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Preface 

Einste in's general theory of relat iv i ty requires a curved space for the descrip
tion of the physical world . If one wishes to go beyond a superficial discussion 
of the physical relations one needs to set up precise equations for handling 
curved space. There is a well-establ ished but rather complicated mathe
matical technique that does this. It has to be mastered by any student who 
wishes to understand Einstein's theory. 

This book is built up from a course of lectures given at the Physics Depart

ment of Flor ida State University and has the aim of presen t ing the i ndis
pensible material in a direct and concise form. It docs not require previous 
knowledge beyond the basic ideas of special relativity and the handling of 
differentiations of field functions. It will enable the student to pass through 
the main obstacles of understanding general re lativity with the minimum 
expendi ture of time and trouble and to become qualified to continue more 
deeply into any special ized aspects of the subject that interest h im. 

Tallaltassee, Florida 
February 1975 

P. A. M. DIRAC 
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CONTENTS 
1. �pedal relativity 
For the space-time of physics we need four coordinates, the t ime t and three 
space coordinates x, y, z. We put 

so that the four coordinates may be wri t ten x", where the suffix J1 takes on the 
four values 0, 1, 2, 3. The suffix is written in the upper position in order that 
we may mainta in a" balancing" of the suffixes in al l the general equations 
of the theory. The precise meaning of balancing w i l l  become clear a l i t t le 
later. 

Let us take a point close to the point that we originally considered and let 
its coordinates be x" + dx". The four quantities dx" which form the dis
placement may be considered as the components of a vector. The laws of 
special relativity allow us to make l inear nonhomogeneous transformations 
of the coordina tes, resul t ing in linear homogeneous transformations of the 
dx11• These are such that, if we choose units of distance and of time such that 
the velocity of light is unity, 

(1.1) 

is invariant. 
Any set of four quantities A" that transform under a change of coordinates 

in the same way as the dx" form what is called a contravariant vector. The 
invariant quantity 

(1.2) 
may be cal led the squared length of the vector. With a second contravariant 
vector B", we have the scalar product invariant 

( 1 .3) 

In  order to get a convenient way of writing such invariants we introduce 
the device of lowering suffixes. Define 

(1.4) 
Then the expression on the left-hand side of ( 1 .2) may be written A,. A", in 
which it is understood that a summation is to be taken over the four values 
of J1. With the same notation we can write (1.3) as A,. B" or else A"B,.. 
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The four quant i ties A�' in troduced by ( 1 .4) may also be considered as the 
components of a vector. Their transformat ion laws under a change of co
ord inates are somewhat different from those of the A�', because of the dif
ferences i n  sign, and the vector is called a covariant vector. 

From the two contravariant vectors A�' and B�' we may form the s ixteen 
quantit ies A�'W. The suffix v, like all the Greek suffixes appearing in this work, 
also takes on the four values 0, 1 ,  2, 3. These s ixteen quantities form the com
ponents of a tensor of the second rank. Tt is sometimes cal led the outer 
product of the vectors A�' and 81', as dist inct from the scalar product ( 1 .3), 
which is called the inner product. 

The tensor A�' W is a rather special tensor because there are special re
lations between i ts components. But we can add together several tensors 
constructed in this way to get a general tensor of the second rank; say 

( 1 .5) 

The important thing about the general tensor is that under a transformation 
of coord inates its components transform in the same way as the quantit ies 
A �'B•. 

We may lower one of the suffixes in T�'• by applying the lowering process 
to each of the terms on the righ t-hand side of ( 1 .5). Thus we may form T,,V or 
T�' •. We may lower both suffixes to get I;. • .  

In T/ we may set v = fl. and get T/. This i s  t o  be summed over the four 
values of f..L. A summation is always implied over a suffix that occurs twice in a 
term .  Thus T/ is a scalar. It is equal toT" w 

We may cont inue this process and multiply more than two vectors to
gether, taking care that their suffixes are all d ifferent .  In this way we can 
construct tensors of h igher rank. If the vectors are all contravariant, we get 
a tensor with all its suffixes upstai rs. We may then lower any of the suffixes 
and so get a general tensor with any number of suffixes upstairs and any 
number downstairs. 

We may set a downstairs suffix equal to an upstairs one. We then have to 
sum over al l  values of this suffix. The suffix becomes a dummy. We are left 
with a tensor having two fewer effective suffixes than the original one. This 
process is called contraction. Thus, i f  we start wi th  the fourth-rank tensor 
P./, one way of contracting it is to put a = p, which gives the second rank 
tensor T�'v/• having only s ixteen components, arising from the four values of 
fl. and v. We could contract again to get the scalar T'' �'/' wi th  just one com
ponent. 
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At this stage one can appreciate the balancing of suffixes. Any effective 
suffix occurr ing in an equation appears once and only once in each term of 
the equation, and always upstairs or always downstairs. A suffix occurring 
twice in a term is a dummy, and it must occur once upstairs and once down
stairs. Jt may be replaced by any other Greek let ter not already mentioned 
in the term. Thus T�' ./ = T�' va 

a. A suffix must never occur more than twice in 
a term. 

1. Oblique axes 
Before passing to the formal ism of general relat iv i ty i t  is convenient to 
consider an intermediate formalism-special relativity referred to oblique 
rect i l inear axes. 

If  we make a transformation to oblique axes, each of the dx�' mentioned 
in ( 1 . 1 )  becomes a linear function of the new dx�' and the quadratic form ( 1.1) 
becomes a general quadratic form in the new dx�'. We may write it 

(2. 1 )  

with summat ions understood over both f..L and v. The coefficients g�t• appearing 
here depend on the system of oblique axes. Of course we take q,,. = g.�'' 
because any difference of g,,. and g.,. would not show up in the quadratic 
form (2.1 ). There are thus ten independent coefficients g�t•· 

A general contravariant vector has four components A'' which transform 
l ike the dx�' under any transformation of the obl ique axes. Thus 

g�t•A"Av 

is invariant. It is the squared length of the vector A �'. 
Let 81' be a second contravariant  vector ; then A�'+ A.B�' is still another, 

for any value of the number A.. Its squared length is 

g (AI' + A.W)(Av + A.W) =a A�'Av + A.(g A�'W + g AvB�') + A.2g B�'Bv JlV �tfV JJV /lV JJV • 

This must be an invariant for a l l  values of A.. It fol l ows that the term indepen
dent of A. and the coefficients of A. and A.2 must separately be i nvariants. The 
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coefficient of A. is 

g" .A''B• + g" . A .B" = 2g
"
. A"B•, 

since in the second term on the left we may interchange Jl and v and then 
use g" . = g." . Thus we find that g,..A "B• is an invariant. It is the scalar 
product of A" and B". 

Let g be determinant of the g,, • . I t  must not vanish; o therwise the four 
axes would not provide independent d i rect ions in space-time and would 
not be suitable as axes. For the orthogonal axes of the preceding section the 
diagonal elements of g,.. are l, -1, - 1 , -1 and the nondiagonal elements 
are zero. Thus g = - 1 .  With obl ique axes g must still be negative, because 
the oblique axes can be obtained from the orthogonal ones by a continuous 
process, result ing in g varying continuously, and g cannot pass through the 
value zero. 

Define the covariant vector A ,., wit h  a downstairs suffix, by 

A" = g
"
. A•. (2.2) 

Since the determinant g does not vanish, these equations can be solved for 
A • in terms of the A ,.. Let the result be 

A• = g"•A
"
. (2.3) 

Each g"• equals the cofactor of the  correspond ing g,.. in the determinant of 
the g"•

' d ivided by the determinant i tself. I t  follows that g"• = g• ". 
Let us substitute for the A• in (2.2) their values given by (2.3) . We must 

replace the dummy Jl in  (2.3) by some other Greek letter, say p, in order not 
to have three JJ.'s in the same term. We get 

A" = giJVg•P A p. 

Since this equation must hold for any four quantities A ,., we can infer 

where 

g: = 1 for Jl = p, 
= 0 for Jl "# p. 

(2.4) 

(2.5) 

The formula (2.2) may be used to lower any upper suffix occurring in a 
tensor. Similarly, (2. 3 )  can be used to raise any downstairs suffix. If a suffix is 
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lowered and raised again, the result is the same as the original tensor, on 
account of (2.4) and (2.5). Note that g: just produces a substitution of p for Jl, 

g:A "  = A P, 

or of Jl for p, 
g:A P = A" . 

I f  we apply the rule for raising a suffix to the Jl in g,.. , we get 

This agrees with (2.4), if we take into account that in g''. we may write the 
suffixes one above the other because of the symmetry of g,. •. Further we may 
raise the suffix v by the same rule and get 

a resu l t  which fol lows immediately from (2.5). The rules for raising and lower
ing suffixes apply to all the suffixes in g" . ' ge, g

" •. 

J. Curvilinear coordinates 
We now pass on to a system of curvi l inear coordinates. We shall deal with 
quantit ies which are located at a point in space. Such a quant ity may have 
various components, which are then referred to the axes at that point. There 
may be a quantity of the same nature at a l l  points of space. I t  then becomes a 
field quantity. 

If we take such a quantity Q (or one of its components if it has several), 
we can differentiate it with respect t o  any of the four coordinates. We write 
the result 

aQ 
ox" = Q,IJ' 

A downstairs suffix preceded by a comma will always denote a derivative 
in this way. We put the suffix Jl downstairs in order to balance the upsta irs Jl 
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in the denominator on the left. We can see that the suffixes balance by noting 
that the change i n  Q, when we pass from the poin t x� to the neighboring point 
x� + bx�, is 

(3 . 1 )  

We shall have vectors and tensors located a t  a point ,  with various com
ponents referring to the axes at that point. When we change our system of 
coordinates, the components will change according to the same laws as in the 
precedi ng section, depending on the change of axes at the point concerned. We 
shall have a g11v and a g"v to lower and raise suffixes, as before. But they are no 
longer constants. They vary from point to point . They are field quant i t ies. 

Let us see the effect of a particu lar change in the coordinate system. 
Take new curvi l i near coordinates x'11, each a function of the four x's. They 
may be wri t ten more conveniently x"', with the prime attached to the suffix 
rather than the main symbol. 

Making a smal l  variat ion in the x", we get the four quant ities bx" forming 
the components of a contravariant vector. Referred to the new axes, this 
vector has the components 

with the notation of (3. 1 ). This gives the law for the transformation of any 
contravariant vector Av; namely, 

(3 .2) 

Interchanging the two systems of axes and changing the suffixes, we get 

(3 .3) 

We know from the laws of part ial  differentiation that 

ax). ax"' ). 
ax�'' axv = gv'  

with the notation (2.5). Thus 

(3.4) 

This enahles us to see that the two equat ions (3 .2) and (3.j) are consistent, 
since if we substitute (3 .2) i nto the right-hand side of (3 .3), we get 

X;. .x"' Av = g;. Av =A;.. ·f.l ,v \1 
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To see how a covariant vector B� transforms, we use the cond it ion that 
A�B� is invariant. Thus with the help of (3 .3) 

A�'B11 • = A;.B;. = x�11.A"'B;.. 

This result must hold for all values of the four A�·; therefore we can equate the 
coefficients of A�· and get 

(3 .5)  

We can now use the formulas (3 .2) and (3 .5) to t ransform any tensor with 
any upstairs and downstairs suffixes. We just have to use coefficients l ike 
x": for each upstairs suffix and like x;. . for each downstairs suffix and make all . .� 
the suffixes balance. For example 

(3.6) 

Any quanti ty that transforms according to th is law is a tensor. This may be 
taken as the definition of a tensor. 

It should be noted that it has a meaning for a tensor to be symmetrical or  
ant isymmetrical between two suffixes like A. and f.J. ,  because th is  property of 
symmetry is preserved with the change of coord inates. 

The formula (3.4) may be wri t ten 

I t  just shows that g� is a tensor. We have also, for any vectors A�, Bv, 

A··np· A�Bv 11 v A"'Bfl' g.·p· = g"v = g�vx, •. x.fl. . 

Since this holds for al l  values of A"', Bfl', we can infer 

(3 .7) 

This shows that g,..v is a tensor. Similarly, g11• is a tensor. They are called 
the fundamental tensors. 

If S is any scalar field quantity, it can be considered either as a funct ion of 
the four x� or of the four x�·. From the laws of partial differentiat ion 

S,,..· = S ,;. x�,..· . 

Hence the S,;. transform l ike the B ,1. of equation (3 .5)  and thus the derivative 

of a scalar field is a covariant vector field. 
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4. Hontensors 
We can have a quantity N�' vp .. with various up and down suffixes, which i� not 

a tensor. If it is a tensor, it must transform under a change of coor�m
.
ate 

system according to the law exemplified by (3.6). With any other law �tIs
. 
a 

nontensor. A tensor has the property  that if all the component
_
s vamsh 1

_
n 

one system of coord inates, they vanish in every system of coordmates. This 

may not hold for a nontensor. 

For a nontensor we can raise and lower suffixes by the same rules as for a 

tensor. Thus, for example, 

The consistency of these rules is qu ite independent of the transformation laws 

to a different system of coordinates. Similarly, we can contract a nontensor by 

putting an upper and lower suffix equal. . ·
. . 

We may have tensors and nontensors appeanng together m the same equa-

tion. The rules for balancing suffixes apply equally to tensors and non-

tensors. 

THE QUOTIENT THEOREM 
l p 0 

S P 1·s such that A • p is a tensor for any vector A . Then lp.v IS a uppose lp.v ''" 
tensor. . . 

T ·t r1·te A'P - Q We are given that It Is a tensor; therefore o prove I , W lp.v - p.v • 

Thus 
A.' , v' A•p =A P .. ·y·x�'.x y· •iJY A It •P • 

Since A' is a vector, we have from (3.2), 

So 

).' , v' A•p = A"x P .. · v·x�'.x 1• •PY •• A It • P 0 
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This equation must hold for al l  values of A", so 

showing that P.p1 is a tensor. 
The theorem also holds if  P lp.v is replaced by a quant i ty with any number 

of suffixes, and if some of the suffixes are upstairs. 

�. Curved spa(e 
One can easily imagine a curved two-dimensional space as a surface im
mersed in Euclidean three-dimensional space. In the same way, one can have a 
curved four-d imensional space immersed in a fiat space of a larger number 
of dimensions. Such a curved space is called a Riemann space. A small region 
of it is approximately fiat. 

Einstein assumed that physical space is of this nature and thereby laid 
the foundation for his theory of gravitation. 

For dealing with curved space one cannot introduce a recti l inear system of 
axes. One has to use curvilinear coord inates, such as those dealt with in 
Section 3. The whole formalism of that section can be applied to curved 
space, because al l  the equations are local ones which are not d isturbed by the 
curvature. 

The invariant distance ds between a point x�' and a neighboring point 
x�' + dx" is given by 

like (2.1 ). ds is real for a t imelike interval and imaginary for a spacelike 
interval. 

With a net work of curvil inear coordinates the g ,... , given as functions of the 
coordinates, fix all the elemen ts of  distance; so they fix the metric. They deter
mine both the coordinate system and the curvature of the space. 
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6. Parallel di�placement 
Suppose we have a vector A� located at a point P. I f  the space is curved, 
we cannot give a meaning to a parallel vector at a different point Q, as one can 
easi ly see if one thinks of the example of a curved two-dimensional space in a 
three-d i mensional Euclidean space. However, if we take a point  P' close toP, 
there is a parallel vector at P', with an uncerta inty of the second order, 
coun t ing  the distance from P to P' as the first order. Thus we can g ive a 
meaning to displacing the vector A� from P to P' keeping it paral lel to 
itself and keeping the length constant. 

We can transfer the vector cont inuously along a path by this process of 
parallel displacement. Taking a path from P to Q, we end up with a vector at 
Q which is parallel to the original vector at P with respect to th is path. But a 
different path would give a different result .  There is no abso lute meaning 
to a paral lel vector at Q. I f  we t ransport the vector at P by parallel displace
ment around a closed loop, we shall end up with a vector at P which is usually 
in a different direction. 

We can get equat ions for the parallel displacement of a vector by supposing 
our four-dimensional physical space to be immersed in a flat space of a h igher 
number of dimensions; say N. In th i s  N-dimensional space we introduce 
rect i l i near coordi nates z"(n = 1, 2, . . .  , N). These coord i nates do not need to 
be orthogonal, only rectilinear. Between two neighboring points there is an 
invariant distance ds given by 

(6. 1) 

summed for n, m = 1 , 2, . . . , N. The h.m are constants, unlike the g�·· We may 
use them to lower suffixes in the N -dimensional space ; thus 

Phys ical space forms a four-d imensional "surface" i n  the flat N-di
mensional space. Each point x� in the surface determines a definite pointy" 
in the N-dimensional space. Each coordinate y" is a function of the four 
x's; say y"(x). The equations of the surface would be given by eliminating the 
four x's from the Ny"(x)'s. There are N- 4 such equations. 

By differen tiating the y"(x) with respect to the parameters x�, we get 

ay"(x) n 

ax� = Y,,.. 

6. PA RALLEL DISPLACEMENT 

For two neighboring poi nts in the surface differ ing by bx�, we have 

by"= l,. bx�. 

The squared distance between them is, from (6. 1 ) 

We may write it 

bs2 = h by" by'" = h y" ym bx� bx•. nm nm ,� ,v 

on account  of the h.m being constants. We also have 

bs2 = g�· bx� bx•. 
Hence 

1 1  

(6. 2 )  

(6.3)  

Take a contravariant vector A� in  physical space, located at the point x. 
I ts components A� are like the 15x" of (6.2). They wil l  provide a contravariant 
vector A" in theN-dimensional space, like the by" of (6.2). Thus 

(6. 4 )  

This vector A", o f  course, l ies i n  the surface. 
Now shift the vector A", keeping it paral lel to i tself ( which means, of course, 

keeping the components constant), to a neighboring point x + d x in the 
surface. I t  will no longer lie in the surface at the new point, on account of the 
curvature of the surface. But we can project it on to the surface, to get a 
definite vector lying in the surface. 

The projection process consists in spli t t ing the vector into two parts, a 
tangential part and a normal part, and discarding the normal part. Thus 

A" = A7an + A�or· (6.5) 

Now if K" denotes the components of A�." referred to the x coordinate 
system in t�e surface, we have, corresponding to (6. 4 ), 

A�." = K�l�(x + dx), (6.6) 

with the coefficients l� taken at the new point x + dx . 
A�or is defined to be orthogonal to every tangential vector at the point 

x + dx, and thus to every vector like the right-hand side of (6.6), no matter 
what the K� are. Thus 

A�orY •. �(x + dx) = 0. 
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If we now multiply (6. 5) by Y •.• (x + dx), the A�or term drops out  and we are 
left with 

A"y.)x + dx) = K11l11(x + dx)Y •.• (x + dx) 
= K11g11.(x + dx) 

from (6.3). Thus to the first order in dx 

K.(x + dx) = A"[Y •.• (x) + Yn,v,., dx"] 
= A�'y�ll[Yn,v + Yn,v,n dx"] 
= Av + A"lllYn,v,u dx". 

This Kv is the result of parallel displacement of A. to the point x + dx. We 
may put 

sod A .  denotes the change in  A. under parallel displacement. Then we have 

(6.7) 

1. Chri�toHel �ymbol� 
By differentiat ing (6.3) we get (omitting the second comma with two dif
ferentiat ions) 

g11v,a = Y�lluYn,v + Y���Yn,vu 
= Y •. MY�. + Y •.• .,Y���· (7.1) 

since we can move the suffix n freely up and down, on account of the con
stancy of the hmn· Interchanging 11 and a in (7.1) we get 

(7 .2) 

Interchanging v and a i n  (7. 1 )  

(7.3) 
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Now take (7. 1 )  + ( 7.3) - (7.2) and divide by 2. The result is 

(7.4) 
Put 

(7.5) 

It is called a Christoffel symbol of the first kind. It is symmetrical between 
the last two suffixes. I t  is a non tensor. A simple consequence of (7.5) is 

( 7.6) 

We see now that (6.7) can be written 

(7.7) 

All reference to the N-dimensional space has now disappeared, as the 
Christoffel symbol involves only the metric g11• 

of physical space. 
We can infer that the length of a vector is u nchanged by parallel d is

placement. We have 

d (g'"A11A.) = g�'•A11 dA. + g11•A. dA11 + A11A.g'",., dx" 
= A• dA. + A11 dA11 + A.Apg"ll·" dx" . 
= A•A11r11 • ., dx" + A11A·r.11., dx" + A.Apg"11,, dx" 
= A•A11g11v,a dx" + A.Apg•P,a dx". (7.8) 

(7.9) 

This is a useful formula giv ing the derivative of g•II i n  terms of the deriva
tive of g11 • •  I t  allows us to infer 

A.AIIg•/l.a = -A�'A•g11v,a 

and so the expression (7.8) vanishes. Thus the length of the vector is constant. 
In part icular, a nul l  vector (i.e., a vector of zero length) remains a nu l l  vector 
under paral lel d isplacement. 

The constancy of the length of the vector fol lows also from geometrical 
arguments. When we spl i t  up the vector A" into tangent ial  and normal parts 
according to (6. 5), the normal part is infinitesimal and is orthogonal to the 
tangential part. It  fo l lows t hat, to the first order, the length of the whole vector 
equals that of i ts tangential part. 
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The constancy of the length of any vector requ ires the constancy of the 
scalar product g�· A� B. of any two vectors A and B. This can be inferred from 
the constancy of the length of A + A.B for any value of the parameter A.. 

I t  is frequently useful to raise the first suffix of the Christoffel symbol so as 
to form 

I t  is then called a Christoffel symbol of the second kind. It is symmetrical 
between its two lower suffixes. As explained in Section 4, this raising is quite 
permissible, even for a nontensor. 

The formula (7.7) may be rewritten 

dA. = r�a A� dxa. (7. 10) 

I t  is the standard formula referring to covariant components. For a second 
vector n· we have 

d(A.B") = 0 
A. dB·= -B• dA. = -B·r�aA11dxa 

= -B�'r;a A. dxa. 

This must hold for any A., so we get 

dB"= -r;aB11 dxa. (7 . 1 1 )  

This i s  the standard formula for paral lel  displacemen t  referring to contra
variant components. 

8. Geodesics 
Take a point with coordinates z11 and suppose it moves along a t rack; 
we then have z� a function of some parameter r. Put dz11jdr = u11• 

There is a vector u11 at each point of the t rack. Suppose that as we go along 
the track the vector u11 gets shifted by paralled displacement. Then the whole 
track is determined if we are given the initial point and the initial value of 

8. GEOOESICS 15 

the vector u11• We just have to shift the initial point from z11 to z11 + u11 dr, 
then shift the vector u� to this new point  by paral lel displacement, then shift 
the poin t  again in the direction fixed by the new u�, and so on. Not only 
is the track determined, but  also the parameter r along it .  A track produced 
in this way is called a geodesic. 

I f  the vector u11 is in itially a nul l  vector, i t  always remains a nu l l  vector 
and the track is called a null geodesic. If the vector u� is init ial ly timelike 
(i .e . ,  u11u� > 0), i t  is always t imelike and we have a timelike geodesic. Similarly, 
if u�' is in i t ial ly spacelike (u11u11 < 0), it is always spacel ike and we have a 
spacelike geodesic. 

We get the equations  of a geodesic by applying (7 . 1 1 ) with B'' = u• and 
dxa = dza. Thus 

or 

du• dza 
+ r. � - 0 --;h �tau dr-

d2z• dz�' dza 
dr2 + r;a dr -;h = 0. 

(8 . 1 )  

(8.2) 

For a timelike geodesic we may multiply the in itial u11 by a factor so as to 
make its length unity. This merely requ ires a change in the scale of r. The 
vector u�' now always has the length unity. I t  is just the velocity vector 
v11 = dz�'jds, and the parameter r has become the proper times. 

Equation (8. 1) becomes 

Equation (8.2) becomes 

du11 
+r� v a_o d; .au V - • (8 .3)  

(8 .4) 

We make the physical assumption that the world line of a part icle not  
acted on by any forces, except gravitational, is a time l ike geodesic. This 
replaces Newton's first law of motion. Equation (8.4) fixes the acceleration 
and provides the equations of motion. 

We also make the assumption that the path of a ray of light is a nul l  
geodesic. I t  i s  fixed by equation (8 .2) referring to some parameter r along the 
path. The proper time s cannot now be used because ds vanishes. 
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9. The stationary property of geodesics 
A geodesic that is not a null geodesic has the property that J ds, taken along 
a section of the track with the end points P and Q, is stationary i f  one makes a 
small variation of the track keeping the end points fixed . 

Let us suppose each point of the track, with coordinates z,.., is shifted 
so that i ts  coordinates become z,.. + /Jzl-l. If dz,.. denotes an element along the 
track, 

Thus 

Now 

ds2 = g,_.. dz,.. dz•. 

2 ds l>( ds) = dzl-l dz· l>g,_.. + g,_.. dzl-l o dz• + g,_.. dz· (jdzl-l 
= dz,.. dz•g,_..,Al>zA + 2g,. A d z" odz A . 

Odz4 = doz A. 

Thus, with the help of dz,.. = v" ds, 

Hence 

0 f ds = f O( ds) = f[-!9,.v,AV"Vv 0Z4 + g,Aif d�; l] ds. 

By partial i ntegrat ion, using the condition that (jzA = 0 at the end points 
P and Q, we get 

l> J ds = f[-!g,. •. A v"v•-:- :s (g,_.4 v")] (jzA ds. 

The condition for this to vanish with arbitrary oz4 is 

Now 

d I v 

ds (g I' A if) - 29 IJV,A ifV = 0. 

(9 . 1 ) 

(9 .2) 

10. COVA R IANT DIFFERENTIATION 

Thus the cond it ion (9.2) becomes 

d v,.. g,. A - + IA,_.v vl-lv• = 0. 
� ds 

Multiplying this by gA", i t  becomes 

which is just  the condi t ion (8 .3) for a geodesic. 

17 

This work shows that for a geodesic, (9. 1 )  vanishes and J ds is stationary. 
Conversely, if we assume that J ds is stat ionary, we can infer that the track is a 
geodesic. Thus we may use the stationary condit ion as the definition of a 
geodesic, except in the case of a nul l  geodesic. 

10. Covariant diUerentiation 
Let S be a scalar field. Its derivative s .. is a covariant vector, as we saw in  
Section 3 .  Now let A,. be a vector field . Is i t s  derivative A,. . •  a tensor? 

We must examine how A,.. .• transforms under a change of coordinate 
system. With the notation in Section 3, A,.. transforms to 

l ike equation (3.5), and hence 

A,.,v' = (Apx�,_..), •. 
= Ap,ax� •. x�,..· + APx�,.·.·· 

The last term should not be here if we are to have the correct transformation 
law for a tensor. Thus A,..,. is a nontensor. 

We can, however, modify the process of different iation so as to get a tensor. 
Let us take the vector A,.. at the point  x and shift i t  to x + dx by parallel 
displacement. I t  is stil l a vector. We may subtract i t  from the vector A,.. at 
x + dx and the d ifference will be a vector. I t  is, to the first order 

A,..(x + dx)- [A,..(x) + r:.A. dx•] =(A,_. ,.- r:.A.) dx•. 
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This q uant i ty is a vector for any vector dx'; hence, by the quot ient theorem 
of Section 4, the coefficient 

is a tensor. One can easi ly verify d irectly that i t  transforms correctly under a 
change of coordinate system. 

It is called the covariant derivat ive of A,. and is written 

( 1 0. 1 )  

The sign : before a lower suffix w i l l  always denote a covariant derivative, 
just as the comma denotes an ordinary derivative. 

Let B, be a second vector. We define the outer product A,. B, to have the 
covariant derivative 

(A,.B.)," = All'"B' + A,.B,". 

Evidently it is a tensor with three suffixes. It has the value 

(AilB,)," = (All·" - r�"A.)B, + A,.(B,," - r�"B.) 

= (A ,.B,),a- r�" A .B,- r� .. A,.B •. 

(10.2) 

Let T,., be a tensor with two suffixes. It is expressible as a sum of terms l ike 
A,. B, so its covariant derivative is 

( 10.3) 

The rule can be extended to the covariant derivative of a tensor Y,., ... with any 
number of suffixes downstairs : 

Y,., ... , .. = Y,., .. . · " - a r term for each suffix. (10.4) 

In each of these r terms we must make the suffixes balance, which is sufficient 
to fix how the suffixes go. 

The case of a scalar is included in the general formula ( 1 0.4) with the 
number of suffixes in  Y zero .  

¥,.,.=�a· 
Let us apply ( 10.3) to the fundamental tensor g il, . . It gives 

giJV:O' = gllV,O' - �a9ov - r:O'giJO 
= giJV,<J - rVIl<7 - rllV<1 ;:> 0 

( 1 0.5) 

from (7.6). Thus the g,., count as constants under covariant different iat ion. 

1 0. CO VARIANT DIFFERENTIATION 19 

Formula ( 1 0.2) is the usual rule that one uses for differentiating a product. 
We assume this usual rule holds also for the covarian t  derivative of the sca lar 
product of two vectors. Thus 

(AilB1,},11 = A11,11B,. + A"B,.,11• 

We get, according to (10.5) and ( 10.1), 

and hence 

Since th i s  holds for any B,., we get 

( 1 0.7) 

which is the basic formula for the covariant deriva tive of a contravariant 
vector. The same Christoffel symbol occurs as in the basic formula (I 0. 1 )  
for a covariant vector, b u t  now there i s  a + sign. The arrangement o f  the 
suffixes is completely determined by the balanci ng  requ i rement. 

We can extend the formalism so as to include the covariant derivative of 
any tensor with any number of ups tairs and downstairs suffixes. A r term 
appears for each suffix, with a + sign if the suffix is upsta i rs and a - sign if  i t  is 
downstairs. I f  we contract two suffixes in the tensor, the corresponding r 
terms cancel. 

The formula for the covariant derivat ive of a product , 

(I 0.8) 

holds quite generally, with X and Y any kind of tensor quantities. On account 
of the g,., counting as constants, we can shift suffixes up or down before 
covariant differentiation and the result is the same as if we shifted them 
afterwards. 

The covariant derivative of a non tensor has no meaning. 
The laws of physics must be valid in a ll systems of coordinates. They must 

thus be express i ble as tensor equations. Whenever they involve the derivative 
of a field quanti ty, it must be a covariant derivative. The field equations of 
physics must all be rewrit ten with the ordinary derivatives replaced by co
variant derivat ives. For example, the d 'A iembert equation 0 V = 0 for a 
scalar V becomes, in covariant form 
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This gives, from ( 10. 1 )  and (10.5), 

g�·wll. - r:. �.) = 0. ( 10.9) 

Even if one is work ing with flat space (which means neglect ing the gravit
ational field) and one is using curvil inear coordinates, one must write one's 
equations in terms of covariant derivatives i f  one wants them to hold in  all 
systems of coord inates. 

11. The curvature ten�or 
With the product law (I 0.8) we see that covarian t differentiation is very s imilar 
to ordinary differentiations. But there is an important property of ord inary 
differentiation, that if we perform two differentiat ions in succession their 
order does not matter, which does not, in general, hold for covariant dif
ferentiation. 

Let us first consider a scalar fieldS. We have from the formula ( 1 0.1), 

s,",. = s'"·· -r�. s,. 
= s.�v -r�.s .•. ( 1 1 . 1 )  

This i s  symmetrical between f.1. and v, so i n  this case the order o f  the covariant 
differentia t ions does not matter. 

Now let us take a vector A. and apply two covariant differentiations to i t .  
From the formula ( 1 0.3) with A.,P for T.P we get 

Av:p:<T = A.,p,!T - P. .. A.,P -r:11 A.,. 
= ( A •. P - r�P A.) ... -r�11( A •. p-r�p Ap) - r:AA •.• - r�.Ap) 
- A -P A -PA -f" A - v,p.a vp a.,tl va a.,p pa v,a. 

- Ap(r�p.!1 - r�!T r�p -r:!T r�.). 

Interchange p and (J here and subtract from the previous expression .  The 
resu l t  is  

( 1 1 .2) 

II. THE CURVATURE TENSOR 2 1  

where 

( 1 1 .3) 

The left-hand side of ( 1 1 .2) is a tensor. It follows that the right-hand 
side of (11 .2) is a tensor. This holds for any vector Ap; therefore, by the quotient 
theorem in  Section 4, R�P!T is a tensor. I t  is called the Riemann-Christoffel 
tensor or the cu rvature tensor. 

It has the obvious property 

Also, we easi ly see from ( 1 1 .3) that 

RP RP + RP - 0 vpa + pav. avp - · 

Let us lower the suffix f3 and put it as the first suffix. We get 

( 1 1 .4) 

( 1 1 . 5) 

where the symbol (p(J) is used to denote the preceding terms wi th p and (J 
interchanged. Thus 

Rll.P!T = r ll•<T,p - g llP.p r�!T + r llPP r�!T - <P(J > 
= r�.!T,p - rP"Pr�!T - <P(J>, 

from (7.6). So from (7.5) 

R -11 - - g + g ) + r r-P - r r11 • �vp!T - 2\g�<T,vp 9vl1,1lP �p,v11 vp,�11 Pll<T vp fl�p V!T 

Some further symmetries now show up; namely, 

and 

( 1 1 .6) 

( 1 1 .8) 

The result of all these symmetries is that, of the 256 components of R".P"' on ly 
20 are independent. 
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12. The (ODdition for Hat spa(e 
If space is flat, we may choose a system of coordinates that  is recti l inear, 
and then the g,.. are constant .  The tensor Ruvpa then vanishes. 

Conversely, if RI' •P<J vanishes, one can prove that the space is flat. Let us 
take a vector A�' situated at the point x and shift i t  by parallel displacement 
to the point x + dx. Then shift it  by parallel displacement to the point 
x + dx + l;x. If R,..P" vanishes, the resul t  must be the same as if we had 
sh ifted it first from x to x + l;x, then to x + (;x + dx. Thus we can shift the 
vector to a distant point and the resul t  we get is independent of the path to 
the distan t  point. Therefore, if we shift the original vector A�' at x to all points 
by paral le l  displacement, we get a vector field that satisfies A",. = 0, or 

A"·" = r:.A". ( 1 2 . 1 )  

Can such a vector field be  the gradient o f  a scalar? Let u s  put A" = S,,. i n  
(12. 1 ). We  get 

s.,.. = r:.s." . (12.2) 

On account of the symmetry of r:. in the lower suffixes, we have the same 
value for s.". as s .• ,. and the equations (12.2) are integrable. 

Let us take four i ndependent scalars satisfying ( 12.2) and let us take 
them to be the coordinates x•' of a new system of coordinates. Then 

According to the transformation law (3 .7), 

- •• /1" g,.J. - g •. fl.x,"x ,J.. 

Differentiating this equation with respect to x•, we get 
•• /1' - •• /1' �· /1' g"J..• - 9o•f1· •• x,,.x, J. - 9.·p·(x.l'.x.J. + x,,.x, J.v) 

from (7.6). Thus 

= 9o'fl'(r:.x��X�� + X�� r�.x��) 
= g"J.r:. + g,..,n. 
= r.�,,.. + r,.J.. = g,.J.,v 

9.·p· .• x�>�� = 0. 

It fol lows that g•'fJ',• = 0. Referred to the new system of coord inates, the 
fundamental tensor is constant .  Thus we have flat space referred to recti
l inear coordinates. 

13. THE BIANCI RELATIONS 23 

1J. The Bianci relations 
To deal with the second covariant derivative of a tensor, take first the case in 
which the tensor is the outer product of two vectors A"B, .  We have 

(A,.B,),P'" = (A,.,PB, + A"B,)," 
= A"'P'"B' + A"'PB"" + A,.,"B"P + A,.Br:p:"· 

Now interchange p and u and subtract. We get from ( 11.2) 

(A,.B,),P'" - (A,.BJ"'P = A.R:P"B' + A"R�P"B ... 

A general tensor T,., is expressible as a sum of terms l ike A"B,, so it must 
satisfy 

( 1 3 .1) 

Now take T,., to be the covariant derivative of a vector A""' We get 

In this formula make cyclic permutations of r, p, u and add the three equations 
so obtained. The l eft-hand side gives 

A"'P'"''- A�'"'P" + eye perm 

= (A.R:PJ, + eye perm 

= A.:rR:P" + A.R:P"'' + eye perm. 

The right-hand side gives 

( 1 3 .2) 

( 1 3 .3) 

as the remaining terms cancel from ( 1 1 .5). The first term of (l3.2) cancels with 
(13.3) and we are left with 

A. R:P"" + eye perm = 0. 

The factor A. occurs throughout this equation and may be canceled out .  We 
are left with 

( 13.4) 

The curvature tensor satisfies these different ia l  eq uations as wel l  as a l l  
the symmetry relat ions in Sect ion 11. They are known as the Bianci relations. 
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14. The Ri((i tensor 
Let us contract two of the suffixes in R�<•P"' If we take two with respect to 
which it is antisymmetrical, we get zero, of course. If we take any other two 
we get the same result, apart from the sign, because of the symmetries ( 1 1 .4), 
( 1 1 . 7), and ( 1 1 .8). Let us take the first and last and put 

It  is called the Ricci tensor. 
By mul t iplying ( 1 1 .8) by g�'" we get 

( 1 4. 1 ) 

The Ricci tensor is symmetrical. 
We may contract again and form 

g•"R., = R: = R, 

say. This R is a scalar and is called the scalar curvature or total curvature. It is 
defined in such a way t hat it is positive for the surface of a sphere in three 
dimensions, as one can check by a straightforward calculation. 

The Bianci relation ( 13.4) involves five suffixes. Let us contract i t  twice and 
get a relation with one nondummy suffix. Put • = a and mult iply by g�'". The 
result  is 

or 

Now 

g�'" R« = g�'"g«fl R = g�'"g«fl R lt(J<I (lpp<l p(l<lp 
= g«fiRfl" = R:. 

(14.2) 

One can wri te R :  with the suffixes one over the other on account of R«11 being 
symmetrical. Equation ( 14.2) now becomes 

R:,« + (g�'"R�<11),,- R," = 0 

or 

2R:,,. - R," = 0, 

IS. EINSTEIN'S LAW OF GRAVITATION 25 

which is  the Bianci relation for the Ricci tensor. If we raise the suffix u, we get 

(R"« - fg"« R) ,« = 0. 

The explicit  expression for the Ricci tensor is, from ( 1 1 .3) 

Rlt. = r:«. • - r: • . « - r:.r�(l + r:flr�«-

( 1 4.3) 

( 14 .4) 
The first term here does not appear to be symmetrical in J1. and v, although 
the other three terms evidently are. To establish that the first term really is 
symmetrical we need a l i t t le calculation. 

To differentiate the determinant g we must differentiate each element g;,. 
in it and then multiply by the cofactor gg;.�'. Thus 

" 

Hence 

r�< = g;.�<r - 1. Ap( + - ) vp Avp - 2g gAv,p g;,.p,v gpv,A - 1 A11 _ I - I .!iJ ) - 2g g;.,.,. - Ig g .• = 2' og g . • . 

( 14.5) 

( 14.6) 
This  makes it evident that the first term of ( 1 4.4) is symmetrical . 

IS. linstein's low of gravitation 
Up to the present our work has all been pure mathematics (apart from the 
physical assumption that the track of a part icle is a geodesic). It was done 
mainly in the last cen tury and applies to curved space in any number of 
dimensions. The only place where the number of dimensions would appear 
in the formalism is in  the equation 

g: = number of dimensions. 

Einstein made the assumption that in empty space 

R�<• = 0. ( 15. 1 )  
It constitutes h i s  law o f  gravi tation. "Empty" here means that there i s  no 
matter present and no physical fields except the gravitational field. The 
gravitational field does not disturb the emptyness. Other fields do. The 
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conditions for empty space hold in a good approximation for the space 
between the planets in the solar system and equation (15. 1 ) appl ies there. 

Flat space obviously sat isfies ( 15. 1 ). The geodesics are then st raight l ines 
and so par t icles move along straight lines. Where space is not  flat, Einstein's 
law puts restrictions on the curvature. Combined w i th  the assumption that 
the planets move along geodesics, i t  gives some information about their 
motion. 

At first sight Einstei n's law of gravi tation does not look anyth ing like 
Newton's. To see a similarity, we must look on the g�'. as potentials describing 
the gravi tational field. There are ten of them, instead of just the one potential 
of the Newtonian theory. They descr ibe not only the gravi tat ional field, but 
also the system of coordinates. The gravitational field and the system of 
coordinates are inextricably mixed up in the E instein theory, and one.cannot 
describe the one without  the other. 

Looking upon the g�'. as poten tials, we find that ( 1 5. 1 ) appears as field 
equations. They are like the usual field equations of physics in that they are of 
the second order, because second derivatives appear in  (14.4), as the Christ
offel symbols involve first derivatives. They are unlike the usual field equ a
tions in that they arc not l inear ; far from it .  The nonlinearity means that the 
equations are complicated and it is difficult to get accurate solutions. 

16. The Newtonian approximation 
Let us consider a stat ic gravitational field and refer it to a static coordinate 
system. The g�'. are then constant  in  time, g)tv,o = 0. Further, we must 
have 

(m = 1, 2, 3). 

This leads to 

and gm" is the reciprocal matr ix to  gm•· Roman suffixes like m and n always 
take on the values 1, 2, 3 .  We find that r mO• = 0, and hence also r:;. = 0. 

16. THE NEWTONIAN APPROXIMATION 27 

Let us take a part icle that is moving slowly, compared with the veloci ty of 
light. Then vm is a small quantity, of the first order. With neglect of second
order quant i t ies, 

( 1 6. 1 )  

The particle will move along a geodesic. With neglect o f  second-order 
quant i t ies, the equation (8 .3 )  gives 

Now 
- lgm"g Vol - 2 oo.. . 

to the first order. Thus 

dvm 
_ = lgm"g VO = gm"(g 1/2) 
dxo 2 oo.. oo ·" (16.2) 

with the help of  ( 1 6.1 ). Since the g�t• are independent of x0, we may lower the 
suffix m here and get 

( 1 6.3) 

We see that t he particle moves as though it were under the influence of a 
poten t ia l  g00 112. We have not used Einstein's law to obtain th i s  resu l t .  We now 
use Einstein's law to obtain a condi tion for the potential, so that i t  can be 
compared with Newton's. 

Let us suppose that the gravitational field is weak, so that the curvature 
of space is small. Then we may choose our coord inate system so that the 
curvature of the coordinate l ines (each with three x's constant) is smal l .  
Under these conditions the g�t• are approximately constant, and g)tv,u and al l  
the Christoffel symbols are small .  I f  we count  them of the fi rst  order and 
neglect second-order quant i t ies, Einstein's law ( 1 5. 1 ) becomes, from ( 1 4.4) 

r:: •.. - r:: . . •  = 0. 
We can evaluate this most convenient ly  by contracting ( 1 1 .6) with p and 11 
interchanged and neglect ing second-order terms. The result is 

( 1 6.4) 



211 GENERAL THEORY OF RELATIVITY 

Now take 11 = v = 0 and use the cond i tion that the g_., are i ndependent of 
x0• We get 

( 1 6.5) 

The d'Aiembert equation ( 1 0.9) becomes, in the weak field approximation, 

g"' �_.. = 0. 

In the static case this reduces to the Laplace equation 

gm" �mn = 0. 

Equation ( 1 6.5)  just tells us that g00 satisfies the Laplace equation .  
We may choose our un i t  of t ime so that g00 is approx imately uni ty. 

Then we may put 

g00  = 1 + 2 V,  ( 16.6) 

with V small .  We get g00 1 12 = 1 + V and V becomes the potential . It 
satisfies the Laplace equation, so that i t  can be identified with the Newtonian 
potential ,  equal to - m/r for a mass m at the o r igin. To check the sign we see 
that ( 16.2) leads to 

acceleration = - grad V, 

since gm" has the diagonal elemen ts app rox imately - 1 .  
W e  see that Einstein's law of gravi tation goes over t o  Newton's when the 

field is weak and when it is static. The successes of the Newtonian theory in 
explaining the motions of the planets can thus be preserved. The static 
approximation is a good one because the veloci t ies of  the planets are all small 
compared with the velocity of light .  The weak field approximation is a good 
one because the space is very nearly flat. Let us consider some orders of 
magnitude. 

The value of2 V on the surface of the earth turns out to be of the order w- 9. 
Thus g00 g i ven by ( 1 6.6) is very close to 1 .  Even so, i ts difference from 1 is big 
enough to produce the important grav i tat ional effects that we see on earth. 
Taking the earth's radius to be of the order 109 em, we find that g00 .m is of the 
order 1 0 - 1 8  em - 1 . The departure from flatness is thus extremely small. 
However, this has to be mult ip l ied by the square of the veloc i ty of light, 
namely 9 x 102 0 (cmfsec)2 ,  to give the acceleration due to gravi ty at the 

17. T H E  G RA VITATIONAL RED S HIFT 29 

earth's surface. Thus this acceleration, about 1 03 cmfsec2, is quite appreciable, 

even though the departure from flatness is far too small to be observed 
direct ly. 

11. The gravitational red �hift 
Let us take again a static gravitat ional field and consider an atom at rest 
emitting monochromatic  radiation. The wavelength of the l ight wi l l  corre
spond to a definite L\s. Since the atom is at rest we have, for a static system of 
coordinates such as we used in  Section 16, 

2 A o2 .1s = goo u.X , 

where .1x0 is the period, that is, the time between successive crests referred 
to our static coordinate system. 

If the light travels to another place, .1x0 will remain constant. This L\x0 
wi l l  not be the same as the period of the same spectral l ine emitted by a local 
atom, wh ich would be ,1s again. The period i s  thus dependent on the gravi
tational potential g00 at the place where the l ight was emitted : 

The spectral l ine will be sh i fted by this factor g00 - 1 12 . 
If we use the Newton ian approximation ( 1 6.6), we have 

L\x0 : :  1 - V. 

V wil l  be negative at a place with a strong gravitational field, such as the 
surface of the sun, so light emi t ted there wil l  be red-shifted when compared 
with the corresponding l ight emitted on earth .  The effect can be observed 
with the sun's l ight but is rather masked by other physical effects, such as the 
Doppler effect aris ing fro m  the motion of the emi tting at o ms. I t  can be better 
observed in l ight emitted from a wh i te dwarf star, where the high density of 
the matter in the star gives rise to a m uch stronger gravitational potential 
at i ts surface. 
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18. The Schwarzschild solution 
The Einstein equations for empty space are nonlinear and are therefore very 
complicated, and it is d ifficult to get accurate so lutions of them. There is, how
ever, one special case which can be solved without too much trouble ; namely, 
the static spherically symmetric field produced by a spherically symmetric 
body at rest. 

The static condit ion means that, with a static coordinate system, the g,.. 
are independent of the t ime x0 or t and also g0,. = 0. The spatia l  coordinates 
may be taken to be spherical polar coordinates x 1 

= r, x 2 = 8, x3 
= rp. The 

most general form for ds2 compatible with spherical symmetry is 

where U, V, and Ware funct ions of  r only .  We may replace r by any function 
of r without d is turbing the spherical symmetry. We use th is freedom to 
simplify things as much as possible, and the most convenient arrangement 
is to have W = 1. The expression for ds2 may then be written 

( 1 8 . 1 )  

wi th  v and A. funct ions o f  r on ly. They must  be chosen t o  sat isfy the Einstein 
equations. 

We can read off the values of the g,.. from ( 1 8 . 1 ), namely, 

and 

We find 

and 

g ,. = 0 for Jl # v. 

g"• = 0 for Jl # v. 
It is now necessary to calculate all the Ch ristoffel symbols r: . . Many 

of them vanish. The ones that do not are, with primes denoting differentiations 

1 8. THE SCHW A R ZSC I I I LD SO LUTIO N  

with respect to r, 

r�o = v' e2• - 2 l 

r : 1  = A.' 
r� 2 = - re - 2 A  
q3  = - r  s i n 2  8 e - ll 

r�o = v' 

n2 = q 3  = r - 1 
n3 = cot 8 
n 3 = - sin 8 cos 9. 

These expressions are to be subst ituted in ( 1 4.4). The results are ( 2v') 
R00 = - v" + A.'v' - v'' - ---;:- e2 " - 2\ 

2A.' 
R 1 1 = v" - A.' v' + v'' - -

r 

R 2 2  = ( 1  + rv' - rA.')e - 2l - 1 

R 3 3  = R2 2  sin2 9 ,  

with the other components of R,.. vanishing. 

3 1  

( 1 8 .2) 

( 1 8.3) 

( 18 .4) 

Einstein's law of gravitation requires these expressions 
van ishing of ( 1 8 .2) and ( 1 8 .3)  leads to 

to  vanish. The 

A.' +  v' = 0. 
For large values ofr  the space must approximate to being flat, so that A. and v 

both tend to zero as r .-. oo .  It fol lows that 

A. +  v = 0. 

The vanishing of ( 1 8.4) now gives 

( 1  + 2rv')e2 " = l 
or 

Thus 

reh = r - 2m, 

where m is a constant of integration. This also makes ( 1 8.2) and ( 18.3) vanish. 
We n o w  get 

2m 
9oo = l - - . 

r 
( 1 8 .5)  
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The Newtonian approximat ion must hold for large values of r. Comparing 
( 1 8 .5) with ( 1 6.6), we see that the constant of integration m that has appeared 
in ( 1 8 .5) is j ust  the mass of the central body that is producing the gravitational 
field. 

The complete solution is 

ds2 = (1 - 2�) dt2 - ( 1 . -
2�) - •  

dr2 - r2 d02 - r2 sin2 (} drp2. ( 1 8.6) 

I t  is known as the Schwarzschi ld so lu t ion. It holds outside the surface of the 
body that is producing the field , where there is no matter. Thus it holds fai rly 
accurately ou tside the surface of a star. 

The solution ( 1 8.6) leads to  small correct ions in the Newtonian theory 
for the motions of the planets around the Sun. These corrections are appreci
able only in the case of Mercury, the nearest planet, and they explain the 
d iscrepancy of the motion of this planet with the Newtonian theory. Thus 
they provide a st riking confirmation of the Einstein theory. 

19. Block holes 
The solution ( 1 8 .6) becomes s i ngular at r = 2m, because then g00 = 0 and 
g 1 1  = - ex:> . It would seem that  r = 2m gives a minimum radius for a body 
of mass m. But a clost;r investigation shows that th i s  is not so. 

Consider a part icle fal l ing into the central body and let its velocity vector 
be v" = dz"fds. Let us suppose that i t  fal l s  in radially, so that v2 = v3 = 0. 
The motion is determined by the geodesic equation (8 .3) : 

dv0 - = - ro v"v" = - g00r v"v" ds ,. . 0"• 

= - googoo, i v
ov • = -goo d�;o vo . 

Now g00 = 1/g00, so we get 

1 9. BLACK HOLES 

This integrates to 

goo Vo = k, 
with k a constant .  It is the value of g00 where the particle starts to fal l .  

Again, we have 
• o2 12 1 = g11. rl'v = g00 v + g 1 1 v 
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Mult iplying th is  equat ion by g00 and using g00 g 1 1  = - 1 , which we obtained 
in the last section, we find 

2 •2 2m 
k - v = g00 = 1 - -. r 

For a fal l ing body v1 < 0, and hence 

Now 

( 2m) 1 12 
v 1 = - k2 - 1 + ---;:- . 

dt v0 ( 2 �- I ( 2 ) - 1 12 
dr = vr = - k 1 - r

m
) p - 1 + � . 

Let us suppose the particle is close to the crit ical radius, so r = 2m + e with 
e small, and let us neglect e2 • Then 

This integrates to 

dt 2m 
dr = - --;: = 

2m 
r - 2m 

t = - 2m log(r - 2m) + cons tant. 

Thus, as r -+ 2m, t -+ oo. The particle takes an infinite t ime to reach the 
crit ical rad ius r = 2m. 

Let us suppose the particle is emi t t ing light of a certain spectral l i ne, 
and is being observed by someone at a large value of r. The light is red-shifted 
by a factor g00 - 1 12 = ( 1  - 2m/r) - 1 '2 • This  factor becomes infinite as the 
particle approaches the critical radius. A l l  physical processes on the particle 
wi l l  be observed to be going more and more slowly as it approaches r = 2m. 

Now consider an observer traveling with t he particle. His t ime scale is 
measured by ds. Now 

ds = _.!._ 
= 

- (k2 - 1 + 2m) - l /2
, dr v 1 r 



34 GENERAL THEO R Y  OF R ELATIVITY 

and this tends to - k - 1 as r tends to 2m. Thus the particle reaches r = 2m 
after the lapse of fin ite proper t ime for the observer. The traveling observer 
has aged only a finite amount when he reaches r = 2m. What will happen 
to him afterwards ? He may continue sailing through empty space into 
smaller values of  r .  

To examine the continuation of the Schwarzschild solut ion for values of 
r < 2m, it is necessary to w1e a nonstatic system of coord inates, so that we 
have the g11• varying with the t ime coordinate. We keep the coordinates 0 
and ¢ unchanged, but instead of t and r we use r and p, defined by 

r = t + f(r), p = t + g(r), ( 1 9. 1 )  

where the functions f and g are at o u r  disposal. 
We have, using the prime again to denote the derivative with respect 

to r, 

2m 2m 
dr2 - - dp2 = (dt + f' dr)2 - - (dt + g' dr)2 

r r ( 2m) ( 2m ) ( . 2m ) 
= 1 - --;:- dt2 + 2 f' - ----;:- g' dt dr + j'2 - ----;:-g' 2  dr2 

( 2m) 
2 

( 2m) - 1 2 = 1 - --;:- dt - 1 - --;:- dr , 

provided we choose the functions j and g to satisfy 

2m f' = - g' r 

and 

Elimination off from these equations gives 

, ( r ) 1 /2( 2m) - 1 
g = - 1 - -

2m r 

( 1 9.2) 

( 1 9.3) 

( 1 9 .4) 

( 19 . 5) 

To i ntegrate this equation, put r = / and 2m = a2 .  With r > 2m we have 
y > a. We now have 

dg - 2 
dg - 2y4 ----=----;< 

dy - y dr - a / - a2 ' 
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which gives 

2 y + a g = - y3 + 2ay - a2 log -- . 
3a y - a 

Final ly, we get from ( 1 9. 3) and ( 1 9.5) 

which integrates to 

Thus 

with 

( 2m) ( r ) 1 /2 g' - f' = 1 - 7 g' = 
2m ' 

2 1 
- -- r3/2 = g - f = p - r. 
3 Fm  

11- = (!Fm)2/ 3. 
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( 1 9.6) 

( 19 .  7) 

( 1 9 .8) 

In this way we sec that we can satisfy the conditions ( 1 9.3 )  and ( 1 9.4) and 
so we can use ( 1 9.2). Substitut ing into the Schwarzschi ld solution ( 1 8 .6), 
we get 

2m ds2 = dr2 - dp 2 - 1J,2(p - r)413(d02 + sin2 1J J-+.2). ( 1 9.9) Jt(p - t)2/ 3  'I' 

The crit ical value r = 2m corresponds, from ( 19 .7), to p - r = 4m/3 . There 
is no singularity here in the metric ( 1 9.9). 

We know that the metric ( 1 9.9) satisfies the Einstein equat ions for empty 
space in the region r > 2m, because it  can be t ransformed to the Schwarzschi ld 
so lu tion by a mere change of coordinates . We can infer that i t  satisfies the 
Einstein equations also for r :5: 2m from analytic continu ity, because it  does 
not involve any singularity at r = 2m. It may continue to hold right down to 
r = 0 or p - r = 0. 

The singularity appears in the connection between the new coordinates 
and the original ones, equation ( 1 9. 1 ). But once we have establ ished the new 
coordinate system we can disregard the previous one and the singularity no 
longer appears. 

We see that the Schwarzschild solution for empty space can be extended 
to the region r < 2m. But th is region cannot communicate with the space 
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for which r > 2m. Any signal, even a l ight s ignal, would take an infinite 
time to cross the boundary r = 2m, as we can easi ly check. Thus we cannot 
have direct observational knowledge of the region r < 2m. S uch a region 
is called a black hole, because things may fall into i t  (tak ing an infinite t ime, 
by our clocks, to do so) but nothing can come out. 

The q uestion arises whether such a region can actual l y  exist . All we can say 
definitely is that the Einstein equations allow it. A massive stellar object 
may collapse to a very smal l radius and the gravitational forces then become 
so strong that no known physical forces can hold them in check and prevent 
further collapse. I t  would seem that it  would have to col lapse into a black 
hole. It would take an infinite t ime to do so by our  clocks, but only a finite 
time relatively to the collapsing matter itself. 

10. T en�or den�ities 
With a transformation of coordinates, an element of four-dimensional 
volume transforms according to the law 

dx0' dx 1 ' dx2 ' dx3 ' = dx0 dx 1 dx2 dx3 J, 

where J is the Jacobian 

a(x0'x ! 'x 2 'x 3 ' ) • It ' J = 
0 1 2 3 = determmant of x,« . 

a(x X X X ) 

We may write (20. 1 )  

for brevity. 
Now 

(20. 1 )  

(20.2) 

We can look upon the right-hand side as the product of three matrices, the 
first matrix having its rows specified by a and columns specified by J1', the 
second having its rows specified by 11' and columns by v', and the third having 
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its rows specified by v' and columns by {3. This product equals the matrix 
g«fJ on the left. The corresponding equation must hold between the deter
minants ; therefore 

g = Jg'J 
or 

g = J2g'. 

Now g is a negative quanti ty, so we may form �. taking the pos i tive 
value for the square root .  Thus 

(20.3) 
Suppose S is a scalar field quantity, S = S' .  Then 

if the region of integration for the x' corresponds to that for the x. Thus 

I sFJ d 4x = invariant. (20.4) 

We call S� a scalar densi ty, meaning a quantity whose integral i s  
invariant .  

Similarly,  for any tensor field T11• • • •  we may cal l  T"•· · ·� a tensor 
density. The integral 

I p•FJ d4x 

is a tensor if the domain of integration is small .  It is not a tensor if t he domain 
of integration is not small ,  because i t  then consists of a sum of tensors located 
at different points and it does not t ransform in any s imple way under a 
transformat ion of coordinates. 

The quant i ty  F{J wil l  be very much used in the future. For brevi ty we 
shall write it simply as J. We have 

g - !g,v = 2J - I ),v • 

Thus the formula ( 1 4.5) gives 

I - 1 I J.p V ,v - 2Y g g).p, v 
and the formula ( 1 4.6) may be written 

r�"J = J. . . 

(20.5) 

(20.6) 
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11. Gauss and �tokes theorems 
The vector A� has t he covariant d ivergence A�,� , which is a scalar. We have 

A'':� = A�� + r�� A'  = A�� + J - 1 J.v A'. 
Thus 

A�,� J = (A�J) .w (2 1 . 1 ) 

We can put A�,� for S in (20.4), and we get the invariant 

If the integral is taken over a finite (four-dimensional) volume, the right-hand 
side can be converted by Gauss's theorem to an integral over the boundary 
surface ( three-d imensional) of the volume. 

If  A�,� = 0, we have 

(A�J) = 0 .� (21 .2) 

and this gives us a conservation law ; namely, the conserva tion of a flu id  
whose density is A0 J and whose flow is given by the three-dimensional 
vector Am J (m = 1 ,  2, 3). We may integrate (21 .2) over a three-dimensional 
volume V lying at a definite t ime x0• The result is 

= surface integral over boundary of V. 

If  there is no curren t crossing the boundary of V, J A 0 J d3x is constant. 

These results for a vector A� cannot be taken over to a tensor with more 

than one suffix, in general .  Take a two-suffix tensor y�v. In  flat space we can 

use Gauss's theorem to express J y�v. v d4x as a surface integral, but in curved 

space we cannot in general express J y�v,J d4x as a surface integral . An 

exception occurs for an antisymmetrical tensor F�v = - pv�. 

so 

ln this case we have 

F�v. = F�v + P' pP• + rv F�P . v , v vp vp 
= 

p�v + J- tJ F�P , Y  ,p  
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from (20.6). Th us 

(2U) 

Hence J F�·,. Jd4x = a surface integral , and if F�v :v = 0 we have a conser
vation law. 

In the symmetrical case y�v = yv� we can get a corresponding equation 
with an extra term, provided we put one of the suffixes downstairs and deal 
with Y,/:v · We have 

Putting u = v and using (20.6), we get 

y v - y v + J- 'J y a r yav 
ll : v - � .V  ,a 1J - IXIJV • 

Since yav is symmetrical, we can replace the r in the last term by · IXIJV 

from (7.6). Thus we get 

J';/:vJ = ( Y/J),v - tgap,� yafJJ. 
For a covariant vector A� , we have 

AP - Av :� = A�.v - r:, AP - (A,,,.. - r�� Ap) 
= A�, v - Av,p . 

(2 1 .4) 

(2 1 . 5) 

This resu l t  may be stated : covariant curl equals ordinary curl. I t  holds only 
for a covariant  vector. For a contravariant vector we could not form the 
curl because the suffixes would not balance. 

Let us take Jl = 1, v = 2. We get 

A , , 2  - A2 : t  = A , , 2  - A2. 1 · 

Let us integrate this equation over an area of the surface x0 = constant 
3 

' 
x = constant. From Stokes's theorem we get 

JJ(A 1 , 2 - A2, d dx ' dx2 = JJ(A 1 , 2 - ,42, 1 ) dx 1 dx2 

(2 1 . 6) 

integrated around the perimeter of the area. Th us we get an integral round a 
perimeter equated to a flux crossing the surface bounded by the perimeter. 
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The result must hold generally in all coordinate systems, not merely those for 
which the equations of the surface are x0 = constant, x3 = constant. 

To get an invarian t way of writing the result, we introduce a general 
formula for an element of two-dimensional surface. If we take two small 
contravariant vectors �� and ,�, the element of surface area that they subtend 
is determined by the antisymmetric two-index tensor 

ds�· = ��,. - �·,�. 

Thus, if �� has the components 0, dx 1 , 0, 0, and ,� has the components 0, 0, 
dx2 , 0, t hen dS�" has the components 

with the other components van ishing. The left-hand side of (2 1 .6) becomes 

The right-hand side is eviden t ly J A� dx�, so the formula becomes 

(2 1 .7) 
surface p e r i meter 

ll Harmonic coordinates 
The d'Alembert equation for a scalar V, namely 0 V = 0, gives, from ( 10.9), 

(22. 1 )  

If we are using rect i l i near axes in fiat space, each of the four coordinates x' 
sat isfies Ox' = 0. We might subst i tute x' for V in (22. 1 ) .  The result , of course, 
is not a tensor equation, because x' is not a scalar l ike V, so i t holds only in 
certain coord inate systems. It imposes a restriction on the coord inates. 

If we substitute x' for V, then for �« we must substi tu te x:« = g:. The 
equation (22. 1 )  becomes 

(22.2) 

23. THE ELECTROMAGNETIC FIELD 4 1  

Coord inates that satisfy th i s  condit ion are called harmonic coordinates. They 
provide the closest approximation to rect i l inear coord inates that we can have 
in curved space. We may use them in any problem if we wish to, but very often 
they are not worthwhile because the tensor formalism wi th general co
ordinates i s  really qu i te convenient. For the discussion of gravitat ional waves, 
however, harmonic coordinates are very useful . 

We have in general coordinates, from (7 .9) and (7.6), 

g�•.a = - g�«g"P(f«/ia + rfJ«a) 

- g"lifPa - g�ar�., . 

Thus, w i th  the help of (20.6), 

(g�"J).a = ( -g•Prp., - g�«r�a + g�"r�p)J. 

Contracting by putting a = v, we get 

(g�"J),v = - g"Pfp.J• 

We see now that an alternat ive form for the harmonic condit ion is 

n. The electromagnetic field 
Maxwell 's equations, as ord inari ly written, are 

1 oA 
E = - - - - grad ¢, 

c at 
H = curl A, 

1 oH 
- - = - curl E 
c ot · 

d iv H = 0, 

1 oE 
- - = curl H - 4nj, 
c ot 

div E = 4np. 

(22.3) 

(22.4) 

(22 .5) 

(22.6) 

(23 . 1 )  

(23 .2) 

(23 .3)  

(23.4) 

(23 .5) 

(23.6) 
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We must first put them in four-d imensional form for special relat iv i ty. The 
potentials A and 4> form a four-vector K� in accordance with 

K'" = A'", (m = 1, 2, 3). 

Define 

Then from (23. 1 )  

£ l  = 
8K1 8K0 8Kl 8Ko l O 

- axo - ax t = axo - ax t = Ft o = - F  

and from (23.2) 

(23 .7) 

Thus the six components of the antisymmetric tensor F�· determine the 
field quantities E and H. 

From the definition (23 .7) 
(23.8) 

This gives the Maxwell equations (23.3) and (23.4). We have 

(23 .9) 
from (23.6). Again 

(23. 1 0) 

from (23.5). The charge density p and current j'" form a four-vector J� in 
accordance with 

J'" = j'". 

Thus (23.9) and (23. 10) combine into 

(23 . 1 1 ) 
In this way the Maxwell equations are put into the four-d imensional form 
required by special relat ivity. 
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To pass to general relativity we must write the equations in covariant 
form. On account of (2 1 . 5) we can write (23.7) immediately as 

This gives us a covariant definition of the field quantit ies F �· · We have 
further 

Making cycl ic permutations of 11. v, and a and adding the three equat ions so 
obtained, we get 

(23 . 1 2) 

from (23 .8). So this Maxwell equation goes over immediately to the covariant 
form. 

Finally, we must deal wi th the equation (23. 1 1 ). This is not a valid equation 
in general relativity and must be replaced by the covariant equation 

(23 . 1 3) 

From (21 . 3), which applies to any antisymmetric two-suffix tensor, we get 

(P• J) . •  = 4nJ� J. 

This leads immediately to 

(J� J).� = (4n)- 1 (P• J).�. = 0. 

So we have an equation like (2 1 .2), giving us the law of conservation of 
electrici ty. The conservation of electricity holds accurately, undistu rbed 
by the curvature of space. 

14. Modification of the Bnstein equations by the 

presence of matter 
The Einstein equations in the absence of matter are 

R�· = 0. (24. 1 ) 
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They l ead to 

R = 0 ;  
and hence 

(24.2) 

I f  we start with equations (24.2), we get by contraction 

R - 2R = 0 

and so we can get back to (24. 1 ) . We may ei ther use (24. 1 )  or (24.2) as the basic 
equations for empty space. 

In the presence of matter these equations must be mod ified. Let us suppose 
(24. 1 ) is changed to 

(24 . 3) 

and (24.2) to 

(24.4) 

Here X�'• and Y11• are symmetric two-index tensors indicating the presence 
of matter. 

We see now tha t (24.4) is the more convenient form to work with, because 
we have the Bianci relation  ( 1 4.3), which tel ls us that 

(W• - !g11• R) , .  = 0. 

Hence (24.4) requ ires 

y�·,. = 0. (24 .5) 

Any tensor p• produced by matter must satisfy this condition ; otherwise 
the equat ions (24.4) would not be consistent. 

It is convenient to bring in the coefficient - 8n and to rewrite equation 
(24.4) as 

(24.6) 

We sha l l  find that the tensor y�· with this coefficient is to be interpreted as 
the density and flux of (nongravi tational) energy and momentum. P0 is the 
density and Y"' is the flux. 

In flat space equation (24.5) would become 

yll• = 0 . v  
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and would then give conservation of energy and momentum. In curved space 
the conservation of energy and momentum is only approximate. The error 
is to be ascribed to the gravi tational field working on the matter and having 
itself some energy and momentum. 

U. The material energy ten�or 
Suppose we have a d istribut ion of matter whose velocity varies cont inuously 
from one point to a neighboring one. If z� denotes the coordinates of an 
element of the matter, we can introduce the velocity vector v11 = dz''/ds, 
which will be a continuous function of the x's, l ike a field function. It has 
the propert ies 

Thus 

g11. v�v· = 1 ,  

0 = (g�. ifv•J:,, = g�
.(v �v· ,,  + v�,, v•) 

= 2g11. v�v·," . 

v. v• ,, = 0. 

(25. 1 )  

(25 .2) 

We may introduce a scalar field p such that the vector field pv� determines 
the density and flow of the matter just l ike J11 determines the density and 
flow of electricity ; that is to say, pv0 J is the densi ty and pum J is the flow. 
The condit ion for conservation of the matter is 

(pv�J) = 0 ·ll  

or 

(pv11),11 = 0. (25.3) 

The matter that we are considering wil l have an energy density pv0v0 J 
and energy flux pv0vm J, and simi larly a momentum dens i ty pv"v0 J and 
momentum flux pv"vm J. Put  

(25 .4) 
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Then p••J gives the density and flux of energy and momentu m. Tl'" is 
called the material energy tensor. It is, of course, symmetric. 

Can we use T�'• for the matter term on the right-hand side of the Einste in 
equation (24.6) ? For this  purpose we require T�'· , .  = 0. We have from the 
defin i t ion (25.4) 

The first term here vanishes from the condition for conservat ion of mass 
(25.3). The second term vanishes if the matter moves along geodesics for, if 
v�' is defined as a continuous field function i nstead of having a meaning only 
on one world l ine, we have 

So (8 .3) becomes 

or 

dv�' ll v -d = V v V . 
s . 

(25.5) 

We see now that we can substitute the material energy tensor (25.4), with a 
su i table numerical coefficient k, in to the Einstein equation (24.4). We get 

(25.6) 

We shal l  now determine the value of the coefficient k. We go over to the 
Newton ian approximation, fo l lowing the method of Section 1 6. We note 
first that, contracting (25.6), we get 

- R = kp. 

So (25.6) may be written 

w· = kp(ifv• - tg�'•). 

With the weak field approximation we get, corresponding to ( 1 6.4), 

tgP"(gpa,IJ.v - 9va,JLp - giJ.p, va + 91J.v,pa) = kp(VIl Vv - tgi'J 
We now take a static field and a static distribution of matter, so that v0 = l ,  
vm = 0. Putting J1 = v = 0 and neglecting second-order quantities, w e  find 

- fV2goo = fkp 
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or from ( 1 6.6) 

V2 V  = - tkp. 

To agree with the Poisson equation we must take k = - 8n:. 
The Einstein equation for the presence of a distribution of matter with a 

velocity field thus reads 

(25.7) 

Thus T�'•, given by (25.4), is precisely the Y �'Y of equation (24.6). 
The condition for conservation of mass (25.3) gives 

hence 

(25 .8) 

This is a condition that fixes how p varies along the world line of an element 
of matter. It  allows p to vary arbitrarily from the world line of one element 
to that of a neighboring element. Thus we may take p to vanish except for 
a packet of world lines forming a tube in space-time. Such a packet would 
compose a particle of matter of a finite size. Outside the particle we have 
p = 0, and Einstein's field equation for empty space holds. 

It should be noted that, if one assumes the general field equation (25.7), one 
can deduce from it two things : (a) the mass is conserved and (b) the mass 
moves along geodesics. To do this we note that (left-hand side) : .  vanishes 
from Bianci's relation, so the equation gives 

or 

(25.9) 

Multiply this equation by v
�'
. The second term gives zero from (25.2) and we 

are left with (pv•), . = 0, which is j ust the conservation equation (25.3). 
Equation (25.9) now reduces to v•v�', . = 0, which is the geodesic equation. It 
is thus not necessary to make the separate assumption that a particle moves 
along a geodes ic. With a small particle the motion is constrained to lie along 
a geodesic by t he application of Einstein's equations for empty space to the 
space around the particle. 
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16. The gravitational action prindple 
Introduce the scalar 

(26. 1 ) 

integrated over a certain four-dimensional volume. Make smal l  variat ions 
bg1,v in the g,v , keeping the g,.v and their first derivatives constant on the 
boundary. We shall find that putting M = 0 for arbitrary bg,v gives Einstein's 
vacuum equations. 

We have from ( 14.4) 

where 

and 

R = g"•R = R* - L 
"" ' 

(26 .2) 

(26.3) 

I involves second derivatives of g,.. , since these second derivatives occur 
i n  R*. But they occur only l inearly, so they can be removed by partial 
integration. We have 

R* I = (g" ' ['" ') - (g"•ra ') - (g"" ') r" + (g"• 1) f" . (26.4) '\/ w:t'\1 ,v p.v'\/ ,t1 '\/ , v p.t1 '\/ ,a ,.,.v 

The first two terms are perfect d ifferentials, so they w i l l  contr ibute nothing to 
I. We therefore need retain only the last two terms of (26.4). Wi th  the help 
of (22.5)  and (22.4) they become 

g"Pq. r;"J + ( - 2g"Prp" + g''"r�11)r:.J. 

This is just 2LJ, from (26.3). So (26. 1 )  becomes 

which involves only the g,. and their  first derivatives. It is homogeneous of 
the second degree in these first derivatives. 

Put !l' = LJ. We take i t  (with a suitable numerical coefficient to be 
determined later) as the action density for the gravitational field. It is not a 
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scalar density. But it is more convenient than RJ, which is a· scalar density, 
because it does not involve second derivat ives of the g,v ·  

Accord ing to ordinary ideas o f  dynamics, the action i s  the t ime integral 
of the Lagrangian. We have 

I = f .Ie d4x = f dx0 f ft' dx 1 dx2 dx3 

so the Lagrangian is evidently 

J !l' dx 1 dx 2 dx 3
• 

Thus .Ie may be considered as the Lagrangian densi ty ( in th ree dimensions) as 
well as t he action density ( in  four dimensions) . We may look upon the g,v as 
dynamical coordinates and their t ime derivatives as the velocities. We then 
see that the Lagrangian is quadratic (nonhomogeneous) in  the velocities, 
as i t  usua l l y  is in ord inary dynnmics. 

We must now vary !£'. We have, using (20.6), 

b(I��v f�11 g"• J) = f�v b(r�11 g"\/) + f�pg""J bf�v · 

= r�v b(g""J .• ) + r�p b(f�v g""J) - r��� r�v b(g'' "J) 
= rzv o(g""J .• ) - r�p b(g""Jl. v - r��� r:v o(g""J) 

with the help of (22.5). Again 

<5(r�. P.11 g"" J) = 2(c5r�.)r�11 g"" J + r�. r�11 b(g"" J) 
= 2b(r�. g"" J)r�11 - r�. r�11 b(g"" J) 
= - o(g •P .• J)f�11 - r�. r�11 o(g"" Jl 

with the help of (22.3) . Subtract ing (26.6) from (26.5), we get 

(26.5) 

(26.6) 

o:e = r;. b(g"" Jl .• - r�11 b(g•• Jl . • + (r�. r�11 - r�11 r�.l J(g"• J). (26. 7) 

The first two terms here d iffer by a perfect d ifferent ial from 

- r; ... <5(g"• J) + r�p. v b(g"• J) . 
So we get 

(26.8) 

with R,.. given by ( 14.4). With the bg". arbi trary, the quant i t ies b(g"• J) are 
also independent and arbitrary, so the condi tion that (26.8) vanishes leads 
to Einstein's law in the form (24. 1  ). 
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We can deduce, by the �arne method as (7.9), that 

{Jgll• = _ gl'"g•fl {Jg11fJ . 

Also, corresponding to (20.5), we can deduce 

{J.j = t.J g«fl {JgafJ • 

Thus 

{J(g"".j) = - (g""g•fl - tg""g"fl).j {JgafJ · 
So we may write (26.8), alternat ively, 

{JJ = - f Rll,(gllllg•fl - !g""g"fl).j {JgafJ d4x 

= - f(R"P - tg•PR).j {JgafJ d4x. 

(26.9) 

(26. 1 0) 

(26. 1 1 ) 

The requirement that (26. 1 1 ) vanishes gives Einstein's law in the form 
(24.2). 

11. The O(tion for o continuous distribution of matter 
We shall consider a continuous distribut ion of matter whose velocity varies 
cont inuously from one point to a neighboring one, as we did in Section 
25. We shall  set up an action principle for this matter in interaction with the 
gravitational field in the form 

(27.1) 

where I 9 ,  the gravitational part of the action, is the I of  the preceding section 
with some numerical coefficient K, and I m , the matter part of the action, will 
now be determined. The condition (27. 1 ) must lead to Einstein's equations 
(25. 7) for the gra vita tiona! field in the presence of the matter and the geodesic 
equations of motion for the matter. 

We shall need to make arbitrary variations in the position of an element of 
matter to see how it affects Im .  It makes the discussion clearer if  we first 
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consider the variat ions purely kinematical ly, without any reference to the 
metric g" • . There is n��n a real distinction between covariant and contra
variant vectors and we cannot transform one into the other. A velocity is 
described by the ratios of the components of a contravariant vector u", and 
it cannot be normalized without bringing in the metric. 

With a continuous flow of matter we have a velocity vector u" (with an 
unknown multiplying factor) at each point. We can set !!P a con travariant 
vector density p ", lying in the direction of u", which determines both the 
quantity of the flow and its velocity according to the formulas : 

p0 dx 1 dx2 dx3  

is the  amount of matter within the element of volume dx 1 dx2 dx3 a t  a 
certain time and 

p 1 dx0 dx2 dx3 

is the amount flowing  through the surface element dx2 dx3 during a time 
interval dx0• We shall assume the matter is ·  conserved, so 

P"." = 0. (27.2) 

Let us suppose each element of matter is displaced from z" to z" + b" 
with b" small .  We must determine the resulting change in p" at a given point x. 

Take first the case of b0 = 0. The change in the amount of matter wi th in  a 
certain three-dimensional volume V is minus the amount displaced through 
the boundary of V :  

{J f/o dx1 dx2 dx3 = - J p0b' dS, ,  

(r = 1 ,  2 ,  3), where dS, denotes an element of t he  boundary surface of V. 
We can transform the right-hand side to a volume integral by Gauss's 
theorem and we find 

(27.3) 

We must generalize this result to the case b0 "# 0. We make use of the 
condition that if b" is proportional to p", each element of matter is  d isplaced 
along i ts world line and there is then no change in p". The generalization of 
(27.3) is  evider. tly 
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because this agrees wi th  (27.3) when b0 = 0 and gives 1Jp0 = 0 when bll is 
proportional to pll. There is a corresponding formula for the other com
ponents of pll, so the general resu l t  is 

(27.4) 

For describing a continuous flow of matter the quant i t ies pll are the basic 
variables to be used in the act ion function. They must be varied in accordance 
with the formula (27.4), and then, after suitable part ial  integrations, we must 
put the coefficient of each bll equal to zero. This will give us the equations of 
motion for the matter. 

The action for an isolated particle of mass m is 

- m J ds. (27.5) 

We see the need for the coefficient - m by tak ing the case of special relativity, 
for which the Lagrangian would be the time derivat ive of (27.5), namely 

L = - m !!_ = - m 
(1 - dx' dx') l /2 

dx0 dx0 dx0 ' 

summed for r = 1 , 2, 3. This gives for the momentum 

as it ought to be. 

iJL dx' ( dx" dx")- 1 12 
iJ(dx' jdx0) 

= m dx0 1 -
dx0 dx0 

dx' 
= m - ,  

ds 

We obtain the action for a cont i n uous distribu t ion of matter from (27.5) 
by replacing m by p0 dx 1 dx2 dx3 and integrating ; thus 

(27 .6) 

To get this in a more understandable fo rm we use the metric and put 

(27.7) 
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where p is a scalar that determines the density and vll is t he previous vector  
!Ill normalized to  be  of  length I .  We get 

I'" = - J pJv0 dx 1 dx2 dx3 ds 

(27.8) 

since v0 ds = dx0 •  
This form for the action is not suitable for applying variations, because 

p, vll are not i ndependent variables. We must el iminate them in terms of the 
pll, which are then to be varied in accordance with (27 .4). We get from (27.7) 

(pllpy'z = pJ. 
So (27.8) becomes 

I'" = - f(p��py/2 d4x. 

To vary this expression we use 

(5(pl'py/2 = !{J/pA)- 1 12(pllp• /)gil• + 2pll /)pll) 
= !pvllv•J IJgll• + vll IJpll. 

(27.9) 

The action principle (27. 1 ) now gives, with the help of (26 . 1 1 ), which we 
multiply by the coefficient K, 

IJ(I9 + I'") = - J [K(Ril• - !gll•R) + tpvllv•]J /)gil• d4x - J vll IJpll d4x. 

(27. 1 0) 

Equating to zero the coefficient of 1Jg1,. ,  we get Einstein's equation (25.7), 
provided we take K = ( 1 6rr) - 1 .  The last term gives, wi th (27 .4) 

- J V1,(p•bll - p��b•) .
• 
d4x 

= J vll)p•hll - pllb•) d4x 

= J<v - v )p•bll d4x p, v v ,p 

= J(vll ' • - v.,11)pv•bllJ d4x 

= J vll: v pv•bll J d4x (27 . 1 1 )  
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from (25.2). Equating to zero the coefficient of b"' here, we get the geodesic 
equat ion (25 .5). 

18. The auion for the electromagnetic field 
The usual expression for the action density of the electromagnetic field is 

If  we write i t  in the four-dimensional notation of special relativity given in 
Section 23, i t  becomes 

This leads to the expression 

(28. 1 )  

for the invariant action in  general relativity. Here we  must take into account 
that Fit• = K,_.,. - K ., ,_. , so !em is a function of the g,_.. and the derivatives 
of the electromagnetic potentials. 

Let us first vary the g �'" keeping the Ka constant, so the F ,_.. are constant 
but not the F�'•. We have 

with the help of (26. 10) and (26.9). Thus 

b(F�t• P".J) = (�F�'J�'•gP" - 2P .P• ).J (Jgpa 
= 8n£P" .J bg1m , (28 .2) 

where £Pa is the stress-energy tensor of the electromagnetic field, a sym
metrical tensor defined by 

(28 .3)  
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Note that in special relativity 

4nEoo = E2 - 1(£2 - H2) 

= �{£2 + H2) , 

so E00 is the energy density, and 

4rrEo t  = - Fo
2 F ' 2 - Fo

3 F t 3 

= E2H3 - E3H2, 

so E0" is the Poynting vector giving the rate of flow of energy. 
If we vary the K,_. , keeping the g«fJ fixed, we get 

b(F,_.. P".J) = 2P•.J (JFil• = 4P•.J bK,_., v 

with the help of (2 1 . 3). 

= 4(P• .J bK),v - 4(Pv .J) .• bK,_. 
= 4(Pv .J bK�t) . • - 4F�'•, • .J hKil 
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(28.4) 

Adding (28 .2) and (28 .4) and dividing by - 16rr, we get for the total vari
ation 

(28.5) 

19. The auion for charged matter 
In the preceding section we considered the electromagnetic field in the 
absence of charges. If there are charges present, a further term is needed in 
the action. For a single particle of charge e, the extra act ion is 

- e JK dx�' = - e JK v"' ds It It ' 

integrated along the world line. 

(29. 1 ) 

There are difl1culties in deal ing with a point part icle carrying a charge 
because it prdduces a singularity in the electric field. We can evade these 
difficulties by dealing instead with a cont inuous distribution of matter 
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carrying charge. We sha l l  handle this matter with the technique of Section 27, 
assuming each element  of t he matter carries charge. 

In the kinematical discussion we had a contravariant vector density p� to 
determine the densi ty and flow of the mat ter. We must now introduce a 

contravariant vector density f� to determine the density and flow of elec
tricity. The two vectors are constrained to l i e  in the same d i rection. When we 
make a displacement, we have 

(29 .2) 

corresponding to (27.4), with the same b�. 
The expression (29. 1 )  for the action for a charged particle now leads to 

for a continuous d istrihut ion of charged matter, corresponding to (27.6). 
When we introduce the metric we put, co rresponding to (27. 7), 

(29.3) 

where u is  a scalar that determines the charge densi ty. The action now 
becomes, correspo

.
nd ing to (27. 8), 

Thus 

Iq = - JuK� v''J d4x 

Mq = - f [f� i5K� + K�(fvb'' - f�bv) .J d4x 

= f [ - (JV� J i5K� + K�. vff
vb� - f�bv)J d4x 

= f u( - v1' i5K� + F�v v'"b�)J d4x. 

(29.4) 

(29.5) 

The equations for the i nteraction of the charged matter with the combined 
gravitational and electromagnetic fields al l  fo l low from the general act ion 
principle 

(29.6) 
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Thus we take the sum of the expressions (29.5), (28. 5), and (27. 10) with the 
last term replaced by (27. 1 1 ), and equate the total coefficients of the variations 
()g �v , (jK� , and b� to zero. 

The coefficient of J ()g�v · multiplied by - l 6n, gives 

(29.7) 

This is the Einstein equation (24.6) with y�v consist ing of two parts, one 
coming from the material-energy tensor and the other from the stress-energy 
tensor of the electromagnetic  field. 

The coefficient of J i5K" gives 

- uv" + (4n) - 1F"v : v = 0. 

From (29.3) we see that uv� is the charge current vector J" , so we get 

(29.8) 

This is the Maxwell equation (23 . 1 3) for the presence of charges. 
Final ly, the coefficient of Jb� gives 

or 

(29.9) 

The second term here gives the Lorentz force which causes the trajectory of 
an element of the matter to depart from a geodesic. ' 

The equation (29.9) can be deduced from (29.7) and (29.8). Taking the 
covariant d ivergence of (29.7) and using the B ianci relations, we get 

Now from (28.3) 

4nE�v = _ r;·��Fv _ F�� Fv + ig '"'F�fl F : v  1 ·  e�: v :v « 2. cr.(J:v 
= - F"�Fvo:v - tg�PFvcr(Fpa:. - Fpv :cr - Fvcr:p) 
= 4nF"�J� , 

from (23. 1 2) and (29.8). So (29 . 1 0) becomes 

Multiply by v" and use (25.2). We get 

(pvv) : v = - F"�v" J� = 0 

(29. 1 0) 

(29. 1 1 ) 
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if we use the condi t ion J. = ITV0 , expressing that J. and v. are constrained 
to l ie in the same direction. Thus the first term of (29. 1 1 ) vanishes and we are 
left with (29.9). 

This deduction means that the equations that fol low from the act ion 
pri nciple (29.6) are not al l independent. There is a general reason for this, 
which wil l be explained in Section 30. 

JO. The comprehemive action principle 
The method of Sect ion 29 can be general ized to apply to the gravitat ional 
field interacting with any other fields, which are also interacting with one 
another. There is a comprehensive action principle, 

b(/9 + I') = 0, (30. 1) 

where I 9 is the gravitational action that we had before and I' is the act ion of all 
the other fields and consists of a sum of terms, one for each field. It is a great 
advantage of us ing an action principle that i t  is so easy to obta in  the correct 
equations for any fields in interaction. One merely has to obtain the action 
for each of the fields one is interested in and add them all together and include 
them a l l  in (30. 1 ) .  

We have 

!9 = J !L' d4x, 
where this !L' is ( 1 6rr) - 1 times the !t' of Section 26. We get 

M9 = f((�!L' bg.p + 0°2 bgafl. •) d4x 
gafJ ga(J .v 

= J[o!t' - ( off' ) J bg.p d4x. ogafJ ogafJ, v .v 
. 

The work of Section 26, leading to (26. 1 1 ), shows that off' - ( off' ) = - ( 16rr) - 1 (R"fl - tg•flR)..j. 
og.p ogafJ, v , v 

(30.2) 
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Let <Pn (n = I ,  2, 3, . . .  ) denote the other field quantities. Each of them is 
assumed to be a component of a tensor, but its precise tensor character is left 
unspecified. I' is of the form of the integral of a scalar density 

where !L'' is a function of the <Pn and their first derivatives <Pno�• and poss ibly 
also higher derivatives. 

The variation of the action now leads to a result  of the form 

(30.3) 

with p1" = p'11, because any term involving c5 (derivative of a field quanti ty) 
can be transformed by partial integration to a term that can be included in 
(30.3). The variation principle (30. 1 )  thus leads to the field equations 

pll• = 0, 

x" = o. 

(30.4) 

(30.5) 

p11•.Jwill consist of the term (30.2) coming from 19 plus terms comingfrom !L'',.J say N1".'We have of course N11' = N •'" . !L'' usual ly  does not contain 
derivatives of the g'". and then 

(30.6) 

The equation (30.4) now becomes 

R11' - ig'"R - l6nN11' = 0. 

It is just the Einstein equation (24.6) with 

(30. 7) 

We see here how each field contributes a term to the right-hand side of the 
Einstein equation, depend ing, according to (30.6), on the way the action for 
that field involves g1,. . 

It is necessary for consistency that the N11• have the property N'",. = 0. This 
property can be deduced quit� general ly from the condition that I' is invariant 
under a change of coordinates that leaves the bounding surface unchanged . 
We make a small change of coordinates, say x11 • = x11 + b'", with the b'" small 
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and funct ions of the x's, and work to the first order in the b�. The transfor
mation Jaw for the g�v is  according to (3 . 7), wi th dashed suffixes to  specify the 
new tensor, 

g�Jx) = x�>��ga '/l ' (x'). (30.8) 

Let !JgafJ denote the first-order change in gaP • not at  a specified field point, but 
for definite values of the coord inates to which it refers, so that 

ga p ·(x ') = gap( X') + ligafJ 
= gatlx) + ga.p," b" + (jg«P .  

We have 

Thus (30.8) gives 

so 

g11v(x) = (g: + b�11) (g� + b�v) [Ya.p(x) + Ya.p ,"
b" + (jga.p] 

= g, .. (x) + g �v,<T b" + lig �v + g �fJ b�v + ga.v b�� , 

(jgllV = - g�a b:v - gva. b�l' - gi'V,<T b". 

We now determine the variation in I' when the g11v are changed i n  this 
way and the other field variables keep the same value at the point with 
coord inates x�· that they previously had for x�. I t  is, i f  we use (30.6), 

(j[' = f N'" !Jg��v J d4x 

= f [2(N/)), v - g�v ,a.N�vJ]b« d4X 

= 2 f N/,vb«J d4x 

from the theorem expressed by (2 1 .4), which is val id for any symmetrical 
two-index tensor. The invariance property of I' requires that it shall  be 
unaltered under this variation, for all b«. Hence N;,v = 0 . 

On account  of this relation, the field equations (30.4), (30.5) are not all  
independent. 

3 1 .  THE PS ElJ DO-ENER G Y  TENSOR 

�1. The p�eudo-energy ten�or of the gravitational 

field 
Define the q uantity t,, 

v by 

We then have 

Now 

so 

from (30.2). With the help of the field equations (24.6) we now get 

(t,,' )),v = -t y«Pga.fJ,I'J, 
so from (2 1 .4) and J:,v: v = 0, we get 
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(3 1 . 1 )  

[(t/ + Y/).JL = 0. (3 1 .2) 

We have here a conservat i on Jaw, and it i s  natural to consider the con
served density (t� v + Y11 v)J as the density of energy and momentum. We have 
a l ready had Y� v as the energy and momen tum of the fields o ther than the 
gravitational field, so t/ represents the energy and momentum of the grav i ta
tional field. But it is not a tensor. The equation (3 1 . 1 )  that defines i t  may be 
written 

(3 1 . 3) 
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but L is not a scalar, because we had to transform the scalar R, which was 
original ly used to get the gravitat ional action, in order to remove the second 
derivat i ves from it. Thus t/ cannot be a tensor. I t  is called a pseudo-tensor. 

It is not possible to obtain an expression for the energy of the gravitational 
field sat isfying both the cond itions : (i) when added to o ther forms of energy 
the total energy is conserved, and (ii) the energy within a definite (three
dimensional) region at a certain  t ime is i ndependent of the coord inate 
system. Thus, in general, gravitational energy cannot be localized. The best 
we can do is to use the pseudo-tensor, which satisfies cond i t ion (i) but not 
(ii) . It gives us approximate information about gravitational energy, wh ich 
in some special cases can be accurate. 

We may form the integral 

f (t/ + Y� 0)J dx 1 dx2 dx3 (3 1 .4) 

over a large three-dimensional volume enclosing some physical system at a 
certain  time. As the volu me tends to infini ty, we may suppose the integral 
to give the total energy and momentum, provided : (a) it  converges and (b) the 
flux through the surface of the large volume tends to zero. The equation 
(3 1 .2) then shows that the integral (3 1 .4) taken at  one t ime x0 = a equals i ts 
value at another t ime x0 = b. Furthermore, the integral must be independent 
of the coordinate system, since we could change the coord inates at x0 = b 
without changing them at x0 = a. We thus have definite expressions for 
the total energy and momentum, which are conserved. 

The condi tions (a) and (b), which are needed for conservation of total 
energy and momentum, do not often apply in practical cases. They would 
apply if space were static outside a defini te  tubular region in four d imensions. 
This could be so i f  we had some masses which start to move at a certain 
time, so that the motion creates a disturbance which travels outward with 
the velocity of light. For the usual planetary system the motion will have 
been going on since the infinite past and the condi t ions do not apply. A 
specia l  t reatment is needed to discuss the energy of the gravitat ional waves, 
and this will be gi ven in Sect ion 33 .  

32. EXPLICIT EXP R ESSION F O R  T H E  PSEUDO-TENSOR 63 

Jl Ixplicit expre��ion for the p�eudo-ten�or 
The formula (3 1 . 1 ) for defin ing t� v is of the form 

(32. 1 )  

where the q .  ( n  = 1 ,  2 ,  . . .  , 1 0) are the ten g�v and a summat ion over a l l n i s  
implied. W e  could equal l y  wel l write it 

(32.2) 

where the Qm are any ten independent functions of the q • .  To prove this, note 
that 

Hence 

Thus 

a!l' aQm 
= aQm v aq" . 

The equal i ty of (32. 1 )  and (32.2) fol lows. 
To deduce an explicit expression for t� v i t  is convenient to work with 

(32.2) and to take the Qm to be the quantities g"vJ. We can now use formula 
(26.7), which gives (bringing in the coefficient 16n:), 

16n: J!l' = (r;� - g, r; .. ) J(g"/1 J) . • + (some coeft) J(g1'v J), 

and hence 

1 6Jtt VJ = (rv - gV r" ) (g"�J) - g V !l' P. •P /1 "" ,p. " • (32.3) 
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n. Gravitational wove� 
Let us consider a region of e mpty space .where the gravitational field is 

weak and the g�.�v are approximately constant. We then have �.:quation ( 1 6.4) or 

(33 . 1 ) 

Let us take harmonic coordinates. The condition (22.2) gives, with the suffix A. 
lowered, 

(33 .2) 

Differentiate this equation with respect to x" and neglect second-order 
terms. The result is 

(33 .3) 

Interchange p and u :  

(33.4) 

Add (33. 1 ), (33 .3), and (33.4). We get 

Thus each gP" satisfies the d'Alembert equation and its solution wil l  consist 
of waves traveling with the velocity of light. They are gravitational waves. 

Let us consider the energy of these waves. Owing to the pseudo-tensor 
not being a real tensor, we do not get, in general, a clear result independent 
of the coordinate system. But there is one special case in which we do get a 
clear result ; namely, when the waves are all  moving in the same direction. 

If the waves are all moving in the direction x 3 , we can choose our co
ordinate system so that the gJlv are functions of only the one variable x 0 - x 3 . 

Let us take the more general case in which the g1.1v are a l l  functions of the 
single variable l" x", the I" being constants satisfying gP"[P I" = 0, with neglect 
of the variable part of the gP". We then have 

(33 .5) 

where u)lv is the derivative of the function g JJV of /" x
". Of course, u�.�v = uvll ' 

The harmon ic condition (33 . 2) gives 

33. G RAVITATIONAL WAVES 

with u = u= . We may write t his as 

or as 

We have from (33.5) 

r:" = !{u: /" + u: [J.! - u�.�)P). 

The expression (26.3) for L reduces, with harmonic coordinates, to 

L = - gJ.!Vr:" ��p 
= - 1g�'v(uP [  + uP [ - u fP) (u "l + u" l  - u /"). 4 � a a p �a v p p v vp 
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(33 . 6) 

(33.7) 

This gives nine terms when multiplied up, but we can eas i ly see that every one 
of them vanishes, on account of (33.6) and /" /" = 0. Thus the action density 
vanishes. There is a corresponding result for the electromagnetic field, for 
which the action dens ity also vanishes in the case of waves moving only in 
one direction. 

We must now evaluate the pseudo-tensor (32. 3). We have 

I _ 1 I «/J - 1 lu[ " ,J.! - 2'\/ g g«/J,J.! - 2'\/ J.! ' 
so 

Hence 

I" (g«fl I) = I ( - u«/J + lg«flu)/ ar:r '\1 ,IJ "\/ ,II 2. 1J 

= 0, 

from (33.8) and (33 .7). We are left with 

l 6nt�'v = - l;p(u«/J - !g«Pu)l�.� 

- !(u; l/J + uP /« - u«/J lv) (u«P - Jg«Pu)l�.� 

= 11u u«/J - 1u2)/ rv 2\ «/J 2 J.! . 

(33.8) 

(33.9) 

We have a result for t/ that looks like a tensor. This means that t�.�v trans
forms like a tensor under those transformations that preserve the character 
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of the field of consisting only of waves moving in the d i rect ion Ia , so that the 
g"v remain functions of the single variable lax

a
. Such transformations must 

consist only in the introduct ion of coord inate waves moving in the direction 
Ia , of the form 

x"' = x" + b", 

where b" is a function only of ta xa. With the restriction that we have waves 
moving only in one direct ion, gravitational energy can be localized. 

J4. The polarization of gravitational waves 
To understand the physical significance of (33.9), let us go back to the case of 
waves moving in the d i rect ion x 3 , so that 10 = 1 , 11 = 12 = 0, 13 = - 1 , and 
use coordinates approximating to those of special relativity. The harmon ic 
condit ions (33.6) now give 

Thus 

so 

Also 

We now get 

u 1 0 + u 1 3 = 0, 

u2o  
+ u 2 3 = 0, 

U3o  + U3 3 = - tu. 

u l l + u 2 2  = 0. (34. 1 )  

ua.p u•P - !u2 = u002 + u 1 1 2 + u 2 2
2 + u3 3 2 - 2u0 1 2 - 2u0/ 

- 2u0 32 + 2u 1 /  + 2u2/ + 2u3 1 2 - !(u00 - u3 3f 
= u l l 2 + u22 2 + 2u l 2 2 

= i<u u - un)2 + 2u l /, 

34. THE POLARIZATION OF GRAV ITATIONAL WAVES 

from (34. 1) .  Thus 

and 

0 11 )2 + 2 16nt0 = 4,u 1 1 - u2 2  U 1 2 
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(34.2) 

We see that the energy density is positive definite and the energy flows in 

the direction x3 with the velocity of light. 

To discuss the polarization of the waves, we introduce the infinite�imal 

rotation operator R in the plane x l x2. Applied to any vector A I >  A2 , It has 

the effect 

Thus 

so iR has the eigenvalues ± 1 when applied to a vector. 
Applied to ua./1 • it has the effect 

So 

and 

R 2(u 1 1  - u2 2) = - 4(u 1 1 - U2 2l· 

Thus u + u is invariant, while iR has the eigenvalues ± 2 when applied 1 1  2 2  . 
'b h to u 1 1  - u2 2  or u 1 2 • The components of ua.p that contn ute to t e energy 

(34.2) thus correspond to spin 2. 
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U. The £osmolooi£ol term 
Einstein has considered generalizing his field equations for empty space to 

(35 . 1 ) 

where A. is a constant .  Th i s  is a tensor equat ion,  so it is permissible as a law of 
nature. 

We get good agreement with observat ion for the solar system without this 
term, and therefore if we do int roduce i t  we must take A. to be small enough 
not to disturb the agreement. Since R,.v contains second derivatives of the 
g"v ' A. must have the d imensions (distance) - 2 • For A. to  be small this distance 
must be very large. It is a cosmological distance, of t he order of the radius of 
the universe. 

The extra term is important  for cosmological theories, but has a negligible 
effect on the physics of nearby objects. To take i t  into account in the field 
theory, we mere ly  have to  add an extra term to the Lagrangian ; namely, 

w i th  c a suitable constant .  
We have from (26. 10) 

Thus the act ion p rinciple 

gives 

� \  
- ( 16n)(R"v - ig'"'R) + icg'' v = 0. (35 .2) 

The equat ion (35. 1 ) gives 

R = 4A. , 

and hence 

35. THE COSMO LOGICAL TERM 

This agrees with (35.2), provided we take 

81t c = - A. 
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For the gravitational field interacting with any other fields, we merely 
have to include the term I, in the act ion and we will get the correct field 
equations with Einstein's cosmological term. 
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