

Advance Praise for Absolute OpenBSD, 2nd Edition

“Michael W. Lucas’s books are good enough to raise national productivity
statistics. Every copy of OpenBSD should be bundled with this book.”
—richard bejtlich, cso of mandiant, taosecurity blogger, and
author of the practice of network security monitoring

“After 13 years of using OpenBSD, I learned something new and useful!”
—peter hessler, openbsd journal (undeadly.org)

“The OpenBSD world, myself included, has been waiting for an update
to Absolute OpenBSD for years. Michael W. Lucas tackles OpenBSD topics
in ways that are bound to inspire the learner and warm the hearts of Unix
greybeards.”
—peter n.m. hansteen, author of the book of pf

“Michael W. Lucas is a layperson’s tutor, sitting next to you in front of
an OpenBSD box and working through the same issues the average sys­
admin does.”
—george rosamond, founding member of the nyc*bsd user group

“Whether you are an experienced OpenBSD user seeking a functional desk
reference or a new OpenBSD user seeking to gain the knowledge necessary
to become an expert, then Absolute OpenBSD is the book you have to have.”
—chris sanders, author of practical packet analysis

“The second edition of Absolute OpenBSD delivers an updated tour of
OpenBSD with great attention to detail and zero hand-waving. Mr. Lucas
and No Starch Press have once again demonstrated exemplary respect and
loyalty to OpenBSD and the BSD community.”
—michael dexter, callfortesting.org

A b s o l u t e
O p e n BS D

2 n d e d i t i o n

U n i x f o r t h e
P r a c t i c a l P a r a n o i d

San Francisco

by Michae l W. Lucas

Absolute OpenBSD, 2nd edition Copyright © 2013 by Michael W. Lucas.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

Printed in USA

First printing

17 16 15 14 13   1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-476-9
ISBN-13: 978-1-59327-476-4

Publisher: William Pollock
Production Editor: Alison Law
Cover Illustration: Charlie Wylie
Interior Design: Octopod Studios
Developmental Editor: William Pollock
Technical Reviewer: Peter N.M. Hansteen
Copyeditor: Marilyn Smith
Compositor: Susan Glinert Stevens
Proofreader: Elaine Merrill
Indexer: Nancy Guenther

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
38 Ringold Street, San Francisco, CA 94103
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress has cataloged the first edition as follows:

Lucas, Michael W., 1967-
 Absolute OpenBSD: UNIX for the practical paranoid / Michael W. Lucas.
 p. cm.
Includes index.
 ISBN: 1-886411-99-9
1. OpenBSD (Electronic resource). 2. Operating systems (Computers) 3. UNIX (Computer file) I. Title.
 QA76.9.063L835 2003
 005.4'32--dc21
 2003000473

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to
the benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the infor­
mation contained in it.

For Liz

About the Author
Michael W. Lucas is a network/security engineer who keeps getting
stuck with the problems nobody else wants to touch. He’s been using
BSD since the days it came from Berkeley, and today uses OpenBSD
for mission-critical infrastructure. You can find Lucas roaming around
Detroit, Michigan, or teaching tutorials at tech conferences. He’s the
author of the critically acclaimed Absolute FreeBSD, Network Flow Analysis,
Cisco Routers for the Desperate, and PGP & GPG, all from No Starch Press.

Find his website and blog at http://www.michaelwlucas.com/, or follow
@mwlauthor on Twitter.

About the Technical Reviewer
Peter N.M. Hansteen is a consultant, sysadmin, and writer from Bergen,
Norway. During recent years he has been a frequent lecturer and tutor
with emphasis on OpenBSD and FreeBSD, as well as the author of sev-
eral articles and The Book of PF (No Starch Press, 2010). He writes about
OpenBSD and rants about other IT topics at http://bsdly.blogspot.com/.

B r i e f C o n t e n t s

Foreword by Henning Brauer . xxv

Acknowledgments . xxvii

Introduction . xxix

Chapter 1: Getting Additional Help . . 1

Chapter 2: Installation Preparations . . 15

Chapter 3: Installation Walk-Through . 37

Chapter 4: Post-Install Setup . 57

Chapter 5: The Boot Process . . 69

Chapter 6: User Management . 85

Chapter 7: Root, and How to Avoid It . 105

Chapter 8: Disks and Filesystems . 125

Chapter 9: More Filesystems . 147

Chapter 10: Securing Your System . 169

Chapter 11: Overview of TCP/IP . 183

Chapter 12: Connecting to the Network . 209

Chapter 13: Software Management . 225

Chapter 14: Everything /etc . . 255

Chapter 15: System Maintenance . 277

Chapter 16: Network Servers . 303

Chapter 17: Desktop OpenBSD . 323

Chapter 18: Kernel Configuration . 339

viii Brief Contents

Chapter 19: Building Custom Kernels . 355

Chapter 20: Upgrading . 367

Chapter 21: Packet Filtering . 395

Chapter 22: Advanced PF . 421

Chapter 23: Customizing OpenBSD . 449

Afterword . . 461

Index . . 465

C o n t e n t s i n D e t a i l

Foreword by Henning Brauer	 xxv

Acknowledgments	 xxvii

Introduction	 xxix
What Is Security? . xxx
What Is BSD? . xxxi

The BSD License . . xxxii
AT&T vs. the World . xxxii

The Birth of OpenBSD . xxxiii
The OpenBSD Community . xxxiv

OpenBSD Users . xxxiv
OpenBSD Contributors . xxxiv
OpenBSD Committers . xxxv
OpenBSD Coordinator . xxxv

OpenBSD’s Strengths . . xxxv
Portability . xxxvi
Power . . xxxvi
Documentation . . xxxvi
Free	 . xxxvii
Correctness . xxxviii
Security . xxxviii

OpenBSD and Your Security . . xxxix
OpenBSD’s Uses . xl

Desktop . xl
Server . . xl
Network Management . xl

About This Book . xl
Contents Overview . xli

1
Getting Additional Help	 1
OpenBSD’s Support Model . 2
The Code Is Fine. What’s Wrong with You? . 2
Sources of Information . 3

Man Pages . 3
The OpenBSD Website . 7
OpenBSD Mailing Lists . 8

Using OpenBSD Problem-Solving Resources . 10
Using the OpenBSD Website . . 10
Using Man Pages . . 10
Using Internet Searches . . 11
Using Mailing Lists . 11

x  Contents in Detail

2
Installation Preparations	 15
OpenBSD Hardware . 16

Supported Hardware . 17
Proprietary Hardware, Blobs, and Firmware . 17
Processors . 18
Memory (RAM) . 18
Hard Drives . . 18
Virtualization . 19
Multiple Operating Systems . . 19

Getting OpenBSD . 19
Official CDs . 20
Internet Downloads . 20
Mirror Site Layout . . 20
Release Directories . 21
Boot Media . 22
Choosing Install Media . 22
Local Installation Servers . 23

File Sets . 23
Partitioning . . 25

Standard OpenBSD Partitions . 26
Creating Other Partitions . . 29

Partition Filesystems . . 29
Multiple Hard Drives . 29
Understanding Partitions . 30

MBR Partitions . 30
Disklabel Partitions . 31

Understanding Disklabels . 31
Sectors and Lies . 31
Sectors and Disklabels . 32

Other Information . 35

3
Installation Walk-Through	 37
Hardware Setup . 38
BIOS Configuration . 38
Making Boot Media . 38

Making Boot Floppies . . 39
Making Boot CDs . . 40

Installing OpenBSD . 41
Running the Installation Program . 41
Multiple Network Cards . 43
Setting Up Services and the First User . 44
Setting the Time Zone . 45
Setting Up the Disk . 46
Choosing File Sets . 47
Finishing the Installation . 49

Custom Disk Layout . 49
Viewing Disklabels . 50
Deleting Partitions . 51
Erasing Existing Disklabels . 51

Contents in Detail  xi

Creating Disklabel Partitions . 51
Writing the New Disklabel . 53
Adding More Disks . 54

Advanced Disklabel Commands . 54
Changing Basic Drive Parameters . 54
Modifying Existing Partitions . 55
Entering Expert Mode . 55
Getting More Help . 55

4
Post-Install Setup	 57
First Steps . 58

Checking the System Errata . 58
Setting the Root Password . 58

Software Configuration . 59
Time and Date . 60

Setting the Time Zone . 60
Setting the Date and Time . 60

Hostname . . 61
Networking . 62

Configuring Ethernet Interfaces . 62
Setting a Default Gateway . 64
Setting Name Service Servers . 65

Mail Aliases and Status Mail . 65
Keyboard Mapping . . 66
Installing Ports and Source Code . . 66
Booting to a Graphic Console . 67
Onward! . 67

5
The Boot Process	 69
Power-On and the Boot Loader . 70
Booting in Single-User Mode . 71

Mounting Disks in Single-User Mode . 71
Starting the Network in Single-User Mode . 72

Booting an Alternate Kernel . 72
Booting a Different Kernel File . 72
Booting from an Alternate Hard Disk . 73

Making Boot Loader Settings Permanent . 74
Serial Consoles . . 75

Other Platform Serial Consoles . 75
Serial Console Physical Setup . 75
Serial Console Configuration . 76
Changing the Serial Console Speed . 77
Changing the Client Serial Port . 78
Serial Logins . 79

Multiuser Startup . 79
Startup System Scripts . . 80
Software Startup Scripts . 82
Third-Party rc.d Scripts . 83
Force-Starting Software . 83

xii  Contents in Detail

6
User Management	 85
The Root Account . 86
Adding Users . 86

Adding Users Interactively . 87
Adding Users Noninteractively . . 89
User Account Restrictions . 92

Removing User Accounts . 92
Editing User Accounts . 93
Login Classes . 94

Login Class Definitions . 94
Changing login.conf . . 95
Legal Values for login.conf Variables . 95
Setting Resource Limits . 96
Modifying the Shell Environment . 97
Password and Login Options . 98
Changing Authentication Methods . 99
Using Login Classes for RADIUS Authentication . 100

Unprivileged User Accounts . 102
The nobody Account . . 103
_username . 103
Creating Unprivileged Users . 104

7
Root, and How to Avoid It	 105
The Root Password . 106
Using Groups . 106

The /etc/group File . 107
Creating Groups . 107
Groups, Unprivileged Users, and Group Permissions 108

Hiding Root with sudo . 109
Why Use sudo? . 109
sudo Disadvantages . 109
An Overview of the sudo Software . 110
The visudo(8) Command . 110
The /etc/sudoers File . 111
/etc/sudoers Aliases . 113
Changing sudo’s Default Behavior . 117
sudo and the Environment . 119

Using sudo . 120
sudo Password Caching . 120
Running Commands Under sudo . 121
Running Commands as Other Users . 121

sudoedit . . 121
The Biggest sudo Mistake: Exclusions . . 122
sudo Logs . . 123

Contents in Detail  xiii

8
Disks and Filesystems	 125
Device Nodes . . 126

Raw and Block Devices . . 126
Device Attachment vs. Device Name . 127

DUIDs and /etc/fstab . 128
MBR Partitions and fdisk(8) . . 129

Viewing MBR Partitions . 130
Adding and Removing Partitions . 130
Making a Partition Bootable . 131
Exiting fdisk . . 131

Labeling Disks . 132
Viewing Labels . 132
Creating Disklabel Partitions . 132
Backing Up and Restoring Disklabels . 133

The Fast File System . . 133
FFS Versions . 133
Blocks, Fragments, and Inodes . . 134
Creating FFS Filesystems . 134
FFS Mount Options . . 135
Filesystem Integrity . 138

What’s Currently Mounted? . 140
Mounting and Unmounting Partitions . 140

Mounting Standard Filesystems . 141
Mounting at Nonstandard Locations . 141
Unmounting Partitions . 141
Mounting with Options . 142

How Full Is That Partition? . 142
What’s All That Stuff? . 143
Setting $BLOCKSIZE . . 143

Adding New Hard Disks . 144
Creating an MBR Partition . . 144
Creating a Disklabel . . 144
Moving Partitions . 145
Adding New Filesystems . 146
Stackable Mounts . . 146

9
More Filesystems	 147
Backing Up to the /altroot Partition . 148
Memory Filesystems . . 148

Creating MFS Partitions . 149
Mounting an MFS at Boot . 149

Foreign Filesystems . 150
Inodes vs. Vnodes . 150
Common Foreign Filesystems . 151
Foreign Filesystem Ownership . 152

xiv  Contents in Detail

Removable Media . 153
Mounting Filesystem Images . 153

Attaching Vnode Devices to Disk Images . . 154
Detaching Vnode Devices from Images . 154

Basic NFS Setup . 154
The OpenBSD NFS Server . 155

Exporting Filesystems . 156
Read-Only Mounts . 157
NFS and Users . 157
Permitted Clients . 158
Multiple Exports for One Partition . . 159

NFS Clients . 159
Software RAID . 160

RAID Types . 161
Preparing Disks for softraid . 162
Creating softraid Devices . 163
softraid Status . 164
Identifying Failed softraid Volumes . 164
Rebuilding Failed softraid Volumes . 164
Deleting softraid Devices . . 165
Reusing softraid Disks . 166
Booting from a softraid Device . . 166

Encrypted Disk Partitions . 166
Creating Encrypted Partitions . . 166
Using Encrypted Partitions . 167
Automatic Decryption . 168

10
Securing Your System	 169
Who Is the Enemy? . 170

Script Kiddies . 170
Botnets . 170
Disaffected Users . 171
Skilled Attackers . 171

OpenBSD Security Announcements . 172
OpenBSD Memory Protection . 172

W^X . 173
.rodata Segments . 173
Guard Pages . 174
Address Space Layout Randomization . 174
ProPolice . . 174
And More! . 174

File Flags . 175
File Flag Types . . 175
Setting, Viewing, and Removing File Flags . 176

Securelevels . 177
Setting the System Securelevel . 178
Securelevel Definitions . 178

Contents in Detail  xv

What Securelevel Do You Need? . . 180
Securelevel Weaknesses . 180

Keeping Secure . 181

11
Overview of TCP/IP	 183
Network Layers . . 184

The Physical Layer . 184
The Datalink Layer . 185
The Network Layer . 185
The Transport Layer . 186
Applications . 186

The Life and Times of a Network Request . 187
Network Stacks . . 188
IPv4 Addresses and Subnets . 189

Calculating a Decimal IPv4 Netmask . 190
Viewing IPv4 Addresses . 191
Unusable IPv4 Addresses . 191
Special IPv4 Addresses . 192
IPv4 Addressing Pitfalls . 192

IPv6 Addresses and Subnets . 192
IPv6 Basics . 193
Understanding IPv6 Addresses . . 193
Viewing IPv6 Addresses . 194
IPv6 Subnets . 194
Special IPv6 Addresses . 194
Assigning IPv6 Addresses . 195

Remedial TCP/IP . . 196
ICMP . 196
UDP	 . 196
TCP	 . 197
How Protocols Fit Together . 198
Transport Protocol Ports . . 198
Reserved Ports . 199
Which Ports Are Open? . 200

IP Routing . . 202
IPv4 Routed Network Example . 203
Managing Routing with route(8) . . 204

12
Connecting to the Network	 209
DNS Resolution . . 210

The /etc/resolv.conf File . 210
The /etc/hosts File . 212
Resolver vs. Dynamic Configuration . 212

Ethernet . 213
Protocol and Hardware . . 213

xvi  Contents in Detail

Configuring Ethernet . 215
Using ifconfig(8) . 216
Configuring Default Routes . 219
Using Dynamic Configuration . 219
Configuring the Network at Boot . 219

Trunking . . 221
Link Aggregation Protocols . 221
Trunk Configuration . 221
Trunks at Boot . 222

VLANs . 223
Configuring Switches . 223
Configuring VLAN Devices . 223
Configuring VLANs at Boot . 224

IPv6 Over Tunnels . 224

13
Software Management	 225
Making Software . 226
Source Code and Software . 226
The Ports and Packages System . 227
Using Packages . 228

Package Files and $PKG_PATH . 228
Finding Packages . . 229
Installing Packages . . 230
Identifying Where Files Originate . . 232
Uninstalling Packages . . 234
Package Limitations . 235

Using Ports . 235
The Ports Tree . 236
Secondary Ports . 237
Read-Only Ports Tree . 238
Finding Software . 239

Building Ports . 241
What a Port Installation Does . 242
Port Build Stages . 243

Customizing Ports . 246
Local Distfile Mirrors . 246
Flavors . 249

Subpackages . 251
Packages and rc.d Scripts . 252

14
Everything /etc	 255
/etc Across Unix Variants . 256
The /etc Files . 256

/etc/adduser.conf . 256
/etc/amd . 256
/etc/authpf . 256

Contents in Detail  xvii

/etc/bgpd.conf . 257
/etc/boot.conf . . 257
/etc/changelist . 257
/etc/chio.conf . 257
/etc/csh.* . 257
/etc/daily and /etc/daily.local . 257
/etc/dhclient.conf . 257
/etc/dhcpd.conf . 257
/etc/disklabels/ . 257
/etc/disktab . 258
/etc/dumpdates . 258
/etc/dvmrpd.conf . 258
/etc/exports . 258
/etc/fbtab . . 258
/etc/firmware . 258
/etc/fonts/ . 259
/etc/fstab . 259
/etc/ftpchroot . 259
/etc/ftpusers . 259
/etc/gettytab . . 259
/etc/group . 260
/etc/hostapd.conf . 260
/etc/hostname.* . 260
/etc/hosts . 260
/etc/hosts.equiv . 260
/etc/hosts.lpd . 260
/etc/hotplug/ . 261
/etc/ifstated.conf . . 261
/etc/iked/, /etc/iked.conf, /etc/ipsec.conf, and /etc/isakmpd 261
/etc/inetd.conf . 261
/etc/kbdtype . . 261
/etc/kerberosV/ . 262
/etc/ksh.kshrc . 262
/etc/ldap/ and /etc/ldapd.conf . 262
/etc/localtime . 262
/etc/locate.rc . 262
/etc/login.conf . 262
/etc/lynx.cfg . . 262
/etc/magic . 262
/etc/mail/ . 263
/etc/mail.rc . 263
/etc/mailer.conf . 263
/etc/man.conf . . 264
/etc/master.passwd, /etc/passwd, /etc/spwd.db, and /etc/pwd.db 265
/etc/mixerctl.conf . 268
/etc/mk.conf . . 268
/etc/moduli . 268
/etc/monthly and /etc/monthly.local . 268
/etc/motd . . 269
/etc/mrouted.conf . 269

xviii  Contents in Detail

/etc/mtree/ . 269
/etc/mygate . 269
/etc/myname . 269
/etc/netstart . 269
/etc/networks . 269
/etc/newsyslog.conf . 269
/etc/nginx/ . 269
/etc/nsd.conf . 270
/etc/ntpd.conf . . 270
/etc/ospf6d.conf and /etc/ospfd.conf . 270
/etc/pf.conf and /etc/pf.os . 270
/etc/ppp/ . 270
/etc/printcap . 270
/etc/protocols . 270
/etc/rbootd.conf . 271
/etc/rc.* . 271
/etc/relayd.conf . 271
/etc/remote . 271
/etc/resolv.conf and /etc/resolv.conf.tail . 271
/etc/ripd.conf . 271
/etc/rmt . 271
/etc/rpc . 272
/etc/sasyncd.conf . 272
/etc/sensorsd.conf . . 272
/etc/services . 272
/etc/shells . 272
/etc/skel/ . . 272
/etc/sliphome/ . 272
/etc/snmpd.conf . 273
/etc/ssh/ . 273
/etc/ssl/ . . 273
/etc/sudoers . 273
/etc/sysctl.conf . 273
/etc/syslog.conf . 273
/etc/systrace/ . . 273
/etc/termcap . 274
/etc/ttys . 274
/etc/weekly and /etc/weekly.local . 276
/etc/wsconsctl.conf . 276
/etc/X11 . 276
/etc/ypldap.conf . 276

15
System Maintenance	 277
Scheduled Tasks . 277

Daily Maintenance . 278
Weekly Maintenance . 282
Monthly Maintenance . 282
Custom Maintenance Scripts . 282

Contents in Detail  xix

System Logs . 282
Facilities . 283
Priority . 284
Sorting Messages via syslogd(8) . 284
Log Actions . 287
Customizing syslogd . . 288
Syslog and Embedded Systems . 289

Log File Maintenance . 289
newsyslog.conf Fields . 290
Monitoring Logs . 293
Adding a PID File . . 293
Signal Name . 293
Command to Execute . 294

System Time . 294
Configuring ntpd(8) . 294
Using ntpd(8) . 296

Hardware Sensors . . 296
Device Drivers . 297
Sensor Configuration . 298

16
Network Servers	 303
The inetd Small-Server Handler . 304

Configuring inetd . 304
Restricting Incoming Connections . 305

The lpd Printing Daemon . 306
The DHCP Server dhcpd . 307

How DHCP Works . 307
Configuring dhcpd(8) . 308
Static IP Address Assignments . 309
Enabling dhcpd . 309
dhcpd and Firewalls . 309

The TFTP Daemon tftpd . 310
Specifying a tftpd Directory . 310
tftpd and Files . 311
tftpd Logging . 311
Testing the TFTP Server . 311

The SNMP Agent snmpd . 312
SNMP MIBs . . 312
SNMP Security . 314
Configuring snmpd . . 314
Debugging snmpd . 315
Getting snmpd Information . 316

The SSH Server sshd . 317
Disabling sshd . 318
SSH Host Keys . . 318
sshd Network Options . 318
chrooting Users . 319

xx  Contents in Detail

17
Desktop OpenBSD	 323
Configuring Your Console with wscons . 324

Screen Blanking . . 324
Setting wscons Variables at Boot . 325

Running Virtual Terminals with tmux . . 325
The tmux Status Bar and Window Names . 326
tmux Commands and Window Management . . 326
Getting Online Help . 327
Disconnecting, Reconnecting, and Managing Sessions 327
Using tmux Commands . 328
Setting tmux Options . 329
Configuring tmux . 329

Setting Up X . 330
Configuring X . 330
Starting X Manually . 330
Booting into X . 330
Emulating a Three-Button Mouse . . 331

Using the cwm Window Manager . . 331
Configuring cwm . 331
Creating cwm Windows . 332
Managing Windows . 333
Locking the Screen . 333
Connecting to Other Machines with SSH . 334
Creating an Application Menu . . 334
Using Keyboard Navigation . 335
Decorating cwm . . 335
Unmapping and Remapping Keys . 336

18
Kernel Configuration	 339
What Is the Kernel? . 340

Kernel Messages . 340
Startup Messages . . 340
Device Attachments . 341
Connections and Numbering . . 342
Using dmassage to View Installed Devices . 343

Viewing and Adjusting Sysctls . 343
Sysctl MIBs . 343
Viewing Sysctls . 344
Changing Sysctl Values . 345
Types of Sysctl Values . . 345
Setting Sysctls at Boot . 346

Altering the Kernel with config(8) . 348
Making a Backup of the Default Kernel . 349
Device Drivers and the Kernel . 349
Enabling Drivers . 350
Editing the Kernel with config . 350

Boot-Time Kernel Configuration . . 353

Contents in Detail  xxi

19
Building Custom Kernels	 355
Kernel Cautions . 355

Don’t Build Custom Kernels . 356
Why Build Custom Kernels? . . 356
Problems Building Custom Kernels . 357
Problems Running Custom Kernels . 358

Preparing for Kernel Customization . 358
Kernel Configuration . 359

Configuration Entries . 359
Configuring GENERIC . 360
Your Kernel Configuration . . 362
Testing Your Kernel Configuration with config(8) . 364

Building a Kernel . 365
Kernel Build Errors . 365

Installing Your Kernel . . 366
Identifying the Running Kernel . 366

20
Upgrading	 367
Why Upgrade? . . 368
OpenBSD Versions . 368

OpenBSD-current . 368
OpenBSD Snapshots . 369
OpenBSD Releases . . 369
OpenBSD-stable . . 370
Which Version Should You Use? . 370

The OpenBSD Upgrade Process . 371
Following the Upgrade Guide . 371
Customizing Upgrades . 373

Upgrading from Official Media . 373
Upgrading Over the Network . 374
Choosing File Sets . 375

Updating /etc . . 375
Mounting Filesystems . 376
Using sysmerge(8) to Compare /etc Files . 376

Updating Installed Packages . . 380
Updating the Package Repository . . 380
Using the Upgrade Command . 381

Why Build Your Own OpenBSD? . 382
Preparations for Building Your Own OpenBSD . 383

Preparing the Base Operating System . . 383
Getting Source Code . 384
Updating Source Code . 385

Building OpenBSD-stable . 388
Upgrading the Kernel . 388
Building the Userland . 389
Building Xenocara . 389
Building a Release . 389
Using the Release . . 392

xxii  Contents in Detail

Building OpenBSD-current . 392
Following -current . . 392
Merging /etc . . 393

Upgrading Ports . 393

21
Packet Filtering	 395
Firewalls . 396
Enabling and Configuring PF . 397
Packet-Filtering Basics . 398

Packet-Filtering Concepts . . 398
“My Network Can Do No Wrong” . 400
What Packet Filtering Doesn’t Do . 400

PF Components . . 401
Packet Filter Control and Configuration . . 401
Interface Groups . 401
PF Configuration . 402

Filtering Rules . 403
Default Permit or Default Deny . 404
Packet Pattern Matching . 404
A Complete Ruleset . 409
Activating Rules . 409
Viewing Active Rules . 410

Filtering Rules and the State Table . 411
TCP States . . 411
UDP States . 412
ICMP States . . 413

Packet Filtering with Lists and Macros . 413
Using Lists . 413
Using Macros . 414
A Common Error: List Exclusions and Negations . 415

Sanitizing Traffic . 415
Illegal Packets . 415
Packet Reassembly . 416
Packet Modification . 416
Blocking Spoofed Packets . 416

PF Options . 417
The set block-policy Option . 417
The set limit Option . 417
The set optimization Option . . 419
The set skip Option . 420

22
Advanced PF	 421
Packet Filtering with Tables . . 422

Defining Tables . 422
Using Tables . 423
Viewing Tables . 423
Searching Tables . 424

Contents in Detail  xxiii

Changing Tables . 424
Tables and Automation . 425

Using NAT . 426
Private NAT Addresses . 426
Configuring NAT . 427
How NAT Works . 427
Multiple or Specific Public Addresses . 428
Bidirectional NAT . 429
Redirection . 431
Multiple Addresses and Interface Groups . 432
Port Manipulation and Ranges . 432
Transparent Interception . 433

Anchors . 434
Adding Rules to Anchors . 434
Viewing and Flushing Anchors . . 436
Conditional Filtering . 436
Nested Anchors: /* . 436

FTP and PF . 437
Configuring ftp-proxy(8) . 438
PF Configuration and the FTP Proxy . 438

Bandwidth Management . 439
Queues for Bandwidth Management . 440
Parent Queue Definitions . . 441
Child Queue Definitions . 442
Queue Options . 442
A CBQ Ruleset . . 443
Assigning Traffic to Queues . . 444
Using the match Keyword . 444
Viewing Queues . 445

PF Edges . 445
Using Include Files . 445
Skipping Matches with quick . 446

Logging PF . 446
Reading PF Logs . 447
Real-Time Log Access . 447
Filtering tcpdump . 447
Ruleset Tracing . 448

23
Customizing OpenBSD	 449
Virtualizing OpenBSD . 450
Diskless Installation . 450

Diskless Hardware . 451
DHCP Server Setup . 452
TFTP Server Setup . . 453
Completing Diskless Installation . 454

Running Diskless . 454
Using rarpd(8) for Reverse ARP . 454
Running bootparamd(8) . 455
Setting Up the NFS Root Directory . 455
Power On! . 456

xxiv  Contents in Detail

USB Installation Media . 457
Using a Virtual Machine . 457
Running a Diskless Installation . 457
Converting ISO Images . . 457
Customizing OpenBSD Installations . 458
Custom File Sets . . 458
Post-Install Shell Scripts . 459

Customizing Upgrades . 460

Afterword	 461

Index	 465

F o r e w o r d

I got my OpenBSD account as a developer in 2002,
more than 10 years ago. Over this time, quite a num-
ber of OpenBSD-related books have been published.
Some were actually good, but many were not and were
full of factual errors. I kept asking myself (and oth-
ers) why these authors never approached us for fact-
checking before publishing.

I have known Michael for a long time as well—many, many years. Both
of us frequently visit BSD-related conferences, and we often end up having
a beer together, which is always fun. I did read the first edition of Absolute
OpenBSD when it was published, a long time ago, and quite frankly, I don’t
remember anything from it. That’s a good thing in this case, because I
would have remembered if it had been bad. I have recommended it as an
introduction to OpenBSD a couple of times.

So when Michael approached me asking whether I would be willing to
fact-check the second edition of Absolute OpenBSD and provide feedback, I
happily agreed.

xxvi Foreword

I have done the reading on airplanes almost exclusively, and one day
when I had to fly to Helsinki, I had no chapters left to read. That ended
quite badly, with a WWII bomb leading to Frankfurt Airport being closed
for a while, the aircraft I was supposed to fly in being identified as defective,
and, of course, bad weather causing massive delays. While that was coin-
cidence, of course, the rumor was out that I couldn’t fly without a chapter
from Michael.

Now that I am long done with reviewing, I have survived many flights
without chapters to read over, but Absolute OpenBSD made long hours up
in the sky much more enjoyable for me. Michael has a writing style that I
really like—snatchy, funny, and still precise and to the point. Don’t skip the
footnotes!

In the end, I contributed only a tiny share to this book, but I enjoyed
doing so a lot. I hope you enjoy reading it as much.

Henning Brauer
OpenBSD PF developer

A c k n o w l e d g m e n t s

The world has changed in the 10 years since the first
edition of Absolute OpenBSD came out. I used to have
hair, for one thing. In 2003 OpenBSD was somewhere
on the edge of open source software, known mainly
for an uncompromising, fanatical view of computing
security and correctness. So uncompromising that other open source proj­
ects didn’t want to work with it. But a funny thing happened in the follow­
ing decade: The uncompromising fanatics turned out to be right. More
than once I’ve heard “That’s fixed in the latest Linux, and in OpenBSD 3.2.”
OpenBSD code trickled into other BSDs, Linux, and even some commer­
cial operating systems. Apple and BlackBerry products include the OpenBSD
packet filter. Lots of BSDs support the OpenBSD wireless utilities. And every­
one runs OpenSSH. So, the first people I have to thank are those who wrote
all this code. It’s one thing to give a gift to the world, but when everybody and
their pet orangutan has posted their code online, it’s another thing when
your code is picked up and used dang near everywhere. Well done, guys.

xxviii Acknowledgments

I specifically want to thank Peter Hansteen and Henning Brauer. Henning
read the early drafts of this book and pointed out innumerable errors and
opportunities for improvement. Peter, the official tech reviewer, had the job
of double-checking all the facts and finding what I’d broken when trying
to incorporate Henning’s suggestions. While all the OpenBSD folks were
friendly and open, these two sank deep into this book and didn’t come up
for air until it was done. When you see either of them, please buy them a
beer. They’ve earned it.

As always, No Starch Press does a great job producing books. Their
indefatigable quest for making everything both correct and pleasing has
made this book more than I thought it would be—as usual. Someday I’ll
consider that excellence routine and, as a result, will be much less impressed
when they retain their high standards. But the day their quest for perfec­
tion bores me has not yet come.

iXsystems provided me with hardware for testing this book. The way
to really test an operating system is to push it to its limits. The only way to
really find those limits is to exceed them. Preferably as greatly as possible. I
used and abused that poor server, folded and spindled and mutilated it, and
the blasted thing still ran. (The machine did finally fail, mind you, when
I ripped out the hard drives as it was running. That’s probably considered
cheating, but I had to test the software RAID chapter.) I greatly appreciate
iX’s support. When iXsystems says their hardware runs BSD, they mean that
they’ve actually used it. In production. For real work. Not just my puny little
website and blog.

My blog readers and Twitter followers made researching this book
much easier than it could have been. When I throw out a question, some­
one knows the answer. I try to reward them by throwing out facts, tutori­
als, observations, and random ranting as well as questions. Check http://
www.michaelwlucas.com/ for links to these and more.

I considered dropping the haiku from this edition, but overwhelming
reader feedback demanded that I not only retain them, but include more and
better ones. As an experiment, I solicited haiku on my blog and used some in
this book. Ludovic Simpson wrote the haiku for Chapter 7; Justin Sherrill,
Chapter 12; and the relentless Josh Grosse, Chapters 1, 3, and 16. As a reward,
each of them gets their name on the page you’re reading right now. Here’s
your moment of glory, guys. Enjoy it before it—whoops, it’s gone. Sorry.

I wanted this book to come out in 2010. Life happened. It happens.
Then life kept happening, apparently with malice aforethought, for four
years. My fans waited. The publisher waited. The OpenBSD folks waited.
And my long-suffering wife has waited—specifically, for me to quit grum­
bling that I had to take time away from the crisis du jour and finish this
dang book.

Thanks to everyone for your patience and support. There’s a certain
rightness in having this second edition come out almost exactly ten years
to the day after the first edition. But six years would have done nicely, too.

Thanks, everyone.

I n t r o d u c t i o n

I asked a psychiatric nurse practitioner
about paranoia, and was told that “para-

noiais the feeling that people are after you.”
A medical dictionary would give you a slightly

different definition, but this one is actually terribly use-
ful for any system administrator. It’s not that everyone
on the Internet is trying to attack you, but there’s always someone who wants
to break into your system. Even if you think you have nothing of value,
someone wants to own your computer. And you won’t realize the value of
what you have until someone else has it. That’s just human nature.

If you’re not paranoid on the Internet, you’re in trouble.
That’s where OpenBSD comes in.
This book is an introduction to the OpenBSD operating system. OpenBSD

is a member of the BSD family of operating systems. It is widely regarded
as the most secure operating system available anywhere, under any licens-
ing terms. It’s widely used by Internet service providers, embedded systems

xxx Introduction

manufacturers, and anyone who needs security and stability. If you’re an
experienced Unix system administrator who wants to add OpenBSD to your
repertoire, this book is for you.

When you finish this book, you should be comfortable working with
OpenBSD. You will understand how to configure, troubleshoot, and
upgrade computers running OpenBSD and have a basic understanding
of OpenBSD’s software, security, and network management features.

What Is Security?
We bandy the word security around a whole lot, so it’s worth taking a
moment to talk about security itself. We all have a vague idea of what it
means. “Security” means your stuff is safe, and other folks can’t get it.
That’s fine, as far as it goes, but it doesn’t go far enough. In information
technology, security has three parts:

Confidentiality
This means that secret data should remain secret. Your private infor-
mation must not get into the public eye. That Eastern European kiddie
porn syndicate should not get your credit card number.

Integrity
This means that data on the system should not be changed without
authorization. Your records should remain intact. That intruder should
not change the shipping address on an order, making your staff ship a
crate of really expensive stuff to an abandoned warehouse in Detroit.

Availability
This means that the system keeps running. If your business depends on
your website, losing the website means losing business. Someone who
can take your website down can starve your company. And all kinds
of people are willing to shut you down, either to compete or just for
laughs.

Having been a system administrator for longer than some of you have
been alive, I have a less formal idea of security. Security means eliminating
bad days caused by computer problems. Spending a day getting a piece of
software to compile is not a bad day. Is it an annoying day? Sure, but it’s not
bad. A day when I need to get intruders out of my systems is bad. A day when
I have a meeting due to computer intrusions is bad. A day when I realize
that I cannot trust any computer on the network, and I must reinstall every
blasted piece of gear I own, is really bad.1

While OpenBSD cannot change the fact that some of my servers are
old enough to leave elementary school, it can fix the software aspects of
security.

1. I still have bad days due to people, mind you, but I largely solve them by other means. Don’t
ask about the mounds of dirt in my backyard.

Introduction xxxi

What Is BSD?
In the 1970s, AT&T needed a lot of specialized, custom-written computer
software to run its business. The company was forbidden to compete in the
computer industry, so it could not sell this software. Instead, AT&T licensed
its software and the related source code to universities for nominal sums.
Universities saved money by using this software instead of commercial
equivalents with pricey licenses, and university students got access to this
nifty technology and could learn how everything worked. In return, AT&T
got exposure, some pocket change, and a generation of computer scientists
who had cut their teeth on AT&T technology. Everyone got something out
of the deal.

The best-known software distributed under this plan was UNIX.
Compared with modern operating systems, the original UNIX had a lot

of problems. Thousands of students had access to its source code, however,
and hundreds of teachers needed interesting projects for their students.
If a program behaved oddly, or the operating system itself had a problem,
the people who lived with the system had the tools and the motivation to
fix it. Their efforts quickly improved UNIX and created many features we
now take for granted. Students added the ability to control running pro-
cesses, also known as job control. The UNIX S51K filesystem made system
administrators wail and gnash their teeth, so they replaced it with the Fast
File System (FFS), which introduced a whole host of features that have crept
into every modern filesystem. Over the years, many small, useful programs
were added to UNIX, and entire subsystems were replaced.

The Computer Science Research Group (CSRG) at the University
of California, Berkeley, acted as a central clearinghouse for UNIX code
improvements from 1979 to 1994. The group collected changes from other
universities, evaluated them, packaged them, and distributed the compila-
tion for free to anyone with a valid AT&T UNIX license. The CSRG also
contracted with the Defense Advanced Research Projects Agency (DARPA)
to implement various features in UNIX, such as TCP/IP. The resulting soft-
ware collection came to be known as the Berkeley Software Distribution,
or BSD. Users took the CSRG’s software, improved it further, and fed their
improvements back into the CSRG. Today, we consider this a fairly standard
way to run an open source project, but in 1979, it was revolutionary.

Fifteen years of work is a lifetime in software development. For compar-
ison, Microsoft went from Windows 95 to Windows 7 in 15 years. The CSRG
members collected so many enhancements and improvements to UNIX that
they replaced almost all of the original UNIX with code created by the CSRG
and its contributors. You had to look hard to find any original AT&T code.

Eventually, the CSRG’s funding ebbed, and it became clear that the BSD
project would end. After some political wrangling within the University of
California, in 1992, the BSD code was released to the general public under
what became known as the BSD license.

xxxii Introduction

The BSD License
BSD code is available for anyone to use under what is probably the most
permissive license in the history of software development. The license can
be summarized as follows:

•	 Don’t claim you wrote this.

•	 Don’t blame us if it breaks.

•	 Don’t use our name to promote your product.

Taken as a whole, this means that you can do almost anything you want
with BSD code. (The original BSD license did require that users be notified
if a software product included BSD-licensed code, but that requirement was
later dropped.) You don’t even need to share any changes with the original
authors! People could take BSD and include it in proprietary, open source,
or free products.

Instead of a restrictive copyright, or the more permissive but still restricted
copyleft, the BSD license is sometimes referred to as copycenter, as in “take
this down to the copy center and run off a few for yourself.” Not surpris-
ingly, companies such as Sun Microsystems jumped right on BSD. It was
free, it worked, and plenty of new graduates had experience with the tech-
nology. One company, BSDi, was formed specifically to take advantage of
BSD Unix.

AT&T vs. the World
Back in AT&T-land, UNIX development continued. AT&T took parts of the
BSD Unix distribution and integrated them with official UNIX, and then
relicensed the results back to the universities that provided those improve-
ments. This worked well for everyone until the US government broke up
AT&T, and the resulting companies were permitted to compete in the com-
puter software business.

AT&T had one particularly valuable software property: a high-end
operating system that had been extensively debugged by thousands of
people and had powerful features, such as a variety of small but mighty
commands, a modern filesystem, job control, and TCP/IP. AT&T started a
subsidiary, Unix Systems Laboratories (USL), which happily started selling
UNIX to enterprises and charging very high fees for it, all the while main-
taining the university relationship that had given it such an advanced oper-
ating system in the first place.

The University of California, Berkeley’s public release of the BSD code
met with great displeasure from USL. Almost immediately, USL sued the
university and the software companies that had taken advantage of BSD.
The University of California claimed that the CSRG had compiled BSD
from thousands of third-party contributors unrelated to AT&T, and that
it was the CSRG’s intellectual property to dispose of as it saw fit. Oddly
enough, the lawsuit promoted BSD to thousands of people who never would
have heard of it otherwise, spawning open source BSD variants such as
386BSD, FreeBSD, and NetBSD.

Introduction xxxiii

In 1994, after two years of legal wrangling, the University of California
lawyers proved that the majority of AT&T UNIX was actually taken from
BSD, rather than the other way around. To add insult to injury, AT&T had
violated the BSD license by stripping the CSRG copyright from the files it
had appropriated

Only about a half-dozen files remained as the source of contention.
Bruised and broken in court, USL donated some of those files to BSD while
retaining others as proprietary information. BSD 4.4-Lite was released,
containing everything except the proprietary files. Due to those missing
files, BSD 4.4-Lite was the only formal operating system release ever that
was known to not be usable or even compilable as delivered. Everyone knew
this, and bought it anyway—a historic feat that modern vendors probably
wish they could replicate.

A subsequent update, BSD 4.4-Lite2, is the grandfather of OpenBSD,
as well as all other BSD code in use today, such as that in FreeBSD, NetBSD,
and Mac OS X.

The Birth of OpenBSD
Theo de Raadt was a NetBSD developer. After many strong, broad, and
long-running disagreements with other NetBSD team members on how the
project should be run, he went out on his own and founded the OpenBSD
Project, attracting like-minded developers. The OpenBSD team quickly
established an identity as a security-focused group, and it is now one of the
best-known BSD descendants.

The OpenBSD team developers have introduced several ideas into
the open source operating system world that are now taken for granted,
such as public read-only access to the CVS repository and commit logs.
They’ve also created several pieces of software that have become industry
standards across many operating systems, such as sudo and the ubiquitous
OpenSSH.

Today, many major companies rely on OpenBSD as a reliable, secure
operating system with fanatical attention to security, correctness, usability,
and freedom. OpenBSD runs on many different sorts of hardware, includ-
ing the standard 32-bit and 64-bit “Intel PC” (i386 and amd64), Apple’s
PowerPC Macintoshes (macppc), Sparc (sparc and sparc64), and obscure
platforms such as the Sharp Zaurus PDA, the Lemote Yeeloong, and antedi-
luvian VAXes. OpenBSD puts almost all of its effort into security features,
security debugging, and code correctness, and has demonstrated in the
process that correct code has a much lower failure rate, and hence greater
security. OpenBSD strives to be the ultimate secure operating system.

The OpenBSD team continually improves the operating system. New
features are added only once they meet the team’s code and documentation
standards. Even if new software is added before it is feature-complete, it is
expected to have full documentation and correct code.

xxxiv Introduction

The OpenBSD Community
OpenBSD is more than just a collection of bits. It’s a community of users,
developers, and contributors, with a single central dictator—er, coordina-
tor. And this community can be a bit of a shock for anyone who doesn’t
know what to expect.

How can individuals scattered all over the world create, maintain, and
develop an operating system, let alone build a community? Almost all dis-
cussion occurs through email and online chat. The process is slower than
talking face-to-face, but it’s the only cost-effective way for a large group of
people in every time zone to communicate in a reasonable fashion. Email
and chat also offer written records of discussions. If you want to participate
in OpenBSD development, you must be comfortable with email. (There are
OpenBSD-dedicated web forums, but they’re outside the main community.)

The OpenBSD community has four tiers: users, contributors, commit-
ters, and the coordinator.

OpenBSD Users
Many open source operating systems put a lot of effort into growing their
user base, evangelizing, and bringing new people into the Unix fold. OpenBSD
does not.

Most open source Unix-like operating system groups do a lot of pro-
Unix advocacy. Again, OpenBSD does not.

The communities surrounding other operating systems actively encour-
age new users and try to make newbies feel welcome. OpenBSD specifically
and deliberately does not.

The OpenBSD community is not trying to be the most popular operat-
ing system—just the best at it what it does. The developers know exactly who
their target market is: themselves. If you can use their work, that’s great. If
not, go away until you can.

The OpenBSD community generally expects newcomers to be advanced
computer users. The members have written extensive OpenBSD documen-
tation, and expect newcomers to be willing to read it. They’re not interested
in coddling new Unix users and, if pressed, will say so—often bluntly and
forcefully. They will not hold your hand. They will not develop new features
to please users. OpenBSD exists to meet the needs of the developers, and
while others are welcome to ride along, the needs of the passengers do not
steer the project.

OpenBSD Contributors
Contributors are OpenBSD users who have the skills necessary to add
features to the operating system, fix problems, write documentation, or
accurately report problems. Problems range from typographical errors in
the documentation to system crashes. Almost anyone can be a contributor.
In fact, the community has even accepted problem reports from me, and
resolved them within hours.

Introduction xxxv

Every OpenBSD feature is present because some contributor took the
time to write the code for it. Contributors who submit careful, correct fixes,
or who provide useful problem reports, are welcome in the OpenBSD com-
munity. And if a contributor submits enough fixes of sufficient quality, he
might be offered the role of committer.

OpenBSD Committers
Committers have write access to the main OpenBSD source code repository.
They can make whatever changes they deem necessary for their OpenBSD
projects, but are answerable to each other and to the project coordinator.
Most committers are skilled programmers who work on OpenBSD during
their own time.

While being a committer seems glamorous, the role carries a lot of
responsibility. If a committer breaks the operating system or changes some-
thing so that it conflicts with OpenBSD’s driving “vision,” he must fix it.
Committers try to avoid breaking things, and frequently make their work
available on websites and mailing lists before it’s integrated into the main
OpenBSD source code collection, allowing interested people to preview,
test, and double-check their work.

Many committers have very specific coordination roles within OpenBSD.
For example, quite a few hardware architectures have a point man for issues
that affect that hardware, the compiler has a maintainer, and so on. These
committers have earned that position of trust in the community.

OpenBSD Coordinator
Theo de Raadt started OpenBSD in 1995 and still coordinates the project.
He is the final word on how the system should work, what is included in the
system, and who gets direct access to the repository. He resolves all disputes
that contributors and committers cannot resolve among themselves. Theo
takes whatever actions necessary to keep the OpenBSD Project running
smoothly. If something should ever happen to Theo, the project does have
plans for replacing him.

Building the OpenBSD organization around a central benevolent dicta-
tor avoids a lot of the management problems other large open source proj-
ects have.

If you decide to work on OpenBSD, you must accept Theo’s decisions
as final. A contributor who doesn’t accept the project’s leader won’t remain
with the community for long. Theo might have a big stick, but as he is the
acknowledged project leader, he doesn’t need to use it nearly as often as you
might think.

OpenBSD’s Strengths
What makes OpenBSD OpenBSD? Why bother with yet another Unix-like
operating system when there are so many out there, several closely related
to OpenBSD? What makes this operating system worth a computer, let alone
worthy of protecting your company’s assets?

xxxvi Introduction

Portability
OpenBSD is designed to run on a wide variety of popular processors and
hardware platforms, including Intel-compatible (both 32-bit and 64-bit),
Alpha, Macintosh (both PowerPC and Intel systems), and almost anything
from Sun. It runs on tiny devices such as the Sharp Zaurus, hefty Hewlett-
Packard HP 9000 systems, certain Silicon Graphics workstations, and
whatever else grabs the developers’ attention. The OpenBSD team wants
to support as many interesting hardware architectures as it has the hard-
ware and skills to maintain, so more are added regularly, and chances are
most computers you encounter can run OpenBSD.

That said, when a hardware platform becomes too obscure, OpenBSD
stops supporting it. A few MIPS systems, 68K Macintosh hardware, and
Amiga systems are examples of systems that run older versions of OpenBSD
but are not supported by new releases.

Power
As a matter of legacy, OpenBSD will run on hardware that has been obso-
lete for decades because the hardware was in popular use when OpenBSD
started, and the developers try to maintain compatibility and performance
when possible. This includes platforms such as the VAX and Alpha, which
were considered powerful in the 1980s and 1990s. While someone running
OpenBSD on a dual-core 64-bit system might not notice a programming
change in OpenBSD that increases the amount of CPU time needed to
process network packets, people running OpenBSD on VAX systems will
quickly notice that same change.

Of course, some performance-impacting changes cannot be avoided.
For example, systems must support IPv6 in the very near future, and I sus-
pect that decades-old hardware will struggle to keep up. OpenBSD cannot
turn back the clock, but it will leave every scrap of computing power pos-
sible for your applications. And after all, that’s what’s important—people
use applications, not operating systems. This focus on performance means
that a system running OpenBSD with a 1GB disk and a 486 CPU can still
support real applications, such as a DNS or web server.

Documentation
Many free software projects are satisfied when they release code. Some think
that they go above and beyond by including a help function in the program
itself, available by typing some command-line flag. Others really go wild and
offer a grammatically incorrect and technically vague manual page.

The OpenBSD community expects the documentation to be both com-
plete and accurate. The manual pages for system and library calls are exten-
sive, even when compared to other BSDs, and include discussions on usage
and security.

Documentation errors are considered serious bugs, and are treated as
harshly as any other serious bug. This might sound extreme, but in its own
internal audits, the OpenBSD team has found any number of instances

Introduction xxxvii

where programmers used a library interface exactly as recommended in
the manual page, but errors in the manual page made the usage dangerous
or insecure. Documentation is important.

Free
In the spirit of the original BSD license, OpenBSD is free for use in any
way, by anyone, for any purpose. You can use it with any tool you like, on
any computer.

Most of today’s free software is licensed under terms that require software
distributors to return any changes to the project’s owner, but OpenBSD
doesn’t even carry that requirement. You can use OpenBSD in your pro-
prietary system, ship that system everywhere in the world, and not pay the
developers a dime.

OpenBSD is perhaps the freest of the free operating systems. Like every
other free Unix-like operating system, the source code inherited from BSD
originally contained a wide variety of programs that shipped under condi-
tional licenses. Some were free for noncommercial use. Some were free if
you changed the name once you changed the code. Others had a variety
of obscure licensing terms, such as indemnifying a third party against law-
suits. These programs have either been relicensed (with the permission of
the original author) or ripped out and replaced with free alternatives.

The word freedom has been given a lot of different twists by people in
the programming community. Some believe that software is free if you can
download it and use it. Some believe that software is only free if the end
user gets the source code. The OpenBSD idea of freedom is that its code
can be used for any purpose, by anyone.

Consider this: During a discussion on an OpenBSD mailing list regard-
ing licensing terms,2 Theo de Raadt said:

We know what a free license should say.
It should say
 Copyright foo
 I give up my rights and permit others to:
 distribute
 sell
 give
 modify
 use
 I retain the right to be known as the author/owner
When it says something else, ask this:
 - is it 100% guaranteed fluff which cannot ever affect anyone?
 - is it giving away even more rights (the author right)?
If not, then it must be giving someone more rights, or by the
same token—taking more rights away from someone else!
Then it is _less_ free than our requirements state!

2. This is from October 24, 2002, on the openbsd-misc mailing list. It’s more than a decade
old, but still pretty much says it all.

xxxviii Introduction

The OpenBSD team works hard to ensure that every line of code it sup-
ports is licensed in this manner.

N o t e 	 The source code tree does include code under different licenses, such as the GNU C
compiler gcc, binutils, and so on. OpenBSD runs fine without them—you just can’t
compile OpenBSD without them.

This is pretty straightforward. OpenBSD is a gift. You’re free to use it or
not. As with any gift, you can do whatever you want with it. But you’re not
free to bug the developers for features or support.

Correctness
Every skilled programmer knows that programs written correctly are more
reliable, predictable, and secure. However, many free software producers
are satisfied if their code compiles and simply seems to work, and quite a
few commercial software companies don’t give their programmers time to
write their code correctly.

OpenBSD developers strive to implement solutions correctly. They
make it a strict rule to write programs in a reliable and secure manner,
following best current programming practices. And exposing the code
to “weird” environments such as ancient VAXes is part of the discipline;
OpenBSD developers insist that some subtle bugs (and a few less subtle
ones) have been pinpointed only during testing on one of OpenBSD’s less
mainstream architectures. Fixing those bugs benefits all users, of course.

OpenBSD implementations follow UNIX standards, such as the Portable
Operating System Interface (POSIX) and the American National Standards
Institute (ANSI), but they are less concerned about extensions to these stan-
dards created by third parties. For example, many Linux extensions do not
appear in OpenBSD. When those extensions are added to standards, the
OpenBSD team will add them.

OpenBSD code has been repeatedly audited for correctness through
a lot of hard work. Anyone who tries to introduce incorrect code will be
turned away—generally politely, and often with constructive criticism,
but turned away nonetheless. And that brings us to OpenBSD’s most well-
known claim to fame.

Security
OpenBSD strives to be the most secure operating system in the world.
While it can reasonably make that claim today, maintaining that position
requires constant effort. Intruders constantly try new ways to penetrate
computers, which means that today’s feature might be tomorrow’s security
problem. As OpenBSD developers learn of new classes of programming
errors and security holes, they scan the entire source tree for that type of
problem and make fixes before anyone even knows how these issues might
be exploited.

Introduction xxxix

Additionally, OpenBSD takes advantage of any security features offered
by hardware. For example, AMD’s 64-bit Intel-compatible CPUs can mark a
page of memory as either executable or writable, but not both. (Intel later
copied this feature.) This alleviates many buffer overflow attacks, but the
operating system must use this facility. OpenBSD supported this feature
in 2003, shortly after the hardware was released. In fact, OpenBSD gener-
ally supports all hardware security features offered on a platform.

The history of computing shows that users cannot be expected to patch
or maintain their own systems. Systems must be secure against existing
and future attacks out of the box. OpenBSD’s goal is to eliminate problems
before they exist.

OpenBSD and Your Security
Even though OpenBSD is tightly secured, intruders still break into OpenBSD
systems. This might seem contradictory, but in truth, it means that the
person running the computer didn’t understand computer security.

OpenBSD has many integrated security features, but you cannot assume
that these features secure everything running on the system. That’s just
not possible. No operating system can defend itself against operator error.
An operating system can protect itself from software problems to a limited
extent, but ultimately, the responsibility for security is the administrator’s.

Consider a web server—even OpenBSD’s integrated Apache server—
running on OpenBSD. OpenBSD provides the web server with a stable, reli-
able platform, and will provide services as the web server requests, within
the limits assigned by the system administrator. If the system administrator
has configured the web server correctly, a web server failure will not endan-
ger the operating system. If the system administrator configures the web
server to run with unlimited privileges, the web server can inflict almost
unrestricted damage on the underlying system.

Or consider a less extreme case. The web server might be configured
correctly, but suppose you install insecure forum software. An intruder can
break into the forum and edit its data—maybe grab the username and pass-
word the forum software uses to access the local database. If that account
information matches a system-level username and password, the intruder
might be able to leverage them to gain access to the system. Or perhaps he
can use that username and password to get administrator-level access to the
database and penetrate other applications. What if those applications have
elevated privileges?

Only careful, consistent, thoughtful work by a system administrator can
prevent intrusions. Throughout this book, we’ll discuss some basic security
precautions you should take when installing and running software. We’ll
also discuss the advanced security features OpenBSD offers in order to pro-
tect itself.

xl Introduction

OpenBSD’s Uses
Where does OpenBSD fit into your computing strategy? That ultimately
depends on your strategy and your needs. OpenBSD can be used anywhere
you need a solid, reliable, and secure system. I recommend OpenBSD for
any of three different roles: a desktop, a server, or network management.

Desktop
If you need a powerful desktop system with all the features you would
expect from a complete Unix-like workstation, OpenBSD will do nicely.
Graphic interfaces, office suites, web browsers, and other desktop software
are available in the ports collection, OpenBSD also supports a variety of
development tools, application environments, network servers, and other
features that programmers and web developers need. If you’re a network
administrator, you’ll find that OpenBSD supports packet sniffers, traffic
analyzers, and all the other programs you rely on.

Server
If you’re serving web pages, handling email, providing Lightweight Directory
Access Protocol (LDAP) or database services, or offering any other sort of
network service to clients, OpenBSD can help you. It’s a cheap and reliable
platform. Once it’s set up, it just works. And, of course, it’s secure, which
you cannot underestimate on the Internet.

Network Management
OpenBSD makes an excellent firewall, bridge, or traffic shaper. You can use
it to support intrusion detection software, web proxies, and traffic monitors.
The integrated packet-filtering firewall and supporting software provides
state-of-the-art network connection management and control, and can strip
out many dangerous types of traffic before it reaches your servers. And its
load-balancer features are competitive, with many commercial offerings
that cost thousands of dollars more.

About This Book
This book is written for experienced Unix users or system administrators
who want to add OpenBSD to their repertoire. I assume you’re familiar with
basic commands, such as tail(1), chmod(1), ping(8), and so on, and that you
know why each command in this list includes a number in parentheses after
the name. We’ll discuss many programs that you might already be familiar
with, but that might be slightly different in OpenBSD.

Introduction xli

For maximum benefit, you should install OpenBSD on a dedicated
machine. OpenBSD can coexist with other operating systems or run in a
virtual machine, but if you’re going to use OpenBSD in a production envi-
ronment, you should run it on its own.

Many people believe that OpenBSD is not the easiest Unix-like operat-
ing system, or the easiest version of BSD, or even the easiest open source
BSD. OpenBSD doesn’t have handy wizards that walk you through each
stage of the configuration process, although it does has a few menu-driven
front ends. Once you’re familiar with how the system works, though, such
wizards would only get in the way.

To truly understand OpenBSD, you must be willing to learn, experiment,
and spend time accumulating understanding. Much of this knowledge can
be directly applied to other versions of BSD, other Unix-like operating
systems, and even completely foreign operating systems, such as Microsoft’s
Windows.

Contents Overview
While this book is designed to be read from front to back, here’s a brief
description of each chapter, in case you would rather skip around randomly.

Chapter 1: Getting Additional Support  Discusses the OpenBSD docu-
mentation available both in the installed system and on the Web. You
need to understand what you’re getting into before installing OpenBSD.

Chapter 2: Installation Preparations  Discusses installation on a
standard amd64 (also known as the 64-bit Intel-compatible) system.
Making some decisions before you install OpenBSD will ensure that
you don’t need to reinstall it later.

Chapter 3: Installation Walk-Through  Carries you through every step
of a real OpenBSD installation. The OpenBSD installer assumes a cer-
tain level of knowledge about computer hardware and OpenBSD that
you might not yet possess. This walk-through will guide you through
the rough spots.

Chapter 4: Post-Install Setup  Discusses the basic steps you should
take after installing OpenBSD to make your system secure, stable, and
usable.

Chapter 5: The Boot Process  Covers system startup. Different situa-
tions require different startup methods, and we’ll cover them all. We’ll
also discuss how OpenBSD starts its component software.

Chapter 6: User Management  Discusses how to add, remove, and
restrict OpenBSD user accounts.

xlii Introduction

Chapter 7: Root, and How to Avoid It  Discusses controlling user
privileges and permissions. OpenBSD includes powerful tools such as
classes and limits, as well as the privilege management tool sudo(8).

Chapter 8: Disks and Filesystems  Covers disk management with the
standard OpenBSD filesystems.

Chapter 9: More Filesystems  Covers advanced filesystem topics such
as the Network File System (NFS), working with disk images, software
RAID, and encrypted disks.

Chapter 10: Securing Your System  Considers how to maintain security
using tools such as file flags, securelevels, OpenBSD security announce-
ments, and some basic cryptographic tools.

Chapter 11: Overview of TCP/IP  Reviews the basics of TCP/IP ver-
sions 4 and 6, and covers some of OpenBSD’s tools for examining and
troubleshooting the network.

Chapter 12: Connecting to the Network  Takes you through configur-
ing OpenBSD’s network stack for Ethernet, trunks, and virtual local
area networks (VLANs).

Chapter 13: Software Management  Describes OpenBSD’s add-on
software tools. You’ll learn how to install precompiled software, com-
pile your own software, and verify and remove software.

Chapter 14: Everything /etc  Describes each major file in /etc that isn’t
covered elsewhere, and discusses how you might want to use those files.

Chapter 15: System Maintenance  Covers the various ways OpenBSD
maintains itself and how you can make those processes fit your environ-
ment and workflow.

Chapter 16: Network Servers  Covers configuring software integrated
with OpenBSD. You’ll learn about the system logger and log file man-
agement, the DHCP server, the web server, and more.

Chapter 17: Desktop OpenBSD  Covers software useful to OpenBSD
as a desktop, such as the window manager cwm(1) and Xenocara. This
chapter includes coverage of important software that makes using
OpenBSD with a desktop easier, such as SSH keys and tmux.

Chapter 18: Kernel Configuration  Discusses the various tools avail-
able to configure a standard kernel. Unlike many other free Unix-like
operating systems, OpenBSD does not expect or require the system
administrator to compile a kernel. You can tune the standard kernels
without recompiling.

Chapter 19: Building Custom Kernels  Discusses how to recompile a
kernel in those rare instances when you must.

Chapter 20: Upgrading  Covers how to upgrade OpenBSD, either
from a snapshot or from source.

Introduction xliii

Chapter 21: Packet Filtering  Documents OpenBSD’s integrated
packet-filtering engine, PF. It includes discussions of real-world situa-
tions and how to handle them.

Chapter 22: Advanced PF  Introduces things that the packet filter can
do beyond just filtering packets.

Chapter 23: Customizing OpenBSD  Includes tidbits that didn’t fit
anywhere else but are not large enough topics to merit their own chap-
ters. This includes diskless OpenBSD, building bootable USB installation
media, and making custom OpenBSD installation sets.

This book won’t cover everything OpenBSD can do, but it will get
your feet firmly under the table. To learn the rest, you’ll need to access
OpenBSD’s information resources, which is the subject of the first chapter.

1
G e t t i n g A d d i t i o n a l H e l p

Mailing lists are rough;
homework is mandatory.

Love it or leave it.

You’ve bought this book, so you now pos-
sess all the information you will ever need

about OpenBSD. You hold in your hands
the ultimate repository of all OpenBSD wis-

dom and acumen, and once you complete it, you will
be lord and master of all that OpenBSD offers. Right?

Sorry, no. No one book can possibly contain everything there is to know
about OpenBSD. UNIX is pushing 40 years old, and BSD operating systems
have been around for more than 30 years. OpenBSD itself is over 15 years
old, and is built on decades of tradition, knowledge, and community devel-
opment. You won’t master it with any single book. You might master it with
a room full of books and a few years of study, if you stop wasting time on
trivialities like having a family and avoiding scurvy.

The OpenBSD community maintains a wide variety of information
sources. Some, such as the manual, are integrated with the OpenBSD
operating system. The OpenBSD team maintains additional resources,
such as the main OpenBSD website and the official OpenBSD mailing
lists. Users and devotees maintain additional websites, mailing lists, and

2 Chapter 1

documentation. The flood of information can overwhelm experienced users
and intimidate new users so badly that they don’t even try to sort through
it. That’s why this chapter will take your hand and lead you through some of
the other resources available.1

OpenBSD’s Support Model
If you’ve worked with only commercial UNIX, you might find OpenBSD’s
support structure a little surprising. There is no toll-free number to call and
no vendor to guide you. No, you may not speak to the manager of the sup-
port team. There isn’t one. The management is you.

Many commercial operating systems conceal their inner workings, and
the only access you get is through the programs, application programming
interfaces (APIs), and application binary interfaces (ABIs) they provide. If
you want to learn more about how your operating system works, you can’t
(unless you reverse-engineer it). When something breaks, you either live
with it or pay the vendor to solve the problem.

OpenBSD, on the other hand, is completely open. You can view the
source code, the compiler, and the resulting binaries. You have the official
manual and a whole bunch of ancillary documentation. You have access to
the developers’ logs—logs that describe every change ever made to every
part of the system—through the same tools the developers use. You can
back out of changes, understand the motivation behind the changes, and
even contact the people who have most recently worked on a component
you’re interested in and ask them what they were thinking. You can add
your own features. In other words, you have the opportunity to understand
OpenBSD in exquisite, excruciating detail.

If you want to learn about OpenBSD, you must jump from eating what
you’re served to reading the cookbook and creating your own meals. If you’re
willing to learn using the information provided, you will develop skills, and
you’ll probably even make some friends in the OpenBSD community along
the way. If you want to use OpenBSD and don’t have the time or inclination
to learn, invest in a commercial support contract. Many companies and con-
sultants around the world support OpenBSD. The OpenBSD website lists
dozens.

If you don’t want to learn and don’t want to buy a support contract, then
OpenBSD is simply not for you.

The Code Is Fine. What’s Wrong with You?
Systems administrators rarely have trouble with OpenBSD itself; the soft-
ware runs, and it runs well. Most problems arise from their own under-
standing, or lack thereof.

When a program behaves unexpectedly, the problem is usually a gap in
your expectations or understanding, and the OpenBSD community expects

1. Yes, the first chapter in this book is about getting help outside the book. I am aware of the
irony; you don’t need to tell me.

Getting Additional Help 3

that you will work to improve your own knowledge so that you can make the
system meet your needs. Other people make OpenBSD work correctly, and
you can, too.

That said, you may still find that a problem is quite real, but you can’t
be certain that it was caused by OpenBSD itself until you understand correct
behavior—not just how you think the system works, but how it really does
work. The problem could be an OpenBSD bug, bad hardware, or an errant
third-party tool. To correctly identify bugs, you must learn how the system
should behave and why.

For example, before writing the first edition of this book. I had never
used an OpenBSD machine to display a serial console. All of my Unix-like
boxes had connections to a rusty old terminal server. Most people don’t
have that many serial consoles, and they want to use a null modem cable
between two OpenBSD machines and have each serve as the terminal for
the others’ console. (We’ll cover serial consoles in Chapter 5.) From read-
ing the manual page (discussed in the next section), this common configu-
ration seemed simple enough: Attach the cables, configure one machine to
dump its console to the serial port, become root on the display machine,
and enter tip tty00. The other machine’s console should have appeared in
the terminal window, but that didn’t happen.

The next question is, “What’s wrong?” It might have been an OpenBSD
bug, a hardware failure, or a gap in my comprehension. Swapping systems
around demonstrated that the command worked on other OpenBSD
machines, just not my particular test box. Further tests with a serial mouse
and modem showed that the serial port on the test machine was bad.

Had the serial port been in working order, I might have actually found
an OpenBSD bug, but probably not.

Sources of Information
OpenBSD provides information through three primary channels: manual
(man) pages, websites, and mailing lists. To understand why your system
behaves in a particular way in your environment, you might need to check
all three.

Man Pages
Man pages are the original format for presenting documentation on Unix-
like systems. While man pages have a reputation for being obtuse, difficult
to read, or incomplete, the OpenBSD team expects its man pages to be
readable, correct, and complete.

When man pages were first created, the average system administrator
was a C programmer. As a result, man pages were written by programmers
for programmers. The OpenBSD developers are programmers and con-
sider man pages the final word in OpenBSD documentation. Even docu-
mentation errors are considered serious bugs and are dealt with as quickly
as possible. Man pages should be your first line of attack in learning how
OpenBSD works.

4 Chapter 1

That said, a man page is not a tutorial. The manual explains how things
work, not what to type to achieve particular effects. You must be able to
assemble the knowledge offered by the man page into the tool that you
need. If you want tutorials, read articles on third-party websites, the FAQ,
and this book. If you find a tutorial that tells you how to do exactly what you
want, read the relevant man pages along with the tutorial. Just remember
that anyone can write a tutorial, and there’s no guarantee of any particular
tutorial’s effectiveness or security.

Manual Sections

The OpenBSD manual has nine sections, and each man page appears in
only one section. These sections are sometimes called volumes, a name from
the days when the manual was small enough to print and distribute. Each
section covers a single topic. The sections are as follows:

1: General commands

2: System calls and error numbers

3: C libraries

3p: Perl libraries

4: Device drivers

5: File formats

6: Games

7: Miscellaneous

8: System maintenance and management commands

9: Kernel internals

Man pages often appear with the section number in parentheses after
the command, such as ping(8) or ed(1). This gives you the name of the com-
mand (ping) and the section where the command is documented (8, on
system maintenance). Almost every part of OpenBSD has a man page.

Viewing Man Pages

View man pages with man(1). If you know the section number, enter it before
the program name, but the section number isn’t mandatory. For example,
to see the man page for the standard network utility ping(8), enter this:

$ man ping

You’ll get something like this in response.

PING(8) OpenBSD System Manager's Manual PING(8)

NAME
 ping - send ICMP ECHO_REQUEST packets to network hosts

Getting Additional Help 5

SYNOPSIS
 ping [-DdEefLnqRrv] [-c count] [-I ifaddr] [-i wait] [-l preload]
 [-p pattern] [-s packetsize] [-T tos] [-t ttl] [-V rtable]
 [-w maxwait] host

DESCRIPTION
 ping uses the ICMP protocol's mandatory ECHO_REQUEST datagram to elicit
 an ICMP ECHO_REPLY from a host or gateway. ECHO_REQUEST datagrams
 (``pings'') have an IP and ICMP header, followed by a "struct timeval"
 and then an arbitrary number of "pad" bytes used to fill out the
 packet. The options are as follows:

 -c count
 Stop sending after count ECHO_REQUEST packets have been sent. If
 count is 0, send an unlimited number of packets.

 -D Set the Don't Fragment bit.
...

You can learn more than you ever wanted to know about the lowly trouble-
shooting tool ping just by reading this document. If you need more infor-
mation, look at the other man pages referenced by ping(8). Read enough
pages, and you’ll develop an in-depth understanding of OpenBSD.

Once you’re in a man page, pressing the spacebar or pgdn takes you
forward one full screen. If you don’t want to go that far, press enter or the
down arrow to scroll down one line. Typing B or pressing pgup takes you
back one screen. To search within a man page, type / followed by the word
you’re searching for, and then press enter. You’ll jump to the first appear-
ance of the search term. Subsequently, typing N takes you to the next occur-
rence of the word.

N o t e 	 The man page navigation discussed here assumes that you’re using the default BSD
pager, more(1). If you’re using a different pager, use that pager’s syntax. If you know
enough about Unix-like systems that you’ve already set your preferred default pager,
you can probably skip this part of the book.

Finding Man Pages

New users often say that they would be happy to read the man pages, if
they could find the right ones. You can perform basic keyword searches on
the manual with apropos(1) and whatis(1). The command apropos searches
for any man page name or description that includes the word you specify.
The command whatis does the same search, but matches only whole words.
For example, if you’re interested in the vi text editor, you might try the
following:

$ apropos vi
...
vmware (4) - VMware SVGA video driver

6 Chapter 1

voodoo (4) - Voodoo video driver
wsudl (4) - video driver for DisplayLink USB display devices
xcmsdb (1) - Device Color Characterization utility for X Color Management
System
...

On my system, this generates 686 entries, most of which have nothing to
do with vi(1). The random selection of entries shown here includes device
drivers and user utilities, but no text editors. If you examine them closely,
you’ll see that the letters vi appear in each of them, encapsulated within
words like video or device. Depending on what you’re looking for, apropos can
offer you far too much information.

Try a similar search with whatis:

$ whatis vi
ex, vi, view (1) - text editors

Matching only whole words can be more useful. Experiment with apropos
and whatis until you’re comfortable with them, and you should be able to
find just about any topic you like.

Overlapping Man Page Names

Some man pages have a name in common with a man page in another sec-
tion. For example, suppose someone mentions sysctl and you want to learn
about it, so you search the man pages.

$ whatis sysctl
sysctl (3) - get or set system information
sysctl (8) - get or set kernel state
sysctl.conf (5) - sysctl variables to set at system startup

We have a sysctl.conf file and two different man pages called sysctl.
Manual section 3 is for C libraries. If you’re just learning about sysctl, you
might find this man page intimidating.

By default, man displays the first matching page it finds. It searches
commands first, then games, then programming libraries, then add-on
programs such as Perl. You can change this search order in /etc/man.conf
(see Chapter 14).

In this situation, manual section 3 is before manual section 8. Without
specifying a section number, you’ll read about the programming interface.
To see the man page for the system administrator command sysctl, you
must run man 8 sysctl.

Man Page Contents

Manual authors try to arrange their content meaningfully, although mean-
ingful varies depending on what it documents. A man page for a common

Getting Additional Help 7

user command will probably be much easier to understand than a man
page for a kernel-programming interface. Even so, most man pages are
divided into sections. Some of the common sections include the following:

•	 NAME tells you the names of a program or utility. Some programs have
multiple names; for example, the vi(1) text editor is also available as
view(1) or ex(1). The man page lists all of these names.

•	 SYNOPSIS lists the possible command-line options and their arguments,
or gives examples for how programmers can call a library or interface.
Once you’ve read the man page and used the command a few times, the
synopsis might be enough to remind you of what you need.

•	 DESCRIPTION contains a brief synopsis of the program or feature.
You’ll also find detailed discussions of the command-line options.

•	 BUGS describes known failure conditions and weird behavior, and gen-
erally discusses when a feature doesn’t work as you might expect. Always
look at the BUGS section; it can save you a lot of time. I’ve frequently
had a problem with a command only to find that the behavior, and
sometimes a work-around, is listed here. Honesty is a wonderful thing
in computing products.

•	 SEE ALSO is traditionally the last section in a man page. OpenBSD is
an interrelated whole, and every command has ties to other commands.
In an ideal world, you would read every man page and be able to hold
an integrated image of the system in your head. Because most of us can’t
do this, this section directs you to related man pages.

Man Pages on the Web

The man pages are also available on http://www.OpenBSD.org/ and its vari-
ous online mirrors. One of the interesting things about the web-based man
pages is that you can look at them for both previous releases and for other
architectures. Do you want to know if there’s a difference between the sysctl
command for i386 and Loongson hardware? The web versions will let you
compare two different man pages. (You can also do this with the integrated
manual, but the web version makes it easier.)

The OpenBSD Website
The OpenBSD website (http://www.OpenBSD.org/) contains a lot of
information—from administration, installation, and management to
where to find hardware. The front page links you to a general discussion
about OpenBSD’s goals and support, where you can get OpenBSD, available
resources, and ways you can support OpenBSD. Project members keep
the website updated. If you have an OpenBSD problem or question, check
this website first.

8 Chapter 1

Mirrors

Many people across the world mirror the OpenBSD website. The main web-
site is quite heavily accessed, and mirrors will often respond more quickly.
You’ll see links at the bottom of the main website. I recommend you pick
and bookmark an official mirror that responds quickly for you. The mirror
sites are generally underused and hence faster than the official site.

The OpenBSD FAQ

The OpenBSD FAQ is OpenBSD’s repository of answers to frequently asked
questions. While much of the information in the FAQ duplicates the man
pages, the FAQ presents this information in a question-and-answer format
that’s often easier to understand.

Unlike many other FAQs, the OpenBSD FAQ includes extensive tutori-
als. For example, Chapter 4 of the FAQ contains the full, detailed installa-
tion process. If you’re having a problem, or want to know how some major
part of OpenBSD works, check the FAQ first!

Non-Project Websites

Many people maintain websites dedicated to OpenBSD content, related
to OpenBSD, or generally useful to OpenBSD users. Any time you have a
problem or are trying to understand something, your search engine might
lead you to articles on these sites. Read third-party documentation care-
fully and skeptically, however. Tutorials and articles outside the OpenBSD
Project might contain erroneous information, violate OpenBSD’s best prac-
tices, or work only in the author’s particular environment.2

The only third-party website I can unconditionally recommend is http://
www.undeadly.org/, an OpenBSD news aggregator. When a website posts
worthwhile OpenBSD-related content, the undeadly.org maintainers link to it.

If you want a web forum to discuss OpenBSD, you might try
DaemonForums (http://www.daemonforums.org/). DaemonForums has
discussion groups for all of the major BSD variants, including OpenBSD.

OpenBSD Mailing Lists
The OpenBSD Project primarily communicates through mailing lists. All
mailing lists are accessible to the public, but some welcome new users more
than others. Many hardware platforms have dedicated mailing lists, but
they welcome only platform-specific discussions and specifically reject prob-
lem reports. The OpenBSD website contains a complete list of mailing lists.
Here, I’ll cover only the mailing lists useful to average users.

announce@OpenBSD.org
This low-volume, moderated list includes only important OpenBSD
news. This list receives at least one message every six months, when a
new version of OpenBSD comes out.

2. Of course, this doesn’t apply to anything on my blog. Everything I post is the one word
of truth.

Getting Additional Help 9

security-announce@OpenBSD.org
When the OpenBSD team learns of an OpenBSD security flaw, it
posts a bulletin to this list. If you are running an OpenBSD machine
on the Internet, you must subscribe to this list. I’ll say more about
security-announce in Chapter 10.

misc@OpenBSD.org
This list contains general OpenBSD discussions. While this is the
“miscellaneous” list, it still has strict rules, and the community firmly
enforces its etiquette. I’ll cover how to usefully post to an OpenBSD
mailing list in “Using Mailing Lists” on page 11.

tech@OpenBSD.org
This list is for in-depth technical discussions, such as code reviews and
protocol analysis. If you want to know what the OpenBSD folks are
working on, read this list. It’s not for support requests. As a good rule of
thumb, if your email doesn’t include a code diff, don’t send it to this list.

advocacy@OpenBSD.org
This list is for promoting OpenBSD. If you want to talk about OpenBSD’s
inherent awesomeness in a nontechnical manner, use this list.

You’ll find other lists that might interest you, such as www@ (discussions
about the website) and ports@ (discussing the OpenBSD ports system, which
we’ll cover in Chapter 13), but those lists require more OpenBSD expertise
than most beginners have.

The easiest way to access the mailing lists is the web interface at http://
lists.OpenBSD.org/. The OpenBSD team manages its mailing lists with
Majordomo (http://www.greatcircle.com/majordomo/). If you’re familiar with
that package, you can access the mailing lists at majordomo@OpenBSD.org.

Unofficial Mailing Lists

You can find a fairly complete list of all OpenBSD-related mailing lists
hosted by third parties at http://www.OpenBSD.org/mail.html. This includes
lists in languages other than English.

One unofficial list, run by an OpenBSD developer, is the PF mailing
list, for users of the OpenBSD packet filter. This list is for all PF packet filter
users, not only OpenBSD, but OpenBSD users dominate the list. If you
want to learn more about PF, subscribe to this list. You can find more at
http://www.benzedrine.cx/.

Read-Only Mailing Lists

So misc@OpenBSD.org looks like the mailing list for you, and you subscribe.
If you race ahead and ask all your questions, you’ll immediately accomplish
a couple things: You’ll alienate the community, and you’ll be told to shut up
and go away; you certainly won’t make friends. That’s mainly because the
mailing lists exist to be read more than posted to.

10 Chapter 1

Unless you’re in a truly unique situation or really on the bleeding edge
of OpenBSD development, more likely than not, someone has struggled
with your problem previously. That person probably got an answer, and
that answer probably hasn’t changed. The quickest and least intrusive way
to answer your question is to find that previous message. That’s where the
mailing list archives come in.

Your favorite search engine has already indexed the OpenBSD mailing
list. Always ask the search engine your question before going anywhere near
the mailing lists. If you’ve looked around and found that your question is
truly unique, send a message to the mailing list. But when you’re first start-
ing out, you’re better off treating the OpenBSD mailing lists as read-only.

Using OpenBSD Problem-Solving Resources
Let’s pick a common question and use the OpenBSD resources to solve it,
without resorting to sending mail. One of the things OpenBSD is known
for is its support for cryptography in hardware. How does that work, and
what does OpenBSD do to support it? Here’s how I would search for infor-
mation on this topic from each information source the OpenBSD Project
provides.

Using the OpenBSD Website
Look at http://www.OpenBSD.org/ and you’ll see a link to Crypto. This takes
you to the Cryptography page, which covers OpenBSD’s cryptography sup-
port. It includes algorithms and discusses how the team has integrated
OpenSSL into hardware cryptographic accelerators. Read, learn, and enjoy.

Using Man Pages
Let’s try running apropos cryptography:

$ apropos cryptography
RSA_public_encrypt, RSA_private_decrypt (3) - RSA public key cryptography

This man page isn’t terribly useful as a general overview, and whatis
cryptography doesn’t return anything.

Cryptography is often referred to as crypto. apropos crypto gives too
many results. whatis crypto gives more reasonable results:

$ whatis crypto
crypto (3) - OpenSSL cryptographic library
crypto (4) - hardware crypto access driver
crypto (9) - API for cryptographic services in the kernel

This is a fairly short list, and all the entries look promising. Manual
section 3 is for programmer interfaces, section 4 is for device drivers,

Getting Additional Help 11

and section 9 is for the kernel. If you’re specifically looking for hardware
cryptographic accelerators, section 4 should jump out at you, but start wher-
ever you feel most comfortable.

Using Internet Searches
Go to your favorite search engine and search for “OpenBSD crypto hardware
support.” On the day I wrote this, the first result led me to the official page
on the OpenBSD website. The second hit was a paper on the OpenBSD
cryptographic framework. You’ll find old articles, archived mailing list dis-
cussions, man pages, tutorials, and innumerable blog posts. You’ll probably
need to add the model number of a particular cryptographic accelerator
card to reduce the results to a manageable number.

Using Mailing Lists
If the mailing list archives, a web search, the OpenBSD FAQ, the OpenBSD
website, the integrated manual, and other assorted resources do not answer
your question, you can ask for help. A variety of highly knowledgeable and
very skilled computing professionals read the OpenBSD mailing lists. Many
of these people enjoy working with OpenBSD and want to help intelligent
new users. In their minds, “intelligent” equates to “not asking a question
that has been asked before.”

Have another look at all the ways we gathered information on
OpenBSD’s cryptographic hardware accelerator support in the previous
section. Information about most other topics is just as readily available.
People who take the time to read and answer questions on the OpenBSD
mailing lists have already spent considerable time and energy creating this
content and ensuring its accuracy. Now imagine their reaction when some-
one asks about cryptographic accelerator support on the public mailing list.
Most OpenBSD experts will assume any of the following:

•	 The person wants their hand held.

•	 The person is unwilling to read the documentation.

•	 The person has nothing but contempt for the OpenBSD developers.

•	 The person has the intelligence of a brick.

Most OpenBSD experts would conclude that the person asking the
question simply isn’t ready to run OpenBSD. At best, the questioner will be
ignored. At worst, some experienced OpenBSD person who wrote all this
documentation will take offense at his hard work being so thoroughly dis-
counted and flame the questioner badly enough that his monitor will need
three months in the Mayo Clinic burn unit.

Keep this in mind before you send an email. Have you really checked
everywhere for an answer? Are there any other search terms you haven’t
tried? Performing a few extra searches with different keywords is much
faster than composing a useful email, and there’s an excellent chance you’ll
find the answer to your question.

12 Chapter 1

If you’re familiar with other free Unix-like operating systems, OpenBSD’s
mailing lists might give you a bit of a culture shock. OpenBSD users are
advanced computer users almost by definition. If an experienced systems
administrator tries to debug a piece of software, that administrator is
expected to know enough to ask the responsible party. If you go to a Linux
forum, you’ll find people discussing server and client programs, desktop
environments, and dang near any other piece of software that runs on that
platform. Those forums are manned by volunteers dedicated to providing
around-the-clock support and extreme efforts to help their operating sys-
tem conquer the world.

The OpenBSD folks don’t care if they take over the world or not. They
don’t really care if you use their software. If other people can get use out of
it, that’s great. If not, oh well. They will happily assist you with OpenBSD-
specific problems, but they don’t really care about your database issues
or your website. If you’re having trouble porting your preferred window
manager to OpenBSD because of some subtle bug in OpenBSD’s libc, the
OpenBSD people would love to talk to you. If you can’t configure your win-
dow manager the way you like, then you should talk to the window manager
support group instead.

Creating a Good Help Request

Before you send an email, think carefully about the problem you’re trying
to solve. What question should you actually be asking? Define the issue as
narrowly as possible. Suppose you cannot connect to a virtual private net-
work (VPN) server with OpenBSD’s IPsec client. Is the problem that you
can’t actually reach the IPsec server? Does the connection work when you
turn off your OpenBSD firewall, but return when you re-enable filtering?
Does isakmpd(8) crash and leave a core file every time you try to start the
VPN? Each of these is a very different problem. Including the precise prob-
lem in your email will get you a better reception.

The first paragraph of your email should state your problem briefly and
succinctly. If your first paragraph doesn’t contain enough to interest people,
they’ll probably delete the email before getting to anything relevant.

After that important first paragraph, gather any and all information
related to the problem. Include this information in your email. This should
include the following:

•	 The version of OpenBSD you are running

•	 Your hardware platform

•	 Any error output (be sure to check /var/log/messages as well as your
terminal)

•	 The contents of /var/run/dmesg.boot

•	 A complete but narrow problem description

Give your email message an appropriate subject. A subject like “Problem
with OpenBSD” will get ignored. A subject like “Reproducible isakmpd

Getting Additional Help 13

crash on newest OpenBSD snapshot” will immediately attract attention.
Many OpenBSD people decide which messages to read based entirely on
the subject line. Moderately advanced email-reading programs allow the
recipient to delete an entire thread of discussion based on the subject line
or message headers.

How to Be Ignored

Many senior OpenBSD users use a text-based email reader such as Mutt
(although quite a few do use more graphic email readers, mind you.) Text-
based email programs are very powerful programs for handling thousands
of emails a day, but they show only text, and they do not display HTML mes-
sages well. If you are using a graphic mail client such as Mozilla Thunderbird
or Microsoft Outlook, wrap your text at 72 columns. Sending mail in pure
HTML or without readable line wrapping invites experienced recipients to
discard it unread.

This might seem harsh, and it’s definitely different from mailing lists
run by other open source operating systems. But most email clients are not
suited to handle thousands of messages in a day, scattered across dozens
of mailing lists, with several parallel discussion threads each, in a manner
accessible to the human mind. I receive thousands of email messages a day,
and I know many OpenBSD developers get—and process—even more. We
simply cannot cope without mail tools that address our problems. HTML
support is not nearly as necessary as the ability to manage, present, and pro-
cess a large number of messages in a sensible manner.

On a similar note, most email attachments are unnecessary (and several
of the OpenBSD mailing lists will unceremoniously strip them from incom-
ing messages). You do not need to PGP sign your email, and those business
card attachments just demonstrate that you really shouldn’t be running
OpenBSD. If you include a signature in your email, it should be no longer
than four lines. Long ASCII art signatures, even really nifty ones featuring
the OpenBSD blowfish, are right out.

It’s easy to let frustration turn a simple request into a rabid demand for
immediate assistance. Remember to be polite; the people who receive your
message might decide to help you, but they’re under no obligation to do so.
If you want someone to be obliged to help you, buy a support contract.

Sending Your Email

Before sending your email, double-check your search engine. Are you sure
this hasn’t been asked before?

Send all of your information and your narrow, specific, documented
question about the OpenBSD core system to misc@OpenBSD.org. Yes, OpenBSD
has many other mailing lists, and some of them might look more appropri-
ate for your problem, but people who post to them are almost always told
to go ask on misc@ instead. People on misc@ might refer you to another
mailing list, but it’s much better to post a message to a specific list if that
message starts with “So-and-so on misc@ recommended that I ask this here.”

14 Chapter 1

If you have a narrow, specific, well-documented question about a piece of
add-on software (or package, as discussed in Chapter 13), you can send it
to ports@OpenBSD.org instead.

Responding to Email

The response you receive might be a brief note with a URL, or even just the
words “man such-and-such.” If that’s what you get, that’s where you need to
go. Remember that you’re asking because you don’t understand something,
and these responses tell you where to learn the answer to your question.
Don’t just email back asking someone to hold your hand.

If you don’t understand the reference you’re given, treat that as another
problem. Narrow down the source of your confusion. Man pages and tutori-
als are not perfect, and some parts might seem mutually exclusive or contra-
dictory if you don’t fully comprehend them.

Finally, follow through. If you’re asked for more information, provide it.
If you don’t know how to provide it, treat that as another problem. Go back
to the beginning of this chapter and try to figure it out. If you develop a
reputation as someone who doesn’t follow up on requests for more informa-
tion, you won’t even get a first reply.

Now let’s get ready to actually install OpenBSD.

2
I n s t a l l a t i o n P r e p a r a t i o n s

I am script kiddie.
Windows is warm and tasty;

blowfish goes down hard.

It’s not enough to install OpenBSD and get
the machine running; you want a successful

installation. A successful installation means
that the system is configured to perform the

job you intend it to do. A developer’s laptop has very
different requirements than those of a dedicated firewall, which might look
very different from a web server. Proper planning will make your OpenBSD
installation quick, easy, and successful. We’ll spend a great deal of time
on installation planning. Once you understand what you’re doing, the
actual installation process is pretty simple. Many of the problems people
have with OpenBSD come from not understanding their many choices.

The guidelines in this chapter cover most situations, but the final
word on installing OpenBSD is the install document included in the
release. For example, before installing OpenBSD on an i386 system, read
i386/INSTALL.i386 for your release.

16 Chapter 2

OpenBSD Hardware
OpenBSD supports a wide variety of different hardware architectures. Some
platforms, such as i386 and amd64, have extensive support, and their web
pages and release notes list pages and pages of supported hardware. Others,
such as SGI, support only very specific hardware models.

OpenBSD’s currently supported hardware platforms include i386 (stan-
dard PC), amd64 (64-bit PC-style hardware), sparc64 (Sun-style hardware),
SGI (Silicon Graphics), and others. It also supports old platforms such
as the VAX and tiny computers like the Zaurus. The platforms that I find
interesting include the following:

i386  the Intel-compatible computer that has been popular for the
past couple of decades

amd64  AMD’s 64-bit extensions to the 32-bit i386, copied by Intel as
EM64T, and sometimes called x64, x86_64, or x86-64 (this hardware
can run both the 32-bit i386 and 64-bit amd64 versions of OpenBSD)

sparc64  64-bit Sun UltraSPARC and compatibles

macppc  PowerPC-based Macintosh computers, from the iMac up until
Apple switched to amd64 hardware

Zaurus  Sharp Zaurus personal digital assistants (PDAs)

This chapter covers installing on the i386 and amd64 platforms. These
are the standard 32-bit and 64-bit PC systems available from most vendors,
and are what you’re most likely to find on the secretary’s desk while he is at
lunch. They’re architecturally close and install in exactly the same way.

Old systems can run OpenBSD quite well. I’ve run OpenBSD/i386
quite nicely on a 166 MHz processor with 128MB of memory. You probably
have some old system lying around that’s perfectly adequate for learning
OpenBSD.

In this book, I assume that your equipment is PCI bus or newer. I do
not cover EISA hardware, or ISA other than the onboard chips in modern
hardware. If you have an EISA SCSI card or network interface card (NIC)
that still works, OpenBSD probably supports it. I assume that you still have
the original hardware configuration floppy and remember how to set the
IRQ and interrupt to match that assumed by the OpenBSD kernel. If you
don’t, recycle that card and buy something built this millennium.

Note that the hardware must be in working condition. If your old
Pentium machine kept crashing because its RAM is bad, using OpenBSD
won’t fix that problem. Also, OpenBSD will be most useful if the hardware
meets certain minimum levels. I make recommendations based on my own
experience, but again, the documentation gives the current and definitive
requirements.

Installation Preparations 17

You can find a full list of supported hardware platforms at http://www​
.OpenBSD.org/plat.html. This page links to a page for each hardware platform,
where you can get details on support for that hardware.

Supported Hardware
The good news is that OpenBSD supports most hardware. The bad news is
that it doesn’t support everything. Generally speaking, OpenBSD supports
the most common nonproprietary hardware. It might not support the very
newest hardware, as the OpenBSD team doesn’t get much access to hard-
ware before it’s released. Hardware that’s a few months old has better sup-
port than bleeding-edge gear.

To verify if OpenBSD supports your hardware, read the release notes
for your platform or just give it a try.

Proprietary Hardware, Blobs, and Firmware
Some hardware vendors want to keep the inner workings of their equip-
ment secret so that competitors can’t copy their designs. They hide their
hardware designs in two common ways: proprietary hardware and binary
object device drivers.

Some vendors will not provide documentation for their hardware. The
vendor expects that the user will use the vendor-provided driver, and they
provide drivers only for the most widely used commodity operating systems
(such as Windows) or for a specific target market (Apple). Without docu-
mentation, writing device drivers is tedious and difficult. Some hardware
can be supported well without complete documentation, but much cannot.
For example, OpenBSD’s sparc64 platform didn’t support newer Sparc pro-
cessors for several years, until Sun released documentation.

Some vendors don’t want to provide documentation, but do want users
of open source operating systems to buy their hardware. These vendors
provide drivers for their hardware in the form of binary objects, or blobs.
This might sound reasonable at first, but the operating system must load
these blobs into the kernel. The OpenBSD team has several objections
to this. First, the code is not available for audit. If the blob has a security
issue, or has some subtle interaction with the kernel that destabilizes the
system, there’s no way for the developers to resolve the problem. The blob
might only be inefficient or wasteful, but it could negatively impact other
kernel subsystems or even include backdoors. Lastly, OpenBSD’s philosophy
requires that all code be covered under a strict BSD license. In-kernel blobs
are not free, and so OpenBSD will not support them.

Note that blobs are not the same as firmware. Firmware is a binary object
a piece of hardware needs in order to run, and is loaded into the hardware
itself, rather than into the operating system. You’ll find firmware in almost
every computer component: CPUs, motherboards, NICs, disk controllers, and
so on. Firmware is never loaded into the kernel; the kernel loads the firm-
ware into the card. The OpenBSD team considers this acceptable. The
firmware lets the hardware provide its documented interface to the operat-
ing system, and if it wasn’t on the disk, it would be on the hardware itself.

18 Chapter 2

Generally speaking, if OpenBSD developers have a piece of hardware,
documentation for that hardware, and any use for the hardware, they will
probably implement support for it. If not, that hardware won’t work. In most
cases, unsupported proprietary or blob-driven hardware can be replaced
with more effective (and less expensive) open hardware.

Processors
Processor brand is irrelevant. OpenBSD doesn’t care if it’s running on
a CPU from Intel, AMD, Cyrix, or any other Intel-compatible processor.
OpenBSD probes the CPU on boot and uses whatever chip features it recog-
nizes. I’ve run very effective multimegabit firewalls on 486-class processors,
but you’ll be happiest with a 1 GHz or faster processor.

OpenBSD’s multiprocessor support is not as broad as some other oper-
ating systems, however. The OpenBSD kernel mostly runs with the Big Giant
Lock method, so the kernel can run on only one processor at a time. (Some
small chunks of the kernel are not under the Big Giant Lock.) In practical
terms, this means that the OpenBSD kernel won’t make effective use of
more than two processors or cores.

Does this mean you shouldn’t use OpenBSD on your dual-eight-core-
processor server? That depends on your expected server load. User processes
scale well as long as they don’t go into the kernel. Most web log analysis soft-
ware, for example, runs almost entirely in user space, and you run massively
parallel analysis jobs that scale quite well with the number of processors.
Tasks such as forwarding packets, however, pass through the kernel. The
hardware you need depends entirely on your expected workload.

Memory (RAM)
Memory is good. The more memory you have, the happier you will be. Adding
RAM accelerates your system more than any other generic improvement.
You should have at least 256MB of RAM, and preferably at least 512MB. If
you can get a couple of gigabytes in your system, OpenBSD will take full
advantage of that memory.

If you keep adding memory, you will hit a point where your system has
all the memory it needs, and more memory won’t further improve perfor-
mance. This could be as low as 128MB for a small firewall, a couple of giga-
bytes for a desktop machine, or more for a large database server.

Most weird crashes and inexplicable, irreproducible problems can be
traced back to bad memory, so be certain that the memory you are using is
good. Memory is a common failure point in an old machine.

Hard Drives
The smallest new hard drive you can buy today will run OpenBSD with vast
amounts of space to spare. On older systems, I recommend at least 40GB
of disk space—not because OpenBSD won’t fit in less, but because you’ll
want room for additional files and software. The smaller your disk, the

Installation Preparations 19

more closely you’ll need to monitor its use. It’s easy to fill a small disk when
building a desktop environment from source, and disks are cheap these
days. If you’re running a small firewall from a flash drive, I recommend at
least 512MB.1

Virtualization
Many people run new operating systems in a virtual environment while they
become accustomed to those systems. Some companies even have firm poli-
cies mandating that all systems be run as virtual servers. OpenBSD runs
fine in common virtual environments, and even has specific device drivers
for virtualization systems such as VMware.

The hardware requirements for running OpenBSD on a virtual server
are similar to the requirements for running OpenBSD on real hardware.
Note that no operating system running in a virtual environment is as secure
as that same operating system running on real hardware. Virtual environ-
ments do not precisely replicate real hardware. Emulated CPUs have their
own new and interesting bugs, virtual NICs have unique errors, and so on.
Additionally, the environment providing the virtual server is itself an oper-
ating system. An intruder can attack that underlying operating system, and
once an intruder controls the virtualization server, clients running on that
machine are much more vulnerable. No operating system can protect itself
against its hardware. You must consider this risk when planning OpenBSD’s
role in your environment.

For learning about OpenBSD, however, a virtual environment is per-
fectly adequate. I run OpenBSD machines in VirtualBox, on ESXi, and on
Linux’s KVM hypervisor without difficulty.

Multiple Operating Systems
For many years, I ran multiple operating systems on a single computer. I
remember being thrilled by my new 6GB hard drive because I could run
FreeBSD, OpenBSD, Windows, and Linux on one computer with plenty
of space for each operating system. This was the only way to run multiple
operating systems on a single desktop, but advances in virtualization tech-
nology have made this approach obsolete.

Rather than carefully dividing your desktop hard disk to run multiple
operating systems and hoping that some proprietary disk-partitioning pro-
gram won’t munch its neighbor, I recommend running one operating system
that supports a virtualization server and running your secondary operating
systems as guests. OpenBSD supports running virtual guests with qemu.

Getting OpenBSD
Once you have hardware, you need OpenBSD. You can get OpenBSD on
CD and over the Internet.

1. Yes, that’s megabytes—you know, the unit below gigabytes. Yes, megabytes can apply to disks.

20 Chapter 2

Official CDs
Why would you buy an official CD in the 21st century?

The OpenBSD project is funded largely by sales of official CDs, along
with related books, clothing, and so on. You can download a disk image
from the Internet and burn your own installation disk, but purchasing an
official set helps improve OpenBSD. The OpenBSD team tries to make
the official CD sets interesting pieces in and of themselves, and usually
packages them in some sort of geek-themed art. To get an official CD, go
to the OpenBSD website and look for the Getting OpenBSD link. You can
also find a whole bunch of OpenBSD-related merchandise.

You can download installation images from the Internet, but they’re
not the same as the official CD set. The downloaded disk images don’t
contain any packages, lack the fancy physical packaging, and work on only
one hardware architecture. You cannot download the images used for the
official disks.

The main OpenBSD distribution point is in Canada, which increases
delivery costs for those living on other continents. The OpenBSD website lists
a variety of resellers that offer official OpenBSD CDs. Pick a vendor in your
country and save on customs duties. If that option isn’t available to you, you
can at least pick a vendor on your same continent and save on shipping.

Internet Downloads
The other OpenBSD installation methods require network access, either
to download a complete image or to download files during the installation.
Start by selecting an OpenBSD mirror site close to you. You can find a full
list of mirrors at http://www.OpenBSD.org/ftp.html.

You can install the operating system files from an ISO image, FTP,
HTTP, rsync, or even the Andrew File System (AFS) or Network File System
(NFS) on some platforms. We will break the task into two parts: getting the
target system to boot and getting the operating system files on the machine.

Mirror Site Layout
All of the OpenBSD mirrors contain files and directories much like these:

5.1, 5.2, 5.3, and 5.4  The numbered directories contain OpenBSD
releases. Most mirrors contain the last four releases. This particular
server contains OpenBSD releases 5.1, 5.2, 5.3, and 5.4.

Changelogs  This directory contains collated OpenBSD Concurrent
Version System (CVS) logs for those interested in OpenBSD’s develop-
ment. The casual user would probably find the web-based CVS browser
more useful.

distfiles  This directory contains the files for building third-party soft-
ware included in the OpenBSD ports collection (see Chapter 13). Not
all mirror sites carry this very large directory.

Installation Preparations 21

doc  This directory contains the OpenBSD FAQ and the PF FAQ, as
well as translated and obsolete versions of the documentation.

ftplist  This file documents the official FTP and HTTP installation mir-
rors. When you install via FTP or HTTP, the installer grabs this file to
allow you to choose a mirror site close to you.

OpenBGPD, OpenNTPD, and OpenSSH  These three directories contain
software that originated in the OpenBSD Project, but has been ported
to other operating systems. OpenBGPD and OpenNTPD are newer projects
aimed at creating OpenBSD-style Border Gateway Protocol (BGP) and
Network Time Protocol (NTP) daemons. OpenSSH is the most widely
deployed Secure Shell (SSH) client and server in the world, and is
ported to all major operating systems.

patches  This directory contains patches for each earlier OpenBSD
release. These patches address critical security and stability issues.

snapshots  This directory contains recent experimental OpenBSD ver-
sions, snapshots of development between releases. If you want an early
preview of the next version of OpenBSD, install a snapshot. These are
works in progress; the developers provide them so that users can help
test new code and catch any bugs before a release. If you want to be
helpful, use a snapshot, but be warned: A snapshot might work beauti-
fully, or it might savage your hardware and subtly corrupt your data.
See Chapter 20 for more information about snapshots.

songs  Each version of OpenBSD includes a song written for the release.
The songs directory contains each of these soundtracks.

timestamp  This file contains the time this mirror was last updated.

tools  This directory contains add-on tools useful for the OpenBSD
Project’s internal workings.

Release Directories
Look within any given release directory on an OpenBSD FTP site or on a
CD, and you’ll see the following:

•	 A directory for each architecture OpenBSD supports: amd64, i386,
sparc64, and so on (on the CD, these directories are scattered among
different disks as space permits)

•	 A packages directory containing precompiled software for this release
(see Chapter 13)

•	 A ports.tar.gz file containing the compressed ports tree (see Chapter 13)

•	 A src.tar.gz file containing the operating system source code (see
Chapter 20)

•	 A sys.tar.gz file containing the OpenBSD kernel source code (see
Chapter 19)

22 Chapter 2

•	 A xenocara.tar.gz file containing the OpenBSD version of the X Window
System (see Chapter 19)

•	 A tools directory with software to help installation

•	 Several documents such as the release announcement
(ANNOUNCEMENT), the basic instructions (README), and notes
on OpenBSD’s support for third-party software and different hardware

Look through your CD or the mirror site and find the directory for
your hardware architecture. The architecture directories contain fairly
similar files for every hardware platform.

First, find the installation instructions for your hardware. These are
named INSTALL followed by the platform name (such as INSTALL.i386,
INSTALL.amd64, and so on). Always read the installation instructions
for your platform. While I’ve made every effort for accuracy in this book,
OpenBSD continually changes, and the install document for your release
is the last word on installation instructions.

Boot Media
The OpenBSD boot media varies by hardware platform, and each hard-
ware item has its own boot media requirements. You can’t expect to boot a
Zaurus or a VAX from a CD.

To easily boot the OpenBSD installer on i386 or amd64 hardware, use
either a floppy disk or a CD (I usually recommend the latter). You can boot
the installer from a USB disk, but the standard method requires bootstrap-
ping from an OpenBSD machine, and nonstandard methods vary widely
depending on available equipment.

If you cannot boot from a CD, use a floppy disk. OpenBSD provides
one amd64 floppy image and three different i386 floppy disk images. If
you’re booting i386 from a floppy, I suggest downloading all floppy images.

If you cannot boot using either method, you must use the Preboot
eXecution Environment (PXE) diskless booting method, as described in
Chapter 23. This method works well but requires a bit more preparation.

Choosing Install Media
The boot disk can format your hard drive, configure your network, and
copy installation files to disk. Boot media don’t include those installation
files, however. Installation files for i386 and amd64 machines come on an
ISO image and over the network via FTP or HTTP.

If you intend to install this release on multiple OpenBSD machines, you
might download the CD image that includes the installation files. It’s much
larger than the boot-only installer ISO image, however, so downloading it
will require some sort of broadband connection.

If you’re doing a single OpenBSD installation, or you don’t have a CD
drive, I recommend an HTTP installation. If you install from a reasonably
close mirror site and have sufficient bandwidth, OpenBSD installs from

Installation Preparations 23

HTTP quickly and reliably, and uses only about half as much bandwidth as
downloading the installation ISO image. If you prefer, you can install from
FTP as well.

Advanced users can install OpenBSD via the PXE method, as men-
tioned in the previous section and covered in detail in Chapter 23.

Local Installation Servers
One reason CDs are so popular is that you need to download files from the
Internet only once, but can reuse your downloads to install OpenBSD on
many machines. But CDs are physically fragile, and not every machine has
a CD drive. If you want to install OpenBSD on several machines without
using up bandwidth for each installation, download all of the installation
files for your architecture. If you copy these files to a local FTP or web server,
you can install OpenBSD on any number of machines from these files. To
install from the local FTP server, you’ll need a username and password for
the FTP server.

To help save the OpenBSD Project on bandwidth costs, download only
the directories for the architectures you need. If you know exactly what you
want to install, download just those file sets. You might have no respect for
your own bandwidth, but please respect others’ bandwidth.

File Sets
The release directory for each architecture contains several compressed
files with names like comp52.tgz, base52.tgz, and so on. These file sets contain
compressed OpenBSD installation files. By choosing to install particular
file sets, you can pick how much functionality your OpenBSD system will
have out of the box. For example, the documentation is kept in a separate
distribution set. If you have documentation elsewhere, you might choose to
not install it on a particular system. Also, intruders often make use of com-
pilers, so you might not want them on a system you want to protect. But if
this is your experimental “learning OpenBSD” machine, install everything.

Each file set has a name and a version number. For example, one distri-
bution set of OpenBSD in release 5.2 is base52.tgz. These are the base files
of release 5.2. In the next release, this same file set will be called base53.tgz.

All architectures include all file sets, unless otherwise noted in the
architecture’s release notes. If this is your first OpenBSD installation, take a
moment to decide which distribution sets you need. If at all possible, install
them all on your test machine. You can always trim them down later for
dedicated-purpose machines.

The following file sets are available:

bsd, bsd.mp, and bsd.rd
These file sets contain only OpenBSD kernels. The kernel is the heart
of the operating system, containing the device drivers and basic system
functions. Without a kernel, the system will not boot. The bsd kernel is
for single-processor machines, while the bsd.mp kernel supports multiple

24 Chapter 2

processors. The bsd.rd kernel contains the OpenBSD installer, basic user-
land utilities, and the live system kernel. You can run only one kernel at
a time.

baseXX.tgz
This contains OpenBSD’s core programs—all the things that make
OpenBSD Unix-like. The contents of /bin, /sbin, /usr/bin, and /usr/sbin;
the system libraries; and all the miscellaneous programs you expect to
find on a minimal Unix-like system are in this file set. You must install
this file set.

etcXX.tgz
You might guess that this file set contains the files from /etc, but it also
contains other required files and directories, such as /var/log and the
root user’s home directory. You must install this file set.

manXX.tgz
If you need the man pages for the programs in the base and etc file sets,
install this distribution set. The man pages for other sets are installed
with their respective file sets.

compXX.tgz
This file set contains C and C++ compilers, the assembler, libraries, tools,
manuals, and the toolchain for each. You need this file set to develop or
compile software, or use the ports collection (see Chapter 13). You do
not need this file set if you plan to use only precompiled software pack-
ages. At roughly 60MB, it is the largest file set for most platforms, but
it’s trivial compared to the size of modern hard disks. You might choose
to not install it on a secure machine.

gameXX.tgz
This file set contains several simple games, based on games originally
distributed in BSD 4.4. Some of these, such as fortune(1), are considered
UNIX classics, and old farts won’t be happy unless they’re installed.
Others, such as /usr/games/wargames, assume that you’re familiar with
early 1980s films. You don’t need the games file set (unless you want to
see what passed for “computer games” back when I was in high school).

xbaseXX.tgz
This contains the core of Xenocara, the OpenBSD version of the X
Window System. If you want to use X, you need this. Although you
might not have a console or monitor on this computer, remember that
X allows programs on this server to display remotely.

Most OpenBSD packages assume that you have installed this file set.
If you find that a package crashes with errors about missing X libraries,
you need this file set.

Installation Preparations 25

xetcXX.tgz
This contains the X configuration files. If you’re using X for more than
its libraries, you need this file set.

xfontXX.tgz
This contains X fonts. If you plan to use X on this machine’s console,
install this file set.

xservXX.tgz
This file set contains all the X video card drivers. If you plan to use X
on this machine’s console, install this file set.

xshareXX.tgz
This contains the X documentation. If you plan to use X on this
machine’s console, install this file set.

Partitioning
Partitions are logical subsections of a hard drive. OpenBSD can handle
different partitions with their own unique privileges. You might make
some partitions read-only so that files on them cannot be added, moved,
or changed.

OpenBSD might refuse to run programs on a specified partition, and it
knows that device nodes should appear only on certain partitions. User files
should not have setuid or setgid permissions, so the operating system won’t
recognize those privileges on files on the user data partition. While many
operating systems support these sorts of privilege controls, OpenBSD uses
them by default.

The most difficult part of installing OpenBSD is partitioning. When you
don’t know how partitions work, choosing partitioning can be troublesome.

If you’re familiar with other Unix-like operating systems (such as some
distributions of Linux), you might be accustomed to using a single large
root partition and putting everything on it. This is a bad idea for several
reasons. OpenBSD uses partitions as a security tool. A single large partition
eliminates per-partition security and privileges. With your log files safely
contained on one partition, a process or user gone amok cannot fill your
entire drive. While it could fill a partition, you could still create and edit
files on other partitions, giving you the flexibility you need to address the
problem.

Unlike many installers that have fancy menus and graphic tools,
OpenBSD’s installer expects you to know how to use low-level disk manage-
ment tools such as disklabel(8). Unlike with those operating systems, how-
ever, OpenBSD can be installed in a much wider variety of ways on a wider
variety of systems, all with a single installer.

26 Chapter 2

If this is your first OpenBSD installation, use the default partitioning
offered by the installer. OpenBSD will provide all its standard partitions,
but adjust their sizes based on the size of your disk. The discussion here is
based on a standard i386 installation on a fairly small disk.

If you’ve previously installed OpenBSD and you’re installing it on a
special-purpose machine, you might want special partitioning. In that case,
get a piece of paper and a pencil, and write down the size of your hard disk,
each partition you need, and each partition’s desired size. Your special-
purpose OpenBSD machine should almost certainly have all the same
partitions as a default installation, but their sizes will differ. A web server
has very different disk space requirements than a desktop machine, which
in turn has different requirements than those of a firewall.

If you have a large disk, leave some space unallocated. Having partitions
the size you need accelerates filesystem integrity checks; fsck(8) doesn’t spend
cycles integrity-checking unused disk space. On solid-state disks, unused
space gives wear-leveling algorithms more cells to play with, increasing the
life span of the disk and decreasing the odds of failure. It’s better to have
spare disk space you never need than to need disk space you don’t have.

Standard OpenBSD Partitions
The standard OpenBSD partitions are / (root), swap space, /tmp, /var, /usr,
/usr/X11R6, /usr/local, /usr/src, /usr/obj, and /home. If you create a custom
layout and don’t include one of these partitions, the installer will put files
that go into that partition into either your root or /usr partition, quickly fill-
ing them. If you want to create a partition after installation, you must find
space on your disk for it. Unless you left unallocated space on your disk,
you’re better off reinstalling the whole system.

Root Partition

The root partition holds the main OpenBSD configuration files and the most
essential software needed to get the computer into single-user mode and on
the network. Your system needs fast access to the root filesystem, so if you
have multiple disks, put the root partition on the fastest (or smallest) one.

The root partition is the only one whose placement on disk is vitally
important. Over the years, i386 systems have been repeatedly expanded to
surpass their own limits—they’re based on an architecture that could origi-
nally handle only up to 640KB of RAM, after all! All modern operating
system kernels work around these limits in a manner mostly transparent to
users, but when the system is first booting, you’re trapped within the hard-
ware’s limits.

Many old i386 systems have limits on hard drive size. They only recognize
128GB drives, 2TB drives, or some other number. The hardware BIOS can-
not access anything beyond that limit. If you’re using a computer that has a
128GB limit on hard drive size, and you put the kernel somewhere beyond
the first 128GB of disk space, the computer will be unable to find the kernel

Installation Preparations 27

and thus unable to boot the system. Check your hardware manual before
you get started. If the manual refers to a disk size limit, your entire root par-
tition must fit within that limit.

If you violate this limit, your system will probably appear to work. The
second you change the file /bsd, however, it’s likely that your computer will
refuse to boot. Save yourself much pain by putting the root partition first
on the disk, and making sure it’s small enough to fit within the hardware’s
limits.

Swap Space

Swap space is used for virtual memory. When your computer runs low on
RAM, it starts to move information that has been sitting idle in memory
into swap space. When the computer needs that information, it’s loaded
from virtual memory into real memory. This isn’t necessarily bad for per-
formance. Many programs spend the vast majority of their time executing
only a small fraction of their code. OpenBSD is pretty good about figuring
out which sections of memory can be moved into swap space and which are
used too frequently to be swapped. If things go well, your computer will
almost never need swap space.

OpenBSD also uses swap space during system failures. If the kernel
panics, the computer writes the contents of system memory to the swap par-
tition. This means that the swap partition must be, at its smallest, slightly
larger than the amount of physical RAM in the system.

How much swap space do you need? The short answer is, “It depends
on the system.” OpenBSD defaults to allocating twice as much swap space
as you have physical RAM. This isn’t a bad rule, as long as you understand
it’s very general. A swap space three or four times the size of your physical
memory won’t hurt. If your computer uses more swap space than that, it’s
overloaded and will perform poorly.

If you find yourself using swap space often, consider increasing your
physical memory instead. RAM is cheap.

Also consider future upgrades. If your system has 2GB of RAM when
you install OpenBSD, but you intend to increase that to 8GB, assigning
16GB of swap space is a good idea. Adding a swap partition later is difficult,
unless you leave unallocated disk space when you install the software. (Note
that, while you can swap to a file, OpenBSD can write only crash dumps to
an actual swap partition.)

/tmp Directory

The /tmp directory is temporary space for all users on the system. Space
requirements for /tmp are generally a matter of opinion—after all, you
can always use a chunk of space in your /home directory for scratch space.
Automated software installers frequently extract files into /tmp. I usually
recommend at least 3GB in /tmp, but I do horrible things to my temp space.
Many people use a /tmp directory of 256MB or 512MB and get along just fine.

28 Chapter 2

/var Partition

The /var partition contains frequently changing data, such as logs, data-
bases, mail spools, temporary run files, websites, and so on. OpenBSD allo-
cates about 5GB to /var by default. This should be plenty for an educational
installation. If you’re building a web, database, or logging server, however,
/var should get the majority of your disk space. If you’re on a really tiny sys-
tem, you could use as little as 10MB for /var.

/usr Partition

The /usr partition holds the operating system programs, compilers, libraries,
and add-on programs. The majority of /usr changes only when you upgrade
your system. OpenBSD assigns /usr 2GB by default, which is more than suf-
ficient, even on a desktop system.

/usr/X11R6 Partition

The /usr/X11R6 partition contains the X Window System programs and
documentation. OpenBSD does package software linked against the X
Window System, and a lot of software you might expect to find on servers
(such as ImageMagick) requires X libraries.

If you are not going to install any X software, and plan to build all your
own software without X, you don’t need this partition. If you’re in doubt, or
if this is your first installation, keep this partition.

/usr/local Partition

The /usr/local partition contains add-on OpenBSD software, usually from
packages (see Chapter 13). This can be much larger than the /usr partition
containing the core OpenBSD software. OpenBSD allocates 5GB of disk
space to /usr/local by default, and I’ve never needed more than that.

/usr/src Partition

The /usr/src partition is dedicated to the OpenBSD source code. On a
dedicated-purpose machine that doesn’t have a compiler, such as a fire-
wall or a secure web server, you probably don’t need a local copy of the
source code. If you don’t plan to upgrade this machine from source code,
and you don’t plan to use the source code as a reference on the local
machine, you don’t need this partition. If you’re in doubt, keep it.

/usr/obj Partition

The /usr/obj partition is where OpenBSD builds new versions of the oper-
ating system and Xenocara. The files in here are temporary; once you’ve
installed a new OpenBSD version, you don’t need these files any longer.
Creating a new filesystem is faster than erasing the individual files in this
kind of filesystem, so /usr/obj is configured as its own partition.

Installation Preparations 29

If you don’t intend to build a new OpenBSD from source code, you don’t
need /usr/obj. If you find that you do need this partition later, you can either
create it from unused space or mount it via NFS.

/home Partition

The /home partition can be described as “everything else.” User directories
go into /home, as well as any random data that’s meant for users. The fam-
ily MP3 and photo collections should go in /home, as well as your personal
source code, email, and anything else you want to keep.

Creating Other Partitions
OpenBSD supports up to 16 partitions per disk. If you want other parti-
tions, you can create them using the installer. Does your company have a
policy that all add-on software must go in /opt or /usr/companyname? Fine,
create that partition. The OpenBSD standards are not a straitjacket, but
rather a starting point. You own the system. Make it behave according to
your needs.

Partition Filesystems
The words filesystem and partition are often used interchangeably. They are
closely related, but two different things. A filesystem is a method of allocat-
ing and tracking files that are on a partition. You can back up and restore a
filesystem, but if a partition is damaged, you’re in much worse trouble.

OpenBSD uses the standard Fast File System (FFS) by default. FFS has
been around for decades, and is both well debugged and well understood.
Unfortunately, with its default settings, it can handle partitions only up
to slightly less than 1TB in size. Modern disks make partitions of that size
common.

If a partition is 1TB or more in size, the installer automagically formats
it with FFS version 2 (FFS2). In Chapter 8, we’ll cover how to adjust your
filesystems to exactly fit your needs.

Multiple Hard Drives
Disk input/output is usually the slowest part of a computer. If you have more
than one hard drive, you can use those drives to accelerate your system
performance.

First, make sure that each drive is on its own port. SCSI and SATA
drives usually accommodate one drive per port (unless you specifically use
a port multiplier), but IDE drives usually attach two devices per port. Each
port has a maximum throughput. It does no good to attach two fast drives
to one port, as the drives compete for the one port’s throughput.

In general, when you have multiple drives, you want to split the read
and write activity between the drives. I usually put the data I’m serving on

30 Chapter 2

one disk and the important system files on another. If I’m building a data-
base server, I might dedicate one disk to swap space and /var, while assign-
ing all other partitions to the other disk.

Split your swap space between the drives. Be sure that at least one par-
tition is large enough to hold the contents of your physical RAM, so that
OpenBSD can do a crash dump if needed. OpenBSD cannot split a crash
dump between two different swap partitions.

If you’re a more experienced OpenBSD user, you can use multiple hard
drives to create a redundant disk with software RAID. We’ll cover how to do
that in Chapter 9.

If your second drive is much slower than your main system drive, don’t
bother using it. A computer runs only as fast as its slowest component, so
adding that old IDE drive to your SATA system will drag down the whole
machine. Not only will its presence degrade performance for the whole sys-
tem, but it’s also probably much older than your main drive and far more
likely to fail.

Understanding Partitions
As a historical accident, i386 and amd64 systems have two different types of
partitions. OpenBSD refers to the first as MBR partitions and the second as
disklabel partitions (or just partitions).

MBR Partitions
MBR partitions, also known as primary partitions, are universally understood
by operating systems that run on i386 hardware. Every hard drive has four
MBR partitions. In most cases, only one partition has any space allocated to
it; the other three partitions have zero size. If you want to install multiple
operating systems on a single disk, then each operating system needs its
own MBR partition.

Most operating systems manage MBR partitions with a program called
fdisk. It’s not the same program, mind you—OpenBSD’s fdisk(8) is not the
same as Microsoft’s Fdisk, which is different from the program for Linux,
FreeBSD, OpenSolaris, and so on. Any operating system’s fdisk can see MBR
partitions that belong to other operating systems, and while they might
not recognize what’s on the MBR partition, they will recognize that space
has been allocated for something and will warn you about overwriting it.
Unfortunately, not all fdisk programs play nicely with each other. Do not
partition disks for one operating system with another operating system’s tools.2

With the advent of cheap virtualization, installing multiple operating
systems on a single disk is no longer advisable. Assign each disk a single
MBR partition that fills the entire disk, and give the other three MBR parti-
tions zero size. You will see an example of how to do this in Chapter 3.

2. I’m assured by OpenBSD developers that any fdisk should suffice for any operating system.
Having been repeatedly savaged by buggy fdisk programs, I find myself unable to give you
carte blanche to try this.

Installation Preparations 31

Disklabel Partitions
BSD did not originate on i386 hardware; it had its own disk-partitioning
system, based on labeling the disk’s partitions. When BSD was ported to
i386, the disklabel was nailed up inside an MBR partition. When someone
speaks of “partitions” in OpenBSD, they almost certainly mean disklabel
partitions.

One disklabel can support 16 partitions. If you need more than 16 par-
titions, you must create a second MBR partition and add more disklabels. I
would suggest that if you need more than 16 partitions on a single disk, you
took a wrong turn somewhere in your decision-making process. Step back
and reassess what you want to accomplish and how you’re going about it.

Foreign operating systems do not recognize OpenBSD disklabels.
BSD-based operating systems might appear to understand them, but the
disklabel formats used on the various BSD-derived systems have diverged
in the past 20 years. Use only OpenBSD disk tools to manage OpenBSD
partitions.

Understanding Disklabels
The OpenBSD installer expects you to understand disklabels. You can
avoid learning about disklabels by blindly accepting the default partition-
ing OpenBSD offers, but that won’t take you very far. Disklabels might look
intimidating to the new user and require some basic math, but they aren’t
that difficult once you walk through them slowly. You need to understand
disk geometry first.

Sectors and Lies
Once upon a time, disk drives had clearly defined geometry. Each disk
was actually round, and it spun inside the hard drive. The manufacturer
divided each disk into tiny sections, called sectors. Each sector had a num-
ber, with sector 0 at the beginning of the disk and the sectors numbered
sequentially until the end of the disk. Sectors were gathered into rings, or
tracks. Stacks of tracks were aggregated into cylinders. Each disk drive had a
number of heads—data-reading devices that read information from the disk
as the disk spun beneath them. Taken as a whole, sectors, tracks, and cylin-
ders described the disk geometry.

This all seems simple enough, but today you can’t actually count on
disk sectors to actually map to anything useful. Over the years, both hard
drive manufacturers and operating systems have set and broken limits. This
applies to all aspects of machine design, from the 640KB memory limit to
the 504MB disk limit. Hard drive manufacturers avoided these limits by
tricking the system BIOS and/or the operating system.

If you’re a hard drive manufacturer making a hard drive with
126 sectors per track, but the most popular operating system can accept
only 63 sectors per track, you have a problem. The easy solution is to teach
your hard drive to lie. If you claim you have half as many sectors per track

32 Chapter 2

but twice as many platters, the numbers still add up, and you can still
provide unique sector numbers. Every hard drive manufacturer chooses
to lie in a slightly different way. The most obvious examples are flash drives
(which still report cylinders, sectors, and tracks, even though they’re not
round and don’t spin3) and hardware RAID (which reports the same
information about several disks as if they were one). If you read about
the history of hard drives, you’ll discover all sorts of interesting lies.

By the time disk geometry information reaches the operating system, it
has been through one or more translations. Reach into your head, find the
button that says “Accept What You’re Told,” and press it as you repeat the
following: Disks are divided into sequentially numbered sectors. Partitions
fill a number of consecutive sectors. Sectors are grouped into cylinders,
based on the number of heads in the drive. Partitions end on cylinder
boundaries.

Sectors and Disklabels
The installer will display your disk’s disklabel. (You can also see the disklabel
once the system is installed and running, as discussed in Chapter 8.)

We’ll look at the disk’s physical information first. While the physical
information doesn’t usually directly impact the installation, you need to
know how to read it if something goes wrong.

u # /dev/rsd0c:
v type: SCSI
w disk: SCSI disk
x label: DSA2CW120G3
y duid: adb697598fa0a010

flags:
z bytes/sector: 512

sectors/track: 63
tracks/cylinder: 255
sectors/cylinder: 16065
cylinders: 14593

{ total sectors: 234441648
| boundstart: 64
} boundend: 234436545

drivedata: 0

Except for the device unique identifier (DUID), you cannot change any
of these entries without changing the underlying hardware.

The first entry is the device name, /dev/rsd0c u. The leading /dev means
that this is a device node. The rsd0c is the disk name. sd means that this
drive uses the sd(4) device driver, and the 0 means that this is the first drive
OpenBSD found and attached. (This is usually, but not always, BIOS drive
0.) The leading r means that we’re addressing the disk in raw mode, while
the tailing c means that we’re examining disklabel partition c. Disklabel

3. Yes, you can make flash drives spin. But a flash drive doing 5400 RPM has a whole set of
problems beyond the scope of normal systems administration.

Installation Preparations 33

partition c always matches the entire MBR partition containing this disklabel.
Almost any disk that isn’t explicitly IDE will probably show up as a SCSI disk.

The type v is a general label describing the disk’s physical interface.
Any IDE disk will show up as ESDI (Enhanced Small Device Interface), while
SCSI, SAS, SATA, and almost every other type of disk has type SCSI.

The disk field w shows what sort of disk is attached to this interface.
Here, it shows a SCSI disk, but we knew that already from the type.

The label x displays the manufacturer’s name and/or the drive model
number. In the case of virtualized servers, this shows virtual drive or some-
thing similar.

The duid y is the DUID for this disk. If you’ve ever managed a system
with more than a couple of disks in it, you know how easy it is to confuse
disks. The hardware BIOS identifies disks by the physical port they’re
attached to. If you need to replace a SATA or SCSI card, and you get the
disks mixed up as you rerun cables, you will have a hard time finding your
boot drive again. By using the DUID in your system configuration instead
of the BIOS-assigned device name, you will always have the same disk used
for the same purpose. As noted earlier, the DUID is the one editable field
in the top of the disklabel information.

The bytes per sector, sectors per track, tracks per cylinder, and sectors
per cylinder z all describe the disk’s geometry. These numbers are all lies,
but the total number of sectors on the disk { is accurate. You also see the
first sector you may fill with disklabel partitions |, and the last sector you
may use }. (You lose a few sectors due to the hard drive’s geometry trans-
formations. Don’t try to hold the hardware accountable. You can’t win that
argument.)

The next section displays the disklabel partitions, and you can alter it as
needed. Here’s a disklabel from my desktop:

16 partitions:
u size v offset wfstype x[fsize bsize cpg]

y a: 2097121 64 4.2BSD 2048 16384 1 # /
z b: 4698424 2097185 swap
{ c: 312581808 0 unused

 d: 8388576 6795617 4.2BSD 2048 16384 1 # /tmp
 e: 16736864 15184193 4.2BSD 2048 16384 1 # /var
 f: 4194304 31921057 4.2BSD 2048 16384 1 # /usr
 g: 2097152 36115361 4.2BSD 2048 16384 1 # /usr/X11R6
 h: 20971520 38212513 4.2BSD 2048 16384 1 # /usr/local
 i: 4194304 59184033 4.2BSD 2048 16384 1 # /usr/src
 j: 4194304 63378337 4.2BSD 2048 16384 1 # /usr/obj
 k: 245003968 67572641 4.2BSD 2048 16384 1 # /home

This disklabel declares that it has 16 partitions, but lists only 11. The
disklabel has space for 16 partitions, but like the MBR partition table, not
all of them have space allocated to them. As with most configuration files in
Unix-like operating systems, a hash mark (#) indicates the beginning of a
comment. The comments here give the headers for the table above.

34 Chapter 2

The first column is the partition letter. A unique letter identifies each
disklabel partition. The first partition in our example is a y, the second
is b z, the third is c {, and so on.

The size u is the number of sectors the drive uses. In this example,
partition a fills 2097121 sectors, partition b 4698424 sectors, and partition c
312581808 sectors.

The offset v is the number of sectors from the beginning of the MBR
partition where the disklabel partition begins. If a disk is bootable, it has a
master boot record (MBR) flagging it as such. The MBR record takes the
first 63 disk sectors, numbers 0 through 62. The first sector available for a
disklabel partition is sector number 63. Partition a begins on sector 64 in
order to correctly align with the memory cells in solid-state disks.

Take a look at partition b. It has an offset of 2097185, meaning it starts
in sector 2097185. How do we get there? Well, partition a starts in sector 64
and has a size of 2097121. 2097121+64=2097185, or the first free sector after
partition a ends. This seems perfectly sensible until you look at partition c.
Disklabel partition c is magical. On every disklabel partition, c represents
the entire disk. It has an offset of 0 and a size equal to the number of sec-
tors on the disk. You cannot put a filesystem on partition c; it’s there only
for reference. Partition d picks up where partition b left off.

The fstype w marks the type of filesystem on this partition. OpenBSD
filesystems, such as partition a, are labeled as 4.2BSD. (The OpenBSD
filesystem is no longer exactly the same as that from BSD 4.2, mind you.)
Partition b is swap space.

The next two columns x display the fragmentation behavior of the file-
system on this partition. These values are set by the filesystem creation tool
when putting the filesystem on the partition, and should not be changed by
hand. If you’re curious, read newfs(8) and its related man pages. The fsize is
the fragment size for any file fragments on the partition. The b is the size of
a block on disk, in bytes. We talk about FFS fragmentation in Chapter 8. All
you really need to know at this point is that FFS and FFS2 are both highly
fragmentation-resistant, and neither requires any sort of defragmentation
process.

The last column shows the number of cylinders per cylinder group. This
is almost always 1 for modern disks.

One interesting thing is that the disklabel can be considered a configu-
ration file for formatting a disk. You could save this disklabel to a file, get
an identical hard drive, write this label to that new disk, and perfectly dupli-
cate the partitioning of the old disk on the new.

If at any time you feel confused about your partitioning, print out your
current disklabel and compare it to how you would like your system to look.

Installation Preparations 35

Other Information
If this machine is going to be on the Internet, you must know its network
configuration before starting. If your network has DHCP, you’re all set. If
not, you need a valid IP address, netmask, default gateway, and name server
IP addresses.

Decide in advance if this machine will run the X Window System.
Generally, desktops run X and servers do not.

At this point, you have all the background you need to install OpenBSD
on i386 or amd64 hardware. Break out your equipment, and let’s get started.

3
I n s t a l l a t i o n W a l k- T h r o u g h

Straightforward questions.
Will you take the default prompts?

Think before you choose.

Armed with your OpenBSD software and
a computer with supported hardware, you

are now ready to start an actual installation.
This chapter takes you through a full instal-

lation on amd64 and i386 systems via CD and FTP,
booting from a CD or floppy disk.

In this chapter, I assume that you’re dedicating your computer to
OpenBSD. You can install multiple operating systems on a single computer,
of course, but that’s a less common use case. If you want to install mul-
tiple operating systems on your computer, follow the instructions in the
OpenBSD FAQ. (When installing multiple operating systems on a single
computer, it’s easy to accidentally damage one of those operating systems,
so proceed with caution.)

Before you begin OpenBSD installation, make sure the data on your
machine is backed up! When you dedicate your machine to OpenBSD,
you’ll overwrite the entire hard drive.

38 Chapter 3

Hardware Setup
Before you begin, verify that OpenBSD supports your hardware. You’ll find
the supported hardware list for the most recent version of OpenBSD on the
platform-specific pages of the OpenBSD website (http://www.OpenBSD.org/
i386.html for i386 and http://www.OpenBSD.org/amd64.html for amd64), list-
ing hardware that has been verified to work by the OpenBSD team.

If you find that your hardware isn’t listed, it might still run OpenBSD.
In fact, a lot of unsupported hardware will run OpenBSD perfectly, but not
all hardware has been tested, simply because the OpenBSD team doesn’t
have access to all hardware ever manufactured. If you’re worried about a
particular device, search the mailing list archives to see if it’s supported.

The hardware compatibility lists frequently identify devices by chip-
set, not by vendor or model. The chipset is the actual hardware name,
not the model name, which can cause a bit of confusion because, after all,
when you buy a computer, the network card is frequently listed as a “giga-
bit Ethernet,” not as an “Intel PRO/1000MT Dual Port Server Adapter
model PWLA8492MT.” To make matters worse, many vendors use identical
hardware under a separate brand or model name or use different hard-
ware under the same brand or model name. For example, Linksys sold
many different network card models under the model name EtherLink.
(Fortunately, this issue mostly applies to the lower end of the market, and
OpenBSD almost always supports these older chipsets.)

Even if you’re not sure that you hardware is supported, you can still try
installing OpenBSD to see what happens. The boot messages will offer a lot
of information about the hardware you have.

BIOS Configuration
Be sure to evaluate your system’s Basic Input/Output System (BIOS) before
installing OpenBSD. Because every BIOS differs, I can’t offer exact instruc-
tions on configuring yours. Your best bet is to consult your motherboard’s
manual or the Internet.

Also, if your BIOS needs updating, take care of that before installing
OpenBSD. Finally, check the boot device order, and be sure that it makes
sense for how you plan to install your system.

With your hardware set up, get the boot media.

Making Boot Media
We’ll cover booting the OpenBSD installer from a CD or floppy disk.
Generally, booting via CD is preferable because all amd64 systems can
boot from CD, as can most functioning i386 systems. We’ll start by making
floppies for installation on old i386 hardware and then move on to CDs.
While installing from USB and into virtual systems is possible, neither is
supported. We’ll cover both of those installation types later in the book, in
Chapter 23.

Installation Walk-Through 39

Making Boot Floppies
You need to make boot floppies only if your hardware does not boot from
CD, or if you have a floppy but not a CD drive. The OpenBSD boot floppies
contain a very limited subset of OpenBSD—just enough to recognize your
hardware, format your disk, and download and extract the file sets. In
addition to the floppies themselves, you’ll also need a working Internet
connection via Ethernet.1 Because the full kernel is larger than a single
floppy can hold, OpenBSD provides three floppy images for i386 hardware,
each targeting a specific type of hardware. Each image name includes the
release number. For example, the floppy images for release 5.3 are named
floppy53.fs, floppyB53.fs, and floppyC53.fs. Download the image that most
closely describes your system, as follows:

floppyXX.fs  This is the image for the most common i386 hardware. It
will boot the average workstation or low-end server.

floppyBXX.fs  This image includes drivers for gigabit Ethernet cards,
SCSI, and RAID. It’s meant for higher-end i386 servers.

floppyCXX.fs  This image supports PCMCIA and CardBus. It’s meant
for laptops.

OpenBSD provides only one floppy image for amd64 hardware:
floppyXX.fs. (The amd64 platform doesn’t carry around 20 years of legacy
drivers as baggage, so everything fits on a single disk.) Be sure to use the
floppy image found in the amd64 directory. The amd64 image uses the same
name as the standard i386 floppy.

Once you have the appropriate image file, you must copy it onto a
floppy disk. You cannot use basic filesystem-level copying, such as Windows
drag-and-drop, because the image files include not only files but also a file-
system. You must use appropriate tools to copy the images to a floppy.

Creating Floppies on Unix-like Systems

If you’re already running a Unix-like system, create your floppy with dd(1).
You’ll need to know your floppy drive’s device name, which is probably
/dev/fd0, /dev/floppy, /dev/rfd0, or /dev/rsd0 (for USB floppy drives). Once
you know the device name, tell dd to copy the image to that disk device with
a command like this:

dd if=filename of=full-path-to-floppy-device

For example, to create a disk from image floppyB52.fs with the floppy
device name /dev/fd0c, enter the following:

dd if=floppyB52.fs of=/dev/fd0c

1. Yes, some of us have half-suppressed memories of i386 hardware that couldn’t boot
OpenBSD from a CD, but would let you fetch the install sets from one once you had it boot
from a floppy. But seriously, if your hardware is that aged and picky, please save yourself some
pain. Go back to the dumpster you found that computer in. Find something more recent.

40 Chapter 3

If dd gives you an error immediately or exits silently without writing to
the floppy disk, try specifying a different floppy disk device.

Creating Floppies on Microsoft Systems

If you need to create a floppy on a descendant of Windows NT (including
all modern Windows desktop operating systems), you’ll need an image-writing
program. In the tools directory of your OpenBSD release, you’ll find a pro-
gram named ntrw.exe. This program copies disk images to a disk. Download
the program, open a command prompt, navigate to the folder containing
ntrw.exe, put your blank floppy in the drive, and run this command:

C:> ntrw floppyB53.fs a:

If you get a permissions error, you might need to run your command
prompt as Administrator. If the command still fails, chances are good that
you’re using the bad floppy disk you tucked away in a drawer 15 years ago.
Try another one.

Making Boot CDs
OpenBSD provides three ISO images for i386 and two for amd64, as follows:

cdXX.iso  This image contains the kernel and installer, but no file sets.
It’s used to boot a system into the minimal state where the installer
can run. Once the system has booted, it fetches the file sets over the
network.

installXX.iso  This image contains everything in the cdXX.iso image,
as well as the file sets. Use it to install this version of OpenBSD on mul-
tiple systems.

cdemuXX.iso  Some older i386 systems have a BIOS that makes CD drives
emulate floppy drives. If you have a system like this, use cdemuXX.iso.
If you’re unsure whether you need this image, you don’t. If you’ve ever
owned one of these CD drives, you’ve probably replaced it by now. If
you haven’t, maybe you should.

NOT E 	 Remember that you can save yourself the trouble of selecting an ISO by buying an
official CD set, which will Just Work and will also contain precompiled packages.

The process of getting the ISO onto a physical disk varies widely from
operating system to operating system. On a Microsoft Windows system,
right-click the ISO and select Burn to Disc. Unix-like systems use several
different programs, such as burncd and cdrecord. Different Linux versions
have innumerable ISO-burning front ends integrated into their desktop
environments. Check online for instructions on burning a CD on your par-
ticular operating system.

Installation Walk-Through 41

Installing OpenBSD
Once you boot from your chosen media, you should see something like this:

> OpenBSD/amd64 BOOT 3.18
boot>

If you need to interrupt the boot process for any reason, you can do so
at this point. We’ll discuss how to interrupt the boot process in Chapter 5,
and reasons for doing so throughout the book.

If you wait five seconds, OpenBSD should boot. The kernel will then
introduce itself and begin identifying your hardware.

booting ucd0a:/5.3/amd64/bsd.rd: 2986868+913996+2861496+0+504624
[89+318288+205653]=0xb6f578
entry point at 0x1001e0 [7205c766, 34000004, 24448b12, 1608a304]
Copyright (c) 1982, 1986, 1989, 1991, 1993
 The Regents of the University of California. All rights reserved.
Copyright (c) 1995-2012 OpenBSD. All rights reserved. http://www.OpenBSD.org

v OpenBSD 5.3 (RAMDISK_CD) #23: Sun Feb 12 09:45:07 MST 2012
 deraadt@amd64.openbsd.org:/usr/src/sys/arch/amd64/compile/RAMDISK_CD
real mem = 1072627712 (1022MB)
avail mem = 1032290304 (984MB)
...

In this output, you can tell at u from which device the system is
booting—CD drive 0 in this case. Next, you see the copyright information,
followed by the directory in which your kernel was compiled at v. You can
see that this is an OpenBSD snapshot kernel, compiled by user deraadt on
host amd64.openbsd.org.

At this point, OpenBSD should probe your hardware and display the
results as it attaches device drivers.

Running the Installation Program
Once the boot messages pass, you should see the following text:

Welcome to the OpenBSD/amd64 5.3 installation program.
(I)nstall, (U)pgrade or (S)hell? i

As you can see, there are three options: Install, Upgrade, and Shell.
The OpenBSD installer is a shell script that calls programs to download
files, format disks, and otherwise prepare your system. It might not be
pretty, but it is extremely fast and, in educated hands, extremely powerful.

The Shell option will drop you into an OpenBSD command line, where
you have access to the commands on the installation disk. These minimal
commands might suffice to repair a damaged system. We’ll examine the
Upgrade option in Chapter 20.

42 Chapter 3

Enter i to choose Install. You should see a welcome message and a few
basic instructions:

At any prompt except password prompts you can escape to a shell by
typing '!'. Default answers are shown in []'s and are selected by
pressing RETURN. You can exit this program at any time by pressing
Control-C, but this can leave your system in an inconsistent state.

u Terminal type? [vt220]
v System hostname? (short form, e.g. 'foo') caddis

The installer shows default answers in square brackets. To use the
default, just press enter.

If your system has a standard keyboard and monitor, OpenBSD will use
it as the standard VT220 terminal, as shown at u. If you have an unusual
terminal connected to your system, you’re probably an old geezer who
knows exactly what terminal type it is. If you’re a young kid using some
ancient, unidentified, dust-covered terminal found in a disused labora-
tory at the back of an abandoned fireworks factory because you thought it
would be nifty, stop now and get a standard monitor and keyboard. While
OpenBSD probably supports that antediluvian console, this is not the time
to try it.

Next, the installer should prompt you for the system’s short hostname
at v, which will be a single word to identify your system. This particular
computer is named caddis; you can name yours whatever you like.

Now to configure the network:

u Available network interfaces are: em0 em1 vlan0.
v Which one do you wish to configure? (or 'done') [em0]
w IPv4 address for em0? (or 'dhcp' or 'none') [dhcp] 192.0.2.85
x Netmask? [255.255.255.0] 255.255.255.128
y IPv6 address for em0? (or 'rtsol' or 'none') [none]

Available network interfaces are: em0 em1 vlan0.
z Which one do you wish to configure? (or 'done') [done]
{ Default IPv4 route? (IPv4 address, 'dhcp' or 'none') 192.0.2.1

add net default: gateway 192.0.2.1
| DNS domain name? (e.g. 'bar.com') [my.domain] blackhelicopters.org
} DNS nameservers? (IP address list or 'none') [none] 192.0.2.2 192.0.2.10

At u, the installer lists the network interfaces it recognizes on your
machine. It has found three: em0, em1, and vlan0. The first two, em0 and
em1, are network cards. I chose em0 at v, the installer’s default, by press-
ing enter. Avoid configuring a virtual local area network (VLAN) during
installation if possible, especially on your first installation. If you need a
VLAN to connect to the Internet, see Chapter 12.

When asked at w if you want to give a static IP address, you can choose
to use DHCP by pressing enter. I chose to enter a static address because I’ll
be using this machine as a server. (If you don’t need a static address, you
can just let DHCP automatically assign you an IP address.)

Installation Walk-Through 43

When you use a static address, you must also enter a netmask at x and
(if desired) an IPv6 address at y. Now, having configured one network
card, OpenBSD asks at z if you’ve finished configuring the network. If you
wanted the installer to walk you through configuring the second network
card, you would enter em1 instead of accepting the default of done.

If you assign a static IP address, you must also configure a static route
if you want to access the Internet, as shown at {. Similarly, you need to tell
your host its domain name at | and the IP address of at least one name
server at }.

At this point, you should be on your local network. If you can’t access
the network, you probably entered something incorrectly. If nothing else,
you can use an exclamation point (!) to interrupt the installation and get a
shell prompt. (Chapter 12 discusses OpenBSD’s network configuration in
greater depth.)

Multiple Network Cards
Our example server has multiple network interfaces. I chose to configure
interface em0 because that machine was in front of me, and if I chose the
wrong network card, I could move the cable. But what if you don’t have
physical access to your machine? If you had two different network cards
(say, an Intel and a 3Com), you would have a better idea which card is
which, but having two identical cards leaves you guessing which card has
a cable plugged into which network.

Luckily, the OpenBSD installer lets you escape to a command prompt
to do a little investigating. How is this useful here? Network interfaces that
are plugged in will tell you what kind of connection they have, and discon-
nected or otherwise failed interfaces will report that they have no media.
Here’s how you can interrupt the installer to identify the live interface:

Available network interfaces are: em0 em1 vlan0.
u Which one do you wish to configure? (or 'done') [em0] !

Type 'exit' to return to install.
v # ifconfig

lo0: flags=8008<LOOPBACK,MULTICAST> mtu 33152
em0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> mtu 1500
 lladdr 00:0c:29:aa:09:21

w media: Ethernet autoselect (1000baseT full-duplex,master)
 status: unknown
em1: flags=8802<BROADCAST,SIMPLEX,MULTICAST> mtu 1500
 lladdr 00:0c:29:aa:09:2b

x media: Ethernet autoselect (none)
 status: unknown
vlan0: flags=0<> mtu 1500
 lladdr 00:00:00:00:00:00

Rather than choosing an interface, escape to a command prompt at u
by entering an exclamation point (!). Then ask OpenBSD at v to tell you
about its network interfaces by running ifconfig. You can see interfaces em0
and em1 in the output. While em0 reports at w that it’s running 1000baseT

44 Chapter 3

at full-duplex, at x you can see that em1 has a media type of none. Interface
em0 is plugged in, so that’s the interface I want to configure. Enter exit to
return to the installer, and proceed to configure card em0.

Setting Up Services and the First User
The installer should now ask you to configure some basic system parameters:

u Password for root account? (will not echo)
Password for root account? (again)

v Start sshd(8) by default? [yes]
w Start ntpd(8) by default? [no] yes

NTP server? (hostname or 'default') [default]
x Do you expect to run the X Window System? [yes]
y Do you want the X Window System to be started by xdm(1)? [no]
z Change the default console to com0? [no]

At u, enter your root password twice. If the passwords don’t match, the
installer will make you do it over until they do.

You can enable the Secure Shell (SSH) daemon at v so that you can
remotely connect to this machine immediately after installation. If you
enable SSH but do not create a user later in the installation, you can SSH to
the machine as root. This is a Very Bad Idea when using password authen-
tication and will let intruders more easily compromise your server. If you
enable sshd here, be absolutely certain to create a user during the installa-
tion process! If you don’t, at least disable SSH logins by the root account
immediately after installing OpenBSD, as discussed in Chapter 4.

Correct time is important on a network. I usually enable the Network
Time Protocol (NTP) daemon ntpd(8) during the installation process, as
shown at w. OpenBSD chooses a set of publicly accessible time servers by
default, but you can specify a local time server if you have one available.

Now tell the installer at x if you intend to run X Windows. X requires
that software be permitted fairly broad access into the kernel. If the installer
detects a graphic console, it defaults to permitting X. If you don’t need a
graphic console, disable X access.

If you’re running X, you might also want the X display manager xdm(1).
At y, tell the installer if you want xdm. By default, OpenBSD doesn’t start xdm
when it boots; you’re generally better off installing OpenBSD on your sys-
tem than configuring X, so I’ve accepted the default of no here.

If you want this system to use a serial port as the console, you can set
that during the installation at z. I discuss serial consoles in Chapter 5.

NOT E 	 For the basic system parameters, I’ve used the default for all but one. Enabling
time service certainly isn’t mandatory—I could easily enable ntpd after installation
instead. I could have also told the installer to disable X, but I can change that after
installation as well.

Installation Walk-Through 45

Now to set up your first user.

Setup a user? (enter a lower-case loginname, or 'no') [no] mwlucas
Full user name for mwlucas? [mwlucas] Michael W Lucas
Password for mwlucas account? (will not echo)
Password for mwlucas account? (again)
Since you set up a user, disable sshd(8) logins to root? [yes]

My usual user account name is mwlucas. Here, I enter that username,
along with a real name entry. The installer creates this account and gives
it permission to use the root password (see Chapter 6). You should be
prompted twice for the user’s password.

NOT E 	 You’re offered a chance to disable root logins over SSH. Use this default. The root account
should never be permitted to log in via SSH, unless using public key authentication,
and even then, those logins should be restricted. For the reasons to avoid root logins
over SSH, do an Internet search for “Hail Mary Cloud.”

Setting the Time Zone
Set your time zone during installation. If you have Internet access when
you install OpenBSD, the installer should try to determine your time zone.
OpenBSD assumes that the BIOS clock is set in Coordinated Universal
Time (UTC). If the BIOS clock is set in some other time zone, you’ll need
to correct the system time after installation.

I’m in Detroit, Michigan. If you’re familiar with US geography, you might
think that I need US Eastern Time, but my state has its own time zone.

u What timezone are you in? ('?' for list) [US/Eastern] ?
Africa/ Chile/ GB-Eire Israel NZ-CHAT UCT
America/ Cuba GMT Jamaica Navajo US/
Antarctica/ EET GMT+0 Japan PRC UTC
Arctic/ EST GMT-0 Kwajalein PST8PDT Universal
Asia/ EST5EDT GMT0 Libya Pacific/ W-SU
Atlantic/ Egypt Greenwich MET Poland WET
Australia/ Eire HST MST Portugal Zulu
Brazil/ Etc/ Hongkong MST7MDT ROC posix/
CET Europe/ Iceland Mexico/ ROK posixrules
CST6CDT Factory Indian/ Mideast/ Singapore right/
Canada/ GB Iran NZ Turkey

v What timezone are you in? ('?' for list) [US/Eastern] US
w What sub-timezone of 'US' are you in? ('?' for list) ?

Alaska Central Hawaii Mountain Samoa
Aleutian East-Indiana Indiana-Starke Pacific
Arizona Eastern Michigan Pacific-New

x What timezone are you in? ('?' for list) [US/Eastern] US/Michigan

46 Chapter 3

I don’t recall my exact time zone, but I know it isn’t plain old US Eastern
Time. I enter a question mark (?) at u to see the available options. I don’t
recognize any of the time zones listed at v as correct for my city, but I know
I’m in a US time zone, so I enter US. I don’t know what my choices of sub-time
zones are, so I enter a question mark (?) at w to see the US time zones. And
there’s Michigan! At x, I enter the full time zone name.2

Setting Up the Disk
As noted earlier, in a dedicated installation, the installer erases all data
on the drive. Unlike most other operating system installers, the OpenBSD
installer doesn’t warn you about this; it assumes that you understand the
implications of repartitioning your hard drive.

For this first installation, we’ll use OpenBSD’s default partitioning
scheme. (We’ll discuss custom partitioning later in this chapter.) Our demo
server has a single disk. We’ll first create an MBR partition on this disk and
then add OpenBSD partitions.

Available disks are: sd0.
Which one is the root disk? (or 'done') [sd0]
Use DUIDs rather than device names in fstab? [yes]

The installer tells us that it sees one disk, device sd0. The installer
must know which disk will hold the root partition. (With only a single disk
this seems superfluous, but it becomes important if you system has we’ll
see an example with multiple disks, as discussed in “Custom Disk Layout” on
page 49.) When you have only one disk, OpenBSD assumes that you’ll
use it. It also asks if you want to use the disk’s DUID in the filesystem table
rather than the device name. For reasons we’ll discuss in Chapter 8, always
answer yes to this.

The installer will now show you the MBR partition table.

Disk: sd0 geometry: 6527/ 255/ 63 [104857600 Sectors]
Offset: 0 Signature: 0xAA55
 Starting Ending LBA Info:
 #: id C H S - C H S [start: size]
--
 0: 00 0 0 0 - 0 0 0 [0: 0] unused
 1: 00 0 0 0 - 0 0 0 [0: 0] unused
 2: 00 0 0 0 - 0 0 0 [0: 0] unused
 3: 00 0 0 0 - 0 0 0 [0: 0] unused
Use (W)hole disk, use the (O)penBSD area, or (E)dit the MBR? [whole]
Setting OpenBSD MBR partition to whole sd0...done.

2. Of course, the US/Michigan time zone applies only to the four counties on the west end of
the Upper Peninsula. But accepting the default wouldn’t let me illustrate this, and if I have to
make something up, it might as well be vaguely plausible.

Installation Walk-Through 47

The first line shows the detected hard drive geometry. This particular
drive has 6527 cylinders, 255 heads, and 63 sectors per cylinder. If you com-
pare this to the label on the physical drive, it almost certainly won’t match
(because hard drives lie). But note that this translated geometry has exactly
the same number of sectors as shown in the hard drive documentation.

Beneath this line, you see the existing MBR partition table. The parti-
tions are all zeroed out, which means that this drive has no partitions. We
want only OpenBSD on this machine, so take the default and let OpenBSD
swallow the whole drive.

Now it’s time to consider your OpenBSD partitions.

The auto-allocated layout for sd0 is:
 # size offset fstype [fsize bsize cpg]

 a: 1.0G 64 4.2BSD 2048 16384 1 # /
 b: 1.2G 2097216 swap
 c: 50.0G 0 unused
 d: 3.6G 4716480 4.2BSD 2048 16384 1 # /tmp
 e: 5.7G 12176320 4.2BSD 2048 16384 1 # /var
 f: 2.0G 24063040 4.2BSD 2048 16384 1 # /usr
 g: 1.0G 28257344 4.2BSD 2048 16384 1 # /usr/X11R6
 h: 6.3G 30354496 4.2BSD 2048 16384 1 # /usr/local
 i: 1.9G 43566400 4.2BSD 2048 16384 1 # /usr/src
 j: 2.0G 47467072 4.2BSD 2048 16384 1 # /usr/obj
 k: 25.4G 51661376 4.2BSD 2048 16384 1 # /home

v Use (A)uto layout, (E)dit auto layout, or create (C)ustom layout? [a]
w /dev/rsd0a: 1024.0MB in 2097152 sectors of 512 bytes

6 cylinder groups of 202.47MB, 12958 blocks, 25984 inodes each
...

Our first partition at u is a, which occupies 1GB and will be used as the
root partition (/). On the installed system, this will be known as partition sd0a.
Look down the list to see all of the standard partitions discussed in Chapter 2.

We could do custom disk partitioning at this point, but for our first
installation, we’ll use the defaults, as shown at v. The installer should then
label the disk and w create filesystems on all the partitions.

Choosing File Sets
Now that you have allocated disk space, let’s put the operating system onto
the disk. The installer starts by asking some basic questions about how to
get the sets.

Let's install the sets!
Location of sets? (cd disk ftp http or 'done') [cd] u ftp
HTTP/FTP proxy URL? (e.g. 'http://proxy:8080', or 'none') [none]
Server? (hostname, list#, 'done' or '?') [ftp5.usa.openbsd.org] v ftp.lambdaserver.com
Server directory? [pub/OpenBSD/5.3/amd64]
Login? [anonymous]

Although I booted this system off a CD, I’m going to install the file sets
via  FTP. If my network needed to use a proxy to access the Internet, I
would tell the installer.

48 Chapter 3

While the installer will choose an FTP server for you at v, you can spec-
ify an FTP server that you know is close or fast. If you’re installing a snapshot,
give the file path to the desired snapshot on the FTP server. Finally, if this
FTP server requires a username and password, enter it here.

At this point, the installer should log in to the FTP server, find all avail-
able file sets, and display them for your approval.

Select sets by entering a set name, a file name pattern or 'all'. De-select
sets by prepending a '-' to the set name, name pattern or 'all'. Selected
sets are labelled '[X]'.
 [X] bsd [X] etc53.tgz [X] xbase53.tgz [X] xserv53.tgz
 [X] bsd.rd [X] comp53.tgz [X] xetc53.tgz
 [X] bsd.mp [X] man53.tgz [X] xshare53.tgz
 [X] base53.tgz [X] game53.tgz [X] xfont53.tgz
Set name(s)? (or 'abort' or 'done') [done]

I suggest you install everything, but you can choose to remove one or
more sets.

For example, suppose you are building a firewall machine. Firewalls
traditionally don’t have compilers, documentation, or X. You can remove
file sets by entering a minus sign (-) and the name of the file set.

Set name(s)? (or 'abort' or 'done') [done] u -comp53.tgz -man53.tgz
 [X] bsd [X] etc53.tgz [X] xbase53.tgz [X] xserv53.tgz
 [X] bsd.rd [] comp53.tgz [X] xetc53.tgz
 [X] bsd.mp [] man53.tgz [X] xshare53.tgz
 [X] base53.tgz [X] game53.tgz [X] xfont53.tgz
Set name(s)? (or 'abort' or 'done') [done]

This example removes the compiler and manual file sets at u. You can
see that they’re no longer selected in the list of file sets.

You can also use wildcards when selecting file sets. For example, here’s
how to remove all file sets beginning with an x:

Set name(s)? (or 'abort' or 'done') [done] -x*
 [X] bsd [X] etc53.tgz [] xbase53.tgz [] xserv53.tgz
 [X] bsd.rd [] comp53.tgz [] xetc53.tgz
 [X] bsd.mp [] man53.tgz [] xshare53.tgz
 [X] base53.tgz [X] game53.tgz [] xfont53.tgz
Set name(s)? (or 'abort' or 'done') [done]

If you change your mind, you can add file sets back in by entering a
plus (+) sign and the file set name. Here, I add back everything by using a
wildcard (*):

Set name(s)? (or 'abort' or 'done') [done] *
 [X] bsd [X] etc53.tgz [X] xbase53.tgz [X] xserv53.tgz
 [X] bsd.rd [X] comp53.tgz [X] xetc53.tgz
 [X] bsd.mp [X] man53.tgz [X] xshare53.tgz
 [X] base53.tgz [X] game53.tgz [X] xfont53.tgz
Set name(s)? (or 'abort' or 'done') [done]

Installation Walk-Through 49

Once you’re ready, press enter to install the default or selected file sets.
After the installer unpacks all of the file sets on the hard drive, it will

ask if you have more file sets to install.

Location of sets? (cd disk ftp http or 'done') [done]

If you have any custom file sets, you could install them at this point.

Finishing the Installation
After unpacking the file sets, the installer cleans up after itself and tells you
it’s finished with this message:

CONGRATULATIONS! Your OpenBSD install has been successfully completed!
To boot the new system, enter 'reboot' at the command prompt.
When you login to your new system the first time, please read your mail
using the 'mail' command.

Do as you’re told and enter reboot, and then remove the CD if necessary.
If you’re content with a default installation, you can skip to Chapter 4 now.

Custom Disk Layout
If you have multiple hard disks in a system, or if you want a different parti-
tion layout than the default, you must manually edit your disk layout.

The installer partitions one disk at a time, and you can’t easily bounce
between multiple disks. To successfully use multiple disks, decide on your
partitioning scheme before you start the installation, and write down exactly
which partitions you want on which disks as specifically as possible.

My system has two 50GB hard disks. I plan to divide the disks like this:

Disk 1  1GB /, 1.2GB swap, 5GB /tmp, 1GB /usr/X11R6, 2GB /usr/src,
2GB /usr/obj, and everything else /home

Disk 2  1GB /altroot, 1.2GB swap, 6GB /var, 10GB /usr/local, and every-
thing else /var/postgresql

This layout includes all of the standard OpenBSD partitions, plus a few
additions: I’ve increased some partition sizes above the installer-generated
defaults, and I’ve added an extra swap partition on the second hard drive.
OpenBSD doesn’t include a separate /var/postgresql partition, but I’ve added
one because I want my database data on its own partition. (We’ll discuss
the /altroot partition in Chapter 9.)

The installer runs as usual until you get to the disk portion.

Available disks are: sd0 sd1.
Which one is the root disk? (or 'done') [sd0]

By default, the installer puts the root partition on the first hard drive, sd0.
I’ll use this disk for the root partition and use the entire disk for OpenBSD.

50 Chapter 3

The installer then presents a list of automatically generated disklabel
partitions. We don’t want to use these partitions; we want to create our own
from scratch.

Use (A)uto layout, (E)dit auto layout, or create (C)ustom layout? [a] c

We want a custom layout, so enter c.
The installer should now drop us to the disklabel(8) command prompt,

indicated here by the > symbol:

You will now create an OpenBSD disklabel inside the OpenBSD MBR
partition. The disklabel defines how OpenBSD splits up the MBR partition
into OpenBSD partitions in which filesystems and swap space are created.
You must provide each filesystem's mountpoint in this program.

The offsets used in the disklabel are ABSOLUTE, i.e. relative to the
start of the disk, NOT the start of the OpenBSD MBR partition.

Label editor (enter '?' for help at any prompt)
>

We can now use the interactive disklabel editor to create OpenBSD par-
titions within the MBR partition, as discussed in the following sections.

Viewing Disklabels
The p command prints the partition’s existing disklabel:

 > p
OpenBSD area: 64-104856255; size: 104856191; free: 32
size offset fstype [fsize bsize cpg]
 a: 2104448 64 4.2BSD 2048 16384 1
 b: 2506143 2104512 swap
 c: 104857600 0 unused
 d: 10490432 4610656 4.2BSD 2048 16384 1
...
>

This is exactly the same information discussed in “Understanding
Disklabels” on page 31. This hard drive previously had an OpenBSD
installation, and the disklabel has those old partitions.

To display partition sizes in megabytes, enter p m:

> p m
OpenBSD area: 64-104856255; size: 51199.3M; free: 0.0M
size offset fstype [fsize bsize cpg]
 a: 1027.6M 64 4.2BSD 2048 16384 1
 b: 1223.7M 2104512 swap
 c: 51200.0M 0 unused
 d: 5122.3M 4610656 4.2BSD 2048 16384 1
...

Installation Walk-Through 51

You can also display partition sizes in gigabytes by entering p g:

> p g
OpenBSD area: 64-104856255; size: 50.0G; free: 0.0G
size offset fstype [fsize bsize cpg]
 a: 1.0G 64 4.2BSD 2048 16384 1
 b: 1.2G 2104512 swap
 c: 50.0G 0 unused
 d: 5.0G 4610656 4.2BSD 2048 16384 1
...

Choose the unit of measurement best suited to your disk.

Deleting Partitions
Use the d command to delete partitions:

> d
partition to delete: [] a
>

That’s it. Tell disklabel to delete a partition on this disk, give it the par-
tition letter, and it’s gone. But beware: disklabel won’t ask you to verify your
choice, so be sure to choose the correct partition.

Erasing Existing Disklabels
You could manually delete all partitions, but it’s much easier to zero out the
existing disklabel with the z command:

> z
> p
OpenBSD area: 64-104856255; size: 104856191; free: 104856191
size offset fstype [fsize bsize cpg]
 c: 104857600 0 unused
>

Here, we tell disklabel to erase the partition table with z, and then
print the partition table with p. The output should be an empty disklabel,
because the c disklabel partition represents the entire MBR partition. We
can now create our desired partitions.

Creating Disklabel Partitions
This first disk needs the following partitions:

•	 1GB / (root)

•	 1.2GB swap

•	 5GB /tmp

•	 1GB /usr/X11R6

•	 2GB /usr/src

52 Chapter 3

•	 2GB /usr/obj

•	 Everything else /home

By default, disklabel creates partitions in order. You can manually create
partitions in any order you want, but you’ll need to track sectors and cylinders
in order to figure out where each partition should begin and end. I strongly rec-
ommend creating partitions in order and letting disklabel do the math.

Use the a command to create a partition beginning with / :

> a
u partition: [a]
v offset: [64]
w size: [104856191] 1g
x Rounding size to cylinder (16065 sectors): 2104451
y FS type: [4.2BSD]
z mount point: [none] /
{ Rounding size to bsize (32 sectors): 2104448

>

By default, at u, disklabel offers the next free letter for your new parti-
tion. The first partition on the disk is a. Press enter to accept it.

The offset for a disklabel partition is the number of sectors from the begin-
ning of the disk where the partition starts, not from the beginning of the MBR
partition, which is the actual beginning of the disk. The first 63 sectors of a
disk, numbers 0 through 62, contain the MBR. We could use sector 63, but
OpenBSD starts on sector 64 to better align with memory cells in solid-state
disks. At v, you can see that disklabel offers 64 as the default offset.

The size at w is the number of sectors the partition uses. By default,
disklabel offers all the remaining space on the disk, but I want a 1GB root
partition. I could do the math to figure out how many sectors are in a giga-
byte, but I’m lazy, so I use an abbreviation instead. The disklabel command
recognizes the following abbreviations for sizes:

•	 b for bytes

•	 c for cylinders

•	 k for kilobytes

•	 m for megabytes

•	 g for gigabytes

All partitions must end on a cylinder boundary, so disklabel figures out
the closest boundary and, at x, sizes my root partition to match. My root
partition will be pretty close to 1GB.

The FS type at y shows the filesystem used on this partition. For an
OpenBSD disk, every data partition needs type 4.2BSD. Your swap partition
will be of type swap.

The mount point at z is where you want this partition mounted. By
default, disklabel doesn’t assign a mount point because it can’t guess what
you want. Enter the partition’s mount point.

Installation Walk-Through 53

Partitions must end on a cylinder boundary, but should end with a
whole block for the filesystem. The disklabel command  adjusts the parti-
tion size again, based on the standard block size of the filesystem.

Our next partition is swap space.

> a
u partition: [b]
v offset: [2104512]
w size: [102751743] 1.2g
x Rounding size to cylinder (16065 sectors): 2506143
y FS type: [swap]

>

The disklabel command assumes at u that you’re using the next parti-
tion letter, b. It automatically calculates the offset at v, which is the next
free sector after the previous partition. I use decimal fractions at w to set
the size (I could alternatively enter 1200m). The size at x is rounded to the
nearest cylinder boundary. Finally, disklabel knows that partition b is tra-
ditionally swap space, so it offers  that as the default. Swap space doesn’t
need a mount point, and it doesn’t have a block size.

We can create the remaining partitions in the same way. Creating the
last partition, /home, is even easier:

> a
partition: [h]
offset: [25575456]

u size: [79280799]
FS type: [4.2BSD]
mount point: [none] /home
Rounding size to bsize (32 sectors): 79280768
>

As you can see at u, we don’t need to track how much empty disk space
remains, because disklabel does that for us. Press enter to swallow it all.
Now is your chance to leave empty space on your disk.

Now that you’ve created all your partitions, print the disklabel (with the
p command, as described earlier in the chapter) to double-check your work.

Writing the New Disklabel
When you’re satisfied with your partition scheme, enter q to write your disk-
label to disk:

> q
Write new label?: [y] y
/dev/rsd0a: 1027.6MB in 2104448 sectors of 512 bytes
...

disklabel gives you one last chance to change your mind. Once you
write a new disklabel, recovering any data on the disk becomes extremely

54 Chapter 3

difficult, so be sure you backed up any vital data on this disk before starting
the installation. (This is a good time to make sure that you didn’t micro-
wave your backup.)

Adding More Disks
After you partition your first disk, the installer offers you a chance to parti-
tion any other hard drives:

Available disks are: sd1.
Which one do you wish to initialize? (or 'done') [done] sd1

The default is to not partition any other disks. If you choose another
disk, you’ll need to create MBR partitions and then disklabel partitions.

Once all of your hard drives have been formatted, you’ll return to
installing the file sets.

Advanced Disklabel Commands
While the basic commands should suffice to partition your disk, disklabel
supports a variety of advanced commands. We’ll look at a few of them now.

Changing Basic Drive Parameters
Remember all that stuff at the top of the disklabel that shows the drive’s
basic physical characteristics? You can change all that, but it’s almost never
necessary. In fact, if you think doing this is a good way to solve a problem,
you’re probably on the wrong track.

If you enter e, disklabel walks you through each entry on the upper part
of the disklabel. The existing values are presented as defaults, allowing you
to quickly walk through the variables until you reach the one you want to
change:

> e
Changing device parameters for /dev/rsd2c:
disk type: [SCSI]
label name: [Samsung HVX8812]
sectors/track: [63]
...

Edit this information at your own risk because you can render your
disk unbootable or your partitions unusable by changing it! Changing the
drive’s physical description means you’re lying to your computer, and com-
puters go ballistic when you lie to them about their hardware.

Installation Walk-Through 55

Modifying Existing Partitions
The m command modifies existing partitions. The disklabel tool walks you
through each of the values you entered when creating the disk, offering
your original values as defaults and allowing you to change them. But most
of the time, it’s easier to just delete the partition and re-create it.

Entering Expert Mode
Expert mode gives the advanced user access to some rarely used options in
disklabel. Most people don’t need these and find them simply clutter. (It’s
not as if disklabel isn’t complicated enough already.)

To access expert mode, use the X command. You won’t immediately
see all of the options available, but entering other commands will produce
more options and more output.

Getting More Help
You can enter a single question mark (?) at the disklabel prompt for a brief
list of all available commands. If you want more detailed help, the M com-
mand displays the disklabel(8) man page.

You’ve now installed OpenBSD. Let’s see what to do next.

4
P o s t - I n s t a l l S e t u p

Installation first,
now configure the software.

Server is ready.

You’ve installed OpenBSD and rebooted
into a bare-bones system. Of course, a min-

imal Unix-like system is actually pretty bor-
ing. While it makes for a powerful foundation,

it doesn’t actually do much of anything.
To get you started, this chapter covers some of the basic steps you should

take after installing OpenBSD to establish a firm platform for later work.
We’ll jump right into basic tasks such as correcting the time zone, setting a
default gateway, and setting an email alias for the root account.

But a bit of forewarning: You can change a surprising amount of
OpenBSD’s configuration when the system is up and running. You can
reconfigure the hostname, network configuration, and time and date, as
well as stop, start, or reset daemons as you see fit. But just because you can
doesn’t mean that you should.

While playing arbitrarily with a desktop or laptop machine might be fine,
if you’re running a server, you should test your configuration by rebooting.
Make sure that the system boots exactly as desired before adding services.

58 Chapter 4

If you find that OpenBSD boots fine but you must poke the network card
before it works, fix that before proceeding.

N o t e 	 The afterboot(8) man page has up-to-date advice for systems administrators who
have just installed their first OpenBSD system. Much of this advice overlaps material
that we’ll cover in this book (in a much more exciting fashion, I’m sure), while some of
it applies only to specific use cases. Read the afterboot documentation on your system
for the very latest information.

All of the tasks in this chapter must be performed as root. We’ll discuss
creating additional users in Chapter 6 and ways to avoid using the root
account in Chapter 7, but you don’t need to do that on a newly installed sys-
tem. Configure the system properly before you start letting people log on,
or you’ll wish you had.1

First Steps
The first two things you should do after installing a new system are check
for any operating system patches or errata and change the root administra-
tive password. These steps are critical, so don’t skip them.

Checking the System Errata
Believe it or not, OpenBSD isn’t perfect. Releases sometimes have bugs.
Some of these are serious problems; others not so much.

When the OpenBSD team learns of a serious problem with a release, it
issues an errata list, and whenever you build a new server, you should check
the errata list at http://www.OpenBSD.org/errata.html. Critical errata are also
announced on security-announce@OpenBSD.org, so if you’re on that mailing
list, you’ll get notifications of new errata. You’ll also see errata notices on
http://www.undeadly.org/.

Errata won’t always affect your use case. For example, as I write this,
OpenBSD 5.0 has one errata notice: a problem in the BIND name server.
If this server won’t run BIND, don’t worry about this errata. If you’re build-
ing a name server, however, you need this information before going into
production.

If you’re in doubt, correct your system as recommended in the errata,
which may require building one or more parts of OpenBSD from source.
(I’ll discuss errata and building OpenBSD at length in Chapter 20.)

Setting the Root Password
You needed to choose a root password during installation. To change it,
use the passwd(1) command. Of course, you must be root to change root’s
password.

1. Saying “Sorry about the timestamps errors in your vital data, but I hadn’t set the system clock
yet” is roughly equivalent to saying “I don’t care about you or your data.” If you feel that way, I’m
not going to argue, but at least have the confidence to tell the user what you really think.

Post-Install Setup 59

Software Configuration
When the OpenBSD kernel finishes its initial system setup and hands con-
trol of the system over to userland, init(8) runs the shell script /etc/rc. This
script starts all of the programs integrated with the system and performs
general system configuration, such as configuring network interfaces and
starting server software. To enable, disable, or otherwise configure inte-
grated software, modify the files /etc/rc.conf and /etc/rc.conf.local. (I’ll cover
the OpenBSD boot process in detail in Chapter 5, but for now, this section
will get you started.)

The files rc.conf and rc.conf.local contain shell script variable assignments
that control what /etc/rc runs and the command-line options for the various
programs. Keep in mind that any entries in rc.conf.local override rc.conf state-
ments. Most variable assignments have three legitimate values: an uppercase
NO, command-line flags in quotation marks ("-D"), or double quotes (""),
which are equivalent to empty. Each variable looks something like this entry
from rc.conf:

ntpd_flags=NO # for normal use: ""

The variable ntpd_flags controls the command-line flags that /etc/rc uses
when starting ntpd(8).

A NO disables this particular piece of functionality. In the preceding
example, the NTP daemon ntpd(8) is disabled.

If the variable is empty, /etc/rc starts the program without any command-
line arguments. For example, this ntpd_flags entry means that ntpd is to be
started without any arguments.

ntpd_flags=""

Anything within quotes is used as a command-line argument to the
program. (If a program has typical default flags, they’ll usually appear in
rc.conf.) The following example assigns the variable ntpd_flags the value -s.
When the system boots, rather than running ntpd, it will run ntpd -s:

ntpd_flags="-s"

Some variables have additional possible values. For example, the PF
packet filter (see Chapter 21) is enabled with a YES. To enable the NFS auto-
mounter daemon, you’ll need to use a path to the master map. (If you don’t
know what the automounter is, that’s fine—not many do these days.) Just
realize that weird values for rc.conf variables do exist. You’ll see these values
listed in rc.conf.

N o t e 	 OpenBSD defaults appear in /etc/rc.conf, but do not edit this file! This is a core
system file, and will be replaced during an upgrade. Put your local changes in /etc/
rc.conf.local. Entries in rc.conf.local will override the defaults in rc.conf.

60 Chapter 4

Time and Date
Correct system time is not only a convenience, but also a security issue,
because many attacks rely on changing the system clock. However, if your
system clock is wrong to start with, you won’t notice a change. Without
coherent time across all your servers, you’ll never be able to correlate your
logs when troubleshooting. What’s the solution? Fix your time settings
before you do anything else. Correcting the time requires both setting a
time zone and the clock.

Setting the Time Zone
The installer tries really hard to guess your time zone, using geolocation
tricks and a script at the OpenBSD website. If these didn’t work for you, or
if you weren’t on the Internet when you installed OpenBSD, or if your com-
pany policy says that all servers will run in time zone X, fix your time zone
before anyone notices.

The directory /usr/share/zoneinfo contains all of the time zones, as well
as several subdirectories for countries or continents with various time
zones. For example, Western Siberia runs on Omsk time (found in the
file /usr/share/zoneinfo/Asia/Omsk). Presumably, you have some idea of your
local time zone and where it might be filed.

To set the system time zone, create a symbolic link to it from /etc/localtime.
Use date(1) to make sure that the time zone has been set correctly:

ln -fs /usr/share/zoneinfo/Asia/Omsk /etc/localtime
date
Thu Mar 14 06:02:56 OMST 2013

OpenBSD also supports POSIX time zones found in /usr/share/zoneinfo/
Etc. POSIX time zones have their own rules. Do not use them unless you are
absolutely sure you understand them. (Hint: You don’t.)

Setting the Date and Time
Now that you have set a time zone, set the correct time and date. OpenBSD
includes OpenNTPD, a BSD-licensed simplified NTP daemon. If at all pos-
sible, use ntpd(8) to manage the time. If you can’t access NTP servers (say, if
you’re on a private network without them), set up your own. And if you can’t
set up time servers, set the system time manually.

Setting the Time with ntpd(8)

Configure OpenNTPD in /etc/ntpd.conf. The syntax should be familiar to
you if you’ve managed any other NTP daemon.

For basic time, you need time servers, ideally three or more. If you don’t
have local time servers, use publicly accessible time servers, such as the hosts
available at http://pool.ntp.org/.

Post-Install Setup 61

List your servers in /etc/ntpd.conf:

servers pool.ntp.org

Then enable ntpd in /etc/rc.conf.local:

ntpd_flags=

By default, ntpd slowly adjusts system time by skewing the system clock.
If the system time is a few seconds off, slow adjustment will usually suffice, but
if it’s off by minutes or more, have ntpd correct the system time on startup
and then adjust the time as needed. To enable time correction at startup,
use the -s flag:

ntpd_flags="-s"

Time skews most badly on heavily used hardware, lousy hardware, and
virtual machines.

Setting the Date Manually

To set the date and time manually, use date(1). First, make sure that you know
the current year, month, day of the month, and time (in 24-hour format).
Then set the date and time using this format:

date YYYYmmDDhhMM

For example, to set the date to February 3, 2013 and the time to 1:17 pm,
run this:

date 201302031317
Sun Feb 3 13:17:00 GMT 2013

That said, date(1) will not correct your clock on an ongoing basis, and
on some hardware with poor clocks, the time will slowly skew. A virtual
machine on heavily loaded hardware will almost certainly lose time. Use
NTP to deal with that.

Hostname
Set the system’s hostname in /etc/myname. My test system is called caddis​
.blackhelicopters.org.

$ cat /etc/myname
caddis.blackhelicopters.org

To change the hostname, edit /etc/myname. The new hostname takes
effect after the next reboot.

62 Chapter 4

To change the hostname until the next boot, use hostname -s and the
new hostname, like this:

hostname -s treble.blackhelicopters.org
hostname
treble.blackhelicopters.org

You can edit /etc/myname and run hostname -s to make a change take
effect immediately and persist after the next boot.

Networking
If you installed OpenBSD over the Internet, at least one Ethernet card should
be configured and working. But if you installed from CD, you didn’t need
to configure the network to install OpenBSD. If you installed OpenBSD on
one network and want to move the machine to another network, you’ll need
to reconfigure the network on your system.

I cover network principles in Chapter 11 and configuration in Chap
ter 12, but this brief entry will attach valid network addresses to your sys-
tem, install a default route, and get DNS resolution working. If you’re not
sure what to do here, don’t do anything until you read the later chapters.

To make network changes take effect, you can either reboot or run the
network startup script /etc/netstart, like this:

sh /etc/netstart

To configure only one interface, give the interface’s name as an argument:

sh /etc/netstart em0

Again, if your system is a server, reboot before you declare the server
ready for production.

Configuring Ethernet Interfaces
For a complete list of network interfaces recognized by your host, run
ifconfig(8). You should see a bunch of entries, like this:

u em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 lladdr 00:0c:29:d2:37:be
 priority: 0
 groups: egress
 media: Ethernet autoselect (1000baseT full-duplex,master)
 status: active

v inet 192.0.2.36 netmask 0xffffffe0 broadcast 192.0.2.63
 inet6 fe80::20c:29ff:fed2:37be%em0 prefixlen 64 scopeid 0x1

Post-Install Setup 63

Every OpenBSD system comes with the default interfaces lo0 (loop-
back), enc0 (encapsulating interface), and pflog0 (PF logging, discussed in
Chapter 21). These are virtual interfaces that don’t actually attach your sys-
tem to the local Ethernet. Other interfaces will be physical network ports,
like the Ethernet interface em0 at u.

Every Ethernet card has its own configuration file, /etc/hostname
.interfacename. The em0 interface in the example is configured in the file
/etc/hostname.em0. If the file doesn’t exist, create it.

At v, you see the IP address. The format of static IP addresses depends
on the IP version in use.

Static IP Addresses

For IP version 4 (IPv4) addresses, the common format is as follows:

inet ipaddress netmask broadcastaddress options

This format includes these elements:

•	 The inet keyword indicates this is an IPv4 address.

•	 The IP address (ipaddress) appears in standard dotted-quad notation.

•	 The netmask can appear in dotted-quad format (255.255.255.224) or in
hexadecimal (0xffffffe0).

•	 The broadcast address (broadcastaddress) gives you the option to hard-
code the broadcast address on this network. If you leave this blank or
use the word NONE, OpenBSD computes the correct broadcast address
from the IP address and netmask given earlier. If you use ifconfig(8)
options, you must use the word NONE to provide spacing. (You can also
provide the netmask in “slash” notation directly after the IP address, as
in 192.0.2.2/24.)

•	 The options space is where you should put any specific ifconfig(8) com-
mands needed for this interface, like hardcoded speed or duplex. (See
Chapters 11 and 12 for examples, and the hostname.if(5) man page for
the full details.)

When working with IP version 6 (IPv6) addresses, the format is as follows:

inet6 address prefixlength options

This format includes these elements:

•	 The inet6 keyword tells the system that this is an IPv6 address.

•	 The address space is for the IPv6 address, without a prefix length.

•	 The prefix length (prefixlength) appears separately, without a slash.

•	 As with IPv4, you can use ifconfig(8) options as needed.

64 Chapter 4

Even a very simple configuration will get a machine on the network.
The following configures em0 with the IPv4 address 192.0.2.2 and netmask
255.255.255.224. It also has the IPv6 address of 2001:DB8:7700::2/64.

$ cat /etc/hostname.em0
inet 192.0.2.2 255.255.255.224
inet6 2001:DB8::2 64

Anything that doesn’t follow these IPv4 and IPv6 formats is passed
directly to ifconfig. However, if you don’t know if a particular configuration
will work, try it at the command line first.

Dynamic Configuration

When performing dynamic configuration, if the machine is an IPv4 DHCP
client, use the string dhcp in hostname.if. For IPv6 autoconfiguration, use the
string rtsol, by itself on a single line, to tell OpenBSD to use the rtsol(8)
IPv6 autoconfiguration program.

$ cat /etc/hostname.em0
dhcp
rtsol

In order for IPv6 autoconfiguration to work, you must disable IPv6
routing with these two entries in /etc/sysctl.conf:

net.inet6.ip6.forwarding=0
net.inet6.ip6.accept_rtadv=1

These values already exist in /etc/sysctl.conf, but they’re commented out.

Setting a Default Gateway
To set either the IPv4 or IPv6 default gateway, place the gateway IP address
on a single line in /etc/mygate, with no other entries in the file. You can con-
figure default gateways for both protocols, each on its own line. The change
should take place on your next reboot, or use route(8) to manually change
the default gateway. The following sets both an IPv4 and an IPv6 default
gateway.

192.0.2.1
2001:DB8::1

Dynamic configuration requires setting a default route. If your /etc/
hostname.if file contains a dynamic configuration statement, /etc/mygate will
not be used for that IP protocol.

Post-Install Setup 65

Setting Name Service Servers
If you want to contact other machines by hostname, you need to set Domain
Name Service (DNS) servers.

Chapter 12 covers DNS resolution in detail, but /etc/resolv.conf contains
the basic client settings. Its first line defines the local domain with the
domain keyword and a domain name. Name servers appear on subsequent
lines, defined with the keyword nameserver and an IP address, as shown here:

domain blackhelicopters.org
nameserver 192.0.2.1
nameserver 192.0.2.3

Mail Aliases and Status Mail
Every OpenBSD system runs maintenance tasks daily, weekly, and monthly,
and sends email messages with the results to the local root account. I dis-
cuss these maintenance jobs in Chapter 15. If you have more than a couple
of servers, you should probably forward these email messages to a single
central account.

The OpenBSD system redirects email messages addressed to local users
to other users or remote email addresses, as configured in /etc/mail/aliases.
Here are a few entries:

...
Basic system aliases -- these MUST be present
MAILER-DAEMON: postmaster
postmaster: root
...

The original recipient appears on the left, followed by a colon, and a
list of people to forward the messages to. If you have multiple recipients
separate them with commas. Mail addressed to MAILER-DAEMON on the
local system is forwarded to the postmaster account, which, in turn, is for-
warded to the root account.

You should create an alias for root, directing mail sent to root to your
systems administration team:

root: mwlucas@bigcompany.com, sysadminstaff@bigcompany.com

After changing /etc/mail/aliases, run newaliases(8) to update email
forwarding.

66 Chapter 4

Keyboard Mapping
OpenBSD tries to guess your correct keyboard mapping. USB keyboards
have mechanisms to declare their country code. If autodetection doesn’t
work, you can change the keyboard layout with kbd(8), and set it at boot with
/etc/kbdtype.

Before touching the keyboard layout, use kbd to find your current key-
board map. kbd -l lists the more than 100 keyboard encodings OpenBSD
supports. Browse the list for your supported keyboard layout, or use grep to
reduce the list. I’m a Dvorak user, so I search for it like this:

kbd -l | grep dvorak
fr.dvorak
us.dvorak
...

My preferred layout is us.dvorak. I enter us.dvorak in /etc/kbdtype, and
after my next reboot, the console should use the Dvorak layout.

To set the keymap immediately to Dvorak, I could use kbd:

kbd us.dvorak
kbd: keyboard mapping set to us.dvorak

Read more about changing the console in Chapter 17.

Installing Ports and Source Code
If you intend to build your own OpenBSD releases or heavily customize
OpenBSD, you’ll need the operating system source code (see Chapters 18,
19, and 20). If you intend to build your own packages (covered in Chapter 13),
you’ll need the ports tree. Both the ports tree and the system source code
are specific to an OpenBSD release, and if you need them, install them
when you install the system.

The ports tree is the compressed file ports.tar.gz in the release directory
where you stored OpenBSD—either on the mirror site or the CD. All archi-
tectures share one ports tree. Download this file to your home directory
and extract it in /usr.

cd /usr/
tar -xzvf $HOME/ports.tar.gz

This extracts the ports tree to /usr/ports.
The system source code is found in three files in the release directory:

the kernel source code sys.tar.gz (see Chapter 19), userland source code
src.tar.gz (see Chapter 20), and the Xenocara xenocara.tar.gz (see Chapter 20).
Extract Xenocara to /usr, and the others to /usr/src.

Post-Install Setup 67

Booting to a Graphic Console
OpenBSD boots into a text console by default. To boot into an X-based
graphic console, use the xdm(1) command in /etc/rc.conf.local. The default
xdm setting is NO, so by changing it to empty quotes you enable it.

xdm_flags=""

If you need a more complicated xdm setup, put any command-line argu-
ments inside the quotes.

Onward!
Armed with the information in this chapter, you should be able to get your
system on your local network and make it at least minimally comfortable to
work with. Next, let’s take a look at the OpenBSD boot process.

5
T h e B o o t P r o c e s s

Single-user mode
unscheduled in the nighttime?
Something just went “boom”!

In order to properly manage any comput-
ing platform, you must understand the

boot process. Many systems administration
tasks cannot be done while the system is run-

ning. OpenBSD specifically requires that certain tasks
be done before the boot process has completed. And,
of course, on any operating system, sometimes a process starting up prevents
the system from completing its boot. The only way to fix these problems is
to interrupt the boot partway through.

First, we’ll look at the key to OpenBSD’s booting process: the boot loader.
Then we’ll move on to single-user mode, and finally multiuser startup. You can
perform useful work at any of these stages.

I recommend playing with the OpenBSD boot process on a test machine
before one of your machines won’t boot. That way, when something breaks in
the wee hours of the morning, you can spend your time fixing the problem
instead of fumbling around with unfamiliar commands.

70 Chapter 5

Power-On and the Boot Loader
In general, when a PC-style computer first boots, it starts the BIOS. The
BIOS is a small piece of software that figures out things like which drives
are attached and what they’re attached to, what sort of CPU is installed, and
how much memory is available. After getting that information, the BIOS
loads a minimal boot loader from some kind of storage device.1

The boot loader is a small program that handles initial system configu-
ration and boots the kernel. It finds and starts the kernel, which in turn
detects hardware, attaches device drivers, and performs other core setup.
Finally, the kernel calls init(8), which starts processes and enables user pro-
grams, network interfaces, server software, and so on.

While most of this process cannot be managed—no one actually con-
figures init!—there’s plenty you can do before the system finishes booting
and dumps you at the login screen.

The OpenBSD boot loader lets you interrupt the boot process, con-
figure the system before it boots, adjust kernel settings, and even boot an
alternate kernel.

When the hardware hands control of the boot process over to the
OpenBSD partition, you’ll see the boot loader prompt, which looks some-
thing like this:

>> OpenBSD/amd64 BOOT 3.18
boot>

The boot loader’s main purpose is to find the kernel, load it into mem-
ory, and start it. Because it runs before the kernel starts, the boot loader
can pass instructions to the kernel itself.

Here are some of the things you can do before booting is complete:

Use built-in help
Use the help function to print a brief list of commands that the boot
loader supports.

boot> help
commands: # boot echo env help ls machine reboot set stty time
machine: boot diskinfo memory

Delay the boot process
By default, the loader waits five seconds for instructions, and then boots
the kernel. To pause the boot at the prompt, press the spacebar.

Set the boot timeout
To set a new boot idle timeout, specify a number of seconds with the set
timeout command.

1. On i386 and amd64 systems, this is where the MBR comes in.

The Boot Process 71

boot> set timeout 10

After the boot prompt is idle for 10 seconds, the system should boot.

Boot the system
If you’ve paused the boot process, the system won’t boot until you tell it
to. When you’re ready to boot, use the boot command:

> boot

We’ll use various permutations of boot to configure the kernel, boot single-
user mode, and so on. I’ll cover other boot commands in the appropriate
sections. For full details on what you can do at the boot loader prompt, read
the boot(8) man page.

Booting in Single-User Mode
Single-user mode is the earliest point when OpenBSD can give you a Unix-
style shell prompt. At this point, the kernel has probed all the hardware,
attached drivers to all the hardware that it’s going to acknowledge, and
started init. The system hasn’t mounted any filesystems except for the root
partition, which is mounted in read-only mode. The network isn’t started,
no services are running, security is not implemented, and filesystem permis-
sions are ignored.

To boot OpenBSD in single-user mode, enter boot -s at the loader
prompt.

boot> boot -s

Why would you want to boot into single-user mode? If your computer
has a problem that is preventing it from booting, you should be able to
access single-user mode and fix the problem. Suppose a failed disk is pre-
venting the system from booting during a multiuser boot, or you changed
your terminal settings in /etc/ttys and now you can’t log on to the system.
Or maybe you put a daft setting in rc.conf.local, and the boot process hangs
because it’s trying to do something impossible. At times like these, single-
user mode is your best friend.

Also, some system administration tasks, such as clearing filesystem flags
(see Chapter 8), can be done only in single-user mode.

Mounting Disks in Single-User Mode
Usually, you should have a fully functional filesystem before doing anything
in single-user mode. If your system crashed, be sure to check the integrity
of your filesystems before mounting them:

fsck -p
/dev/sd0a (e4bf0318329fe596.a): file system is clean; not checking

72 Chapter 5

/dev/sd0h (e4bf0318329fe596.h): file system is clean; not checking
...
mount -a

fsck and mount have many more options. We’ll cover them in more detail
in Chapter 8.

Once you’ve mounted all of your filesystems, all usual command-line
software should be available. You should be able to edit configuration files,
start and stop programs, and generally do whatever you like to the system
(including destroy it).

Starting the Network in Single-User Mode
Use the shell script /etc/netstart to configure the network while in single
user mode. (You could run all the appropriate commands by hand, but
/etc/netstart will read your system’s configuration files and do the grunt
work for you.) You must explicitly run this script through sh:

sh /etc/netstart

If you’re booting into single-user mode because of network problems,
this script will conveniently reproduce the issue for you.

Booting an Alternate Kernel
As we’ll cover in tedious detail in Chapter 18, you can configure the OpenBSD
kernel, but before you do so, be sure that you can boot alternate kernels.
You’ll need to be able to boot a different kernel if, say, you hose your file-
system so badly that it won’t even boot to single-user mode, and you need
to recover using the installation kernel.

Booting a Different Kernel File
An OpenBSD installation includes three kernels out of the box: the single-
processor kernel /bsd, the multiprocessor kernel /bsd.mp, and the upgrade
and install kernel /bsd.rd. (If your machine has multiple processors, the
installer renames /bsd to /bsd.sp and /bsd.mp to /bsd.)

To boot a nonstandard kernel, first reboot and interrupt the boot pro-
cess at the boot loader prompt. Run boot, and give the full path to the kernel
you want to boot:

boot> boot /bsd.rd

This will start the system using your chosen kernel. You can use other
boot options as well, such as booting the alternate kernel in single-user mode:

boot> boot -s /bsd.sp

The Boot Process 73

This will let you recover from a bad kernel, try a new kernel, or anything
in between.

Booting from an Alternate Hard Disk
Suppose you’ve really fouled everything up beyond all recognition, and you
don’t have a usable kernel on your root partition. Fortunately, if you have a
usable kernel on a different hard drive, you can boot from that. (Usually,
this kernel lives on an alternate root partition, /altroot, as discussed in
Chapter 8.) In this section, I’ll break the task of booting from that alternate
kernel into a few steps: finding the hard disk with the partition, finding the
partition with the file, and booting the right file on that partition.

Finding the Disk

Once you’re familiar with OpenBSD, you may begin to think of the hard
drives in your system by their device names, such as /dev/sd0, /dev/wd1, and
so on. Unfortunately, those are the kernel’s names for the disks; the boot
loader recognizes only the BIOS’s disk names.

To ask the boot loader about disks, use the machine diskinfo command:

boot> machine diskinfo
Disk BIOS# Type Cyls Heads Secs Flags Checksum
fd0 0x0 *none* 80 2 18 0x4 0x0
hd0 0x80 label 1024 255 63 0x2 0x51db843d
hd1 0x81 label 1024 255 63 0x2 0x9329b723
hd2 0x82 label 1024 255 63 0x2 0xcfadb343
boot>

Here, the boot loader has found four disk devices. The first, fd0, is a
floppy disk drive. This drive might or might not have a disk in it, but what-
ever it has, it’s almost certainly not your alternate kernel. (It might be an
installation disk, though, so don’t automatically rule out using it for disaster
recovery.)

The other three devices—hd0, hd1, and hd2—are hard disks. The first,
hd0, is the default system boot disk. If you can’t boot from that disk, you
need to find the hard disk that contains your kernel.

Finding the Partition

Vague stirrings of memory in this output lead me to think that hd2 might be
the disk that holds my backup root partition. To try it, tell the loader that
disk partition hd2a is the new root partition:

boot> set device hd2a

Before trying to boot from this partition, look at its contents:

boot> ls
stat(hd2a:/.): Invalid argument
boot>

74 Chapter 5

Apparently, disk hd2 has no partition a. After service is restored, I’ll take
this disk out behind my garage and beat its weakness out of it. For now, let’s
try the only remaining disk, hd1.

boot> set device hd1a
boot> ls
drwxr-xr-x 0,0 512 .
drwxr-xr-x 0,0 512 ..
drwxr-xr-x 0,0 512 altroot
drwxr-xr-x 0,0 512 home
drwxr-xr-x 0,0 512 tmp
...

This looks like an actual root partition (altroot offers a hint).

Booting the Kernel

At this point, we could boot a different kernel, but we’ll just boot the /bsd
kernel on this partition in single-user mode, because the filesystem table
would have the incorrect entry for the root filesystem, which would mess up
all sorts of stuff.

boot> boot -s
booting hd1a:/bsd: 5669864+1601484+935608+0+617568 [89+499848+323884]=0xd351b8
...

Alternatively, you could give the device name at the boot prompt:

boot> boot -s hd1a:/bsd

As a general rule, you should mount the actual root partition on /mnt,
make the necessary changes for normal operation, and reboot into the
proper root partition. You could also boot the /bsd.rd kernel, giving you a
cleaner boot at the cost of having fewer tools available.

Making Boot Loader Settings Permanent
To make boot loader options permanent, edit /etc/boot.conf. The boot loader
reads and runs entries from this file before giving you the boot> prompt,
which means you can use it to automatically run boot loader commands
every time your computer boots. (Although if you would rather sit at your
computer and enter your settings every time you reboot, don’t let me stop you.)

Any command you might give at the loader prompt is a valid boot.conf
entry. For example, if the default boot speed is too slow for your liking, you
can set your boot timeout to two seconds by adding this line to boot.conf:

set timeout 2

The Boot Process 75

You can also tell the system to boot a different kernel with the correct
boot.conf command.

set image /bsd.mp

By far, boot.conf is most often used to configure a serial console.

Serial Consoles
All of these nifty boot functions let you do useful stuff when your system
is in trouble, but how can you use them when your computer isn’t right
in front of you? If your computer is in a data center on the other side of
the country, or sitting in the basement behind the last decade of payroll
records, a serial console will make your life far more pleasant.

A hardware serial console allows you to run a serial cable between a
computer and a terminal server (on another computer) to access BIOS
messages and operating system boot and startup messages which simplifies
managing remote systems. Serial consoles are invaluable when debugging
system crashes, too; error messages come over the serial port, where you
can easily capture them.2

True UNIX hardware has serial console capabilities, as does most server-
grade i386 and amd64 hardware. Most desktop-grade hardware, however,
does not. But fortunately, even if you don’t have a hardware serial console,
you can access all of OpenBSD’s startup messages with a serial port and a
software serial console. While OpenBSD’s software serial console won’t give
you access to the hardware BIOS, it will let you interface with the boot loader
and remotely access the system console, even when the network is down.

Other Platform Serial Consoles
Every hardware platform has its own standards for serial consoles. If you’re
running a less common platform, check your hardware’s documentation.

If your hardware supports a real serial console, you should usually con-
figure it in the BIOS. OpenBSD supports whatever the hardware supports,
so your Sparc64 hardware will support OpenBSD’s serial console just as well
as it supports any other operating system’s serial console.

Serial Console Physical Setup
A serial console requires a null modem cable, which you should be able to
get from any computer store or an online vendor. While gold-plated cables
aren’t worth the money, don’t buy the cheapest cable you can find either. If
you have an emergency and need the serial console right now, you won’t be
in the mood to deal with a defective cable.

2. Granted, a remote keyboard-video-mouse (KVM) system can give you all of this, but very
few KVM applications let you copy and paste text from the remote console. That means you’ll
need to copy error messages by hand.

76 Chapter 5

Plug one end of the null modem cable into your OpenBSD machine’s
first serial port. (The serial console is supported on only the first serial
port, or com0 on i386 and amd64 hardware.) Plug the null modem cable’s
other end into an open serial port on another system. (For simplicity’s sake,
use either another OpenBSD or Unix-like system.)

If you have two OpenBSD machines at a remote location and you want
to use serial consoles on both, you can have each machine act as the console
client for the other. Attach the first serial port on each server to the second
serial port on the other. If you have three machines, you can daisy-chain
them in a loop. If you have four or more machines, pick up a used terminal
server from your favorite auction site.

You can also use two DB9-to-RJ45 converters, one standard and one
crossover, which will allow you to run your console connections over a stan-
dard CAT5 cable. If you have a lights-out data center where human beings
are forbidden unless they are installing or removing equipment, you can
stretch your serial console cables about 12 meters, which should reach into
your warm room. (Most modern data facilities are better equipped to handle
CAT5 cables than serial cables.)

Serial Console Configuration
Now that you have the console physically ready, the next step is to config-
ure your client to access the serial console. Then you can set up the serial
console.

Configuring the Serial Console Client

The following are the default settings for an OpenBSD i386 or amd64 system:

•	 9600 baud

•	 8 bits

•	 No parity

•	 1 stop bit

Enter these values into any terminal emulator on the client computer,
and the serial console should Just Work. You can find terminal emulators
for Microsoft platforms (I recommend PuTTY), OS X, and just about any
other operating system.

OpenBSD includes the terminal emulator tip(1), which reads its config-
uration from /etc/remote. The configuration tty00 in /etc/remote matches the
default OpenBSD serial console configuration for i386 and amd64 systems
(as well as several other platforms). If you’ve attached your null modem
cable to the first serial port on the client, connect with this command:

tip tty00
connected

The Boot Process 77

If it doesn’t say connected, your serial client is misconfigured. Fix your
client before enabling your serial console on the server. You want your
serial client ready before configuring the console.

Setting Up the Serial Console

OpenBSD normally uses the local physical keyboard, video, and mouse as
the console, but it can also use the first serial port as a serial console.

To set the console, use the boot loader. You must know the loader’s
device name for your preferred console: com0 for the first serial port or pc0
for the physically attached video and keyboard.

The first time you try to use a serial console, use a local test machine.
Set up your client beforehand and start your terminal emulator, and then
boot your test machine. At the boot loader prompt, enter this command:

boot> set tty com0

Your server’s monitor and keyboard should stop responding, and if
you’ve set up everything correctly, you should see the boot loader prompt
in your terminal emulator.

To switch back to the physical console, tell the boot loader to use the
pc0 device:

boot> set tty pc0

Poof! The server’s keyboard and monitor should work again.
To have your machine use the serial console at every boot, add this

statement in /etc/boot.conf:

set tty com0

Be sure to test your serial console after the machine is installed in its
permanent location, and always screw the serial cables to the server. A loose
serial cable provides only a comforting illusion that betrays you when it will
hurt the most.

Testing the Serial Configuration

After configuring your serial console, return to your serial client and press
enter. You should see something like this:

OpenBSD/amd64 (caddis.blackhelicopters.org) (tty00)

login:

Changing the Serial Console Speed
Newer serial ports (meaning anything made within the past 10 years) can
run at speeds far above 9600 baud. I have servers with serial consoles that

78 Chapter 5

run only at 115,200 baud. The BIOS messages display at 115,200 baud, but
then the OpenBSD console runs at 9600 baud. My client displays one or the
other as gibberish. (A lot of OpenBSD folks think that anything that won’t
do serial at 9600 baud is broken, but you won’t always have control over the
hardware you work with.)

To use these ports, I can either change my connection speed in my
serial console client when switching between the BIOS messages and the
OpenBSD messages, or change the speed of my OpenBSD console to match
the hardware.

At the boot loader, tell the serial console to run at 115,200 baud:

boot> stty com0 115200
boot> set tty com0

If these settings work, copy them to /etc/boot.conf.
Now configure your serial client. Modify tip to use the higher speed.

First, find the entry for tty00 in /etc/remote :

tty00|For hp300,i386,mac68k,macppc,vax:\
 :dv=/dev/tty00:tc=direct:tc=unixhost:

But don’t modify this entry! We’ll use it to illustrate the style of /etc/remote
entries.

N o t e 	 /etc/remote is designed much like a termcap(5) database. If you ever need to write
your own termcap entries from scratch, you’re living your life wrong. But you can rec-
ognize the contents and modify existing entries without much pain. If you really want
to learn everything about these entries, read the remote(5) man page.

Backslashes (\) in this entry mean “continued on the next line.” Colons
separate fields. Each line after the first must start with a colon, and each
field is a key/value pair.

Now, to create a console entry that runs at 115,200 baud, use the
following:

console:br#115200:tc=tty00:

The first field in an /etc/remote entry is the name, and every entry must
have a unique name. I named this entry console. The second field is the br
value. According to remote(5), br stands for bit rate. I’ve set the bit rate to
115,200 baud. The third field is tc, for “table continues,” which is equal to
tty00. This means that the description of this entry continues in entry tty00.

Taken as a whole, this entry means “copy the tty00 entry, and add a bit
rate of 115,200.”

Changing the Client Serial Port
If you have two OpenBSD machines, each sending its serial console out its
first serial port to the other machine’s second serial port, you must tell tip

The Boot Process 79

to connect to the second serial port. The command tip tty00 doesn’t actually
connect to the serial port named tty00—it connects to a port defined by the
/etc/remote entry named tty00. That means that you can’t run, say, tip tty03
and connect to serial port tty03 unless you have an /etc/remote entry named
tty03. By default, there isn’t one, but you can define one easily, as follows:

tty03:dv=/dev/tty03:tc=tty00:

This entry is named tty01. The dv setting tells /etc/remote the physical
device to use. Other than this, all settings are copied from the entry called
tty00.

With these examples, you should be able to use OpenBSD’s tip to con-
nect to almost any serial console.

Serial Logins
The serial console lets you interact with the boot process. Once your machine
is fully multiuser, however, a default serial console will not let you actually
log in to OpenBSD. In multiuser mode, OpenBSD uses getty(8) to initialize
terminals and handle logins, and in order to log in to your machine over
a serial port, you will need to tell getty to take charge of the serial line by
configuring /etc/ttys.

We’ll discuss /etc/ttys further in Chapter 14, but for now, here’s how to
allow logins over the first serial port. Find the entry for tty00, which should
look like this:

tty00 "/usr/libexec/getty std.9600" unknown off

Remove the last two words, and replace them to match the following:

tty00 "/usr/libexec/getty std.9600" vt220 on secure

Now run kill -1 1, and you should get a login prompt over your serial line.

Multiuser Startup
When the kernel finishes its core setup and hands control over to userland,
init(8) runs the shell script /etc/rc. This script handles all system setup,
including mounting filesystems, configuring device nodes, identifying
shared libraries, and any other task required to make the system usable.
Some tasks are delegated to separate scripts; for example, /etc/netstart is
used to configure the network.

In this section, we’ll cover how /etc/rc and other startup scripts function,
and the flow of the startup process. Armed with this understanding, you
should be able to easily configure your OpenBSD machine to start exactly
what you need—no more, no less.

80 Chapter 5

Startup System Scripts
The startup system includes the scripts /etc/rc, /etc/rc.conf, /etc/rc.conf.local,
/etc/netstart, /etc/rc.securelevel, /etc/rc.local, /etc/rc.shutdown, /etc/rc.firsttime,
/etc/fastboot, and the contents of the /etc/rc.d directory.

The /etc/rc Script

On OpenBSD, everything outside the kernel is configured with a shell com-
mand, from setting the hostname to starting server daemons. The master
script is /etc/rc, and it runs all of these commands in the correct order,
ensuring that the system is configured exactly the same way at every boot.
As a final step, /etc/rc runs getty(8) to present login prompts on all the
appropriate terminals.

Never edit /etc/rc unless you’re a very experienced systems administrator
with truly unique needs. This is one of the several files in /etc that is techni-
cally editable, but mere mortals are well advised to treat as binary. Instead,
whenever you need to disable functions, deactivate them in /etc/rc.conf.local.
To add new functionality to the startup process, use the shell scripts /etc/
rc.securelevel and /etc/rc.local, or write a shell script for /etc/rc.d.

The /etc/rc.conf Script

The /etc/rc.conf file contains nothing but the default values for all other
startup scripts. Read this file to see the configuration options for different
system services. Here’s a small snippet of what you’ll find in rc.conf:

...
bgpd_flags=NO # for normal use: ""
rarpd_flags=NO # for normal use: "-a"
bootparamd_flags=NO # for normal use: ""
rbootd_flags=NO # for normal use: ""
sshd_flags="" # for normal use: ""
named_flags=NO # for normal use: ""
...

If a variable is set to NO, the associated service is disabled by default.
As you can see, OpenBSD turns off almost everything by default, with

one exception: the SSH daemon. Setting the variable to a pair of quotes, as
shown after each entry in the preceding snippet, is enough to enable most
daemons, and most daemons will run just fine without any command-line
flags. However, if a daemon requires a command-line argument in order to
run, that argument will be shown as it is in the -a attached to rarpd_flags.

N o t e 	 At the risk of beating my dead server senseless, never edit /etc/rc.conf (treat as
binary—remember?). It will be replaced wholesale during a system upgrade. Instead,
place your local values in /etc/rc.conf.local.

The Boot Process 81

The /etc/rc.conf.local Script

I’ve mentioned this before, but I’m going to beat you over the head with it:
Place your changes to rc.conf in rc.conf.local. Entries in rc.conf.local override
the defaults in rc.conf.

For example, say that on a particular machine, you want to run sshd(8)
with extra debugging, and you also want to run named(8). Additionally, you
want to run the time server ntpd(8), and have it correct the time at boot by
using the -s flag. After consulting the documentation for those programs,
you add the following lines to rc.conf.local:

sshd_flags="-D"
ntpd_flags="-s"
named_flags=""

OpenBSD will start the programs with the flags specified here. If you
specify invalid, incorrect, or incompatible flags, the daemon will print error
messages to the console.

The /etc/netstart Script

While its name differs from the other scripts, /etc/netstart is definitely
a system startup script. It reads /etc/mygate, /etc/myname, and all the
/etc/hostname.if files, and uses the information in them to configure all net-
work interfaces, bridges, routing, and so forth. The file /etc/rc runs this
script before starting any server daemons, network filesystems, and so on.
In single-user mode, you’ll run this script by hand to bring up the network.

The /etc/rc.securelevel Script

The /etc/rc.securelevel shell script runs early in the boot process, before
/etc/rc raises the system securelevel, but after starting the network. Many
programs, particularly those that touch the kernel or intimately affect the
filesystem, will not run once the securelevel is raised. If you run such a
program, you can add the command to start it to this script. If your local
program doesn’t need to run before the system securelevel is raised, you’re
better off starting it from rc.local or writing a proper rc.d script for it.

One important entry in rc.securelevel is the definition of the system
securelevel. We’ll discuss securelevels in Chapter 10. For now, don’t touch
the line that sets the securelevel unless you’re already familiar with BSD-
based systems and know exactly which toe you’re shooting off.

The /etc/rc.local Script

After /etc/rc does just about everything else, it runs /etc/rc.local. You can put
commands to start local daemons in rc.local, but you’re better off writing an
rc.d script to start local daemons so you can easily and consistently restart
them later. Of course, if you’re lazy, you can get by with rc.local.

82 Chapter 5

The /etc/rc.shutdown Script

Whenever you use reboot(8) or halt(8), OpenBSD runs the /etc/rc.shutdown
script, which you can count on to run extra commands needed to safely shut
down your server. Most server software shuts down cleanly without any spe-
cial intervention, but software that requires data integrity (like databases)
may need help shutting down without losing data. Again, if at all possible,
write an rc.d script to manage your software.

The /etc/rc.firsttime Script

/etc/rc runs the script /etc/rc.firsttime once, mails the output to root, and
deletes rc.firsttime. The installer uses rc.firsttime for tasks such as fetching
firmware that can’t be legally redistributed. While you won’t normally use
rc.firsttime, you should know that it exists and that you can use it to perform
one-time tasks when a machine boots.

The /etc/fastboot Script

If the /etc/fastboot file exists, OpenBSD assumes that all filesystems are clean
(see Chapter 8), and the boot process skips checking filesystem integrity.

The /etc/rc.d Directory

The /etc/rc.d directory contains shell scripts for managing software, as dis-
cussed in the next section. While the system comes with scripts for software
included in OpenBSD, add-on packages can provide their own scripts (see
Chapter 13).

Software Startup Scripts
OpenBSD uses shell scripts to start, stop, restart, check, and reconfigure
server software. These scripts are found in the directory /etc/rc.d. Every
piece of server software that comes with OpenBSD has a script in this
directory, as do most ports and packages that need scripts for proper
startup and shutdown. Use these scripts to manage integrated software
without rebooting the server.

The rc.d scripts read their configuration from rc.conf and rc.conf.local.
Most servers run the SSH daemon sshd, which can be enabled by adding the
line sshd_enable="" to rc.conf.local. Look in /etc/rc.d, and you’ll find the shell
script sshd.

If you change your sshd configuration, you must restart the daemon.
Use the shell script to do this consistently.

cd /etc/rc.d/
./sshd restart
sshd(ok)
sshd(ok)

Of course, you could do the same thing without the shell script simply
by identifying the currently running sshd(8) process, reading the man page

The Boot Process 83

to see how to shut it down properly, and then restarting it with the same
command-line flags. In the case of sshd, that’s easy: Running pkill -1 sshd
would tell the daemon to reread its configuration file. But restarting a dae-
mon that requires all sorts of flags is a big deal. Automating these system
administration tasks ensures that your daemons run consistently.

To see if a daemon is running, use the check command to check your
shell for the return value. The script will return a 0 if the daemon is run-
ning and a 1 if it isn’t, as shown here:

./nfsd check
echo $?
1

As you can see by the 1, nfsd is not running.
The most common use for check is in shell scripts. You can start the

daemon with the argument start and terminate it with stop. Use the restart
argument to tell the daemon to reload its configuration.

In OpenBSD, rc.d scripts run when the system boots and again when it
shuts down. (Something needs to unmount all those hard drives, shut down
daemons, and clean up.) At shutdown, every script in the /etc/rc.d folder is
called with the stop argument.

Third-Party rc.d Scripts
OpenBSD packages for third-party software include rc.d scripts as neces-
sary. For example, the popular database server MySQL mysql-server package
installs the script /etc/rc.d/mysqld. To use the package, you must enable it in
rc.conf.local:

mysqld_flags=""

Once the package is enabled, you can manage your MySQL server just
like any other OpenBSD daemon. However, packaged software will still not
start automatically at boot, so you must tell OpenBSD to run this particular
rc.d script at boot and shut down with the pkg_scripts variable in rc.conf.local:

pkg_scripts="mysqld"

The startup process runs the scripts in this variable, in the order given,
at boot. The order is important for certain daemons. For example, if you
have a database-driven website, you should start the database before the
web server. At shutdown, it runs these scripts in reverse order.

Force-Starting Software
Sometimes you don’t want to enable software globally; you just want to run
a certain daemon for a short time or to address a specific situation. You can
use rc.d scripts to manage this software using the -f flag to force the soft-
ware to run.

84 Chapter 5

Now for a real-life example. I previously ran PostgreSQL on my server,
but someone kidnapped my pet rats and blackmailed me into using MySQL
in exchange for their safe return. I needed to check some data in the old
database, however, so I force-started the disabled PostgreSQL server:

./postgresql -f start
postgresql(ok)

If you package or install your own software, I strongly recommend writ-
ing your own rc.d script. A few minutes spent reading the existing scripts
will tell you most of what you need to know. For the rest, read the rc.d(8)
and rc.subr(8) man pages.

Now that you can start OpenBSD, let’s set up some user accounts.

6
U s e r M a n a g e m e n t

This one can log in,
this other can get email;

never give out root.

While computer intrusions over the Internet
make headlines, a system administrator’s

greatest security threats often come from
a system’s own users. Maybe they won’t ship

your data to a crime syndicate, but disgruntled and
incompetent users will crash your servers given the
chance—sometimes out of malice, but more often out of ignorance. Think
about security as the combination of confidentiality, integrity, and availabil-
ity, and it will immediately become clear how users with unrestricted system
access can damage security.

Despite what you might have learned from the Bastard Operator from
Hell, the system exists for the users, and proper management of those users’
accounts is absolutely necessary. In this chapter, we’ll cover one of the
systems administrator’s most common tasks: managing users by adding,
removing, configuring, and modifying user accounts.

86 Chapter 6

The Root Account
In recent years, there has been a trend toward using the privileged root
account for everyday tasks on systems that have only a single user.1 Using a
privileged account to read your email and browse the Web increases your
risks from both user errors and malicious attacks. While a careless key-
stroke by a regular user will generate only a permission denied error, that
same keystroke by root might render your system unusable and destroy all
your data. Even if you’re the only person using your OpenBSD system, you
must use an unprivileged user account for day-to-day tasks.

If an intruder compromises an unprivileged account, the potential
damage is limited only by that user’s permissions. If the compromised
account handles your email and web bookmarks, you might suffer only per-
sonal embarrassment. But if that account handles system administration
tasks, your intruder can inflict unlimited system damage and send you scur-
rying for your backup. Using a regular account for day-to-day tasks means
that you can take extra steps to restrict the root account.

Perform all tasks with the minimum level of privilege necessary. If
you don’t need root access to perform a task, don’t use it! For example,
OpenBSD’s web server runs as the specific user www, rather than as root. If
an intruder breaks into your web server and gains access your system as the
www user, he can damage only the files the www user has permission to write
to. Likewise, if the web server software goes into an error state and starts
deleting files at random, this same principle limits the files it can delete.
The least privilege approach protects the system from both intruders and
its own software.

Operating systems that give every user privileged access have more
problems as a result. Virus effectiveness, unexpected misconfiguration,
and even crashes can be traced back to unnecessary privileged access.
OpenBSD might be the most secure operating system in the world, but all
those fancy security features can’t protect you from poor system administra-
tion practices.

Using the root account for routine tasks also creates bad habits. People
under pressure perform what they practice. If you use root on your desktop
for routine work, you’ll need to fight your habits to perform routine tasks
when you work on a production server. This sort of sloppiness inevitably
breeds security problems. Even on my OpenBSD desktop, where I’m the
only user, I do everything as a regular user specifically to develop and main-
tain good sysadmin habits.

Adding Users
OpenBSD uses many of the standard UNIX user- and password-
management programs, such as passwd(1) and vipw(8). It also includes

1. This probably leaked through from the Microsoft culture, where for many years, every user
had administrative access.

User Management 87

a friendly interactive user-creation program, adduser(8). We’ll cover adduser
first, and then look at some of the more advanced tools.

Adding Users Interactively
Only the root user can run adduser. If you start adduser at the command line
without specifying any options, it drops you into a friendly interactive dia-
log where you can create new users.

Configuring adduser

The first time adduser runs, it asks a series of questions to determine its
default settings. It saves these default settings, but you can change the
defaults later.

adduser
Couldn't find /etc/adduser.conf: creating a new adduser configuration file
Reading /etc/shells
Enter your default shell: csh ksh nologin sh tcsh [ksh]: u
Your default shell is: ksh -> /bin/ksh
Default login class: authpf bgpd daemon default staff
[default]: v
Enter your default HOME partition: [/home]: w
Copy dotfiles from: /etc/skel no [/etc/skel]: x
Send welcome message?: /path/file default no [no]: y
Do not send message(s)
Prompt for passwords by default (y/n) [y]: z
Default encryption method for passwords: auto blowfish des md5 old
[auto]: {

adduser first asks for your preferred default shell. It reads /etc/shells to see
all the shells installed on your system. Though I’ve long used tcsh, I usually
start new users with the OpenBSD standard of ksh u. That way, they have a
shell that more closely resembles what is used by the rest of the world, and
they quickly learn that I cannot answer questions about their shell.

Next, adduser asks for your default login class. I’ll cover login classes
later in this chapter. For now, assign new users to the default login class at v.

If you have a default OpenBSD installation, your user home directories
are on the /home partition. If not, specify the default home directory at w.

User accounts need configuration dotfiles (.shrc, .login, .profile, and
so on). If you have a directory containing customized dotfiles, tell adduser
about it at x. Otherwise, just accept the default.

Though OpenBSD doesn’t include a welcome message by default, you
can put one on the system so new users will have an email waiting for them
on their first login. Give adduser the full path to the file containing your wel-
come message at y.

Depending on how you create user accounts, you might want to provide
a password when you create the user account. Accounts created without
passwords are disabled until a password is assigned. If you won’t be assign-
ing passwords when creating accounts, you can tell adduser not to prompt
you for them at z.

88 Chapter 6

Finally, you can choose the encryption algorithm used to hash user
passwords, which are stored in /etc/master.passwd. Unless you have specific
interoperability needs or otherwise know what you’re doing, accept the
default at {.

From now on, adduser will use these chosen defaults. If you want to
modify the defaults later on, change them in /etc/adduser.conf. Read the
adduser(8) man page for a complete list of configuration file options.

Creating User Accounts

Now that you’ve set your default options, run adduser again to create user
accounts.

Start by assigning a username. Many people are irrationally attached to
particular usernames, and it’s polite to ask them if they have a preference.

Ok, let's go.
Don't worry about mistakes. There will be a chance later to correct any input.
Enter username []: pkdick

Once you have a username, you’ll get a chance to enter the user’s real
name or the account’s intended purpose.

Enter full name []: Phil Dick

The shell you specify is a matter of user preference. The list of shells
is taken from /etc/shells, with the addition of the nologin option. Users can
change their shell unless you specifically prevent that, so don’t worry too
much about which shell you assign.

Enter shell csh ksh nologin sh tcsh [ksh]:

Next, choose a user ID (UID) number. By default, UID numbering starts
at 1000, and adduser uses the lowest available number. You can change this if
needed to match some local standard.

Uid [1001]:

By default, new users are assigned to a group with the same name as
their username. Each user can be assigned to only a single login group (or
primary group), but you can assign user accounts to multiple secondary
groups if needed. If you want this user to be able to use the root account,
invite the user to the wheel group. Other common groups include staff,
users, and operator.

Login group pkdick [pkdick]:
Login group is ``pkdick''. Invite pkdick into other groups: guest no
[no]: wheel

User Management 89

Choose a login class for the user. If you don’t understand login classes
yet, accept the default. I recommend assigning administrative users—for
example, those in the wheel group—to the staff class. If you’re a desktop
user, you want to be in the staff login class.

Login class authpf bgpd daemon default staff [default]: staff

If you set adduser to ask for passwords, it will ask you for a password, and
then ask again to confirm.

Enter password []:
Enter password again []:

Now adduser displays everything you selected.

Name: pkdick
Password: ****
Fullname: Phil Dick
Uid: 1001
Gid: 1001 (pkdick)
Groups: pkdick wheel
Login Class: staff
HOME: /home/pkdick
Shell: /bin/ksh
OK? (y/n) [y]: y

Either accept or reject the user at this point. If you accept, adduser will
create the new user and ask if you want to create another user.

Adding Users Noninteractively
If you need to create many users, you probably don’t want to spend your
day looping through adduser dialogs. If you have scripts, cron jobs, or web
interfaces that add user accounts, you’ll want to create users noninter
actively. adduser’s -batch flag enables this. When you use batch mode, adduser
takes four additional arguments: the username, the groups the username
belongs to, the full name, and the password in encrypted format.

adduser -batch username group 'Real Name' encryptedpassword

To create our user pkdick in batch mode, we would run this:

adduser -batch pkdick wheel 'Phil Dick' NotThePassword

One thing to note here is that pkdick’s password is not NotThePassword.
adduser expects us to provide a random salt that hashes to the string
NotThePassword, not the password itself. For instructions on how to generate
encrypted passwords, see “Passwords and Batch Mode” on page 90.

90 Chapter 6

Groups in Batch Mode

By default, new users are assigned a primary group with the same name
as their login name. In batch mode, you must specify additional groups
desired on the command line. Our example user pkdick is created with the
login group of pkdick. If you want to set a different login group for a par-
ticular user, use the -group flag.

adduser -group guest -batch jgballard customers 'Jim Ballard' NotThePassword

You’ll need to add the user to another group. Here, I gave jgballard the
login group of guest and added him to the group customers.

To assign a user to multiple groups, separate the groups using commas.

adduser -batch jgballard customers,sftp-only 'Jim Ballard' NotThePassword

The end result here is that jgballard is assigned to the jgballard primary
group and added to the customers and sftp-only secondary groups.

Passwords and Batch Mode

If you actually follow any of the previous examples, you’ll create an account
with no known password. Modern Unix-like operating systems don’t store
passwords in readable format; instead, passwords are stored as a hash
of the password and a random salt. When you assign a password to a user,
the system takes the password, adds the salt, and performs some horrible
computations to generate a hash of the password. The system then stores
that hash and salt in the /etc/master.passwd file. When you attempt to log
in, the login process takes your password, adds the salt, and computes the
hash of that combination. If the computed hash matches what’s stored in
/etc/master.passwd, the login is permitted.

The examples create an account with a password hash of NotThePassword.
Because this isn’t a legitimate hash, no entered password will match it. We
need to provide a pregenerated encrypted password, enter an unencrypted
password, and let adduser calculate the hash for us, or create an account
without a password.

Creating a new account without a password is the simplest option.
OpenBSD will disable the account until you assign a password to it, but this
is acceptable for accounts used to run daemons, or if you have a help desk
staff to assist new users in setting passwords. To create an account without
a password, simply omit the password from the account-creation process.

adduser -batch pkdick wheel 'Phil Dick'

If you want to enter an unencrypted password on the command line, use
the -unencrypted option. Put this option before the -batch option. For example,
to give Phil’s account the password IsThePassword, enter the following:

adduser -unencrypted -batch pkdick wheel 'Phil Dick' IsThePassword

User Management 91

This account now has a password of IsThePassword. You might use this
inside a script or when no one is around to look over your shoulder. The
password will appear in the system’s process list, however, so any users on
the system can see the password if they’re quick enough to notice.

Another option is to generate a prehashed password using encrypt(1).
By default, encrypt gives you a blank line. When you enter a word, it returns
the hash of that word. It defaults to using the encryption algorithm defined
in the default login class. (For the past several years, this has been Blowfish.)
You can enter any number of words, and each will be hashed separately.
Press ctrl-C to exit encrypt.

encrypt
gerbil
$2a$06$V/VO91VVAKSNslesQNH6pezXsGhoKUMcnvWxyDOJUmWRk3fflX5cy
weasel
$2a$06$652ngShUnOBuFEL7X2yrf.E0U2GUw/FseVq/BkVgaiyqvp4wt.Nsy
^C

If you’re encrypting only one password or creating passwords inter
actively, give the -p option to encrypt. This gives you a non-echoing password
prompt.

encrypt -p
Enter string:
$2a$06$nyA.mygoei/6VGS2tq4wA.VOzB6inwlK9pWOIAsiUWBkWf0CqOJ7.
#

Other Batch Mode Options

I frequently create administrator accounts with one set of standards and
unprivileged accounts with another. I create sysadmin accounts by hand
using adduser in interactive mode (I don’t create sysadmin accounts very
often). Someone else creates unprivileged user accounts using an adduser
batch mode script I wrote. adduser.conf contains the default settings for sys-
admins, which I then override in the script. This approach requires less of
my organic memory and ensures that unprivileged accounts are consistent.

All of these options must appear on the command line before the -batch
argument. adduser treats everything after -batch as account information.

The -noconfig option tells adduser to not read defaults from adduser.conf.
Using this option in a script guarantees that sysadmin-friendly defaults in
adduser.conf don’t leak into unprivileged accounts.

The -dotdir option specifies a directory for user dotfiles. All files in this
directory are copied to the new user’s home directory. I often have special
dotfiles for unprivileged users.

The -home option tells adduser where to create the new user’s home direc-
tory. This is not the actual home directory, but the base directory where the
home directory will be created. For example, if all of your web server custom-
ers have home directories on the /www partition, you might use -home /www.

92 Chapter 6

To assign a nondefault login class, use the -class option.
The -message option gives a path to the new user message. To turn off a

default of sending a message, use -message no.
To assign a shell, use -shell and the shell name as it appears in /etc/shells,

or nologin to disable logins.
Perhaps you want to assign your batch-created users UIDs in a spe-

cific range. Maybe all of your customers have a UID above 10000, while
sysadmins have a UID in the thousands. Specify a minimum UID with
-uid_start and a maximum with -uid_end. If available, the login group cre-
ated will be given a GID equal to the UID.

User Account Restrictions
User accounts are subject to the following restrictions, fully documented
in adduser(8).

•	 Usernames can contain characters (preferably lowercase) and digits,
as well as nonleading hyphens, periods, underscores, and a trailing $.
Usernames can be no longer than 31 characters.

•	 Full names cannot contain a colon (:).

•	 Other values must exist in the relevant files: shells must appear in /etc/shells,
login classes in /etc/login.conf, and so on.

Removing User Accounts
Removing unneeded user accounts is just as important as adding new ones.
Use rmuser(8) to delete accounts.

rmuser pkdick
Matching password entry:

pkdick:*:1001:1001::0:0:phil dick:/home/pkdick:/bin/ksh

Is this the entry you wish to remove? y
Remove user's home directory (/home/pkdick)? y
Updating password file, updating databases, done.
Updating group file: Removing group pkdick -- personal group is empty
 done.
Removing user's home directory (/home/pkdick): done.

The rmuser command displays the account entry from /etc/passwd, giv-
ing you a chance to verify that you really want to delete this particular user.
Read the account’s real name, and verify that you’re deleting the correct
account. Next, rmuser asks if you want to delete the user’s home directory.
If you suspect that you might need some files from that user account, you
could choose to keep the directory around for a while. It automatically
deletes the user’s cron jobs and incoming mail file.

User Management 93

Editing User Accounts
You create users with privileges based on the knowledge you have at the
time. The information you have is probably wrong, so get comfortable with
editing users. In most cases, chpass(1) does everything you need in a user-
friendly way.

Users can edit their own accounts by running chpass without any
arguments.

$ chpass
$ Changing user database information for mwlucas.
Shell: /usr/local/bin/tcsh
Full Name: mwlucas
Office Location:
Office Phone:
Home Phone:

Here, users can update their shell or change their directory informa-
tion. Many applications ignore the directory information (phone numbers
and office location) stored in /etc/passwd, but in some places, it’s important.
Make changes, save, and exit.

If you run chpass as root, giving a username as an argument, you get a
very different picture.

chpass mwlucas
Changing user database information for mwlucas.
Login: mwlucas
Encrypted password: $2a$08$s2EVX.cAhYHskOaHk/4C5eLn76atAmGPU7z5DqRKAYe/V.OGgWXVi
Uid [#]: 1000
Gid [# or name]: 1000
Change [month day year]:
Expire [month day year]:
Class: staff
Home directory: /home/mwlucas
Shell: /usr/local/bin/tcsh
Full Name: mwlucas
Office Location:
Office Phone:
Home Phone:

Here, you can forcibly change the user’s password (although there are
better ways to do this), shell, UID, password expiration, and so on, in addi-
tion to all of the user’s directory information.

Changes made through chpass affect only /etc/passwd, /etc/master.passwd,
and /etc/group. If you change a user’s UID, GID, or home directory, you must
also make the corresponding changes to the files the user owns and his home
directory; otherwise, the user’s account won’t work correctly. If /etc/passwd
lists your home directory as /newhome/mwlucas in /etc/passwd, but your files
are in /home/mwlucas, you’ll have trouble on your hands.

Note that you can’t edit /etc/master.passwd or /etc/passwd with just any
text editor; you need to use tools that manage the corresponding password

94 Chapter 6

databases. If you insist on editing the password file by hand, you can use
vipw(8) to directly edit /etc/passwd. If you’re not familiar with vipw, stick with
chpass. The most common use for vipw is when the password file is dam-
aged, and the most common way someone damages the password file is by
using vipw.

Login Classes
A user’s shell can be used to limit what a user can do, but OpenBSD pro-
vides very specific access controls with login classes. Login classes, set in
/etc/login.conf, define the resources and information accessible to users.
Login classes also let you control password length and expiration times,
as well as external authentication mechanisms.

Each user is assigned to a class, and each class places limits on available
resources. When you change the limits on a class, the new limits are applied
to each user the next time the user logs in. Define a user’s class when creat-
ing the account, or change it with chpass.

By default, login.conf offers two classes for users, one class for daemons,
and a few special-case classes. The default user class gives the user wide-
ranging access to system resources and is suitable for machines with a limited
number of shell users. The staff user class gives the user no restrictions on
memory use, sets very high limits on the number of processes a user can run
concurrently, and allows the user to log in even when logins are forbidden.

If these two classes meet your needs, and if you won’t be using an alter-
native authentication protocol like Remote Authentication Dial In User
Service (RADIUS) or Kerberos, you can skip this section. If not, read on.

Login Class Definitions
Each class definition consists of a series of variable assignments describing
the class’s resource limits, authentication, and environment. Each variable
assignment in the class definition begins and ends with a colon. The back-
slash character indicates that the class continues on the next line, which
makes the file more readable.

Here’s the definition of the default class:

default:\
u :path=/usr/bin /bin /usr/sbin /sbin /usr/X11R6/bin /usr/local/bin /usr/
local/sbin:\
v :umask=022:\
w :datasize-max=512M:\

 :datasize-cur=512M:\
 :maxproc-max=256:\
 :maxproc-cur=128:\
 :openfiles-cur=512:\
 :stacksize-cur=4M:\
 :localcipher=blowfish,6:\
 :ypcipher=old:\

x :tc=auth-defaults:\
 :tc=auth-ftp-defaults:

User Management 95

The default class has several variables. Some of these have fairly obvious
interpretations. For example, the path variable at u assigns a default com-
mand search path to the user’s shell, usually visible to the user as $PATH. The
umask setting at v assigns a default umask to the user’s shell. The user can
override both of these.

Other settings, such as datasize-max and maxproc-max at w, are harder to
define by guesswork. We’ll go through some of the more commonly used
values in the next section.

Similar in behavior to the termcap tc variables at x used to configure
serial console clients in Chapter 5, the default class copies settings from the
entries auth-defaults and auth-ftp-defaults elsewhere in login.conf.

Some variables don’t require a value to trigger behavior; these values
trigger a specified behavior simply by adding them to login.conf. For example,
the presence of requirehome means that the user must have a valid home
directory to log in.

Changing login.conf
On many BSD systems, you must transform the login.conf file to a program-
friendly database file, login.conf.db, with cap_mkdb(8). OpenBSD doesn’t
require this. Programs that check login classes first look for the login class
database, and if they don’t find it, they directly parse login.conf. You can use
cap_mkdb to create such a database, which will very slightly improve the per-
formance of software that checks login.conf.

cap_mkdb /etc/login.conf

Note that once you create this database, you must rebuild it every time
you edit login.conf. Database values in login.conf.db will always override your
login.conf settings. Alternatively, you can remove login.conf.db and force pro-
grams to always parse login.conf.

I recommend skipping cap_mkdb on modern hardware.

Legal Values for login.conf Variables
The login.conf variables accept only very specific values, including the
following:

•	 A full path to a text file or a program

•	 A comma-separated list of environment variables

•	 A comma-separated list of values

•	 A number (put a 0x in front of the number for hexadecimal, or a 0 in
front for octal)

•	 A space-separated list of pathnames

•	 A size, in bytes (default), kilobytes (K), megabytes (M), gigabytes (G),
or 512-byte blocks (T)

•	 A time in some combination of seconds (assumed if no unit is given),
minutes (m), hours (h), days (d), weeks (w), or years (y)

96 Chapter 6

Variables that use pathnames accept the special symbols tilde (~) and
dollar sign ($). A tilde followed by a slash or the user’s login name, or at the
end of a pathname represents the user’s home directory. You can use ~/bin
to represent a bin directory in the user’s home directory. The dollar sign
represents the username. For example, you might use /var/mail/$ to repre-
sent the user’s incoming mail file.

Some variables require particular types of values. A path to the user’s
home directory must be a full path, while the amount of memory a user can
allocate must be a size. In most cases, legitimate answers are fairly obvious,
but check login.conf(5) for a full listing of acceptable values.

Setting Resource Limits
Resource limits allow you to control the amount of system resources any
one user can monopolize at any one time. If several hundred users are
logged in to one machine, and one user decides to compile LibreOffice,
that person will consume far more than his fair share of processor time,
memory, and I/O. By limiting the resources any one user can use, you can
make the system more responsive for all users.

Resource limits were more commonly used back when computing facili-
ties were very expensive and departments received bills for the amount
of computing time they used. These days, utilization accounting isn’t so
important. It’s generally cheaper to buy more computing power than it is
to configure accounting or resource limits. That said, if you have a buggy
daemon that sometimes leaks and starts to soak up CPU time or memory,
giving it a login class can prevent it from devouring the system.

Table 6-1 lists some resource-limiting login.conf variables.

Table 6-1: Some login.conf Resource Limits

Variable Description
coredumpsize Maximum size of a core dump file
cputime Maximum CPU time any one process can use
datasize Maximum data size per process
filesize Maximum size of any one file
maxproc Maximum number of processes
memorylocked Maximum locked-in core memory use per process
memoryuse Maximum core memory use per process
openfiles Maximum open file descriptors per process
stacksize Maximum stack size per process
vmemoryuse Maximum virtual memory use per process

Resource limits are generally set per process. If you permit each process
200MB of RAM and allow 40 processes per user, you’ve just allocated each
user 8GB of memory. Perhaps your system has a lot of memory, but does it
really have that much?

User Management 97

All resource-limiting variables except vmemoryuse support maximum
and current (advisory) limits. Users are warned by the system when they
exceed current limits and cannot exceed the maximum limits. This works
well on a cooperative system, where multiple users share resources but need
to be notified when they are approaching their limit.

To specify a current limit, add -cur to the variable name. To make a
maximum limit, add -max. For example, to set a current and maximum limit
on the number of processes a user can have, use this definition in the class:

...
:maxproc-cur: 50:\
:maxproc-max: 60:\
...

A user in this class will receive a warning when he uses more than
50 processes and will not be able to use more than 60 processes. If you do
not specify a limit as current or maximum, it acts as both.

Modifying the Shell Environment
You can define environment settings in a user class. This can work better
than setting them in the default shell profile, because changes affect all
users immediately upon their next login. This setting will impact all user
shells, even those that don’t read .profile or .cshrc.

Table 6-2 lists popular user class variables that affect the user environment.

Table 6-2: Some login.conf Environment Variables

Variable Description
hushlogin If present, no system information is given out during login.
ignorenologin User can log in even when /etc/nologin file is present.
nologin Path to a file. If the file exists, when a user tries to log in, the file

contents are displayed and login is denied.
path Default command search path.
priority User's priority (nice) level. See renice(1).
requirehome If present, user must have valid home directory to log in.
setenv A comma-separated list of environment variables and values.
shell User shell. Overrides user shell selection in /etc/passwd. The user’s

$SHELL environment variable reflects /etc/passwd, resulting in an
inconsistent environment. Playing games with this is an excellent
way to annoy your users.

term Default terminal type, if environment can’t figure out terminal type.
umask Initial umask. Should always start with a 0.
welcome Path to a file containing the login message.

98 Chapter 6

Password and Login Options
Unlike the user environment, which can be configured in several differ-
ent places, many password controls can be configured only via the user
class. The password controls affect only the local password database, not
Lightweight Directory Access Protocol (LDAP), Kerberos, RADIUS, or
other remote password databases.

Let’s have a look at some commonly used password controls.

localcipher

This controls the password hashing method used in /etc/master.passwd.
The default is Blowfish. Don’t change the password hashing method
unless you’re trying to be compatible with a specific foreign Unix-like
operating system. See login.conf(5) for the list of supported hashing
algorithms.

login-backoff

This controls how quickly a user can struggle to remember his pass-
word. After this many unsuccessful login attempts, login(1) slows down
how quickly it offers a new username and password prompt.

passwordcheck

This gives the full path to an external program that checks new pass-
words for quality. OpenBSD passes the password to the program on
standard input. The program is expected to return a 0 if the password
is adequate and a 1 if the password is inadequate. OpenBSD includes a
very simple and limited password-quality checker; if you need a password-
quality checker, check out passwdqc (/usr/ports/security/passwdqc).

passwordtries

This is the number of times passwd(1) uses the password-quality checker.
If the user cannot come up with a sufficiently complicated password in
this many tries, the new password is accepted anyway. If this is set to 0, a
new password is accepted only when it passes the quality check.

minpasswordlen

This is the minimum length of a new password. Password length is not
a measure of quality—a stream of 128 A characters is still a lousy pass-
word, but it might help you meet site requirements.

passwordtime

This is the maximum age of a password, in seconds. Use this to require
regular password changes.

password-warn

This is the length of time, in seconds, before login(1) begins warning
the user of an expiring password.

User Management 99

password-dead

This is the length of time, in seconds, after password expiration when
the user may log in one last time, just to reset his own password. If the
user does not reset his password, he cannot log in. This is a last-chance
grace period; if the user blows this chance, sysadmin intervention is
required to reset the password.

Changing Authentication Methods
OpenBSD supports many different authentication mechanisms, such as
the local password file, Kerberos, S/Key, RADIUS, and so on. Specify the
authentication method desired in the user class definition, and OpenBSD
will use it. This system behind this is called BSD Authentication.

Setting an authentication mechanism does not configure the authenti-
cation mechanism. For example, configuring a login class to authenticate
via Kerberos doesn’t magically establish a Kerberos domain. If the speci-
fied authentication method is unavailable, classes configured to use that
method will be unable to log in.

Not all authentication methods interoperate with all protocols. For
example, while SSH works with physical tokens, it doesn’t work with the
lchpass authentication protocol, which allows users to change their pass-
word but disallows logins. Review the man page for each authentication
method for details.

Some authentication methods require additional configuration. For
example, if you want to use RADIUS authentication, you must tell your sys-
tem where to find your RADIUS server. The special login.conf variables and
their use are documented in the authentication method’s man page.

Table 6-3 lists the authentication methods supported by OpenBSD’s
built-in BSD Authentication.

Table 6-3: BSD Authentication Methods

Method Man Page Description
activ login_activ(8) Authenticate via ActivCard token
chpass login_chpass(8) Change password, no shell
crypto login_crypto(8) Authenticate via CRYPTOCard token
krb5 login_krb5(8) Authenticate via Kerberos
krb5-or-pwd login_krb5-or-pwd(8) Try Kerberos, then local password database
lchpass login_lchpass(8) Change local password
passwd login_passwd(8) Authenticate against local password file
radius login_radius(8) Authenticate against RADIUS server
reject login_reject(8) Request a password, then deny the login
skey login_skey(8) Authenticate via S/Key
snk login_snk(8) Authenticate via SecureNet token
token login_token(8) Authenticate via X9.9 token
yubikey login_yubikey(8) Authenticate via Yubico YubiKey token

100 Chapter 6

The ports collection (discussed in Chapter 13) contains a few additional
login methods, such as fingerprint scanners (sysutils/login_ fingerprint),
OATH one-time passwords (sysutils/login_oath), and LDAP integration
(sysutils/login_ldap). You can also create your own custom authentication
methods; see login.conf(5) for details.

Set the authentication method using the auth variable in login.conf :

:auth=token,passwd:\

Users in a class with this set try to authenticate via an X9.9 token. If
that’s not possible, the system falls back on the local password database.

BSD Authentication supports different authentication methods for dif-
ferent daemons. You can specify a service name after the auth keyword, indi-
cating that this set of authentication methods applies to only that particular
service. You’ll frequently see login classes like auth-ssh and auth-su.

Here are a couple of sample entries from the default login.conf file:

Default allowed authentication styles
auth-defaults:auth=passwd,skey:

Default allowed authentication styles for authentication type ftp
auth-ftp-defaults:auth-ftp=passwd:

This defines the class auth-defaults, with only one entry. By default,
users in this class first use password authentication, and then S/Key authen-
tication. The auth-ftp-defaults class defines auth-ftp as using the password
database, and only the password database.

Earlier in this chapter, I mentioned that the default class included two
other classes. These are the auth-defaults and auth-ftp-defaults classes.
Every other login class in the default login.conf file includes them by refer-
ence. If you change the authentication methods used by the auth-defaults
class, that change will apply to every other login class.

Using Login Classes for RADIUS Authentication
I have a long-running love/hate relationship with RADIUS. It’s the lowest
common denominator of authentication protocols. Just about every operat-
ing system and hardware device supports it, but it’s a finicky protocol with
innumerable edge cases. Luckily, configuring OpenBSD as a RADIUS cli-
ent is simple. Any RADIUS server can provide authentication services for
OpenBSD.

I encourage you to use another login service, such as LDAP or Kerberos,
rather than RADIUS. But in certain cases, for certain users, RADIUS is ade-
quate. RADIUS combined with Microsoft’s Internet Authentication Service
gives you easy password synchronization with the local Windows domain
and reduces your support load.

User Management 101

First, read login_radius(8), and then configure your RADIUS server to
permit access from your OpenBSD host. To configure RADIUS authentica-
tion, you need the RADIUS server’s IP address, the port RADIUS runs on,
and a shared secret. (For historical reasons, it’s best to specify the RADIUS
port explicitly rather than relying on /etc/services.) In our example, the
RADIUS server is 192.0.2.2, the port is 1812, and the secret is the string
Insubordination88.

First, create a directory to hold the server configuration file and set its
permissions appropriately, as per login_radius(8).

mkdir /etc/raddb
chgrp _radius /etc/raddb/
chmod 755 /etc/raddb/

Now create the file /etc/raddb/servers. This file should contain a server
and its secret, each on one line. Our servers file has only one line:

192.0.2.2	 Insubordination88

Now change login.conf to use RADIUS by default.

auth-defaults:\
 :auth=radius:\
 :radius-port=1812:\
 :radius-server=192.0.2.2:

The auth-defaults class is OpenBSD’s default authentication class. If we
change it, we change how every other class authenticates. We set the auth
type to radius, and set the port and the server.

Immediately upon saving the file, OpenBSD will try to authenticate all
user accounts against the RADIUS server. You might want to change the
auth-ftp class to match.2

Until you confirm everything is working, keep an SSH session logged in
as root so you can change login.conf. Otherwise, you might lock yourself out
of the system, or at least out of the root account. If you can’t get into the sys-
tem, you’ll need to reboot into single-user mode and edit login.conf.

Changing the authentication scheme for all users might not be desirable,
either. You might want authpf(8) users to authenticate against RADIUS,
but have users in the staff class authenticate against the local password
database. Perhaps you don’t want your root account to authenticate via
RADIUS, so you need an auth-su login class that points at the local pass-
word database. Using login classes, you can configure user authentication
to fit your specific needs.

2. Or you might not want to make this change. FTP transmits passwords in clear text, so you
might want to use a separate password source for FTP connections. Why transmit passwords
securely over one protocol, while transmitting them insecurely on a neighboring port?

102 Chapter 6

Unprivileged User Accounts
An unprivileged user account is a user account with no privileges to any
programs or files. Many programs run as unprivileged users or use unprivi-
leged users to perform specific duties. These unprivileged users get only
the rights needed to perform a limited task.

“Only the rights needed to perform a limited task” sounds like every
user account, doesn’t it? That’s true, but the account used by the least privi-
leged human being still has more rights than many programs need. Any
user with shell access usually has a home directory. Users can create files
in their home directory, run text editors, process email, run scripts, and
compile (if not install) software. An average shell user needs these mini-
mal privileges, but programs do not. By having a program run as a very
restricted user, you control the amount of damage the software or intruders
can do to the system.

OpenBSD includes several unprivileged users out of the box. Take
a look at /etc/passwd, and you’ll see accounts like sshd, named, _ntp, and so
on. These are all unprivileged accounts used by specific server daemons.
Examine them, and you’ll find several common characteristics.

Unprivileged users do not have normal home directories. Most share
the home directory of /var/empty, which is owned by root and contains noth-
ing except a logging socket. Having a home directory the user cannot write
to makes the account less flexible, but is good enough for most server dae-
mons. If these users do own files on the system, file permissions are usually
set so that the user cannot write to them.

Similarly, no one should ever log in to the system with these accounts. If
the named user account is reserved for the DNS subsystem, why would anyone
actually need to log in as that account? Unprivileged users are assigned a
shell that specifically forbids logging in: /sbin/nologin.

How does all this enhance system security? Let’s pick on the web server,
a common intrusion vector, as an example. OpenBSD runs its web server
as the user www. Suppose an intruder discovers a security flaw in your web-
site and can use this to make the web server execute arbitrary code. This
is a security nightmare; our intruder can now make the server program do
absolutely anything within its power. But what, exactly, is within the web
server’s power?

A command prompt permits much more mischief and mayhem than a
website, so the intruder will probably try to access a command prompt on
the system. The www user has a shell that specifically disallows a command
prompt. While this doesn’t categorically prevent the intruder from getting a
command prompt, it does make it much more difficult.

But our intruder is clever. Through really excellent intrusion skills, he
makes the web server open a high-numbered port that dumps clients into a
root shell. He now has access to a command prompt and can wreak untold
damage . . . or can he?

He has no home directory, and no permissions to create one. Any files
he wants to store must go into a globally accessible directory such as /tmp
or /var/tmp, increasing his visibility. The web server configuration file is not

User Management 103

owned by the www user. Even if the intruder has a path into the web server,
he cannot reconfigure it. He can’t change the website files, as the www user
doesn’t own them. The www user doesn’t have access to anything on the
system, actually. Additionally, OpenBSD’s built-in web server chroots itself.
Having broken into the web server program, the intruder now must escape
the chroot and penetrate a privileged program.

Can he penetrate your system? Possibly, but it will be much more dif-
ficult. If he is specifically targeting you or your company, he might go to the
trouble. If he is just looking for easy meat, however, he will probably give up
and go bother someone running a Linux or Windows system.

Using unprivileged users doesn’t solve all security problems, mind you.
The compromised www user can view web application source files. If your
application is badly written or has database passwords hardcoded into hid-
den files, you’re still in trouble. But if you don’t use poorly written applica-
tions and you’ve kept your system updated and patched, the intruder will
have a very hard time penetrating the rest of your server.

The nobody Account
The first unprivileged account was nobody. It was created for use by the
Network File System (NFS, discussed in Chapter 9) to map files owned
by root on foreign systems. Decades ago, people started using nobody as a
generic unprivileged user, running web servers, proxy servers, and other
daemons as nobody. While this was better than running those programs as
root, it’s still poor practice. If an intruder penetrated one of those pro-
grams, he would gain access to all processes owned by nobody. Our hypo-
thetical web server intruder would suddenly have access not only to the web
server, but also to the database, NFS, or anything else running as nobody!

Every daemon that needs to run as a user needs its own unprivileged
accounts—the whole point of using unprivileged users is to minimize the
damage one piece of software can inflict. Use them liberally. OpenBSD pro-
vides discrete unprivileged users for services as small as finger(1) and the
audio system. Follow this example.

_username
If you take a look at /etc/passwd, you’ll see that many unprivileged users
have an underscore before their name, such as _syslogd, _ldapd, and _dhcp.
This is an OpenBSD convention for identifying unprivileged users. Most
add-on software also uses unprivileged usernames beginning with an
underscore, such as _mysql and _postgresql.

Not all unprivileged usernames start with an underscore, however. Some
of these are legacy users that OpenBSD retains for compatibility reasons,
such as nobody. Others have a long history or support inflexible software,
and changing them would be more annoyance than it’s worth.

The presence of an underscore means that a user is unprivileged. The
absence of an underscore means nothing; the user might be a normal

104 Chapter 6

account or it might be unprivileged. If you create your own unprivileged
users, you don’t need to include a leading underscore, but doing so will
help other system administrators understand what the user does.

Creating Unprivileged Users
Here are common settings used for unprivileged users. You can change any
of these as needed for your application.

username  Assign a username related to the user’s functions, so that
you’ll easily recognize it. Giving an unprivileged user a username like
_fgcrl might seem like a good way to conceal its purpose, but it will con-
fuse your sysadmins and an intruder will quickly figure it out.

home directory  /var/empty is a common setting for unprivileged users.

shell  /sbin/nologin is a common setting for unprivileged users.

UID/GID  Choose a specific range of UIDs and GIDs for your custom
unprivileged users. OpenBSD reserves all UIDs below 1000 for system-
assigned unprivileged users.

full name  Assign a name describing the user’s role.

password  Use chpass(1) to assign the user a single asterisk as their
encrypted password. This disables the account password.

These settings make your unprivileged user very unprivileged indeed.
You can set all of these options except the password using adduser(8).

Now that you understand how to create, manage, and use user accounts,
let’s discuss how to manage privileged users.

7
R o o t, a n d H o w t o A v o i d I t

The root of all evil
is never far from your touch.

sudo saves your life.

The security of most Unix-like operating
systems has long been considered coarsely

grained. One superuser, root, can do any-
thing. Other users are lowly sharecroppers

who endure the shackles root places upon them. The
problem is that root doesn’t have many shackles and it can’t individualize
the ones that it has very well. Some operating systems use POSIX access
control lists (ACLs) to provide more fine-grained access controls, but these
are difficult to configure correctly.1

While it’s true that Unix-like operating systems don’t have detailed
access controls, the fact is that most people don’t bother using the controls
that do exist. Fortunately, you can combine groups and permissions to handle
almost any problem securely.

1. I could just say that “I have never seen POSIX ACLs configured correctly,” but personal
anecdotal evidence is not proof. Even the dozens of horrifying personal anecdotes I’ve
gathered over decades in this business are not proof. Feel free to prove me wrong, but
please, do it on your server.

106 Chapter 7

The Root Password
The root user owns the system and has absolute power over every piece of
hardware as well as certain actions that require absolute control, such as
manipulating the kernel and changing authentication sources. You need
root permissions to perform these tasks. You can log in as root, use su(1)
to become root, or use sudo(8) (discussed later this chapter) to get certain
root-level privileges without actually using the root account.

To use the root password, you can either log in as root at a console
login prompt or, if you belong to the group wheel, log in as yourself and use
the switch user command su(1). Of the two, I recommend using su; it logs
who uses it and can be used when you are logged in from a remote system.
To use su, run the following:

$ su
Password:
#

When prompted, enter the root password. Now check your current user
ID with id(1).

id
uid=0(root) gid=0(wheel) groups=0(wheel), 2(kmem), 3(sys), 4(tty),
5(operator), 20(staff), 31(guest)

As you can see, the UID is 0, which means that you now own the system,
and I do mean own it. Consider every keystroke carefully. Carelessness could
return your hard drive to its primordial, unformatted state.

Only users in the group wheel can use the root password to become root
via su. If you give the root password to users without physical console access
and who are in the wheel group, they can enter su and the root password as
many times as they want, and it won’t work. (But anyone can use the root
account and password at the system console, so don’t make a habit of blab-
bing the root password all around the office.)

Requiring group membership to use the root password leads to the
question, “Who needs root access?” Root is required to configure many
parts of OpenBSD, but once the system is running properly, you can greatly
decrease or discontinue your use of root. For any remaining tasks that abso-
lutely require root, use sudo.

Using Groups
One of the simplest ways to reduce the need for root is with groups. Unix-
like operating systems classify users into groups, which consist of accounts
of users who perform similar administrative functions. You can, for example,
define a group named dnsadmins and add the accounts of every user who
edits DNS zone files to that group. Then, by setting the permissions of the
zone files and their directory appropriately, members of that group can

Root, and How to Avoid It 107

edit zone files and reload the name server without the root password. The
good news is that you could create such a group for almost any system func-
tion, and thereby avoid giving those users root access. Using groups in this
manner is a powerful and often neglected system administration tool. I
use groups for administering my own servers—just because I can use root
doesn’t mean that I want to use root. Users can identify the groups they
belong to by using id(1).

id
uid=1000(mwlucas) gid=1000(mwlucas) groups=1000(mwlucas), 0(wheel),
2005(dnsadmin)

My UID is 1000, and my username is mwlucas. My GID, the primary
group ID, is also 1000 and is also named mwlucas. I’m also in the wheel and
dnsadmin groups.

The /etc/group File
The file /etc/group contains all group information. Each line contains four
colon-delimited fields: the group name, password, ID number, and list of
members.

wheel:*:0:root,mwlucas,pkdick

The group name is a human-friendly name for the group. This group is
named wheel. Group names are completely arbitrary and you could call a
group lickspittles if you want, but you should choose a name that gives an
idea of the group’s purpose. While you might remember that lickspittles
can edit the company web page, will that group name make any sense to
your coworkers? If it does, you probably need better coworkers.

The second field, the group password, was a great theory that became
an appalling practice once exposed to the real world. Modern Unix-like
systems don’t do anything with the group password, but the field remains
because old programs expect to find something here. The asterisk is just a
placeholder to placate such software. (While OpenBSD could eliminate this
field, some enterprises share /etc/group across operating systems.)

The third field gives the group’s unique numeric GID. Many programs
use the GID rather than the name to identify a group. The wheel group has
a GID of 0. The maximum GID is 232, or 4,294,967,296.

Last is a comma-separated list of all users in the group. As you can see, the
users root, mwlucas, and pkdick are all members of the wheel group. To add users
to a group, add their username to this list, but remember that no /etc/group
entry can contain more than 200 users or be longer than 1024 characters.

Creating Groups
In order to create a new group, you need a name and GID number. OpenBSD
usually assigns the next free GID to a newly created group with GIDs
below 1000 reserved for OpenBSD. Programs included in OpenBSD that

108 Chapter 7

need a dedicated group ID use one below 1000. Software installed via the
OpenBSD package system or ports (discussed in Chapter 13) assigns dedi-
cated GIDs in the 500 to 1000 range. GIDs for user accounts start at 1000
and go up. If you create groups for special roles, start at a high GID so that
these administrative groups will be obviously different from user accounts.

Groups, Unprivileged Users, and Group Permissions
The simplest way to create a new group is to use adduser to create an unpriv-
ileged user for the role, and use that user’s group to assign file permissions.
As with any other unprivileged user, give this account the home directory
/var/empty and a shell of nologin. Do not add this user to any other groups
(especially not wheel). Lastly, let adduser disable the account. Sure, the shell
will prevent logins, but an extra layer of defense won’t hurt.

Now that you have an administrative user and a group, you can assign
file ownership. A user and a group own every file. To view the permissions
on existing files, including hidden ones, use ls -la. (If you’ve forgotten how
file ownership and permissions work, read ls(1) and chmod(1).) Many system
administrators focus on file ownership and owner permissions, invest some-
what less time on worldwide permissions, and gloss over group permissions
as if they don’t exist. Look closely at the sample DNS files that follow.

ls -la
total 22
drwxr-xr-x 2 mwlucas wheel 512 Apr 16 22:02 .
drwxrwxrwt 8 root wheel 512 Apr 16 22:00 ..
-rw-rw-r-- 1 mwlucas mwlucas 14595 Apr 16 22:02 michaelwlucas.com.db
-rw-r----- 1 mwlucas wheel 198 Apr 16 22:02 rndc.key

This directory contains two files. The file rndc.key can be read and writ-
ten by the user mwlucas; anyone in the wheel group can read rndc.key; and
no one else can even read it. The file michaelwlucas.com.db can be read or
written by the user mwlucas or anyone in the group wheel, but others can only
read it. If you’re in the group mwlucas, you can edit this file.

Say I want my junior DNS administrators to be able to edit zone files
but not be able to edit the rndc(8) configuration. The file permissions are
correct, but I need the files to be owned by my DNS administrative user,
dnsadmin. I also want my DNS admins to be able to create new zone files, so
they need write permissions on the directory. Here’s how I would do that:

chown dnsadmin:dnsadmin michaelwlucas.com.db
chgrp dnsadmin rndc.key
chown dnsadmin:dnsadmin .
chmod 775 .
ls -la
total 22
drwxrwxr-x 2 dnsadmin dnsadmin 512 Apr 16 22:02 .
drwxrwxrwt 8 root wheel 512 Apr 16 22:08 ..
-rw-rw-r-- 1 dnsadmin dnsadmin 14595 Apr 16 22:02 michaelwlucas.com
-rw-r--r-- 1 root dnsadmin 198 Apr 16 22:02 rndc.key

Root, and How to Avoid It 109

As you can see, these files are now owned by the user dnsadmin and
the group dnsadmin. Anyone in the group dnsadmin should be able to edit
michaelwlucas.com.db without using the root password. The user named—the
unprivileged user for the DNS server—should be able to read both files.
Add your DNS administrators to the dnsadmin group in /etc/group, and they
should no longer need the root password to do their jobs.

This model has limitations, however. While your junior admins can’t
accidentally edit rndc.conf, they can delete and replace it. It would be better
to put that file in a directory they can read but not edit. And while our DNS
administrators might think that they need the root password to restart the
name server, they’re wrong. Use rndc(8) to manage the DNS server; other
tasks can be managed via cron(8) or through sudo.

Hiding Root with sudo
While the proper use of groups can almost eliminate the need for root
access to edit files, that won’t help with commands that can be run only
by root. You could set up a cron job to reload the name server each day at
midnight, but every piece of software occasionally needs a manual restart.
Because root is an all-or-nothing affair, people who have one minor task to
perform have traditionally needed the root password.

OpenBSD includes sudo(8) and its associated tools, which implement
fine-grained access control for commands that can be run only by particu-
lar users. When configured properly, sudo lets normal users run specific pro-
grams as other users, including root. Configured improperly, sudo permits
full root access. I’ll explain a basic sudo setup that covers almost all uses, but
remember that many more combinations are possible. And don’t be afraid
to read sudo(8), sudoers(5), and the documentation at the sudo home page
(http://www.gratisoft.us/sudo/).

Why Use sudo?
The sudo tool provides benefits beyond fine-grained privilege control. Every
command run via sudo is logged, making it very easy to track who did what.
The senior sysadmin can change the root password and not give it out, even
to people who have root-level access.

The sudo configuration file is designed to be shared across multiple sys-
tems, so one sudo policy can cover your entire network and every operating
system. Admittedly, you’ll have trouble using a single sudo configuration on
operating systems with wildly unique directory layouts, such as Mac OS X,
but you can easily share one configuration among OpenBSD, other BSDs,
Linux, and even OpenSolaris or AIX.

sudo Disadvantages
The most common problem with sudo is getting your users to accept it. People
who have historically had access to the root account think they “lose some-
thing” by working through sudo.

110 Chapter 7

The key to overcoming this is to give users access only to what’s required
to perform the tasks for which they’re responsible. A junior administrator
who complains about insufficient privileges has either overreached his
responsibilities or needs more privileges. One sure way to discover what
people actually do is to implement a minimal sudo permissions scheme and
wait for complaints. If no one complains, they’re not working very hard.

The configuration syntax for sudo can be confusing because its con-
figuration doesn’t closely resemble any other configuration file, and getting
everything right can be difficult at first. The configuration file is actually
well suited to its purpose, however. Once you understand it, adjusting privi-
leges is quick and easy.

N o t e 	 More seriously, a faulty sudo setup can create the appearance of security while leaving
gaps for a user to become root. Be sure to test sudo every time you make a change, and
avoid the common configuration mistakes I document here.

Some users will do their best to push the limits of their access, for no
other reason than to see if they can outsmart you. These users are best
managed with a combination of careful configuration, administrative pol-
icy, and a cricket bat.

An Overview of the sudo Software
The sudo program is a setuid root wrapper that can run commands as any
other user. Use sudo by giving it the command you want to run.

$ sudo /etc/rc.d/named restart

The sudo software compares the desired command (in this case, /etc/
rc.d/named restart) to its internal list of permissions and privileges. If the
configuration file allows that particular user to run that command as root,
sudo runs it as root. And, because root can run any command as any user, sudo
can also run commands as any arbitrary system user. You can use this fact
to grant any user the ability to run specific commands as chosen users; for
example, administrators of certain database servers must frequently run
commands as the database user.

The sudo software is a suite with four pieces. The first piece is the actual
sudo(8) command, the setuid root wrapper. The second is the configuration
file /etc/sudoers, which describes who may run which commands as what
user. (/etc/sudoers is fully documented in sudoers(5).) Third is the visudo(8)
command that opens /etc/sudoers in an editor and checks the configuration
file syntax before exiting. Finally, the sudoedit(8) program is specifically for
editing files as another user.

The visudo(8) Command
If /etc/sudoers contains incorrect syntax, sudo will not run. If you rely on sudo
to provide root-level access to the system and you break your sudoers file,

Root, and How to Avoid It 111

you’ll lock yourself out of the root account and lose the ability to correct
your error. That is bad.

Fortunately, the visudo(8) program provides some protection against
this sort of error by locking /etc/sudoers so that only one person can edit
the configuration at a time. It then opens /etc/sudoers in a text editor (vi
by default, but it respects the $EDITOR environment variable). Make your
changes and save your work. When you exit the editor, visudo should parse
the file for syntactic correctness.

If visudo detects an error, it prints out the offending line number and
asks what you want to do.

>>> /etc/sudoers: syntax error near line 34 <<<
What now?

Here, I’ve made an error near line 34. I can reedit the file to fix the
error, quit without saving any changes, or force visudo to accept this file.

Press the E key, and visudo should return you to the editor. Go to the
offending line, fix your error, save the file, and exit the editor again.

Enter the X key, and visudo should quit and revert the configuration file
to its original state. Your changes will be lost, but that might be acceptable.
It’s better to have an old, working configuration than a new, broken one.

Pressing Q forces visudo to accept the file, busted syntax and all. If sudo
can’t parse /etc/sudoers, it will immediately exit. Essentially, you’re telling
visudo to break sudo until you log in as root to fix the problem. If you think
you understand /etc/sudoers better than visudo does, you’re probably wrong.
Even if you’re right, you’re wrong.

The visudo program doesn’t guarantee that the configuration will do
what you desire, only that the configuration parses and is valid. A properly
formatted configuration that declares “No one may do anything via sudo” is
perfectly acceptable to visudo.

The /etc/sudoers File
The /etc/sudoers file determines who may run which commands as which
users. Never edit /etc/sudoers directly, even if you think you know exactly
what change you want to make. Always use visudo to change /etc/sudoers.

The various sudoers sample configurations you’ll find are usually very
complicated, as they demonstrate all the nifty things sudo can do. At this
point, however, you want to do only simple, boring things, like giving par-
ticular users access to run specific commands. And the bare syntax is very
simple. Every sudoers rule follows this format:

Username host=command

•	 The username is the username of the user who may execute the command,
an alias for usernames, or a system group.

•	 The host is the hostname of the system this rule applies to. You can share
/etc/sudoers across multiple systems. This entry permits per-host rules.

112 Chapter 7

•	 The command space lists the commands this rule applies to. You must
list the full path to each command, or sudo will not recognize it. If this
weren’t a requirement, some untrustworthy soul could just adjust his
$PATH to access renamed versions of commands.

For example, suppose I trust user sbaxter to run any command, on any
system, as root. I use the keyword ALL to match all possible options for host
and command:

sbaxter ALL=ALL

As the lead sysadmin, I should know which duties I have assigned sbaxter,
and exactly which commands he needs. Suppose sbaxter is my DNS minion.
I control the actual editing of zone files with group permissions, but there
are many legitimate occasions for him to stop, restart, or otherwise slap
around the name server program. I want him to use the system script /etc/
rc.d/named for this task, and this sudoers entry gives him permission to use
the script on all machines.

sbaxter ALL=/etc/rc.d/named

If I share this file across several machines, it’s likely that many of those
machines don’t even run a name server. To restrict my minion’s access to
only the DNS server, I’ll change the host field.

sbaxter dns1=/etc/rc.d/named

Then again, sbaxter is the administrator of the email server mail1. This
server is his responsibility, so he needs to run any command. I can set entirely
different privileges for him on the mail server and still use the same sudoers
file on all the systems.

sbaxter dns1=/etc/rc.d/named
sbaxter mail1=ALL

Yes, sbaxter can use visudo on mail1, but he already has full privileges on
that machine. I’m comfortable with this, as he knows I’ll hold him respon-
sible for any downtime.

Multiple Entries in a sudoers Field

Separate multiple entries in a single field with commas. For example, after
a while, I get tired of sbaxter asking me to mount NFS shares on the DNS
server, so I add mount_nfs to his privileges.

sbaxter dns1=/etc/rc.d/named,/sbin/mount_nfs

He can now mount his own blasted NFS shares and leave me alone.

Root, and How to Avoid It 113

Running Commands As Non-root Users

Specify a username in parentheses before a command to say that the user
can use sudo to run commands as a particular user. For example, my user
dwsmith is a database administrator and needs to run any command as the
user _postgresql on the database server db1.

dwsmith db1 = (_postgresql) ALL

The _postgresql user can’t successfully run critical system programs like
fdisk and newfs, but it can restart the database, back it up, and perform other
database-administration tasks. By choosing a specific user, a specific machine,
and a specific command, you can define arbitrarily complex sudoers policies.

Long Lines

If you have several commands, usernames, or hosts on a line, that line
might become uncomfortably long. Use a backslash (\) to indicate that a
rule continues on the next line.

sbaxter dns1=/etc/rc.d/named,/sbin/mount_nfs, \
 /sbin/reboot, /sbin/dump

Use as many lines as you like to make your sudoers file easier to manage.

/etc/sudoers Aliases
Take several machines with different roles, add multiple sysadmins with
differing privilege levels, and your /etc/sudoers file will quickly become com-
plicated. When you have a few users with identical privileges and long lists
of commands that you would like them to access, maintaining consistency
in each user’s privilege list becomes tedious. Aliases simplify these tasks and
make /etc/sudoers much more comprehensible, which makes your life easier.

An alias is a group of users, hosts, or commands. You can use aliases
anywhere you would normally use users, hosts, or commands. You might,
for example, create an alias called DATABASE_COMMANDS that contains all of the
commands your database administrators need to run using sudo.

Let’s take database administrator dwsmith and use an alias to specify his
commands.

dwsmith db1 = (_postgresql) DATABASE_COMMANDS

This alias might not seem to save us much, but suppose we have several
database administrators. We could create an alias called DBAs that includes
all of them.

DBAs db1 = (_postgresql) DATABASE_COMMANDS

Suddenly, this one line represents multiple rules. All of the database
admins have identical sudo privileges, and when you discover that you need

114 Chapter 7

to give them access to an additional command, add the command to the
alias, and it immediately becomes available to every database admin. There’s
no tedious and error-prone copying of entries between users.

You must define an alias before you can use it, so aliases normally appear
at the top of the file. Each alias is made up of a label identifying its type, a
name, and a list of its items. Alias types include user aliases, run as aliases,
host aliases, and command aliases.

User Aliases

A user alias is a group of users, and it is labeled with the string User_Alias.
Put only usernames in this alias.

User_Alias DBAs = dwsmith, kkrusch

Here, the user alias DBAs contains the users dwsmith and kkrusch. By using
the alias in my sudoers rules instead of the usernames, I ensure that these
users receive exactly the same sudo privileges.

You can use system groups in user aliases by prefacing them with a per-
cent sign (%). I might create a group in /etc/groups called databaseteam, and
make dwsmith and kkrusch part of that team.

%databaseteam db1 = (_postgresql) DATABASE_COMMANDS

Perhaps the most common usage of this is giving the wheel group unlim-
ited sudo access.

%wheel ALL = ALL

This rule permits the wheel group to run any command as root through
sudo. It doesn’t change the group members’ privileges, but gives them access
via sudo. This is convenient for running single commands.

Run as Aliases

A run as alias is a list of users that other users can run commands as. For
example, on certain application servers, the database admins need to run
commands both as the database owner _postgresql and as the web server
owner www. If the user must run commands as multiple users, however, you
would need a separate sudoers entry for each target user.

A run as alias lets you group these accounts:

Runas_Alias APPOWNER = _postgresql, www

You can now write a single rule allowing users to run commands as
either _postgresql or www.

Root, and How to Avoid It 115

Host Aliases

A host alias is a list of hosts, defined as hostnames, IP addresses, or network
blocks. Label host aliases with the string Host_Alias. Here are examples of
all host alias types:

Host_Alias DB = db1, db2, db3
Host_Alias DMZ = 192.0.2.0/24
Host_Alias FIREWALL = 192.0.2.1, 192.0.2.2, 192.0.2.3

N o t e 	 I warn elsewhere in this book about how security rules based on a hostname are
vulnerable to DNS spoofing attacks. An intruder can’t spoof the machine’s local host-
name, however, so you can safely use the hostname from /etc/myname in sudoers.

Command Aliases

A command alias is a list of commands. For example, you might have a com-
mand alias that includes all of the commands needed to back up the system
or restore from a backup. They’re labeled with the string Cmnd_Alias.

Cmnd_Alias BACKUPS = /bin/mt, /sbin/restore, /sbin/dump

You can tell a command alias to include everything in a particular
directory by using a wildcard.

Cmnd_Alias	 APPCOMMANDS = /home/appuser/bin/*

You can also list partial command names. For example, most of
PostgreSQL’s commands begin with the pg_ prefix. To give a user access
to these commands, use a wildcard like so:

Cmnd_Alias APPCOMMANDS = /home/appuser/bin/*,/usr/local/bin/pg_*

If you find yourself writing command aliases that include paths like /sbin/*,
stop and reconsider, because you’re essentially giving the user unlimited
root access.

Using Aliases in /etc/sudoers

Use an alias exactly as you would normally list the user, command, or host-
name. In the previous examples, I defined the user alias DBAs, the run as
alias APPOWNER, the host alias DB, and the command alias APPCOMMANDS. Here’s
how they might be used:

DBAs DB = ALL

116 Chapter 7

Here, the user group DBAs can run any command on any server in the
DB group, as any user. The members of the group own the servers, and if
they screw them up, it’s not my problem.

Well, this attitude sounds good, but the truth is that when they destroy
the server, I must get involved. Even if it’s not my fault that they drove the
database server into the ditch, it is my problem. I must lock down the
commands that they can run, restricting them to only the commands in
the APPCOMMANDS alias. So, the DBAs group can now run any command in
APPCOMMANDS on the DB servers.

DBAs DB = APPCOMMANDS

Then I discover that my database admins are either cleverer or dafter
than I thought. They run certain database commands as root, creating log
files owned by root. The unprivileged database user _postgresql cannot write
to these log files, and so the application server crashes. Fixing this requires
changing the permissions on those log files, but the database admins do
not have permission to run chown. If I give them the ability to change the
permissions on arbitrary files, I might as well just give them root access.

To keep this from happening again, I restrict their privileges so they
can run their commands only as the application unprivileged users.

DBAs DB = (APPOWNER) APPCOMMANDS

Everyone in the DBAs group can run any command in APPCOMMANDS, as any
user in APPOWNER, on any server in DB. I can change their access by adding
entries to the various aliases.

Without aliases, what would this rule look like?

dwsmith,kkrusch db1,db2,db3 = (_postgresql,www) \
 /home/appowner/bin/*,/usr/local/bin/pg_*

That’s ugly, and it does exactly the same thing.
If you name your aliases well, you’ll find rules easier to understand.

While these example aliases are fairly short, I’ve used aliases with up to
20 members. The resulting rules are appalling without aliases.

N o t e 	 Some of the permissions granted by sudo in this case are unnecessary. For example,
the unprivileged web server user doesn’t need to run the various PostgreSQL utilities,
and if www did try to run the database, nothing much would happen. If you don’t like
this, make two separate rules. Either way, it’s tighter security than giving database
administrators the root password.

Nesting Aliases

You can include aliases in aliases. Here, I combine two user aliases into a
single alias for my application administrators:

User_Alias APPADMINS = DBAs, WEBMASTERS

Root, and How to Avoid It 117

Alias Naming Conventions

It’s traditional, but not mandatory, to give aliases names in all capital let-
ters to help differentiate them from users, hosts, and so on. And though it’s
valid syntax, it’s best to avoid naming aliases after users or hosts. Here’s an
example:

User_Alias MWLUCAS = mwlucas,pkdick,sbaxter,dwsmith

This would quickly drive me batty.2

You can also reuse alias names if they are for different types of aliases.
For example, the following is perfectly legal, but perfectly offensive.

User_Alias DB = dwsmith,kkrusch
Runas_Alias DB = _postgresql,www
Host_Alias DB = db1, db2, db3
Cmnd_Alias DB = /usr/local/bin/pg_*, /home/appowner/bin/*
DB DB = (DB) DB

If you do this, anyone who must debug your sudo configuration will
curse your name. Even if you consider being cursed a job perk, this naming
scheme makes your phone ring at inconvenient times.

Changing sudo’s Default Behavior
You can customize sudo’s behavior, or its behavior for certain users, hosts, or
aliases, with the Defaults field. For example, one feature of sudo is that if you
enter the wrong password, it insults you.

$ sudo -l
Password:
My pet rat can type better than you!
Password:

I typed my password incorrectly. sudo insulted me and offered me a
chance to enter my password again. If I enter the wrong password three
times, sudo exits.

Insulting the user is just fine in an open source environment, but
if you’re in a company, someone will complain to management. You can
either go to sensitivity training or proactively disable insults by adding
the following line to sudoers:

Defaults !insults

The Defaults statement indicates that the following item affects one
or more sudo defaults. The insults option controls insulting the user. The
exclamation point (!) is a negation symbol. By putting an exclamation

2. Oh, all right—battier. Happy?

118 Chapter 7

point in front of the option, you turn off the feature. The system will no
longer insult users when they demonstrate that they cannot type as well as
my pet rat.

$ sudo -l
Password:
Sorry, try again.
Password:

You can override defaults globally or on a per-alias basis.

Overriding Defaults per Host

To override the defaults on a per-host basis, use an @ symbol after Defaults
and give either a host or a host alias. Here, I want to insult users who can’t
type their password on caddis or on a machine in the alias APPSERVERS, while
leaving insults disabled for all other servers:

Defaults !insults
Defaults@caddis insults
Defaults@APPSERVERS insults

This lets me enable or disable functions for any combination of servers.

Overriding Defaults per User

To change sudo defaults on a per-user basis, use a % and the user or user alias.

Defaults !insults
Defaults%lasnyder insults
Defaults%DBAs insults

It doesn’t matter where lasnyder logs in—I’m going to insult him, as well
as the users in the DBAs alias. But database administrators are used to poor
treatment by their software, and to not insult them would confuse and dis-
appoint them.

Overriding Defaults per Command

You can also change how sudo behaves on a command-by-command basis by
putting an exclamation point between Defaults and the command list.

Defaults !insults
Defaults!/sbin/newfs,/sbin/fsck insults
Defaults%APPCOMMANDS insults

Anyone who tries to use newfs(8) or fsck(8) (discussed in Chapter 8)
and cannot type their password needs insulting. The application adminis-
tration commands might not merit insults, but I can always claim it was an
oversight.

Root, and How to Avoid It 119

Overriding Defaults per Run As

Lastly, you can change the defaults based on who the command is being
run as. Use a right angle bracket (<) to indicate changing behavior for a run
as alias.

Defaults !insults
Defaults<_postgresql insults
Defaults<APPOWNER insults

If a user runs a command as _postgresql, or as any user in the APPOWNER
run as alias, and types his password incorrectly, he gets insulted.

N o t e 	 In the rest of this chapter, we’ll use Default widely. Please assume that each section
includes the text “Restrict this as necessary by user, host, command, or run as.”

sudo and the Environment
Certain environment variables can cause problems. For example, $HOME is an
obvious one—a user cannot create files in another user’s home directory.
Others, such as LD_LIBRARY_PATH, can cause endless annoyance as well as secu-
rity issues, as applications try to link against the wrong libraries. The sudo
program can remove suspicious environment variables, completely reset
the user’s environment, or be configured to preserve the original user’s
environment.

The env_reset sudoers option is set by default. It purges all environment
variables except LOGNAME, SHELL, USER, USERNAME, and anything beginning with
SUDO_. You can change this behavior by disabling env_reset, but I strongly rec-
ommend against disabling environment purging.

Instead of letting users blindly carry all the random garbage in their
environment along with them, create a list of necessary and safe environ-
ment variables that they can retain. You’ll see examples in OpenBSD’s
default sudoers file using the env_keep option.

Defaults env_keep +="DESTDIR DISTDIR EDITOR FETCH_CMD FLAVOR FTPMODE GROUP MAKE"
Defaults env_keep +="MAKECONF MULTI_PACKAGES NOMAN OKAY_FILES OWNER PKG_CACHE"
Defaults env_keep +="PKG_DBDIR PKG_DESTDIR PKG_PATH PKG_TMPDIR PORTSDIR"
Defaults env_keep +="RELEASEDIR SHARED_ONLY SSH_AUTH_SOCK SUBPACKAGE VISUAL"
Defaults env_keep +="WRKOBJDIR"

The OpenBSD team deems these environment variables safe to pass into
a new user account. The += means “add these to the existing list of items to
keep.” The environment variables themselves are in quotation marks.

If you need to pass your SSH environment around your servers, you can
use scp(1) and sftp(1) to move files to other servers. Read the documenta-
tion, create a list of approved environment variables, and add an entry.

Defaults env_keep += "SSH_CLIENT SSH_CONNECTION SSH_TTY SSH_AUTH_SOCK"

120 Chapter 7

N o t e 	 The ability to copy files to other servers probably should be restricted to people in a cer-
tain group. Sysadmins might need to copy files to other servers, but many other users
don’t need this access.

Using sudo
Now that you know how to set sudo permissions, let’s see how to actually
use it. First, let’s tell sudo that your account has permission to run any com-
mand. (You should have root access on your test machine, at least, so this
won’t be a security issue.)

The easy way to accomplish this is to uncomment the sudoers entry
allowing wheel members access to all commands.

%wheel ALL=(ALL) SETENV: ALL

As a user in wheel, check your sudo permissions.

$ sudo -l
Password:
Matching Defaults entries for mwlucas on this host:
 env_keep+="DESTDIR DISTDIR EDITOR FETCH_CMD FLAVOR FTPMODE GROUP MAKE",
 env_keep+="MAKECONF MULTI_PACKAGES NOMAN OKAY_FILES OWNER PKG_CACHE",
 env_keep+="PKG_DBDIR PKG_DESTDIR PKG_PATH PKG_TMPDIR PORTSDIR",
 env_keep+="RELEASEDIR SHARED_ONLY SSH_AUTH_SOCK SUBPACKAGE VISUAL",
 env_keep+=WRKOBJDIR

User mwlucas may run the following commands on this host:
 (ALL) SETENV: ALL

When sudo asks for a password, enter your own password, not the root
password.

The -l flag tells sudo to show you which privileges and settings you
have. In response, sudo parses /etc/sudoers and spits out all of the settings
that apply to your account on this system. Any host-specific limitations are
already evaluated and do not appear.

sudo Password Caching
When you enter your password correctly, sudo records the time, and for the
next five minutes, it remembers that you’ve recently entered your password
and will work without requiring you to enter it again. After five minutes,
you must reauthenticate. This simplifies work when entering a series of sudo
commands, but it times out reasonably quickly.

You can tell sudo to forget your cached password by running sudo -k. You
can control the number of minutes before sudo asks for the password again
with the timestamp_timeout option in sudoers. Here, we tell sudo to not time
out the password for 10 minutes:

Defaults timestamp_timeout 10

Root, and How to Avoid It 121

If you set the timeout to 0, sudo always asks for a password. If you set it
to a negative value, sudo caches the password throughout this login session.
You must run sudo -k to make sudo forget that you entered your password.

Running Commands Under sudo
To run commands via sudo, just put the command name after the sudo com-
mand. For example, here’s how you would run tcpdump via sudo:

$ sudo tcpdump

The sudo command should prompt for your password. Enter it correctly,
and tcpdump should run as root.

You can also run commands that include arguments under sudo. For
example, I use tail -f to view the end of a log file and show new entries
as they appear. But some log files are accessible only to root, such as the
authentication log and the log that contains detailed sudo logs. You can view
these logs without becoming root by using sudo.

$ sudo tail -f /var/log/authlog

You can configure sudoers to permit any combination of commands and
arguments.

Running Commands as Other Users
Earlier, you saw how to give some users permission to run commands as
users other than root. Specify the user with the -u flag.

$ sudo -u _postgresql pg_dump

If you don’t have permission to run that command as that user, you’ll
get an error.

sudoedit
My flunky sbaxter needs to edit the named configuration file, /etc/named.conf.
Consider this sudo configuration:

sbaxter dns1=/etc/rc.d/named,/sbin/mount_nfs,/usr/bin/vi /etc/named.conf

Looks good, right?
Uh, no.
The first problem is that I’m requiring sbaxter to use a specific editor.

Minimal competence in vi is required for system administrators, but I don’t
want to force him to use a specific editor to do his day-to-day job. Also,
many editors offer shell escapes. While most people are aware of escaping

122 Chapter 7

to a shell in vi, emacs has a shell escape as well. If my flunky can escape to
a shell while running an editor as root, he gains root access. This is exactly
what I want to avoid.

The sudoedit feature lets users edit specific files with their preferred edi-
tor, or a default chosen by the sysadmin, without working as root.

sbaxter dns1=/etc/rc.d/named,/sbin/mount_nfs, \
 sudoedit /etc/named.conf, /etc/rndc.key

The keyword sudoedit is followed by a list of the files that the user can
edit, thereby permitting the user to change those files without root privileges.

The user edits the file by passing a filename to sudoedit.

$ sudoedit /etc/named.conf

Technically, the user doesn’t edit the actual file; instead, sudoedit copies
the file to a temporary file owned by the user, and when the user closes the
editor, it copies the temporary file to the original location. The user never
runs the editor as root.

The sudoedit keyword uses the editor given by the environment variable
$SUDO_EDITOR, $VISUAL, or $EDITOR. Users can set that variable in their shell if
they don’t like what the system offers them.

The Biggest sudo Mistake: Exclusions
Now that you know the basics of sudo, let’s consider a configuration that
trips up even experienced system administrators. Sometimes you want to
prevent users from executing specific commands but give them access to
every other command. The sudoers documentation says that you can do
this using the exclamation point (!) as a negation character, but that’s not
entirely effective. Because this is a popular method, however, I’ll discuss
how it works, and then demonstrate how your users automatically get root
if you use it.

Start by defining command aliases that contain the forbidden com-
mands. One popular exclusion is su. Another common exclusion is user
shells, because if you execute a shell as a user, you become that user.

Cmnd_Alias SHELLS = /bin/sh,/bin/csh,/usr/local/bin/tcsh
Cmnd_Alias SU = /usr/bin/su

Now configure a command alias that excludes those commands.

pkdick	 ALL = ALL, !SHELLS,!SU

Looks sensible, doesn’t it? And it seems to work.

$ sudo sh
Password:
Sorry, user pkdick is not allowed to execute '/usr/bin/su' as root.

Root, and How to Avoid It 123

Here’s the catch: Commands are defined by full paths. You’re allowing
the user to run any command except for a few specified by full path. All this
user needs to do is copy the command to another location and run it.

$ cp /bin/sh /tmp/sh
$ sudo /tmp/sh
#

Welcome to root!
Negating commands can be bypassed by anyone who understands even

the basics of sudo, as you’ll find well documented in the sudo manual and
other literature. People still insist on using it to protect production systems.
Don’t be one of those people.

sudo Logs
Every sudo command is logged to /var/log/secure by syslogd. Each log message
contains a timestamp, a username, a terminal, the directory where the com-
mand was run, the user the command was run as, and the command used.

Apr 30 14:16:50 treble sudo: mwlucas : TTY=ttyp8 ; PWD=/home/mwlucas ;
USER=root ; COMMAND=/usr/bin/su -m

By checking the file secure, you can track exactly who did what and when.
(Send your syslog messages to a logging server that your users cannot access to
prevent those who screw up from deleting the logs of their screwup.)

May 15 09:14:55 treble sudo: lasnyder : TTY=ttyp4 ; PWD=/etc ; USER=root ;
COMMAND=/bin/rm pf.conf

I know exactly who broke this system and when. The log entry transforms
what’s about to happen from “homicide” to “ justifiable manslaughter.” That
alone makes sudo worth using properly.

This chapter has given you some tips on how to avoid screwing up your
system accidentally. Now let’s look at ways to really mess up your system, by
mucking with disks and filesystems.

8
D i s k s a n d F i l e s y s t e m s

Oh, my head hurts bad.
Rings of ones and zeros, ouch!

Filesystems hide them.

Proper data management is perhaps a sys-
tems administrator’s most vital duty. You

can replace almost every computer compo-
nent, but the data on your disk is irreplace-

able. Perhaps that data isn’t important or it’s backed
up, but losing files will ruin your day. As a sysadmin,
you must protect important data by carefully manag-
ing your disks and filesystems.

We covered the basics of disklabels and MBR partitions in Chapter 2,
but OpenBSD lets you use and abuse disks and filesystems in any number
of ways. You’ll learn how in this chapter.

126 Chapter 8

Device Nodes
A device node is a file that provides a logical interface to a piece of hardware.
By reading from a device node, sending data to it, or using a command on
it, you’re telling the operating system to perform an action on a piece of
hardware or, in some cases, a logical device.

Different devices behave differently when data is sent to them. For
example, writing to the console makes text appear on the screen or termi-
nal, while writing to a disk device puts data on that disk. (OpenBSD puts
device nodes in /dev and disallows device nodes on other filesystems.)

Many disk management programs expect to be given a device name
as an argument. Unfortunately, device node names are frequently cryptic
and vary widely among operating systems—even on closely related operat-
ing systems that run on the same hardware. To simplify your life just a bit,
Table 8-1 lists the device node names for common OpenBSD disk devices.

Table 8-1: Common Disk Device Node Names

Device Node Description

/dev/fd* Floppy disk (block)
/dev/rfd* Floppy disk (raw)
/dev/wd* IDE and some SATA disks (block)
/dev/rwd* IDE and some SATA disks (raw)
/dev/sd* SCSI/SAS/SATA/USB/RAID/non-IDE disk (block)
/dev/rsd* SCSI/SAS/SATA/USB/RAID/non-IDE disk (raw)
/dev/cd* CD/DVD drive (block)

Device names also have a number that tells you which instance of that
device it refers to. The numbering starts at 0. The first IDE hard drive is
/dev/wd0, /dev/wd1 is the second, and /dev/cd1 is the second CD drive.

Every partition is assigned a letter. For example, the root partition is a,
the swap area is b, the whole disk is c, and so on. Each partition also has a
separate device node, the result of appending the partition letter to your
disk device name. For example, if you install to a single IDE drive, your root
partition is /dev/wd0a.

Raw and Block Devices
Notice in Table 8-1 that devices are listed in either block or raw (character)
mode. This refers to how the devices are accessed.

Block Devices

Hard disks are usually accessed using a block device node (sometimes called
a cooked device node). When accessing a device as a block, data transmitted
to or from the device is buffered, or collected until there is sufficient data to

Disks and Filesystems 127

make accessing the device worth the trouble. Block devices are generally
considered more efficient than raw devices.

The device nodes for block devices are named after the device driver;
for example, /dev/wd3.

Raw Devices

Raw devices are sometimes called character devices, because they access
a device one character at a time. If you need to control exactly how data
appears on a disk (for example, when creating a filesystem) use a raw
device. Raw device nodes have an r in front of their name, as in /dev/rwd3.

Raw devices do no buffering. When you tell your system to write to a
raw device, the data is transmitted immediately. Raw mode works best with
software that provides its own buffering or that wants to arrange data in a
specific way.

Here’s an easy way to remember the difference between block and raw
throughput: Say you spill a bottle of aspirin. If you pick up each aspirin
individually and deposit it directly in the bottle, you’re doing an unbuffered,
or raw, transfer. If you pick up the aspirin with your right hand and collect
them in your left, then dump a bunch into the bottle at once (along with all
of the dirt from your floor), you’re doing a buffered transfer.1

Choosing Your Mode

Address disks (and many other devices) as raw or block by choosing the cor-
responding device node. Some programs expect to access raw devices, while
others expect block devices. If a program opens /dev/sd1a, it’s accessing
partition a on disk sd1 as a block device. If it opens /dev/rsd1a, it’s accessing
the exact same partition as a character device.

Regardless of the mode, the underlying hardware remains the same; the
only thing that changes is how you exchange information with the device.

Device Attachment vs. Device Name
Not long ago, most disks were permanently affixed to a single physical loca-
tion on the system. If your computer had two IDE buses, each with two hard
drives, the operating system knew exactly where to find them, usually at
/wd1 and /wd2. A SCSI disk had a SCSI ID and a logical unit number (LUN),
and changing them required rebooting the computer. Traditionally, you
could use the disk’s location in the system to identify the disk. For example,
a booting i386 computer would find the root partition by looking for the
hard drive attached to the first port on the first IDE controller, finding the
a partition on that disk, and reading the filesystem table from that disk. You
could go into the BIOS to tell the computer to look for the root partition
on a different disk, but the computer still identified the disk by where it was
physically attached to the computer.

1. If it’s buffered aspirin, then you’re doing buffered buffered aspirin transfers. But let’s not
go there.

128 Chapter 8

Today, disks can appear and disappear from multiple locations on the
system. For example, you might attach and remove several flash drives as
needed, or hot swap Serial Attached SCSI (SAS) or Serial ATA (SATA)
drives from bus to bus. Physical location is no longer a safe way to identify
a disk. While /dev/sd0 is the device node for the first SCSI disk, you cannot
assume that the disk currently attached to the first SCSI port is the same
disk that was plugged in there the last time the system booted. OpenBSD
labels actual disks with unique IDs, as discussed in the next section.

DUIDs and /etc/fstab
All OpenBSD platforms use the disklabel to identify partitions and other
information about a disk. When you label a disk (as we did in Chapter 3
and will do by hand later this chapter), disklabel adds a disklabel unique
identifier, or DUID, to the disk label. The DUID is a unique hexadecimal
number that lets OpenBSD identify a specific disk.

To find a disk’s DUID, pass the device name to disklabel and look for
the duid entry:

disklabel sd0
...
duid: 55128c3700af5491
...

The disk currently attached as sd0 has a DUID of 55128c3700af5491. Even
if you physically move the disk so that it becomes sd9 or sd18, OpenBSD can
use the DUID to uniquely identify this disk.

OpenBSD uses the filesystem table /etc/fstab to map filesystems on a
disk to mount points using either the disk location or the DUID. Each file-
system appears on its own line in /etc/fstab, as shown here:

u 55128c3700af5491.b vnone wswap xsw
55128c3700af5491.a / ffs rw 1 1
55128c3700af5491.k /home ffs rw,nodev,nosuid 1 2
55128c3700af5491.d /tmp ffs rw,nodev,nosuid 1 2
...

We’ll focus on the first entry to explore what’s going on here. The
first field, 55128c3700af5491.b u, is the location of the partition. Whereas
older systems used the disk device name and the partition letter (such as
/dev/sd0a), newer systems can use the DUID, a period, and the partition
letter (as in 55128c3700af5491.a). By using DUIDs in the filesystem table,
OpenBSD can always mount the same disk at the same location, no mat-
ter how it’s attached.

The second field, none v, lists the mount point, which is the directory
where the filesystem is attached to the directory tree. Every partition you
can write files to is attached to a mount point (such as /usr, /var, and so on),
with one partition being the root partition (/). Swap space uses a mount
point of none.

Disks and Filesystems 129

Next, swap w, is the filesystem type. The standard OpenBSD partition
uses type ffs, the UNIX Fast File System. Other options include, but are not
limited to, msdos (Microsoft-style FAT partitions), mfs (Memory File System),
and cd9660 (CD).

The fourth field, sw x, shows the mount options used for this file
system. I’ll cover mount options in more detail in “FFS Mount Options”
on page 135, but here are a few that frequently appear in /etc/fstab :

ro  The filesystem is mounted read-only. Not even root can write to it.

rw  The filesystem is mounted read-write.

nodev  Device nodes are not interpreted.

nosuid  setuid files are forbidden.

noauto  OpenBSD won’t automatically mount the filesystem at boot or
when running mount -a. This option is useful for removable media drives
that might not have media in them, such as CD and USB flash drives.

The fifth field indicates whether dump(8) should back up this filesystem.
If this field is 0 (or absent), dump doesn’t routinely back up the filesystem.
Otherwise, the number given is the minimum dump level needed to back
up the filesystem.

The last field is the pass number. It tells fsck when to check the filesystem
during boot. Filesystems with a pass number of 1 are checked first, filesystems
with a pass number of 2 are checked second, and so on. A pass number of 0
tells fsck to not check the filesystem during boot. If a filesystem doesn’t have
a pass number, it’s equivalent to 0.

I strongly recommend using DUIDs in /etc/fstab and anywhere else,
rather than using device node names. While a device node name might
change, a DUID will not.

MBR Partitions and fdisk(8)
Some hardware platforms have specific ideas about disk partitioning that
differ from what OpenBSD expects. For example, the i386 and amd64
platforms expect to find MBR partitions on hard drives, and OpenBSD
accommodates this quirk by putting its own disklabel partitions inside MBR
partitions. We briefly touched on creating partitions during the installation
process, but if you add hard drives to an existing system, you’ll need to edit
the MBR partition table by hand using fdisk(8).

My particular test system has two hard drives: wd0 and wd1. I think that
wd1 is completely blank but before I can use this drive, I need to verify that it
is empty, and then create MBR partitions. While fdisk has all sorts of com-
mands to edit disks, I find the simplest way is to use the interactive disk
editor. Run fdisk -e and give it the device node for the new disk.

fdisk -e wd1
Enter 'help' for information
fdisk: 1>

130 Chapter 8

The editor is minimal, but lets you view, add, remove, and edit MBR
partitions. If you forget the commands at any time, entering help will print
out all the commands fdisk supports.

Viewing MBR Partitions
To see the MBR partitions on the current disk, enter print or p. Here’s
an example:

fdisk: 1> print
Disk: wd1 geometry: 2088/255/63 [33554304 Sectors]
Offset: 0 Signature: 0x0
 Starting Ending LBA Info:
 #: id C H S - C H S [start: size]
--
 0: 00 0 0 0 - 0 0 0 [0: 0] unused
 1: 00 0 0 0 - 0 0 0 [0: 0] unused
 2: 00 0 0 0 - 0 0 0 [0: 0] unused
 3: 00 0 0 0 - 0 0 0 [0: 0] unused

The first line shows the disk geometry (as discussed in Chapter 2). Every
value in this disk’s MBR table is set to 0, meaning that it has no configured
partitions.

Adding and Removing Partitions
Say we want to create an MBR partition on this disk. I habitually use parti-
tion 0, but the OpenBSD installer usually uses partition 3. The specific
number you pick doesn’t matter unless you want multiple MBR partitions
on the disk.

To edit a partition, enter edit or e followed by the partition number. For
example, to edit partition 0, enter the following:

fdisk: 1> e 0
 Starting Ending LBA Info:
 #: id C H S - C H S [start: size]
--
 0: 00 0 0 0 - 0 0 0 [0: 0] unused

u Partition id ('0' to disable) [0 - FF]: [0] (? for help) a6
Do you wish to edit in CHS mode? [n]

v offset: [0]
w size: [0] *

W a r n i n g 	 Conveniently, fdisk prints the current information on this MBR partition. Make
sure it’s the partition you think it is before you muck it up.

First, at u, set a partition ID. This is a label indicating what kind of file-
system will be on the disk. OpenBSD uses partition ID a6, so enter that.

Disks and Filesystems 131

The offset at v is the number of sectors from the beginning of the disk
to the start of the partition. We want to use this entire disk for OpenBSD,
so set it to 0.

Finally, the size at w is the number of sectors the MBR partition fills.
There is no need to copy the number of sectors in the disk here; OpenBSD
fdisk uses * to mean “all free space.”

Now print the MBR table again to check your work.

fdisk:*1> p
Disk: wd1 geometry: 2088/255/63 [33554304 Sectors]
Offset: 0 Signature: 0x0
 Starting Ending LBA Info:
 #: id C H S - C H S [start: size]
--
 0: A6 0 0 1 - 2088 167 63 [0: 33554304] OpenBSD
 1: 00 0 0 0 - 0 0 0 [0: 0] unused
 2: 00 0 0 0 - 0 0 0 [0: 0] unused
 3: 00 0 0 0 - 0 0 0 [0: 0] unused

Notice that the entry for partition 0 is type A6 and extends from
cylinder 0, head 0, sector 1, to cylinder 2088, head 167, sector 63. It fills
33,554,304 sectors—the same as the number of sectors in the disk. This
MBR partition fills the entire disk.

If you had recycled this disk from another operating system, it would
probably have a partition already on it. To remove a partition, edit the
partition and set its partition ID to 0.

Making a Partition Bootable
In order to boot from a hard drive, you’ll need to mark a partition as active.
Use the flag command and a partition number to do this.

fdisk: 1> flag 0
Partition 0 marked active.

Include this hard drive in your BIOS boot order, and the computer
should try to boot from it. Simply marking a partition as active doesn’t
mean that the computer can boot from it; however, you will still need a
kernel, boot loader, and all the other things that go into bootstrapping a
computer.

To mark a partition as no longer active, delete and re-create it. (There
is no unflag command.)

Exiting fdisk
Once you’re satisfied with your work, enter quit or q, and fdisk should write
the new MBR table to disk and exit. If you changed your mind, and don’t
want to make any changes, enter abort or exit, and fdisk should exit without
saving changes to the MBR partition table.

132 Chapter 8

Labeling Disks
OpenBSD uses disklabel to set up partitions on all hardware platforms. We
used disklabel(8) as part of the installation process, but you need to parti-
tion new disks before you can use them. (You can also use disklabel to back
up, restore, and duplicate partition tables.)

Viewing Labels
To view the current disklabel, just give the disk name as an argument. Here’s
how to see the disklabel of the empty disk from the previous section:

disklabel wd1
u # /dev/rwd1c:

...
v duid: 0000000000000000

...
16 partitions:
size offset fstype [fsize bsize cpg]

w c: 33554304 0 unused

This looks much like the disklabel we saw in Chapter 2, with a few criti-
cal differences.

First, note the device at u. The disklabel command accesses the raw
device, but you should use the block device at the command line.

This label at v has no DUID. This is the default empty disklabel. We
will generate a DUID later.

At w, we see that this disk has only one partition, c, which represents
the entire disk. You could create and use a filesystem on partition c, but it’s
not standard practice to do so.

Creating Disklabel Partitions
The simplest way to create partitions is to use the same interactive disklabel
editor that we used to install OpenBSD. Give the disklabel editor the -E flag
and the disk name:

disklabel -E wd1
Label editor (enter '?' for help at any prompt)
>

Now you can add, remove, and edit partitions, just as in Chapter 3.
Throughout the rest of the book, we’ll edit disklabels as needed to

change partition and filesystem characteristics.

Disks and Filesystems 133

Backing Up and Restoring Disklabels
Before messing with a disk, back up its disklabel so that you can fall back
to the old label if you screw up. You can back up the disklabel with this
command:

disklabel wd1 > wd1.disklabel.saved

To apply a saved disklabel to a disk, give disklabel the -R flag, the disk
device, and the label file:

disklabel -R wd1 wd1.disklabel.saved

This writes the saved label to the disk. You can use saved disklabels to
duplicate partitioning across identical disks.

Now that you have partitions, let’s put a filesystem on them.

The Fast File System
OpenBSD’s filesystem, FFS, is an improved version of the filesystem shipped
with BSD 4.4. FFS is sometimes called UFS (for Unix File System), and many
system utilities still use UFS.2

FFS is designed to be fast, reliable, and able to handle the most common
situations effectively while still supporting weird configurations. By default,
OpenBSD tunes FFS for general use, but you can optimize it to fit your
needs—whether you need to hold trillions of tiny files or a half dozen 30GB
files. You don’t need to know much about FFS internals, but you should at
least understand blocks, fragments, and inodes.

FFS Versions
The original FFS was written in the 1980s and included hard-coded limits
that were ample for the day. Filesystems could have up to 231-1 blocks, or just
under a terabyte (TB). In 1983, a 1TB filesystem was unthinkable. In 2013,
1TB drives are cheap.

For larger file systems, we have FFS version 2. FFS2 can support file-
systems up to 8 zettabytes—unthinkable by 2013 standards. (FFS2 is likely
to reach other limits before hitting the filesystem size limit, mind you.)
OpenBSD supports both FFS and FFS2.

The i386 and amd64 boot floppies support only FFS, not FFS2. The
installation CD, however, supports both. Most machines that need to boot
from floppy don’t need FFS2, and probably don’t have a BIOS that can sup-
port 2TB drives anyway. The filesystem creation program newfs(1) is smart

2. OpenBSD is not the only operating system that still uses the BSD 4.4 filesystem or a
descendant thereof. If a Unix vendor doesn’t specifically tout its “improved and advanced”
filesystem, it’s almost certainly running a derivative of FFS.

134 Chapter 8

enough to use FFS2 on filesystems large enough to need it, so for most
installations, you don’t need to worry about the difference between FFS
and FFS2.

N o t e 	 In the exceedingly unlikely event that you actually require FFS2 on a machine that
must be installed via floppy, be sure to format the critical system partitions of root (/),
/var, and /usr as FFS, not FFS2. Use FFS2 only for partitions that are not critical to
the system. Otherwise, you won’t be able to use the installation disk for upgrades or
emergency repairs.

Blocks, Fragments, and Inodes
Both FFS and FFS2 are managed through blocks, fragments, and inodes.
This arrangement isn’t unique to FFS and FFS2; filesystems such as NTFS
use data blocks and index nodes, too. The indexing system used by each
filesystem is largely unique, however.

Blocks

Blocks are sections of disk that contain data. Files are placed in one or more
blocks. OpenBSD’s FFS uses a default block size of 16KB, or eight times the
fragment size, whichever is smaller. Not all files are even multiples of 16KB,
so leftover bits go in fragments. A fragment is one-eighth of the block size, or
2KB by default. A 20KB file fills one block and two fragments.

Inodes

Inodes, or index nodes, contain basic data about files, such as the file’s size,
permissions, and the list of blocks that contain the file. Collectively, the
data in an inode is known as metadata, or data about data.

Superblocks

You’ll also see references to superblocks, which are blocks that contain vital
information about the filesystem’s size and specifications. Superblocks are
so important that FFS makes many backup copies of them. If you need to
meddle with superblocks, you’ve probably done something wrong or your
filesystem is FUBAR.

Creating FFS Filesystems
Use newfs(8) to create FFS and FFS2 filesystems and make sure that the
disk has a disklabel. The newfs command takes one argument: the partition
device node.

newfs wd1a
/dev/rwd1a: 16383.9MB in 33554304 sectors of 512 bytes
81 cylinder groups of 202.47MB, 12958 blocks, 25984 inodes each
super-block backups (for fsck -b #) at:

Disks and Filesystems 135

 32, 414688, 829344, 1244000, 1658656, 2073312, 2487968, 2902624, 3317280,
3731936,
 ...

You’ll see details about the filesystem size, how many blocks it includes,
and so on. The location of each superblock backup is printed as newfs pro-
ceeds. (When computers and disks were much slower, this told the operator
that the computer was actually doing something and hadn’t seized up.)

The partition size determines which filesystem newfs uses. Partitions
smaller than 1TB are formatted with FFS; larger partitions with FFS2. If you
want to specify a particular filesystem format (yes, you can even specify the
old-fashioned 4.3BSD format if you like), use the -O flag. It makes no sense
to demand an FFS filesystem on a large partition, but you might have a rea-
son to use FFS2 on a small partition.

newfs -O 2 wd1a

If you think you need to specify which filesystem format to use on a new
filesystem, you’re probably wrong.

FFS Mount Options
OpenBSD can handle FFS partitions in several special ways, controlling what
sorts of changes the filesystem supports and what sorts of files may exist.
These are called mount options. You can specify mount options either when
you mount partitions on the command line, as we’ll discuss in “Mounting
and Unmounting Partitions” on page 140, or in /etc/fstab.

Mount Options and /etc/fstab

Specify a filesystem’s mount options in a comma-separated list in the fourth
field of the filesystem’s /etc/fstab entry. For example, here’s an /etc/fstab entry
for the partition that contains my /home directory:

244f6d3acd6374ad.k /home ffs rw,nodev,nosuid,softdep 1 2

I’ve specified the options rw (read-write), nodev (device nodes forbidden),
nosuid (setuid programs forbidden), and softdep (soft updates). I’ll cover
these and other common mount options, and explain why you might want
to use them.

Read-Only Mounts

If you only want to read the contents of a partition, and never write to it,
you can mount the partition as read-only. In most cases, this is the safest way
to mount a disk because you cannot alter the data on the disk or write any
new data. If a filesystem should never change, mounting it read-only might
make sense.

Read-only mounts are especially valuable when a particular filesystem
is damaged. While OpenBSD won’t let you perform a standard read-write

136 Chapter 8

mount on a damaged or dirty filesystem, it can often mount those filesystems
read-only. This gives you a chance to recover some data from the partition.
(Not a large chance, but a chance.)

To mount a filesystem read-only, use the option rdonly or ro.

Read-Write Mounts

If you want to both read from and write to the disk, you’ll want to mount
the partition as read-write. By default, OpenBSD mounts all partitions as
read-write.

Use the option rw to explicitly configure read-write mounts.
On modern hardware, I recommend using soft updates in conjunction

with read-write mounts.

Synchronous Mounts

Using a synchronous mount is the safest way to mount a filesystem. OpenBSD
can read data from a synchronous-mounted partition as fast as the hard-
ware permits. Whenever you write to the disk, however, the kernel feeds a
chunk of data to the disk, waits to receive confirmation that the disk has
accepted the data and written it to disk, and then tells the program that
requested the write that the data is now on disk.

You should know that even if you’re using a synchronous mount, most
hard drives lie about whether they have actually written the data to disk.
These drives perform write caching, where writes are cached in a small flash
or RAM buffer on the disk itself before the drive actually writes the data.
This raises the question: Is a synchronous mount really synchronous? Hard
drive vendors usually claim that in the event of a power failure, these disks
retain just enough power to write the cache to disk.

Although they provide the greatest data integrity in the case of a crash,
synchronous mounts are slow. You might use synchronous mounts when
data integrity is crucial, but in most cases, it’s overkill and you have little
ability to verify that the mount is truly synchronous.

Activate synchronous mounts with the sync keyword.

Asynchronous Mounts

To write data quickly, but with a higher risk of data loss, mount partitions
asynchronously. When using asynchronous mounts, the kernel informs
software that all disk writes are successful before the disk confirms that the
data was written. This is fast, but a system failure can leave inconsistent data
on your disk.

Asynchronous mounts are useful when restoring a filesystem from
backup, because if you get a power failure halfway through the restore
procedure, you’ll need to start over anyway. Don’t use asynchronous mounts
in production if you care about your data or would object to re-creating
the filesystem.

Activate asynchronous mounts with the async keyword.

Disks and Filesystems 137

Soft Update Mounts

Soft update mounts organize and arrange disk writes so that filesystem
metadata remains consistent at all times. This gives performance similar to
that of an asynchronous mount with the reliability of a synchronous mount.
While that doesn’t mean that all data will be written to disk—a power failure
at the wrong moment will result in lost data—using soft updates prevents
a lot of filesystem integrity problems caused by that lost data. It’s not the
default because some older, smaller hardware doesn’t have enough memory
to support it, but if you’re using modern i386 and amd64 hardware, I rec-
ommend enabling soft updates for all FFS partitions.

To mount a filesystem with soft updates, use the softdep option.

“Don’t Track Access Time” Mounts

FFS records the last time a file was read, executed, or otherwise viewed.
Updating these access times consumes a small but measurable amount of
disk I/O and performance. You can use the noatime mount option to tell
OpenBSD to not update the access time on any file.

Using noatime makes sense on laptops, where minimizing power usage
is critical. If you’re tempted to use this option on your server to squeeze out
a little extra performance, you should buy a faster disk instead. Some soft-
ware, such as the Mutt mail client, will break if run on filesystems mounted
noatime.

No Device Nodes Permitted Mount

By using the nodev mount option, you can tell OpenBSD to not interpret
any device nodes on any given filesystem. Intruders can try to create
“rogue” device nodes and use them to write files or attack the network,
but if the kernel won’t recognize those device nodes, it cuts off this whole
category of attacks.

This type of mount is also useful if you have hard drives from mul-
tiple operating systems on your computer. For example, if you dual-boot
OpenBSD and Linux on your computer, but you don’t want to accidentally
access a Linux device node when using OpenBSD, the nodev option will
prevent you from doing so. (You might think you would notice that you had
typed /linux/dev/hda rather than /dev/wd1, but never underestimate your
ability to screw up.) In most cases, the partition containing /dev is the only
one that should contain device nodes.

Execution Forbidden Mounts

The noexec mount option prevents any binaries on the partition from being
executed. Mounting /home with the noexec option helps prevent users from
installing and running their own programs, but for it to be effective, you’ll
need to make sure users can’t install binaries in any shared areas, such as
/tmp and /var/tmp.

138 Chapter 8

Note that forbidding execution of binaries doesn’t prevent users from
running interpreted scripts from that partition. Maybe the users can’t run
a compiled C program, but if they can run perl $HOME/rootkit.pl, then noexec
won’t slow them down very much.

setuid Forbidden

The nosuid option disallows setuid behavior from programs on this filesystem.
Many partitions should not have setuid files, and setting this is an easy way
to disrupt them. OpenBSD sets this on partitions such as /home and /tmp by
default. You must carefully place this option on all user-writable filesystems
for it to prevent undesired behavior.

Do Not Automatically Mount This Filesystem

noauto isn’t actually a mount option, but rather a way of telling OpenBSD
to not mount a given partition listed in /etc/fstab at boot. I frequently make
/etc/fstab entries for removable media drives, but the system should not
try to mount these at boot. The boot will hang if a partition required by
/etc/fstab is not available, and I don’t want my computer to refuse to boot
just because I unplugged a flash drive.

Filesystem Integrity
Both versions of FFS go to a great deal of trouble to ensure that the data on
disk is correct and intact. The blocks that contain a file should be recorded
in an inode, the inodes should all be referenced by directory entries, and so
on. When you remove a file, all references to that file should be removed.

After a system failure, however, data might not be consistent. Metadata
might reference blocks that were previously erased; a file might be in a dif-
ferent location than the inode record specifies; and the filesystem might
have all kinds of references pointing to things that have moved, changed, or
disappeared. These inconsistent, or dirty, filesystems cannot be trusted and
must be rationalized, or cleaned, before you can mount them read-write. If
you mount a dirty filesystem read-only, it might only panic your system, but
if you force OpenBSD to mount a dirty filesystem read-write, you will dam-
age the dirty filesystem even more.

At boot, OpenBSD performs a minimal inspection and cleaning, or
preening, of the filesystems and will automatically correct any minor prob-
lems found. If preening cannot fully clean the filesystem, the boot will hang
until you intervene.

When confronted with a dirty filesystem, you have a few options: use
the filesystem checking tool fsck(8), debug the filesystem with fsdb(8) and
clri(8), or throw the filesystem away and run newfs(8). Most of the time, you’ll
attempt to repair the filesystem with fsck. Using fsdb successfully requires
more knowledge about FFS innards than I possess, so I recommend it to only
those who really want to develop an in-depth knowledge of FFS and have

Disks and Filesystems 139

a whole bunch of time to devote to it. Rebuilding the filesystem with newfs
destroys everything on the filesystem, but it’s a decent choice for partitions
that contain only ephemeral data, such as /usr/obj.

You can use dump(8) to copy the damaged filesystem before trying any
of the repairs. This gives you the option to fall back to the current state
if attempts at repairing the disk fail. (If you have to do this, though, you
should probably reevaluate your backup strategy.)

Running fsck

If you try to mount a dirty filesystem either at boot time or during routine
operation, you’ll see a message that looks like this:

/dev/rwd1a: UNEXPECTED INCONSISTENCY; RUN fsck_ffs MANUALLY

The fsck(8) program is a frontend for several filesystem-specific integrity-
checking programs. When you run it, fsck identifies the type of filesystem
and calls the correct integrity checker for you. Run fsck by giving it the
device name of the filesystem you want to check:

fsck /dev/wd1a

You can use either the raw or cooked device name; fsck is smart enough
to use the raw node even if you give the cooked device name.

Examining the filesystem can take quite a while, so be patient.
When run on a dirty filesystem, fsck will probably find a number of

problems: blocks that have become disassociated from their inodes, inodes
that reference empty blocks, and so on. It can often make a good guess as
to how everything fits together.

When fsck finds a problem that it isn’t absolutely sure about, it will
suggest a fix and ask if you want to make the change. If you answer y, fsck
makes the change. If you answer n, fsck leaves the filesystem unchanged. If
you tell fsck not to make the change it suggests, the filesystem will still be
dirty, and you’ll need to fire up fsdb or clri and make the change you think
more appropriate.

Sometimes, fsck can’t identify the name or directory of a file recovered
from a damaged filesystem. These files go into the partition’s lost+found
directory (for example, /usr/lost+found). You’ll need to use programs such
as grep and strings to try to identify these files by their contents.

Blindly Trusting fsck

Those of us who lack the skills to debug a filesystem find ourselves in a
difficult situation, where we can either accept that fsck(8) knows what’s
best or just restore from backup. If your filesystem was performing a lot of
disk I/O just before system failure, fsck might need to make dozens or hun-
dreds of changes. You could spend an hour sitting at the console pressing y
repeatedly.

140 Chapter 8

If you decide to trust fsck and hope it’s right, run fsck -y. This means
“answer y to every question.” You might wind up with the entire contents of
the filesystem in the lost+found directory, or you might lose every file on the
filesystem. But unless you’re intimately familiar with the innards of FFS, you
would need to restore from backup anyway.

If you run fsck and realize partway through that you would like to answer
y to all the questions that follow, enter F. That tells fsck to answer y to all
remaining questions.

At the end of the procedure, you’ve either recovered your system or
need to restore from backup.

What’s Currently Mounted?
While performing routine work, inevitably you’ll need to check which disks
are currently mounted and which are not. To see a list of all mounted file-
systems and their mount options, run mount(8) without any options:

$ mount
/dev/wd0a on / type ffs (local)
/dev/wd0k on /home type ffs (local, nodev, nosuid)
/dev/wd0d on /tmp type ffs (local, nodev, nosuid)
/dev/wd0f on /usr type ffs (local, nodev)
/dev/wd0g on /usr/X11R6 type ffs (local, nodev)
/dev/wd0h on /usr/local type ffs (local, nodev)
/dev/wd0j on /usr/obj type ffs (local, nodev, nosuid)
/dev/wd0i on /usr/src type ffs (local, nodev, nosuid)
/dev/wd0e on /var type ffs (local, nodev, nosuid)

Both FFS and FFS2 partitions show up as type ffs. The word local means
that the partition is on a physical drive attached to this machine. We covered
the various mount options (nodev, nosuid, and so on) earlier in this chapter.

Note that mount displays the device node mounted at each partition, not
the DUID. If you want to see the DUID of a disk, check the disklabel.

Mounting and Unmounting Partitions
To attach filesystems to your directory tree, or mount them, use mount(8).
If you’ve never manually mounted filesystems before, boot your OpenBSD
machine into single-user mode (see Chapter 5) and follow along.

In single-user mode, OpenBSD mounts only one partition: the root par-
tition, which it mounts read-only. The root partition contains just enough
of the system to perform basic setup, establish core services, and find the
other filesystems.

Because filesystems other than the root are not mounted, their content is
not accessible. Look in, say, /usr on a system in single-user mode, and you’ll
find that it’s empty. OpenBSD hasn’t lost the files; it just hasn’t mounted the
partition containing those files.

To get any real work done in single-user mode, you probably need to
mount other filesystems.

Disks and Filesystems 141

Mounting Standard Filesystems
To manually mount a single filesystem listed in /etc/fstab, give mount(8) the
name of the filesystem you want to mount. Here, we’ll mount our /usr
partition:

mount /usr

This mounts the partition exactly as described in /etc/fstab, with all the
options specified therein.

To mount all of the partitions listed in /etc/fstab, give mount the -a flag:

mount -a

All of your filesystems (except those not listed in /etc/fstab and those
with the noauto option) should now be mounted.

Mounting at Nonstandard Locations
Perhaps you must mount a filesystem at a location not specified in /etc/fstab.
I do this most commonly when adding a disk to a machine. To mount a
partition at a location other than that specified in /etc/fstab, or to mount
a partition without an /etc/fstab entry, give the partition device name and
the mount point.

mount /dev/sd0d /mnt

You must use the full path for the device node, not just the brief device
node name.

Instead of the path to the device node, you could use the DUID, a
period, and the partition letter, but on the command line, that’s more
painful than using the path to the device node.

Unmounting Partitions
To disconnect a filesystem from the directory tree, use umount(8) on a mount
point. (Note that there is only one n in this command.) Here, we’ll use umount
to unmount our /usr partition:

umount /usr

You cannot unmount filesystems that are in use by any program.
Even a command prompt in the mounted directory will prevent you from
unmounting the partition.

To unmount all partitions except the root partition, pass umount the
-a flag:

umount -a

142 Chapter 8

As programs almost certainly have files open on every partition, this
probably works only in single-user mode. Note that you don’t need to
unmount all partitions to leave single-user mode.

Mounting with Options
Suppose you pull a disk from a decommissioned OpenBSD machine and
you need to retrieve some files from it. You want to mount the disk read-
only so that you don’t change any of the files on the disk. To manually
mount a partition with options not specified in /etc/fstab, use the -o flag.

For example, if the disk shows up as /dev/sd0 and you want to mount
partition a, run this command:

mount -o ro /dev/sd0a /mnt

To prevent old software from running on your newer system, it might
be a good idea to use some of the options we covered earlier, such as noexec,
nodev, and nosuid.

How Full Is That Partition?
To get an idea how much free space remains on your partitions, use df(1).
This program displays the total number of filesystem blocks on each parti-
tion, how many blocks are in use, and how many blocks are free. It also
gives you the percent in use.

One annoying thing about df is that it offers this information in 512-byte
blocks by default. This was fine when disks were much smaller, but today,
it’s like measuring the distance of an airplane flight in yards. Some people
have done this for so long that they automatically perform block transfor-
mations in the back of their mind. 3 For the rest of us, the -h flag tells df to
provide human-readable output, such as megabytes or gigabytes, giving us
something like this:

df -h
Filesystem Size Used Avail Capacity Mounted on
/dev/sd0a 1005M 39.1M 916M 4% /
/dev/sd0k 26.9G 27.0G -104M -1% /home
/dev/sd0d 3.5G 12.0K 3.3G 0% /tmp
...

You might wonder why the /home partition in this example has negative
free space. How is that possible? By default, FFS reserves 5 percent of each
partition for moving files and reducing fragmentation. When you exceed
100 percent disk utilization, you begin tapping into this reserved space.

FFS performance degrades quickly when the partition is overfull. It’s
best to keep some free space on your disk so that FFS can defragment itself.

3. Hi, Henning!

Disks and Filesystems 143

You can reduce the amount of space FFS reserves, but doing so will
impact performance. See tunefs(8) for instructions on how to shoot yourself
in the foot.

What’s All That Stuff?
When you see a partition is full, the obvious question is “What’s filling
up my disk?” Every hard drive I’ve ever owned has gradually filled up for
no apparent reason. You can identify individual large files with ls -l, but
recursively examining every directory in the filesystem is impractical and
tedious (not to mention annoying).

To check the number of filesystem blocks used within each directory
below the current directory, use du(1).

$ du
164 ./.ssh
2 ./old
6 ./.mozilla/firefox/bcpuv16e.default/chrome
80 ./.mozilla/firefox/bcpuv16e.default/Cache/0/B0
354 ./.mozilla/firefox/bcpuv16e.default/Cache/0/31
28 ./.mozilla/firefox/bcpuv16e.default/Cache/0/7A
...

When I run du in my home directory, I get 700 entries; of those, 563 are
related to some Mozilla tool. This kind of list intimidates the new sysadmin
and makes the experienced sysadmin work too hard. Rather than cull
through this list manually, tell du to show only the total for directories in the
current directory, and then sort the output so that the largest directories
appear first.

$ du -s * | sort -rnk 1
25224805 Dark_Shadows_Complete_Series
141104 mibs
14948 tarballs
4668 work
1864 pix
...

I now know why my /home partition is full.
You can tell du to display human-readable values with the -h flag, but

doing so will show values in a mix of gigabytes, megabytes, and kilobytes,
making sort far less useful.

Setting $BLOCKSIZE
Many disk tools—including, but not limited to, du(1) and df(1)—display
information in 512-byte blocks. If you’re accustomed to working in blocks,
you probably won’t mind seeing them. If you’re not used to working in
blocks, however, they’ll probably make you want to tear out your hair.

144 Chapter 8

The environment variable BLOCKSIZE tells these programs to display
information using blocks of a different size. If you set BLOCKSIZE to K, df
and du will display totals in kilobytes. If you set it to M, these tools will show
megabytes instead. Check your shell manual page or the dotfiles in your
home directory for examples of setting environment variables.

Adding New Hard Disks
The OpenBSD installer walks you through formatting and partitioning
your initial hard disks. If you need to add a disk to an existing system, how-
ever, you must run these commands yourself. The good news is that if you
can install OpenBSD, you already know how to use the commands, and the
only hard part is learning which commands to run.

I’ll show you how to move /home to a new disk as an example. You could
create a new partition on your existing disk if you have some empty space,
but that would eliminate the need for this example, so I’m going to pretend
I never gave you that advice. (Also, moving partitions to a separate disk con-
troller channel will improve performance.)

W a r n i n g 	 Before touching anything involving disk partitioning or filesystems, back up your sys-
tem. Verify that backup before starting. You have been warned.

Creating an MBR Partition
The i386 and amd64 platforms require disks to have MBR partitions as well
as OpenBSD partitions. A standard new disk needs a single OpenBSD MBR
partition covering the entire disk. Passing the -i argument to fdisk does
exactly this. Let’s create a new MBR partition on wd1, our new disk:

fdisk -i wd1
Do you wish to write new MBR and partition table? [n] y
Writing MBR at offset 0.

Once you have an MBR partition on your disk, you can create disklabel
partitions.

Creating a Disklabel
All OpenBSD platforms use disklabel partitions. To activate the same disk-
label editor we used during the install process, give disklabel the -E flag and
the disk name:

disklabel -E wd1

Disks and Filesystems 145

This should look familiar from earlier in this chapter. Use the interactive
disklabel editor to create your new partitions. For a single /home directory,
we’ll use one large partition, wd1a. The new label should look like this:

size offset fstype [fsize bsize cpg]
 a: 33543648 64 4.2BSD 2048 16384 1
 c: 33554304 0 unused

When you’ve finished editing partitions, check your work by printing
the disklabel. This should also give you the DUID of the new disk.

When you’re satisfied with the partitioning, use newfs to create a file
system on the new partition:

newfs wd1a

You’re now ready to add the filesystem to your computer.

Moving Partitions
Moving data from one disk to another is slightly more complex than adding
new partitions. You must first mount the new drive in a temporary location,
copy files to that location, remove them from the old location, and mount
the new drive in its previous home.

Our new /home filesystem is on disk partition wd1a. The default “tempo-
rary mount” location is /mnt, so mount it there. This is strictly temporary, so
there’s no need to mount it via the DUID or make an /etc/fstab entry for this.

mount wd1a /mnt

You can then use tar(1), cpio(1), or dump(8) and restore(8) to copy the
files to the temporary location. Here, we copy everything in /home to /mnt.

(cd /home && tar cf - .) | (cd /mnt && tar xpf -)

You could also use cp(1) or mv(1) for this, but these commands don’t
guarantee that file permissions and ownership will copy intact. OpenBSD’s
versions of these programs have never given me errors when I copy or move
files, but I’ve learned from other Unix-like operating systems that tar and
cpio are both more reliable when moving entire file hierarchies. If you’re
using file flags for security (see Chapter 10), you must use dump(8) and
restore(8) to retain those flags.

Using tar or cpio does not delete files from their original location. This
means that if a user changes files in his home directory after you copy them
but before you change the mount point, he will lose his changes as you
shuffle disks around. 4

Now update /etc/fstab to reflect your new disk.

4. Presumably you warn your users before doing maintenance. Or at least during maintenance.
Or . . . maybe afterward.

146 Chapter 8

Adding New Filesystems
Look at the disklabel for the new disk and get the disk’s DUID. This new
disk has a DUID of fea9194ee78362d8. Use the DUID and the partition letter
to make an /etc/fstab entry for your new partitions.

fea9194ee78362d8.a /home ffs rw,nodev,nosuid,softdep 1 2

You might want to keep the old partition available at a new location,
such as /oldhome.

If you’re not sure about the mount options to use for your new parti-
tions, the options nodev, nosuid, and softdep are generally safe. You probably
want the partition mounted read-write (rw) as well.

Now unmount the old and mount the new.

umount /home
mount /oldhome
mount /home

When you unmount a partition, umount doesn’t check /etc/fstab. You tell
it to unmount a partition, and it unmounts that partition.

Stackable Mounts
OpenBSD filesystems are stackable, which means that you can mount one
partition over another. The partition on top hides any files in the filesystem
below.

Look at your system in single-user mode. By default, only the root parti-
tion is mounted. You can go look in the /home directory, and it will be empty.
There’s no reason you can’t put files in the /home directory, even when /home
isn’t mounted. Suppose you copy a couple of core files into /home while in
single-user mode, and then go into multiuser mode. All the usual partitions
are mounted. If you then look in /home, you won’t find your core files.

What happened? Where did those files go?
The files are in the directory /home, but on the root partition. The /home

partition is mounted above that directory, so the /home partition obscures
the files in the /home directory on the root partition. To access those hidden
files, you must unmount the /home partition. Those hidden files continue to
take up space on the root partition, however.

This happens more commonly when splitting a partition. For example,
if you find that your /var partition is too small, you might move /var/www
into its own partition on a separate disk. To free up space on the original
/var, delete the files you copied to /var/www.

With the basics of filesystem management under your belt, you’re now
ready to look at some of OpenBSD’s more interesting filesystem tricks.

9
M o r e F i l e s y s t e m s

Encrypt your hard drive?
Software RAID can save your day,

or ruin your life.

Disk management isn’t complicated,
but there’s enough material that it gets

two chapters. Lucky you! In this chapter,
we’ll start with how to automatically back up

your vital root partition to a second disk. Then we’ll
explore how OpenBSD can use additional memory as

disk space via a memory filesystem and how to set that up. Next, we’ll access
disks formatted for other operating systems, such as NTFS, ext2, and FAT.
Removable media isn’t difficult to work with, but has its own concerns. If
you don’t need the actual media, but can work with disk images, you can
access those. Both topics are covered in this chapter. We’ll also discuss
using NFS, as both a server and a client. Our final topic is OpenBSD’s disk
redundancy and disk encryption features.

148 Chapter 9

Backing Up to the /altroot Partition
You can lose most of your partitions and still hope to recover the rest of the
system. If you lose your root filesystem, however, recovery becomes a much
more difficult task. While you could back up critical files from /etc and use
them to restore your system, OpenBSD provides the /altroot partition as an
easy way to automatically duplicate the root partition on a second disk.

An emergency root partition on a second disk gives you an easier path
to recovery in the event of a disk failure. Booting to the second disk lets you
pull any data off that disk, and possibly even from undamaged partitions on
the first disk, before replacing the failed disk. There’s no reason to back up
your root partition to the same disk, however, as the whole disk will probably
be unusable.

This backup requires a free disk partition the same size as your root
partition, located on a different disk. The OpenBSD installer defaults assume
that you have only one disk. If you have a second disk during installation,
you need to use a custom install process to create the /altroot partition, as
we did in the multiple disk installation in Chapter 3. While configuring
partitions is easiest during the installation, you can add more disks later if
needed, as discussed in Chapter 8.

Your /altroot partition needs an /etc/fstab entry. If you created the parti-
tion during the install process, that /etc/fstab entry already exists but has
the wrong mount type. If you created this partition after installation, you’ll
need to create an /etc/fstab entry yourself. The /altroot partition needs a
mount type of xx, as shown here:

a914f9a264fa64e6.a /altroot ffs xx 0 0

You cannot mount this partition from its /etc/fstab entry, as xx is not a
valid mount type. (You could run, say, mount /dev/sd1a /altroot if you want to
manually mount this partition.) The daily system maintenance job /etc/daily
uses this mount option to identify the root backup partition.

To enable the /altroot backup, add ROOTBACKUP=1 to your /etc/daily.local file.

Memory Filesystems
In addition to creating partitions on raw disk, OpenBSD lets you create
partitions in system memory. A memory filesystem (MFS), or memory disk, lives
in your machine’s RAM, rather than on a physical disk. Reading and writ-
ing files to and from such a filesystem is much faster than accessing those
same files on a spinning disk, which makes a memory-backed filesystem a
huge optimization for certain applications.

If MFSs sound too good to be true for high-performance environments,
that’s because they are. Understand their limits before you implement them
everywhere. First, RAM does not persist across reboots or shutdowns, so
either will erase the contents of an MFS. While this might seem obvious,

More Filesystems 149

I’ve surprised myself more than once by losing a file stored on a filesystem I
had forgotten was an MFS. Furthermore, if your system crashes, you’ll lose
any data stored on an MFS.

You can use an MFS partition as scratch space to rapidly compile, com-
press, decompress, or otherwise manipulate temporary files. I’ve seen news
server histories, database locks, and other application-specific files stored
on MFSs.

An MFS works even in situations where the system regularly swaps. The
kernel retains any information being actively used in memory, while trans-
ferring unused information to swap space. This is excellent for small parti-
tions like /tmp, in which small, frequently used files can be quickly accessed.
Files that are less frequently accessed end up in swap space, which gives
performance similar to accessing a physical disk.

One last word of caution: Don’t make heavy use of MFSs if you don’t
have RAM to spare. If you run short on combined memory and swap space,
your system will perform very poorly.

Creating MFS Partitions
Create temporary MFS partitions with mount_mfs(8). Like other mount_ com-
mands, mount_mfs takes two arguments: the physical device and a mount
point. Unlike physical disks, memory doesn’t have a device node, so use the
device node of the system swap space. If you have multiple swap partitions,
pick whichever you like.

Here is how you can create a memory-backed filesystem by passing a
swap partition, /dev/sd0b, and a desired mount point, /mnt, as arguments
to mount_mfs:

mount_mfs /dev/sd0b /mnt

The size of this partition will be limited only by the size of your swap
partition.

You can create smaller memory-backed filesystems, so that you will have
memory and/or swap space available if you fill the memory disk. Specify
the size with the -s flag and a number of sectors, or with a trailing b (bytes),
m (megabytes), or g (gigabytes). Here’s how to create a 128MB MFS on /mnt:

mount_mfs -s 128m /dev/sd0b /mnt

If you request an MFS larger than your system can support, you’ll get a
warning like mmap: Cannot allocate memory. Try again, this time with a more
reasonable size.

Mounting an MFS at Boot
You can mount an MFS at boot by adding an /etc/fstab entry. You only need
a mount point and the partition size.

uswap v/mnt wmfs xrw,async,-s=128m y0 z0

150 Chapter 9

You don’t need to specify a specific swap device; OpenBSD is smart
enough to let you say the memory disk is generically swap-backed u. Just as
with any other partition, you also need to specify the mount point v and
the filesystem type w.

When dealing with a memory disk, you can use different options than
you would for a traditional disk x. Since a system crash would destroy all
files on the MFS anyway, you can safely mount an MFS partition as asyn-
chronous using the async option. You might also want to use nodev and nosuid
mount options on this partition. You can specify the size with the -s option,
but make sure that you put an equal sign (=) between the -s and the size.
Because /etc/fstab uses whitespace to separate fields, OpenBSD will think
the dump level is 128m if you don’t use an equal sign.1

Data on a memory disk is by definition disposable, so don’t back it up y.
Similarly, never use fsck(8) with a memory disk at boot z. The memory disk
is created anew at each boot, so it is automatically internally consistent.

Foreign Filesystems
Any partition that uses a non-FFS filesystem is foreign to OpenBSD.
Although OpenBSD can access many foreign filesystems, don’t expect
it to be seamless.

Support for some filesystems is incomplete. For example, you can
mount Microsoft NTFS partitions only as read-only. Other filesystems don’t
support the full range of OpenBSD commands. Because FAT filesystems
don’t have any concept of file ownership or permissions, commands like
chmod and chown won’t change anything on the disk.

Each supported filesystem has its own mount program to handle the
vagaries of that filesystem. To simplify your life, mount can usually recognize
supported filesystems from the on-disk format and call the correct mount
program as needed. To mount a foreign filesystem, you need the device
node and a mount point. Depending on the filesystem, you may also need
to know the type of filesystem you’ll be mounting.

Inodes vs. Vnodes
Before we talk about foreign filesystems, let’s touch on something that con-
fused me for a long time: the difference between inodes and vnodes.

The FFS uses index nodes, or inodes, to map blocks of disk that contain
data. This worked just dandy when hard drives were big, expensive things
that no one moved between computers. Over the years, however, swapping
disks between machines has become more popular.

Although Unix-like systems think in terms of accessing files via inodes,
the FAT32 filesystem doesn’t use inodes, ext2fs’s inodes don’t map directly
onto FFS inodes, and CDs use a completely different layout. To access all of
these filesystems in a consistent way, BSD needed another layer of abstraction.

1. I don’t know what a dump level of 128m means, other than “not what I want.”

More Filesystems 151

The virtual node, or vnode, is an abstraction layer the kernel uses to
access all filesystems. Users never manipulate vnodes directly, but you’ll see
references to them throughout OpenBSD’s documentation. Every tool that
reads or writes to disks does so through vnodes, which map the requests
to the filesystem. When you write to an FFS block or inode, the kernel
addresses data to a vnode, which in turn maps to an inode. When you
write to a FAT32 filesystem, the kernel addresses data to a vnode mapped
to a point in the FAT32 filesystem. You use inodes only when dealing with
FFS systems, but your data will pass through a vnode when accessing any
filesystem.

Don’t let references to vnodes on non-FFS systems confuse you. They’re
part of OpenBSD, not the filesystem.

Common Foreign Filesystems
Common foreign filesystems include MS-DOS, NTFS, ext2fs, and CD.
We’ll look at how to access disks formatted for those operating systems
with OpenBSD.

MS-DOS

OpenBSD supports the FAT, FAT16, and FAT32 filesystems. These formats
are commonly found on flash media, old Microsoft operating systems, and
floppy disks.

To mount a filesystem with a FAT filesystem partition, use mount_msdos(8).

mount_msdos /dev/sd3i /mnt

Not sure which partition on the disk is the FAT filesystem? Run
disklabel(8) on the drive and see. FAT filesystems are often located on the
i partition. And even if you try inserting your USB drive and mounting its i
partition, OpenBSD will probably figure out that it’s a FAT system.

If you work with FAT disks often, you might investigate /usr/ports/sysutils/
mtools, a collection of software for working with FAT filesystems without
mounting them. While mount_msdos is quite reliable, mtools offers a more
elegant interface.

NTFS

To mount disks formatted for modern Microsoft operating systems, use
mount_ntfs(8).

mount_ntfs /dev/sd3k /mnt

As I write this, OpenBSD supports NTFS4 (from Windows NT) and
NTFS5 (in Windows 2000 and XP). Windows Vista and newer systems are
not yet supported, but they might be by the time you read this.

If you need to view file attributes specific to the NTFS filesystem, check
the mount_ntfs man page for details.

152 Chapter 9

ext2fs

To mount ext2fs and ext3fs filesystems, use mount_ext2fs(8). (The one pro-
gram mounts both types of filesystem.)

mount_ext2fs /dev/sd3l /mnt

Owing to their shared Unix heritage, the Linux ext2fs and ext3fs
filesystems support many FFS-like features. Unlike with NTFS, you can
safely read and write ext2fs and ext3fs disks in OpenBSD. You cannot,
however, read ext4fs partitions using OpenBSD.

CD

Compact discs formatted for data use the ISO-9660 filesystem. To mount a
CD, use mount_cd9660(8).

mount_cd9660 /dev/cd0a /mnt

Mount CDs using either the a or c partition on the device. If you would
like to save yourself a few keystrokes, mount(8) is very good at automatically
detecting ISO-9660 filesystems. The device node for a CD is tied to the
CD drive, not the disk itself, so the node shouldn’t change unless you add
another drive.

If you’re interested in burning a CD, look at mkhybrid(8) and cdio(1).

Foreign Filesystem Ownership
Most foreign filesystems either have no concept of file ownership or have an
ownership scheme incompatible with that of Unix-like operating systems.
(Notable among these filesystems are FAT and NTFS.) The programs that
mount these kinds of filesystems thoughtfully allow you to specify the own-
ership of files on the filesystem. The -u flag lets you specify a file owner, and
the -g flag lets you specify the group.

For example, here’s how I would mount a FAT filesystem as owned by
my account:

mount_msdos -u mwlucas -g mwlucas /dev/sd3c /mnt

Some other filesystems use permissions schemes compatible with
OpenBSD’s permissions. For example, all of the information OpenBSD
needs to assign permissions to files and directories is contained within an
ext2fs filesystem. That doesn’t mean that an ext2fs filesystem will perform
seamlessly on OpenBSD, however. Though OpenBSD will respect the ext2fs
disk’s permissions, the user ID numbers probably won’t match up between
the operating systems.

More Filesystems 153

Removable Media
These days, the removable media you’ll most likely deal with are external
hard drives, flash drives, and CDs. The CD is the simplest, because you
know how to use mount(8) and umount(8), and you know its device node and
filesystem type will always be the same. But how do you identify the device
name of a removable hard drive?

When you attach a drive to your machine, OpenBSD automatically
assigns your drive a device node to your console and prints a message to the
console. You can check the console as you attach the drive, or you can watch
your messages log by running tail -f /var/log/messages before attaching
the drive.

If you frequently use a particular removable disk, you can simplify your
routine by making an /etc/fstab entry for it. Here are some sample /etc/fstab
entries for a CD and a FAT flash drive.

/dev/cd0c /cdrom cd9660 ro,noauto
/dev/sd3i /mnt msdos rw,noauto

You can’t use DUIDs for removable media, because the actual media
might change.

Now you can mount your CD on /cdrom by entering mount /cdrom, and
your FAT flash drive on /mnt by entering mount /mnt.

Note that OpenBSD does not create a /cdrom directory by default; you’ll
need to create it yourself. You could point both of these at /mnt, but I like
having a dedicated CD mount point on my systems, and having two devices
share a mount point risks concealing one of the filesystems. (Remember
that OpenBSD has stackable mounts, as discussed in Chapter 8.)

Mounting Filesystem Images
You can mount a disk image and access the image just as you would a disk
partition. This is very useful for those times you want to extract a few files
from an ISO but don’t want to bother burning the image to physical media.
The trick to mounting a disk image is attaching the image to a device node
so that you can use the proper mount command.

OpenBSD uses the vnconfig(8) program to attach disk images to device
nodes. (Remember that a vnode is an abstraction layer between the ker-
nel and a filesystem.) Use vnconfig to “wire” vnodes between a file and a
device node, and then access them through OpenBSD’s /dev/svnd devices.
Depending on the disk image type, the image might have MBR partitions,
disklabel partitions, or just a filesystem.

The default kernel has four vnode devices. If you need to mount
more than four disk images simultaneously, edit your kernel binary using
config(8)’s -e option, as discussed in Chapter 18.

154 Chapter 9

Attaching Vnode Devices to Disk Images
The vnconfig(8) command takes two arguments: the device node you want
to use and the disk image you want to mount.

vnconfig /dev/svndXc /path/to/file

Note that this example uses the c partition of the device. This allows
you to treat the disk image as a whole disk.

Suppose you have an ISO image named install52.iso that you would like
to mount. First, use vnconfig to attach this image to vnode device 0.

vnconfig /dev/vnd0c install52.iso

You can then use mount to attach the vnode to an /mnt directory.

mount /dev/vnd0c /mnt/

OpenBSD’s mount(8) is smart enough to recognize this as a CD file
system and mount it as such. If you’re mounting a disk image that uses a
less detectable filesystem, you need to use the specific mount command for
that filesystem.

Detaching Vnode Devices from Images
Vnode devices attached to a file remain attached until specifically discon-
nected, and you can attach a vnode device to only one file at a time. To
disconnect the vnode device from the file, use the -u flag with vnconfig.
For example, to disconnect the vnode device located at vnd0c, run this
command:

vnconfig -u vnd0c

You can now attach this vnode device to another file.
Using the full path to the device is optional in vnconfig. If you know the

device name, you can use it without the leading /dev, as in the preceding
example.

Basic NFS Setup
NFS allows one machine to access files on another machine. NFS has its ori-
gins in UNIX, but today appears in most operating systems, including those
from Microsoft and Apple. OpenBSD supports NFS versions 1 through 3 as
both a client and a server.

Entire books can be—and have been—written about NFS. We won’t
go into the intimate details of NFS, but rather focus on getting a basic NFS
share working on OpenBSD. Configuring NFS the first time can be intimi-
dating, but after setting up a file share or two, you’ll find it straightforward.

More Filesystems 155

If you have a complicated NFS environment—involving multiple versions
of multiple operating systems—or if you want to share a directory among
hundreds of active clients, you should do further research, but even a basic
setup will help to simplify parts of your job.

NFS works on the client/server model. One computer, the server, offers
filesystems to other computers. The server is exporting a filesystem, and
the filesystems on offer are called exports. NFS clients can mount exports
in a manner almost identical to that used to mount local filesystems.

One important thing to remember about NFS is that it is stateless, which
means that NFS does not track the condition of a connection. You can
reboot an NFS server, and the client won’t throw a fit. The client cannot
access files on the server while the server is down, but once the server
returns, the client will pick up right where things left off. Other network
filesystems are not always so resilient. Statelessness causes its own problems
as well. For example, clients cannot know when a file they are currently
reading has been modified by another client.

If you’re just learning NFS (or OpenBSD’s implementation of NFS),
check /var/log/messages for NFS-related error messages. If you’ve repeatedly
reconfigured your NFS server as part of learning, and things just don’t work
correctly, reboot your NFS server and/or client. NFS is complicated, and
sometimes starting with a clean stack clears up a lot of problems. Once you
understand how all the pieces fit together, a reboot to resolve problems
should never be necessary.

N o t e 	 The NFS protocol has evolved over the years, and every operating system has imple-
mented a slightly different version of NFS. Other BSDs, Illumos, Linux, Apple,
Microsoft, and most other operating systems can work with OpenBSD’s NFS support,
but each may require an occasional tweak for specific environments. If you’re having
trouble getting NFS to work with OpenBSD and another operating system, read
mount_nfs(8) and feed the details to your favorite search engine. The odds that some-
one else has experienced this problem before are good.

The OpenBSD NFS Server
By default, OpenBSD includes all the programs necessary to act as an NFS
server, but you must turn it on. The NFS server requires three daemons:

portmap(8)  Maps requests for remote procedure call (RPC) services to
TCP/IP port numbers.

mountd(8)  Listens for incoming NFS mount requests.

nfsd(8)  Processes requests for filesystem actions.

The portmap(8) daemon has its own rc.conf flag, as it can be used by many
other RPC services. The mountd(8) and nfsd(8) daemons are controlled by a
single rc.conf flag.

156 Chapter 9

Add the following entries to rc.conf.local to start all three processes at
boot time:

portmap=YES
nfs_server=YES

You can start these three daemons from scripts in /etc/rc.d. If you try to
start these daemons now, however, they won’t run. You must configure at
least one export before the NFS server daemons will start.

Exporting Filesystems
To export filesystems, define which clients may mount which filesystems
and/or directories in /etc/exports. This file takes a separate line for each disk
device on the server and each client or group of clients that can access that
disk device. Each line has up to three parts:

•	 Directories or partitions to be exported

•	 Options on that export

•	 Clients permitted to connect

Of the three components of an /etc/exports entry, only the directory is
mandatory. The directory path cannot contain symlinks, double dots, or
single dots.

If I wanted to export my home directory as read-write to every host
on the Internet, I could use an exports line containing only the path to my
/home folder:

/home/mwlucas

This perfectly valid (but perfectly foolish) entry contains no options
and no host restrictions.

To export multiple directories that reside on the same partition, sepa-
rate them with a single space.

/home/mwlucas /home/lasnyder

You can list any number of directories on one line, as long as they exist
on the same partition.

NFS clients can mount only exactly the directory specified in /etc/
exports. If you export /home/mwlucas, clients can attach only /home/mwlucas
to a mount point. They cannot mount, say, /home/mwlucas/bin instead. If
you would like to export an entire partition, you can do that, too. If you
want to let clients mount any directories beneath that mount point, specify
the mount point and the -alldirs option. You cannot use -alldirs with a
subdirectory; it must be the actual mount point. This next entry lets anyone
mount any directory in /home :

/home -alldirs

More Filesystems 157

To export multiple partitions, or directories from multiple partitions,
specify them on separate lines.

/home -alldirs
/var/log

Any time you change /etc/exports, you must signal mountd to reread its
configuration. You can do this by passing the reload argument to the mountd
startup script:

/etc/rc.d/mountd reload

While these simple mounts give you an idea of how NFS works, they’re
very insecure. To make an intelligent export, you need a few options and an
access list. Let’s take a look at some of NFS’s more commonly used options.

Read-Only Mounts
You might want to share files without worrying about whether your under-
lings will delete, modify, or otherwise undo your hard work. You can share
files as read-only by using the -ro option. Here, I offer my home directory to
all the computers in the world, but as a read-only share:

/home/mwlucas -ro

This is slightly more intelligent than offering my NFS exports to the
entire world read-write, but only slightly.

NFS and Users
You already know that file ownership and permissions are tied to UID num-
bers. Unlike many other file-sharing protocols, NFS also uses UIDs to identify
file ownership. For example, on my test server, my account mwlucas uses the
UID 1000; on my client, my mwlucas account also uses the UID 1000. This
simplifies my life, as I don’t need to worry too much about file ownership;
files owned by mwlucas on the server are owned by mwlucas on the client.

On a small network with only a few users and machines,2 you can prob-
ably keep UID numbers synchronized without a problem by assigning the
same UID to the same user on all of your systems. But on a large network,
with more than one user and where users have root on their own machines,
file ownership can quickly become a serious problem. The best way around
this is to maintain a central repository of authorized users via LDAP or
Kerberos.

Regardless of how you manage your users, NFS handles the root account
differently. An NFS server cannot trust root on client machines to execute
commands or write files as root on the server; if that were the case, a breach

2. How many users do I mean by “a few?” When synchronizing UIDs across all of your systems
begins to really, really annoy you, you no longer have a few users.

158 Chapter 9

on one NFS client would mean a breach on the NFS server. By default,
requests from root on the client are mapped to UID and GID 32767 (also
known as nobody).

If you want to map root to a specific user rather than the generic UID
nobody, use the -maproot option and specify either a username or UID. Here,
we map incoming requests from root on the client to the user nfsroot on
the server:

/home/mwlucas -maproot=nfsroot

You can give the mapped root user a list of groups that the remote root
account can access by specifying them after the username, separated by
colons. Here, we give the client’s root user access to the server as the user
nfsroot and the groups customers and webmasters:

/home/mwlucas -maproot=nfsroot:customers:webmasters

If you want to explicitly remove the mapped root user from all groups,
put a colon after the username or UID, as in this example:

/home/mwlucas -maproot=nfsroot:

Suppose you want all the NFS clients, regardless of username on the
client system, to use a single user ID on the NFS server. The -mapall option
allows you to do this. This option uses the same format as the -maproot
option. Here, we map all NFS users to the username nfsuser on the server:

/home/mwlucas -mapall=nfsuser

Correct control of user access will help protect your NFS server.

Permitted Clients
By default, every host can access your NFS server. For many reasons, that’s
not a great idea. You can restrict the clients permitted to access your NFS
server by listing their IP addresses at the end of the export entry.

/home/mwlucas 192.0.2.1

You can also specify clients by their hostname, but if the server has a
DNS failure, it won’t allow any clients access.

/home/mwlucas treble.blackhelicopters.org

To permit access to an entire network, use the -network and -mask
options. The next example permits access to the addresses 192.0.2.0
through 192.0.2.15, using a subnet mask. (If you’re not familiar with
subnet masks, read Chapter 11.)

More Filesystems 159

/home/mwlucas -network=192.0.2.0 -mask=255.255.255.240

When setting up your NFS server, I recommend you grant access to only
the hosts who need it.

Multiple Exports for One Partition
You can have only one line for each combination of partition and permitted
clients. If /home is a single partition, you can’t have an exports file that looks
like this:

/home/mwlucas -maproot=nfsroot: 192.0.2.1
/home/pkdick 192.0.2.1

If two directories are located on the same partition, NFS will not allow
you to export them to the same host using different permissions. You can,
however, export directories on one partition to different hosts with differ-
ent permissions, as shown here:

/home/mwlucas -maproot=nfsroot: 192.0.2.1
/home/pkdick 192.0.2.2

You can export directories on a partition to different hosts with differ-
ent permissions.

/home/mwlucas -maproot=nfsroot: 192.0.2.1
/home/mwlucas -maproot=root 192.0.2.2

Only by combining IP restrictions and controlling user permissions can
you can effectively control NFS server access.

NFS Clients
OpenBSD’s NFS client doesn’t need any daemons or configuration. Just
mount the remote filesystem. Here, I mount my home directory from my
server treble on /mnt:

mount treble:/home/mwlucas /mnt

When mounting remote filesystems over NFS, enter the hostname or
IP address, a colon, and the directory. Because I have the same UID on
both the client and server, I can access, alter, remove, and add files in /mnt
exactly as if I were dealing with files on a local filesystem.

Verify your mount with df(1) or mount(8).

160 Chapter 9

$ df -h
Filesystem Size Used Avail Capacity Mounted on
/dev/sd0a 1005M 266M 689M 28% /
...
treble:/home/mwlucas 26.9G 21.5M 25.5G 0% /mnt

The NFS-mounted directory shows up like any other mount point.
To mount an NFS share automatically at boot, or just record it for future

convenience, you may use an /etc/fstab entry. If your system might not have
DNS available to it at boot time, use an IP address for the NFS server. The
following example specifies two fstab entries: one using a hostname and one
using an IP address:

treble:/home/mwlucas /mnt nfs,noauto rw 0 0
192.0.2.88:/usr/ports /usr/ports nfs,noauto ro 0 0

Give all NFS partitions dump and fsck numbers of 0. Do not run fsck or
dump on an NFS mount, as those programs require raw disk access that NFS
doesn’t provide.

Use any other mount options you like. The OpenBSD folks recommend
using noexec, nodev, and nosuid “when applicable.” I recommend noauto on
NFS partitions that aren’t required for normal server operation, so that an
unavailable NFS server does not hang your machine’s boot process.

NFS performance depends a great deal on your hardware, your local
network, the clients and servers involved, the phase of the moon, and any
number of other factors. If you’re not happy with your NFS performance,
read mount_nfs(8) and experiment with using TCP or UDP, the read and
write sizes, and perhaps the timeout. If you need a complicated NFS envi-
ronment, you should definitely invest some time in learning more about NFS.

Software RAID
The Redundant Array of Independent Disks (RAID) technology has become
the standard way of mirroring hard drives within a machine or combining
multiple hard drives to form one giant partition. In many types of RAID
arrays, if one disk fails, the system can continue to run without data loss
until you replace the failed disk or a second disk fails.

You can get RAID from the hardware or have the operating system per-
form the RAID operations. Hardware RAID controllers seem nice, but are
in reality just decent disk controllers that run special software. Using the
softraid(4) driver, OpenBSD can do the same thing, letting you build RAID
arrays out of plain disks. You can do just about everything you can with a
hardware RAID controller with a bunch of disks and OpenBSD’s RAID
management program bioctl(8) and the softraid(4) software RAID driver.

N o t e 	 In addition to managing software RAID, OpenBSD’s bioctl(8) can manage most
sorts of hardware RAID controllers. If you’re planning to use hardware RAID, read-
ing the bioctl manual is definitely worth your time.

More Filesystems 161

RAID Types
OpenBSD supports the following RAID configurations:

RAID-0, or striping
This type is not redundant. It requires at least two disks of the same
size, and data is shared between the disks to increase partition size
and throughput. You can use RAID-0 to combine five 4TB disks into a
20TB virtual disk, but be warned: If one hard drive in the array fails,
you’ll lose all your data. RAID-0 is useful when you need a really big
filesystem, but it’s more vulnerable than a single disk because it pro-
vides multiple points of failure (or as one of my quasi-literary, quasi-
humorous friends once said, “RAID-0 gives a whole new meaning to
the phrase one disk to rule them all”). The size of a RAID-0 array is the
size of all the hard drives combined.

RAID-1, or mirroring
With this type, the contents of one disk are duplicated on another.
Mirroring requires at least two disks of the same size, and the size of
a RAID-1 array is equal to the size of the smallest drive in the array. I
use mirroring to protect all vital data, as it gives even a cheap desktop-
chassis server some measure of data protection. OpenBSD’s software
RAID fully supports this level.

RAID-4, or striping data across disks, with a dedicated parity disk
This type requires at least three disks of the same size. Parity data lets
a RAID array recover data on missing disks, and RAID-4 stores that
parity data on a specific disk. This means that you can lose any one of
the disks without losing data. As I write this, bioctl’s RAID-4 support is
experimental. Hopefully this support will be complete before the book
reaches you, but if not, you’ll need to use a hardware RAID card to get
RAID-4.

RAID-5, or striping with parity shared across all drives
This is the current industry standard for redundancy. Parity data pro-
vides data redundancy—the loss of a single drive doesn’t destroy any
data. It requires at least three disks of the same size. Unlike RAID-4,
RAID-5 shares the parity data across all the drives simultaneously.
While throughput isn’t as good as that of RAID-0, a RAID-5 array can
simultaneously serve multiple I/O requests. The size of your RAID-5
array is the combined size of all but one of your hard drives. If you have
five 4TB drives, the array will be 16TB ((5 – 1) × 4TB). Like RAID-4,
RAID-5 support in bioctl is incomplete and experimental. I hope it will
be complete before you read this, but if not, you’ll need to use a hard-
ware RAID card for RAID-5.

According to the RAID standards, each of these levels requires disks
of the same size. That said, OpenBSD’s softraid uses partitions rather than
disks. You can use disks of different sizes, but your RAID array will use only

162 Chapter 9

an amount of space on each disk equal to the smallest drive. If you want
to mirror a 1TB drive and a 2TB drive, your mirror will offer only 1TB of
space. The excess space on the larger drive is wasted.3

In addition to the standard RAID methods, softraid also allows you
to encrypt your data across all disks in a RAID array (as described in
“Encrypted Disk Partitions” on page 166). It also lets you concatenate disks.
Concatenated disks are just run together to create one large virtual disk. You
could concatenate two 500GB disks and a 1TB disk to create a single 2TB
partition. These disks don’t need to be the same size, but as with RAID-0,
they are vulnerable. Damage to any one disk will completely wreck the virtual
disk and lose all data. As the process for creating a concatenated disk closely
resembles that of creating a RAID-0 disk, we’ll cover it in “Creating softraid
Devices” on page 163.

Preparing Disks for softraid
The softraid software RAID device builds its virtual disks out of disklabel
partitions. To use a disk in a softraid array, prepare it just as you would a
disk for a regular filesystem.

On i386 and amd64, disks underlying a softraid device need an MBR
partition. To mark a whole disk with a single MBR partition, run fdisk -i on
the disk.

Suppose you have five disks to use in a RAID array: sd2, sd3, sd4, sd5, and
sd6. You’ll need to prepare each of them as follows:

fdisk -i sd2
Do you wish to write new MBR and partition table? [n] y
Writing MBR at offset 0.

Repeat this for every disk in your array.
Once you’ve added an MBR to all your disks, you’ll need to put a disk

label partition on each disk. I tend to use partition letter p (the last avail-
able partition letter) for softraid devices. Here’s how to set up a disk for
softraid:

disklabel -E sd2
Label editor (enter '?' for help at any prompt)

u > a
v partition: [a] p

offset: [64]
size: [104856191]

w FS type: [4.2BSD] RAID
x > q
y Write new label?: [y] y

3. You could add a non-RAID partition in the unused space on the larger drive, but that would
do terrible things to your system’s performance. Just buy more hard drives, you cheapskate.

More Filesystems 163

First, we add a partition with a u and assign it partition letter p v.
Instead of our usual filesystem type of 4.2BSD, we assign a filesystem type
of RAID w. Then we quit x and let disklabel write the changes to the disklabel
partition y.

If you have multiple identical disks, you can use disklabel to save this
disk’s configuration, as follows:

disklabel sd2 > disklabel.sd2.raid

This saves the label on disk sd2 to the file disklabel.sd2.raid. You can
make disklabel(8) copy this partitioning to other disks, and disklabel will
assign each disk a unique DUID as it copies. This saves you from needing to
walk through the interactive editor for each disk. Let’s apply this disklabel
to each partition:

disklabel -R sd3 disklabel.sd2.raid
disklabel -R sd4 disklabel.sd2.raid
disklabel -R sd5 disklabel.sd2.raid
disklabel -R sd6 disklabel.sd2.raid

Disks sd2 through sd6 are now ready for assimilation into softraid.

Creating softraid Devices
Use bioctl(8) to drag disks into a software RAID. You’ll need the disk parti-
tions you want to include in the RAID. OpenBSD software RAID arrays are
named softraid, followed by a number. Use the -c argument to give a RAID
type, and -l to give the partitions, and end with the name of the softraid
you’re creating.

bioctl -c raidlevel -l partition1,partition2... softraidX

We have five disk partitions—sd2p, sd3p, sd4p, sd5p, and sd6p—to add to
a softraid device. To build a RAID-5 device out of these partitions, run this
command:

bioctl -c 5 -l sd2p,sd3p,sd4p,sd5p,sd6p softraid0
softraid0: SR u RAID 5 volume attached as v sd7

The response indicates that we’ve successfully created a RAID-5
device u, and it’s available as device /dev/sd7 v. On a blank RAID disk,
which you need to prepare just as you would any other new disk, run fdisk
-i sd7 and disklabel to create MBR and OpenBSD partitions, use newfs to
create a filesystem on the new partitions, and you’re ready to go. (See the
instructions for adding a new disk in Chapter 8 for details.)

164 Chapter 9

You could have made this a RAID-0, RAID-1, or RAID-4 device by choos-
ing a different -c option. The tricky one is a concatenated softraid. To dump
all the disks together into a single concatenated virtual partition, use -c c.

bioctl -c c -l sd2p,sd3p,sd4p,sd5p,sd6p softraid0
softraid0: SR CONCAT volume attached as sd7

softraid Status
To check the health of each device in a RAID array, give bioctl the device
name of the softraid device.

bioctl softraid0
Volume Status Size Device
softraid0 0 Online 214744170496 sd7 RAID5
 0 Online 53686099456 0:0.0 noencl <sd2p>
 1 Online 53686099456 0:1.0 noencl <sd3p>
 2 Online 53686099456 0:2.0 noencl <sd4p>
 3 Online 53686099456 0:3.0 noencl <sd5p>
 4 Online 53686099456 0:4.0 noencl <sd6p>

We see that the five drives are in use, all assembled into a RAID-5 virtual
drive. Everything here is healthy. Anything that doesn’t look roughly like
this indicates a problem.

Identifying Failed softraid Volumes
If you have a RAID-1, RAID-4, or RAID-5 softraid volume, you can lose a
drive and not lose your data. bioctl tells you if a drive fails. Here, one of the
drives in my softraid volume has failed:

bioctl softraid0
Volume Status Size Device
softraid0 0 Degraded 214744170496 sd7 RAID5
 0 Online 53686099456 0:0.0 noencl <sd2p>
 1 Offline 0 0:1.0 noencl <>
 2 Online 53686099456 0:2.0 noencl <sd3p>
 3 Online 53686099456 0:3.0 noencl <sd4p>
 4 Online 53686099456 0:4.0 noencl <sd6p>

Looking closely at this, I can see that drives sd2, sd3, sd4, and sd6 are still
available and in use. All my data should still be intact, but I need to replace
sd5 before another disk fails.

Rebuilding Failed softraid Volumes
As of this writing, you cannot rebuild a failed softraid RAID-4 or RAID-5
device. You must back up your data, replace the failed drive, delete the
softraid device, re-create the filesystem, and restore from backup. You can,
however, rebuild a RAID-1 device.

More Filesystems 165

Let’s look at replacing a disk in a RAID-1 device. Here’s what a healthy,
three-disk softraid mirror might look like:

bioctl softraid0
Volume Status Size Device
softraid0 0 Online 53686099456 sd5u RAID1
 0 Online 53686099456 0:0.0 noencl <sd2p>v
 1 Online 53686099456 0:1.0 noencl <sd3p>
 2 Online 53686099456 0:2.0 noencl <sd4p>

Note that this RAID device has device node sd5 u and includes the par-
titions sd2p, sd3p, and sd4p v.

We replace two disks and reboot this machine. Suddenly, the softraid
device looks very different.

bioctl softraid0
Volume Status Size Device
softraid0 0 Degraded 53686099456 sd5 RAID1
 0 Offline 0 0:0.0 noencl <>
 1 Offline 0 0:1.0 noencl <>
 2 Online 53686099456 0:2.0 noencl <sd2p>

Partitions sd3p and sd4p are missing. That’s because the underlying disks
have been replaced.4 Prepare the replacement disks for software RAID, as
discussed in “Preparing Disks for softraid” on page 162. Then run bioctl,
using the -R flag to specify the disk to replace in the softraid device.

bioctl -R /dev/sd3p sd5
softraid0: rebuild of sd5 started on sd3p

If you check the status of the device using bioctl, you’ll see the disk
status now says “Rebuilding.”

If you have a mirror with more than two disks, you must rebuild each
disk separately. Rebuild the first disk, and then rebuild the second disk.

Deleting softraid Devices
To remove a softraid device from your system, pass bioctl the -d flag and
the device name for the softraid device. Here’s how to remove the RAID-5
device we just created:

bioctl -d sd7

W a r n i n g 	 Once you delete the RAID device, you can’t get it back unless you re-create it and
restore your data from backup.

4. If you need to force an error on a hard disk, removing the disk from the machine will
certainly do it.

166 Chapter 9

Reusing softraid Disks
softraid writes metadata at the beginning of the disks it uses. You need to
overwrite this metadata before you can use the disks in another softraid
device. Overwrite the first megabyte or so of the disk with dd(1).

dd if=/dev/zero of=/dev/sd2c bs=1k count=1024
1024+0 records in
1024+0 records out
1048576 bytes transferred in 0.594 secs (1765074 bytes/sec)

This erases the MBR partitions, any initial disklabels, and any filesystem
information on the disk. You can now reuse these disks in softraid devices
as normal disks.

Booting from a softraid Device
The softraid feature is still in development. Eventually, you’ll be able to
use the installer to build a software RAID device, install OpenBSD on that
device, and run a full RAID configuration out of the box. But as I write
this, you’ll need to jump through some hoops to make that happen. Rather
than document a specific procedure that will change as OpenBSD com-
pletes softraid development, I’m going to tell you to search the Internet and
the misc@OpenBSD.org archives for the most recent instructions.

Encrypted Disk Partitions
Sometimes I can see the future. When someone says, “I’ve encrypted my
hard drive!” I have a psychic vision of them saying “I’ve lost all my data!”
While encrypting a hard drive partition is warranted in some cases, most
of the time, it’s just pretentious. In this section, I will do you the courtesy of
assuming that you understand when you truly need disk encryption if you
will do me the courtesy of not complaining to me when you lose your data.5

Creating Encrypted Partitions
OpenBSD includes disk encryption as a bioctl(8) option—specifically, like
a RAID discipline. Where disk activity would normally be passed through a
RAID discipline, here they pass through an encryption discipline. The
encrypted disk even shows up as a softraid device. Much like the support
for RAID-5, support for encrypted filesystems is experimental. Although it
should work, don’t be shocked if some features are not yet included or if it
eats your entire disk. Keep good backups. Reread the previous paragraph.
And again—please don’t complain to me when it doesn’t work.

5. Not that I can help you—all I can do is say “I told you so.” On a related note: You can get
tired of anything, no matter how pleasant, if you have to do it often enough.

More Filesystems 167

Under OpenBSD, an encrypted volume can include only a single parti-
tion. Use the RAID type C to specify an encrypted volume. Here’s, how to
create an encrypted volume on the sd4p partition:

bioctl -c C -l sd4p softraid0
u New passphrase:

Re-type passphrase:
softraid0: SR CRYPTO volume attached as sd5

When prompted u, enter a passphrase twice. A good passphrase is
several words long, and includes a mix of characters, symbols, numbers,
punctuation, and whitespace. The passphrase is the secret code used to
encrypt and decrypt data, so the longer and more varied it is, the better.
Remember this passphrase; you must enter it again to recover your data.
Once you’ve entered your passphrase twice, bioctl creates the encrypted
disk device. In this case, it has created encrypted disk softraid0 as disk sd5.

Using Encrypted Partitions
Do not mount this new disk yet! Instead, use fdisk to check our new,
encrypted partition.

fdisk sd5
Disk: sd5 geometry: 6526/255/63 [104855663 Sectors]
Offset: 0 Signature: 0x8BF9
 Starting Ending LBA Info:
 #: id C H S - C H S [start: size]
--
 0: D9 230285 63 36 - 134263 55 58 [3699532529: 2752373385] <Unknown ID>
 1: 8C 73068 221 44 - 176434 56 49 [1173851386: 1660564401] <Unknown ID>
 2: C9 218148 78 47 - 141866 243 13 [3504552580: 3069507328] <Unknown ID>
 3: AC 125252 6 1 - 245307 77 22 [2012173758: 1928688070] <Unknown ID>

The underlying disk is blank, and our fdisk output looks like garbage,
but this disk is now an encrypted volume.

Now that the encrypted disk exists, create an MBR partition and add
disklabel partitions, just as when you add any other disk. Then you can
mount your encrypted device partition using the device node—again, just
as with any other disk.

To unmount the decrypted partition, destroy the softraid device by
passing bioctl the -d argument.

bioctl -d sd5

To anyone who doesn’t have the passphrase, this partition now looks
like random garbage.

168 Chapter 9

Automatic Decryption
If you have an encrypted partition, presumably you don’t want OpenBSD
to automatically decrypt and mount it when the system boots. (The whole
point of an encrypted partition is that only a person who has the pass-
phrase can access the encrypted data.) Still, I’m not one to tell you not to
shoot yourself in the foot, so if you must automatically decrypt the parti-
tion, you can do so.

First, create a file containing your passphrase. Give ownership of this
file to root and set the permissions to 600 (read-write by owner; no access
by other users), and then give this file to bioctl(8) with the -p flag. In this
example, the encrypted disk is created as /dev/sd5 and there is a partition
on /dev/sd5a. I’ve stored my passphrase in the file /etc/passphrase, so I could
run something like this:

bioctl -c C -l sd4p -p /etc/passphrase softraid0
mount /dev/sd5a /home/mwlucas

Adding this to /etc/rc.securelevel will mount this encrypted partition
at boot.

You should now have a good idea of how to manage OpenBSD disks and
filesystems. Next, we’ll look at some of OpenBSD’s special security features.

10
S e c u r i n g Y o u r S ys t e m

Hackers at the gates?
Puffy the Barbarian

defends against fiends.

Securing your system means ensuring that
your computer’s resources are used only by

authorized people and for authorized pur-
poses. Even if a system has no important data,

it still has valuable CPU time, memory, storage, and
bandwidth. People who think that their systems are
too unimportant for anyone to bother breaking into risk finding their
equipment hosting pornography or relaying attacks against industrial or
military sites. If you’re like me, you would rather not discover that your
computers took down a government agency by having law enforcement
agents kick in your door.

Taking over large numbers of remote computers gets easier all the
time. Every year, more and more point-and-click toolkits for penetrating
servers crop up. When one bright attacker posts an exploit, anyone can
use it. Breaking into computers is big business, and if your computer is left
unprotected, it will be penetrated. The only question is how.

170 Chapter 10

Generally speaking, intruders don’t break into operating systems; they
break into server programs running on the operating system. Even the most
paranoiac, secure-by-default operating system cannot protect poorly written
programs from themselves. OpenBSD features like W^X and address space
layout randomization do a lot to protect the operating system from the side
effects of buggy programs, but programs themselves still crash and burn.
OpenBSD has undergone extensive auditing and testing to eliminate the
most common security flaws, but there’s no guarantee that every security
flaw has been eradicated. New features appear constantly, and can interact
with older functions (and each other) in unexpected ways. For more details
on the OpenBSD-specific features, check the papers and presentations collec-
tion at http://www.OpenBSD.org/papers/.

No single tool can protect your server against all threats, and no single
tool is applicable to all environments. Learning about OpenBSD’s security
features helps you to understand not only what the tools do, but when they
should be used and when they won’t help your particular situation. The best
place to start is by understanding the threat.

Who Is the Enemy?
Books dedicated to security break attackers down into smaller, more specific
groups and include various edge cases, but that’s not what you’re here for. I
lump potential attackers into four groups: script kiddies, botnets, disaffected
users, and skilled attackers. These categories are easily understood and
include 99 percent of all the attackers you’re likely to encounter.

Script Kiddies
The most common type of attackers, script kiddies, are not sysadmins.
They are amateurs who download attack scripts and go looking for poorly
defended, vulnerable systems.

Script kiddies are easy to defend against: Keep your software up-to-date
and follow good computing practices. Like locusts, script kiddies are easy to
squash, but there are just so darned many of the little buggers!

Botnets
Botnets are composed of machines compromised by worms or viruses and
are controlled from a central point. The botnet’s controllers might use the
victim machines to search for more vulnerable hosts, to send spam, or to
break into secure sites. Most botnets are composed of Windows or Linux
machines, but there’s no reason why such a worm couldn’t target OpenBSD.
The virus author would need to work hard, but it’s conceivable—if he finds
a suitable security flaw.

Fortunately, botnet defense is much like script kiddie defense. You
shouldn’t have much to worry about if you keep your software patched, con-
figure your server software securely, and follow good computing practices.

Securing Your System 171

Disaffected Users
Security pundits commonly claim that a system’s legitimate users cause
the majority of security problems.1 Legitimate users are most likely to
know where your security gaps are, to feel that the system rules don’t
apply to them, and to have the necessary access and time to experiment
with breaking your security. If you tell an employee that company policy
forbids him access to a computer resource, and the employee feels that
he should have access to it, he is likely to search for a way around the
restriction. You can patch all of your servers and protect them with an
outright hostile firewall, but if someone has physical access and knows
the root password, your protections are useless.

Deal with this problem on two levels. The first is technical: Keep your
servers patched and up-to-date. The second is human: Don’t leave projects
half finished or half documented. That unsecured modem you installed
for emergency incoming access until the VPN is solid? Get rid of it, or put a
password on it. Ditto for that telnet server running on a nonstandard port.

Security by obscurity is feeble at best. When a privileged user leaves
the company, immediately disable his account, change all administrative
passwords, inform employees of the person’s departure, and remind them
not to share confidential information with that person. Implement a com-
puter security policy with real penalties for violations. If you have a Human
Resources department, get the staff members to agree to the policy and
insist they enforce it.

What’s the best way to protect yourself against the disaffected user?
Don’t be lazy.

Skilled Attackers
As the most dangerous group, skilled attackers are competent system admin-
istrators, security researchers, penetration specialists, and criminals who
want access to specific resources. Taking over computers is a lucrative busi-
ness these days. Sending junk email or launching distributed denial-of-
service attacks can bring in large sums of money. These intruders don’t care
who they attack, as long as they secure the computing resources they need.

If your company has valuable secrets, however, you might attract an
entirely different type of intruder: someone who wants access to your net-
work in particular. If your employer creates anything—from software to
cast-iron tulips for front-wheel-drive vehicles—there’s likely a market for
illicit copies of your product. Someone will find it worthwhile to probe every
port on every IP address you expose to the Internet. It might take a long
time, but that’s okay. Your data has a price tag, and the scan is cheap. This
is often called the advanced persistent threat, or APT.

1. I’ve seen too many botnet or script kiddie intrusions go undetected for months to be
comfortable blaming legitimate users for the majority of security problems. I would agree
that “insider intrusions” are the most commonly identified intrusions, but frequently, that’s
because the guilty user can’t keep his mouth shut.

172 Chapter 10

Security measures that stop the other types of intruders affect the tech-
niques used by skilled attackers. If you’ve ditched that unsecured inbound
access method, the intruder can’t find it. If your servers and programs are
up to date and correctly configured, the intruder will need to find a previ-
ously unknown exploit to break into your network. If a skilled intruder
really wants your company’s data, he will need to change tactics. Maybe he
will try dumpster diving for old sticky notes, or even show up dressed as
a telco repairman and try to install a packet sniffer. If an intruder knows
everything about your network and his easiest way to break in is still some-
thing out of a caper film, your security is pretty good.

N o t e 	 The word hacker has different meanings depending on who is talking. In the techni-
cal world, a hacker is someone not only interested in the inner workings of technology
but also capable of creating new technology. The media has transformed the word to
mean “someone who breaks into computers.” I recommend completely avoiding the
word “hacker,” and using terms like “intruder” or “gravy sucking pig-dog” instead.
When to use each is up to you, of course.

OpenBSD Security Announcements
Your best line of defense against all types of intruders is keeping your com-
puter software up to date. This means you need to know when to update
your system and what to update. The OpenBSD Project maintains a low-
traffic mailing list, security-announce@OpenBSD.org, specifically to broadcast
new security alerts to users. Subscribe to this list.

If you don’t feel like subscribing to yet another mailing list, these
security alerts are also posted on OpenBSD-specific sites such as http://
www.undeadly.org.

Note that this won’t get you security alerts for third-party software
running on OpenBSD. You must get updates for those programs sepa-
rately. Check the software’s website for details on how to get their security
announcements. All the time you’ve spent securing your operating sys-
tem will be wasted if someone hijacks the insecure web application you
neglected to update.

OpenBSD Memory Protection
One of the most common intrusion paths is to attack what’s in the comput-
er’s memory. If intruders can access memory that they shouldn’t be able to
access, or if they can make a program access memory it shouldn’t, they have
any number of ways to get into the system.

OpenBSD includes a whole bunch of security features for system mem-
ory that the sysadmin never actually sees. You don’t need to turn on the
nonexecutable stack; it’s just there.

Securing Your System 173

Some of these features appear only in OpenBSD. Some appeared first
in OpenBSD, and then spread elsewhere. Some came from research papers.
Others build on hardware features.

The OpenBSD team takes a more proactive attitude about security
features than many other projects. As an example, consider the ProPolice
deployment several years ago. ProPolice is a compiler feature that prevents
certain classes of buffer overflows. When you enabled ProPolice in the
early days, a lot of software could not be built. Even more software could be
built, but it crashed when used. These failures were not ProPolice problems.
ProPolice simply exposed programming errors in the software. But many
users and developers said that “enabling ProPolice breaks all kinds of stuff,
so don’t turn it on.”

The OpenBSD team enabled ProPolice by default in a development
snapshot. What happened? Stuff—a lot of stuff—broke. Many third-party
applications needed by OpenBSD users either could not build or would not
run. Third-party application vendors started receiving bug reports from
OpenBSD users who were able to say exactly how the software was broken.
Software vendors started fixing bugs.

ProPolice didn’t cause these crashes; it merely exposed bugs. By enabling
ProPolice by default, OpenBSD gave the free software world incentive to fix
those bugs. Eventually, as the type of bugs revealed by ProPolice became
less common, other operating systems also enabled ProPolice. OpenBSD’s
willingness to take this step improved computer security as a whole.

If you closely follow OpenBSD development, expect to see more of this
behavior. The OpenBSD team does what it considers most correct, not what
is most convenient or easiest.

The common memory security features you should know about include
W^X, .rodata segments, guard pages, randomized memory allocations,
ProPolice, and protecting atexit and stdio. We’ll cover each in turn.

W^X
W^X stands for Write Xor Execute. Once a program is loaded, that pro-
gram’s pages in memory are either writable or executable, but not both.

A common exploit technique is to trick a program into writing infor-
mation to memory, and then executing that piece of memory. An attacker
might convince a program to write to a chunk of memory, but the kernel
will not allow that memory to be executed.

Some hardware platforms (such as amd64) have hardware support for
W^X. If that support exists, OpenBSD uses it.

.rodata Segments
A segment of memory containing program code traditionally had two parts:
actual code and read-only data, or .rodata segments. In the past, some operat-
ing systems allowed programs to modify read-only memory. OpenBSD pre-
vents this by leveraging hardware features when available.

174 Chapter 10

Guard Pages
Many pieces of software used to access memory beyond what they allocated.
If a program writes to memory that doesn’t belong to it, it’s writing to
memory that belongs to a different program. Intruders use this to exploit
programs. A guard page is a single page of memory next to the memory allo-
cated by a program. The program cannot write to this memory. If the pro-
gram tries to write to the guard page, it probably will crash. By enforcing
this limit, OpenBSD protects other programs.

Using guard pages everywhere would use a lot of memory, so OpenBSD
enables guard pages only in carefully selected places.

Address Space Layout Randomization
Traditionally, computers allocate memory consecutively. This can give
intruders certain advantages. If they know that program A usually loads
after program B, and they know they can make program B write to memory
space outside its allocation, they can guess that they can write to program
A’s memory space and make program A fail in a predictable manner. Doing
so requires a certain degree of skill, but once one person figures out this
exploit, innumerable people can use it.

OpenBSD randomizes where it allocates memory. Two programs started
one after the other don’t get consecutive memory blocks. The randomiza-
tion is done intelligently, to avoid wasting memory. Intruders cannot use
one program against another in this manner.

ProPolice
ProPolice protects code against attacks that manipulate the memory stack.
When code is compiled, ProPolice adds additional code to keep a program
within its own area of memory. If ProPolice determines that specific areas
of memory (called canaries) have been changed, it immediately aborts the
program. Where other memory protection techniques prevent writing to
executable memory, ProPolice terminates a process when writable memory
that can be written to, but specifically should not, is changed.

And More!
OpenBSD includes a whole bunch of small memory guards scattered
throughout. Here’s a small sampling:

•	 The malloc() and atexit() system calls mark memory nonwritable after
updating it.

•	 File descriptor handling has been carefully audited throughout.

•	 snprintf is async-signal-safe when no floats are involved.

And the list continues.

Securing Your System 175

Could any of these be exploited in the real world? Some of them have,
and some are just theoretical. But I would rather be protected against theo-
retical threats than assume no one can break something that has never been
broken before.

File Flags
All Unix-like operating systems share a common permissions scheme, but
OpenBSD (and most BSD-based operating systems) extends the permis-
sions scheme with file flags. File flags work with permissions to change file
security. Flags can make a file unchangeable, make it so that existing data
cannot be removed and users can only add to the file, and produce several
other effects. Some flags have functions unrelated to security, but we’ll pay
special attention to the security flags. File flags are listed and documented
in chflags(1).

File Flag Types
Many file flags have different effects depending on the system securelevel,
which we’ll cover in the next section. Understanding how securelevels work
requires an understanding of file flags, while file flags rely on securelevels.
For the moment, just nod and smile when I mention securelevels while dis-
cussing file flags. All will become clear, trust me.

OpenBSD’s UFS and UFS2 filesystems support the following file flags:

sappnd

Files with the system-level append-only flag can be added to but cannot
be removed or otherwise edited. The sappnd flag is particularly useful
for log files. For example, a common intruder tactic is to remove .history
or symlink it to /dev/null so that the administrator cannot see what
happened. Setting sappnd on a user’s .history file can be interesting if the
account is compromised. Using the sappnd flag ensures that intruders
cannot cover their tracks in this manner. Only root can set or remove
the sappnd flag, and it cannot be removed when the system is running
at securelevel 1 or higher.

uappnd

The user-level append-only flag can be set only by the file owner or
root. As with sappnd, a file with the uappnd flag can be added to but not
otherwise edited or removed. This is most useful for personal logs and
files; it primarily adds an extra layer of protection against users acci-
dentally deleting their own files. The owner or root can set or remove
this flag.

schg

Files with the system-level immutable flag cannot be changed in any
way. They cannot be edited, moved, replaced, or overwritten. Basically,

176 Chapter 10

the filesystem itself prevents all attempts to alter this file. Only root can
set or remove this flag, and it cannot be removed when the system is
running at securelevel 1 or higher.

uchg

The user-level immutable flag prevents anyone from changing the file.
It’s a user-level flag, so root can override it. This flag helps to prevent
a file from being edited or removed by accident, but it’s not a way to
secure the system. The owner or root can set or remove this flag at any
securelevel.

nodump

The no dump flag tells dump(8) to not back up a file. Set this on files
that don’t need to be backed up to tape. Check your backup program’s
documentation to see if it honors this flag.

Setting, Viewing, and Removing File Flags
Set file flags with chflags(1). For example, if you are really worried about
someone changing your kernel file, you could mark /bsd with the system-
level immutable flag.

chflags schg /bsd

This would prevent anyone—including you—from changing the kernel,
reconfiguring the kernel, or upgrading the system.

You can also recursively change the file flags on an entire directory tree
with the -R flag. If you wanted to make the entirety of /bin immutable, you
would run this command:

chflags -R schg /bin

And poof, you can no longer upgrade your system.
To view the flags on a file, use ls -lo.

$ ls -lo vitallog
-rw-r--r-- 1 root wheel - 20915343 Jul 17 16:56 vitallog

This file has no flags set on it. Let’s set the system-level append-only flag.

$ chflags sappnd vitallog
chflags: vitallog: Operation not permitted

Oh, right—only root can set system-level flags. Let’s try again:

$ sudo chflags sappnd vitallog
Password:
$ ls -lo vitallog
-rw-r--r-- 1 mwlucas mwlucas sappnd 20915343 Jul 17 16:56 vitallog

Securing Your System 177

This file now has the sappnd flag. The system can add to it, but cannot
otherwise edit or remove it.

OpenBSD doesn’t flag any files out of the box, so you’ll need to add
flags yourself if you want them. Before you go nuts, however, note that add-
ing file flags increases the overhead for system maintenance. If upgrading a
system is hard, the sysadmin won’t want to do it. Is it more secure to have all
your programs in /bin immutable, or is it more secure to simplify upgrades,
updates, and application of security patches?

To remove a flag from a file, use chflags with a no before the flag name.
For example, to unset the sappnd flag on the vitallog file, try this:

$ sudo chflags noschg vitallog
Password:
chflags: vitallog: Operation not permitted

Wait a minute! I’m running under sudo(8), and I have root-level privi-
leges. What’s going on?

By default, OpenBSD runs at securelevel 1. When running at secure
level 1 or higher, you cannot unset system-level file flags, so an attempt to
do so failed. You can remove these flags only at securelevel -1 or in single-
user mode. Read on to learn about securelevels.

Securelevels
securelevel(7) is a kernel setting to restrict actions the system can perform.
The kernel behaves slightly differently as you raise the securelevel. For
example, at low securelevels, the file flags discussed in the previous section
can be removed; a file might be marked immutable, but you can remove the
marker, delete or edit the file, and restore the flag. When you increase the
securelevel, however, you can no longer remove the flag. Similar changes take
place in other parts of the system. Taken as a whole, these changes might
frustrate or stop an intruder.

Securelevel settings range from -1 to 2. Though OpenBSD runs at
securelevel 1 by default, you can change this setting to fit your environment.

Higher securelevels make system maintenance difficult. Many actions
taken during normal upgrades and administration are also things that
intruders might do to cover their tracks. It might make sense for you to run
a highly secure, stable server at securelevel 2, and run your experimental
machine at -1. On the other hand, the OpenBSD folks don’t encourage
changing from the default securelevel. Running your system at -1 may leave
you open to attacks, while running at 2 complicates management and main-
tenance. Which securelevel you choose depends on your environment.

Despite the name, a securelevel is not an all-purpose general security
dial. Arbitrarily increasing the securelevel will do nothing but annoy you
and your users. While you can increase the securelevel at any time, you can-
not reduce the securelevel without rebooting the system, so don’t experi-
ment blindly.

178 Chapter 10

Setting the System Securelevel
Set the boot-time securelevel in /etc/rc.securelevel. In that file, you’ll find a
line like this:

securelevel=1

Change the 1 to your preferred securelevel. On your next reboot, the
system will go to this securelevel when it enters multiuser mode. If you need
to run a process before the boot process raises the securelevel, put the com-
mand to start the process in this file.

If you want to raise the securelevel without rebooting, adjust the
kern.securelevel sysctl(3) to the desired value.

sysctl kern.securelevel=2
kern.securelevel: 1 -> 2

Remember that you cannot lower the securelevel of a running system. If
a sysadmin could lower the securelevel, so could an intruder.

Securelevel Definitions
OpenBSD has four securelevels: -1, 0, 1 and 2. We’ll cover each in turn.

Securelevel -1

Securelevel -1 is also called permanently insecure mode. The system isn’t
necessarily insecure—it’s just that none of the securelevel protections are in
place. I use securelevel -1 only to remove file flags that I never should have
used in the first place.

Securelevel 0

Securelevel 0 is used only when the system is first booting. It offers no special
features. When the system reaches multiuser mode, however, the securelevel
is automatically raised to 1. Setting securelevel=0 in /etc/rc.securelevel is func-
tionally equivalent to setting securelevel=1.

Securelevel 1

At securelevel 1, OpenBSD’s default, things become interesting.
The securelevel affects certain kernel configuration settings, called

sysctls (covered in Chapter 18). Early in the boot process, OpenBSD uses
the settings in /etc/sysctl.conf to set sysctls. When I say that a particular
sysctl cannot be changed, read that as “without altering the configuration
and rebooting.”

Securelevel 1 implements the following limitations:

•	 No one can write to the /dev/mem and /dev/kmem devices. Many security
exploits work by writing to these devices.

Securing Your System 179

•	 The raw disk devices of all mounted file systems are read-only. (Writing
to the raw devices of mounted filesystems would let you change files
without regard to permissions.) Programs should access mounted file-
systems only through the filesystem anyway, so this won’t change day-to-
day operations.

•	 The system-level file flags schg and sappnd cannot be removed.

•	 Kernel modules cannot be loaded or unloaded. OpenBSD supports ker-
nel modules, but the default kernel is monolithic. There’s no legitimate
reason to load a kernel module on a running production system.

•	 The sysctl fs.posix.setuid cannot be changed. By default, chown(1)
clears the setuid and setgid bits on files when changing file permis-
sions, as per the POSIX standard. You can override this by setting
fs.posix.setuid to 0.

•	 The sysctl hw.allowpowerdown cannot be changed. This controls the power
button’s interaction with the system. When it’s set to 1, briefly pressing
the power button shuts down the system cleanly. When it’s set to 0, the
power button does not shut down the system. (You can still shut down
the system by holding down the power button for several seconds, but
that’s not a clean shutdown.) Not all platforms support this kind of
shutdown or power management.

•	 The sysctl net.inet.ip.sourceroute cannot be changed. Source routing
is a technique to permit the sender of a packet to control which route
the packet takes across the network. It’s caused many security problems,
and its use is generally discouraged. OpenBSD ignores source routing
by default. Setting net.inet.ip.sourceroute to 1 forces OpenBSD to pay
attention to source routing.

•	 The sysctl machdep.kbdreset cannot be changed. When set to 1, machdep.
kbdreset allows the system to be cleanly rebooted using ctrl-alt-delete.
When this sysctl is set to 0, the system ignores ctrl-alt-delete.

•	 The ddb.console and ddb.panic sysctls may not be raised. Raising these
sysctls enables certain kernel debugging options. Unauthorized users
with physical access could gain unlimited system access through the
debugger if they could raise these sysctls.

•	 The sysctl machdep.allowaperture cannot be raised. If you want to use the
X Window System (discussed in Chapter 17), you must allow X access
to specific parts of kernel memory by enabling this sysctl early during
the boot process. If you’re not running X, no one legitimately needs
this access.

•	 General-purpose input/output (GPIO) controllers cannot be further
configured. GPIO controllers support a wide variety of special-purpose
hardware. See gpio(4) and gpioctl(8) for details on each.

These limitations have little effect on normal day-to-day operations,
but they can interfere with debugging. If you’re trying to discover why your
GPIO device isn’t working, you probably want to set your securelevel to -1.

180 Chapter 10

Securelevel 2

Securelevel 2 is the highest securelevel in OpenBSD, and it disables a
variety of features that you might need during normal maintenance. Use
securelevel 2 only on a stable machine that you don’t expect to change much.
If you need to change anything restricted by securelevel 2, you must reboot
the machine.

Securelevel 2 includes everything from securelevel 1, plus the following:

•	 Raw disk devices are always read-only. You cannot format, fdisk, or disk-
label disks, even if they’re not in use.

•	 The system clock cannot be moved backward, nor close to the over-
flow point. Make sure your system time is correct before entering
multiuser mode!

•	 You cannot alter packet-filtering rules (covered in Chapters 21 and 22).
Packet filters, network address translation (NAT), traffic queues, and so
on are immutable.

•	 Kernel debugger sysctl values (those beginning with ddb) cannot be
changed.

So, for example, you don’t want your firewall at securelevel 2 unless you
understand that packet filtering rules can change only with a reboot.

What Securelevel Do You Need?
The securelevel appropriate for your environment depends entirely on your
situation, but the overwhelming majority of the time, the default of secure-
level 1 is most suitable.

If you are debugging and testing features and tools, you might find
that you need to use securelevel -1 on a development machine. Once you’ve
worked out how to configure your GPIO device or the correct debugger
settings for your system, however, use securelevel 1 so that you mirror a
production environment.

If you have a very stable system, you could try securelevel 2. In all my
years of running OpenBSD, though, I’ve had only one system for which
securelevel 2 was the right choice, and several cases where securelevel 2
created more trouble than it was worth.

Securelevel Weaknesses
What can’t securelevels do? Consider a case where someone compromises
a web application on your server, uses that to bootstrap himself into a shell,
and then uses the shell to bootstrap himself into root access. Securelevels
don’t do anything to prevent this.

Unless you’ve made copious use of the schg flag, the intruder can replace
system binaries with ones that send your authentication credentials to a free
email account registered in a bogus name. So you decide to run around
applying the schg flag to the contents of critical directories like /bin and
/usr/lib. That will stop the bugger! Well, that will work as long as you make

Securing Your System 181

every file immutable, including the system configuration files in /etc —you
know, the ones that you need to change in order to do your job. If you leave
one file unprotected, the intruder could add a command like chflags -R
noschg / to an early part of the system startup, and poof—the next time you
reboot your system, you unlock all your files. How often do you exhaustively
audit your /etc files? And you’ll need to undo this tangled morass every time
you patch or upgrade your system!

This is only one possible path. There are many ways for an intruder
to lever himself into the system. Relying on securelevels to protect you is
unwise. Use them and consider them a tool in your kit, but don’t think they
are a panacea for every problem.

Keeping Secure
The tools discussed in this chapter are not OpenBSD’s only security fea-
tures. The OpenBSD team has put a lot of work into securing every part of
the system. But this chapter covers some things that make OpenBSD special
and gives you an idea of how those features work.

What’s the best path to security? Keep your system updated and config-
ure your server daemons securely. It’s boring, but it works.

11
O v e r v i e w o f T C P/ I P

IP version 6:
All the pain of version 4,
plus brand-new problems!

Securing a computer is easy: Disconnect
it from all networks, remove all input and

output, and lock it in a bunker. Oh, wait—
did you want the system to do something? Then

you’ll probably want to connect your system to the
Internet.

Many system administrators have a vague familiarity with the basics of
networking, but to be a truly competent sysadmin, you need a real under-
standing of how everything fits together. You don’t need to know when to
use rapid spanning trees, how to choose between BGP and OSPF, or even
what those acronyms represent. But you must know what an IP address is,
how a netmask works, how port numbers differ from protocol numbers, and
why you cannot use telnet(1) to test UDP connectivity. Without this basic
knowledge, you’ll fumble. Read this chapter and understand it, and you’ll
have an easier time convincing your network administrator to give you what
you need.

184 Chapter 11

While this chapter offers an overview of TCP/IP, it doesn’t cover the
innumerable details, caveats, annoyances, peccadilloes, and blatant outrages
present in the protocol. If you find that you need to torture yourself with
the finer points of TCP/IP, pick up one of the big, thick books on the sub-
ject. The TCP/IP Guide by Charles M. Kozierok (No Starch Press, 2005) is an
excellent place to start.

This chapter covers both TCP/IP version 4 (the Internet protocol
widely used for the last 30-odd years) and the new version of the protocol,
TCP/IP version 6. Despite the different version numbers, the two protocols
are more similar than not.

We’ll start with the layers of the network and then delve into how the
protocols work.

Network Layers
The network protocol is divided into several layers. Each layer handles a
specific task and interacts only with the layers immediately above and below
it. At first, you might laugh at the idea that this layer model simplifies the
network process, but it really does. The important thing to remember right
now is that each layer communicates with only the layer directly above it
and the layer directly beneath it (theoretically, anyway).

The classic Open Systems Interconnection (OSI) network protocol
stack represents the network as seven layers. It’s an exhaustively complete
model and covers almost any situation using any network protocol and any
application. Because the Internet is a very specific type of network, and
because this isn’t a book about networking or networked applications in
general, I’ll limit my discussion of TCP/IP to four specific layers of the net-
work: physical, datalink, network, and transport. Don’t worry—these four
layers cover the Internet and (almost) all corporate networks.

The Physical Layer
Whether it’s copper or fiber-optic cable, or even radio waves, physical wire is
a layer of the network. Without some physical media to run over, a network
cannot function. Everything from the CAT5 cable plugged into your desk-
top to the fiber-optic cable connecting you to Asia is part of the physical
layer. If it can be tripped over, backhoed, or interfered with, it’s part of the
physical layer. For simplicity’s sake, I’ll refer to the physical layer as the wire,
although it can take innumerable forms.

This is the easiest layer to understand. If your wire meets the require-
ments of the physical protocol, you’re in business. If not, your network won’t
work. One of the functions of Internet routers is to connect one sort of
physical layer to another—for example, converting local Ethernet into an
OC3 fiber connection.

The physical layer has no decision-making abilities of its own; every-
thing that runs over it is dictated by the datalink layer.

Overview of TCP/IP 185

The Datalink Layer
The datalink layer is the protocol that runs over the physical wire. It trans-
forms information into the actual signals that are sent over the physical
layer, using the appropriate encoding for that physical media, as follows:

•	 Both Ethernet and Switched Multimegabit Data Service (SMDS) use
Media Access Control (MAC) addresses and the Address Resolution
Protocol (ARP).

•	 IPv6 over Ethernet uses Neighbor Discovery (ND).

•	 Dial-up and wide area networks (WANs) use either the Point-to-Point
Protocol (PPP) or High-Level Data Link Control (HDLC).

OpenBSD supports other common datalink protocols, such as PPP over
Ethernet (PPPoE). If you have unusual network requirements, check the
OpenBSD website, mailing lists, or man pages to see if those requirements
are supported.

Some datalink layers have been implemented over many different physi-
cal layers. Ethernet, for example, has been implemented over twinax, coax,
CAT3, CAT5, CAT6, CAT7, optical fiber, and radio waves. And for true
device independence, we have seen TCP/IP implemented with a biological
transport layer: carrier pigeon.1

With minor changes to the device drivers, the datalink layer can address
any sort of physical layer. This is one of the ways in which layers simplify the
network.

Chapter 12 discusses Ethernet in detail, as it’s the most common net-
work type for OpenBSD systems. Once you understand how Ethernet works,
you’ll have no difficulty adding new datalink protocols as needed.

The datalink layer exchanges information with the physical layer and
the network layer.

The Network Layer
The network layer is the part that maps connectivity between network nodes,
answering questions like “Where are other hosts?” and “Can I get there
from here?” This logical protocol provides a consistent interface to pro-
grams that run over the network, no matter what the physical and datalink
layers look like.

The network layer used on the Internet is the Internet Protocol, or IP.
Both version 4 (IPv4) and version 6 (IPv6) provide each host with one or
more unique IP addresses, so that any other host on the network can find it.
Okay, IPv4 network address translation munges the whole “unique address”
rule, but your network still has a unique IP address somewhere.

1. You laugh, but the technical reviewer for this book was part of the first IP-over-carrier-
pigeon implementation team that tackled the practical tests as specified in RFC 1149. That’s
how I knew he had the time to review this book in excruciating detail. (If that’s how he spends
his time, he couldn’t very well claim he was too busy, now could he?)

186 Chapter 11

The network layer talks to the datalink layer below it and the transport
layer above it.

The Transport Layer
The transport layer is where actual data flows. The three most common
transport layer protocols are the Internet Control Message Protocol (ICMP),
Transmission Control Protocol (TCP), and User Datagram Protocol (UDP).

ICMP passes basic connectivity messages between hosts with IP addresses.
If IP provides a road and addresses, ICMP provides traffic lights and highway
exit signs. Most of the time, ICMP runs silently in the background.

UDP and TCP are the protocols that carry actual data between hosts,
and they are so prevalent that the suite of Internet protocols is usually
called TCP/IP. UDP is a bare-bones transport protocol, offering the mini-
mum services needed to transfer data over the network. Its minimalism
means that if you want to customize exactly how data flows in your applica-
tion, you can build it out of valid UDP. TCP provides more sophisticated
features, such as integrity checking and congestion control, but many of its
settings are hard-coded.

In addition to these three, many other protocols run at the transport
layer. The file /etc/protocols contains a fairly comprehensive list of transport
protocols built atop IP. While it lists many more protocols than you will ever
actually deal with out in the wild, it doesn’t include non-IP protocols like
IPX/SPX or Digital Equipment Company’s DECnet.

As an example, let’s have a look at the first entry from /etc/protocols:

ip 0 IP HOPOPT # internet protocol, pseudo protocol number

Each /etc/protocols entry has three key fields: an official name, a protocol
number, and any aliases. The IP protocol, protocol 0, is known as IP and
(very occasionally) as HOPOPT. Each protocol also has a comment giving
it some context. Although some of the protocols in /etc/protocols are long
gone, some antediluvian devices out there might still speak them.

Note that ICMP, TCP, and UDP are slightly different when run over
IPv4 versus IPv6. Each protocol has clearly defined fields in the IP packet
header, leaving specific numbers of bits for things like checksums, destina-
tion addresses, and so on. You can’t run a transport protocol over an incom-
patible network protocol—TCPv6 over IPv4 just doesn’t work.

The transport layer speaks to the network layer below and to the appli-
cations layer above it.

Applications
Applications are definitely part of the network. Applications request network
connectivity, send data over the network, receive data from the network,
and process that data. Web browsers, email clients, JavaServer Pages ( JSP)
servers, and so on are examples of network-aware applications. Applications
need to communicate with only the transport protocol and the user. The
upper three layers of the OSI network model are inside applications.

Overview of TCP/IP 187

Problems with the user layer are beyond the scope of this book, but I
find that many of these issues can be solved with proper application of a
large chainsaw.

The Life and Times of a Network Request
So how do all these layers fit together in the real world? Let’s have a look at
a hypothetical network request, and walk through how data traverses the
layers and the network.

N ot e 	 Some of this discussion touches on topics covered later this chapter, so you might want
to reread this section after finishing the chapter. Purists will notice that I skip a lot of
parts of the process, but I’m trying to relay the basics of how TCP/IP works in practice,
not model every painful detail of a real network transaction.

Suppose a user connected to your network wants to look at a very
important work-related website, such as Scott Meyer’s Basic Instructions
(http://www.basicinstructions.net/ ). The user opens his browser, enters the
URL, and presses enter. The browser application transforms the user’s
request into the proper format and asks the transport layer for a TCP
connection to a particular IP address on port 80.

The transport layer inside your computer examines the browser’s request
and allocates the appropriate resources for it. The request is broken up into
digestible chunks, called segments, and handed down to the network layer.

The network layer doesn’t care about the contents of the request; it’s
only concern is where that data is going. The network layer takes the TCP
data and attaches the proper addressing information to it. The resulting
chunk of data is called a packet. The network layer checks the packet’s desti-
nation, chooses the interface closest to the gateway to that destination, and
drops packets down into the datalink layer.

The datalink layer doesn’t care about the contents of the packet, and
it certainly doesn’t care about IP addresses or routing. It has been given
a lump of zeros and ones, and its job is to transmit those zeros and ones
to another network node. The datalink layer adds the appropriate header
and/or footer information to the packet, creating a frame appropriate for
the physical layer. The frame’s header and footer contain the addressing
information for the physical layer. On most networks, the datalink layer
prepares frames for the local Ethernet. Then the datalink layer hands off
the frame to the physical layer for transmission.

The physical layer has no intelligence at all (think carrier pigeons). The
datalink layer hands the physical layer a frame, and the physical layer trans-
mits that frame to another physical device. For a web browsing client, this is
usually the default router for the local Ethernet. The physical layer doesn’t
care about the upper-level protocols. Its only job is to make sure the frame
gets to the destination without errors.

When the client computer’s router receives the frame, it sends it up to
the datalink layer. The datalink layer strips out the frame information and

188 Chapter 11

hands the resulting packet up to the network layer. The router’s network
layer examines the packet, looks at its routing table, and decides which
interface to send it out on. This might be another Ethernet interface, a T1,
a DS3, an OC3, or whatever the router uses for upstream connectivity. Once
the router chooses an interface, it hands the packet to the datalink layer for
that interface.

The local router’s upstream connection probably goes through a whole
series of routers. Each router decides where to send the request based on its
routing table. The request probably traverses a variety of datalink layers as it
travels. Thanks to layering and abstraction, neither you nor your computer
needs to know anything about any of them.

When the request reaches its destination, the computer at the other end
of the transaction accepts the frame and sends it all the way back up the
protocol stack. The frame is stripped down to packets, which are stripped
down to segments, which are reassembled into a data stream. The data
stream is then handed to the application (in this case, a web server). The
application processes the request and returns an answer, which goes back
down through the protocol stack and travels across the network, bouncing
up and down through various datalink layers on the way as necessary.

This example shows why the layer model is important: Each layer knows
only what it absolutely must about the layers above and below it, making it
possible to swap out layers if necessary. When a new datalink protocol is
created, the other layers don’t need to change. The network layer just hands
a packet to the datalink layer and lets the datalink do its thing. When you
install a new network card, you need only a driver that interfaces with the
datalink layer and the physical layer; you don’t need to change anything
higher in the network stack.

Network Stacks
A network stack is the software that lets a host communicate with the net-
work. A host can run with an IPv4-only network stack, an IPv6-only network
stack, or a dual-stacked setup.

You’re already familiar with an IPv4-only stack—it’s what most hosts ran
for much of the past 30 years. An IPv4-only stack can communicate only
over IPv4. Today, an IPv4-only stack gets you access to the entire Internet,
with a few deliberate exceptions. That will not be true in a few years.

Likewise, an IPv6-only stack can communicate with only IPv6 hosts.
Because most Internet sites don’t yet support IPv6, running an IPv6-only
stack isn’t practical at this point. It is, however, an excellent way to test your
IPv6 infrastructure and connectivity.

The most common configuration these days is a dual-stack setup. Client
hosts try to use both IPv4 and IPv6, preferring one over the other. I recom-
mend configuring hosts with dual stacks, preferring the stack with better
connectivity. (If you get IPv6 connectivity through a tunnel, it’s not as fast

Overview of TCP/IP 189

as your IPv4 connectivity.) If you have equal IPv4 and IPv6 connectivity, use
whichever you prefer. IPv6 works well enough that I often don’t realize that
I’m using it until I analyze my traffic.

You don’t need to do anything special to enable IPv6 on OpenBSD—
an IPv6 address, a default router, and a DNS server, and away you go.

IPv4 Addresses and Subnets
An IP address is a unique 32-bit number assigned to a specific network node.
Some IP addresses are more or less permanent, such as those assigned
to vital servers; others change as required, such as those used by desktop
clients. Individual machines on a shared network use IP addresses from a
range of addresses assigned to that network.

Rather than expressing that 32-bit address as a single number, an IP
address is divided into four 8-bit numbers, usually expressed as decimals.
While 192.0.2.1 and 11000000.00000000.00000010.00000001 represent the
same address, the first option is easier for our feeble little brains to grasp.

Internet service providers (ISPs) issue IP addresses in blocks. These
blocks are the smallest allocation that they can get away with giving you—
say, 16 or 32 addresses. If your system is on a server farm, you might get only
a few IP addresses out of a block of 256.

A netmask indicates the size of the block of IP addresses assigned to your
local network. The size of your IP block determines your netmask—or,
your netmask determines how many IP addresses the network has.

ISPs issue IP addresses by prefix length, commonly called a slash. You’ll
see IP address blocks described in forms like 192.0.2.128/26. Everyone who
has worked with networking has seen the netmask 255.255.255.0, and most
know that it’s associated with a block of 256 IP addresses. That netmask is
also called a /24. The number after the slash is the number of fixed bits in
the netmask. Remember, an IPv4 address is a 32-bit number; on a /24 net-
work, 24 of those bits will never change.

This isn’t a textbook on binary math, so I won’t quiz you on the conver-
sions, but think of an IP address as a string of 32 binary digits. On your net-
works, you can change the bits on the far right, but not the bits on the far
left. But where is the line that separates right from left?

Netmasks have traditionally been split on 8-bit boundaries, but there’s
no hard rule that says they must be. A /25 network has 25 fixed bits—one
more fixed bit than what used to be called a class C network—leaving you
with 7 bits to play with. The netmask’s fixed bits are set to 1, and your net-
work bits are set to 0, as in the following example of a /25 netmask:

11111111.11111111.11111111.10000000

The first three blocks are set to the binary 11111111, which is 255 in
decimal. The last block is set to 1000000, which is 128. Mash these together,
and your resulting netmask is 255.255.255.128.

190 Chapter 11

If you reduce netmasks to binary, they’re simple to figure out. While
you won’t need to work with this every day, if you don’t understand the
underlying concepts, the decimal conversion looks like total gibberish.
With a little practice, you’ll recognize certain decimal strings as legitimate
netmasks.

So now that you know how netmasks work, what the heck does all this
mean in the real world?

IP addresses are issued in multiples of 2. If you have 4 bits to play with,
you have 16 addresses (24=16). If you have 8 bits to play with, you have 256
addresses (28=256). If someone says that you have exactly 17 IP addresses,
you’re either sharing a network with other people or they’re wrong.

It’s common to see a host’s IP with the netmask attached, such as
192.0.2.130/26. This gives you everything you need to attach the host to
the local network. (Finding the default gateway is a separate issue, but it’s
usually the top or bottom address in the block.)

Calculating a Decimal IPv4 Netmask
Converting from binary to decimal to binary is error-prone and mildly
annoying. Here’s how to calculate your netmask while remaining in deci-
mal land.

Find how many IP addresses you have on your network. This will be a
multiple of 2, almost certainly smaller than 256. Subtract the number of IP
addresses you have from 256. This is the last number of your netmask. You
still need to recognize legitimate network sizes, however. If your IP address
is 192.0.2.251/26, you’ll need to know that a /26 is 26 fixed bits, or 64 IP
addresses. Your netmask is 255.255.255.192 (256–64=192).

And I should also mention that netmasks occasionally appear in
hexadecimal.

Before you travel to my house to bludgeon me repeatedly with this
book, Table 11-1 shows netmasks, IP information, and related information
for /24 and smaller networks.

Table 11-1: IPv4 Netmasks and IP Address Conversions

Prefix Binary Mask End Decimal Mask Hex Mask Available IPs

/24 00000000 255.255.255.0 0xffffff00 256

/25 10000000 255.255.255.128 0xffffff80 128

/26 11000000 255.255.255.192 0xffffffc0 64

/27 11100000 255.255.255.224 0xffffffe0 32

/28 11110000 255.255.255.240 0xfffffff0 16

/29 11111000 255.255.255.248 0xfffffff8 8

/30 11111100 255.255.255.252 0xfffffffc 4

/31 11111110 255.255.255.254 0xfffffffe 2

Overview of TCP/IP 191

When you don’t feel like doing the math, you can refer to Table 11-1 or
install the ipcalc package for quick netmask calculations. Don’t say I never
take pity on my readers.2

Viewing IPv4 Addresses
Display IP addresses with ifconfig(8). If you run ifconfig without any argu-
ments, it displays all interfaces on the machine.

$ ifconfig fxp0
...
 inet 192.0.2.226 netmask 0xfffffff0 broadcast 192.0.2.239
 inet 192.0.2.231 netmask 0xffffffff
...

The lines starting with inet are IPv6 addresses. This interface has the
primary IPv4 address of 192.0.2.226 and a secondary, or alias, address of
192.0.2.231. You can also see the netmask of each of these addresses and
the broadcast address for the subnet.

Unusable IPv4 Addresses
Every block of IPv4 addresses reserves the first and last IP addresses for use
by the network:

•	 The first IP address in a block is the network address, used for separating
networks (and on primordial BSD systems, the broadcast address). On
a /24 network, this would be an address ending in .0.

•	 The last IP address in the block is the broadcast address. On a /24 network,
the broadcast address ends in .255.

N ot e 	 According to the IP specifications, every machine on a network is supposed to respond
to a request to the broadcast address. Unfortunately, in the late 1990s, this feature
was used as an attack technique: All you needed to do was ping the broadcast address
on any given network, and you would have a list of all IP addresses currently in use.
Consequently, this functionality is now disabled by default on most operating systems
and network appliances.

You cannot assign the first or the last IP address in a network to a device
without risking network problems. Some systems fail gracefully, others fail
painfully, and a rare few make it work. Although OpenBSD won’t object if
you use the top and bottom network addresses, prepare for mayhem the
first time you plug in a commodity printer or other embedded device. It
takes only one inflexible device to ruin your whole day.

2. I never do take pity on my readers; I just don’t want you to actually say so.

192 Chapter 11

Special IPv4 Addresses
Quite a few blocks of IPv4 addresses are set aside for specific purposes.
Although you don’t need to know all of them, there are two groups you’ll
see pretty often. For a complete list of IPv4 subnets reserved for special
purposes, read RFCs 5735 and 6598.

Localhost

The address range 127.0.0.1/8 is set aside for localhost, a machine’s address
for itself. Every Unix-like system—and most other operating systems—
attaches 127.0.0.1/8 to a loopback interface. Everything knows that the
localhost address is local to the specific machine. Packets to or from
127.0.0.0/8 should never cross the network; likewise, daemons bound only
to 127.0.0.1 can be accessed on only the local machine.

Private Networks

Internet standard RFC 1918 sets aside three networks for use on private net-
works and behind network address translation (NAT) devices: 10.0.0.0/8,
172.16.0.0/12, and 192.168.0.0/16. While public IP addresses must be issued
by an ISP, anyone can use addresses within these three blocks as long as those
hosts are not directly exposed to the public Internet. If you have a network
where hosts do not have access to the Internet, or if you provide Internet
access through a proxy server or NAT, you can use an RFC 1918 network.

IPv4 Addressing Pitfalls
Common wisdom dictates that each computer on a network is assigned a
single IP address for each of its network interfaces. One computer, one net-
work card, one IP address—simple, right?

Not always. Some special-purpose interfaces (such as those dedicated
to packet sniffing) function as intended without an IP address, and many
operating systems will allow you to assign multiple IP addresses to a single
network interface through a process called aliasing. You can also bond mul-
tiple physical cards into a single network interface, giving the computer one
large virtual interface. While you might not deal with these configurations
every day, keep them in mind when troubleshooting.

IPv6 Addresses and Subnets
There’s a basic problem with IPv4: It provides only 4.29 billion addresses,
and that’s just not enough. Without subnetting, that’s fewer than one
address for every human being. Eventually, every person will have at least
one IP-capable device.

Although IPv4 addresses haven’t run out yet, they’re becoming an
increasingly scarce resource. Overly generous allocations in the early days,
along with large chunks of address space reservations for special purposes,
have accelerated exhaustion. The world is slowly grinding toward IPv4’s
replacement: IPv6.

Overview of TCP/IP 193

Some parts of the world already use IPv6 extensively. Even if your
network doesn’t use IPv6 today, one day you’ll need it—probably without
warning. Prepare yourself now, or one day you’ll discover that you needed
it the week before.

IPv6 Basics
Like IPv4, IPv6 is a network layer protocol. IPv4 uses 32-bit addresses,
usually expressed as four groups of decimal numbers from 0 to 255
(for example, 192.0.2.13). IPv6 uses 128-bit addresses, expressed as six
groups of four hexadecimal characters separated by colons (for example,
2001:db8:0:bad:c0de:cafe). A 128-bit address space gives enough IPv6
addresses for every atom in the Earth to have more than 10 IP addresses.
TCP, UDP, ICMP, and other protocols run atop it. IPv6 has its own layer 2
protocol, Neighbor Discovery, which replaces protocols such as Ethernet’s ARP.

The good news is that you don’t need to relearn the basics of network-
ing. Hosts still need an IP address and a default gateway, routers still use a
routing table, and you can almost—almost—substitute an IPv6 address for
an IPv4 address and watch everything work. A web server doesn’t care if
it binds to port 80 on 192.0.2.13 or on 2001:db8:a12a:bad:c0de:café. The
server just accepts requests sent to it and responds appropriately. That said,
software does need to change slightly, because our web server must be able
to log connections from both IPv4 and IPv6 addresses. These changes have
wide-reaching repercussions, and we’ll be sorting out edge cases for the
next decade. But, in general, once you understand the new rules for IPv6,
all of your networking knowledge is applicable.

Understanding IPv6 Addresses
As noted, IPv6 addresses are 128 bits, expressed as six colon-delimited groups
of four hexadecimal characters each. As with decimal IPv4 addresses, you
don’t need to display leading zeros in each group. The address 2001:db8:0
:bad:c0de:cafe could also be written as 2001:db8:0000:0bad:c0de:cafe, but
just as we wouldn’t write 192.000.002.013, we strip out the leading zeros in
an IPv6 address.3

IPv6 addresses often contain long strings of zeros. This had to do
with subnetting, which I’ll describe later in this section. As of this writing,
the IPv6 address of Sprint’s website is 2600:0:0:0:0:aaaa. When consecu-
tive groups include only zeros, as in this address, they’re replaced with
two colons (::). This IP address is usually displayed as 2600::aaaa. You
can do this only once per address, however. You can’t, for example, have
the address 2600::1::1, because it’s ambiguous. Does 2600::1::1 represent
2600:0:0:1:0:1 or does it represent 2600:0:1:0:0:1? I don’t know, and nei-
ther does your server.

You’ve probably seen a port number added to an IPv4 address, such
as 192.0.2.13:80. Using a colon to glue a port number to an IPv6 address

3. Some operating systems treat addresses containing numbers that begin with 0 as octal.
Don’t actually use addresses like 192.000.002.013, or you might get a base-8 surprise.

194 Chapter 11

would be confusing. The IPv6 address 2001:db8::bad:c0de:cafe:80 isn’t
ambiguous, but if you read it quickly, you might miss the double colon
and think this is an IP address ending in 80. If you’re adding a port
number to an IPv6 address, enclose the address in square brackets, as in
[2001:db8::bad:c0de:cafe]:80.

Viewing IPv6 Addresses
Use ifconfig(8) to see all IPv6 addresses assigned on your machine. Here, I
give ifconfig the name of my network card, fxp0.

$ ifconfig fxp0
...
 inet 192.0.2.13 netmask 0xfffffff0 broadcast 198.0.2.255
 inet6 fe80::bad:c0de:cafe%fxp0 prefixlen 64 scopeid 0x2
 inet6 2001:db8::bad:c0de:cafe prefixlen 64 autoconf pltime 604399 vltime 2591599
...

The lines starting with inet6 are my IPv6 addresses. This interface
has been assigned two IPv6 addresses: fe80::bad:c0de:cafe%fxp0 and
2001:db8::bad:c0de:cafe. (Wait . . . where did that %fxp0 come from? You’ll
find out in “Link Local Addresses” on page 195. For now, just nod and
smile, and keep reading.)

IPv6 Subnets
Unlike IPv4, where you can subnet at any bit, IPv6 is usually subnetted at
colon boundaries. Colons appear every 16 bits, so the natural IPv6 subnets
are /16, /32, /48, and /64. Though IPv6 standards recommend using /64
as the smallest possible network, many carriers use /80, /96, and /112 net-
works for special purposes. (I’ve also seen people use subnets not divided
at 16-bit boundaries. I won’t cover them, but don’t let your brain explode
when you encounter a /51.) IPv6 subnets are always expressed as a slash,
also known as a prefix length, so you won’t see a netmask of ffff:ffff:ffff:ffff::,
as you might in IPv4.

ISPs are usually issued a /32 or a /48 subnet and are expected to issue
end-user networks, such as the typical home network, a /64 network. If ISPs
do issue /64 subnets to their users, an end-user network will provide 264 IP
addresses, or 18,446,744,073,709,551,616 IP addresses. (This will suffice for
any number of televisions, phones, refrigerators, water faucets, vacuums,
and network-enabled tacos.)

When you subnet at 16-bit boundaries, each network has 65,536 subnets
of the next smaller size. A /32 contains 65,536 /48 networks, and a /48 con-
tains 65,536 /64 networks.

Special IPv6 Addresses
Like its predecessor, IPv6 reserves several blocks of addresses for special
purposes. You don’t need to memorize all of these reserved addresses, but
some will appear in daily use.

Overview of TCP/IP 195

localhost

IPv6’s localhost address, ::1/128, works much like 127.0.0.1 in IPv4: It always
refers to the local machine. In OpenBSD, ::1/128 is always assigned to the
lo0 interface.

Link Local Addresses

Addresses beginning with fe8x : (where x is variable) are local to their inter-
face. Every link has such link local addresses that are valid only on a specific
local network. Even if an IPv6 network has no router, the hosts on the local,
directly attached network can find each other and communicate using these
local addresses. These networks are always /64 subnets. You’ll see identical
IPv6 subnets on other interfaces and on networks completely disconnected
from your network. That’s okay. These addresses are local to the link. For
example, here’s a link local address on an OpenBSD machine:

inet6 fe80::bad:c0de:cafe%fxp0 prefixlen 64 scopeid 0x2

The link local address of this interface is fe80::bad:code:cafe. The
trailing %fxp0 indicates that this address is local to the interface fxp0 and
isn’t usable on any other interface on the machine. If your machine has
an interface fxp1, and a host on that network tries to reach the address
fe80::bad:code:cafe, this machine will not respond. This particular address
is valid only for the network attached to interface fxp0.

You might note that the link local address has a section in common
with the public IPv6 address on this network. That’s because an auto-
configured IPv6 address is usually calculated from the interface’s physical
address; it doesn’t matter whether that autoconfigured address is on a pub-
lic address or a link local address.

Assigning IPv6 Addresses
IPv6 clients can usually use autoconfiguration through router discovery,
anIPv6 protocol where routers announce their presence on the network
and the legitimate addresses to clients. Unfortunately, IPv6 autoconfigu-
ration does not support common Dynamic Host Configuration Protocol
(DHCP) options, such as assigning a Domain Name Service (DNS) server,
let alone the options used for diskless configuration. If you have config
ured a DNS server—even IPv4 servers accessible on a dual-stacked host—
autoconfiguration works just fine. If you run an IPv6-only network, you must
either set up an IPv6 DHCP server to provide DNS server information to
clients or configure DNS servers manually.

Servers should not use IPv6 autoconfiguration. A server usually needs a
static IP address, even in IPv6. Similarly, routers cannot use autoconfigura-
tion. If a host can forward packets, it requires a static IPv6 address.

You can assign multiple IPv6 addresses to a single interface by using
aliases, just as with IPv4.

In IPv6, a client on a /64 network can use autoconfiguration.

196 Chapter 11

IPv6 autoconfiguration resembles a stripped-down DHCP service. The
router broadcasts subnet and gateway information, and the hosts configure
themselves to use it. Hosts on a network smaller than /64 must be manually
configured.

Remedial TCP/IP
Now that you have a simplified overview of how the IP system works, let’s
look at a real network protocol in some depth. The dominant transport
protocol on the Internet is the Transmission Control Protocol over Internet
Protocol, or TCP/IP. Although TCP is a transport protocol and IP is a
network protocol, the two are so tightly intertwined that they’re generally
referred to as a single entity.

We’ll start with ICMP, and proceed to UDP and TCP.

ICMP
ICMP is used to transmit routing and availability messages across the net-
work. Tools such as ping(8) and traceroute(8) use ICMP. ICMP includes all
sorts of different protocols and tools.

While some people claim that you need to block ICMP for security
purposes, those people don’t understand that ICMP is just as diverse as the
better-understood transport protocols TCP and UDP. Proper IPv4 network
performance requires large chunks of ICMPv4. If you must block ICMPv4
for security reasons, do so selectively. For example, blocking source quench
messages breaks path maximum transmission unit (MTU) discovery, which
will steer you directly into a world of hurt. If you don’t understand that last
sentence, don’t block ICMPv4.

IPv6 dies without ICMPv6, as IPv6 doesn’t support packet fragmenta-
tion, so never block ICMPv6. If you don’t know what packet fragmentation
is, just trust me on this.4

UDP
UDP is the most bare-bones data-transfer protocol that runs over IP. It
offers no error handling, minimal integrity verification, and no defense
whatsoever against data loss. The transport protocol considers each packet
of UDP completely self-contained; there are no data-coherence checks at
the protocol layer. Despite these drawbacks, UDP can be a good choice for
particular sorts of data transfer, and many vital Internet services rely on it.

N ot e 	 This discussion covers both UDPv4 and UDPv6. While each runs over only the cor-
responding network protocol, they behave identically otherwise.

UDP is also a datagram protocol, meaning that each network trans-
mission is complete and self-contained, and received as a single integral

4. Or you can go look it up. Whatever—you not believing me won’t hurt my feelings.

Overview of TCP/IP 197

unit. While the application might not consider a single UDP packet a com-
plete request, the network does.

When a host transmits data via UDP, it has no way of knowing if the
data ever reaches its destination. Programs that receive UDP data just listen
to the network and accept whatever happens to arrive. When a program
receives data via UDP, it cannot verify the source of that data. Although
each UDP packet does include a source address, this address is easily faked.
Each UDP packet includes a checksum for the packet, but there’s no integrity
checking for the data stream as a whole. This is why UDP is called connection-
less, or stateless.

No integrity checking, no guard against data loss, the potential for
faked packets—all this sounds pretty unreliable. So why use UDP at all?

UDP-based applications often have their own error-correction methods
or otherwise don’t mesh well with more reliable protocols, such as TCP. For
example, simple client DNS queries must time out within just a few seconds
or users will whine uncontrollably. TCP connections time out only after two
minutes. DNS requires quick failures and only a single packet per trans
action, which makes UDP a better choice than TCP for simple DNS queries.
Real-time streaming services, such as video conferencing applications, also
use UDP. (After all, if a few pixels go missing during a video conference,
you don’t want those pixels a minute later.) Most other UDP-based applica-
tions use UDP for similar reasons.

Because the UDP protocol itself doesn’t return anything when you
connect to a port, there’s no reliable way to remotely test if a UDP port is
reachable (although tools such as nmap try to do so).

If you want a protocol that responds at the network layer, look at TCP.

TCP
TCP includes nifty features, such as error correction and recovery. The
receiver must acknowledge every packet it gets; otherwise, the sender
retransmits any unacknowledged packets. Unlike UDP, applications that
use TCP can expect reliable data transmission. This makes TCP a connected,
or stateful, protocol.

N ot e 	 This discussion covers both TCPv6 and TCPv4. While they differ because of their
underlying transport protocol, they behave in the same way.

TCP is also a streaming protocol, which means that a single request can be
split among several network packets. While the sender might transmit sev-
eral chunks of data one after the other, that data might arrive out of order
or fragmented. The recipient must track these chunks and assemble them
properly to complete the network transaction.

For hosts to exchange TCP data, they must set up a channel for that data
to flow across. One host requests a connection, the other host responds to
the request, and then the first host starts transmitting. This setup process is
known as the three-way handshake. Similarly, once transmission is complete,
the systems must do a certain amount of work to tear down the connections.

198 Chapter 11

To test if a TCP port is open, you can use telnet(1) or nc(1) to connect
to the port. Here, I see if I can connect to port 22 on the host caddis.

$ telnet caddis 22
Trying 192.0.2.35...
Connected to caddis.
Escape character is '^]'.
SSH-2.0-OpenSSH_6.0

u ^]
v telnet> c

Connection closed.

I connect to the remote port and see information displayed by the port,
use the telnet escape character ^] (ctrl-]) to disconnect u, and enter c v
to close telnet.

TCP is commonly used by applications most suited to its fairly generic
set of timeouts and transmission features, such as email programs, FTP
clients, and web browsers.

How Protocols Fit Together
You can compare the network stack to sitting with your family at a holiday
dinner. The datalink layer (ARP, in the case of Ethernet) lets you see every-
one else at the table. IP gives every person at the table their own unique chair
(except for the twins using piano bench NAT). ICMP provides basic, lower-
layer information such as “The quickest way to the baked sweet potatoes
is to get Uncle Mike to pass them” 5 or “Aunt Liz can’t lift the ham platter.”
TCP is where you hand someone the butter and the other person must say
“thanks” before you let it go. UDP is like tossing a roll at Grandma Lucas;
she might catch it or it might bounce off her forehead.

Transport Protocol Ports
Transport protocol ports permit one server to serve many different ser-
vices over a single transport protocol, multiplexing connections between
machines. When a network server starts, it attaches, or binds, to one or more
logical ports. A logical port is just an arbitrary number ranging from 0
to 65536, although nothing uses port 0. For example, Internet mail servers
often bind to port 25.

Each TCP or UDP packet arriving at a system carries a field containing
its desired destination port number. If an incoming packet asks for port 25,
it is connected to the mail server running on that port. This means that
other programs can run on other ports, clients can talk to those different
ports, and no one gets confused except you.

Note that port assignments are not some sort of physical constant, but
rather are mutually agreed upon. There’s no reason that email services
should run on port 25 other than the fact that everyone agrees that they

5. For the record, Uncle Mike’s security policy prevents him from passing baked sweet
potatoes. If you want them, you’re going to have to take them by force.

Overview of TCP/IP 199

should. If someone tries to send you email, their mail server will automati-
cally connect to port 25 on your server. If you run email on port 80 and
have a web server on port 25, you’ll never get your email, and your web
server won’t get much traffic.

The file /etc/services contains a list of port numbers and the associated
services. The file has a very simple, five-column format, as shown in these
two sample lines:

www 80/tcp http # WorldWideWeb
www 80/udp # HyperText Transfer Protocol

The first field is the name of the service assigned to this port. This
entry is for the service www. Port 80 is assigned to www, both TCP and UDP.
Then there’s a list of any other names assigned to this port. Port 80 is also
known as http. Finally, there’s a comment that gives more detail about the
service.

The HTTP protocol used on the Web runs over TCP, so why is UDP
port 80 also reserved for HTTP? The answer is pretty simple: Computer
people are easily confused. Having two services share the same port num-
ber but run on different protocols confuses people—for example, the syslog
service runs on port 514 via UDP, and the lpr printer protocol runs on port
514 over TCP.6

Some server programs read /etc/services to learn which port to bind
to on startup, and many client programs read /etc/services to learn which
port they should try to connect to. If you run servers on unusual ports, you
might need to edit this file to get these programs to attach where needed.

As with all standards, there are times you will want to break the rules.
The SSH daemon sshd normally binds to port 22/TCP, but I’ve run it on
ports 23 (telnet), 80 (www), 443 (https), and others to evade naïve packet-
filtering firewalls. You will find your own reasons to break the standards.
That’s fine, as long as you understand what you’re doing and how it affects
others.

Reserved Ports
Ports below 1024 in both TCP and UDP can be opened only by the root
user. These ports are assigned (mostly) to core Internet infrastructure pro-
tocols, such as DNS, SSH, HTTP, LDAP, and so on—services that only a few
select hosts on each network should offer. Only programs with root-level
privileges can bind to reserved ports. For example, a user can run a game
server on a high-numbered port if the system policy allows, but that’s dif-
ferent from setting up a web page visible to the whole world that claims the
machine’s official purpose is a game server. The port assignment for these
core protocols is generally permanent, and if you want to interoperate with
other sites, you won’t change them.

6. I used to count how many people confused 514/tcp and 514/udp, but the number got so
high that I got depressed, so I stopped.

200 Chapter 11

OpenBSD software usually binds to a reserved port as root and then
drops privileges, performing the rest of its functions as an unprivileged
user. These unprivileged users, discussed in Chapter 6, have even fewer
privileges than a normal user account.

If you must run a service that binds to a reserved port, and it can run
only as root, consider carefully whether you actually need it. Try to find an
alternative server that does privilege separation. If you can’t, at least install
that service on a dedicated machine to reduce its threat to other services on
your network.

Which Ports Are Open?
So, network services are made available via TCP or UDP ports. Programs
bind to ports to offer network services. This brings up two obvious questions:

•	 Which ports are open?

•	 What programs are listening to each port?

You can answer these questions with netstat(1) and fstat(1).

Using netstat

The netstat(1) program provides general visibility into the network stack.
Use netstat to check your routing table, examine open sockets, see how
many packets are traversing your interfaces, and so on. (I could write an
entire book about netstat, but no one would buy it. Instead, I’ll sprinkle bits
of netstat magic throughout this book.)

When looking at network information, I recommend turning off DNS
lookups by using the -n flag. You can always rerun a check with DNS turned
on, but adding DNS queries to the network sockets can sometimes skew the
information you’re viewing, and almost always slows the command.

The -f argument lets you choose a protocol family to display. Use -f inet
to see only IPv4 sockets, or -f inet6 to see only IPv6. Read netstat(1) for the
full protocol list.

Finally, -a tells netstat to show all sockets opened by any process, rather
than just sockets owned by the user.

Let’s put all those options together and have a look at the output. Here,
I show the open IPv4 sockets on my system:

$ netstat -na -f inet
Active Internet connections (including servers)
Proto Recv-Q Send-Q   Local Address  Foreign Address (state)

  utcp  v0  0 w 192.0.2.135.22 x 192.0.2.8.49997   y ESTABLISHED
tcp 0 0  127.0.0.1.587  z *.*   LISTEN
tcp 0 0  127.0.0.1.25  *.*   LISTEN
tcp 0 0  *.22  *.*   LISTEN
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address  Foreign Address (state)

 } udp 0 0  127.0.0.1.512  *.*
 udp  0 0  *.514  *.*

Overview of TCP/IP 201

The list starts with open TCP ports u. The Recv-Q and Send-Q columns v
show the number of bytes that the system is in the process of receiving or
trying to send.

The Local Address column shows the IP address attached to the local
machine where this socket is listening. It’s possible—common, even—for
a service to bind to a port on only a single address on a machine. If the
port is part of an actual connection, as the first example w shows, the IP
address is followed by the port number. This particular TCP connection is
attached to port 22 at the address 192.0.2.135. Port 22 is reserved for SSH,
so this is probably an SSH connection.

If the local address is an asterisk followed by a port number , this is a
wildcard bind. A program has bound to this port, and has asked the kernel
to figure out the IP address. It’s probably (but not necessarily) a listening
socket.

The Foreign Address column x shows the IP address and port of the
remote host involved in a connection. If there’s a foreign address shown, it
always includes the port. If this column shows two asterisks z, that means
the service is waiting for a connection on the local port.

The (state) column applies only to TCP connections. A live and work-
ing TCP connection is in the ESTABLISHED state y. Other states (SYN_RCVD, ACK,
and SYN+ACK) are all normal parts of connection creation, while LAST_ACK,
FIN_WAIT_1, and FIN_WAIT_2 mean that the connection is closing. A state of
LISTEN  means that this socket is waiting for an incoming connection.

UDP ports are given their own section }. You might see remote hosts
in the UDP section, especially for long-running protocols such as NFS and
NTP, but remember that UDP is stateless, so you’ll never see state on a UDP
connection.

If you’re interested in only TCP or UDP sockets, you can use the -p flag
to show only a particular protocol. Here, I look at TCP sockets:

$ netstat -na -p tcp
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 52 192.0.2.135.22 192.0.2.8.49997 ESTABLISHED
tcp6 0 0 ::1.587 *.* LISTEN
tcp 0 0 127.0.0.1.587 *.* LISTEN
tcp6 0 0 ::1.25 *.* LISTEN
tcp 0 0 127.0.0.1.25 *.* LISTEN
tcp 0 0 *.22 *.* LISTEN
tcp6 0 0 *.22 *.* LISTEN

While this looks similar to the first output example, note that we see
both IPv4 and IPv6 TCP connections and services. TCP runs over both IPv4
and IPv6, so choosing it shows both address families. It’s entirely possible
to have a service running on one address family and not the other. Many
of my systems listen for incoming SSH connections only on IPv6; doing so
hides me from port scanners and worms (for now, anyway).

202 Chapter 11

Rather than listing every service waiting for an incoming connection,
you can show only live connections by dropping the -a flag:

$ netstat -np tcp
Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 52 192.0.2.135.22 192.0.2.8.49997 ESTABLISHED

Using fstat

Now that you know which TCP and UDP ports are open, how can you tell
which programs are listening on them? OpenBSD includes fstat(1), a
program that displays all open files and sockets on the system. Network
connections are open sockets. Running fstat on an idle system can gener-
ate hundreds of lines of output—one entry for each file opened by any
process. While that’s educational and useful, it’s not what we’re looking for.
Specifically, we want to see which programs are holding network sockets
open. The string internet indicates network sockets.

$ fstat | grep internet
mwlucas sshd 21403 3* internet stream tcp 0xd5365994 192.0.2.235:22 <-- 192.0.2.8:49997
root sendmail 19063 4* internet stream tcp 0xd537e330 127.0.0.1:25
root sendmail 19063 5* internet6 stream tcp 0xd537e4c8 [::1]:25
root sendmail 19063 6* internet stream tcp 0xd537e660 127.0.0.1:587
root sendmail 19063 7* internet6 stream tcp 0xd537e7f8 [::1]:587
root sshd 29561 3* internet6 stream tcp 0xd537e000 *:22
root sshd 29561 4* internet stream tcp 0xd537e198 *:22
_syslogd syslogd 12885 4* internet dgram udp *:514

First, you see an sshd process owned by the user mwlucas. That’s an
unprivileged process, tied to a particular SSH session. Further down the
list, you see an SSH daemon owned by root listening to the network. When
a connection request arrives, the root-owned SSH daemon will hand it off
to an unprivileged child process. You can also see that we have a variety of
sendmail processes listening to the network.

This system runs the expected SSH and email servers, and no one
has bound anything to odd ports. My nasty paranoid suspicions were
unfounded (this time, anyway).

Between netstat and fstat, you should be able to get a good idea of what
your system is doing on your network at any given time.

IP Routing
Most sysadmins don’t need to understand much about IP routing, because
most servers have only one network interface and one default gateway.
The network administrator gives you an IPv4 address and a default route,
you put them in the appropriate configuration files, and you’re routed.

Overview of TCP/IP 203

You don’t need even that for most IPv6 hosts, as autoconfiguration makes
things magically work. Servers will need a static IPv6 address and a manual
default route.

Some servers have multiple interfaces, such as one to their default
gateway and another to a group of related application or backup servers.
OpenBSD systems frequently wind up in the network infrastructure, how-
ever, or sit in demilitarized zones (DMZs) where the server must make rout-
ing decisions. If you want to use OpenBSD in such an environment, or as a
firewall, you must understand the basics of routing.

Routing is simply deciding where to send packets. If your system is
attached to a network, it doesn’t need to make any decisions; it just sends
the packet to that network. Your system on 192.0.2.0/24 already knows how
to reach any IP address beginning with 192.0.2—it can just send everything
out to the local Ethernet. Where does it send those packets?

Most computers use a default route, which is an IP address on the local
network where they send all packets bound for nonlocal IP addresses. This
is very common where one router or firewall provides all network access.
This device probably also has a default route that points to your ISP, which
makes all the complicated routing decisions for you.

In other cases, you might have a dynamic routing protocol run-
ning on your network. If you’re using Open Shortest Path First (OSPF),
Border Gateway Protocol (BGP), or Routing Information Protocol (RIP),
OpenBSD has daemons specifically for integrating these protocols. There’s
an introductory middle ground between full dynamic routing and simple
default routes, however, and you should understand it before attempting
full dynamic routing.

We’ll cover a simple case here using an IPv4 example. (IPv6 routing is
exactly like IPv4 routing, but with a lot more colons.)

IPv4 Routed Network Example
If a network has multiple gateways leading to different networks, hosts on
the network must make routing decisions. Suppose your network has mul-
tiple routers attached to it, each going to a different network. Machines on
your network decide where to send packets. Here’s an example of a common
double-firewall situation:

Internet
DMZ

192.0.2.0/25
Internal

192.0.2.128/25

192.0.2.1 192.0.2.2

In this network design, hosts must transit a DMZ before entering either
the Internet or the internal network. (Other designs exist, such as the
hub-and-spoke model, but I’ve specifically chosen a design where routing
is needed.)

204 Chapter 11

The external firewall provides one layer of protection. It permits only
traffic specifically deemed necessary (we’ll go into the default deny stance
in Chapter 21). It does, however, permit incoming connections to hosts in
your DMZ.

The hosts in the DMZ are to some extent vulnerable. They are not
trusted enough to be on the internal network. Your intrusion-detection
systems or your web servers might live here.

The internal firewall, like the external firewall, permits only traffic
deemed necessary to organization purposes. It probably doesn’t allow any
connections from the outside world, however, and it doesn’t trust the hosts
on the DMZ.

Only highly trusted hosts are permitted on the internal network. This
is where the organization keeps its most precious data, such as the financial
records, customer databases, and movie collections.

Many of the hosts in this network need to make only very simple rout-
ing decisions. Anything on the internal network has just one way to reach
anything, and any host on the Internet has only one way to reach the inter-
nal or DMZ networks.

The external firewall is directly attached to the DMZ network, so it can
send packets to those hosts. It needs a default route pointing to the Internet
so it can reach the rest of the world. To reach the hosts on the internal net-
work, it must send packets to the internal firewall’s external interface. If you
don’t configure this on the external firewall, data will never reach the
internal firewall. Because the external firewall is responsible for the inter-
nal network’s Internet access, losing this route would disconnect the internal
network from the Internet; internal systems could send packets, but would
never receive any. The external firewall needs routing.

Similarly, you could configure routing on each host inside the DMZ.
In that case, ICMP redirects from the firewalls would provide routing for
these hosts, but trusting ICMP redirects on a vulnerable network is unwise
and messy because it assumes that every host on the DMZ and every firewall
accepts and sends ICMP redirects. If you’re using OpenBSD, you want your
server to be secure, so configure routing on your DMZ systems.

In this example, I configure routing for the external firewall. Configuring
routing for the DMZ hosts is nearly identical to this example.

Managing Routing with route(8)
The route(8) command manages all system routing. Like netstat, route has
several subfunctions that allow you to view, edit, and monitor the system
routing table. While the route(8) man page has complete details, the ability
to view, add, and delete routes should be enough to get you started.

Viewing Routes

OpenBSD, like any other network device, keeps routes in a routing table.
To view the IPv4 and IPv6 routes, enter route show. Add -n to remove
IP-address-to-name translations.

Overview of TCP/IP 205

Here’s the IPv4 routing table:

$ route -n show
Routing tables

Internet:
Destination Gateway Flags Refs Use Mtu Prio Iface

u default 192.0.2.1 UGS 4 6414 - 8 vic0
v 127/8 127.0.0.1 UGRS 0 0 33196 8 lo0
w 127.0.0.1 127.0.0.1 UH 1 170 33196 4 lo0
x 192.0.2.32/24 link#1 UC 1 0 - 4 vic0
y 192.0.2.1 00:0c:42:20:7f:42 UHLc 1 0 - 4 vic0
z 224/4 127.0.0.1 URS 0 0 33196 8 lo0

The table shows the following information:

•	 The Destination field lists the range of IP addresses this route applies to—
destination addresses. The default entry indicates the default gateway,
which is where the system sends all packets that have no specific route.

•	 The Gateway field tells where packets for this route should be sent. A
gateway could be a hostname, an IP address, or a network interface.

•	 The Flags field contains markers that indicate what sort of route this is
and how it behaves. The next section covers the various route flags.

•	 The Refs field shows the number of references to the route in the ker-
nel (also known as the refcounter). If the refcounter drops to zero, the
route is removed. This has no practical use for system administration,
because one reference is sufficient to keep the route in the routing
table; additional references don’t change anything.

•	 The Use counter increments each time a packet uses that route.

•	 The Mtu is the MTU—the largest frame size that can travel over this
route. If the field contains a hyphen (-), OpenBSD uses the MTU of the
underlying physical interface. The loopback interface, lo0, isn’t a physi-
cal interface, so OpenBSD explicitly sets the MTU very high. You might
see a route with a lower MTU if Path MTU Discovery has kicked in.

•	 The Prio field gives the route priority. OpenBSD supports multiple routes
to a single destination. Some routes are more desirable than others, and
OpenBSD will use the route with the lowest priority number. Routes
provided by dynamic routing protocols, such as BGP or OSPF, get
higher priority numbers than static routes.

•	 The Iface field shows which interface this route uses.

N ot e 	 OpenBSD also includes dynamic routing daemons such as ospfd(8) and bgpd(8). I
don’t cover them here, because that topic would fill a book on its own.

Let’s see what’s interesting in the routes in this sample. The first entry
at u is the system default route. If there is no more specific route, packets
will be sent to the IP address 192.0.2.1.

206 Chapter 11

To reach the network 127.0.0.0/8 at v, packets should go to the IP
address 127.0.0.1. 127.0.0.0/8 is the address range reserved for loopback
addresses, and 127.0.0.1 is always the local machine. Notice the high MTU;
this is a software interface, so there’s no physical limit on the size of frames
sent through it.

To reach the IP address 127.0.0.1 at w, send the packets to the IP
address 127.0.0.1. This might seem a bit pedantic, but it’s a valid route and
needs to be in the table. Remember that 127.0.0.1 is always the loopback
address of the local machine.

To reach the IP address 192.0.2.0/24 at x, use a gateway of link#1. This
is a local physical interface—in this case, our Ethernet interface. The inter-
face named link#1 is actually the interface with index #1, which isn’t really
exposed to the system administrator anywhere else. These addresses are
local to the machine, and you must figure out which interface this is by the
IP address attached to the machine. Addresses local to the machine don’t
actually need to be in the routing table, but no one has bothered to remove
this historical nit.

To reach a specific IP address on the local network at y, you’ll get a
route of the IP address and the physical media address. Because this host is
connected via Ethernet, the gateway is a MAC address. Every local address
that the system needs to find gets a route entry, and you should almost always
show a specific route for the default gateway.

The last route at z is for the multicast address range 224/8. If you’re
not using multicast, it should go to the local host.

N ot e 	 Multicast is a complicated topic beyond the scope of this book (again). But if you’re
interested, OpenBSD supports multicast just fine.

Route Flags

The Flags column of the routing table indicates how routes are generated
or used. netstat(1) contains a complete list of route flags. Table 11-2 lists the
common ones.

Table 11-2: Common Route Flags

Flag Description

C This route was cloned.
c This is a protocol-specific route (such as to an Ethernet MAC address).
D This route is dynamic.
G This route goes via a gateway.
H This route is for a specific host.
L This route is for the local link layer.
M This route was modified.
R This is a reject route. Packets are dropped, and an error is sent.
B This is a blackhole route. Packets are dropped silently.

Overview of TCP/IP 207

These flags tell you where a route came from and how it’s used.

Adding Routes

Add routes with the route add command. You must know the destination
network, its netmask, and the gateway.

route add address-block/netmask netmask gateway

In our example network, the outer firewall needs a route to reach the
private network, 192.0.2.128/25. To route this network to the inner firewall
at 192.0.2.2, run this command:

route add -net 192.0.2.128/25 192.0.2.2
add net 192.0.2.128: gateway 192.0.2.2

Packets will use that route immediately. If you run route show, you’ll see
that new route.

To add a default route, run route add default with the IP address of the
default gateway, like this:

route add default 192.0.2.1
add net default: gateway 192.0.2.1

To add routes automatically at boot, put the route statement in the
/etc/hostname.if file that leads to the destination network. These routes
appear when the interface is brought up, before /etc/rc.securelevel runs or
any local daemons start. You’ll see examples of using hostname.if for routes
in the next chapter.

To add a default route automatically at boot, put the default router IP
address in /etc/mygate.

Deleting Routes

To delete a routing table entry, use route delete with the network address
and netmask.

route delete address-block -netmask netmask

To remove the route added in the previous example, run this command:

route delete -net 192.0.2.128 -netmask 255.255.255.128
delete net 192.0.2.128

You should now have a decent idea of how routing works.
Now that you know how things are supposed to fit together, let’s see

how to configure Ethernet networks.

12
C o n n e c t i n g t o t h e N e t w o r k

My tunnel is now up.
I can do IPv6.

Me and three others.

All that theory of IPv4 and IPv6 is fine.
Now let’s do something with it, and actu-

ally connect to a network. While dial-up
connections work with OpenBSD, they’re not

used much these days, so we’ll focus on Ethernet con-
nections. Ethernet is the most common network type
today, and the most common network interface on
OpenBSD systems.

Most people have IPv4 connectivity, but IPv6 is increasingly important.
If you can’t get native IPv6 to your network, you can use a tunnel to reach
IPv6 address space and provide IPv6 to your clients. I’ll cover acquiring and
configuring such a tunnel in this chapter.

Finally, OpenBSD can combine network connections into trunks or
split them into virtual local area networks (VLANs). This chapter covers
both approaches.

210 Chapter 12

DNS Resolution
You’ll probably want to use hostnames rather than IP addresses, so that you’ll
be able to browse to http://www.cnn.com/ instead of http://157.166.255.18.
Unix-like systems use the resolver to accomplish this feat.

Most hosts use two tools to map between IP addresses and hostnames:
the hosts file and DNS. (Different operating systems support additional
name services, such as YP, LDAP, NIS, and so on, but dang near every sys-
tem supports these two.)

The hosts file is a text file on the local machine that contains static IP
address and hostname lists. DNS is a more dynamic service that reaches
across the network to find information. You can specify DNS servers by IP
address, but we’ll look at the hosts file in a little more detail.

What if you prefer IPv4 or IPv6 addresses? Or you want the hosts file
to override DNS? Maybe you have a default domain that your queries
should use. The resolver searches until it either finds the first answer or
has exhausted its information sources, so these questions matter. Tell your
resolver your needs in /etc/resolv.conf.

The /etc/resolv.conf File
You configure the resolver behavior in /etc/resolv.conf. A system without
/etc/resolv.conf can find only hostnames listed in the hosts file. Because the
hosts file starts off empty, that’s probably not what you want. Start by specify-
ing domain names.

Default Search Domains

If you wanted to ping a host on a remote network, you might expect to need
to specify the whole domain. Entering ping www.openbsd.org should work. But
if you wanted to ping your company’s web server, it would make more sense
to just type ping www. And you can, because OpenBSD allows you to specify
default domains, so that when you type in a short hostname, it will try to
find the proper host.

For example, if you have only one local domain, you would list the
domain keyword in /etc/resolv.conf like this:

domain michaelwlucas.com

Now, when I enter ping ftp, the resolver should get the IP address of the
host ftp.michaelwlucas.com.

If you have more than one local domain, use the search keyword and a
list of domains, like this:

search michaelwlucas.com openbsd.org

If I enter ping ftp now, the resolver should get the IP of the host
ftp.michaelwlucas.com. Once the resolver learns that no such host exists,

Connecting to the Network 211

it will check for ftp.openbsd.org. Because that host exists, ping will start to
work. The search keyword can have up to six domains, and can be no longer
than 1024 characters.

Using Domain and Search

You can only use either domain or search. If you use both, the last entry in the
file wins. If you list multiple search or domain lines, the last one in the file
takes effect. Here’s how not to do it:

search cnn.com openbsd.org
search sluggy.com michaelwlucas.com
domain blackhelicopters.org

You might as well get rid of the two search statements. The resolver will
never go through those domain lists; it will use only the domain list because
it’s the last one.

Name Servers

Now that the resolver knows which domains to check by default, tell it which
name servers to use. List each name server on its own line, by IP address, in
order of preference.

nameserver 192.0.2.5
nameserver 198.51.100.5
nameserver 2001:db8::5

You can list up to three name servers, by IP address. (Hostnames in a
nameserver entry won’t work, for fairly obvious reasons.)

If your resolv.conf doesn’t list a name server, the resolver should check
for a name server on the local machine.

Lookup Order

You might get host information from DNS or from the hosts file. The resolver
should stop once it finds an answer to a query. If you check the hosts file and
then DNS, entries in the hosts file override the name server. If you check
the name server before the hosts file, the hosts file is used only when no DNS
record is available. Either approach has its uses, but by default, the resolver
checks the hosts file, and then checks DNS. To reverse this, use the lookup
keyword.

lookup bind file

The file option represents /etc/hosts, while due to a historical accident,
bind represents DNS. (The first DNS server software was the Berkeley
Internet Name Domain server, or BIND.)The reverse (file bind) is the
default, so there’s no need to explicitly specify it.

212 Chapter 12

Preferred IP Protocol

The resolver defaults to searching for IPv4 records first, and then looking
for IPv6 records. To reverse this, use the family keyword.

family inet6 inet4

Again, the reverse is the default, so there’s no need to use this keyword
in that case.

The /etc/hosts File
The /etc/hosts file matches IP addresses to hostnames. While the hosts file is
very simple, its contents are available only on the local machine. A hosts file
is most useful on a small private network, such as in your home or test lab.
You can also use a hosts file to override data from the DNS server, such as
when you want to test a new system.

Each line in /etc/hosts represents one host. The first entry on each line
is an IP address. The second is the fully qualified domain name of the host.
Following these two entries, you can have an arbitrary number of aliases for
that host. I often add comments at the end of the line, prefixed with a hash
mark (#).

There was a time when I had a small network at home with only four
machines: the proxy/firewall, the wife’s desktop, my laptop, and the crash
machine where I did stupid things. The hosts file looked like this:

192.0.2.1 unat.blackhelicopters.org  vnat firewall gateway
192.0.2.8 boss.blackhelicopters.org boss wife w#don't crash
192.0.2.20 crashbox.blackhelicopters.org crashbox test
192.0.10.21 laptop.blackhelicopters.org laptop mwlucas

The machine nat.blackhelicopters.org at u also had the names firewall
and gateway at v. I added a note to remind myself at w not to run security
scanners against my wife’s desktop. (The machine crashbox is also called test.)

Any machine with this hosts table could find any machine listed in the
hosts table by name. For example, I could run ping boss or ssh crashbox and
reach the desired machine.

The hosts file works just fine for finding networked hosts, but whenever
you add, remove, or change a machine, you must edit /etc/hosts on every
computer. And every time you change an IP address, you must edit /etc/hosts
on every machine.

N o t e 	 Unfortunately, /etc/hosts does not scale. When I got a fifth machine, I added an
internal-only DNS server and emptied the hosts file on all of my systems.

Resolver vs. Dynamic Configuration
If your OpenBSD system roams between networks, like a laptop, you prob-
ably use DHCP to configure your network connection.

Connecting to the Network 213

DHCP overwrites /etc/resolv.conf with the information for its network.
This is appropriate for most users, but if you’re carrying an OpenBSD laptop,
you’re not normal. You probably want some of your resolver configuration,
such as your domain search list, to remain in effect no matter what network
you’re on.

OpenBSD supports permanent resolver configuration in the file /etc/
resolv.conf.tail. When OpenBSD’s DHCP client gets /etc/resolv.conf informa-
tion from the server, it writes to /etc/resolv.conf and adds /etc/resolv.conf.tail
to the end.

Remember how only the last search or domain keyword works? resolv.conf​
.tail takes advantage of that, allowing you to override your network adminis-
trator’s search order.

Ethernet
Ethernet is a shared network, meaning that many different machines can
connect to the same Ethernet and can communicate directly with each
other. I’m going to assume that you’re using Ethernet as found in an aver-
age office or datacenter. Also, although Ethernet has been implemented
over many different physical media, I’ll assume you’re working with CAT5
or better cable—today’s most popular choice. If you use some unusual media
type, or your card supports multiple media, you might need to manually set
your preferred media on your interface.

Protocol and Hardware
Ethernet is a broadcast protocol, which means that every packet you transmit
can be sent to every host on the network (although most Ethernet hardware
limits recipients). Either your network card or your device driver separates
the data intended for your computer from the data meant for other comput-
ers. A section of Ethernet where all hosts can communicate directly with all
other hosts, without involving a router, is called a collision domain or segment.

You connect Ethernet segments with hubs, which are hardware items
that can physically connect many Ethernet hosts. Network hubs forward all
received frames to all other network devices, and each host is responsible
for filtering traffic. This is old-school Ethernet, which can be useful for
debugging network issues.

Switches have largely supplanted hubs. Every Ethernet connection needs
a unique identifier, called a MAC address (or sometimes an Ethernet address),
which is a 48-bit number. Switches control the traffic sent to each host by
filtering on the MAC and IP address of attached devices and (mostly) for-
warding frames only to the devices they are meant for. Switching reduces
the amount of traffic and load on each individual system by decreasing the
amount of traffic each host must sort through.

On i386 and amd64 hardware, the MAC address is a property of the
card. On some other platforms, such as SPARC, the MAC address is a
property of the server itself. Both IPv4 and IPv6 use the MAC address to
find other hosts on the local network.

214 Chapter 12

IPv4 and ARP

When a system needs to transmit data to another IP-based host on the local
Ethernet, it first broadcasts an Ethernet request asking, “Which MAC address
is responsible for this IP address?” If a host responds, further data for that
IP is transmitted to that MAC address. This process is handled by ARP.

Use arp(8) to view your system’s ARP table, which is the list of hosts that
your system knows. Enter arp -a to show all of the MAC addresses and IPv4
hostnames your computer knows.

$ arp -a
fly.blackhelicopters.org (192.0.2.225) at 00:a0:c8:10:eb:82 on fxp0
caddis.blackhelicopters.org (192.0.2.226) at 00:16:36:c0:58:a5 on fxp0 static
treble.blackhelicopters.org (192.0.2.227) at 00:0c:42:5a:58:ae on fxp0
salmon.blackhelicopters.org (192.0.2.232) at (incomplete) on fxp0

Here, you see the three hosts on my Ethernet network that this host has
communicated with. I have more hosts, but because this machine hasn’t
spoken with them lately, they aren’t in the local ARP table.

If a MAC address shows up as incomplete, your machine has attempted
to communicate with this host but cannot get its MAC address. In this
example, I’ve tried to send data to the host salmon, but my computer can’t
reach it. (Turning salmon back on would help.)

IPv6 and Neighbor Discovery

IPv6 hosts also use MAC addresses to find each other through ND, an IPv6
protocol introduced in the previous chapter. Interrogate your ND cache
with ndp(8). The command-line flags used for ndp are intentionally similar
to those for arp.

$ ndp -a
Neighbor Linklayer Address Netif Expire S Flags
2001:db8:0:12:20c:29ff:feb5:7565 0:c:29:b5:75:65 vic0 permanent R
2001:db8:0:12:5446:fbc:fca0:f2e9 0:c:29:b5:75:65 vic0 permanent R
...
fe80::20c:29ff:feb5:7565%vic0 0:c:29:b5:75:65 vic0 permanent R
fe80::20c:42ff:fe20:7f42%vic0 0:c:42:20:7f:42 vic0 11h20m47s S R
fe80::1%lo0 (incomplete) lo0 permanent R

Like the ARP cache, the ND cache shows an IPv6 address, a physical
address, the interface, and other details for each host. You’ll see more ND
entries than ARP entries because all of the link local addresses show up in
the ND cache.

If you try to reach a host that is directly attached to your local network
and it doesn’t respond, check the ND cache. If an ND cache entry shows up
as (incomplete), as with ARP, there’s some sort of basic connectivity issue.

Connecting to the Network 215

Speed and Duplex

Ethernet supports a variety of speeds. The slowest speed you’re likely to find
today is 10 megabits per second (Mbps), but it’s quickly disappearing. Most
people use either 10/100Mbps or 1 gigabit per second (Gbps), although
you’ll see 10Gbps, 40Gbps, and 100Gbps Ethernet emerging.

The hosts and switch it’s connected to on your network must agree on
the speed of their connection. If the OpenBSD host thinks that it’s connected
at 100Mbps, but the switch thinks that the connection is 1Gbps, the connec-
tion will be flaky. While autonegotiation usually makes both sides agree on
common settings (and is absolutely required for gigabit connections), you
can manually set duplex and speed for 10/100Mbps connections. Although
some switch vendors are notorious for poor autonegotiation, you should let
your Ethernet configure itself whenever possible.

Duplex determines if a card can both transmit and receive data simul-
taneously. A half-duplex connection means that the Ethernet card is either
transmitting or receiving at a given instant; it cannot do both. A full-duplex
connection can both send and receive simultaneously. As with connection
speed, if the switch and host disagree on the duplex setting, the connection
will be flaky. Gigabit Ethernet connections involve much more than speed
and duplex, and they must be autonegotiated.

Just because a device says that it can use the protocol defined as
10/100Mbps Ethernet doesn’t mean that it can use that protocol with any
speed. Also, a card labeled “1Gbps” might not actually pass a gigabit per
second. Some network cards will pass their stated amount of traffic, while
others will stagger and stumble at a few percent of that. Switch quality varies
widely, too.

This may make more sense if you think of an Ethernet’s stated speed as
a language. For example, I could claim that I speak Russian and German,
but I stopped studying foreign languages in 1985. When I went to Germany
in 2007, I managed about three words a minute—with the aid of a transla-
tion card and phrase book. If I were an Ethernet card, the manufacturer
would claim I spoke German and Russian, and ship me to Siberia.1

Get decent hardware. Don’t ask on the OpenBSD mailing list, though.
Someone has asked about hardware recommendations in the past few
months. Check the archives. The advice hasn’t changed.

Configuring Ethernet
When configuring Ethernet for client computers, if your IPv4 network
offers DHCP, you should be able to plug right in. If you’re using IPv6, you
should be able to attach the cable and let autoconfiguration take over.

1. Many people offer to ship me to Siberia. But they all forget to include a return ticket.
Strange.

216 Chapter 12

If a particular machine will be a server, a static IP address prob-
ably makes more sense. Before assigning a static address, you’ll need
the following:

•	 An IP address (IPv4, IPv6 or both)

•	 The netmask/prefix length(s)

•	 The IP address(es) of the default gateway

Armed with this information, attach your system to the network and
keep reading. I’ll first discuss using ifconfig(8) and route(8) to perform
changes manually, and then review how to set these automatically at boot.
In any case, you must configure the resolver as discussed at the beginning
of this chapter.

Using ifconfig(8)
If you installed OpenBSD over a network, your Ethernet connection should
already be working, but it might not be set up exactly the way you like. To
manage your network interfaces, use the ifconfig(8) tool.

Let’s look at your Ethernet card and see what it has to say. Start by asking
your system about all of the interfaces it has installed, by running ifconfig.

All OpenBSD systems have three logical interfaces out of the box: lo0,
enc0, and pflog0. The lo0 interface is the loopback interface, referring to the
local machine. The enc0 interface is an encapsulation interface, intended
for IPsec traffic. Finally, pflog0 is for logging PF traffic, as discussed in
Chapter 22. The rest of the interfaces are physical ones.

Unlike some operating systems, OpenBSD network interfaces are named
after the device driver of the underlying hardware. Here’s a sample list:

$ ifconfig
fxp0: flags=8843<uUP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 lladdr 00:16:36:c0:58:a5
 priority: 0
 groups: egress
 media: Ethernet autoselect (100baseTX full-duplex)
  v status: active
  w inet 192.0.2.226 netmask 0xffffff00 broadcast 192.0.2.255
 inet6 2001:db8::216:36ff:fec0:58a5 prefixlen 64
 inet6 fe80::216:36ff:fec0:58a5%fxp0 prefixlen 64 scopeid 0x2

The interface fxp0 uses the fxp(4) device driver, which the man page
says is an Intel EtherExpress PRO 10/100 card. As you can see at u, the
interface is up, meaning that it’s active and ready to use. The lladdr is the
link local address, or the MAC address of the card. This card is in the egress
group. OpenBSD uses interface groups in several places, including the
packet filter, as discussed in Chapter 22.

To see the type of physical media underlying the connection, check the
media line. This particular connection runs at 100Mbps full-duplex. The
connection is active, as shown at v; the physical layer has not only been

Connecting to the Network 217

configured, but it also has a link light and is ready to go. The connection
has been assigned an IPv4 address and netmask, as shown at w. You can see
on the two lines that follow that both an IPv6 address and a link local IPv6
address have been assigned.

Use ifconfig to assign, change, or remove IP addresses from a network
interface. The OpenBSD installer offers to configure your network cards at
boot, but if you didn’t configure all of your interfaces during installation, or
if you add or remove network interfaces after installation, you will need to
do so manually.

Adding an IP Address

To add an IP address for IPv4, start with the interface’s assigned IP address
and netmask.

ifconfig interface-name IP-address netmask

For example, if your network card is fxp0, your IP address is 192.0.2.55,
and the netmask is 255.255.255.128, you would run this:

ifconfig fxp0 192.0.2.55 255.255.255.128

Specify the netmask in dotted-quad notation, hexadecimal, or even
slash notation, like this:

ifconfig fxp0 192.0.2.55/25

You don’t need to specify a netmask separately if you use a slash.
Adding an IP address with IPv6 is a little different. Specify the address,

a slash, and the prefix length, but don’t try to add a separate netmask; just
use the slash that’s part of the address. Here’s an example:

ifconfig fxp0 inet6 2001:db8:0:12::2/64

Removing IP Addresses

If you need to remove an IP address from an interface, use the delete option
of ifconfig for both IPv4 and IPv6 addresses.

ifconfig fxp0 192.0.2.55 delete

The effect is immediate, so be sure you don’t lock yourself out of the
system by removing all of its reachable IP addresses, or by removing the
only address your SSH daemon is attached to. (In certain rare cases, exist-
ing connections to deleted addresses might continue to work, but they prob-
ably won’t, so don’t count on it.)

218 Chapter 12

Multiple IP Addresses on One Ethernet Card

One network interface can respond to requests for multiple IP addresses,
which is important because a server might support hundreds or thousands
of domains and need an IP address for each. (This isn’t so important for
plain websites, but it can be important for SSL-based websites and protocols
that rely on reverse DNS.)

To add extra IP addresses to an interface, use IP aliases. IP aliases tell a
network card to “answer requests for this IP address as well as your own.” To
add aliased IP addresses, use ifconfig with the keyword alias after the inter-
face name to tell ifconfig this is an alias. Be sure to always use a netmask of
255.255.255.255, or /32, for alias addresses.

ifconfig fxp0 alias 192.0.2.230/32
ifconfig fxp0
...
 inet 192.0.2.226 netmask 0xfffffff0 broadcast 192.0.2.239
 inet 192.0.2.230 netmask 0xffffffff

The interface listed here has a main IP address of 192.0.2.226 and an
alias IP address of 192.0.2.230.

When working with IPv6, add the inet6 keyword, like this:

ifconfig fxp0 inet6 alias 2001:db8:0:12::3/64

It’s important to realize that all outgoing connections on a host with
one network connection use the host’s primary IP address. For example,
you might have 2000 IP addresses bound to one interface, but when you ssh
out, the connection comes from the primary address. Remember this when
writing firewall rules and access control lists, because while some programs
have an option to set a different source IP address, they’re the exception.

The OpenBSD kernel doesn’t really differentiate between the primary
IP addresses and aliases—it just keeps a list of IP addresses—but it will use
the first address on its list as the source address unless told otherwise. If a
host has multiple network connections, the source address of outgoing con-
nections is the main IP address of the network interface on which packets
leave the system.

To remove an alias, use the delete option of ifconfig and give the IP
address, without the netmask.

ifconfig fxp0 delete 192.0.2.230

For IPv6, use inet6 delete instead.

ifconfig fxp0 inet6 delete 2001:db8:0:12::3

N o t e 	 If you delete the main IP address on an interface, the first alias becomes the main IP
address. If you have no IP address aliases remaining and you remove the interface’s
main IP address, that interface stops passing IP traffic.

Connecting to the Network 219

Configuring Default Routes
Use route(8) to configure the default route for each protocol.

route add default 192.0.2.1
add net default: gateway 192.0.2.1

An IPv6 default route is almost identical, but you must add the -inet6
modifier.

route add -inet6 default 2001:db8:0:12::1
add net default: gateway 2001:db8:0:12::1

Once you add IP addresses and default routes to your host, you should
be able to reach the rest of your network and the Internet. Now let’s see how
to make those changes across reboots.

Using Dynamic Configuration
To have OpenBSD get an IPv4 address from a DHCP server, run dhclient(8)
and give it the name of the interface you want to configure.

dhclient fxp0

dhclient gets an IP address, overwrites /etc/resolv.conf, and configures the
default route.

For IPv6, run rtsol(8) instead.

rtsol fxp0

Remember that IPv6 autoconfiguration will not configure your resolver.
You’ll need to piggyback off your IPv4 DNS servers or manually configure
/etc/resolv.conf.

Configuring the Network at Boot
While ifconfig(8) is fine for changes on the fly, your system should config-
ure its interfaces correctly at boot, including any aliases on the interface,
any routes added when the interface comes up, and so on.

Each interface has a configuration file, /etc/hostname.interfacename, generi-
cally called hostname.if. The fxp0 interface on my desktop uses a configuration
file /etc/hostname.fxp0, my wireless interface wpi0 uses /etc/hostname.wpi0, and
so on. At boot, OpenBSD’s /etc/netstart script reads all of the hostname.if files
and, if it finds a matching physical interface or can create a matching logical
interface, it configures the interface accordingly.

To configure an interface’s IPv4 address, enter a line in hostname.if in
this format:

inet ipaddress netmask broadcastaddress ifconfig-options

220 Chapter 12

The broadcast address and options are optional. To use options but not
specify a broadcast address, use NONE for the broadcast address. You can also
use a slash for the netmask instead of the decimal equivalent.

Similarly, add an IPv6 address with the following:

inet6 ipv6address/prefix ifconfig-options

To give fxp0 the IPv4 address of 192.0.2.226 255.255.255.240 and
the IPv6 address of 2001:db8:0:12::2/64 at boot, use the following in
/etc/hostname.fxp0 :

inet 192.0.2.226 255.255.255.240 NONE description 'top card'
inet6 2001:db8:0:12::2/64

Here, I also define an interface description that will show up in ifconfig
output.

To create an IP address alias at boot, use the alias keyword in hostname.if.

inet alias 192.0.2.230/32
inet6 alias 2001:db8:0:12::3/64

To run a command when the interface comes up, put an exclamation
point in front of the command. Any commands run must be available on
the root partition (for example, in /bin or /sbin). This feature is most com-
monly used for routing, but you could use other commands as well.

!route add 192.0.2.128/25 192.0.2.2

To configure an interface dynamically, via DHCP (IPv4) or rtsol (IPv6),
put the string dhcp or rtsol on a line by itself.

dhcp
rtsol

Anything that’s not formatted as shown here is passed unedited to
ifconfig(8). For example, to run a specific ifconfig command, put the argu-
ments on their own line in hostname.if.

description 'lower card'

If you simply want to activate a card, but not configure it, use the word
up on a line by itself to activate the interface.

up

And remember, you can test hostname.if changes with /etc/netstart, speci-
fying an interface name if appropriate, like so:

/bin/sh /etc/netstart fxp0

Connecting to the Network 221

Not including the interface name reconfigures all interfaces on
the system.

Trunking
Servers can have redundant hard drives, power supplies, and so on.
OpenBSD supports redundant network connections by combining mul-
tiple Ethernet links into a single virtual link, or trunk. You might also
know of this as link aggregation, network adapter teaming, or bonding.

N o t e 	 Cisco people know of trunks as Ethernet links that support multiple concurrent
VLANs. Most vendors, including OpenBSD, don’t use the word trunk in that way.
OpenBSD supports sending multiple VLANs over a single link outside the trunk(4)
functionality.

Link Aggregation Protocols
To use multiple physical links as a single large link, you need a way to dis-
tribute traffic between the links. OpenBSD supports five different ways to
distribute frames between trunk members, though not all will work in all
environments. For a complete list see trunk(4), but the protocols I recom-
mend for real-world use are Link Aggregation Control Protocol (LACP),
roundrobin, and failover. LACP is the industry standard for link aggrega-
tion. The physical interfaces are bonded into a single virtual interface with
roughly the same bandwidth as the sum of the individual interfaces. LACP
is very fault-tolerant, and just about every high-end managed switch should
support it. If your switch supports LACP, use it, but you must configure
LACP on the switch ports before this kind of trunk will pass traffic.

In the roundrobin method, OpenBSD sends frames across the trunk’s
active connections using a roundrobin scheduler. The trunk accepts incom-
ing packets on any port, and a roundrobin scheduler rotates between the
trunk connections, with error and edge handling added on top. Roundrobin
trunks don’t need any special switch configuration; they just need two ports
in the same VLAN.

In the case of failover, OpenBSD sends and receives all traffic over the
first port in the trunk, and if that port fails, it switches to another active
port. The failover method doesn’t give you any additional bandwidth, but
requires absolutely no support from the switch, and it even works on old-
fashioned hubs.

Trunk Configuration
As an example, let’s configure ports em0 and em1 into failover trunk trunk0.
The underlying ports have never been configured before, so begin by acti-
vating these interfaces without any configuration.

ifconfig em0 up
ifconfig em1 up

222 Chapter 12

Now create the failover trunk with ifconfig(8) and add these ports to it
to make the trunk0 interface usable.

ifconfig trunk0 trunkproto failover
ifconfig trunk0 trunkport em0
ifconfig trunk0 trunkport em1

You could do this all in one long ifconfig command, but I find simpler,
shorter commands easier to understand when learning.

Assign the interface an IP address just as you would a physical interface,
and add a default gateway to your system.

ifconfig trunk0 192.0.2.8 netmask 255.255.255.0
route add default 192.0.2.1

You should now have a failover trunk attached to your local network. To
configure another trunk protocol, just specify the desired trunk protocol
when you create the trunk. You’ll find a complete list of trunk protocols in
trunk(4).

Trunks at Boot
Configure your trunk in /etc/hostname.if. For example, suppose you need to
edit hostname.em0, hostname.em1, and hostname.trunk0. Both of the em files
contain only a single word:

up

This activates the interfaces, but does no configuration.
hostname.trunk0 is more complicated.

trunkproto failover
trunkport em0
trunkport em1
192.0.2.8 netmask 255.255.255.0

You can put all of these entries in a single line, just as you can configure
the trunk with a single ifconfig command, but again, I find multiple lines
easier to read and understand.

Your trunk should now start at boot.
Note that trunks do not necessarily need to consist of interfaces that

use the same type of physical medium. If you’re feeling adventurous, you
could try to replicate what some OpenBSD developers and users have been
known to do: Trunk together a wired and a wireless network interface, and
have all your connections survive (graceful failover, remember?) when you
yank the plug out of your Ethernet port, or if you plug yourself back in and
take your access point down for maintenance.

Connecting to the Network 223

VLANs
VLANs are a way to get multiple Ethernet segments on a single piece of
wire. You’ll sometimes see this referred to as 802.1q, tagging, or a combina-
tion of these terms.

In OpenBSD terms, one wire can carry multiple networks, and by con-
figuring an additional interface, you can talk to those additional networks
as if they had their own private wire. The wire can still carry only so much
data, however, so all VLANs and the regular network (or native VLAN) that
share the wire share the same pool of bandwidth.

VLAN frames that arrive at your network card are like regular Ethernet
frames, with an additional header before the Ethernet frame that says “This
is part of VLAN number such-and-such.” Each VLAN is identified by a num-
ber. VLAN number 1 is usually the native VLAN—the VLAN that arrives
without any tagging whatsoever. For convenience, I’ll use the word “tagged”
to describe how the VLAN is delivered to your host.

How would you use VLANs in OpenBSD? Perhaps you have a network
divided into multiple Ethernet segments, such as outside the firewall, server
area, and desktop clients. Or you might have one OpenBSD host that needs
direct access to all of these segments. You could route all of these networks
over a single physical wire. You might eventually hit bandwidth problems,
but if you’re pushing more than 1Gpbs through your server, you can afford
a second network card.

Configuring Switches
You must configure your switch to send the VLANs to your OpenBSD box
as 802.1q or tagged, depending on the switch’s syntax. Cisco uses 802.1q,
HP’s Procurve switches use tagged, and other vendors use whatever their
prejudices dictate. There are dozens of different syntaxes to do this, so I
won’t give a specific example. If the switch can’t send tagged VLANs to your
server, you cannot use VLANs.

Configuring VLAN Devices
OpenBSD creates vlan(4) interfaces upon request. To create the device, you
need to know which physical device you want to attach the VLAN to and
the number of the VLAN you’re expecting.

Create the vlan interface with ifconfig.

ifconfig vlanX vlan vlan# vlandev interface

I number my vlan interfaces after the VLAN number they’re used for.
(You could create interface vlan0 and attach it to VLAN 3, but that’s too
confusing for my feeble brain.) If you don’t specify the VLAN number,
OpenBSD assigns the VLAN number from the number on the interface.

For example, here I create interface vlan3 and use it to access VLAN 3
over interface fxp0.

224 Chapter 12

ifconfig vlan3 vlandev fxp0

That’s really all there is to it. Now you can use ifconfig to display your
new interface:

$ ifconfig vlan3
vlan3: flags=48843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST,INET6_PRIVACY> mtu 1500
 lladdr 00:16:36:c0:58:a5
 priority: 0
 vlan: 3 parent interface: fxp0
 groups: vlan
 status: active
 inet6 fe80::216:36ff:fec0:58a5%vlan3 prefixlen 64 scopeid 0x7

This looks exactly like any physical interface, and from your point of
view, it is. You can add IP addresses just as you would to any other interface,
assign routes, and get on with your life.

Configuring VLANs at Boot
To configure a VLAN interface at boot time, create a hostname.if file for it.
For example, here’s the contents of a /etc/hostname.vlan3 that creates the
vlan3 interface demonstrated in the previous section, assigns it to VLAN 3,
and configures it automatically for both IPv4 and IPv6:

vlandev fxp0
dhcp
rtsol

OpenBSD should find this file at boot and create the interface accord-
ing to your commands.

IPv6 Over Tunnels
Let’s say you’ve taken my badgering to heart and decided to experiment
with IPv6, but your ISP doesn’t offer IPv6. How can you play with IPv6 when
all you get is an IPv4 feed?

Many companies offer a free IPv6 tunnel service, where they will route
you through an IPv6 tunnel over IPv4. They will even give you an IPv6 /64
at no charge, so you can configure your home network for IPv6.

While I generally avoid recommending vendors in this book, I do recom-
mend Hurricane Electric’s IPv6 tunnel service at http://www.tunnelbroker​
.net/. Its web interface is intuitive, and it even provides configurations for
OpenBSD clients.

You should now have some understanding of managing IPv4 and IPv6
on OpenBSD. While your brain is recovering from all this stuff, we’ll turn
to the topic of managing add-on software in OpenBSD.

13
S o f t w a r e M a n a g e m e n t

Blowfish is solid,
but the third-party software?

Easy road to ruin.

Most people don’t use an operating sys-
tem; they use software, which runs atop an

underlying operating system. No matter how
robust an operating system is, it’s useless with-

out applications.
Many commercial operating systems include hundreds or thousands of

small programs: games, desktop toys, and everything from fancy-looking
clocks to disk scrubbers and web browsers. Most users never touch most of
these programs, but the programs take up disk space (and possibly other
resources) just the same. Every program drags along some amount of infra-
structure, and all of this software can cause any number of problems.

Unlike many other operating systems, OpenBSD deliberately includes
relatively little software in the default installation. You get exactly what you
need to provide the infrastructure for software, and nothing more. While a
traditional UNIX or Unix-like system includes compilers, games, and man
pages, you don’t even need to install these when installing OpenBSD! Even

226 Chapter 13

if you install everything included in OpenBSD, it will have far less software
than any commercial operating system. That’s because almost everything is
considered an add-on package.

The advantage to this sparseness is that you know exactly what’s on the
system, which simplifies debugging. A random shared library from a pro-
gram you’ve never used won’t break your programs. The downside is that
you need to think a bit to decide exactly what you do want to include, and
you’ll need to install those programs. OpenBSD makes installing software
as easy as possible through the ports and packages system, which is intro-
duced in this chapter. But first, let’s take a look at building software.

Making Software
Building software is complicated because source code must be very specifi-
cally processed to create a program that works—let alone a program that
works well! The make(1) program makes building software easily reproducible,
so that a program can be built exactly as the software author intends. make
takes its instructions from a configuration file, or makefile, which tells make
exactly how to build a program from source. You don’t need to know the
internals of a makefile, so we’re not going to dissect one here.

A makefile includes one or more targets and a set of instructions to
carry out. For example, typing make install tells make to check the makefile
for a procedure called install and, if found, to execute it. A target’s name
usually relates to what make should be doing. The make install process, for
example, usually installs the software built by previous steps. You’ll find
targets to install, configure, and uninstall most software, and make handles
a huge variety of functions, some of which far outstrip the creators’ original
intentions.

Source Code and Software
Source code is the human-readable instructions for building the actual
machine code that makes up a program. You’ve probably already been
exposed to some form of source code; if not, go look at a few files under
/usr/src (assuming, of course, that you installed the source code as I recom-
mended back in Chapter 3). While you don’t have to read source code, you
should be able to recognize it.

Once you have a program’s source code, you build (or compile) the
program on the type of system on which you want to run it. (Building
software for a foreign platform via cross-compiling demands that you know
much more about building software, and is not always possible.) If the soft-
ware was written for an operating system sufficiently similar to what you’re
building it on, you’ll create a working program. If the operating system
differs too much, either the build fails or the resulting software won’t run.
Once you’ve built the software successfully on your system, you can copy the

Software Management 227

resulting program (or binary) to other systems on the same platform, with
the same operating system version and supporting software, and expect it
to run.

Some programs are sufficiently well written that you can compile them
on many different platforms. A few programs specifically include support
for widely divergent platforms. For example, you can compile the Apache
web server on Windows, NetWare, and Unix-like platforms by typing make
install. This is quite uncommon, however, and takes considerable effort
on the part of the software authors. It also makes the code more complex,
and supporting all these operating systems means that it cannot easily sup-
port all the features that make those operating systems special. (But note
that the ability to build software on a variety of platforms doesn’t necessarily
mean that it runs well on all of those platforms.)

Generally speaking, if you can build a program from source, it usually
runs. A sufficiently experienced sysadmin can use the source code and error
messages to learn why a program won’t build, or why it builds but doesn’t
run. In many cases, the problem is simple and can be fixed with minimal
education.1 This is one reason why access to source code is important.

Back when every sysadmin was a programmer, debugging software builds
absorbed major portions of the sysadmin’s time. Every Unix-like platform
was slightly (or wildly) different. To build programs, sysadmins needed to
understand their platform, the software’s original platform, and the dif-
ferences between the two. The duplication of effort to build common
programs was truly horrendous. Tools such as autoconf and configure were
intended to help simplify this problem, but these programs just paper over
the underlying problems. Building many software packages requires much
more time running configure scripts than they need to actually compile.

The OpenBSD ports and packages system removes all this pain.

The Ports and Packages System
Ports are a mechanism for reproducibly and consistently building software
on OpenBSD. Packages are precompiled ports for a specific OpenBSD version
and platform. Packages install quickly and easily, and are recommended by
the OpenBSD folks. Installing from a port takes more time and effort, but
can be customized for your environment or server.

The basic idea behind the ports system is that if source code must be
modified or tweaked to build or run on OpenBSD, the modification pro-
cess should be automated. If you need other software to build this program
from source code or run it, those dependencies should be automatically
used. If you record exactly which files the software installs, you can easily
uninstall it. And if you have all of these things, you can pick up the software
and install it on any similar OpenBSD system.

1. In the IT industry, “minimal education” means a willingness to dig in and figure it out, plus
a few years of college or professional experience; access to programming textbooks or other
educational materials; or a whole lot of youth, stubbornness, and motivation.

228 Chapter 13

Packages are the installable files produced by the ports system. You can
install packages over the network, either from your own package repository
or from an OpenBSD mirror site. But before you can use a package, you
must find it.

Using Packages
Packages are the preferred method to install OpenBSD software. Packages
are built by the OpenBSD Project’s ports team, and are expected to work
without any special tweaks from the user. You must configure the software,
of course, but the software itself should work as expected. Unless you are
planning to make modifications to a specific piece of software, you’ll be
a lot happier simply installing the package fetched from a nearby mirror
rather than building it from the port (or, worse, installing from the source
code without the port).

Package Files and $PKG_PATH
Every package is available as a single file named after the port it is found
in, a version number, and a .tgz extension. For example, version 2.4.2 of the
adsuck software is available in the file adsuck-2.4.2.tgz.

Before you can install packages, you need to find a source for them.
Find package files on the official release CDs or on OpenBSD mirror sites.

The packages are on the FTP and HTTP mirrors in the directory /pub/
OpenBSD/release/packages/platform. For example, the packages for the
amd64 platform for OpenBSD 5.3 are in the directory /pub/OpenBSD/5.3/
packages/amd64. Look at the OpenBSD mirror list. Choose a mirror server
near you, and verify that it actually has the packages directory for the release
and platform you run. My closest mirror is http://ftp10.usa.openbsd.org.2 I find
the 5.3 amd64 packages at http://ftp10.usa.openbsd.org/pub/OpenBSD/5.3/
packages/amd64.

On the official CD, you’ll find packages in /release/platform/packages.
(Downloaded installation CDs do not include packages.) If you mounted
the 5.3 CD at /mnt, you would find the packages at /mnt/5.3/amd64/packages.

Once you’ve chosen a package repository, set the $PKG_PATH variable in
your shell to it. This tells OpenBSD’s package management tools where to
get the packages and gives you quick access to a single authoritative source
of packages.

If you set $PKG_PATH to an invalid location, pkg_add (the command for
installing a package) won’t work. Using a location with packages for a dif-
ferent architecture makes pkg_add give an error that packages are “not for
the right architecture.” If you choose an incorrect release, you’ll see “bad
major” or other library version errors. Either of these types of errors mean
that your $PKG_PATH is wrong.

2. No, it’s not. There is no ftp10.usa.openbsd.org. Follow the instructions. Look at the mirror
list and pick a mirror that actually exists and is close to you. Never blindly copy my examples!

Software Management 229

You can also list multiple package repositories. If the package tools
don’t find a desired package in the first repository, they try the next one.
This lets you use a local package repository for your custom packages, and
then fall back to the official OpenBSD repository if you don’t have a local
package. I use this when I must build a custom package for my network and
want to use it across multiple machines.

Installing packages via FTP or HTTP is not quite as secure as installing
them from CD. While the OpenBSD release team has verified all the pack-
ages on the CD set, an intruder could have tampered with whatever mirror
you choose. These intrusions would be caught comparatively quickly, but
it’s possible that you could install packages between the time of the intru-
sion and the time the damage is reversed. If you’re deeply concerned about
package integrity, get an official CD set.

Finding Packages
As I write this, the latest OpenBSD/i386 snapshot has 7485 packages on the
FTP site. This is a long list to browse through to find the specific package
you want. If you have the ports tree installed, you can search it for packages,
but if you wanted to use the ports tree, you wouldn’t be using packages, now
would you?

Say you need a piece of software that runs only on Apache 2.2. How can
you find this? Find packages on the command line, or use a website.

N o t e 	 Most people don’t need an external web server on OpenBSD; the web servers included
with OpenBSD are perfectly fine for average users. I would install Apache 2.2 only if
I had a specific application written for Apache 2.2. If you want to run, say, a PHP
web application, just use OpenBSD’s included nginx web server.

Finding Packages on the Command Line

pkg_info(1) displays information about packages. While you would normally
use pkg_info to explore the packages you’ve already installed, you can use -Q
to run a case-insensitive search on the packages in your package repository.
If you know part of the package name, try the package search.

$ pkg_info -Q apache
apache-ant-1.8.2p3
apache-couchdb-1.0.1p2
apache-httpd-2.2.22
apachetop-0.12.6
modsecurity-apache-1.9.3p5
p5-Apache-ASP-2.61p0
...

From the names, you can guess that the package apache-httpd-2.2.22
contains Apache 2.2.

230 Chapter 13

Finding Packages on the Web

The easiest way to search packages is to use the unofficial OpenBSD Ports
website at http://www.openports.se/. While this isn’t an official OpenBSD
website, it has provided a good interface into the OpenBSD ports tree for
several years. If I search for Apache on this site, the third hit is for “www/
apache-httpd, apache HTTP server.”

Once you know the name of the package containing the software you
want, you can install it.

Installing Packages
Use pkg_add(1) to install packages. You don’t need the version number—just
the package name. Here, I install the Apache package I found earlier:

pkg_add apache-httpd
u apache-httpd-2.2.22:libiconv-1.14: ok

apache-httpd-2.2.22:pcre-8.30: ok
...

v apache-httpd-2.2.22: ok
w The following new rcscripts were installed: /etc/rc.d/httpd2

See rc.d(8) for details.
x --- +apache-httpd-2.2.22 -------------------

This is the official httpd distributed by the Apache Server Project,
provided as a port for those who, for various reasons, need to run
version 2.

OpenBSD provides a custom Apache server, httpd(8), in the base system
which has been audited for security and may run in a chroot(2)
environment. Users are STRONGLY encouraged to use the system httpd
rather than this port.

A great deal of software requires other software to run, and OpenBSD’s
package tools track these dependencies. pkg_add starts my Apache installation
by installing the various dependencies of the chosen package, as shown at u.
Apache 2.2.22 requires libiconv and pcre, among several other packages. As
each package installs, you’ll see a progress bar scroll across the screen. If a
dependency cannot be installed, the package installation terminates.

After installing all the dependencies, pkg_add installs the actual
Apache 2.2 package, as shown at v. At the end of package installation,
you’ll see notices for startup scripts added by the package, as shown at w,
and then any notes from the OpenBSD team about the packages, like
those at x.

Which Files Are Installed?

Use the -L option to pkg_info to see which files a package installs.

$ pkg_info -L apache-httpd
Information for inst:apache-httpd-2.2.22

Software Management 231

Files:
/usr/local/include/apache2/ap_compat.h
/usr/local/include/apache2/ap_config.h
/usr/local/include/apache2/ap_config_auto.h
/usr/local/include/apache2/ap_config_layout.h
/usr/local/include/apache2/ap_listen.h
...

As you can see, all of these files are installed under /usr/local. OpenBSD
installs all packages under /usr/local.

Verbose Installation

If you’re interested in the details of how pkg_add works, use the -v flag to
trigger verbose mode. You can specify multiple -v flags for added detail. I
recommend trying verbose mode a few times, in varying levels of detail, to
get a deeper understanding of what pkg_add actually does.

Ambiguous Packages

Sometimes pkg_add needs an extra hint about what you want to install. For
example, everything in my production network is tied together with LDAP,
and I need to run an OpenLDAP mirror in each datacenter. (I could
use OpenBSD’s integrated LDAP daemon instead, but the master servers
run OpenLDAP, and I don’t want to mix LDAP servers.) The following is
my attempt to install OpenLDAP.

pkg_add openldap-server
u Ambiguous: choose package for openldap-server

 a 0: <None>
 1: openldap-server-2.3.43p10
 2: openldap-server-2.4.31p0
Your choice: 2

v Ambiguous: choose dependency for openldap-server-2.4.31p0:
 a 0: cyrus-sasl-2.1.25p3
 1: cyrus-sasl-2.1.25p3-db4
 2: cyrus-sasl-2.1.25p3-ldap
 3: cyrus-sasl-2.1.25p3-mysql
 4: cyrus-sasl-2.1.25p3-pgsql
 5: cyrus-sasl-2.1.25p3-sqlite3
Your choice: 2

w Detected loop, merging sets ok
| cyrus-sasl-2.1.25p3-ldap
| openldap-client-2.4.31
openldap-server-2.4.31p0:cyrus-sasl-2.1.25p3-ldap+openldap-client-2.4.31: ok
openldap-server-2.4.31p0:db-4.6.21v0: ok
openldap-server-2.4.31p0:icu4c-49.1.2p1: ok
openldap-server-2.4.31p0: ok
The following new rcscripts were installed: /etc/rc.d/saslauthd /etc/rc.d/
slapd
See rc.d(8) for details.

232 Chapter 13

As you can see at u, OpenBSD has two OpenLDAP server packages:
recent releases of version 2.3 and version 2.4. I want version 2.4. The OpenBSD
OpenLDAP package is compiled with Cyrus SASL (Simple Authentication
and Security Layer), which in turn comes in six different flavors, as you
can see at v—one for each supported database. I choose the version that
uses LDAP as its backend. (I don’t need this particular SASL; any SASL
will suffice.)

pkg_add realizes that this is something of a chicken-and-egg prob-
lem. LDAP is compiled using Cyrus, but Cyrus is compiled using LDAP.
Fortunately, as you can see at w, it knows that this is a permissible configu-
ration. The dependencies are installed, and then the OpenLDAP server
that I want is added.

Identifying Where Files Originate
As you’ve seen in earlier examples, many packages install other packages
as dependencies. Once you’ve installed a few complicated software pack-
ages, /usr/local starts to fill up with weird-looking files and programs.
Eventually, you’ll wonder which packages are needed or where a package
was installed from.

OpenBSD maintains records for every installed package in /var/db/pkg,
including files installed and dependency information, but wading through
these files resembles effort, and I won’t do it. Also, many package names
are obscure, opaque, obfuscated, or otherwise obtuse. (It’s not that the
OpenBSD packages team tries to make package names incomprehensible,
but there’s only so much it can do when the software has a name like icu4c.)

Thankfully, pkg_info(1) can easily answer most questions about your
installed software. Start by getting a complete list of all software packages
on the machine with the -a argument.

$ pkg_info -a
cyrus-sasl-2.1.25p3-ldap RFC 2222 SASL (Simple Authentication and Security Layer)
db-4.6.21v0 Berkeley DB package, revision 4
icu4c-49.1.2p1 International Components for Unicode
openldap-client-2.4.31 Open source LDAP software (client)
openldap-server-2.4.31p0 Open source LDAP software (server)
quirks-1.73 exceptions to pkg_add rules
tcsh-6.18.01 extended C-shell with many useful features

Hang on a minute! I’ve installed tcsh, of course, as my aged brain isn’t up
to learning a new shell. I installed OpenLDAP, and chose to add cyrus-SASL
as a dependency. Did pkg_add really install all of these other packages as
dependencies? Or has one of my junior admins installed extra cruft? Do
I really need all of these packages, or do I just need to smack a minion?

OpenBSD records which software packages you’ve installed, versus
those installed as dependencies. Use the -m flag to see only those packages
you manually installed.

Software Management 233

pkg_info -m
openldap-server-2.4.31p0 Open source LDAP software (server)
quirks-1.73 exceptions to pkg_add rules
tcsh-6.18.01 extended C-shell with many useful features

This looks more familiar. Apparently everything else really is a
dependency.

Now let’s look at some options. For longer descriptions of each package,
add the -d flag or use the -a flag to show information for all packages. If you
want to run pkg_info for a single package, use the package name as an argu-
ment. For example, -L shows the list of files a package installs. With the -a
flag, it will show all files included in all installed packages, but that’s prob-
ably more than you want. To show all files installed by a package, use the
-L flag and the package name.

$ pkg_info -L tcsh
Information for inst:tcsh-6.18.01

Files:
/usr/local/bin/tcsh
/usr/local/man/man1/tcsh.1
/usr/local/share/nls/C/tcsh.cat
/usr/local/share/nls/de_AT.ISO_8859-1/tcsh.cat
/usr/local/share/nls/de_CH.ISO_8859-1/tcsh.cat
/usr/local/share/nls/de_DE.ISO_8859-1/tcsh.cat
...

As you can see, the tcsh(1) package includes the actual tcsh binary, the
man page, and a whole bunch of National Language Support (NLS) files.
Given a package name, you can identify which files are part of the package.

Going the other way, sometimes you want to know where a particular file
originated. For example, I occasionally browse my server filesystems looking
for weird stuff. I define “weird stuff” as “things I don’t recognize.” If I see an
unfamiliar program or file, I’ll check to see which package installed it.

$ pkg_info -E /usr/local/sbin/pluginviewer
/usr/local/sbin/pluginviewer: cyrus-sasl-2.1.25p3-ldap
cyrus-sasl-2.1.25p3-ldap RFC 2222 SASL (Simple Authentication and Security
Layer)

The only pluginviewer I had previously encountered was one designed to
help Unix web browsers run third-party software when a website demanded
a plug-in. I don’t know what this pluginviewer does, but apparently it’s a legit-
imate part of cyrus-SASL. To find something to worry about, I need to keep
looking.3 If you do many file searches like this, you can get faster results by
using pkglocatedb (/usr/ports/databases/pkglocatedb).

3. If you don’t see anything to worry about on any given server, you aren’t looking hard enough.

234 Chapter 13

After installation, many packages show a message, which I frequently
read and promptly forget. To display this information again, use pkg_info
with the -M flag.

$ pkg_info -M apache-httpd
Information for inst:apache-httpd-2.2.22

Install notice:
This is the official httpd distributed by the Apache Server Project,
...

If you don’t remember which package had the message you wanted,
use the -a flag instead of a package name to display the messages for all
packages that have one. To show all packages that are not required by other
packages, use the -t flag, which you might think matches all packages you
chose to install. If you didn’t request a package, it could only be installed as
a dependency to something you requested, right?

$ pkg_info -t
apache-httpd-2.2.22 apache HTTP server
icu4c-49.1.2p1 International Components for Unicode
quirks-1.73 exceptions to pkg_add rules
tcsh-6.18.01 extended C-shell with many useful features

I know that I did not choose to install icu4c. I have no moral objections
to the software, mind you, but it’s nothing I requested. How did a piece of
software that I didn’t choose to install, and isn’t required by anything else,
get on this system?

It’s there because I uninstalled something that required it.

Uninstalling Packages
To remove a previously installed package, use pkg_delete(1).

pkg_delete openldap-server
openldap-server-2.4.31p0: ok
Read shared items: ok
--- -openldap-server-2.4.31p0 -------------------
You should also run /usr/sbin/userdel _openldap
You should also run /usr/sbin/groupdel _openldap

pkg_delete does not request confirmation. It doesn’t ask if you are sure.
It just blasts the software off the disk and gets on with its day. It also doesn’t
remove the unprivileged users and groups created for the software, as you
might still have files owned by them.

Remember that many packages require other packages. By default,
pkg_delete doesn’t remove dependencies of packages you remove. For exam-
ple, earlier we saw that icu4c had been installed automatically as a leftover
dependency from a removed OpenLDAP server package. To automatically

Software Management 235

remove unneeded dependencies, use the -a flag. For example, to completely
eradicate the openldap-server package and its infrastructure from the machine,
run pkg_delete twice.

pkg_delete openldap-server
pkg_delete -a

This should clean your system of all packages installed as dependencies.

Package Limitations
The package system is fast, efficient, reliable, and the OpenBSD Project’s
preferred way for users to install software. But the system does have a few
limitations that you should be aware of, including lags in the software-
porting process and the support for newer packages on older versions of
OpenBSD.

Each OpenBSD release supports only packages built for that release,
and new packages are not built for old releases. The packages issued with
the release are all you’ll get. (There are slight exceptions to this if you’re
running -stable; see Chapter 20.) If you’re running OpenBSD 5.3 and try
to install packages from OpenBSD 5.4, they won’t work.

Most packages include software produced by third parties. OpenBSD
provides the packaging, but the software itself is released on a schedule
completely independent of OpenBSD’s. After the software developers
release their newest software, the OpenBSD package is updated, but there’s
a gap between the software’s release date and the release of the OpenBSD
package. A popular package might be updated in hours, while larger, less
frequently used, or unpopular packages can languish at an older version
for days or weeks. These packages are not officially available until the next
OpenBSD release, so you might run software that’s a point or two behind
the latest for a few months. Usually, this is not a problem (if it is, investigate
OpenBSD’s -stable branch, discussed in Chapter 20.)

N o t e 	 If packages won’t work for you, investigate building third-party software through ports.
You won’t get newer versions of the software, but you can get slightly different versions.

Using Ports
The ports collection is the toolkit to build OpenBSD packages. Installing
software from ports takes longer than installing via packages, is more error-
prone, and requires a deeper understanding of the system and the add-on
software than packages demand. You can’t get packages for every possible
situation, however (one particularly annoying example is when the license
for a particular piece of software makes it illegal for the OpenBSD project
to create and distribute packages), and sometimes ports are the only way to
get third-party software on your OpenBSD system short of compiling it
yourself.

236 Chapter 13

What makes ports interesting is their level of automation. With one
command, a port can find the source code for a program, download it,
verify its integrity, apply any patches needed to make it run on OpenBSD,
toggle any flags needed for any custom features of your system, build the
code into actual binaries, produce a package, and install it. If you have com-
piled software on other platforms, you’ll quickly realize how ports simplify
building software.

Like packages, ports work only on the version of OpenBSD for which
they are released. That means that you must use the OpenBSD 5.4 ports col-
lection on OpenBSD 5.4; the 5.5 ports collection won’t work. Oh, it might
look like it works sometimes, but the software will fail unpredictably, and no
one will have sympathy for you (sympathy for your coworkers, perhaps, but
not for you).

When you upgrade OpenBSD, the expectation is that you will upgrade
your ports collection and all installed packages to the precise matching ver-
sion. You might be able to use older packages on a newer OpenBSD, as long
as you don’t delete the older shared libraries required by the software.

The Ports Tree
The ports tree is usually installed in /usr/ports. If you want the ports tree,
you must manually fetch the ports.tar.gz file from your OpenBSD release and
extract it under /usr.

N o t e 	 I suggested this way back in Chapter 4, but you can also get the ports tree and keep
the files up to date using cvs(1), as covered in Chapter 20. Look in this directory,
and you’ll find a whole bunch of directories and files.

The INDEX file contains a list of every port in the system, in alphabeti-
cal order but machine-readable format. You can search this file for ports,
but I recommend using one of the tools discussed later to do so.

The Makefile contains the basic machine instructions for making the
ports system work. While it’s intended for use by make(1), you can learn a lot
by reading the makefile for any port. Most of the really complicated ports
code is in the ports/infrastructure directory, and all of the makefiles in the
ports system build on that infrastructure.

The remaining directories are software categories. Each category con-
tains a further layer of directories, and each directory under a category is a
port of a specific piece of software. OpenBSD has more than 7600 ports as
of this writing, so this hierarchical organization is vital to keeping them in
some sort of manageable order.

For example, the following is a listing of the contents of the news direc-
tory, which contains programs for using and managing Usenet news. This
is one of the smaller categories. Some categories have hundreds of entries,
but they’re arranged in much the same way.

Software Management 237

CVS leafnode p5-News-Article py-yenc tin
Makefile newsfetch p5-News-Newsrc sabnzbd trn
aub nn pan sickbeard ubh
hellanzb p5-Gateway plor slrn
yencode

Like the CVS directory in the main ports tree, the category’s CVS
directory contains CVS version control information that doesn’t matter
for day-to-day operation. The Makefile contains a list of valid ports within
the category. You can build all of the ports in this category using this
makefile, although that’s mostly useful only when building packages en
masse. (When the OpenBSD Project team builds everything in the ports
tree, it uses /usr/ports/infrastructure/bin/dpb.)

Let’s go down another level. Here’s the port for tcsh, one of my non
negotiable requirements as a sysadmin:

$ ls /usr/ports/shells/tcsh
CVS Makefile distinfo patches pkg

The CVS directory contains version control information, as in every
CVS directory.

The Makefile gives specific instructions for building tcsh on OpenBSD,
including where to get the software and any patches, how to extract it, where
the package can be distributed from, and any supported customizations.

The distinfo file contains several different cryptographic hashes for the
source code to be downloaded, to avoid building software from compro-
mised source code, and the size of the source file. Newer ports contain only
SHA-256 hashes.

N o t e 	 While it’s possible (difficult, but possible) to have a compromised file match a specific
hash, it’s extremely unlikely that an altered source code file could match hashes com-
puted with several different algorithms and have the same size as the uncompromised
code. Even if people figure out how to break a particular hash, use of multiple hashes
and the file size make compromising a source file nearly impossible.

The patches directory contains code alterations needed to make this
software run on OpenBSD. Some ports have no patches; others have dozens.

Finally, the pkg directory describes the package and lists the files that
the complete package must include.

Secondary Ports
Some ports include other ports. Here are the contents of the emulators/
fedora port.

CVS Makefile Makefile.inc base cups motif sdl

238 Chapter 13

The file Makefile.inc is new, as are the subdirectories base, cups, motif, and
sdl. The subdirectories are independent ports. These four ports are often
installed together, and as a whole, support OpenBSD’s Linux emulation
(documented in compat_linux(8)). All four ports call in the common instruc-
tions in Makefile.inc. (The ports tree doesn’t include many of these, but don’t
be shocked when you find one.)

Read-Only Ports Tree
The process of building a port creates an installable package and uses a
whole bunch of temporary files, source files, and status files. By default,
all of these files are placed inside the ports tree itself. While this works, I
encourage you to treat /usr/ports as a read-only OpenBSD directory tree,
just like /usr/bin, /usr/lib, and so on. Doing so simplifies upgrading and
identifying local changes, helps identify what you’ve built from ports, and
saves space on the /usr partition.

N o t e 	 Build files for ports can range from a few kilobytes to several gigabytes, so it’s best to
build ports on a large scratch partition. If you have unpartitioned disk space, create
a partition just for building ports. Or use any partition with space, or even an NFS
partition.

Configure the ports collection by setting variables in /etc/mk.conf. To
use a read-only ports tree, set the variables in these directories:

WRKOBJDIR  Directory where the software is extracted from source and
compiled. These can be deleted and re-created as needed.

PACKAGE_REPOSITORY  Directory where completed packages are stored.
The ports collection builds packages, which you can then install.

PLIST_DB  Directory where package packing lists are stored.

BULK_COOKIES_DIR  Directory for storing status cookies during mass
builds of packages.

UPDATE_COOKIES_DIR  Directory for storing status cookies during mass
updates of packages.

DISTDIR  Directory where vendor source code is kept. Source code is
usually retained for reuse.

If these directories are owned by your regular user account, you can do
a large part of package building without being root.

On one particular test system, I have hundreds of gigabytes free in /home,
so I chose to put my package directories there. Here’s my /etc/mk.conf :

WRKOBJDIR=/home/ports/wrkobjdir
DISTDIR=/home/ports/distdir
PLIST_DB=/home/ports/plist
BULK_COOKIES_DIR=/home/ports/bulk_cookies
UPDATE_COOKIES_DIR=/home/ports/update_cookies
PACKAGE_REPOSITORY=/home/ports/pkgrepo

Software Management 239

The ports system will build everything in /home/ports/wrkobjdir. Original
source code files go in /home/ports/distdir. The ports system maintains
various records in /home/ports/update_cookies and /home/ports/bulk_cookies.
Completed packages go into /home/ports/pkgrepo.

N o t e 	 If you have a dedicated port-building machine, consider per-release package reposi-
tories. For example, I might have three versions of OpenBSD running at any given
time. The package-building machine always runs the latest release, but I don’t want
to throw away my old packages, so I use a package repository directory like /home/
ports/pkgrepo/5.4 for packages built on a 5.4 system.

Finding Software
As with packages, the first problem with ports is finding software you want.
(To randomly poke around the ports tree in a pretty interface, see the
http://www.openports.se website.) OpenBSD has several ways to search the
ports collection, including the ports index, keywords, and via SQL.

The Ports Index

The file /usr/ports/INDEX lists all software in the ports tree, sorted by
category and then alphabetically. If you have a good idea what your port
is called, you can search the file for your preferred software. The index
describes each port in a single pipe-delimited line, much like this:

gcpio-2.11|archivers/gcpio||GNU copy-in/out (cpio)|archivers/gcpio/pkg/
DESCR|The OpenBSD ports mailing-list <ports@openbsd.org>|archivers|
STEM->=0.10.38:devel/gettext converters/libiconv|STEM->=0.10.38:devel/
gettext|STEM->=0.10.38:devel/gettext|any|y|y|y|y

While the ports tree itself finds this a convenient format, it’s not par-
ticularly human-readable. To translate this to a human-friendly format,
go into /usr/ports and run make print-index. (This process goes on for tens
of thousands of lines, so feed it to a pager.) Here’s the same port in the
human-readable format:

$ cd /usr/ports
$ make print-index | less
...
Port: gcpio-2.11
Path: archivers/gcpio
Info: GNU copy-in/out (cpio)
Maint: The OpenBSD ports mailing-list <ports@openbsd.org>
Index: archivers
L-deps: STEM->=0.10.38:devel/gettext converters/libiconv
B-deps: STEM->=0.10.38:devel/gettext
R-deps: STEM->=0.10.38:devel/gettext
...

240 Chapter 13

The Port statement gives the official name of the port and the version
of the ported software. This software is called gcpio, and it’s at version 2.11.
The Path gives the ports tree category and directory where the port can be
found—in this case, archivers/gcpio. The Info line gives a very brief descrip-
tion of the software. This is the GNU version of cpio(1). The Maint, or main-
tainer, is the person or group responsible for maintaining this software in
the ports tree. The OpenBSD ports team supports the gcpio port. The best-
maintained ports usually have an individual as a maintainer, rather than
the mailing list.

The final three entries describe other software required by this soft-
ware. The L-deps line lists shared libraries, B-deps lists software needed to
build this port, and R-deps lists the port’s runtime dependencies.

What good does this do? Suppose you’re still hung up on an Apache 2
web server. You can search INDEX for ports beginning with “apache.”

$ grep -i ^apache INDEX
...
apache-httpd-2.2.20p1|www/apache-httpd||apache HTTP server|www/apache-httpd/
pkg/DESCR|The OpenBSD ports mailing-list <ports@openbsd.org>|www net|
apr-util-*-!ldap:devel/apr-util converters/libiconv devel/pcre|STEM->=1.21:
textproc/groff|converters/libiconv|any|y|y|y|y

The first three (omitted) entries are ports related to Apache, but they
are not the web server software. The fourth line is our port.

Gathering this information from the index is rather limited, however.
If you don’t know the name of the software, or how OpenBSD packages the
software, you can’t easily find the port. In that case, try one of the other
methods discussed next.

Finding by Keyword

If you don’t know a package’s exact name, try the ports collection’s search
feature: make search and a key scans the index for a specific word. To search
for Apache-related software, try this:

$ make search key=apache

On my system, this returns 62 results. You’ll need to scroll through
several pages of possibilities, but you’ll find what you want.

You might need to try several possible keywords for a particular pack-
age, as some keywords have no hits and others generate too many.

Finding via SQL

The sqlports package lets you build a database of the INDEX file, permit-
ting you to search for ports based on highly arbitrary criteria via SQL. For
example, say you want to know all ports that depend on libiconv and expat.
In this case, sqlports is your friend. Install it from ports or packages, and it
will automatically build a database in /usr/local/share/sqlports from INDEX,
and then use OpenBSD’s sqlite3 to query the database.

Software Management 241

I won’t teach SQL4 here, but just as an example, here’s how to search for
ports whose name includes the string “apache” using sqlports (which can
build much more complex queries than this one):

$ sqlite3 /usr/local/share/sqlports
sqlite> select fullpkgname from ports where fullpkgname like '%apache%';
apache-couchdb-1.0.1p2
apache-ant-1.8.2p3
apachetop-0.12.6
apache-httpd-2.2.22
modsecurity-apache-1.9.3p5
p5-Apache-ASP-2.61p0
p5-Apache-DB-0.14p3
...

The Apache httpd server is the fourth hit, but there are another dozen
or so ports. Every name that begins with p5- is a Perl module.

Building Ports
You’ve decided to ignore the OpenBSD team’s recommendations to use
packages, downloaded and extracted the ports tree, found software you
need to install from ports, and designated an area for building ports.
Now what?

The port directories don’t contain actual source code. When you build
a package from a port, the system does the following:

•	 Automatically downloads the appropriate source code from an
approved Internet site

•	 Checks the downloaded code for integrity errors

•	 Extracts the code to the build area

•	 Patches the code

•	 Compiles the code

•	 Creates the package

•	 Installs the package (optional)

Additionally, if the port you’re adding has unmet dependencies, the
system also handles installing those dependencies.

To make all this happen, just go to the port directory and enter this
command:

make install

You should see the port build the software, create the package, and
install the package on your system.

4. This example exhausts my understanding of SQL. As long as I maintain my database
ignorance, people won’t expect my help fixing their databases.

242 Chapter 13

What a Port Installation Does
It’s time to dissect a port build and installation. Here’s how to install tcsh
from a port:

cd /usr/ports/shells/tcsh
make install
===> Verifying specs: c termlib c termlib
===> found c.65.0 termlib.12.1
===> Checking files for tcsh-6.18.01
>> Fetch ftp://ftp.astron.com/pub/tcsh/tcsh-6.18.01.tar.gz
tcsh-6.18.01.tar.gz 100% |**
| 905 KB 00:00
>> (SHA256) tcsh-6.18.01.tar.gz: OK

The port first checks to see if the software’s required libraries are in
place. Building tcsh requires the termlib and c libraries. The port finds
termlib but not a file containing the tcsh source code on the local system,
so the port fetches the code. (When building a port, you should see the sys-
tem downloading the appropriate source code.) The port then verifies the
checksum of the downloaded code. If the port can’t get all of the code, or
the checksums don’t match, the build process stops.

Once all necessary source code is downloaded and verified, the build
continues with something like this:

...
===> Extracting for tcsh-6.18.01
===> Patching for tcsh-6.18.01
===> Configuring for tcsh-6.18.01
Using /usr/ports/pobj/tcsh-6.18.01/config.site (generated)
configure: WARNING: unrecognized options: --disable-silent-rules
configure: loading site script /usr/ports/pobj/tcsh-6.18.01/config.site
checking for a BSD-compatible install... /usr/bin/install -c -o root -g bin
checking build system type... i386-unknown-openbsd5.2
checking host system type... i386-unknown-openbsd5.2
...

The port extracts the source code from the compressed file(s), applies
any OpenBSD-specific patches, and starts the build process. (Many of you
know that configure is not the same as building software, but not all software
requires a configure step. The port knows what to do.)

The build process will go on for many lines. Building something like
OpenOffice can take days and generate hundreds of thousands of lines
of output.

N o t e 	 If you need to debug a port build failure, those messages that scroll off the top of your
screen or terminal window contain all the clues you get. For that reason, I often build
ports in a script(1) session. If you like the idea of keeping build messages around, see
the script man page for details.

Eventually, you should see a message that the build has finished and the
port is installing the software.

Software Management 243

...
===> Faking installation for tcsh-6.18.01
install -c -s -o root -g bin -m 555 /home/ports/wrkobjdir/tcsh-6.18.01/tcsh-
6.18.01/tcsh /home/ports/wrkobjdir/tcsh-6.18.01/fake-i386/usr/local/bin/tcsh
install -c -o root -g bin -m 444 /home/ports/wrkobjdir/tcsh-6.18.01/tcsh-
6.18.01/tcsh.man /home/ports/wrkobjdir/tcsh-6.18.01/fake-i386/usr/local/man/
man1/tcsh.1
install -c -o root -g bin -m 444 /home/ports/wrkobjdir/tcsh-6.18.01/tcsh-
6.18.01/nls/C.cat /home/ports/wrkobjdir/tcsh-6.18.01/fake-i386/usr/local/
share/nls/C/tcsh.cat
...

The port installs the software in a temporary location in the port building
directory, but that’s not where we want the software installed! Remember
that the ports system builds packages, and then installs from the package.
This “fake” installation is for building the package.

...
===> Building package for tcsh-6.18.01
Create /home/ports/pkgrepo/i386/all/tcsh-6.18.01.tgz
...

There’s the package, retained in the package repository specified ear-
lier. You might want to grab this file to install on your other machines, or
perhaps even share the package repository via NFS.

Now, because we specified make install on the command line, the port
installs the created package.

...
===> Verifying specs: c termlib
===> found c.65.0 termlib.12.1
===> Installing tcsh-6.18.01 from /home/ports/pkgrepo/i386/all/
...
tcsh-6.18.01: ok
#

Installing the package requires making some of the same checks as
building the package. Yes, the port could not have built the package with-
out those libraries, but the ports system doesn’t assume that the package
was built on the local system.

Port Build Stages
The package build process actually includes several stages, or smaller chunks
of build procedure. Each stage performs all the stages before it. The final
stage, make install, calls all of them, which provides several points where
you can intervene in the port build process. If you want to make custom
changes to a package, you can do it here.

Let’s look at each of the stages called for every port build.

244 Chapter 13

The make fetch Stage

The make fetch stage gets the source code, or distfiles, for the port. First, it
looks in any directories specified by the mk.conf variable $DISTDIR. If this vari-
able isn’t set, it looks in the directory specified by the shell environment
variable $DISTDIR. If neither variable is set, it looks in /usr/ports/distfiles. If
make fetch finds the distribution files and thinks that they’re the correct ver-
sion, it hands control to the next requested stage, and the build continues.

If the source code is not on the local machine, make fetch tries to down-
load it from an Internet site specified in the port’s makefile as MASTER_SITES.
(You can customize download locations, as discussed in “Customizing Ports”
on page 246.)

You’ll find the make fetch command very useful when there are certain
times in your day when you can download more easily than other times. For
example, I have a T1 to my house,5 but my employer’s office has roughly
66 times as much bandwidth as I have at home. I can run make fetch on my
laptop while visiting my employer, go home, and build the port in peace.
(And the boss thinks I come in because he buys lunch.)

The make checksum Stage

The make checksum stage verifies that distfiles have not been corrupted, either
by the download process or maliciously. OpenBSD includes several different
checksums for each distfile, but only checks that the SHA-256 checksum
matches the distfile. If the checksum matches, the build proceeds to the next
stage. If the checksums do not match, the build immediately aborts. The
build will not continue until you find a distfile that matches the checksum.

Not all software developers are conscientious about updating the names
of their distfiles when they update their software. For these software pack-
ages, the foo-1.0.tgz file the port developer downloaded in the morning might
differ from the foo-1.0.tgz file you download later that same day. Perhaps the
original software author thought that no one would notice, but the OpenBSD
folks would, if only via the logic built into the ports tools. After all, the ports
system can’t tell the difference between a source file quietly modified by the
software author and a source file quietly modified by an intruder. If you get
a distfile that doesn’t match the recorded checksum, try to fetch a matching
file by setting the REFETCH variable to true.

make checksum REFETCH=true

Now make will walk through all the distfile sources listed in the port,
downloading them successively in an effort to find a distfile that matches
that used by the port developer.

If you are absolutely certain that the file you downloaded is the correct,
untampered-with one, but it still doesn’t pass make checksum, you’re wrong. If
you know that you’re wrong, but you really do want to install compromised

5. Don’t laugh. It’s paid for.

Software Management 245

or damaged software, set the environment variable NO_CHECKSUM=yes to skip
the make checksum stage.

W a r n i n g 	 Skipping the make checksum stage might be valid for debugging, but it certainly isn’t
the way to create a stable, useful, or secure package. You also might invalidate the rest
of the port. Perhaps the OpenBSD patches will no longer apply cleanly, the software
just won’t run, or you could even be installing a backdoor, inviting scumbags to stash
problematic content on your machine. You are utterly on your own if you insist on
ignoring a checksum mismatch.

The make prepare Stage

At this point, the ports system gets into recursion. At make prepare, the port
checks for any software needed to build or run the software you’re trying
to build. If the port lists any of these dependencies, it checks to see if they
are installed. If the dependencies are not installed, this stage kicks off make
install for those required ports. Once all of the required dependencies are
installed, this stage ends.

The make extract Stage

The ports system must extract the source code from the distfile before
building the software. Source code is extracted into the directory defined
by $WRKOBJDIR, or in a directory under /usr/ports/pobj/ named after the
port. By default, my tcsh port would extract under /usr/ports/pobj/tcsh, but
because I defined a separate location for building software, it’s built under
/home/ports/wrkobjdir/tcsh.

The make patch Stage

Any patches included in the port’s patches directory are applied in the make
patch stage. If the patches all apply correctly, this stage ends. If the patches
do not apply correctly, the port fails.

To apply your own patches to the port, or to review the code before
compiling it, run make patch first. Your patches might conflict with the port
patches if you apply them first, cause compilation failures, or bring up any
number of other problems. By running make patch first, you get to see the
code as OpenBSD can compile it. Anything you break after that is definitely
your fault.

The make configure Stage

Many software packages use a configure script to prepare themselves for
compilation on a specific platform. The make configure command runs that
script. If you want to edit the configure script, do so before running this
stage! If there is no configure script, the port silently skips this stage.

246 Chapter 13

The make build Stage

The make build stage compiles the fetched, extracted, patched, and config-
ured software. If you type make in a port directory, the port calls make build.
This stage doesn’t assemble a package; it just performs the compilation and
creates the actual program binaries in the port’s work directory.

The make fake Stage

The make fake stage installs the software in a subdirectory, laid out exactly as
it would be under the root directory. This fake root directory is in the work
directory, named fake- with the architecture appended, such as fake-amd64.
Everything that will be in the package is installed under this directory, with
the same ownership and permissions that it will include in the package.

The make package Stage

The make package stage bundles up the port’s fake installation directory,
adds in packaging and installation instructions, and ties it all up in a pack-
age exactly like those available on the FTP site. The package will be stored
under the PKGREPO directory you defined earlier (or in /usr/ports/packages
if you didn’t define one), in a subdirectory organized by architecture, and
in further subdirectories organized by available distribution locations.

make package means that you can build this port on one machine with-
out installing it. You must install the build dependencies to build the port,
however.

The make install Stage

The make install stage runs pkg_add(1) to install the package you compiled.

The make clean Stage

Some packages require a lot of disk space. The make clean stage removes all
of the build files except the distfile and the completed package.

Customizing Ports
OpenBSD includes a variety of hooks to let you easily customize how you get
and build ports. If possible, you should use the OpenBSD-provided infra-
structure, but there may be cases where that’s not possible. Here, we’ll look
at some of the more commonly used customization settings.

Local Distfile Mirrors
While ports provide several places to get source code, you might want to
override those sites. Perhaps you share a network with a major mirror site,
or you don’t have unfettered Internet access. OpenBSD lets you set your
own preferred mirror sites.

Software Management 247

Preferred Collection Mirrors

Many software sources can be grouped into collections, which tend to be
mirrored together. An example is the official GNU software collection. A
GNU mirror site probably has everything in the official GNU collection.
The Gnu C Compiler Project has its own set of software and mirrors. There
are older software collections, such as SunSITE, and newer ones, such as
SourceForge.

Each collection is available from a list of mirror sites. OpenBSD
maintains lists of these mirror sites in /usr/ports/infrastructure/templates/
network.conf.template. Never edit this file; it’s a core ports file, and upgrading
changes it.

For example, here’s a list of mirrors for a smaller project, BerliOS:

...
MASTER_SITE_BERLIOS+= \
 http://download.berlios.de/ \
 http://download2.berlios.de/ \
 http://spacehopper.org/mirrors/berlios/
...

Several ports want to fetch BerliOS-related software from the main
BerliOS download site. The OpenBSD port developers have identified three
desirable mirrors, as listed in the variable MASTER_SITE_BERLIOS.

But suppose you have a BerliOS mirror much closer to you. Perhaps it’s
not an official mirror, or you’ve managed to finagle access to a nonpublic
mirror. It’s closer, it’s faster, and you would prefer to use it. OpenBSD looks
at /usr/ports/infrastructure/db/network.conf before the default mirror list. You
could copy the default mirror list to this file and edit it, but then you would
need to manually synchronize changes during upgrades. That’s work, and
therefore morally questionable. Instead, add entries only in network.conf,
and include the default network.conf.template.

Suppose you have a private BerliOS mirror at http://www.blackhelicopters​
.org/berlios/. You would create a network.conf file like this:

MASTER_SITE_BERLIOS+= \
 http://www.blackhelicopters.org/berlios/

.include "../templates/network.conf.template"

The += used in both network.conf and network.conf.template means “Add
this value to variable such-and-such.” More desirable mirrors appear first
in the list. This network.conf entry adds the private mirror to the variable
MASTER_SITE_BERLIOS, and then calls in network.conf.default, which appends
all of the other mirrors. The end result is that the BerliOS mirror list will
contain four mirrors: your preferred mirror first and the default OpenBSD-
approved mirrors later. If a file does not exist on a mirror, the port will try
the other mirrors in order.

248 Chapter 13

I used BerliOS as an example because it has a small mirror list, but the
same applies to any other software collection that OpenBSD recognizes.
Other collections available at this time are shown in Table 13-1.

Table 13-1: Some Software Collections

Collection Description

MASTER_SITE_GNU Software from the GNU project
MASTER_SITE_GCC Software from the GCC project
MASTER_SITE_XCONTRIB Contributions to the X Window System
MASTER_SITE_R5CONTRIB Older X Window System contributions
MASTER_SITE_SUNSITE A collection of Sun software
MASTER_SITE_SOURCEFORGE Software hosted by SourceForge
MASTER_SITE_SOURCEFORGE_JP Japanese SourceForge mirrors
MASTER_SITE_GNOME Software from the Gnome project
MASTER_SITE_PERL_CPAN The biggest Perl module collection
MASTER_SITE_TEX_CTAN Software for TeX typesetting
MASTER_SITE_KDE Software related to KDE
MASTER_SITE_SAVANNAH Software development hosted by the FSF
MASTER_SITE_AFTERSTEP Software related to the AfterStep window manager
MASTER_SITE_WINDOWMAKER Software related to the Window Maker window manager
MASTER_SITE_FREEBSD_LOCAL Software distributed by the FreeBSD Project, but not

included in FreeBSD
MASTER_SITE_PACKETSTORM Security software part of the Packet Storm collection
MASTER_SITE_APACHE Apache Foundation software
MASTER_SITE_BERLIOS Parts of the BerliOS Linux project
MASTER_SITE_MYSQL Software from the MySQL project (Oracle)
MASTER_SITE_PYPI Python software
MASTER_SITE_RUBYGEMS Modules for Ruby
MASTER_SITE_NPM JavaScript packages
MASTER_SITE_ISC Software from the Internet Software Consortium

If you have a Debian mirror in your university datacenter, list it in
network.conf. If it appears a second time, later in the list, because it’s listed
in network.conf.template, so what? Either the distfile is there, in which case
you save time and bandwidth, or the distfile isn’t there, in which case you
waste 50 milliseconds checking the local mirror a second time.

Fallback Mirrors

OpenBSD supports two fallback mirrors. If all other distfile sources fail,
you can check either the OpenBSD or FreeBSD mirrors for the file. Both
OpenBSD and FreeBSD tend to mirror distfiles for active ports. This isn’t

Software Management 249

preferred, because if everyone did this, it would use bandwidth that the
projects need for distributing their own software. But if you’re desperate,
set MASTER_SITE_OPENBSD and/or MASTER_SITE_FREEBSD to YES in network.conf.

Primary Mirror

You can have the ports system check a particular site first for all distfiles,
regardless of the download site listed in the port. Perhaps you have a local
mirror where you’ve stuck a whole bunch of distfiles, or you automatically
load distfiles from your ports-building machines to a central location.
Define this site with the variable MASTER_SITE_OVERRIDE in network.conf.

MASTER_SITE_OVERRIDE=ftp://ftp.mycompany.com/distfiles

N o t e 	 I’ve built local distfile mirrors many times, usually when starting a new job. I man-
age to update the mirror for about six months before some other task supersedes it and
the mirror becomes obsolete, so I don’t generally recommend this practice. But if main-
taining a local distfile mirror reduces your workload instead of increasing it, enjoy.

Flavors
Some ports can create multiple but slightly different packages through
flavors. The Apache 2.2 web server I keep dragging out as an example can
be built with or without LDAP support, as can programs with optional X
support. Shells can be built in dynamic or static versions. OpenBSD’s official
packages are built with the most common choices, but these alternatives are
reasonable and occasionally necessary.

To identify the flavors that a port supports, go to the port directory and
run make show=FLAVORS. Here’s how to check the flavors of the popular text
editor Vim:

cd /usr/ports/editors/vim
make show=FLAVORS
huge gtk2 athena motif no_x11 perl python ruby

You can guess what some of these eight flavors do, but how can you
learn about the others? You can check the package’s description file for
brief descriptions of each flavor. Here are the descriptions for the Vim
flavors, from editors/vim/pkg/DESCR-main:

...
Flavors:
 gtk2 - build using the Gtk+2 toolkit (default);
 motif - build using the Motif toolkit;  athena - build
using the Athena toolkit;
...

250 Chapter 13

Motif? I remember Motif. And now I’m going to try really hard to forget
it again. But if you want Motif support in your Vim version, go for it.

To fall back to my ongoing example, here are the flavors for Apache 2:

cd /usr/ports/www/apache-httpd
make show=FLAVORS
ldap

I use LDAP to attach websites to my central authentication system. If I
can get LDAP authentication on my web server, I want it.

Building a Flavored Port

Define any desired flavors with the $FLAVOR environment variable, but not in
your .profile or .cshrc file, as a port will not build if you request an unrecog-
nized flavor. Define it when you build the port. For example, while still in
the apache-httpd directory, I run this command:

env FLAVOR="ldap" make package
===> Checking files for apache-httpd-2.2.20p1-ldap
>> Fetch http://www.reverse.net/pub/apache/httpd/httpd-2.2.20.tar.gz
...
===> apache-httpd-2.2.20p1-ldap depends on: openldap-client-* - not found
===> Verifying install for openldap-client-* in databases/openldap
...

By your defining the flavor on the command line, the port knows to
check for the OpenLDAP client needed to build Apache. When the build
finishes, you should get a package file with the flavor appended—in this
case, apache-httpd-2.2.20p1-ldap.tgz.

Flavors and Dependencies

When you build a flavored port, the flavor does not propagate to dependen-
cies. You need to check the flavored port’s dependencies to see if they need
flavoring as well. For example, my flavored Apache package calls in the
OpenLDAP client, which has no flavors, but OpenLDAP calls in cyrus-SASL,
and if I check that port, I see this:

cd /usr/ports/security/cyrus-sasl2
make show=FLAVORS
db4 ldap mysql pgsql sqlite3

Cyrus SASL comes in LDAP flavor, but defining that I want Apache
built in LDAP flavor doesn’t mean that cyrus-SASL will also be built with
LDAP support. If I need LDAP support in this dependency, I must build it
separately. I don’t need it for my environment, so I won’t bother, but check
for potential issues like these when building your packages.

Software Management 251

If you decide to rebuild a dependent port with a flavor, be sure to
rebuild all the ports that depend on that port afterward. Be sure that your
packages have correct dependencies using the targets print-build-depends
and print-run-depends. Here, I see which ports I’ll need to build for my fla-
vored Apache 2:

env FLAVOR="ldap" make print-build-depends
This port requires package(s) "metaauto-1.0 gperf-3.0.4 libiconv-1.14
gettext-0.18.1p1 gmake-3.82p1 groff-1.21p8 pcre-8.30 help2man-1.29p0
autoconf-2.65 autoconf-2.68 cyrus-sasl-2.1.25p3 icu4c-4.8.1.1p0 db-4.6.21v0
openldap-client-2.4.31 apr-1.4.6 apr-util-1.4.1-ldap" to build.

I can check the flavors of each of these ports.

Building Multiple Flavors

You can build multiple flavors of one port on the same system. Each pack-
age filename includes the flavor, so you can have packages for both the
Motif and GTK2 versions of Vim. Carefully inspect the dependencies to ver-
ify that each is built with the correct flavoring. For packages with flavored
dependencies, I recommend removing every flavored dependency and
rebuilding them all again, so that everything gets the correct flavor.

Uninstalling and Reinstalling Flavored Ports

Flavoring a package changes its name. I can’t run pkg_delete apache-httpd
because it’s not installed. Query the system for the packages you’ve manu-
ally installed, and you’ll see this:

pkg_info -m
apache-httpd-2.2.20p1-ldap apache HTTP server
...

When working with this package, you must specify the flavor.

pkg_delete apache-httpd-2.2.20p1-ldap
apache-httpd-2.2.20p1-ldap: ok
...

Similarly, to reinstall a flavored package, specify the flavored package file.

Subpackages
Some ports contain multiple wildly different packages. This isn’t like add-
ing LDAP support to Apache or Motif support to Vim—those are changes
to the existing package, not wildly different. Some ports create two com-
pletely different packages, such as a database client and the associated

252 Chapter 13

database server. I’ve drawn in OpenLDAP through this chapter’s examples,
and both the OpenLDAP server and client come from the same port:
databases/openldap. Other applications might have plug-ins for access-
ing several different database engines. These are called subpackages or
multipackages.

Unlike flavors, OpenBSD provides all subpackages of a port. You can
install both the server and client versions of OpenLDAP from official pack-
ages. When the port is built, all the subpackages are built. The package is
split into subpackages at the package-bundling stage.

To see all the subpackages supported by a port, run the following
command:

cd /usr/ports/databases/openldap
make show=MULTI_PACKAGES
-main -server

This port has two subpackages: openldap-main and openldap-server.
How can you learn what each subpackage includes? As with flavors, you

can check its description file, which is pkg/DESCR . OpenLDAP includes
pkg/DESCR-server and pkg/DESCR-main. Reading these shows that the main
package is the client, as you would expect.

If you run make install in the port directory, you get the main version
of the port—in this case, the OpenLDAP client. OpenLDAP clients out-
number the servers, so that’s also what you would expect. To build a different
subpackage, set SUBPACKAGE in the environment on the command line, as you
did for flavors.

env SUBPACKAGE="-server" make package

This builds the -server version. Be sure to include the leading dash, as
specifying a nonexistent subpackage makes the build fail.

Packages and rc.d Scripts
Chapter 5 covered how to have OpenBSD start packaged software, but let’s
review it quickly. When you install a package that can be started at boot
time, the package also installs a startup script in /etc/rc.d. If I install the
OpenLDAP server, the package installation will report:

...
The following new rcscripts were installed: /etc/rc.d/slapd

To start the slapd(8) OpenLDAP server at boot, add the script name to
the pkg_scripts variable in /etc/rc.conf.local.

pkg_scripts="slapd"

Software Management 253

OpenBSD runs these scripts in order at boot, and in reverse order at
shutdown.

To change a package’s command-line arguments from the default, add
a command_flags variable to rc.conf.local. Do not edit the startup script.

slapd_flags="-u _openldap -6 -l local0"

You can now manage your add-on software in any way you need.
Now let’s move on to configuring OpenBSD’s integrated software,

through the files in /etc.

14
E v e r y t h i n g / e t c

You are in a maze
of twisty little configs;

no two are alike.

When I get saddled with an unfamiliar
server, the first thing I do is look for the

previous sysadmin’s documentation. When
I discover there isn’t any, I study the /etc direc-

tory because it contains the basic configuration for a
Unix-like system. The fastest way to go from a junior sysadmin to a mid
grade one is to read /etc and the associated man pages—all of the docu-
mentation. Yes, that’s a lot of reading.

Once you understand /etc, you understand how the system hangs
together. You must learn all this anyhow, but you might as well take the
easier route and learn it up front rather than in an unscheduled series of
desperate troubleshooting sessions. (I’ve already discussed many /etc files in
earlier chapters where relevant, such as /etc/fstab in Chapter 8 and /etc/services
in Chapter 11.)

Some files that you’ll find in /etc are of only historical interest or are
gradually dying out. I’ll discuss briefly what they do, but I won’t spend much
time on obsolete files. I also won’t spend much time on files useful only in

256 Chapter 14

edge cases (where they relate to software that’s not used too often or only
in very peculiar circumstances). On the other hand, I will dive deeply into
important /etc files that haven’t already found a place elsewhere in this book.

/etc Across Unix Variants
Different Unix-like systems use different /etc files. In many commercial variants,
these files are simply renamed or restructured files from primordial BSD.

For example, the first time I had to manage an IBM AIX system, I
needed to know which disks should be mounted where, but there was no
/etc/fstab. A little searching led me to /etc/filesystems, which was IBM’s /etc/
fstab. Apparently, the IBM folks felt that a file named for “filesystem table”
was confusing, so they gave it a different name. Knowing that this informa-
tion existed somewhere in /etc, and knowing which files had an unrelated
purpose, greatly shortened my search.

Changes to /etc can dramatically alter how your system performs. While
manually recovering a scrambled filesystem can push an adequate sysadmin
toward becoming a pretty good one, it’s one of the least pleasant ways to
get there.

The /etc Files
Now we will take a look at each of the /etc files, going in alphabetical order.
We’ll start with /etc/adduser.conf and end with /etc/ypldap.conf.

/etc/adduser.conf
The /etc/adduser.conf file contains the persistent configuration for adduser(8),
which Chapter 6 covers in detail. To change adduser’s settings, edit this file.
This file is self-documenting, and if you’ve read Chapter 6, you shouldn’t
have any trouble with it.

/etc/amd
The automounter daemon automatically loads NFS filesystems upon request.
If you’re interested in this function, read the amd(8) man page.

The automounter daemon isn’t as useful as you might think. As the
documentation says, “A weird imagination is most useful to gain full advan-
tage of all the features.”

/etc/authpf
The /etc/authpf directory contains the authenticating packet filter config
uration. If you’re interested in having user authentication for firewall
access, I recommend The Book of PF, 2nd Edition, by Peter Hansteen (No
Starch Press, 2010).

Everything /etc 257

/etc/bgpd.conf
OpenBSD includes a BGP daemon, bgpd(8). Most sysadmins will never go
near BGP, but if you need it, see the bgpd.conf(5) man page.

/etc/boot.conf
The /etc/boot.conf file controls the system’s booting process, as discussed in
Chapter 5.

/etc/changelist
/etc/changelist is a text file that contains the list of files to be checked by the
daily security check script, /etc/security. We cover these tasks in detail in
Chapter 15.

/etc/chio.conf
The chio(1) medium changer lets you manage jukebox-style media arrays,
such as CD and tape changers. If you have a tape backup unit that can swap
between multiple tapes all on its own, chio is your friend. Configure chio in
/etc/chio.conf. Most OpenBSD users don’t have media changers, but if you’re
interested, see the man page for chio(1).

/etc/csh.*
The /etc/csh.* files contain system-wide defaults for csh(1) and tcsh(1). When
a user logs in with either of these shells, the shell executes any commands
listed in /etc/csh.login. Similarly, when the user logs out, the shell executes
any commands in /etc/csh.logout. Put general shell configuration in /etc/csh​
.cshrc.

/etc/daily and /etc/daily.local
The /etc/daily.local script is run every day to maintain the system. See
Chapter 15 for details.

/etc/dhclient.conf
You can configure OpenBSD’s DHCP client by using dhclient(8), as discussed
in Chapter 12.

/etc/dhcpd.conf
OpenBSD includes a secure DHCP server. It started life as an Internet
Systems Consortium (ISC) DHCP server, but has been repeatedly rewritten
and simplified by the OpenBSD team. See Chapter 16 for details.

/etc/disklabels/
The /etc/disklabels/ directory traditionally contains backup copies of disk
labels, as discussed in Chapter 8. Very few system administrators actually

258 Chapter 14

use it, because very few system administrators know it’s there. OpenBSD
copies the disklabels for all system disks as part of the daily backup of criti-
cal files (see Chapter 15).

/etc/disktab
A couple of decades ago, hard drives were expensive and precious devices
that came in only a few varieties. While modern disks can tell the computer
about their geometry, older disks need manual configuration, as do older
removable media such as 1.44MB floppy disks and Zip disks. If you want to
access one of these ancient disks, you’ll need the information in /etc/disktab.
(But if you need to use one of these old disks, you’re almost certainly solv-
ing the wrong problem.)

/etc/dumpdates
The /etc/dumpdates file records the dates of the last successful dump(8)
backup. The dump tool backs up a filesystem, rather than just the files on
a filesystem, as tar(1) does. A dump includes file flags and other special
characteristics of the filesystem.

/etc/dvmrpd.conf
OpenBSD implements the Distance Vector Multicast Routing Protocol
(DVMRP) with dvmrpd(8), configured in dvmrpd.conf. This is another edge
case where OpenBSD performs well, but is of interest only to a few users.
If you’re interested in DVMRP, see the dvmrpd(8) man pages.

/etc/exports
NFS servers list the filesystems they export, and who may access them, in
/etc/exports. See Chapter 9 for information about using NFS as both a client
and a server.

/etc/fbtab
OpenBSD can change the ownership of system files and devices based on
how a user has logged in. When a user logs in via the text console, login(1)
changes the ownership of the console, as well as the keyboard and the mouse,
to that user. This way, users can then configure the keyboard or mouse to suit
their preferences. A user who logs in via an X session needs similar changes.

You could use /etc/fbtab to change permissions on other devices or files
for other special needs, but this is really tricky to get right, and usually
means you’re making something much more complicated than it needs to
be. If you’re considering this approach, rethink your problem.

/etc/firmware
Some hardware needs software to run. In years past, this software would
have been loaded onto programmable read-only memory (PROM) chips

Everything /etc 259

on the device itself. Network cards often had boot PROMs that let them get
configuration information from the network. PROMs are not expensive
these days, but making millions of anything adds up quickly. Hardware
vendors now often ask the operating system to load this software, called
firmware, onto the hardware for them.

Firmware is usually a closed-source binary object, or blob. While the
OpenBSD team members would never accept loading a blob into the ker-
nel, they’re willing to hand a file to a piece of hardware. It doesn’t matter if
the hardware gets the blob from the operating system or from a PROM chip
attached to the hardware—it’s still software that runs only on the device,
not in the operating system.

For user convenience, OpenBSD distributes firmware that it’s legally
permitted to offer. If OpenBSD cannot distribute firmware on the installa-
tion media, the fw_update script uses the package system to fetch it over the
Internet. Wherever the firmware comes from, it’s stored in /etc/firmware.

By default, fw_update runs at first boot after an OpenBSD install or
upgrade, but you can run it any time you want (it’s stored in /usr/sbin).

/etc/fonts/
The /etc/fonts/ directory contains the Xenocara X11 fonts. We’ll discuss
Xenocara and X11 in Chapter 17.

/etc/fstab
The filesystem table lists all filesystems that the system knows about, whether
they’re automatically mounted at boot or kept in reserve. See Chapter 8
for details.

/etc/ftpchroot
Users listed in /etc/ftpchroot are automatically chrooted into their home direc-
tory when they log in via FTP. See ftpd(8) for full details.

Try to avoid FTP, as it transmits usernames and passwords in cleartext.
Use scp(1) or sftp(1) instead.

/etc/ftpusers
The /etc/ftpusers file does exactly the opposite of what the filename implies,
but it has been this way for decades, so don’t worry about it.

Any user listed in /etc/ftpusers cannot log in via FTP. See ftpd(8) for details,
but again, use scp(1) or sftp(1) instead—especially for administrative tasks!

/etc/gettytab
The /etc/gettytab file contains the configuration information for login
terminals. Unix-like systems have been traditionally accessed by anything
and everything, from innumerable slightly different serial consoles to
Secure Shell (SSH) sessions over the network. If you ever need to use a
nonstandard terminal type, explore /etc/gettytab.

260 Chapter 14

There’s no reason to get rid of this file. After all, someone out there
probably still uses a plugboard 1200-baud terminal. But there’s no longer
any reason to modify it either. In any case, the man page is worth reading,
especially if you read it to the end.

/etc/group
The /etc/group file controls to which groups each user account belongs. User
groups are covered in Chapters 6 and 7.

/etc/hostapd.conf
OpenBSD can act as a wireless access point. The host access point daemon
(hostapd(8)) lets OpenBSD perform some complicated access point tasks
that are useful in larger environments. OpenBSD’s wireless services are
interesting if you use wireless; read hostapd(8) and ifconfig(8) for full details.

/etc/hostname.*
The /etc/hostname.* files configure network interfaces, as discussed briefly in
Chapter 4 and at length in Chapter 12.

/etc/hosts
The /etc/hosts file contains a hand-maintained map of IP addresses and
hostnames. See Chapter 12 for details.

/etc/hosts.equiv
The /etc/hosts.equiv file is used by the various r-tools, such as rcp(1), rlogin(1),
and rsh(1). These tools, and the underlying protocols, are relics of an
earlier age, when security on the Internet was not so great a concern.
OpenBSD no longer includes an rlogin(1) client. The r-tools are largely
replaced by SSH. Today, you should not use the r-protocols under any sen-
sible circumstances.

The /etc/hosts.equiv file should not contain any uncommented entries,
unless you specifically put them there. This is the only system file I can rea-
sonably say every sysadmin should verify is empty and marked immutable
(see Chapter 10).

What did I mean by “sensible circumstances” and using the r-protocols?
A few years ago, I worked on a network with ancient but mission-critical VMS
servers manageable only by r-protocols, but those were not reasonable cir-
cumstances. If you find yourself similarly trapped, check out hosts.equiv(5),
rshd(8), and rsh(1). And do something about your circumstances.

/etc/hosts.lpd
You can configure an OpenBSD system to accept print requests from other
machines and feed them to a locally attached printer. This was vital when

Everything /etc 261

printers were big, expensive beasts, but it’s less important today. This file
lists the hostnames or IP addresses of systems that may use the local system’s
line printer daemon, lpd(8).

If you’re really interested in having your OpenBSD system print, check
out lpd(8) and /etc/printcap.

/etc/hotplug/
OpenBSD can automatically take action when a device is plugged into the
system through hotplugd(8). For example, if you attach your digital camera
to a USB port, hotplugd can run a script that will attach the device node to a
directory and make it readable by your user account.

hotplugd runs the script /etc/hotplug/attach when a device is attached, and
/etc/hotplug/detach when a device is removed. These scripts must be carefully
written to match the devices being attached and detached. For details on
how this works, see hotplugd(8).

/etc/ifstated.conf
The interface state daemon ifstated(8) monitors network conditions and
takes action when specified events occur. For example, you can configure
ifstated to watch for another server to go down, and when that server fails,
start up the local web server. For more information about using ifstated, see
Hansteen’s The Book of PF.

/etc/iked/, /etc/iked.conf, /etc/ipsec.conf, and /etc/isakmpd
The /etc/iked/, /etc/iked.conf, /etc/ipsec.conf, and /etc/isakmpd files manage
OpenBSD’s implementation of the IPsec standard for VPNs. OpenBSD has
a very robust IPsec implementation, and it is actually used for testing by
various interoperability groups.

You can fill entire books with the acronyms used for VPN technologies,
let alone instructions for actually configuring them. See the man pages for
details.

/etc/inetd.conf
The Internet small service listener inetd(8) attaches to multiple network
ports for programs that don’t need to run constantly. When a request on
one of those ports comes in, inetd activates the correct program to handle
the request. Chapter 16 discusses inetd(8) in more detail.

/etc/kbdtype
The /etc/kbdtype file contains a single line with your preferred terminal key-
board mapping. Test your keyboard mapping with kdb(1), and then put that
keyboard mapping in /etc/kbdtype.

262 Chapter 14

/etc/kerberosV/
The /etc/kerberosV/ directory contains configuration for the Kerberos cen-
tralized authentication system. I recommend some kind of centralized
logon for every network. Configuring Kerberos properly is a large subject.
If you’re interested, peruse kerberos(1).

/etc/ksh.kshrc
/etc/ksh.kshrc is the global configuration file for the public domain Korn
shell included with OpenBSD. Users must include this file in their personal
.kshrc for settings here to take effect. See the ksh(1) man page for details.

/etc/ldap/ and /etc/ldapd.conf
OpenBSD includes a Lightweight Directory Access Protocol (LDAP) daemon.
LDAP is commonly used for centralized authentication, address books, and
other database operations that are read more than they write. As of this
writing, the features of ldapd(8) are not complete, but it’s good enough to
provide a central authentication point.

/etc/localtime
The /etc/localtime file is a symlink to the actual time zone file. To change the
time zone, change the symlink. Chapter 4 covers time zones.

/etc/locate.rc
The /etc/locate.rc file controls creation of the locate(1) database. OpenBSD
updates the locate database every week, as discussed in Chapter 15.

/etc/login.conf
With /etc/login.conf, you can control user account login behavior, as discussed
in Chapter 6.

/etc/lynx.cfg
OpenBSD includes the lynx(1) text-mode web browser. Lynx is endlessly
configurable, and settings in /etc/lynx.cfg affect all Lynx users on the system.
You can save yourself a lot of trouble by configuring your proxy server set-
tings here.

/etc/magic
Many files include a “magic number” and other characteristics specific to
their type. file(1) uses these magic numbers to identify the file type, with
/etc/magic as an index of magic numbers. Do not manually edit /etc/magic,
as it’s automatically generated by compiling file(1).

Everything /etc 263

/etc/mail/
The /etc/mail/ directory contains the configuration files for OpenBSD’s
email software. OpenBSD includes two email packages: the old workhorse
Sendmail and the OpenBSD-created smptd(8). smptd isn’t quite ready for pro-
duction use, but it might be by the time this book hits the shelves.

This directory also contains /etc/mail/aliases, a list of mail redirections.
Be sure you set the email alias for your root account to somewhere you’ll
actually read your email, as discussed in Chapter 4.

/etc/mail.rc
The /etc/mail.rc file has nothing to do with sending or receiving email as
a mail server. It’s the global configuration file for the mail(1) email client.
While more advanced email clients have almost completely superseded
mail, it’s worth exploring because almost any Unix-like system will have it
installed.

/etc/mailer.conf
Traditionally, the only mail server program available for any Unix-like
operating system was Sendmail. As such, a huge amount of add-on software
expects to find /usr/sbin/sendmail and expects it to behave in a certain man-
ner. It doesn’t matter that, by modern standards, Sendmail and the whole
Simple Mail Transfer Protocol (SMTP) are baroque and bizarre; software
expects to find it.

Worse, sendmail(8) behaved differently depending on what name it
was called with. Programs such as send-mail, mailq, and newaliases are all
Sendmail wearing different hats. If you call the Sendmail program by run-
ning the mailq command, it runs differently than if you call it by running
the newaliases command. They all point to the same binary on disk, how-
ever. Third-party software expects to find all these names as well, and that
these commands behave as required.

Sendmail is such a standard that writers of newer mail server programs are
forced to call them sendmail and to have them behave exactly as Sendmail
does, just to maintain compatibility with this vast installed base. This makes
using alternate mailers confusing. Also, OpenBSD includes Sendmail as part
of the base system. You can’t just remove Sendmail and go on. Upgrades
reinstall brand-name Sendmail.

OpenBSD does an end run around all this confusion by eliminating
/usr/sbin/sendmail as an actual mail program. Instead, the sendmail program
is just a wrapper that calls the real mail-handling software. The entries
in /etc/mailer.conf are just a list of classic Sendmail program names, along
with the path to the actual program to be run. The mail-handling program
sendmail is actually installed as /usr/libexec/sendmail/sendmail, for example.

To run an alternate mail server, give /etc/mailer.conf the expected command
name and the full path to all of the appropriate programs. This happens auto-
matically when you install a new mail transfer agent from a package.

264 Chapter 14

/etc/man.conf
The etc/man.conf file tells man(1) how to find and present man pages. If you
install software in nonstandard locations, add the information on the
software’s man pages to man.conf so that you can call up those man pages
transparently. This file has several types of entries, each of which is set off
by keywords or section names.

Why would you do this? If you must install software from a source other
than ports or packages, you could place it in a directory tree outside those
managed by OpenBSD to reduce confusion when upgrading or adding
software.

For example, I occasionally install Wireshark on an OpenBSD desktop.
The OpenBSD team decided to remove OpenBSD’s Wireshark package
because it has such a shaky security history. If I installed Wireshark as
/usr/local/bin, it would be mingled with my packaged software. If I install
Wireshark as /usr/local/wireshark/bin, however, it’s clearly distinct from pack-
aged software. I can’t access the man pages, however, as man(1) doesn’t know
about /usr/local/wireshark/man.1 Let’s walk through how we would add man
page access for Wireshark.

Adding to the Search Index

The _whatdb keyword gives the full path to a whatis(1) database, used by
apropos(1) and whatis(1), allowing you to easily search and cross-index man
pages. The file man.conf has entries for databases in /usr/local/man, /usr/
share/man, and /usr/X11R6/man. Here’s how to add an entry for /usr/local/
wireshark/man:

_whatdb /usr/local/wireshark/man/whatis.db

Now we create a new database with makewhatis(8). This job runs auto-
matically when you install software and during weekly maintenance.

Adding to Man Page Directories

Man pages are scattered in directories all over the system. The _default
keyword tells man(1) which directories to search automatically. Use only one
_default keyword, but list multiple directories if needed, and group directo-
ries using brackets.

Here’s the standard directory list:

_default /usr/{share, X11R6,local,ports/infrastructure}/man/

This is a pretty massive group of directories, and the brackets combine
multiple directories associatively. For example, this entry means that we

1. If Wireshark has a shaky security history, why would I install it? Because, sadly, it’s still the
easiest way to debug really complicated network problems, especially when you’re working
with an unfamiliar protocol.

Everything /etc 265

check /usr/share/man/, /usr/X11R6/man/, /usr/local/man/, and /usr/local/
ports/infrastructure/man/. (The entries end with a slash, which means that
the final directories contain subdirectories.)

To add /usr/local/wireshark/man/ to the default locations, add local/
wireshark into the associative array, like this:

_default /usr/{share, X11R6,local,ports/infrastructure,local/wireshark}/man/

The _subdir keyword lists subdirectories to be searched beneath the
main directories, in order, with the first match returned first.

_subdir man1 man8 man6 man2 man3 man5 man7 man4 man9 man3p man3f mann

You can use _subdir to change the order in which man pages are returned.
For example, if your job is programming Perl on OpenBSD, you might
want to see the Perl man pages by default. In that case, you could move the
man3p subdirectory to the front of the list.

Displaying Man Pages

Software vendors distribute their manuals in the format they think best. As
a sysadmin, this means you might as well get manuals in random formats,
because each format needs a different command to display it. Fortunately,
each format has a different filename suffix, which tells man(1) how to display
the file. The _build keyword defines a filename suffix and the command
used to display the file. (It’s very unlikely that you’ll have a man page that
requires a new _build statement.)

Defining Man Sections

The final man.conf function is dividing the manual into sections. We saw
in Chapter 1 that you can search the manual by particular sections to get
specific man pages. These sections are nothing more than directories iden-
tified in /etc/man.conf. Here’s where we define the man pages included in
section 1.

1 /usr/{share,X11R6,local}/man/man1

There’s no trailing slash, because we’re not adding any subdirectories.
These are the actual directories containing section 1 of the manual.

You can define arbitrary section names in /etc/man.conf. While you
should avoid section names beginning with an underscore in order to pre-
vent confusion with keywords, you can do just about anything else.

/etc/master.passwd, /etc/passwd, /etc/spwd.db, and /etc/pwd.db
The /etc/master.passwd, /etc/passwd, /etc/spwd.db, and /etc/pwd.db files con-
tain usernames and passwords, along with a few other key items about

266 Chapter 14

locally defined users. When you log in, the password you type is compared
with the encrypted and salted hash of your password in this file. As such,
/etc/master.passwd is vital to system security.

Editing /etc/master.passwd

If you’re considering editing /etc/master.passwd directly, stop. Go back to
Chapter 6. Reread it. See if there’s another way to make your desired
change. Damaging /etc/master.passwd can prevent people from logging in
at all, and might render your system unusable. To edit a single user account
in /etc/master.passwd, run chpass(1) as root.

If you must edit /etc/master.passwd directly—say, to change everyone’s
home directory to point to a new filesystem—there’s a program just for
that. The program vipw(8) calls up the text editor in $EDITOR, loads the pass-
word file, lets you make changes, and checks the file syntax before saving
it. vipw also updates /etc/passwd and the password databases /etc/pwd.db and
/etc/spwd.db.

Be absolutely sure that this file is synchronized with the password
databases. Using vipw prevents many basic mistakes and helps ensure data
consistency, but if you’re really bent on corrupting /etc/master.passwd, vipw(8)
will make your task more difficult but won’t stop you.

That said, only senior sysadmins should use vipw. How do you know
if you qualify? If you’ve made enough horrible mistakes with vipw that
you know in your bones not to use it, if your stomach churns at the mere
thought of typing those four letters, you may use vipw.

Controlling Account Information Access

Many programs need parts of the information stored in /etc/master.passwd.
For example, a program must be able to look up a user’s shell and home
directory to properly find the user’s files. Rather than allowing anyone to
read this file and the scrambled passwords therein, OpenBSD (and most
other Unix-like systems) provide the account information everyone needs
to see in /etc/passwd.

Accessing and parsing a text file can be slow, especially if the computer
has a slow processor and many user accounts. Text files are not meant for
searching. If a program must search a text file for user account number
10631, the search can hold up the program’s activity and even block other
programs. Checking a database for an entry is much faster, as the program
can just say “Give me account 10631” and get a response from a file store
intended for searches.

All Unix-like systems create databases from the password files whenever
the account information changes. The database of public account informa-
tion, built from /etc/passwd, is /etc/pwd.db. The database file /etc/spwd.db
contains private account information built from /etc/master.passwd.

Realistically, very few pieces of software actually use the password file
directly. Most programs access pwd.db. I know people who delete /etc/passwd
without ill effect, but you do need to keep the password database.

Everything /etc 267

/etc/master.passwd Fields

Each account is a line in /etc/master.passwd and /etc/passwd. Each line has the
following nine fields, separated by colons.

Username
This field contains either an account created by the sysadmin and used
by a human, or a nonprivileged user created for use by a program or
service. Chapter 6 covers usernames.

Hashed and Salted Password
This field contains the user’s password, hashed and salted. (It’s com-
monly called a hash, but you should know it’s more than that.) You
cannot derive the password from the hash, but if you have the hash, you
can try passwords until you find one that matches the hash. That’s why
you must protect your /etc/master.passwd file. In /etc/passwd, the pass-
word field is blank.

N o t e 	 One simple way to temporarily disable a user account is to edit the password file with
chpass(1) and put an asterisk (*) in front of the hash. While the account will still
be active, no one will be able to log in to it. I’ve used this to great effect when a client
is behind on a bill. While clients can ignore overdue payment notices, they call quite
quickly when they cannot access their account. I can easily route that call to the bill-
ing department. Once the matter is resolved, I can re-enable their account by removing
the asterisk.

User ID Number
The third field is the user ID number, or UID. Every user must have a
unique UID.

Group ID Number
This field is the group ID number, or GID. This is the user’s primary
group, as discussed in Chapter 6. Usually, this is the same as the UID,
and the user’s primary group has the same name as the username.
Some sites prefer to use a single group for all unprivileged users.

User Class
We discuss the user class in Chapter 6. Changing the class can
increase or decrease the amount of system resources the user can
access.

Password Expiration Date
The expiration date is expressed in the number of seconds since mid-
night, January 1, 1970, the UNIX epoch. You can convert dates to
seconds with date(1). If you must manually set an expiration date for
a password, use chpass(1) and specify a human-readable date.

268 Chapter 14

Gecos
This field contains the user’s real name, office number, work phone
number, and home phone number, all separated by commas. This
information was much more important when computers were big
systems with hundreds or thousands of users, and you might need to
contact people when their process went completely insane. Today, it’s
basically ignored. (Do not use colons here; colons are reserved specifi-
cally for separating fields in /etc/master.passwd.)

User’s Home Directory
This field is the user’s home directory. While this defaults to a directory
with the same name as the username, beneath /home, you can move
this directory anywhere you like. Editing the home directory in the
password file does not move the actual directory; you need to do that
yourself.

User’s Shell
The last field gives the user’s shell. If this field is empty, the user gets
boring old /bin/sh.

/etc/mixerctl.conf
OpenBSD includes solid audio abilities. You can listen to MP3s, mix music,
or just about anything else you would like.

Control audio settings with mixectl(8), and set boot-time mixerctl set-
tings in /etc/mixerctl.conf.

/etc/mk.conf
Configure make(1) with /etc/mk.conf. The most common use for special make
settings is while you are building ports (covered in Chapter 13) or while
building your own custom OpenBSD release (Chapter 20).

/etc/moduli
The /etc/moduli file contains prime numbers, used for Diffie-Hellman cryp-
tography. Never edit this file. Some people may understand cryptography
well enough to edit /etc/moduli, but if you’re reading this book, you’re
probably not one of them.2

/etc/monthly and /etc/monthly.local
The /etc/monthly.local shell script runs once per month as part of routine
system maintenance. Chapter 15 discusses scheduled maintenance jobs.

2. Henning Brauer, OpenBSD developer and point man on packet filtering, comments, “I
understand crypto somewhat well. . . . I don’t muck with moduli either tho.” Consider yourself
warned.

Everything /etc 269

/etc/motd
The MOTD, or message of the day, is displayed to users upon login. In this
file, you might put system notices or announcements that you hope users
will notice. Many organizations put legal notices or acceptable use policies
in /etc/motd.

Note that the first line of /etc/motd is overwritten at every boot. Start
your legal warning in line 2 or below.

/etc/mrouted.conf
In addition to dvmrpd(8), OpenBSD supports multicast routing with mrouted(8).
The dvmrpd implementation is preferred, but for specific edge cases, you
might need mrouted instead.

Configure mrouted in /etc/mrouted.conf. Eventually, mrouted will be removed
from OpenBSD.

/etc/mtree/
The /etc/mtree/ directory contains a list of most directories on a stock
OpenBSD system, with their ownership and permissions. The system
upgrade process uses this. While you don’t really need to edit these files,
it’s nice to know what the heck they’re for.

/etc/mygate
The /etc/mygate script gives the address of the default gateway for both IPv4
and IPv6, as discussed in Chapter 12.

/etc/myname
The /etc/myname file contains the hostname of the system, as discussed in
Chapter 4.

/etc/netstart
The /etc/netstart script starts the network, as discussed in Chapter 12.

/etc/networks
/etc/networks is a list of subnets and their names. Use of a networks database
has fallen out of favor, because it’s not terribly useful.

/etc/newsyslog.conf
The newsyslog(8) program rotates log files, as discussed in Chapter 15.

/etc/nginx/
OpenBSD has imported the nginx web server (http://www.nginx.org/) as a
replacement for the older Apache 1.3 server, but as of this writing, it’s not

270 Chapter 14

quite integrated with the rest of the system. You can find the nginx configu-
ration files in this directory, and the server is quite usable, but it’s not the
official OpenBSD web server—yet.

/etc/nsd.conf
OpenBSD has imported the name server daemon nsd(8) to eventually par-
tially replace the old DNS workhorse server named(8). It’s usable, but as of
this writing, it’s not yet integrated with the system.

/etc/ntpd.conf
The NTP daemon keeps the system time synchronized with other machines
on your network and the Internet. We discuss ntpd(8) in Chapter 15.

/etc/ospf6d.conf and /etc/ospfd.conf
OSPF is a routing protocol used inside autonomous networks. OpenBSD
has two OSPF implementations: one for IPv4 and one for IPv6. If you want
to know more about OSPF, read ospfd(8) and ospf6d(8).

/etc/pf.conf and /etc/pf.os
Configure the OpenBSD pf(4) packet filter in /etc/pf.conf. Packet filtering
uses /etc/pf.os to fingerprint other operating systems. Chapters 21 and 22
cover packet filtering.

/etc/ppp/
You can connect OpenBSD to the Internet via a dial-up modem, which is
rarely done these days. If you need to configure a modem on your OpenBSD
system, read the ppp(8) man page.

/etc/printcap
The printer capability file describes all printers that this system can access.
Making a Unix-like system work with a random printer was long considered
to require some sort of sacrifice, a moon in the correct phase, and a team
of chanting acolytes in robes. While complicated software such as CUPS
has been written to simplify printing, configuring an OpenBSD machine to
print to a print server or a network PostScript printer is pretty simple. See
Chapter 16 for details on printing.

/etc/protocols
The /etc/protocols file contains protocol numbers for TCP/IP network proto-
cols. Chapter 11 covers TCP/IP versions 4 and 6 in detail.

Everything /etc 271

/etc/rbootd.conf
rbootd(8) offers boot services for HP workstations—a very narrow subset
of obsolete diskless clients. OpenBSD still supports the HP300 machines
that need this service. If you’re interested in diskless operations on modern
hardware, read the diskless(8) man page instead, or look at Chapter 23.

/etc/rc.*
The /etc/rc.* files are used for system booting, as discussed in tortuous
detail in Chapter 5.

/etc/relayd.conf
The load balancer daemon relayd(8) works with the OpenBSD Packet Filter
(PF) system to act as a network load balancer. The relayd daemon requires
a good understanding of PF, however, and a very specific network. If you’re
interested in load balancing, read Hansteen’s The Book of PF.

/etc/remote
Unix-like systems have extensive support for connecting into the system
over serial lines, usually for serial consoles. Many network appliances have
management serial ports, and you can use OpenBSD as a client to config-
ure these devices. The /etc/remote file contains serial connection configura-
tions for most common modern serial connections (covered in Chapter 5).

/etc/resolv.conf and /etc/resolv.conf.tail
The /etc/resolv.conf and /etc/resolv.conf.tail files configure the resolver (covered
in Chapter 12), letting the host map names to IP addresses and vice versa.

/etc/ripd.conf
RIP is an old way to broadcast routing instructions across a network.
OpenBSD has a RIP daemon, ripd(8), configured in /etc/ripd.conf.

RIP is generally considered undesirable, like the r-services. Among
other shortcomings, it doesn’t even support netmasks, so it’s restricted to
old-style class A, B, and C networks. And as with the r-services, sometimes
you’re stuck with RIP because some obsolete device on your network can
handle nothing else. Use ripd to scrape by until you can arrange a tragic
accident for that device.

/etc/rmt
The remote magnetic tape command (rmt) lets a host access a tape drive on
another machine. It’s most commonly used to restore a system from backup.

272 Chapter 14

/etc/rpc
RPC is a method for executing commands on a remote server. Much like
TCP/IP, RPC has service and port numbers. The file /etc/rpc contains a list
of these services and port numbers. The most common RPC consumer in
OpenBSD is NFS, as discussed in Chapter 9.

/etc/sasyncd.conf
OpenBSD supports failover between IPsec gateways, using the security asso-
ciation synchronization daemon sasyncd(8). This is not a common feature
in operating systems, and its presence is a highlight in OpenBSD. To learn
about IPsec failover, read sasyncd(8).

/etc/sensorsd.conf
Modern hardware has sensors for detecting items like fan speed, circuit
voltage, temperature, and so on. OpenBSD’s sensord(8) reads these sensors
and presents the information to the user. Configure which sensors you want
to pay attention to, as well as what you want to do when the sensors detect
something, in /etc/sensorsd.conf. See Chapter 15 for details on sensorsd.

/etc/services
The /etc/services file contains a list of network services and their associated
TCP/IP ports. See Chapter 11 for details.

/etc/shells
The /etc/shells file contains a list of legitimate user shells, as discussed in
Chapter 6.

/etc/skel/
The /etc/skel/ directory contains standard user environment configuration
files. When you create a user account, adduser(8) copies the files in this
directory to the new user’s home directory. This directory can be over
written when you upgrade your system.

If you need to customize these files for your users, create a custom
dotfile directory and tell adduser(8) to use it instead.

/etc/sliphome/
The Serial Line Internet Protocol (SLIP) predated the Point-to-Point
Protocol (PPP) commonly used for dial-up lines. OpenBSD still supports
it, as someone might need it and there’s no real reason to get rid of it.

Everything /etc 273

/etc/snmpd.conf
Simple Network Management Protocol (SNMP) is a method for accessing
information about a device over the network. Unfortunately, it’s not a ter-
ribly secure protocol (one common acronym for SNMP is “Security? Not My
Problem!”) The OpenBSD team has written a more secure SNMP daemon,
snmpd(8). Configure it in /etc/snmpd.conf, as discussed in Chapter 16.

While OpenBSD’s SNMP daemon might resist intrusions and abuse, it
can’t help the fact that SNMP itself, as commonly deployed, isn’t terribly secure.

/etc/ssh/
The SSH daemon sshd(8) offers a secure replacement for telnet(1) and the
r-protocols. Chapter 16 includes a brief discussion of SSH.

/etc/ssl/
The /etc/ssl/ directory is for Secure Sockets Layer (SSL) certificates, as well as
the OpenSSL configuration file openssl.cnf. Store system SSL certificates here.

/etc/sudoers
The /etc/sudoers file controls sudo(1) configuration. See Chapter 7 for details
about sudo.

/etc/sysctl.conf
Set kernel runtime tunable options in /etc/sysctl.conf. Sysctls are covered in
Chapter 18.

/etc/syslog.conf
The logging daemon syslogd(8) reads messages from programs and hosts,
and then separates those messages into records based on the configuration
in /etc/syslog.conf. See Chapter 15 for details on syslogd.

/etc/systrace/
The systrace(4) system call wrapper provides access controls to system calls.
You could run a binary “under” systrace(1), and if the program attempted
to access any system call beyond those permitted in the application’s systrace
policy, systrace would block the access.

Flaws were found in systrace, however, that make it less than effective,
and it’s now considered only a partial solution. It still ships with OpenBSD,
but its use is discouraged. Today, systrace is mostly used for package-
building clusters to make sure that software built doesn’t phone home
or write outside the fake installation root.

If you need to use systrace, store policies in /etc/systrace.

274 Chapter 14

/etc/termcap
The /etc/termcap file describes all the different terminals that OpenBSD sup-
ports. Pretty much every console device now supports the standard VT220
terminal, however.

/etc/ttys
Configure system terminals in /etc/ttys. You can enable, disable, and change
terminals here. A “terminal” could be the keyboard and monitor attached
to the computer, a login over a serial line as with a serial console, or a vir-
tual terminal as used by telnet or SSH.

A classic UNIX terminal device resembled a teletype; that’s where the
tty label comes from. All sorts of UNIX architectural details descend from
this historical accident, and Unix-like systems inherited them.

Terminal Types

/etc/ttys lists three different terminal types: the console, serial ports, and
pseudo-terminals.

The console is where boot messages display, where single-user mode
maintenance can happen, and where error messages directed at the con-
sole appear. While the console is usually the keyboard, monitor, and mouse
attached to the computer, it doesn’t need to be that. The “console” is an
abstraction that usually happens to be aimed at your physical monitor and
keyboard. You can direct the console at a serial port instead, for example.
The console uses the device /dev/console.

On some platforms, including i386 and amd64, OpenBSD supports
multiple virtual consoles attached to your physical console. If you press
ctrl-alt-F2 on the physical keyboard, you’ll see a brand-new login screen.
ctrl-alt-F1 returns you to the main console. You can have as many virtual
consoles as you have function keys, but OpenBSD has five by default. These
virtual consoles have device names beginning with /dev/ttyC and ending in
a hexadecimal number.

Serial ports can be used as login devices, once you attach either an old-
fashioned serial terminal or a null-modem cable and another device with
a serial port. They can also be used for outgoing serial connections. Serial
ports used as incoming devices start with /dev/tty, while ports used for out-
going connections start with /dev/cua, and both end in hexadecimal num-
bers. Each serial port can have one terminal attached to it.

Pseudo-terminals support network connections. Even though your
remote SSH window has no corresponding physical hardware on the server,
OpenBSD treats it in some way as a tty device. Pseudo-terminals have device
names beginning with /dev/tty, a letter p through z (either lowercase or
uppercase), and ending in a single letter or number. When a user con-
nects over the network, such as via SSH, the login session is assigned one
of these virtual terminal devices.

Whatever the terminal type is, configure it in /etc/ttys, using the follow-
ing procedure.

Everything /etc 275

Configuring Terminals

Each terminal has an /etc/ttys entry, containing at least three entries and
possibly up to five.

ttyC0 /usr/libexec/getty std.9600 vt220 on secure

The first entry is the device name, without the leading /dev.
The second entry is the name of the program that spawns login requests

on the terminal. Physical terminals and virtual consoles use getty(8), while
pseudo-terminals process login requests through whatever daemon the user
logs in through.

The third entry is the terminal type. OpenBSD uses a vt220 terminal on
the monitor and the virtual consoles. Serial consoles use the unknown termi-
nal type, as there’s no way to know in advance what kind of hardware is on
the other end of the terminal. (You can switch this to vt220 without issue if
you’re using a reasonably modern serial client.) Pseudo-terminals use the
network terminal type; the server daemon and client software determine the
terminal’s features.

The fourth field determines if the terminal is available for logins. Set
this to on to accept login requests, or off to deny them. Pseudo-terminals
are activated on demand, so you don’t need to configure them in /etc/ttys.

The root account can log on to only a secure console. The physical
terminal and the console are the only devices defined as secure by default.
You can log in as a regular user and use su(1) or sudo(1) on an insecure ter-
minal; you just can’t directly log on as straight root. This means that anyone
who has the root password and physical access to the machine can just walk
up to the keyboard and log in as root. To disallow logins directly to root,
remove the secure keyword from the virtual console entries in /etc/ttys. Also,
on secure terminals, you won’t be asked for the root password when you
boot into single-user mode.

If you use serial consoles, you might want to log in to a running multiuser
system over the serial cable. By default, you cannot log in on a serial line.
Set the serial line with the serial console to on, and you’ll be able to log in.
This makes a serial line behave much like being at the physical console,
where you can work in multiuser mode and while the machine is running
normally.

While all of the defaults use getty(8), there are alternatives. For example,
the HylaFAX package lets you connect a fax machine to a serial line, but
you need to reconfigure the terminal to support it.

tty0e "/usr/local/sbin/faxgetty" dialup on

The point is that you can use serial ports any way you like, once you get
the right software tool for the job.

276 Chapter 14

Making /etc/ttys Changes Take Effect

Offering terminals is a low-level system task handled directly by init(8).
Changes to /etc/ttys do not take effect until you tell init to reread its con-
figuration. (init is always process ID 1.)

kill -HUP 1

If you don’t tell init to reread its configuration, changes won’t take
effect until you reboot.

/etc/weekly and /etc/weekly.local
The /etc/weekly.local script runs once a week to perform weekly maintenance,
as discussed in Chapter 15.

/etc/wsconsctl.conf
OpenBSD includes hardware-independent access to the physical console
through the wscons(4) driver. Configure this console via wsconsctl(8). The
boot-time wsconsctl settings are read from /etc/wsconsctl.conf. See Chapter 17
for details on console configuration.

/etc/X11
The /etc/X11 directory contains configuration for the X Window System.
OpenBSD’s Xenocara integrates X with the base system. Chapter 17 dis-
cusses desktop OpenBSD, including some X features.

/etc/ypldap.conf
In addition to the LDAP daemon ldapd(8), OpenBSD supports the YP data-
base for centralizing passwords, groups, and host filesystems. YP is compat-
ible with Sun’s original Network Information System (NIS). OpenBSD uses
YP as a gateway to LDAP authentication. If you’re interested in this feature,
see yp(8) and ypldap(8).

This takes you through everything in /etc not covered elsewhere. In the
next chapter, we’ll discuss how OpenBSD maintains itself, and how you can
meddle with the maintenance processes.

15
S y s t e m M a i n t e n a n c e

When hardware complains,
OpenBSD listens.

You should listen too.

No computer runs itself. If it did, you would
be out of a job. Even the best-configured

server generates a constant low burn of
maintenance needs.

OpenBSD includes a variety of tools to make maintenance easier, to
alert you when maintenance is needed, and to tell you about the system’s
status. Every day, week, and month, OpenBSD performs maintenance tasks
and notifies you of the results. OpenBSD takes daily backups of critical
system features and files, and uses them to monitor system integrity. It can
manage its own log files, keep its own time, and alert you when the hard-
ware is failing.

All of this starts with scheduled maintenance.

Scheduled Tasks
OpenBSD includes scheduled tasks that run once a day, week, and month.
These jobs run as root and email the results to root. The daily maintenance
script is the most complicated; the monthly script is the simplest.

278 Chapter 15

If a server runs well, I might not log in to it for weeks or even months.
In fact, I’ve had a few servers run for more than a year without a human
being ever logging in to it. I read the daily reports from the machine and
say “Yep, it’s okay,” and get on with my day, confident that what the regular
status reports don’t tell me the monitoring system will.

The scheduled maintenance jobs email their results to the local root
user, but if no one ever logs in to the machine, no one will see those results.
Always set an email alias for root in /etc/aliases, so that these messages go to
someone who will actually read them.

Reading every email message from every machine every day is annoy-
ing, but much less annoying than finding out that I have a bad service by
a user telling me about it. These messages often alert me to system prob-
lems before anyone (including me) notices them. Sites with hundreds of
machines often write scripts to parse incoming email messages and flag
interesting details.

You should send maintenance email to the person ultimately respon-
sible for the system—whoever is most interested in system changes and most
likely to be aware of any day-to-day system changes. If you delegate the job
of reading maintenance email to a minion who is less aware of the system,
he will either annoy you with endless questions about what you did yester-
day or learn to ignore anything actually in the status mail messages.

Here, we’ll take a look at how the daily, weekly, and monthly routines
work. Complete documentation of the maintenance jobs appears in daily(8).

Daily Maintenance
The daily maintenance job starts by running any custom maintenance jobs
(covered at the end of this section) from /etc/daily.local. Daily maintenance
includes checking partitions, running the reminder service calendar(1), run-
ning rdist(1), removing scratch files, and a few other boring things.

OpenBSD can also do a few other interesting things as part of its daily
maintenance:

•	 Create a backup root filesystem, /altroot.

•	 Perform system security checks.

•	 Back up vital system files in /var/backup.

•	 Check for changes in vital system files.

•	 Check filesystem integrity.

•	 Run rdist(1).

I discussed /altroot in Chapter 9 because it requires a dedicated filesystem
partition. Each of the other tasks can be configured later.

Security Checks

Some things that go wrong don’t necessarily mean your system has expe-
rienced an intrusion, but are nonetheless suspicious. The daily security

System Maintenance 279

check looks for a whole slew of misconfigurations and problems that arise
from either malice or incompetence. You can read the list of checks in
security(8), but they break down into fairly broad categories:

Device node changes and privileges
New device nodes, changed permissions on device nodes, new software
packages, and new or altered disks or partitions might indicate mali-
cious activity or might just be normal system management. The security
script flags all of these. If you made such changes, you’ll nod and go on
with your day. If you requested a minion perform the change and the
change doesn’t appear, this is when you ask them what they did all day
yesterday. If you didn’t make a change that appears, you want to know
about it.

Insecure NFS exports
OpenBSD includes a lot of software to export filesystems and run
commands remotely. These services, like printing and NFS, should
not allow access from any host just anywhere, but only from hosts you
approve. The security job checks for configurations that permit global
access.

Misconfigured accounts
Another popular attack route has been the password database and
related files. Accounts without passwords, duplicate entries, improperly
closed accounts, and so on could all be used to compromise a system.
The script checks for these issues.

Permissions
Poor permissions can lead to privilege escalation. For example, is there
a new setuid or setgid file on the system? If so, the security script noti-
fies you. If you installed that file with those privileges, you’re okay. If it’s
unexpected, you should investigate.

User environment
If you can change a user’s environment, whether that’s root or another
account, you can trick him into giving away his authentication creden-
tials or running suspect commands. If an intruder can edit a user’s dot-
files, like .cshrc or .login, he can change which versions of a command he
runs. Perhaps his shell is set to run a program that asks the user for his
password and sends it to the intruder’s anonymous email account. By
having correct permissions on home directories, dotfiles, mail files, and
so on, you make this class of attack more difficult. The security script
verifies that permissions are set up correctly.

Note that the security check is not an intrusion-detection system. The
changes it checks for are the sort that script kiddies and newbie intruders are
most likely to make, but skilled intruders familiar with OpenBSD could get
around it. They could even replace the security check with a shell script that
sends a daily email message that looks like an innocuous security check.

280 Chapter 15

Fortunately, competent intruders are relatively rare. Just keep in mind
that receiving a security check with no mention of problems is encouraging,
but it’s not proof that your server is secure.

Vital File Backup and Testing

The daily security check tests for changes in the files listed in /etc/changelist
and rotates their backups, since these files are generally critical system files,
such as /etc/master.passwd, /etc/boot.conf, and /var/cron/tabs/root. It also checks
for changes to disk partitioning and mounted filesystems, as well as changes
to device nodes.

Look in /var/backups, and you’ll see files like this:

...
etc_fstab.backup
etc_fstab.current
etc_ftpchroot.current
etc_ftpusers.current
...

The files ending in .current are copies of these files as they existed when
the daily maintenance job was last run. The files ending in .backup are the
previous version of those files.

The first time the security script runs, it copies all of these files to /var/
backup. Following that initial setup, the security script checks the original
file against the current copy for changes. If the file changes, the previous
version of the file is copied to the .backup filename, and the new version is
copied to the .current file.

In the preceding example, the list shows that I edited my /etc/fstab at
some time, prompting the security script to move its copy of the old file
system table to a .backup file. I have never edited /etc/ftpchroot or /etc/ftpusers,
so there is no .backup version of these files, but only the .current one.

The security script doesn’t copy all of the files that it watches. For
example, files containing private keys or that might contain private keys
are not copied, but the security script does take a checksum. (Files moni-
tored by checksum have a plus sign before their name in /etc/changelist.)
There’s no reason to manually edit /etc/ssh/ssh_host_ecdsa_key, and if the file
changes, either you know why or you need to restore from a trusted backup.

/etc/changelist is itself listed in /etc/changelist. This seems recursive, but
the system backs up the list of files you want backed up, and also notifies
you when someone adds or removes a file in /etc/changelist.

Adding Vital Files

You can add files to the change list and even use wildcards to back up all the
files in a directory. But note that if you did use wildcards in /etc/changelist,
you won’t be notified when a file is removed.

System Maintenance 281

Consider this example of using wildcards. In Chapter 13, I added
the apache2 port to one of my machines. I put the configuration files in
/etc/apache2. I could add a line like this to the change list:

/etc/apache2/*

This would automatically copy all files in the apache2 configuration
directory to /var/backup and test them for changes. However, I would not
be notified when files are removed from this directory. If you’re using a con-
figuration mechanism that says, “include all the .conf files in such-and-such
directory,” this might not be desirable. A better option would be to list each
file individually and update the list when you add critical files.

One of the most convenient things about the file-integrity check is that
it automatically creates a local backup of critical system files. That means
that if you decide to learn how to use vipw(8) and utterly trash your user
database in doing so, you can grab yesterday’s copy out of /var/backups,
install it, and no one will be the wiser. The same applies to every other criti-
cal system file.

Filesystem Integrity Checks

You can’t run a full-on Unix File System (UFS) check while a system is
in multiuser mode, but you can have fsck(8) perform filesystem integrity
checks to try to identify problems before they’re serious. Doing so won’t
fix any problems, but it will notify you that they exist so you can schedule
downtime for repairs.

To enable these checks, set CHECKFILESYSTEMS to 1 in /etc/daily.local.

Copying Files with rdist

The rdist(1) program is used to copy files to other servers, letting you main-
tain identical copies of critical files on many servers. If you’re interested in
using it, see rdistd(8).

Silencing /etc/daily

Some of us have monitoring systems that track a server’s disk, network,
and other basic information. If you don’t need this sort of information to
appear in your daily status mail, set VERBOSESTATUS to 0 in /etc/daily.local. This
turns off these parts of daily maintenance, reducing the amount you need
to read.

If the remaining daily maintenance doesn’t generate any output, the
server should not send a status email that day. In environments where you
don’t trust the monitoring system, you could use the daily status messages
to assure you that the system is running as expected. OpenBSD gives you
the choice.

282 Chapter 15

Weekly Maintenance
The weekly script is simpler than the daily script with only three common
functions:

•	 First, it runs the custom weekly script /etc/weekly.local.

•	 Second, it updates the locate(1) database.

•	 Finally, it rebuilds the whatis(1) man page database.

Monthly Maintenance
OpenBSD doesn’t need any generic monthly maintenance, but for consis-
tency, the /etc/monthly script runs the custom script /etc/monthly.local.

Custom Maintenance Scripts
Each maintenance script runs a custom script before performing any other
tasks. You can put any tasks you need in /etc/daily.local, /etc/weekly.local, and
/etc/monthly.local. These commands are run by root, so don’t use them for
tasks that should be performed by another user. If your database needs to
be backed up, create a separate script, and have the unprivileged user run-
ning your database run that script via cron(8).

Some sites use the scheduled maintenance jobs to run complex soft-
ware that perform site-specific duties. For example, I know of one security
firm that collects data from hundreds of machines, and uses the daily jobs
to send that data to a central management system. Really, you can use the
local scripts any way you choose.

If you have a maintenance task that can run under another user account,
but you want to attach it to the scheduled maintenance jobs, you can have
the local script call another script. Start that script by using su(1) to switch
users and drop privileges.

Custom maintenance scripts may be most useful for altering the way
the standard maintenance scripts perform their work. For example, say you
have a system with many scratch directories containing temporary files. The
weekly maintenance script updates the locate database, but you don’t want
these scratch files included in locate results. You could use a custom main-
tenance script to remove all the scratch files immediately before /etc/weekly
creates the new locate database, and schedule this as a separate task.
By adding it to /etc/weekly.local, you would know that it will finish before
/etc/weekly runs any other tasks.

System Logs
The system log used by Unix-like operating systems has become the indus-
try standard for logging, but that’s not necessarily a good thing, because
the log mechanism can be cantankerous. Once you properly configure log
collection and rotation, however, OpenBSD’s logging system mostly man-
ages itself.

System Maintenance 283

OpenBSD uses the standard logging system for Unix-like (and many
embedded) systems, syslog(3). The syslog protocol marks messages with a
facility and a priority, and hands those messages to a daemon.

Any program can write to the local syslogd(8) server, but the key in
log management is deciding how those messages are sorted and stored.
OpenBSD’s syslogd can sort messages based on facility, priority, and source
program.

Facilities
A facility indicates the source of a message. In most cases, each program
that needs a separate log file uses a different facility. Many programs or
protocols, such as FTP, have facilities dedicated to them. The syslog proto-
col also has a variety of generic facilities that you can use as you wish.

Table 15-1 lists the standard facilities and provides some notes on
their usage.

Table 15-1: Standard OpenBSD Facilities

Facility Usage

auth Public information about authentication, such as when
someone logged on or when someone uses su.

authpriv Private information about user authentication, normally
accessible only to privileged users.

cron Messages from the system scheduler cron(8).
daemon A catchall for processes that neither need nor require a

dedicated facility.
ftp Messages from FTP and Trivial File Transfer Protocol (TFTP)

servers.
kern Kernel-generated messages.

local0 through local7 These facilities are provided for the sysadmin. Many
programs let sysadmins configure their facility. Use these
eight facilities for such programs.

lpr Messages from the printing system.
mail Messages from mail servers.
mark This special facility writes a message every 20 minutes.
news Messages from Usenet news servers.
syslog Messages from the syslog server itself.
user The catchall message facility. If a userland program doesn’t

specify a logging facility, the messages wind up here.
uucp Messages from the Unix-to-Unix Copy Protocol (UUCP)

servers. You will probably never encounter this pre-Internet
email protocol.

While most programs have sensible defaults, it’s your job as the system
administrator to manage which programs log to which facilities. If possible,
use the local facilities for your server-specific daemons. While it’s entirely

284 Chapter 15

possible to use facilities for purposes other than originally intended, try not
to reassign the uucp facility to some other daemon unless you really have no
other option.

Priority
A log message’s priority represents its importance. Programs usually send
their logging data to syslogd, but syslogd decides what to retain and what to
discard. You get to decide how much detail you want in your logs. Use the
following nine syslog levels to decide what to record and what to discard (in
order from most to least important):

emerg  System emergency. This message appears on every active termi-
nal. The computer might be crashing, or it may have some other error
that requires immediate attention.

alert  An emergency. The system can continue to function, but attend
to this error very soon.

critical  Critical problems. These indicate serious errors, such as
hard-drive failures.

err  Errors. These are in regard to problems that require attention but
won’t destroy your system.

warning  Miscellaneous warnings. These could be attended to, but will
not prevent the process that generated them from running normally.

notice  Important information, such as daemon startup and shutdown
notifications.

info  Basic information. This usually includes transactional data, such
as individual messages in a mail server or individual queries to a web
server.

debug  Trivia. This level is usually of interest only to programmers, but
occasionally useful to sysadmins trying to figure out why a program is
behaving in a certain way. Debugging logs can contain anything, includ-
ing information that violates user privacy, such as plaintext passwords.

none  Don’t log anything from this facility here. This is most commonly
used to exclude information from log files, as discussed shortly.

By combining levels with priority, you can sort log messages into indi-
vidual files or other targets.

Sorting Messages via syslogd(8)
syslogd compares received messages to entries in /etc/syslog.conf. This file
has two columns: the first (the selector) describes a type of log message, and
the second (the action) tells syslogd what to do when a message matches the
description. Neither column can have whitespace; whitespace can appear
only between the columns. For example, here’s a line from the default
syslog.conf :

daemon.info /var/log/daemon

System Maintenance 285

Any log message that has a facility of daemon and a priority of info or
higher is appended to the file /var/log/daemon. Of course, if all logs were so
easily managed, this would be a short section.

syslogd compares all log messages to all syslog.conf entries. If a log mes-
sage matches multiple selectors, it is sent to all matching destinations.

Wildcards

You can use wildcards in either the facility or priority. For example, this line
logs every message from the mail facility:

mail.* /var/log/maillog

To capture messages of a given priority or higher from all facilities, use
an asterisk (*). Here’s how to send all priority err and higher messages to
the console:

*.err /dev/console

You can also use a double-wildcard to send all log messages to one place.

. /var/log/all.log

Logging everything to one location isn’t terribly useful or wise. You
should not send authpriv debugging to a world-readable file.

Excluding Information

Use the none level to exclude information from a log. For example, the fol-
lowing line excludes private authentication information from an otherwise
all-inclusive log.

.;authpriv.none /var/log/most.log

The semicolon (;) allows you to combine selection criteria on a single line.

W a r n i n g 	 If you combine entries with a semicolon like this, do not put whitespace after the semi-
colon. The only whitespace can appear between the selector and the destination.

Combining Facilities

You can combine multiple facilities in a single entry by using commas.
Here’s how to capture all messages of info priority or higher from several
facilities:

auth,daemon,syslog,user.info @loghost

Any log message from the auth, daemon, syslog, and user facilities, and of
priority info or higher, is sent across the network to the host loghost.

286 Chapter 15

Marking Time

While all log messages have a timestamp, you might want a marker in a log
file to indicate that time has passed. The special facility mark creates a mes-
sage every 20 minutes, letting you add an extra timestamp to a file. Here’s
how to add a timestamp to the mail log every 20 minutes:

mail.info;mark.info /var/log/maillog

Local Facilities

The eight facilities local0 through local7 are for your use. Many programs
can be configured to use a specific facility, so you can aim them at a par-
ticular file. I’ve configured a daemon to use the facility local7. Here, I send
messages from that facility to a file:

local7.* /var/log/postgres.log

Some programs have a hard-coded preference for a specific facility.
For example, the flow-tools package (see my book Network Flow Analysis, No
Starch Press, 2010) has facility local6 hard-wired into the code. Don’t be
shocked when you see something like this. Fortunately, OpenBSD’s syslogd
can filter based on program name, so you can easily filter your logs despite
this sort of daftness.

Selecting by Program Name

If you’re out of facilities, you can use the name of the program generating
the syslog messages as a selector. Using a program name requires two lines:
The first contains the program name with a leading exclamation mark,
and the second sets up logging. OpenBSD offers the following example of
sudo(8) logging:

!sudo
. /var/log/sudo

All log messages from sudo go to the specified log file.
You can also select by program name and stop all subsequent selections

of matching messages by using two exclamation points (!!) before the pro-
gram name. This example sends all messages from sudo to /var/log/sudo, but
prevents sudo messages from going to any other log.

!!sudo
 . /var/log/sudo
!*
...

System Maintenance 287

The !* after the end of the sudo entry is a way to say “all programs”—in
other words, don’t sort by program name anymore. You need this only if
you use the double-exclamation-point “stop processing matching messages
here” syntax.

Log Actions
Now that you know how to sort your log messages into different buckets, let’s
see how to take different actions with those messages. Messages can be writ-
ten to a file, piped to a program, sent to another host, or written to users.

Logging to Files

Most of our examples so far send log messages to a file, giving the full path
to the file as the action. Here’s how to send all of the messages from facility
local6 to a log file:

local6.* /var/log/flowtools

You can also send the messages to a device by giving the full path to the
device node, but this will make sense to very few devices, such as the con-
sole. This is because writing the log message to the disk device /dev/wd0d
will not store the message on disk.

Logging to a Program

To send selected logs to a program, use a pipe (|) and the full path to the
program, like this:

. |/usr/local/bin/logsurfer

The logging system should start the destination program, and then
feed log messages into the program’s standard input.

Notifying Users

You can also direct log messages to logged-in users by listing multiple users
in a comma-separated list. For example, to send a message to all users, use
an asterisk.

*.emerg *
*.info lasnyder

This example will notify all logged-in users of real emergencies, but
deeply annoy lasnyder.1

1. Hey, I was running out of ways to annoy lasnyder—plausible ways, at least.

288 Chapter 15

Logging to a Remote Host

I usually have a logging host that collects log messages from everywhere—
not only from my OpenBSD boxes, but from all my other Unix-like systems,
as well as routers, switches, and anything else that speaks syslog. This reduces
my maintenance needs and conserves disk space. And, since, every log mes-
sage includes a hostname, I can easily sort them out later.

To send messages to another host, use the @ symbol.

*.info @loghost.blackhelicopters.org

This dumps everything of priority info and above to my logging host.
Your logging host must accept syslog messages from the network. If your

host is an OpenBSD machine, run syslogd with the -u flag. And be sure to
protect your log host with a packet filter, so random hosts can’t write logs
to it and fill up your disks.

Customizing syslogd
OpenBSD runs syslogd by default, and you can customize how syslogd
behaves. Common customizations include adding more log sockets and
listening to the network.

Adding Extra Log Sockets

Programs write log messages to the socket /dev/log, but software inside a
chroot won’t be able to access that device. To have a program that’s locked
inside a chroot send messages to syslogd, you must put an additional log
socket at /dev/log inside the chroot.

For example, since the integrated BIND DNS server is chrooted into
/var/named, the DNS server expects to find the log socket at /dev/log, which
means that the new log socket should be at /var/named/dev/log. To create
this log socket, use syslogd’s -a option, and give the full path to the log
socket in /etc/rc.conf.local.

syslogd_flags="-a /var/named/dev/log"

You can use about 20 additional logging sockets.

Listening to the Network

If you want your OpenBSD box to act as a log host, accepting logs from
remote hosts, use the -u flag.

syslogd_flags="-u"

Because the syslog protocol has no access control, anyone with access to
port 514/UDP on the log host can write to your log files.

System Maintenance 289

N o t e 	 Filling a host’s logs with junk to fill the hard disk is an old attack. Use OpenBSD’s
packet filtering system (discussed in Chapters 21 and 22) to protect your logging host.

Syslog and Embedded Systems
OpenBSD supports writing log messages to an in-memory buffer, which
allows logging on systems that have no writable disk, such as diskless sys-
tems and embedded routers and firewalls. syslogd retains these logs in a
memory buffer, and clients can connect to syslogd through a reporting
socket and read the logs. As you would expect, logs in memory disappear
when syslogd is shut down.

To use syslogd for reporting, first provide a reporting socket with the
-s option and give it a full path to a reporting socket. Here’s an rc.conf.local
entry for a reporting socket in /var/run/syslog :

syslogd_flags="-s /var/run/syslog"

To log to the buffer, make a syslog.conf action. Specify logging to a buffer
with a colon (:), the number of kilobytes to give the buffer, another colon,
and the name of the memory buffer. (The maximum buffer size is 256KB.)

For example, here we capture all log messages of err priority or higher
and write them to the 128KB memory buffer called errors:

*.err :128:errors

Use syslogc(8) to read a memory buffer, and use the -s option to tell
syslogc where to find syslogd’s reporting socket, and provide the name of
the log buffer. Here’s how to read the reporting socket /var/run/syslog and
read the errors buffer:

$ syslogc -s /var/run/syslog errors

If you’ve forgotten the name of the buffer you want to read, ask syslogc
to query the list of available memory logs with -q. Be sure to provide the
reporting socket.

N o t e 	 Even if you’re not a programmer, you can still use real syslog features. Logging to
syslog is available to shell scripts via the logger(1) program. See the logger man page
for details.

Log File Maintenance
You can capture logs. Fantastic! Now just let the log files grow until they fill
your hard disk and leave room for nothing else, right? Or you can discard
old logs and have the system keep the logs to a manageable size. This is
called log rotation.

290 Chapter 15

Look at the system messages log, /var/log/messages, and you should see six
messages files: messages, messages.0.gz, messages.1.gz, messages.2.gz, messages.3.gz,
and messages.4.gz. The plain messages file is the current log file. The other files
are older logs; messages.0.gz is the newest, and messages.4.gz is the oldest.

When the current log file hits either a certain age or a specific size, log
rotation discards the oldest log file (messages.4.gz), and the second-oldest
file, messages.3.gz, is renamed to messages.4.gz; messages.2.gz is renamed to
messages.3.gz; and so on. The existing messages file is renamed to messages.0
and compressed, and a new messages file is created.

The newsyslog(8) program rotates log files, restarts daemons, runs com-
mands, shuffles old files into other directories, and handles all routine tasks.
root runs newsyslog once per hour via cron(8). When newsyslog starts, it reads
/etc/newsyslog.conf and examines each log file listed. If the conditions for
rotating the log file are met, the log is rotated and other configured actions
are taken.

newsyslog.conf Fields
newsyslog.conf uses one line per log file. Each line has seven fields, like this:

/var/log/authlog root:wheel 640 7 * 168 Z

From left to right, the fields are log file, owner, permissions, number
of files to retain, size, time, and flags. After the flags field, you might see a
number of optional arguments. We’ll look at each of the fields in order.

Log File

The first entry on each line is the full path to the log file to be processed (/var/
log/authlog in this example). This must exactly match the current log file.

Owner

The second field (root:wheel in our example) lists the log file’s owner and
group, separated by a colon. This field is optional, and is not present in
many of the default entries.

By default, log files are owned by the root user and the wheel group, but
newsyslog can change the owner of log files. While changing ownership isn’t
common, you might want to explicitly declare it for specific files.

You can choose to change only the owner or only the group. In these
cases, use a colon with a name on only one side of it, such as :wheel or root:.
You must always include the colon if you’re changing ownership.

Permissions

The third field (640 in our example) gives the rotated file’s permissions in
standard octal notation, as discussed in chmod(1). This field is optional, and
it is not present in many default entries.

System Maintenance 291

Count

The fourth field specifies the number of archived log files that newsyslog
keeps. In our example, /var/log/messages has the current log file and five
archives, numbered 0 through 4. newsyslog.conf has a count of 5 for /var/log/
messages.

Size

The fifth field is a file size in kilobytes. When newsyslog runs, it checks the
size of the log file. If the log is larger than the size given here, newsyslog
rotates the log. If you don’t want the file size to affect when newsyslog rotates
the file, put an asterisk here.

Time

To rotate the log based on time, use the sixth field, which has four possible
values: an asterisk, a number, and a time in one of two standard formats. If
you rotate the log based on size rather than age, put an asterisk here. If you
put a number here, you are specifying a number of hours after which the
log will rotate. Our example of /var/log/authlog rotates every 168 hours.

The time formats—ISO 8601 restricted and newsyslog-specific—are a
little more complicated.

ISO 8601 restricted
A time entry beginning with an @ symbol is in the ISO 8601 restricted
time format. The ISO 8601 restricted time format is used by newsyslog
on most Unix-like systems, because it was the time format used in MIT’s
primordial newsyslog. The ISO 8601 format is a bit obtuse, but every
Unix-like operating system I’m aware of supports it.

A full date in ISO 8601 format is 14 digits with a T in the middle.
The first four digits are the year, the next two are the month, and the
next two are the day of the month. (The T serves as a sort of decimal
point, separating whole days from fractions of a day.) The next two
digits are hours, the next two are minutes, and the last two are seconds.
For example, the date September 13, 2013, at 3:18 and 58 seconds pm
is expressed as 20130913T151858. (Specifying a specific date and time to
rotate a log wouldn’t be terribly useful because the log would rotate
only once.)

You can choose to specify only the fields near the T, leaving fields
farther away blank. Again, if you think of the T as a decimal point, you
don’t need to write 5.87 as 005.8700; the leading and trailing zeros are
irrelevant.

In the case of newsyslog, empty fields are wildcards. For example,
4T00 matches midnight on the fourth day of every month, and T23 matches
the twenty-third hour, or 11 pm, every day. If newsyslog.conf lists the time
@T2359, the log rotates at 11:59 pm every day. (Of course, newsyslog runs
once an hour, so the log won’t rotate exactly then.)

292 Chapter 15

As with cron(8), specify time units in detail. For example, @9T, the
ninth day of the month, rotates the log once an hour, every hour, on
the ninth day of the month, which would mean it rotates the log all day
on that day. It would probably be better to specify a time of @9T01, which
would rotate the log at 1 am on the ninth day of the month. You don’t
need to specify times any more closely than the hour, as newsyslog runs
only hourly.

newsyslog times
Because ISO 8601 time doesn’t let you easily specify weekly jobs, and
it’s impossible to specify the last day of the month, OpenBSD includes a
newsyslog-specific time format that lets you easily specify these common
times.

Any entry with a leading dollar sign ($) is written in month week day
format.

This particular format uses three identifiers: M (day of month), W
(day of week), and H (hour of day). Each identifier is followed by a num-
ber indicating the unit you’re using. Hours range from 0 to 23, and days
run from 0 (Sunday) to 6 (Saturday). Days of the month start at 1 and
go to 31, with L or l representing the last day of the month. For example,
to rotate a log on the fifth of each month at noon, use $M5H12. To start
the month-end accounting at 11 pm on the last day of the month,
use $MLH23.

If you don’t specify an hour, the time defaults to midnight on the
chosen day. And if a newsyslog.conf entry lists both a time and a size for
file rotation, newsyslog rotates the log if either requirement is met.

Flags

The seventh field, which is optional, instructs newsyslog on special process-
ing for the file itself. OpenBSD uses four flags:

Z  Compress the file with gzip(1).

B  Do not add a “log file turned over” message to the file (for binary
files).

F  Follow symlinks.

M  A user is monitoring this log.

While the B and Z flags are not, strictly speaking, mutually incompatible,
most log files need only one of them, and most binary files don’t compress
well anyway. (The default newsyslog.conf compresses the packet filtering log
file, but that’s something of an oddity.) If you see the Z flag with the M flag,
the old log file will be sent to the user before the log is compressed.

System Maintenance 293

Monitoring Logs
OpenBSD’s newsyslog can email logs to a user before rotating them. If you
carefully control how you sort your logs, this feature can be useful. For
example, sudo(8) logs successful uses at priority notice, but failed uses at pri-
ority alert. You might split these into separate log files in syslog.conf, like this:

!sudo
. /var/log/sudo
*.alert /var/log/sudofail

The file /var/log/sudofail should now contain only sudo failures, such as
users entering incorrect passwords or exceeding their privileges.

Now you could tell newsyslog to check for monitored logs by running it
with the -m flag. (newsyslog runs as one of root’s cron jobs.)

To have the sudo failure log emailed to you every time the log rotates,
you can put your account in the monitor field.

/var/log/sudofail root:wheel 640 30 * $H06 ZM mwlucas

This assumes that email to the account mwlucas on this machine reaches
me. The simplest way to ensure that would be to forward the email in /etc/
mail/aliases.

N o t e 	 If you’re serious about watching these kinds of failures, monitor logs on a logging host
that end users cannot access. A user who becomes root on the local machine can edit
logs before they are emailed and rotated.

Adding a PID File
If newsyslog tries to rotate and compress a file, but the process writing the
file is still writing to the file, the file can become corrupted. Some programs
need a right proper slapping before they will let go of their log files. How?
Just list a PID file here, and newsyslog will send that process ID a SIGHUP (like
a kill -1).

Note that PID files are not a terribly secure way to identify specific pro-
cesses because they are subject to race conditions and other attacks. If the
server has a command for rotating its logs, that’s probably a wiser choice
than signaling a process indicated in a PID file.

Signal Name
To send a signal other than SIGHUP to a process with a PID file, use a dif-
ferent signal name. The signal name must begin with SIG and be specified
by name. You can find a full list of signals in signal(3), but the software

294 Chapter 15

documentation should tell you which signal the process needs to release in
order to restart its log file. This field is optional, but if you use it, you must
enter a full path to a PID file immediately before it.

Command to Execute
Rather than signaling a process, you can have newsyslog run a command
when rotating logs by giving the full path to the command in double
quotes. While this field is optional, it cannot be combined with a PID file.
You can use a PID file or a command name, but not both.

System Time
There’s no excuse for a system having incorrect time. Once you set the time
zone, having OpenBSD correct its own clock on an ongoing basis from any
number of freely available network time servers is easy. Virtual machines in
particular are notorious for skewing clocks, but time correction works on
them as well, so as I said, no excuse.

OpenBSD includes its own NTP client, OpenNTPD, which is written to
be safe and secure. Before ntpd(8) can do anything though, it needs some
configuration.

Configuring ntpd(8)
OpenBSD comes with a perfectly acceptable generic ntpd configuration
that uses public time servers. If your host is on the public Internet and
you only want to set your system time, not provide time to other hosts, use
the defaults. Otherwise, you must customize /etc/ntpd.conf by selecting time
sources and deciding if ntpd will accept time requests from other machines.

Time Redundancy

NTP gets the time by querying remote servers. If you have a single server,
that time is assumed to be correct. However, if you have multiple time servers,
the times are not simply averaged. If one time server is wildly off from all
of the other time servers, the results from that server are discarded, and a
median from the remainder is selected. If you have only two time servers,
and the times obtained from them differ, ntpd can’t determine which one
is correct. To help ntpd make sensible decisions, always list at least three
time servers.

Time Sources

Choose your time sources with the server, servers, and sensor keywords.
The server option tells ntpd to get the time from a single server, which

might have multiple IP addresses. If that’s the case, ntpd tries to use the first

System Maintenance 295

IP address. If the first address doesn’t work, it tries the second, and so on,
until it gets an answer. Use the server option if you have specific time servers
to use, and be sure to list at least three time servers.

server time1.blackhelicopters.org
server time2.blackhelicopters.org
server time3.blackhelicopters.org

The servers option tells ntpd to get the time from multiple hosts that
share a common hostname. The default ntpd.conf includes this entry:

servers pool.ntp.org

The host pool.ntp.org has four IP addresses, and ntpd will try to get time
from all of those hosts.

If you have a hardware time sensor, you can tell ntpd to read time from
it. Hardware time sensors include nmea(4), udcf(4), and mbg(4). The sensor
option tells ntpd to use a hardware sensor. If you’ve invested in a hardware
time sensor, you might be sufficiently concerned about time to measure
the distance between the transmitter and the receiver, and adjust the time
based on the speed of light delay. The correction keyword lets you specify a
number of microseconds that your sensor is behind.

As I wrote this, a 40-millisecond (ms) delay caused a furor in the scien-
tific world when researchers thought they might have seen a neutrino go
faster than light, so we’ll put a 40 ms correction into our time sensor.

sensor nmea0 correction 40000

N o t e 	 Be warned that OpenBSD is not a real-time operating system. You should not be mea-
suring neutrino speed with it anyway!

Serving Time

I run time servers on only closed networks, where very few hosts have access
to the public Internet. I would also run time servers if I had hardware time
sensors, but most of the time, I just use the public time servers.

To have ntpd answer time queries from other hosts, use the listen on
directive. You can either specify an IP address or use an asterisk to say
“every IP on the system.”

listen on 192.0.2.87
listen on 2001:db8::aaaa

Because ntpd has no access controls, any host that can connect to port
123/UDP can get time from this server. If this worries you, use packet filter-
ing (discussed in Chapters 21 and 22) to limit time checks to hosts on your

296 Chapter 15

network. The author of OpenNTP served time to his entire company and
to the public on a MicroVAX 3100 with 16MB (yes, that’s an M) of RAM
without the NTP process using more than 5 percent of the processor, so
the load imposed by NTP is negligible on modern systems.

Now that ntpd is configured, let’s use it.

Using ntpd(8)
You can correct time slowly or do it in one fell swoop. I recommend fully
correcting time at boot, and then letting ntpd slowly adjust the system clock
as the system runs. This corrects time before anything relies on it, but keeps
everything synchronized on an ongoing basis.

To correct time when starting ntpd, use the -s flag.

ntpd -s

You’ll get a command prompt back once ntpd receives a response from
a time server and adjusts the clock. At boot, this delays other software start-
ing so that it has the correct time, and when you check your clock, you
should see the correct time. You can configure this at boot with ntpd_flags
in /etc/rc.conf.local.

ntpd_flags='-s'

If the clock is off on a running system and you’re running software that
would be corrupted by the clock moving backward or a time jump forward
(as with many databases), you might need to tell ntpd to correct the clock
more slowly. To do so, run ntpd without any flags, or set it in rc.conf.local to
have it run in this mode at boot.

N o t e 	 Your starting time may be so far off that it will be impossible to make a gradual
adjustment to the correct time in any reasonable period. To fix the clock, schedule a
clock change when you can shut down your sensitive software, and make sure NTP
runs afterwards so that the problem remains fixed. It’s better to fix your clock right
away and be done with it.

Hardware Sensors
Sensors are physical probes that check the health and status of hardware.
Manufacturers have put more and more sensors in hardware, providing
low-level hardware information to the operating systems. OpenBSD sup-
ports a wide variety of hardware sensors, and uses the sensorsd daemon to
query them and act upon error states.

Resolving many hardware errors requires shutting down the machine,
but advance warning that a component has stopped working changes a
hardware failure from an unexpected middle-of-the-day catastrophe to an

System Maintenance 297

after-hours annoyance. Some hardware, such as hot-swappable hard drives,
can be replaced without interrupting service once you know the hardware
has failed.

Device Drivers
Each physical sensor has a device driver. The device driver extracts informa-
tion from the hardware and publishes it in a sysctl (discussed in Chapter 18).
sensorsd reads the sysctl values and can act when they change or cross
critical values. For example, here are the sensor-related sysctl values from
my laptop:

$ sysctl hw.sensors
hw.sensors.acpitz0.temp0=67.00 degC (zone temperature)
hw.sensors.acpiac0.indicator0=On (power supply)
hw.sensors.acpibat0.volt0=11.10 VDC (voltage)
hw.sensors.acpibat0.volt1=12.35 VDC (current voltage)
hw.sensors.acpibat0.power0=0.00 W (rate)
hw.sensors.acpibat0.watthour0=2.61 Wh (last full capacity)
hw.sensors.acpibat0.watthour1=0.30 Wh (warning capacity)
hw.sensors.acpibat0.watthour2=0.06 Wh (low capacity)
hw.sensors.acpibat0.watthour3=9.57 Wh (remaining capacity), OK
hw.sensors.acpibat0.raw0=2 (battery full), OK
hw.sensors.cpu0.temp0=81.00 degC

This comparatively simple and generic hardware has two temperature
sensors and all kinds of power sensors. You can get hundreds of lines of sen-
sor output, depending on your hardware.

Many RAID controllers have their own sensors, and will report when an
array has failed. Here, we see three virtual disks provided by an AMI RAID
controller:

hw.sensors.ami0.drive0=online (sd0), OK
hw.sensors.ami0.drive1=degraded (sd1), WARNING
hw.sensors.ami0.drive2=failed (sd2), CRITICAL

If you didn’t have sensors, you would need to look at the blinking lights
on the drive enclosure. Or you could listen for the really annoying “beep,
beep, beep,” which is so easy to hear over the roar of 5,000 server fans, the
air conditioners, and someone else’s hardware that has been beeping every
time you’ve come in for the last six months.

N o t e 	 Some sensors require the Intelligent Platform Management Interface (IPMI). This is a
kernel feature that’s disabled by default in OpenBSD, because it makes some machines
behave really badly. Chapter 18 discusses enabling IPMI.

The device drivers attach to sensors automatically, and the values get
into the kernel automatically, but to do anything with these results in any

298 Chapter 15

automated manner, you need sensorsd(8), or you need to configure an exter-
nal SNMP-based management system and use snmpd(8). We’ll look at using
sensorsd(8) here. Using snmpd(8) is discussed in Chapter 16.

Sensor Configuration
The sensors daemon sensorsd(8) watches sensor monitoring data. It logs
changes and can execute commands if needed. Because all hardware is
different and all environments are different, by default, sensorsd notices
changes only in sensor readings. To take action, you must configure sensorsd
in /etc/sensorsd.conf.

Sensor Types

OpenBSD supports many types of sensors, as listed in Table 15-2.

Table 15-2: Supported Sensor Types

Name Function

temp Temperature (C)

fan Fan speed (RPM)

volt DC voltage

acvolt AC voltage

resistance Ohms resistance

power Wattage

current Amperage

watthour Power capacity

amphour Power capacity

indicator Device-dependent yes/no

raw Device-dependent value

percentage Device-dependent percentage

illuminance Lighting

drive Hard drives

timedelta Time difference between operating system and hardware

humidity Percent humidity

frequency Microhertz

angle Microdegrees

You’ll need to check your hardware manual in order to learn how to
use some of these sensors effectively.

Some sensors appear to overlap. For example, why does OpenBSD have
all those separate values for power, when you could probably do some math
and get a common power gauge? The reason is that these are the values
that the actual sensors report, and the developers would prefer to give you

System Maintenance 299

the actual measurements. OpenBSD does perform some data rationaliza-
tion, but only for simple data; all temperature sensors are normalized to
degrees Celsius, for example.

Now let’s see what you can do with these sensors.

Settings in sensorsd.conf

The file sensorsd.conf has example entries, but because environments differ
so widely, they’re all commented out. It uses a termcap-style configuration
syntax, much like /etc/remote (see Chapter 5) or /etc/login.access (see Chapter 6),
with colons separating the terms in an entry. Each entry starts with the sen-
sor to be measured, followed by attribute names and settings.

For example, here’s an entry for a temperature sensor in the default
sensorsd.conf:

hw.sensors.lm0.temp0:high=50C

For the sensor lm0.temp0, the attribute high is set to 50C.
sensorsd supports four attributes:

high  An upper limit

low  A lower limit

command  A command to run when a limit is crossed or a state changes

istatus  Ignore this status

The values reported for a sensor type depend on what makes sense.
Where high and low limits make sense for temperature and voltage, some
sensors report specific values instead. The RAID controller shown ear-
lier reports drives as degraded, failed, or healthy. A hard-drive sensor that
reports a scalar value isn’t useful, as you want to know if a RAID container
is healthy or if drives have failed. There’s no middle ground.

You can have both high and low values for a single sensor. For example,
whereas temperature might not have a low value in most data centers, volt-
age certainly will. I work in all sorts of weird places, and not all of them
have clean power.

hw.sensors.acpibat0.volt0:low=11.0V:high=13.0V

With a line like this, if the electricity supply to my laptop drops below
11 volts or goes above 13 volts, I will know.

Some systems might have dozens of sensors of a given type, which could
make configuration tricky. If my motherboard has 15 temperature sensors,
I don’t want to configure each separately. Fortunately, you can configure
sensors en masse by type, and since I don’t care which temperature sensor
goes above 80 degrees Celsius (if any of them do, I want an alarm), that
works.

temp:high=80C

300 Chapter 15

When this rule is applied, sensorsd first looks for a configuration item
for a specific sensor. If it doesn’t find that specific rule, it looks for a general
rule. You can have one rule for most of your temperature sensors, and then
override it for specific sensors, like this:

hw.sensors.lm0.temp5:high=90C
temp=80C

This rule says that most of my temperature sensors alarm at 80 degrees,
but one specific sensor doesn’t alarm until 90 degrees.

I care about temperature, but I don’t care if my fancy keyboard sees
that there’s no light and wants to trigger its back lighting. You can ignore
a sensor, or a type of sensor, with the istatus keyword.

illuminance:istatus

You should categorically ignore certain types of alarms based on your
environment and gear. Make up your own mind.

Sensors Triggering Action

Having an entry in /var/log/daemon for when a hard drive fails is nice, but
it would be better if the system would send email, page you, or trigger your
monitoring system. It should do something—anything—that doesn’t require
you to log in and look at a log file. Fortunately, sensorsd can run arbitrary
commands upon detecting a problem or crossing a threshold, using the
command attribute.

Thanks to the wide variety of sensors and their possible error states and
conditions, sensorsd doesn’t have a fine-grained “run this command for an
error, but run that other command for recovery.” There are too many pos-
sible error states and conditions for this to make any sense. Instead, sensorsd
runs a single command upon crossing any threshold or upon any state
change, including when it starts up and the state of an individual sensor
goes from “unknown” to whatever it starts at.

Consider this sensorsd.conf entry:

temp:high=80C:command=/sbin/reboot

At first glance, this reads “If the temperature is high, reboot the machine.”
You think that will unquestionably kill whatever runaway process is saturat-
ing your heat-generating CPU (completely setting aside the fact that other
hardware besides CPUs generate heat), but sensorsd will run the command
whenever the temperature state changes. The state changes at boot time,
when the first temperature reading is taken, which means that your system
will boot, and then immediately reboot. Your script needs intelligence.

System Maintenance 301

To make scripting easier, sensorsd has a set of variables it can pass to
a script:

%1  Is the value within the limit set in sensorsd.conf ? This can be one of
below, above, within, invalid, or uninitialized.

%n  Sensor number.

%s  Sensor status.

%x  Which device the sensor sits on.

%t  Sensor type.

%2  Sensor’s current value.

%3  Sensor’s low limit

%4  Sensor’s high limit.

You might run a temperature command like this:

temp:high=80C:command=/usr/local/script/temp %1 %2 %n

Your script /usr/local/script/temp would take three arguments: the error
condition, the temperature, and the sensor name. Your script would check
these values and see if a reboot is warranted.

With sensorsd, proper timekeeping, and log file management, your
OpenBSD system can largely look after itself.

In the next chapter, we’ll look at how OpenBSD can take care of
other hosts.

16
N e t w o r k S e r v e r s

Working behind scenes,
taking care of vital things,

the daemon is here.

The OpenBSD base system includes
several servers to support a network.

This chapter covers the following network
servers:

•	 Small-server handler inetd

•	 Printer daemon lpd

•	 DHCP daemon dhcpd

•	 TFTP daemon tftpd

•	 SNMP agent snmpd

•	 SSH server sshd

This miscellany of small daemons supports the features covered in
upcoming chapters.

304 Chapter 16

The inetd Small-Server Handler
The inetd(8) “super-server” handles incoming network requests for net-
work services that aren’t used very often. After all, many systems don’t have
a steady stream of incoming FTP requests, so why have an FTP daemon
running constantly? Instead, inetd listens for incoming network requests,
and when an FTP request arrives, it starts the FTP server and feeds it the
request. Other common services that frequently (but not always) run through
inetd include ident, finger, and TFTP. Many of these services can also run
standalone, if the application usage warrants it.

inetd also handles functions so small and rarely used that they’re easier
to implement within inetd itself, rather than by calling a separate program.
These functions include discard (which dumps any data received into the
bottomless pit of /dev/null), chargen (which pours out a stream of characters),
and echo (which repeats whatever you send to it). Most of these services are
not needed on the modern Internet and are disabled by default, but you
have access to them if necessary.

Configuring inetd
You configure inetd in /etc/inetd.conf. Here’s the default inetd configuration
for OpenBSD’s FTP server:

#uftp vstream wtcp xnowait yroot z/usr/libexec/ftpd {ftpd -US
#ftp  stream  tcp6 nowait  root /usr/libexec/ftpd  ftpd -US

The first thing you’ll notice is that these entries are commented out.
OpenBSD’s default inetd offers only the identity server identd(8) and two
time services by default.

The first field is the service name (ftp in this case) u. The name in this
field must match a name in /etc/services. The inetd program uses the services
file to perform a service lookup to identify which ports it must listen on. To
change the TCP/IP port that your FTP server runs on, change the port for
FTP in /etc/services. (You could also change the first field to use the name of
the service that usually runs on the desired port, but I find starting my FTP
server entry with the wrong name just gives me a headache.)

The second field is the socket type (stream in this case) v. This field dic-
tates what sort of connection this is. All TCP connections are of type stream,
and UDP connections are of type dgram. The inetd program does support
other types of connections, but they’re rarely used. If you’re considering
using them, either you’re reading the documentation for a piece of software
that needs that type of connection or you’re wrong (probably the latter).

The third field is the layer 4 network protocol, usually tcp w, udp, tcp6,
or udp6. If you want to offer a service over both IPv4 and IPv6, you need a
separate entry for each. That’s why there are two otherwise identical config-
urations for the FTP server. The inetd program also supports RPC services,
which have type rpc/udp or rpc/tcp.

Network Servers 305

The fourth field (nowait in this case) x indicates whether inetd should
wait for the server program to close the connection or just start the pro-
gram and go away. As a general rule, TCP-based daemons use nowait, and
UDP-based daemons use wait. (There are rare exceptions.)

The fifth field (root in this case) y names the user that the server
daemon runs as. Many inetd-using programs must run as root, as they can
affect multiple users or accept more specific logins, but some smaller pro-
grams have dedicated unprivileged users.

The sixth field is the full path to the server program inetd runs when
a connection request arrives z. Services implemented within inetd have a
path of internal. The FTP server is at /usr/libexec/ftpd.

Finally, the last field gives the command to start the server program,
including any command-line arguments you want. This configuration runs
the FTP server with the arguments -US {.

Restricting Incoming Connections
Script kiddies occasionally try to knock a server off the Internet by sending
it more connection requests than it can handle. The inetd program accepts
up to 256 connections per minute per service. If a service receives too many
connection requests, inetd logs the issue and stops answering requests for
that service for 10 minutes.

N o t e 	 The IPv4 and IPv6 versions are limited separately, so you could accept 512 FTP con-
nections per second if the requests are evenly divided between protocol families. You
can override this globally with a command-line flag when starting inetd, or you can
configure this on a per-service basis.

The -R flag controls how many connections per minute and per service
that inetd accepts. For example, to accept 1000 requests per minute, you
would set the following in /etc/rc.conf.local:

inetd_flags='-R 1000'

You can set per-service limits by editing the wait/nowait field in the ser-
vice’s inetd.conf entry. Add a dot to the wait or nowait entry, followed by the
number of times per minute you want to allow the service to be called. For
example, if you have an FTP server that should be used by only a few of your
friends, you could limit the server to 10 requests per minute, as follows:

ftp stream tcp nowait.10 root /usr/libexec/ftpd ftpd -US
ftp stream tcp6 nowait.10 root /usr/libexec/ftpd ftpd -US

Now, if more than 10 connection requests arrive in one minute, inetd
stops servicing FTP requests for ten minutes. An attacker could still use this
to knock your FTP service offline, but not to knock the entire server offline.
At least this way you get to choose your failure mode and when you reach it.

306 Chapter 16

The lpd Printing Daemon
OpenBSD includes the lpd(8) printing daemon common on Unix-like oper-
ating systems. The lpd daemon has options to support thousands of different
printers, but getting the right mix of options to support any one specific
printer can be a challenge.

The simplest way to use a printer on OpenBSD is through a PostScript
server, and that’s the method I’ll cover here. Many modern printers, par-
ticularly the popular multifunction fax/scanner/printer combinations,
support PostScript, and you’ll find that every office print server does, too.

Every printer your system knows about needs an entry in /etc/printcap,
the printer capability database. This is another termcap(5)-style configura-
tion file. You don’t need to know everything about the printer to change
settings here. This entry just needs the hostname or IP address of the print
server and the print server’s name for the printer you want to access. Then
use the following template:

lp|printername:\
 :sh=:\
 :rm=printservername:\
 :sd=/var/spool/output/printername:\
 :lf=/var/log/lpd-errs:\
 :rp=printername:

The first line gives the printer’s names. Every printer can have any
number of names, separated by the pipe (|) symbol. The default printer on
a Unix-like system is named lp, so be sure that one of the printers has that
name attached to it. Another name should be the one used by the print
server for this printer (such as Billing). (Microsoft print servers frequently
share one printer under several different names, and each name prints dif-
ferently, so be sure to use the name that represents the PostScript facility.)

The other lines list attributes:

•	 By default, lpd precedes each print job with a page giving the job name,
number, host, and other identifying information. This used to be
important when people paid for printing by the page, but unless you’re
in an environment with a single, massive printer, this probably wastes
paper. The :sh:=\ entry suppresses this page.

•	 The :rm= attribute gives the hostname or IP address of the print server.
You must be able to ping the print server by this name.

•	 Printing works best if each printer has a unique spool directory, given
by the :sd= attribute. The printer daemon stores documents en route
to the print server here. This directory must be owned by the user root
and the group daemon.

•	 Several printers can share a common log file, shown by the :lf= attribute.

•	 Finally, specify the remote printer name with the :rp= attribute. This
last attribute is the only one that doesn’t end with a backslash.

Network Servers 307

Always end /etc/printcap with a newline. I usually use an entire blank
line, just to be certain.

Now that you have a printer configuration, you start lpd at boot with
this rc.conf.local entry:

lpd_flags=""

Restart lpd with /etc/rc.d/lpd restart any time you edit /etc/printcap.
Finally, view the print queue with lpq(1), and watch /var/log/lpd-errs

for problems.

The DHCP Server dhcpd
DHCP is the standard method for dynamically configuring clients on an IP
network. You might know DHCP as a way to give computers basic IP infor-
mation, but it can also hand out configuration files for embedded devices
such as routers and phones, point diskless machines to their kernel and
userland, and much more.

OpenBSD includes a heavily modified ISC DHCP server, dhcpd(8). Here,
we’ll cover the basics of using dhcpd for configuring dynamic clients in a
shared Ethernet system. In Chapter 23, we’ll discuss the details of using
DHCP to configure diskless workstations.

How DHCP Works
A client seeking DHCP information broadcasts a request across the local
network asking for someone—anyone—to give it a network configuration.
If your DHCP server is on that Ethernet segment, it answers directly. If it’s
on another network segment, the router for that network segment can for-
ward the DHCP request to your server, which will then offer a configuration
to the client, maintaining a list of which clients have been assigned which
unique configuration values (such as IP addresses). A configuration issued
to a client is called a lease. Like all leases, DHCP leases expire and must be
renewed in order to be valid.

Clients can request certain DHCP features to support their operations.
For example, Microsoft clients request the IP addresses of the network
Windows Internet Name Service (WINS) servers, Voice over IP (VoIP) desk-
top phones request their configuration file, and diskless systems (discussed
in Chapter 23) ask where to find their kernel and userland. The DHCP
server can offer this information, or not.

The DHCP server uniquely identifies each client by the MAC address
of the network card it uses to connect to the network. To find out what
information a client received from the DHCP server, get the client’s MAC
address and search for it in the /var/db/dhcpd.lease file.

308 Chapter 16

Configuring dhcpd(8)
Configure dhcpd in /etc/dhcpd.conf. The default dhcpd.conf file includes a
sample configuration suitable for a small office environment, as well as a
diskless client sample configuration.

I’m going to assume that you’re running a single DHCP server on
your network, and that this server is authoritative for DHCP services.
(OpenBSD’s DHCP server also supports clustering for fault tolerance.)

Before configuring dhcpd to configure clients dynamically, you’ll need a
few facts about your network:

•	 Domain name

•	 DNS servers

•	 IP network and netmask

•	 Range of IP addresses in the network used for DHCP clients

•	 Default router

Once you have this information, you can assemble a brief dhcpd.conf.
Here’s an example:

u option domain-name "blackhelicopters.org";
v option domain-name-servers 192.0.2.5 192.0.2.10;

w subnet 198.51.100.0 netmask 255.255.255.0 {
x option routers 198.51.100.1;
y range 198.51.100.51 198.51.100.100;

}

All hosts that get their configuration from this host are told that their
domain name is blackhelicopters.org u, and that they should use the name
servers 192.0.2.5 and 192.0.2.10 v. The client can be configured to ignore
or override this DHCP configuration, but you can’t prevent local sysadmins
from hanging themselves.

Each subnet needs its own configuration. Even if you have only one
subnet, you must still have a subnet statement defining the IP network for
that subnet so that dhcpd can determine which clients get which configura-
tion. This example defines the configuration for clients on the network at
198.51.100.0/24 w. Everything inside the brackets that follow applies only
to hosts on this subnet.

The routers option at x identifies the default gateway for this network.
Because the dhcpd server won’t let you define additional static routes to
feed to clients, your local network router must have proper routes to reach
the destination. If you have multiple gateways on your local network, your
default router should send an ICMP redirect to the DHCP client to correct
its routing. (You don’t unilaterally block ICMP from your firewalls, do you?)

The range keyword gives the IP addresses that the DHCP server can
assign to clients. In this example, the DHCP server controls the addresses
198.51.100.51 to 198.51.100.100, inclusive y. If 52 dynamic clients connect
simultaneously, the last client won’t get an address.

This configuration should get your clients on the network.

Network Servers 309

Static IP Address Assignments
You can tell your DHCP server to assign a specific address to specific hosts
by specifying the Ethernet address of the client in the configuration and
using a stanza within the subnet statement. Here’s the earlier DHCP configu-
ration with a static entry added:

subnet 198.51.100.0 netmask 255.255.255.0 {
 option routers 198.51.100.1;
 host lucas-desktop {
 hardware ethernet 00:cf:01:b1:9b:07;
 fixed-address 192.0.2.254;
 }
}

I’ve found the MAC address of my workstation, and used it to assign a
static IP address to that machine. This client machine inherits the default
router from the subnet definition, as well as any default DHCP information.

Enabling dhcpd
Enable dhcpd in rc.conf.local.

dhcpd_flags=""

If you have only one network-facing interface, dhcpd will automatically
listen for DHCP requests on that interface. If you have multiple interfaces,
give the interface name as an argument. For example, here’s how to tell
dhcpd to listen for requests only on the interface fxp1:

dhcpd_flags="fxp1"

The interface name must be the last dhcpd argument in rc.conf.local. If
dhcpd needs to handle several interfaces, the list of interfaces must come
after any other arguments in dhcpd_flags.

dhcpd and Firewalls
The OpenBSD packet filtering system includes tables, which are lists of IP
addresses that the packet filter applies rules to. Traffic from IP addresses
in tables can be blocked, have its bandwidth throttled or prioritized, or be
allowed to pass. Each table has a unique name.

The dhcpd server can add addresses to packet filter tables, thereby dynam-
ically changing the firewall rules depending on whether an IP address is
leased. Here, we’ll look at configuring dhcpd to give addresses to the packet
filter tables. Chapter 21 discusses how to configure the packet filter to handle
addresses from dhcpd.

DHCP considers IP addresses in its address pool to be in one of three
states: leased, abandoned, or changed. Leased addresses are addresses

310 Chapter 16

assigned to a host attached to the network. Use -L to give dhcpd the name of
the packet filter table for leased addresses, and then configure the packet
filter to allow or deny those addresses access to the rest of the network.

Abandoned addresses are ones that have been assigned to a host, but
that are not currently in use. In practice, that means that if you shut down
your laptop, the DHCP server will consider the IP address assigned to it
abandoned. The problem with that is that unauthorized users might try
to get on the network by taking an unused address from the address pool,
without going through the DHCP server. To address this problem, give the
packet filter the list of addresses not in use, and give illicit network hosts
their own special packet filter rules. Use the -A argument to tell dhcpd the
name of the packet filter table for abandoned addresses.

If a host changes its address despite the DHCP server’s configuration
instructions, the DHCP server considers the address changed, and dhcpd can
add its new address to the changed address table. Use the -C argument to
tell dhcpd the name of the changed address table. (In Chapter 21, we’ll do
something interesting with these tables.)

dhcpd_enable="-A table1 -L table2 -C table3 fxp1"

N o t e 	 Static IP address assignments do not go into tables. If you assign a static address to a
host, you must manually configure firewall rules for that address.

The TFTP Daemon tftpd
The Trivial File Transfer Protocol (TFTP) is used to transfer files across a
network. Unlike FTP, TFTP doesn’t include authentication. Anyone who
can access the TFTP server can upload or download files from it.

TFTP is an inflexible protocol. It doesn’t work through network address
translation without a proxy or some kind of intelligence within the trans-
lation device, and there’s no interactive session as there is with FTP and
SFTP. TFTP is most commonly used to copy configuration files and operat-
ing system images for embedded devices such as routers.

OpenBSD uses TFTP to bootstrap diskless systems, as discussed in
Chapter 23.

Specifying a tftpd Directory
OpenBSD’s tftpd(8) serves files from a directory, much like a web server.
Traditionally, this directory is /tftpboot, but don’t follow tradition in this case
(you don’t want a TFTP user filling your server’s root partition!). If you use
/tftpboot on your root partition, make sure that your TFTP clients can’t write
to the directory. (You could create a /tftpboot partition.) Normally, I create
/var/tftpboot and tell tftpd to use that as its root directory. If your fingers are
used to typing /tftpboot, create a symlink.

To enable tftpd, set tftpd_flags in rc.conf.local to the TFTP root directory.

Network Servers 311

tftpd_flags="/var/tftpboot"

tftpd chroots to the directory you specify, so tftpd cannot access files out-
side this directory.

tftpd and Files
TFTP uses file permissions as an access control method. Because all files
on the TFTP server can be read by anyone who can access the server port,
TFTP will let clients read files in its root directory only if they are world-
readable. To make them world-readable, do this:

chmod +r /var/tftpboot/filename

Similarly, tftpd will not allow anyone to upload a file unless a file of
that name already exists and is world-writable. This means that anyone
who knows a file’s name can overwrite it, so make vital files read-only. If
an attacker can’t write files, he can’t fill your hard drive.

To create files via TFTP, so that you can upload files that don’t already
exist, run tftpd with the -c option.

tftpd starts as root in order to bind UDP port 69, but it then drops privi-
leges and runs as the unprivileged user _tftpd. Any files tftpd created will
be owned by its user. As a general rule, the files in the TFTP root directory
should not be owned by _tftpd , in order to make sure that the server can-
not affect the files it serves.

tftpd Logging
You should log your TFTP transfers. Use the -v flag to send the transaction
log to syslogd.

tftpd_flags="-v /var/tftpboot"

tftpd logs uses the FTP facility to log messages to /var/log/daemon.

Testing the TFTP Server
Use tftp(1) to test your TFTP server.

$ tftp caddis
tftp> get testboot.iso
Received 20879569 bytes in 10.4 seconds

You won’t see any friendly hash marks as you download the file, and you
can’t change to another directory or list the contents of the TFTP server.
Once the test is complete, use quit to end your TFTP session.

After you have a TFTP client and server set up, you’ll be ready to serve
diskless OpenBSD machines, router operating system images, or anything
else you need.

312 Chapter 16

The SNMP Agent snmpd
SNMP is the de facto standard for gathering information from network
devices. Many different devices from many different vendors support SNMP
as a management protocol.

OpenBSD includes an SNMP agent, snmpd(8), which supports all of the
usual SNMP functions, and also offers visibility into OpenBSD-specific fea-
tures such as packet filtering.

SNMP works according to the standard client/server model. The SNMP
client (usually a server performing network management or monitoring)
queries the SNMP server (or agent) running on a network device. The
SNMP agent, snmpd, gathers information from the local system and returns
it to the client.

In traditional SNMP, an SNMP client with the correct privileges can
also request that the SNMP agent modify its device. Most Unix-like operating
systems are designed to be configured at the command line and generally
don’t accept write requests from SNMP. OpenBSD follows this trend, and
we will focus specifically on read-only SNMP.

In addition to having an SNMP agent answer requests from an SNMP
client, the agent can transmit SNMP traps to a trap receiver somewhere on
the network. SNMP traps are much like syslogd(8) messages, except that
they follow a specific format required by SNMP.

N o t e 	 OpenBSD does not include an SNMP trap receiver. If you need one, check out
snmptrapd in the net-snmp package.

SNMP MIBs
SNMP manages information via a Management Information Base (MIB),
which is a tree-like structure that contains hierarchical information in
ASN.1 format. Each SNMP agent has a list of information it can extract
from the local system, arranged in a hierarchical SNMP MIB with very gen-
eral main categories, such as network, physical, programs, and so on.

Think of the MIB tree as a well-organized filing cabinet, where individ-
ual drawers hold specific information, and files within drawers hold partic-
ular facts. Similarly, the uppermost MIB contains a list of MIBs beneath it.

MIB References

MIBs can be referred to by name or number. For example, here’s a MIB
pulled from an OpenBSD test machine:

interfaces.ifTable.ifEntry.ifDescr.1 = STRING: "em0"

The first term in this MIB, interfaces, tells us that we’re looking at
this machine’s network interfaces. If this machine had no interfaces, this
category would not even exist (although an OpenBSD machine will always

Network Servers 313

have at least a loopback interface). The ifTable is the interface table, which
is a list of all network interfaces on the system. The field ifEntry shows one
particular entry, and ifDescr means that we’re looking at a description of
this interface. This MIB could be expressed as “Interface number 1 on this
machine is called em0.”

MIBs can also be expressed as numbers, and most SNMP clients do
their work natively in numerical MIBs. Your management tool should be
able to translate between numbers and names, but just so you’re not terribly
surprised, here’s the earlier example in numerical form:

.1.3.6.1.2.1.2.2.1.2.1 = STRING: "em0"

Expressed in words, this MIB has five parts separated by dots. Expressed
in numbers, the MIB has 11 parts. Aren’t they supposed to be the same
thing? Well, the numerical MIB is longer because it includes the default
address .1.3.6.1.2.1, which translates to .iso.org.dod.internet.mgmt.mib-2, the
standard subset of MIBs used on the Internet. Most SNMP MIBs start with
this string, so the management tools no longer bother printing out this name.

MIB Definitions

OpenBSD supports two groups of MIBs:

•	 The standard host MIBs, which every network management system
understands. This information includes network and disk space utiliza-
tion, software running on the system, and so on.

•	 MIBs for OpenBSD-specific functions, such as the packet filter, network
failover, bridging, and so on. Most network management systems will
not understand the OpenBSD-specific MIBs out of the box, so you’ll
want to teach your management system about OpenBSD’s MIBs.

MIBs are defined according to a very strict syntax documented in MIB
files. For example, snmpd includes MIB files for the OpenBSD-specific func-
tions in /usr/share/snmp/mibs. These files are written in plaintext, in the very
stilted and formal ASN.1 syntax. While you can read and interpret them
with nothing more than your brain, I highly recommend copying them to
your network management workstation and using an SNMP client to exam-
ine them.

MIB browsers interpret MIB files and present them in their full tree-
like splendor, complete with definitions of each part of the tree and descrip-
tions of each MIB, taken from the MIB files. Generally speaking, you enter
a MIB in the MIB browser, which displays its numerical and word descrip-
tions, and offers the ability to query an SNMP agent for that MIB.

If you don’t already have a MIB browser on your OpenBSD workstation,
use the mbrowse package. If you don’t want a graphical interface, use the
net-snmp package for a full assortment of command-line SNMP client tools,
but be prepared to type some long command lines.

314 Chapter 16

SNMP Security
The most common alternate acronym for SNMP is “Security? Not My
Problem!” This is unkind, but true. You should use SNMP only behind fire-
walls or on trusted networks. If you must use SNMP on the naked Internet,
employ packet filtering to keep the public from querying your SNMP ser-
vice. SNMP agents run on UDP port 161, so allow your management hosts
access to that port on only your SNMP hosts.

SNMP provides basic security through communities. If you read the SNMP
documentation, you’ll see all kinds of explanations of why a community is
not the same as a password, but as far as a sysadmin is concerned, a commu-
nity is a password.

Most SNMP agents have two communities by default: public (read-only
access) and private (read-write access). OpenBSD’s snmpd daemon supports
both of these communities by default. One of your first tasks will be to
change these community names to something that the whole world doesn’t
know. Just like passwords, community names should be hard for intruders
to guess and easy for you to remember.

As you might expect, there have been various versions of SNMP.
Version 1 was the first attempt. Version 2c (SNMPv2c) is the more com-
monly deployed update. Version 3 (SNMPv3) uses encryption to protect
data on the wire, and it includes strong authentication. In practice, few
vendors actually use it because it’s very complicated. The snmpd daemon has
partial support for SNMPv3. Here, we’ll focus on the completely supported
SNMPv2c.

Configuring snmpd
Configure snmpd in /etc/snmpd.conf. The configuration format is a series of
text statements. Defining new community strings overrides the defaults of
public and private.

We start by defining new read-only and read-write community strings,
as follows:

read-only community hansteen
read-write community henning

In general, most snmpd configuration statements look like these two. The
snmpd.conf(5) man page lists all valid snmpd.conf configuration statements.

Every SNMP system is expected to list a contact, a description, and a
location, as in this example:

system contact "mwlucas@michaelwlucas.com"
system description "Web server"
system location "Rack Row 9, Cabinet 6, Under the Meal Replacement Bars"

Many network management systems will automatically pull in this infor-
mation to populate the database. Here, I’ve defined these values for my sys-
tem. Make similar entries for your system.

Network Servers 315

The default snmpd.conf listens to only the localhost IP address, 127.0.0.1,
so outside hosts cannot contact the SNMP daemon. If you want to listen on
all available addresses, comment out the lines, like the following, that specify
an address.

listen_addr="127.0.0.1"
listen on $listen_addr

Alternatively, you can give an interface IP address to have snmpd listen to
a specific external IP address for those machines with many addresses.

listen_addr="192.0.2.5"

With this configuration, snmpd can provide information about your sys-
tem. Enable it in /etc/rc.conf.local.

snmpd_flags=""

This will start snmpd at boot, or you can run /etc/rc.d/snmpd.

Debugging snmpd
SNMP can be an annoying protocol to debug. For one, because it’s UDP,
there’s no easy way to test connectivity to the agent. Also, it runs fairly
silently, in that it doesn’t log queries.

To verify that queries from your network management system are reach-
ing your server, try running snmpd in verbose mode and with debugging.

snmpd -vd
startup
snmpe_bind: binding to address 0.0.0.0:161

When an SNMP query reaches your server, you should see the server
parse the requests. By the same token, snmpd is very good about telling you
why it can’t provide an answer.

snmpe_parse: 192.0.2.197: wrong read community

Errors, like the following, that arise from requests for a nonexistent
MIB are a little more difficult to understand.

snmpe_parse: 192.0.2.197: SNMPv1 'henning' context 1 request 1141724535
snmpe_parse: 192.0.2.197: oid iso.org.dod.internet.private.enterprises.2041
snmpe_parse: 192.0.2.197: SNMPv1 'henning' context 0 request 1141724536
snmpe_parse: 192.0.2.197: oid iso.org.dod.internet.private.enterprises.2041
snmpe_parse: 192.0.2.197: invalid varbind element, error index 1

316 Chapter 16

Here, the MIB request is trying to find the object identifier (OID)
iso.org.dod.internet.private.enterprises.2041, but OpenBSD’s snmpd does not
support that. (It does support 2021, part of the Net-SNMP MIB.) The SNMP
client is requesting an invalid MIB.

This example shows a successful request and the MIB that snmpd sends
in response:

snmpe_parse: 192.0.2.197: SNMPv1 'henning' context 1 request 1531862688
snmpe_parse: 192.0.2.197: oid iso.org.dod.internet.private.enterprises.ucDavis

By reading the output carefully, you should be able to see why snmpd is
not answering requests as expected.

Getting snmpd Information
The most important feature of SNMP is that it lets you read statistics from
the operating system and/or software. In addition to the usual features
supported by SNMP, such as resource utilization and processes, snmpd lets
you grab OpenBSD-specific system information. You can get information
about the packet filter, sensor data, interface memory, and Command
Address Redundancy Protocol (CARP). All of this appears under the
.1.3.6.1.4.1.30155 MIB, OpenBSD’s private (enterprise) MIB tree.

The PF SNMP MIB

The OpenBSD packet filtering feature keeps a lot of statistics, and every-
thing I’ve ever wanted is available through the PF MIB. You’ll find informa-
tion such as the following:

•	 Whether PF is on, and how long has it been running (in hundredths of
a second)

•	 The number of packets that have matched filter rules

•	 The number of fragments and reassembled packets

•	 The number of packets dropped because of memory problems, internal
packet-filtering problems, overfilling the state tables, and so on

•	 The number of states added and removed from the state table

•	 The number of timeouts of various protocols

•	 The amount of traffic blocked on each interface

•	 Packet filtering table usage, number of addresses in each table

And there’s more. The PF SNMP MIB gives you more useful visibility
into packet filtering. Point your MIB browser at the .1.3.6.1.4.1.30155.1 MIB
to see everything.

Network Servers 317

Sensors

You can view the same kernel values processed by sensorsd(8) (see Chapter 15)
via snmpd, including a list of sensors on this device, the value reported by the
sensor, and whether each sensor is in an alarm state. This means you can
use snmpd instead of sensorsd to monitor your hardware.

To view sensor data via SNMP, examine the MIB tree .1.3.6.1.4.1.30155.2.

Interface Memory

You can view the amount of memory used by an interface, and how often (if
ever) an interface was starved for memory as a result of system load. View
the MIB tree .1.3.6.1.4.1.30155.5 to see these values.

CARP

CARP is an OpenBSD invention for sharing one address between two or
more machines. It was designed to provide highly available IP services. The
snmpd daemon exposes CARP’s innards, including these items:

•	 The name of each CARP interface

•	 CARP configuration values (preemption, advskew, and so on)

•	 The number of IPv4 and IPv6 packets received

•	 The number of packets discarded for various reasons

•	 The number of times the host has become master

To see the CARP MIB tree, view .1.3.6.1.4.1.30155.6.

Other MIBs

The snmpd daemon is constantly being expanded. According to the MIB files,
they’ve reserved space for IPsec and relayd(8). Check /usr/share/snmp/mibs for
additional MIB files, and use your MIB browser to see what your specific
version of OpenBSD supports. The OpenBSD team adds MIBs as they’re
needed and as code is contributed. If you need IPsec MIBs, feel free to
write and submit the code.

The SSH Server sshd
Secure Shell (SSH) is a protocol for building encrypted tunnels between
hosts. SSH is most commonly used for remote command-line access to a sys-
tem, but you can use it as a generic wrapper around other protocols or even
to build virtual private networks. One common use for SSH is to support
secure file transfer protocol service, or SFTP, which doesn’t give you a shell
prompt but does encrypt files and authentication information as they cross
the network.

318 Chapter 16

The OpenBSD project supports OpenSSH, a freely licensed client and
server. OpenSSH is the most widely deployed SSH server in the world, with
roughly 97 percent market share, and is generally considered the standard
SSH server. Entire books have been written about OpenSSH, including mine
(SSH Mastery, Tilted Windmill Press, 2012).

OpenBSD includes the OpenSSH server sshd(8), the OpenSSH command-
line client ssh(1), and the SFTP client sftp(1). We’ll focus on sshd here, since
you can use any number of SSH clients. The ones I use most commonly are
ssh (for Unix-like systems) and PuTTY (for Windows). For SFTP, I commonly
use sftp (for Unix-like systems) and WinSCP (for Windows).

Disabling sshd
Unless you specified otherwise during installation, OpenBSD starts sshd by
default. If you don’t want sshd to run, disable it in /etc/rc.conf.local.

sshd_flags=NO

SSH Host Keys
The first time you start sshd, OpenBSD creates host keys in /etc/ssh. These are
sets of public and private keys that uniquely identify an SSH server. Each
key file includes the word key in its name. When your client first connects
to the SSH server, it presents a fingerprint summary of the server’s host
key. If you tell the client to accept the key, the client will cache the server’s
host key. If this key ever changes, the client warns the user that the server’s
unique identity has changed, and that the user might be offering his login
credentials to a different server. (Anyone who gets copies of the host keys
can have another server masquerade as yours.) Be sure to back up your host
keys, and protect them from theft.

sshd Network Options
You could change sshd’s behavior by adding command-line flags, but the
most common way to reconfigure sshd is to edit the files in /etc/ssh.

OpenSSH has many configuration options. The ones that are most
commonly changed involve the network settings. You can control the port,
IP address, and version of IP sshd listens to by editing the configuration file
/etc/ssh/sshd_config. Here’s an example:

Port 22
AddressFamily any
ListenAddress 0.0.0.0
ListenAddress ::

Network Servers 319

The Port keyword specifies the TCP/IP port that sshd attaches to. The
default is TCP port 22.

N o t e 	 Some people recommend using a port other than 22 to avoid password-guessing worms.
Far better ways to protect your SSH server are to allow only public-key authentication or
use a packet filter to allow logins from only selected hosts or networks.

The AddressFamily keyword specifies the version of IP that sshd uses. The
default is to use both IPv4 and IPv6, but you can restrict it to a specific pro-
tocol with the inet (IPv4) or inet6 (IPv6) keyword.

Lastly, you can attach sshd to a specific IP address with the ListenAddress
option.

chrooting Users
Organizations commonly need to confine users to a particular directory or
subset of directories. For example, many websites allow users command-line
access over SSH so that they can edit their files and debug problems more
easily, or even just SFTP access to their files. Those users should have access
to their own directories, but not to other users’ files, or any other part of
the system. One solution is to chroot the user in his home directory. If you
have several users who need to access a shared directory, you can chroot all
of them in that directory.

Locking users in a directory involves three steps: choosing the directory
to lock users into, populating that directory, and configuring sshd to chroot
those users. To demonstrate, we’ll walk through an example of chrooting
the user lasnyder in his home directory, and give him command-line access,
so he will be able to access only the programs in his chroot.

Choosing the Directory

First, specify the chroot directory with the ChrootDirectory option.

ChrootDirectory /home/lasnyder

This works well if all of your users need to be locked into the same
directory, but if you want users to have their own private directory, or if
you want to specify a directory elsewhere on the filesystem, things get more
complex.

OpenSSH supports the %%, %h, and %u macros to represent home direc-
tories. If your chroot directory includes a literal %, use the %% macro to repre-
sent it. The server in this example has home directories on /disk%3/home,
so the %% macro is needed to escape the percent sign.

ChrootDirectory /disk%%3/home/lasnyder

320 Chapter 16

The %u macro expands to the user’s username. You could use this to
give users a chroot some place other than their home directory (though I
don’t know why you wouldn’t just give them a home directory in the desired
location). Here, each user has a directory under /var/www:

ChrootDirectory /var/www/%u

Finally, you could lock each user in his home directory with the %h macro.

ChrootDirectory %h

Wherever you lock a user, you must give that directory everything the
user needs to function, since the user won’t be able to leave that directory
to get a tool that he might need.

Populating the chroot

Most programs, such as a shell, require at least a few device nodes, and the
user must have a shell program to be able to run one. If a user has only
SFTP access, you don’t need to do any special preparation of the chroot.
OpenSSH’s SFTP server includes everything it needs. But if users have shell
access, they need basic device nodes and a shell program.

For our example, to give lasnyder what he needs, go to the chroot direc-
tory, create a dev directory, and then make the standard device nodes using
/dev/MAKEDEV. You can remove the console, klog, kmem, ksyms, mem, and xf86
devices.

cd /home/lasnyder
/dev/MAKEDEV std
rm console klog kmem ksyms mem xf86

Now we need to get the user a shell. Since programs running inside the
shell cannot access any files outside the chroot, including shared libraries,
any shell copied into a chroot must be statically linked. The included system
shells are statically linked, and most shells in the ports tree can be built in
static flavors.

Verify that a shell is statically linked with file(1), and then create a bin
directory inside the chroot and copy the shell there.

file /bin/ksh
/bin/ksh: ELF 32-bit LSB executable, Intel 80386, version 1, for OpenBSD, statically linked, stripped
cd /home/lasnyder
mkdir bin
cd bin
cp /bin/ksh .

Lastly, although a chrooted user should not have write access to his own
root directory, he needs a real home directory. The user’s home directory in
/etc/passwd is relative to the chroot; in other words, if a user’s home directory

Network Servers 321

in /etc/passwd is /home/lasnyder, and the user is chrooted to /home/lasnyder, his
personal files and dotfiles actually go in /home/lasnyder/home/lasnyder.

chown root:wheel /home/lasnyder
mkdir -p /home/lasnyder/home/lasnyder
chown lasnyder:lasnyder /home/lasnyder/home/lasnyder

The user now has a command-line friendly jail cell on the system. Now
we need to tell sshd to lock the user in it.

chrooting Specific Users

Applying this chroot strategy to all of your users probably isn’t advisable—
if nothing else, your sysadmins need unfettered system access to perform
maintenance.

To tell sshd to chroot specific users, either by name or by group, use the
Match keyword at the end of sshd_config. Match lets you change sshd’s default
behavior based on factors such as user and client IP address. (Match has
many more functions; see sshd_config(5) for examples.)

For example, if you wanted to chroot only the user lasnyder, you could
use Match to specify his username. Early in the configuration, you would
have a ChrootDirectory statement that turns off chroot for most users. Then,
at the end of the configuration, you would change the setting based on
matching that username.

...
ChrootDirectory none
...
Match User lasnyder
 ChrootDirectory %h

You could also chroot all users in a group.

...
ChrootDirectory none
...
Match Group webcustomers
 ChrootDirectory %h

If you have multiple Match terms, separate them with commas.

...
ChrootDirectory none
...
Match User lasnyder, jgballard, pkdick
 ChrootDirectory %h

Or, if most of your users are chrooted, reverse the default and specifi-
cally dechroot your sysadmins.

322 Chapter 16

...
ChrootDirectory %h
...
Match Group wheel
 ChrootDirectory none

With careful configuration, you can restrict access to only the desired
users.

SSH can do a whole lot more, such as securely eliminate passwords
from your network. It’s worth your time to fully master this protocol.

OpenBSD’s built-in services can help you hold your network together,
and they provide all kinds of useful support infrastructure. Now that you
know how to configure some of these built-in programs, let’s see how to use
OpenBSD as a desktop.

17
D e s k t o p O p e n B S D

Spend summer days with
blowfish at your fingertips:

no passwords stolen!

OpenBSD is best known as a server oper-
ating system, but it can be a very effec-

tive and powerful desktop system. The X
Window System is the standard graphic desk-

top software for Unix-like operating systems, and
OpenBSD includes tools for using it. As this book assumes that you have
some Unix experience, I won’t cover all the applications that make X
Windows comfortable. You’ll need to experiment to find your preferred
mail client, web browser, and text editors—most of which aren’t OpenBSD-
specific. Instead, this chapter covers items that are unique to OpenBSD,
originated with OpenBSD, or require specific configuration.

OpenBSD includes the Xenocara framework for modifying and build-
ing X.Org in a manner tightly integrated with OpenBSD. We’ll discuss
making OpenBSD boot into a graphical desktop using the cwm desktop envi-
ronment, as well as a text console using the tmux terminal multiplexer. But
we’ll start by customizing the console.

324 Chapter 17

Configuring Your Console with wscons
The wscons(4) hardware-independent console driver lets you configure your
boring, black-and-white, nongraphical console in many ways.

Start by viewing the current console settings using wsconsctl(8). Run the
following on a text console, not in an X session (changes made in wscons can
carry over to an X session, but once you start X, you’re mostly stuck with X’s
configuration system).

$ wsconsctl
keyboard.type=pc-xt
keyboard.bell.pitch=400
keyboard.bell.period=100
keyboard.bell.volume=50
...

Each line contains a system variable and a setting, many of which you
can change. The keyboard.type variable represents the type of keyboard on
the system. Because this is an amd64 system, it uses the pc-xt keyboard com-
mon to consumer computers, but you’ll see different keyboard types with
different hardware.

You can also change these settings with wsconsctl. For example, in the
previous listing, the variable keyboard.bell.volume sets the volume of the
computer’s beep. Now, I’m a tcsh user, and I frequently use tab completion
(type a character or two, press tab, and the shell fills in the name of the
command or file you’re about to type). Unfortunately, when tab completion
hits an ambiguous spot, it stops. That’s not a problem when I’m logged in
over SSH, because I can just type a character or two and press tab again.
But when I’m on the local console, each ambiguity is accompanied by a
beep (or bell) from the computer. When I’m trying to fix a problem, and
the bell rings, shouting “beep WRONG! beep WRONG! beep WRONG!” I have
only one thought:

The beep must die.

$ wsconsctl keyboard.bell.volume=0
keyboard.bell.volume=0

Now silence reigns and I can resolve the problem without the computer
nagging me. (You could choose to turn up the volume, if you’re a masochist.
I won’t judge you—at least not in public.)

Here, we’ll look at a couple other things you can do with wscons.

Screen Blanking
If you leave the system alone for a few minutes, the screen should go blank
to reduce power usage. Modern monitors often do this on their own, but

Desktop OpenBSD 325

you can also configure this behavior in the operating system, especially for
older platforms. OpenBSD turns off the display only once it knows how to
reactivate the display.

You have three choices:

display.kbdact  Wake on keyboard activity

display.msact  Wake on mouse activity

display.outact  Wake on monitor output

Set one of these wscons variables to on, and OpenBSD will realize it
should start blanking the monitor after the idle timeout. The variable
display.screen_off gives the idle timeout in milliseconds; the default, 600000,
is 10 minutes.

You can also choose between turning the screen black and putting the
monitor into “power-saver” mode, also known as sleep. A monitor showing a
black screen reactivates immediately when triggered, but uses more power.
A sleeping monitor really is off, and needs a few seconds to reactivate. To
set power-saver mode, change the variable display.vblank to on. (Some old
monitors don’t believe in saving power, so this won’t work on them.)

Setting wscons Variables at Boot
Users can adjust console settings, but those settings will disappear at the
next reboot. To set wscons variables at boot, add them to /etc/wsconsctl.conf.
The boot process reads this file and applies any variables it finds to the
console.

Running Virtual Terminals with tmux
The terminal multiplexer tmux(1) lets you run multiple virtual terminals
inside one OpenBSD terminal window. While standard virtual terminals
disappear when you disconnect from the system, tmux virtual terminals con-
tinue to run even after you disconnect. tmux is small, fast, easy to use, and
written with the same care as the rest of OpenBSD.

Why would you need tmux? One example is for building programs. Just
before I leave the office, I use my laptop to make an SSH connection into
an OpenBSD server, create a virtual terminal, start building a huge pro-
gram (such as OpenOffice.org), and shut down my laptop. Normally, the
build on the server would terminate when my session is interrupted, but
the tmux virtual terminal continues to run even when I log out. The build
continues in the disconnected virtual terminal while I drive home, and
when I reconnect to it later, I can see how the build has progressed. Virtual
terminal sessions even survive accidental disconnections caused by network
or client failures.

This section provides an introduction to tmux. For complete details on
the features discussed here, as well as dozens of other features, read tmux(1).

326 Chapter 17

The tmux Status Bar and Window Names
To start a virtual terminal session, run tmux. Your terminal window will show
the command prompt and a green tmux status bar along the bottom, with
information like the following:

[0] 0:ksh* "caddis.blackhelicop" 11:55 26-Jun-13

This is a virtual terminal session. The left side of the status bar displays
the tmux session number in brackets [0] and the list of tmux windows 0:ksh*
(beginning with window number 0). The right side shows the first part of
your machine name (caddis.blackhelicopters.org), followed by the time and
date. You’ll learn how to customize things in “Setting tmux Options” and
“Configuring tmux” on page 329.

The window name defaults to the name of the program running in that
tmux(1) window. For example, if you start a command that continues until
interrupted, such as iostat -w 5, the session name will change to match the
command. Interrupt the command, return to a shell prompt, and the status
bar should change its name to match your shell.

The status bar is normally green, but if it turns yellow, tmux is expecting
input. When it’s yellow, any typing is interpreted as a tmux command. If you
reach this mode accidentally, press enter to return to a green status bar
and normal operation.

tmux Commands and Window Management
Pressing ctrl-B tells tmux that the next command is for tmux, not for the pro-
gram running in the virtual terminal. (If pressing ctrl-B interferes with
another program you use frequently, you can change this key combination,
as you’ll see in “Unmapping and Remapping Keys” on page 336.)

The most commonly used tmux commands are single characters. For
example, to create a second terminal window in this tmux session, press
ctrl-B-C. Your screen will display only a command prompt and a new
status bar.

[0] 0:iostat- 1:ksh* "caddis.blackhelicopte" 11:58 26-Jun-13

You have two windows: window 0 shows iostat output, and window 1
displays the ksh prompt. The asterisk next to window 1 means that you’re
currently looking at it. Run an ongoing command in your new window,
such as top, and the window name should automatically change to the name
of that command.

Changing the Current Window

To view another window, use one of the following key combinations:

•	 To see the next window, press ctrl-B-N.

•	 To switch to the previous window, press ctrl-B-P.

Desktop OpenBSD 327

N o t e 	 Keep in mind that window ordering wraps. For example, if you are on the last win-
dow and press ctrl-B-N, you should see the first window.

•	 To jump directly to a window by number, press ctrl-B followed by the
window number.

•	 To open a menu of all windows, press ctrl-B-W, and then select a win-
dow with the arrow keys.

I find the next and previous sequences sufficient, but if you end up with
a dozen windows in one terminal, you might think otherwise.

Renaming Windows

Terminal windows take the name of the currently running program, but
that’s not always useful. For example, if I’m compiling the newest source
with make build, the window name will continually change to reflect the
command running in the build at that moment. The only problem is that
the constant flickering change in my status bar drives me nuts.

If you don’t want to see the window name change with each command,
use ctrl-B to assign a static name to the window. A yellow [rename-window]
prompt will appear in the status bar. Enter your preferred window name,
such as upgrade, and then press enter.

Terminating Windows

To kill a window and end any processes running in it, change to that window
and press ctrl-B-&. You will get a confirmation prompt.

Getting Online Help
Press ctrl-B-? to see a complete list of all tmux commands.

 C-b: send-prefix
 C-o: rotate-window
 C-z: suspend-client
 Space: next-layout
 !: break-pane
 ": split-window
 #: list-buffers
...

Now you can easily explore tmux without reading the manual page.
You’ll use this list to remap keys in “Unmapping and Remapping Keys” on
page 336.

Disconnecting, Reconnecting, and Managing Sessions
A collection of tmux windows is called a session. Conveniently, tmux can dis-
connect from a running session without interrupting its windows. Press

328 Chapter 17

ctrl-B-D to disconnect your terminal from the current tmux session. Your
terminal should now show what it held before starting tmux. To reconnect
to your tmux session, run tmux attach.

You can have multiple tmux sessions simultaneously. The session number
appears on the far left of the status bar. (In our sample status bars, the tmux
session is 0.)

To start a new tmux session without attaching to your previous session,
run tmux without any arguments. For example, I type tmux instead of tmux
attach in order to spawn a new tmux session when I want to pick up where I
left off. You can change your tmux session within tmux itself, using a tmux com-
mand, but I usually just end the session and enter the correct command.

If you can have all these tmux sessions, how can you be sure that you
haven’t left old, useless sessions lying around, with abandoned commands
running in them? Use tmux list-sessions.

$ tmux list-sessions
0: 4 windows (created Sun Feb 13 12:17:14 2011) [80x23]
2: 1 windows (created Mon Feb 21 21:57:59 2011) [131x36] (attached)

I can see from the last line of this output that I left session 2 running
on my other workstation, and am still attached to it.

To connect to session 2, use attach-session and option -t to choose a
target session. Here, I attach to tmux session 2:

$ tmux attach-session -t 2

I’m now connected to the same session from two separate SSH sessions—
in this case, from two separate client workstations. My typing in one screen
is echoed on the other.

To destroy a session, use the kill-session command, specifying the
session number with -t. Here, I kill tmux session 2:

$ tmux kill-session -t 2

Any programs running in windows in tmux session 2 will also be killed.

Using tmux Commands
Command mode in tmux offers a prompt for entering more complicated
commands. To enter command mode, press ctrl-B-:. The status bar will
turn yellow, and a single colon replaces all window names. For example,
to create a new window dedicated to running systat(1), press ctrl-B-: and
enter neww systat. A window named systat will appear. Switch to that window,
and then press ctrl-C to stop systat. That window will disappear.

You can do all sorts of things with tmux commands, including split win-
dows into multiple panels, copy and paste text, and so on. (Read tmux(1)
for the full list.) If you want to cut and paste from one window to another,

Desktop OpenBSD 329

it’s easiest if you use multiple terminal windows, but if you are working in a
text-only console or another restricted environment, you might find these
tmux features useful.

The tmux command mode is most commonly used to set options.

Setting tmux Options
Options change how tmux windows, sessions, and the tmux server itself behave.
The most common changes involve the appearance of windows, colors, or
items displayed in the status bar. Some options affect the entire tmux session;
others affect only a specific window. You can change options on the fly with
the tmux command set-option.

Go ahead and open a tmux session to follow along. Press ctrl-B-: to
enter command mode. When the colon appears, enter set-option status-fg
green, and then press enter. Your status bar should now be solid green
bar. Congratulations! You’ve set the status bar text color identical to the
background color, making it unreadable. Return to command mode, and
change the color to black to make it readable again. (If this bugs you, you
can kill this tmux session and start a new one to reset all options.)

When making changes, use set-option (or just set) for options that affect
the tmux server and the entire session. Use set-window-option (abbreviated
setw) for options that affect only a single window.

Most people won’t need many (if any) tmux options, but they can prove
useful. For example, say you want the status bar clock to display time in
24-hour format, or you want a visual bell instead of a beep. Options let
you control these behaviors, as well as run commands in the status bar. To
change basic tmux appearance and behavior, see the options in tmux(1).

Be sure to try any interesting options interactively. Once you have a tmux
session running the way you like, enter show-options for an accurate list of
the current options. Copy that list because we’ll use it to build a configura-
tion file.

Configuring tmux
Modify $HOME/.tmux.conf in your home directory to configure your tmux
sessions, or use /etc/tmux.conf to inflict your tmux preferences on every system
user. Personal tmux configurations override global settings.

As a simple example, I’ve set the left side of my status bar (containing
the session number) to blue, and the right side (the hostname, time, and
date) to red. If I decide I like this, I can make this change permanent by
entering the following in tmux.conf :

set -g status-left-bg blue
set -g status-right-bg red

The -g flag sets an option globally, so it takes effect for all sessions and
windows.

This should get you comfortable with using tmux. If you need multiple
terminal windows simultaneously, use a graphical desktop. Stay tuned.

330 Chapter 17

Setting Up X
The OpenBSD developers modified the industry-standard X graphic inter-
face provided by X.Org to better fit with OpenBSD. The combination of
X.Org and OpenBSD-specific patches is called Xenocara.

In most cases, Xenocara works exactly like X.Org, and X.Org documen-
tation is applicable to OpenBSD. Most of Xenocara is there for security and
for the convenience of developers building X, but there are a few additions.
In my opinion, OpenBSD’s best enhancement to X.Org is the cwm(1) window
manager. Here, we’ll cover configuring and starting X. The next section
provides details about using the window manager.

Configuring X
Configuring X can be simple or agonizing, depending on your hardware.

Most video cards require special access to system memory, though some
new Intel video cards can work without this access. For other cards, you
must adjust the machdep.allowaperture=2 sysctl in /etc/sysctl.conf and reboot.

Most amd64 and i386 systems need machdep.allowaperture set to 2, but
other platforms might require 1 or 2. Without this sysctl setting, the kernel
will not permit X to communicate with the graphics card. If you’re in doubt,
try X without changing the sysctl, and when you find out your hardware is
too old or the wrong model to work that way, set it to 2.

After rebooting, see if X.Org can automatically set up your graphics
interface by running startx. If it works, you should see the fvwm(1) desktop
and a very bland gray background with a couple of terminal windows.

N o t e 	 If X doesn’t start, see the OpenBSD FAQ , the X.Org documentation, and /var/log/
Xorg.0.log. Many things can go wrong with X autoconfiguration. Read your error
log and search the Internet for solutions.

Once you know that X works, it’s time to decide whether you want to
start X manually each time you need it or if you want OpenBSD to boot in
to X automatically.

Starting X Manually
After logging into the text console, run startx(1). This command starts the
commands in $HOME/.xinitrc and starts X.

Booting into X
OpenBSD includes an /etc/rc.conf  hook for starting the X Display Manager,
xdm(1), at boot time with a login prompt, but the default is to not use xdm.
Here’s the line to add to your rc.conf.local to have xdm without any flags start
X at boot:

xdm_flags=""

Desktop OpenBSD 331

After booting, the console will show a graphical login prompt. Once a
user logs in, xdm runs any commands in $HOME/.xsession.

N o t e 	 Because this is a chapter about using OpenBSD as a desktop, I assume that you’re
using xdm(1). Examples refer to $HOME/.xsession. If you use startx(1) instead,
substitute .xinitrc.

Emulating a Three-Button Mouse
A lot of X software expects you to have a mouse with three or more buttons,
but many have only two buttons. Xenocara lets you pretend that you have
a third mouse button, and when you press both mouse buttons simultane-
ously, it interprets that as pressing the nonexistent third button.

Of course, the best solution is to buy a real mouse with three or more
buttons. They’re much easier to get than they used to be.

Now that you have X ready to use, let’s explore that cwm window man-
ager I mentioned earlier.

Using the cwm Window Manager
While X provides operating system support for a graphical interface, man-
agement of that interface falls to the window manager. OpenBSD has pack-
ages for button-heavy, pointy-clicky window managers such as KDE, Gnome,
and Xfce. These window managers might provide a comfortable bridge
between consumer-friendly operating systems and OpenBSD, but they’re
not designed for the more hard-core Unix user.

Xenocara includes three window managers: the classic fvwm(1) and
twm(1) window managers that have shipped with X since the last millen-
nium, and the OpenBSD-specific cwm(1). OpenBSD developers wrote cwm
specifically as a modern, fast, keyboard-friendly interface.

To start cwm at login, invoke it in $HOME/.xsession:

/usr/X11R6/bin/cwm

When your cwm session ends, xdm returns you to the login screen.

Configuring cwm
Rather than using mouse-driven configuration menus, cwm uses a single con-
figuration file, $HOME/.cwmrc. You can read the complete documentation
in cwmrc(5). Here, as I discuss various cwm features, I’ll mention how each can
be configured or changed in .cwmrc.

Modifier Keys

Most cwm operations require you to press a configurable combination of
keys. For example, ctrl-alt-del locks the screen. The cwm documentation
lists the modifier keys shown in Table 17-1.

332 Chapter 17

Table 17-1: cwm Modifier Keys

Symbol Key

C ctrl

S shift

M meta/alt

For example, CS-r in .cwmrc means ctrl-shift-R. CM-W represents
ctrl-alt-W.

Choosing a New Window Manager

The default cwm configuration allows you to choose a new window manager
with ctrl-alt-W from any command on the system. Enter cwm, and cwm
should restart without losing any of your windows.

N o t e 	 You can also enter a command that isn’t a window manager, such as grep. If you do,
OpenBSD will silently log you out. It won’t say, “Please step away from the keyboard
before I hurt you.” Not threatening you passes for user-friendly in OpenBSD.

Binding a Key Sequence to a Command

You can also bind a key sequence to any cwm command listed in cwmrc(5). For
example, suppose you want to use the key sequence ctrl-alt-R to delete
your current window. Add the following to .cwmrc:

bind CM-r		 delete

The change will take effect only once you use ctrl-alt-W to restart cwm
or you log out and back in again. After you’ve done one or the other, use
ctrl-alt-R to delete the current window.

W a r n i n g 	 If you make an entry in .cwmrc that cwm cannot parse, cwm will not process the con-
figuration file, and you will lose all of your custom cwm settings as soon as you load
the configuration file. If your custom settings vanish, your most recent changes to
.cwmrc are wrong. If you make an error that cwm can parse, cwm will accept it. No
one except the user will have trouble in this case.

Creating cwm Windows
When you are running the graphical desktop, everything on screen is
a window. A terminal runs in a window, as do web browsers and games.
Managing windows—raising, hiding, resizing, naming, and so on—is the
core task of a window manager.

A default cwm session starts with a plain gray screen and a small xconsole(1)
window. Create a new terminal window with ctrl-shift-enter. The window

Desktop OpenBSD 333

manager should focus on whatever window your mouse is over. (Press
shift-+ to increase the font size of the terminal windows.)

If you press ctrl-shift-enter repeatedly, you won’t see additional ter-
minal windows. Oh, the new windows will be created, but on top of one
another. Press alt and the left mouse button to move the currently active
window, and you should expose another terminal window beneath that one.

I find the default terminal size too small; I want wider terminals with
more rows. To resize the terminal window, press alt and the center mouse
button (or both buttons simultaneously). The mouse will move to the lower-
right corner of the window and change to a right angle bracket. The win-
dow will continue to resize as long as you hold down the mouse button.

To maximize windows vertically, press ctrl-alt-=. To maximize win-
dows horizontally, press ctrl-alt- shift-=. To destroy a window, focus on it
and press ctrl-alt-X. You will not be asked to confirm your decision; cwm
will obey and exterminate the window immediately.

To exit cwm and return to the login screen, press ctrl-alt-Q.

Managing Windows
Now that you can create windows, let’s look at ways to manage them.

First, switch between visible windows with alt-tab. The newly active
window should rise to the foreground.

To assign a name to a window, press ctrl-alt-N to access the label
prompt, and then enter the window’s desired name. Names are useful when
you choose to hide a window without destroying it.

To hide a window, focus on it, and then press alt-enter to make it dis-
appear. Pressing alt-tab won’t bring it back because it’s hidden. Press the
left mouse button for a list of all hidden windows, arranged by name. Any
windows you didn’t name will show up as the program name. All terminals
show up as xterm. Click the name to unhide the window.

N o t e 	 It’s a good idea to name windows that have a specific purpose, such as a long-running
software build. That way, you can minimize the window when it’s not interesting,
and quickly find it again when necessary. I name windows created by SSH sessions
after the connected server.

You can search for windows by name. Press ctrl-alt-/ to get a window>>
prompt, and then start typing the name of the window. cwm will list all
matching windows. Hidden windows have an ampersand (&) before their
name. Exclamation points indicate the window with focus.

Locking the Screen
Don’t walk away from an active workstation without locking it, especially if
you’re logged on to sensitive systems or as root. Press ctrl-alt-del to lock
your desktop, and the screen will go blank. Press another key, and cwm will
request your password to unlock the workstation.

334 Chapter 17

The default screensaver is a blank screen, provided with xlock(1). To use
a different screensaver, set a path to it in .cwmrc, as follows:

command lock path-to-command

For example, to use xlock’s flow mode as a screensaver, add the follow-
ing to .cwmrc:

command lock '/usr/X11R6/bin/xlock -mode flow'

If you don’t like any of the screensavers in Xenocara’s xlock(1), try the
xscreensaver package.

N o t e 	 xlock is easily bypassed by anyone with console access. You can’t count on it for
security, but it does make a decent reminder for your coworkers.

Connecting to Other Machines with SSH
One common task is to connect to remote machines with SSH. To do so,
press alt-. to display an ssh>> prompt, and then enter the name of the
machine to which you want to make the connection. Conveniently, cwm sup-
ports autocompletion, based on entries in known_hosts. As you type a host-
name at the ssh prompt, cwm checks for matching names in the system’s and
users’ known_hosts. Press the down-arrow key to find your desired hosts, or
keep typing the hostname to connect to a new host. (Autocompletion won’t
work if you hash known_hosts entries.)

And by the way, if you open multiple SSH sessions, name them, because
sorting through multiple sessions labeled ssh is annoying.

Creating an Application Menu
Click the right mouse button on the background to bring up the applica-
tion menu. The cwm developers have no idea which programs are important
to you, so they don’t even try to provide a default application menu. You
need to build that yourself with .cwmrc entries. Each command has the fol-
lowing format:

command name path-to-command

Yes, this is exactly the same as the format for setting the screensaver.
The lock command is actually one of two special command keywords. Here,
I’ve created an application menu with two choices, which are my web browser
and my PDF reader:

command firefox /usr/local/bin/firefox
command xpdf /usr/local/bin/xpdf

When I right-click the desktop background, I’ll see a menu with these
two choices.

Desktop OpenBSD 335

Using Keyboard Navigation
Almost everyone has a mouse these days, but sometimes you’re in a situa-
tion where it’s best to ignore that mouse. Perhaps your desk is too small,
your mouse is broken, repeatedly removing your hands from the keyboard
slows you down (as in you don’t have a sensible mouse-in-keyboard), or you
just hate your mouse today (which is both valid and respectable).

To control the mouse cursor with the keyboard, use ctrl and the
arrow keys to move the pointer a small amount, or press ctrl-shift and
an arrow key to make larger pointer movements. On my system ctrl-shift-
up arrow moves the mouse pointer up about a terminal line, but that varies
with font size.

You can also use keyboard commands to shift window placement and
size, as shown in Table 17-2.

Table 17-2: cwm Window Movement Direction Keys

Key Combination Direction

alt-shift–H Left

alt-shift–J Down

alt-shift–K Up

alt-shift–l Right

Use alt and a direction key to move a window a small amount, or
alt-shift to move the window a larger amount. To resize a window by a
small amount, use ctrl-alt and a direction key. ctrl-alt-shift and a
direction key resizes the window a larger amount. Just as if you were resiz-
ing with the mouse, the size change occurs from the lower-right corner
of the window. Place a window’s upper-left corner where you want it, and
then resize the window.

Decorating cwm
The default cwm desktop is rather bland, but a few adjustments make it easier
on the eyes. One of the first things I set is a background color: black. Use
xsetroot(1) to set your background color.

$ xsetroot -solid black

You can include this command in .xsession or run it in a terminal. The
file /usr/X11R6/share/X11/rgb.txt lists the colors X recognizes. If a color name
is two words, either remove the spaces in the name or put the name in single
quotes, like this:

$ xsetroot -solid 'hot pink'

If you want an image in the background, use feh (/usr/ports/graphics/feh).

336 Chapter 17

$ feh --bg-scale /home/mwlucas/galaxies.jpg

To make window edges easier to identify, put borders around them.
The default border is 1 pixel wide, in your choice of colors. I prefer 3-pixel
borders, blue for the active window and dark blue for the inactive windows.
That requires the following entries in .cwmrc:

borderwidth 3
color activeborder blue
color inactiveborder darkblue

As you grow more accustomed to cwm, you might find that you want par-
ticular applications—perhaps an MP3 player, a clock, and a fancy graphic
system load indicator—to always be visible. Maximizing a window can bury
these applications. To address this, define a gap in .cwmrc, which sets the
number of pixels to be kept clear even when you maximize a window.

gap top bottom left right

For example, when I must keep track of time, I run xclock(1) on the
right side of my screen. Experimentation has shown that my clock is about
175 pixels wide. I leave a gap of 180 pixels, so that even when I maximize a
window, it doesn’t cover the clock. Here’s my gap entry in .cwmrc:

gap 0 0 0 180

Now I can no longer use the excuse that I missed work because I lost my
clock on my desktop. Fortunately, I have many other handy excuses.

Unmapping and Remapping Keys
While the cwm authors did their best to choose keyboard shortcuts that
wouldn’t conflict with those used by other programs, they could not avoid
every possible conflict. If you run into such a conflict, you can solve the
problem by modifying entries in .cwmrc to replace conflicting cwm key bindings.

For example, cwm uses ctrl and ctrl-shift with the arrow keys to move
the pointer, but OpenOffice also uses these key combinations to move the
pointer and highlight within a text document. I’ve used OpenOffice for
more than 10 years, and have written millions of words in it. My fingers
have been well-trained, and I’m not going to try to retrain them. The cwm
key assignments must change.

Use the bind command to remap keys. Start by disconnecting the ctrl
and ctrl-shift and arrow key combinations from cwm with the unmap option.
Remember that .cwmrc uses C to represent ctrl and S to represent shift (as
shown earlier in Table 17-1).

Desktop OpenBSD 337

bind CS-Left unmap
bind CS-Right unmap
bind CS-Up unmap
bind CS-Down unmap
bind C-Left unmap
bind C-Right unmap
bind C-Up unmap
bind C-Down unmap

These keystrokes will now pass through to applications, such as
OpenOffice.

To determine how to move the pointer with the keyboard, I check
cwmrc(5) for the list of commands that can be bound to a key. The manual
defines commands with a brief name and a description of their functional-
ity. The pointer movement commands begin with ptrmove and bigptrmove,
plus a direction. I find them and use the Windows key (also known as modi-
fier 4) to replace the functions I removed from the ctrl key.

bind 4-Left ptrmoveleft
bind 4-Right ptrmoveright
bind 4-Up ptrmoveup
bind 4-Down ptrmovedown
bind 4S-Left bigptrmoveleft
bind 4S-Right bigptrmoveright
bind 4S-Up bigptrmoveup
bind 4S-Down bigptrmovedown

I can now use both OpenOffice and cwm’s keyboard functions.
At this point, I’ve covered everything I’ve used since OpenBSD intro-

duced cwm, which should get you started. For more information, read cwm(1)
and cwmrc(5). You’ll see that cwm supports many more features.

Now that we’ve covered OpenBSD’s appearance, let’s dive deep into the
operating system core.

18
K e r n e l C o n f i g u r a t i o n

Kernel, not colonel!
This is blowfish, not chicken.
Less grease, more function.

Depending on your systems administration
experience and background, the kernel is a

subject of great mystery and speculation. It
might be something you reconfigure when the

whim strikes you, or something you know to leave alone.
Most commercial operating systems provide only a few basic hooks

for configuring the kernel. Many open source operating systems tell you
to rebuild the kernel from source code whenever you change anything.

OpenBSD falls somewhere in the middle.
The standard OpenBSD kernel is intended to be perfectly usable with-

out modifications, but you have the tools to perform any tweaks or adjustments
necessary for your environment. Additionally, you have the complete source
code and kernel-building tools in case you decide to perform wholesale
kernel surgery.

340 Chapter 18

OpenBSD lets you adjust kernel behavior even as the system is running,
via sysctl(8). Some hardware or protocols require special OpenBSD kernel
tweaks to run in specific environments. This chapter will cover both kinds
of changes, but first, let’s talk about the kernel in general.

What Is the Kernel?
“The file /bsd is OpenBSD’s kernel. Next question?”

That’s technically correct, but not exactly useful. A more general
description is that “The kernel is the interface that links applications and
the hardware.” That’s not a complete definition, but it’s good enough.

The kernel allows programs to write data to disk drives and to the net-
work, and it gives instructions to the CPU and shuffles bits into memory.
When you open a web page, the browser application asks the kernel to fetch
the data it displays.

Some kernel responsibilities exceed this definition. For example, the ker-
nel handles network connectivity, including forwarding packets from one
interface to another if needed. The packet-filtering rules run in the ker-
nel (although the rules are managed by applications). The kernel handles
disk redundancy. And the kernel also handles all sorts of things that don’t
impact applications but are integral to a functioning system.

A simplified view is to think of the kernel as the program that handles
all the low-level functions, which is close enough to give you an idea of what
the kernel does.

Along with kernel, you’ll also hear the term userland. Userland is every-
thing in the system that isn’t the kernel. Your shells, libraries, and applications
are all part of userland.

Kernel Messages
The kernel issues messages to userland. These include hardware attaching
and detaching alerts, warnings from device drivers, and system boot mes-
sages. If you’re logged on to the system console in text mode, you might
notice these messages.

To review kernel messages, you can watch the console, check the system
logs (as discussed in Chapter 15), or use dmesg(8).

OpenBSD has a system message buffer, where it sends messages from
the kernel. These messages are usually copied to the system logger, but
they’re also accessible via dmesg.

The system message buffer is circular. As it fills up, the oldest messages
are deleted to make room for new ones. Run dmesg to view it.

Startup Messages
One common question is “What hardware did your kernel find?” If the ker-
nel handles all the device drivers and other hardware support, the list of
devices found should include all the supported hardware in the system.

Kernel Configuration 341

While the system message buffer is circular, OpenBSD copies the boot-
time system messages into /var/run/dmesg.boot. Here are the boot messages
from one of my test systems.

OpenBSD 5.2-current (GENERIC) #287: Tue Aug 21 18:15:00 MDT 2013
 deraadt@i386.openbsd.org:/usr/src/sys/arch/i386/compile/GENERIC
cpu0: AMD Opteron(tm) Processor 4184 ("AuthenticAMD" 686-class, 512KB L2 cache)
2.80 GHz
cpu0:FPU,V86,DE,PSE,TSC,MSR,PAE,MCE,CX8,APIC,SEP,MTRR,PGE,MCA,CMOV,PAT,
PSE36,CFLUSH,MMX,FXSR,SSE,SSE2,NXE,MMXX,FFXSR,LONG,3DNOW2,3DNOW,SSE3,CX16,
POPCNT,LAHF,ABM,SSE4A
real mem = 267907072 (255MB)
avail mem = 252616704 (240MB)
...

The first line lists the version of OpenBSD, the kernel name and ver-
sion, the date the kernel was built, as well as the machine and directory
where the kernel was built and who built it. This machine runs an official
OpenBSD i386 snapshot, built by Theo de Raadt.

We then see some specifics on the processor. Those familiar with AMD
will note that this is a 64-bit amd64 processor. I chose to run the 32-bit i386
version of OpenBSD, because that’s the installation disk I had handy.

This system came with 256MB of RAM, but 1MB is lost due to hardware-
level weirdness. OpenBSD sees 255MB, and 240MB are available to programs
other than the kernel at this moment. The kernel might use some of that
memory later.

Device Attachments
The kernel then explores the hardware. When it finds hardware that matches
a device driver, it attaches the device driver to the hardware.

mainbus0 at root
bios0 at mainbus0: AT/286+ BIOS, date 10/13/09, BIOS32 rev. 0 @ 0xfd780,
SMBIOS rev. 2.4 @ 0xe0010 (98 entries)
bios0: vendor Phoenix Technologies LTD version "6.00" date 10/13/2009
bios0: VMware, Inc. VMware Virtual Platform
acpi0 at bios0: rev 2

OpenBSD found the main system bus, mainbus0, which is a bit odd because
it’s not actually a piece of hardware. The kernel creates this logical device
as a point for all other devices to attach to. It’s not the only logical device
driver, but it’s present on every machine.

The bios0 device, for the hardware BIOS, isn’t terribly interesting either.
You know the hardware has some kind of BIOS. We covered configuring your
system BIOS back in Chapter 3, and you haven’t needed to look at it since.
Similarly, the acpi0 device represents the Advanced Configuration and Power
Interface (ACPI). If it needed any configuration, you took care of that after
unpacking the system from the shipping box.

342 Chapter 18

Connections and Numbering
Now we get into real hardware.

pci0 at mainbus0 bus 0: configuration mode 1 (bios)
pchb0 at pci0 dev 0 function 0 "Intel 82443BX AGP" rev 0x01
ppb0 at pci0 dev 1 function 0 "Intel 82443BX AGP" rev 0x01
pci1 at ppb0 bus 1
piixpcib0 at pci0 dev 7 function 0 "Intel 82371AB PIIX4 ISA" rev 0x08
pciide0 at pci0 dev 7 function 1 "Intel 82371AB IDE" rev 0x01: DMA, channel 0
configured to compatibility, channel 1 configured to compatibility

The first PCI bus, device pci0, is attached to mainbus0 in the slot bus 0.
The kernel then finds a device it identifies as pchb0, and attaches it to the
PCI bus as device 0. Don’t know what pchb0 is? Use man pchb to identify this
as a PCI host bridge. dmesg gives you the part number.

Next is the device ppb0 (a PCI/PCI bridge, per ppb(4)), attached to
PCI bus 0 as device 1. This is followed by another PCI bus, pci1, attached
to the ppb device. Each instance of a device is assigned a number, starting
with zero. Our tenth PCI bus would be device pci9. (There’s no technical
requirement for sequential numbering, but the kernel follows this rule
unless you tell it otherwise.)

If you dig through dmesg.boot, you’ll see that every device is plugged
into another device somewhere. For example, here’s my keyboard.

wskbd0 at pckbd0: console keyboard, using wsdisplay0

The keyboard wskbd0 is attached to device pckbd0.

pckbc0 at isa0 port 0x60/5
pckbd0 at pckbc0 (kbd slot)

Device pckbd0 is attached to device pckbc0, which, in turn, is plugged into
the isa0 device, which is the ISA bus.

isa0 at piixpcib0

The ISA bus is connected to the Intel PIIX4 ISA bridge.

piixpcib0 at pci0 dev 7 function 0 "Intel 82371AB PIIX4 ISA" rev 0x08

And this bridge is then hooked to PCI bus 0.
OpenBSD finds devices from the root outward, which means that every-

thing is listed in the reverse order from what you’ve just seen. You get a list
of which devices are attached to a device, and then the devices attached to
those devices. You can backtrack starting with the end device, but that’s
kind of annoying.

Kernel Configuration 343

Using dmassage to View Installed Devices
I find the dmassage package most useful for identifying exactly what’s attached
to what devices, although that’s not its only function. Install dmassage like
any other package, and then run it with -t to display installed devices as a
tree, like this:

root
 |-mainbus0
 | |-bios0
 | |-cpu0
 | |-ioapic0
 | |-pci0
 | | |-mpi0
 | | | \-scsibus1
 | | | \-sd0
 | | |-pchb0
 | | |-pciide0
 | | | \-atapiscsi0
 | | | \-scsibus0
 | | | \-cd0
...

While this information may not be immediately useful, dmassage illus-
trates how devices are interconnected on your system, which may become
important later.

Viewing and Adjusting Sysctls
As noted in earlier chapters, the OpenBSD kernel includes a variety of
parameters known as system controls, or sysctls. Some sysctls are static and can
be viewed but not changed. The root account can change others, either at
runtime or at boot.

Sysctls allow an application to retrieve information from the kernel.
They also let a sysadmin change system behavior without reconfiguring
applications, recompiling the kernel, or rebooting. You can view sysctl values
and adjust those that can be changed with sysctl(8).

That said, just because you can change sysctls doesn’t mean you should
change them. The OpenBSD developers set the sysctls to default values that
work well for most environments. You might need to change one or two
for your system, but if you find yourself changing sysctls all over the place,
you’re probably sending yourself down the sysadmin rabbit hole.

Sysctl MIBs
The kernel presents sysctls in a MIB tree. As you learned in Chapter 16,
MIB trees organize information into hierarchical categories. The top-level
categories include kern (kernel), vm (virtual memory), net (networking), hw
(hardware), machdep (machine-dependent values), and so on. Each of these
categories has additional subcategories. For example, net has the categories

344 Chapter 18

inet (IPv4) and inet6 (IPv6). The inet6 MIBs have subcategories ip6 (general
IPv6 characteristics) and icmp6 (ICMP for IPv6). When you reach the end of
categories, you’ll find individual MIBs like these:

net.inet6.ip6.forwarding=0

This MIB configures forwarding IPv6 packets between interfaces,
turning the host into the router. How do I know? I’ve read it in the docu-
mentation, and it’s a commented example in /etc/sysctl.conf. OpenBSD
doesn’t maintain a central list of sysctl values, but the man pages refer to
any related sysctls.

If you want to explore sysctls, get a list from your system, as described next.

Viewing Sysctls
Use sysctl(8) to view the sysctls available on a system.

$ sysctl
kern.ostype=OpenBSD
kern.osrelease=5.2
kern.osrevision=201211
kern.version=OpenBSD 5.2-current (GENERIC) #287: Tue Aug 21 18:15:00 MDT 2013
 deraadt@i386.openbsd.org:/usr/src/sys/arch/i386/compile/GENERIC
...

This particular system has more than 400 sysctls. Interpreting the
kern.ostype and kern.osrelease sysctls is fairly straightforward, but why
would an OpenBSD system have a sysctl to report the operating system?

The sysctl(3) interface appears in all BSD-derived operating systems
and even in Linux, so checking the kern.ostype sysctl, or checking for its
existence, is a good way for third-party software to identify the operating
system. kern.osrevision is just the year and month this particular snapshot
was built. kern.version is the kernel compilation information displayed at
boot. That’s not hard, is it? Let’s look at the next few sysctls:

kern.maxvnodes=5926
kern.maxproc=1310
kern.maxfiles=7030
kern.argmax=262144

Figuring out what these do is a little harder than interpreting the previ-
ous sysctl names. An experienced sysadmin could make really good guesses
about these, but guessing isn’t system administration. Always research sysctls
before changing them.

When you know the name of a sysctl and you want to view its current value,
give the sysctl name as an argument to sysctl. For example, to view the cur-
rent securelevel (discussed in Chapter 10), check the kern.securelevel sysctl.

$ sysctl kern.securelevel
kern.securelevel=1

Kernel Configuration 345

The current value of kern.securelevel is 1.
You can view subsets of the sysctl tree by giving just the part of the tree

you’re interested in. For example, to view only the sysctls related to ICMP,
check the sysctl net.inet.icmp subcategory.

$ sysctl net.inet.icmp
net.inet.icmp.maskrepl=0
net.inet.icmp.bmcastecho=0
net.inet.icmp.errppslimit=100
net.inet.icmp.rediraccept=0
net.inet.icmp.redirtimeout=600
net.inet.icmp.tstamprepl=1

OpenBSD has six sysctls for IPv4 ICMP networking. You can view any
portion of the sysctl tree this way, going as deep or as shallow as you like.

Changing Sysctl Values
Some sysctls are read-only. For example, the hw.ncpufound sysctl shows how
many processors the system has.

$ sysctl hw.ncpufound
hw.ncpufound=1

This system has one processor. You cannot change the number of hard-
ware processors through software (duh).

On the other hand, a system decides whether or not to forward packets
in software. OpenBSD performs packet forwarding entirely in the kernel,
like embedded firewalls and routers. The sysctl net.inet.ip.forwarding con-
trols this feature. If this is set to 0, packets are not forwarded. If it’s set to 1,
the system routes packets.

$ sysctl net.inet.ip.forwarding
net.inet.ip.forwarding=0

To change this, use the equal sign to assign a new value.

sysctl net.inet.ip.forwarding=1
net.inet.ip.forwarding: 0 -> 1

If you need to stop forwarding packets, set this sysctl to 0.
Changes take effect immediately. Remember that only root can change

sysctl values.

Types of Sysctl Values
Most sysctls have a numerical value, but the interpretation of that number
depends on the sysctl. A few sysctls are words, and some generate tables.

346 Chapter 18

Numerical Sysctls

Some sysctls are Boolean—either on or off. For example, IP forwarding is
either on or off. You can’t have 50 percent packet forwarding on a properly
functioning system.

Other numerical sysctls have a range of valid numbers. For example the
kern.securelevel sysctl can range from -1 to 2, as discussed in Chapter 10.
While you could assign a value outside this range, it wouldn’t have any effect
beyond the closest valid value.

Some sysctls have numerical values that map directly to some kernel
value. For example, the kern.maxproc sysctl gives the maximum number of
processes that the system can run. You can adjust this value as needed to
support your applications. While there’s no maximum value, increasing
kern.maxproc increases the memory used by various in-kernel tables. By the
same token, there’s no minimum size, but if you reduce this setting too far,
the system won’t run correctly.

Word Sysctls

A few sysctls are words, such as the kern.ostype sysctl examined earlier. Most
of these sysctls cannot be changed with sysctl, but some can be changed
with other programs. For example, the sysctl kern.hostname gives the system’s
hostname. You cannot change kern.hostname with sysctl, but you can change
it with hostname(8).

Table Sysctls

In addition to words and numbers, some sysctls generate output in the form
of tables. These sysctls are not intended for direct human consumption, but
are meant for processing by dedicated userland programs. For example,
netstat(1) reads table sysctls to create its output.

To view all sysctls, including tables, pass the -A option to sysctl.

$ sysctl -A

Many table sysctls still won’t print (they will generate warnings that you
should use program such-and-such to view that data), but you’ll get a few
tables amid the regular output.

And by the way, tabular sysctls are read-only.

Setting Sysctls at Boot
Sysctl changes are not permanent; they revert when you reboot. To make
sysctl changes permanent, set them in /etc/sysctl.conf.

Changes specified in sysctl.conf take place early in the booting process,
before any server software starts. For example, if you need to customize the
network stack, those changes should take place before the system opens
any network connections. List the sysctls you need to change, an equal sign,
and the desired value in sysctl.conf.

Kernel Configuration 347

The default sysctl.conf contains commonly changed sysctls (those that
the OpenBSD team expects you might reasonably want to change). Each is
commented out with a pound sign (#) and set to the most common nondefault
setting. If you want to change the sysctl, uncomment the entry.

The following are some commonly changed entries from sysctl.conf.
(You might have different entries in your system, depending on your
OpenBSD version.)

net.inet.ip.forwarding

This controls forwarding of IPv4 packets between interfaces. When set
to 1, the system forwards packets received on any interface according to
the internal routing table. When set to 0 (the default), packets are not
forwarded.

net.inet.icmp.rediraccept

This determines whether the host will accept ICMP redirects. Routers
send ICMP redirects to direct hosts to use different local gateways for
more specific routes. While the router can forward the packets for the
clients, using redirects reduces network load. Accepting ICMP redirects
means the host could be redirected to an invalid gateway, however, so
they can be a security issue. Set this to 1 to accept ICMP redirects. The
default of 0 ignores ICMP redirects.

net.inet6.ip6.forwarding

This controls the forwarding of IPv6 packets, much like net.inet.ip
.forwarding does for IPv4 packets. You can control IPv4 and IPv6 for-
warding separately. Set this to 1 to forward IPv6 packets.

net.inet6.icmp6.rediraccept

By default, OpenBSD ICMPv6 ignores redirects, just as it ignores IPv4
ICMP redirects. Set this to 1 to accept ICMPv6 redirects.

net.inet6.ip6.accept_rtadv

IPv6 autoconfiguration listens for router advertisements, much as IPv4
autoconfiguration listens for configurations from DHCP servers. To
autoconfigure IPv6, a host must accept router advertisements. Set this
to 0 to disable accepting router advertisements.

net.inet.tcp.always_keepalive

The TCP keep-alive feature sends packets over otherwise idle connec-
tions so that intermediate devices will recognize that a connection is
still in use. Proper firewalls recognize live but idle TCP connections
even without keep-alives. If you have a broken firewall or NAT device,
TCP keep-alives can help hold a connection alive. Set this to 1 to enable
keep-alives.

net.inet.tcp.ecn

By default, OpenBSD’s TCP stack does not use Explicit Congestion
Notification (ECN). Set this to 1 to enable ECN.

348 Chapter 18

ddb.panic

OpenBSD uses the ddb(4) kernel debugger. If you want the system to drop
into the debugger in the unlikely event of a kernel panic, leave this at 1.
If you want the system to reboot as soon as possible, set this to 0.

ddb.console

When set to 1, this enables entering the ddb(4) debugger from the con-
sole when someone presses ctrl-alt-esc. This option is primarily of
interest to developers.

vm.swapencrypt.enable

By default, OpenBSD encrypts all data written to swap. To disable
encrypting swap, set this to 0. There’s really no reason to disable swap
encryption, because encrypting swap space induces minimal system load.

machdep.allowaperture

This controls userland program access to the memory that userland
really shouldn’t be able to access. The X Windows System needs access
to this memory to display a graphical console. (Chapter 17 covers this
sysctl and X.)

machdep.kbdreset

On amd64 and i386 systems, setting this to 1 allows you to press
ctrl-alt-del on the console to do a clean shutdown and reboot.
When set to 0 (the default), pressing ctrl-alt-del has no effect.

As a rule, if you don’t understand the thing that a sysctl affects, don’t
change it. You won’t learn about RFC 3390 by playing with a sysctl related
to it; you’ll learn about RFC 3390 by actually reading RFC 3390 and spend-
ing quality time with a packet sniffer watching traffic with RFC 3390 dis-
abled and enabled.

And if you want to change a sysctl that’s not listed here, think twice. If
the OpenBSD guys wanted you to change it, they would list it in sysctl.conf.

Altering the Kernel with config(8)
While sysctl lets you tweak the kernel, it won’t let you change values that
are hard-coded into the kernel binary. Some of these values are used to ini-
tialize kernel data structures, and they can’t be changed once the kernel is
running. Others relate to device drivers. Once the kernel has finished prob-
ing devices, it won’t go back and reprobe just because you change where
a device driver checks for its hardware. To change hard-coded values like
these, you must edit the existing kernel file and reboot, allowing the system
to set things as you like from initialization. That’s where config(8) comes in.

The config command has two completely separate functions. The first
creates a kernel compilation directory from a text configuration file, as

Kernel Configuration 349

discussed in Chapter 19. The function we’re most interested in now is edit-
ing an existing kernel binary, which lets you tweak a kernel to better suit
your needs.

N o t e 	 The modern OpenBSD kernel is largely dynamic. If you call for additional virtual
interfaces, the kernel creates them. If you need to change the amount of memory for
the buffer cache, use a sysctl. Editing the kernel is rarely necessary.

Making a Backup of the Default Kernel
Before making any changes to a working kernel, no matter how minor,
back up the original kernel! If your minor changes make your machine
unbootable, you want to be able to easily fall back to a working kernel.

The kernel is just a file, /bsd. To back it up, copy it to another file. I
recommend naming your backup of the default kernel /bsd.GENERIC, for
reasons that will become apparent in Chapter 19.

Always keep a known-good kernel on your system. A bad kernel can pre-
vent a computer from booting, and if you don’t have a reliable kernel that’s
easily bootable, you will need to boot from installation media. (Boot your
backup kernel using the instructions in Chapter 5.) And remember that
subtle kernel bugs can take weeks or months to show up, so plan to keep
your backup kernel forever.

Device Drivers and the Kernel
Much of the hard-coded information in the kernel relates to device drivers,
especially drivers for ancient ISA cards.

Some of you may remember manually configuring the interrupt request
(IRQ) and memory port addresses on a network or SCSI card. The kernel
uses the IRQ to identify cards. Essentially, it consults an internal list of IRQs
and port numbers, compares it to what it finds on the hardware probe, and
assigns the drivers appropriately. “This card answers at IRQ 10 and memory
port 0x300? It must be a NE2000-compatible network card. I will assign
that driver to it.” The process is more complicated than this, of course, but
this probe is a vital part of the process. If you want OpenBSD to recognize
such a card, and the card is set to an IRQ and memory port other than what
OpenBSD expects, you must tell the kernel the IRQ and memory port the
card is using.

Realistically, the best way to deal with ISA cards is to feed them to the
recycling plant. Running OpenBSD on a 25-year-old VAX is interesting and
educational. Running OpenBSD on 15-year-old Sparc hardware is realistic
for very specific applications, and can also be educational and interesting.
Running OpenBSD on 10-year-old consumer-grade i386 hardware is either
a waste of time or an exercise in masochism—probably both.

N o t e 	 Modern PCI-descended hardware includes hooks for the kernel to identify the hard-
ware and assign the proper device driver. You shouldn’t need to edit the kernel to
support hardware.

350 Chapter 18

Enabling Drivers
Rather than changing driver IRQs, more realistically, you might need to
enable a device driver that’s disabled by default or disable a device that’s on
by default.

The kernel includes some device drivers that are disabled because they
react badly with certain hardware, such as the IPMI driver. The ipmi(4)
driver is known to be buggy, and as I write this, it is badly broken in some
use cases. It’s included in the default kernel, but disabled by default.

You can choose to enable ipmi(4). If it works for you, great. If it doesn’t,
feel free to submit bug reports, preferably with patches, or at least proper
dmesg output and crash dumps.

Editing the Kernel with config
When using config as a kernel editor, use the command-line options -e and
-o. The -e flag tells config you’re editing a kernel binary. The -o flag lets you
specify a new file for the edited version of the kernel.

Give the original kernel file path as an argument. For example, here’s
how to edit /bsd and write the result to the file /bsd.test:

config -e -o /bsd.test /bsd

You could use the -f flag instead of -o and a filename. The -f flag tells
config to edit the kernel file in place, not to create a new file.

N o t e 	 If you’re editing /bsd and you specified the -f option, your changes are written
directly to /bsd. I recommend not doing this. (Unless, of course, you’re absolutely
certain you know what you’re doing. You get to keep all the parts.)

Running config will open the kernel editor, which should look much
like this:

OpenBSD 5.2-current (GENERIC) #287: Tue Aug 21 18:15:00 MDT 2013
 deraadt@i386.openbsd.org:/usr/src/sys/arch/i386/compile/GENERIC
Enter 'help' for information
ukc>

At this point, you need to use kernel editor commands to make changes.

Using the help and list Commands

Start with the two editor commands help and list. The help command shows
all the commands available within config and comes in particularly handy at
stupid-o’clock am to remind you of the necessary syntax.

The list command displays a complete list of all the devices the kernel
supports, one screen at a time.

Kernel Configuration 351

ukc> list
 0 video* at uvideo* flags 0x0
 1 audio* at uaudio*|sb0|sb*|gus0|gus*|pas0|ess*|wss0|wss*|ym*|eap*|envy*|
eso*|sv*|neo*|cmpci*|clcs*|clct*|auacer*|auglx*|auich*|auixp*|autri*|auvia*|
azalia*|fms*|maestro*|esa*|yds*|emu* flags 0x0
 2 midi* at umidi*|sb0|sb*|ym*|mpu*|mpu*|autri*|eap*|envy* flags 0x0
...

On an OpenBSD 5.2 system, the default kernel has 538 entries, most
for hardware that isn’t on any particular system but that OpenBSD supports
out of the box. Let’s take a closer look at the devices shown.

Line 0 says that this kernel supports the video device. The kernel will
look for a video device attached to the uvideo device. The uvideo(4) man
page tells us that uvideo is USB video, mainly for webcams and the like, and
video(4) says that the video driver is a device-independent video driver. The
flags statement gives settings to feed to this device driver. (This kernel sup-
ports webcams.)

Line 1 says that this kernel supports an audio device, and it can be
attached to any of a long list of device drivers. The online manual says that
uaudio, sb0, gus0, and so on are sound cards. We get sound with our video?
Truly we live in an age of wonders.

Entries for older ISA gear are more complex.

278 ne0 at isa0 port 0x240 size 0 iomem -1 iosiz 0 irq 9 drq -1 drq2 -1 flags 0x0

This entry for supporting the old-fashioned NE2000 ISA network card
includes an IRQ, DRQ, memory port, and a few other settings that I’ve
(thankfully) forgotten about. The kernel will check ISA bus number 0 at
the stated port and IRQ, in the hope of finding such a device.

504 pflog count 1 (pseudo device)

This is a pseudo-device—a software creation that acts much like an actual
device but has no underlying hardware. The pflog(4) pseudo-device is where
the packet filter dumps its logs. This kernel creates one instance of the pflog
device at boot, but thanks to OpenBSD’s cloneable interfaces, the kernel
can create more pflog interfaces as needed.

Finally, notice that several lines declare themselves “free.” You can copy
an existing device and add it to the kernel. For example, if you wanted a
kernel that supported 10 NE2000 cards, and needed 10 instances of the
device driver in the kernel, you could copy and add the devices here. The
kernel will autoconfigure any number of device driver instances for modern
hardware; it will find 10 PCI Express network cards and give them their
own instances of the device without any prodding from you.

352 Chapter 18

Finding and Enabling Devices

One of the disadvantages to the list command is that it shows everything in
the kernel. You can’t interrupt it; you must scroll through to the end. It’s also
difficult to search through several hundred devices by eye. If you know the
device you want, use find to search for it. Here, we’ll use ipmi as an example.

ukc> find ipmi
493 ipmi0 at mainbus0 disable bus -1 flags 0x0

The IPMI device is device number 493, and it is attached to the device
mainbus0. But note the word disable in the device entry. The ipmi device is
disabled. Let’s turn it on.

ukc> enable ipmi
493 ipmi0 enabled

The kernel now has an active IPMI driver. Yippee!

Changing Kernel Constants

In addition to the device drivers, the kernel has a few hard-coded values for
internal data structures. If you run help in the kernel editor, you’ll see these
values as options.

ukc> help
...
 bufcachepercent [number] Show/change BUFCACHEPERCENT
 nkmempg [number] Show/change NKMEMPAGES

As you can see there are only two values: BUFCACHEPERCENT and NKMEMPAGES.
Unless you have a compelling reason to touch these values, leave them alone.

NKMEMPAGES is the number of pages of memory dedicated to the kernel.
If your machine starts panicking with error messages of out of space in
kmem_map, you can increase this value. If the system boots successfully, how-
ever, you’re better off setting the vm.nkmempages sysctl rather than editing
the kernel.

BUFCACHEPERCENT is the percentage of physical memory dedicated to the
buffer cache. In some fairly rare circumstances, increasing the size of
the buffer cache can improve filesystem performance. You could set the
sysctl kern.bufcachepercent instead of editing this kernel value, however.

To view a current value, enter its name.

ukc> bufcachepercent
bufcachepercent = 20

To change the value, enter its name and the desired value.

ukc> bufcachepercent 50
bufcachepercent = 50

Kernel Configuration 353

Again, don’t muck with these numbers arbitrarily. The OpenBSD devel-
opers set them to the default values for very good reasons.

Completing Configuration

Once you’ve made all of your changes, enter quit to save your changes and
write them to a kernel file. The exit command discards all changes and
leaves the editor, making it easy to start over. Do not mix quit and exit
unless you like being annoyed and confused.

Installing Your Edited Kernel

Your edited kernel is just a file. Verify that you have a backup of your work-
ing kernel, copy your new kernel to /bsd, and reboot.

Boot-Time Kernel Configuration
The config kernel editor is great when you know what you’re doing, but
many of us aren’t that lucky or educated. When I’m trying to figure out how
to fix a problem, I’ll frequently make a change, reboot to test the change,
and see if things work.

OpenBSD lets you edit the kernel at boot time. You can try one boot
with a kernel change, see if it works, and write your changes to the kernel.
At the boot loader prompt, run boot -c.

boot > boot -c

You’ll get a couple lines of boot output, and then the kernel editor prompt.

ukc>

This works just like the config kernel configuration editor. Make any
changes you want here, exactly as you would with config. When you quit the
editor, the kernel should boot with the changes you’ve chosen.

The nice thing about boot-time edits is that they’re not permanent
unless you later declare them so. If your changes don’t result in the desired
behavior, reboot and try again. If your changes do solve your issue, however,
you can write them to a kernel file.

The kernel remembers the changes you made in it. You can “replay”
those changes in config by using the -u flag. Run config as if you were edit-
ing the kernel, but add the -u flag to replicate your boot-time changes.

config -u -e -o /bsd.test /bsd

When you get your command prompt, enter quit to save your changes
to your new kernel file.

Between sysctl and config, you should be able to make any OpenBSD-
supported changes to the kernel. In the next chapter, we’ll cover how to make
wildly unsupported kernel changes by rebuilding the kernel from source.

19
B u i l d i n g C u s t o m K e r n e l s

Rewiring the brain?
Knowing where the parts plug in

makes it possible.

The OpenBSD team works very hard to
provide a high-quality kernel that requires

no tweaking beyond setting the occasional
sysctl or perhaps enabling a feature. But if you

want to use an experimental feature or add a device
driver to the kernel, or you want to squeeze OpenBSD

into tiny hardware or embedded systems, you’ll need to build a custom ker-
nel from source code. The OpenBSD people won’t support you if you ven-
ture into custom kernels, but they’ll provide you with everything you need
to shoot yourself in the foot, as you’ll learn in this chapter.

Kernel Cautions
Before we get into the details of building custom kernels, we’ll look at why
that’s usually a bad idea.

356 Chapter 19

Don’t Build Custom Kernels
Many open source operating systems encourage sysadmins to build custom
kernels. Mailing lists for these operating systems are full of suggestions on
rebuilding, tweaking, and modifying the kernel. Those user communities
will walk new users through rebuilding the kernel.

OpenBSD developers take a different approach to rebuilding the kernel.
They ship a default kernel, called GENERIC, which you will almost never
need to rebuild.

Building a kernel from source doesn’t prove that you’re an alpha geek,
and rebuilding the kernel is never a recommended way to solve a problem.
The people who build custom kernels are either kernel developers or igno-
rant newbies. The OpenBSD Project members feel no particular obligation to
help users with customized kernels. If your custom kernel crashes, destroys
your filesystem, or starts making threatening calls to the local constabulary,
they won’t care. Why? Adding, moving, or changing one kernel option
might seem trivial, but each option might represent tens of thousands of
lines of source code that you’ve just casually gutted.

That said, the OpenBSD Project is much friendlier than closed source
operating systems, in that it provides the source code for the kernel, and
gives you the tools and instructions needed to build it. The territory might
be dangerous, with rattlesnakes and bears and the occasional bottomless
pit, but they give you a map and a flashlight. If you can carve out some new
territory for yourself, good for you! If you get eaten by coyotes, well, that’s
pretty much what happens.

N o t e 	 These warnings apply only to custom kernels. The OpenBSD team is extremely inter-
ested in problems in a provided kernel, whether that’s the GENERIC kernel, the
installer kernel, or any other.

When working with kernels, keep in mind that some platforms have
multiple GENERIC kernels. For example, the i386 platform has the stan-
dard GENERIC kernel, but it provides GENERIC.MP for multiprocessor
machines, and it supports both versions. By the same token, the SGI platform
has several GENERIC kernels—one for each supported hardware variety.
These kernels are all GENERIC, and all supported.

Why Build Custom Kernels?
People build custom kernels for various reasons. For example, if you’re a
kernel developer, or aspire to be one, you will need to build customized
kernels to test new features and new code.

Some people who play with kernels are interested in using experimen-
tal features. For example, OpenBSD supports the newly developed but not
well-tested multipath SCSI, which is not supported by GENERIC. Not many
people have the hardware to use multipath SCSI, but those who do have the
hardware, along with programming skills, are encouraged to help improve

Building Custom Kernels 357

this feature. (When running experimental features, be sure that you under-
stand that experimental is the Siamese twin of unstable.)

Rarely, remediating a security flaw will require a patch to the kernel
source code. But rather than build your own, get the patch from OpenBSD’s
stable branch or a snapshot (discussed in Chapter 20).

Finally, some people will build custom kernels to save RAM on a machine
with very low memory. Removing features from the kernel reduces its size.

Problems Building Custom Kernels
When building a custom kernel, you are likely to run into trouble. For one,
the interdependencies between kernel modules are quite complex and not
thoroughly documented. The developers generally assume that people build-
ing custom kernels will read kernel source code and man pages. You are
expected to read error messages and sort them out yourself.

OpenBSD’s cross-platform design slightly complicates kernel configu-
ration. Some devices run on some architectures, but they fail to run or
behave weirdly on others. If you include the wrong device in your kernel
or tell the kernel a card is attached to the wrong bus, you’ll be building a
busted kernel. Be sure that you understand how your hardware actually
fits together.

When mucking around in the source tree, you can corrupt the source
code in various ways, such as by applying a patch incorrectly, scrambling a
file, or forgetting that you edited a file that is now causing you grief. To test
your source code, compile GENERIC. If GENERIC won’t compile, you’ve
either mucked up the source code or your system has some deeper problem.

Building a custom kernel usually means including or removing kernel
options and features from the configuration file. If you’re trying to use
fancy compiler flags, however, stop. Custom compiler options are great for
exposing compiler bugs, but the OpenBSD team members make no effort
to have their code comply with the demands from these compiler options.
Many of these options and higher optimizations break if you’re not running
very specific operating systems on very specific architectures. The kernel
code assumes that you are using the specified compiler options; if you change
them, you’ll get nothing but pain.

If you’ve checked everything, and you still can’t get your kernel to build,
you might don your flameproof suit and ask for help on misc@OpenBSD.org.
State up front that you’re trying to build a custom kernel, and include the
following information:

•	 Your kernel configuration

•	 OpenBSD version

•	 Unedited boot-time messages from booting a GENERIC kernel on
your computer

•	 A full description of the problem

Someone might take pity and try to help you.

358 Chapter 19

Problems Running Custom Kernels
Custom kernels can have any number of problems, such as the following:

•	 Programs might not run as expected.

•	 The system might not boot.

•	 The system might crash randomly.

•	 The kernel might not find all of your hardware.

•	 The kernel might eat your hard drives or your motherboard (without
mustard or even a shot of malt vinegar).

If you have customized your kernel narrowly—say, by adding only the
multipath SCSI driver to the GENERIC kernel—the developers working on
that feature will probably be interested in your bug reports on that feature.

If you can reproduce that problem when the same system boots with
the GENERIC kernel, the OpenBSD team is definitely interested. Report
your problem as occurring on the GENERIC kernel, and include debug-
ging output only from GENERIC, not from your custom kernel. If you
manage to identify, debug, and create a patch for a problem with a custom
kernel, send your patch and a problem description to the mailing list. Your
problem may be due to running on a custom kernel, but you may also have
found a bug that could be triggered in GENERIC.

But most important, if you have a problem running a custom kernel,
reboot with GENERIC and get on with your day.

Preparing for Kernel Customization
Before customizing the kernel, back up the known-good GENERIC kernel
on your system by copying /bsd to /bsd.GENERIC. That way, if your custom
kernel doesn’t boot, you can recover by booting the backup kernel.

You’ll need the kernel source code in order to build a custom kernel.
You can just grab sys.tar.gz from your OpenBSD installation media. If you
installed from an Internet mirror, make sure to get the source code for your
version of OpenBSD. The OpenBSD mirror root directory usually contains
a snapshot of fairly recent source code, but check the directory for your
release for its source code. Expand this directory under /usr/src.

cd /usr/src
tar -xzvpf sys.tar.gz

Now that you have a backup (you did make a backup of your working
kernel when I told you to, right?) and the source code, let’s look at kernel
configuration.

Building Custom Kernels 359

Kernel Configuration
You configure the OpenBSD kernel via text files. Like 4.4BSD, OpenBSD
doesn’t offer a fancy graphical kernel configuration utility or menu-driven
system. Each kernel configuration is on a single line, along with a label indi-
cating the type of entry and a description. Pound signs (#) mark comments.

Configuration Entries
Kernel configuration entries fall into four general categories: options,
device drivers, pseudo-devices, and keywords.

Options

Options are hardware-independent kernel functions. Options handle things
like filesystems, networking protocols, and compatibility layers.

Option entries look like this:

option FFS # UFS
option INET # IP + ICMP + TCP + UDP
option CRYPTO # Cryptographic framework

To learn more about options, read the options(4) man page.

Device Drivers

Device drivers give the kernel the necessary software to interact with a piece
of hardware. If you want your kernel to support a piece of hardware, it must
include the appropriate device driver.

Device driver kernel configuration entries can be quite long. They
might include flags or settings that tell the kernel where to find the device
and how to initialize it. (ISA cards usually have a hard-coded IRQ and/or
memory address.)

Device drivers have no common label, but their entry starts with the
device name.

mainbus0 at root
cpu0 at mainbus?
fxp* at pci? # EtherExpress 10/100B ethernet
wd* at wdc? flags 0x0000
ec0 at isa? port 0x250 iomem 0xd8000 irq 9 # 3C503 ethernet

Pseudo-Devices

Pseudo-devices behave much like devices, but have no real hardware attached
to them. Pseudo-devices are frequently abstractions that can be opened,
read from, written to, and closed in the same way as real hardware.

360 Chapter 19

For example, the loopback interface is a pseudo-device used for net-
work connections to the local machine. (Your computer has no loopback
network card, but the loopback interface behaves just like a real network
card with an unusual MTU value.)

Pseudo-devices are labeled with pseudo-device.

pseudo-device loop # network loopback
pseudo-device pf # packet filter
pseudo-device gre # GRE encapsulation interface

Keywords

Finally, a handful of other keywords appear only once or rarely. These
one-offs change how the kernel runs or how it’s built, and defy easy catego-
rization. The following keywords may appear:

•	 The machine keyword tells the kernel which architecture it should run on.

•	 The makeoptions keyword tells the compiler how to build the kernel.

•	 The include keyword means pull in another configuration file.

•	 The maxusers value sets the size of some in-kernel tables.

You’ll find even less common keywords scattered in different kernel
configurations.

machine amd64
makeoptions DEBUG="-g" # compile full symbol table
include "../../../conf/GENERIC"
maxusers 80 # estimated number of users

All of these affect the kernel in wildly different ways. You’ll find several
of these keywords in any kernel, even GENERIC.

Configuring GENERIC
Let’s look at an actual kernel configuration. OpenBSD divides kernel con-
figuration into machine-independent and machine-dependent files.

Machine-Independent Configuration

The machine-independent kernel configuration files are in /usr/src/sys/
conf. The file /usr/src/sys/conf/GENERIC contains the machine-independent
kernel configuration, which describes all of the features that OpenBSD sup-
ports on all hardware platforms. Every GENERIC kernel contains the con-
figuration in this file. If you change this file, it will affect every kernel built
that includes this file.

Building Custom Kernels 361

The machine-independent configuration file doesn’t contain device
drivers; instead, devices are tied to particular hardware. This file won’t
contain any special building instructions, because they vary from plat-
form to platform. Nor will it include hard-coded system limits, data
structure sizes, and so on, as OpenBSD running on a 25-year-old VAX
has considerably fewer resources than a brand-new amd64 system. The
/usr/src/sys/conf/GENERIC file contains mostly options and pseudo-devices.
Every OpenBSD kernel must support a filesystem, or it won’t be able to
write to disk or anything disk-like.

A kernel based on this file doesn’t yet know what sort of hardware the
filesystem will run on, but it knows how to make a filesystem. It doesn’t
know what kind of network card it will have, but once you give it a network
card, it can create a TCP data stream and serve your web pages. You’ll need
the machine-dependent configuration to make a kernel that can function
in the real world.

Machine-Dependent Configuration

Each platform has its own machine-dependent kernel directory under
/usr/src/sys/arch. Here’s where you’ll find a subdirectory for every platform
OpenBSD supports, as well as a directory for any platforms under develop-
ment. Separate directories contain platform-specific code, as well as further
conf subdirectories for the kernel configuration file.

I’m using amd64 as an example, so the kernel configuration directory
is /usr/src/sys/arch/amd64/conf. While we’ll focus on the common i386 and
amd64 architectures, the kernel-building process is the same across all
hardware platforms.

A traditional kernel configuration filename is in all capital letters.
You’ll see the GENERIC configuration, as well as the RAMDISK* files used
for the installation disks. (The GENERIC.MP kernel is the multiprocessor
kernel.) We’ll start with the GENERIC kernel configuration file:

machine amd64
include "../../../conf/GENERIC"

The first entry in this kernel configuration defines the machine.
The machine definition tells the kernel configuration parser the kind of
hardware you’re running, and defines core hardware characteristics and
constraints, such as how many bits are in an integer and how much memory
the system can support.

The second entry pulls in the machine-independent kernel configuration
(described in the previous section), defining all of the protocols and tools
that make OpenBSD OpenBSD. The amd64 kernel inherits the filesystems
and network stacks from this entry.

Following these two lines you’ll see the devices OpenBSD supports on
amd64 hardware. Take a moment and skim the file. It’s the same mix of
devices and attachments as described earlier in this chapter.

362 Chapter 19

Your Kernel Configuration
In order to build your own kernel, you’ll need a configuration file. Here,
we’ll look at how to create your configuration file. (Do not just edit either
GENERIC kernel file.)

Minor Changes

If your kernel adds only a couple of items to the GENERIC kernel, use the
GENERIC configuration as a basis for your new one. For example, here’s
the multiprocessor kernel configuration, GENERIC.MP:

include "arch/amd64/conf/GENERIC"
option MULTIPROCESSOR # Multiple processor support
cpu* at mainbus?

The multiprocessor kernel builds on GENERIC, adding only one option
and one device attachment. You can use this model to define your own ker-
nel configuration.

For example, suppose you want to enable the experimental SCSI multi
pathing feature on a kernel. You could create a kernel configuration file in
your platform directory, and simply copy the commented-out multipathing
entries from the machine-independent GENERIC kernel, like this:

include "arch/amd64/conf/GENERIC"
mpath0 at root
scsibus* at mpath?

This creates a custom kernel that closely resembles GENERIC, with
these two extra devices.

Removing Options

To strip options from your kernel, use the rmoption keyword. For example,
to create a minimal kernel based on GENERIC, you could use the rmoption
keyword to remove some kernel options, as in this example:

include "arch/amd64/conf/GENERIC"
rmoption NTFS
rmoption HIBERNATE
...

One advantage to creating a configuration by including the default
kernel is that when you update your source code, your custom kernel configu-
ration will probably still be valid. However, the more options you remove
from the kernel, the greater the chance that the kernel will fail to compile,
or if it compiles, that it might not boot. And if it boots, it might eat your
hard drive.

Building Custom Kernels 363

When removing options, keep in mind that some options are more
important than you might think. For example, removing the INET6 option
(aka IPv6) can create a nonfunctional system. Removing options doesn’t
save you much memory, and it might cripple any number of programs.

Removing Devices

If you want to remove a lot of stuff from a machine-dependent kernel con-
figuration, while retaining the options for base OpenBSD functions, copy
the machine-dependent GENERIC configuration file to a new text file and
make your changes in that file.

Wholesale Butchery

If you want to commit wholesale butchery on the kernel, you’ll want a
configuration that includes both the machine-independent and machine-
dependent parts. Start by copying the existing GENERIC kernel configu-
rations into one file, in the platform’s kernel configuration. Here, I call
my new kernel TREBLE, after the hostname:

cd /usr/src/sys/arch/amd64/conf
cp ../../../conf/GENERIC TREBLE
cat GENERIC >> TREBLE

Before making any other changes, remove the line that includes the
machine-independent kernel configuration file. Then slice out everything
that makes the system functional, and try to build the new kernel. Next,
add stuff back in until the kernel builds. (Although removing drivers won’t
save much memory, doing so will make booting a tiny bit faster.)

N o t e 	 You might be tempted to use the man pages to create your own kernel configuration
from scratch. You’re certainly free to do that, if you’re either a Kernel Lord or an irre-
mediable doofus. Feel free to try it. Every sysadmin can use such a valuable lesson
in humility.

Stripping Down the Kernel

Every device driver and option in the kernel uses memory. If you’re trying
to cram OpenBSD onto a tiny computer, or you’re doing any sort of embed-
ded development, you might want to build a custom kernel that includes
as few device drivers as possible by editing /var/run/dmesg.boot, where every
entry matches a line in the kernel configuration.

The simplest way to trim out unnecessary device drivers is to remove
everything that’s not in your computer. The kernel includes dozens of net-
work card drivers, but you need only one or two. If you’re unsure about a
device, keep it in the configuration. (The ACPI and BIOS devices in par-
ticular are tightly interrelated, and you’ll probably have a really hard time
building a bootable custom kernel without the complete set of ACPI and
BIOS devices.)

364 Chapter 19

Gutting the Kernel

If removing device drivers doesn’t create a sufficiently small kernel for you,
try removing machine-independent options. Many of these options are
interdependent, however, and removing them can create a kernel you can’t
compile. If you can compile the kernel, it might not boot, and if it boots, it
might not function correctly.

Testing Your Kernel Configuration with config(8)
Is your custom kernel configuration internally consistent? To test your
kernel and prepare the files needed to compile it, use config(8).

While still in the kernel configuration directory, give config the kernel
configuration filename as an argument, like this:

config TREBLE

If you get any error messages, read them. For example, config might tell
you that you need to run make clean before building your new kernel, or that
your kernel configuration is internally inconsistent and will not compile. If
there’s a problem, config will often give a line number where you made an
error. Follow any advice config offers.

The following are some of the more common types of errors.

Orphaned Devices

One common way that config fails is if you’re missing a device that’s needed
by another device. Here’s an example:

config TREBLE
TREBLE:36: cpu0 at mainbus? is orphaned
 (nothing matching mainbus? declared)
TREBLE:37: bios0 at mainbus0 is orphaned
 (no mainbus0 declared)
TREBLE:38: ioapic* at mainbus? is orphaned
 (nothing matching mainbus? declared)
TREBLE:82: pci* at mainbus0 is orphaned
 (no mainbus0 declared)
*** Stop.

Your configuration attaches various devices to mainbus0, but there’s no
mainbus0 entry in your configuration. Kernels that include devices that aren’t
attached don’t make sense and cannot compile.

To address this, examine your hardware again. Figure out how these
devices are supposed to attach to the system, and fix your kernel configuration.

Bogus Hardware

Another common problem is including nonexistent device drivers, which
generates the following error.

Building Custom Kernels 365

config TREBLE
TREBLE:36: cpe0: unknown device `cpe'
*** Stop.

config shows me the error and the line number where it occurs. There is
no cpe device, but there is a cpu device. My bad.

The error checking performed by config does not guarantee that your
kernel will compile or run as expected. The only errors it catches are ones
where the configuration is either internally inconsistent or flat-out wrong. The
first real test comes when you try to actually build your configured kernel.

Building a Kernel
If config ran successfully, you will have a kernel compilation directory
including a makefile and a whole slew of header files. The traditional place
for the compile directory is under the platform directory, which is /usr/src/
sys/arch/amd64 for amd64 hardware.

The compile directory contains a subdirectory for each kernel con-
figuration processed by config. My amd64 kernel called TREBLE is in the
/usr/src/sys/arch/amd64/compile/TREBLE directory, which contains a make-
file, as well as all the header files for all included devices and options.

cd ../compile/TREBLE
make

Now it’s time to wait. A successful compilation will create a kernel file
bsd without generating any error messages.

Kernel Build Errors
If your kernel fails to build, you probably have a perfectly explicable error.
First, read the error message given by the compilation. Most of the time,
the error message will explain what the kernel is missing. Generally, you
will need to change your kernel configuration in some manner because of
an error that config could not catch. A broken kernel compilation will end
something like this:

../../../../arch/amd64/pci/pci_machdep.c: In function u'pci_intr_map':

../../../../arch/amd64/pci/pci_machdep.c:641: error: v'PCI_INT_VIA_ISA'
undeclared (first use in this function)
../../../../arch/amd64/pci/pci_machdep.c:641: error: (Each undeclared
identifier is reported only once

w ../../../../arch/amd64/pci/pci_machdep.c:641: error: for each function it
appears in.)
*** Error code 1

x Stop in /usr/src/sys/arch/amd64/compile/ENVY (line 89 of /usr/share/mk/sys.mk).

366 Chapter 19

This kernel cannot be built because something is missing. When a
build fails with statements that something “is undeclared” (as shown in
bold), that’s a hint that the kernel is missing a necessary entry.

The name of where it failed might offer you a hint as to what’s missing.
In this case, at u, I have a function name where the compilation failed, and
then a specific undeclared variable v that caused the compilation to fail.

I would start by figuring out where the pci_intr_map function comes from
and what it’s supposed to do. Search the source code and man pages for
references to the missing function. Failing that, try the mailing list archives.
Be sure to include the function and variable names in any web search.
Generic output that says that “there was an error” w or “the compile has
stopped” x is less unique, and hence it could be useful. If all else fails, fall
back to the GENERIC configuration.

Installing Your Kernel
Your completed kernel is the file bsd in the compile directory. Before you
use your new kernel, verify that you have your current, working, well-behaved
kernel backed up to a separate file on the root filesystem, and then copy
your new kernel to /bsd. That’s it! The next time you reboot, you’ll come up
on your new kernel.

N o t e 	 Some people do not like to copy their custom kernel to /bsd until they’re certain that
the kernel will boot. If you’re one of these people, copy your new kernel to the root direc-
tory under a different name, such as /bsd.test. Boot into this alternate kernel. Test
your system. If everything works, properly install your new kernel.

Identifying the Running Kernel
If you build several custom kernels, you might forget which kernel you’re
running. The uname(1) command will tell you the name of the kernel con-
figuration file used to build the running kernel. The -v flag will tell you
the name of your kernel configuration and the number of times you have
compiled it.

uname -v
GENERIC.MP#348

This output does not mean that I’ve built a multiprocessor GENERIC
kernel 348 times. I use the GENERIC kernel, and I let the OpenBSD release
engineers build my kernels for me. They have built 348 official snapshot
multiprocessor kernels without wiping the kernel build directory. Remem
ber that building custom kernels is for advanced programmers and igno-
rant newbies. I’m neither.

20
U p g r a d i n g

The latest source code?
Fugu extraordinary!

Be brave and swallow.

Here’s an ugly truth: If upgrades are hard,
sysadmins try their best to avoid them. And

that can cause security problems. Operating
system upgrades can cause software that has

worked well for years to develop nervous tics or stop

working altogether. Fixing add-on packages that don’t
work on the new operating system version can require days of troubleshooting.
Server upgrades can make even seasoned sysadmins wish that they had a
simpler job, such as performing as a carnival sideshow, stuffing weasels into
their trousers.

While you can probably deal with a bit of odd behavior in a desk-
top after an upgrade, your servers and firewalls must behave exactly as
expected. It’s common to delay upgrades until the system is so old that it
can be replaced with a new machine running the new release, but that’s
both terrible system administration practice and completely unacceptable
security practice. Computers connected to the Internet must be patched,
maintained, and upgraded, or an intruder will almost certainly compro-
mise them.

368 Chapter 20

Fortunately, the OpenBSD upgrade process is simpler than those used
by many other Unix-like operating systems. With proper preparation, you
can upgrade OpenBSD with a minimum of difficulty.

Why Upgrade?
Because you don’t have a choice.

Security researchers, programmers, and skilled intruders continu-
ously discover new ways to penetrate previously secure systems. Although
OpenBSD has suffered only two vulnerabilities in a default installation that
permitted an intruder to compromise the system, that doesn’t mean that a
two-year-old OpenBSD version is secure.

The OpenBSD Project provides security updates for only the two most
recent releases. For example, when OpenBSD 5.3 comes out, OpenBSD 5.1
will be “end-of-lifed” and lose support from developers. If someone figures
out how to break into a default OpenBSD 5.1 installation after 5.3 comes
out, the developers might not provide fixes. You might adjust new security
patches to work on older versions of the code, but you will find that back-
porting fixes becomes increasingly difficult.

Software not enabled in the default installation can also have problems.
For example, in November 2011, the OpenBSD Project released a patch for
a problem in the included BIND named(8) name server. OpenBSD does not
ship with named enabled, so this wasn’t a problem in the default installation,
but it was certainly a security problem in a function that you might have
chosen to enable.

In order to protect your system, you must understand how to apply secu-
rity patches, either by applying the patch or by upgrading the entire system.
But before we get to the upgrade process itself, let’s look at your choices for
OpenBSD versions.

OpenBSD Versions
Developers all over the world continually make minor changes to OpenBSD’s
source code. If you download the source code in the morning and again in
the afternoon, you’ll get two slightly different versions. In fact, at any given
time, you can get a few different versions of OpenBSD: -current, snapshots,
releases, and -stable.

OpenBSD-current
OpenBSD-current is the most recent development version of OpenBSD,
containing code that is making its public debut. Developers test each other’s
work and then get approval to commit code to the tree. Eventually, they
must put their work out for the public to test, review, and debug.

OpenBSD-current is where the public can access the newest code. If a
change would temporarily break web servers, games, database servers, or
whatever is running on -current, but the change is for the long-term good,

Upgrading 369

the change will go into -current. Those programs will probably work again
before the next OpenBSD release, but there’s no requirement that every
third-party program work perfectly at all times on -current.

N o t e 	 The developers expect -current itself to work at all times, and they consider breaks seri-
ous problems. You might need to recompile Firefox, or the port maintainer might need
to rewrite a makefile, but the core operating system is expected to run at all times.

With these caveats, why would you possibly want to run -current? One
excellent reason is to test the new OpenBSD in your environment. If
today’s -current panics under certain conditions, but last week’s didn’t,
the OpenBSD folks want to know that.

(All the OpenBSD folks run -current on their laptops, and they run
firewalls on -current.) If you can exercise -current in the real world, with a
real workload, they want you to do so. Having real users run -current is the
only way that OpenBSD can be tested before the official releases come out.

OpenBSD Snapshots
Every few days, the OpenBSD team uploads a release from the latest -current
code to the mirror servers. This is an interim release called a snapshot,
which is identified only by the date of its release. A snapshot is simply the
state of -current at a particular time. While the developers try not to build
a snapshot on a day that -current is notably fouled up, guess who’s in charge
of the snapshot quality-assurance process. That’s you.

Snapshots are provided for installation and testing convenience.
Installing and testing a snapshot is easier than building -current on your
own. Also, if you can reproduce a bug on a specific snapshot, the developers
know exactly which version of the code you are running. It’s much easier
to identify a problem as appeared “in the July 15 2013 snapshot” than in a
-current you built yourself from “code downloaded from server X at about
3:17 pm EST on July 15, 2013.”

N o t e 	 Snapshots can contain uncommitted code not in -current. The patches for the changes
are not usually available.

You can get snapshots installation media from any mirror site, in the
/pub/OpenBSD/snapshots directory. If you want to run -current, the recom-
mended way to start is by installing the most recent snapshot you can get
your hands on and upgrading from there.

OpenBSD Releases
Every six months, the pace of OpenBSD development is deliberately slowed.
Developers spend time polishing new features, and Theo makes increas-
ingly forceful requests for beta testers of the newest snapshots. When the
OpenBSD team is satisfied that the software is of adequate quality, the
source code tree is tagged, and a high-quality snapshot is built. This

370 Chapter 20

snapshot is called a release and is issued a number like 5.2, 5.3, and so on.
This is almost certainly what you installed on your first OpenBSD machine.
A new release appears every May and November.

OpenBSD numbers releases sequentially, starting with 2.0 and incre-
menting .1 with every release. Unlike most software products, a .0 release
has no special meaning. It’s just another spot along a long path—a mile-
stone hit every five years.

The release is the best-supported version of OpenBSD. Everything is
expected to work, and the development team stands behind its releases. If
a serious security problem is discovered in a release, OpenBSD will release a
patch, or errata, for it.

OpenBSD-stable
OpenBSD-stable is an OpenBSD release with all errata and very minor
patches included. The developers deliberately hold the number of changes
to each -stable version to the absolute bare minimum. A stable version is
referred to as its base release plus -stable, such as 5.4-stable, 5.5-stable, and
so on.

What sort of changes are merged back into -stable? Security fixes and
errata go in automatically. Other than security issues, any patches added to
-stable must be simple, short, and obviously correct. Patches that dramati-
cally affect a small number of users might go in. For example, if all systems
with a specific network card panic at random intervals, a patch might go
into -stable (accompanied by various developers asking why no one with
that network card ran snapshots before the release).

You won’t get new functions in -stable. It won’t come with any new device
drivers or packet-filtering features. The API will not change. In general,
-stable is expected to never get worse.

The only way to get OpenBSD-stable is to update the system from source.

Which Version Should You Use?
OpenBSD’s release system combines the best features of open source devel-
opment and commercial releases. Users have access to both the bleeding-
edge experimental code and the stable, polished releases. Look at your
requirements and choose your poison.

•	 If you’re running OpenBSD in a production environment, either use a
release with the applicable security errata or track -stable. The develop-
ers encourage more experienced users to use snapshots or -current, but
that choice is up to you.

•	 If you are evaluating OpenBSD for use in a production environment,
install the version you intend to use.

•	 If you’re just learning about Unix-like systems, or if you want a quiet
OpenBSD experience, use a release and apply applicable errata.

Upgrading 371

•	 If you’re an operating system developer or experienced sysadmin, feel
free to jump right in to -current or snapshots. You can either handle
any problems you encounter or use those problems as an excuse to
expand your knowledge. Many people find that they can use -current
in production, if they do not need packages. These are usually more
experienced users who want firewalls.

•	 Hobbyists can run anything they want!

Remember the limitations of your chosen branch. A release is a good
place to start, but you can gradually upgrade your system to -stable, and
then to -current, as your understanding expands. Many developers started
out as interested hobbyists.

The OpenBSD Upgrade Process
An OpenBSD upgrade has three distinct phases: installing the newer ver-
sions of the operating system files, updating the local configuration, and
updating obsolete add-on software packages. Each is a separate part that
requires independent handling.

An upgrade requires installation media. The best upgrade media is
the new release CD or an Internet mirror. You can also upgrade OpenBSD
by building and installing the source code directly on the machine to be
upgraded, but doing so is more difficult and risky than upgrading from the
official release. Much of the information for upgrading from a network or
CD applies to upgrading via source code.

N o t e 	 OpenBSD supports upgrading only one major release at a time. You cannot upgrade
directly from, say, 5.3 to 5.5; you must upgrade from 5.3 to 5.4, and then to 5.5. The
more releases you need to upgrade through, the more reason to reinstall. You would
spend more time serially upgrading three or four releases than you would reinstalling.

Before upgrading, back up any data you actually care about. The
upgrade process extracts new files over the existing operating system, and
could overwrite something important. The installer generally works, but
human beings are fallible. Back up!

Following the Upgrade Guide
As OpenBSD evolves, basic system features change. This wouldn’t be a big
issue, except when interdependent changes create a chicken-and-egg or
bootstrap problem. If you just blindly run the upgrade process and don’t
handle any other required changes, you’ll find that your new system fails in
unpredictable ways .1 If you’re building the system from source, these prob-
lems might prevent the build from completing.

1. Henning Brauer tells me that many upgrade failures aren’t really unpredictable; they’re
merely “unsupported and untested” code paths. To most of us, that’s “unpredictable,” but
you’re welcome to predict them yourself.

372 Chapter 20

All of these potential problems should be solvable by anyone building the
system from source, but it’s nice to have them documented. Conveniently,
OpenBSD provides an Upgrade Guide for each release, documenting the
steps needed to take a system from one release to the next.

The Upgrade Guide is divided into chunks by the type of upgrade you
are performing. The simplest upgrade is for people using official OpenBSD
files, such as a network or CD upgrade. If you’re building from source, the
instructions quickly grow in complexity. Follow the instructions in the order
in which they appear. Most upgrade prerequisites are typical system admin-
istration tasks. The following are the most common requirements.

N o t e 	 Instructions in the Upgrade Guide supersede anything I say in this chapter. I could
just sprinkle the words “unless specified otherwise in the Upgrade Guide” in every
paragraph for the rest of this section, but then my editor would slap me. The OpenBSD
documentation is the final word in OpenBSD system administration, including the
upgrade process.

Install Programs

Especially when you are building from source, bootstrap tools such as gcc(1)
and perl(1) might need to be built with the upgraded tool. When upgrad-
ing from source, you might need to install these bootstrap tools before
beginning to compile the new version of OpenBSD. The Upgrade Guide
notes these requirements.

If your attempt to build OpenBSD from source fails, reread the Upgrade
Guide before troubleshooting. Starting from the closest available binary
release or snapshot will probably solve your problem.

Remove Programs and Files

OpenBSD removes programs from the base system when they become
obsolete or dangerous, or when their functions are integrated into other
programs. When you upgrade, you must manually remove these programs.
This is necessary because old software left on an upgraded system can pose
a security risk. Also, some files and directories might become superfluous
in a new OpenBSD version. You can remove these programs, files, or direc-
tories once the upgrade is complete.

Prepare Package Upgrades

When you upgrade OpenBSD, you must upgrade the installed packages
as well, because you can’t reliably run packages built for old versions of
OpenBSD on newer versions. (Doing so might work, but there’s no guar-
antee.) The Upgrade Guide includes notes on upgrading specific installed
packages, and you should take some of those actions before beginning the
upgrade.

For example, the Upgrade Guide for the newest OpenBSD version says that
the PostgreSQL port had a major version upgrade. You must do a database

Upgrading 373

dump and restore as part of the upgrade. The old version of PostgreSQL
might not run well on the new OpenBSD, so perform the database dump
before starting the system upgrade.

Your packages might not require any pre-upgrade work, but it’s much
easier to check beforehand than to finish the operating system upgrade, and
then need to fall back because you didn’t prepare some third-party package.

System Configuration

The preceding tasks are the most common requirements for upgrading,
but you might need to change other system files before or after the upgrade
process itself. Read the Upgrade Guide, or your programs might not run
as expected.

Customizing Upgrades
The upgrade script supports the siteXX.tgz file discussed in Chapter 23.
If the file exists in the installation media, you can choose to install it dur-
ing the upgrade.

You can also run a custom post-upgrade script as part of the upgrade.
When the upgrade completes, the script checks for the file /upgrade.site.
If the upgrader finds this file, it executes this script as the last step of the
upgrade. Copy /upgrade.site to the system before starting the upgrade.
Chapter 23 discusses upgrade.site in more detail.

Upgrading from Official Media
After reading the Upgrade Guide, get your installation media for the new
version of OpenBSD and boot from it. If you plan to upgrade over a net-
work, you should need only the new installation kernel bsd.rd. You can just
grab this via FTP (or you could grab the entire directory along with it and
run the upgrade from your local disk). Here, I grab the newest snapshot
kernel from my root directory:

cd /
ftp ftp://ftp3.usa.openbsd.org/pub/OpenBSD/snapshots/amd64/bsd.rd
Connected to plier.ucar.edu.
...

After you get the snapshot kernel, go to your console and boot into the
new kernel.

>> OpenBSD/amd64 BOOT 3.18
boot> boot bsd.rd
booting hd0a:bsd.rd: 2993636+916428+2864232+0+531344
[89+320016+207017]=0xb799f0
entry point at 0x1001e0 [7205c766, 34000004, 24448b12, a608a304]
...

374 Chapter 20

root on rd0a swap on rd0b dump on rd0b
erase ^?, werase ^W, kill ^U, intr ^C, status ^T

Welcome to the OpenBSD/amd64 5.3 installation program.
(I)nstall, (U)pgrade or (S)hell? U

Enter U to upgrade. The upgrade process looks much like the installa-
tion process covered in Chapter 3. Defaults appear inside square brackets.
Accept the defaults by pressing enter.

Terminal type? [vt220] u
Available disks are: sd0 sd1 sd2.
Which one is the root disk? (or 'done') [sd0] v
Root filesystem? [sd0a] w
Checking root filesystem (fsck -fp /dev/sd0a)...OK.
Mounting root filesystem (mount -o ro /dev/sd0a /mnt)...OK.
Do you want to do any manual network configuration? [no] x
Force checking of clean non-root filesystems? [no] y
fsck -p e4bf0318329fe596.a...OK.
...

Always use the default terminal, unless you know exactly when you
shouldn’t. Commodity hardware usually uses vt220, as shown here at u, but
the default terminal is platform-specific.

The upgrade needs to read your root partition to learn where to install
files. It can’t conclusively identify your actual root disk v and partition w
unless you tell it to do that.

The upgrade script will configure your network according to the
existing settings that you should hope are correct. If you need to adjust
the network at every boot, the upgrade script gives you a chance to recon-
figure the network at x.

If you shut down the machine via reboot or shutdown, your filesystems
should be clean. If you unceremoniously pulled the power plug because
you were going to upgrade the machine and no longer cared about your
filesystems, OpenBSD will notice and clean your filesystems. To deep-check
clean filesystems, you can force running fsck(8) at y. The upgrade script
preens clean filesystems to check for obvious errors before proceeding.

Upgrading Over the Network
The default upgrade method is CD. I want to do this upgrade over the net-
work, so here’s how I continue:

Location of sets? (cd disk ftp http or 'done') [cd] ftp u
HTTP/FTP proxy URL? (e.g. 'http://proxy:8080', or 'none') [none] v
Server? (hostname, list#, 'done' or '?') [ftp5.usa.openbsd.org] ftp3.usa.openbsd.org w
Server directory? [pub/OpenBSD/snapshots/amd64] x
Login? [anonymous] y

I choose ftp as the location of the sets at u. I don’t need to go through
a proxy server to access the FTP server, so I leave that space blank at v.

Upgrading 375

The default OpenBSD FTP server is perfectly fine, but if you’ve identified
a really fast mirror, you might use that. I use my preferred mirror site at w.

Every bsd.rd installer knows the server directory to install from at x. I
change the server directory only if I have set up a local mirror. Similarly,
every OpenBSD mirror permits anonymous FTP. I change the username
and enter a password only if I’m using a local mirror at y.

Choosing File Sets
Next comes a chance to choose which sets to upgrade.

Select sets by entering a set name, a file name pattern or 'all'. De-select
sets by prepending a '-' to the set name, file name pattern or 'all'. Selected
sets are labelled '[X]'.
 [X] bsd [X] base51.tgz [X] game51.tgz [X] xfont51.tgz
 [X] bsd.rd [X] comp51.tgz [X] xbase51.tgz [X] xserv51.tgz
 [X] bsd.mp [X] man51.tgz [X] xshare51.tgz
Set name(s)? (or 'abort' or 'done') [done]

You must upgrade every file set installed on your machine, or the
machine will behave unpredictably. If you didn’t install some sets during
your original installation, you don’t need to install them now. For most
machines, I recommend installing all sets.

N o t e 	 Notice that two sets are missing: etcXX.tgz and xetcXX.tgz. These files belong in
/etc and are legitimately edited by system administrators. The upgrade script cannot
know if a file should be replaced, edited, or ignored. You must update /etc yourself.

The upgrade script downloads and extracts the selected file sets, and
then asks you to verify that you’re finished selecting file sets. If so, it remakes
all your device nodes to fit with the new kernel.

At this point, you can reboot into your new OpenBSD userland except
that userland might not work quite right because you haven’t updated /etc yet.

Updating /etc
The /etc directory contains system and program configuration information.
When a program changes, its configuration file might also change. If you
try to run a new program with an obsolete configuration file, the program
will not run correctly.

You absolutely must update /etc before running your system—arguably
the most annoying part of an upgrade. No automated process can possible
know how your system should behave. Only you can know that, which means
that you must compare the contents of your existing /etc to the same files
in a new, stock /etc. OpenBSD provides tools to make the process less
annoying.

Before you begin, if your system performs complicated functions, such
as a database or packet filtering, boot into single-user mode. (Although

376 Chapter 20

single-user mode is not strictly necessary, I’ve had software behave badly
during a half-completed upgrade, so I now routinely update /etc in single-
user mode.)

 >> OpenBSD/amd64 BOOT 3.19
boot> boot -s
booting hd0a:/bsd: 5687720+1608588+939456+0+644288 [80+502320+325975]=0xd43b98
...
Enter pathname of shell or RETURN for sh:
#

While I’m a long-time tcsh user,2 I always use the default shell in single-
user mode. If you want to use an alternate shell, it must be statically linked
and available on the root partition.

Mounting Filesystems
Now mount all your filesystems. If you upgraded via the network, start the
network now.

mount -a
/bin/sh /etc/netstart
WARNING: inconsistent config - check /etc/sysctl.conf for IPv6 autoconf
#

I’ve hardly begun, and here’s a warning already. How fantastic! Perhaps
this IPv6 error is from the upgrade, or maybe it’s a lingering misconfigura-
tion I never noticed before. Either way, this is a good time to identify and
fix the problem.

Verify that you’re on the network by pinging a couple of hosts.
You need the files etcXX.tgz and xetcXX.tgz for your new release. If you

have the CD, the files are in the release directory. If not, fetch them over
the network. (I always get these file sets from the same server I upgraded
from, just to eliminate any chance of a difference in the files.)

cd /tmp
ftp ftp://ftp3.usa.openbsd.org/pub/OpenBSD/snapshots/amd64/etc51.tgz
ftp ftp://ftp3.usa.openbsd.org/pub/OpenBSD/snapshots/amd64/xetc51.tgz

You are now ready to update /etc.

Using sysmerge(8) to Compare /etc Files
The sysmerge(8) program compares your existing /etc to the /etc in the instal-
lation set, points out differences, and lets you replace your installed file
with the new one, keep your file, or merge the two.

2. I know, I know, your shell is superior to mine. I was given tcsh as my first shell almost 30 years
ago, and my fingers are too habituated to it to change. I’ll concede your superiority if you’ll
stop telling me about it.

Upgrading 377

Use -s to tell sysmerge where the new etcXX.tgz file is, and -x to point to
the new xetcXX.tgz. I put both of these files in /tmp.

sysmerge -s /tmp/etc51.tgz -x /tmp/xetc51.tgz

sysmerge will handle the easy changes itself, but leave you to take care of
files that need your intervention.

Easy sysmerge Updates

If your system is only lightly modified, you should see something like this:

===> Populating temporary root under /var/tmp/sysmerge.daiHKukKfE/temproot
===> Starting comparison
===> Updating /etc/inetd.conf
===> Updating /etc/login.conf
...

I haven’t changed these files, so sysmerge automatically updates them
for me.

...
===> Installing /etc/nginx/fastcgi_params
===> Installing /etc/nginx/koi-utf
...

I didn’t have these files on my system, so sysmerge installs them for me.
These examples are easy cases. In cases where you’ve edited an /etc file,

sysmerge will need your help.

sysmerge and Edited Files

Say you’ve edited a file, and the file version has changed. Does your local
change reflect the update, does it conflict, or can the two coexist? sysmerge
can’t tell if it should overwrite the installed file with a new version, leave it
unchanged, or merge the two, so it displays the differences between the old
and new files.

===> Displaying differences between ./etc/mail/aliases and installed version:

u --- /etc/mail/aliases Sun Jun 9 04:50:04 2013
v +++ ./etc/mail/aliases Wed Oct 23 17:06:02 2013

@@ -1,5 +1,5 @@
 #

w -# $OpenBSD: aliases,v 1.36 2010/09/22 13:01:10 deraadt Exp $
x +# $OpenBSD: aliases,v 1.37 2012/10/13 07:42:39 dcoppa Exp $

 #
 # Aliases in this file will NOT be expanded in the header from
 # Mail, but WILL be visible over networks or from /usr/libexec/mail.local.
@@ -32,6 +32,7 @@
 _identd: /dev/null
 _iked: /dev/null

378 Chapter 20

 _isakmpd: /dev/null
y +_iscsid: /dev/null

 _kadmin: /dev/null
 _kdc: /dev/null
 _ldapd: /dev/null
@@ -69,7 +70,7 @@
 sshd: /dev/null

 # Well-known aliases -- these should be filled in!
z -root: mwlucas@blackhelicopters.org
{ +# root:

 # manager:
 # dumper:

If you’ve changed the file, sysmerge presents the differences between the
old and new files with a few surrounding lines of context. In this example,
the /etc/mail/aliases file on my system is dated June 9 at u, and the new ver-
sion is from October 23 at v. Lines that exist in the new version of the file
but not in the installed one are prefaced with a plus sign (+). Lines that exist
in the installed file but not in the new one are prefaced with a minus sign (-).

This example shows that the OpenBSD version of this file changed from
1.36 at w to 1.37 at x. That’s not terribly surprising, and for system admini
stration purposes, not a terribly vital piece of information. But the new ver-
sion has a new alias, directing email addressed to the user _iscsid to /dev/null
at y. This could be important, so I want the new alias on my system.

Next, we see a difference between the files, where I’ve forwarded email
addressed to root to my personal email at z, but the new version of the file
has no such redirection at {. I want the old version of this line but the
new version of another line, and while I don’t particularly care about the
OpenBSD version numbers, I would prefer the newer one. I could hand
assemble an aliases file, but after sysmerge prints out the differences, it
offers to help.

u Use 'd' to delete the temporary ./etc/mail/aliases
v Use 'i' to install the temporary ./etc/mail/aliases
w Use 'm' to merge the temporary and installed versions
x Use 'v' to view the diff results again

 Default is to leave the temporary file to deal with by hand

How should I deal with this? [Leave it for later] m

sysmerge offers the following choices:

•	 If I delete the temporary aliases file, sysmerge throws away the new file u.
This is fine if my existing aliases file is adequate, but in this case, I want
part of the new file.

•	 If I install the temporary aliases file, I overwrite my changes v. Unless
I go back in and change the aliases file again, my custom mail forward-
ing will stop working. I don’t want this to happen.

Upgrading 379

•	 I can merge the old and new files w, choosing the best fit from each
file, which is the option I’ll pick.

•	 I could look at the differences again x. This has the advantage of put-
ting off an actual decision.

To merge the old and new files, I enter m. Note that the merge function
requires close attention to detail. A mistake here can make your system
hang as it tries to go into multiuser mode.

When you merge, sysmerge takes your input and builds a combined file.
Lines that are identical in both versions are automatically added to the new
file. When lines differ, sysmerge walks you through the differences and lets
you choose a version.

The new version of the line appears on the right, and the installed ver-
sion is on the left. Enter l or 1 to choose the version on the left side, or r or
2 to choose the version on the right.

$OpenBSD: aliases,v 1.36 2010/09/22 13:01:10 de | # $OpenBSD: aliases,v 1.37 2012/10/13
07:42:39 dc
%r

The version number has updated, though it’s in a comment, which
won’t affect how the alias file updates. Still, as I’m merging the files anyway,
I might as well get the new version number. I enter r to choose the version
on the right.

 > _iscsid: /dev/null
%r

There is no equivalent to this line in the installed file, as this alias exists
only in the new file. Again, I choose r to include this line in my file.

root: mwlucas@blackhelicopters.org | # root:
%l

Here, I want the entry from the installed file, on the left-hand side. I
choose l.

Once I’ve gone through all of the entries, sysmerge offers me more
choices. These include comparing the merged and installed files, compar
ing the merged and new files, starting over, viewing the merged file, redoing
the merge, and installing the merged file.

 Use 'e' to edit the merged file
 Use 'i' to install the merged file
 Use 'n' to view a diff between the merged and new files
 Use 'o' to view a diff between the old and merged files
 Use 'r' to re-do the merge
 Use 'v' to view the merged file
 Use 'x' to delete the merged file and go back to previous menu
 Default is to leave the temporary file to deal with by hand
===> How should I deal with the merged file? [Leave it for later] i

380 Chapter 20

I did everything correctly, so I install the merged file (although I should
probably view the merged file first, and then install it).

My biggest difficulty with sysmerge comes in differentiating my left and
my right. Worse, the L key is on the right side, and the R key is on the left.
(Go ahead now, laugh, but just wait until you mix that up.)

Finishing sysmerge

When sysmerge finishes installing the files, it checks the permissions on the
/etc files, and tells you where to find the log and that the system might need
a reboot. A purist might tell you that you don’t need to reboot, but usually
you should go ahead and do it. Rebooting after changing core system files
prevents a variety of problems, and rebooting as part of an upgrade isn’t
unreasonable. You can wait to reboot until after you upgrade your pack-
ages, as long as everything works.

...
===> Comparison complete
===> Checking directory hierarchy permissions (running mtree(8))
===> Output log available at /var/tmp/sysmerge.daiHKukKfE/sysmerge.log
 *** WARNING: some new/updated file(s) may require a reboot
reboot

You now have an updated OpenBSD base system. Be aware that new or
changed files can change system behavior, but usually you won’t notice. The
Upgrade Guide usually notes any changes average users are likely to notice.
Still, only you know what your system does and how you want it to behave.

Upgrading your installed packages is a separate task.

Updating Installed Packages
Packages run reliably only on the version of OpenBSD for which they’re
compiled. If you’re using packages, then updating your third-party software
is very easy. (If you build your own software from the ports collection, you
can still update but it won’t be as easy.)

First, check the Upgrade Guide again. It describes any intrusive changes
to major software. Take any actions it recommends before continuing.

Updating the Package Repository
Before upgrading your packages, check your $PKG_PATH environment vari-
able. It almost certainly references the package directory for your previous
version of OpenBSD.

echo $PKG_PATH
ftp://ftp11.usa.openbsd.org/pub/OpenBSD/5.2/packages/i386/

Upgrading 381

Find the package repository for your new version of OpenBSD. You can
probably just update the release number in your shell’s dotfile, but go to the
mirror site and make sure that the packages for that release are present.

If you upgrade from release to release, you can use the uname(1) com-
mand to set your PKG_PATH in your dotfile. For example, if ftp11.usa.openbsd.org
is your favorite mirror site, use a line like this for sh-based dotfiles.

export PKG_PATH=ftp://ftp11.usa.openbsd.org/pub/OpenBSD/`uname -r`/packages/`uname -m'/

Using the Upgrade Command
To upgrade your installed packages, use pkg_add with the -i and -u flags.

pkg_add -iu
quirks-1.73->1.77: ok
apr-1.4.6->1.4.6p0: ok
apr-util-1.4.1-ldap:cyrus-sasl-2.1.25p3->2.1.25p3: ok
apr-util-1.4.1-ldap:openldap-client-2.4.31->2.4.31: ok
apr-util-1.4.1-ldap:libiconv-1.14->1.14: ok
...

The -i flag tells pkg_add to work in interactive mode and ask you about
any ambiguities. The -u flag means “update.”

This upgrader recurses through each of your add-on software packages
and its dependencies, uninstalling the old version and installing the new.
If you want to see more verbose and detailed messages about the package-
updating process, add the -v flag.

Package Options

If the dependencies for a package have changed and you now have multiple
options, pkg_add presents your choices.

Ambiguous: choose dependency for foomatic-db-engine-4.0.8p2:
 a 0: curl-7.26.0
 1: wget-1.13.4
Your choice: 1

The package foomatic-db-engine can use either curl or wget. Of the two, I
prefer wget, so I enter 1. Pressing enter tells pkg_add to use the default.

Package Messages

Once all of the packages have been updated, pkg_add displays any messages
from the upgraded packages.

Read shared items: ok
You may wish to update your font path for /usr/local/share/ghostscript/fonts
Look in /usr/local/share/doc/pkg-readmes for extra documentation.
...

382 Chapter 20

Some of the installation instructions will tell you to clear out cached
files from the older version of the software, as in this CUPS example.

--- -cups-1.5.3p4 -------------------
You should also run rm -rf /var/log/cups/*
You should also run rm -rf /var/cache/cups
You should also run rm -rf /var/spool/cups
...

Other times, software might jump versions. For example, OpenBSD lets
you install multiple versions of PHP, Python, and other scripting languages,
but after upgrading, you must decide which is your preferred default.

--- +python-2.7.3p1 -------------------
If you want to use this package as your default system python, as root
create symbolic links like so (overwriting any previous default):
 ln -sf /usr/local/bin/python2.7 /usr/local/bin/python
 ln -sf /usr/local/bin/python2.7-2to3 /usr/local/bin/2to3
 ln -sf /usr/local/bin/python2.7-config /usr/local/bin/python-config
 ln -sf /usr/local/bin/pydoc2.7 /usr/local/bin/pydoc
...

You may also need to change some system configuration after an upgrade.

--- +tk-8.5.12 -------------------
You may wish to add /usr/local/lib/tcl/tk8.5/man to /etc/man.conf
...

The package maintainers put these messages into the package for your
benefit. Read them, and if you’re in doubt, follow their instructions.

If all of your software is installed via packages, the upgrade process
should be painless and transparent. I would like to tell you about all
the problems and edge cases, except I’ve never been able to trigger any.
Upgrading packages from the official release media just works. Packages
built from the ports tree, however, are more complicated to upgrade, as I
discuss in “Upgrading Ports” on page 368.

Why Build Your Own OpenBSD?
Building your own upgrade from OpenBSD’s source is intended only for
advanced users and those interested in developing OpenBSD and advanced
users. You must be comfortable reading and compiling source code, debug-
ging problems, and restoring from backup before even trying to build
OpenBSD from source. In OpenBSD’s earlier days, I found upgrading from
source to be the easiest way to move forward, but now upgrading via snap-
shot is much easier and much less error-prone. If there’s any way you can
use an official binary release to install what you’re looking for, do so.

Upgrading 383

When you build OpenBSD from source, you are building the distribu-
tion sets that you installed via FTP or CD. The files might not be bundled
up in distributions, but their contents will be the same. You still must merge
your configuration files with sysmerge, and you will still need to update your
installed software. The only thing building OpenBSD gets you is the latest
version of the branch you’re following.

I know of three reasons to build your own OpenBSD from source: to get
OpenBSD-stable, to get the latest OpenBSD-current, or to highly custom-
ize OpenBSD. OpenBSD-stable is available only as source code. No official
installation media is available for -stable, so if you want to go from 5.4-release
to 5.4-stable, you must build it from source. If you want the absolutely latest
OpenBSD code—newer than the latest snapshot—you must build it. And if
you want to highly customize OpenBSD, you must build it from source.

Preparations for Building Your Own OpenBSD
Building OpenBSD takes up about 4GB of disk, 2GB in /usr/src and 2GB
in /usr/obj. OpenBSD creates these directories as separate partitions by
default, but if you designed your own disk-partition scheme, make sure
you have enough space.

You must build on your target platform. Don’t try to cross-compile by,
for example, building VAX binaries on an amd64 box. OpenBSD develop-
ers use cross-compiling to bring up a new hardware platform, but once the
platform is up and running, all development happens on the native hard-
ware. Code produced by cross-compiling might not be identical to code
produced by the compiler running on the native platform.

Preparing the Base Operating System
Your first step is to prepare the base operating system. You can build
OpenBSD on only an OpenBSD installation similar to what you’re trying
to build, which means you need to install the closest binary set to your
target platform on your build machine. If you’re trying to build OpenBSD
5.4-stable, start by installing 5.4-release on your build machine. If you’re
trying to build the latest OpenBSD-current, upgrade your build machine
to the newest snapshot first.

Why start from the closest available binary release? For one, that’s how
the OpenBSD developers do it; the code is meant to be built from a very
recent OpenBSD. Although the system changes only slowly, those changes
can add up. OpenBSD-stable is built only on the OpenBSD release it’s based
on, or on a -stable release following that base release.

Also, OpenBSD-current occasionally has “flag days,” where a critical
system change makes building the source code difficult. These might be
compiler or linker upgrades, library or kernel changes, or just about any-
thing else. While the OpenBSD team documents what you need to do to
get over these humps, those documents are more like notes for people who
know what they’re doing than user-friendly instructions.

384 Chapter 20

These flag days are announced on the OpenBSD mailing lists. You can
try to follow those notes and build OpenBSD over these barriers, but when
you get sick of beating your head against a flag-day change, upgrade to a
snapshot to get over the hump. (Many OpenBSD developers also use snap-
shots to get over flag-day changes; inability to compile OpenBSD through a
flag day is not a threat to your manhood or womanhood.)

Getting Source Code
Now get the OpenBSD source code. If you have already installed these files,
and you need to upgrade to a more recent version, see “Updating Source
Code” on page 385.

For those installing the source code for the first time, the OpenBSD
project provides recent code snapshots in four compressed tar files: the
userland (src.tar.gz), kernel (sys.tar.gz), X Windows (xenocara.tar.gz), and
ports (ports.tar.gz). All must be kept synchronized, which means that you
cannot use a -current ports tree atop a -stable userland and kernel. Get
the file that’s closest to what you want to build.

If you’re building -stable, you can grab all four files from the release
directory of the binary you installed. For example, if you’re building
OpenBSD 5.4-stable, you’ll find src.tar.gz, sys.tar.gz, xenocara.tar.gz, and ports​
.tar.gz on your CD or on an OpenBSD mirror under /pub/OpenBSD/5.4/.

If you’re building -current, you’re better off starting with a newer snap-
shot of the source code. On the OpenBSD mirror sites, under /pub/OpenBSD,
you’ll find recent copies of src.tar.gz and sys.tar.gz. Grab the most recent ones
of those. You still need the xenocara.tar.gz and ports.tar.gz files from the most
recent OpenBSD release, as those files are not updated as frequently.

Verify that the directories /usr/src, /usr/obj, /usr/xenocara, /usr/xobj, and
/usr/ports are empty. Then extract src.tar.gz and sys.tar.gz under /usr/src, and
Xenocara and ports directly under /usr. Here, I’ve copied all the tarballs to
my home directory:

cd /usr/src
tar -xzpf $HOME/src.tar.gz
tar -xzpf $HOME/sys.tar.gz
cd /usr
tar -xzpf $HOME/ports.tar.gz
tar -xzpf $HOME/xenocara.tar.gz

This gives you a known good base to start from. If you’re looking to
build your own OpenBSD, you probably don’t want to build a version that’s
available for installation now; you want to build a version that’s not available
for installation. This means you want to update the source code to either
-current or -stable.

Upgrading 385

Updating Source Code
OpenBSD uses Concurrent Versions System (CVS) for source code manage-
ment. CVS is an older, somewhat traditional version control system. While
many projects have moved from CVS to newer, shinier, and perhaps more
glamorous systems, CVS meets the OpenBSD Project’s needs.

OpenBSD has a single central source-code repository: the master CVS
server. Only developers and mirror sites have access to this server. When
a developer wants to make new OpenBSD code available, he commits the
changes to this central repository, and other developers can see his changes
at this point.

The master CVS server tracks all changes ever made to the OpenBSD
source, as well as who made those changes. Mirror sites capture these
changes and make them available to the users in a matter of hours. As a
user, you can use CVS to update your local source code to the latest version
from a mirror site.

Source Code Repositories and Tags

OpenBSD’s source code is divided into repositories, or collections of code for
particular subsystems. You need to download and synchronize only the col-
lections that you want to use.

The OpenBSD CVS repository includes four collections: src (userland
and kernel source), ports (the ports collection), xenocara (X Windows), www
(the website), and the obsolete X11 and XF4 X Windows collections. While
X11 and XF4 are still kept for historical purposes, you should never need
to use that code. The www repository is of interest to the website editors and
contributors. In order to build a recent OpenBSD, you must update your
src, ports, and xenocara collections to the latest versions of your chosen branch.

A tag is a label for a particular version of a repository. OpenBSD uses
tags to differentiate between -stable, -release, and -current. For example,
the source code of every single OpenBSD release ever made includes the
file /usr/src/etc/master.passwd. But the version of master.passwd shipped with
OpenBSD 2.0 differs wildly from that shipped with OpenBSD 5.3! CVS
uses tags to differentiate the various versions of this and every other file.
By using tags, you can ask CVS for the version of any file that shipped with
any OpenBSD release.

The tag for any -stable version of OpenBSD is the string OPENBSD and
the version number, separated by underscores. For example, the tag for
OpenBSD 5.4 is OpenBSD_5_4. Note the two underscores: there is no OPENBSD_54
or OPENBSD5_4. If you use a tag that does not exist, rather than updating your
local source code files, you’ll delete them. (While you should download the
source code for a release, rather than updating to it via CVS, an OpenBSD
release appends the string _BASE to the tag, as in OPENBSD-5_4_BASE.) That said,
OpenBSD-current is special in that it has no tag and it includes the latest
version of all source code in all repositories.

386 Chapter 20

All of the repositories are designed to be updated synchronously. If,
for example, you update the source code repository to -current and leave
your ports and Xenocara at their -release or -stable versions, your system
will behave unpredictably. As with learning to juggle chainsaws, you’re wel-
come to try it, but don’t whine.

CVS Mirrors

You can use anonymous CVS to update your source code to the latest ver-
sion. Start by choosing a convenient anonymous CVS server from the list at
http://www.OpenBSD.org/anoncvs.html. There are mirrors all over the world,
but choose one on your continent for better performance. (I use anoncvs13
.usa.openbsd.org3 in my examples.)

Tracking OpenBSD-current is slightly different than tracking OpenBSD-
stable. We’ll start with -stable, and then see how -current differs.

Updating to -stable

The first time you update your source code, you must specify the anony-
mous CVS server on the command line.

cd /usr
cvs -qd anonymous@server:/cvs get -rOPENBSD_tag -P src

CVS is very picky about the order of its command-line arguments, and
many flags are position-dependent. Don’t change the order of arguments
unless you know what you’re doing.

Substitute your preferred server and the release tag you want to get into
this command. For example, to update my OpenBSD 5.1 source tree to the
latest stable version from anoncvs13.openbsd.org, I would run the following:

cd /usr
cvs -qd anonymous@anoncvs13.openbsd.org:/cvs get -rOPENBSD_5_1 -P src
The authenticity of host 'anoncvs13.usa.openbsd.org (192.0.2.217)' can't be
established.

u ECDSA key fingerprint is d3:b2:b5:68:87:3b:f6:93:21:fd:28:ea:cc:b6:e1:13.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'anoncvs1.usa.openbsd.org,149.20.54.217' (ECDSA) to
the list of known hosts.

Because OpenBSD runs CVS over SSH the first time you run cvs, it asks
you to verify the CVS mirror’s host key. Compare the u key fingerprint given
by your client to the fingerprint listed on the CVS mirror list. If they match,
you’re talking to the actual CVS server. If the fingerprints don’t match, some-
thing is wrong, which could be a problem at the server, a skipped website
update, or an actual security problem at the mirror. If the key fingerprints

3. Again, there is no anoncvs13.usa.openbsd.org. Find a server close to you. Stop blindly copying
my examples. It’s like you think I know what I’m doing or something!

Upgrading 387

don’t match, choose a different CVS mirror. (SSH will cache this key, and
future updates won’t ask you to verify the key unless it changes.)

There’s a pause when CVS starts comparing the source code on your
disk to the source code on the server, and just about when you think that
something has gone wrong, you’ll probably see actual source code updates,
like this:

U bin/systrace/intercept-translate.c
U lib/libssl/src/crypto/mem.c
U lib/libssl/src/crypto/asn1/a_d2i_fp.c
U lib/libssl/src/crypto/buffer/buffer.c
U sys/conf/newvers.sh
U sys/netinet6/ip6_output.c
U usr.sbin/nsd/query.c

This is complete CVS update output for updating OpenBSD 5.1 release
to -stable. In all, there were seven changes. When the OpenBSD guys say
“minimal changes in -stable,” they mean it.

Repeat this for /usr/ports and /usr/xenocara.

cd /usr
cvs -qd anonymous@anoncvs13.openbsd.org:/cvs get -rOPENBSD_5_1 -P ports
cvs -qd anonymous@anoncvs13.openbsd.org:/cvs get -rOPENBSD_5_1 -P xenocara

A source tree records the last server updated from, and on subsequent
updates, you can drop the server from the command line. The source tree
also knows which repository within the server it’s supposed to update from,
so you don’t need to specify it.

cd /usr/src
cvs -q up -rOPENBSD_5_1 -Pd

Run this same command any time you want the latest -stable source code.

Updating to -current

The process for updating your source code to -current is much the same as
updating to -stable, but the command line differs slightly. The first time you
update your source tree, you must specify the server name.

cd /usr
cvs -qd anonymous@server:/cvs get -P src

This cvs command gives you the latest -current source code. For example,
if I want to update my source code from anoncvs13.openbsd.org, I run this:

cd /usr
cvs -qd anonymous@anoncvs13.openbsd.org:/cvs get -P src

388 Chapter 20

You should get the SSH key fingerprint verification message, and see
the same type of messages that you would get updating to -stable.

The first time you run CVS to update a specific set of source code, cvs
records which server the source code came from. For subsequent updates
to the latest -current source code, you can skip the server name and shorten
the command, as follows:

cd /usr/src
cvs -q up -Pd

Now you need to build the new source code into program code.
You build -stable and -current in the same way, but -current has more

potential issues, so we’ll start by building -stable.

Building OpenBSD-stable
Building OpenBSD-stable requires building and installing a new kernel,
building and installing a new userland, and building and installing the new
Xenocara.

Upgrading the Kernel
Building an upgraded kernel is like building a custom kernel, as discussed
in Chapter 19. Basically, the process boils down to this:

cd /usr/src/sys/arch/platform/conf/
config GENERIC
cd ../compile/GENERIC
make clean && make
make install

(If I planned to build OpenBSD regularly on this machine, I would
script this.)

N o t e 	 Chapter 19 is full of warnings about difficulties compiling a custom kernel. These
don’t apply to building the GENERIC kernel on -stable. Remember that -stable
includes only security fixes and obviously correct small changes. ABI, API, configu-
ration, and syntax changes are absolutely forbidden. If this kernel build fails, you
probably corrupted your source tree somehow. Remove everything in /usr/src and
start over.

After building and installing the new kernel, reboot. You must run the
new kernel to build the new userland.

Upgrading 389

Building the Userland
To build and install everything outside the kernel, remove any old builds
and re-create the object directories. Also, make sure that the installed
OpenBSD system has all of the necessary directories. Skipping this step
will make the build fail and corrupt your source tree.

rm -rf /usr/obj/*
cd /usr/src
make obj
cd /usr/src/etc
env DESTDIR=/ make distrib-dirs

Now you can build and install the userland.

cd /usr/src
make build

Building userland can take several days on an antique system, but should
take only an hour or two on more modern hardware. When the process fin-
ishes, you should have the new userland installed on the local system.

N o t e 	 Installing -stable simplifies the userland part of the upgrade. There’s no need to merge
any new /etc/ files with sysmerge (but there’s no harm in running sysmerge either,
just to check that your configuration is indeed valid), or to re-create your device
nodes, as they won’t change. OpenBSD-stable contains very minor changes from the
release on which it’s based.

Building Xenocara
The X Window System might or might not change during -stable. If your
CVS update shows no changes in -stable, you don’t need to rebuild it, but if
any of the files in /usr/xenocara have changed, you’re better off rebuilding
X. The build process is completely routine for Xenocara-stable.

cd /usr/xenocara
rm -rf /usr/xobj/*
make bootstrap
make obj
make build

This builds and installs the new X on your system.

Building a Release
This is all very nice if you want to upgrade only one machine. But what if
you have several machines to upgrade to your custom OpenBSD build? You
don’t want to go building -stable on your firewalls or your web server.

390 Chapter 20

If you need to upgrade multiple machines, build your OpenBSD on
one machine, and install that build on multiple machines by building your
own release. This will take less time than you needed to build your upgrade
and use under a gigabyte of disk space.

A release is what the OpenBSD Project puts on the mirror sites for you
to install. It’s a few kernels, tarballs containing the userland files, the index
file, and so on. Using these files, you can upgrade your other hosts just as
you would perform the official media upgrade discussed earlier this chap-
ter. Building a release is the easiest way to upgrade several OpenBSD hosts
to identical versions.

Before you can build a release, you must build both the base OpenBSD
system and Xenocara. You could skip Xenocara if you don’t want any X on
any of your hosts, but a surprising number of third-party programs need
the X libraries. It’s easier to build X and not install it on selected hosts than
to go back and rebuild the whole release because you didn’t build Xenocara
the first time.

The release process installs OpenBSD in a temporary root directory
and then bundles that installation into the release tarballs and related files.
Next, it repeats the process with the X software. It assumes that you have
the OpenBSD source code in /usr/src and a completed build in /usr/obj,
as well as the Xenocara source in /usr/xenocara and a completed build in
/usr/xobj. You can change the build process to get around these require-
ments, as documented in release(8), but you should accept the defaults.

You’ll need to define three directories: one to store your release, one
for your temporary OpenBSD root directory, and one for your temporary
Xenocara root directory. You can reuse the temporary root directories,
but I keep them for reference. I use /home/releasedir as my release directory,
/home/destdir as my temporary OpenBSD root, and /home/xdestdir as the
Xenocara temporary root.

W a r n i n g 	 You can use any partition with sufficient free space, except for /mnt because the
release process uses this partition. Similarly, building a release builds ISO and floppy
images using the first vnode device, /dev/vnd0. If you have any disk images mounted
using that device (see Chapter 9), the release process will fail. If you must mount a
disk image while building a release, use a vnode device other than /dev/vnd0.

The release process has three steps: bundling the base system, bundling
Xenocara, and indexing the results.

Bundling the Base System

OpenBSD’s build system includes all of the glue that you need to build a
release. First, do a make build of your new OpenBSD so that you’re running
the same version you want to build a release for. Next, define the temporary
OpenBSD root and the release directory in your environment as $DESTDIR
and $RELEASEDIR, respectively.

Upgrading 391

N o t e 	 Verify that the temporary OpenBSD root and the release directories are empty before
you start. While the release process can overwrite files from an old build, the directo-
ries might have obsolete files that you don’t want included in the new release.

echo $DESTDIR
/home/destdir
echo $RELEASEDIR
/home/releasedir

Once you have this ready, building the release involves only a few
commands.

cd /usr/src/etc && make release
cd /usr/src/distrib/sets && sh checkflist

Take a look in your release directory. You should see the following items:

•	 Three kernels (bsd, bsd.mp, and bsd.rd)

•	 Three floppy boot images if you’re building for i386, or one if it’s for
amd64 (other architectures vary)

•	 Two ISO images

•	 Five file sets for the OpenBSD base system

These files are functionally identical to those distributed by the OpenBSD
project, except they’re based on your custom build.

Once you’ve finished building releases, be sure to remove the $RELEASEDIR
and $DESTDIR variables from your environment because they can mess up
other software builds. You can’t successfully build Xenocara with them still set.

Bundling Xenocara

As with bundling the base system, you must first complete a Xenocara
build. Confirm that your system has the same version of Xenocara installed
that you want included in your release, and then set the RELEASEDIR and
DESTDIR environment variables. RELEASEDIR should be identical to that used
to bundle the base system, but DESTDIR should differ.

N o t e 	 You could reuse DESTDIR, but that will erase everything from your temporary base sys-
tem installation. Leave those files around until you’re sure you have a solid release.

echo $DESTDIR
/home/xdestdir
echo $RELEASEDIR
/home/releasedir

Now go into the Xenocara source and bundle the release.

392 Chapter 20

cd /usr/xenocara
make release

Xenocara isn’t much smaller than the base system. It takes a while to
bundle up, so this is a good time to go to lunch. When you get back, you
should find five new files in your release directory, all tarballs beginning
with x.

Before you quit for the day, remove RELEASEDIR and DESTDIR from your
environment.

Indexing the Release

Copy your release to your local FTP or web server, and create an index of
the contents. (Only HTTP installs and upgrades need an index file.) The
OpenBSD installer and upgrade software will use this index during the
installation.

/bin/ls -l > index.txt

Make the web or FTP site accessible from the machines you want to
upgrade.

Using the Release
Upgrade or install using this release just as you would use an official
release. Copy bsd.rd to a machine to be upgraded, and then boot into that
kernel. When the installer asks where to get the file sets, give the location
of your release. Extract and reboot!

Building OpenBSD-current
Building OpenBSD-current is exactly like building -stable, except when it
isn’t. OpenBSD-current can change wildly, and building it from source is
considered an advanced activity. The only time I actually build -current is
if I need to test some new functionality or a patch offered by an OpenBSD
developer.

The two big problems are the radical changes in -current and merg-
ing /etc.

Following -current
When you follow -current, keep a close eye on OpenBSD’s changes by track-
ing the Following -current web page at http://www.OpenBSD.org/faq/current
.html. This is where the OpenBSD developers list all of the changes likely to
impact people trying to build -current. Not all changes apply to all systems,
but any change listed that applies to your system requires special handling.

Upgrading 393

The entries are chronological, and include everything since the last
release. Just concern yourself with entries dated on or after the date of
the source code used to build your snapshot. For example, if you built
a snapshot dated January 30, and you want to build -current on the fol-
lowing February 5, check the web page for any entries between those two
dates, inclusive. Earlier changes are already incorporated in the installed
snapshot.

Some changes will require your intervention before you even try to
build the system. For example, if you have new unprivileged usernames,
they will need to be in place before a make build can succeed—after all, a
program owned by user _fdisk can’t be installed unless that user is in place.

If you don’t understand an entry on this page, do not upgrade!

Merging /etc
When you upgrade to a new -stable, you can be sure that the files in /etc/
haven’t changed. When you track -current, those critical system files might
well change. Any critical changes are usually noted in the Following -current
website, but it’s best to use sysmerge(8) to merge in all /etc changes. You can
give sysmerge the path to the system source instead of the etc.tgz file set.

sysmerge -s /usr/src

See the section about sysmerge earlier in this chapter for detailed
information.

Upgrading Ports
If you use OpenBSD-provided packages, upgrading your system is as easy
as running pkg_add -ui. If you built your third-party packages from source
using the ports collection, however, there’s no easy way to upgrade. You
must rebuild those packages. There is no automated way to do this, but the
make update command in a port can rebuild a specific port.

Presumably, you built your own packages because the OpenBSD-
provided packages lacked some option or flavor you needed. In that case,
you probably only needed to build one or two packages from source. All
of the software required by that package could be installed from official
OpenBSD sources. You should upgrade everything possible via packages
and rebuild only what is strictly necessary.

Now that you can upgrade OpenBSD any way you want, let’s look at
OpenBSD’s packet filter.

21
P a c k e t F i l t e r i n g

The name’s Pond, James Pond.
My x86 loaded,
licensed to filter.

Packet filtering and traffic manipulation
are among the most basic tools in network

security. OpenBSD includes a very powerful
in-kernel packet filter, pf(4), or PF. This tool

not only performs standard filtering, but it can also
inspect, reassemble, redirect, and otherwise abuse
packets in several ways; translate addresses in several different directions
simultaneously; authenticate users; and manage bandwidth. Along with PF,
OpenBSD includes programs that let you turn your system into a load bal-
ancer, transparent proxy, or any number of other network devices.

PF is one of the high points of OpenBSD and deserves its own book.
That book is The Book of PF, 2nd edition, by Peter Hansteen (No Starch Press,
2010), which goes into detail on many different PF use cases. This chapter
covers the basics of PF so that you can protect a small network or an indi-
vidual server. If you want to protect a web farm and transparently relay traffic
to only the active servers with sufficient free capacity to handle the load, get
Peter’s book.

396 Chapter 21

That said, not even Peter’s book covers PF in its entirety. OpenBSD lets
you fold, spindle, and mutilate TCP/IP far beyond anything any reasonable
person could ever expect to support in the real world. For complete details
on PF, read the pf(4), pfctl(8), and pf.conf(5) man pages, and the OpenBSD
PF FAQ at http://www.OpenBSD.org/faq/pf/.

N o t e 	 PF is still undergoing active development. While the configuration syntax doesn’t
change as often as it used to, check pf.conf(5) for the latest information on your
version of OpenBSD.

Firewalls
The word firewall has been tortured beyond recognition over the past 20 or
so years, until it has ceased to mean much of anything in particular. In gen-
eral, a firewall sits between a private and public network, and controls the
traffic between the two.

You can buy a firewall for your cable modem for under $100, and you
can purchase an enterprise firewall cluster for $1 million. What’s the dif-
ference? They’re all firewalls, much as rats and cats and elephants are all
mammals, but some are welcome in your home and most are not.1 Which
you permit, of course, is your personal preference. And firewalls are much
the same.

Some firewalls filter application-level traffic. Some only filter based on
protocol or ports. Some firewalls inspect protocol flags and ensure traffic
sanity. Others just pass packets. And some firewalls just translate network
addresses and claim that provides security. Worse, the price tag bears no
relationship to the feature set.

At their most basic, all firewalls filter packets and can perform network
address translation (NAT). OpenBSD can perform those tasks as well or
better than most commercial firewalls. If you want application proxies,
however, they don’t come with the core OpenBSD system (with the excep-
tion of FTP and TFTP proxies, which are necessary for those protocols to
function with NAT). Several popular application proxies run quite well on
OpenBSD, but they are not part of OpenBSD. For example, I’ve used Squid
(/usr/ports/www/squid) and several related packages to build a web proxy
and filter on OpenBSD that is comparable to anything the big companies
offer, and an assortment of other proxies to manage just about everything
else. If you are interested in firewalls, I highly recommend that you assem-
ble your own highly featured firewall from available components at least
once, for the sake of education if nothing else.

A firewall is what you make it. You can send all your traffic through a
simple OpenBSD packet filter and honestly declare that you have a firewall,
or you can set up application proxies, authentication, and so on, and still

1. Sorry, cats and elephants, find your own place to live.

Packet Filtering 397

say you have a firewall. A plain packet filter is a firewall just as much as one
of those umpteen-integrated-application-proxy, six-figure-price-tag devices.
Remember this the next time someone says he has a firewall.

Realistically, a firewall is not a security device. It is a point of policy
enforcement.2 The firewall doesn’t secure anything; it prevents access to
certain services. But blocking access doesn’t secure inherently insecure
services—it just means you can’t access them. If your firewall permits
access to a service, the firewall doesn’t add any security to that service.

In order to build an effective firewall, you must understand TCP/IP.
If Chapter 11 was a revelation to you, get a copy of The TCP/IP Guide (No
Starch Press, 2005). Read it. Mark it up. Highlight it. And read it again.

Many of the examples in this chapter assume that you are building
a firewall. This means that your host has two or more network interfaces
(including VLAN interfaces) and that you want to protect the network on
one side from the network on the other side. While this is a popular appli-
cation for OpenBSD, everything covered here works just as well on individ-
ual hosts. I filter packets on lone web servers, on desktops, and on any host
sitting naked on the Internet.

Enabling and Configuring PF
OpenBSD enables PF by default at system boot with these rc.conf variables:

pf=YES
pf_rules=/etc/pf.conf

To disable PF at boot, set pf to NO in rc.conf.local.
The default configuration file for PF is /etc/pf.conf. There’s nothing spe-

cial about this file—it’s just a standard location. The pf(4) kernel interface
doesn’t read the file directly; the PF control program pfctl(8) reads the file
and sends the configuration to the kernel.

The default PF configuration (hard-coded in /etc/rc) blocks all network
traffic except for ICMP and SSH. During boot, PF replaces those defaults
with rules from /etc/pf.conf. If an error in pf.conf renders the file unparsable
when the system boots, PF can’t load those rules; instead, it retains the
default configuration. You’ll be able to connect to your machine to correct
your rules, but that’s about it. (And, as anyone who administers remote fire-
walls can tell you, this ability can save you a lot of driving and phone calls.)

Running PF by default, even with a permissive ruleset, cleans up incom-
ing traffic before the rest of the kernel has to deal with it. PF reassembles
packets before handing them to the kernel, and obviously bogus traffic,
such as packets too short to be legitimate, is discarded.

2. Blatantly stolen from Henning Brauer. Thankfully, he’s so sick of this book by now, he
won’t notice.

398 Chapter 21

If you want to forward packets between interfaces (that is, act like a
“firewall”), tell the kernel to forward packets with the net.inet.ip.forwarding
and net.inet6.ip6.forwarding sysctls. (See /etc/sysctl.conf for commented-out
examples.)

#net.inet.ip.forwarding=1
#net.inet6.ip6.forwarding=1

Remove the pound signs and reboot, or use sysctl(8) to enable and
disable packet forwarding on the fly.

Packet-Filtering Basics
Packet filtering is comparing packets to a list of rules and accepting, reject-
ing, or altering them as those rules dictate. As a network administrator, you
get to decide which packets are naughty and which are nice. When you filter
packets for a single host, you can legitimately call that host hardened. (The
word hardened means almost exactly what firewall means: nothing.) When you
send all packets on your network through a single host that filters packets,
you have a basic firewall.

A basic packet filter might allow you to filter based on only the TCP or
UDP protocol number. Some don’t even allow you to filter by ICMP type
or cannot cope with protocols other than those enumerated in the GUI.
PF, however, can cope with almost anything you throw at it. If you need a
machine to communicate with another over IP protocol 184, PF will sup-
port you. Many commercial firewalls won’t let you pass such traffic, or
claim that they do but throw a tantrum if you actually try it.

Packet-Filtering Concepts
Chapter 11 described how TCP connections can be in a variety of states. A
TCP connection that is just starting goes through a three-way handshake pro-
cess. A client requests a connection by sending a synchronization request,
or SYN, packet to the server. The server responds by sending the client an
acknowledgment of the SYN, as well as its own SYN request, or a SYN+ACK
packet. The client responds with its own ACK.

Every part of this three-way handshake must complete for any actual
data to transfer between the two machines. Your packet-filtering rules must
permit each part of the three-way handshake and the subsequent data
transmission. PF automatically recognizes these three-way handshakes and
tracks them through stateful inspection.

Stateful Inspection

PF maintains a list of permitted connections that have completed con-
nection setup, which is called a state table. When a client sends out a SYN
packet, PF records that packet in a table and waits for a corresponding
SYN+ACK packet. If a SYN+ACK packet arrives at PF, but PF has no record
of a corresponding SYN request, the SYN+ACK packet is rejected.

Packet Filtering 399

PF has a series of built-in timeouts that dictate how long idle connec-
tions remain in the state table, how long to wait for each stage of the three-
way handshake, and so on. The state table is self-maintaining, and I’ve
never had to adjust any of these timeouts. (On occasion, I have needed to
increase the maximum size of the state table.)

UDP is technically stateless, but some applications expect a certain
amount of state. When your system transmits a UDP packet, the application
might well expect a UDP packet or 10 in response, or no packets, depend-
ing on the application.

DNS queries are a common example of UDP packets flowing back and
forth, and while UDP has no state, DNS certainly does. (ICMP behaves simi-
larly.) You can have PF either expect this back-and-forth or not, by adding
these flows to the state table as your protocol dictates.

N o t e 	 PF can also operate without stateful inspection, allowing traffic to and from hosts
and ports based on individual packet characteristics. Stateless filtering is slower
than stateful inspection, harder to correctly configure, and generally considered less
secure and less useful than stateful inspection.

Packet Reassembly

Packets can be mangled during transit, usually by fragmentation. Part of a
packet filter’s job is to sensibly reassemble those packets. PF can reassemble
and rationalize packets in a variety of ways. (Old versions of PF called this
scrubbing.)

Default Accept vs. Default Deny

One of the essential concepts in packet filtering is the question of default
accept versus default deny:

•	 A default accept stance means that you allow any type of connection
except what you specifically deny. The default PF rules are an example
of a default accept stance.

•	 A default deny stance means that you allow only explicitly permitted con-
nections. All other connections are refused.

Once you have chosen your default, you can adjust your rules to hide
or reveal network services as needed. In today’s world, I recommend default
deny on all systems, because this stance protects new services as they are
added to a system. In most environments where I’ve seen a default accept
stance used in the past decade, it’s because the system administrators did
not understand the network protocol they were using. This is particularly
common in VoIP installations (yes, you can packet filter VoIP servers!)

In addition to packet filtering and reassembly, PF offers several other
important features, including NAT, connection redirection, and bandwidth
management, to name a few. We’ll consider each separately. All are config-
ured in pf.conf and managed with pfctl(8).

400 Chapter 21

“My Network Can Do No Wrong”
Many network administrators who build a firewall carefully filter and
restrict incoming traffic, but only apply minimal restrictions on outgoing
traffic. While control of incoming traffic is among the most in-your-face
issues of network management, control of outgoing traffic is also important.

Even if you trust your users, malware can convert a skilled engineer’s
workstation into a garbage-spewing pest. Do not assume that your network
can do no wrong. It can be malicious, and one day it will be, but careful
traffic control can minimize the damage you inflict on your neighbors, cli-
ents, customers, and reputation.

Is there any reason for your staff desktops to connect to any random
remote mail server? If not, block it, and even if a workstation is infected
with a spambot, the rest of the world won’t blacklist you. Is there any reason
for your users to connect to remote DNS servers, or should they use your
company’s? Block outbound DNS, and prevent your users from becoming
unwitting amplifiers of denial-of-service attacks. I strongly recommend a
default deny stance for outbound as well as inbound traffic, and explicitly
allowing desirable traffic.

Some networks might be exceptions, of course. If every system on your
network runs OpenBSD, you’re pretty safe from routine malware, but already
we see malware targeting televisions, Blu-ray, streaming media players, and
other appliances with network connectivity. Protect yourself now.

Anytime that you catch yourself thinking that your network can do no
wrong, stop and remind yourself that you are not as smart as the combina-
tion of every malware author in the world.

What Packet Filtering Doesn’t Do
Packet filtering controls network connections based entirely on TCP/IP
protocols and related characteristics, such as port numbers. If you want to
block all traffic from certain IP addresses, packet filtering is your friend.
If you want to allow only connections to a particular TCP/IP port, packet
filtering will work for you. If you want to allow entrance only to packets with
the ECN flag set, but no other flags, PF will support you (even though that’s
a pretty daft thing to do).

You can filter protocols that operate at a logical protocol layer such as
IPsec, SKIP, VINES, and so on, but only on the network protocol. If it’s a
different protocol layer, PF can’t help.

N o t e 	 PF can even filter by MAC address. There’s special support for this specific media
layer protocol via tags added on bridge(4) interfaces, as documented in ifconfig(4).

Similarly, PF doesn’t know anything about applications or application
protocols. If you allow TCP/IP connections to port 25 on a server within
your network, you might think that you’re allowing connections to the mail
server on that host. Actually, you’re allowing connections to whatever dae-
mon happens to be running on port 25 on that host! PF doesn’t recognize

Packet Filtering 401

an SMTP data stream; it sees only that the connection goes to port 25. (I
have a system that offers SSH on many ports commonly assigned to other
services, just so I can saunter past whatever naïve packet filter I happen to
be stuck behind.)

PF Components
Before we dive into PF, let’s look at the basic components of packet filter-
ing on OpenBSD. In addition to the pf(4) kernel module, we’ll look at
the packet filter control program and the configuration file /etc/pf.conf.
Knowledge of interface groups also helps.

Packet Filter Control and Configuration
Use the packet filter control program pfctl(8) to manage, configure, and
extract information from PF. You can see the current packet filter rules and
settings, connections being processed, the state of the TCP/IP transactions,
debugging information, and all kinds of other details. You can also parse
rules files and install them in the actual packet filter.

You’ll see many different options for pfctl, addressing every aspect of
packet-filter management. Many of these are rather lengthy, but you need
to type only as much of the word arguments to make a command unique.
For example, instead of typing pfctl -s rules, you can get away with pfctl
-sr because no other argument to pfctl -s begins with an r. That said, I
give all examples in their full form, as it’s impossible to guarantee that
OpenBSD won’t add some other argument that begins with r in the future.

I focus on using pfctl for viewing PF output, but OpenBSD also includes
PF views in systat(1). For a dynamic display of PF activity, somewhat like
top(1) for the network, look at systat. Run systat by giving the name of the
view as an argument, such as systat pf. And, as always, any time you want
more detail from pfctl, add one or two -v arguments for verbose mode.

You configure PF in /etc/pf.conf. The pf.conf file contains statements and
rules, whose format varies with the features they configure. You’ll be very
good friends with this file before we’re through.

Interface Groups
OpenBSD lets you put interfaces in named groups, which you can refer to
in PF rules. This abstracts away the actual physical interface, and lets you
build policy-based rulesets. Take a look at this interface:

ifconfig em0
em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
...
 groups: egress
...

This interface is in the egress group. An interface is assigned to the
egress group if a default route is reached over it.

402 Chapter 21

To move this interface to a new group, dmz, remove it from the egress
group and add it to the dmz group. An interface group is created when you
assign the first interface to it, and one interface can be in any number of
groups.

ifconfig em0 -group egress
ifconfig em0 group dmz
ifconfig em0
em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
...
 groups: dmz
...

You can now write rules that reference interface groups instead of
specific interfaces.

PF Configuration
Let’s dismantle the default pf.conf from an OpenBSD system and identify
some parts. Many of the default entries are commented out, but identifying
them will help you understand how the components fit together.

It begins with an option:

set skip on lo

Options turn features on and off, or set general rules on how other fea-
tures behave. The skip option disables PF on a per-interface basis.

Next comes the anchor setting:

anchor "ftp-proxy/*",

An anchor is a set of dynamic sub-rules for packet filtering. If a packet
hits an anchor as it’s processed through the filter rules, it’s dropped into
this sub-ruleset for further processing. pfctl can change the rules running
in the kernel, and an anchor is a way of saying, “Add new rules here.”

Anchors are generally used for letting outside software add rules to the
firewall. For example, FTP is a complicated protocol that requires all sorts
of firewall rules. OpenBSD includes an FTP proxy that dynamically adds
the necessary rules for permitted FTP connections.

Then come two packet-filtering rules:

pass in quick inet proto tcp to port ftp divert-to 127.0.0.1 port 8021
pass

The first is a rule to support FTP traffic, in combination with the FTP
anchor. We’ll look at anchors and FTP handling in more detail in the next
chapter. The other is a much simpler packet-filtering rule, which permits
all traffic.

Packet Filtering 403

Up next are two tables, which are lists of IP addresses:

table <spamd-white> persist
table <nospamd> persist file "/etc/mail/nospamd"

External programs can dynamically alter tables, and you can add
addresses to tables directly within pf.conf or in an external file. These two
tables are used by the antispam software spamd(8).

After the tables is another packet-filtering rule:

pass in on egress proto tcp from any port smtp \
 rdr-to 127.0.0.1 port spamd

This rule is interesting in that it refers to an interface group. Traffic is
permitted in, as long as it arrives on an interface in the egress group.

And the final rule is as follows:

block in on ! lo0 proto tcp to port 6000:6010

This packet-filtering rule stops traffic. If a packet arrives on any inter-
face except the loopback interface, and the packet is a TCP protocol going
to port 6000 through 6010 inclusive, it is blocked.

This is the sort of thing you’ll see in pf.conf. Let’s dive into some specif-
ics of filtering rules.

Filtering Rules
Filtering rules are the heart of PF. You can use PF without doing any of
the fancy redirection, address translation, load balancing, or redundancy,
but packet filtering is the bedrock on which most of these features are
based. To start with, however, basic packet filtering is defined as access
control for network packets by source, destination, protocol, and protocol
characteristics.

PF processes filtering rules in order. The last rule that matches a packet
is acted on. A typical packet-filtering rule looks like this:

upass vin won egress xproto tcp yfrom any zto 192.0.2.12 {port 80

The first word of the filter rule is a keyword that describes the results of
this rule u. PF will either pass or block packets that match a rule. (There’s
also match, which we’ll look at in the next chapter.) The rest of the line is a
description of matching packets. If the packet matches the description, the
rule is applied.

The second statement is the direction the packet is going. Packets are
either going in or out. In this rule, the packet is going in v—it is entering
the system. Not only do we define a direction, but we also define an inter-
face group. Packets must be entering this system on an interface in the
egress group to match this rule w.

404 Chapter 21

We then have several statements that define traffic characteristics.
(This rule is almost like a regular expression for TCP/IP.) This rule applies
to TCP connections x, coming from any IP address y, if the connection is
made to the IP address 192.0.2.12 z on port 80 {.

If a packet matches all of these characteristics, it can pass. If any of
these characteristics isn’t matched, the packet does not match this rule,
and PF continues processing the rules, looking for a matching one.

TCP and UDP rules implicitly check connection state. A TCP packet
that matches this rule needs to be a SYN packet, the start of a standard
TCP/IP connection. PF uses the state table to manage follow-up packets in the
same connection (see “Filtering Rules and the State Table” on page 411).

Default Permit or Default Deny
I touched earlier on the idea of default accept versus default deny. Set this
stance at the beginning of your packet-filtering rules with one of the follow-
ing two statements:

pass
block

The default pf.conf has a default pass stance, but it’s for people who
haven’t yet configured a firewall. I recommend starting your filter rules with
a lone block statement, and then adding rules to explicitly permit desirable
traffic. Remember that the last matching rule wins.

Packet Pattern Matching
One of the most intensive parts of PF is the syntax used to describe packets.
Most filter rules describe packets by protocol, port, direction, and other
characteristics. PF compares each arriving packet to the state table, and if
the packet isn’t part of the state table, it compares the packet to the filter
rules. If the rule matches the packet description, the packet is passed or
blocked as desired.

Once you define whether you’re in a default accept or default deny
stance, the filter rules describe exceptions to your default. So if you block
packets by default, most of your filter rules will be pass statements that
describe particular desirable connections.

Direction

The keywords in and out describe the direction the packets are going. In
many commercial firewalls, the word in means traffic entering the pro-
tected network, and out refers to traffic leaving the protected network.
OpenBSD does not magically know which side of the network is protected
and which is not. As far as PF knows, it’s managing traffic between two
interfaces. The keyword in means traffic flowing into the machine from the
network, and out means traffic leaving the machine and entering the network.

Packet Filtering 405

When you see in or out in a PF rule, do not think about your network
as a whole. Instead, imagine that you’re very small and sitting on your CPU,
grilling steaks over the heat sink and watching packets enter and leave the
computer. You cannot see what lies beyond the case, just the packets as they
come and go. Packets coming in are approaching you, and packets going
out are receding.

Interface Matching

The on keyword describes an interface or interface group to which this rule
applies. You must specify an interface.

If you want a rule to match every interface on the system, use the
interface name all. This example stops all traffic entering the machine on
the interface fxp0, but allows all traffic leaving the system on the interface
group egress:

block in on fxp0
pass out on egress

This ruleset implies that interface fxp0 is special for some reason, so it’s
not treated like the rest of the egress group.

Address Families

Rules can apply to specific address families, either inet for IPv4 or inet6 for
IPv6. Here’s how to prohibit IPv4 but permit IPv6:

block in on egress inet
pass in on egress inet6

Presumably, you have later rules that more tightly restrict IPv6.

Network Protocol

PF can recognize almost any network protocol by number or name. The
proto keyword tells PF to match a protocol. Network protocols can be given
by name from /etc/protocols, protocol number, or even a list (see “Using
Lists” on page 413).

block in on egress proto tcp
pass in on egress proto udp

You can use this to pass protocols other than IP and IPv6. Here’s how to
allow the protocols necessary for IPsec:

pass in on egress proto esp
pass in on egress proto ah

406 Chapter 21

This functionality somewhat overlaps the inet and inet6 statements. If
you prefer, you could explicitly allow IP, ICMP, TCP, UDP, and all the vari-
ous IPv6 protocols.

Source and Destination Address

Almost every filter rule specifies a source and/or destination address.

pass in on egress from 198.51.100.0/24 to 192.0.2.0/24

IP addresses can appear either as individual addresses or as an address
with a netmask (as shown in the preceding example). The keyword any
means any IP address. The keyword all is shorthand for “from any to any.”

You can also use hostnames instead of IP addresses. pfctl will check
the IP address of the host when loading the rules, and insert the actual IP
address into the rules.

pass in on egress from www.michaelwlucas.com

If the IP address of the host changes, PF won’t notice until you reload
the rules with pfctl. If the hostname cannot be found, the rules won’t parse,
and pfctl will not be able to load them. I recommend not using hostnames
in filter rules, much as I recommend not wearing medieval plate armor
while swimming, but it is an available option.

To say “anything but this address,” use the exclamation point as a nega-
tion character.

block in from !192.0.2.0/24

This says “block everything except the addresses 192.0.2.0/24.” That’s
not the same as saying “pass 192.0.2.0/24,” but it can help simplify your rules.

You can also use lists, macros, and tables as IP addresses. Lists and mac-
ros are discussed later in this chapter, and tables are covered in the next
chapter.

Source and Destination Variants

You can use the name of an interface or interface group instead of an IP
address.

pass out on egress from egress

This lets traffic leave via the egress interface group, from any IP address
on any interface in that group, to any IP address.

If you put the interface name or group in parentheses, PF updates its
rules whenever the IP address on the interface changes. This is useful for
dial-up connections, or if you add and remove IP addresses from an interface.

pass out on egress from (egress)

Packet Filtering 407

You can specify a network that is directly attached to an interface or an
interface group by following the name with :network.

pass in on egress from egress:network

Suppose the egress group has only one interface, and that interface has
an IP address of 192.0.2.88/25. This rule would translate to the following:

pass in on egress from 192.0.2.0/25

This rule means that any host on the local network to an egress interface
can communicate anywhere. When you add another interface to the egress
group, the rules automatically update to accommodate the new interface’s
network.

To filter on broadcast traffic for an interface or group, use the
:broadcast modifier.

block in on egress from egress:broadcast

Again, suppose that the egress group has only one interface, and that
interface has an IP address of 192.0.2.88/25. This rule would translate to
the following, blocking broadcast traffic on the local subnet:

block in on egress from 192.0.2.127

Use the :peer modifier to indicate the IP address of the far side of a
point-to-point link, such as a dial-up connection.

pass in on egress from egress:peer

Here, we completely trust our dial-up provider.

Interface Main Address

To use only the first IP address on an interface, add the :0 modifier with an
interface or group name.

pass out on egress from (egress:0)

The egress interface group might have 98 IP addresses scattered across
three interfaces, but only one address on each interface is the first address.
This host can communicate out through the egress interface group, but only
from primary IP addresses. The aliased IP addresses cannot initiate out-
bound connections.

The problem with the :0 modifier is that the kernel has a very weak idea
of what is the “first” address on an interface. The kernel has a list of addresses
associated with an interface. The address at the top of this list is the “first”
or “main” address at the moment, but this address can change. If this might
cause problems, specify an IP address in your rule rather than rely on :0.

408 Chapter 21

You can attach :0 to any of the other interface modifiers, that is, to
IP addresses other than the first from the rule. OpenBSD can’t tell if IP
addresses on remote machines are aliases or actual IP addresses, but you
can prohibit traffic to or from aliases on the local machine.

Note that the first address on an interface is either an IPv4 address
or an IPv6 address. If you want to allow the first address of each protocol,
specify the address family in the rule.

pass out on egress inet from egress:0
pass out on egress inet6 from egress:0

Otherwise, PF will use only the first address it sees, regardless of
address family.

Source and Destination Port

Filter rules can describe TCP and UDP ports.

pass in on egress proto tcp from any to 192.0.2.12 port 80

This example permits access to TCP port 80 on the server 192.0.2.12.
Presumably, this is a web server.

You could use a service name from /etc/services instead of a port num-
ber, or even use a list (as described later in this chapter). You can also use
ranges, as shown in Table 21-1.

Table 21-1: Port Ranges

Symbol Meaning

!= Not equal
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
>< Range
<> Inverse range

For example, to specify all ports over 1024, you could use the greater-
than operator (>).

pass in on egress proto tcp from any to 192.0.2.12 port > 1024

To specify all ports between 1000 and 2000, excluding both 1000 and
2000, use the range operator (><).

pass in on egress proto tcp from any to 192.0.2.12 port 1000 >< 2000

Packet Filtering 409

To include ports 1000 and 2000 in your range, use the inclusive range
operator (:). (Note that you cannot have space on either side of the colon.)

pass in on egress proto tcp from any to 192.0.2.12 port 1000:2000

To pass traffic on all ports less than 1000 and greater than 2000, use
the inverse range operator (<>).

pass in on egress proto tcp from any to 192.0.2.12 port 1000 <> 2000

Ranges let you express large numbers of ports in very few rules.

A Complete Ruleset
The following is a complete ruleset for a desktop machine, using many of
the features described previously. We’ll look at some more complicated
rulesets later, but this illustrates many basic principles of PF rules.

Interface group egress is attached to the public network, and interface
group inside is connected to my private network.

u set skip on lo
v block
w pass in on egress from egress:network
x pass in on inside from inside:network
y pass in on egress proto tcp from any to egress:0 port 22
z pass out all

The first rule disables packet filtering on the loopback interface u, and
the second defines a default deny stance v. The second and third rules per-
mit all connections from IP addresses directly connected to the external w
and internal interfaces x. If I install a web server on my desktop, I want to
be able to view it from any machine on the network I control. Then I permit
inbound SSH connections from anywhere in the world to the primary IP
address on any egress interface y. Finally, I permit all outbound traffic, so
my desktop can freely access the outside world z.

I’ve said before that PF rules are processed in order, and these rules
illustrate that. I establish a default, blocking all traffic, and then use indi-
vidual rules to carve out exceptions to that global block.

Activating Rules
For your PF rules to take effect, you must load them into the kernel using
pfctl -f.

pfctl -f /etc/pf.conf

First, pfctl reads and parses the rules file. If the file parses correctly,
pfctl expands any variables in the file, performs any necessary DNS lookups
to transform hostnames into IP addresses, and feeds the complete rules
into the kernel. The kernel reads the new rules, and then swaps between

410 Chapter 21

the old and new rules in one operation. At no time are the packet-filtering
rules missing, scrambled, or a hybrid of the two rulesets. Also note that
pfctl -f won’t enable PF if it’s disabled.

Personally, I like to know that my edited packet-filter configuration
parses before the scheduled change time. It’s embarrassing to announce to
your team that “the new firewall configuration will be active at noon” and
spend the whole time tracking down a misplaced comma or a parenthesis
where you should have put in a curly brace. To test your syntax without
installing the rules, use the -n flag with -f. Add -v for verbose mode, to see
how pfctl expands your macros, groups, and so on.

pfctl -nvf /etc/pf.conf

The rules might still have errors, but only errors of comprehension
rather than syntax.

Loading new rules doesn’t remove any existing open connections or
state entries. If my old ruleset allowed outbound SSH connections, and I
remove that permission from the newly installed rules, existing SSH con-
nections remain open. I can either specifically kill those connections with
pfctl -k or flush the state table.

Viewing Active Rules
To see how these rules are interpreted inside PF, view the currently
installed ruleset with pfctl -s rules. Here are the rules generated by
the configuration in “A Complete Ruleset” on page 409:

pfctl -s rules
u block drop all
v pass in on egress inet6 from 2001:db8:4::/64 flags S/SA
w pass in on egress inet from 192.0.2.0/28 flags S/SA
x pass in on inside inet from 192.168.1.0/24 flags S/SA
y pass in on egress inet proto tcp to 192.0.2.5 port = 22 flags S/SA
z pass out all flags S/SA

The first rule establishes a default deny stance u. I then specifically
allow connections from hosts on the networks local to interfaces in the
egress group, for both IPv6 v and IPv4 w. This desktop also accepts con-
nections from my private network x.

The private network permits connections only from IPv4 addresses
because the interface in the private group has only an IPv4 address. (I
really should add an IPv6 address, but it hasn’t caused me any trouble, so
I’ll probably forget all about it once again.) Then there’s a rule permitting
inbound SSH traffic y, followed by a final rule to pass all outbound traffic z.

If I change any IP address on my desktop, my firewall rules update
to accommodate them. That’s a really nice feature of interface groups. If
I moved my desktop regularly, I would put the interface group names in
parentheses so PF would watch for IP address changes.

Packet Filtering 411

N o t e 	 One thing you’ll probably notice is that the pass rules end with flags S/SA. This means
that out of the SYN and ACK flags, matching packets can have only the SYN flag
set, indicating that these are requests to establish a connection. You can filter on TCP
flags, but doing so requires in-depth understanding of TCP, and most people should
never do it. To see how SYN and SYN+ACK packets affect connections, you need to
understand the state table.

To see how often a packet triggers each rule, add -v to the pfctl
command.

To see how the rules impact traffic in a constantly updating display,
run systat rules.

Filtering Rules and the State Table
OpenBSD tracks approved connections in the state table. Packets that are
part of an approved connection are allowed to pass. Consider this rule from
an earlier example:

pass in on egress proto tcp from any to 192.0.2.12 port 80

If a packet matches this rule, and it has the TCP/IP flags that indicate
this is the start of a TCP connection, PF permits the connection. PF also
makes an entry in the state table. If a packet arrives that matches the state
table, PF passes the packet without consulting the rules.

TCP States
First, we’ll look at a state table entry for a TCP connection. To view the state
table, enter pfctl -s states.

pfctl -s states
uall vtcp w192.0.2.12:80 <- x198.51.100.227:55635 yESTABLISHED:ESTABLISHED
...

This state table entry represents one specific connection that the packet
filter approved. This state applies to all interfaces u. If a state applies to
only one interface, you’ll see the interface name here.

This TCP connection v was bound for 192.0.2.12 port 80 w, and came
from the host 198.51.100.227 port 55635 x. When the first SYN packet
arrived from 198.51.100.227 port 55635, PF added this entry to the state
table. When 192.0.2.12 sent a SYN+ACK packet back to 198.51.100.227 port
55635, PF consulted the state table. This was clearly a match to the permit-
ted SYN packet, so PF permitted that packet, even though no explicit rule
in pf.conf permitted that connection. Data exchange between these two
hosts and these two ports proceeded.

412 Chapter 21

PF knows what an actual TCP/IP data exchange looks like. There’s a
three-way handshake in the beginning, and a similar dance when the con-
nection is finished and PF tracks the state of the connection. This particu-
lar connection is established on both sides y, meaning that the initial setup
negotiation succeeded, and data can flow back and forth freely.

If your server is busy enough, and you keep refreshing the state table
view, you’ll catch connections in other states. Here’s the same connection
as the data exchange ends and is being torn down:

all tcp 192.0.2.12:80 <- 198.51.100.227:55635 FIN_WAIT_2:FIN_WAIT_2

N o t e 	 One possible problem with viewing the state table is that pfctl displays a snapshot.
By the time your eyes scroll down the screen, the table has changed. Personally, I find
that’s the only way I can cope with the information. If you need to view states in a
constantly updating display, in near real time, run systat states.

The state table is very specific. A state table entry permitting
198.51.100.227 port 55635 to 192.0.2.12 port 80 does not permit traffic
between other hosts and ports. PF knows how traffic should flow, and it
won’t allow traffic that isn’t obviously part of an existing TCP/IP exchange.
If a packet arrives from 198.51.100.227 that looks like it’s part of this data
exchange, except that it comes from port 55634 instead of 55635, the state
table entry won’t match. Similarly, if PF knows that the connection is in a
FIN_WAIT_2 state, or almost finished, a subsequent data packet with an ACK
flag set won’t match and will be discarded. This is because a SYN request
from the same host, from the same port, should not arrive—the client
should know that the port is busy closing the previous connection. A new
connection should come from a different port on the client and create a
new state table entry.

Without stateful inspection, you would need to write firewall rules that
not only permitted incoming traffic, but also permitted the responses. Your
firewall rules would need to permit outbound connections to thousands of
high-numbered ports, instead of just the single ports attached to desirable
connections. Filtering based on TCP flags would be nearly impossible.

N o t e 	 As a consultant in the 1990s, I made a couple of rent payments dismantling such
rules that had been shoehorned into stateless packet filters because they just aren’t
realistic without stateful inspection. Plus, carefully tracking data exchanges not only
simplifies rules, but also prevents a whole slew of TCP/IP-based attacks. You don’t
hear much about these attacks anymore, thanks to stateful inspection.

UDP States
The state entries for UDP connections are similar to those for TCP
connections.

all udp 192.0.2.12:53 <- 198.51.100.227:38469 SINGLE:MULTIPLE

Packet Filtering 413

This is a DNS query, bound for 192.0.2.12 port 53 from 198.51.100.227
port 38469. The client sent a single packet, and the destination replied
with multiple packets. While stateful inspection cannot identify the state of
this connection by flags, it can track the source and destination addresses
and ports. You would need to write only a single rule permitting access to
192.0.2.12 port 53, and stateful inspection would permit the matching
reply packets.

ICMP States
ICMP falls somewhere in between TCP and UDP. PF is aware of ICMP types
and knows legitimate responses to ICMP packets, and by using stateful
inspection, you get all of these benefits automatically. Much as you could
write rules that permit specific TCP flags, you can write rules that permit
certain ICMP types and codes. Most of us cannot manage that, and those of
us who can know better. (ICMP errors referring to an existing TCP or UDP
state are matched to the state, and don’t need to be allowed separately.)

N o t e 	 OpenBSD’s stateful inspection actually tracks more detail than source and destina-
tion addresses and ports. Add -v to the pfctl command to see more information,
including timing, the number of packets passed as a result of the state, and more.

Packet Filtering with Lists and Macros
PF includes many ways to have one rule reference several similar items, or
symbolically represent something with a variable. The basic ways are lists
and macros.

Using Lists
A list is a way to represent several similar items in one rule. You might want
to use a list if, for example, you want a particular group of TCP ports open
on a certain group of hosts, and your rule entries would be repetitions
of one rule with minor changes. Opening ports 80 and 443 to one host
requires two rules: one for each port. If you have 30 web servers, you would
need 60 rules. This is a pain to maintain and error-prone, but lists let you
express these common elements more easily.

A list is represented in curly braces within a rule. To make the rule
more readable, you can put a comma between items.

pass in on egress proto tcp from any to 192.0.2.12 port {80, 443}

This one pf.conf statement creates two rules, opening both TCP ports 80
and 443 to the target host.

pass in on egress from any to 192.0.2.12 port = 80 flags S/SA
pass in on egress from any to 192.0.2.12 port = 443 flags S/SA

414 Chapter 21

You could also use a list to have this rule cover multiple web servers.

pass in on egress proto tcp from any to {192.0.2.12, 192.0.2.13} port {80, 443}

This expands to four rules: one for each combination of server and port.
Remember that each entry in the list creates its own rules. The list

entries do not combine to create a single rule.

Using Macros
A macro is a variable that you create and define for use within PF rules.
Macros keep pf.conf more readable, maintainable, and manageable.

Macro names must begin with a letter, but can include letters, numbers,
and underscores. You cannot give a macro a name that’s used elsewhere
in PF, like pass, block, or proto. Frequent uses of macros include interface
names, network addresses, and ports.

Earlier, we saw a list that included the popular web ports 80 and 443.
You could make these a macro, as follows:

web_ports="{80, 443}"

Our sample rule would then become this:

pass in on egress proto tcp from any to 192.0.2.12 port $web_ports

When combined with braces, macros can simplify your pf.conf file.
Consider the following pf.conf snippet:

webservers="{192.0.2.12, 192.0.2.13, 192.0.2.14, 192.0.2.15}"
web_ports="{80, 443}"
pass in on egress proto tcp from any to $webservers port $web_ports

This expands to eight rules, but requires only three easy-to-understand
configuration statements. When you add a new web server, add its IP address
to the list in the webservers macro. What’s more, you might use the webservers
macro in dozens of places throughout your rules. Changing the IP address
list once is much easier and more likely to be correct than doing so in
each rule.

While you probably use interface groups to represent IP addresses local
to your machine, you might have other IP addresses that you need to repre-
sent. Macros are great for this, too.

internal_ip="10.10.0.0/16"

Or if you have multiple disparate blocks, you could use a list inside
the macro.

internal_ip="{10.0.0.0/24, 10.0.5.0/24, 10.0.10.0/24}"

Packet Filtering 415

You don’t see macros or lists when viewing the running PF rules with
pfctl; instead, you see the rules that they expand to.

A Common Error: List Exclusions and Negations
Lists can be counterintuitive, and it’s easy to write lists that negate other
rules. For example, this seems like it should work:

clients = "{192.0.2.0/24, !192.0.2.128/29}"
pass in on egress from $clients

The idea here is that our clients have the IP addresses 192.0.2.0/24. We
want to permit all of those addresses except for the small chunk in the mid-
dle, 192.0.2.128/29. That seems reasonable, right? But much like excluding
commands from sudo(8), this breaks. Remember that each entry in a list
expands into another rule. This creates two rules.

pass in on egress inet from 192.0.2.0/24 flags S/SA
pass in on egress inet from ! 192.0.2.128/29 flags S/SA

The first rule passes in everything from the 192.0.2.0/24 subnet. That’s
what we wanted. The second rule, however, passes in everything that’s not in
the subnet 192.0.2.128/29, also known as “everyone in the world”—not what
we were hoping to achieve.

Similarly, negating an entire list expands to negating each individual
item in the list. If you need to do this sort of exclusion, use a table, as
described in the next chapter.

Sanitizing Traffic
All sorts of weird traffic arrives at Internet hosts. Some of that traffic is broken
garbage. Other parts tell you that someone else is running broken garbage.

PF tries to sanitize and normalize traffic before otherwise processing it.
The normalizations include discarding illegal packets, packet reassembly,
and packet modification.

Illegal Packets
Some of the random stuff that arrives at a host is garbage. If a packet is
shorter than the IP header, it can’t be a real IP packet, and if a TCP packet
is too short to include a full TCP header, it can’t be a real packet.

If the packet length doesn’t match the length given in the header, it’s
somehow corrupt. PF has no way to figure out where these packets came
from, or if they’re maliciously damaged or just corrupted in transit. Since
the kernel can’t do anything with them, PF automatically drops them.

416 Chapter 21

Packet Reassembly
Before the packet filter can decide how to handle a packet, the packet
should be free of ambiguities and random weirdness. Reassembly cleans up
these ambiguities, and the default reassembly settings are suitable for most
environments. You get reassembly when you enable PF.

Packet Modification
Sometimes you need to modify packets. These days, PF handles everything
for most environments. If you need to modify packets, such as clearing the
“do not fragment” bit on fragmented UDP packets, see the scrub keyword in
pf.conf(5).

Blocking Spoofed Packets
Another classic IP attack is sending packets that appear to come from the
private network to a firewall, in an attempt to evade the packet filter. Most
firewalls today block this type of attack, so attackers rarely bother, but you
should still protect against spoofed attacks. Just because everyone else has
had their measles shot doesn’t mean you should go without one.

For an antispoofing rule, use antispoof for and an interface name.

antispoof for fxp0

When fed into the packet filter, the rules would look something like this:

block drop in on ! fxp0 inet from 192.0.2.5/28
block drop in inet from 192.0.2.5 set (prio 0)

The first rule drops any traffic that arrives from an address local to
interface fxp0 on any interface other than fxp0. Packets from an address
local to interface fxp0 should always arrive on your system via fxp0.

The second rule drops any traffic that comes from the address of interface
fxp0. Packets with that source address should never arrive from the outside
world. If the system needs to communicate with itself, it uses interface lo0.

You could use interface groups instead of interface names, but I don’t
recommend doing so. If you have multiple egress interfaces, using anti-
spoofing rules on the egress group won't block outside packets that arrive
at the wrong egress interface. Take the time to enumerate your interfaces
in your antispoofing rules.

Instead of listing a single interface, you can also use a list or a macro.

antispoof for {lo0, fxp0, em0}

Antispoofing rules can mess with packets passed over the loopback
interface. I recommend skipping filtering on lo0, although PF includes spe-
cial built-in protection for 127.0.0.0/8 addresses.

Now that you have basic packet filtering, let’s consider some of PF’s
core settings.

Packet Filtering 417

PF Options
Options are basic settings that affect core PF functions. Options answer
questions like these:

•	 Do we reassemble fragments into packets?

•	 How many entries should the state table support?

•	 Is logging on?

All options start with the set keyword. Because options affect how all
other parts of PF operate, I recommend placing them at the very top of pf.conf.

Here, we’ll look at some of the more commonly used options.

The set block-policy Option
Will your firewall silently drop forbidden packets, or respond to the client
with “sorry, not allowed?” The block policy determines which approach it
takes. By default, PF drops blocked packets, but you can override the global
block policy on individual filter rules.

Strictly speaking, when PF drops packets, it should return an error to
the client, so that legitimate clients can immediately recognize that they
cannot connect. Using set block-policy return tells PF to return these polite
errors: an RST for TCP connections and an ICMP unreachable message for
other types of connections.

Unfortunately, politeness has largely been overwhelmed by the modern
Internet. PF’s default, set block-policy drop, tells PF to not return any kind
of error on blocked packets. Client applications such as web browsers, vul-
nerability scanners, worms, and other malware must wait for the network
protocol to time out before realizing that they cannot connect.

I recommend dropping blocked packets silently.3

The set limit Option
PF includes limits on the size of various internal tables used to track frag-
ments, states, address tables, and other memory-consuming items. I have
needed to adjust these limits on very rare occasions. The existing limits are
chosen because they are sufficient for most users in most environments.

View the existing limits with pfctl.

pfctl -s memory
states hard limit 10000
src-nodes hard limit 10000
frags hard limit 1536
tables hard limit 1000
table-entries hard limit 200000

Let’s take a look at what each limit represents.

3. Mind you, if PF included an option to insult the client when a packet is dropped, somewhat
like sudo, I would need to change my recommendation. But that’s a fault in the underlying
network protocol, not PF.

418 Chapter 21

frags Limit

When PF receives a fragmented packet, it holds onto that fragment and
waits for other fragments of that packet to arrive. Once it has all the pieces,
it reassembles the fragment and processes it. The frags limit controls the
number of packet fragments awaiting reassembly at one time. (You shouldn’t
need to change this.)

To see the total number of fragments PF has processed, and how many
arrive per second, use pfctl -s info and look at the Counters section.

pfctl -s info
...
 fragment 368 0.0/s
...

This host has been sitting on the naked Internet for three months in an
Internet colocation site, and has received only 368 fragments. I do not need
to increase PF’s memory for fragments, and I certainly don’t want to reduce
the limit in case I receive a sudden barrage of fragments.

If you suspect that fragments are flowing in, run systat pf for constantly
updating counters of PF statistics.

The src-nodes Limit

PF can track a number of states per source address. You might want to limit
each client to, say, 10 connections to a specific server. This connection limit
includes connections being set up and those still waiting to finish. Here’s an
example of this sort of rule:

pass in proto tcp to $webserver port 80 keep state(max-src-states 10)

PF’s load balancer features use src-nodes to help track which clients are
attached to which servers, through the sticky-address and source-track options.

If you use these features, and think you might be out of source nodes,
check usage with pfctl -s Sources.

The states Limit

The states limit controls how many entries can be in the stateful inspection
list. The default of 10,000 is adequate for most environments.

You can view the current usage with pfctl -s info.

pfctl -s info
Status: Enabled for 1 days 18:01:06 Debug: err

State Table Total Rate
 current entries 30
 searches 54510751 6.3/s
 inserts 2459724 0.3/s
 removals 2459694 0.3/s
...

Packet Filtering 419

N o t e 	 I have needed to change the state table more than once. Each time, it was because of a
strangely written application that required clients to make dozens of connections to a
single TCP/IP port. I’m certain that the application developers had their reasons for
doing so (possible reasons do include ignorance and malice). Multiplied by thousands
of simultaneous users, that became a lot of states. As I wasn’t in a position to tell the
developers to write their application like normal people, I had to adjust the state table.

If you suspect that the state table is having trouble, use systat pf and/or
systat states to view state activity in real time.

The tables and table-entries Limits

The tables and table-entries limits control how many tables PF can create,
and how many entries can go into a single table. I have never had to adjust
these, and I would suggest that if your filter rules need more than 1000 tables,
you should probably reconsider how you’ve designed it. A table might need
to hold more than 100,000 addresses, but that’s very much the exception
these days.

Setting Limits

To change a limit, use set limit, the name of the limit, and the new value.
Here’s how to double the size of the default state table:

set limit states 20000

Again, don’t change these defaults lightly. Increase them only if exist-
ing limits cause a specific problem. And don’t decrease them, or you won’t
be prepared for problems and spikes.

The set optimization Option
PF includes a variety of timeouts, which default to values reasonable for the
modern Internet. Some environments, such as satellite uplinks, do require
slightly different timeouts.

You can adjust PF’s timeouts with set optimization. (The name is a left-
over from the early days of PF, but has stuck around.) This has four values:

normal

The normal optimization is the default. If you don’t specify an optimiza-
tion, the standard timeouts are used.

conservative

The conservative optimization is for environments where you want to
be absolutely sure you don’t time out connections. (State table entries
will stick around longer.) This setting uses more memory and processor
time—possibly much more on a busy network. I use it to ease the minds

420 Chapter 21

of managers of industrial networks who are less concerned about buying
more hardware and more concerned about the possibility of a meeting
caused by some executive’s idle connection timing out.

high-latency

If you connect over a satellite uplink or carrier pigeon, use the
high-latency optimization.

aggressive

If you have a busy firewall, with many connections coming and going, you
might try the aggressive optimization. This times out idle connections
more quickly, reducing memory and processor use. Many people report
that aggressive timeouts work perfectly well in their environments, but if
low timeouts cause trouble for you, turn them off.

Configure any of these by using set optimization and the optimiza-
tion name.

set optimization conservative

The set skip Option
You can tell PF to not manage an interface. By default, it watches all inter-
faces, but some interfaces don’t really require filtering. Your loopback
interface, lo0, passes traffic only from the local machine to itself. Packet
filtering on lo0 is an interesting educational exercise, but not terribly use-
ful in production.

set skip on lo0

You can also specify multiple interfaces to skip.

set skip on {lo0 fxp0 fxp1}

It’s fairly common to skip filtering on the physical interfaces beneath a
trunk in favor of filtering on the trunk itself.

This will get you started with packet filtering. If you have a single server
with simple functions, you can protect it quite nicely using the techniques
covered in this chapter. But PF can do a lot more than what we’ve talked
about here, such as control bandwidth and have applications dynami-
cally change rules. In the next chapter, we’ll touch on a few of PF’s more
advanced functions.

22
A d v a n c e d P F

Office net seems slow
thanks to bootleg film swapping.

Let’s stop that right quick!

The previous chapter covered the basics
of the OpenBSD packet filter pf(4). But,

as I mentioned, PF can manipulate packets
in all kinds of ways beyond just permitting or

denying them, including the following:

•	 You can dynamically change the list of addresses to pass or block
through outside software, such as dhcpd(8) or spamd(8).

•	 You can dynamically create sub-rulesets that let you set up very specific
rules for troublesome protocols without allowing more access than
necessary.

•	 PF can provide NAT, letting you offer an entire network Internet access
without public IP addresses.

•	 You can redirect incoming traffic arbitrarily, and control how much
bandwidth you will let a service use.

•	 You can use PF logging.

This chapter covers each of these topics.

422 Chapter 22

Packet Filtering with Tables
A table is a list of IPv4 and/or IPv6 addresses, much like a list. A table is
faster than a list, however, and uses less memory. If you have only a few
addresses, using a list is fine, but once you have more than a few, use a table.

Interestingly, you can edit tables without reloading the filter rules,
and several programs use this feature to dynamically change how a server
behaves. Some people load lists of malware-laden computers into a table to
block those hosts, or use external programs to generate such lists. (“You’ve
tried to send us four invalid emails in a row? Good-bye!”) Tables can be
kept permanently in external files, or you can treat them as ephemera. It’s
your choice.

Defining Tables
You can create and manipulate tables entirely with pfctl, but that’s not as
common as defining the table within pf.conf. Give the table name in angle
brackets, and provide the initial members delimited by commas inside braces.

table <management> {192.0.2.5, 192.0.2.8, 192.0.2.81}

In this case, the management table contains three IP addresses.
If you want to define a table that pfctl cannot change, use the const key-

word. The following example defines a table for private (RFC 1918) address
space. This address space has been well defined for many years, so no one
should alter it.

table <private> const {10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16}

If no rules reference a table, PF drops it. This makes sense for static
rules, but if you’re using anchors (discussed later this chapter), you might
want to retain the table for when rules reappear. Use the persist keyword
to make a table stick around even if it’s not used in a rule.

table <scumbags> persist

Some tables contain enough addresses that you wouldn’t want to list
them in your configuration. For convenience, you can populate a table from
a file, like this:

table <fullbogons> persist file "/etc/fullbogons.txt"

I have a script that updates the fullbogons.txt file every day. (Bogons are
addresses that should never appear in the global Internet routing table.)

The bogons list includes private address space, addresses reserved for
experimentation or documentation, addresses not assigned to any network,
and addresses assigned to other exotic purposes. Several organizations

Advanced PF 423

produce and update full bogon lists. I use the bogons list at my border to
weed out obvious garbage. The file looks like this:

last updated 1352220481 (Tue Nov 6 16:48:01 2012 GMT)
0.0.0.0/8
10.0.0.0/8
14.1.96.0/19
...

You can include individual addresses, but not dotted-quad netmasks.
You can use hostnames, but before pfctl feeds the rules to the kernel, it
checks the IP address or addresses of the host. This means that if a host
changes its IP address after you load the rules, PF will not know about the
new IP address.

Using Tables
Use the table in your firewall rules exactly as you would use an address
or list.

block in on egress from <fullbogons> to any

You can put multiple tables in a list.

block in on egress from {<fullbogons>, <scumbags>} to any

Yes, a list is slower than a table. But if you maintain two different tables
in different ways, you probably want those tables separated. And if a list of
two items triggers firewall exhaustion, you really need more hardware.

Viewing Tables
Tables have their own subset of pfctl commands. To see which tables are in
the kernel, use pfctl -s Tables. (Note that Tables begins with a capital T.)

pfctl -s Tables
fullbogons
scumbags

Why would you need to ask the kernel what tables it has? Because
dynamic rules can add and remove tables, as discussed in “Anchors” on
page 434.

If you already know the table name, and you want to view the addresses
within the table, use the -t argument to specify a table name. The -T argu-
ment has several subcommands, much like -s, but is for table operations.
Here’s how to examine the contents of the scumbags table:

pfctl -t scumbags -T show
 157.166.248.10
 157.166.248.11

424 Chapter 22

 157.166.249.10
 157.166.249.11

For many table operations (add, delete, replace, and test as of right now),
you can add one or two -v options before the -T to increase verbosity. If you
work on multiple addresses simultaneously, adding verbosity shows details
of what the command did.

Searching Tables
You can eyeball a table with four entries pretty easily, but if a table has thou-
sands of entries, you won’t want to page through it searching for an address.
You could use grep(1), but that can fail because an address might be part
of a network that looks completely different. (I’m sure I could write a grep
expression that matches 10.0.0.0/8 if I enter 10.99.61.4, but I don’t want to
try it.) You can test an address to see if it’s in a table.

pfctl -t fullbogons -T test 192.0.2.88
1/1 addresses match.

This address appears in the fullbogons table.
If you test multiple addresses in one command, use -v or -vv before -T

to see which addresses match and which don’t.

pfctl -t scumbags -vvT test 192.0.2.88 198.51.100.90
1/2 addresses match.
M 192.0.2.88 192.0.0.0/22
198.51.100.90 nomatch

Using a single -v shows only matching addresses.

Changing Tables
One important feature of tables is that you can dynamically alter them with-
out reloading the firewall rules. If you must add an address to a table, use
-T’s add command.

pfctl -t scumbags -T add 192.0.2.88
1/1 addresses added.

Add networks by specifying a netmask and multiple addresses in a
single command.

pfctl -t scumbags -T add 198.51.100.0/24 2001:db8::/32
2/2 addresses added.

If you add addresses to a nonexistent table, PF automatically creates the
table (so now you know where that scumbags table came from).

Advanced PF 425

Add all the addresses in a file to a table with the -f argument.

pfctl -t scumbags -T add -f scumbags.txt
1/1 addresses added.

To remove addresses, use the delete command.

pfctl -t scumbags -T delete 198.51.100.0/24
1/1 addresses deleted.

To completely remove all entries from a table, use flush.

pfctl -t scumbags -T flush
6 addresses deleted.

If emptying the table is not enough, and you want to completely remove
it from the rules, use kill.

pfctl -t scumbags -T kill
1 table deleted.

Tables and Automation
OpenBSD includes software that can adjust tables algorithmically. In
Chapter 16, I mentioned the DHCP server’s ability to assign leased, aban-
doned, and changed addresses to tables. You can use PF to assign different
rules to each group of addresses.

Assume you have dhcpd(8) add all leased IP addresses to the leased table,
abandoned addresses to the abandoned table, and changed addresses to the
changed table. Hosts with properly leased addresses can access the network,
but hosts with abandoned and changed addresses cannot. Here, interfaces
in the office group face the local network:

table <leased> persist
table <abandoned> persist
table <changed> persist
pass in on lan from <leased> to any
block in on lan from {<abandoned>, <changed>} to any

If someone decides to configure an address from the DHCP server as
a static address for their computer, they automatically lose access to the
rest of the network—problem solved. Other OpenBSD software, such as
spamd(8), has similar features.

At first glance, it might seem like this feature is ready for integration
with other programs. It’s fairly simple to write a script that parses a log, grabs
the IP addresses, and feeds those addresses to a table. Several years ago, I
wrote a script to take alerts from the Snort intrusion detection system and
automatically block attackers from the network. Without careful and skilled

426 Chapter 22

attention though, Snort generates many false positives. My autoblocking
script very effectively created a denial-of-service attack against my own
development team.

Be careful with automatically feeding PF tables to block traffic. It’s very
easy to harm desirable connectivity.

Using NAT
One of the critical functions of a firewall is NAT. Use NAT to provide IPv4
network access to multiple machines but show only one public IPv4 address.
Some companies provide Internet access to thousands and thousands of
machines via NAT.

NAT is like making soup out of a bone—it stretches what you have so
that it covers more. Some protocols won’t work well with NAT. It really con-
fuses anyone who is trying to restrict access by IP address. And it can cause
nightmares for network forensics and troubleshooters. But NAT is the chosen
solution for the IPv4 address shortage.

NAT is not intended as a security mechanism. There are minor security
benefits, but they are inadequate against today’s network threats. Relying
on NAT for security is chasing 10 boilermakers with a cup of black coffee
before staggering out of the pub to drive home. You might get away with it,
but only by luck.

IPv6 was designed without NAT, but it was shoehorned in several years
later by popular demand. (IPv4 was originally designed without NAT as
well, so IPv6 is just following tradition.) Note that an IPv6 address—even a
globally unique IPv6 address—does not mean or even imply “reachable from
the world.” You can have solid network separation without NAT. Avoiding
NAT means using your packet filter to protect your machines, with addi-
tional application proxies as needed.

Private NAT Addresses
In theory, you can use any addresses behind your NAT device. If you use
some random IP addresses, though, you cannot exchange packets with who-
ever uses those IP addresses out in the real world. It’s highly advisable to
use some of the IP addresses reserved for private use, generally referred to
as “RFC 1918 addresses.” These include the following IP addresses:

•	 10.0.0.0/8 (10.0.0.0-10.255.255.255)

•	 172.16.0.0/12 (172.16.0.0-172.31.255.255)

•	 192.168.0.0/16 (192.168.0.0-192.168.255.255)

You can subnet and rearrange those addresses any way you like, as long
as you don’t try to route them on the public Internet.

You can use other IP addresses behind your NAT if you have a really
good reason for doing so. For example, RFC 5737 defines IPv4 addresses
for use in documentation. Like RFC 1918 addresses, RFC 5737 addresses
should never appear on the public Internet. I write documentation, so

Advanced PF 427

I use those addresses on my home and test networks. It saves me from
doing search and replace as I write books.1 There’s still no chance of those
addresses appearing on other networks.

Configuring NAT
Perhaps the most common form of NAT is for use in hiding a small network
behind a single IP address. You’ll find this in many homes and small busi-
nesses. Very few home offices have internal routing and multiple subnets.
For this example, I have two interface groups: the Internet-facing egress
group and the lan group attached to my office.

pass out on egress from ulan:network to any vnat-to egress

The first part of this rule looks just like any other firewall rule permit-
ting the addresses on the lan interface access to everywhere, but the last two
words additionally configure NAT. The nat-to keyword tells PF to translate
addresses v. The egress that follows tells PF to hide the internal addresses
behind the addresses of the egress interfaces u. You could use an interface
name or a specific IP address here, but if you do, you must change your fil-
ter rules when you change your server.

In order to have PF recognize IP address changes from DHCP, put the
interface group name in parentheses.

pass out on egress from lan:network to any nat-to (egress)

Now load your firewall rules, enable IP forwarding, and suddenly, hosts
on your LAN will have access to the Internet through the firewall’s public
address.

How NAT Works
The easiest way to understand how address translation works is to look at
the state table (discussed in the previous chapter) after PF passes translated
packets back and forth. On the office network from machine 192.0.2.2, I
ran this command:

$ ping www.michaelwlucas.com

Several pings later, I checked the state table and found entries like this:

pfctl -ss | grep 192.0.2.2
all udp u203.0.113.5:55797 v(192.0.2.2:10853) -> w203.0.113.15:53 MULTIPLE:SINGLE
all icmp 203.0.113.5:8813 (192.0.2.2:41584) -> 198.22.63.8:8 0:0

1. Can Lucas configure a highly available firewall cluster in a day? Yep. Can he search and
replace IP addresses in a text file without screwing everything up? Nope.

428 Chapter 22

The first state represents a UDP connection from the firewall’s public
address u to the local DNS server w. This state entry includes the client’s
private IP address v, as well as the actual ports used by the client, the fire-
wall, and the DNS server.

The client initiated this state by sending a request from port 10853
on its IP address to port 53 on the DNS server. When the packet passed
through PF, OpenBSD rewrote the packet so that it appeared to come from
the address 203.0.113.5 on port 55797 and sent it on to the DNS server. The
DNS server sent its response to the firewall’s public IP on port 55797. When
the reply arrived, the firewall checked the state table, and found that UDP
packets on port 55797 were part of the state for the client. PF rewrote the
packet’s destination address and forwarded it to the client.

The second state represents an ICMP connection. The state table
encodes the various ICMP codes used for a ping request as port numbers,
and forwards responses back to the client based on that information.
Otherwise, it’s very similar to the DNS example above it.

In other words, NAT works by lying. PF lies to the client, telling it that
it has direct access to the public Internet. It lies to the external servers, giv-
ing a false source address and port for client connections. PF uses the state
table to track its lies and keep everything consistent. These lies are conve-
nient for IPv4 address conservation, but they’re exactly why address transla-
tion complicates troubleshooting and intrusion forensics.

Now that you understand the basics of NAT, let’s tell the network even
more complicated and interesting lies.

Multiple or Specific Public Addresses
You can use several public IP addresses for address translation. If you use
an interface group for the external address in your NAT rule, any addresses
in that interface group can become the public address of any connection. If
you want to be specific, list particular addresses.

pass out on egress from lan:network to any nat-to 203.0.113.5

I use this configuration when my firewall’s external interface has mul-
tiple IP addresses and I want to conceal my desktop clients behind a single
address (although I probably would define and use a macro for the external
address ).

But how many public addresses do you need? The answer depends on
your clients.

Port numbers range from 0 to 65535. The bottom 1024 ports are gener-
ally used for services on the localhost. Not all of those ports will be used on
the localhost, but a packet filter generally won’t use those ports for trans-
lated connections. I’m lazy, so I’ll round off to 64,000 free ports.

Even the most heavily loaded desktop client rarely can use as many
as 100 outbound connections simultaneously. Most will use far fewer, but
again, I’m lazy, and I want a worst-case scenario, so I’ll call it 100.

Advanced PF 429

One IP address can support 64,000 / 100 = 640 machines being patho-
logical simultaneously. Realistically, each client might have 10 simultaneous
outbound connections, so a public address could support 6,400 simultane-
ous clients. How many of your users browse the Internet at the same time?
The answer probably is not many. And if you have thousands of users, you
would probably benefit from implementing a caching proxy, which would
greatly reduce the number of connections.

If you’re concerned about overflowing the number of client machines
for one address, watch your state table. Until you have multiple tens of thou-
sands of states for one public IP address, don’t worry.

Specifying individual addresses in a NAT rule is most useful for bi​
directional NAT.

Bidirectional NAT
Some applications work better if you dedicate a public IP address as the
NAT address for a specific private IP address. For example, if you have a
server that offers several different services on different ports, and you want
to put it behind your firewall, you might want to dedicate a single address to
it. This is called bidirectional, one-to-one, or static NAT. OpenBSD docs use
“bidirectional,” but the terms all mean the same thing.

Configure bidirectional NAT with the binat-to keyword.

pass on lan from 192.0.2.65 to any binat-to 203.0.113.6

PF dedicates the public IP address 203.0.113.6 for NAT services for the
private IP address 192.0.2.65.

If you use bidirectional NAT, be sure to specify a specific IP address for
your general NAT and consider using the following NAT rules:

pass out log on egress from lan:network to any nat-to egress
pass on lan from 192.0.2.2 to any binat-to 203.0.113.6

The IP addresses on this LAN are hidden behind the IP addresses on
the egress interface. If 203.0.113.6 is an address on an egress interface, out-
bound packets from the LAN might use it as a source address.

When I need bidirectional NAT, I usually write my NAT rules like this:

mainnat="203.0.113.5"
servernat="203.0.113.6"
pass out log on egress from lan:network to any nat-to $mainnat
pass on lan from 192.0.2.2 to any binat-to $servernat

In this way, packets leaving my network are unambiguously translated.
Only the one specific server uses the IP address 203.0.113.6; all other hosts
on my local network use 203.0.113.5. If I change IP addresses, I must recon-
figure pf.conf, but that’s a minor annoyance compared to troubleshooting
network ambiguity.

430 Chapter 22

Bidirectional NAT and Security

The use of bidirectional NAT, and allowing the redirection of connections,
lets you give people outside your network access to servers behind your fire-
wall, and every one of these gaps is a potential security hole. If you allow the
world access to your web servers, and an intruder compromises one of your
servers, you have a compromised machine inside your firewall. The firewall
doesn’t really secure the web servers; it just controls who can try to break
into them and limits the available attack vectors.

Packet Filtering, Bidirectional NAT, and Rule Order

When writing packet-filtering rules for bidirectional NAT, the order in
which you list rules is important. Consider the following rules:

pass on lan from 192.0.2.2 to any binat-to 203.0.113.6
pass in on egress proto tcp from any to 192.0.2.2 port 80

The first rule establishes static NAT for the host 192.0.2.2 on the LAN,
hiding it behind the public IP address 203.0.113.6. All is well and good. The
second line permits connections to port 80 on the same host, or does it?
Packets meant for this server that arrive on the firewall’s egress interface
won’t be addressed to 192.0.2.2; they’ll be addressed to the public NAT
address, or 203.0.113.6. They won’t match this rule, so they are discarded.

In order to permit connections from the world to the web server behind
this firewall, permit packets sent to the proper port on the public address.

pass on lan from 192.0.2.2 to any binat-to 203.0.113.6
pass in on egress proto tcp from any to 203.0.113.6 port 80

This translates 192.0.2.2 to the public address 203.0.113.6, and then
allows packets with a destination of port 80 on 203.0.113.6 to pass. You’ll see
this in the state table, like this:

all tcp 203.0.113.6:80 <- 198.22.63.8:64791 ESTABLISHED:ESTABLISHED

The host 198.22.63.8 has connected to the server’s public IP address on
port 80.

Why doesn’t this state entry have the hidden IP address in it? Because
this is a bidirectional NAT. PF can send port numbers through unaltered,
so it can track a little less information in the state table.

The tricky thing here is that the rule order impacts how you filter, and
you must read your filtering rules carefully to see how address translation
interacts with packet filtering. I always write my rules so that I do address
translation before I filter. I consistently use the public IP address in the
filter rules, but sometimes that’s not practical. PF lets you write arbitrarily
complex rules mainly because the real world is arbitrarily complex. If you
have trouble passing traffic through NAT, read your rules very carefully.

Advanced PF 431

To see a bidirectional NAT, look at the loaded rules.

pfctl -sr
...
pass out on lan inet from 192.0.2.2 to any flags S/SA nat-to 203.0.113.6 static-port
pass in on lan inet from any to 203.0.113.6 flags S/SA rdr-to 192.0.2.2
pass on egress inet proto tcp from any to 203.0.113.6 port = 80 flags S/SA

The first rule gives the private IP address access to the public Internet,
translated to the specific IP address. The third rule passes traffic to the trans-
lated address.

But what about the second rule, with that rdr-to stuff? That’s a redirec-
tion, which is how PF implements static NAT.

Redirection
Bidirectional NAT is actually a combination of address translation and
redirection; in other words, it twists a connection intended for one IP or port
to another. In bidirectional NAT, all connections to the designated public
IP address are redirected to a different IP address. Sometimes you don’t
want to twist all traffic for an IP address—only a few ports. Sometimes
you want to redirect one port one way, but a different port elsewhere. Do
this with redirection rules.

Suppose you have one public IP address: 203.0.113.5. You want port 80
on that IP address routed to your web server at 192.0.2.2, ports 25 and 110
to your mail server at 192.0.2.3, and port 443 to your e-commerce server
at 192.0.2.4. PF lets you choose where to send each port via redirection by
using a standard packet-filtering rule and adding the rdr-to redirection
keyword.

pass in on egress proto tcp from any to egress port 80 rdr-to 192.0.2.2
pass in on egress proto tcp from any to egress port {25, 110} rdr-to 192.0.2.3
pass in on egress proto tcp from any to egress port 443 rdr-to 192.0.2.4

These rules declare that any connection coming to the egress interface
group (the interface facing the public Internet, with a default route going
over it) can be redirected in three different ways. The first rule directs port 80
requests to one internal server. The second rule directs requests for ports 25
and 110 to the second server. The last rule redirects requests for port 443
to the third server. One public IP address is now providing services to the
world from three different servers.

All port redirection rules must include a protocol, because specifying
a TCP/IP port works only if you’re forwarding a protocol that includes port
numbers, such as TCP or UDP. If you want to forward both TCP and UDP
ports, you must specify both protocols. For example, DNS uses port 53 on
both TCP and UDP. Here’s a rule that forwards both of these protocols’
port 53 to the internal server 192.0.2.5:

pass in on egress proto {tcp, udp} from any to egress port 53 rdr-to 192.0.2.5

432 Chapter 22

Pick a port, say where you want it to go, and PF will redirect it as
you please.

N o t e 	 You’ve learned how bidirectional NAT combines redirection and address translation.
The in-kernel PF engine doesn’t actually know anything about this beastie called
“bidirectional NAT.” pfctl(8) translates the binat rule into two separate rules: one
for translation and one for redirection.

Multiple Addresses and Interface Groups
All of the preceding discussion makes sense when you have only one public
IP address. But what happens when you have multiple addresses?

Remember that using an interface group in pf.conf tells pfctl to create a
matching rule for every IP address in the interface group. Suppose you have
three IP addresses on your egress interface: 203.0.113.5, 203.0.113.6, and
203.0.113.7. You write this pf.conf rule:

pass in on egress proto tcp from any to egress port 80 rdr-to 192.0.2.2

Load this rule into the kernel with pfctl, and what do you get?

pfctl -sr
...
pass in on egress inet proto tcp from any to 203.0.113.5 port = 80 flags S/SA rdr-to 192.0.2.2
pass in on egress inet proto tcp from any to 203.0.113.6 port = 80 flags S/SA rdr-to 192.0.2.2
pass in on egress inet proto tcp from any to 203.0.113.7 port = 80 flags S/SA rdr-to 192.0.2.2

Any connection to port 80 on any of these IP addresses is directed to
port 80 on the same server. This might be useful in some environments, but
that’s not what most of us want. If you have multiple IP addresses, and you
want to redirect a port on only one IP address, you must specify the inter-
face name and the public IP address.

pass in on em0 proto tcp from any to 203.0.113.5 port 80 rdr-to 192.0.2.2

This doesn’t expand; it doesn’t have any interface groups, lists of addresses,
variables, or macros. When pfctl parses this, it loads only one PF rule into
the kernel.

Port Manipulation and Ranges
As you redirect ports from one machine to another, you can change the
port. The following example takes requests to TCP port 2222 on the fire-
wall and redirects them to port 22 on a machine inside the firewall.

pass in on egress proto tcp from any to egress port 2222 rdr-to 192.0.2.2 port 22

Advanced PF 433

This is a reasonable way to offer SSH services to several machines inside
the firewall on only one IP address, and to give each machine its own port.

If you have specific source addresses that you want to abuse, you can
give them special port redirections by source IP address.

pass in on egress proto tcp from 198.51.100.0/24 to egress port 80 rdr-to 192.0.2.2
pass in on egress proto tcp from ! 198.51.100.0/24 to egress port 80 rdr-to 192.0.2.3

Every HTTP connection from the IP addresses in 198.51.100.0/24 will
be redirected to one server, while every other connection will be directed
elsewhere. (To redirect connections for many source addresses, use a table
for the source address.)

PF can also redirect entire ranges of ports using the same logical opera-
tors used for filtering ports. One obvious thing to do is to redirect a range
of ports to a single machine. NFS is a prime example, as it requires TCP
port 111, as well as all TCP and UDP ports from 1024 to 65535.

pass in on egress proto {tcp, udp} from any to egress port {111, 1024:65535} rdr-to 192.0.2.15

Recall from Chapter 21 that a colon between port numbers indicates
a range of ports. This rule passes ports 1024 through 65535, inclusive.
Admittedly, certain NFS implementations can be restricted to use either
TCP or UDP, and that’s a great big gaping hole in your packet filter. But
NFS uses random high-numbered ports that come and go very quickly,
and cannot be effectively filtered or restricted at the packet level.

You can also funnel an entire range of ports to one port on one machine.

pass in on egress proto tcp from any to egress port {1024:65535} rdr-to 192.0.2.15 port 80

I’ve used this to point random traffic at a web page that says “Go away.
You cannot use this service.”

Transparent Interception
Traffic interception is similar to redirection in that PF intercepts traffic
bound for one port and steers it to a port on the local machine. Traffic
interception is one way to implement a transparent proxy. Use the divert-to
keyword to tell PF to steer any matching packets to a local server.

pass in inet proto tcp from lan:network to any port 80 divert-to 127.0.0.1 port 3129

Any traffic from the local LAN to port 80 will be diverted to port 3129
on the firewall. Port 3129 is usually used by the Squid caching proxy
(/usr/ports/www/squid). If you choose to implement a caching proxy like
Squid, you’ll probably want to redirect several ports to the cache. (We’ll
take a closer look at diverting connections in “FTP and PF” on page 437.)

434 Chapter 22

Anchors
In PF, an anchor is a sub-ruleset at a specific point in the filter rules that
you can change without reloading the rules. It’s a spot marked “insert rules
here,” letting you dynamically add and remove filter rules, tables, and other
PF configurations.

The most common users of anchors are software programs. Human
beings or sysadmins should probably just edit pf.conf and reload the rules.

OpenBSD includes several programs that take advantage of anchors,
however, including the FTP proxy ftp-proxy(8), the authenticated firewall
access system authpf(8), and the load balancer relayd(8). You could also use
anchors to trigger conditional evaluation of rules.

A ruleset with an anchor might look something like the following, where
the interface group egress faces the Internet, and the interface group lan
faces a small office with the addresses 192.0.2.0/24.

block
pass in on egress from any to 192.0.2.45 port {25, 80}
anchor "antivirus/*"
pass in on lan from 192.0.2.0/27 to any

These rules block all traffic by default. Incoming traffic is allowed to
a specific address on ports 25 and 80 because those are the mail and web
servers. There’s an anchor in the middle of the rules. I don’t yet know what’s
in the antivirus anchor, but any rules in it are processed next. Finally, a
small subnet of the addresses is allowed out.

Now let’s add some rules to the anchor.

Adding Rules to Anchors
You can insert rules into anchors from a file, within pf.conf itself, or via pfctl.

Anchor Rules from Files

Adding rules to an anchor from a file is a good way to initialize your anchor
when first starting the packet filter. You can set base rules here that you can
expand later. Give the filename in pf.conf.

anchor dhcp
load anchor dhcp from "/etc/pf/dhcp-anchor.conf"

I created an /etc/pf/ directory because I didn’t want to have a whole
bunch of PF configuration files scattered throughout /etc. I’m easily con-
fused, after all. This file contains PF rules like this:

block from 192.0.2.192/26 to any

This is one way to load basic rules into an anchor when you start PF.

Advanced PF 435

If you were paying attention, you probably noticed that my first example
anchor had a /* after its name. This example doesn’t. I’ll explain why in
“Nested Anchors: /*” on page 436.

Anchor Rules in pf.conf

You can place anchor rules directly inside pf.conf. If you don’t intend to
dynamically alter the rules, you don’t even need to name the anchor. Just
use curly braces to define the beginning and end of the anchor.

anchor "smtp" on egress {
 pass proto tcp from 192.0.2.12 to any port 25
 }

This is just slightly more complicated than the anchors in the default
pf.conf.

Why would you want to do this? Read “Conditional Filtering” on
page 436.

Anchor Rules via pfctl

To dynamically alter anchor rules with pfctl, you need the name of the
anchor and the rule you want to put in its place. For example, suppose I
want to add a rule to the antivirus anchor in the first anchor example.

uecho "block in from 203.0.113.8 to any" v| pfctl w-a antivirus x-f -

Let’s look at this command slightly backwards. The -a argument to
pfctl specifies an anchor name—in this case, the antivirus anchor w. The
-f argument normally gives a filename that contains the new anchor rule,
much like -f when loading a PF ruleset, but rather than a path to a file, I
use a single dash that tells pfctl to read the new rule from standard input,
or the command line x. I start everything by echoing the rule to be added u,
and then piping that into pfctl v.

Taken as a whole, this adds the rule block in from 203.0.113.8 to any to
the anchor antivirus.

You could also write the new rule to a file, and tell pfctl to load the rules
from that file into the anchor.

pfctl -a antivirus -f newrule.conf

If you’re writing rules to a file to load them into an anchor, however,
chances are you’re better off editing pf.conf.

NOTE 	 Adding a rule to an anchor erases any rules already in the anchor. If you have a soft-
ware package that updates anchor rules, your software needs to handle this behavior.
If your desired behavior can be accomplished using a list of IP addresses, consider
using a table instead of an anchor.

436 Chapter 22

Viewing and Flushing Anchors
Use the pfctl view (-s), flush (-F), and load (-f) commands on anchors by
specifying the anchor name with -a.

pfctl -a antivirus -s rules
block drop in inet from 203.0.113.8 to any

To erase the rules from an anchor, flush the rules in the anchor.

pfctl -a antivirus -F rules
rules cleared

Your anchor is now empty.
Rulesets within anchors are completely separate from each other, and

also from the main ruleset. Flushing all the rules in a specific anchor does
not affect the rules in any other anchor, or the rules in the main ruleset.
For that matter, flushing the rules in the main ruleset does not impact the
rules in the anchor. To destroy an anchor, you must remove everything in
the anchor, including any child anchors.

“Child anchors?” I hear you cry. “What are you babbling about now, dude?”

Conditional Filtering
Consider the following pf.conf snippet:

...
anchor "office/*" in from lan to any {
 pass out proto tcp from any to {80, 443}
 }
...

The office/* anchor has a filter condition after it, and only traffic that
matches the filter condition will pass through the anchor. In this case, only
packets that come from the lan interface group will pass through the rules
within the anchor. Your rules within the anchor might be easier to write,
simply because everything in the anchor is already known to be originating
from the lan interfaces.

If your packet filter is very heavily loaded, you might be able to reduce the
amount of time it spends processing packets by careful conditional filtering.

Nested Anchors: /*
Anchors can contain other anchors.

anchor "office" in from lan to any{
 ...
 anchor "ftp-proxy/*"
 pass in quick inet proto tcp to port ftp divert-to 127.0.0.1 port 8021
}
...

Advanced PF 437

Only traffic that passes into the office anchor can pass through the
ftp-proxy anchor. The FTP proxy can have its own sub-anchors as well. In
fact, you might have several layers of anchors to support a complicated pro-
tocol, such as FTP.

This is where the /* after some anchor names comes in. An anchor
name without this is executed all by itself. By adding the /*, you tell PF
to evaluate all sub-anchors within this anchor, in alphabetical order.

Anchors and sub-anchors deliberately resemble a filesystem. You can
have a file /office or a directory /office/ containing more files. If you list the
files in a directory, they appear in alphabetical order. Anchors work much
the same way.

All of this anchor stuff is very theoretical. How about a practical
example? Read on to see how PF uses anchors to handle that most annoy-
ing of network protocols: FTP.

FTP and PF
Most modern application protocols run over a single network connection. If
you make a web request, your browser opens a connection to the server on
port 80, requests information, and receives the answer, all on the same con-
nection. SSH opens a single connection on port 22 and exchanges all infor-
mation over that port, even if you tunnel a hundred other protocols inside
it. Experience and experiments with older protocols taught the wisdom of
this approach. FTP is an older protocol, and it provides a wealth of experi-
ence on how not to do things.

The original version of FTP (today called active FTP) required the cli-
ent to connect to the server on port 21. The server would then open a con-
nection back to the client, from port 20 to some random high-numbered
port on the client for sending information. The connection from server to
client is called the data connection, or the back channel. The FTP client and
server agree on the ports to be used and how the second connection will be
used. On a network protocol level, however, no connection exists between
the client’s connection to port 21 and the server’s connection from port 20,
so there’s no way for a firewall to use stateful inspection to sort out if such
a connection is allowed. Worse, if the client is behind a NAT device, there’s
no way to determine to which private IP address the firewall should route
an incoming FTP data request.

Passive FTP is an updated version of the FTP protocol where the client
initiates both TCP connections. All modern clients and servers support
passive FTP. The differences between active and passive FTP spark endless
rounds of user education and increased help-desk load, especially if you’re
trying to use FTP through a web browser. (And if anyone is going to break
my help desk staff, it’s going to be me!) Active FTP simplified firewall rules,
because the firewall didn’t need to allow the back channel. Unfortunately,
the creators of passive FTP called the modified protocol FTP. Clients don’t
care about active or passive, they just want “this FTP thing” to work, regard-
less of the actual protocol underlying it.

438 Chapter 22

To complicate things, some FTP servers and clients implement some-
thing between active and passive FTP. The FTP protocol has been around
for decades (it predates TCP/IP), and people have tweaked and “improved”
it for years. Getting a random combination of FTP server and client through
a random NAT device and a packet filter can cause nightmares, or at least
require opening a wide range of TCP ports.

OpenBSD and PF get around this problem by including an FTP
application proxy, ftp-proxy(8). When a client makes an FTP request, PF
intercepts the request and reroutes it to the application proxy. The proxy
tracks the FTP protocol transactions, uses anchors to insert the appropri-
ate rules into the firewall, and removes the rules when the transfer finishes.
Strictly speaking, ftp-proxy isn’t a traditional proxy. Data doesn’t actually go
through ftp-proxy; the “proxy” adjusts the firewall rules so that traffic can
pass. The proxy requires two parts: a running ftp-proxy instance and the
redirect rules.

Configuring ftp-proxy(8)
Like any other OpenBSD daemon, ftp-proxy is enabled in /etc/rc.conf.local.
There’s no configuration file—only command-line arguments. By default,
ftp-proxy automatically listens on port 8021 on the loopback interface. It’s
very rare for me to add any command-line arguments for ftp-proxy for rou-
tine use.

ftpproxy_flags=""

If I’m debugging a problem, however, I might run ftp-proxy in the fore-
ground, in debugging mode. Doing this shows me all FTP transactions as
they occur.

ftp-proxy -dD7

This displays everything that passes through the FTP proxy, including
the ports used for the data channel back to the client. Press ctrl-C to stop
ftp-proxy.

The most common problem I have with ftp-proxy is that nothing appears
in the debugging terminal. That means that the firewall isn’t diverting any
traffic to the proxy. Check your pf.conf file to verify that you have the neces-
sary rules to support the FTP proxy.

PF Configuration and the FTP Proxy
PF must know to send FTP requests to ftp-proxy. There’s a good example
configuration in the default pf.conf file:

anchor "ftp-proxy/*"
pass in quick inet proto tcp to port ftp divert-to 127.0.0.1 port 8021
pass out inet proto tcp from (self) to any port ftp

Advanced PF 439

Here’s where we use anchors. The ftp-proxy/* anchor can contain sub-
rulesets. The ftp-proxy daemon modifies these anchors on the fly to config-
ure the necessary traffic or data connections. The second rule declares that
PF will divert any traffic addressed to the FTP port (21 as per /etc/services)
to port 8021 on the localhost. The third rule says that the firewall host can
send TCP port 21 traffic to any other host. This rule contains a new term,
(self), which is PF shorthand for “all IP addresses on the localhost.”

How can you be sure this works? First, find an FTP server that supports
active FTP. Open your FTP client and log in to the server, going through
the firewall. Once you log in, use the pasv command at the FTP prompt.
This command turns passive mode on and off. If the server doesn’t recog-
nize pasv, it supports only passive FTP. Find another FTP server for this test.
Once the FTP server reports that “passive mode is off,” list the contents of a
directory. Directory listings, like data files, come over the data channel.

During the data transfer of an active FTP connection, you should see
rules in the ftp-proxy/* anchor.

pfctl -a "ftp-proxy/*" -sr
anchor "6837.2" all {
 pass in log (all) quick on rdomain 0 inet proto tcp from 129.128.5.191 to
139.171.202.34 port = 62323 flags S/SA keep state (max 1) rtable 0 rdr-to
192.0.2.2 port 64280
 pass out log (all) quick on rdomain 0 inet proto tcp from 129.128.5.191 to
192.0.2.2 port = 64280 flags S/SA keep state (max 1) nat-to 129.128.5.191
}

The rules created by ftp-proxy are very specific. They permit only one
connection, from a particular server to a particular client, with address
translation rules to make each side think it’s actually talking to the proper
client or server.

N o t e 	 To learn how to restrict your clients to using only anonymous FTP, or how to use
ftp-proxy to permit inbound FTP access to a server inside your firewall, read
the ftp-proxy(8) man page.

Bandwidth Management
One common task for a network perimeter device is bandwidth manage-
ment. Network managers must control how much bandwidth is used for
certain tasks, and must also reserve bandwidth for vital functions. If one
of your minions loads the latest blockbuster comic book movie on the web
server, you must be able to make an SSH connection to the server, find out
why your server is overloaded, and fix the problem. PF includes the ALTQ
bandwidth management system.

The most important thing to remember about bandwidth management
is that you cannot control how much traffic other people send you. You can
stop traffic at the point it enters your network. You can send hints that the

440 Chapter 22

bandwidth is saturated. You can arbitrarily restrict bandwidth from your
servers. But nothing you do can stop 10,000 people a second from click-
ing a link to that server. You cannot prevent a distributed denial-of-service
attack from saturating your inbound bandwidth. The best you can do is
control how you respond to those requests.

When I run content farms, I usually put dedicated bandwidth control
machines in front of my servers. This setup controls how much traffic actu-
ally reaches my server network, reduces load on the servers in case of a
sudden spike, and prevents one overly busy customer from taking down
other customers on the same server.

Queues for Bandwidth Management
ALTQ manages bandwidth by queues. A queue is a list of packets waiting to
be processed.

By dividing your bandwidth into separate queues, and processing those
queues as you configure, you can manage server bandwidth. Queues are
somewhat like the checkout lines at the grocery store; some lines are for
10 packets or less and get you out quickly, and others are for people who
shop once a month and fill up three carts. You can define just about any
characteristics for queues, as if you could create a “meats only” or “white
wine with fish” register.

Engineers have defined many different queuing algorithms, and the
most proper queue method for a given situation is a topic that sparks heated
discussions. TCP/IP quality-of-service queue handling is one of those topics
that make angelic children cry. By default, all BSD-based systems use first-
in, first-out (FIFO) queuing, where packets are processed in the order in
which they are received. Newer packets wait in a queue until older packets
move on.

OpenBSD also supports priority queuing (PRIQ or prio), where the
kernel considers packets of certain types to have “priority” and processes
them first. This means that if you assign web packets highest priority, all
web packets jump to the head of the queue. Packets of lower priority might
never be processed at all under this scheme. These days, just about every-
thing supports priority queuing, especially switches. The goal of priority
queuing is to reduce latency for specific traffic, such as voice or video, paying
for that reduced latency by increasing the latency of less urgent traffic.

However, in most operational settings where you must regulate band-
width, class-based queuing (CBQ) is appropriate. CBQ allows the network
administrator to allocate a certain amount of bandwidth to different types
of traffic through hierarchical classes. Each class has its own queue, with
its own bandwidth characteristics. You can assign different sorts of traffic
to different classes: SSH to one class, HTTP and HTTPS to another, and
so on. One of the nice features of CBQ is that its hierarchical nature allows
lower classes to borrow available bandwidth from classes above them.

Advanced PF 441

As I find CBQ appropriate for most environments, I focus on it here.
Once you master CBQ, if you need PRIQ, you’ll find it easy to understand.

Parent Queue Definitions
Queuing starts with defining the parent queue. All other queues are children
of the parent queue. The parent queue is attached to a network interface,
most commonly the Internet-facing interface. Place your queue definitions
in pf.conf. I put queues at the top of the file, before any packet-filtering rules.

Here’s how you define a parent queue on an interface:

ualtq on vinterface wcbq bandwidth xbw qlimit yqlim tbrsize zsize {queue { |queue1, }queue2}

Start all ALTQ parent queue definitions with the altq keyword u, and
then give the interface to which this queue is attached v. (Each interface
can have no more than one parent queue.) Then give the queue type you’re
using w. For CBQ queuing, the queue type is always cbq.

Now define the total amount of bandwidth in the parent queue x. This
is not the same as the amount of bandwidth the interface can pass, but
the amount of bandwidth you reasonably expect to pass upstream. If your
OpenBSD machine has a gigabit network card, but you have only 10 mega-
bits of bandwidth to the Internet, use 10Mb as your bandwidth (or fiddle with
the bandwidth value until you hit your actually usable allocation). You can
use the following case-sensitive abbreviations for bandwidth:

b  bits per second

Kb  kilobits per second

Mb  megabits per second

Gb  gigabits per second

The optional qlimit parameter gives the number of packets the queue
can hold y. The default value is 50, which suffices for almost all cases. I rec-
ommend not setting qlimit unless specific debugging shows that you need a
larger queue size.

This example includes the token bucket regulator size configuration
because tbrsize lets you dictate how quickly packets can be transmitted z.
ALTQ defaults to transmitting packets as fast as the wire permits. As with
qlimit, I recommend not setting tbrsize unless you encounter a problem.

Next, identify this as a parent queue {, and define child queues queue1
| and queue2 }.

Here’s how to configure a parent queue with a 50-megabit uplink, with
the child queues ssh, web, and mgmt:

altq on em0 bandwidth 50Mb queue {ssh, web, mgmt}

The tbrsize and qlim keywords are not set, so they’re at their defaults.

442 Chapter 22

Child Queue Definitions
Once you have a parent queue, you can define child queues. Define CBQ
queues with the following syntax:

queue uname on vinterface bandwidth wbw [priority xpri] [qlimit yqlim] cbq
z(options) {{child_queues}

Each queue needs a name u, defined in the parent queue definition, of
15 characters or less. The names don’t need to be unique—you could use
a queue of the same name on a different interface—but I recommend that
you use unique names.

The interface is the specific interface to which this queue is applied v.
If you don’t define an interface, traffic that passes through any interface
can be assigned to this queue.

The bandwidth term uses the same bandwidth labels that the parent queue
uses, but the total bandwidth assigned to all child queues cannot exceed
the total amount of bandwidth available on the parent queue w. You can
also use a percentage value for bandwidth, indicating the percentage of the
parent queue that this queue can consume. Bandwidth and queue are the
only mandatory terms in a child queue description.

The following defines the ssh child queue and gives it a bandwidth of
2 megabits:

queue ssh bandwidth 2Mb

Here’s a child queue called web, which is allowed to use three-quarters
of the parent queue bandwidth:

queue web bandwidth 75%

You can assign a priority to a queue x. CBQ priorities run from 0 to 7,
with 7 being the highest. The default priority is 1. A CBQ queue with a higher
priority does not run to the exclusion of other queues, but PF processes it
more quickly than other queues.

As with a parent queue, you can assign a qlimit to a child queue y, but
don’t do this unless you have a specific problem that can be solved with
this value.

You can assign options to a CBQ child queue z. We’ll look at these
options in the next section.

Finally, child queues can have their own children. Define a queue’s chil-
dren in the queue {. You’ll see an example of this in “A CBQ Ruleset” on
page 443.

Queue Options
Modify how a child queue processes packets by assigning options to a queue.
Options let you decide how the queue should respond to a variety of net-
work conditions and bandwidth availability.

Advanced PF 443

Default

Every parent queue must have one and only one default child. If a packet
crossing a queued interface is assigned to no other queue, it is assigned to
the default queue.

Random Early Detection

Random early detection (RED) is a method for handling packet loss when
a queue starts to fill up. As the queue fills up, more and more packets
are dropped. RED randomly chooses packets to drop. The net effect is
that short transfers, such as HTTP requests and interactive SSH sessions,
respond more quickly, while large data transfers become slower.

TCP clients and servers react to dropped packets by reducing their
throughput. UDP, ICMP, and other protocols don’t have any built-in reac-
tion to packet loss. Using RED on queues expected to carry TCP is sensible,
but not on queues for other protocols.

Explicit Congestion Notification

Explicit Congestion Notification (ECN) is a modification to RED that sets
flags in the packet rather than dropping the packet. If a device recognizes
the ECN flag, it will reduce transmission rates.

Not all platforms understand ECN, however, and many that can recog-
nize ECN disable it by default. Microsoft’s Windows Vista and newer, Apple
OS X, FreeBSD, and OpenBSD can support ECN, but disable it by default.
Newer Linux versions support ECN if the other host requests it. I have suc-
cessfully used ECN, in corporate environments where I could make the
support guys enable ECN on the desktops.

Unless you know the operating systems in use and can control their set-
tings, stick with standard RED.

borrow

The borrow option is available only in CBQ. A queue with borrow set may
borrow bandwidth from its parent queue, if the bandwidth is available. For
example, you might have a queue that reserves 20 percent of your bandwidth
for VoIP. If you don’t have that much VoIP traffic at any particular moment,
the parent will have excess bandwidth. Other queues could borrow band-
width from that allocation. When your VoIP traffic spikes, however, PF
revokes the bandwidth loan, and the VoIP traffic gets what’s reserved for it.

Use the borrow option on the queues that you want to permit to borrow
bandwidth, not on the queues whose bandwidth might be borrowed.

A CBQ Ruleset
Before configuring queues, figure out how you want to divide your band-
width. While you could use bits per second to manage bandwidth, for most
of us, percentages are easier to deal with. Here’s how you might divide
Internet bandwidth for a company with a 10-megabit link. Start by making

444 Chapter 22

a list of your desired bandwidth reservations, and then assign a name to
each category, like this:

•	 5 percent for SSH (ssh)

•	 50 percent for inbound traffic to our e-commerce server, with RED (web)

•	 5 percent for inbound VoIP, high priority (voip)

•	 40 percent for other traffic, including DNS, SMTP, and so on

All of these queues can borrow from the parent queue.
Start by defining the parent queue.

altq on em0 cbq bandwidth 10Mb queue {ssh, web, voip, other}

This parent queue is attached to interface em0, and has 10 megabits of
bandwidth and four child queues. Leave all the other options alone.

Now define the first child queue.

queue ssh bandwidth 5% cbq (borrow)

Start with the queue name and the bandwidth percentage you’ve chosen.
This percentage is calculated from the parent of this particular queue, so
it’s about 5 percent of 10 megabits, or 500 kilobits per second. That should
be plenty to log in remotely and fix any problems. Adding the borrow option
lets you use more bandwidth for SSH if it’s available.

Building from this example, you can define the other child queues.

queue web bandwidth 50% cbq (borrow, red)
queue voip bandwidth 5% cbq (borrow)
queue other bandwidth 5% cbq (borrow, default)

The other queue is your default. Any traffic that isn’t assigned its own
queue is assigned to this queue.

Assigning Traffic to Queues
Assign traffic to a queue with the queue keyword at the end of a packet-
filtering rule. To allow all SSH (port 22) traffic into the network and assign
it to the queue named ssh, use a rule like this:

pass in on egress proto tcp from any to lan:network port 22 queue ssh

Using the match Keyword
Sometimes you must classify traffic without filtering it. The previous example
let you assign inbound SSH traffic to the ssh queue, but what if you want to
capture outbound SSH as well? Consider the following rule snippet:

pass in on egress proto tcp from <customers> to <sshservers> port 22
pass out on egress from lan:network to any

Advanced PF 445

This allows hosts in the customers table to connect to hosts in the
sshservers table on port 22. The second rule allows the local network to
send any traffic, or any protocol. Some of that outbound traffic will be
SSH traffic. Should you write a separate rule just for queuing traffic?

This is where the match keyword comes in. Using match, you can change
how PF classifies traffic without changing how it filters traffic. Here’s how to
send all TCP port 22 traffic to the ssh queue, without changing any filtering
characteristics:

match proto tcp from any to any port 22 queue ssh
pass in on egress proto tcp from <customers> to <sshservers> port 22
pass out on egress from lan:network to any

The first rule matches all traffic on TCP port 22 and assigns it to the
ssh queue. The rules that follow control who can send and receive SSH
connections.

Viewing Queues
To view the queues currently in the packet filter, run pfctl -s queues.

pfctl -sq
queue root_em0 on em0 bandwidth 10Mb priority 0 cbq(wrr root) {ssh, web, voip, other}
queue ssh on em0 bandwidth 500Kb cbq(borrow)
queue web on em0 bandwidth 5Mb cbq(red borrow)
queue voip on em0 bandwidth 500Kb priority 7 cbq(borrow)
queue other on em0 bandwidth 500Kb cbq(borrow default)

Adding -v gives you a brief snapshot of the state of each queue. For a con-
stantly updating view of all queues, including how much traffic is borrowed
from each, what gets dropped, and so on, use -vvsq or systat queues instead.

PF Edges
This section covers a couple tidbits of PF configuration that don’t quite fit
anywhere else: include files and the quick keyword.

Using Include Files
Sometimes splitting a configuration file into multiple pieces simplifies your
work. Do this with an include statement in pf.conf.

include "/etc/pf/management-addresses"

I do this when I need to manage several PF machines with unique
configurations, but certain pieces are identical. The management-addresses
file defines a table listing all hosts and networks that can connect via SSH,
make SNMP queries, as so on. When one of those addresses change, I copy
this file to all of my PF hosts and reload the packet-filtering rules.

446 Chapter 22

Skipping Matches with quick
PF processes packet-filtering rules in order, and the last matching rule wins,
which can complicate designing a ruleset that supports exactly the access
you desire. If you find yourself stuck, use the quick keyword to abort process-
ing the rest of the rules for matching packets. Here’s an example:

...
pass in quick proto tcp from any to $sshserver port 22
...
block in proto tcp from any to any port 22
...

The first rule permits traffic to the host(s) in the macro $sshserver on
port 22. The second rule drops all TCP port 22 traffic. The quick keyword
in the first rule says, “When a packet matches this rule, follow this rule and
do not process any more rules.” In this case, the SSH connection will be
permitted.

The quick keyword is especially useful in anchors, where rules added for
a special purpose by an automated process like ftp-proxy(8) might be over-
ridden by later rules meant for unrelated purposes.

The purist in me wants to insist that all static rulesets be written with-
out using quick. While strictly speaking that’s true, sometimes avoiding
quick creates rulesets that are difficult to interpret. A ruleset you can easily
understand is more secure than something baroque but syntactically pure.

Logging PF
Tell PF to log packets with the log keyword in a rule.

pass out log on egress from lan:network to any

Without additional setup, however, those logs just go to the PF log
device pflog0. To successfully log PF messages, you must run the packet
filter logger pflogd(8). If you start PF at boot, pflogd is automatically started
with it. Otherwise, you must start it on the command line.

One thing to remember is that if you’re using stateful inspection, only
the first packet that triggers a rule is logged. Other packets that are part
of the same state are not logged. To log all packets in a stateful connection,
give the all modifier to the log keyword, but beware because this can gener-
ate very large logs.

pass out log (all) on egress from lan:network to any

Logging is especially useful when troubleshooting connection prob-
lems. If packets are being blocked when you think they should be passed,
add logging to your block statements to see which rule is stopping the traffic.

I don’t recommend logging everything, especially because logs can
grow quite large. Log selectively. For example, perhaps you don’t care which

Advanced PF 447

websites your local users visit, but do want to know about incoming traffic.
And be sure to exclude your firewall logging traffic from your packet filter
logs, or you’ll quickly find that PF is logging the transmission of the logs of
the log transmissions, which are logs of transmitting the logs, from when
you transmitted the logs . . . yadda yadda yadda.

Reading PF Logs
PF logs in the tcpdump(8) binary format. Use tcpdump to examine the data. To
just dump everything in the log, tell tcpdump to read the log file.

tcpdump -r /var/log/pflog

This can generate a huge amount of output. See “Filtering tcpdump”
on page 447 for some hints.

Real-Time Log Access
The entries in /var/log/pflog are not added in real time; pflogd(8) buffers
its records until writing a log message is worthwhile. To see PF logs in real
time, attach tcpdump to the pflog0 interface with the -i flag.

tcpdump -i pflog0

Depending on how much traffic you’re logging, this might also produce
an overwhelming amount of information. You must filter tcpdump to make it
useful. Or if you pretend you missed my earlier warning about log sizes, you
can devise a one-liner that uses logger to send your PF logs as text to syslog.

Filtering tcpdump
Every system administrator should know how to use tcpdump. Here’s your
motivation for doing so.

When troubleshooting a problem with a particular connection, you
probably don’t care about every packet passing through the filter. You care
about traffic to or from a particular host. Specify an IP address with the ip
or ip6 expression.

tcpdump -i pflog0 ip host 192.0.2.2

This will display only traffic to and from this particular host.
To narrow things further and see only the traffic between two hosts,

combine the hosts with the and keyword.

tcpdump -i pflog0 ip host 192.0.2.2 and ip host 203.0.113.88

Maybe you’re interested in only a specific port, on a specific address.
Use the tcp or udp keyword and the port number to filter on that.

tcpdump -i pflog0 ip host 139.171.199.254 and tcp port 80

448 Chapter 22

Read the tcpdump(8) man page for an exhaustive list of innumerable
other filtering options.

If using tcpdump doesn’t appeal to you, consider the pflow(4) NetFlow
exporter. Network flow is a complicated topic, but the book Network Flow
Analysis (No Starch Press, 2010) might help you.

Ruleset Tracing
Sometimes, knowing whether a packet passed or failed isn’t enough. You
know that a packet was blocked, but not why. You want to watch the packet
pass through the rules and see which rules affect it.

Suppose an internal host 192.0.2.226 cannot connect to the external
host 203.0.113.34. The log would show that the packet is blocked, but not
why. You can specifically have PF log matching rules. Add a line like this
to the top of your pf.conf file:

match log (matches) from 192.0.2.226 to 203.0.113.34

This is a standard packet-filtering rule. You could use an individual IP
address, a port number, or any other legal packet filter terms. Reload your
packet-filtering rules.

Turn on tcpdump, and filter based on one of the IP addresses in your
match statement. If you’re using NAT, filter on the IP address that doesn’t
change.

tcpdump -n -e -ttt -i pflog0 ip host 203.0.113.34
Dec 17 18:05:07.773703 rule 0/(match) match out on fxp0: 192.0.2.226.24916
> 203.0.113.34.22: S 1730871963:1730871963(0) win 16384 <mss 1460,nop,nop,
sackOK,nop,wscale 3,nop,nop,timestamp 597858150[|tcp]> (DF)
Dec 17 18:05:07.773708 rule 2/(match) block out on fxp0: 192.0.2.226.24916
> 203.0.113.34.22: S 1730871963:1730871963(0) win 16384 <mss 1460,nop,nop,
sackOK,nop,wscale 3,nop,nop,timestamp 597858150[|tcp]> (DF)
Dec 17 18:05:07.773712 rule 5/(match) pass out on fxp0: 192.0.2.226.24916
> 203.0.113.34.22: S 1730871963:1730871963(0) win 16384 <mss 1460,nop,nop,
sackOK,nop,wscale 3,nop,nop,timestamp 597858150[|tcp]> (DF)

While I won’t go through all the annoying details of reading tcpdump
output, you can see that PF logs the rule numbers that this data connection
matches, and whether the rule passes or blocks the connection. If the con-
nection involves NAT, you’ll see the actual and translated IP addresses.

At this point, you know enough about PF to protect a small network. If
you need more, definitely check out The Book of PF, 2nd edition (No Starch
Press, 2010).

Now let’s look at some of the more exotic edges of OpenBSD.

23
C u s t o m i z i n g O p e n B S D

Customize installs
with files and DHCP,
then run without disk.

This chapter covers different ways to use
OpenBSD to customize itself, as well as

how to install OpenBSD in nonstandard
situations and debug problems with your sys-

tem. The first task we’ll address is diskless installation.
Diskless systems are usually used to install OpenBSD
without attaching any installation media, but they can also be used to run
a system without a hard drive. Next, we’ll create a USB flash drive for use as
OpenBSD installation media. Finally, we’ll cover various ways to customize
the OpenBSD installation and upgrade processes.

All of these tasks assume that you already have an OpenBSD machine
running the version you want to customize. You can accomplish some of
these tasks using a virtual machine, as long as the virtual machine software
has the necessary support. Because virtualization is such a common choice,
let’s tackle it first.

450 Chapter 23

Virtualizing OpenBSD
The OpenBSD developers are pretty clear on virtualization. OpenBSD is
written for real hardware. Virtual hardware is not real hardware. While it
can be very similar, it’s not exactly the same.

This approach has a number of implications, the most problematic of
which is that not all virtualization software can run OpenBSD. As I write
this, Oracle’s VirtualBox can’t cleanly run either i386 or amd64 OpenBSD.
(Some people report being able to boot some versions of VirtualBox and/or
OpenBSD, but OpenBSD software crashes all over the place.) This is not
an OpenBSD bug. VirtualBox doesn’t sufficiently emulate real hardware.

That said, OpenBSD does run well on some virtual machines. VMware
works well enough that OpenBSD includes specific drivers for VMware inte-
gration, including a VMware Tools driver in the kernel. KVM virtualization
also works, although KVM requires some tweaks depending on the exact
combination of KVM and OpenBSD you’re using. Microsoft’s virtualiza-
tion mostly works, although Virtual PC has some commercially motivated
limitations.

The main problem with virtualization is that a compromise of the virtu-
alization platform automatically gives an intruder hardware-level access to
all virtual machines, and OpenBSD cannot possibly secure you against that
kind of attack. In fact, no operating system can. And it does you no good
to run your database on OpenBSD when any script kiddie can compromise
the underlying virtualization server.

In my experience, OpenBSD virtual machines are excellent for experi-
mentation and reference. I used them to document the installation process
for this book, and I always test software configurations on virtual machines
before rolling them out to production. (The real benefit of virtualization
might be that there’s no longer any excuse for not testing changes.) But when
I want a server that’s actually secure, I put OpenBSD on real hardware.

N o t e 	 If you want to run virtual machines on OpenBSD, you can find qemu, bochs, dosbox,
and other packages in the packages collection. Check /usr/ports/emulators for
other options.

Diskless Installation
Booting a blank system into the OpenBSD installer without using local
media can save you time and energy. A lot of modern hardware doesn’t
come with CD or floppy drives. Of course, you could temporarily add a CD
drive, but if you have a whole bunch of OpenBSD machines to install, that’s
just an annoyance.

You can also use network booting to boot OpenBSD on hardware that
lacks an installed operating system, or with a different operating system
that you plan to overwrite. This process is called pxebooting, or diskless, oper-
ation. Diskless systems can have disks—they just don’t use them to boot the
operating system.

Customizing OpenBSD 451

If you’ve never worked with diskless systems before, your first attempts
will probably give you a headache. Setting up your first diskless environ-
ment can be tricky, and will teach you all sorts of things you didn’t know
about your operating system and hardware. But test everything along the
way, read the error messages carefully, and soon you’ll wonder why you
thought this was hard.

N o t e 	 I’ll cover diskless installations on amd64 and i386 hardware. Other platforms have
different requirements that may be very different. Read the diskless(8) man page for
your particular architecture to get an overview of your platform.

Diskless systems work because a computer doesn’t need a hard disk to
run. It needs an operating system. The easiest way to store a computer’s
operating system is on the local hard drive, but a sufficiently smart network
card can use information provided by DHCP to find an initial boot loader.

All amd64 and modern i386 hardware use Intel’s Preboot Execution
Environment (PXE, pronounced “pixie”). The DHCP server tells the net-
work card the name of a file and the IP address where the file can be found,
and the server fetches the file via TFTP. This file is usually called pxeboot,
but pxeboot files can vary widely among operating systems. A pxeboot file for
OpenBSD probably won’t boot a FreeBSD system, let alone anything from
Microsoft. It’s specific to each operating system.

Once the computer has loaded pxeboot, it goes back to the TFTP server
to look for the appropriate kernel. An OpenBSD pxeboot looks for a file called
bsd, assumes that it’s a kernel, loads the kernel into memory, and boots it.
To install OpenBSD, you’ll load the install kernel file bsd.rd instead, which
you can do automatically.

Diskless Hardware
OpenBSD systems installed over diskless systems must have enough smarts
to find their boot loader and operating system over the network or they
won’t boot. Any machine built in the past several years uses PXE.

You’ve probably seen a computer try to boot from the network more than
once, and for most people, those BIOS messages are just an annoyance that
they keep forgetting to disable. For diskless installation, you need to make
sure that feature is on.

To enable PXE, boot the hardware and go into the BIOS setup. Some
where in the BIOS, you should find an option to set the device boot order. If
the machine supports PXE, one of those options will be to boot over a net-
work. Enable that option and see if it works. While you’re in the BIOS, make
a note of the MAC address of your network card. Your DHCP server will need
it. If your BIOS uses the Unified Extensible Firmware Interface (UEFI) by
default, disable that.

Save your changes and exit. Your hardware should now be prepared.
Let’s ready the server.

452 Chapter 23

DHCP Server Setup
DHCP is not just a way to hand out IP addresses and network configura-
tions. A DHCP server can tell network-aware phones where to find their
configuration, server hardware where to find its operating system, printers
where to find their print server, and so on. Diskless installations use DHCP
to feed diskless servers the location of the pxeboot file.

Per-Host or Per-Network Configuration

DHCP expects to configure hosts either by the network or by the host. When
a DHCP server receives a DHCP request, it knows the address of the network
that the host is on and the host’s MAC address. The DHCP server must
decide which configuration to give the host based on this information. This
means you can configure your DHCP server so that any host on a given net-
work is told to install OpenBSD, or you can give it the MAC address of the
machine you’re going to install and tell the DHCP server to start the instal-
lation only on that machine.

Because I install machines frequently, I usually set up a small VLAN where
any machine plugged onto the network is told to install OpenBSD. That way,
workers who plug their laptops into random Ethernet cables in my office get a
free operating system upgrade. If you only occasionally install machines, and
have control over the DHCP server, it’s pretty easy to configure the DHCP
server to tell a host with a specific MAC address to install OpenBSD.

The DHCP server needs to tell the client the location of a PXE boot
file, which gives the client just enough brains to find a bootable kernel. This
is just like the on-disk boot loader, except that the PXE boot file talks to the
network. OpenBSD’s i386 and amd64 platforms include the file /usr/mdec/
pxeboot for just this purpose.

Give the name of the PXE boot file with the filename option, and then
use the next-server option to specify the IP address of the TFTP server
where the client can get the file. This example tells DHCP clients to load
the file pxeboot from the server at 192.0.2.34:

filename "pxeboot";
next-server 192.0.2.34;

Place these statements according to whether you have an installation
network or your DHCP server is set for a specific MAC address.

Per-Network Configuration

If you want all the hosts on your network to receive the OpenBSD instal-
lation PXE boot file, put the filename and next-server options in the subnet
stanza, like this:

option domain-name "michaelwlucas.com";
option domain-name-servers 192.0.2.1;
subnet 192.0.2.0 netmask 255.255.255.0 {
 option routers 192.0.2.1;
 range 192.0.2.10 192.0.2.15;

Customizing OpenBSD 453

 filename "pxeboot";
 next-server 192.0.2.34;
}

Any host on this network that makes a DHCP request at boot will learn
where to get the PXE boot file.

Per-Machine Configuration

If you’ve hard-coded a machine’s MAC address into your DHCP configura-
tion, as discussed in Chapter 16, you can feed the PXE boot information to
that host.

subnet 192.0.2.0 netmask 255.255.255.0 {
...
 host installationtarget {
 hardware ethernet 02:03:04:05:06:07;
 filename "pxeboot";
 next-server 192.0.2.34; }
 }

Machines on this subnet that make a PXE request at boot will
get the location of the PXE boot file only if they have MAC address
02:03:04:05:06:07.

Decide how you want your DHCP server to behave and make similar
configuration changes.

Now let’s look at the TFTP server.

TFTP Server Setup
The next task is to make the OpenBSD-specific boot files available on your
TFTP server. As a minimum, you need the pxeboot file and a kernel, but add-
ing a boot.conf file will simplify your life.

OpenBSD includes an architecture-specific pxeboot file in /usr/mdec/. If
you’re installing an i386 machine, grab this file and /bsd.rd from an existing
i386 installation. If you’re installing amd64 hardware, get pxeboot and /bsd.rd
from an existing amd64 system. Copy them to the TFTP server root direc-
tory, and verify that they’re world-readable.

pxeboot tells the machine to look for the standard kernel /bsd, not the
installation kernel /bsd.rd. When pxeboot finishes loading, it looks exactly
like the standard OpenBSD boot loader. You could interrupt the boot, as
described in Chapter 5, and choose a different kernel, but pxeboot also rec-
ognizes /etc/boot.conf.

To tell pxeboot to load a different kernel, create an etc directory in your
TFTP server’s root directory, and then create the file boot.conf inside that.
This new boot.conf file has exactly the same syntax as /etc/boot.conf, so you
can do a one-line entry like this:

boot bsd.rd

You can include additional boot options, such as setting a serial console.

454 Chapter 23

Completing Diskless Installation
Once you have DHCP and TFTP, power on the installation target. You
should see the network card make a DHCP request, get an IP address, and
grab pxeboot via TFTP. You should then see the OpenBSD boot loader load
the installation bsd.rd. Finally, you should get the OpenBSD install script.

If you don’t get the installer, take a step back. Does the network card
get an address from DHCP? If not, check your wiring and DHCP server
configuration. If you get an IP address, but can’t fetch pxeboot, check that
you put the filename and next-server statements in the correct part of your
DHCP configuration, and verify that you don’t have a packet filter blocking
access to the TFTP server. Try to fetch those files from a different TFTP
client to make sure that the TFTP server works. If the installation target
partially boots OpenBSD, but doesn’t activate the installer, make sure you
have an etc/boot.conf entry pointing the client at bsd.rd rather than bsd.

At this point, you should be able to install OpenBSD normally, as
described in Chapters 2 and 3. But what if you want to run a full OpenBSD
system without a hard drive? That’s where diskless operation comes in.

Running Diskless
If you manage many computers, you probably understand that moving parts
cause trouble. Spinning hard drives, in particular, are just a very bad idea.

Try this: If you have a roomful of identical machines, try simplifying
maintenance by running them without hard drives. Each machine in this
group will use a root directory and filesystem mounted via NFS rather than
stored locally. You’ll still need data storage, but you can use a central high-
availability disk array, flash drives, or some other mechanism with better
reliability than lowest-common-denominator hard drives.

You can extend the diskless installation process to run OpenBSD in full
multiuser mode without a local hard drive. Your server will need three addi-
tional services to support fully diskless clients: rarpd(8), bootparamd(8), and
NFS. (Only diskless clients need rarpd and bootparamd.)

Using rarpd(8) for Reverse ARP
In a standard ARP request, a client knows an IP address and wants to get
the corresponding MAC address. For reverse ARP, a client knows a MAC
address and wants to know the corresponding IP address. OpenBSD needs
to get reverse ARP during the diskless boot process, and it uses rarpd(8) to
provide reverse ARP services to other hosts.

rarpd uses /etc/ethers as a table of Ethernet addresses and hostnames.
Each diskless client needs an /etc/ethers entry much like this:

00:50:56:00:01:01 gill.blackhelicopters.org

This entry means that the host with MAC address 00:50:56:00:01:01
has the hostname gill.blackhelicopters.org. The rarpd server must be able to
resolve the hostname to an IP address, either in DNS or in /etc/hosts.

Customizing OpenBSD 455

Now decide which network interfaces you want to run rarpd on. If your
server has only one network interface, that’s the one to use. If you have
multiple network interfaces, however, it might make sense to listen on only
a single interface.

To use a specific interface, use the interface name as a command-line
argument; otherwise, use -a to listen on all network interfaces. For example,
this rc.conf.local entry tells rarpd to listen on only interface em0:

rarpd_flags="em0"

Start rarpd with /etc/rc.d/rarpd, and go on to bootparamd.

Running bootparamd(8)
The boot parameter daemon bootparamd tells a diskless OpenBSD machine
where to find its root filesystem. When a boot parameter request arrives at
the server, bootparamd checks the file /etc/bootparams for a matching configu-
ration and returns that to the client.

Entries in /etc/bootparams give a hostname, followed by the string root=,
an NFS server, and the directory where the client’s root directory is stored.

gill.blackhelicopters.org root=192.0.2.34:/var/diskless/client1

In this example, the host gill.blackhelicopters.org will use an NFS root
directory from a server at 192.0.2.34, in the directory /var/diskless/client1.

For almost all environments, you can run bootparamd without any
command-line options. Enable it in rc.conf.local like so:

bootparamd_flags=""

Start bootparamd. Now it’s time to deal with your NFS server.

Setting Up the NFS Root Directory
A multiuser OpenBSD system needs a userland. Without a local disk, you’ll
need to create an OpenBSD userland. It is possible to export the NFS server’s
root directory for use as the diskless client’s root directory, but this isn’t
merely insecure, it’s also a good way to damage the NFS server itself. Create
a separate userland for your diskless machine.

Exporting the Root Directory

You must export the userland’s root directory to the diskless machine. For
example, here’s an /etc/exports line that shares the directory /var/diskless/
client1 to the IP address 192.0.2.37:

/var/diskless/client1 -maproot=root 192.0.2.37

Note the -maproot option here. The diskless client will expect to be
able to write and own files as the root user. This -maproot entry maps UID 0

456 Chapter 23

(root) on the client to the root account on the NFS server. You can also set
up a separate user for the diskless client’s root account, map the client’s
root account to that new account, and change the ownership of all files in
the diskless userland to that root account. As this is your first diskless host,
however, we’ll start off basic.

Populating the Diskless Userland

The easy way to install a minimal userland is to extract the etcXX.tgz and
baseXX.tgz file sets from your chosen OpenBSD release into the NFS root
directory. In the following example, I’ve copied these file sets into /tmp, and
I’m using them to create a userland in /var/diskless/client1.

cd /var/diskless/client1
tar -xzpf /tmp/etc53.tgz
tar -xzpf /tmp/base53.tgz

Note the use of the -p flag in the tar command, preserving the original
permissions on extracted files.

The diskless client also needs device nodes. Go into the new userland’s
dev directory and create them.

cd dev
./MAKEDEV all

While bootparamd told the kernel where to find the root of the filesystem,
userland programs expect to read /etc/fstab for that information. Create an
/etc/fstab file that points the root directory to your NFS share.

192.0.2.34:/var/diskless/client1 / nfs rw 0 0

You can also add any other NFS-mounted directories you desire here.
This should be everything you need.

Power On!
Once you have a basic userland, device nodes, and a filesystem table, you
can power on your diskless node, and it should boot. If it doesn’t boot to a
login prompt, read the console error messages. Usually, they’re pretty clear.

Because you’ve bypassed the OpenBSD installer, there are no root pass-
word or user accounts yet. Immediately, log in as root and change the root
password, and then set up a regular user account.

For your first diskless setup, once you have a working userland, back it
up right away. Even a tar file containing the entire userland will prove use-
ful. You’ll muck up the diskless userland more than once as you’re trying
to get things working exactly as you wish, and being able to blow the entire
userland away and restore it from the backup file is invaluable.

Once you have a basic system working, expand it. Add additional file
sets as needed, set up more users, add packages, and deploy for your users.

Congratulations, you’re now on the cutting edge of OpenBSD users.

Customizing OpenBSD 457

USB Installation Media
For many people, burning a CD to install an operating system seems like a
waste. They prefer to write an image to a USB flash drive and install from
that. OpenBSD doesn’t provide such an image, but if you’re willing to do
some extra work, you can create a bootable USB device that you can use to
install on your target hardware.

The official recommendation is to install OpenBSD on the USB device,
copy bsd.rd and the file sets to that device, and use that to install your new
hardware. The OpenBSD installer lets you choose the target hard drive.
You select the USB device in the installer, and OpenBSD installs to the
USB just as it would any other data-storage device. But how do you install
OpenBSD on the USB device without burning a CD in the first place?
There are a few ways around this, including a couple of approaches already
covered in this chapter.

Using a Virtual Machine
Your first choice is to perform the USB installation in a virtual machine.
Many desktop virtual machine software packages let you attach a physical
USB port to a guest virtual machine. (OpenBSD’s virtualization options are
discussed in “Virtualizing OpenBSD” on page 450.)

If you have virtualization software that runs OpenBSD and supports
USB, choose this option.

Running a Diskless Installation
Your second choice is to run a diskless installation. Most DHCP servers
embedded in cheap home hardware will let you send a filename and a
TFTP server address to a client. If yours won’t, you can get suitable DHCP
servers for any platform. You can find freely available TFTP servers for just
about any operating system.

Boot your install target with the USB drive, but load the bsd.rd kernel.
You now have the OpenBSD installer running on the target system, and
an OpenBSD system that fits in your pocket and that you can run almost
anywhere. If you’re already running OpenBSD on something with the right
architecture and a USB socket, it’s even easier: You boot the system from
the appropriate bsd.rd, choose the disk option, and point the installer to
sets in a local directory.

Converting ISO Images
As a less official method, you can find software to convert ISO images to
bootable USB images. I’ve used Rufus (http://rufus.akeo.ie/) on Windows
and UNetbootin (http://unetbootin.sourceforge.net/) on other Unix-like systems.
This approach might work, but it’s certainly not OpenBSD-approved.

458 Chapter 23

Customizing OpenBSD Installations
Many of us follow a set of steps when installing a machine. All freshly
installed hosts of a specific operating system revision have a common SSH
server configuration. My machines all have tcsh installed and attach to the
central authentication system. You probably have your own list. These tasks
can be done by hand after installation, but it’s much easier to let OpenBSD
do them for you during the installation process.

Installations can be customized by adding files during installation or by
running commands after the installation.

Custom File Sets
A custom file set includes files that you want copied to your new installation.
I use custom file sets to install the default /etc/sudoers, a SSH server con-
figuration, my company’s default pf.conf, and similar files. As I’m the lead
sysadmin, I also include dotfiles in my home directory and other personal
touches to make my life easier. Some people include several home directo-
ries, including authorized_keys files for SSH.

Bundle these files together as a siteXX.tgz file, which the installer can
extract in the root directory of the new installation. (Be sure to replace the
XX with the OpenBSD version you’re installing on; for example, name a
siteXX.tgz file for OpenBSD 5.4 site54.tgz.)

Start by installing an OpenBSD machine of the exact same version and
platform that you want to customize. Make your changes and add your files
to this system, verify that this template system works exactly as you desire,
and then copy the changed files to a tar file.

N o t e 	 You could make a directory hierarchy and copy the files you want to it, but I find that
to be more error-prone. A small virtual machine will let you build a siteXX.tgz file
more reliably.

The following example creates a site54.tar file containing one file,
/etc/ssh/sshd_config. Note that I start by creating a plain tar file. Since I
can’t easily add files to a compressed tar file, I’ll need to compress the file
after it’s complete.

cd /
tar -cf site54.tar etc/ssh/sshd_config

Now that I have the initial file, I can add additional files. I’ve custom-
ized a few files on the system, as well as added new ones, all of which I add
to the site54.tar file. The -r flag tells tar to add a file to an archive.

tar -rf site54.tar etc/sudoers
tar -rf site54.tar etc/pf/mgmt-hosts.conf
tar -rf site54.tar etc/pf.conf

Customizing OpenBSD 459

Here’s how to compress the tar file:

gzip site54.tar
mv site54.tar.gz site54.tgz

I’ve built my own custom release of OpenBSD, so I have a local FTP server
that contains all of the release files. If you’re using the official OpenBSD
release, but you’re installing enough OpenBSD machines to warrant making
a siteXX.tgz file, you can copy the official release to a local FTP or HTTP mir-
ror. Copy your siteXX.tgz file to this directory and update the index.txt file.

ls -l > index.txt

Now start your installation. Tell the installer to use your local release
mirror rather than an official OpenBSD mirror. You should see the follow-
ing sets:

Select sets by entering a set name, a file name pattern or 'all'. De-select
sets by prepending a '-' to the set name, file name pattern or 'all'. Selected
sets are labelled '[X]'.
 [X] bsd [X] etc54.tgz [X] xbase54.tgz [X] xserv54.tgz
 [X] bsd.rd [X] comp54.tgz [X] xetc54.tgz [] site54.tgz
 [] bsd.mp [X] man54.tgz [X] xshare54.tgz
 [X] base54.tgz [X] game54.tgz [X] xfont54.tgz
Set name(s)? (or 'abort' or 'done') [done] site52.tgz

Your site54.tgz file should now be available as a file set. Add it because
the installer won’t automatically include it. Once the installation finishes,
you should find your customized and added files on the new system.

Post-Install Shell Scripts
Some tasks can be accomplished by copying files, but that’s annoying.
For example, I want the shell tcsh installed on all of my OpenBSD serv-
ers. I could put all the files in the tcsh package, as well as the contents of
/var/db/pkg/tcsh, in siteXX.tgz, but I know I’m likely to mess that up some-
how. It would be much easier to run pkg_add tcsh after the installation, and
let OpenBSD do what it’s supposed to do. That’s where the install.site
script comes in.

After completing the installation, but before giving you the final
command prompt, OpenBSD checks for /install.site. If this file exists, the
installer runs it. The script is run chrooted into the new installed system, so
you don’t need to worry about changing any paths. The script does need
to run on a minimal kernel, however, so it’s best to wait for low-level kernel
twiddling until the first real boot.

Here’s a sample install.site script that installs the two packages tcsh
and python:

#/bin/sh
export PKG_PATH=ftp://ftp13.usa.openbsd.org/pub/OpenBSD/snapshots/packages/i386/

460 Chapter 23

pkg_add -v tcsh
pkg_add -v python-2.7.3p1

When working with install.site scripts, if a package’s name could be
ambiguous, be sure to give the full package name. There’s only one tcsh
package, but Python comes in several versions. I specify the full package
name, rather than using plain python.

Also note that while you’re running in a chroot that contains a full user-
land, that userland isn’t fully initialized. When dropping into the chroot,
OpenBSD doesn’t do a full multiuser startup of that chroot. The environ-
ment is roughly equivalent to single-user mode. The install.site script is
not where you initialize your database.

When you have a real userland ready to go, to automatically run
commands on the system’s first real boot, append the commands to
/etc/rc.firsttime. This file runs once, at the system’s first boot after instal
lation, and then deletes itself.

Customizing Upgrades
OpenBSD lets you use custom file sets and shell scripts during binary
upgrades. If you have a lot of machines to upgrade, run these to ensure
that your systems are as identical after the upgrade as they were before.
I highly recommend automating known changes during an upgrade.

The siteXX.tgz file works for upgrades exactly as for installations. Put the
files you want on this system in siteXX.tgz, and the install program should
copy those files to the system as it installs the upgraded files. Rather than
install.site, however, the upgrade software looks for the script upgrade.site.
Any install.site file is ignored during an upgrade, so you can use the same
siteXX.tgz for upgrades and for new installations.

I find the upgrade.site script especially useful in conjunction with the
OpenBSD Upgrade Guide for that release. The Upgrade Guide includes tasks
that must be performed during an upgrade, many of which are very suitable
for scripting. For example, the common tasks of deleting files, programs,
and libraries removed from the new OpenBSD release are easily added to
upgrade.site.

One convenient thing about upgrade.site is that you can copy the script
to the target machine before running the upgrade. It doesn’t need to be
part of siteXX.tgz. That said, I don’t recommend running pkg_add -u in
upgrade.site. While the idea of automatically upgrading all your packages
sounds good, remember that you’re running on a limited kernel with a less
than completely initialized userland. Have your upgrade.site script add any
commands that need to run on a fully multiuser system to /etc/rc.firsttime, so
that they run when the system boots the first time.

With the hints in this chapter, you can customize OpenBSD any way
you need. And with the information throughout this book, you should
know where OpenBSD fits into your network. Remember that they really
are out to get you, and you’ll achieve practical paranoia.

A f t e r w o r d
Failure’s bad enough;

add the human element
and things really suck.

Back around 2000, my employer’s main
business was designing web applications,

but once those applications were built, our
clients would turn around and ask, “Where

should we host this?” That’s where I came in, building
and running a small but professional-grade datacenter
for custom applications.

As with any new business, our hosting operation needed to make the
most of existing resources. Hardware was strictly limited to cast-off equip-
ment from the web developers, and we used only software that was free.
The only major expense was a big-name commercial firewall, purchased for
marketing rather than technical reasons.

With a whole mess of open source software, we built a reliable network
management system that provided our clients with more insight into their
equipment than their in-house people could offer. The clients paid for
their own hardware, and so had fancy high-end rackmount servers with

462 Afterword

their chosen applications, platforms, and operating systems. As the business
grew, we upgraded the hardware (it’s nice to have disk drives that are less
than five years old), but we saw no need to replace the software.

One Monday morning, a customer who had expected to use very little
bandwidth found that he had sufficient requests to devour twice the band-
width we had for the entire datacenter. This affected every customer. If your
$9.95 per month web page is slow, you have little to complain about; if your
$50,000 per month web application is slow, you pick up the phone and scream
until the problem stops.

To make life worse, my grandmother had died only a couple days
before. Visitation was on Tuesday, and the funeral was Wednesday morn-
ing. I handed the problem to a minion and said, “Here, do something about
this.” I knew the network could manage bandwidth at many points. The web
servers themselves, the load balancer in front of them, the commercial fire-
wall, and even the router claimed to have traffic-management capacity.

Tuesday, after visitation, my cell phone voicemail was full. Our version
of Internet Information Server (IIS) could manage bandwidth—in 8MB
increments, and only if the content was static HTML and JPEG files. With
several web servers behind the load balancer, that fell somewhere between
useless and laughable. The load balancer would support traffic shaping, if
we bought the new feature set. If we plopped down a credit card, we could
have that feature set installed by next Sunday. Our big-name commercial
firewall also had traffic-shaping features available, if we upgraded our ser-
vice level and paid an additional (and quite hefty) fee for the feature set.
That left the router, which I had previously investigated and found would
support traffic shaping with only an IOS upgrade.

I was on the phone until midnight Tuesday night, making arrange-
ments to do an emergency router IOS upgrade on Wednesday night. I had
planned to go to the funeral Wednesday morning, give a eulogy, go home
and take a nap, and arrive at work at midnight ready to rock.

Unfortunately, the funeral was more dramatic than I had expected,
and I showed up at work at midnight sleepless, bleary-eyed, and upright
only courtesy of the twin blessings of caffeine and adrenaline. In my email,
I found a note that several big clients had threatened to leave unless the
problems were resolved by Thursday morning. If I hadn’t already been
stressed out, the prospect of choosing a minion to lay off would have done
the trick. (I work hard training my minions, and prefer not to replace them
once they are beaten into shape.)

Still, only a simple router flash upgrade and some basic configuration
stood between me and relief. What could possibly go wrong?

The upgrade went smoothly, but the router behaved oddly when I enabled
traffic shaping. Over the next few hours, I discovered that the router didn’t
have enough memory to simultaneously support all of our BGP feeds and
the traffic-shaping functionality. Worse, it wouldn’t accept more memory.
At about 6:00 am, I finally got an admission from the router vendor that it
could not help me.

Afterword 463

I hung up the phone. The first client who had threatened departure
would be checking in at 7:30 am. I had slept 4 hours of the last 48, and had
spent most of that time under fiendish levels of emotional stress. I had
already emptied my stash of quarters for the soda machine, and had pil-
laged my coworkers’ desks for more change. The caffeine and adrenaline
that had gotten me to the office had long since worn off, and further doses of
each merely slowed my collapse. We had support contracts on every piece
of equipment, and they were all useless. All the hours of work I had put in,
and my team before me, left me with absolutely nothing.

I made myself sit still for two minutes simply focusing on breathing,
making my head stop sliding around loose on my shoulders, and ignoring
the loud ticking of the clock. What could be done in 90 minutes—no, now
only 88?

I really had one only option. If it didn’t work, I would either lay off
someone or file for unemployment.

At 6:05 am, I started downloading the OpenBSD install floppy image,
and then I grabbed a spare desktop machine, selecting it from among many
similar machines by virtue of it being on top of the pile. The next few min-
utes, I alternated between hitting the few required installation commands
and dismantling every unused machine unlucky enough to be in reach to
find two decent network cards.

By 6:33 am, I had two Intel EtherExpress cards in my hands and a virgin
OpenBSD system. I logged in long enough to shut down the system so I
could wrench the case off, slam the cards into place, and boot again. Even
early versions of PF included all sorts of nifty filtering abilities, all of which I
ignored in favor of the newly released traffic-shaping functions. By 6:37 am,
I was wheeling a cart with a monitor, keyboard, and my new traffic shaper
over to the rack.

Then things got hard. I didn’t have a spare switch that could handle
our Internet bandwidth. The router rack was jammed to overflowing, leav-
ing me no place to put the new shaper. I lost almost half an hour finding a
crossover cable, and when I discovered one, it was only two feet long. The
router, of course, was mounted in the top of the rack. About 7:10 am, I
discovered that if I put the desktop PC on end, set it on an empty shipping
box, and put the box on the cart, the cable just reached the router. I stacked
everything so it would reach, and began rewiring the network and reconfig-
uring subnets.

I vaguely recall my manager coming in about 7:15 am, asking with taut
calmness if he could help. If I remember correctly, as I typed madly at the
router console, I said, “Yes. Go away.”

At 7:28 am, we had an OpenBSD traffic shaper between the hosting area
and our router. All the client applications were reachable from the Internet. I
collapsed in my chair and stared blankly at the wall.

While everything seemed to work, the proof would be in what happened
as our offending site started its daily business. I watched with growing ten-
sion as that client’s network traffic climbed toward the red line that indicated

464 Afterword

trouble. The traffic grew to just short of the danger line, and then flatlined.
Other clients called, happy that their service was restored to its usual qual-
ity. One client complained that his site was still slow, but it turned out that
bandwidth problem had masked a problem with his application. The client
said that his website now ran even slower than before, to which we offered
to provide more bandwidth if they would agree to pay for it.

Shortly afterward, I had two new routers and new DS3s. The racks were
again clean. The decrepit desktop machine was replaced by two OpenBSD
boxes in a live-failover configuration, protecting our big-name commercial
firewall as well as shaping traffic. And I now stock crossover cables in a vari-
ety of lengths.

If I had started with OpenBSD, I would have had a much better night.

Symbols
* (asterisk), as wildcard, 285
@ symbol, to send messages to

another host, 288
\ (backslash), for line continuation,

78, 113
$ (dollar sign), in pathnames, 96
! (exclamation point)

to escape to command prompt, 43
as negation symbol, 117–118

in filter rule, 406
> symbol, for disklabel(8) command

prompt, 50
(hash mark), for comments, 33
% (percent sign), for groups in user

aliases, 114
/ (root) partition. See root (/) partition
~ (tilde), in pathnames, 96
_ (underscore), for unprivileged user

names, 103–104

A
a command, 52
abandoned IP addresses, 310
abbreviations, for disk sizes, 52
ABIs (application binary interfaces), 2
abort (fdisk), 131
account information access,

controlling, 266
ACPI (Advanced Configuration and

Power Interface), 341
acpi0 device, 341
activ method for BSD authentication, 99
active FTP, 437
active partition, marking, 131
address families, in packet filtering, 405
Address Resolution Protocol (ARP), 185

IPv4 addresses and, 214
address space layout randomization, 174
adduser(8), 87–89

-batch flag, 89
configuring default settings, 87–88
options, 91–92

administrator accounts, creating, 91–92

Advanced Configuration and Power
Interface (ACPI), 341

advanced persistent threat (APT), 171
advocacy@OpenBSD.org, 9
afterboot(8) man page, 57
aggressive optimization for PF, 420
aliases, 113–117

naming conventions, 117
nesting, 116

-alldirs option, for mount point in
partition, 156

ALTQ bandwidth management
system, 439

/altroot partition, 73
backup to, 148

amd64 platform, 16
boot floppies, FFS support by,

133–134
floppy image for, 39
Intel Preboot Execution Environment

on, 451
kernel configuration directory, 361

anchors in PF, 434, 439
adding rules, 434–435
conditional filtering, 436
nested, 436–437
viewing and flushing, 436

announce@OpenBSD.org, 8
anonymous CVS, 386
antispoofing rule, 416
Apache web server, 227
APIs (application programming

interfaces), 2
application binary interfaces (ABIs), 2
application menu, creating in X Windows

System, 334
application programming interfaces

(APIs), 2
applications. See also software

PF and, 400–401
preventing coverage by window, 336

applications layer (OSI), 186–187
apropos(1), 5–6
APT (advanced persistent threat), 171
archives, of mailing lists, 10

I n d e x

466 Index

ARP (Address Resolution Protocol), 185
IPv4 addresses and, 214

arp(8), 214
asking questions, OpenBSD experts

reaction to, 11
asterisk (*), as wildcard, 285
asynchronous mounts, in FFS, 136
AT&T, xxxi, xxxii
atexit(), 174
audio, 268
audio device, 351
auth facility, 283
auth-defaults class, 100, 101
authenticating packet filter

configuration, 256
authentication methods for user

accounts, 99–100
auth-ftp-defaults class, 100
authorized users, repository of, 157
authpf(8), 101

anchors for, 434
authpriv facility, 283
automation

packet filtering tables and, 425–426
of ports, 236

automounter daemon, 256
autonegotiation, in Ethernet network, 215
availability, xxx

B
back channel in FTP, 437
background color of desktop, 335
backslash (\), for line continuation,

78, 113
backup

to /altroot partition, 148
in daily maintenance, 280–281
of default kernel, 349
of GENERIC kernel, 358
before install, 37
of userland for diskless station, 456

bandwidth management in PF, 439–445
assigning traffic to queues, 444
child queues, 442
for parent queue, 441
queue options, 442–443

base operating system, preparing for your
own OpenBSD, 383–384

baseXX.tgz file set, 24, 456
Basic Input/Output System. See BIOS

(Basic Input/Output System)
beep of computer, 324
Berkeley Internet Name Domain

server (BIND), 211

BerliOS, mirrors for, 247
BGP (Border Gateway Protocol), 203
BGP daemon, 257
bgpd(8), 205, 257
bidirectional NAT, 429–432

and packet filter rule order, 430–431
redirection, 431–432
and security, 430

Big Giant Lock method, 18
bigptrmove, 337
binary objects (blobs), 17–18
binary object device drivers, 17
binat-to keyword, 429
BIND (Berkeley Internet Name Domain

server), 211
bind command, for mapping keys, 336
binding, key sequence to cwm

command, 332
bioctl(8), 160

-d flag, 165
BIOS (Basic Input/Output System)

in boot process, 70
clock, 45
configuration, 38

bios0 device, 341
blanking screen, 324–325
blobs (binary objects), 17–18
block devices, 126–127
block statement, 404
blocks in FFS, 134

number of used, 143
$BLOCKSIZE environment variable, 143–144
bogons, 422–423
bonding, 221
The Book of PF (Hansteen), 256, 395, 448
Boolean sysctls, 346
boot command, 70
boot loader, 69, 70

information on disk devices, 73
making settings permanent, 74–75
prompt, 70

boot media, 22
creating, 38–40

boot CDs, 40
boot floppies, 39–40

boot process, 69–84
from alternate hard disk, 73–74
in alternate kernel, 72–74
configuring VLANs, 224
delaying, 70
Ethernet network configuration at,

219–220
to graphic console, 67
interrupting, 41, 70
for kernel, 74

Index 467

kernel configuration in, 353
multiuser startup, 79–84
options before completing, 70–71
serial consoles, 75–79
setting sysctls at, 346–348
setting wscons variables, 325
in single-user mode, 71–72
from softraid(4) devices, 166
trunks at, 222
and X Windows System, 330–331

bootable partition, 131
bootparamd(8) daemon, running, 454
bootstrap tools, installing, 372
boot-time securelevel, 178
Border Gateway Protocol (BGP), 203
borders for windows, 336
botnets, 170
Brauer, Henning, xxv–xxvi, 268n, 371n
bridge(4) interfaces, 400
broadcast address, 191
broadcast protocol, Ethernet as, 213
BSD, xxxi

license, xxxi, xxxii
BSD authentication, 99
/bsd file, 349
bsd file set, 23–24
bsd.mp file set, 23–24
bsd.rd file set, 23–24
BUFCACHEPERCENT value in kernel, 351
bugs

identifying, 3
in releases, 58

BUGS section, in man pages, 7
build files for ports, 238
_build keyword, 265
building

custom kernels, 365–366
troubleshooting errors in,

365–366
programs, virtual terminal SSH

connections for, 325
your own OpenBSD

getting source code, 384
preparations for, 383–388
reasons for, 382–383

burncd (Unix), 40
business card attachments, 13

C
C compiler, 24
C++ compiler, 24
canaries, 174
cap_mkdb(8), 95

CARP (Command Address Redundancy
Protocol), 316, 317

CAT5 cable, 76
CBQ (class-based queuing), 440

borrow option, 443
ruleset, 443–444

CD drives, emulating floppies, 40
cdemuXX.iso image, 40
cdio(1), 152
cdrecord (Unix), 40
CDs (compact discs), 153

booting from, 38, 40
mounting, 152
obtaining official, 20

cdXX.iso image, 40
Changelogs directory, 20
character devices, 127
chargen function (inetd), 317
check command, 83
chflags(1), 176
child queue, definitions, 442
chio(1) medium changer, 257
chpass(1), 93, 99, 266
chroot, 460
chrooting users, 319–322
class-based queuing (CBQ), 440

borrow option, 443
ruleset, 443–444

cleaning filesystems, 138, 374
client for serial console, 76–77

port, 78–79
clock in BIOS, 45

correcting, 294
clri(8), for dirty filesystem, 138
collision domain, 213
Command Address Redundancy Protocol

(CARP), 316, 317
command alias, 115
command prompt. See prompt
comments, hash mark (#) for, 33
committers, xxxv
communities in SNMP, 314
compact discs. See CDs (compact discs)
compilers, /usr partition for, 28
compressed tar files, for code

snapshots, 384
Computer Science Research Group

(CSRG), xxxi
compXX.tgz file set, 24
concatenated disks, 162
Concurrent Versions System (CVS), 385

mirrors, 386
conditional filtering, anchors for, 436
confidentiality, xxx

468 Index

config(8)

for kernel changes, 348–353
backup of default kernel, 349
changing constants, 352–353
help and list commands, 350–351

for testing custom kernel, 364–365
configuration, testing by rebooting, 57
connectionless protocol, 197
conservative optimization for PF, 419–420
console, 274

configuration with wscons, 324–325
const keyword (PF), for table, 422
content farms, bandwidth control

machines for, 440
contributors to OpenBSD, xxxiv
converting ISO images, 456
cooked device node, 126
Coordinated Universal Time (UTC), 45
coordinator for OpenBSD, xxxv
copycenter, xxxii
copying

disk images to disk, 40
files to other servers, 281

copyleft, xxxii
core programs, 24
coredumpsize variable, 96
country code, for USB keyboards, 66
cp(1), copying files with, 145
cpio(1), copying files with, 145
cputime variable, 96
cron facility, 283
cron(8), 109
cross-compiling, 383
crypto method for BSD authentication, 99
cryptography, OpenBSD support for, 10
csh(1), system-wide defaults for, 257
CSRG (Computer Science Research

Group), xxxi

ctrl-alt-del, effect of, 348
current resource limit, specifying, 97
-current version of OpenBSD, 368–369

building, 392–393
source code for, 384
updating to, 387–388

cursor, controlling with keyboard, 335
custom kernels, 355–366

building, 365–366
cautions, 355–358
configuration, 359–365

device drivers, 359
keywords, 360
pseudo-devices, 359–360

configuration file, 362–364
identifying running, 366
installing, 366

preparations for, 358
problems building, 357
problems running, 358
reasons for, 356–357
removing devices, 363
removing options, 362–363
stripping down, 363
testing, 364–365

CVS (Concurrent Versions System), 385
mirrors, 386

CVS directory, 237
cwm(1) window manager, 330, 331–337

configuration file loss, 332
configuring, 331–332

modifier keys, 331–332
creating windows, 332–333
decorating, 335–336
exiting, 333
locking screen, 333–334
resizing terminal window, 333

.cwmrc file, 331
mapping keys in, 336

cylinders, 31

D
d command, 51
daemon

checking for running, 83
instructed to reread

configuration file, 83
unprivileged account for each, 103

daemon facility, 283
DaemonForums, 8
daily maintenance, 278–281
daily(8), 278
damaged filesystem, recovering, 139
data connection for FTP, 437
data integrity, synchronous

mounts for, 136
datalink layer (OSI), 185, 187
datasize variable, 96
date, setting, 60–61
date(1), 60, 61
DB9-to-RJ45 converters, 76
dd(1), 39–40
ddb.console sysctl, 348
ddb.panic sysctl, 348
de Raadt, Theo, xxxiii, xxxv, xxxvii
decrypted partition

automatic, 168
unmounting, 167

default accept, vs. default deny, 399
default answers, for installer, 42
default BSD pager, 5

Index 469

default gateway, 64
_default keyword, 264–265
default login class, for user, 87
default partitioning, by installer, 26
default permit or default deny, 404
default route, 203

adding to routing table, 207
on Ethernet, configuring, 219

default screensaver in cwm, 334
default search domains, 210–211
default shell for user, 87
default user class, 94

definition, 94–95
Defaults statement, 117
delete command (pfctl), 425
deleting

partitions, 51
routes, 207
softraid(4) devices, 165
user accounts, 92

dependencies
for packages, 232, 234–235, 381
ports and, 241, 250–251

DESCRIPTION section, in man pages, 7
desktop OpenBSD, 323–337

background color, 335
console configuration with wscons,

324–325
cwm(1) window manager for, 331–337
tmux for virtual terminals, 325–329
X graphical interface setup, 330–331

$DESTDIR environment variable, 390, 391
destination address, in filter rule, 406
destination port, in filter rule, 408–409
detaching vnode devices from images, 154
/dev/console file, 274
developers’ logs, 2
device drivers

attachment to hardware, 341
binary object, 17
custom kernel configuration for, 359
enabling, 350, 352
finding, 352
for hardware sensors, 297–298
kernel and, 340, 349
minimizing number in custom

kernel, 363
in OpenBSD, 41
for physical sensors, 297–298

device names
device attachment vs., 127–128
for floppy drives, 39–40
for hard drives, 73

device nodes, 126–128
df(1), 142

dhclient(8), 219
DHCP, 212–213

getting IPv4 address from, 219
server setup for diskless install,

452–453
static IP address and, 42–43, 309

dhcpd (DHCP daemon), 307–310
enabling, 309

dial-up modem, 270
Diffie-Hellman cryptography, 268
directories

locking users in, 319–320
for new releases, 390
number of used filesystem blocks, 143
for tftpd, 310–311

dirty filesystems, 138
discard function (inetd), 317
disk drives. See also hard drives

CD drives emulating floppies, 40
changing basic parameters, 54
device names, 32
mounting, in single-user mode, 71–72
setup when installing OpenBSD,

46–47
custom layout, 49–54

disk images, attaching vnode
devices to, 154

disklabel partitions, 31, 50
creating, 51–53, 132
for softraid device, 162

disklabel unique identifier (DUID), 33
and /etc/fstab filesystem table,

128–129
disklabel(8), 25

command prompt, 50
expert mode for, 55
help for, 55

disklabels, 31–34
advanced commands, 54–55
backing up and restoring, 133
creating, 144–145
erasing, 51
printing, 50, 53
viewing, 50–51, 132
writing new, 53–54
writing to disk, 53–54

diskless installation, 450–454
DHCP server setup, 452–453
power for, 456
running, 454–456
TFTP server setup, 453

display. See screen
display.kbdact variable, 325
display.msact variable, 325
display.outact variable, 325

470 Index

display.screen_off variable, 325
Distance Vector Multicast Routing

Protocol (DVMRP), 258
$DISTDIR variable, 244
distfiles directory, 20
distfiles, for ports, 244
divert-to keyword (PF), 433
dmassage package, 343
dmesg(8), 340
DMZ, hosts in, 204
DNS (Domain Name Service) servers, 65
DNS queries, 399
DNS resolution, 210–213

/etc/hosts file, 212
resolver vs. dynamic configuration,

212–213
DNS spoofing attacks, 115
doc directory, 21
documentation, xxxvi–xxxvii

distribution set for, 23
man pages, 3–7
not provided by vendors, 17

dollar sign ($), in pathnames, 96
domain, 210
Domain Name Service (DNS) servers, 65
“Don’t Track Access Time” mounts,

in FFS, 137
du(1), 143
dual-stacked setup, 188
DUID (disklabel unique identifier), 33

and /etc/fstab filesystem table,
128–129

dump(8), 128, 139
avoiding for NFS mount, 160
backup, 258
copying files with, 145

DVMRP (Distance Vector Multicast
Routing Protocol), 258

dvmrpd(8), 258
Dvorak layout, 66
dynamic clients, dhcpd for

configuring, 307
dynamic configuration, vs. resolver,

212–213
dynamic network configuration, 64

E
e command, 54
echo function (inetd), 317
ECN (Explicit Congestion Notification),

347, 443
$EDITOR environment variable, 110, 122
EISA hardware, 16

email
attachments, 13
for help request, 12–13
maintenance tasks results to local

root account, 65
responding to, 14
sending, 13–14

email software, configuration files for, 263
embedded systems, and sylogd(8), 289
emergency root partition, 148
emulated CPUs, 19
enc0 (encapsulating interface), 63, 216
encrypt(1), 91
encrypted partitions, 166–168

automatic decryption, 168
encryption algorithm, for user

passwords, 88
Enhanced Small Device Interface

(ESDI), 33
environment variables

in /etc/login.conf file, 97
and sudo(8), 119–120

erasing. See also deleting
disklabels, 51

error messages
mmap: Cannot allocate memory, 149
NFS-related, 155
from snmpd, 315

errors, from custom kernel, 364
ESDI (Enhanced Small Device

Interface), 33
ESXi, 19
/etc/adduser.conf file, 256
/etc/aliases file, 278
/etc/amd file, 256
/etc/authpf directory, 256
/etc/bgpd.conf file, 257
/etc/boot.conf file, 74–75, 257
/etc/bootparams file, 455
/etc/changelist file, 257, 280
/etc/chio.conf file, 257
/etc/csh.* files, 257
/etc/daily file, VERBOSESTATUS, 281
/etc/daily.local file, 148, 257, 278
/etc/dhclient.conf file, 257
/etc/dhcpd.conf file, 257, 308
/etc directory, 255

files in, 256–276
merging changes, 393
across Unix variants, 256
updating, 375–380

sysmerge(8) to compare files,
376–378

/etc/disklabels/ directory, 257–258

Index 471

/etc/disktab file, 258
/etc/dumpdates file, 258
/etc/dvmrpd.conf file, 258
/etc/ethers file, 454
/etc/exports file, 156, 258, 455
/etc/fastboot script, 82
/etc/fbtab file, 258
/etc/firmware file, 258–259
/etc/fonts/ directory, 259
/etc/fstab file, 135, 149–150, 259

CD and FAT flash drive entry, 153
for mounting NFS share, 160

/etc/fstab filesystem table, and DUID for
disk, 128–129

/etc/ftpchroot file, 259
/etc/ftpusers file, 259
/etc/gettytab file, 259
/etc/group file, 107, 260

editing, 93–94
/etc/hostapd.conf file, 260
/etc/hostname. files, 260
/etc/hostname.if file, route statement in, 207
/etc/hostname.interfacename file, 219
/etc/hosts file, 212, 260
/etc/hosts.equiv file, 260
/etc/hosts.lpd file, 260–261
/etc/hotplug/ file, 261
/etc/ifstated.conf file, 261
/etc/iked/ file, 261
/etc/iked.conf file, 261
/etc/inetd.conf file, 261, 317
/etc/ipsec.conf file, 261
/etc/isakmpd file, 261
/etc/kbdtype file, 66, 261
/etc/kerberosV/ directory, 262
/etc/ksh.kshrc file, 262
/etc/ldap/ file, 262
/etc/ldapd.conf file, 262
/etc/localtime file, 59, 262
/etc/locate.rc file, 262
/etc/login.conf file, 94, 262

changing, 95
environment variables, 97
legal values for variables, 95–96
sample entries from default, 100

/etc/lynx.cfg file, 262
/etc/magic file, 262
/etc/mail/ directory, 263
/etc/mail/aliases file, 65, 263
/etc/mailer.conf file, 263
/etc/mail.rc file, 263
/etc/man.conf file, 264–265
/etc/master.passwd file, 88, 90

editing, 93–94, 266
fields, 267–268

/etc/mixerctl.conf file, 268
/etc/mk.conf file, 238, 268
/etc/moduli file, 268
/etc/monthly file, 268
/etc/monthly.local file, 268
/etc/motd file, 269
/etc/mrouted.conf file, 269
/etc/mtree/ directory, 269
/etc/mygate script, 269
/etc/myname file, 61, 269
/etc/named.conf file, 121–122
/etc/netstart script, 62, 81, 219, 269
/etc/networks file, 269
/etc/newsyslog.conf file, 269, 290–292
/etc/nginx/ file, 269–270
/etc/nsd.conf file, 270
/etc/ntpd.conf file, 60, 270, 294, 295
/etc/ospf6d.conf file, 270
/etc/ospfd.conf file, 270
/etc/passwd file, editing, 93–94
/etc/pf.conf file, 270, 397, 401, 422

anchor rules in, 435
anchor setting, 402
and FTP proxy, 438–439
options, 402

/etc/pf.os file, 270
/etc/ppp/ file, 270
/etc/printcap file, 270, 306
/etc/protocols file, 186, 270
/etc/pwd.db file, 266
/etc/raddb/servers file, 101
/etc/rbootd.conf file, 271
/etc/rc script, 59, 79, 80–82, 271
/etc/rc.conf file, 59

OpenBSD defaults in, 59
/etc/rc.conf script, 80
/etc/rc.conf.local script, 59, 81, 296

deactivating functions in, 80
to disable PF, 397
to disable sshd, 318
enabling dhcpd, 309
ftp-proxy enabled in, 438
snmpd to enable, 315

/etc/rc.d directory, 82
/etc/rc.firsttime script, 82
/etc/rc.local script, 81
/etc/rc.securelevel script, 81, 178
/etc/rc.shutdown script, 82
/etc/relayd.conf file, 271
/etc/remote file, 76, 78–79, 271
/etc/resolv.conf file, 210–212, 271
/etc/resolv.conf.tail file, 213, 271
/etc/ripd.conf file, 271
/etc/rmt file, 271
/etc/rpc file, 272

472 Index

/etc/sasyncd.conf file, 272
/etc/sensorsd.conf file, 272, 298–300
/etc/services file, 199, 272, 317, 408
/etc/shells file, 88, 272
/etc/skel/ file, 272
/etc/sliphome/ file, 272
/etc/snmpd.conf file, 273, 314–315
/etc/spwd.db file, 266
/etc/ssh/ file, 273
/etc/ssh/sshd_config file, 318–319
/etc/ssl/ file, 273
/etc/sudoers file, 110, 111–113, 115–116, 273

aliases, 113–117
multiple entries in one field, 112
running commands as non-root

users, 113
/etc/sysctl.conf file, 63, 178, 273, 344,

346–348
machdep.allowaperture=2 sysctl in, 330

/etc/syslog.conf file, 273, 284–287
/etc/systrace/ directory, 273
/etc/termcap file, 274
/etc/tmux.conf file, 329
/etc/ttys file, 274–276
/etc/weekly.local script, 276
/etc/wsconsctl.conf file, 276
/etc/X11 directory, 276
etcXX.tgz file set, 24, 456
/etc/ypldap.conf file, 276
Ethernet, 209, 213–215

configuring, 215–220
default routes, 219
dynamic network, 219
network at boot, 219–220

multiple IP addresses on one card, 218
speed and duplex, 215

Ethernet cards, configuration file, 63
Ethernet interfaces, 62–64
ex2fs filesystem, 152
ex3fs filesystem, 152
exclamation point (!)

to escape to command prompt, 43
as negation symbol, 117–118

in filter rule, 406
exclusions to packet filtering lists, 415
execution forbidden mounts, 137–138
exit command (config), 352
exit command (fdisk), 131
exiting, cwm, 333
expert mode, for disklabel, 55
Explicit Congestion Notification (ECN),

347, 443
exporting filesystems, 155
exports, NFS client mounting of, 155

F
facilities for system logs, 283–284

combining, 285
failover, 221
fallback mirrors, 248–249
family keyword, 212
Fast File System (FFS), 29, 133–140

blocks, fragments, and inodes, 134
filesystems

creating, 134–135
integrity, 138–140

mount options, 135–138
versions, 133–134

FAT filesystems, 150–151
fdisk(8), 30

exiting, 131
and MBR partitions, 129–131, 144

feh, 335–336
FFS. See Fast File System (FFS)
FIFO (first-in, first-out) queuing, 440
file flags, 175–177
file sets, 23–25

custom, 458
selecting when installing OpenBSD,

47–49
for upgrade, 375

File Transport Protocol. See FTP (File
Transport Protocol)

files
assigning ownership of, 108
copying to other servers, 281
identifying origin of, 232–234
logging to, 287
removing during upgrade, 372

filesize variable, 96
filesystems

adding new, 146
cleaning, 138, 374
exporting, 155, 156–157
foreign, 150–152
impact of block size on

partition size, 53
integrity checks, 71–72, 281

partition size and, 26
integrity in FFS, 138–140
memory, 148–150
mounting at nonstandard

locations, 141
mounting for upgrade, 376
mounting images, 153–154
mounting remote, 159
mounting standard, 141
partition, 29

Index 473

recovering damaged, 139
type on partition, 34

filtering, tcpdump, 447–448
finding. See search
fingerprint scanners, 100
firewall, 204, 396–397

avoiding install of unneeded
file sets, 48

dhcpd and, 309–310
NAT and, 426

firmware, 17–18, 259
first-in, first-out (FIFO) queuing, 440
flag command (fdisk), 131
flash drives, 153
$FLAVOR environment variable, 250
floppy disk

boot loader information on drive, 73
booting installer from, 22, 38–40

floppyBXX.fs image, 39
floppyCXX.fs image, 39
floppyXX.fs image, 39
flush command (pfctl), 425
force-starting software, 83–84
foreign filesystems, 150–152
fragmentation behavior of filesystem, 34
fragmented packets, 399

frags limit and, 418
fragments in FFS, 134
frame in datalink layer, 187
free lines, in kernel, 351
free use of OpenBSD, xxxvii–xxxviii
fsck(8), 71–72, 374

avoiding for NFS mount, 160
for dirty filesystem, 138
running, 139
trusting, 139–140

fsdb(8), for dirty filesystem, 138
fstat, 202
fstype, 34
FTP (File Transport Protocol)

password source for connections, 101n
pf(4) and, 437–439
proxy, PF configuration and,

438–439
ftp facility, 283
FTP server, installing OpenBSD from,

23, 48
ftplist file, 21
ftp-proxy(8), 438–439

anchors for, 434
full-duplex connection, 215
fvwm(1), 331
fw_update script, 259

G
gameXX.tgz file set, 24
gateway, default, 64
GENERIC kernel, 356

backup of, 358
configuration file, 361
configuring, 360–361

geometry of disks, 31
getty(8), 79, 80
GID (group unique number), 107
gigabytes, for displaying partition size, 51
global settings in tmux, 329
Gnome, 331
Gnu C Compiler Project, 247
GNU mirror site, 247
graphic console, 44

booting to, 67
group unique number (GID), 107
groups, 106–109

creating, 107–108
unprivileged user accounts and

group permissions, 108–109
in user aliases, 114
user assignment to, 88

in batch mode, 90
guard pages, 174

H
hacker, definition of, 172
half-duplex connection, 215
Hansteen, Peter, The Book of PF, 256,

395, 448
hard drives, 18–19. See also disk drives

adding new, 144–146
booting from alternate, 73–74
finding for booting, 73
multiple, 29–30
partitioning additional, 54

hardened host, 398
hardware, 16–19

connection to kernel, 342
device driver attachment to, 341
diskless, for OpenBSD, 451
dmassage to view installed devices, 343
setup for installing OpenBSD, 38

hardware sensors, 296–301
configuring, 298–301
device drivers for, 297–298
time, 295
triggering action, 300–301

hardware serial console, 75
hash mark (#), for comments, 33

474 Index

HDLC (High-Level Data Link
Control), 185

heads on disk drives, 31
help

creating good request, 12–13
for disklabel prompt, 55

help command (config), 350–351
help function, 70
hiding cwm windows, 333
high-latency optimization for PF, 420
High-Level Data Link Control

(HDLC), 185
mapping keys in, 336

home directories
configuring for user, 87
macros to represent, 319–320
for unprivileged users, 102

/home partition, 29, 87
creating, 53

$HOME/.cwmrc file, 331
$HOME/.tmux.conf file, 329
$HOME/.xsession file, 331
host access point daemon, 260
host aliases, 115
host MIBs, 313
hostapd(8), 260
hosting operation, 461
hostname, 62
hostname.if file, 219
hostnames, 210

setting, 61–62
of system, 42

hosts file, 210
HTML, avoiding for email help

request, 13
HTTP protocol, 199

installation, 22–23
hubs, in Ethernet network, 213
Hurricane Electric, IPv6 tunnel

service, 224
hushlogin variable, 97
hw.allowpowerdown sysctl, 179
hw.ncpufound sysctl, 345

I
i386 platform, 16

boot floppies, FFS support by,
133–134

floppy images for, 39
hard drive size limitations, 26–27
Intel Preboot Execution

Environment on, 451

ICMP (Internet Control Message
Protocol), 186, 196

redirects, sysctl to control, 347
states, 413

id(1), 107
IDE drives, 29
ifconfig(8), 62, 63, 191, 194, 216–218,

219–220
delete option, 217
to display VLAN interface, 224

ifstated(8) (interface state daemon), 261
ifTable (interface table), 313
ignorenologin variable, 97
illegal packets, 415
in keyword, for direction in packet

filtering, 404–405
include statement

in kernel configuration, 360
in pf.conf, 445

incoming connections, restricting, 305
INDEX file, 236

building database of, 240
index nodes. See inodes (index nodes)
indexing OpenBSD release, 392
inet, 219–220
inetd(8) (small-server handler), 261,

304–305
init(8), 59, 70
inodes (index nodes), 134

vs. vnodes, 150–151
install document, in OpenBSD

release, 15
installation preparations, 15–35

customizing, 458–460
disklabels, 31–34
file sets, 23–25
getting OpenBSD, 19–23
multiple hard drives, 29–30
OpenBSD hardware, 16–19
partition filesystems, 29
partitions, 25–29, 30–31

installing
custom kernel, 366
multiple operating systems on

computer, 37
packages, 230–232
ports and source code, 66

installing OpenBSD. See also installation
preparations; setup after
install

BIOS configuration, 38
boot media creation, 38–40

boot CDs, 40
boot floppies, 39–40

Index 475

disk drive
custom layout, 49–54
setup, 46–47

file sets selection, 47–49
hardware setup, 38
multiple network cards and, 43–44
running installation program, 41–43
setting time zone, 45–46
setting up services, 44

installXX.iso image, 40
integrity, xxx

of packages, 229
Intelligent Platform Management

Interface (IPMI), 297
interface groups, 401–402
interface main address, in filter rule,

407–408
interface state daemon (ifstated(8)), 261
interfaces

dynamic configuration, 220
setting PF to not manage, 420

interim releases of OpenBSD, 369
Internet, finding packages on, 230
Internet connection, 183. See also TCP/IP
Internet Control Message Protocol

(ICMP), 186, 196
redirects, sysctl to control, 347
states, 413

Internet downloads of OpenBSD, 20
Internet Protocol (IP), 185
Internet searches, on OpenBSD crypto

hardware, 11
Internet small service listener

(inetd(8)), 261
interrupt request (IRQ), 349
interrupting boot process, 41
IP addresses, 185, 189–192

abandoned, 310
adding, 217
multiple, on one Ethernet card, 218
private NAT, 426
removing, 217
static, 63–64
table in pf.conf file, 403

IP aliases, 218
IP routing, 202–207

deleting routes, 207
IPv4, 203–204
route flags, 206–207
route(8) for managing, 204–207

ipcalc package, 191
IPMI (Intelligent Platform Management

Interface), 297
ipmi(4) driver, 349
IPsec standard for VPNs, 261

IPv4 addresses
and ARP, 214
netmask calculation, 190–191
network stacks, 188
pitfalls, 192
search for records, 212
special, 192
static, 63
unusable, 191
viewing, 191

IPv4 packets, sysctl to control
forwarding, 347

IPv6 addresses, 43, 192–196
assigning, 195–196
format for, 63
NAT and, 426
and neighbor discovery, 214
network stacks, 188
special, 194–195
subnets, 194
over tunnels, 224

IPv6 packets, forwarding, sysctl to
control, 347

IRQ (interrupt request), 349
ISA hardware, 16, 349
ISO 8601 restricted time format, 291–292
ISO images, converting, 456
ISO-9660 filesystem, 152
istatus keyword, to ignore sensor, 300

J
job control, xxxi

K
kbd(8), 66
KDE, 331
Kerberos, 157
kern facility, 283
kernel, 23, 70. See also custom kernels;

sysctls (system controls)
basics, 340–343
boot-time configuration, 353
booting, 74
booting alternate, 72
code snapshot for, 384
config(8) for changing, 348–353

backup of default kernel, 349
changing constants, 352–353
help and list commands, 350–351

device drivers, 349
enabling, 350, 352
finding, 352

476 Index

kernel (continued)
GENERIC, 356

backup, 358
identifying running, 366
messages to userland, 340
modules, 179
startup messages, 340–341
upgrading, 388

kern.hostname sysctl, 346
kern.maxproc sysctl, 346
kern.ostype sysctl, 344, 346
kern.osversion sysctl, 344
kern.version sysctl, 344
keyboard

mapping, 66
modifer keys in cwm window manager,

331–332
unmapping and remapping, 336
for X Windows navigation, 335

keyboard-video-mouse (KVM) system, 75n
keyboard.type variable, 324
keywords

in custom kernel configuration, 360
for man page searches, 5–6

kill command (pfctl), 425
kill -session command (tmux), 328
Kozierok, Charles M., The TCP/IP Guide,

184, 397
krb5 method for BSD authentication, 99
krb5-or-pwd method for BSD

authentication, 99
KVM (keyboard-vide-mouse) system, 75n
KVM hypervisor (Linux), 19
KVM virtualization, 450

L
LACP (Link Aggregation Control

Protocol), 221
lchpass method for BSD authentication, 99
LDAP (Lightweight Directory Access

Protocol) daemon, 157, 262
integration, 100

LD_LIBRARY_PATH environment variable, 119
leases in DHCP, 307
least privilege approach, 86
libraries, /usr partition for, 28
Lightweight Discovery Access Protocol

(LDAP) daemon, 157, 262
Link Aggregation Control Protocol

(LACP), 221
link aggregation protocols, 221
link local addresses, for IPv6, 195
Linux, KVM hypervisor, 19

list command (config), 350–351
lists, packet filtering with, 413–414

exclusions and negations, 415
lladdr (link local address), 216
lo0 (loopback) interface, 63, 216
load balancer, 271, 462
local distfile mirrors, 246–249
local installation server, install from, 23
local0 facility, 283
localcipher password control, 98
localhost

for IPv4, 192
for IPv6, 195

locking users, in directory, 319–320
log files

maintenance, 289–294
adding PID file, 293
monitoring, 293
newsyslog.conf fields, 290–292
signal name, 293–294

for PF, 446–448
reading, 447

log rotation, 289–290
log sockets, 288
logging daemon (syslogd(8)), 273

customizing, 288
logging host, 288
logical interfaces, in OpenBSD, 216
logical port, 198
login classes, 94–101

definitions, 94–95
for RADIUS authentication, 100–101
for user, 89

login-backoff password control, 98
login_radius(8), 101
logins

default class for user, 87
to serial consoles, 79

logs
monitoring, 293
for system maintenance, 282–289

actions, 287–288
customizing syslogd, 288
and embedded systems, 289
facilities, 283–284
priority, 284
sorting messages with syslogd(8),

284–287
of TFTP transfers, 311

lookup keyword, for DNS resolution, 211
loopback address, 206
lost+found directory, 139
lpd (printer daemon), 306–307
lpr facility, 283

Index 477

ls

-la, 108
-lo, 176

lynx(1) text-mode web browser, 262

M
m command, 55
MAC (Media Access Control) addresses,

185, 213
for DHCP server client identity, 307

machdep.allowaperture sysctl, 179, 330, 348
machdep.kbdreset sysctl, 179, 348
machine diskinfo command, 73
machine keyword, in kernel

configuration, 360
machine-dependent kernel configuration

files, 361
machine-independent kernel

configuration files, 360–361
macppc (PowerPC-based Macintosh

computers), 16
macros, packet filtering with, 414–415
magic number, 262
mail aliases, setup after install, 65
mail facility, 283
mail server program, 263
mailing lists on OpenBSD, 8–10, 11–14

archives of, 10
read-only, 9–10

mailq, 263
mainbus0, 341
Maint (maintainer), for software, 240
maintenance tasks, emailing results to

local root account, 65
make build stage, 390

in port build, 246
make checksum stage in port build, 244–245
make clean stage in port build, 246
make configure stage in port build, 245
make extract stage in port build, 245
make fake stage in port build, 246
make fetch stage in port build, 244
make install stage, 241

in port build, 246
make package stage in port build, 246
make patch stage in port build, 245
make prepare stage in port build, 245
make print-index, 239
make update command, in port, 393
make(1) program, 226

configuring, 268
makefile, 226, 236–237
Makefile.inc, 238

makeoptions keyword, in kernel
configuration, 360

makewhatis(8), 264
making software, 226
malloc(), 174
malware, 400
man (manual) pages, xxxvi–xxxvii, 3–7,

264–265
adding to directories, 264–265
contents, 6–7
defining sections, 265
for disklabel(8), 55
displaying, 265
finding, 5–6
moving through, 5
overlapping names, 6
search for cryptography, 10–11
viewing, 4–5
on web, 7

Management Information Base.
See MIBs (Management
Information Base)

management-addresses file, 445
manual pages. See man (manual) pages
manXX.tgz file set, 24
mapping

filesystems to mount points, 128
keyboard, 336

mark facility, 283
marker in logs, 286
MASTER_SITE_BERIOS variable, 247
MASTER_SITE_OVERRIDE variable, 249
Match keyword, 320
match keyword, for bandwidth

management, 444–445
maximizing cwm windows, 333
maxproc variable, 96
maxusers keyword, in kernel

configuration, 360
MBR partitions, 30

creating, 46, 130–131, 144
and fdisk(8), 129–131
for softraid device, 162
viewing, 130

mbrowse package, 313
Media Access Control (MAC) addresses,

185, 213
for DHCP server client identity, 307

megabytes, for displaying partition
size, 50

memory (RAM), 18
interface use by, 317
log messages to, 289
protection, 172–175

478 Index

memory filesystems (MFS), 148–150
mounting at boot, 149–150
partitions, creating, 149

memorylocked variable, 96
memoryuse variable, 96
merging /etc file changes during upgrade,

379, 393
message of the day (MOTD), 269
messages

displaying for packages, 234
at kernel startup, 340–341
from kernel to userland, 340
from upgraded packages, 381–382

metadata, 134
from softraid, 166

Meyer, Scott, 187
MFS. See memory filesystems (MFS)
MIBs (Management Information Base)

PF SNMP, 316
for SNMP, 312–313
sysctl, 343–344

Microsoft systems
Burn to Disc command, 40
floppy creation on, 40
NTFS partitions, 150
virtualization, 450

minpasswordlen password control, 98
mirroring (RAID-1), 161
mirrors

CVS, 386
fallback, 248–249
local distfile, 246–249
of OpenBSD website, 8
preferred collection, 247–248
primary, 249
site layout for obtaining OpenBSD

copy, 20–21
misc@OpenBSD.org, 9, 13–14

help for building custom kernel, 357
mixectl(8), 268
mkhybrid(8), 152
monthly maintenance, 282
more(1), 5
MOTD (message of the day), 269
mount command, 154
mount point

mapping filesystems to, 128–129
for partition, 52

mount(8), 140
mount_cd9660(8), 152
mountd startup script, reload argument, 157
mountd(8) daemon, 155
mounted files, listing all, 140
mount_ext2fs(8), 152

mounting
disks

in FFS, 135–138
in single-user mode, 71–72

filesystem images, 153–154
filesystems, for upgrade, 376
filesystems at nonstandard

locations, 141
memory filesystems, at boot, 149–150
with options, 142
partitions, 140–142
standard filesystems, 141

mount_mfs(8), 149
mount_msdos(8), 151
mount_ntfs(8), 151
mounts, stackable, 146
mouse, emulating three-button in X, 331
moving, partitions, 145. See also

navigation
mrouted(8), 269
MS-DOS filesystem, 151
multicast routing, 269
multipackages, 252
multiple hard drives, 29–30
multiple network cards, installing

OpenBSD and, 43–44
multiprocessor kernel, 72
multiprocessor support, 18
multiuser startup, 79–84
Mutt mail client, noatime mount option

and, 137
mv(1), copying files with, 145

N
NAME section, in man pages, 7
name service servers, 65, 211
named user account, 102
names

for aliases, 117
for default kernel backup, 349
for disk device nodes, 126
for groups, 107
for man pages, overlapping, 6
for user accounts, 92
for windows

in cwm, 333
in tmux, 327

NAT (network address translation), 396
bidirectional, 429–432

redirection, 431–432
and rule order, 430–431
and security, 430

configuring, 427
how it works, 427–428

Index 479

multiple addresses and interface
groups, 432

multiple or specific public addresses,
428–429

packet filtering with, 426–433
port manipulation and ranges,

432–433
transparent interception, 433

nat-to keyword, 427
navigation, through man pages, 5
ND (Neighbor Discovery), 185

IPv6 addresses and, 214
ndp(8), 214
negation symbol, exclamation point (!)

as, 117–118
in filter rule, 406

negations in packet filtering lists, 415
Neighbor Discovery (ND), 185

IPv6 addresses and, 214
nested anchors in PF, 436–437
nesting aliases, 116
net.inet6.icmp6.rediraccept sysctl, 347
net.inet6.ip6.accept_rtadv sysctl, 347
net.inet6.ip6.forwarding sysctl, 347
net.inet.icmp.rediraccept sysctl, 347
net.inet.ip.forwarding sysctl, 345, 347
net.inet.ip.sourceroute sysctl, 179
net.inet.tcp.always_keepalive sysctl, 347
netmask, 43

for alias addresses, 218
for IP addresses, 189–190

net-snmp package of command-line
tools, 313

netstat, for determining open TCP ports,
200–202

network adapter teaming, 221
network address, 191
network address translation. See NAT

(network address translation)
network cards, multiple, installing

OpenBSD and, 43–44
network connection, 209–224

DNS resolution, 210–213
Ethernet, 213–215
trunking, 221–222
upgrading over, 374–375
VLANs, 223–224

network devices, gathering
information on, 312

Network File System. See NFS (Network
File System)

network interfaces
interrupting installer to

identifying, 43
list of recognized, 62
recognition during install, 42

network layers (OSI), 184–187
applications layer, 186–187
datalink layer, 185, 187
network layer, 185–186, 187
physical layer, 184, 187
transport layer, 186, 187

network protocol, for packet filtering,
405–406

network request, data transmission for,
187–188

network servers, 303–322
DHCP daemon (dhcpd), 307–310
printer daemon (lpd), 306–307
small-server handler (inetd), 304–305
SNMP agent (snmpd), 312–317
SSH daemon (sshd), 317–322
TFTP daemon (tftpd), 310–311

network stacks, 188–189
Network Time Protocol (NTP) daemon

(ntpd(8)), 44
configuring, 294
using, 296

network.conf file, 247, 248
MASTER_SITE_OVERRIDE variable, 249

networking
setup after install, 62–65

default gateway, 64
dynamic configuration, 64
Ethernet interfaces, 62–64
name service servers, 65

starting in single-user mode, 72
newaliases(8), 65, 263
newcomers, in OpenBSD community,

xxxiv
newfs(1), 133
newfs(8), 134–135, 139, 145
news facility, 283
newsyslog(8), 269, 290
NFS (Network File System)

clients, 159–160
permitted, 158–159

multiple exports for one partition, 159
read-only mounts, 157
root directory setup, 455–456
setup, 154–155
and users, 157–158

NFS server, 155–159
nfsd(8) daemon, 155
nginx web server, 229
NKMEMPAGES value in kernel, 351
noatime mount option, in FFS, 137
noauto mount option, 128

in FFS, 138
nobody account, 103, 158
nodev mount option, 128

in FFS, 137

480 Index

nodump file flag, 176
noexec mount option, in FFS, 137–138
nologin variable, 97
normal optimization for PF, 419
nosuid mount option, 128
NTFS filesystem, 151
NTFS partitions (Microsoft), 150
ntpd(8) (NTP [Network Time Protocol]

daemon), 44, 60
configuring, 294
using, 296

ntpd_flags variable, 59
ntrw.exe program, 40
null modem cable, for serial console,

75–76
numerical sysctls, 346

O
OATH one-time passwords, 100
official CDs, 20, 40

package files on, 228
upgrading from, 371, 373–375

offset
for disklabel partition, 52
for MBR partition, 34

on keyword, for packet filtering interface
matching, 405

one-to-one NAT, 429
open code, 2
open ports, testing for TCP, 198
Open Shortest Path First (OSPF), 203
Open Systems Interconnection (OSI)

protocol stack, 184–187
Applications layer, 186–187
Datalink layer, 185, 187
Network layer, 185–186, 187
Physical layer, 184, 187
Transport layer, 186, 187

OpenBGPD directory, 21
OpenBSD. See also desktop OpenBSD

birth of, xxxiii
build your own

preparations for, 383–388
reasons to, 382–383

choosing install media, 22–23
community, xxxiv

information sources, 1–2
customizing, 449–460

diskless installation, 450–454
installations, 458–460
running diskless, 454–456
upgrades, 460
USB installation media, 457
virtualization, 450

FAQ, 8, 37
information sources, 3–10

mailing lists, 8–10
man pages, 3–7
manual, 4

obtaining a copy of, 19–23
boot media, 22
Internet downloads, 20
mirror site layout, 20–21
official CDs, 20, 40
release directories, 21–22

problem-solving resources, 10–14
security announcements, 172
security flaws, 170
source of problems, 2
strengths, xxxv–xxxix
support model, 2
upgrade process, 371–373
uses, xl
versions, 368–371
website, 7–8

for hardware compatibility
lists, 38

OpenBSD Ports website, 230
OpenBSD-specific functions,

MIBs for, 313
OpenBSD Upgrade Guide, 371–373, 460
openfiles variable, 96
OpenNTPD daemon, 60, 294
OpenNTPD directory, 21
OpenOffice, 336
OpenSSH directory, 21
operating systems

/usr partition for programs, 28
installing multiple on one

computer, 37
multiple, 19
source code for, installing, 66

Oracle VirtualBox, 450
orphaned devices, custom kernels

and, 364
OSI. See Open Systems Interconnection

(OSI) protocol stack
OSPF (Open Shortest Path First), 203
ospfd(8), 205
out keyword, for direction in packet

filtering, 404–405
outgoing traffic, control of, 400
overlapping names, for man pages, 6
ownership, foreign filesystems and, 152

P
p command, 50
package respository, updating, 380–381

Index 481

packages
ambiguous, 231–232
dependencies for, 232, 234–235, 381
descriptions of, 233
finding, 229–232

with command prompt, 229
on Web, 230

installing, 230–232
for installing OpenBSD software, 227,

228–232
limitations, 235
listing files installed, 230–231
preparing upgrades, 372–373
and rc.d scripts, 252
uninstalling, 234–235
updating installed, 380–382

packages directory, 21
packet filtering, 395. See also /etc/pf.conf

file; firewall; pf(4)
activating rules, 409–410
basics, 398–401
blocking spoofed packets, 416
complete ruleset, 409
components, 401–403

control and configuration, 401
interface groups, 401–402

default accept vs. default deny, 399
as firewall, 397
limitations, 400–401
with lists, 413–414
with macros, 414–415
with NAT, 426–433
PF MIB for statistics, 316
reassembling packet, 416
rules, 403–411

default permit or default
deny, 404

packet pattern matching,
404–409

and state table, 411–413
sanitizing traffic, 415–416

packets, 187
fragmentation, 399

parent queue, defining, 441
partition filesystems, 29
partitioning hard drive, data

deleted for, 46
partitioning scheme, for multiple

disks, 49
partitions, 25–29, 30–31

bootable, 131
cylinder boundary to end, 52
deleting, 51
disklabel, 31. See also disklabel

partitions

displaying size in gigabytes, 51
displaying size in megabytes, 50
encrypted, 166–168
exporting, 156
finding for booting, 73–74
free space on, 142–144
MBR, 30

creating, 46, 130–131, 144
and fdisk(8), 129–131
viewing, 130

MFS, creating, 149
modifying existing, 55
mount point for, 52
mounting and unmounting, 140–142
multiple exports for one, 159–160
removing, 131
setting not to mount, 138
unmounting, 141–142
viewing contents, 73–74

pass number, 128
passive FTP, 437
passphrase, for encrypted partition,

167, 168
passwd method for BSD authentication, 99
passwd(1) command, 58
passwordcheck password control, 98
password-dead password control, 99
passwords

files for, 265–268
for groups, 107
non-echoing prompt, 91
root, 44–45
sudo caching, 120–121
for user account, 87, 89

and batch mode, 90–92
options, 98–99

passwordtime password control, 98
passwordtries password control, 98
password-warn password control, 98
patches directory, 21
path variable, 97

in default class, 95
pathnames, tilde (~) in, 96
pausing boot process, 70
percent sign (%), for groups in user

aliases, 114
per-host basis, @ symbol to override sudo

defaults, 118
permanently insecure mode, 178
permission denied error, 86
permissions

error from ntrw, 40
setuid or setgid, 25
TFTP use of, 311
viewing for existing files, 108

482 Index

permissions scheme, file flags in, 175
persist keyword (PF), for table, 422
per-user basis, @ symbol to override sudo

defaults, 118
PF mailing list, 9
pf(4) (PF), 270, 395

anchors, 434
adding rules, 434–435

bandwidth management, 439–445
queues for, 440–441

configuration, and FTP proxy,
438–439

enabling and configuring, 397–398
FTP and, 437–439
include files, 445
logging, 446–448
options, 417–420

fragmented packets, 418
set block-policy, 417
set limit, 417–419
set optimization, 419–420
set skip, 420
src-nodes limit, 418
states limit, 418–419

packet management, 421–448
with tables, 422–426

quick keyword, 446
ruleset tracing, 448
viewing active rules, 410–411

pf.conf(5), scrub keyword, 416
pfctl(8), 401, 409–410, 445

for anchor rule changes, 435
commands for tables, 423–424
to view state table, 411–412
viewing and flushing anchors

with, 436
pflog0 (PF logging), 63
pflog(4) pseudo-device, 351
pflogd(8), 446
pflow(4) NetFlow exporter, 448
physical interface for disk drive, 33
physical layer (OSI), 184, 187
PID file, adding, 293
ping(8), 191, 196, 210–211
pkg_add(1), 228, 230, 246, 381

verbose mode, 231
pkg_delete(1), 234–235
pkg_info(1), 229
pkglocatedb, 233
$PKG_PATH environment variable, 228, 380
pkill command, 83
Point-to-Point Protocol (PPP), 185
pointer movement commands, 337

portability of OpenBSD, xxxvi
portmap(8) daemon, 155
ports

build stages, 243–246
code snapshot for, 384
customizing, 246–251

local distfile mirrors, 246–249
preferred collection mirrors,

247–248
flavors, 249

and dependencies, 250–251
uninstalling, 251

installing, 66
subpackages, 251–252
troubleshooting build failure, 242
upgrading, 393

ports (TCP), 198–199
determining which are open, 200–202

with fstat, 202
with netstat, 200–202

filtering tcpdump on, 447
reserved, 199–200

ports and packages system, 227–228
ports collection, 235–241, 385

automation, 236
building ports, 241–246
finding software, 239–241
secondary ports, 237–238

ports index, 239–240
ports tree, 66, 236–237

read-only, 238–239
ports.tar.gz file, 21, 66, 236, 384
POSIX time zones, 60
PostgreSQL port, 372–373
PostScript, 306
power button, 179
power of Open BSD, xxxvi
power sensors, 297
PPP (Point-to-Point Protocol), 185
Preboot eXecution Environment (PXE)

diskless booting method, 22,
450–451

preening of filesystems, 138
preferred collection mirrors, 247–248
primary mirror, 249
primary partitions, 30
print (fdisk), 130
printer capability file, 270
printer daemon (lpd), 306–307
printing disklabels, 50, 53
priority

for log message, 284
for queue, 442

Index 483

priority queuing (PRIQ), 440
priority variable, 97
PRIQ (priority queuing), 440
private communities in SNMP agents, 314
private NAT addresses, 426–427
private networks, IP addresses for, 192
privilege, minimum level of, 86
privileged account, risks from

regular use, 86
processors, 18
program name, sorting syslog

messages by, 286
programs. See software
prompt

boot loader, 70
for disklabel(8), 50
escaping to, 43
for finding packages, 229
in tmux, 328–329
ukc> for kernel editor, 353

ProPolice, 173, 174
proprietary hardware, 17–18
proto keyword, for packet filtering, 405
pseudo-devices, 351

custom kernel configuration for,
359–360

pseudo-terminals, 274
ptrmove, 337
public communities in SNMP agents, 314
PuTTY, 76
PXE (Preboot eXecution Environment)

diskless booting method, 22,
450–451

Q
q command, to write disklabel to disk,

53–54
qemu, 19
queues for bandwidth management,

440–441
assigning traffic to, 444
child queue, 442
match keyword, 444–445
options, 442–443
parent queue, 441
priority for, 442
viewing, 445

quit command
with config, 353
with fdisk, 131

R
RADIUS authentication, 99

login classes for, 100–101
radius method for BSD authentication, 99
RAID (Redundant Array of Independent

Disks)
checking health status of devices in

array, 164
sensors for controllers, 297
software, 160–166
types, 161–162

RAM. See memory (RAM)
random early detection, of packet loss, 443
ranges of ports, pf(4) redirection of, 433
rarpd(8), for reverse ARP, 454–455
raw devices, 127
rbootd(8), 271
rc.d scripts, 82

for third-party software, 83
rdist(1) program, 281
read-only mailing lists, 9–10
read-only mount (ro), 128
read-only mounts

in FFS, 135–136
in NFS, 157

read-only ports tree, 238–239
read-write (rw) mount option, 128
read-write mounts, in FFS, 136
reboot, 49
rebooting

as part of upgrade, 380
to test configuration, 57

redirecting email messages, 65
Redundant Array of Independent Disks.

See RAID (Redundant Array
of Independent Disks)

reinstalling OpenBSD, vs. upgrade, 371
reject method for BSD authentication, 99
relayd(8), 271

anchors for, 434
release directories, 21–22

contents after build, 391
$RELEASEDIR environment variable, 390, 391
releases of OpenBSD, 369–370

building, 389–392
bundling base system, 390–391

indexing, 392
using, 392

remote filesystem, mounting, 159
remote host, logging to, 288
remote machines, connecting

with SSH, 334

484 Index

remote magnetic tape command (rmt), 271
removable media, 153
removing. See deleting
repositories, for source code, 385–386
Request for Comments. See RFC

(Request for Comments)
requirehome variable, 97
reserved ports (TCP), 199–200
resolver, 210

vs. dynamic configuration, 212–213
resource limits, for user account, 96–97
responding to email, 14
restore(8), copying files with, 145
reverse ARP, rarpd(8) for, 454–455
RFC (Request for Comments)

1918 on private networks, 192, 426
5737 on IPv4 addresses, 426

RIP (Routing Information Protocol), 203
RIP daemon, 271
ripd(8), 271
rmoption keyword, 362–363
rmt (remote magnetic tape command), 271
rmuser(8), 92
rndc(8), 109
ro (read-only) mount option, 128
.rodata segments, 173
root (/) partition, 26–27, 46

duplicating, 148
multiple disks and, 49–50
password, 44–45, 106

setting, 58
preparing for upgrade, 374

root account, 86, 105
disallowing logins directly to, 275
email alias for, 278
emailing maintenance tasks results to

local, 65
hiding with sudo, 109–120
for initial setup, 57
secure console for, 275

roundrobin method, 221
route add command, 207
route delete command, 207
route(8), 204–207, 219
router advertisements, sysctl to

control, 347
router discovery, 195
routing, 203
Routing Information Protocol (RIP), 203
routing table, 204–205
RPC, 272
Rufus, 457
run as alias, 114

override sudo defaults, 119
rw (read-write) mount option, 128

S
salt for password, 90
sanitizing packet filtering traffic,

415–416
sappnd file flag, 175, 179
sasyncd(8) (security association

synchronization
daemon), 272

SATA drives, 29
/sbin/nologin shell, 102
scheduled tasks, 277–282

custom scripts, 282
daily maintenance, 278–281
monthly maintenance, 282
weekly maintenance, 282

schg file flag, 175, 179
screen

blanking, 324–325
locking in cwm, 333–334
turning off display, 325

script kiddies, 170
script man page, 242
scripts

for maintenance, 282
startup system, 80–82

scrub keyword, 416
scrubbing, 399
SCSI drives, 29
SCSI multipathing feature,

experimental, 362
search, 210–211
search domains, default, 210–211
search index, adding to routing table, 264
searching

Internet, 11
within man page, 5

for cryptography, 10–11
for man pages, 5–6
for packages, 229–232

with command prompt, 229
on Web, 230

for software, 239–241
by keyword, 240
with SQL, 240–241

tables for packet filtering, 424
secondary ports, 237–238
sections in OpenBSD manual, 4
sectors, 31–32

and disklabels, 32–34
number for drive, 34

secure file transfer protocol (SFTP), 317
Secure Shell daemon. See SSH (Secure

Shell) daemon (sshd),
Secure Sockets Layer (SSL)

certificates, 273

Index 485

securelevel(7), 177–181
determining appropriate, 180
in rc.securelevel, 81
weaknesses, 180–181

security, xxx, xxxviii–xxxix, 169–181
attackers, 170–172
bidirectional NAT and, 430
faulty sudo setup impact, 110
file flags, 175–177
memory protection, 172–175
partitions for, 25
for SNMP, 314
system clock and, 60
updates for, 368
user damage to, 85

security association synchronization
daemon (sasyncd(8)), 272

security checks, in daily maintenance,
278–280

security-announce@OpenBSD.org, 9, 172
SEE ALSO section, in man pages, 7
segments, 187
Sendmail, 263
sensors in hardware, 272. See also

hardware sensors
sensorsd(8), 298, 317

variables, 301
sensorsd.conf file, 299–300
serial connection, configuration, 271
serial consoles, 75–79

client serial port, 78–79
logins, 79
setup, 77
testing configuration, 77

Serial Line Internet Protocol (SLIP), 272
serial ports, 274
services, setup when installing

OpenBSD, 44
sessions, in tmux, 327–328
set block-policy drop (PF), 417
set block-policy return (PF), 417
set keyword, 417
set limit option (PF), 417–419
set optimization option (PF) , 419–420
set skip option (PF), 420
set timeout command, 70
setenv variable, 97
setgid permissions, 25
set-option command (tmux), 329
setuid behavior, nosuid option

disallowing, 138
setuid permissions, 25
setuid root wrapper, 110

setup after install, 57–84
booting to graphic console, 67
checking system errata, 58
hostname, 61–62
installing ports and source code, 66
keyboard mapping, 66
mail aliases and status mail, 65
networking, 62–65

default gateway, 64
dynamic configuration, 64
Ethernet interfaces, 62–64
name service servers, 65

root password setting, 58
software configuration, 59
time and date, 60–61

set-window-option command (tmux), 329
SFTP (secure file transfer protocol), 317
SGI (Silicon Graphics), 16
Shell option, in OpenBSD installer, 41
shell script

OpenBSD installer as, 41
variable assignments in, 59

shell variable, 97
shells

login forbidden for unprivileged
users, 102

modifying environment, 97
for user account, 88, 92

configuring default, 87
shutdown, 179

of server software, 82
SIGHUP, 293
signal name, 293–294
signature in email, 13
Silicon Graphics (SGI), 16
Simple Mail Transfer Protocol

(SMTP), 263
Simple Network Management Protocol

(SNMP), 273
single-user mode

boot process in, 71–72
mounting disks in, 71–72
root partition mounting as

read-only, 140
stackable mounts, 146
starting network in, 72

siteXX.tgz file, 373, 460
creating, 458–459

skey method for BSD authentication, 99
skilled attackers, 171–172
sleep, of screen, 325
SLIP (Serial Line Internet Protocol), 272
small-server handler (inetd), 304–305

486 Index

SMDS (Switched Multimegabit Data
Service), 185

SMTP (Simple Mail Transfer
Protocol), 263

snapshots directory, 21
snapshots versions of OpenBSD, 369

compressed tar files for, 384
snk method for BSD authentication, 99
SNMP client, net-snmp package of

command-line tools, 313
SNMP (Simple Network Management

Protocol), 273
snmpd (SNMP agent), 312–317

configuring, 314–315
debugging, 315–316
getting information, 316–317

soft update mounts, in FFS, 137
softraid(4) devices, 160

booting from, 166
creating, 163–164
deleting, 165
failed volumes

identifying, 164
rebuilding, 164–165

preparing disks for, 162–163
reusing, 166
status, 164

software
collections, 248
configuration, 59
force-starting, 83–84
logging to, 287
making, 226
management, 225–253
removing during upgrade, 372
source code for, 226–227
startup scripts, 82–83

software RAID, 160–166
software serial console, 75
songs directory, 21
sorting

du output, 143
messages, sylogd(8) for, 284–287

source address, in filter rule, 406
source code, 226–227

to build custom kernel, 358
for OpenBSD, 28
for operating system, installing, 66
for ports, 241
updating, 385–388
for your own OpenBSD, 384

source port, in filter rule, 408–409
source routing, 179
sparc64, 16

spoofed packets, blocking, 416
sqlports package, 240
src (userland) collection, 385
src-nodes limit (PF), 418
src.tar.gz file, 21, 384
SSH (Secure Shell) daemon (sshd),

82–83, 273, 317–322
connecting to remote machines

with, 334
disabling, 318
disabling root logins over, 45
enabling, 44
host keys, 318
network options, 318–319

sshd_config file, 321
SSL (Secure Sockets Layer)

certificates, 273
-stable version of OpenBSD, 370

building, 387–388
source code for, 384
tag for, 385
updating to, 386–387

stackable mounts, 146
stacksize variable, 96
staff user class, 94
startup

enabling time correction at, 61
multiuser, 79–84

startup scripts, 80–82
for packages, 252–253
software, 82–83

startx command, 330
state table, 398–399

filtering rules and, 411–413
stateful inspection, 398–399
stateful protocol, 197
stateless filtering, 399
stateless protocol, 197
statelessness of NFS, 155
states per source address, PF

tracking of, 418
static IP address, 63–64, 216, 310

DHCP vs., 42–43
static NAT, 429
statistics

from operating system, SNMP for, 316
of PF, 418

status bar in tmux, 326
options for, 329

status mail, setup after install, 65
stop argument, for scripts at shutdown, 83
streaming protocol, TCP as, 197
striping (RAID-0), 161
striping data across disks (RAID-4), 161

Index 487

striping with parity across drives
(RAID-5), 161

su(1), 106
_subdir keyword, 265
subject, for email help request, 12–13
subnets, for IPv6 addresses, 194
subpackages, 251–252
sudo(8), 106, 109–120

changing default behavior, 117–119
configuring, 273
disadvantages, 109–110
and environment, 119–120
exclusions, 122–123
logs, 123, 293
overview, 110
password caching, 120–121
reason to use, 109
running commands, 121

sudoedit(8), 110, 121–122
$SUDO_EDITOR environment variable, 122
superblocks, in FFS, 134
swap partition, 52–53
swap space, 27

encrypting data written to, 348
mount point, 128
splitting between drives, 30

Switched Multimegabit Data Service
(SMDS), 185

switches, 213
configuring for VLANS, 223

switching between visible cwm
windows, 333

sylogd(8)

and embedded systems, 289
for sorting messages, 284–287

SYN (synchronization) request, 398
SYN+ACK packet, 398
synchronous mounts, in FFS, 136
SYNOPSIS section, in man pages, 7
sysadmin accounts, creating, 91
sysctl MIBs, 343–344
sysctl(8), 343

for adjusting kernel, 340
sysctls (system controls), 178, 343–348

changing values, 345
setting at boot, 346–348
sysctl MIBs, 343–344
value types, 345–346
viewing list of, 344–345

syslog facility, 283
syslog(3), 283
syslogd(8) (logging daemon), 273

customizing, 288

sysmerge(8)

to compare /etc files, 376–378
finishing, 380
userland upgrade and, 389

sys.tar.gz file, 21, 384
systat pf, 418
systat states, 412
system controls. See sysctls (system

controls)
system errata, checking after install, 58
system failures, swap space use in, 27
system groups, in user aliases, 114
system logs

actions, 287–288
adding timestamp, 286
customizing syslogd, 288
and embedded systems, 289
excluding information from, 285
facilities, 283–284
priority, 284
sorting messages with syslogd(8),

284–287
system maintenance, 277–301

hardware sensors, 296–301
configuring, 298–301
device drivers for, 297–298
triggering action, 300–301

log file maintenance, 289–294
adding PID file, 293
monitoring, 293
newsyslog.conf fields, 290–292
signal name, 293–294

scheduled tasks, 277–282
custom scripts, 282
daily maintenance, 278–281
monthly maintenance, 282
weekly maintenance, 282

system logs, 282–289
actions, 287–288
customizing syslogd, 288
and embedded systems, 289
facilities, 283–284
priority, 284
sorting messages with syslogd(8),

284–287
system time, 294–296

system message buffer, 340
system time, 294–296
system-level append-only flag, 175
system-level immutable flag, 175–176
systems administration team, directing

mail sent to root to, 65
systrace(4) system, 273

488 Index

T
table sysctl, 346
tables for packet filtering, 422–426

and automation, 425–426
changing, 424–425
defining table, 422–423
searching, 424
using, 423
viewing, 423–424

tag for repository version, 385
tar files, creating, 458–459
tar(1), copying files with, 145
tasks. See scheduled tasks
TCP (Transmission Control Protocol),

186, 197–198
keep-alive feature, sysctl to

control, 347
open ports, 200–202
ports, 198–199
reserved ports, 199–200
states, 411–412

tcpdump(8)

binary format for PF logs, 447
filtering, 447–448

TCP/IP, 183–207. See also IP addresses
ICMP (Internet Control Message

Protocol), 196
IP routing, 202–207

deleting routes, 207
IPv4, 203–204
route flags, 206–207
route(8) for managing, 204–207

network layers, 184–187
network request, data transmission

for, 187–188
network stacks, 188–189
TCP. See TCP (Transmission Control

Protocol)
UDP, 196–197

The TCP/IP Guide (Kozierok), 184, 397
tcsh(1)

port for, 237
system-wide defaults for, 257

tech@OpenBSD.org, 9
temperature sensors, 297
temporary root directories, 390
term variable, 97
termcap(5) database, 78
terminal emulator (tip(1)), 76
terminals, 274–276

configuring, 275
initializing, 79
running virtual with tmux, 325–329

terminating windows in tmux, 327

testing
configuration by rebooting, 57
custom kernels, 364–365
packet filtering rules, 410
serial configuration, 77
TFTP server, 311

text-based email reader, OpenBSD
users, 13

TFTP (Trivial File Transfer Protocol), 310
server setup for diskless install, 453
testing server, 311

tftpd (TFTP daemon), 310–311
third parties, mailing lists, 9
third-party software, rc.d scripts for, 83
three-button mouse, emulating in X, 331
three-way handshake, 197, 398
thrsize for ALTQ, 441
tilde (~), in pathnames, 96
time and date, setting, 60–61
time formats, in log file, 291
time sensors, 295
time zone, setting, 45–46, 60
timeout

boot idle, 70
in PF, 399, 419
setting for boot, 74

timestamp, adding to log file, 286
timestamp file, 21
timestamp_timeout option, for sudo password

caching, 120
tip(1) (terminal emulator), 76
/tmp directory, 27
tmux attach, 328
tmux list-sessions, 328
tmux(1), 325–329

command mode, 328–329
commands, 326–327
configuring, 329
help for, 327
sessions in, 327–328
setting options, 329
status bar and window names, 326

token bucket regulator size
configuration, 441

token method for BSD authentication, 99
tools directory, 21, 22
traceroute(8), 196
tracing, pf ruleset, 448
tracks, on disk drives, 31
traffic interception, 433
Transmission Control Protocol. See

TCP (Transmission Control
Protocol)

transport layer (OSI), 186, 187
Trivial File Transfer Protocol. See TFTP

(Trivial File Transfer Protocol)

Index 489

troubleshooting
custom kernel build errors, 365–366
fsck for, 139
port build failure, 242
single-user mode for, 71

trunking, 221–222
tsch, installing from port, 242
tunnels, IPv6 addresses over, 224
tutorials, 4

in OpenBSD FAQ, 8
twm(1), 331

U
uappnd file flag, 175
uchg file flag, 176
UDP (User Datagram Protocol), 186,

196–197, 399
ports in netstat output, 201
states, 412–413

UFS (Unix File System), 133
UID (user ID), 88

NFS use of, 157
ukc> prompt (kernel editor), 353
umask setting, for user, 95
umask variable, 97
umount(8), 141–142
uname(1) command, 366, 381
undeadly.org, 8
underscore (_), for unprivileged user

names, 103–104
UNetbootin, 457
uninstalling

flavored ports, 251
packages, 234–235

University of California, xxxii–xxxiii
UNIX, xxxi

development, xxxii
Unix File System (UFS), 133
Unix Systems Laboratories (USL), xxxii
Unix-like systems, boot floppies, 39–40
unmapping keyboard, 336
unmounting

decrypted partition, 167
partitions, 141–142

unprivileged user accounts, 102–104
creating, 104
uninstall packages and, 234

upgrade and install kernel, 72
upgrade.site script, 460
upgrading

customizing, 373, 460
installed packages update, 380–382
mounting filesystems, 376
from official media, 373–375

over network, 374–375
process for, 371–373
reasons for, 368

USB disk
booting installer from, 22
customizing media for

installation, 457
USB keyboards, country code for, 66
user accounts

for administrators, creating, 91–92
authentication methods, 99–100
creating, 88–89
editing, 93–94
identifying group membership, 107
named, 102
nobody account, 103
password for, 87–88, 89
removing, 92
resource limits for, 96–97
restrictions, 92
temporarily disabling, 267
unprivileged, 102–104

user aliases, 114
user data partition, 25
User Datagram Protocol. See UDP (User

Datagram Protocol)
user facility, 283
user ID (UID), 88

NSF use of, 157
user management, 85–104

root account, 86
user shells, as sudo exclusions, 122
userland, 340

building, 389
code snapshot for, 384
for diskless machine, 455
populating diskless, 456

user-level append-only flag, 175
user-level immutable flag, 176
usernames, 88

files for, 265–268
users

adding, 86–92
interactively, 87–89
noninteractively, 89–92

chrooting, 319–322
directing log messages to, 287
NFS and, 157–158
security problems from, 171
as security risk, 85
setting up first, 45

USL (Unix Systems Laboratories), xxxii
/usr partition, 28
/usr/local directory, 231
/usr/local partition, 28

490 Index

/usr/mdec/ directory, 453
/usr/obj directory, for build, 384
/usr/obj partition, 28–29
/usr/ports directory, 66, 236

for build, 384
/usr/ports/emulators file, 450
/usr/ports/INDEX file, 239
/usr/ports/sysutils/mtools, 151
/usr/share/zoneinfo directory, 60
/usr/src directory, for build, 384
/usr/src partition, 28
/usr/src/sys/arch file, 361
/usr/src/sys/arch/amd64 file, 365
/usr/src/sys/conf file, 360–361
/usr/X11R6 partition, 28
/usr/X11R6/share/X11/rgb.txt file, 335–336
/usr/xenocara directory, for build, 384
/usr/xobj directory, for build, 384
UTC (Coordinated Universal Time), 45
uucp facility, 283
uvideo(4), 351

V
/var partition, 28
/var/backups file, 280
/var/db/pkg file, 232
/var/log/daemon file, 300
/var/log/pflog file, 447
/var/log/secure file, 123
/var/run/dmesg.boot file, 340
/var/www directory, 320
variables

for login.conf, 95–96
for ports collection, 238

verbose mode
for pkg_add(1), 231
for snmpd, 315

versions of OpenBSD, 368–371
-current, 368–369

building, 392–393
source code for, 384
updating to, 387–388

releases, 369–370
snapshots, 369
-stable, 370

building, 387–388
source code for, 384
tag for, 385
updating to, 386–387

use decision, 370–371
video device, kernel support for, 351
vipw(8), 94, 266
virtual consoles, 274

virtual local area network (VLAN),
223–224

and OpenBSD install, 42
virtual memory, 27
virtual node. See vnode (virtual node)
Virtual PC, 450
virtual terminals, running with tmux,

325–329
VirtualBox (Oracle), 19, 450
virtualization, 19, 450

USB installation for, 456
$VISUAL environment variable, 122
visudo(8) command, 110–111
VLAN (virtual local area network),

223–224
and OpenBSD install, 42

vmemoryuse variable, 96
vm.swapencrypt.enable sysctl, 348
VMware, 19, 450
vnconfig(8), 153, 154
vnode (virtual node). 151

attaching to disk images, 154
detaching from images, 154
vs. inodes, 150–151

volumes in OpenBSD manual, 4

W
web applications, 461
web browser, lynx(1) text-mode, 262
web server

installing OpenBSD from, 23
on OpenBSD, 229

websites, on OpenBSD content, 8
weekly maintenance, 282
welcome message, default for user, 87
welcome variable, 97
_whatdb keyword, 264
whatis(1), 5–6, 10

database, 264
wheel group, 88–89, 106

unlimited sudo access for, 114
wildcard, in command alias, 115
windows in cwm

creating, 332–333
managing, 333

windows in tmux
changing current, 326–327
names, 326, 327
terminating, 327

Windows NT operating systems, disk
images for, 40

word sysctls, 346
write caching, 136

Index 491

Write Xor Execute (W^X), 173
writing, disklabel to disk, 53–54
wsconsctl(8), configuring console with,

324–325
www (website) collection, 385
W^X (Write Xor Execute), 173

X
X command, for disklabel expert mode, 55
X display manager. See xdm(1) (X display

manager)
X Windows System, 24, 323

application menu creation, 334
booting into, 330–331
building, 389
code snapshot for, 384
connecting to remote machines

with SSH, 334
installer and, 44
keyboard navigation, 335
setting up, 330–331

X11 X Windows collection, 385
X-based graphic console, 67
xbaseXX.tgz file set, 24
xclock(1), 336
xdm(1) (X display manager), 44, 67

/etc/rc.conf hook for starting, 330–331
Xenocara, 24, 323

building, 389, 391–392
setting up, 330–331
window managers in, 331

xenocara X Windows collection, 385
xenocara.tar.gz file, 22, 384
xetcXX.tgz file set, 25
XF4 X Windows collection, 385
Xfce, 331
xfontXX.tgz file set, 25
xlock(1), 334
X.Org, 323
xscreensaver package, 334
xservXX.tgz file set, 25
xsetroot(1), 335
xshareXX.tgz file set, 25

Y
YP database, 276
yubikey method for BSD authentication, 99

Z
z command, 51
Zaurus personal digital assistants, 16

phone:
800.420.7240 or

415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

Absolute FreeBSD®,
2nd Edition
The Complete Guide to FreeBSD
by michael w. lucas

The Linux Command line
A Complete Introduction
by william e. shotts, jr.

FreeBSD® Device Drivers
A Guide for the Intrepid
by joseph kong

The Linux Programming
Interface
A Linux and UNIX® System
Programming Handbook
by michael kerrisk

Network Flow Analysis
by michael w. lucas

The Book of PF, 2nd Edition
A No-Nonsense Guide to the
OpenBSD Firewall
by peter n.m. hansteen

More no-nonsense books from No Starch Press

Updates
Visit http://nostarch.com/openbsd2e/ for updates, errata, and other
information.

The Electronic Frontier Foundation (EFF) is the leading
organization defending civil liberties in the digital world. We defend
free speech on the Internet, fight illegal surveillance, promote the
rights of innovators to develop new digital technologies, and work to
ensure that the rights and freedoms we enjoy are enhanced —
rather than eroded — as our use of technology grows.

EFF has sued telecom giant AT&T for giving the NSA unfettered access to the
private communications of millions of their customers. eff.org/nsa

EFF’s Coders’ Rights Project is defending the rights of programmers and security
researchers to publish their findings without fear of legal challenges.
eff.org/freespeech

EFF's Patent Busting Project challenges overbroad patents that threaten
technological innovation. eff.org/patent

EFF is fighting prohibitive standards that would take away your right to receive and
use over-the-air television broadcasts any way you choose. eff.org/IP/fairuse

EFF has developed the Switzerland Network Testing Tool to give individuals the tools
to test for covert traffic filtering. eff.org/transparency

EFF is working to ensure that international treaties do not restrict our free speech,
privacy or digital consumer rights. eff.org/global

PRIVACY

FREE SPEECH

INNOVATION

FAIR USE

TRANSPARENCY

INTERNATIONAL

EFF is a member-supported organization. Join Now! www.eff.org/support

NFA_03.book Page 205 Thursday, May 27, 2010 5:35 PM

	Foreword
	Acknowledgments
	Introduction
	What Is Security?
	What Is BSD?
	The BSD License
	AT&T vs. the World

	The Birth of OpenBSD
	The OpenBSD Community
	OpenBSD Users
	OpenBSD Contributors
	OpenBSD Committers
	OpenBSD Coordinator

	OpenBSD’s Strengths
	Portability
	Power
	Documentation
	Free
	Correctness
	Security

	OpenBSD and Your Security
	OpenBSD’s Uses
	Desktop
	Server
	Network Management

	About This Book
	Contents Overview

	1: Getting Additional Help
	OpenBSD’s Support Model
	The Code Is Fine. What’s Wrong with You?
	Sources of Information
	Man Pages
	The OpenBSD Website
	OpenBSD Mailing Lists

	Using OpenBSD Problem-Solving Resources
	Using the OpenBSD Website
	Using Man Pages
	Using Internet Searches
	Using Mailing Lists

	2: Installation Preparations
	OpenBSD Hardware
	Supported Hardware
	Proprietary Hardware, Blobs, and Firmware
	Processors
	Memory (RAM)
	Hard Drives
	Virtualization
	Multiple Operating Systems

	Getting OpenBSD
	Official CDs
	Internet Downloads
	Mirror Site Layout
	Release Directories
	Boot Media
	Choosing Install Media
	Local Installation Servers

	File Sets
	Partitioning
	Standard OpenBSD Partitions
	Creating Other Partitions

	Partition Filesystems
	Multiple Hard Drives
	Understanding Partitions
	MBR Partitions
	Disklabel Partitions

	Understanding Disklabels
	Sectors and Lies
	Sectors and Disklabels

	Other Information

	3:
Installation Walk-Through
	Hardware Setup
	BIOS Configuration
	Making Boot Media
	Making Boot Floppies
	Making Boot CDs

	Installing OpenBSD
	Running the Installation Program
	Multiple Network Cards
	Setting Up Services and the First User
	Setting the Time Zone
	Setting Up the Disk
	Choosing File Sets
	Finishing the Installation

	Custom Disk Layout
	Viewing Disklabels
	Deleting Partitions
	Erasing Existing Disklabels
	Creating Disklabel Partitions
	Writing the New Disklabel
	Adding More Disks

	Advanced Disklabel Commands
	Changing Basic Drive Parameters
	Modifying Existing Partitions
	Entering Expert Mode
	Getting More Help

	4:
Post-Install Setup
	First Steps
	Checking the System Errata
	Setting the Root Password

	Software Configuration
	Time and Date
	Setting the Time Zone
	Setting the Date and Time

	Hostname
	Networking
	Configuring Ethernet Interfaces
	Setting a Default Gateway
	Setting Name Service Servers

	Mail Aliases and Status Mail
	Keyboard Mapping
	Installing Ports and Source Code
	Booting to a Graphic Console
	Onward!

	5:
The Boot Process
	Power-On and the Boot Loader
	Booting in Single-User Mode
	Mounting Disks in Single-User Mode
	Starting the Network in Single-User Mode

	Booting an Alternate Kernel
	Booting a Different Kernel File
	Booting from an Alternate Hard Disk

	Making Boot Loader Settings Permanent
	Serial Consoles
	Other Platform Serial Consoles
	Serial Console Physical Setup
	Serial Console Configuration
	Changing the Serial Console Speed
	Changing the Client Serial Port
	Serial Logins

	Multiuser Startup
	Startup System Scripts
	Software Startup Scripts
	Third-Party rc.d Scripts
	Force-Starting Software

	6:
User Management
	The root Account
	Adding Users
	Adding Users Interactively
	Adding Users Noninteractively
	User Account Restrictions

	Removing User Accounts
	Editing User Accounts
	Login Classes
	Login Class Definitions
	Changing login.conf
	Legal Values for login.conf Variables
	Setting Resource Limits
	Modifying the Shell Environment
	Password and Login Options
	Changing Authentication Methods
	Using Login Classes for RADIUS Authentication

	Unprivileged User Accounts
	The nobody Account
	_username
	Creating Unprivileged Users

	7:
Root, and How to Avoid It
	The Root Password
	Using Groups
	The /etc/group File
	Creating Groups
	Groups, Unprivileged Users, and Group Permissions

	Hiding Root with sudo
	Why Use sudo?
	sudo Disadvantages
	An Overview of the sudo Software
	The visudo(8) Command
	The /etc/sudoers File
	/etc/sudoers Aliases
	Changing sudo’s Default Behavior
	sudo and the Environment

	Using sudo
	sudo Password Caching
	Running Commands Under sudo
	Running Commands as Other Users

	sudoedit
	The Biggest sudo Mistake: Exclusions
	sudo Logs

	8:
Disks and Filesystems
	Device Nodes
	Raw and Block Devices
	Device Attachment vs. Device Name

	DUIDs and /etc/fstab
	MBR Partitions and fdisk(8)
	Viewing MBR Partitions
	Adding and Removing Partitions
	Making a Partition Bootable
	Exiting fdisk

	Labeling Disks
	Viewing Labels
	Creating Disklabel Partitions
	Backing Up and Restoring Disklabels

	The Fast File System
	FFS Versions
	Blocks, Fragments, and Inodes
	Creating FFS Filesystems
	FFS Mount Options
	Filesystem Integrity

	What’s Currently Mounted?
	Mounting and Unmounting Partitions
	Mounting Standard Filesystems
	Mounting at Nonstandard Locations
	Unmounting Partitions
	Mounting with Options

	How Full Is That Partition?
	What’s All That Stuff?
	Setting $BLOCKSIZE

	Adding New Hard Disks
	Creating an MBR Partition
	Creating a Disklabel
	Moving Partitions
	Adding New Filesystems
	Stackable Mounts

	9:
More Filesystems
	Backing Up to the /altroot Partition
	Memory Filesystems
	Creating MFS Partitions
	Mounting an MFS at Boot

	Foreign Filesystems
	Inodes vs. Vnodes
	Common Foreign Filesystems
	Foreign Filesystem Ownership

	Removable Media
	Mounting Filesystem Images
	Attaching Vnode Devices to Disk Images
	Detaching Vnode Devices from Images

	Basic NFS Setup
	The OpenBSD NFS Server
	Exporting Filesystems
	Read-Only Mounts
	NFS and Users
	Permitted Clients
	Multiple Exports for One Partition

	NFS Clients
	Software RAID
	RAID Types
	Preparing Disks for softraid
	Creating softraid Devices
	softraid Status
	Identifying Failed softraid Volumes
	Rebuilding Failed softraid Volumes
	Deleting softraid Devices
	Reusing softraid Disks
	Booting from a softraid Device

	Encrypted Disk Partitions
	Creating Encrypted Partitions
	Using Encrypted Partitions
	Automatic Decryption

	10:
Securing Your System
	Who Is the Enemy?
	Script Kiddies
	Botnets
	Disaffected Users
	Skilled Attackers

	OpenBSD Security Announcements
	OpenBSD Memory Protection
	W^X
	.rodata Segments
	Guard Pages
	Address Space Layout Randomization
	ProPolice
	And More!

	File Flags
	File Flag Types
	Setting, Viewing, and Removing File Flags

	Securelevels
	Setting the System Securelevel
	Securelevel Definitions
	What Securelevel Do You Need?
	Securelevel Weaknesses

	Keeping Secure

	11:
Overview of TCP/IP
	Network Layers
	The Physical Layer
	The Datalink Layer
	The Network Layer
	The Transport Layer
	Applications

	The Life and Times of a Network Request
	Network Stacks
	IPv4 Addresses and Subnets
	Calculating a Decimal IPv4 Netmask
	Viewing IPv4 Addresses
	Unusable IPv4 Addresses
	Special IPv4 Addresses
	IPv4 Addressing Pitfalls

	IPv6 Addresses and Subnets
	IPv6 Basics
	Understanding IPv6 Addresses
	Viewing IPv6 Addresses
	IPv6 Subnets
	Special IPv6 Addresses
	Assigning IPv6 Addresses

	Remedial TCP/IP
	ICMP
	UDP
	TCP
	How Protocols Fit Together
	Transport Protocol Ports
	Reserved Ports
	Which Ports Are Open?

	IP Routing
	IPv4 Routed Network Example
	Managing Routing with route(8)

	12:
Connecting to the Network
	DNS Resolution
	The /etc/resolv.conf File
	The /etc/hosts File
	Resolver vs. Dynamic Configuration

	Ethernet
	Protocol and Hardware

	Configuring Ethernet
	Using ifconfig(8)
	Configuring Default Routes
	Using Dynamic Configuration
	Configuring the Network at Boot

	Trunking
	Link Aggregation Protocols
	Trunk Configuration
	Trunks at Boot

	VLANs
	Configuring Switches
	Configuring VLAN Devices
	Configuring VLANs at Boot

	IPv6 Over Tunnels

	13:
Software Management
	Making Software
	Source Code and Software
	The Ports and Packages System
	Using Packages
	Package Files and $PKG_PATH
	Finding Packages
	Installing Packages
	Identifying Where Files Originate
	Uninstalling Packages
	Package Limitations

	Using Ports
	The Ports Tree
	Secondary Ports
	Read-Only Ports Tree
	Finding Software

	Building Ports
	What a Port Installation Does
	Port Build Stages

	Customizing Ports
	Local Distfile Mirrors
	Flavors

	Subpackages
	Packages and rc.d Scripts

	14:
Everything /etc
	/etc Across Unix Variants
	The /etc Files
	/etc/adduser.conf
	/etc/amd
	/etc/authpf
	/etc/bgpd.conf
	/etc/boot.conf
	/etc/changelist
	/etc/chio.conf
	/etc/csh.*
	/etc/daily and /etc/daily.local
	/etc/dhclient.conf
	/etc/dhcpd.conf
	/etc/disklabels/
	/etc/disktab
	/etc/dumpdates
	/etc/dvmrpd.conf
	/etc/exports
	/etc/fbtab
	/etc/firmware
	/etc/fonts/
	/etc/fstab
	/etc/ftpchroot
	/etc/ftpusers
	/etc/gettytab
	/etc/group
	/etc/hostapd.conf
	/etc/hostname.*
	/etc/hosts
	/etc/hosts.equiv
	/etc/hosts.lpd
	/etc/hotplug/
	/etc/ifstated.conf
	/etc/iked/, /etc/iked.conf, /etc/ipsec.conf, and /etc/isakmpd
	/etc/inetd.conf
	/etc/kbdtype
	/etc/kerberosV/
	/etc/ksh.kshrc
	/etc/ldap/ and /etc/ldapd.conf
	/etc/localtime
	/etc/locate.rc
	/etc/login.conf
	/etc/lynx.cfg
	/etc/magic
	/etc/mail/
	/etc/mail.rc
	/etc/mailer.conf
	/etc/man.conf
	/etc/master.passwd, /etc/passwd, /etc/spwd.db, and /etc/pwd.db
	/etc/mixerctl.conf
	/etc/mk.conf
	/etc/moduli
	/etc/monthly and /etc/monthly.local
	/etc/motd
	/etc/mrouted.conf
	/etc/mtree/
	/etc/mygate
	/etc/myname
	/etc/netstart
	/etc/networks
	/etc/newsyslog.conf
	/etc/nginx/
	/etc/nsd.conf
	/etc/ntpd.conf
	/etc/ospf6d.conf and /etc/ospfd.conf
	/etc/pf.conf and /etc/pf.os
	/etc/ppp/
	/etc/printcap
	/etc/protocols
	/etc/rbootd.conf
	/etc/rc.*
	/etc/relayd.conf
	/etc/remote
	/etc/resolv.conf and /etc/resolv.conf.tail
	/etc/ripd.conf
	/etc/rmt
	/etc/rpc
	/etc/sasyncd.conf
	/etc/sensorsd.conf
	/etc/services
	/etc/shells
	/etc/skel/
	/etc/sliphome/
	/etc/snmpd.conf
	/etc/ssh/
	/etc/ssl/
	/etc/sudoers
	/etc/sysctl.conf
	/etc/syslog.conf
	/etc/systrace/
	/etc/termcap
	/etc/ttys
	/etc/weekly and /etc/weekly.local
	/etc/wsconsctl.conf
	/etc/X11
	/etc/ypldap.conf

	15:
System Maintenance
	Scheduled Tasks
	Daily Maintenance
	Weekly Maintenance
	Monthly Maintenance
	Custom Maintenance Scripts

	System Logs
	Facilities
	Priority
	Sorting Messages via syslogd(8)
	Log Actions
	Customizing syslogd
	Syslog and Embedded Systems

	Log File Maintenance
	newsyslog.conf Fields
	Monitoring Logs
	Adding a PID File
	Signal Name
	Command to Execute

	System Time
	Configuring ntpd(8)
	Using ntpd(8)

	Hardware Sensors
	Device Drivers
	Sensor Configuration

	16:
Network Servers
	The inetd Small-Server Handler
	Configuring inetd
	Restricting Incoming Connections

	The lpd Printing Daemon
	The DHCP Server dhcpd
	How DHCP Works
	Configuring dhcpd(8)
	Static IP Address Assignments
	Enabling dhcpd
	dhcpd and Firewalls

	The TFTP Daemon tftpd
	Specifying a TFTPD Directory
	TFTPD and Files
	TFTPD Logging
	Testing the TFTP Server

	The SNMP Agent snmpd
	SNMP MIBs
	SNMP Security
	Configuring snmpd
	Debugging snmpd
	Getting snmpd Information

	The SSH Server sshd
	Disabling sshd
	SSH Host Keys
	sshd Network Options
	Chrooting Users

	17:
Desktop OpenBSD
	Configuring Your Console with wscons
	Screen Blanking
	Setting wscons Variables at Boot

	Running Virtual Terminals with tmux
	The tmux Status Bar and Window Names
	tmux Commands and Window Management
	Getting Online Help
	Disconnecting, Reconnecting, and Managing Sessions
	Using tmux Commands
	Setting tmux Options
	Configuring tmux

	Setting Up X
	Configuring X
	Starting X Manually
	Booting into X
	Emulating a Three-Button Mouse

	Using the cwm Window Manager
	Configuring cwm
	Creating cwm Windows
	Managing Windows
	Locking the Screen
	Connecting to Other Machines with SSH
	Creating an Application Menu
	Using Keyboard Navigation
	Decorating cwm
	Unmapping and Remapping Keys

	18:
Kernel Configuration
	What Is the Kernel?
	Kernel Messages
	Startup Messages
	Device Attachments
	Connections and Numbering
	Using dmassage to View Installed Devices

	Viewing and Adjusting Sysctls
	Sysctl MIBs
	Viewing Sysctls
	Changing Sysctl Values
	Types of Sysctl Values
	Setting Sysctls at Boot

	Altering the Kernel with config(8)
	Making a Backup of the Default Kernel
	Device Drivers and the Kernel
	Enabling Drivers
	Editing the Kernel with config

	Boot-Time Kernel Configuration

	19:
Building Custom Kernels
	Kernel Cautions
	Don’t Build Custom Kernels
	Why Build Custom Kernels?
	Problems Building Custom Kernels
	Problems Running Custom Kernels

	Preparing for Kernel Customization
	Kernel Configuration
	Configuration Entries
	Configuring GENERIC
	Your Kernel Configuration
	Testing Your Kernel Configuration with config(8)

	Building a Kernel
	Kernel Build Errors

	Installing Your Kernel
	Identifying the Running Kernel

	20:
Upgrading
	Why Upgrade?
	OpenBSD Versions
	OpenBSD-current
	OpenBSD Snapshots
	OpenBSD Releases
	OpenBSD-stable
	Which Version Should You Use?

	The OpenBSD Upgrade Process
	Following the Upgrade Guide
	Customizing Upgrades

	Upgrading from Official Media
	Upgrading Over the Network
	Choosing File Sets

	Updating /etc
	Mounting Filesystems
	Using sysmerge(8) to Compare /etc Files

	Updating Installed Packages
	Updating the Package Repository
	Using the Upgrade Command

	Why Build Your Own OpenBSD?
	Preparations for Building Your Own OpenBSD
	Preparing the Base Operating System
	Getting Source Code
	Updating Source Code

	Building OpenBSD-stable
	Upgrading the Kernel
	Building the Userland
	Building Xenocara
	Building a Release
	Using the Release

	Building OpenBSD-current
	Following -current
	Merging /etc

	Upgrading Ports

	21:
Packet Filtering
	Firewalls
	Enabling and Configuring PF
	Packet-Filtering Basics
	Packet-Filtering Concepts
	“My Network Can Do No Wrong”
	What Packet Filtering Doesn't Do

	PF Components
	Packet Filter Control and Configuration
	Interface Groups
	PF Configuration

	Filtering Rules
	Default Permit or Default Deny
	Packet Pattern Matching
	A Complete Ruleset
	Activating Rules
	Viewing Active Rules

	Filtering Rules and the State Table
	TCP States
	UDP States
	ICMP States

	Packet Filtering with Lists and Macros
	Using Lists
	Using Macros
	A Common Error: List Exclusions and Negations

	Sanitizing Traffic
	Illegal Packets
	Packet Reassembly
	Packet Modification
	Blocking Spoofed Packets

	PF Options
	The set block-policy Option
	The set limit Option
	The set optimization Option
	The set skip Option

	22:
Advanced PF
	Packet Filtering with Tables
	Defining Tables
	Using Tables
	Viewing Tables
	Searching Tables
	Changing Tables
	Tables and Automation

	Using NAT
	Private NAT Addresses
	Configuring NAT
	How NAT Works
	Multiple or Specific Public Addresses
	Bidirectional NAT
	Redirection
	Multiple Addresses and Interface Groups
	Port Manipulation and Ranges
	Transparent Interception

	Anchors
	Adding Rules to Anchors
	Viewing and Flushing Anchors
	Conditional Filtering
	Nested Anchors: /*

	FTP and PF
	Configuring ftp-proxy(8)
	PF Configuration and the FTP Proxy

	Bandwidth Management
	Queues for Bandwidth Management
	Parent Queue Definitions
	Child Queue Definitions
	Queue Options
	A CBQ Ruleset
	Assigning Traffic to Queues
	Using the match Keyword
	Viewing Queues

	PF Edges
	Using Include Files
	Skipping Matches with quick

	Logging PF
	Reading PF Logs
	Real-Time Log Access
	Filtering tcpdump
	Ruleset Tracing

	23:
Customizing OpenBSD
	Virtualizing OpenBSD
	Diskless Installation
	Diskless Hardware
	DHCP Server Setup
	TFTP Server Setup
	Completing Diskless Installation

	Running Diskless
	Using rarpd(8) for Reverse ARP
	Running bootparamd(8)
	Setting Up the NFS Root Directory
	Power On!

	USB Installation Media
	Using a Virtual Machine
	Running a Diskless Installation
	Converting ISO Images

	Customizing OpenBSD Installations
	Custom File Sets
	Post-Install Shell Scripts

	Customizing Upgrades

	Afterword
	Index

