EyRe (,u, e_“‘”) .

It will be important for what follows to note that only the difference 6 =
(8, — 6,) is physically relevant. By a simple change of time origin we can,
for example, choose 8, = 0. To summarize, the most general polarization is
described by a complex vector normalized to unity (or a nermalized vector) in a
two-dimensional space with components

) PR
A=cosfe'™, p=sinfe"",

and |A|? 4+ |w|? = 1. Owing to the arbitrariness in the phase, a vector with com-
ponents (A', i),

N =2Ae?, ' =pe?,
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Birefringent plate

Figure 2.2 Decomposition of the polarization by a birefringent plate. The ordi-
nary ray O is polarized horizontally and the extraordinary ray E is polarized
vertically.

represents the same polarization as (A, w). It is more correct to say that the polariza-
tion is represented mathematically by a ray, that is, by a vector up to a phase.

Remarks

e A birefringent plate (Fig. 2.2) can be used to separate an incident beam into two
orthogonal polarization states, and one can repeat the Malus experiment by checking
that a suitably oriented polarizing filter absorbs one of the two polarizations while
allowing the orthogonal one to pass through.

e Let us consider a crossed polarizer—analyzer ensemble, for example, with the polarizer
aligned along Ox and the analyzer along Oy. No light is transmitted. However, if we
introduce an intermediate polarizer whose axis makes an angle # with Ox, part of the
light is transmitted: the first projection gives a factor cos@ and the second gives a
factor sin f, so that the intensity at the exit of the analyzer is

I’ = Icos® fsin 6,

which vanishes only for 8 =0 or # = 7/2.

2.2 Photon polarization

Ever since the work of Einstein (1905), we have known that light is composed of
photons or light particles. If the light intensity is reduced sufficiently, it should
be possible to study the polarization of individual photons which can easily be
detected using photodetectors, the modern version of which is the CCD (Charge
Coupling Device) camera.” Let us suppose that N photons are detected in an

> A cell of the retina is sensitive to an isolated photon, but only a few percent of the photons entering the eye
reach the retina.
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experiment. When N — oc it should be possible to recover the results of wave
optics which we have just stated above. For example, let us perform the following
experiment (Fig. 2.2). A birefringent plate is used to separate a light beam whose
polarization makes an angle 6 with Ox into a beam polarized along Ox and a
beam polarized along Oy, the intensities respectively being I cos” # and I sin” 6.
We reduce the intensity such that the photons arrive one by one, and we place
two photodetectors I, and D, behind the plate. Experiment shows that D, and
D, are never triggered simu]téneously, 3 i.e., an entire photon reaches either D,
or D, a photon is never split. On the other hand, experiment shows that the
probability p,(p,) that a photon is detected by D (D,) is cos® f(sin* #). If N
photons are detected in the experiment, we must have NV ;(N‘_) photons detected by
D.(D,):

N,~Ncos*, N,=~Nsin0,

where =~ is used to indicate statistical fluctuations of order v/. Since the light
intensity is proportional to the number of photons, we recover the Malus law in
the limit V' — oo. However, in spite of its simplicity this experiment raises two
fundamental problems.

s Problem 1 Is it possible to predict whether a given photon will trigger D, or D,? The
response of quantum theory is NO, which profoundly shocked Einstein (“*God does not
play dice!”). Some physicists have tried to assume that quantum theory is incomplete,
and that there are “hidden variables” whose knowledge would permit prediction of
which detector a given photon reaches. If we make some very reasonable hypotheses
to which we shall return in Chapter 4, we now know that such hidden variables are
experimentally excluded. The probabilities of quantum theory are intrinsic; they are not
related to imperfect knowledge of the physical situation, as is the case, for example, in
the game of tossing a coin.

o Problem 2 Let us recombine * the two beams from the first birefringent plate by using a
second plate located symmetrically relative to the first (Fig. 2.3) and find the probability
for a photon to cross the analyzer. A photon can choose path E with probability cos® 8.
Then it has probability cos® a of passing through the analyzer, or a total probability
cos’ @cos® . If path O is chosen, the probability of passing through the analyzer will
be sin” #sin a. The total probability is obtained by adding the probabilities of the two
possible paths:

p.,, = cos® fcos” @ +sin’ fsin’ a. (2.8)

Except in the case of a “dark count,” where a detector is triggered spontaneously.
With some care, as the difference between the ordinary and exiraordinary indices of refraction must be taken
into account; of. Le Bellac (2006), Exercise 3.1,

e w
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.~ Optical
i axes I~
X b = *
X - E ~ .
\ o
\ - . z
/ ' “ 0 / S
\
v v
Polarizer Analyzer

Figure 2.3 Decomposition and recombination of polarizations by means of bire-
fringent plates. The photon can choose path E (extraordinary), where it is polar-
ized along Ox, or path O (ordinary), where it is polarized along Oy.

This result is FALSE! In fact, we know from classical optics that the intensity is
1 cosz(ﬁ— o), and the correct result, confirmed by experiment, is

P =cos” (0 — ), (2.9)
which is not at all the same thing!

In order to recover the results of wave optics it is necessary to introduce into
quantum physics the fundamental notion of a probability amplitude a(e — B).
A probability amplitude is a complex number, the squared modulus of which
gives the probability: p(a — B) = |a(a — B)|%. In the preceding example, the
relevant probability amplitudes are

a(f — x) =cosf, a(x— a)=cose,

a(f — y) =sinf, aly — a)=sina.
For example, a(6 — x) is the probability amplitude that the photon polarized
along the direction # chooses the E path, where it is polarized along Ox. Then,

a basic principle of quantum physics is that one must add the amplitudes for
indistinguishable paths:

dyo = €08 cos o+ sin Bsin « = cos(f — a),
which allows us to recover (2.9):
2 2
Piot = |alul| =cos (8 - OI).

The superposition of probability amplitudes in a,, is the exact analog of the
superposition of wave amplitudes: the laws for combining quantum amplitudes
are exact copies of those of wave optics, and the results of the latter are recovered
in the limit of a large number of photons. Let us suppose, however, that we have
some way of knowing whether a photon has followed path E or path O (this
is impossible in our case, but similar experiments to determine the path, termed
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“which path experiments.” have been performed using atoms). We can then divide
the photons into two classes, those which have chosen path E and those which
have chosen path O. For the former we could have blocked path O by a mask
without changing anything, and the reverse for the latter photons. The result can
obviously only be (2.8). If we manage to distinguish between the paths, the result
will no longer be (2.9), because the paths are no longer indistinguishable!

Under experimental conditions where it is impossible in principle to distinguish
between the paths, we can make one or the other statement:

e the photon is able to explore both paths at the same time, or

e (the author’s preference) it makes no sense to ask the question “Which path?”, because
the experimental conditions do not permit it to be answered. We shall follow Asher
Peres, who states “Unperformed experiments have no results!”

It should be noted that if the experiment allows us to distinguish between the
two paths, the result is (2.8), even if we decide not to observe which path is
followed. It is sufficient that the experimental conditions in principle allow the
two paths to be distinguished, even when the current technology does not permit
this to be done in practice.

We have examined a particular case of a quantum phenomenon, the photon
polarization, but the results we have described have led us to the very core of
quantum physics.

2.3 Mathematical formulation: the qubit

The photon polarization can be used to transmit information, for example, by
an optical fiber. We can arbitrarily decide to associate the bit value 0 with a
photon polarized along Ox and the bit value 1 with a photon polarized along
Oy. In quantum information theory the people who exchange information are
conventionally called Alice (A) and Bob (B). For example, Alice sends Bob a
series of photons polarized as

YYXYXYYYX - -

Bob analyzes the polarization of these photons using a birefringent plate as in
Fig. 1.2 and deciphers the message sent by Alice:

110101110« - .

This is obviously not a very efficient way of exchanging messages. However,
we shall see that this protocol forms the basis of quantum cryptography. An
interesting question now is, what bit value can be associated with, for example,
a photon polarized at 45°7 According to the results of the preceding section, a
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photon polarized at 45° is a linear superposition of a photon polarized along
Ox and a photon polarized along Oy. The photon polarization gives an example
of a qubit, and a qubit is therefore a much richer object than an ordinary bit,
which can take only the values 0 and 1. In a certain sense, a qubit can take all
values intermediate between 0 and 1 and therefore contains an infinite amount
of information! However, this optimistic statement is immediately deflated when
we recall that measurement of a qubit can give only the result 0 or 1, no matter
which basis is chosen: a photon either chooses the E path (value 0 of the bit)
or the O path (value 1 of the bit) and this result holds whatever the orientation
of the birefringent plate. Nevertheless, we can ask the question whether or not
this “hidden information™ contained in the linear superposition is valuable, and in
Chapter 5 we shall see that under certain conditions this information can actually
be exploited.

In order to take into account linear superpositions, it is natural to introduce a
two-dimensional vector space J for the mathematical description of polarization.
Any polarization state can be put into correspondence with a vector in this space.
We can, for example, choose as orthogonal basis vectors of F the vectors |x)
and |y} corresponding to linear polarizations along Ox and Oy. Any polarization
state can be decomposed on this basis: >

|®) = Alx) +ply). (2.10)

We use the Dirac notation for the vectors of #; see Box 2.1. There exists a
very precise experimental procedure for constructing the state |®}; it is described
in detail in Exercise 2.6.2. A linear polarization will be described using real
coefficients A and g, but the description of a circular (2.6) or elliptical (2.7)
polarization will require coefficients A and p which are complex. The space H
is therefore a complex vector space, isomorphic to C2.

Probability amplitudes are associated with scalar products on this space. Let us
take two vectors, |®@) given by (2.10) and | W) given by

| = v|x) +al|y).
The scalar product of these vectors will be denoted {W|®}, and by definition
{U]|D) = v A+ otp = (D|V)*, (2.11)

where ¢* is the complex conjugate of ¢. This scalar product is therefore linear in
|D) and antilinear in |W¥). It defines the norm ||®|| of the vector |D):

9] = (P|D) = AP+ || (2.12)

* We use upper-case Greek letters for generic vectors of J¢ in order to avoid confusion with the vectors
representing linear polarizations such as |0}, |a), ete.
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Box 2.1: Dirac notation

“Mathematicians tend to loathe the Dirac notation, because it prevents them from
making distinctions they consider important. Physicists love the Dirac notation
because they are always forgetting that such distinctions exist and the notation
liberates them from having to remember” (Mermin (2003)). In our presentation here
the Dirac notation reduces to a simple notational convention and avoids matters of
principle.

Let '™ be a Hilbert space of finite dimension N on the complex numbers and let
u, v, w be vectors of H'"™. The scalar product of two vectors v and w is denoted
(v, w), following for the time being the mathematicians’ notation. It satisfies ®

(v, Aw~+ pw) = Mo, w) + (v, w), (v, w) = (w,v)".

Let {e,} be an orthonormal basis of %™, n=1,2,..., N. In this basis the vectors

(1, v, w) have the components
“I’I = (eif‘ u)’ L‘if = (eﬂ‘ L‘)‘ wif = (eﬂ‘ w}‘

Let us consider a linear operator A(v, w) defined by its matrix representation in the

basis {e,}:
Aamr(""' w} =y w::r‘
. . A . .

The action of this operator on the vector &, u — u', is given in terms of

components by

“:I = Z Aawr(l“‘ w}“m = Z I"J!w:aum = ZL‘J! (w:a“m) = L‘”(LU, “)’

" " ni

or in vector form
u' = A(v, wu = v(w, u).
In Dirac notation, vectors are written as |v} and scalar products as {w|v}:
v ), (w.v) = (wlv).
With this notation the action of A(v, w) is written as
|u) = |A(v, wyuy = |v) (wlu)
= (lv) (w]) u),

and the second line of this equation suggests the notational convention

Alv, w) = |v){w|.

® The convention of physicists differs from that of mathematicians in that for the latter the scalar produet is

antilinear in the second vector:

(v, Aw + pw') = A (v, w) 4+ @ (v, w').
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A case of particular importance is that where v = w and v is a normalized vector.
Then

A v) =) (o, A, v)u) = v (olu),

and A(v, v) is the projector P, onto the vector v, because {v|u) is the component
of u along v. A familiar example is the projection in B* of a vector i onto a unit
vector

Pyii = (it - D).

It is customary to use |n) to denote the vectors of an orthonormal basis:
e, — |n), and the projector onto |n) then is

P, =n)(nl.

Let 7™ be an M-dimensional (M < N) subspace of H'™ and |m), m
=1,2,..., M be an orthonormal basis in this subspace. The projector onto H ‘M
then is

M
Poun =Y |m){m|,

m=1

and if M = N we obtain the decomposition of the identity, which physicists call the

completeness relation:
N

> im{m| =1,

m=1
where [ is the identity operator. The matrix elements of a linear operator A are
given by

A,,, = (m|An)

mn

and the completeness relation can be used, for example, to find immediately the
matrix multiplication law:

(AB),,, = (m|ABn} = (m|AIBn) =" (m|Ak)(k|Bn) =3 A, B,,.
B

mn
&

The vectors |x) and |y) are orthogonal with respect to the scalar product (2.11)
and they have unit norm:

() =0l =1 ) =0.

The basis {|x}, |y} is therefore an orthonormal basis of 7{. To the definition
of a physical state we shall add the convenient, but not essential, normalization
condition

P[> = AP +[uf* = 1. (2.13)
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Polarization states will therefore be represented mathematically by normalized
vectors (vectors of unit norm) in the space J; they are called state vectors (of
polarization). A vector space on which a positive-definite scalar product is defined
is called a Hilbert space, and JH is the Hilbert space (of polarization states).

Now let us return to the probability amplitudes. A state linearly polarized along
# will be denoted |6) with

|8y = cos B |x) +sin B]y). (2.14)

The vector |6} gives the mathematical description of the linear polarization state
of a photon. The probability amplitude for a photon polarized along # to pass
through an analyzer oriented along « is, as we have seen above,

a(f — «) =cos(f — «) = {«|6). (2.13)

It is therefore given by the scalar product of the vectors |a) and |#), and the
probability of passing through the analyzer is given by the squared modulus of
this amplitude (see (2.9)):

p(6 — a) =cos* (0 —a) = |{a|0)]*. (2.16)

A probability amplitude (“the amplitude of the probability for finding |®) in
|W),” where | @) and | W) represent general polarization states) will be defined in
general as

a(® — V) = (¥|D), (2.17)
and the corresponding probability will be given by
p(® — W) = [a(® — V) = |(V|D)[. (2.18)

It is important to note that a state vector is actually defined only up to a mul-
tiplicative phase; for example, in (2.10) we can multiply A and u by the same
phase factor

(A p) = (€04, e°p),
because replacing | @} by
@) =e*|@)

leaves the probabilities | {(W|®) > unchanged whatever | ), and these probabilities
are the only quantities which can be measured. A multiplicative global phase is
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not physically relevant; the correspondence is therefore not between a physical
state and a vector, but rather between a physical state and a ray, that is, a vector
up to a phase.

Now we are ready to tackle the crucial question of measurement in quantum
physics. Measurement is based on two notions, that of the preparation of a quantum
state and that of a test. We again use the polarizer—analyzer ensemble and assume
that the analyzer, which prepares the polarization state, is oriented along Ox. If the
polarizer is also oriented along Ox, a photon leaving the polarizer passes through
the analyzer with 100% probability, while if the polarizer is oriented along Oy,
the probability is zero. The analyzer performs a test (of the polarization), and the
result of the test is 1 or 0. The test then allows the polarization state of the photon
to be determined. However, this is not the case in general. Let us assume that the
polarizer is oriented in the direction @ or in the orthogonal direction 8 :

|8y =cos@|x) +sind|y),
(2.19)
|6, = —sinf|x) +cosB|y).
The states |f) and |#,}, like the states |x) and |y}, form an orthonormal basis
of (. If, for example, the polarizer prepares the photon in the state |#) and the
analyzer is oriented along Ox, then the probability of passing the test is cos® #.
Two essential things should be noted:

e After the passage through the analyzer, the polarization state of the photon is no longer
|8}, but |x). It is often said that the measurement perturbs the polarization state.
However, this statement is debatable: the measurement performed by the analyzer is
a measurement of the physical property “polarization of the photon along Ox,” but
this polarization does not exist before the measurement because the photon is in the
state |[#}, and that which does not exist cannot be perturbed! We shall illustrate this by
another example at the end of this section.

e [f the photon is elliptically, rather than linearly, polarized,

A=cosf, u= sinfe'?, 8+£0,

the probability of passing the test is again cos®f: the test does not permit an unam-
biguous determination of the polarization. Only if the probability of passing the test
is O or I does the measurement permit the unambiguous determination of the initial
pelarization state. Therefore, unless one knows beforehand the basis in which it has
been prepared, there is no test which permits the unambiguous determination of the
pelarization state of an isolated photon. As explained in Exercise 2.6.1, determination
of the polarization of a light wave, or of a large number of identically prepared photons,
is possible provided one uses two different orientations of the analyzer.

There is thus a difference of principle between a measurement in classical
physics and one in quantum physics. In classical physics the physical quantity
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which is measured exists before the measurement: if radar is used to measure the
speed of your car equal to 180 km/h on the highway, this speed existed before the
police performed the measurement (thus giving them the right to issue a speeding
ticket). On the contrary, in the measurement of the photon polarization |8) by an
analyzer oriented along Ox, the fact that the test gives a polarization along Ox
does not permit us to conclude that the tested photon actually had polarization
along Ox before the measurement. Again taking the analogy to a car, we can
imagine that as in (2.19) the car is in a linear superposition of two speed states,

for example,
1 2
[v) = §|120kmfh) + EIISOkmjh).

The police will measure a speed of 120km/h with probability 1/3 and a speed of
180 km/h with probability 2/3, but it would be incorrect to think that one of the
two results existed before the measurement. Quantum logic is incompatible with
classical logic!

2.4 Principles of quantum mechanics

The principles of quantum mechanics generalize the results we have obtained in
the case of photon polarization.

¢ Principle 1 The physical state of a quantum system is represented by a vector |}
belonging to a Hilbert space A of, in general, infinite dimension. Fortunately, for the
purposes of quantum information theory, we only need spaces of finite dimension.
Unless explicitly stated otherwise, |®) will be chosen to be a normalized vector:
[|®@]]* = 1. |®) is called the state vector of the quantum system.

o Principle 2 If |®) and |} represent two physical states, the probability amplitude
a(® — ) of finding @ in ¥ is given by the scalar product (W¥|®):

a(® — W) = (V|D),
and the probability for @ to pass the W test is
PP — V) =|a(® — V) = [(¥|D)[.

We perform this test by first using a device to prepare the quantum system in the state
|®}) (a polarizer), and then using as an analyzer a second device which would have
prepared the system in the state |WV).

T Of course, no one knows how to realize such a superposition state for a car, but we do know very well how
Lo construct a superposition of states with different speeds for an elementary particle or an atom.
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After the test the quantum system is in the state | W), which from the math-
ematical point of view means that we have performed an orthogonal projection
onto |W). Let Py, be the projector. Since

[Py @) = Py|P) = W) (W[D) = (W) (¥])| D),
this projector can be written in the very convenient form (see Box 2.1)
Py = |V (W], (2.20)

In summary, the mathematical operation corresponding to a measurement is a
projection, and the corresponding measurement is called a projective measure-
ment. However, the vector Py,|®) is not in general normalized. We must then
normalize it

Pyld)  |0) = THD)_

(P|Py D)

In the orthodox interpretation of quantum mechanics, the projection of a state
vector followed by its normalization is called “state-vector collapse™ or, for his-
torical reasons, “wave-packet collapse.” The idea of state-vector collapse is a
convenient fiction of the orthodox interpretation which avoids having to ask ques-
tions about the measurement process, and it is often treated as a supplementary
basic principle of quantum mechanics. However, we can perfectly well bypass
this principle if we take into account the full complexity of the measurement
process. An example will be given in Chapter 5, Box 5.2.

Let us now turn to the mathematical description of the physical properties of
a quantum system, first by returning to polarization. In the basis {|x),|v)} the
projectors P, and P, onto these basis states are

2e=l=(g o). Z=wol=(y 1)

‘We note that the identity operator [ can be written as the sum of the two projectors
P, and P

Pt Py =[x+ 0l =1

This is a special case of the completeness relation (Box 2.1), which can be
generalized to an orthonormal basis of a Hilbert space # of dimension N:

N

2lidil=1 (ilj) =8y
i=1

¥ The action of an operator M on a vector |} will be written cither as M|®) or as |M®).
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The projectors P and P, commute:
[P, 5""] =??,-PP. =0,

where we denote [A, B] := AB — BA the commutator of two operators A and B.
The rests |x) and |y) are termed compatible. On the contrary, the projectors onto
the states |6) and |#, ) (2.19),

cos’f  sinfcos@
Py =16)(6] = (sin fcosd sin” 6 ) '
sin“ @ —sinfcos@
Py, =10.0)4011= (—sinﬁcosﬁ cos’f )

do not commute with P, and P, as can be verified immediately by explicit
calculation:

0 sinflcosd
[P Pl = (— sin @ cos 8 0 ) '
The tests [x) and |6) are tetmed incompatible. The projectors P, ..., Py tep-

resent mathematically the physical properties of the quantum system when the
photon is polarized along the x, ..., 8, axes. It is not possible to measure incom-
patible properties of a quantum system simultaneously.

In the general case of a Hilbert space of states ") with dimension N, to
an orthonormal basis |n), n =1, ..., N, of this space will be associated a set of
N compatible tests |n). If the quantum system is in a state |D}, the probability
that it passes the test is p, = (n|®}|? (Principle 2) and ¥, p, = 1. The tests |n)
form a maximal test. To a different orthonormal basis of #'™Y) will correspond
another maximal test incompatible with the preceding one. Now, one may ask
the following question: can one define in a Hilbert space ™ bases {|n)} and
{|a)}, where n, « = 1,2, ..., N, which are maximally incompatible? The answer
to this question is positive. Two bases are maximally incompatible if they are
complementary, which means by definition that |{a|n}|* is independent of n
and «

, 1
Kalm|” = . (2.21)

For example, the bases {|x},|y)} and {|@ = m/4), |# = —m/4)} are complemen-
tary. Any linear polarization basis is complementary to a circular polarization
basis {|R}, |L)} defined in Exercise 2.6.3. One way to obtain complementary
bases in ™ is to use discrete Fourier transforms (see Section 5.7)

|OI>: 2i7mfn|n>‘

1Y
........Ze
‘/ﬁnzl
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Let us explain the physical meaning of complementary bases with the following
example: suppose you want to test a large number of quantum systems all prepared
in a state of the basis {|n}}. but you do not know which one. If you test the
system using the basis {|n)}, one of the results, say m, will come out with 100%
probability, so that your measurement gives you maximum knowledge of the state.
If, on the contrary, you test the preparation using the basis {|a}}, then you will
get all the possible outcomes with probability 1/N, and you will get minimum
knowledge of the preparation. The concept of complementary bases will be very
useful for understanding the principles of quantum cryptography.

For later developments it will be useful to note that knowledge of the proba-
bilities of passing a test 7 permits definition of the expectation value {T):

(T)=1xp(T=1)+0xp(T =0) [=p(T=1)]

For example, if the test T is represented by the procedure | W) and it is applied
to a state | @), then

POW) = [(W|®)[* = (B[ W) (W|D) = (O(| W) (V)| @) = (®[Py D).  (222)
In quantum physics it is standard to refer to the quantity
(P|MD) = (M), (2.23)

as the expectation value of the operator M in the state |®). The test T = |¥) can
therefore be associated with a projector Py, whose expectation value in the state
|D) gives, according to (2.22), the probability of passing the test.

The generalization of this observation permits us to construct the physical
properties of a quantum system using projectors. Let us give an example, again
from the case of polarization. We assume that we have constructed (in a completely
arbitrary way) a physical property M of a photon as follows: M is +1 if the
photon is polarized along Ox and M is —1 if the photon is polarized along Oy.
With the physical property M we can associate a Hermitian operator M,

M=2P -7,
satisfying
Mlx) =+[x}),  Mly) =—[y).
The expectation value of M is, by definition,

(M) =1xpM=1)+(=1)xp(M=-1).
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Let us assume that the photon is in the state |#); then the expectation value (M),
in the state |0) is

MY, = (8|P.0) — (0|P.0) = cos® 0 —sin’® § = cos 26.
[} x ¥

The operator M thus constructed is a Hermitian operator (M = M7 or M, = M}}),
and in general physical properties in quantum mechanics are represented mathe-
matically by Hermitian operators, often called observables. We have constructed
M starting from projectors, but reciprocally we can construct projectors starting
from a Hermitian operator M owing to the spectral decomposition theorem, which
we state without proof.

Theorem Let M be a Hermitian operator. Then M can be written as a function
of a set of projectors P, satisfying

M=>%"a,?, (2.24)

?H?HJ = ‘;Df!a"”f’ Z?ﬂ' = [! (2'25)
n

where the real coefficients a, are the eigenvalues of M. The projectors P, are
orthogonal to each other (but in general they project onto a subspace of H and
not onto a single vector of J{), and their sum is the identity operator.

Let us summarize the results on the physical properties. The physical properties
of a quantum system are represented mathematically by Hermitian operators and
the measurement of a physical property M has as its result one of the eigenvalues
a, of the operator M

M|n) = a,|n).

In order to simplify the discussion, we assume that the eigenvalues of M are
nondegenerate, so that the spectral decomposition (2.24) and (2.25) becomes

N N
M=> a,n)(n| 1= |n}{nl|, (2.26)

n=1 n=1

where N is the dimension of the Hilbert space of states. If the quantum system is
in the eigenstate |n), the value taken by M is exactly a,,. If the quantum system
is in the state |d), then the probability of finding it in |») is, from (2.18)

P = [(n|®)[* = (®[n) (n] D).
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If one measures the value a,, of M, then the state vector after measurement is |n):
this is the state vector collapse. The expectation value of M is by definition

N N

2 Putty = D_(®|n)a, (n|®) = (P|MD) = (M)q, (2.27)

n=1 n=I
which justifies the definition (2.23). This expectation value has the following
physical interpretation: in an experiment conducted with a large number N of
quantum systems all prepared in the same state |D}, the average value of the
measurements of M is (M)

. 1
(M)(DZJJTWE(MI +- M) (2.28)
where M; is the result of the measurement number i, which is necessarily one

of the eigenvalues a, of M. We leave to the reader the generalization of the
preceding results to the case where M has degenerate eigenvalues.

Box 2.2: A quantum random-number generator

It is often necessary to generate random numbers, for example, for use in Monte
Carlo simulations. All computers contain a program for random number generation.
However, these numbers are generated by an algorithm, and they are not actually
random, but only psetido-random. A simple algorithm (too simple to be reliable!)
consists of, for example, calculating

lLy=al +bmod M, 0=<[ =M-1,

where a and b are given integers and M is an integer, M 3> 1. The series

I' =1,/M is a series of pseudo-random numbers in the interval [0, 1]. In some cases
the inevitable regularities in a series of pseudo-random numbers can lead to errors in
numerical simulations. Quantum properties can be used experimentally to realize
generators of numbers which are truly random and not pseudo-random; as we shall
see in the following section, truly random numbers are essential for quantum
cryptography. One of the simplest devices uses a semi-transparent plate or
beam-splitter. If a light ray falls on a beam-splitter, part of the light is transmitted
and part is reflected. This can be arranged such that the proportions are 50%/50%. 1f
the intensity is then decreased such that the photons arrive one by one at the plate,
these photons can be either reflected and detected by D, or transmitted and detected
by D, (Fig. 2.4). There is no correlation between the detections, and so this amounts
to a true, unbiased coin toss. A prototype based on this principle has been realized by
the quantum optics group in Geneva. It generates random numbers at a rate of 10
numbers per second, and the absence of any bias (equivalently, correlations between

numbers supposed to be random) has been verified using standard programs.




2.5 Quantum cryptography 23

Dy

Figure 2.4 A semi-transparent plate and photon detection.

2.5 Quantum cryptography

Quantum cryptography is a recent invention based on the incompatibility of two
different bases of linear polarization states. Ordinary cryptography is based on
an encryption key known only to the sender and receiver and is called secret-key
cryptography. It is in principle very secure, ? but the sender and receiver must have
a way of exchanging the key without it being intercepted by a spy. The key must
be changed frequently, because a set of messages encoded with the same key can
reveal regularities which permit decipherment by a third person. The transmission
of a secret key is a risky process, and for this reason it is now preferred to use
systems based on a different principle, the so-called public-key systems. In these
the key is announced publicly, for example, via the Internet. A public-key system
currently in use ' is based on the difficulty of factoring a very large number N
into primes, whereas the reverse operation can be done immediately: even without
the help of a pocket calculator one can find 137 x 53 = 7261 in a few seconds, but
given 7261 it would take a some time to factor it into primes. Using the best current
algorithms, the time needed for a computer to factor a number N into primes
grows with N as 2~ exp[1.9(In M)/ (InIn N)>/?]. The current record is 176 digits,
and it takes several months for a PC cluster to factorize such a number. In public-
key encryption the receiver, conventionally named Bob, publicly announces to
the sender, conventionally named Alice, a very large number N = pg which is
the product of two prime numbers p and g, along with another number ¢ (see
Box 2.3). These two numbers N and ¢ are sufficient for Alice to encode the
message, but the numbers p and g are needed to decipher it. Of course, a spy

? An absolutely secure encryption was discovered by Vernam in 1917, However, absolute security requires
that the key be as long as the message and that it be used only a single time!
0 Called RSA, as it was invented by Rivest, Shamir, and Adleman in 1977.
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Box 2.3: RSA encryption (see also Box 5.3)
Bob chooses two primes p and ¢, N = pg, and a number ¢ having no common
divisor with the product (p—1)(g —1). He calculates d, the inverse of ¢ for
mod (p—1)(g— 1) multiplication:

ed=1mod (p—1)(g—1).

By a non-secure path he sends Alice the numbers N and ¢ (but not p and ¢
separately!). Alice wants to send Bob an encoded message, which must be
represented by a number @ < N (if the message is too long, Alice can split it into
several sub-messages). She then calculates (Fig. 2.5)

b=a" mod N

and sends b to Bob, always by a non-secure path, because a spy who knows only N,
¢, and b cannot deduce the original message a. When Bob receives the message he
calculates

b* mod N = a.
The fact that the result is precisely a, that is. the original message of Alice, is a

result from number theory (see Box 5.3 for a proof of this result). To summarize,
the numbers N, ¢, and b are sent publicly, by a non-secure path.

Example
p=3 g=7. N=21, (p—-1g—-1)=12.
The number ¢ = 5 has no common factor with 12, and its inverse with respect to

mod 12 multiplication is d = 5 because 5 x 5 = 24+ 1. Alice chooses a =4 for her
message. She calculates

4 =1024 =21x48+16, 4°=16mod 21.

Figure 2.5 RSA encryption scheme. Bob chooses N = pg and c¢. Alice
encrypts her message a using b = a° and Bob decrypts it using »* = a.
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Alice then sends Bob the message 16. Bob calculates
b =16"=49.932x21+4, 16" =4mod 21,

thus recovering the original message @ = 4. The above calculation of 16° mod 21, for
example, has not been done very cleverly. Instead, we can calculate 16°mod21 =4,
and then 16°mod?21 as 4 x 16mod 21 = 1, from which without further calculation we
find 16° mod 21 = 4. This method can be used to manipulate only numbers which are
not very large compared to N.

(conventionally named Eve) possessing a sufficiently powerful computer and
enough time will eventually crack the code, but one can in general count on
the message being kept secret for a limited period of time. However, it is not
impossible that one day we will possess very powerful algorithms for decomposing
a number into primes, and moreover, if quantum computers ever see the light of
day such factorization will become quite simple, at least in principle. Happily,
thanks to quantum mechanics we are nearly at the point of being able to thwart
the efforts of spies!

“Quantum cryptography™ is a catchy phrase, but it is somewhat inaccurate.
A better terminology is quantum key distribution (QKD). In fact, there is no
encryption of a message using quantum physics; the latter is used only to ensure
that the transmission of a key is not intercepted by a spy. As we have already
explained, a message, encrypted or not, can be transmitted using the two orthog-
onal linear polarization states of a photon, for example, |x) and |y). We can
choose to associate the value O with the polarization |x) and the value 1 with the
polarization |y}, so that each photon will carry a bit of information. Any message,
encrypted or not, can be written in binary language as a series of Os and 1s. The
message 0110001 will be encoded by Alice by the photon sequence xyyxxxy,
which she will send to Bob via, for example, an optical fiber. Bob will use a
birefringent plate to separate the photons of vertical and horizontal polarization
as in Fig. 2.2, and two detectors placed behind the plate will tell him whether
the photon was polarized horizontally or vertically, so that he can reconstruct the
message. If the message were just an ordinary one, there would certainly be much
easier and more efficient ways of sending it! Let us simply note that if Eve taps
into the fiber, detects the photons, and then resends to Bob photons of polarization
identical to the ones sent by Alice, then Bob has no way of knowing that the
transmission has been intercepted. The same would be true for any apparatus
functioning in a classical manner (that is, not using the superposition principle):
if the spy takes sufficient precautions, the spying is undetectable.

This is where quantum mechanics and the superposition principle come to the
aid of Alice and Bob, by allowing them to be sure that their message has not
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been intercepted. The message need not be long (the transmission scheme based
on polarization is not very efficient). In general, one wishes to transmit a key
which permits the encryption of a later message, a key which can be replaced
whenever desired. Alice sends Bob photons of four types, polarized along Ox(})
and Oy(-—), as before, and polarized along axes rotated by £45°: Ox'(™,) and
Oy'( /), respectively corresponding to bit values 0 and 1 (Fig. 2.6). Note that
the two bases are complementary, or maximally incompatible. Similarly, Bob
analyzes the photons sent by Alice using analyzers which can be oriented in four
directions, vertical/horizontal and +45°. One possibility is to use a birefringent
crystal randomly oriented either vertically or at 45° with respect to the vertical
and to detect the photons leaving the crystal as in Fig. 2.3. However, instead
of rotating the crystal4detectors ensemble, it is easier to use a Pockels cell,
which allows a given polarization to be transformed into an arbitrary polarization
while maintaining the crystal4-detectors ensemble fixed. An example is given
in Fig. 2.7. Bob records a 0 if the photon has polarization lor / and 1 if it
has polarization ~— or /. After recording a sufficient number of photons, Bob
publicly announces the sequence of analyzers he has used, but not his results.
Alice compares her sequence of polarizers to Bob’s analyzers and publicly gives
him the list of polarizers compatible with his analyzers. The bits corresponding
to incompatible analyzers and polarizers are rejected (—), and then Alice and
Bob are certain that the values of the other bits are the same. These are the bits
which will be used to construct the key, and they are known only to Bob and
Alice, because an outsider knows only the list of orientations and not the results!
The protocol we have described is called BB84, from the names of its inventors
Bennett and Brassard.

We still need to be sure that the message has not been intercepted and that
the key it contains can be used without risk. Alice and Bob choose at random
a subset of their key and compare their choices publicly. The consequence of
interception of the photons by Eve will be a reduction of the correlation between
the values of their bits. Let us suppose, for example, that Alice sends a photon

(a) (b)

laser
Alice Bob
Altenuator Detector

Figure 2.6 Schematical depiction of the BB84 protocol. A laser beam is atten-
uated such that it sends individual photons. A birefringent plate selects the
polarization, which can be rotated by means of Pockels cells P. The photons are
either vertically/horizontally polarized (a) or polarized at £45° (b).
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Alice’s polarizers 1 -— / ] / / \ 1 \
Sequence of bits 0 1 1 0 I I 0 0 0
Bob's polarizers + >< + —I" X >< ’-I" *—!* ><
Bob's measurements 0 0 1 0 I I 0 ] 0 E
Retained bits 0 - - 0 I I - 0 ]

Figure 2.7 Quantum cryptography: transmission of polarized photons between
Bob and Alice.

polarized along Ox. If Eve intercepts it using a polarizer oriented along Ox', and
if the photon passes through her analyzer, she does not know that this photon was
initially polarized along Ox. She then resends to Bob a photon polarized in the
direction Ox’, and in 50% of cases Bob will not obtain the correct result. Since
Eve has one chance in two of orienting her analyzer in the right direction, Alice
and Bob will record a difference in 25% of the cases and will conclude that the
message has been intercepted. It is the use of two complementary bases which
allows the maximal security (Exercise 2.6.4). To summarize: the security of the
protocol depends on the fact that Eve cannot find out the polarization state of
a photon unless she knows beforehand the basis in which it was prepared.

Of course, this discussion has been simplified considerably. It does not take into
account the possibility of errors which must be corrected thanks to a classical error-
correcting code, while another classical process, called privacy amplification,
ensures the secrecy of the key. Moreover, the scheme should be realized using
single photons and not packets of coherent states like those produced by the
attenuated laser of Fig. 2.6, which are less secure, but are used for practical
reasons. ' The quantum bit error rate (QBER) is simply the probability that Bob
measures the wrong value of the polarization when he knows Alice’s basis, for
example the probability that he measures a y polarization while a photon polarized
along Ox was sent by Alice. It can be shown that the QBER must be less than
11% if Alice and Bob want to obtain a reliable key. The QEBR g must obey

|
g=4qy dqologgy+(1—gqo)log(l—gqy)= 5

' For example, an attenuated laser pulse contains typically 0.1 photon on the average. It can then be shown
that a nonempty pulse has a 5% probability of containing two photons, a fact which can be exploited by Eve.
In the case of transmission of isolated photons, the guantum no-cloning theorem (Section 4.3) guarantees
that it is impossible for Eve to wick Bob, even if the error rate can be decreased to less than 23% by using a
more sophisticated interception technique.
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where log is a base 2 logarithm. If Eve is limited on attacking individual qubits, !2
the QBER must be less than 15%:

1-1/4/2
5 .

A prototype has recently been realized for transmissions of several kilometers
through air. When an optical fiber is used it is difficult to control the direction
of the polarization over large distances, and so in that case a different physical
support is needed to implement the BB84 protocol. Transmission over about a
hundred kilometers has been achieved using optical fibers, and two versions of
the device are available on the market.

!
q=qy=

2.6 Exercises
2.6.1 Determination of the polarization of a light wave
1. The polarization of a light wave is described by two complex parameters
A = cos fe'® pm=sind el
satisfying [A|> 4+ |i|?> = 1. More explicitly, the electric field is

E. (1) = Eycos A cos(wt — 8,) = EyRe (cosﬁei‘s-" e_"‘”) ,

E,(r) = Eysinfcos(wr — 8,) = EgRe (sin fe'® e_i‘“r) .

Determine the axes of the ellipse traced by the tip of the electric field vector and
the direction in which it is traced.

2. This light wave is made to pass through a polarizing filter whose axis is parallel
to Ox. Show that measurement of the intensity at the exit of the filter allows 6 to
be determined.

3. Now the filter is oriented such that its axis makes an angle of m/4 with Ox.
What is the reduction of the intensity at the exit from the filter? Show that this
second measurement permits determination of the phase difference 6 = 5_‘. -8,.

2.6.2 The (A, p) polarizer

1. In (2.7) we use complex notation:

E (1) = E; cos(wr —8,) =Re (EU_\. eldx e‘“‘”) =Re (E_i.e_i“") ,
E,(t) = Eg,cos(wt —8,) =Re (E(,_‘.ei's-‘ e_i“”) =Re (é‘_‘.e_i“") )

2 That is, she is not allowed to store many qubits, which would permit coherent attacks on many qubits.
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Let the two numbers A real and p complex be parametrized as
A=cosf, p=sinfel
A (A, p) polarizer is constructed of three elements.
e A first birefringent plate which changes the phase of £, by —, leaving £, unchanged:

e —EN=¢

L E e =g
o A linear polarizer which projects onto the unit vector i1, = (cos 8, sin 6):
ED - D — (g0 cos 0+ &V sin 0) i,
= (&, cosf+& sinbe )i,

e A second birefringent plate which leaves £ unchanged and changes the phase of £{»
by n:
ED & =D, £D g = g,

The combination of all three operations is represented as £ — &'. Calculate the
components £, and &, as functions of &, and &,.
2. Vectors of  which are not normalized, |€) and |£'), are defined as

E) =EJ)+ELY, 1) = Ed)+Ey).
Show that the operation |} — |£) is a projection:
€)= Pg|E),
where Pg, is the projector onto the vector
[P} = Alx) +ply).

3. Show that a photon with state vector |®) is transmitted by the (A, i) polarizer
with unit probability, and that a photon of state vector

D) =—p"[x) +A7]y)

is stopped by this polarizer.

2.6.3 Circular polarization and the rotation operator

1. Justify the following expressions for the states |R) and |L) respectively repre-
senting right- and left-handed polarized photons:
1 1
Ry = —(|x)y+1i|]y)), |L)=—=(|x)—1i|y}),
R) ﬁﬂ yHily), L) ﬁﬂ ) —ily))
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where |x) and |y) are the state vectors of photons linearly polarized along Ox
and Oy. Hint: what is the electric field of a circularly polarized light wave? Write
down the matrix form of the projectors Py and P; onto the states |R) and |L) in
the basis {|x}. |y}].
2. We define the states |#) and | } (2.19) representing photons linearly polarized
along directions making an angle # with Ox and Oy, respectively, and also the
states

R) = 75(6) +i160). L) =—=(16)~il6.)).
How are |R') and L") related to |R) and |L)? Do these state vectors represent
physical states different from |R) and |L)? If not, then why not?
3. We construct the Hermitian operator

EZ?R—SDL.

What is the action of X on the vectors |R} and |L)? Determine the action of
exp(—ifZ) on these vectors.

4. Write the matrix representing 3 in the basis {|x), |v)}. Show that =2 = and
recover exp(—ifZ). By comparing with question 2, give the physical interpretation
of the operator exp(—ifiZ).

2.6.4 An optimal strategy for Eve?

1. Let us suppose that Eve analyzes the polarization of a photon sent by Alice
using an analyzer oriented as I. If Alice orients her polarizer as I, the probability
that Eve measures the value of the qubit as 41 is 100% when Alice sends a
qubit +1, but only 50% when Alice uses a “\ polarizer. The probability that Eve
measures +1 when Alice sends +1 then is

111\ 3
P=ata\a)

Let us suppose that Eve orients her analyzer in a direction making an angle
¢ with Ox. Show that the probability p(¢) for Eve to measure +1 when Alice
sends +1 is now

1 .
p(d) = 1 (24 cos2d+sin2d).
Show that for the optimal choice ¢ = ¢y = 7/8
p(cg) = 0.854,

a larger value than before. Would it have been possible to predict without calcu-
lation that the optimal value must be ¢ = ¢, = /87 However, as explained in
Section 7.2, the information gain of Eve is less than with the naive strategy.
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2. Suppose that instead of using a basis | £ 7/4), Alice uses a {|#}.]6,)} basis.
Show that the probability that Eve makes a wrong guess is now
L .o
= — sin“(26).
p= 7 sin"(26)

Thus, the use of complementary bases maximizes Eve’s error rate.

2.6.5 Heisenberg inequalities

1. Let us take two Hermitian operators A and B. Show that their commutator
[A, B] is anti-Hermitian,

[A,B]:= AB—BA=iC,

where C is Hermitian: C = C'.
2. The expectation values of A and B are defined as

(A), = (elAg), (B),= (¢|Bg),
and the dispersions A A and A B in the state |¢) as
(A,4)" = (A%, = ((A),)* = (A= (A} D)),
(A,B)* = (BY),—((B),)* = ((B—(B),])"),.

Finally, we define Hermitian operators of zero expectation value (which are
a priori specific to the state |@)) as

Ay=A- (A)‘PI, By=B- (B)PI.
What is their commutator? The norm of the vector
(Ag+iABy)|e),
where A is chosen to be real, must be positive:
|[(Ag +iABy)|@)|| = 0.

Derive the Heisenberg inequality
1
(A,4) (A B) = 7 Oyl

Care must be taken in interpreting this inequality. It implies that if a large
number of quantum systems are prepared in the state |¢), and if their expectation
values and dispersions {{A),, A A}, {(B),. A B}, and (C), are measured in
independent experiments, then these expectation values will obey the Heisenberg
inequality. In contrast to what is sometimes found in the literature, the dispersions
A A and A B are not at all associated with the experimental errors. There is
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nothing which a priori prevents (A} @ for example, from being measured with an
accuracy better than A A.

3. The position and momentum operators X and P (in one dimension) obey the
commutation relation

(X, P] =ik,

where A is the Planck constant, A = 1.054 x 10~3**Js. Show that this commuta-
tion relation cannot be satisfied by operators acting in a Hilbert space of finite
dimension. Hint: study the trace of this equation. From question 2 derive the
Heisenberg inequality

1
AXAP =

—h.
—2

2.7 Further reading

For additional information about light polarization and photons, the reader can
consult Le Bellac (2006), Chapter 3, Lévy-Leblond and Balibar (1990), Chapter 4,
and Hey and Walters (2003), Chapter 8. For the general principles of quantum
mechanics see, for example, Nielsen and Chuang (2000), Chapter 2, which con-
tains an elegant proof of the spectral decomposition theorem (Section 2.4). Some
examples of determining a trajectory without perturbation in the Young slit exper-
iment are given by Englert et al. (1991) and Diirr et al. (1998). A recent review
on quantum cryptography containing numerous references to earlier work is that
of Gisin et al. (2002). Popular accounts of quantum cryptography can be found
in Bennett et al. (1992) and in Johnson (2003), Chapter 9. A very readable book
on cryptography is Singh (2000).




3
Manipulating qubits

In the preceding chapter we studied a qubit at a particular instant of time and we
neglected, for example, the qubit evolution between preparation and measurement.
As we have seen, in a Hilbert space J with an orthonormal basis formed of two
vectors |0) and |1}, this qubit is described by a normalized vector |¢):

o) =A10) +ul1), AP +|ulP =1 (3.1)

In this chapter, we want to examine the time evolution of this qubit, in order
to understand how it can be manipulated. We shall see that Rabi oscillations
(Section 3.3) provide the basic mechanism that allows us to manipulate qubits.

3.1 The Bloch sphere, spin 1/2

Before turning to time evolution, let us give a somewhat more general descrip-
tion of a qubit and of its physical realizations. In writing down (3.1) we have
used an orthonormal basis {|0}, 1)} of H, and the coefficients A and p can be
parametrized, taking into account the arbitrariness of the phase, as

; 4 Iy 0
A=e " cos 7 w=e%?sin 7 (3.2)

The two angles # and ¢ can be taken as the polar and azimuthal angles which
parametrize the location of a point on the surface of a sphere of unit radius called
the Bloch sphere (or the Poincaré sphere for the photon); see Fig. 3.1.

Returning to the photon polarization and identifying |0) — |x} and |1) — |¥),
the states |x) and |y} correspond to the north and south poles of the sphere:

|x): =0, ¢ undetermined, |v): 8=, ¢ undetermined.

Circular polarizations correspond to points on the equator:
T

ko m k1l
R:BZ—, = L:H:—’ = ——,
Ry:0=",6=2, [Ly:6=2. b=—2

33
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|mid)

[

Figure 3.1 The Bloch sphere. The points on the Bloch sphere correspond-
ing to the photon polarization bases {|x},|y)}}, {|R).|L)}, and {|6 = w/4),
|6 = —m/4)} are shown.

Another important physical realization of the qubit is spin 1/2. Let us introduce
the subject by discussing a very well known phenomenon. A small magnetized
needle is an approximate realization of what physicists call a magnetic dipole,
characterized by a magnetic dipole moment, or simply magnetic moment, i, which
is an (axial) vector of R¥. When placed in a magnetic field B, this needle aligns
itself in the direction of the field, just as the needle of a compass aligns itself
with the Earth’s magnetic field. The reason for this alignment is the following.
The energy E of a magnetic dipole in a field Bis

E=—[i-B, (3.3)

and the minimum energy ! is obtained when g is parallel to and in the same
direction as B. When the field is not uniform, the dipole moves toward the region
where the field has the largest absolute value so as to minimize its energy. In
summary, a dipole is subject to a torque which tends to align it with the field, and
to a force which tends to make it move under the influence of a field gradient.
NMR (Nuclear Magnetic Resonance) and its derivative MRI (Imaging by
(Nuclear) Magnetic Resonance *) are based on the fact that the proton® possesses
a magnetic moment which can take two and only two values along the direction

' A physical system always struggles to reach a state of minimum energy (more correctly, minimum free
Cnergy ).

* The adjective “nuclear”™ has been suppressed in order not o frighten the public. ..

* In fact, other nuclei of spin 1/2 such as Y*C, "F, and so on are also used in NMR; see Sec. 6.2. Only protons
are used in MRL
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of a magnetic field. In other words, the component i - of f along any axis n
takes only two values, and this property characterizes a spin 1/2 particle. Experi-
mentally, this can be seen as follows. A beam of protons ¢ is sent into a magnetic
field pointing in a direction 7 perpendicular to the beam direction. It is observed
that the beam splits into two sub-beams, one deflected in the direction 7, and the
other in the opposite direction —#. This is the Stern—Gerlach experiment (Fig. 3.2,
with 7 || Oz), which is in its principle a close analog of the separation of a ray
of natural light into two rays by a birefringent crystal. The analog of a polarizer—
analyzer experiment using spin 1/2 can also be imagined (Fig. 3.3). However, it
should be noted that that the crossed polarizer—analyzer situation corresponds to

#a

[N
o A T |

Collimating slits Magnet

Figure 3.2 The Stern—Gerlach experiment. Silver atoms leaving an oven are
collimated and pass through the gap of a magnet constructed such that the field
is nonuniform with the gradient pointing in the —z direction. It is actually the
electron magnetic moment, which is a thousand times larger than the proton
magnetic moment, which is responsible for the deflection.

o} o)

no—.,— , o

E
oy //!U’)/_,-_\
n— ., o 5

Figure 3.3 Crossed polarizers for spin 1/2. In case (a) 100% of the spins are
transmitted by the second Stern—Gerlach apparatus, while 0% are transmitted
in case (b). The two Stern—Gerlach filters select spin 1/2 particles in state |0)
(upper beam) and state |1} (lower beam).

* This is a thought experiment. It is actually necessary to use neutral atoms rather than protons, as in Fig. 3.2;
otherwise, the effects will be masked by forces due to the charges. Moreover, nuclear magnetism is oo weak
Lo be seen in such an experiment.
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# = 7 rather than 6 = 7/2 as in the case of photons.” We construct a basis of 7
taking as the basis vectors |0} and |1}, which correspond to states prepared by a
magnetic field parallel to Oz. According to (3.1) and (3.2), the most general spin
1/2 state is

om0 i . 0
lo) =e 2 cos 5 |0} +¢'*/? sin 3 13, (34)

and it can be shown ® that this state is the one selected by a magnetic field parallel
to i with

7t = (sinf cos ¢, sin f sin ¢, cos ). (3.5)

In the spin 1/2 case, the Bloch sphere has an obvious geometrical interpretation:
the spin 1/2 described by the vector (3.4) points in the direction 7.

We have seen that the physical properties of qubits are represented by Hermitian
operators acting in a two-dimensional space. A convenient basis for these operators
is that of the Pauli matrices:

a.(om_l.)=(? (‘)) 0'2{0“7\-)=(? }f), INCTAE ((‘) _01) (36)

These matrices are Hermitian (and also unitary), and any 2 x 2 Hermitian matrix
M can be written as

3
M =M+ Ao, (3.7)
i=1
with real coefficients. The Pauli matrices possess the following important prop-
erties:

2 . . .
o =1, ooy =i03, o003 =i0y, 030 =i0,. (3.8)

The states |0) and |1) are eigenvectors of o with the eigenvalues *1:

m=(y) m=("). (39)

and it can be verified immediately that the vector |¢) (3.4) is an eigenvector of

(3.10)

oc-h=cn.+on,+on = cosf ™ sinf
N = . - H. = H -
xfty ity Mz eub sin @ —cosf

* The photon has spin 1, and not 1/2! The rotation operator of a photon (Exercise 2.6.3) can be compared
with that ol a spin 1/2 (see Exercise 3.5.1), and it will be seen that it is the angle 8 which arises in the first
case and the angle #/2 in the second. A note for physicists: a massive particle ol spin 1 possesses three
polarization states, not two. An analysis performed by Wigner in 1939 shows that a zero-mass particle like
the photon has only fwe polarization states no matter what its spin is.

This is a consequence of the invariance under rotation: see Exercise 3.5.1.

=
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with eigenvalue +1. We also note that the vector {7, the expectation value of
the spin in the state (3.4), is given by

<5-} = [(G\'% <O-y>! <G-.r>) (3.1 1)

and points along 7.

We have just demonstrated the physical realization of a qubit by a spin 1/2, but
there exist many other realizations, such as by a two-level atom, see the following
section. In any case, the Hilbert space always has dimension 2, and the state of a
qubit can always be represented by a point on the Bloch sphere.

3.2 Dynamical evolution

Now let us explicitly introduce the time, assuming that (3.1) holds at t = 0:

(1 =0) =AU =0)[0) +p(t=0)[1),  A(r=0)=A, u(t=0)=p.

(3.12)
Principle 3 We shall assume that the transformation
19(0)) = [e(1))
is linear and that the norm of |¢) remains equal to one’
le(1)) = A(D[0) + u(n)]1), (3.13)
A+ () = 1. (3.14)

The transformation |@(0)) — |@(1)) is then a wunitary transformation U(t,0)
(a unitary operator U satisfies U™' = U"; in a finite dimensional space, a linear
operator which preserves the norm, called an isometry, is also a unitary operator):

lp(1)) = U(1,0)[¢(1 = 0)).
In general,
() = Utz )le(1)). U2 t)) =U 7 (12)). (315
Moreover, U must satisfy the group property:

U(ty, 1)) = U(t,, U, 1), (3.16)

This second condition seems o be a natural consequence of state vector normalization, but in fact 1t invelves
the assumption that aff the quantum degrees of freedom are included in 20 the evolution is not in general
unitary when the qubit is only a part of a larger quantum system {or which the Hilbert space of states is
larger than ¢, see Section 4.4,
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and, finally, U(r,t) = 1. We use the group property and Taylor expansion for
infinitesimal dt to write

Ut +dt, ty) = Ut +de, ) U(t, 1),

d
U(t +dt, 1y) = U(1, ty) +dra Ult, 1),
Ut +de, n)U(t, ty) = [1 - %drﬁ'(r)] U1, ty),
L

where we have defined the operator H(r), the Hamiltonian, as

(f )

H(1) =ih (3.17)

t'=t

The constant /i = 1.05 x 107 Js was first introduced by Planck and is called
Planck’s constant. It relates energy E and frequency @ according to the Planck—
Einstein formula E = hw. The presence of the factor i ensures that 2} (1) is a
Hermitian operator, while the presence of h implies that H has the dimension of
an energy. In fact,

I=U'(t4de, DUt +dt, 1) ~ [H—rdrH (:)] [1—%(1:&(:)]
P
:]+Edr(H —H),

which implies that B = H'. From the above we see that the evolution equation
(also called the Schridinger equation) is

ih = H()U(1. 1,) (3.18)

dU(e, 1)
d

Since H is a Hermitian operator, this is a physical property, and in fact His
just the energy operator of the system. In the often encountered case where the
physics is invariant under time translation, the operator U(t,, f,) depends only on
the difference (t, —t;) and His independent of time.

Let us illustrate this for the example of NMR (or MRI). In the first stage the
spins 1/2 are placed in a strong, time independent magnetic field EIU (By is a few
teslas and 1 tesla = 10* gauss, about 10* times as strong as the Earth’s magnetic
field, which is why it is better not to wear one’s watch when undergoing an MRI
scan!). The Hamiltonian is then time independent, and since it is Hermitian it can
be diagonalized in a certain basis:

- hew 0
H= A , 3.19
( 0 ﬁwg) (3.19)
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where fiw 4, and hiwy are the energy levels of the spin 1/2. If the magnetic field
is parallel to Oz, the eigenvectors of H are just the basis vectors |0} and |1); see
Box 3.1. Since H is independent of time, the evolution equation (3.18),

in Y _ fu,
dr
can be integrated directly to give
U(t. to) = exp[—iH (1 — 1) /1], (3:20)

or, in the basis in which H is diagonal,

Ut 1p) = (E_MZ}U_M e_,-wf(,_,n,) : (3.21)
If |¢(r=10)}) is given by
le(t="0)) = Al0) + p[1),
then the state vector |¢(r)} at time ¢ is
(1)) = 7" A]0) +e7 5" 1) (3.22)

or
Ay =e @atp,  u(f) =e 7o .

The time evolution is deterministic and it keeps the memory of the initial
conditions A and w. Owing to the arbitrariness of the phase, the only quantity
which actually is physically relevant to the evolution is the difference

Wy =W —w,, (3.23)

so that it is also possible to write H as

H:—l hw, 0
200 —hwy)

The quantity @, plays an important role and is called the resonance frequency,
and hw, the resonance energy. By solving the equations of motion of a classical
spin, it can be shown that the classical spin precesses about Eu with an angular
frequency wy, the Larmor frequency.

Let us take this opportunity to mention another physical realization of a qubit,
namely, a two-level atom. An atom possesses a large number of energy levels,
but if we are interested in the effect of laser light on this atom, it is often possible
to restrict ourselves to two particular levels, in general, the ground state e, and
an excited state wg, wy > w,. This is referred to as the model of the two-level
atom and it is very widely used in atomic physics. If the atom is raised to its
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excited state, it returns spontaneously to its ground state by emitting a photon of
frequency w, = wp — w,. If the atom in its ground state is hit with a laser beam
of frequency w = wy, a resonance phenomenon is observed: the laser light will be
absorbed more strongly the closer w is to wy, a phenomenon which is analogous
to that described in the following section in the case of spin 1/2.

3.3 Manipulating qubits: Rabi oscillations

=

Box 3.1: Interaction of a spin 1/2 with a magnetic field

An elementary calculation of classical physics shows that the magnetic moment g of
a rotating charged system is proportional to its angular momentum 7, =y h}j \
where v is called the gyromagnetic ratio. The proton spin is in fact an intrinsic
angular momentum, rather as though the proton were spinning on its axis like a top.
However, this classical image of the proton spin should be used with care, as it can
be completely incorrect in the interpretation of certain phenomena; only a quantum
description actually permits a real understanding of spin. Intrinsic angular
momentum is a vectorial physical property with which there must be an associated
Hermitian operator (more precisely, three Hermitian operators, one for each
component). The proton spin is associated with the operator fig /2. Note that the
dimensionality is correct, because an angular momentum has the same dimension as
h. The magnetic moment, also a vector, is associated with a corresponding operator
which must be proportional to the intrinsic angular momentum, because the only
vector (actually, axial vector) at our disposal is o

B

2mp

h=37,0, ¥, =5.59

b | —

where 7, is the gyromagnetic ratio of the proton, g, is the proton charge, and m, is
the proton mass. The numerical value of y, must be taken from experiment,* and at
present there is no reliable way to calculate it theoretically. ?

As we shall see in Chapter 5, in quantum computing it is necessary to be able to
transform a state, |0) for example, of a qubit into a linear superposition of |0} and
[1}. Taking spin 1/2 as an cxample this can be done, as we shall see, by applymg to
the spin a constant magnetic field BO parallel to Oz and a magnetic field B (0
rotating in the xQy plane with angular velocity w:

E,(r} = B,(Xcoswr — ¥sin wr).

The magnetic moment g = 1.4 x 10-3 /T,

In principle, 1t should be possible to calculate v, using the theory of strong interactions, QCD (Quantum
ChromoDynamics). In practice, this calculation has to be done numerically {using lattice QCD), and the
present aceuracy is very far from permiiting a good estimate of y,.
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The Hamiltonian of the proton magnetic moment in a magnetic field is written by
analogy with (3.3), since  is the energy operator:

B - |
H:—p-lf:—;ypa'-ﬂ,

The magnetic field used in NMR is
B = By3+ B, (¥ coswr — Vsin wr).

We define fiw, = ¥,B, and fiw, = y,B,, and then the Hamiltonian becomes

. 1 1
H(r)=— 5 Yo Boo. — 5 ¥,B,(0, coswi — o, sinwi)

h
= —% W,T, — Ele (o, coswi— o, sinwi),

and we find (3.24) using the explicit form (3.6) of the Pauli matrices. If B, =0, the

Hamiltonian is time independent and its eigenvectors are |0) and |1), with

eigenvalues —hw,/2 and +Fw,/2, respectively.

Let a spin 1/2 be placed in a classical magnetic field with a periodic component
as in Box 3.1:

B = B+ B (kcos wt — ysin wr).

The form of H(r) then is (see Box 3.1 for the justification of (3.24))

. h wy wleiw:
By=—3 (wle_m ") (3.24)

where w) is proportional to B, and can therefore be adjusted at will. The frequency
w,; is called the Rabi frequency. The evolution equation (3.18) still needs to be
solved. It is easily transformed into a system of two coupled first-order differential
equations for A(#) and (1), which can be solved without difficulty (see Box 3.2
and Exercise 3.5.2). The result can be expressed as follows. If at time r = 0 the
qubit is in the state |0}, at time ¢ it will have a probability p;,_, ;(¢) of being found
in the state |1) given by

w2,
Poa(=(g) st 5 0= J@-w)+al  (325)
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Poa(t) Po—1(0)

ol
oy

Figure 3.4 Rabi oscillations. The deruning & is defined as 6 = w — w,,.

This is the phenomenon of Rabi oscillations (Fig. 3.4). The oscillation
between the levels |0) and |1) has maximum amplitude for w = w,, that is, at

resonarnce:

. 2wyl
Po—i () =sin® ==, @ =0 (3.26)

To go from the state |0) to the state |1} it is sufficient to adjust the time ¢
during which the rotating field acts:

ol w
2
This is called a 7 pulse. If a time intermediate between 0 and 7/w; is chosen,
we obtain a superposition of |0) and |1). In particular, if r = 7/2w, we have a

/2 pulse:

1
0) — E(IO)HI))- (3.27)

This operation will be of crucial importance in quantum computing. The equations
are essentially identical in the case of a two-level atom in the field of a laser
when the generally well satisfied “rotating-wave approximation™ is made. Then
hawy is the energy difference between the two atomic levels, w is the frequency
of the laser wave, and the Rabi frequency w; is pro]}ortlona] to the producl of the
(transition) electnc dlpole moment of the atom d and the electric field E of the
laser wave, w; o d Eh.

In summary, Rabi oscillations are the basic process used to manipulate qubits.
These oscillations are obtained by exposing qubits to periodic electric or magnetic
fields during suitably adjusted time intervals.
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Box 3.2: Solution of the NMR evolution equation at resonance

Equation (3.24) can immediately be transformed into an equation for

le(n)) = U(n)|e(r = 0)):

d -
TR o)

from which we find that A(¢) and p£(r) obey a system of coupled differential equations:

dA )
(W (- e ),

i

. d(’ : (3.28)
At _ _ff_l_ — 1o E’_g
=5 =3¢ Alt)+ > ().
It is convenient to define
A1) = A(r)e"n 2, () = fi(n)e w2, (3.29)
The system of differential equations simplifies to become
dA(r .
i ( } — _&cI(M—wnlﬂ ﬁ(f)‘
dr 2 (3.30)
i d,’.l.(f} — _&C—J[w—m“]r fi(f}.
dr 2

This system is easily transformed into a second-order differential equation for
A(2) (or f1(1)). Here we shall content ourselves with examining the case of
resonance @ = w, (see Exercise 3.5.2 for the general case), where

eA)
drr

The solution of the system then is

2
Wy =
—— A1)
n (1)

ot

fi(f) = acos le.' +bsin 2

ot ot (3.31)
(1) = iasin — —ibcos —.
(1) = iasin > ibcos >

The coefficients a and b depend on the initial conditions. Starting from, for
example, the state |0) at time 1 =0,

AMt=0)=1pu(t=0)=00ra=1, b=0,

at time t = 7/2w, (a /2 pulse) we have a state which is a linear superposition of

|0} and |1):
le(1)) = % (€072 |0) +ie~ 02 |1)) . (3.32)

The phase factors can be absorbed by redefining the states |0) and |1} such that
(3.27) is obtained.
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3.4 Principles of NMR and MRI

NMR spectroscopy is mainly used to determine the structure of complex chemical
or biological molecules and for studying condensed matter in solid or liquid form.
A detailed description of how NMR works would take us too far afield, and so
we shall only touch upon the subject. The sample under study is placed in a
uniform field E() of several teslas, the maximum field accessible at present being
about 20T (Fig. 3.5). An NMR is characterized by the resonance frequency. '’
Vyg=wy/2T = 'yPBUj(Zﬂ'ﬁ) for a proton: a field of 1T corresponds to a frequency
~42.6 MHz, and so we can speak of an NMR of 600 MHz if the field B, is 14 T.
Owing to the Boltzmann law, the level |0) is more populated than the level |1},
at least for y = 0, which is the usual case. The ratio of the populations p, and p,
at thermal equilibrium at absolute temperature 7 is, from the Boltzmann law,

p(t=0) _ (g)
0,(=0) =exp T ) (3.33)
| Mixer
Sample tube
Capacitor | RF
4| Directional oscillator Computer
coupler
(O | L7y —®

L

[ Amplifier
J P

|
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i = i el e
e TN R

Static Spectrum Wy w

RF coil . field coil

Figure 3.5 Schematics of the NMR principle. The static field fin is horizontal
and the radiofrequency field is generated by the vertical solenoid. This selenoid
also serves as the signal detector (FID Free Induction Decay). The RF pulse
and the signal are sketched at the lower right of the figure. The decreasing
exponential form of the signal and the peak of its Fourier transform at w = w,
should be noted. Adapted from Nielsen and Chuang (2000).

" More rigorously, e is an angular frequency, measured in radfs, whereas the frequency v = w27 is measured
in Hz. Since we shall use w almost exclusively, we shall refer to it somewhat casually as the requency.
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where ky is the Boltzmann constant, kp = 1.38 x 1072} J/K. At the ambient
temperature for an NMR of 600 MHz the population difference

hawgy
2kgT

Po—P1 =

between the levels |0} and |1) is ~35 x 107.

The application at time f = 0 of a radiofrequency field fs',(r) during a time ¢
such that w,t = 7 with frequency w,; lying near the resonance frequency w, that
is, a 7 pulse, makes the spins of the state |0) go to the state |1} and vice versa,
resulting in a pepulation inversion with respect to the equilibrium populations, so
that the sample is out of equilibrium. The return to equilibrium is characterized by
a relaxation time '! T}, the longitudinal relaxation time. In practice, a /2 pulse is
used: w,t = /2. This corresponds geometrically to rotating the spin by an angle
71',!2 about an axis of the xOy plane (Exercise 3.5.1). If the spin is initially parallel
to B{,, it ends up in a plane perpendicular to BU, a transverse plane (whereas a 7
pulse takes the spin to the longitudinal direction —Bu) The return to equilibrium
is then governed by a relaxation time T, the transverse relaxation time. The time
T, is of the order of a second and 75 < T); generally, 75 <« T;. In any case, the
return to equilibrium occurs with the emission of electromagnetic radiation of
frequency =~ wy, and Fourier analysis of the signal gives a frequency spectrum
which permits the structure of the molecule in question to be reconstructed. This
is done on the basis of the following properties.

e The resonance frequency depends on the nuclei through ¥y.

e For a given nucleus the resonance frequency is slightly modified by the chemical
environment of the atom to which the nucleus belongs, and this can be taken into
account by defining an effective magnetic field B, acting on the nucleus:

B,=(1-0)B,, a~10",

where o is called the chemical shift. There are strong correlations between & and the
nature of the chemical grouping to which the nucleus in question belongs.

¢ The interactions between neighboring nuclear spins provoke a splitting of the resonance
frequencies into several subfrequencies which are also characteristic of the chemical
groupings.

This is summarized in Fig. 3.6, where a typical NMR spectrum is given. It
is important to observe that an NMR measurement has nothing to do with a
projective measurement, as defined in Section 2.4. In fact, the NMR signal is a
collective signal built up by spins located on ~10'® molecules. When returning

" When a field B, is applied. thermodynamical equilibrium (3.33) is not established instantaneously, but only
after a time ~T.
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to equilibrium, these spins build up a a macroscopic polarization which precesses
about the constant field E(,, This precession induces an emf in a solenoid (the
same solenoid which served to bring the spins to nonequilibrium), and this emf
can be measured by standard methods. This gives rise to the free induction signal
(FID) schematized in Fig. 3.5. This FID is Fourier analyzed, which allows one
to determine the resonance frequencies, as in Fig. 3.6. The reason why the NMR
measurement is a purely classical one is that spontaneous emission from a spin in
an excited state, which must be described in a quantum framework, is completely
negligible, so that the NMR measurement is best described in classical terms.

In the case of magnetic resonance imaging (MRI), it is only the protons con-
tained in water and fats which are of interest. The sample is placed in a nonuniform
field f?[,, which makes the resonance frequency depend on the spatial point. Since
the signal amplitude is directly proportional to the spin density and therefore to
the proton density, by complex computer calculations it is possible to deduce a
three-dimensional image of the density of water in biological tissues. At present
the spatial resolution is of the order of a millimeter, and an image can be made in
0.1 5. This has allowed the development of functional MRI (fMRI), which can be
used, for example, to watch the brain in action by measuring local variations of
the blood flow. The longitudinal and transverse relaxation times 7| and 7, play
a major role in obtaining and interpreting MRI signals.

OH CH, CH, TMS

50 4.0 30 2.0 1.0 0.0
ppm

Figure 3.6 NMR spectrum of protons of ethanol CH;CH,OH obtained using an
NMR of 200MHz. The three peaks associated with the three groupings OH,
CH,, and CH, are clearly seen. The dashed line represents the integrated area
of the signals. TMS (tetramethylsilane) is a reference signal.
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3.5 Exercises
3.5.1 Rotation operator for spin 1/2

1. Show that the expectation value {7 of the operator & in the state (3.4) is given
by (&) = i, where # is defined in (3.11).
2. Show that

exp(—iﬂ&»ﬁ) =!cos§—i(5'»ﬁ)sin 0

2 2 2’

where p is a unit vector. Hint: calculate (& - p). The operator exp(—if - p/2) is
the unitary operator U [R;(6)] which rotates by an angle # about the p axis. To
see this, use the vector p = (—sin ¢, cos ¢b, 0) as the rotation axis and show that
a rotation by an angle @ about this axis takes the axis Oz to the vector i (3.3).
Show that exp(—i@a - p/2)|0) is just the vector ¢} (3.4), the eigenvector of & - 7
with eigenvalue +1 up to a global phase. What is exp(—if - p/2)|1}?
3. When ¢ = —r/2 the rotation is about Ox. Give the explicit matrix form of
U[R,(8)]. Comparing with (3.31), show that under the action of B,(f) the state
vector rotates by an angle @ = —w ¢ if this field is applied during a time interval
[0, ].

3.5.2 Rabi oscillations away from resonance

1. In the nonresonant case, show that starting from (3.30) we obtain a second-order
differential equation for A(7):

2 & 2i5d§‘+1 A=0 S= 3.34)
w, A2 w, o dr 29T seT Y 3.
the solutions of which have the form
A(t) = el%!.

Show that the values of () are the roots of a second-order equation and are given
as a function of the frequency O = (w] + 32)1f2 by

1
Q. = —[:Siﬂ].
=72
2. The solution of (3.34) for A is a linear combination of exp(if) 1) and exp(i€d_1):
A1) = aexp(iQ, 1) + bexp(i_1).

Choose the initial conditions 5\(0) =1, &(0) = 0. Since i(0) ¢ di[ﬂ)/dr, find a
and b as functions of () and Q.
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3. Show that the final result can be written as (see Exercise 6.5.1 for a more
elegant proof of this result)

R 161/2 Qr Qi
Al = ¢ I:ﬂcos——zm—iﬁsin ~2~:|,

Q
. iw isy/2 o Q¢
)= — sin —,
L) o) e sin 3

which reduces to (3.31) when 6 = 0. Starting at r = 0 from the state |0}, what
is the probability of finding the spin in the state |1} at time r? Show that the
maximum probability p™* of making a transition from the state |0} to the state
|1} for Qr/2 = /2 is given by a resonance curve of width é:

2 2
wy wi

0 +82 @+ (w—w)?

max

p_ =

max

Sketch the curve for p™* as a function of w. As shown in Fig. 3.4, the Rabi
oscillations are maximal at resonance and decrease rapidly in amplitude with
growing 6.

3.6 Further reading

The principles of quantum mechanics are discussed by, for example, Le Bellac
(2006), Chapter 4, and Nielsen and Chuang (2000), Chapter 2. The Stern-Gerlach
experiment is described in detail by Cohen-Tannoudji et al. (1977), Chapter IV,
NMR and MRI by Levitt (2001).
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Quantum correlations

One might expect that going from a single qubit to two qubits would not lead
to much of anything new. However, we shall see that the two-qubit structure
is extraordinarily rich, because it introduces quantum correlations between the
two qubits, correlations which cannot be reproduced using classical probabilistic
arguments. Going then from two qubits to n qubits does not lead to anything
fundamentally new. As we shall see in Chapter 5, these configurations of quantum
systems, called entangled states, are what lead to the special features of quantum
computing, due to the exponential growth of the number of states.

4.1 Two-qubit states

The mathematical construction of a two-qubit state rests on the idea of the tensor
product, an idea which we shall introduce by means of an elementary example.
Let J, be a two-dimensional vector space of functions f,(x) with, for example,
the basis vectors {cos x, sin x}:

falx)=A, cos x4 sinx,

and let 5 be another two-dimensional vector space of functions fg(y) with the
basis vectors {cosy, sin y}:

fp(x) =Agcosy+ ugsiny.
We can construct a function of two variables called the “tensor product of f, and
f5
Fa(xX)fp(y) = AqAgcosxcosy+ A g cosxsiny
+ L4 Agsinxcos y+ oy ftp SN X SN y.
A possible basis of the tensor product space is

{cosxcosy, cos xsiny, sinxcosy, sinxsin y}.

49




50 Quantum correlations
Any function in this space can be decomposed on this basis:
g(x, y) = @cosxcosy+ B cosxsiny+ ysinxcosy+ §sinxsiny,

but this function will not in general take the form of the tensor product f4(x) fz(y).
A necessary (and sufficient) condition for it to take that form is ad = Bvy.

Let us follow this procedure to construct a two-qubit state mathematically. The
first qubit A lives in a Hilbert space {4 which has orthonormal basis {|04}, |14},
and the second qubit B lives in a Hilbert space 'y which has orthonormal basis
{105}, |15)}. It is natural to represent a physical state in which the first qubit
is in the state |04} and the second is in the state |0g) by a vector written as
| Xg0) =104 ®0p). Taking into account all the other possible values of the qubits,
we will a priori have four possibilities:

1X00) =10,®0g), [Xo1)=104®1p), [X10)=[14®0p), [X11)=[14®1p).

(4.1)
The notation & stands for the tensor product. It is not difficult to construct a state
in which the qubit A is in the normalized state

lea) =A4l04) +palla)s Agl?+ gl =1,
and the qubit B is in the normalized state
lop) = AplOg) + ppllp), |Apl*+ g = 1.

We shall denote this state as [¢, ® ¢g):
lea®@p) =AsAp[04®0p) + Agppl0,4® 1)
+paldp|la®0p) +pwapply® 1) (42)
= AaAplXoo) + Aqtp|Xor) +1aApl X o) + 1 aptpl Xy )

The correspondence with the preceding functional space is obvious. We have
constructed the space H 4 ® Hp as the tensor product of the spaces H 4 and Hp.
We note that the vector |¢,4 ® ¢p) is also normalized. ! Physicists are rather lax
in their notation, and following in this tradition the reader will sometimes here
find |@4 @ @), o |@4) @ |@g), or even |@ ¢y}, with the symbol for the tensor
product omitted.

The crucial point is that the most general state of H 4, ® Hpy is not of the form
of a tensor product |, ® @g); states of the form |@4 ® ¢5) make up only a small
subset (not even a subspace!) of the vectors of H 4 @ K. The most general state
has the form

W) = |0,y ®0p) + a0, ®@ 1) + |1, @0p) + |1, @ 1)

(4.3)
= agy| Xoo) + o1 Xo1) + a0l X0} + a1 [ X11),

! More rigorously, it should be checked that the product |¢, ® @) is independent of the choice of bases in
Jt, and J{y. This can be proved immediately; see Exercise 4.6.1.
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and for | W) to be of the form |¢, ® @) a necessary (and sufficient) condition is
that

Qo) = Qg g,

which a priori has no reason to be valid. Let us give a very simple example of a
state |®) which is nor of the form |¢, @ @g):

L

I‘D>=ﬁ

(10,®15) +[1,®04)). (4.4)
Here

1
ik
and agpa | Z apag- We also define the tensor product M 4 @ M p of two operators
M, and My as

gy = ay; =0, ayy =y =

[MA ®MB]F,1pE:quB = [MALA}A [MB];JB(;B'

As an example, let us give the tensor product of two 2 x 2 matrices:

w=(ee) m=( %)

The matrix M, @ Mp is a 4 x 4 matrix, with the lines and columns ordered as 00,
01, 10, 11:

aa af ba bB
aMy, bM ay ad by bd

M M., = B B —
A®Mg (cMB dMB) ca cff da dB

cy ¢& dy dé

A two-qubit state which does not have the form |¢@, ® @) is called an entangled
state. The fundamental property of such a state is the following: if |¥) is an
entangled state, then the qubit A cannot be in a definite quantum state ¢, ).
Let us first show this for a special case, that of the state |®) (4.4). Let M be a
physical property of the qubit A. In the space H, ® H; this physical property is
represented by M ® Iz. We calculate its expectation value {®|MD) as

(Mo = (@|M®) = J[(0,@ 1]+ (1, @0, ] [[(M0,) & 1,) +](M1,) ©0,)]
= S (OMO)+(1,1M1,)), @5)

where we have used

(05l05) = (1g[1p) =1, (0p|1p) = (15]05) =0.
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Let us prove that there is no state

[0y =A10,4) +plly)
such that
(PIMP) = (@ | Mey).

Computing the expectation value of M, we obtain
(@alMe ) = [AP(0,4] MO, )+ (A (04| M14)+ A (14 MO, ))+ | (1,|M1 ).

A necessary condition for reproducing (4.5) would be |A| = || = 1/+/2. but then
the terms involving A*x. would not vanish (unless (0,]|M1,) vanishes acciden-
tally), in contradiction with (4.5). The result (4.5) has a simple physical interpre-
tation: the state of the qubit A is an incoherent mixture of 50% of the state |04)
and 50% of the state |1,), and not a linear superposition. In summary, it is not
possible in general to describe part of a quantum system by a state vector.

An example of an incoherent superposition is natural or unpolarized light. It is
an incoherent mixture of 50% light polarized along Ox and 50% light polarized
along Oy, whereas light polarized at 45° is a coherent superposition of 50% light
polarized along Ox and 50% light polarized along Oy:

1
V2
Right-handed circularly polarized light is also a coherent superposition:

1 .

— (|xy+1|y}).

7 (Ix) +i[))

We see the importance of phases: for example, the states |# = 7/4) and |R) both
correspond to 50% probability of observing a photon polarized along Ox or along

Oy, but these two states are completely different: one is a linear polarization and
the other is a circular polarization.

0=m/4) = —=(Ix)+»).

IR) =

Box 4.1: Example of a physical realization of an entangled state

Obtaining an entangled state starting from a tensor product is not completely
straightforward. It is necessary to introduce an interaction between the two qubits.
Let us take as an example two spins 1/2. A possible interaction between these two
spins is

A e

- TO-”‘ Ty

Such an interaction might originate in the interaction between the two magnetic moments associated with the
spins, but in general it will more likely be associated with an exchange interaction originating in the Pauli
exclusion principle.
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‘We use the result of Exercise 4.6.4

U+<T,; a)lij) = ji)
to show that

{&A-&g)%(llmﬂmn = (G, 5)|D,) = |D,),

1
T, 0g)— ([10) = |01)) = (7, - o) | D_) = =3|D_).
{Aﬂ}ﬁ(|>|>)(aﬂ)|> |®_)

The vectors |@, ) and |@_) are eigenvectors of &, - & with the eigenvalues * +1
and —3, respectively. Let us start at time 1 = 0 from a nonentangled state, for
example, |@(r =0)) = |10). To obtain its time evolution it is sufficient to
decompose this state on |®, ) and |®_):

|®(t=0)) = —2= (1) +|P_}).

1
V2
‘We can immediately write down the time evolution:

c—if.fr,:'h'q:'(o}) — (C—lwr;'2|¢+> +c.\'{mh‘3|¢'+>)

- ﬁd_

[ lewt /2 [ —1wr|®+>+elw?|® >)

&

= ¢"“"? (cos wt|10) — isin wz[01))

One can now choose wf = /4 to obtain the entangled state |¥):

[¥) = —=(|10) —il01))

\/— (
The difficulty is that H is in general an interaction infernal to the system, which,
in contrast to the external interactions used to manipulate the individual qubits,
cannot easily be turned on and off in order to adjust r. If the interaction is a
short-range one, it is possible to move the two qubits closer together and farther
apart in order to control the time over which they interact. The construction of
entangled states in the case of NMR using series of radiofrequency pulses will be
discussed in Section 6.1. In the case of trapped ions, a two-ion state is entangled
by allowing it to pass through the intermediary of an ion vibrational mode
(Section 6.2). It is also possible to obtain an entangled state of two objects by using
a third auxiliary object, for example, two atoms can be entangled by making them
interact with a photon of a resonant cavity.

Physicists will recognize these as corresponding to the triplet ([, }) and singlet (fd_}) states.
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4.2 The state operator (or density operator)

Now let us generalize these results to a quantum system formed of any two
subsystems, where we use |i4)(]ig)) to refer to an orthonormal basis of the
subsystem A(B). To simplify the notation, it will be convenient to make the
substitutions i, — i and iz — p. The most general state then is

D) =D e li®p). (4.6)

i

Let M be a physical property of the subsystem A:

IM®) =3, [Mi® ).

i

We calculate the expectation value of M as

(DMD) =YY o, (@ v|Mi® )
Jov L

= ZZ“L“:}&(HMI') = prj(ﬂMi) = ZPUMJ,- = Tr(pM),
ij m i.j i.j

(4.7)

where TrA stands for the rrace 3°; A; of an operator A, that is, the sum of its
diagonal elements. It is straightforward to prove that TrAB = TrBA, from which
one deduces that the trace is basis independent. In obtaining (4.7) we have used

@vIMi®u)=36,,(j|Mi),

because in H, ® Hp, M is actually M ® I;. The equation (4.7) defines an object
which will play a crucial role, the state operator (or density operator)* p of the
subsystem A:

pi_,l = Zp ama?ﬁ (4‘8)

The state operator of the subsystem A is called the reduced state operator and
is denoted p,. The subsystem A is not in general described by a state vector, but
by a state operator which allows us to compute the expectation values of physical
properties. This state operator is Hermitian (p = p'), positive® (p > 0 as is easily
proved from (4.8)), and it has unit trace Trp = 1:

Trp =3 pi=p_ 2l > =@ =1.
i i p

* The standard terminology is “density operator.” However, this historical term is completely unjustified: to
what density does it reler? We prefer the term “state operator,” which is the generalization to mixtures of
the term “state vector”™ for pure states.

* A positive (or nonnegative) operator A is one for which {@|Ag) is real and (g|Ag) = 0 V@) (it is strictly
positive if {p|Ag) = 0). It is necessarily Hermitian in a complex space. A necessary and sufficient condition
for a Hermitian operator to be positive is that its eigenvalues be nonnegative.
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Physical states such as those studied in Chapter 2 are called pure states: they
are described by a state vector. It is easy to check that the state operator of a pure
state obeys p? = p and vice versa: any state operator satisfying p? = p describes
a pure state (Exercise 4.6.2). However, the most general description of a quantum
system must be given in terms of a state operator.

Since p is Hermitian, it can be diagonalized and written in an orthonormal basis
|i} as

p=Ypili)il. (4.9)

Since p is positive p; = 0, and the condition Trp =1 gives 3, p; = 1, so that the
p; can be interpreted as probabilities. It can be said that p represents a statistical
mixture (or simply a mixture) of states |i}, each state |i) having a probability p;;
in the preparation stage, each state |i) is prepared with a probability p;, without
any phase coherence between the different states |i}.

It is easy to generalize (4.8) when a quantum system (AB) is described by a
state operator p ., with matrix elements ® p;‘:f .,» and not by a state vector. Let
M be a physical property of the system A, which is therefore represented in the
space H 4 @ Hp by the Hermitian operator M @ Iz. We wish to find an operator

p 4 such that the expectation value of M is given by
(M) =Tr(p,M). (4.10)
Using the same argument as above, we calculate the expectation value of M & I:
(M ®1g) =Tryp (pap[M ®15])
=2 pr.u jv M;idy ZM}* anu n 1D

ijuw

The expression generalizing (4.8) then shows that p4 has the form

(4.12)

\ P =Pt Pa=Trppu

because the expectation value of M is given by (4.10) with the choice (4.12)
for p4. It can be shown that (4.12) is the unique solution giving the correct
expectation value of M. The operation which takes us from p,, to p, is called
the partial trace of p,z with respect to B.

The importance of the concept of state operator is confirmed by the Gleason
theorem, which we shall state without proof and which basically says that the
most general description of a quantum system is given by a state operator.

® To make the notation more readable, AB is written as a superseript to make room for the subscripts labeling
the matrix elements.
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The Gleason theorem Let a set of projectors P; act on a Hilbert space of states
H and let there be a test associated with each P; where the probability p(P;) of
passing the test satisfies

0=p(P) =1, pl)=1,
as well as
p(j",-U?j) =p(P) +p(P)) it ZiNP;=0(or PP;= 3,—1-3",-).

This property should hold for any set of mutually orthogonal P; such that 3, P; =
I. Then if the dimension of ' > 3, there exists a positive Hermitian operator p
of unit trace such that

p(P;) = Tr(pP;).

In other words, if we wish to associate a probability p(;) with an ensemble of
tests P; which has “reasonable” properties, then this probability will be given by
a trace involving a state operator.

If |®) is a tensor product of the form |@4 ® ¢p) and if to |P) we apply a
unitary transformation which is a tensor product of transformations acting on A
and B, U, & Up, this corresponds simply to a change of orthonormal basis in
the spaces H, and Hp and an entangled state cannot be made. To make an
entangled state, it is necessary to make the two qubits interact. In contrast to the
superposition of two states which is a basis dependent concept, entanglement is a
basis independent concept. The Schmidt purification theorem, whose proof is left
to Exercise 4.6.5, allows us to give more precise statements.

The Schmidt purification theorem Any state |®) of H, ® H, can be written as
D) =3 Vi lis®ip) (4.13)
i
with
{ialia) = (iplig) = 0}
The states |i,) and |ig) clearly depend on |®). This expression immediately

gives the reduced state operators p, and pg. To show this, let us begin with the
full state operator p,p:

pap= PN (P =3 in@ig){js® jgl-
i
Let |{) be an orthonormal basis of . It is easy to calculate the traces using the
following result:

Trlo) (] = D _(ile) (i) = D_(wliXile) = (Ule), (4.14)
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because Y, |f)(i| =1 and so the state operators p, and p, are given by

Pa= pr“f\}(iﬂl > pB:ZpE|iB)<iB| (4.15)

with the same p,. The number of nonzero p; is the Schmidt number. If we
apply to the state |®) a unitary transformation which is the tensor product of
transformations acting on A and B, U, ® Uy, we cannot change the Schmidt
number by manipulating the qubits A and B separately. We recover the above
result for a tensor product by noting that the Schmidt number of a tensor product
is 1. If # 4 and H have dimension N, a state of the form

N
|<1>):Lzei“”1|s,‘®fg), (4.16)
NS
where exp[ia(i)] is a phase factor, is termed a maximally entangled state, or a
Bell state. For example, |®) in (4.4) is a Bell state. The reduced state matrices
corresponding to (4.16) are multiples of the identity: p, = pz=1I/N. This is a
characteristic property of maximally entangled states.

4.3 The quantum no-cloning theorem

The indispensable condition for the quantum cryptography method of Section 2.5
to be perfectly secure is that the spy Eve not be able to reproduce (clone) the
state of the particle sent by Alice to Bob while leaving Bob’s measurement result
unchanged, so that interception of the message is undetectable. The impossibility
of Eve doing this is guaranteed by the quantum no-cloning theorem. To demon-
strate this theorem, we suppose that we wish to duplicate an unknown quantum
state | ;). Of course, if |y} were known, there would be no problem because the
preparation procedure would be known. The system on which we wish to print
the copy is denoted |¢) and is the equivalent of a blank page. For example, if we
wish to clone a spin 1/2 state |y, }, then |¢} will also be a state of spin 1/2. The
evolution of the state vector in the cloning process must be of the form

i ®e) =[x ®x). (4.17)

This evolution is governed by a unitary operator U/ whose exact form is unim-
portant:

U, @)} =1x,®@Xx)- (4.18)

This operator U must be universal (because the photocopying operation cannot
depend on the state to be copied) and therefore independent of |y}, which is
unknown by hypothesis. If we wish to clone a second original |y,} we must have

[U(x2® )} =|x2@X2)-
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Let us now evaluate the scalar product

X=(x®eU U(x®¢))

in two different ways:

(1) X=(xn®elx@¢) = (xilx2)- (4.19)
@) X={®xx®x) =(xlx)* '

The result is that either |y,) = |x2) or {x;]|x2) = 0. It is possible to clone a state
| x1) or an orthogonal state, but not a linear superposition of the two. This proof of
the no-cloning theorem explains why it is not possible in quantum cryptography to
restrict oneself to a basis of orthogonal polarization states {|x},|y)} for photons.
It is the use of linear superpositions of the polarization states |x} and |y) which
allows the presence of a spy to be detected. The no-cloning theorem makes it
impossible for Eve to clone the photon sent by Alice to Bob when its polarization
is unknown to Bob; if Eve could perform this cloning, she would then be able
to produce a large number of such photons and measure the polarization without
problem, see Exercise 2.6.1.

4.4 Decoherence
Let us consider two qubits A and B in the entangled state
(W) = A[0405) + p|l4lp)
and compute the state matrix of qubit A using (4.14):
A]* 0
0 |p?

All the information on the phases of the complex numbers A and u seems to have
disappeared, and we are left in the {|04).|14)} basis with a diagonal state matrix.
It is easy to generalize the preceding argument and derive the following theorem:
if a pair of states of the system of interest becomes correlated with mutually

P = Teg ) (W] = IAP10,) 04 + [P 10) (1] = ( ) (4.20)

orthogonal states of another system, then all the phase coherence between the
orthogonal states of the first system is lost. This loss of phase coherence is called
decoherence. Since the information on the phases is contained in the nondiagonal
matrix elements of p, these matrix elements are often called coherences. However,
this theorem should be interpreted with care. First of all, although p 4 is diagonal
in the {|04}, |14)} basis, this will not be the case in general in another basis
except if p, = 1/2. For example, in the {|4+,},|—,)} basis
) = 5 (10 £112)
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pa (4.20) takes the form

L |A|2—|u|3)
= " . 4.21
Pa=3 (I)tl'—hul' ! (4.21)

The second remark is that the information on the phases is not really lost: it
is only locally lost, that is, it is lost if we restrict ourselves to measurements of
physical properties of qubit A. Joint physical properties of qubits A and B will
depend in general on the phases of A and w. In the case of a quantum computer,
a large number of qubits become entangled and the state matrix of any individual
qubit is almost diagonal. However, if the qubits are perfectly isolated, the global
state vector retains the phase information, and indeed this must be so if we want
the quantum computation to be meaningful. The third remark is that coherence
may be recovered dynamically, even if it seems to have been temporarily lost.
To explain this point, let us assume that the states |0z) and |1,) are not exactly
orthogonal, but that (Oz|1;} = &, |g] < 1, and that the two-qubit Hamiltonian has
the form

1
o _n
= —KX. 4.22
ol =3 (4.22)
0

=t
-0 o o

00
00
00
00

It is easily checked (for example, by relabeling the rows and columns of the
matrix X in the order 00, 11, 01, 11) that the evolution operator is

. Kt Kt
exp(—iHt/h) :[A®Igcos?—iXsin TR (4.23)

If we start at time ¢ = 0 from the state |¥,} = |0,0), the state vector at time
t = /2K will be
T 1 .
¥ (1= 55) = 751009 ~ilLa1g)

and the corresponding state matrix of qubit A becomes

=2 ( ! ‘13) (4.24)

2 \—ig

It appears that the state matrix exhibits almost perfect decoherence. However,
if we wait until time t = /K the state vector becomes —i|1,41). It is possible to
work out a more precise model where the states |05} and |15) represent almost
nonoverlapping, and consequently almost orthogonal, wave packets. It can then
be shown that K oc &, so that the oscillations predicted by (4.23) have a very long
period, and the qubit A may appear to have lost coherence for a long time.
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As long as we have complete control over all the quantum variables, we have
only “adiabatic” or “false” decoherence: at some instant of time, the measurement
of local physical properties may not depend on the phases, but the phases are still
there and they reappear in the measurement of more complex physical properties
and/or from dynamical evolution. We shall face “true” decoherence if we lose
control over some of the quantum variables. For example, suppose that in a
Young's slit experiment performed with complex molecules, such as fullerenes in
a thermally excited state, a photon is emitted when the molecule passes through
one of the slits and escapes to infinity. If the wavelength of this photon is shorter
than the distance between the two slits,’ the state of the photon will be almost
orthogonal to that of a photon emitted by the molecule going through the other
slit. The path of the molecule will become correlated with orthogonal degrees of
freedom of the environment, so that we get information on which path is taken and
the interference is destroyed. In this case it is clear that we have lost control over
the photon degrees of freedom, and information has leaked into the environment
in an uncontrollable fashion. This is an example of true decoherence: the system
becomes entangled with orthogonal states of the environment, but we do not have
access to these states. It can also be said that “the environment measures the
system,” since the emitted photon measures the path of the molecule. In general,
the environment is a very complicated quantum system, and quantum coherences
are distributed over such a large number of degrees of freedom that they become
unobservable.

It follows from the preceding discussion that if we want to retain control
over the operation of a quantum computer, it is essential that the computer be
immune to decoherence: the qubits must not be coupled to the quantum degrees
of freedom of their environment. In other words, an ideal quantum computer must
be completely isolated. In many models the characteristic time which controls
the decay of coherence, called the decoherence time, is inversely proportional
to some positive power of the size of the system, often the square of this size.
Thus, we expect decoherence to be more and more important as the number of
qubits increases. The following example will illustrate this property. Suppose that
the interaction of a qubit with the environment during a time interval At has the
following effect on a single qubit:

0) =10}, 1) = —|1)

with a probability p = I'Ar << 1. The decoherence time is 7, = 1/T". We have not
explicitly written out the states of the environment, the only important point being

" This will happen if the temperature of the molecule is sufficiently high, so that it can be found in a highly
excited state.
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that the states |0) and |1) do not become entangled with states of the environment.
If the qubit is in the state

e
V2

then the interaction will transform it into

) = —=(10)+1)),

AR I
)= 7= (0= 1) =04 (4.25)

with probability p, and the initial phase relation between the two components
of |1y will be lost, introducing errors in the computation. The process (4.25) is
conventionally called phase flip. Now, consider the n-qubit state

L
V2

The phase relation between the two components of |¥) will be lost as soon as one

RS (100---0) +]11---1}). (4.26)

of the qubits flips sign. It is reasonable to assume that each of the qubits interacts
with the environment independently of the others. Then in the time interval At
the state |¥) will be transformed into

i
V2

with probability p,, = nI"A¢. In other words, the decoherence time for the system
of n qubits will be shorter by a factor of n compared to the decoherence time for
a single qubit: my(n) = 7/ n.

To conclude this section, let us describe a simple model for the coupling of
a qubit to its environment which leads to phase decoherence. This model is
conventionally called the phase damping channel. In this model the state of the
qubit does not change, but the environment, which is initially in the state |0z},
is sent with probability p into the state |1;)(|2z)) if the qubit is in the state

104)(114)):
10408) = VI=Pl0,0%) + VBI04 1) =10,)® (VI=P10g) +/Pl15))

11408) = VI=PI1406) + VPI1426) = [11) & (VI=PI0g) + VP 126) ) -
(4.27)

W)= —=(100---0) ~ [11 1))

One can imagine, for example, that the qubit elastically scatters a photon
of the cosmic microwave background, and that the final state of the photon
depends on the state of the qubit. We note that the states |04) and |1,) do not
become entangled with the environment, while any linear combination of these
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two states would become entangled. States which do not become entangled with
their environment are termed pointer states. The most general initial state is

D) = (A04) + 1|1 4)) ®I0g) (4.28)
so that the initial state matrix of the qubit is
A[* )HU«*) (Puu Pm)
= = . 4.29
Pa ()L*Iu‘ |ul? Pio Pu ( )
The process (4.27) can be represented in the Hilbert space H 4 ® Hp by a
unitary operator U/, which is only partially known, ® and

UlP) = Ay 1=p|0405) +Ay/P|0415) + /1 —p[140g) + /P [142). (4.30)

Using (4.14), it is now straightforward to find the transformed state matrix p’,
of the qubit: °

Py = T [U|@Y(D|UT] = |A]*04) {04

P Ly (Lal 4 (Ap™ (1 =p)[04) (14| +H.c.) (4.31)

or
r_ Poo (I—P)Pm) 432
Pa ((l—p)Pm P ) (432)

After n iterations of (4.30) we find

o/ = ( Poo (1 —P)"Pm) . ( Poo Pme_n) _ (4.33)
4 (I=p)"p10 P i \pe”" pyy

Indeed, if we assume that p is proportional to Ar, p=TAr, and we observe the
qubit during a time interval t, n = t/Ar, then

poi (1) = por(1=TAN"Y —— pye”"". (434)

The initial state decays into an incoherent mixture of the states |04} and |14)
with a decoherence time of 7, = 1/I'. For t — oo, the state matrix becomes

diagonal
po 0
p(t) — ( ) .
t—oe \ 0 py

B is a 6 x 6 matrix and only four of its matrix elements are given in (4.27), but the missing entries can be
filled in while preserving the unitarity.
¥ For example, Trg (J0,1g3{1,1g) = [04){14]-
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It is essential to observe that no unitary evolution in 4 can lead from the initial
state matrix p, (4.29) to the final diagonal from. Indeed, a unitary transformation
transforms a pure state into a pure state, and there is no unitary operator such that

+ (A2 0 )
Up,U' = .
pa ( 0 [P

The unitary evolution takes place in the #, ® Hy Hilbert space.

4.5 The Bell inequalities

One proof ' of the nonclassical nature of the correlations of an entangled state is
given by the Bell inequalities, which we shall explain using an example. Let us
suppose that we have constructed pairs of photons A and B traveling in opposite
directions whose linear polarizations along Ox or Oy are entangled (Fig. 4.1):
1
D) = —= (Jxaxp) +|yave))- 4.35
| D) NG (lxaxg) +|yave)) ( )

Alice and Bob are able to measure the polarizations of the photons issued from
a single pair, because the photon pairs are separated by a time interval sufficient
for them not to overlap. Alice measures the polarization of photon A and Bob
the polarization of photon B, then they check to see whether the polarizations are
correlated: if Alice and Bob orient both of their analyzers either along the axis
Ox or along Oy, they can check that the two photons either pass through both

Figure 4.1 Configuration of an EPR type of experiment.

" This section is a digression from the main topic and may be omitted from a [irst reading.
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their analyzers or are stopped by both of them. Mathematically, this results from
the probability amplitudes

1 1
Xgxp| D) = —, xavp|®) =0, xavg|P)y =0, Vvaye|®) = —.
(xqxp| D) \/5 (xayp|®) (xaygl®) (vavp|®) \/5

To write this result in a convenient form, it is useful to describe the correlation
of the polarizations as follows (A, and B, are just the operator M = P — P,
introduced in Section 2.4):

A, =+1if polarization A || Ox, B, =41 if polarization B || Ox,
A, = —1if polarization A || Oy, B, = —1 if polarization B || Oy.

Under these conditions, Alice and Bob observe, for example, the following series
of results:

Alice: A, =4+——+—+++——,
Bob: B, =+——4+—4+4——,
which gives the expectation value of the product A B,:
(AB,) = 1. (4.36)

Upon reflection, this result is not very surprising. It is a variation of the game
of the two customs inspectors. ! Two travelers A and B, each carrying a suitcase,
depart in opposite directions from the origin and eventually are checked by two
customs inspectors Alice and Bob. One of the suitcases contains a red ball and
the other a green ball, but the travelers have picked up their closed suitcases at
random and do not know what color the ball inside is. If Alice checks the suitcase
of traveler A, she has a 50% chance of finding a green ball. But if in fact she finds
a green ball, clearly Bob will find a red ball with 100% probability! Correlations
between the two suitcases were introduced at the time of departure, and these
correlations reappear as a correlation between the results of Alice and Bob.

However, as first noted by Einstein, Podolsky, and Rosen (EPR) in a celebrated
paper '? (which used a different example, ours being due to Bohm), the situation
becomes much less commonplace if Alice and Bob decide to perform another
series of measurements using the orientations f and 6 | instead of Ox and Oy.
In fact, |®) is invariant under rotation about Oz, because (2.19) can be used to
show immediately (Exercise 4.6.8) that |®) can also be written as

1
|D) = E[m;ﬁs}"‘mu.fhs))- (4.37)

" Invented just for this occasion!
2 Einstein e al. (1935). The term “EPR paradox” is sometimes used, but in fact there is nothing paradoxical
in the EPR analysis.
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If A, is replaced by A,, then

A, = +1 if polarization A || 8, By = +1 if polarization B | 6,

Ay = —1 if polarization A | #,,  B,=—1if polarization B || f, .
Then as in (4.16) we will have
(AyBy) = 1. (4.38)

Knowing the polarization of photon A along 0, we can predict with certainty
the polarization of photon B along 0 (or o ) for any choice of . One gets the
impression that Alice and Bob can communicate instantaneously, even if they are
separated by several light years, and thus that relativity is violated. Of course, this
is only an illusion, because in order to be able to compare their results and check
(4.38), Alice and Bob must be able to exchange messages via a classical path
and therefore at a speed less than that of light. Moreover, it is straightforward
to reproduce these correlations using a classical model (Fig. 4.2), in which the
correlations are fixed in advance.

However, this will no longer be possible if Alice and Bob decide to use
different axes @ and b. We use the following generalization of the case of parallel
axes (see the example in Fig. 4.2): polarization || @ : A(a) = +1, ..., polarization

Alice Bob
Pairn  AJ@Bh=+1

Figure 4.2 A classical model for EPR correlations. The suitcases of travelers A
and B are now circles divided into small angular sectors defining the orientations
&,.... b in the plane xOy, which are labeled + for polarization in the given
direction or — for polarization in the orthogonal direction. The two circles are
identical and two diametrically opposite points are identified and both labeled
+ or —. The figure corresponds to A, =—1, A, =+1,. 8, =—1,and B;, = —1.
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Lb: B(f)) = —1. Then we construct the expectation value E(a, 13) measured in
N experiments with N — oo:

N
E(&,b)= lim 1 3 A, (a)B,(b). (4.39)
N—oo N el
Let us now construct the combination X,, with the orientations (& or a’) for a
and (b or ') for b, A, = A, (). B, = B,(b). ..., where n numbers the pairs,
and Alice and Bob are able to identify unambiguously the photons belonging to
the same pair:

Xn = Aan + AHB:: +A’ B’ - A:rBir = An(Bn —I—B:!) + A:I(B:i - Bil’)‘ (440)

n-n

Here X, = 12, which leads to the following Bell inequality:

N
|(X)|:!lim lZX” <2 (441)
IN_*OD N n=I

The quantity X, is “counterfactual” because it cannot be measured for a single
pair: there are four possible choices for the orientation of the measurement axes,
but only one choice for a particular pair. The EPR point of view is that each
photon carries all the information on its intrinsic polarization and that the four
combinations A B, --- A} B; exist for any pair n, even if only one can be measured
in a given experiment. However, this does not necessarily mean that the EPR
viewpoint is incorrect, because, as Feynman has stated, “It is not true that we
can pursue science completely by using only those concepts which are directly
subject to experiment.” Proof that the EPR viewpoint is incorrect will come from
experiment.

What does quantum physics actually say? It is easy to calculate E(&, b). Owing
to the rotational invariance, it is always possible to choose a parallel to Ox. We
write | D) as

| D) [lx4) (cos 0|6g) —sin 8|8 5)) 4 |va) (sinB]05) +cos 6|0 5))].

1
V2
writing out |xg) and |yg) as functions of |fg) and |6, 5) (see (2.19)). We can
then immediately calculate the scalar products:

1 1
x40, D)= — cos ), x40, 5| Py = ———sind,
(x405|P) 7% (x40, 5|P) 7
1 1
v40p| D) = — sin 6, va0 gDy = — cos b,
(yabp|D) 7 (yall p|D) 7
and so
|
E(k,0) = > [2cos? 6 — 2sin” 0] = cos(26), (4.42)




4.6 Exercises 67

=)

wi8

Figure 4.3 An optimal angular configuration.

or, in a form which is manifestly rotationally invariant,
E(&, b) = cos(2a-b).
With the angles chosen as in Fig. 4.3 we find
(X)) =2v2 ~2.82. (4.43)

There is no classical correlation which can reproduce the quantum correlations:
the quantum correlations are too strong to be explained classically. Even if the
qubits A and B are several light years apart, they cannot be considered as separate
entities and there is no local probabilistic classical algorithm which is capable of
reproducing their correlations. The qubits A and B form a unique entity; they are
nonseparable, or entangled.

Let us also note that the no-cloning theorem forbids propagation of information
at superluminal velocities. Alice can choose to use either the basis {|x), [y)} or
the basis {|+ 7/4),|— 7/4)} to measure the polarization of her photon. If Bob
could clone his own photon, he would be able to measure its polarization and
instantly deduce the basis chosen by Alice for her corresponding photon, even if
she were located several light years away from him.

4.6 Exercises
4.6.1 Basis independence of the tensor product
Let us suppose that we have constructed the tensor product of two spaces

and H starting from the bases {|m )} and {|ng)}:

|‘PA ®XB> = Z Cnrdn |H?A ®HB)

m,n
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Let |i,) and |jz) be two other orthonormal bases of H, and Hj deduced
from the bases |m,) and |n,) by the unitary transformations R (R~! = R") and
S (S7!=57), respectively:

|£A):ZR:'!N|”1A)’ UB)ZZS;H|"B>~
m n

Calculate the tensor product |i ® jb. To construct the tensor product, we now
decompose |¢) and |y) in the respective bases |7} and |j):

N M

lo) =Y &lia), X)) =2 djlis)-

i=1 j=1
Show that
Y dlia®is) =le®x).
IN]

4.6.2 Properties of the state operator
1. Starting from (4.9),

p=2_pili){l, dpi=1
i i
show that the most general state operator p must possess the following properties.

1. It must be Hermitian: p = p'.
2. It must have unit trace: Trp = 1.
3. It must be positive: {¢|p|e) = 0 ¥|e).

Show that the expectation value of a physical property M is

(M) =Tr(pM).

2. Show also that if p? = p, then all the p, are zero except one, which is equal to
unity, and prove that the condition p? = p is the necessary and sufficient condition
for a state to be pure. Also show that Trp?> =1 is a necessary and sufficient
condition for the state operator to describe a pure state.

4.6.3 The state operator for a qubit and the Bloch vector

1. We wish to find the most general form of p for a qubit; p will be represented
by a 2 x 2 state matrix. Show that the most general Hermitian matrix of unit trace
in A has the form
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where « is a real number and ¢ is a complex number. Show that the positivity of
the eigenvalues of p introduces a supplementary constraint on the matrix elements:

0<a(l—a)—|c* < l.
- —4
Show that the necessary and sufficient condition for the quantum state described
by p to be represented by a vector of K is a(l —a) = |c|>. Calculate a and ¢
for the matrix p describing the normalized state vector |} = A|0) + |1} with
[A]*+ |w|*> = 1, and show that in this case a(1 —a) = |c|%.
2. Show that p can be written as a function of a vector b called the Bloch vector:

1/ 1+b. b, —ib, 1 = .
. I Py b»),
=3 (b_\.+ib_‘. —b. ) 2 (1453
provided that |1!-;|2 =< 1. Show that a quantum state represented by a vector of H
corresponds to the case |b|> = 1. To interpret the vector b physically, we calculate

the expectation value of o
(o) =Tr(poy).

Show that b is the expectation value of .
3. When the spin is placed in a constant magnetic field B, the Hamiltonian is
given by

H=—-—vyo-B,

2| =

where +y is a constant. Assuming that B is parallel to the axis Oz, B= (0,0, B),

write down the evolution equation for p and show that the vector b rotates
(precesses) about B with an angular frequency to be determined.

4.6.4 The SWAP operator

1. Show that the operator

1 - -
E(I—I—(TA‘G’B)

permutes the values of the two bits A and B:
1 - - 3 - - 3
3 ([‘I‘O-A’UB) liajs) = Jaig)-

The notation &, - &y stands for both the scalar product and the tensor product.
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2. The operator 5 (I+ 0, - ) is called the SWAP operator. Its matrix represen-
tation in the basis {|00}, |01}, |10}, |11}} is

1000
0010
USWAP: 0100
0001
Check that its square root U;{;AP is given by
141 0 0 0
e 1 0 11 0
SWAP T 1 4il o i1o0 |
0 00 1+i

and that the so-called ¢Z gate can be constructed from

. . . ; 1 0
7 — el‘ﬂ'{]’?{-q' e—lmr__g,M U;{\%AP elul’J’?{Z USI{F\?AP — (0 0-7) )

4.6.5 The Schmidt purification theorem

Let |¢4p) € H 4@ Hp be a pure state of the system AB, and let {|m )} and {|ug)}
be two orthonormal bases of 74 and 5. The most general decomposition of
|¢4p) On the basis {|m, ®ug)} of H, ® Hp is written as

loap) = Z Cn!p|m,‘l ® pp)-
ML

We define the vectors |mg) € Hp as

|ﬁ73) = z ci:l'l'j.l||u‘3>
I

and rewrite the above decomposition as

loap) =) |lms@ing).

m
The vectors {|mg)} do not a priori form an orthonormal basis of # 5. We choose

as the basis of 7, a set of vectors {|m )} which diagonalizes p 4:

pa=Trgleas) (¢ap|l = me|ma>(ma|-

m
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Comparing this expression for p, with

PA= Z(F’B|ﬁlﬂ>|mﬁ><”z1

m.n

.

prove that
<ﬁ8|’;73> = pmamn

and the vectors |iig) are orthogonal after all. How can an orthonormal basis |ng)
be constructed? How should the terms such that p,, = 0 be treated? Show that in
this basis

leag) = Py ns@ng).

n

4.6.6 A model for phase damping

Let us consider the NMR case where a spin 1/2 is submitted to a fluctuating
magnetic field Eu(r). The state |1) can assumed to be stable (spontaneous emission
is negligible), but the resonance frequency wy = yBy/h is time dependent. The
state vector of the spin system at time ¢ is

W (1)) = A(0)]0) + p(n)[1),
with A(f) and w(t) given by
. 1 1
i) = -5 wo(NA(1), in(r) = Ewu(f).u«(f)e A(0) = Ag, p(0) = py.
The solution is
Alr) = )‘(}EXP(% fo wy(t') d-") . plr) = pgexp (—%j‘; ‘*’t;(-")d-") -

Assume that wy(#) is a Gaussian stationary random function with connected
autocorrelation function

C(1") = {wy(t + ") wy(1)) — (wg)?,

where {e) is an ensemble average over all realizations of the random function.

Also assume that
r.f
C(t') = Cexp (—g) )

Show that the populations py, and p;; are time independent, but that the time
evolution of the coherences is given by

Por (1) = poy (1 = 0)e! ()" =€, 13>
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4.6.7 Amplitude damping channel

In the so-called amplitude damping channel, we have instead of (4.27) the fol-
lowing evolution

U|0A ®0£> = |0A®05)s
Ully®0g) = 1=p [1,@0:)+/pl0,®@1g).

This is a model for describing the spontaneous decay of an atom in an excited
state |1,) into its ground state |04}, while |0;) is a state with zero photons and
|1;) a state with one photon. The probability of decay during a time interval Ar
is p.

1. Starting from the state

|@) = (A[0,4) +p[1,4)) @[0%),

compute the final state matrix p’,. Show that the time evolution may be written

in the form
It

l—e™ppy e_mzpm)
t=0)— p(t) = _ _ .
pal ) — p(t) ( e “’me e r;p“

Deduce from this that, in this model, the transverse relaxation time 75 is twice
the longitudinal relaxation time T, T, = 2T, (see Section 3.4).

2. Suppose that at time At one observes the environment in the zero photon state
|0;). What is then the state of the atom? Show that the failure to detect a photon
has changed the state of the atom.

4.6.8 Invariance of the state (4.35) under rotation
Using
|#) = cos@|x) +sind|y),
|6, ) = —sinf]x)+cosf|y),
show that

1 1
|®) = E (|xaxp) +|yave)) = E (10405) +104.05.)).

4.7 Further reading

A popularized approach to entangled states can be found in Hey and Walters
(2003), Chapter 8. The state operator is studied in Nielsen and Chuang (2000),
Chapter 2, Preskill (1999), Chapter 3, and Le Bellac (2006), Chapter 6. Very clear
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accounts of decoherence are found in Leggett (2002), Zurek (1991) and in Paz and
Zurek (2002). Aspect (1999) reviews the experimental tests of Bell inequalities.
Advanced theoretical discussions are found in Mermin (1993) and in Peres (1993),
Chapters 6 and 7. A proof of the Gleason theorem and a demonstration of Schmidt
decomposition are given by Peres (1993), Chapters 5 and 7. Interference using
complex molecules is discussed by Arndt et al. (2005).
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Introduction to quantum computing

5.1 General remarks

It is easy to represent integers in terms of qubits in the same manner as for
ordinary bits. Let us suppose that we wish to write an integer between 0 and 7 in
a register of qubits. If this were a classical register, we would need 3 bits. In a
system of base 2, a number between 0 and 7 can be represented in binary notation
as a sequence of three digits 0 or 1. A classical register will store one of the 8
following configurations:

0= {000}, 1 ={001}, 2={010}, 3={011},
4 = {100}, 5={101}, 6={110}, T={111}.
A system of three qubits will also allow a number from 0 to 7 to be stored, for

example, by making these numbers correspond to the following 8 states of three
qubits:

0:]000),  1:]001),  2:[010),  3:|011),

(5.1)
4:]100%, 5:]101%, 6: 110, 7:|L1L).

Here we have omitted the tensor product notation; for example, |101) is abbre-
viated notation for |1, ® 0, @ 1), where the qubits A, B, and C have their state
vector in H 4, Hp, and F, respectively. We use |x), x =0,..., 7, to denote one
of the eight states of (5.1), for example, |5} = |101)}. It is not difficult to generalize
to the case of n qubits; representing a number less than N = 2" requires n qubits,
and |x) denotes the state vector with

0<x<2"-—1.

The basis of the Hilbert space H ®" formed using orthonormal vectors |x) is
called the computational basis. Since we can construct a linear superposition of
the eight states (5.1), it can be concluded that the state vector of a system of three

75
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spins allows us to store 2* = 8 numbers at the same time, while if » spins are
used we can store 2" numbers! However, if, for example, spins 1/2 are used for
the physical support of the qubits, a measurement of the three spins along the axis
Oz will necessarily give one of the eight states (5.1). We have at our disposal
important virtual information, but when we try to materialize it in a measurement
we can do no better than for a classical system: the measurement gives one of
eight numbers, and not all eight at the same time! It is therefore necessary to go
further in order truly to exploit the possibilities of a quantum computer and find
algorithms which are specific to it. This will be explained later on in this chapter,
and for now we shall give only a schematic description of the principle by which
such a quantum computer functions.

A calculation performed on a quantum computer is shown schematically in
Fig. 5.1, where n qubits are all prepared in the state |0) at time t = f,;. This is the
preparation stage of the quantum system, and the initial state vector belongs to
a Hilbert space of 2" dimensions, H®". This initialization stage is not a unitary
operation, but a projective measurement, and it is a dissipative process. The qubits
then undergo a unitary quantum evolution described by a unitary operator U(z, t;)
acting in H®" which performs the desired operations, for example, the calcula-
tion of a function. The experimental difficulty is to avoid any interaction with the
environment, because then the phenomenon of decoherence would make the evo-
lution nonunitary. As we have seen in Section 4.4, if there is an interaction with
the environment, the unitary evolution occurs in a Hilbert space which is larger
than # ®", because it includes the degrees of freedom of the environment along
with those of the qubits. Interactions with external classical fields are compatible
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Figure 5.1 Schematic depiction of the basic principle of a quantum calculation.
n qubits are prepared in the state |0}. They undergo a unitary and deterministic
evolution in the space H®” from time ¢ = 1, to time ¢ described by a unitary
operator U(r, 1,) acting in H'®". The wiggly arrows represent interactions with
external classical fields. A measurement of the qubits (or a subset of the qubits,
the first three in this figure) is made at time 1. The diagrams are read from left
to right, in the direction opposite to that of the operator products.
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with unitary evolution and they are needed to manipulate qubits by Rabi oscilla-
tions. ! Once the quantum evolution has been completed, a measurement is made
on the qubits (or on a subset of qubits) at time ¢ in order to obtain the result of
the calculation. An important point is that the state of the calculation cannot be
observed between f; and t, because any measurement would modify the unitary
evolution: the box U(t, t,) of Fig. 5.1 is a black box which must not be tampered
with. The qubits are measured at the entrance and at the exit of the box, but not
inside it. Another essential point is that the unitary evolution is reversible: * if we
know the state vector at time f, we can recover the state vector at time f;, using
U= (1, 1) = U1y, 1)

5.2 Reversible calculation

The passage of the initial qubit state at r = 1, to the final qubit state at 1 occurs via
a reversible operation, and the algorithms of a quantum computer must necessarily
be reversible. This is not the case with the algorithms used on classical computers,
which are irreversible, and so the latter cannot be transposed directly to quantum
computers. Most of the usual logic gates are irreversible, because they correspond
to a transformation (2 bits — 1 bit), and the final state of a single bit does not
allow the reconstruction of the initial two-bit state. For example, the NAND gate

xty=1@xy,
where & is mod 2 addition, gives the correspondence
(00) — 1, (01) =1, (10) > 1, (11) =0,

and knowledge of the final state does not permit reconstruction of the initial
state. It is known that the NAND gate and the COPY operation are sufficient for
constructing any logic circuit. An interesting question is whether or not all the
usual logic operations can be performed reversibly on a classical computer.

! A note for physicists: the reason why the action of a classical field is compatible with unitary evolution is
subtle, see Leggett (2002). Let us consider the states [0 and [1) of a spin 1/2 in a uniform magnetic field
parallel to €z, If the spin is initially in the excited state |1}, then application of a -pulse will send it in the
ground state |03, and the external magnetic field will gain one photon. So, it appears that the transition has
left a mark in the environment, a feature which should lead to decoherence. However, the {quantum) state ol
the field is a coherent state containing a very large number of photons and this state changes in a negligible
manner when one adds one photon: the spin does not become entangled with the (quantum) state of the
electromagnetic field. Of course, the energy difference between the two levels must be small enough, so that
spontancous emission is negligible. Otherwise the spin would also interact with the vacuum fluctuations of
the gquantized electromagnetic field, and its evolution would be no longer be unitary, see Exercise 4.6.7. All
this has been confirmed in a beautiful experiment using neutron interferometry by Badurek et al. (1985); this
experiment 1s thoroughly analyzed in Omnés (1994), Chapter 11.

A second note for physicists: reversible evolution and invariance under time reversal should not be confused,
as tlime reversal is represented in ¢ by an anti-unitary operator, whereas U~'(1, ) = Ulty, £) is unitary.
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This question was initially only of theoretical interest, and was first raised by
Landauer and Bennett, who wondered if it were possible to perform a calculation
without energy dissipation. In fact, in spite of its abstract nature, information is
necessarily carried by some physical support.? As a bonus, in following this line of
inquiry Bennett was finally (after more than a century!) able to obtain a satisfactory
solution of the paradox of the Maxwell demon (see Box 5.1). According to
Landauer, a calculation involving irreversible operations like the loss of a bit of
information in a NAND operation costs a thermodynamical entropy of at least
kg In?2 per bit, where ky is the Boltzmann constant (kg = 1.38 x 107>* J/K), and
therefore leads to the dissipation of an energy AE = k5 T In 2 into the environment,
where T is the absolute temperature of the computer. At present the problem is
academic, because for an actual PC the energy dissipated per erased bit is already
AE ~ 500k T simply owing to electricity consumption, and so we are nowhere
near kgT. However, it is possible that this question will become of practical
import some time in the future. The energy dissipated per logical operation has
decreased by ten orders of magnitude in the past 50 years, so that it might be that
the k7T limit becomes relevant in a little more than 10 or 15 years.

The real reason for the interest in reversible calculation is the possibility of trans-
posing classical algorithms to quantum computing. As we have already mentioned,
direct transposition is impossible, because quantum computing is reversible, and
so the NAND operation must be replaced by an equivalent reversible operation.
It is also necessary to find the equivalent of the COPY operation without coming
into conflict with the no-cloning theorem when transposition is made to the
quantum version of the gates. This can be done using two logic gates, the cNOT
gate and the Toffoli gate (Fig. 5.2). If the bits entering the control-NOT (¢NOT)

z —@— @y
(a} (b}

Figure 5.2 The ¢cNOT gate (a) and the Toffoli gate (b). The black points represent
the control bits and the circles represent the target bits.

* “Information is physical,” according to Landaver, who went as far as deducing (debatably in the author’s
opinion) from this that mathematics and information science are branches of physics!
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gate are (x,y), where x is the control bit and y is the target bit, the action of the
c¢NOT gate on the target bit depends on the state of the control bit according to the
scheme

eNOT: (x,¥) — (x.x@®y). (5.2)

Box 5.1: Maxwell's demon and the physical nature of information

In this box we show that it is impossible to ignore the fact that information must be
carried by a physical support; otherwise, we come into conflict with the second law
of thermodynamics. In 1871 Maxwell imagined the following device. A container
filled with a gas at absolute temperature 7" is divided into two compartments of
identical volume, separated by a wall in which a small hole is pierced (Fig. 5.3). A
demon can observe the velocity of the molecules and open and close this hole by a
door without expending energy. The molecules in the container have an average
velocity of several hundred meters per second at ambient temperature (7' =~ 300K),

Compartment A Compartment B [,
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Figure 5.3 Maxwell’s demon. The demon stores the position of the molecules
in his memory.
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but some are faster and others are slower. The demon opens the door when he sees
a fast molecule traveling from the left-hand to the right-hand compartment, and
also when he sees a slow molecule traveling from the right-hand to the

left-hand compartment. Therefore, the average speed of the molecules in the
right-hand compartment will increase, while that of the molecules in the left-hand
compartment will decrease, with the total energy of the gas remaining constant.
Since the average velocity is related to 7" and to the mass m of a molecule as

v~ M,
YV om

the right-hand compartment will become warmer than the left-hand one. These two
compartments can then be used as two heat sources at different temperatures to run
a heat engine, thus making it possible to obtain work from only a single heat
source, contradicting the second law of thermodynamics (equivalently, we could
make a refrigerator without a motor, which is also forbidden by the second
law).

In 1929, this problem was reduced to its bare essentials by Szilard, who
considered a gas limited to a single molecule. This molecule can be localized in one
or the other compartment without expending energy, and it does work by pushing a
piston until it occupies the entire container, while taking energy from the outside in
the form of heat. The expansion is done at constant temperature, and the work done
is given by

v 7

Wy =kgT —
o=l [y

=kyTIn2,

where V is the volume of the container. The operation can be performed n times so
as to obtain an arbitrarily large amount of work W = nW, = nk;T In2, all using a
single heat source.

The paradox was elucidated by Bennett in 1982. He noted that this device does
not function on a cycle, which is the condition for the second law of
thermodynamics to be valid, because the localization of the molecule in one or the
other compartment during the n operations involves the assumption that this
information will be stored in a memory of n bits. If we wish to erase the contents
of this memory in order to restart from zero and perform a complete cycle, this
would release into the environment an entropy of at least nky In2, and therefore
dissipate into the environment an energy of at least nk; 7 In2, which would convert
all the work performed into heat.

Looking at this in more detail, we see that when the compartment in which the
molecule is located has been determined, the information entropy of the system is
one bit (corresponding to a thermodynamic entropy &y In2), because the position of
the molecule and the contents of the memory are correlated. Once the expansion
has occurred, the value of the information entropy is two bits, because the
information about the compartment is lost. The information entropy of the
environment must therefore decrease by one bit, that is, an energy k; 7T In2 equal to
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the work W, is supplied by the environment. When the memory is erased, we
return to a one-bit entropy for the system, which means that the environment will
receive at least one bit, because the entropy of the ensemble (system +
environment) can only increase. If the operations are performed in a quasi-static
manner, they are all reversible and we return to the starting point after a cycle. In
contrast to the case where deterministic data are erased as in the thermodynamically
irreversible NAND operation, in the case we are discussing in this Box it is random
data which are reversibly erased.

The ¢cNOT gate copies the bit x if y =0 and gives —x if y =1, and is the
reversible equivalent of the COPY operation. It is reversible because there is a
one-to-one correspondence between the initial state and the final state. The cNOT
operation is a simple permutation of the basis vectors (see (5.4)). It can be shown
that using single-bit gates

r—=1®&x or x— —x

and the cNOT gate, it is possible to construct only linear functions if we limit
ourselves to classical operations. If (x, ¥) and (x', y') are the initial and final bits,

one can show that
(x,) ( )(x) ( )
y vy 6/ \y I

where «, ..., are numerical coefficients. It is necessary to introduce an addi-
tional gate, the Toffoli gate, which is a gate with three entrance and three exit
bits, two of them control bits (x, y) and one a target bit z:

Toffoli: (x,v,z) — (x.y, 2B xy). (5.3)

The nonlinearity of the gate is obvious from the xy factor. If z = 1, the Toffoli
gate performs the NAND operation reversibly. The Toffoli gate can be used to
reproduce reversibly all the classical logic circuits: the Toffoli gate is a universal
gate for all the reversible operations of Boolean logic.

5.3 Quantum logic gates

The most general quantum evolution is a unitary transformation in the 27-
dimensional Hilbert space of n qubits, H®". The most general quantum logic
gate is a 2" x 2" unitary matrix operating in F®". A theorem of linear algebra
which we state without proof will allow us to limit ourselves to operations on one
and two qubits.
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Theorem Any unitary transformation on J®" can be decomposed into a product
of ¢cNOT gates and unitary transformations on one qubit.

As already explained, an operation on individual qubits cannot produce a
general unitary transformation of J®", because such an operation has the form
of a tensor product:

U=UVeu%g...0 0",

It is necessary to perform nontrivial operations on at least two qubits to obtain a
general unitary transformation. The above theorem guarantees that this is suffi-
cient. This theorem is an existence theorem; in general, it is easier to construct the
quantum logic gates for a given problem without using this theorem explicitly. It
is useful to give the 4 x 4 matrix representation of the cNOT gate. In terms of
qubits, the cNOT operation corresponds to the transformation

100y = [00),  [01) —[01),  [10) = [11),  [11) — [10).
In the basis {|00}, |01}, |10}, |11}} the matrix representation then becomes
1000
or={0 10 0) (1 0), "
0010

In this form it is clear that cNOT cannot be a tensor product (Exercise 5.10.1).
The generalization of the cNOT gate is the control-U (c¢U) gate, where the matrix
o, is replaced by a 2 x 2 unitary matrix U:

10
U= .
The cU gate leaves the target bit unchanged if x = 0 and modifies it as |y} — Uly)

if x = 1. The cU gate can be constructed starting from the ¢cNOT gate (Fig. 5.4).
It is necessary to find three unitary operators A, B, and C such that

CBA=1, CoBo,A=U.

In quantum physics, the Toffoli gate may be constructed from cU gates and
c¢NOT gates (Fig. 5.4 with U = /o) and the equation

1 /1 i

VO T T (i 1)’

-
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Py S—

‘QLOL .

Figure 5.4 Construction of the ¢U gate and the Toffoli gate. The diagrams are
read from left to right, and the products of operators act from right to left.

I

I

which is not possible in classical physics where the operation /7, does not exist.
In contrast to the classical case, it is not necessary to introduce the Toffoli gate
explicitly to construct the ensemble of reversible logic circuits. We see from the
results of Section 5.2 that if we have at our disposal a classical logic circuit
allowing a function f{(x) to be calculated, then we can construct a quantum circuit
using essentially the same number of gates. The justification of the circuits in
Fig. 5.4 is left to Exercise 5.10.1.

Now that we know that there exists a quantum logic circuit which can evaluate
a function f(x), for example, by transposing a classical algorithm, we can state
the basic ideas of guantum parallelism. We shall use two registers, an input
register which stores x and an output register which stores the bits needed for
fix). To simplify the discussion, we start with the case where the input register
is a one-qubit register, as is the output register. We construct a transformation U i
(Fig. 5.5) which performs the operations

Uy
(x,y) — (x, y@ fl(x)). (5.5)
X —x T : :_‘
Uy Uy R
oA N e
{a) (b}

Figure 5.5 The construction of U;: (a) 2 qubits, (b) n+m qubits.
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If the initial value is ¥y =0, we have simply

Uy
(2, 0) — (x, f(x)).

One might ask why we do not simply perform the transformation x — f(x).
The answer is that such a transformation cannot be unitary if the correspondence
between x and f(x) is not one-to-one, and so it is not suitable for a quantum
algorithm. On the contrary, it is easy to convince ourselves that Uy is unitary,
because its square is the identity:

(. Y@ )] — (x. [y® f(0)] @ F(1)) = (5, ).

owing to f(x) @ f(x) =0 for any f(x). The operation Uy transforms one basis
vector into another, and since U? = I this correspondence can only be a simple
permutation of the four basis vectors, and so it is a unitary transformation. In
operator notation,

Uplx@0) =[x @ f(x)),  Uglr@y) =xa[ye f(0]). (5.6)

Let us apply to the state |0), a Hadamard gate H (not to be confused with the
Hamiltonian ff}:

-5

L L
V2 V2

Now if the second qubit is in the initial state |0}, the final state vector of the two
qubits is the entangled state

or

H|0) = —=(10)+[1)),  H[1)=—=(|0)—[1)).

[¥) = U, H0@0) = Uy —= (090) +[1 ©0)) = % (10® £(0)) + [1® f(1)))
(5.8)

The state vector | W) contains the information on f(0) and f(1) simultaneously,
and the calculation of the vector | W) requires the same number of operations as
that of Ug|0®0) or Us|1®0) separately: Uy is a unitary operator which does
not depend on the state vector to which it is applied.

5.4 The Deutsch algorithm

Although | W) in (5.8) contains information on f(0) and f(1) simultaneously, this
does not give us any advantage over a classical computer if we wish to construct
a table of values of f(x) explicitly. However, it may happen that we need only
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information which does not require the construction of such a table. It is then
possible that a quantum algorithm can exploit the information contained in |¥)
to obtain the result using fewer operations than a classical algorithm. We shall
explain how this works for the example of the Deutsch algorithm.

The Deutsch algorithm can be realized using the circuit of Fig. 5.6, with one-
qubit input and output registers. The unknown function f(x) takes the value 0 or
1 and we can ask the following question: do we have f(0) = f(1) (a “‘constant”
function) or f(0) # f(1) (a “balanced” function)? If we were using a classical
computer, we would have to calculate f(0) and f(1) and compare the two values.
If we use a quantum computer, the question can be answered in a single operation.
An equivalent problem is that of checking a coin: are the two sides different (a
head and a tail) or are they the same (two heads or two tails)? The quantum
computer allows us to make this comparison without looking at the two sides of
the coin in succession.* This example is of course too elementary to be of any
practical interest, but it gives the simplest illustration of quantum parallelism, and
moreover it is a good warmup for the Grover algorithm of Section 5.6. The circuit
of Fig. 5.6 gives the state |} at the entrance to the box Uy, the input register
initially being in the state |0) and the output register in the state |1):

1) = (HI0)) © (H]1)) = 5 (10) + 1) ©(10) ~ 1)) = 5 (Z |x>) ®(10)=1)).

x=0
(5.9)
We apply Uy (5.8) to this state with the following result:

L. if f(x) = 0, then (0) — 1)) = (|0) — [1)),
2. if f(x) = 1. then ([0) —[1)) = (1) ~10)) — — ([0} —[1)).

lO— u

y— u —

|
')
Figure 5.6 The Deutsch algorithm.

b Film-lovers may recall Hawks's Only Angels Have Wings, where Cary Grant says to Jean Arthur, “Heads
you stay and tails you leave,” and Jean Arthur, furious at being the subject of the flip of a coin, nevertheless
checks the coin before leaving, and finds that it has two heads.
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or, to summarize,
(10) = 1)) = (=1’ (j0) = [1)). (5.10)
The state U;| W} is then the tensor product

x=0

12 .
UJ-I‘P)Z5(Z(—l)’”’IA:})®(I0)—|1))- (5.11)
The net result for the input register is

Uy .
lx) — (=1)/9)x). (5.12)

In this particular case, the box U, is called an oracle. Note that the input and
output registers are unentangled after the oracle. The state of the qubit of the
input register then is

1 .
- _ 1)) _1)y/
9= (D10 +) ).
Before measuring the input register, we apply a Hadamard gate (see Fig. 5.6):

Hlg) = 3 [(=1/00) + 1)+ (=1 (10) = 1))]

=2 [0+ )0+ 5 [0 - =]y,

If measurement of the qubit gives |0}, then f{0) = f(1), i.e., the function is a
“constant” one. If it gives |1}, then f(0) # f(1) and the function is a “balanced”
one. The important point is that quantum parallelism has allowed us to bypass
the explicit calculation of the function f(x); the measurement of a single qubit
contains the two possible results. The generalization to several qubits is left to

Exercise 5.10.2.

(5.13)

5.5 Generalization to n + m qubits

The above discussion can be generalized to an n-qubit input register and mi-qubit
output register, where m is the number of bits needed to write f(x). We take
as an example the case n = 3 for the input register. Using the notation |x), the
number x is one of the eight numbers (in binary notation)

|000), 001y, ]010), |O11), [100}, |101), [110%, |LIL).

The special magic of a quantum computer is that it allows us to make linear
combinations of the vectors of the computational basis using the operator H,
which in the particular case n =3 gives

1 7
|W) = H®|000) = —= 3" |x).
Jg.l‘:[]
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where H®3 denotes the tensor product of the three operators H. In general,

21

H®n|0®n) — znl(z Z‘] | >

Here x is compact notation for the binary representation of the number x
and the state vector of the computational basis is |x) = |x,_;---x,x;), where
Xy_1s -+ X1, Xg take the value 0 or 1. The operator Uy is defined by generalizing
the definition (5.6) as > (Fig. 5.5(b))

Uplx® 2) =[x ®[z@ f(1)]),
where @ is mod 2 addition without carry-over, for example,
11010111 = 1010.

We recall that
%) =[x, -+ X120 |2) = |21+ 21200

with x;,z; =0 or 1. This assures that U2 =1 and that U, which is a simple
permutanon of the 2"*™ basis vectors, is umtary If we take |0®™) as the initial
state of the output register, then

Urlx®0%") =[x ® f(x)).
If finally we apply H to the input register in the state |0®") before Uy, the state
vector of the final state will be, by linearity,

2"—1

> x® f(x). (5.14)

x=l)

Vi) = Uy [(H®0°") ©0°") =

This state vector in principle contains the 2" values of the function f(x) (not
necessarily all of them different). For example, if # = 100, it contains the ~10%°
values of f(x): it is this exponential growth of states which leads to the miracle of
quantum parallelism. A measurement can of course give only one of these values.
As we have seen in the case of the Deutsch algorithm, it is nevertheless possible
to extract useful information about the relations between the values of f(x) for an
ensemble of different values of x, of course at the price of losing the individual
values. A classical computer, on the other hand, would have to evaluate f{x) for
all these values of x independently. In Section 5.7 we shall discuss this using the
example of a quantum Fourier transform.

* Since later on we shall use v in a different context, here we denote the output register by z.
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5.6 The Grover search algorithm

A quantum algorithm of more practical relevance than the Deutsch algorithm is
the Grover search algorithm. This is an algorithm which performs a search for an
entry in an unstructured data base, for example, a person’s name in a telephone
directory when the phone number is known. If N is the number of entries in the
data base, a classical algorithm must on the average make N/2 attempts to find
the name, as the only possibility is to check each entry one by one. The Grover
algorithm allows the problem to be solved in ~v/N operations.

The data base is stored using n qubits and we define the function f(x), x =
[0,1,..., 2" —1}, such that f(x) =0if x= y and f(x) =1 if x =y is a solution:
flx) =6,,. To simplify the argument, we assume that the value of y is unique.
We define an operator O, the oracle, whose action in the computational basis is
(see (5.12))

Olx) = (=1)"). (5.15)
As in the case of the Deutsch algorithm (see (5.11)), the auxiliary qubit (lowest

qubit in Fig. 5.8) is unentangled with the other qubits after the oracle. The Grover
operator G is defined as

G=H®XH® 0= H®" (2/0)(0| — ) H®" O, (5.16)

where
X|x) = —(=1)>|x) = (2/0)(0] — D]x).

To simplify the notation, we shall introduce the vector |¥) already used in

Section 5.5:
1 " —1

3 ). (5.17)

x=l)

— ERn |n®Eny _
W) = He"[0°) =

Taking into account H? = I, we find
HE (2]03(0] = 1) H®" = 2H®"|0Y (0| H®" — 1 =2|¥){(¥| -1
and so
G=Q2|¥)¥|-1I)0. (5.18)

This construction can be used to draw the quantum logic circuit corresponding to
G (see Fig. 5.8(b)).

The operator G can be interpreted as a rotation in a two-dimensional plane. Let
|a)y be the normalized vector

1
pEY (5.19)

la) =
VN-15,
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(N =2"), which can be used to write |V} as

|«;r>:,f1-% |a}+‘/§|y). (5.20)

We rewrite this equation as

(7 (7
[y = COSE |ee) + sin 5 |y}, (5.21)

7} f 1
cos—=,/1——.
2 N

According to (5.15), the action of the oracle on | W) is

O(Ala) +ply)) = Alay — u|y).

This is a reflection with respect to the direction of |a) in the plane IT subtended
by |«) and |y) (Fig. 5.7). Moreover, (2|¥){W¥|— I) performs a reflection in I1
with respect to the direction of |W): if (WD) =0,

where the angle # is given by

) (V[ = D(A[) + u| D)) = A[W) — u|D).

However, the product of two reflections is a rotation, and Fig. 5.7 shows that the
angle taking us from |a) to G|W) is 38/2:

36 30
G|W¥) = cos Y |ae) + sin > |3). (5.22)
[
6w
; [¥)
0/

|t 1}
a2
N>

Figure 5.7 Schematic depiction of the rotations and reflections of the Grover
algorithm.
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The angle between | W) and G|V} is 8, and the angle between |a) and G|V}
is 30/2; G|¥) is deduced from |¥) by rotation by an angle #. Moreover, G| W)
is deduced from G|W) by rotation by an angle . After k iterations of G, G¥| W)
is always in IT and is deduced from |a) by rotation by an angle (2k 4 1)8/2:

2k +1)0 2%k +1)8
%IaHsin%

The effect of successive rotations is to make G*|¥) come closer and closer to
|¥). The optimal value k = k;; of k is determined using the following argument.
We wish to have

G*|¥) = cos |¥). (5.23)

2k+1)8 7} [
! =cos k@ cos - —sin k@ sin —

0 —
cos 2

- 2 2
=.J1 : ko Jl inkg
b _N COS — N sin .

We then find that tankf = N — 1, or coskfl = lf\/fV", and so

k—l "\/T +1
0= | gcos N ,

where [x] is the integer part of x. For N > | we have, comparing (5.20) and

(5.21), 8~2/+/N or
N 1 N
ky = YN ot e TN (5.24)
2 NT 4

It is therefore sufficient to apply the oracle ~+/N times in order to have a
very good chance of obtaining the result. To estimate the probability of this, we

0)—

[0y ]
[} (5 a

0)—

e d ) i
— [ _d — _?_ X _?_
X ™ H

11—

A
f
f
f

(a) (b)

Figure 5.8 (a) Logic circuits of the Grover algorithm for n = 3. (b) The circuits
of G. The action of the oracle O is O|x) = (—1)"'|x} and that of the box X is
XJx) = —(=1)% )
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note that according to Fig. 5.7 the angle between G*o|\W} and |y} is less than
#/2. The probability of error is therefore less than @(1/N). It can be shown that
the Grover algorithm is optimal: it is not possible to find a faster algorithm than
Grover’s. If we count the quantum logic gates, the total number of operations
of the Grover algorithm is actually ~+/N In N. The circuit corresponding to the
Grover algorithm is shown schematically in Fig. 5.8.

5.7 The quantum Fourier transform

The last algorithm we shall describe is that of Shor. As a preliminary, let us
construct a quantum logic circuit for the Fourier transform. Let an integer x,
0 < x <2"—1, be written using n bits

x=0,1,...,2"—1,
and let |x} be a vector of the computational basis
) = |,y -+ %1 %), x;=0or L

We define a unitary transformation® Upy whose matrix elements in the com-
putational basis are

eHmo/2" (5.25)

U x) = (UFT)."-" = Inj2

The transformation Upy is physically realized in the box Ug; of Fig. 5.9(a), and,
as we shall soon see, a possible circuit is that given in Fig. 5.9(b). If |¥) is a
normalized linear combination of the vectors |x),

2] 21

) = ) fl)]x), > P =1, (5.26)
a=0 =0
where f(x) = (x|¥}, then the amplitude for finding at the exit from the box Ugp
a state |y) of the computational basis (note that |v) denotes a state of the input
register) is, from (2.17) setting |®) = Up| V),
21
a(® — y) = (y|®) = Y {y|Upr x){x|'¥)
= (5.27)
21

1 ]ﬂ_‘\.’li
=55 L & 0 =70

a=0

5 In fact,

2y 2y 3

YU e W)y = 2 (Ui (Upr)y = 5o Z b o

=l =0 =l

The result is obtained upon noticing that the sum over y 1s a geometric series.
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F.\'”_])— n-1
N Upr —
[0 0
(a)
|y =— H — R |— K2
[x1) H — K
[ o) bl {Zl_

(b

Figure 5.9 (a) The box Upp. (b) A circuit constructing Upp in the case n = 3.

where we have used the completeness relation >, |x}{x| =1 (Box 2.1). The
probability amplitude a(® — y) is just the discrete (or lattice) Fourier transform
F() of f(x).
For constructing the box Uy it is convenient to write Upp|x) as
2"~ 271
Uprlx) = 2. ) 6lUrr ) = 5,75 22 T |y). (5.28)
v={) v=(0
We shall transform (5.28) so as to write it as a manifestly nonentangled state
using a standard technique of fast Fourier transforms. Let
x=xg+2x; 4+ +2"x,_;,
(5.29)
Y=o+ 2y +2" v,
be the binary decompositions of x and y and let us examine the factor xy/2"
in the exponential of (5.28) in the case n =3, N =2 = 8. Using the fact that
exp(2imp) = 1 for integer p, we can replace the product xy/8 in the exponential
of (5.28) by
Xy LN )-'u) (-‘1 -’fu) Xo
— sy — — — + i — —_ + 1y ——
8 “"(2+4+8 Wy ty) Ty
= Yo-XgX Xg +¥1-X1Xg + Y2 Xp,
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where we have introduced the notation (the binary representation of a number
less than one)

X X, X
. . P i 1}
.).Fxp_] e XA = ?—I— 22 +'+2—p (530)
Coming back to the general case, we see that it is now possible to factorize the
sum over y into sums over ¥, ..., ¥,_1. ¥; =00r 1, [y} = |y, Y1300

1 - et
Ugr|x) = 2 Do el e Aty )

Noees Yao 1

= o (E ez'”-‘ﬂ-l--‘ﬂy,,_o) (Zezml--'ﬁ-- -'"|y1>)

Y1 |

% (ZeziW)'tJ-xpl—l"'-"tJb,“)) ,
Yo

or, expanding each quantity in parentheses,

1 2i.x, 20X, g X
Urth) = 3z (100t +e2™001), 1) - (1001 4-e275291), )

% (|0>0 + AT 1 )0) )

which manifestly has the form of a tensor product. Let us give an example for
n=2:

(5.31)

1 N . i
Uprl) = Upglxyxg) = 7 (100) +&2741%0[01) +&2740]10) 427010t 1) )
1 . |

=3 (|0)| +e?|7r_.r[,|1)]) (|0)0 + eI l}u) .

A possible logic circuit for performing this Fourier transform is shown in
Fig. 5.9(b). The gate cR is defined by the operator R ;:

10
Ry= (0 e.mﬁf;). (5.32)

Let us study the circuit of Fig. 5.9(b). The action of the gate H is
1 1
H|0); = —= (|05 +1}5)., H{l}, =—= (|0}, —1)2),
10)2 V,E(I b2 +(1)2) 1) ﬁ” )2 —11)2)
and so the action on the first bit |x,) can be written as

Hlx) = —= (10)2 +¢2™2[1),) . (5.33)

1
i




94 Introduction to quantum computing

We use c;Ri, to denote the action on the bit j of R, controlled by the bit i. Then
1

x=0: (CIR%)HUz): NG

(1092422 1),),

m=1:  (R)H|x) = — (|0), 2™ eiﬁf2|1>2) ,

1
7 (
which can be written as

©RHIx) = —= ([0), +e27520 1), ). (534

1
V2
It is clear that the procedure is followed by

1
2

and after applying all the gates in Fig. 5.9(b) we obtain the state

5 (1000+ €7 1130) (10)1-+2™55[1),) (j0), 4 €#7%1),)
The qubits are in the wrong order, and one may use SWAP gates to put them
in the right one. However, one can also write by convention the computational

basis in the order

(coR3) (e RDH xy) = == (10)y +e¥ ™55 1), ), (5.35)

|¥') =

|x) = |xpx) - x,y)

that is, the first digit is x; and the last digit x,,_;, meaning that the number is read
from right to left. Then one can avoid the SWAP gates altogether. The number
of gates needed decomposes into n gates H and

1
n+(n—1)+»»»+l’_"§n2

conditional gates cR, or @(n?) gates.

5.8 The period of a function

The Shor factorization algorithm is based on the possibility of “rapidly,” that is,
in a time which is a polynomial in n, finding the period of a function f(x), which
in the Shor case is the function #* mod N. Let us assume that we have a function
f(x) of period r, f(x) = f(x+ ), with

x=0.1,...,2"- L. (5.36)

For the algorithm to be successful we must have, as we shall see, 2" > N2, A
classical algorithm uses (( N) elementary operations (the function 5 mod N appears
to be random noise over a period and does not give any key to what the period
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is), but the quantum algorithm we shall describe below uses only @(n*) elemen-
tary operations. The variable x is stored in a register |x) and the function f(x) in a
register |z) corresponding to m qubits. We start from an initial state of n + m qubits:

2"—1
@)= 32 ( x |.x>) ®0---0). (537)

a=0
We then use the box U, which calculates the function f(x):

2]
1¥y) = Usl®) = 77 > @ f(x)). (5.38)
x=(
This requires (?(n) operations. If we measure the output register and find the
result f,, the state vector of the input register after this measurement is given by
the state vector collapse (see Section 2.4)

) =a X I, (5.39)
x: flx)=fy
where the sum runs over the values of x such that f(x) = f;,, and N is a normalization
factor. We shall assume that f(x+s) = f(x) implies that s = pr, p integer, in other
words, the function f(x) never takes the same value twice in a period, which is the
case for the function b* mod N. The normalized vector | ¥} of the input register, with
flxp) = fy and x, being the smallest value of x such that f{x;,) = f,, then is

K-l
%) = = ¥ bxo-+kr). (5.40)
K 2o
where 7 K ~ 2"/r. In reality, it is not necessary to measure the output register
(Box 5.2). At the exit from the box Uy of Fig. 5.10, the qubits of the input register
are entangled with the qubits of the output register (see (5.38)), and if only the
qubits of the input register are observed, it is necessary to take the trace over the
output register in order to obtain the state operator of the qubits of the input regis-
ter; the physical state of the qubits of the input register will in general be described
by a state operator, and not by a vector of #®". Stated differently, the physical
state of the input register is an incoherent superposition of the vectors |¥;):
| K-l
W) = ——= Y [x+kn), (5.41)
i k=0
where f(x;) = f; and x; is the smallest value of x such that f(x;) = f;. Since the
rest of the argument does not depend on x;, we can just as well avoid measuring
the output register. In other words, it is completely unnecessary to resort to state
vector collapse.

T More precisely, K =[2"/r] or K = [2"/r]+ 1. where [z] denotes the integer part of z.




96 Introduction to quantum computing

Box 5.2: What measurements are needed?

Formally, the rotal state operator (of the input and output registers) p,,, is, according
to (5.38),

P = W) (¥ | = o ZIr@f(x Yz ® f(2)].

2::

The state operator of the input register is obtained by taking the partial trace over
the output register (see (4.14):

Pin = uulplul 7" le‘\}( f(:)|f(r}>

Let us suppose that the function f{x) takes the value f; N, times, and the value
fi N, times, with N, +N; = 2", Then

pin=£,~,(_ Y oWe+ X |_r><.,_|).

= v, 7 fixd=fizi=F xnflx=flz)=f

because (f()|(2)) = 1 if f(x) = f(z) and (f(x)|f(2)) =0 if f(x) # f(z). This

corresponds to an incoherent superposition of normalized vectors

1
‘I’0>=\/—FOIZ o), W)=—7= X |

xfix)i=f I xfix)=f
with the probabilities p, = N, /2" and p, = N,/2". In the case of our periodic
function, the reduced state operator of the input register is

-1 K;i—1

Pin _MZ > k(x4 kel

==k k=0

|} |3

Input Upp

— Data

Figure 5.10 Schematic depiction of calculation of the period. The qubits of the
output register are discarded.
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The state vector (5.40) corresponds in (5.26) to the choice f(x) = 1;’«/1“{“ if x
has the form x;+kr and f(x) = 0 otherwise. According to (5.27), the amplitude
a(®y — y), where [Py} = Upp|¥,), then is

11 k=

o 2Zimy(xp+kr)/2"
2n/2 \/E g} € ? (542)

and the probability of measuring the value y (that is, of finding the state

a(Py—y) =

[¥p—1 -+ ¥1yg) of the computational basis at the exit from the box Uyy) is
2

1

K-1
z e?i?rkr_\'ﬁ“
2"K

k=0

p(y) = la(®y — ,")|2 = (5.43)

We observe that p(y) is independent of x;, and we could have started from any
of the vectors |W;) of (5.41). We next use the geometric series ®

K-1 2imyKr2" . n
Z Q2imykr/2" _ 1 — gtimKr/ — eim(K=1)r2" sin(wyKr/2")

—o 1 — elimyr/2" sin(myr/2m)
In the exceptional case that 2”/r is an integer, and therefore 2"/r = K, we
would find (recall that y is an integer)
1 sin®(y) 1
y) = ———=— if y=jK
PO =5 s (my/K) 7 y=J

=0 otherwise,

where j is an integer. We then find that j/r = y/2", which gives j and r if we
are lucky and j/r happens to be an irreducible fraction. We cast y/2" into its
irreducible form j,/ry, and then j = j,, r = ry. [t is clear that the desired result has
been obtained from constructive interference. In the general case we can write,
always with integer j (but noninteger 2" /#!),

n
which gives the probability p(y;):
1 sin®(78;Kr/2")
n 2.2 o
2"K sin*(md;r/2")
In general, the function p(y) has sharp maxima when the value of y is close to
j2"/r. Using the bounds on sin x,

p(y)) = (5.45)

. T
—x <sinx <x, 0<=x<—,
T 2

¥ The problem is reminiscent of that of diffraction, for example, neutron diffraction by a crystal. If a is the
distance between two sites (o = 1 in the text), the lattice cell is ra. The (quasi-) waveveclor g can lake the
values g =2a7p/2"a, p=0,1,..., 2" — 1 (p and p' = p+2" are equivalent). Diffraction peaks are produced
when g is an integer multiple of the reciprocal latice cell 27/ra, or ¢ = 2w/, j=0,1, ..., r— L
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we can show that the probability of reaching one of the values (5.44) if we require
18;] < 1/2is at least 4/72:
4 K 41
PO = S =3
Since 0 < j<r—1and r > [, there is at least a 40% (4/m> ~ 0.406) chance of
finding one value of y; close to j2"/r. More precisely (see Exercise 5.10.3 for a
specific example),
| 2" l
s <>
Since n and y; are known (yj- is an integer, 0 < y; = 2" — 1, the result of
measuring the input register), we therefore have an estimate of the fraction j/r.
Let us now show that measurement of y; allows j and r to be determined (always
with at least 40% probability). We let y; vary by one unit, which gives
| n | 1
i(y;-il)—in =5
in contradiction with the preceding equation, and the (integer) value of v is
determined by the condition [§;| < 1/2. Owing to our choice 2" > N2, which
implies that 2" = 2, we have obtained an estimate of j/r which differs from the
exact value by less than 1/2/:

il 1
|« —
-7 <> (5.46)

Since r < N, and since two fractions of denominator =r must differ by at least
1/r? unless they are identical, * we will then have a unique value of the fraction
J/r. The value of j/r can be determined from the known value of y;/2" by
expansion in continued fractions, which gives the value of j/r as an irreducible
fraction j,/r,. If we are lucky and j and r have no common factor, we will
immediately obtain the value r = r, for r. The probability that two large numbers
have no common factor is at least 'Y 60%, and, with a probability ~0.4 x 0.6 or
once in four times, the method will directly give the period r = r,, as can be

Y Because

unless the two fractions are identical.

" There is one chance in two that a number is divisible by 2, one in three that it is divisible by 3,..., one in
p that it is divisible by p, ... The probability for two large numbers to be divisible simultancously by p is
1/p*. and the probability that they have no common factor is
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verified using a classical computer by comparing f(x) and f(x+ry). If flx) #
flx+ry), we can try out the first multiples of r, : 21y, 37, ..., and if these trials
give nothing, this indicates that the value of y; was probably outside the interval
|& J-| < 1/2. It is then necessary to repeat the entire procedure and measure another
value for y;. This procedure takes O(n?) elementary operations, ((n”) for the
Fourier transform and @(n) for the calculation of b*.

Determination of the period r is sufficient to crack the RSA code. In effect
(Box 2.2), Eve has at her disposal the message encoded by Alice, b, and the
numbers N and ¢, which are available publicly. She calculates d' as ¢d’ = 1mod r
and then b mod N:

bd — ﬂ('ﬂr — al+””' — ﬂ(ai')"! = am(}d N,

because a” = 1 mod N (Box 5.3), and Eve then recovers the original message a.

Box 5.3: The mathematics of RSA encryption

Let N be an integer and G be the set of integers <N which have no common
factor with N. If @ € G . then @ and N have no common factor. G is closed under
mod N multiplication, because if a, b € G, then abmod N € G . In fact, the
product ab can be written as

ab = x+gN, ab = xmod N,

where x cannot have a common factor with N. If x had a common factor s with N,
it would be possible to write

ab = s(x'+gN/s)

and ab would then have s as a factor, which is impossible. Furthermore, if
a,b,ce Gy and ab=acmod N, then

a(b—c)=pN.

Since a has no common factor with N, (b —¢) must be a multiple of N, and
because b, ¢ <= N, this means that » = ¢. As a result, if b # ¢, abmod N and
acmod N will be different and the multiplication of the elements of G by « is a
simple permutation of these elements. Since 1 € G, it follows that @ possesses an
inverse d in G, ad = 1mod N, and G is therefore a group. The order k of an
element a of G, is the smallest integer k such that a* = 1 mod N; the integer & is a
divisor!! of the order (the number of elements) of . If N is a prime, the order of
Gy is (N —1), and then Ya < N, and therefore also for any a not divisible by N

a’'=1modN,

The order of a subgroup is a divisor of the order of the group: 1, a.a*, ..., a*~! form a subgroup of G-
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because (N — 1) is a multiple of k. Let us take two primes p and ¢ and an integer a
which is divisible by neither p nor g a?! is not divisible by p, so

[a9 %" = 1mod p
and similarly a”~! is not divisible by ¢
[a" 1% = 1 mod ¢,

that is,

a'P=a=1 — +mp, a'r=la=1 — g +ng,
which implies that mp = ng and so
aP-a=h — 11 kpq, aP=a=0 = 1 mod Pq.
We then deduce that

Ls(p—1ig—1
a" el = g mod pa.

This last relation is valid whatever a, that is, even if a can be divided by p (or g),
as the reader can easily check.
If ¢ does not have a common factor with (p—1)(g — 1), then it has an inverse d in

G

(p—1)g—1)*

cd=1lmod(p—1)(g—1). cd =1+s(p—1)(g—1),
and if b = a“mod pq, then
b? = a* = amod pg,

which gives the formula on which RSA encryption is based (Box 2.3).

The subgroups generated by a and b are the same because b = a“. Let r be the
order of this subgroup. We may assume that the integers a, b€ G ,;
be a divisor of (p—1)(g— 1), but since ¢ has no common factor with (p—1)(g—1)
it cannot have a commeon factor with r. As a result, ¢ € G, and there exists a d'
such that

12 then r must

cd' = lmodr.

Since Eve knows r, she can calculate d’ using c¢d’ = 1 mod r and then b
mod N:

bn’ — ar'n" — ald.-mr =a(ar)m = amod N,

because a” = 1 mod N, and so Eve recovers the original message a.

* If this is not the case so that, for example, b and N have a common divisor (which is unlikely as b and N
are very large numbers), Eve could first compute ged(b, N). Then she would have directly factored N.
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If we wish in addition to factorize N we must write

(i)
@ —1=(a"”-1)(a"?+1)=0modN,

(i)
a™ = +£1mod N.

If we are lucky, that is, if the two factors in (i) are integers and (ii) is satisfied,
then the product of integers

{arﬁ - 1) {ar’q - 1)

is divisible by N = pg. It is therefore necessary that p divides (a”*—1) and
g divides {.at’f2 + 1) or vice versa. The values of p and ¢ are obtained by seeking
the greatest common divisors (geds):

p=ged(N,a?=1),  g=ged(N,a”*+1).

If we are unlucky, we must start over, but the probability of success is greater than
50%. It is worth noting that the algorithm we have just described is a probabilistic
algorithm: it does not work every time, but it has a good chance of working, and
we can be sure that it will work after a small number of tries.

5.9 Classical algorithms and quantum algorithms

The theory of quantum algorithms raises doubts about some of the statements of
the theory of classical algorithms when the subject of algorithmic complexity is
considered, i.e., when we ask what resources are needed to perform a calculation.
A general idea is that certain problems can be solved in a number of steps N which
is a polynomial in the number of bits n that measures the size of the problem. For
example, if we wish to multiply two numbers n binary digits long, the number of
instructions needed is a polynomial in n. A much less trivial example is that of
finding primes: how many steps are needed to show that a number is a prime? In
2002 it was proved that this problem is polynomial. However, experience suggests
that other problems require a number of computational steps which grows more
rapidly than any power of n for n 3> 1, for example, as exp n, exp(n'/?), or n'*".
Such problems are often, somewhat inaccurately, termed “exponential.”

Turing defined a class of machines, now known as Turing machines, which
made it possible to study the concept of the complexity of a computational
algorithm. He showed that there exist machines, called universal machines (and he
also proposed a design for one), which are capable of simulating any other Turing
machine. Since then it has been discovered that all computational models proposed
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for executing programs can be simulated by a Turing machine in a computational
time which is a polynomial in the computational time of the simulated machine.
This result suggested the following generalization. All machines are equivalent
as regards the computational time (or the number of computational steps), up to
a polynomial. If this idea is correct, the exponential or polynomial nature of a
problem is preserved in going from one computational model to another, which
leads to the idea of precisely defining the algorithmic complexity of a problem in
terms of the number of instructions NV required by a Turing machine to solve the
problem. If N is a polynomial in n the problem is termed “tractable,” and if N
grows faster than any polynomial in n the problem is termed “intractable”. The
addition of two n-digit numbers is a tractable problem, and the factorization of a
number into primes is believed to be intractable, although there is no formal proof
of this. Two important complexity classes are the P class, the class of problems
which are tractable, and the NP class, that of problems whose solution, if one can
be found, can be checked in a polynomial time. '* NP stands for “nondeterministic
polynomial,” which means that the corresponding class of problems can be solved
using a branching algorithm, with instructions “go to both 1 and 2.” The number
of branches grows exponentially, which is the reason why finding the solution
requires a nonpolynomial time, while exploring a single branch to check a solution
requires only polynomial time. Naturally, P C NP, and there exists the celebrated
conjecture P £ NP, which to this day remains unproven. Numerous complexity
classes have been identified using the definition based on the computational model
of Turing machines, but independent of the actual model provided that the model
can be simulated in a polynomial time by a Turing machine. In particular, one
has identified NP complete problems, such as the traveling salesman problem:
finding a polynomial algorithm for one of the NP complete problems would
automatically imply a polynomial solution for all NP problems.

Up to now we have only discussed calculable problems. The Church-Turing
thesis, which is universally agreed upon but is by its nature impossible to prove,
states that the class of functions which can be caleulated by a Turing machine
corresponds exactly to the class of functions which one would naturally consider
to be calculable using an algorithm. There exist properly identified problems
which are not calculable, for which it is known that no algorithm exists. An
example is the halting problem of a Turing machine: the function which associates
with any program run on a Turing machine (a finite series of symbols) a 0 or
a 1 according to whether the machine stops or does not stop is not a calculable
function. Quantum computers also seem to be covered by the Church—-Turing

" For example, it is intractable 1o decompose a number into primes, but it is tractable o check the product if
the primes are known.
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thesis: the functions which quantum computers can calculate are a priori the same
as those calculable by Turing machines.

We have stated that the simulation of any model of a classical algorithm can be
done up to a polynomial time on a Turing machine, and this result has become a
sort of basic “axiom” of the theory of algorithmic complexity. This is the strong
version of the Church-Turing thesis, which is stated as follows: any computa-
tional model can be simulated on a probabilistic Turing machine with at most a
polynomial increase in the number of computational steps. Quantum computers
are important in that they make this strong version questionable. In fact, if factor-
ization is an intractable problem (as suggested by experience but unproven), then
the Shor algorithm contradicts this strong version. Using a quantum computer it
is possible to decompose a number into primes by a number of steps which is a
polynomial in n, whereas a classical computer can only do this in an exponential
number of steps. The power of the quantum algorithms is due to the fact that they
can explore at the same time all the branches of a nondeterministic algorithm. As
we have seen in the case of the Shor algorithm, it is a constructive interference
of the different branches which allows us to select the right result. Unfortunately,
factorization is not an NP complete problem, so that its polynomial solution does
not imply that of all NP problems.

5.10 Exercises
5.10.1 Justification of the circuits of Fig. 5.4

1. Justify the upper circuit of Fig. 5.4. Show that the action of the cNOT gate on
the tensor product

1

\/E(IOHII))@ |0)

gives an entangled state.

2. Let us assume that qubits are measured immediately after a cU gate. Show that
the probabilities of finding the target qubit in the state |0) or |1} and its final states
are the same as if the control bit were measured before the gate and the target bit
were transformed or not according to whether the control bit was in the state |0)
or |1}. This observation allows the two-qubit gate cU to be replaced by a one-
qubit gate acting on the target bit, which is an enormous technical simplification.
However, it works only at the end of a calculation, not for an intermediate cU
gate!

3. Show that the lower circuit of Fig. 5.4 constructs the Toffoli gate, with

U=/,
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o — w1 H .4
input
o — 5 |y ﬁ
I Yr
data (1) — H

Figure 5.11 The Deutsch algorithm. The two qubits of the input register are
initially in the state |0% and the qubit of the output register is in the state |1}.

5.10.2 The Deutsch—Josza algorithm

The Deutsch algorithm (Section 5.4) can be generalized to the case where the
input register contains two qubits and the output register contains only one qubit
(Fig. 5.11). The two qubits of the input register are initially in the state |0}, the
qubit of the output register is in the state |1}, and H is the Hadamard operator:

1

HI0) = == (100 +11)), H|IY = ——

ﬁ(IO)—Il))-

The unknown function f(x) is either

(i) f(x) = constant, or

(i) f(x) =x mod 2.
1. Show that the global state vector ['') before entering the box Uy is
s
V2

where the quantity in the first set of parentheses is the state vector of the two
qubits of the input register and that in the second is the state vector of the qubit
of the output register.

2. Let us recall the action of the box Uy (where x is the input register and y is
the output register):

W) = (%[|0®0)+|0® 1)+|1®0)+|1®1>])®( IIO)—IIH),

Uslx®y) = |x@ [y f(x)]),

where @ is mod 2 addition. Write down the state vector UH‘P) in the cases (i)
and (ii).
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3. Write down the final state vector |@) of the qubits of the input register (that
is, after application of the operator H ® H) in cases (i) and (ii). Show that
measurement of these qubits allows the cases (i) and (ii) to be distinguished.

5.10.3 Grover algorithm and constructive interference

Let us write the state vector after application of the Hadamard gates in Fig. 5.8

W) = Oy 2P =1.

|
r— [
R
Show that the application of the operator GO gives
l
GOy =—=3a|x
|¥) W7 ? 1%
with

ai’) = % (Z(—l)f(-"’af_”)) _ (_1);'(.-)&[&_{1)_

Take, for example, N = 16 and show that a\”) = 3/4 if x # x, and ') = 11/4
if x = x;;. Constructive interference increases the probability for finding the final
qubit state corresponding to x = x;. Repeated application of GO /N times allows
the solution to stand out against a very small background.

5.10.4 Example of finding y;

Let us take the example of Box 2.3, which shows that a possible period is r = 3.
We choose n =4, 2" — 1 = 15. What are the values of y; such that [§;| < 1/2 in
(5.44)? Calculate the corresponding probability p(y;) and show that the sum of
these probabilities is greater than 40%.

5.11 Further reading

A popularized approach to quantum computing can be found in Johnson (2003).
A great deal of information about circuits and quantum algorithms can be found
in Nielsen and Chuang (2000), Chapter 5, Stolze and Suter (2004), Chapters 3,
5 and 8, Preskill (1999), Chapter 6, and Mermin (2003). The Shor algorithm is
discussed in detail in Ekert and Josza (1996). Interesting references on general
problems in information theory are Bennett (1987) and Landauer (1991a) and
(1991b).
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Physical realizations

We are still at the very beginnings of physical implementations of quantum
computers. The devices listed below have been used successfully to entangle
two qubits (at most!), except for NMR which has gone up to 7 qubits. It is still
premature to try to predict which device will prove most effective for building
a quantum computer capable of dealing with several hundred qubits (if such a
computer someday exists); perhaps it will be something new, not on this list at
all. In any case, it would be as foolish to predict that such a computer will not be
available by 2050 as to predict the contrary. !

The storage and processing of quantum information requires physical systems
possessing the following properties (di Vincenzo criteria):

(i) they must be scalable, that is, capable of being extended to a sufficient number of
qubits, with well defined qubits;

(ii) they must have qubits which can be initialized in the state |0);

(iii) they must have qubits which are carried by physical states of sufficiently long
lifetime, so as to ensure that the quantum states remain coherent throughout the
calculation;

(iv) they must possess a set of universal quantum gates: unitary transformations on
individual qubits and a cNOT gate, which are obtained by controlled manipulations;

(v) there must be an efficient procedure for measuring the state of the qubits at the end
of the calculation (readout of the results).

The Enemy Number One of a quantum computer is interaction with the environ-
ment leading, as we have seen in Section 4.4, to the phenomenon of decoherence,
a consequence of which is the loss of the phase in the linear superposition of
qubits. The calculations must be performed in a time less than the decoherence

' We note that the time scale here is similar w that foreseen for obtaining energy from fusion, a first step in
this direction being the ITER project.

107
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time 7p. If an elementary operation (logic gate) on a qubit takes a time Tops the
figure of merit for a quantum computer is the ratio
)
Hy, = ’Tup‘
This is the maximum number of operations that the quantum computer can
perform. The devices imagined up to now include the following (this list is not

exhaustive):

a photonic quantum computer based on the nonlinear Kerr effect;
optical resonant cavities:

microwave resonant cavities;

ion traps;

nuclear magnetic resonance;

superconducting circuits with Josephson junctions;

quantum dots;

atoms of a Bose-Einstein condensate trapped in an optical lattice.

In this chapter we shall limit ourselves to four types of device: NMR
(Section 6.1), trapped ions (Section 6.2), superconducting qubits (Section 6.3),
and quantum dots (Section 6.4). The necessary background for understanding
NMR quantum computers has been given in Section 3.4. However, Sections 6.2
to 6.4 require a more advanced knowledge of physics than has been assumed up
to now in this book, even though we restrict ourselves to schematic descriptions.
The reader can proceed directly to Chapter 7 (quantum information), which is
completely independent of the present chapter.

6.1 NMR as a quantum computer

The record in the number of qubits was set in 2001 by a quantum computer using
NMR. In spite of this record, NMR is certainly not a solution with a future, owing
to problems which we shall discuss later on. As a preliminary, let us reformulate
the results of Section 3.3 using a more abstract but also more general formalism,
which will allow us in particular to treat easily the case of two coupled spins. The
Hamiltonian (3.24) can be written as

h

H(t)=Hy+ H,(1) = )

f . .
Wy, — %wl (a’+e"‘” + a'_e_“"’) (6.1)

with o, = (0, +i0,)/2:

y (01 o —or (00
+=\o0 o) o)
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To study the evolution of the state vector |¢(r)) we define the state vector
|@(#)) in the “rotating reference frame” as

60 =exp | 5 ) (62)

To interpret this reference frame physically, we note that |@(r)} is independent of
time for w = w; and w; =0:

12(1)) =1p(1=0)) ©=w, © =0
because
() =e Mo (0)) = %2 |p(0))  if  w=w,  (63)

This tells us that the spin remains at rest in the rotating reference frame, and
so the expectation value {&(r)||@(1)) of & is independent of time, while in
the laboratory frame this expectation value rotates with angular velocity wg. In
general, when @ = w,, the spin rotates in the frame (6.2) with angular velocity
(wy— @). We can easily obtain the evolution equation of |[¢(r)) when w; # 0:

., d|@) h h - .
ih—-=| -d0.— -w,0 1)) =H|e(n). 6.4
o= (Fo0— 5 o) o) = Az (64)
We recall that § = @ — w,, is the detuning defined in Fig. 3.4. The Hamiltonian
H has become independent of time in the rotating frame! In obtaining (6.4) we
have used

- h e /2 B I
H(:’) — EL(UO': +e—|w{r:f;2H(r)elw{rcf;2

and 2

a-j: (-') — e—iw{r\,!f? o, eiwu’__.r{?. — E:Fiw;(fi. (65)

Now we can give a geometrical interpretation of the effect of the radiofrequency
field in the rotating frame. To simplify matters let assume that w = w, and leave
the general case to Exercise 6.5.1. Then

—iHt/hi w12

t t
e =e —cosz'+ia'_l. sin wT] (6.6)

Since the operator* which rotates the spin by an angle 6 about Ox is R.(8) =
exp(—iflo,/2), we see that exp(iw to,/2) is the operator which rotates by an

* The simplest way to find (6.5) is lo note that & () satisfies the differential equation

der (¢ i , .

—dtf( ) =—= w2 A gt Fiweay (1)
because (o, o, | = £2er,.

* We refer the reader to Exercise 3.5.1.
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angle 8 = —e,t about Ox. The spin can be made to rotate by a given angle by
adjusting the duration ¢ of the radiofrequency pulse. In particular, a /2 pulse
(Section 3.3) of duration w;t/2 = /4 rotates the spin by 7/2 about Ox: if the
spin is initially along Oz, then this rotation aligns it with Oy.

The advantage of the preceding formalism is that it permits a convenient
treatment of the case of two coupled spins, which we shall now study. In order
to avoid a proliferation of indices, we use (X, ¥, Z) to denote the Pauli matrices:

X=o,. Y=o, Z=o.. (6.7)

Let us consider two spins 1/2 attached to the same molecule,* for example, the
first spin (1) carried by a proton and the second (2) carried by a 'C nucleus.
These two spins have different magnetic moments and therefore different reso-
nance frequencies w[(,” and w((}z) and different Rabi frequencies w[]” and w&z) If
the two spins are carried by identical nuclei, it is the chemical shift which causes
the resonance frequencies to be different, but the difference will of course be very
small in this case, ~107 in relative value. The spins are coupled by an inter-
action” of the type iJZ,Z> (more correctly, hJZ, ® Z,, but we shall frequently
omit the tensor product notation: Z,Z, =2, ®Z,, Z, =1, ®Z,, and so on). The

Hamiltonian 1;113(.') of the set of two spins is then obtained by generalizing (6.1):

- ﬁ, 1 ﬁ, o] JF-L 1 iw“] —iwi”
le(r)z—gwajzj —Ew[(,‘zz—iwﬁ’(cme ‘Loe ’)
(6.8)

J?- 2 s (2 el
_ f(w[]'Jo'H e 4 g, i ”)+ﬁlezz

with o7, = (X; £1iY;)/2. Since the resonance frequencies are different, the fields
applied to the two spins will have different frequencies, adjusted to be in quasi-
resonance with each spin:

50 =0V -0l | < 0", 18?1 =0? -0l <el?. (69

In the rotating frame the state vector |@; (1) ® @,(1)} of the system of two spins
is given by the generalization of (6.2):

iz w2z,
|¢1(r)®¢z(r)>=exp{—5"-~2-ﬁ] exp[—“" . -"] e @ex(1).  (6.10)

In this reference frame the Hamiltonian is as before independent of time:

ok I I h
A= Eﬂs,z1 +§15222— 51 ol"X, - §L 0 X,+hJ2,Z,, (611

' The molecules are diluted in a solvent, and the interactions between the “active™ molecules, that is, those
carrying the qubits, are negligible.

* This interaction is indirect and is not due to an interaction between the magnetic moments. It is transmitted
by the electrons involved in the same chemical bond.
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(¥)
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/
. @ Fe — CO
“ / N co

CeH;

&

(a) (b)

Figure 6.1 Two molecules used for quantum computing; the atoms carrying the
active qubits are circled. (a) Chloroform, 2 qubits; (b) a perfluorobutadienyl iron
complex, 7 qubits.

where we have used the fact that Z,Z, commutes with Z; and Z,. In what
follows it will be important to bear in mind that the condition |J| < w&”, w{lzJ is
always satisfied in practice. Two examples of molecules which have been used
successfully are given in Fig. 6.1.

Let us now consider the quantum logic gates. The qubits are of course spins
1/2; for the moment we shall ignore the fact that the qubits are in a complex
environment, and proceed as though we were dealing with individual qubits.
The manipulation of qubits one by one corresponding to one-qubit logic gates is
obvious: it is sufficient to apply a radiofrequency field for a suitable time interval,
where the frequency is close to the resonance frequency cu[[;) of the qubit (i)
which we wish to manipulate.

The ¢cNOT gate is realized using the interaction JZ; ® Z, between the two
qubits. As we have seen, it is impossible to realize a cNOT gate by manipulating
individual qubits. NMR differs from other quantum computer devices in that
the interaction between qubits is not introduced externally, but is internal to the
system. The interaction JZ| @ Z, between the spins is always present, and the
problem is to suppress its effects when we want certain qubits not to evolve.
We shall use the fact that the typical time needed for the JZ, ® Z, term to
perform a rotation of two qubits (several milliseconds) is about two orders of
magnitude larger than the time needed for the radiofrequency field to rotate an
individual qubit (about ten microseconds). We can immediately calculate the
evolution operator exp(—itJZ, ® Z,) using

(Z1®2)(2,82) =Z1®Z; =1,
We then find
exp(—ift Z, ® Z,) = I, cos Jt —i(Z, @ Z,) sin Jt. (6.12)
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The following realization of a ¢cNOT gate uses the operators performing /2
rotations applied to individual qubits. The operators which rotate by an angle
/2 about Ox, Oy, and O, that is, R (7/2), R (7/2), and R_(7/2), are obtained
using the fact that exp(—if& -71/2) is the operator for a rotation R; (6) by an angle
# about the 7 axis (Exercise 3.5.1). We then have

| 1

V2 V2

We define the operator X ,(f) acting on the ensemble of two spins

1

R (7/2)= 7

(I-iX),  R(m/2))=—%=(—iY), R.(7/2)=—=(I-i2).

(6.13)

X1p(t) = expliJi(Z, ® Z,)| R (m/2) R?) (/2)

during a time ¢ such that Jr = w/4:
: 1 .
explim(Z, ® Z,) /4] = 7 (1+iZ,®2,).

Now we have
™ 1y . . .
X12 (ﬂ) = E (I HiZ,®Zy) (11 —1Z,® 1) (I — 1, ®Zy).
The multiplication can be done immediately, giving
T l—i 1—i
XD( )=—2(1+Z,®[3+1,®ZE—Z,®ZZ)=—cZ, (6.14)

IV NG V2

where the cZ (control-Z) gate is

cZ =

(=R =R
o - O

00
00} (10
10 _(00'2)'
000 —1

To go from the cZ gate to the cNOT = ¢X gate, it is sufficient to sandwich the
former between two Hadamard gates acting on qubit 2:

eNOT = (I, ® Hy) cZ(I, ® H). (6.15)

HO\(IO\(HO\ (H> 0 \ (10
0H/\0e.J\OH) \0 Ho.H) \00o,)"
The Hadamard gate corresponds to a rotation of 7 about the axis (1/+4/2,

0.1/2):
exp (%&;G)) =—iH,

In fact,
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R, (n/2)

exp (im (£, ®Z;)/ 4)

— H R.(n/2)

E_

Figure 6.2 NMR construction of a cNOT gate. The diagrams are read from left
to right, and the operator products are taken from right to left.

but in practice rotations about Ox or Oy are always used. The time needed for the
rotations R_(7/2) or H (about ten microseconds) is negligible compared to the
time needed for the evolution due to the term JZ, ® Z, (several milliseconds), and
this evolution is negligible during the time needed for the individual rotations. The
logic circuit corresponding to the operations (6.14) and (6.15) is shown in Fig. 6.2.

However, during the several milliseconds needed to realize the gate, the other
qubits continue to evolve according to the various terms in the Hamiltonian.
The NMR signal is not produced by a single spin, but by an ensemble of spins
(~10"8 of them, the minimum number needed to obtain a measurable signal). The
nonuniformities of the field f?” and other random phenomena cause the qubits
carried by different molecules to evolve differently, and so the signal will become
fuzzy. This is why it is necessary to resort to the technique of refocusing (spin
echo), a basic tool used in modern NMR and MRI. We shall explain it here for
the simplified case of evolution due only to the JZ, ® Z, term. Sandwiching the
evolution operator between two rotations RE”(ﬂ) = —iX, of spin 1, we obtain
the following effect:

(—iX,)[exp(—iJt Z,® Z,)](~iX,) = (=iX,)(I;5 cos Jt —i(Z, ® Z,) sin J1)(—iX,)
=1, cosJi+i(Z, ®Z,)sinJr (6.16)
=exp(+HJtZ, ®Z,).

Therefore, if the spins have evolved during a time r as exp(—iJrZ, ® Z,), we
obtain the result

R (1) [exp(—iJtZ, ® Z,)] RV () [exp(—iJtZ, ® Z,)] = I,. (6.17)

In other words, the sequence of operations corresponding to free evolution during
a time ¢ x R\ () x time evolution during a time r x R_(,.”( ) puts the spins back
in their initial configuration! This observation shows how it is possible to cancel
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out the evolution of the qubits other than those to which the cNOT gate is applied
by means of the operations (6.14) and (6.15). A similar observation reveals how
spins which have evolved differently owing to nonuniformities of E?“ can be
refocused.

The molecule (b) of Fig. 6.1 allows us to work with 7 qubits, the minimum num-
ber of qubits needed to use the Shor algorithm to factorize 15 into primes. In fact,
b can take the values 2,4, 7, 8, 11, 13, or 14, and the largest period of #* mod N is
r=4forb=2,b="7,b=28 and b = 13. To see two periods it is then necessary
totake x=0,1,...,7=2%—1, and of course f(x) =0, 1,...,15=2%—1, that
is, a 3-qubit input register and a 4-qubit output register. The factorization of 15
was successfully done in 2001, thanks to the great sophistication of the mod-
ern NMR techniques developed for chemical and biological analyses. However,
despite this spectacular (7) result, NMR is not the solution of the future, because it
first requires the synthesis of a molecule possessing as many distinguishable sites
as the needed number of qubits, and the ability to select the frequencies acting on
the various qubits. Worst of all, the signal decreases exponentially as the number
of qubits grows. In fact, NMR uses not individual quantum objects, but a set of
>10'"% active molecules diluted in a solvent: the signal is a collective one. To
obtain a “pseudo-pure” state it is necessary to perform preliminary initialization
operations too complex to be described here, and the same for measuring the final
states. It is these operations which cause the signal to fall off as the number of
qubits is increased.

6.2 Trapped ions

Trapped ions represent a more promising technique than NMR. The two states of
a qubit are carried by the ground state (|g) = |0}) of an ion and by an excited
state of very long (~1s) lifetime

ey = |1}, which is either a hyperfine state
of the electronic ground state, or a metastable electronic state. These states will
be called internal states of the ions. The individual qubits are manipulated by
laser pulses, as explained in Section 3.3. The construction of entangled states and
two-qubit logic gates involves as an intermediary the translational motion, called
the external degrees of freedom of the ions. A coupling between the internal and
external degrees of freedom is therefore used. Since the ions are trapped in a
harmonic potential, we shall speak of vibrational motion of the ions rather than
translational motion.

The traps which are used, named Paul traps after their inventor, are constructed
by combining the actions of constant and alternating electric fields. The net result
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is that the ions are located in a harmonic potential
V(x, y, )_—M(w), —l—(d y —I—(u z)

where M is the ion mass and ¥ = (x, y, z) is the position of the ion in the trap. In
practice, the trap frequencies, typically a few megahertz, satisfy the equation

2.2 2
Wy ~ Wy > o,

so that in a first approximation the ion moves along the axis Oz in a potential

V(z) = %ngzz. (6.18)

To start with an elementary discussion, it is useful first to study the case of a
single trapped ion. In quantum physics, the 7 coordinate and the z component of
the momentum, p_, are Hermitian operators (physical properties) satisfying the
commutation relation

[z, p.]=ihl. (6.19)

The Hamiltonian # with the potential energy term (6.18) also contains a kinetic
energy term pfﬁM :
2
1
A= 2y (6.20)
There exists a standard method for finding the eigenvalues (energy levels) and
eigenvectors (stationary states) of H. One introduces the (dimensionless) operator
a and its Hermitian conjugate a':

Mo, ip + Mw._ ip.
T (+Mw) 4=V ("_Mw; : (6.21)

Using (6.19), it can immediately be checked (Exercise 6.5.2) that « and a' satisfy
the commutation relation

[a,a'] =1, (6.22)

and that A can be rewritten as
- 1
H = hw. (aTa + 5) . (6.23)

It is shown in any quantum mechanics text that the eigenvalues of H are of the
form hw_(m+1/2), m=0,1,2, ..., corresponding to the eigenvectors |m}:

H|m) = ho, (m+%)|m). (6.24)
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In general, the operator a (the annihilation operator) takes m to m — 1, and the
operator a' (the creation operator) takes m to m+ 1:

a|lm) = m|m—1), a'lm)=Vm+1|m+1). (6.25)

The integer m therefore labels the vibrational quantum number in the trap. Accord-
ing to (6.25), the ground state |0) is “annihilated” by a: a|0) = 0. Its energy E,
is nonzero: Ey = hw, /2, in contrast to the classical case where the ground state
corresponds to an ion at rest in the bottom of the potential well at z = 0. The fact
that the ground-state energy is nonzero has an interesting physical interpretation
in terms of the Heisenberg inequalities (Exercise 2.6.5). Reasoning heuristically,
we can replace z and p_ by their dispersions Az and Ap_, and use the Heisenberg
inequality in the form Az Ap:_ ~ h/2 in (6.20) to obtain

(Ap.)? 2 1 L)
E~—e- M + — Mw-(Az
Ty Mo (8~ 8M(Az)? w*(82)’.
Minimizing with respect to Az, we find
h h
Az E,=—-w. 6.26
( ) 2Mw- 0=35 w., ( )

in agreement (accidentally — we expected to obtain only the correct order of
magnitude) with the exact calculation. This heuristic argument shows that the
ground-state energy is obtained by seeking the best compromise between the
kinetic energy and the potential energy. They cannot both vanish as in the classical
case. The argument also shows that the spread of the ion wave function in the trap,
that is, the region where the ion has an appreciable probability of being located,
is of order Azy = \/h/2Mw.. It is usual to redefine the zero of the vibrational
energy such that the ground state has zero energy. Then the energies take the
simple form mhw.,.

There is one final experimental condition to be satisfied. In order to be able to
manipulate the ion, it must be in its vibrational ground state m = 0. This will not
be the case if the ion is at a temperature T such that kpT" > he,. In that case,
levels with m £ 0 will be thermally excited, and it becomes essential to cool the
ions. This is done by Doppler cooling based on the following principle. The ion
is sandwiched between two laser beams propagating in opposite directions® and
tuned to slightly below a resonance frequency. When an ion travels opposite to
the direction of one of the laser beams, the transition becomes closer to resonance
owing to the Doppler effect, because the ion “sees” more energetic photons, and
the absorption of photons from this beam becomes more important than that of
photons from the second beam, which the ion “sees™ as farther from resonance.

b For simplicity, we take the one-dimensional case. Cooling in three dimensions would require six laser beams.
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The ion is therefore slowed down no matter what the direction of its velocity is, and
it can be shown that the temperature the ion reaches is given by kyT ~ hI', where
I' is the linewidth. If the Doppler cooling is insufficient, other more sophisticated
mechanisms can be used.

First let us model the ion by a two-level system trapped in the potential (6.18)
and located in an oscillating electric field:

E = E kcos(wt —kz — ). (6.27)

Under these conditions, the total Hamiltonian contains three terms. The first, !;{U,
is the Hamiltonian in the absence of the oscillating field (E, = 0):

R fi +
Hy= —EL- wyo_ + fiw_a'a. (6.28)

The internal states are the two states |0) of energy —hw,/2 and |1} of energy
hw,/2. We shall use the Hamiltonian (6.28) to define a “rotating frame,” gener-
alizing what we did in the NMR case.” Given an operator A, the operator A(r)
will be, by definition,

A(f) — e]‘gnlﬂt A e—if:fn.fffl. (629)

Following the method of the preceding section, ® we easily find for the operators
a,a’, o_, and o, (Exercise 6.5.2):
—iwn.r, ir.ouf,

o (n=o.e o_(N=o_e

s —iant —Fen b iwt (630)
a(ty=ae """, a'(fy=a'e™:".

According to (6.27), the interaction with the electric field is written as

H, = —; w [0, +0_] [ei““"‘-b} e Gl eikz] \

1

where w, is the Rabi frequency of the problem. In this equation z is the position
operator. We expand exp(=%ikz) in a series keeping only the first two terms:

e=ks ~ | +ikz,

which is valid if kAzy <1, where Azy = ,/ii/2Mw, is the spread of the ground-
state wave function m = 0 in the trap. The condition for the expansion to be valid
then is

kvh

=kAzp=7<K1,
Mo, 0=

? The reader familiar with quantum mechanics will recognize (6.29) as the definition of the interaction pieture.
¥ However, we choose ay, as the rotational frequency of the rotating frame. In fact, it is more convenient o
use My in this problem.
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where 7) is called the Lamb-Dicke parameter. The term 1 in the expansion of
exp(=ikz) gives a contribution H, to H,,,:

. i . .
"= —-25 w, [0, +0_] [c"“”_‘“ +c_‘“‘”_¢)].

In the rotating frame using the first line of (6.30) we find
- - h . . . .
H — H = _51 o, [g+e—|f.o0!+o__e|wni:| I:el(w.r—tb) +e—1[w!—c|5):| ]

Finally, we use the rotating-wave approximation, where we neglect the terms
in exp[=i(w + wg)¢] which oscillate rapidly so that they average to zero and give
a negligible contribution to the evolution. This leads to the final form:

H, ~ —g w, [a’+ei“3’_“"’) + a’_e_i“s’_""’)] (6.31)
with 8 = (@ — wg). This is the NMR Hamiltonian (6.4) in the rotating frame, where
we have included additional phase factors exp(=%i¢). It allows us to manipulate
the two ion states exactly as in the case of NMR, by tuning the frequency of the
oscillating field to w = w; (6 = 0) and adjusting the duration of the interaction.
The angle defining the rotational axis in the xOy plane can be chosen using the
phase ¢. In fact, at resonance (8 = 0) the rotation operator is, according to (6.31)
with # = —w 1,

(7 ; ; 0
exp (_ii [0’+e_’¢’ + O'_E"‘b]) =exp (_ii [o,cosd+ o sin qf)]) .
which gives a rotation about the axis 7 with the components
i, =cosd, i, =sind, a.=0.

In fact, the value of the angle ¢ obviously has no absolute meaning, but in a
series of several successive pulses it is the relative phases of the various pulses
which are important. In what follows, we can choose an arbitrary value for ¢.
We have kept ¢ explicitly to make the link with Exercise 6.5.3, where it plays
an essential role.

The term +ikz in the expansion of the exponential exp(£ikz) gives a contribu-
tion H’z to the interaction Hamiltonian. This term takes into account the vibrational
motion and couples the internal and external degrees of freedom:

i, = lﬁzw’ [0, +0 ][a+a'] [ei(“”_""’) - e—"(“”—*“] , (632)

where we have used (6.21) in the form

h T
©7 2Ma, (a+a).
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In the rotating frame the Hamiltonian I:J'z becomes

inhw,

HZ . H} — [O_+ae—1(w[;+w:JI + (}‘+££' e—](f.ou—r.o\.J.r

+ o ael@w)t L g i ei(ﬂ-'n"'w:lf]
y [ei[wf—qb} _e—i(wf—(.b)] _

If we choose to tune the laser frequency to w = (@ + w.), the so-called blue side-
band frequency, H, becomes the following in the rotating-wave approximation:

- - in h . .
Hy— Hy = "?;"1 [a+ae-“-f' - o'_a'e"b] , (6.33)

whereas if we choose @ = (w, — w.), the so-called red side-band frequency, we
have

A - in b . .
- i = ‘”;’” [0’+a' —ié _ ar_ae“-”] : (6.34)

We use

n, m) to denote the ion state, where n =0, 1 is the internal state and
m =0, 1 is the vibrational state of the harmonic oscillator. The Hamiltonian (6.33)
induces transitions between the states |0,0) and |1, 1}, because

w=wy+w,: o all, 1) =10,0}, o_a'|0,05 =1, 1},
whereas (6.34) induces transitions between the states |0, 0} and |1, 1}, because

w=w,-w,: o.a’|l,0) = 1,0).

0.1). o_a0,1)=

This is summarized by the level scheme shown in Fig. 6.3(a).

In order to explain in a simple way how (6.33) and (6.34) can lead to the
formation of entangled states, it is convenient to assume the existence of an
auxiliary internal state |2). It is possible to do without this auxiliary state, but
then the discussion is a bit more complicated; see Exercise 6.5.3. We use |n, m) to
denote the ion state, n =0, 1, 2 being the internal (spin) state and m the excitation
state of the harmonic oscillator. We then obtain the level scheme of Fig. 6.3(b).
The four basis states for the quantum calculation are |0, 0}, |0, 1}, |1,0} and |1, 1},
and we need to construct two-qubit logic gates for these states. A laser is tuned to

the frequency (w,,, + @_), thus stimulating transitions between the states |2, 0}
and |1, 1), corresponding to an effective Hamiltonian

- fiew' . s

i, = i% [ar;ae@ - a’_a'e—u‘*] (6.35)
with

o h=12), ol|2)=1).
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Figure 6.3 (a) Energy levels of the simplified model for the coupling of the
internal and external degrees of freedom. The states are labeled |n, m), where
n=20,1 is the state of the qubit (internal) and m is the vibrational quantum
number (external). (b) Coupling to an auxiliary level: now n can take the values
0, 1, and 2, with m always denoting the vibrational quantum number. The
transition at w, — . corresponds to the red side-band, and that at w,+ w. to the
blue side-band.

The laser is applied during the time needed to perform a rotation R, (27), the
effect of which is |1, 1) — —|I, 1} with the other states remaining unchanged.
This realizes the cZ logic gate on the states |n, m):

100 0
010 0 I 0

Z=|001 o :(0 C’z)' (6.36)
000 —1

Let us now turn to the more interesting case of two ions. The arguments can be
generalized immediately to any number of ions N, which allows us (in theory!) to
imagine a quantum computer with N qubits. As a preliminary result, we need the
SWAP gate, obtained by tuning the laser to the red side-band frequency (w —w_)
and by adjusting the duration of the pulse for a rotation by 7. Choosing ¢ = 7/2,
this gives the exchange |0, 1) <= |1,0} corresponding to the SWAP logic gate,
with an extra minus sign

0 0
0 —
1
0

[—

SWAP' = (6.37)

1 0
0 0
0 0 0
0 0 1

The vibrational ground state corresponds to motion of the ensemble of both ions,
that is, to vibration of the center of mass inside the trap. Therefore, everything
is the same as for a single ion. The combination of ¢Z, SWAP, and Hadamard
gates gives a ctNOT gate. Let us explain how. We choose ion 1 as the control ion

and ion 2 as the target ion. It should be borne in mind that the qubits are carried
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by the two internal states of these ions. We start from a state which is the tensor
product of the most general two-qubit state

al00) + b|01) +¢|10) 4 d|11)

and of the state corresponding to the m = 0 vibrational mode of the center of
mass:

initial : (a]|00} + b|01) + |10} + d|11)) @ |0}
= al00,0) + 5|01, 0} + ¢|10,0) + 4|11, 0}
SWAP; : a|00,0) + 5|00, 1) + |10, 0} 4+ d|10, 1}
¢Z, : a|00,0) + 5|00, 1) +¢|10, 0) — d|10, 1)
SWAP; : a|00,0) — 5|01, 0) +¢[10, 0y +d[11,0}
= (al00) — b|01) +¢|10) + d|11)) ®10).

If we redefine the phase of the state |1}, of the second ion, |1}, — —|1),, the
net result is the application of a ¢cZ gate to the two qubits: the vibrational motion
has only served as an intermediary. It is easy to go from a ¢Z gate to a cNOT
gate, as we have seen in (6.15). This gate has been realized experimentally using
as qubits the ground state S, (|g) = |0)) and the metastable state D5, (|} = [1),
of lifetime of the order of a second) of the *°Ca™ ion; the transition between the

two levels is an electric quadrupole transition corresponding to a wavelength of
729 nm. An N-qubit computer is shown schematically in Fig. 6.4.

——lon trap

_—
Photons of CCD camera
Tuorescence

090000000

lons

70 micrometers

Figure 6.4 Schematic depiction of the principle of a quantum computer using N
trapped ions. From Aspect and Grangier (2004).
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The potential energy V of the ensemble of N ions in the trap is

9 1

| AN
V= MY wlz, + . (6.38)

n=I

471-8[] mn |Z-i:r —im

assuming that the ion chain is linear: the trap potential must be sufficiently
confining in the directions Ox and Qy in order to avoid zig-zag configurations.
The minimum distance between the ions at equilibrium, which is the distance
between the two central ions, is approximately

Az ~2INTOO7

where [ is the characteristic length of the problem:

qz 1/3
= ——— . 6.39
(411'.90Mw:3) (6.39)

For the trap of the Innsbruck group the numerical value is / >~ 2.8 um, the central
ions being separated by about 5pum. The lowest vibrational mode of frequency
@_ corresponds to motion of the ensemble of ions, and the first excited mode,
or the breathing mode of frequency \/?_’(d:, corresponds to the ions oscillating
with amplitude proportional to their algebraic distance from the center of the trap
(Exercise 6.5.4). One of the delicate problems is how to address an individual ion
by a laser beam — it is necessary to aim very accurately!

A resonance fluorescence technique is used to put the ions in the desired state
and to measure their final state |g) := |0} or |e} :=|1). The ions are illuminated
by a laser beam tuned to an electric dipole transition between the level |g) and
an excited level |r), |g) < |r). If the ion is in the state |g), it will scatter a large
number of photons, while if it is in the state |} it will not. The quantum jumps
made by the ions in this method are quite spectacular, because the observation is
made for an individual quantum system. One main difficulty of trapped ions is
that ions are charged particles, and as such are sensitive to stray electric fields. If
these fields are time dependent, they will heat the ions. Typical heating times are
of the order of 1 ms, but this time could be much shorter as the number of ions
increases.

6.3 Superconducting qubits

In the two preceding examples the qubits were carried by individual quantum
objects, nuclear spins in the NMR case and ions in the case of trapped ions
(although in the NMR case the signal was built up by ~10'® nuclear spins).
We now turn to a system where the qubits are carried by a macroscopic degree
of freedom, the current in a superconducting circuit containing one or several
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Josephson junctions. As we shall see, low temperatures of the order of tens of
millikelvins are required for these circuits to exhibit quantum behavior. These
circuits are small by everyday standards (a few micrometers), but very large
compared to atomic sizes. Still more remarkable is the fact that the parameters
of these quantum systems are fixed by fabrication, and not by Nature as is the
case for individual quantum systems like electrons or ions. They are engineered
quantities which can be modified by changing the dimensions of the circuits, and
in this sense they are unambiguously macroscopic quantities. It has been known
for almost a century that at low temperatures the electrical resistance of most
metals and alloys drops abruptly to zero below a transition temperature 7 of
order 1 K, and the metal becomes a superconductor. Superconductors also exhibit
a remarkable feature called the Meissner effect: magnetic fields are expelled from
the bulk of a superconductor; they cannot penetrate deeper than a distance known
as the London penetration length, * which is of order 0.1 jum.

In order first to examine a simple example, which, however, will turn out not to
be suitable for qubits, consider the L circuit of Fig. 6.5 at very low temperatures,
so that all metallic elements are superconducting. The classical Hamiltonian of
the oscillator is the sum of the magnetic energy stored in the inductor and the
electrical energy stored in the capacitor:

1 1
H= —@’+ —g 6.40
TAARET.LE (6.40)

where L and C are the inductance and the capacitance, ¢ is the flux across
the inductor, and ¢ is the charge on the capacitor. The resonance frequency of
the circuit is wy = +/LC. The circuit of Fig. 6.5 can be fabricated with lateral

I

Figure 6.5 A superconducting L circuit.

7 We limit ourselves 1o the so-called type I superconductors, or to type 11 superconductors in external magnetic
fields smaller than the critical field He . We also exclude from our discussion high-T¢ superconductors,
where the transition temperature can reach ~100K. In conirast o low-lemperature superconductors, which
are very well described by the Bardeen-Cooper-Schrieffer (BCS) theory, high-T,. superconductors are still
poorly understood.




124 Physical realizations

dimensions ~10wm, with values of L and C approximately 0.1nH and 1pF,
respectively, corresponding to a resonance frequency wg/2m ~ 16 GHz. When
aluminum with 7, = 1.1K is used to fabricate the circuit one can safely neglect
dissipation due to unpaired electrons (quasi-particles) below ¥ 20 mK.

The magnetic flux ¢ and the charge ¢ in (6.40) may be considered as conjugate
variables in the sense of analytical mechanics: the Hamiltonian (6.40) has the
same form as (6.20) if we make the substitutions p. — ¢, M — L, z — ¢, and
Mcu? — 1/C. The correspondence principle tells us how to quantize the circuit.
As in the case of the variables z and p_, the classical variables (numbers) g and
¢ become operators () and ® which obey the canonical commutation relation
[Q, @] = ihl. However, we know that under ordinary conditions quantum effects
are (fortunately) quite negligible in electrical circuits. So when do quantum effects
begin to play a role? As in the case of trapped ions, the thermal energy k; T must
be much smaller than the energy difference between the ground and first excited
states. According to the results described in the preceding section on the quantum
harmonic oscillator, here this energy difference is hwy, and quantum effects are
relevant for the circuit of Fig. 6.5 when

kpT < . (6.41)

Unfortunately, this simple circuit is not suitable as a support for qubits. The
reason is that the energy difference between the first and second excited states
is also hwy, so that any attempt to produce Rabi oscillations between the ground
and first excited levels will unavoidably induce transitions to the second excited
and higher levels, so that there is no possibility of a two-level system. The equal
spacing hawy, between the harmonic oscillator quantum levels can be traced back to
the linearity of the oscillator. We thus need to introduce strong nonlinear effects,
and the only known device which is able to create strong nonlinearities without
dissipation is the Josephson junction.

In a superconductor the electrons are weakly bound in pairs, called Cooper
pairs, of zero spin and zero momentum at equilibrium. At zero temperature all
these pairs “condense,” that is, they all fall into the same state, the ground state,
so that all pairs have the same wave function.'' The energy needed to break one
of the pairs is called the gap energy A, and it is the energy difference between
the ground and first excited states. In contrast to a single-electron wave function,
which is a probability amplitude whose modulus squared gives the probability

" As explained below, the characteristic energy is the gap energy A, and dissipation due to unpaired electrons
is negligible if ky T < A, because the residual resistance decreases as ~exp(—A/ky 7). The value of the gap
for aluminum is A = 200 weV, and the number of quasi-particles in a typical circuit at 20mK is less than
101,

This phenomenon is known as the Bose-Einstein condensation of bosons. Electrons are fermions, not bosons,
but Cooper pairs do behave as bosons.
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density of finding the electron at some point in space, the wave function of the
condensed state, as it involves a macroscopic number of pairs, may be interpreted
in terms of a Cooper pair density p(7). More precisely, this macroscopic wave
function is a complex function which can be written as

W) =/ p() e, (6.42)

so that |if(¥)|* = p(¥) is the Cooper pair density at the point 7 and 6(7) is the
phase. In a uniform situation p and 6 are independent of 7. The Meissner effect
is explained by starting from the standard form of the electromagnetic current in
quantum mechanics for a particle of charge ¢ and mass m under the influence of
a magnetic field B derived from a vector potential ﬁ( 7)) (B= V x A):

Jom = 5 [ W) (—inﬁ —qA®) b+ (9 - A () v*]

(6.43)
fiq (

V0 - 3 AG)) p(7):

This expression can be used to show that the magnetic field cannot penetrate
the bulk of the superconductor, but must decrease exponentially from its surface
(Exercise 6.5.5). Another crucial consequence of (6.43) is that the magnetic flux
¢ through a superconductor ring is quantized due to the fact that currents must
flow at the surface of the superconductor (Exercise 6.5.5). Indeed, considering
a contour drawn inside the ring along which the current density vanishes, from
Jem = 0 and from the fact that the wave function is single valued we find

?gVBdI_qL?gAdI— fdeS 2an,  nel,

so that

. .k
[fB‘dsqu - (6.44)

where g is the charge of the Cooper pair, g- = 2‘1u being the electron
charge. The elementary flux quantum @, = | == 2 x 10715 Wh, plays
an important role in what follows.

A Josephson junction (Fig. 6.6) is made of two superconductors which are
separated by a layer of insulating material. If the layer is thick the electrons
cannot cross it, but if it is thin enough they can get across owing to a quantum
process known as tunneling. If i, (i) is the macroscopic wave function (6.42)
on the right (left) side of the junction, to which a bias voltage V' is applied, we




126 Physical realizations
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Figure 6.6 Schematic depiction of a Josephson junction: a thin insulating layer
is sandwiched between two superconducting (SC) wires.

can describe the junction as a two-level system, and by analogy with (3.30) we
can write down a system of coupled differential equations for i, and ,:

Ldifyp 1
lﬁ.x = chvl‘b] +Kl|b'2,

2 = eV + K,

The coupling between the two wave functions is due to tunneling and is char-
acterized by an amplitude K which may be chosen to be real. The factors £¢-V/2
can be understood as follows. In the absence of coupling (K = 0) the functions
U, and iy, are energy eigenstates whose time evolution is exp(=xig.Vt/2h) since
the energy of a Cooper pair is +¢cV/2. Writing i, and s, in the form (6.42)

= v/P_lei”'s = Jpy e, (6.46)

we obtain a system of coupled equations for the quantities p;, p,, #,, and 6.
After some simple algebra (see Exercise 6.5.6), we find that the Josephson current
Iy across the junction is

(6.45)

2K

]] — T f’plpz sinfl = [“ sin @, (64?)
[

where 6 = 0, — 0, is the phase difference across the junction. [ is called the
critical current, and it is a parameter characteristic of the junction. The phase
difference is governed by the equation (Exercise 6.5.6)

Ao do

= = . 6.48
ge dt 2w dt ( )

Note that in a stationary regime the potential difference across the junction
vanishes as long as there is no dissipation in the junction. Equations (6.47) and
(6.48) are the fundamental equations of the Josephson effect. These two equations
can be combined to obtain

diy 27«

= — VI, cosf. 6.49
dr % (cos ( )




6.3 Superconducting qubits 127

This expression can be interpreted as that of an inductor, £ = Ld[l/dt, where &£
is the emf and L is the inductance, with the effective inductance of the junction
given by

L40]

= — (6.50)
2wl Vecosd

The 1/cos# behavior makes it clear that this inductance is highly nonlinear, a
property we were looking for. The energy Uj stored in the inductor is

: Lo * 1
UJ:f_wlj(r’)VI(r')dr’:;—?f“ sin'do’ = ;‘:’ cosf = Eycos . (6.51)

Before discussing the construction of circuits for superconducting qubits, let
us describe a simple closed circuit (a ring) built with one Josephson junction,
an inductor L, and a capacitor C (Fig. 6.7). The total magnetic flux through the
circuit is ¢, composed of an external flux ¢, and the flux (¢ — ¢.,) due to the
inductance. From a slight modification of (6.44) (see Exercise 6.5.5) we deduce
that

azzwf +2nm,  nel, (6.52)
(]

so that cos# in (6.51) can be replaced by cos(2m¢/¢,). Then the total energy of
the circuit, or the Hamiltonian, is

1 21T
H= q +_[‘P LK) _U—‘FU OS(—‘P)

!
2¢ %o

ex s (6.53)

where we have added a possible contribution from an external current [, arriving
at the ring.

Figure 6.7 A superconducting circuit for flux qubits. J represents the Josephson
junction.
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As in the case of the LC circuit of Fig. 6.5, we can quantize the Hamiltonian
H in (6.53) by using two conjugate operators ' and & obeying the commutation
relation [Q, @] = ikl. We then write the quantum Hamiltonian H as

et o Lo “‘P“ 2P\ o 6.54
_ZCL ZL( LK DS ‘F'“ cX - (' )

A possible realization of the canonical commutation relations is ® — ¢, 0 —
ihd/de, where the operators O and @ act in the Hilbert space of square integrable
functions of ¢. In this realization of the commutation relations @ is represented
by multiplication by ¢, while Q is represented by the differential operator ihd/de.
Indeed. it can immediately be checked that [Q, @] acting on a function f(¢) gives
back ilif(e):

[0, ®l(g) = in 220 (‘Pf) n*up — inf(g).

The circuit of Fig. 6.7 has been used to explore Ihe boundary between the classi-
cal and quantum worlds, as it allows the study of quantum superpositions of macro-
scopic distinguishable states (see Leggett (2002)). The macroscopic distinct states
correspond to currents of order 1 pA flowing in opposite directions in the ring.

Three different types of circuit with Josephson junctions have been proposed
to serve as a support for qubits. At present it is quite impossible to tell which of
these circuits (if any!) will turn out to be the most suitable one. We shall limit our
discussion to the “flux qubits,” leaving the “charge qubits” to Exercise 6.5.7 and
the “‘phase qubits™ to the references. The circuit for flux qubits is that of Fig. 6.7,
where an external coil is used to generate an external flux ¢.. The quantum
Hamiltonian acting on functions f{¢) is then

.1 a* 1 27
H=— (-1 — (¢ — Qo)+ Ey cos [ —
ZC( a¢2)+2L(‘P Pex) + IC“(%)

L=l ) s
=3¢ |7 ?).

with £} = — Iy, /(27) (see (6.51)). The flux ¢ can take continuous values between
—oc and 4-oco. The Hamiltonian (6.55) contains three adjustable energy scales: Ej,
g2/2C, and ¢?,/2L. The flux qubits correspond to the case E; > q%jQC, where
the phase is well defined and the number of Cooper pairs fluctuates strongly,
while the opposite situation holds for the charge qubits. For ¢, = ¢/2 it is clear
that the potential U(¢) in (6.55) is symmetric in the variable (¢ — ¢,,/2), and for
a suitable choice of the parameters it exhibits a double-well structure (Fig. 6.8).
Owing to the symmetry the ground states of the two wells are degenerate. They

(6.55)

correspond physically to a macroscopic (~1 puA) current flowing around the loop
in the clockwise direction (the state |0}) and in the counter-clockwise direction
(the state |1}). These states |0) and |1} will be chosen as the two basis states
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Figure 6.8 The potential U(e) in the symmetric case ¢, = ¢,/2, together with
its three lowest levels.

for a qubit. The symmetric double-well potential U(¢) in (6.55) is sketched in
Fig. 6.8 together with its first three energy levels for ¢, = ¢,/2. The two wells
are separated by a barrier, and in classical physics a system with low enough
energy would be trapped in one of the two wells. This is not the case in quantum
physics, where the system can tunnel from one well to the other. Let ¢; and ¢
be the probability amplitudes for finding the system in the state |0} or |1). In the
absence of tunneling, the Schridinger equation would be simply

ih¢y = Eycy, ih¢) = Egey,

where the dynamics of the two states are decoupled and they both have energy
E\. In the presence of tunneling, the two amplitudes will be coupled as

. deg
lﬁd_ = EUC\‘] - AC! N
; ! (6.56)
. 5]
ih— = Eyc; — Acy,
dr 1€ o

where A = 0 is the tunneling amplitude. The two possible values of the energy
are E, T A, respectively corresponding to the states |+):
1
) = 5 (0=1)). (6.57)
When we move from ¢,, = ¢, /2 to other values of ¢, the symmetry of U(¢)
about the point ¢ = ¢,/2 is lost, and one of the wells becomes deeper than the
other. The splitting 2E,, between the bottom of the two wells varies linearly with

the applied flux
2
%o FPex 1
Eyu=(—|——-= 6.58
w=f (), (6.58)

where ¢ is a number which must be computed numerically. In the |+) basis, the
qubit Hamiltonian may be written in the form

Hqubil = _AO-Z +Ec 0.
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the eigenvalues of the energies being

E =+ /A2+E2.

For E . =0 (0. = ¢p/2), EL = £A, while for |E.| >> A, one has E. ~ +|E,,|.
The level scheme is drawn in Fig. 6.9, where the familiar level repulsion is
observed. Instead of crossing at ¢., = ¢;/2, the two levels “avoid” each other
(Exercise 6.5.7). The final result for the qubit Hamiltonian can be written in the
form

Ji:"‘rql.Lhi[ = —A(f_‘f: + XG-.\')!

o Eo_ 565 (fe 1 (6.59)
A A2L \ ¢y, 2)°

In practice, a circuit with three Josephson junctions instead of one is used in
the case of Fig. 6.7. This allows the behavior of the circuit to be fine tuned
more easily. It has been possible to demonstrate Rabi oscillations on the flux
qubit as well as Ramsey fringes and spin echo, and to perform spectroscopic
measurements on two coupled qubits. The readout of the qubits in the case of
superconducting qubits is a delicate problem, because the readout device is a
source of decoherence. In the flux qubit case, the readout is performed by means
of a SQUID which encircles the circuit. A SQUID, which is also constructed
from Josephson junctions, is a very sensitive magnetometer, and measurement
of the direction of the magnetic field, which is linked to the sense of rotation
of the current, allows the qubit state to be deduced. In recent experiments it has
been possible to obtain decoherence times ~1 s, whereas a gate operation takes
a few nanoseconds. Recent experiments have also shown that it is possible to

ENJD ; )

1) : Y]
0 E,

ex

Figure 6.9 The level scheme of the qubit Hamiltonian (6.59). The level repulsion
is clearly seen: instead of crossing at E,, = 0, the two levels are separated by

2A. For |E,| > A, the eigenstates of H,, are approximately |0) and |1).
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couple two superconducting qubits by using a mutual inductance (or capacitance)
coupling the two circuits.

6.4 Quantum dots

The amazing progress in the fabrication of small artificial structures in semicon-
ductors has led to an abundance of proposals for solid-state implementations of
quantum computers. However, so far none of these proposals has been able to
exhibit the concrete realization of a pair of qubits with controlled entanglement
together with efficient readout of the final state.

Here we shall consider only one of the most promising schemes, which is based
on guantum dots. A quantum dot is a structure built in a semiconductor which is
able to confine electrons in three dimensions in such a way that discrete energy
levels are obtained, much as for an atom; in fact, quantum dots can be regarded as
artificial atoms whose characteristics can be controlled by hand. Furthermore, the
number of charge carriers in the conduction band of the dot can be very precisely
controlled. Quantum dots form spontaneously when semiconductor material is
deposited on a substrate with a different lattice spacing. Such a combination is
called a heterostructure. The quantum dots have a bowl-like shape, with a typical
diameter of 100nm and a height of 30nm. The confining potential for charge
carriers is approximately a two-dimensional harmonic potential in the horizontal
plane.

Two main schemes have been proposed for qubits. The first one is based
on excitons, an exciton being an electron-hole pair which is created by light
absorption. The exciton energy is E., = E, — Ey, where E, is the band gap and
E, is the binding energy of the electron-hole pair. The idea is to use two coupled
quantum dots to entangle qubits. The electron and the hole can be in one (the
state |0)) or the other (the state |1)) of the quantum dots. Then |00) corresponds
to an electron-hole pair in dot 1, |11} to the pair in dot 2, and |01} and |10} to
the electron in dot 1 and the hole in dot 2 and vice versa. If the distance between
the two dots is of order 5 nm, electrons and holes can tunnel from one dot to the
other. As in the case of superconducting qubits, the eigenstates are therefore the
symmetric and antisymmetric linear combinations of the states |0) and |1). The
readout of the excitonic states is relatively straightforward, at least in principle.
The electron—hole pair recombines after a time ~1 ns, and the wavelength of the
emitted photon is directly linked to the state occupied by the particles before they
recombined.

The second idea is to use electron spin to encode qubits. The first advantage
of this scheme is that the Hilbert space for spin is two-dimensional and there is
no contamination from other levels. The second one is that decoherence times
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can be as long as a few microseconds, because the spins are weakly coupled
to their environment. The third one is that spins can in principle be transported
along conducting wires within the quantum network. Compared to nuclear spins,
electron spins have much stronger couplings to magnetic fields, because the ratio
of the proton mass to the electron mass is ~10°, and the gyromagnetic ratio
(Box 3.1) is inversely proportional to the mass. This feature allows gate operations
which are much faster than for NMR. The readout of the final state is probably
the most difficult challenge for spin qubits. One possibility might be to convert
spin degrees of freedom into charge degrees of freedom, followed by electrical
detection. Important progress in readout has been recently achieved by Hanson
et al. (2005).

The Hamiltonian of a set of electron spins localized in a coupled array of
quantum dots can be written as

n o1 - -
H=3Jij(03; 0+ 5 mp ) &:(0Bi(1) - 3, (6.60)

()

where @; is the Pauli spin matrix associated with the ith electron and pp =
g.h/(2m,) is the Bohr magneton. J;; describes the coupling between spins, which
may be assumed to be zero unless the spins are nearest neighbors on the array;
ZW) denotes a sum over nearest neighbors. The second term in (6.60) is the
coupling to the external magnetic field .E_?‘-(r). As in the NMR case, ij can be used
to build two-qubit gates, while E,—(r) is used for single-qubit gates. However, in
contrast to the NMR case, the exchange interaction J;;(r) is switched on and off
adiabatically. Writing J;;(r) = J;;[v(1)], the necessary condition is |0/v| < 6&/h,
where d& denotes the level separation. In order to implement one-qubit gates, it
is necessary to address the right qubit. This can be done by varying the magnetic
field B;(r) or the Landé factor g;(r) in order to make the resonance frequency
dependent on the qubit position. From (6.60) we find the two-qubit Hamiltonian
in the form

H=J1)a, 7. (6.61)

As shown in Exercise 4.6.4, the operator ¢ - 0, (up to an additive constant)
exchanges the two qubits:

5‘;'5’2|00>:|00>, 5’;'5’2|01>=|10>, 5’;'5’2|10)=|01), 6’"5‘2|11)=|11)

This is the SWAP operation already encountered in (6.37). After a 7 pulse such
that

f " ded(1) = Jyr, = m mod 27 (6.62)
0
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Buck gates Magnetized or Heterostructure
high g layer quantum well

Figure 6.10 Schematic depiction of an array of quantum dots with electron spins
as qubits. After Burkard er al. (2002).

we obtain the SWAP gate (6.37). It is easy to pass from a SWAP gate to a ctNOT
gate owing to the following identity (Exercise 4.6.4). One first obtains a cZ gate

cZ = el /e imai /A YL, e/ gl (6.63)
where
1+i 0 0 O
12 1 0 11 0
SWAP:m o 11 0 b
0 00 1+i

and (6.15) is used for going from a ¢Z gate to a cNOT gate. The coupling J(r) can
be switched on and off by raising and lowering the tunnel barrier between the two
dots (Fig. 6.10). In GaAs semiconductors the main source of decoherence comes
from the hyperfine coupling to the nuclear spins, as both Ga and As possess a
nuclear spin [ = 3/2. Another source of decoherence is due to the external leads
needed for readout.

6.5 Exercises
6.5.1 Off-resonance Rabi oscillations

Starting from the Hamiltonian (6.4) in the rotating reference frame, show that
exp(—iHt) can be written as

. i é
exp(—iHt/h) = exp I:—% (6 o — % O’x):l
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with Q = /82 + 7. The vector

is a unit vector. Show that

exp(—iHt/h) = (cos % 1% sin !—) |0) (0] + i —1 %m — (|0)(1|+|1}(0|)

Qr .8 Ot
— . i I 1 1
+(co% > +1n sin )| y{1].

6.5.2 Commutation relations between the a and a*

1. Use (6.19) and (6.21) to prove the commutation relation [a, a’]=1.
2. Calculate the commutator [a’a, a]. From this derive the second line of (6.30).

6.5.3 Construction of a cZ gate using trapped ions

1. Let us consider the case of a single trapped ion. The laser field applied to the ion
has the form (6.27) for t = 0. We work in the reference frame rotating at frequency
wy (and not w as in the case of NMR), where the interaction Hamiltonian H.,(r)
is given by

Hi (1) = 00/ iy (1) 0/
Show that the rotating-wave approximation leads to the Hamiltonian

H o~ _h 0, [0. QlB—8) o —ikz | o —i(81=0) eik:.]
2 _ L]

mt —

where 8 = @ — wy is the detuning. If & = 0, this Hamiltonian is independent of time:

- h
H,:—fcul [0’+e_"b T po_ el ]

2. Let m and m +m' be two levels of the harmonic oscillator. Show that the Rabi
frequency w”’_””+”’ is given by
wiln—om+m’ =w, |<m + m(|ein{a+a+) |m> | )

where 7 is the Lamb-Dicke parameter. In particular, show that in the Lamb-Dicke
approximation n < 1, and for m" = +1 we have the following for the blue and

red side-bands (see Fig. 6.4):
'”_””'H ~n/m+ 1o, =l (blue),
o7 ey mw, = 0] (red).
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Derive the Hamiltonian for the two bands, first for the blue side-band

Hf = %nhw,«/m+l [a+abe_i¢ —o_a, ei"b],

mt

and then for the red side-band

i P .
i = Enhwn/; [o’+a,‘. e 0o a, e"b] .

The operators ay,- - - a, are defined so as to preserve the norm of the state vectors:

¥ ¥

a ; a a . oa
ap = , a, = a, = —— a, = ——.

m+1 Jm+ 1T b bJm

We limit ourselves to the case m = 1. What are the rotation operators on the
two bands R=(6, ¢), where § = —w71? R*(8, ¢) is a rotation by an angle 6 about
an axis in the xOy plane making an angle ¢ with the axis Ox and using the blue
(+) or red (—) side-band.
3. In addition to the levels |0, 0}, |0, 1}, |1,0), and |1, 1} of Fig. 6.3(a), we also
use the level |1,2}. Sketch the level scheme and identify the transitions of the
blue side-band [0, 0) <+ |1, 1} and |0, 1) <= |1,2}. Show that the rotation operator
RIﬁ, defined as

R}, =R"(a, m/2) R¥(B.0) R (a, m/2) R*(B, 0),

is equal to —/ for &« = 7 and any 8 or for 8 = 7 and any «. Using the fact
that the Rabi frequency for the transition |0, 1) < |1, 2) is +/2 times that for the
transition |0, 0) <= |1, 1), how can « and 3 be chosen such that RIB = —1 for the
two transitions? Find the sequence of 4 pulses and their duration such that the net
result is

|00) < —0, 0}, |0, 1) <> —]0, 1}, [1,0) < +]1,0), [1,1) < —|1,1).

This is how a cZ gate is constructed (up to a sign).

4. Now we need to “transfer” the ¢Z gate to the computational basis of the states
|y, ny), ny,n, =0, 1 being the ground and excited states of the two ions. Show
that the desired result is obtained by sandwiching the rotation operator RI:B'” on
ion number 1 using the blue side-band between two 7 rotations on ion number 2
using the red side-band:

[R-EZ)(ﬂ, mrz)] RS [R-EEJ(_w, 1r;’2)].

Using (6.15), one goes from a ¢Z gate to a ¢cNOT gate, but a slightly more
complicated operation allows the direct construction of a ¢cNOT gate.
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6.5.4 Vibrational normal modes of two ions in a trap

The potential energy of the two ions is

g 1

1 )

V==-Mo? (1 +23)+ :
2 ks ) dmreg |z — 2|

Find the equilibrium positions of the two ions. Show that the vibrational eigen-

frequencies are w_ and NE) w_. How can the vibrational amplitudes of these two

normal modes be characterized? Hint: the equilibrium positions being £z, write

71 =29+ U, 20 = —zp+v, and expand V to second order in (u, v).

6.5.5 Meissner effect and flux quantization

1. Starting from (6.43) and using the Maxwell equation VxB= HU}cm’ show that
the magnetic field B obeys

VB= z — B.

where A| is the London penetration length. Give the expression for A; . Assume a
one-dimensional geometry, where the region z < 0 is normal while the region z > 0
is superconducting. Show that B and, consequently, }cm decrease as exp(—z/Ap ).
The electromagnetic current and the magnetic fields are therefore excluded from
the bulk of the superconducting region.

2. Consider a contour C drawn in the bulk of a superconducting ring. Using
} « = 0 along C, derive (6.44) and (6.52).

6.5.6 Josephson current

By separating the real and imaginary parts in the equations (6.45) for i, and i,
show that

dp 2K ,
d_rl = ?(Plpz)lﬂsm o,
dp,

2K 12
=— “sinf,
dr (Pipz)

de, K (p, acV
= b 8_
- h (p AT

do, K (p Q’CV
0
dr ~ h (pz) cosP+ R
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Assuming that p; =~ p, = p, deduce from these equations the Josephson
current /;:

d K
I:%:_?’Osinﬂ:!ﬂsinﬂ'
and
e gcV
dt ~ B’

6.5.7 Charge qubits

The circuit is drawn in Fig. 6.11. The superconducting box (Cooper pair box)
is divided into two parts by a Josephson junction. If C; and C, denote the
capacitances of the junction and the external capacitor, respectively, and V, is the
applied voltage bias, the electrical energy stored in the circuit reads

E=E/(n—n,)*—Ejcosf,
where 0 is the junction phase difference. The energy E_,

_ 4
©T2ACH+C)

is the electrostatic energy of the capacitors and n(n € Z) is the number of excess
Cooper pairs in the right-hand box. Let N be the operator which counts the number
of excess Cooper pairs in the right-hand box, with eigenstates |n), N|n) = n|n),
and let O be the conjugate operator, [N, ®] = il. The eigenstates of ©® are denoted
|8}, O|8) =0]8),0<60<2m.

1. Show that if we choose the scalar product (n|@) = exp(—in@) such that

toe )
|9>: Z e—l:if.?'n),

n=—x

|
g

Figure 6.11 Superconducting circuit for charge qubits. CPB, Cooper pair box.
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then N =id/df and the commutation relation [N, ®] =1 is satisfied. Note that the
bases {|n)} and {#}} are complementary according to the definition of Section 2.4.
Derive the completeness relation

2m de
[ 5o10e1=1
0 27
and deduce from this relation that
1 +oo
cos®@ = - Z (nd{n+ 1|+ |n+1)(n)).

2. In the {|n)} basis the quantum Hamiltonian reads

. +oo 5 1 +o0
H=E, ) (n=ng)’In){n| =S E; 30 (Im){n+1]+|n+1){nl).

We assume that E; < E,, so that the first term in A is dominant except when
ny = p+1/2 with p an integer, in which case the first term gives the same energy
E_/4 for the states n = p and n = p+ 1. In the absence of the second term the
two states would be exactly degenerate for n, = p+ 1/2. For definiteness let us
choose n, = 1/2. Show that in the vicinity of n, = 1/2 we can write

. L 1

H= —EB:O’: — EB_\.(T_\.,
where B, = 0 if n, = 1/2. Determine B. and B, as functions of the parame-
ters in H. Draw the level scheme at fixed B, as a function of B_, discuss the
phenomenon of level repulsion, and show that the level scheme is similar to
that of Fig. 6.9.

6.6 Further reading

The criteria for a quantum computer have been stated by di Vincenzo (2000).
The concrete realizations of quantum computers are described by Nielsen and
Chuang (2000), Chapter 7, by Bouwmeester e al. (2000) and by Stolze and Suter
(2004), Chapters 9 to 12. The experimentally performed (NMR) factorization of
15 using the Shor algorithm was realized by Vandersypen ¢t al. (2001); see also
Vandersypen and Chuang (2004). The article by Cirac and Zoller (2004) describes
recent results on trapped ions and Bose-Einstein condensates, and that of Mooij
(2004) describes the results obtained using Josephson junctions; see also You and
Nori (2005). Another useful review on trapped ions is Leibfried er al. (2003). The
standard results on the quantum harmonic oscillator can be found in any quantum
mechanics textbook, for example, Le Bellac (2006), Chapter 11; Doppler cooling
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is described in Section 14.4 of the same book. A complete panorama of the recent
developments in quantum information theory is given at an advanced level in the
proceedings of the Les Houches School 2003; see, in particular, the courses of
Jones (2004), Blatt (2004), and Devoret and Martinis (2004). The use of quantum
dots is described by Burkard er al. (2002).







7

Quantum information

In this chapter we address the problems of the storage and transmission of quantum
information. Quantum cryptography should in principle be included here, but we
preferred to describe it in Chapter 2, where it was used to illustrate the basic
principles of quantum mechanics. In Section 7.1 we explain quantum teleportation
and in Section 7.2 we give a short and schematic review of classical information
theory. Section 7.3 is devoted to an introduction to the storage and communication
of quantum information, and, finally, in Section 7.4 we take a quick look at the
important but difficult topic of quantum error correction.

7.1 Teleportation

Teleporiation is an interesting application of entangled states which may have
applications to quantum information transfer (Fig. 7.1). Let us suppose that Alice
wishes to transfer to Bob the information about the spin state |¢4) of a particle
A of spin 1/2,

la) = A0 +ul1,). (7.1)

which is a priori unknown, without sending Bob this particle directly. She cannot
measure its spin, because she does not know the basis in which the spin of particle
A was prepared, and any measurement would in general project |¢,) onto another
state. The principle of information transfer consists of using an auxiliary pair of
entangled particles B and C of spin 1/2 shared between Alice and Bob. Particle
B is used by Alice and particle C is sent to Bob (Fig. 7.1). These particles B and
C may be, for example, in an entangled spin state |Wpe):

1
[Wge) = _2 (1050¢) +[1g1¢)). (7.2)
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State
1o be teleported

Quantum information
Teleported state

Classical
information

Bob

Source of entangled particles

Figure 7.1 Teleportation. Alice makes a Bell measurement on the qubits A and
B and informs Bob of the result by a classical path.

The initial state of the three particles | @ zc) then is

|(I)AB(_>—(MOA)"FM“A&))‘/—“OBOL)‘F“ ale))

2

2104 (1050¢) +[1516) +

(7.3)

%u,‘) (1050¢) +151¢)) -

Alice first applies a cNOT gate to the qubits A and B, with the qubit A acting

as the control qubit and the

qubit B acting as the target qubit (Fig. 7.2). This

operation transforms the initial state (7.3) of three qubits into

|‘1:';ﬂ.3c)—\/—(|0,1)(|030c)+|1 1())+‘/—(|la>(|130c>+|031c>)

(74)

.4

qubit A

a4

qubat B

o/

Figure 7.2 Alice applies a cNOT gate to the qubits A and B and then a Hadamard

gate to the qubit A.
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Alice then applies a Hadamard gate to the qubit A, which transforms (7.4) into

" 1
|Pype) = 5 [)l|0AOBOC) A0 1pLe) +A[140500) + Al 41g1c)

(7.5)
041500 ) + p|0,40p1 ) — p[14150¢) — il IAOBIC)] .
This equation can be rewritten as
" l
|Dipc) = §|OAOB) (MOe) + | 1))
1
+ §|OAIB) (|0c) + A1)

(7.6)

1
+ §|1A03) (AOc) = pl1e))

1
+ §|1AIB) (—u|Oc) + A1)

The last operation that Alice performs is measurement of the two qubits in the
basis {|0),]1}}. The joint measurement by Alice of qubits A and B is called a
Bell measurement. This measurement projects the pair (AB) onto one of the four
states |i4jp), i, j =0, 1, and the state vector of the qubit C is then read on each
of the lines of (7.6).

The simplest case occurs when the measurement result is |0,05). The qubit C
then reaches Bob in the state

AOg) +plle).

that is, in the initial state of the qubit A, with the same coefficients A and p. So,
Alice informs Bob by a classical channel (for example, a telephone) that the qubit
will reach him in the same state as the qubit A. If on the contrary she measures
|0415), the qubit C is in the state

1|0 +AlLe),

she then informs Bob that he must apply to qubit C a rotation of 7 about Ox, or,
equivalently, the matrix o :

O, .
exp (—1 2" ) = —io,.

In the third case (|1,05)) it is necessary to apply a rotation of 7 about Oz, and
in the final case (|1,415)) a rotation of 7 about Oy. We note that in these four
cases Alice does not know the coefficients A and u, and she sends Bob only the
information about which rotation he should apply.
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It is useful to add a few final remarks.

e The coefficients A and p are never measured, and the state |¢,) is destroyed during
Alice’s measurement. There is therefore no contradiction with the no-cloning theorem.

¢ Bob “knows™ the state of particle C only once he has received the result of Alice’s
measurement. This information must be sent by a classical channel, at a speed at most
equal to that of light. There is therefore no instantaneous transmission of information
at a distance.

e Teleportation never involves the transport of matter.

7.2 Shannon entropy

The two fundamental theorems of information theory were stated by Shannon in
1948. Before discussing their quantum generalization, let us give a very schematic
review of these theorems without going into detailed proofs. These theorems
answer the following questions.

(i) What is the maximal compression that can be applied to a message? In other words,
how can redundant information be quantified?

(ii) At what rate can one communicate via a noisy channel, that is, what redundancy
must be incorporated in a message to protect against errors?

It can easily be seen from the following example that a message can be com-
pressed when compared to its naive encoding. Let us suppose that we are using
four different letters, (ay, ay, a1, az), which we can encode in the usual manner
using two bits: ay =00, a; =01, a; = 10, and a3 = 11. A message n letters long
will then be encoded by 2n bits. However, suppose that the letters occur with
different probabilities: a; with probability 1/2, @, with probability 1/4, and a,
and a; with probability 1/8. We can then use the following encoding: ay =0,
a; =10, a; =110, and a3 = 111. This can easily be verified to be unambiguous:
a letter stops after every 0, or after a sequence of three 1. The average length of
a message n letters long will then be

1 1 1 7
n(21+42+43) —4n < 2n.
Shannon’s first theorem shows that this is in fact the best possible compression.
Let us take a set of letters a,, 0 < x <k, and a sequence {a,,...,a,} of n
letters forming a message. Each letter occurs a priori with a probability p(a,),
Y .p(a,) = 1. We consider a message n letters long, n > 1. Is it possible to
compress the message into a shorter sequence containing essentially the same
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information? The simplest case is that of two letters, p(ag) = p. p(a;) =1 —p.
The probability p(g) that an n-letter message contains ¢ letters ay, is'

p(g) = (Z) p(1—p)".

Let us find the maximum of p(g) by using Stirling’s formula Inn! >~ nlnn/e,
from which d1nn!/dn =~ In n. We compute the g-derivative of p(g)

dinp(q)

=—Ilng+In(n—¢g)+Inp—In(l —p)
dgq

which vanishes for g =g = np. As was to be expected, the most probable value >
of ¢ is ¢ = np. The dispersion around g is found from the second derivative of

Inp(q)
d*Inp(g) | 1
dg? o=z np(1-p)
so that
(Ag%) = ((g—)*) = np(1 —p).
With a negligible error when n — oo, the variable ¢ lies in the range

np—0(/n) < ¢ <np+0(Vn).

The number of occurrences of the letter a; in an n-letter message will lie in
this range, and the number of typical messages (or sequences) will be of order

( np)‘ Instead of coding 2" sequences, it is sufficient to code the :( np) typical
i n

e n
sequences. Stirling’s formula allows us to compute In np

In (p) ~ —nfplnp+(1—p)In(1—p)] = nHg,(p).

i
— enHSh[pJ anﬁhtD?_
np

In information theory it is usual to work with base-2 logarithms, and the Shannon
entropy is then defined by the second expression in the preceding equation, or

Hgp(p) = —plogp — (1 —p)log(1-p), (7.7)

or

' We assume that the correlations between letters can be neglected.
* The function p(g) is approximately Gaussian around g =g, so that the most probable value is also the mean
value {g}.
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where log is a base-2 logarithm. The number of typical sequences is of order
27Hsu(®) Let us illustrate this by two limiting cases.

(i) p=1.In this case the 2" messages are identical and it is sufficient to send only one:

Hgy (p) = 0.
(ii} p=1/2. All messages are equally probable and Hg, = 1. In this case it is necessary

to send the 2" messages and no compression is possible.

In an intermediate case, for example, p = 1/4, it is sufficient to encode typical
sequences, and one never has to encode sequences of letters containing very few
a, or very few a;, which are highly unlikely.

In the case of k letters @, with probabilities p(x), the number of typical

sequences is
1
v ~ pnHg(X)

[T (np(x))!

with

Hy(X) = — 3" p(x) logp(x) (7.8)

a=(

where X denotes the probability distribution of the a,. It can be rigorously shown
that if n — oo, an optimal encoding compresses each letter into Hg, (X) bits. This
is the content of the first Shannon theorem, which also states that no further data
compression is possible without introducing errors. In the example given above

— ("1-1031+l]0gl+110g .1_) = ?_,
2 72 4 T4 4 78 4
which shows that the proposed encoding is optimal.

Let us now turn to the problem of a noisy channel. Let p(y|x) be the conditional
probability for y to be read when the letter x is sent, the letter® x being sent
with probability p(x). The entropy Hg, quantifies our a priori ignorance per
letter before receiving the message. Once y is known, we have at our disposal
supplementary information, and our ignorance is not as great. We shall make use
of Bayes’ law

p(x,y)
p(¥)

_ p(yl)p(x)
plxly) = o0)

plxly) = (7.9)

and of

p(y) = Zp(ylx)p(x)-

* To simplify the notation we wrile a, = x.
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The number of bits needed to send a message knowing that y is read is then
Hgy(X[Y) = (=logp(x]y)) = >_p(») 2_p(x[y) Inp(x[y)
¥ * (7.10)

= Hgp(X, ¥) — Hgp(Y).

The information gain ot mutual information I(X : ¥) quantifies the information
that is acquired about x when y is read:

[ 1(X:Y) = I(Y: X) = Hg,(X) — H (X]Y) = Hg(X) + Hg, (V) — Ho,(X. V)| (7.11)

In other words, (X : ¥) = I(Y: X) is the number of bits per letter of X which can
be acquired by reading ¥ (or vice versa). If p(y|x) characterizes a noisy channel,
I(X :'Y) is the information per letter which can be sent via the channel given the
probability distribution X, and the transmission capacity C of the channel is the
maximum of /(X : ¥) over the ensemble of these probability distributions:

‘C:max‘ptm (X:Y) (7.12)

The second Shannon theorem states that error-free transmission by a noisy channel
is possible if the transmission rate of the channel is less than C.
Let us give an example for a symmetric binary channel, defined as

plx=0[y=0)=plx=1ly=1)=1-p,
px=0[y=1)=plx=1ly=0)=p,
where the mutual information is
1(X 1Y) = Hg,(X) — Hgy (p),
Hg, (X) being given by (7.8). The maximal value of Hg,(X) is 1, and so
C(p) =1- Hgy(p)-

Another illustration of the concept of information gain is given in Exercise 7.5.3,
where it is applied to quantum cryptography.

7.3 von Neumann entropy

In the quantum case, the letters are replaced by quantum states |«) whose fre-
quency is p,. The state operator is

p=2 Pela){al. D op.=1 (7.13)

The state operator p represents a statistical mixture of states |a), each state |a)
having probability p,. The states |a} are normalized ({a|a) = 1) but not neces-
sarily orthogonal ({«|B) # 8,p), and in general there exist an infinite number
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of decompositions of p of the type (7.13). It can also be said that there are an
infinite number of ways of preparing p. The way it is prepared determines p, but
not the reverse. However, p is Hermitian and can always be diagonalized:

p=2_pilil, (i) =8y (7.14)

This leads to a generalization of the Shannon entropy, the von Neumann entropy,
which is independent of the preparation:

H,=—Y.p,logp, = —Trplogp (7.15)

We note that the entropy of a pure case is zero, because all the p; are zero except
for one, which is unity. As in the classical case, we define the Shannon entropy
of the preparation (7.13) as

Hgp = =) pologpg. (7.16)
(4}

As already mentioned, there are in general an infinite number of different statistical
mixtures {p,,|a}} which give the same state operator, and it can be shown
that the Shannon entropy is always greater than the von Neumann entropy (see
Exercise 7.5.2):

—> p,logp, = ~Trplogp, Hg, = Hy. (7.17)

As we shall see later on, the entropy H,y quantifies the incompressible infor-
mation contained in the source described by the state operator p. The difference
between the Shannon entropy and the von Neumann entropy is particularly clear
for a product state AB represented by a state operator p 4. The operator p,p is
used to construct the state operators of A and B, p, and p,, by taking the trace
of p,p over the spaces F and F,, respectively [¢f. (4.12)]:

pa=Trgpap. pp=Trapap

or in matrix form*
A_ AB B _ AB
pij_zpm,jp’ pgv_zprﬁ,iv‘
n i

The operators p 4 and py are the reduced state operators of A and B. The following
inequalities can be derived for the von Neumann entropy:

|H\'N (pA) - H\'N (pB)| = H\-‘N(pAB) = H\;N(PA) + H\-‘N()OB)- (718)

' Here AB is written as a superseript 1o make room for the subseripts labeling the matrix elements.
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On the contrary, the Shannon entropy of a joint probability distribution Hgy,(pag)
satisfies

max [Hgy, (pa)s Hey(Pp)] = Hp(Pap) = Hy(Pa) + Hgp(Pp)s (7.19)

where p, and pj are the probability distributions of x, and xp

Pa(xa) =) Pap(xas xp)s  Pp(xp) =D Pan(xa. xp)-
Xg Y4
The inequality on the right-hand side is the same for the two entropies, but that on
the left (called the Araki-Lieb inequality) is different. For example, if p 45 is the
state operator describing the pure state (4.4) of two qubits we have H,y(p,5z) =0,
whereas

Hn(pa) = Hn(pp) = 1.

The von Neumann entropy provides the key to the quantum generalization of
the two Shannon theorems on data compression and on the maximum transmission
capacity of a noisy channel. To explain this, let us consider an ensemble of n
letters, where each letter is drawn from an ensemble {p,, |a@)} such that the state
operator of a single letter is given by (7.13). Successive letters are assumed to be
independent, and the state operator of the ensemble of letters is

p®":p®P®“‘®P::"'= n3 1.

Let us suppose that we wish to send (or store) a message of n letters, by trying
to encode the quantum system in a smaller system. This smaller system is sent
to one end of a channel and decoded at the other end. The state operator of the
transmitted system is ¢, and the fidelity F of the transmission is defined as?

2
Flo, o) = (Tw cllg'gli?) . (7.20)

This expression is not very intuitive and does not even look symmetric in ¢ and
o', although one may prove that it is symmetric (see Exercise 7.5.4)

Floyad)=F(a, o).
If o is a pure state, o = o'/> = |} (4| and o a state matrix of the form (7.13)

o = pLlT)(r

.

* Many authors, including Nielsen and Chuang (2000), define the fidelity as the square root of F in (7.20).
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then
o' = (gpuw)ﬁ)wm
and one finds
T () Wl o) = Lol @InF = o' lw). (21)

When o and o' represent pure states |y} and [}, the fidelity reduces to

F (| Wl 1) ') = [l P = p(l — )

according to (2.18), which in this case is a natural definition because & is simply
the overlap of the two states.

We wish to find the smallest possible system such that # = 1 — g, for &
arbitrarily small and when letters are qubits. The Hilbert space 7 ®" of n qubits has
dimension 2". However, if H,y(p) < 1, we are going to show that the state operator
can be resiricted to a typical Hilbert subspace of ®", and this typical subspace
will have dimension smaller than 2". The fundamental result of Shumacher (and
Josza) is that the dimension of this subspace is 2"H#~() for n > 1. It is therefore
sufficient to use nH,(p) qubits to represent faithfully the quantum information.
This result transposes the classical result of Shannon, with the idea of a typical
sequence of letters replaced by that of a typical subspace, and the Shannon entropy
replaced by the von Neumann entropy.

Before giving the proof of Schumacher’s theorem, let us explain intuitively
why such a compression of qubits is possible. Suppose Alice has drawn her qubits
from the ensemble

D (7.22)
©=5() »=3

so that the state matrix (7.13) is

1 /31
p:z(l 1). (7.23)

Observing that |0) is an eigenstate of ¢ and |4}, an eigenstate of o, both with
eigenvalue 41, it is obvious from symmetry considerations that the eigenstates
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of p are the vectors |0y =|0,#) and |1") = |1, i), where i is the unit vector
(k+2)/V2:
N sy [cosar/8Y (P
nena-(Z20)-()
Ny sy [ —sina/8Y -y
=i =(00w) =)

The vectors |0, 7) and |1, ) are eigenvectors of o -n with eigenvalues +1
and —1, respectively. The eigenvalues of p are

(7.24)

A(0') = cos? /8 = 8% ~ 0.8536
and
A1) =sin® /8 = y* ~ 0.1464.
By construction, the state |0") has the same (large) overlap with |0) and |+):
[{0'10)[* = [{0'[+)* = 8% = 0.8536,
while |17} has the same (small) overlap with |0} and |+):
[{(1]0) > = [{(U]4)]* = ¥* =~ 0.1564.
If we do not know which of the states (7.22) was sent, our best guess is |if) = |0},
and from (7.21) the probability of a successful guess is just the fidelity:
%(|<0’|0>|2+ (O)7) = F (p, [0')(0']) 2 0.8536.
Another way of obtaining the preceding result is to start from a trial vector
|¢) = cos g|0) +e'Psin g| 1,

compute the fidelity F(p, |¢)(¢|), and then check that it has a maximum for
# = /4 (see Exercise 2.6.4).

Now, suppose that Alice wants to send Bob a three-qubit message compressed
into only two qubits with maximum fidelity. Let the message be

[¥) = |ha @ g D),

where |if;} = |0;) or |+;}, and let us examine the three-qubit Hilbert space H 7.
A possible basis of H®3 is

|b|) = |0:10;30E~), |bz> = |0:10:31::>, |b3) = |0.:1.1:BO:’_‘>s |b4) = |1:10:30::*),

lbs) =100 151¢),  [be) = [1a0p1c),  |by) = |14150¢),  |bg) =[13151¢c).
(7.25)
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The vectors |b,) to |b,) span a subspace § in H®3, and the probability that | V')
belongs to G is

pg =B +3p%y* ~0.9419.

Therefore, it is much more likely (roughly 20 times more likely) that the message
belongs to § rather than to its orthogonal complement G,. Since § is a four-
dimensional space, two qubits should be enough to send the message with a very
good fidelity.

In practice, Alice can use a unitary transformation U which rotates the four
basis vectors |b;)---|by) of G into basis states of the form | 050-) and the
four basis vectors |bs)---|bg) of G, into basis states |¢,@z1-). She measures
qubit C, and if the outcome is 0 she sends the remaining two qubits to Bob. The
compressed message Vo, is given by

|Weomp ® Oc) = U|'¥), |¥) e g.

Bob receives the two-qubit message, takes its tensor product with |0} and he
reads it by applying U~":

W) = U™ [Wegmp ®0¢) = |WP).

If Alice’s measurement of qubit C gives |1}, then the best she can do is send Bob
the state that he will decompress to the most likely state 0,050}, that is, she
sends the state |W,y,) such that

W) = U™ [Weomp ® 1) = [0,030().
The outcome of the procedure is that Bob obtains the state matrix
o' =P[W)(V[P + b)) (W|(I = P)|[¥) (D], (7.26)

where P is the projector onto G.

Let us now proceed to the general case. The key to Schumacher’s theorem is
that it is sufficient to encode typical subspaces of H®" if we wish to send »n
qubits drawn from the ensemble {p,. |a)} which defines the state matrix (7.13).
Since the letters are drawn independently, the state matrix of the n qubits is

p®":pi®”'®pn:(‘r‘ (72?)

Now, each p; can be written in diagonal form (7.14). The eigenvalues of p; are
A;=pand A, =1 —p. An eigenvalue of p®" will be of the form

AT =pT(1—p)"
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and it will appear (:;) times. From our preceding discussion of Shannon’s theorem,
we see that almost all the eigenvalues of p®" lie in a domain defined by the
following range of ¢:

np—0(/n) < ¢ <np+0(Vn).
For these values of ¢ the eigenvalues of p®" will be
A e 27 nHsi(p) — g —nHi(p)

with Hy(p) = — Y ;p;Inp;. In other words, the typical eigenvalue of p®" is

A =2""Hx) Let G be the subspace of H®" spanned by the eigenvectors
corresponding to these eigenvalues, and let P be the projector onto this subspace.
Then for any & > 0 we can choose n large enough that

Tr (p®"P) = 1-¢. (7.28)

Suppose that Alice wants to send an n-letter message drawn from the
ensemble {a}:

|l}r}:|“1 "’an)'

As above, she uses a unitary transformation U such that its action on a typical
message belonging to G is

U|q'rl)'p) = |q'rcump®0® : '®0)

Then she sends Bob the nH, qubits corresponding to the space § and Bob
decodes it using U~'. The state received by Bob is

o' =PV ¥ P+T, (7.29)
where o is what Alice sends if |W) & G. The fidelity of ¢ obeys the inequality
F(W) (V] 0') = |(W]|P| W) (7.30)

because o is a positive operator. The fidelity depends on the message |« - - - e},
and to obtain the final result we must sum over the p,:

F(o.0) = Y p(V|P|W) P
=Y P 2(¥|P|¥) — 1) (1.31)

=2Tr (p®"P)—1=1-¢,

where we have used x* > 2x — 1 and (7.28). In order to obtain a fidelity arbitrarily
close to one, it is enough to send nH,y qubits when n — oc.
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7.4 Quantum error correction

Noise is omnipresent in all classical data processing, communication, and storage
and it introduces errors. For example, noise can flip the initial value 0 of a bit
to the value 1, something we wish to avoid so that all our operations do not
fall apart. The task of error correction is to detect the erroneous bits and correct
them. Modern (classical) error-correcting codes are extremely sophisticated in
their details, but they are all based on redundancy. A very simple example is the
following. Instead of encoding information in a single bit, we encode it in three
bits:

0 — 000, I — 111.

Suppose that the effect of noise is to flip a bit from 0 to 1 or vice versa with
probability p. Then if we start with the bits in the state 000, for example, a single-
bit flip will occur with probability 3p(1 —p)? and a two-bit flip with probability
3p*(1—p). If we read

000, 100, 010, or 001

we can decide with probability (1—p)?(1+2p) that the original bit had the value 0.
Therefore, a majority rule gives the correct result with probability (1 —p)2(142p).
If p = 1072, the probability of error is p?(3 —2p) == 3 x 10~*, while it would be
10~2 without corrrection.

Classical error correction cannot be transposed directly to qubits for four
reasons.

1. The no-cloning theorem forbids duplicating qubits in an unknown state.
. There is no classical analog to the superposition of qubits, so that a phase flip such as

[

(4.25) has no classical equivalent.
3. Errors may be continuous. For example, in the general qubit state

# . #
l¢) = cos 5 |0} + &' sin §|1)

noise could lead to continuous variations of the angles ¢ and ¢.
4. Finally, measurement destroys quantum information: one should not affect the infor-
mation encoded in a qubit by a projective measurement.

In spite of these difficulties, it has been possible to devise quantum error-
correcting codes. These codes are rather involved, and we shall limit ourselves to

a simple but illustrative example for the case of the phase flip o, introduced in
(4.25):

Al0) + 1) = - (A[0) +p[1)). (7.32)
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This phase flip is a typical quantum error, because a classical bit cannot be in a
linear superposition. It will be convenient to rephrase (7.32) by going to the |£)
basis:

1
V2
We recall that the |+) vectors are obtained from |0} and |1} by application of the
H gate:

14) = (|0)i|1)). (1.33)

HI0)=[+),  H|l)=]-).

Then a phase flip in the {|0},|1}} basis corresponds to a bit flip in the |£) basis:

H (A]0) +pI1) ) = Al+) +ul-),
(7.34)
o, H(NO)+ul1)) = Al=) +pl+).

The redundancy is introduced by using, in addition to the original qubit A, two
auxiliary qubits B and C in the state |0):

(Al0) + u[1)) ®100) = A[000) + |100),

to which we apply two cNOT gates controlled by qubit A (left-hand side of the
circuit drawn in Fig. 7.3)

c¢NOT ; cNOT- (A]000} + | 100)) = AJ000) + w| 111}, (7.35)
followed by three Hadamard gates
H® (X|000) + p[111)) = A+ ++4) + p| — —=) = [¥). (7.36)

In the absence of any phase flip, the final state of the three qubits is |\¥,)
(7.36). If the phase of one of the three qubits is flipped, we get

W,y = Al —++)+p|+—=) qubit A flipped, (7.37)
W) = A[+—+)+u[—+-)  qubit B flipped, (7.38)
[Wey = A+ +—)+u|——+)  qubit C flipped. (7.39)
o A e
P H [y LM /7(
1/ L I\
[ M —D .
7 L H D

Figure 7.3 Circuit for error-correcting code.
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Let us introduce the two operators X, X, and X, X, where X = o,. The
vectors |Wy)--- | W) are eigenvectors of these two operators with eigenvalues
+1or—1:

XaXp| W) = +[Wy), XaXc|Wo) =+Wy), XaXp|Wa) =—|Wy),
XaXe|Wy) = —|Wy), X Xp|Wg) =—[Wg), XaXc|Wg) =+[Vg), (7.40)
XaXp|We) = +Ve), Xy Xc|Ve)=—[V¢).

The measurement of X, X, and X, X allows us to determine the type of error
which has occurred:

X Xp=++1, XyXe=+1 noe error,

X Xp=-1, X Xe=-1 bit A flipped,

X Xp=-1, Xy Xe=+1 bit B flipped,

X Xp=++1, X Xe=-1 bit C flipped.

(7.41)

However, the qubits should not be measured individually, as this would lead
to the destruction of information on qubit A. The measurement is performed
according to the right-hand side of the circuit in Fig. 7.3. For example,

¢NOT, cNOT(H, ® Hy ® H.)|W,) = cNOT, cNOT - (A|010) + [ 110))
= A010) + p|110) (7.42)
= (A|0) +u|1}) @ |10).

If the qubits B and C are found in the states |1) and |0), respectively, this
implies that qubit B was flipped. The reader will easily check (Exercise 7.5.5)
that the final states of the qubits B and C are

W) — 100}, [Wy) — [11),  [Wg) — [10), [¥c) — [01).

If the measured values of qubits B and C give the state |11}, then we apply X 4 to
qubit A. The correct quantum state is therefore recovered without ever measuring
this qubit: the measurement does not give any information on the values of A
and u.

There are other types of error in addition to phase flip. In order to deal
with all the errors it is necessary to use at least four auxiliary qubits, but this
so-called five-qubit correcting code is extremely cumbersome. At present the
most favored code is the seven-qubit correcting code devised by Sheane, although
the first code devised by Shor, which is a nine-qubit code, also has interesting
properties.
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7.5 Exercises
7.5.1 Superdense coding
Alice and Bob share a pair of entangled qubits A and B in state | (see Fig. 7.4)
1
V2

Alice wishes to send Bob two classical bits of information ¢ and j, 7, j =0,1,
while using a single qubit. She transforms the state of her qubit by applying on it
the operator 4;; acting on qubit A

Ajj= (O-.\'A)f((r:,{)j

where 7 and j are exponents. She then sends her qubit to Bob, who gets the pair

in the state A;;[ V).

W) = (|OA®OB>+|1A®IB))'

1. Give the explicit expression of Agy| ¥}, Ay | W), A1/ Y, Ay [P in terms of
the states [0, @ 0g), [0, ®@15), [14@05), [1,®15).

2. Bob uses the logic circuit of Fig. 7.4 with a cNOT gate and a Hadamard gate H.
Examining the four possibilities for A;;[¥), show that the cNOT gate transforms
A, J,-|‘P) into a tensor product and that measurement of qubit B gives the value
of i. Show finally that measurement of qubit A gives the value of j. Thus Alice
transmits two bits of information while sending only one qubit.

7.5.2 Shannon entropy versus von Neumann entropy

Let us consider a two-dimensional space and define the state |#) as
] a
#) =cos — |0) +sin = [1).
|&) c0‘32| }+<;m2| )
Let a state matrix p be given by

p=pl0){0]+(1-p)|6){6].

qubit A

4.

qubit B
O, O

(a) (b)

Figure 7.4 (a) General depiction; S, source of entangled particles. (b) Gates
applied by Bob.
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Compute the Shannon and von Neumann entropies. Show that

Hg, = Hyy.

7.5.3 Information gain of Eve

Let us compute the information gain I{« : &) (see (7.11)) of Eve, where a stands
for Alice and & for Eve, in two different situations.

1. Let i characterize the bit sent by Alice in the {|x), |v)} basis or in the {|7/4},
| — /4)} basis. Thus i can take four different values with equal probabilities
p(i)=1/4. Let Eve use the {|x}, |y}} basis in which she measures a result r, where
r takes two different values. Establish a table of the conditional probabilities
p(r|i) and deduce from it p(i|r). Show that Eve’s information gain is 1/2.

2. Now Eve uses a symmetric {|7/8),|— m/8)} basis (see Exercise 2.6.4). Show
that in this case the information gain is only /(e : £) >~ 0.4. The information gain
is smaller when Eve uses the symmetric basis.

7.5.4 Symmetry of the fidelity
Show that
Fp. W) (W]) = F(¥)(¥

.p) -

Hint: to evaluate the first expression for F, use a basis (7.14) where p is diagonal,
and observe that a product of matrices is of rank one if one of the matrices in the
product is of rank one. What is then the nonzero eigenvalue of the product

P21 W) (Wp!/22

It may be instructive to examine first the case of two-dimensional matrices.

7.5.5 Quantum error correcting code

Work out the details of the calculations leading to (7.41) and the action of the
transformation on the right-hand side of the circuit in Fig. 7.3 in the four different
cases.

7.6 Further reading

Zeilinger (2000) gives an elementary account of teleportation. Recent experiments
demonstrating teleportation using atoms are described by Barret er al. (2004) and
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Riebe et al. (2004). Shannon entropy, von Neumann entropy and Schumacher
theorem are explained by Preskill (1999), Chapter 5, Nielsen and Chuang (2000),
Chapters 11 and 12 or Stolze and Suter (2004), Chapter 13. For quantum error
cotrection, see Nielsen and Chuang (2000), Chapter 10 or Stolze and Suter (2004),
Chapter 7.
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