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Long-exposure photograph of star trails over the Kitt Peak National Observatory,
Arizona. The apparent circular motions of the stars were a potent and initially
very helpful factor in the formation of early concepts of celestial motions. They
also supplied an extraordinarily accurate and convenient clock, without which
the laws of planetary motion, and through them the laws of dynamics, could
never have been found. The recognition that the diurnal motion of the stars
could be explained by rotation of the earth was also a major factor in the de-
bates about the relativity of motion, the central topic of this book. (Photo by Paul
Shambroom/Science Photo Library.)
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PREFACE TO THE PAPERBACK EDITION

1. About this Book

This book was originally published in 1989 as Absolute or Relative Motion?
Volume 1, The Discovery of Dynamics. It was my hope that it would be
followed within a few years by a second volume with the provisional
subtitle The Frame of the World. The two volumes would together have
given a comprehensive account of what I call the absolute/relative de-
bate. This is closely related to Ernst Mach's daring idea (Mach's principle)
that inertia arises from the combined effect of the universe and not from a
straitjacket imposed by Newton's absolute space. What is at stake is the
foundation of dynamics and our view of the cosmos: Does the universe
exist within an invisible absolute framework, as Newton argued, or
is it some holistic and self-contained relational system, as proposed by
Leibniz and others? Closely related are the questions of the nature of time
and motion, and how these issues relate to Einstein's theories of special
and general relativity.

In the event, I have so far failed to complete the second volume—
though for personally encouraging reasons, as I explain in Section 3 of
this Preface. Following discussions with my present and previous pub-
lishers, it has now been decided to retitle the already published book The
Discovery of Dynamics and issue it as a paperback. This is appropriate,
since the book is mainly the story of how dynamics came to be discov-
ered. The book has been widely read as such and not just as a monograph
on the absolute/relative debate.

Except for this Preface, the book is being reissued exactly as originally
printed. I find no reason to undertake any significant revisions, and this
of course has helped to keep the cost down. It does have the one disad-
vantage that the reader will encounter various references to the now
never-to-be-published Volume 2. However, a substitute of sorts is already
to hand, as I explain later, so I hope the reader will not find this irksome.

The remainder of this Preface is divided into two parts. In Section 2,1
take the opportunity to respond to some points raised by reviewers when
the book was originally published, and to mention some new studies by
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other authors that relate to and complement the subject of The Discovery of
Dynamics. In Section 3,1 explain why its companion volume has not yet
appeared, and draw attention to already published material that covers
much of the planned content of that volume. The fact that a good propor-
tion of the material is already available is a further justification for the in-
dependent publication of the present work in paperback.

2. Response to Reviewers and Additional Comments

By and large, the reception of this book on first publication was most
encouraging for a first-time author. However, several reviewers felt its
value was diminished by being written from an exclusively modern per-
spective. Historians distrust "Whig history," that is, history conceived
under the assumption that humanity through the centuries has neces-
sarily been progressing toward the great ideals of liberal democracy and
enlightenment. My most severe critic was the late Eric Aiton, who wrote
[in Band 672 (1989) of Zentralblatt fur Mathematik und ihre Grenzgebiete])
that "the author's arguments are flawed, as a result of a deep-rooted
anachronism. Everything is judged in relation to what the author regards
as the correct theory: that is, the explanation accepted today. . . . The
idea of a linear progression towards the modern world view . . . has
long been abandoned by historians of science." Now I am sure there is
some truth in what Aiton says, and I am happy to leave the reader to
judge whether or not the "Everything" is fair. However, I do feel Aiton
failed to grasp the fact that the book had several aspects and aims, only
one of which could be called history of science. And I am not at all sure
Aiton's own position is so secure. All too many modern historians of
science seem to believe there are no criteria of good science.

Indeed, in his own book on Cartesian vortex theory (The Vortex Theory
of Planetary Motions), Aiton claimed that "Any evaluation of the vortex
theory . . . requires consideration of the currents of scientific thought
of the time, and especially of such aspects as the prevailing ideas on the
nature and purposes of scientific theories. It is only in this context that
questions concerning the originality of the theory, its degree of success
in relation to its aims, the force of the criticisms against it and the ex-
tent of its acceptance become meaningful." Well, that is fine if you want
to study such things (and they are quite interesting), but the simple
fact is that the vortex theory failed because its practitioners did not
yet appreciate the essence of good science, which needs both accurate
observations and theories and models that truly describe them. The vor-
tex theory had neither. It took into account only the coarsest aspects
of astronomical observations and sought to account for them by pictures,
not mathematical equations (or the geometrical demonstrations that
Newton employed).
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There are criteria of good science. And few working scientists are inter-
ested in the dead end of vortex theory. Mostly they want books about real
science and why it works. You get that in particular from the study of
Newton. Descartes's great importance for Newton was his embryonic
dynamical scheme and almost perfect formulation of the law of inertia,
as I argue in chapters 8-10 of this book. That is where the real interest for
science lies, not in the minutiae of vortex theory.

I have set out my own position on these matters in the essay "Reflec-
tions on the aims, methods and criteria of the history of science" in
Contemporary Physics, 38, 161-166 (1997), which includes a review of S.
Chandrasekhar's Newton's Principia for the Common Reader (which was
published by Oxford University Press in 1995 and about which I shall say
something below). I concluded that essay review with the words: "I re-
main convinced that the history of science represents a rich organic devel-
opment in which success has reinforced success and that the primary task
of the historians should be to tell that great story as it is. We need more
work on a broad canvas." This is my apologia for the present work.

Since the original publication of The Discovery of Dynamics in 1989 I
have done very little work on the period it covers and so am not in a posi-
tion to add much of significance to it now. However, I do regret that in the
original I did not cite the remarkable essay by Clifford Truesdell in his
founding issue of the Archive for History of Exact Sciences, in which he out-
lined "A Program toward Rediscovering the Rational Mechanics of the
Age of Reason." The main point he made was that a whole age of the de-
velopment of much of rational mechanics as we now know it had been
lost from sight through the towering prominence given to Newton's Prin-
cipia, published in 1687, and Lagrange's Mechanicjue Analitique, published
a century later in 1788. In the course of this essay he makes some very in-
teresting and provocative comments on Newton's Principia.

Some I feel are off the mark, especially the claim: "It is small oversim-
plification to say that . . . the Principia is a retrospective work which se-
lects, marshals, and formalizes the achievements of the century before it."
I really cannot see how Truesdell can say this of a work that introduces
the clear notion of force and with total clarity foresees the next three hun-
dred years of physics and expresses it in 92 words: "I wish we could de-
rive the rest of the phenomena of Nature by the same kind of reasoning
from mechanical principles, for I am induced by many reasons to suspect
that they may all depend upon certain forces by which the particles of
bodies, by some causes hitherto unknown, . . . cohere in regular figures.
. . . These forces being unknown, philosophers have hitherto attempted
the search of Nature in vain; but I hope the principles here laid down will
afford some light either to this or some truer method of philosophy." That
is hardly a retrospective sentiment. But Truesdell's essay is a fine read
and a worthy tribute to his hero Euler.
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Another quite different matter concerns the moon, which might have
figured more prominently in this book than it actually does. Among the
motions of the celestial objects that move in the sky relative to the back-
ground of the fixed stars, those of the moon are by far the most obvious
yet at the same time the most baffling. In fact, some argue that the at-
tempts to understand these motions created most of dynamics and many
of the most powerful methods of modern mathematical physics. There is
much truth in this view, but in my estimation it was nevertheless observa-
tions and interpretation of the simpler motions of the sun and the planets
that unleashed the Copernican Revolution, led Kepler and Galileo to
some of their greatest discoveries, and then provided the most telling
clues for Newton in his creation of dynamics. Happily there are, for more
advanced readers, two excellent accounts of lunar studies that I can rec-
ommend wholeheartedly, both by Martin Gutzwiller. The first is the part
of his Chaos in Classical and Quantum Mechanics (Springer-Verlag, 1990) de-
voted to the moon. The second is his review article on the lunar three-
body problem in Reviews of Modern Physics (70,589,1998).

I should also like to draw the reader's attention to the useful book The
Key to Newton's Dynamics: The Kepler Probe by J. B. Brackenridge (Univer-
sity of California Press, 1995), and to two very interesting articles by
Michael Nauenberg: "Hooke, Orbital Motion, and Newton's Principia"
(American Journal of Physics, 62, No. 4, 1994) and "Newton's Early Com-
putational Method for Dynamics" (Archive for History of Exact Sciences,
46, No. 3, 1994). Nauenberg, like the great Russian mathematician V. I.
Arnol'd [whose little book Huygens and Barrow, Newton and Hooke (Birk-
hauser, Boston, 1990) is strongly recommended], shares my belief, ex-
pressed in this book, that Hooke's contribution to the elaboration of the
law of universal gravitation (and much else) has not been adequately rec-
ognized. Nauenberg's second paper seems to me to be a genuine and
most interesting contribution to our understanding of the development of
Newton's dynamical methods. The paper is recommended to those who
like a bit of good detective work coupled with a fine feeling for dynamics.

I should also like to quote from an otherwise positive review of The Dis
covery of Dynamics by Bruce Brackenridge (Isis 82, No. 3, 1991): [I]n the
discussion of the Principia and of its immediate development, there is not
one reference to D. T. Whiteside's monumental eight-volume . . . The
Mathematical Papers of Isaac Newton (CUP, 1967-1981). ... It is so exten-
sive, in fact, that it is often a work more referenced than read. Instead,
Barbour seems to rely almost exclusively upon the works of John Herivel
and R. S. Westfall, and his references to Whiteside are limited to a few
published articles." Brackenridge is right; I looked at only small parts of
Whiteside's great work and did not use them in this book. Partly this was
due to lack of time, but it was mainly because I was only attempting to
capture the main developments, and I felt that here it was more appropri-
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ate to consider Whiteside's papers (though I actually disagree with one of
his conclusions, as the reader will see). However, the lack of prominent
mention of the Mathematical Papers was inexcusable. My apologies to
Whiteside, who has done Newton scholarship a magnificent service.

Now a brief word about Chandrasekhar's book on the Principia, which
was published shortly before his death. This has become something of a
bestseller and has certainly made many people much more aware of
Newton's great achievements. There are many fine things in the book, but
even Homer nods occasionally—there are some embarrassing misunder-
standings and misrepresentations. More seriously, I feel Chandrasekhar
has completely misread the historical development. I had some interac-
tion with him when he lectured in Oxford while writing the book. One of
the main problems is Chandrasekhar's unshakeable conviction that New-
ton had the notion of universal gravitation with complete clarity by 1666.
I asked him (but to no avail) to read Curtis Wilson's fascinating paper
on the subject (See ref. 57 in chap. 10 of this book), which to my mind
demonstrates beyond all reasonable doubt that this cannot be true. Chan-
dra was curiously blind to the absorbing story of Newton's discoveries,
and I think this distorts his account of the Principia and even dehuman-
izes Newton. I have written about this at some length in my essay review
mentioned above.

3. Why Volume 2 Did Not Appear, and the Substitute for It

There are three main reasons why Volume 2 has never made it to the
press. The first is tucked away in the footnote on page 5, in which I com-
ment that the 'time aspect of the problem of the relativity of motion has
been curiously neglected'. I predicted that time would play a large role in
the second volume. It has certainly played a large role in my life since I
made that prediction. There are two fundamental issues related to time in
classical physics: What is 'duration'—in other words, what is the theoreti-
cal justification for saying that a second today is the same as a second yes-
terday (or immediately after the Big Bang?) And how is one to define
simultaneity at spatially separated points?

Einstein's brilliant answer to the second question led to the creation of
his two relativity theories, but for some reason he ignored the first ques-
tion. Surprisingly, there is, however, a beautiful theory of duration hidden
away within the mathematics of his general theory of relativity. In fact,
time and duration arise within that theory from an arena in which there is
no time at all. For a variety of historical reasons Einstein was unaware of
this fact, and the same is still true of most people who work in relativity.
The timeless basis of general relativity has profound implications, espe-
cially for attempts to make it compatible with quantum mechanics and
create a quantum theory of the universe. It is distinctly possible that
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quantum cosmology will be static—that time will cease to play any role in
the foundations of physics.

This conviction grew on me very strongly in the years immediately fol-
lowing completion of The Discovery of Dynamics. It resulted in several pa-
pers, which I have listed with brief commentaries on my website
(www.platonia.com), and in the recent publication of my book The End of
Time: The Next Revolution in Physics (Weidenfeld & Nicolson, London,
1999; Oxford University Press, New York, 2000). A large part of this book,
which substantiates the statements made in the previous paragraph, is
also concerned with the absolute/relative debate, and much of the mate-
rial in it, including historical matters, would otherwise have appeared in
the planned second volume.

The second thing that deflected me from my purpose was an invitation
in 1991 from Herbert Pfister, of the University of Tubingen, to organize
with him a conference specifically devoted to Mach's principle. This took
place in 1993 in Tubingen, and was attended by many of the physicists
and historians and philosophers of science who have a serious interest in
Mach's ideas on the foundations of dynamics. The conference proceed-
ings, edited by Herbert and myself and with full transcripts of the lively
discussions, were published by Birkhauser in 1995 as Volume 6 of their
Einstein Studies series with the title Mach's Principle: From Newton's Bucket
to Quantum Gravity. This book has sold gratifyingly well and is now re-
garded as the standard source for studies of Mach's principle. It too is a
substitute for my second volume, with the great added benefit of the
many contributions by authors other than myself.

The third and final reason for the absence of the second volume is re-
lated to ongoing work that I find most exciting and encouraging. In the
'Introduction to Volumes 1 and 2' with which The Discovery of Dynamics
begins, I mention the work by Bruno Bertotti and myself in which we
showed how Mach's principle could be implemented in the mechanics of
point particles by a technique that I now call 'best matching'. It enables
one to construct a dynamical theory in which only the separations be-
tween the bodies in the universe play a role in its dynamics. In contrast to
Newtonian theory, it is impossible for any imagined overall rotation of
the universe to play a role. This is why a theory based on best matching
implements Mach's principle. Bertotti and I also showed that best match-
ing is one of the two key properties of the deep mathematical structure of
general relativity when it is treated as a dynamical theory of the evolution
of three-dimensional geometry (as opposed to a theory of four-dimen-
sional spacetime treated as a 'block'). The other key property of general
relativity is its timeless basis, as I have already mentioned.

All this is very satisfactory from the Machian point of view, but it
would be highly desirable to go a stage further and create a dynamical
theory in which 'the overall size of the universe' has no meaning. It has

www.platonia.com
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long been the dream of theoretical physicists to create a scale-invariant dy-
namics. In the period from 1996 to the middle of 1998, I gave much
thought to this problem and succeeded in taking a first step towards such
a goal. This involved a generalization of the notion of best matching.
However, I then had to put aside the work in order to complete The End of
Time, and only returned to the problem at the beginning of 1999, when I
succeeded in formulating a scale-invariant generalization of the Machian
particle dynamics that Bertotti and I had created 20 years earlier. Because
of the welter of new developments to which this led, I have still not yet
found time to publish this theory. The most important thing about the
new theory is that it showed how a similar generalization of general rela-
tivity could be attempted

At this point I was extremely lucky to join forces with Niall 6 Mur-
chadha of University College, Cork. Niall has great expertise in precisely
the kind of mathematics (three-dimensional conformal geometry) that
was needed to push forward the idea of best matching in a form appro-
priate for a modern theory of gravitation. He added a crucially important
ingredient to my proposal, and very soon we had the outlines of conformal
gravity. This is a putative new theory of gravitation that is nevertheless
extremely similar to general relativity, and therefore may give the same
predictions as Einstein's theory in the domains where it has been well
tested. Deviations from Einstein's theory are, however, to be expected in
domains where it remains to be tested, as may well happen in the coming
years.

This work has led to one surprise after another, and is still undergoing
rapid development. To me it now seems possible that it will transform
our understanding of both relativity and gauge theory, which describes
the interaction of the various different forms of matter that exist in the
universe. At the very least this work should demonstrate how far
Machian ideas can be developed and applied usefully to the description
of the universe. As yet, the new work has been published only electroni-
cally (cited on my website). It would be premature to go into further de-
tails at this stage, since the new ideas have yet to be exposed to thorough
peer review and are still developing so rapidly. It would be equally pre-
mature to attempt any sort of summary of the absolute/relative debate
until full clarity on this latest development has been achieved. So this is
the third reason why the second volume has not appeared. I have hopes
that what does finally appear will be a considerably more valuable and
interesting work than anything I contemplated as possible back in 1989.
Meanwhile, regularly updated detail about these developments and the
earlier work can be found on my website.

Julian Barbour
South Newington, March 2001
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PREFACE

At the deepest level, the present remarkable understanding that has been
gained by natural scientists into the working of the physical world is
based to a very large degree on the general theory of dynamical systems
and the numerous particular examples of such systems that are found to
be realized in nature. These range from the hydrogen atom, through more
complicated atomic and nuclear systems to things of immense practical
importance for everyday life, on to huge systems such as star clusters and
galaxies, and even, it seems, the universe itself. Many of the most charac-
teristic features of dynamical systems first came to light when Newton
published his Mathematical Principles of Natural Philosophy in 1687. In a
very real sense this event can be said to mark the discovery of dynamics.

The present book is an attempt to explain to any reader interested in
these absorbing matters how Newton was able to make his monumental
discovery. Three quarters of the book deal with the preparatory work in
astronomy and the mathematical study of terrestrial motions that made
Newton's work possible. The final quarter describes and analyses New-
ton's own discoveries, his synthesis of a viable scheme of dynamics, and
his introduction of the concept of universal gravitation. The book is how-
ever much more than just a history of the discovery of dynamics. For it
attempts to put this discovery in the perspective of as yet unresolved
questions relating to the basic concepts of space, time, and motion. It is
about the continuing and already quite ancient search for the foundation,
or frame, of the world. This aspect of the work, which is to be continued
with a second volume (The Frame of the World) covering the period from
Newton to Einstein, is explained at some length in the Introduction that
opens this book, and so I will say no more about it here.

In the remainder of this Preface I should like to address some words to
the potential reader who has had the curiosity to read this far. My original
intention was to write a specialist work of interest primarily to profes-
sional scientists in the narrow field of relativity and the history and phi-
losophy of science. However, I soon became aware of the interest of the
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material I was treating for a very much wider readership. The scope of
the book was extended accordingly. As a rule, working scientists know
rather little about the historical origins of their discipline. Nevertheless,
they do generally appreciate anything they can learn on the subject, par-
ticularly as they get older and a sense of the mystery and fascination of
the world grows upon them. As Eliot says in his East Coker: 'The world
becomes stranger, the pattern more complicated.' Thus, in addition to the
select audience for which the study was originally intended, I hope scien-
tists working in many disciplines (and not only physics and astronomy)
will find much of interest in the book.

In fact, in view of the explosion of interest during the last decade in
books dealing with fundamental questions of modern science I have at-
tempted to make the work accessible to the interested layman by opening
chapter 1 with a review of Newtonian dynamics at an elementary level.
The mathematics required for understanding this book is minimal—little
more than the most basic facts of trigonometry, a bit of vector analysis
and algebra, and a few results on the geometry of triangles, circles and el-
lipses (which are explained where necessary). Indeed, one of the especial
attractions of the early history of astronomy and dynamics is the number
of interesting and highly nontrivial results that can be understood with
such simple mathematics. In fact, although some passages in the book are
rather technical (and just a few, especially in the Introduction, refer to ad-
vanced modern developments) the book could be read by motivated 17-
or 18-year old pupils at school who are thinking of specializing at univer-
sity in physics, mathematics or astronomy, especially if given a little
encouragement by their teachers. This brings me to the readers I am
most keen to attract—students (both undergraduate and graduate) of
these disciplines at universities. For what I should above all like to do is
awaken their interest in both the 'knowledge of the celestial things' (to
use Kepler's words) and the ways by which they were discovered and
give them a stimulus, as they pass through their studies (and later in life),
to question received wisdom and think for themselves. It is only such
people who, combining historical awareness with radical innovation, will
advance our understanding of these fascinating matters.

South Newington,
February 1988
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Philosophy is written in this immense book that stands ever open before our eyes
(I speak of the Universe), but it cannot be read if one does not first learn the lan-
guage and recognize the characters in which it is written.

Galileo

And it seems to me that the ways by which men arrive at knowledge of the celes-
tial things are hardly less wonderful than the nature of these things themselves.

Kepler

Yet the thing is not altogether desperate.

Newton

The historical investigation of the development of a science is most needful, lest
the principles treasured up in it become a system of half-understood prescripts, or
worse, a system of prejudices. Historical investigation not only promotes the un-
derstanding of that which now is, but also brings new possibilities before us, by
showing that which exists to be in great measure conventional and accidental. From
the higher point of a view at which different paths of thought converge we may
look about us with freer vision and discover routes before unknown.

Mach
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INTRODUCTION TO VOLUMES 1 AND 2

'How differently the clouds move across that lofty, limitless sky!'
Tolstoy's words, said by the wounded Prince Andrei Bolkonsky as he
drifts into consciousness on the battlefield of Austerlitz, express the spirit
of this book. It is about how concepts of motion have changed in the past
and could change in the future. It is a subject with a never-ending
fascination; for every change in our conception of motion amounts to a
change in our deepest conceptions of things. Each change in our concept
of motion opens the door into a new world.

If a stone is thrown at the stars with sufficient force it will travel through
the universe forever - or at least until the end of time. We know that,
relative to the observable matter in the universe, such a stone follows a
definite path with great accuracy, but we do not know what determines the
path. Is it space, or is it matter, or some combination of the two, or what?
We see the undoubted effect but cannot put our finger on the cause. This
puzzle is the central subject of this study.

By its very ubiquity, motion ceases to strike us as particularly marvel-
lous or mysterious. But the seemingly simple is complex and subtle. The
discovery of the law of inertia in the seventeenth century showed that all
the motions we observe around us are merely fleeting sections of immense
journeys through the universe. Everything is caught up and participates
in some huge flux, of which what we observe as motions are but small
details. Our little local motions have a deceptive appearance of simplicity
because they are seen on the background of the relatively stable earth and
even more stable starry heavens. However, we have now learnt enough
to realise that motion is subject to the dominion of something far greater
than the earth or the few thousand stars that man could see in the heavens
before the discovery of the telescope. We can sense the throb of the pulse;
but we cannot locate the heart.

Confronted with a restless, shifting universe that stretched seemingly
to infinity but also with the undoubted existence of inertial motion,
Newton identified absolute space and time as the ultimate framework of

1
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all motion. In this framework, he asserted, undisturbed bodies move
along straight lines with uniform speed. Newton called space the
sensorium of God and saw in it the explanation to all the mysteries of
motion. In the decades immediately following the publication of the
Principia in 1687, Newton's concepts of absolute space and time were
severely criticized, above all by Huygens, Leibniz, and Berkeley. For,
space being invisible, how can one say how a body moves relative to
space? And, space being nothing physical, how can it influence actual
motions of physical bodies?

But Huygens died soon and neither Leibniz nor Berkeley could produce
any sort of theory to rival Newton, and their objections were gradually
forgotten, until they were rediscovered in the second half of the
nineteenth century by Ernst Mach.* Mach, although himself a most
reluctant theorizer, proposed one of the most radical ideas in the history
of science. He suggested that inertial motion here on the earth and in the
solar system is causally determined in accordance with some quite definite
but as yet unknown law by the totality of the matter in the universe.

It is worth stating precisely the new element in Mach's proposal.
Newton, in common with all thinkers both before and after his time,
accepted that motion could only be observed relative to other bodies.
However, Newton nevertheless held that motion actually takes place in
absolute space and time, which he assumed to exist irrespective of the
presence of bodies in the universe. Thus, a solitary body would still have
a motion even if there were no other bodies in the universe. In contrast,
Mach asserted that motion does not exist except as a change of position
relative to other bodies and that the law which governs the changes in
relative position must be expressed directly in these same relative terms.
He anticipated that such a law would lead, under certain conditions at
least, to objective and observable differences from Newton's laws.

Mach expressed his ideas in a book on the history of mechanics, t1

which was very widely read and had a considerable influence on twen-

* The Mach number is, of course, named after Mach (1838-1916) on account of his important
work on shock waves, in which he developed a brilliant method of flash photography. In
psychology Mach bands are also named after him. Mach's extraordinarily wide range of
interests and his unusual personality are well covered in J. T. Blackmore's biography: Ernst
Mach, His Work, Life, and Influence (University of California Press, Berkeley, 1972). He was
famous, if not notorious, for his opposition to the idea of atoms. Einstein saw Mach's
greatest strength as his 'incorruptible scepticism and independence' (see Ref. 5). Mach
acquired such a following for his philosophical ideas about the nature of science that he even
influenced political developments. Lenin's most important philosophical work is his
Materialism and Empirio-Criticism (1909), a violent attack on Mach's antimaterialistic
philosophy, which was supported by several Russian socialists whom Lenin opposed,
t References to the literature sources are indicated by superscripts and are given all
together, chapter by chapter, at the end of the book. Most readers will have no cause to
consult them. All footnote material, which has been kept to a minimum, is given directly at
the foot of the corresponding page.
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tieth-century physics. In the period from 1907 to 1918 Einstein worked
with feverish enthusiasm to discover the mysterious law of nature that
Mach had postulated. He coined the expression Mack's Principle2 for the
conjecture that the inertial properties of local matter are determined by
the overall matter distribution in the universe and was convinced that his
general theory of relativity, which took its definitive form in 1915,3 would
give full expression to the principle.

The outcome was a decided paradox. Einstein was forced to conclude
that although matter in the universe did clearly influence inertia within
the framework of his theory, his theory was nevertheless unable to
demonstrate that inertia is completely determined by matter. After one
attempt4 to save the situation (which itself had a most ironic consequence -
it laid the foundations of cosmology as a modern science), Einstein
reluctantly concluded5 that his attempt had failed. Despite this failure,
general relativity was immediately recognized as one of the supreme
achievements of the human intellect. More recently there have also been
some most impressive experimental confirmations of predictions of the
theory,6 and today few working physicists doubt its essential correctness,
though many believe that general relativity is itself only one aspect of a
more comprehensive theory that embraces all the forces of nature.

The present status of Mach's Principle can only be described as
confused. It has been said that there are as many Mach's Principles as
there are people who have worked on the subject. Twenty or thirty years
ago it was the subject of very lively discussion, and Machian theories were
advanced by among others Sciama,7 Hoyle and Narlikar,8 Brans and
Dicke,9 and Treder.10 Much of this work, to which he has himself
contributed, has been reviewed by Raine,11 who gives a useful bibli-
ography. These theories aroused considerable interest, though it is fair to
say that none has achieved widespread acceptance. Another develop-
ment about the same time was a reinterpretation of general relativity by
Wheeler,12 who argued that Einstein did, in fact, give expression to
Mach's ideas. In his view Machian ideas only make sense in the case of a
closed, i.e., finite, universe, and it is Wheeler's contention that in a closed
universe Einstein's theory is in fact perfectly Machian, though perhaps
not quite in the way Einstein originally envisaged and certainly not in the
way Mach did. Wheeler too has been only partially successful in persuad-
ing his fellow relativists of the correctness of his interpretation. In the last
ten years or so the question has passed somewhat out of vogue, partly
because it seemed so difficult to make progress or even achieve agreement
on the nature of the problem, even more probably because of a dramatic
surge of interest in some exciting new theories and ideas that offer
tantalizing prospects for the unification of all the forces of nature (gauge
theories, supersymmetry, grand unification theories, and, more recently,
superstrings).
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It might seem that this therefore is not the best time to come forward
with a relatively lengthy monograph on the subject. I would argue, on the
contrary, that the opposite is the case.

The first point is that the problem has not been solved. It is only in
abeyance and remains the central enigma of motion; it will surely come to
the fore again. For a start, if and when the grand unified theory is
discovered - i.e., the ultimate law of nature, which some would have us
believe is only just over the horizon - one will surely want to see how it
stands vis-a-vis this great problem of the foundations of dynamics, indeed
our very concept of the universe, space, and time.

Second, it is widely agreed that the relationship between the quantum
theory and general relativity is probably the most baffling problem
currently on the agenda of theoretical physics. This problem goes under
the name quantization of general relativity, which means roughly that
gravitational effects, like all other physical phenomena, should be made
subject to the general laws of quantum theory. Although much here is
wrapped in obscurity, it is at least clear that it is, in fact, the most
fundamental and characteristic property of Einstein's theory, its general
covariance (as the property is known), that presents the biggest obstacle to
its quantization.13 But general covariance was precisely the property that
Einstein invoked to implement Mach's Principle.3 There is therefore a
most intimate connection between Mach's Principle, at least as perceived
by Einstein, and the obstacles to quantization. Our attitude to the
quantization problem must at the very least be influenced by Machian
considerations.14

A third reason for this being a good time to review the history of Mach's
Principle is precisely the fact that not too much is happening in the field at
the present time. Even the great surge of work on the quantization of
general relativity has notably flagged in the last few years, as could be
noted in the much more reflective nature of the third of the Oxford
conferences on quantum gravity (held in March 1984).15 The calm between
storms is a good time to take stock. Moreover, the lack of progress in both
fields may well have a common origin, as has just been argued. Let us look
back on what has been achieved, see if we can identify the weak spots, but
above all let us attempt to identify the core problem and at least see if we
can agree on its precise nature. This is the main task which I have set
myself in this study, about the origins of which a few words may be
appropriate, because they supply the fourth reason for the writing of this
book at this time.

My interest in the problem dates back to 1963 and was stimulated by
reading Bondi's book Cosmology;16 this led to a reading of Mach's Science of
Mechanics,17 which made on me, as on so many others, a profound and
lasting impression. Mach's arguments for the relativity of not only space
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but also time* appeared to be quite undeniable. If neither time nor space
exist as true entities, it would seem that the entire theory of motion
needed to be recreated ab initio.

However, careful reading of Mach's book and Einstein's papers written
while he was working on the creation of general relativity led me to a
surprising conclusion: that although Einstein professed great admiration
for Mach and claimed to be intent on solving the problem of inertia as laid
bare by Mach, he did in fact have a significantly different understanding -
one could go so far as to call it a misunderstanding - of the problem.
Above all, Einstein appeared to confuse two quite distinct uses of the
word inertia. When Mach spoke of the problem of inertia, he was referring
exclusively to Newton's First Law of Motion, the statement that bodies
subject to no forces move through absolute space with a uniform
rectilinear motion. Mach insisted that the law as formulated was an
epistemological nonsense - since it made statements incapable of
objective verification (for the reasons to be explained more fully on p. 8 ff),
and such statements could not provide true grounds of knowledge for an
understanding of nature (epistemology is the study of the grounds of
knowledge) - and a physical implausibility. He called for a proper
operational definition of the phenomenon and a physical and causal
explanation of it in terms of something real, i.e., observable (at least in
principle). Although he criticized the other use of the word inertia, to
describe the inertial mass which appears in the Second Law of Motion,
Mach had no criticism of the concept itself. He felt it was entirely
unproblematic, especially after his own operational definition had been
substituted for Newton's circular definition of mass. (Mach's clarification
of Newton's concept of inertial mass is discussed in the final chapter of
this book.)

In contrast, examination of Einstein's papers reveals that he used the
word inertia indiscriminately to describe both phenomena and seemed to
regard the existence of both as requiring physical explanation. A typical
example of Einstein's interpretation (or rather misinterpretation) of Mach
is the following statement made in 1913:19'. . . one must require that the
appearance of inertial resistance be due to the relative acceleration of a
body (with respect to other bodies). We must require that the inert
resistance of a body increase solely because in its neighbourhood there are
unaccelerated inert masses . . . .' (It is worth mentioning here that the
allegedly Machian variation in the inertial mass which Einstein believed

* The time aspect of the problem of the relativity of motion has been curiously neglected. In
fact, it will be argued in Vol. 2 that there are two Mach's Principles: the First, relating to the
problem of space and the relativity of motion; and the Second, relating to the relativity of
time.18 What is normally called Mach's Principle is to be identified with the first of these. The
Second Mach's Principle will play a very large role in Vol. 2.
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he had incorporated in the general theory of relativity has since been
shown to have no genuine physical reality. It is what is known as a
coordinate effect.) Much of the confusion surrounding Mach's Principle
stems from this curious interpretation; it is surprising that this funda-
mental shift by Einstein from Mach's original position has never been
clearly pointed out. Moreover, it will be argued in this study that, on this
point at least - namely, that the concept of inertial mass is unproblematic -
Mach was right and Einstein wrong. This is a first major point that must
be made.

A second such point is that, in developing general relativity, Einstein
did not make a frontal attack on the Machian problem of finding a
dynamical explanation for the law of inertia. Einstein himself com-
mented20 that the simplest way of realizing the aim of the theory of
relativity would appear to be to formulate the laws of motion directly and
ab initio in terms of relative distances and relative velocities - nothing else
should appear in the theory. He gave as the reason for not choosing this
route its impracticability. In his view, the history of science had
demonstrated the practical impossibility of dispensing with coordinate
systems. He therefore adopted an indirect approach and was guided, it
seems, more by gut intuition than a clear formulation of principles that
would of necessity lead to the realization of his aims. This was in striking
contrast to the means he adopted to achieve the other main aims he had
in developing general relativity - the creation of a field theory of
gravitation consistent with the fundamental principles of the special
theory of relativity and the inclusion of geometry as an integral part of
dynamics (made possible by Riemann's demonstration in 1854 that
Euclidean geometry was just one amongst many possible geometries that
the world could possess). Here his approach was crystal clear, entirely
logical, and could not fail to achieve its aim if pushed with sufficient
vigour-as it was.

When I read Einstein's papers more than twenty years ago (many of
which have not yet been published in English), I was struck by the fact
that in attacking the triple problem of the origin of inertia, the relativiza-
tion of Newtonian gravity, and the inclusion of geometry in a dynamical
framework, Einstein was working on foundations that had been very
unequally developed. The Machian concept of inertia as the outcome of
interaction with distant matter in the universe was but a vague hunch,
whereas special relativity, created by Einstein in 1905,21 was already a
highly developed theory. Above all, it had been cast into a beautifully
perspicuous form by Minkowski22 in his creation in 1908 of the space-time
concept, a concept that was tailor-made for the introduction of a variable
Riemannian geometry, which was by then a highly developed discipline
and perfectly suited to the task Einstein had in hand. In addition
Maxwell's electrodynamics, translated into relativistic form, gave
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Einstein several clear hints of the way he should proceed. Einstein's
carriage was being drawn by a Machian donkey and a Minkowskian and
Maxwellian stallion. It's hardly surprising the stallion won out!

Reflection on these matters led to the conclusion that one ought to go
right back to first principles in the Machian problem and attempt the route
which Einstein had said was impracticable. In particular, the problem
might not appear so insuperable if, as a first approximation, it was
attacked in a nonrelativistic approach.* After all, Mach had identified and
formulated the problem of inertia in the prerelativistic world. Might it not
be possible to solve the nonrelativistic Machian problem? If this could once
be cracked, one would at least have some definite theoretical models on
the basis of which the full relativistic problem could be attacked. The
development of a few simple Machian models would also be of great
value in demonstrating clearly, first, the actual possibility of a Machian
origin of inertial motion and, second, the kind of effects and structures
one should expect in a more realistic and fully relativistic theory. It was
important to establish the plausibility of the idea and get a feeling for its
consequences.

Some years pondering these matters culminated in the formulation of
what appeared to be the appropriate framework for constructing theories
that are Machian of necessity, i.e., by virtue of the basic principles on
which they are constructed. Publication of a short paper in Nature23 in 1974
outlining the basic principles and illustrating them by a particularly
simple model led to a collaboration with Bruno Bertotti, which lasted for
about six years and in which the broad aims were first to develop to the
full the nonrelativistic theory and then to incorporate the basic facts of
special relativity in a Machian manner.

The outcome of this work24 was not what we had expected. It began as
an attempt to find an alternative to general relativity, which was, as
explained, felt to be not truly Machian, but our final conclusion was that
Einstein's theory was actually much more Machian than we had believed;
it was in fact Machian precisely in the sense required by our general
principles! No detailed attempt will be made here to justify this
conclusion, to which we were led in considerable part by the intervention
of Karel Kuchaf; the necessary explanations will be given in Vol. 2. The
point of mentioning this work now is the explanation that it provides (a)
for the writing of this book at this time and (b) for the overall view adopted

* It should be pointed out that the word relativity in the special theory of relativity does not
at all have the same meaning as in Mach's assertion of the relativity of motion. This point will
be clarified on p. 9 and in Sec. 1.2. The significance of the special theory of relativity for the
Machian problem is that it introduced a quite new problem to do with the nature of time,
since it showed that the naive concept of absolute simultaneity - that there is a unique 'now'
defined throughout the entire universe - must be radically revised. By a nonrelativistic
formulation of the Machian problem, I mean a formulation in which the concept of
simultaneity is still allowed.
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in this study, which, broadly in line with Wheeler's position,12 is that
general relativity is a true implementation of many of Mach's most
important ideas but that this has been obscured by accidental
and historical reasons and by Einstein's attempt to find an allegedly
Machian explanation of inertial mass (instead of concentrating on the real
problem, the origin of Newton's First Law). In the very broadest terms,
the grounds for asserting the 'Machianity' of general relativity are as
follows.

Mach's ideas were put forward at a time in which the field concepts
developed by Faraday and Maxwell had not yet supplanted in the minds
of physicists the Newtonian concepts of material bodies which act on each
other through long-range forces. But by the time that Einstein came to
attack Mach's problem he was working in a climate of opinion dominated
by field-theoretic concepts. Many people, including Einstein himself in
his later years,25 believe that the transition from a matter-dominated
concept of the world to one in which fields are the primary entities makes
the original Machian idea obsolete. Let us look at this more closely, for it
will take us straight to the heart of the problem. We consider first a
Newtonian type situation, in which material bodies constitute the entire
content of the universe.

Thus, imagine an infinite Euclidean space; for simplicity of visualization
assume it to have only two dimensions instead of the three of the real
world. Imagine this space populated with material bodies that we can see
(although the space itself remains invisible). The relative distances
between the objects, which we assume to be n in number and to be so
small that they can be regarded as points, are well defined and satisfy all
the geometrical relationships that follow for such distances in the
framework of Euclidean geometry. Suppose we observe that the relative
configuration of the bodies changes, i.e., the mutual separations of the
bodies change. From what we observe, is it possible to deduce that any
particular body which we might choose to consider has a definite motion
in space? This immediately brings us up against what may be called the
fundamental problem of motion.

Suppose we take a 'snapshot' of the instantaneous configuration of the
bodies at some moment. It will show a pattern of dots; their positions
could be as indicated by the crosses in Fig. I.I. A little later we take a
second 'snapshot'; the new relative positions could now be as in Fig. 1.2,
in which the positions are indicated by the symbols 0. The relative
positions are not quite the same. On the basis of this information - and we
have nothing else at our disposal - what can we say about motions of the
individual bodies?

Here we confront the invisibility of space. Suppose we take the second
snapshot and place it on top of the first, obtaining the situation shown in
Fig. 1.3. We could then say that the motions of the individual bodies are
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Fig. 1.2.

Fig. I.I.

Fig. 1.3. Fig. 1.4.

represented by the little arrows. But this is clearly arbitrary; we could just
as well have placed the second snapshot as in Fig. 1.4 and then the arrows
showing the displacements would be quite different, as we see. It would
appear from this simple illustration that the notion of a body as having a
quite definite motion is untenable. In particular, it would seem to be
absurd to say of a body that it moves through space along a straight line.

Although Mach never expressed himself precisely in these terms, we
have here the essence of the epistemological problem with which he was
so concerned. Motion of one body can only be observed relative to others,
and if all bodies are simultaneously in motion we obviously face an acute
problem if we wish to attribute a definite motion to any particular body.
Because everything is in motion, all connection between one 'time slice'
(one snapshot) and the next is broken. We clearly cannot say where any
of the bodies 'have gone'. If motion is to be defined as something directly
observable, then it is transparently relative.

It is here appropriate to make a brief but vital digression (announced in
the footnote on p. 7) into the uses that are made of the word relativity. We
shall see that time and again confusion of meanings plays a large part in
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the seeming obscurity of much of the absolute/relative debate. The two
meanings of inertia have already been mentioned. The relativity of
motion as made manifest by the two-snapshot illustration is normally
called kinematic (or optical) relativity. It must be very clearly distinguished
from Galilean relativity, which will be discussed briefly in Sec. 1.2 and
extensively in the second half of Vol. 1, and also from the use of the word
relativity (and also the related adjective relativistic) in Einstein's special
theory of relativity (which is very closely related to Galilean relativity).
The connection between kinematic relativity and the use of the word
relativity in Einstein's general theory of relativity will occupy us through
most of Vol. 2. Throughout this study, the expression relativity of motion
will be used in the kinematic, i.e., Machian, sense.

After this digression let us consider the situation in field theory; we
shall see that in essence it is no different. In field theory the dynamical
problem can be posed typically as follows. Imagine a pattern of intensities
in two dimensions (suppressing again the third dimension of space for
better visualization) and once again suppose a snapshot taken of the
intensities. A little later the pattern of intensities has changed everywhere
by a certain amount. We take a second snapshot. Now the aim of a
dynamical field theory, expressed in these terms, is to formulate laws
which say how the intensity at each point of space changes with the
passage of time. But again we confront the invisibility of space. Given our
two snapshots, the only way that we can determine how much the
intensity has changed is by comparing the one pattern of intensities with
the other. But how is the one snapshot to be placed with respect to the other? We
lack all objective criteria for making any definite placing of one snapshot
relative to the next but for every particular placing we choose we obtain in
principle different changes in intensity. No less than in the case of
material particles, the universal change that takes place between the two
snapshots simultaneously severs all connection between the two time
slices.

Thus, the Machian problem exists just as acutely in the one scenario as in
the other. This conclusion is not altered by the fact that Einstein
considered an even more difficult situation in which allowance has to be
made for the difficulties of defining simultaneity and the geometry of
space is allowed to change as well. Note also that the Machian problem
outlined above clearly has no relationship at all to the masses of bodies;
the mass concept, i.e., inertial mass, does not even exist in the field
scenario. It is for this reason I disagree with Einstein's summary of the
problem given late in his life:25

Mach conjectures that in a truly rational theory inertia would have to depend
upon the interaction of the masses, precisely as was true for Newton's other
forces, a conception which for a long time I considered as in principle the correct
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one. It presupposes implicitly, however, that the basic theory should be of the
general type of Newton's mechanics: masses and their interaction as the original
concepts. The attempt at such a solution does not fit into a consistent field theory,
as will be immediately recognized.

Einstein's final comment 'as will be immediately recognized' is to be
read in the light of the fact that for a long time he achieved no such
recognition. There does therefore seem to be some grounds for believing
Einstein was confused on this particular subject. Moreover, we shall see
in Chap. 2, in which the immediate continuation of the above passage is
quoted, that as late as 1949 Einstein was still very loath to abandon Mach.

Let me now outline what might have happened to the Machian problem.
Had Mach been a less reluctant theorizer, he might well have solved the
problem in the 1870s in his original Newtonian scenario. That is, he might
well have found means for formulating dynamical laws that overcome the
problem posed by the severance of the connections between the two
successive time slices. It would of course involve the masses of the
universe, since it would have solved the Machian problem in the context
of the then prevailing concepts of the nature of matter. It would also have
used the concept of absolute simultaneity. But such a theory might then
have served as a paradigm for overcoming the almost exactly analogous
problem in field theory and the even more ambitious theory involving
variable geometry and an absence of absolute simultaneity that Einstein
actually created in general relativity. Of course, in such later develop-
ments, material bodies could not play the decisive role that they would
have done in the original Machian theory, for the very concept of material
bodies is to a large degree superseded in these later developments. But
the commonality of the problem outlined above, equally acute in the two
quite different scenarios, suggests that its solution would not in essence
depend upon any particular theory of the contents of the universe. The
problem arises, not because of the specific contents of the universe, but
because of the fact that they are constantly changing.

Mach, of course, did not develop any such theory and Einstein's theory
was created without any of the preparatory work I have just outlined.
Many people are convinced that it bears little or no resemblance to the sort
of theory that Mach advocated. In one sense, they are perfectly correct.
But only, I contend, because the concept of the world's contents has
changed out of all recognition. The part played by the triumphant success
of the field concepts developed by Faraday and Maxwell in transforming
the context of the Machian problem is highly significant even though the
underlying Machian problem, the core problem, is still basically the same.
This I think is where the work that Bertotti and I did during the 1970s has
its value. For I believe that we did succeed in finding the solution to the
Machian problem in its original Machian context (subject to the crucial
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condition that the universe is assumed to consist of a finite number of bodies
moving in either an infinite or finite space). It was then in the process of
extending the basic idea which solved the problem in the original Machian
context to first the case of field theory and then on to the more difficult
case of variable geometry that we realized that the basic principles we were
using were in essence the principles that underlie general relativity.* (A
word of explanation to relativists: the principles here referred to are those
discovered by Arnowitt, Deser, and Misner28 and discussed in connection
with Mach's Principle by Wheeler.29 The 'Machian principles', developed
by Bertotti and myself quite independently of this earlier work in general
relativity, were shown by Kuchaf to be in essence the same principles as
used in general relativity, though at a lower level of sophistication. It may
also be worth pointing out here that general relativity is extremely special
in the way in which it fulfils the Machian criteria just mentioned. The
general scheme could therefore be used to look for other Machian
alternatives to general relativity.)

It is in this sense that I assert general relativity to be basically Machian:
its dynamical laws are based on a principle (to be explained in Vol. 2) that
enables one to overcome the lack of connection between successive time
slices of a universe all of whose contents - whatever they may be - are
constantly changing.

These therefore are my grounds for believing that the time is ripe for a
comprehensive discussion of the entire history of the absolute/relative
debate from its earliest beginnings through to the present time. And what
more appropriate time to write such a study than at the tercentenary of the
publication of Newton's Principia with the famous Scholium on absolute
and relative motion which initiated the whole subsequent debate. The
aim of this study is to trace systematically the evolution of the major
strands in the history of dynamics which terminate in general relativity.

* If general relativity is Machian in this very basic sense, it must be admitted that it is at best
partially Machian in another sense of the word. Mach had an extremely radical philosophy
of science; he asserted that the sole task of science was to establish correlations between
directly observed phenomena. In the period of his youth, an age still dominated by the
Newtonian concept of material bodies, it was much easier to assume everything of
dynamical significance (i.e., all the masses of the universe) to be presented directly to the
human senses. However, the revolutionary developments in physics that occurred in the
second half of Mach's life led, through the creation of field theory, to a mathematical
description of physical phenomena in which the basic theoretical concepts are very much
further removed from direct sense perception. It cannot be denied that these developments,
which will be discussed in Vol. 2, present us with severe interpretational problems and make
general relativity rather un-Machian if judged as a theory which correlates sense perceptions
directly. Short of a very drastic revision of ideas, in which mind and perceptions are taken to
be primary and matter secondary, such as has been advocated, for example, by Schrodinger
in the epilogue of his famous What is Life? and, implicitly, in his Mind and Matter,26 and by
Wigner,27 and for which, perhaps, hints are to be found here and there in the history of the
absolute/relative debate, I do not see how this situation can be readily changed.
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The original intention was to treat the span from Newton to Einstein,
following broadly the historical development of the debate about the
absolute or relative nature of motion but with insertion of the work just
described in order to supply an organic link between the nonrelativistic
Newtonian world-view in which Mach advanced his ideas and the
field-theoretic relativistic framework that Einstein used to create general
relativity.

However, it did seem appropriate to look into the grounds that led
Newton to formulate the concepts of absolute space and time in the first
place, and this led me to an examination of Galileo's writings. But Newton
is truly a watershed: forward - there is no stopping until you get to
Einstein (and no doubt we shall go further; indeed there are unmistakable
signs that the caravan is already on the move); backward - well willy-nilly
there is no logical stopping place before Aristotle or even a little earlier.

This historical research I felt compelled to make has added very greatly
to my appreciation of the problem and convinces me that the historical
perspective is the only correct one in which to present the subject. There
are few subjects with a longer or more absorbing history than the theory
of motion. Few problems have given rise to such profound reflections and
speculations. And few have brought such a rich harvest of successes. No
one can survey the whole field from the pre-Socratics through to the first
tentative grand unified field theories of the present decade without being
struck by the depth of sophistication that has been achieved or by the
extraordinarily roundabout ways in which some of the key ideas have
gradually become established. For this reason alone the historical
approach is to be recommended.

There are other good reasons too. One is that it demonstrates the extent
to which Newton put himself out on a limb over the question of absolute
space and time. His position was exceptional both with respect to what
went before and what came after. There is a good case for arguing that
absolute space and time were to a large degree the accidental products of
the historical development, which is a very intriguing story in its own
right, especially as regards the part played by the show-down between
Galileo and the Inquisition over the question of the earth's motion and the
effect it had on Descartes. Newton's Scholium on absolute space and time
was in fact a thinly veiled polemic against Descartes.

Equally relevant is the fact that 'Machian' ideas were very prevalent
long before Mach and even Newton and actually played a highly
important role in the discovery of dynamics. There was a strongly
Machian strand to the thinking of both Aristotle (whom Copernicus
followed in this respect) and, above all, Kepler. Indeed, Kepler had a most
interesting pre-Newtonian form of Mach's Principle, and it played a
significant part in his work. Just as the Machian stimulus can take half the
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credit for the psychic motivation which led to general relativity,
essentially the same idea can take credit for the discovery by Kepler of the
laws of planetary motion.

Moreover, realization of the relativity of motion played a crucial role in
leading to the acceptance of the Copernican proposal of a two-fold motion
of the earth (daily around the polar axis and annually around the sun).
Several important features of Newtonian dynamics actually stem from
Galileo's reflections on the relativity of motion and the consequences of
Copernicus's proposal. Finally, a deep conviction of the relativity of
motion was a major factor that enabled Huygens to find the correct laws
of elastic collisions between bodies, which was another most important
development in the creation of dynamics. There is a very real sense in
which all these important advances can be seen as due to 'Machian'
principles (admittedly of differing degrees of purity, as we shall see).

These 'Machian' successes are well worth emphasizing, since many
people, exasperated by seemingly fruitless discussions about Mach's
Principle in the framework of general relativity, are inclined to dismiss it
as idle philosophy. In fact, the Machian ideal is ultimately indistinguish-
able from one of the highest aspirations of the natural scientist - to show
that the world we observe has an essentially rational structure in which
there are observable causes of observable effects and every thing fits together into a
coherent whole. As Einstein put it:30 the chain of cause and effect is closed.
This ideal has several times been the driving force in the discovery of
highly important laws of nature, and there is no reason to doubt its ability
to be so again. Its force is not spent.

A further strong argument for the historical presentation of the subject
has already been indicated - through the whole development of the
problem there runs a common thread, the core problem, as I have called
it. The root difficulty is that of defining unambiguously and uniquely
what one means by motion or more generally change in a context in which
everything else which might be used for reference purposes to define and
quantify that change is itself changing. We are thus faced with the
problem of quantifying and mathematizing something that seems
incapable of unique definition. And, as we have seen, this problem
reappears in different guises and must at any period be attacked within
the framework of the prevailing conceptions and level of knowledge. It is
quite clear that an historical approach is needed to do justice to such a
constantly changing problem.

A final argument for the historical approach is that it permits an organic
presentation of some of the ideas thrown up in the course of the debate
about the nature of motion but not as yet successfully incorporated in any
theory. A genuine seeker after truth must surely always be open to the
possibility that our view of the world may need significant adjustment.
Recent experience with the history of Yang-Mills (gauge) theory shows
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how a powerful concept can remain more or less dormant for quite a long
period before some further element is added, which only then makes
progress possible. It was just the same with the Copernican revolution.
Copernicus's original proposal had a quite modest effect on astronomy
until Kepler added a quite new (and strongly Machian) dimension. For
this reason I have felt that this book should not only report the ideas that
have been successfully incorporated into physical theories but also some
others that, to me at least, seem to have as yet unrealized possibilities; in
particular, they might have a bearing on the difficulties mentioned in the
footnote on p. 12. For this reason a certain amount of space is devoted to
fundamental philosophical questions, in particular the very basic divide
that developed during the seventeenth and early eighteenth centuries
between the philosophy of materialism, on the one hand, and idealism (in
which mind and perceptions are primary) on the other [broadly speaking,
the materialists (or realists) were identified with the absolute (Newtonian)
approach to motion, the idealists with the relational (Machian) approach,
though there were notable exceptions, above all Einstein himself]. Closely
related to this divide, and directly relevant to our subject, is the antithesis
between the concrete and the abstract.

Provided these matters are competently handled, and here I must leave
judgement to the reader, no apology needs to be made for this inclusion,
on a limited scale, of as yet unresolved philosophical disputes. General
relativity itself is one of the most dramatic examples of the transmutation
by genius and empirical input of what were initially very abstract
philosophical ideas into a concrete physical theory of both motion and
geometry capable of experimental testing to a degree that is nothing less
than amazing. The clouds are no doubt the same as they were in the
seventeenth century, that heroic age of science, but indeed how very
differently they are now perceived to move. I rest my case for the
historical and philosophical presentation of the subject and express the
hope that the airing of these questions in the historical perspective will
not only help to clarify the problem of the origin of inertia but also
encourage the reader to think afresh about these matters and ask
questions as fundamental as those posed by Copernicus, Kepler,
Newton, Mach, and Einstein.

The inclusion of the pre-Newtonian history and the fact that Newton
marks such a clear dividing line make it convenient to divide the complete
study into two volumes, the first of which, The Discovery of Dynamics,
presented here, treats the pre-Newtonian origin of dynamics, its formula-
tion by Newton, and the clarification in the second half of the nineteenth
century of certain key conceptual aspects of dynamics that Newton left in
a somewhat obscure and confused form. It is in the first place a study of
how the prevailing concepts of space, time, and motion influenced the
final structure of Newtonian dynamics at each of the intermediate stages
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that led to the ultimate Newtonian synthesis. But this makes it
simultaneously a history of the discovery of dynamics itself. In order to
ensure that Vol. 1 can be read in its own right as such a history, the original
scope of the book has been significantly extended and contains much
material not strictly essential to the absolute/relative debate, particularly
in the astronomical part. However, almost all aspects of dynamics and its
discovery have some bearing on the question. Naturally, the main stress
in this book is on conceptual developments. For this reason, as explained
in the preface, I hope it will have much to say to working scientists, in
casting light on the fascinating origins of their discipline, and that it will
also appeal particularly to anyone interested in philosophical and
historical questions. It is also my hope that The Discovery of Dynamics will
fill a certain gap in the historical literature. The ground it covers has of
course been extremely well trodden, but it seems to me that there remains
a gap between the numerous books that treat the general development of
the history of ideas, such as Kuhn's The Copernican Revolution31 and
Koyre's From the Closed World to the Infinite Universe,32 to mention only two,
and the equally numerous books by highly professional historians that
treat either specialized subjects (for example Jammer's three books on the
concepts of force, mass, and space,33 and Westfall's The Concept of Force in
Newton's Physics3*) or concentrate on particular periods or particular
scientists. I do not think there is any book that quite covers the same field,
certainly not in the way in which the discovery of dynamics is examined
simultaneously with the evolution of the ideas of absolute and relative
motion. By restricting the ambit to the discovery of dynamics as opposed
to the larger scientific revolution in our view of the world, I have been able
to concentrate on the development of certain key concepts, which
undoubtedly has a unique and absorbing fascination. Indeed, it seems to
me that in the discovery of dynamics there were about a dozen key events,
almost all of which were associated with the breakthrough to precise
mathematical formulations of empirical facts about particular observed
motions. The task of a history of the discovery of dynamics, as I have
conceived it here, is to identify clearly these pivotal events, show how the
insights were achieved, and put them in the proper perspective within
the overall picture.

In fact, making a precise count, I identified thirteen, divided neatly into
six associated with the astronomical study of celestial motions, six
associated with the study of terrestrial motions, and the odd thirteenth,
making up a baker's dozen, being the mathematical insight behind the
Copernican revolution, which linked together for the first time the theory
of celestial and terrestrial motions and was therefore a key event in the
eventual emergence of dynamics. These thirteen insights, which will be
noted as we proceed through the book, do not include the discovery of the
geometry of the three-dimensional world nor the final synthesis of all the
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various elements by Newton that created dynamics, which may, in a
sense, be regarded as the geometry of the four-dimensional world.

It is in this respect that the present study will be found to differ most
strongly from 'history of ideas' approaches, which often tend to avoid
going in any depth into technical details. However, as this book will
show, it is precisely through the technical details, which become most
absorbing when seen in the light of their full significance, that the true
electric current of discovery runs. If we do not follow the current closely,
we shall not really understand what happens and why. To use another
image: the technical details are like the hinges of a door opened on a new
vista. The change in view they make possible seems out of all proportion
to what, objectively speaking, they represent. But their immense strength
comes from the fact that, like hinges, they are mounted on a secure
support: successful mathematical description of observed phenomena.
And we cannot understand why the door swings unless we see how the
hinges work.

This, in particular, is the reason why a comparatively large amount of
space is devoted to ancient astronomy, for it provided the foundation of
much of what followed. In fact, Chaps. 3, 5, 6 of the present book
represent a more or less self-contained history of astronomy from
antiquity to the discovery by Kepler of his laws of planetary motion,
though the material is, of course, integrated into the overall structure of
the book and has been written very much with an eye to the significance
of the astronomy for the subsequent dynamical interpretation of Kepler's
discoveries. The purely astronomical material of these chapters could, for
example, serve as the basis of a semester-length course on the history of
astronomy of the kind that is so popular in American universities.

If the first volume of Absolute or Relative Motion? should be easy enough
going for the reader with a good grounding in the rudiments of
Newtonian dynamics, the second volume, which treats the reaction to
Newton and then the extraordinary culmination of the debate in the
creation of general relativity, will of necessity get progressively tougher.
I fear that my readers will fall away chapter by chapter as we get nearer
the Holy Grail. There is, alas, very little that can be done about this. By no
stretch of the imagination is the general theory of relativity anything but
very sophisticated, a fact that in no way detracts from, but rather
enhances, its conceptual appeal and beauty. By concentrating throughout
on the bare essentials of the conceptual thread, I hope to keep the reader
with me as far as is humanly possible. There will be no gratuitous
mathematics, but nor will it be shirked when unavoidable for the
undistorted presentation of essential arguments. All I can say to the
reader is, keep going as long as you can. It's worth it to get even an inkling
of the denouement which that unsurpassed genius, Einstein, has
bequeathed us as our best understanding to date of the central problem of
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motion - a problem that already vexed the greatest minds in the cradle of
our civilization about two and a half millennia ago.

So, then, let us start. But a word of warning. Before the reader embarks
on the journey from Aristotle to Einstein, he or she may want to know the
conclusion that can be expected at the end of this trek through the
millennia. If Frodo is to undertake the journey to Mordor,35 will there at
least be a positive outcome? In a word: Is motion absolute or relative? No
definite answer to this question can be given. In one sense motion is
unquestionably relative, since no experimentalist can possibly measure a
motion that is not relative. It will be shown that the real distinction is in
the structure and predictive power of the theory that is found to describe
motion. When applied to a finite universe, Newton's theory is found to
have less predictive power than a Machian theory. Newtonian theory
can,in fact, be recast in purely relative terms, but when this is done it is
found to have not only an ungainly and somewhat arbitrary structure but
also to be less predictive than theories with a more obviously Machian
structure.36 The positive conclusion of this study, reached at the end of
Vol. 2, is that general relativity suffers from no such defect. At least as
regards its basic structure, general relativity can be said to be designed in
such a way as to make it almost as predictive as one could imagine: it is a
ne plus ultra (though there are some worrying technical details about the
mathematics).* So much at least can be promised to the traveller who will
persist to the end. But there looms an even larger difficulty: the possible
infinity of the universe. If the world is truly infinite, the chain of cause and
effect can never be closed. New influences can always 'swim in' from
across our most distant horizon and it would not appear to be possible
under such circumstances to close the circle. Even Frodo, his mission at
Mordor accomplished, set out again once more into the unknown.
Whether that is our fate remains to be seen.

* For the benefit of relativists, this is a reference to the fact that Wheeler's original
'thin-sandwich' conjecture does not appear to be an appropriate way of approaching the
initial-value problem in general relativity.37 There are also of course major uncertainties
related to the part played by quantum theory in the whole absolute/relative question, to say
nothing of the various theories that are putative successors to general relativity. Finally there
remain the difficulties mentioned in the footnote on p. 12.
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Preliminaries

1.1 Newton's laws and their conceptual framework

We begin at the end - by recalling Newton's laws and the concepts used
to express them. For the modern reader, the most illuminating approach
to the history of the discovery of dynamics is probably to start with a clear
understanding of what we now know and then trace the gradual clarifica-
tion and emergence of the key concepts and results from their earliest
beginnings. Even the reader who is extremely familiar with Newtonian
dynamics may find this survey of value, since it will stress aspects of
particular relevance both for the discovery of dynamics as well as for the
absolute/relative question. In this summary, detailed references will not
be given; the quotations are from Ref. 1.

Of all the Newtonian concepts, those of absolute space and time are the
most important, for they provide the framework of everything else.
Newton imagined his absolute space as rather like a block of perfectly
translucent glass stretching from infinity to infinity. Of course, it is only a
conceptual block; objects can move through it perfectly freely. The
essential purpose of absolute space is to provide a definite frame of
reference: each and every body, however it may move, is always at some
quite definite point. All the relations of Euclidean geometry hold in the
block; above all, any two points are joined by a unique straight line.
Conceptually, at least, it is therefore meaningful to say of a body that it
follows a definite path in absolute space.

Newton conceived absolute time as, 'from its own nature', flowing
'equably without relation to anything external'. To have a definite picture,
one can imagine God holding in his hand a watch that keeps perfect time
and observing the various bodies in the universe as they travel through
absolute space. To God at least it is therefore meaningful to say that a
particular body is moving at a particular time at a certain speed in a certain
direction.

19
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Newton specifically introduced the concepts of absolute space and time
in order to overcome the problem of kinematic relativity sketched in the
Introduction and to have a precise and unambiguous concept of the
motion of any particular body. After space and time, motion is the most
fundamental concept in his scheme.

It is implicit in this scheme that space, time, and motion are con-
ceptually prior to the actual laws of motion - God might have chosen
different laws of motion but he had no alternative but to place and move
bodies in space and time.

Throughout this discussion of Newtonian dynamics, we shall ignore
the problem of kinematic relativity and assume that, in some manner,
absolute space and time have been made directly accessible to human
senses, so that all the Newtonian concepts have a well-defined meaning.

A highly significant feature of Newtonian dynamics is that the motion
of actual bodies has very far reaching directional aspects. The mere speed of
a body in absolute space has only a restricted dynamical significance; a
more significant concept is velocity, i.e., the speed in a definite direction.
This could not possibly be deduced from the mere concepts of space,
time, and motion and was a realization that came very late in the
discovery of dynamics.

The most natural language for expressing the directional aspects of
physically realized motions is by means of vectors, which are charac-
terized by both magnitude and direction; for example, the speed of a body
in a certain direction gives its velocity vector. Even though the theory of
vectors was not developed formally until the middle of the nineteenth
century, long after the discovery of dynamics, several parts of this book
will be much clearer if expressed by means of vectors.

In the overall scheme of Newtonian dynamics, the most important
characteristic of the motion of actual bodies is that it has a dual nature. In
Newton's scheme, any particular body is at any instant responding
simultaneously to two influences of quite distinct natures. The natures of
these influences, which are exerted on the one hand by absolute space
and time and, on the other, by the remaining bodies in the universe, are
characterized by their effect on the instantaneous velocity with which the
body under consideration is moving through absolute space at the time
considered. We must look at this in some detail.

According to Newton's First Law (Lex Prima), the consequence of the
first influence, that exerted by space and time, can be expressed as
follows: if the second influence were not present, i.e., if external bodies
were to cause no disturbance, the instantaneous velocity that a body has
at any particular moment of time would persist forever; thus, a body set
in motion initially in a given direction with a given speed would continue
forever in that given direction at that same given speed were it not for the
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influence of other bodies. The First Law states specifically: 'Every body
continues in its state of rest, or of uniform morion in a right line, unless it
is compelled to change that state by forces impressed upon it.'

To define the nature of the second influence, we must first introduce
some further fundamental concepts, above all that of the mass of a body:
in Newtonian dynamics each body is characterized by a positive number,
the mass, which Newton says is the quantity of matter that the body
possesses. At this stage we shall not attempt to look more closely at this
concept, which, for all its seeming transparent simplicity, requires a
rather sophisticated definition. In Newtonian dynamics, mass is neither
created nor destroyed. The mass of a body can only change if new mass is
added to it from some other body or alternatively some of its mass is
removed.

By means of the mass concept we form what is perhaps the most
important of the specifically dynamical concepts in the Newtonian
scheme, that of the momentum of a body, or its quantity of motion, to use
Newton's expression. This is defined as the product of the mass of the
considered body and its velocity. Because velocity is a vector, while mass
is simply a number without any directional attributes (a scalar),
momentum is also a vector. If m is the mass of a given body (which for
simplicity we assume to be so small that it can be regarded as a mass point)
and v is its instantaneous velocity, then the momentum M of the body is
defined as

By Newton's First Law, v, and therefore M too, remains constant in
time unless the body under consideration is acted upon by some other
body. Newton's Second Law (Lex Secunda) tells us how the momentum of
the body we consider is changed by other bodies. According to Newton,
this can happen in one of two ways: through direct contact in a collision
or through a definite influence exerted through space by a distant body.
In both cases, Newton says that the momentum M of the considered body
is changed by the application of a force. In the first case there is an abrupt
change in M by a finite amount: in the second case the change in M is
continuous. It is implicit in the scheme of Newtonian dynamics that there
are definite rules of nature which determine the forces that act on any
given body for any definite configuration and state of the remaining
bodies in the universe. For the moment, we shall consider the simplest
applications of Newton's Second Law.

Force is an essentially vectorial quantity. Thus, a force acts in a definite
direction and has a definite magnitude or strength. Let us consider the
force produced by a collision. In modern terminology this produces what
is known as an impulse; we shall denote such an impulse by F. As a result
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of collision with some other body, the body we consider is subjected to the
instantaneous effect of the impulse F. Newton's Second Law tells us what
the consequence is.

The consequence can be thought of in two different ways: (1) the body
retains the momentum M it had prior to the collision and, as a
consequence, has the same tendency as it did before the collision to
continue in the original direction of the velocity v with unchanged speed
v, however, there is superimposed on the body a second tendency. The
body has been subjected to the given impulse F. This impulse will
produce a tendency for the body to move in the direction of F at speed
equal to F/m. The resultant motion is obtained by the law of vector
addition. We shall express the result first in terms of velocities. The first
tendency - to continue with unchanged momentum M - causes the body
to have a velocity component along M of magnitude M/m = v. As a result
of the collision, there is added to this a second tendency: to move with
speed F/m in the direction of F. This additional velocity component F/m
must be added vectorially by the parallelogram rule of vector addition to
M/m in order to find the resultant velocity. Let v' be this new, post-
collision velocity and let F/w = dv. Then

However, Newton does not express his Second Law in terms of
velocities but in terms of the momentum and the force. The reason for this
is that in any given situation the force has a quite definite direction and
magnitude but the change in the velocity which it produces depends on
the mass of the body to which it is applied: the larger the mass, the smaller
the change in the velocity. In order to obtain a universal form of
expression for the Second Law, i.e., a form that does not depend on the
particular mass of the body considered, Newton expressed the law in
terms of forces and momenta. As a result of the collision the original
momentum M is changed by 6M, M —> M 4- <3M, and

In Newton's own words: The change of motion [in Newton's termin-
ology motion means momentum] is proportional to the motive force
impressed [motive force means here F, i.e., the magnitude of F]; and is
made in the direction of the right [i.e., straight] line in which the force is
impressed.'

The law (1.2) is shown in Fig. 1.1. It might seem that (1.2) is a result of
pure mathematics or at least kinematics, i.e., a consequence of the mere
concept of motion as a vectorial quantity. However, this is by no means
the case. At least two points must be emphasized: (1) as a result of the
collision, the tendency for the body to move in the original direction is not
lost. This is a most important point; the 'slate is not wiped clean' by the
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Fig. 1.1.

collision. Indeed, the very fact of persistence with or without collision is
highly significant; (2) as we have seen, in any given situation the force (or
impulse in the case of a collision) is given, but the effect it produces in
terms of an observable change in the velocity depends on the mass of the
body to which F is applied. Both of these results are pre-eminently
physical; in no way does either of them follow from the bare concepts of
space, time, and motion.

Newton initially discovered his Second Law for the case of collisions.
The much more familiar expression of the law in terms of accelerations is
used in many places in the Principia but is not stated there as a primary
law. That development was due to Euler.2 To this form of the law we now
turn. Its discovery by Newton for the case of gravitational forces was in
fact the final insight that completed the discovery of dynamics. According
to Newton's law of universal gravitation, bodies attract each other with a
definite force. Since this force produces continuous changes in the
momentum (and hence velocity) of the body to which it is applied, it is
truly a force in the modern usage of the word; we shall denote such a force
by f. Then for such a force Newton's Second Law is expressed in the form
(d/dt denotes the derivative with respect to the time f)

Since M = mv, this can also be written as

Finally, since the mass remains constant, m = const (unless mass is
added to or removed from the body), and dv/dt is the acceleration,
denoted by a, we can also write

which is the form of the law with which most readers will be familiar.
That this form is equivalent to (1.3) can be seen as follows. Let the force

f act for only an infinitesimal amount of time 6t. From (1.5) the
corresponding acceleration will be a = f/ra; the resulting change in the
velocity will be dv = adt. Thus, the result of the action of the force is to
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Fig. 1.2.

produce a velocity increment dv and change the initial velocity v to
v + 6v. The effect of the force f acting for time dt is, in the limit when
dt —» 0, equivalent to an instantaneous impulse F = fdt.

As a simple application of Newton's first two laws, we prove the
so-called area law. This will not only demonstrate the power of the laws in
a nontrivial example but also enable us to understand the significance of
many of the astronomical discoveries made in the pretelescopic period.

Consider first a single particle moving inertially along a straight line
ABC, in which AB = BC. Thus, it takes equal times to traverse AB and
BC. Consider also any point P that does not lie on ABC (Fig. 1.2). Drop the
perpendicular PD from P onto ABC. Then since triangles PAB and PBC
have the same height PD and equal bases AB and BC their areas are equal
Thus, as the particle moves along ABC the radius vector from P to the
instantaneous position of the particle sweeps out equal areas in the plane
PABC in equal intervals of time. For purely inertial motion, this is true for
any point P not on ABC. Let the unit of time correspond to the time taken
to traverse AB (or BC). Then AB represents the magnitude of the velocity
of the particle.

Now suppose that when the particle reaches B it is subjected to an
impulse exactly along the direction to P. Let the impulse be of such
strength that, in the absence of the inertial component of the motion along
ABC, the velocity the particle acquires as a result of the impulse would
take it to X (Fig. 1.3) in the unit of time. Let us now find the resultant of
the motion due to the original inertial component and the impulse. To do
this, we describe CX' parallel to BX and of equal length. Then, since
BXX'C is a parallelogram, it follows from the parallelogram law of vector
addition that the actual path taken by the particle after the impulse will be

24
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along BX', and it will arrive at X' after the second unit of time. Now
triangles PBX' and PBC have the same base PB while their vertices X' and
C are on a line parallel to this common base. Therefore the areas of these
two triangles are equal. But PAB and PBC have equal areas, so that PAB
and PBX' also have equal areas.

This shows that the equal area result is still true with respect to P for an
impulse directed exactly along the direction of P (it may, of course, be
either towards or away from P). Thus a particle which moves inertially
except for a series of instantaneous impulses directed exactly along the
line to a given fixed point P at the corresponding instants of time will
always sweep out equal areas with respect to P. Equally important is the
fact that the motion remains forever in the plane defined by P and the
direction of the initial velocity.

To pass from the case of discrete impulses to a force generating an
acceleration continuously, Newton supposed that the impulses occur
much more frequently and that their magnitude is simultaneously
decreased, so that the resulting polygonal figure described in space
approaches ever closer to a continuous curve. For the curve obtained in
the limit, Newton argued that the equal area result will still hold, i.e., that
the radius vector from P to the moving particle will describe equal areas in
equal times in the plane defined by the radius vector and the initial
velocity. Moreover, this will always be true provided the instantaneous
force always acts exactly along the line towards the centre P, which must,
of course, be fixed. As the aim here is merely to demonstrate Newton's
use of his physical concepts, we shall not attempt to discuss the rigour of
his proof - the result is certainly correct.

As we shall see in Chap. 10, the discovery of this result by Newton
around 1680 can, more than any other event, be said to mark the point at
which the full structure of Newtonian dynamics had been found. It is a

Fig. 1.3.
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special case of what is now known as the conservation of angular momentum.
The proof makes it clear that the area law arises almost entirely from the
First Law. Although the instantaneous velocity suffers innumerable
changes, the perpetual uniformity of unadulterated inertial motion is
reflected in the equality of the area swept out, while the rectilinearity of
pure inertial motion is reflected in the fact that the motion remains
perpetually in one plane. (Of course, for this, it is essential that the
acceleration be always in the line towards P - in Newton's words, it must
be produced by a centripetal force.)

Of equal importance for astronomy and the discovery of dynamics is
the consequence of the conservation of angular momentum for the earth.
As this would take us into the unnecessary technicalities of rigid-body
theory, which was only developed after Newton's death, let us merely
state the result. Except for very small perturbations, of no consequence at
all for pretelescopic astronomy, the earth rotates about its axis with
constant angular velocity and the axis remains pointing along a fixed
direction in space (ignoring for the moment the precession of the earth's
axis). This result more or less exactly parallels the area law, the constancy
of the angular velocity being a special case of the equality of the area swept
out (it is obvious that for motion in a circle equality of the area swept out
is converted into equality of the angular velocity), while the fixed direction
of the polar axis corresponds to the fixity of the plane of the motion in the
area law.

We must now complete the statement of Newton's laws of motion. His
Third (and final) Law (Lex Tertia) states that: To every action there is
always opposed an equal reaction: or, the mutual actions of two bodies
upon each other are always equal, and directed to contrary parts.' This
law only acquires a precise meaning when we know what Newton means
by the words action and reaction. In fact, by action he means change of
momentum. Thus, if there is an interaction between two bodies of masses
m1 and m2 and no other bodies are involved, the meaning of the Third Law
is as follows. Let their initial velocities be v: and v2, so that their momenta
are Mj = mjVj and M2 = m2v2. Then suppose body 2, by exerting some
force on body 1, causes an infinitesimal change 6Ml in the momentum of
body 1, so that Mx -» M1 + dM^ Then it follows, first, that there will
necessarily be a change 6M2 in the momentum of body 2; second, this
accompanying change in the momentum of body 2 will always be exactly
equal in magnitude to dMj but in the opposite direction:

Since the changes in momentum are proportional to the forces that
produce them, Newton's Third Law can also be stated in the form that the
forces with which bodies act on each other are equal and opposite.
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The generalization of the Third Law to interactions in which more than
three bodies are involved states that the vector sum of all the individual
changes (3M, induced in the momentum of each body i, i = 1, 2, . . ., n,
is exactly zero:

Newton's three laws do not say anything at all about the actual forces
that occur in nature. These depend on the configurations and nature of
the bodies involved. It was one of Newton's supreme achievements to
separate out the three laws of motion as valid whatever the nature of the
forces acting. The extreme fruitfulness of the scheme was demonstrated
by his discovery of the law of universal gravitation, which provided an
explicit rule for calculating in the case of gravity the force in any given
situation.

For the simplest case when only two bodies are involved, Newton's law
of gravity states that if there are two bodies of mass ml and m2 separated
by a distance r then each exerts a force on the other which is proportional
to the product of the two masses, is inversely proportional to the square
of the distance between them, and acts along the line joining them. The
force acting on body 1 is

where G, a constant, is the constant of universal gravitation, and e is the
unit vector that points from body 1 to body 2.

We should mention right away that gravitation is very exceptional
among the forces of nature in that the masses m^ and m2 occur in (1.7) in
the expression for the force. This has a remarkable consequence. By Le
Secunda, the acceleration of body 1 due to the force (1.7) is

But since f 1 = eGm1m2/r
2, it follows that

Thus, the acceleration of body 1 is independent of its mass: all bodies fall
in a given gravitational field with the same acceleration. This remarkable
result is solely due to the double appearance of the mass: in Lex Secunda
and also in the rule for determining the gravitational force.

Having reviewed Newton's laws and the framework in which they are
formulated, let us now consider some important basic features of these
laws.

Perhaps the first point which is worth making is the universality and
generality of the concept of the world that underlies Newton's laws.
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Throughout the entire universe matter is assumed to have completely
uniform properties. Above all any body is characterized by having mass;
at least as regards dynamics, the stuff of the universe is all the same. In its
essential properties mass is the same wherever it is encountered. The
laws it obeys are the same throughout the universe. Thus, a uniform view
of the world is a most important part of dynamics.

Closely related to this is the important part played by what may be
called physical quantities, above all the masses of bodies. Strictly speaking,
because the masses also occur in the law of gravitational force, Eq. (1.7),
they are the only physical quantities we have so far met. However, in the
case of electrostatic attraction the masses mi and m2 in (1.7) are replaced
by the electric charges e1 and e2 of the two bodies and the electrostatic force
is proportional to e^/r2 (Coulomb's Law). The electric charge is a quantity
quite independent of the mass and is a second example of a physical
quantity.

To highlight the exceptional nature of the gravitational law (1.7), many
authors distinguish between the two roles played by mass. The mass m
that appears in the universally valid Lex Secunda in the form ma = f is
called the inertial mass, while the mass that occurs in the law of force (1.7)
for gravitational forces is called the gravitational charge, or active
gravitational mass.

In connection with the fundamental part played by physical quantities
in Newtonian dynamics, it is significant for the subject of this book that
they play no role in the formulation of the First Law, which in this respect
is sharply distinguished from the other two laws.

This distinguished role of the First Law highlights a point that has
already been made but bears repetition: the dual nature of the factors that
govern any particular body's motion. Through Lex Prima, absolute space
and time keep a body moving in a straight line at a uniform speed and
would do so for ever but for the intervention of other bodies in the
universe. Through Lex Secunda the bodies mutually deflect each other
from one inertial motion to another. We note also that the law of inertia
itself has two quite distinct parts: the rectilinearity of the motion and the
uniformity of the motion. These correspond, respectively, to absolute
space and absolute time.

The next general feature to which attention must be drawn is the fact
that the laws of motion do not determine motions completely. The typical
problem in dynamics is the following. At a given time a body is set in
motion from a given point with a given speed in a certain direction: to find
its subsequent motion. If the body is what is known as a test body, which
means that its mass and various charges are so small that the body in
question exerts a negligible influence on the other bodies in the universe,
and if the initial positions and subsequent motions of the other bodies are
known, then Newton's laws, in conjunction with the laws that determine
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the forces, suffice to determine the subsequent motion of the test body
uniquely. This means that the motion of the considered test body is
determined only up to the specification of six quantities: its three
coordinates at the initial time and the three components of its initial
velocity along whatever coordinate axes may happen to have been chosen
in absolute space.

The need to specify both initial positions and initial velocities is a most
characteristic feature of Newtonian dynamics. It reflects the fact that the
fundamental law of motion, the Second Law in the form (1.5), is a law of
second order in the time, i.e., it contains the second derivatives of the
position coordinates with respect to the time. This is the reason why not
only the initial coordinates but also the initial first derivatives of the
coordinates with respect to the time (i.e., the velocity) must be specified
in the initial condition.

The next general feature of Newtonian dynamics is of such overriding
importance that it warrants a separate section.

1.2. Invariance properties of Newtonian dynamics

Newton's three laws of motion contain no reference to place or time. They
are assumed to be universally true, that is, the laws of motion are exactly
the same at all parts of absolute space and at all instants of absolute time.
It is also implicit that the rules which govern the strengths of the forces
that act in any given situation have the same universality. Because of this
assumed universality of the laws of motion and because of their vectorial
nature, Newton's laws possess some important properties, called
invariances.

For example, suppose we choose a definite fixed point O in absolute
space as the origin of a system of orthogonal Cartesian axes, which we
align along definite directions (we recall that we assume we can somehow
'see' Newton's absolute space, so that O is a point at rest in it and the
directions of the axes remain fixed). If we now consider a system of
noninteracting bodies, which therefore move in straight lines in absolute
space, they will obviously follow straight lines in the chosen Cartesian
system. It is immediately obvious that if we either shift the entire
coordinate system so that its origin is moved to a new point O' without
any change in the direction of the coordinate axes or we keep the origin
fixed and change (once and for all) the orientation of the axes (keeping
them mutually perpendicular), the bodies will still follow straight lines in
the new coordinate systems even though, relative to the coordinate axes,
the straight lines will no longer be the same. This is what one means by
saying that the form of the laws of nature remain invariant. The specific
description is obviously changed but the key property of rectilinearity of
undisturbed motion is not affected. As is pointed out in all textbooks of
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dynamics, the same invariance also holds for Newton's Second and Third
Laws (this is essentially because of their vectorial nature and the fact that
the rules of vector addition are invariant with respect to the two
considered transformations). Newton's laws are therefore invariant with
respect to translations (shifting of the origin) and rotations (a once and for
all rotation of the coordinate axes into new orientations).

It is very important to note that if we displace the origin or rotate the
axes in some arbitrary manner which depends on the time, the motion of
inertially moving bodies will clearly be neither rectilinear nor uniform in
the new system, so that Newton's laws are not invariant under such
transformations. There is, however, one further transformation that can
be made which leaves the First Law invariant. This is the famous Galileo
transformation (as we shall see in Chap 7, what is called the Galileo
transformation is not quite the same as the transformation Galileo consi-
dered) and is as follows.

We consider first a frame of reference fixed in absolute space, which we
call the absolute frame. In addition, we consider a second frame whose axes
are always parallel to those of the absolute frame but which moves relative
to the first with uniform speed in a fixed direction in absolute space. We call
this the moving frame. A moment's reflection will convince the reader that,
observed in the moving frame, bodies that move inertially in the absolute
frame still appear to move uniformly and along straight lines. Thus, by
examining the motion of bodies that move purely inertially we come to a
rather surprising conclusion. As far as the law of their motion is
concerned, we are quite unable to say whether we are observing that
motion in a frame of reference that is at rest relative to absolute space or is
moving uniformly in a straight line through it.

Let us now consider the situation with regard to the Second and Third
Laws. Here we have to distinguish two different things; one is a matter of
pure mathematics, the other is a matter of physics. The Second and Third
Laws make statements about changes in motions, i.e., accelerations.
Suppose we follow the motion of a body in what we have called the
absolute frame and that it initially moves uniformly with velocity v, is
then subject to a change in velocity <5v, after which it again moves
uniformly. Thus, in the absolute frame the velocity changes from v to
v + 6v. Now in the moving frame the velocity before the change is v + V
(where -V is the velocity of the moving frame in absolute space) while
after the change it is v 4- dv + V. Thus, in the moving frame the change
is dv, just the same as it is in the fixed frame. This is a purely mathematical
result and shows that all changes in inertial motions, and thus accelera-
tions, are exactly the same in the absolute and in the moving frame. Thus,
if we observe a body of known mass and wish to deduce from the change
in its momentum mv the force which acts upon it, we shall obtain identical
answers in the two frames.
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Let us now consider the physical side of this question and begin with
Newton's law of gravity. Examination of the expression (1.7) for the force
shows that it has a remarkable property; namely, the force is completely
determined by the relative configuration of the two interacting bodies: the
force acts along the line that joins the two bodies and its strength is
inversely proportional to the distance between them. This law determin-
ing the gravitational force is therefore completely independent of the
position and the velocities of the bodies in absolute space. Thus, the force
depends only on the relative configuration of the bodies; it is therefore the
same in both the absolute and the moving frame. But we have already
seen that, by pure mathematics, the accelerations are the same in the two
frames. Thus, the two sides of Newton's Second Law, ma = i, are the
same in both cases, so that the Second Law is also invariant. It is easy to
see that the Third Law is too.

It is important to note what are called the passive and active aspects of
this transformation. As throughout this entire discussion, we hold fast to
the notion of the reality of absolute space. Consider a collection of
gravitationally interacting bodies whose centre of mass is at rest in
absolute space and whose motion we follow from the initial time t = 0.
We call this system A. Then transition to the moving frame means that we
merely look at the interactions in system A from a frame moving with
velocity —V relative to the absolute frame. This is the passive aspect. But
now imagine in the absolute frame an identical set of bodies with the sam
initial relative positions and relative velocities but with an overall velocity V
added to all velocities. In the absolute frame this is, physically, a quite
different system, and we shall therefore call it system B. Yet, because the
law of gravitational interaction depends only on the relative configura-
tion, the accelerations of the bodies in system B will be identical to those
in system A. But their initial velocities are the same as those in system A
when viewed from the moving frame. Thus, the motion of system B when
observed in the absolute frame will be identical to the motion of system A
when observed from the moving frame.

Thus, as far as gravitational forces are concerned, we are quite unable,
if we cannot actually see absolute space, to say which of the systems A or
B is moving in absolute space. Such a system of bodies, which we assume
is free of all disturbance from other bodies, is called a closed dynamical
system.

Now one of the most interesting of the implicit assumptions that
Newton made in the Principia is that the property which we have seen
holds for gravitational forces, i.e., that they do not depend on an overall
motion through absolute space, is universally true of all the forces of
nature. He assumed3 (without proof) that the forces which act between
bodies depend either solely on the relative configuration of the bodies, or
else on the relative configuration and the relative velocities of the bodies
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but in no case on their position or overall velocity in absolute space. In
particular, he assumed that a uniform rectilinear motion common to two
bodies would have no effect at all on the force that acts between them.
This is not a consequence of his laws of motion. For example, the strength
of the force that acts between two bodies could depend on the velocity of
the centre of mass of the two bodies through absolute space without
violating any of the three laws of motion.

If this property of forces, which is in fact confirmed by experiment, is
assumed, then the result which we showed to be true for purely inertial
motion is true for any motion governed by Newton's laws and forces
which have the above property. This result was stated by Newton in his
famous Corollary V to the laws of motion: The motions of bodies
included in a given space are the same among themselves, whether that
space is at rest, or moves uniformly forwards in a right line without any
circular motion.' This property is what is now called the Galilean invariance
(or Galilean relativity) of Newtonian dynamics. It clearly puts a question
mark over the whole concept of absolute space. If our motion through it
cannot be revealed by any experiment, of what use is the concept?

We can answer this question by pointing out that Newton did have very
good grounds for the assumptions he made and they do make a great deal
of sense. For example, the astronomers had by his time established very
accurately how the planets move around the sun relative to the distant stars
In conjunction with Newton's law of gravitation, this motion
demonstrated unambiguously the possibility of a description in the terms
that Newton proposed provided it is assumed that the distant stars are
nonrotating relative to absolute space. That is, it demonstrates that in all
cases the motion of the planets can be conceived as due to the
supervention of the gravitational effect of nearby bodies on a rectilinear
motion relative to the stars. There is thus a pervasive and powerful
constituent to actual motions that is manifestly nothing to do with local
bodies. It shows up particularly in two effects: (1) a body that passes by
the sun with a very high velocity tends to follow a path that approximates
more and more to a straight line (ignoring relativistic effects); (2) if the
earth's motion were solely governed by its interaction with the sun and
nothing else (neither by absolute space nor other bodies; we ignore the
manifestly small effect of the other planets), it is difficult to see why the
earth should not in all cases fall straight into the sun, since it is undoub-
tedly attracted to it by the sun's gravity. Consider in particular an initial
condition in which the distance between the earth and the sun is not
changing. In the frame provided by the distant stars, such is the case
when either the earth is at rest in that frame or is moving with any velocity
at right angles to the line joining the earth and the sun. But as far as the
earth-sun system is concerned, such a motion is nonexistent (we treat the
earth and sun as mass points since their extension evidently has no bear-
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ing on the matter). Thus, on a purely relational theory of motion, when
we look at things from the point of view of kinematic relativity, it is com-
pletely inexplicable why the earth falls to the sun in only the single case
when the transverse velocity is zero; in all other cases a completely dif-
ferent motion results. Thus, there is evidently a great deal more to motion
than just the earth-sun relative separation. Newton said that the 'some-
thing else' is to be attributed to absolute space, and the worth of this concept
is only very slightly diminished by the problem with Galilean relativity.

This can be put quite graphically in terms of frames of reference. Take a
given frame of reference and a second that moves with respect to it in an
absolutely arbitrary manner. Space is certainly invisible and if it had no
influence at all on the motion of bodies it is hard to see why one frame of
reference should be distinguished with respect to any other. Yet we
know: (a) such frames exist (the whole of astronomy proves their
existence), (b) considered in terms of the freedom that the nonexistence of
a dynamical role of space would allow to the frames of reference their
choice is amazingly circumscribed, just the family of nonrotating frames
in uniform rectilinear motion being allowed. Moreover, all bodies in the
universe respect the same set of frames of reference that permit the
remarkable decomposition into inertial motion and locally determined
force-induced changes in inertial motion. (This last statement will require
modification when we come to consider general relativity but this does
not affect the basic point being made here.) Newton was wrong to imply
that there is a uniquely determined frame of reference. There is not one
such frame of reference but rather a family of them. But, looked at from
the point of view of kinematic relativity, the family is inexplicably
restricted.

We began this discussion by asking what is the use of the concept of
absolute space if our motion through it cannot be detected by any
experiment. The answer is that the motion must be highly special - a
uniform motion remains undetectable but any acceleration can be
detected. Why this is so we do not know. It is this puzzle that Mach hoped
to solve with his suggestion that in some way the distant stars are what
actually determine the allowed frames of reference.

As already pointed out, it is necessary in all cases to distinguish
carefully between Galilean and kinematic relativity. They are clearly not the
same thing. One should also be on guard against the assumption, often
made, that although the two concepts are not identical Galilean relativity
is at least a necessary consequence of kinematic relativity. For, it is
argued, if motion is entirely relative and space plays no part in dynamics,
any motion through 'space,' including uniform motion, should obviously
be undetectable. This is clearly the case if the system one is considering is
the entire universe, but it does not follow for the case of a relatively small
system of bodies (such as the solar system) within a much larger collection
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of bodies taken to represent the rest of the universe. In this case one could
readily imagine that a motion relative to the masses of the universe as a
whole would be observable dynamically. However, this is not the case.

Finally, it is convenient to introduce some more terminology. Sticking
for the moment to the useful fiction that we can 'see' absolute space, we
shall define an inertial frame of reference (also called inertial system) as one
that is either at rest in absolute space or moves uniformly through it in a
fixed direction. One can alternatively ignore all references to absolute
space and simply say that an inertial frame of reference is one in which
Newton's laws hold in the form he stated them.

We can now briefly state what Vol. 1 contains as regards the history of
the discovery of dynamics: It aims to cover all the key events needed for
the eventual Newtonian synthesis, the synthesis itself, and then, jumping
forward a couple of centuries, the final clarification of the true empirical
content of Newton's laws by Neumann, Lange, and Mach. Of especial
interest is the operational definition that Lange eventually found for an
inertial frame of reference. We shall see that it puts the relationship
between space and motion in a quite new and most intriguing
perspective.

1.3. Why it took so long to find the laws of motion

It took a remarkably long time for man to discover dynamics. This section
will attempt to identify some of the reasons. We begin with the purely
physical aspect: What chances did nature give man? In fact, there seems
to have been almost a conspiracy on the part of nature to hide the laws of
dynamics from man. Einstein is on record as saying that the Lord is subtle
but not malicious.4 At times one could almost wonder. If we look at the
most important features of Newton's three laws we shall see that, even
without the self-imposed obstacles of preconceptions, the odds were
against the discovery of any of them.

On the face of it the prospects were best for the discovery of the First
Law. The behaviour of arrows and sling casts did, after all, vouchsafe man
a glimpse or two of the law. But there were still several formidable
obstacles to its recognition. The first and most obvious is air resistance.
The forward speed of the thrown object is manifestly diminished. This
presented an insuperable obstacle to mathematization; the ability to
describe nonuniform motions mathematically developed only very
slowly indeed. Until man obtained a very clear awareness of the
possibility of free continuation of motion forever once commenced,
mathematization of this aspect of motion was ruled out. And from what
activities could man have gained such an awareness? Skating perhaps,
but that was hardly a sport practised by the ancients in the Mediterranean.
(One wonders if it is entirely fortuitous that the first reasonably clear
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statement of the law of inertia in its modern form was made by a man -
Descartes - who spent most of his adult working life in Holland, at a time
moreover in which skating had become a great vogue.) In this connection,
it should not be forgotten that the development of modern means of rapid
transportation have given us vastly more opportunities for observing the
immediate consequences of inertial motion. Particularly important in this
respect is the relatively modern insight (not clearly expressed in the
literature on motion before about 1630) that motion of a transported body
can continue of its own accord when the transporting body ceases to
move. When the car we are travelling in comes to an abrupt halt, our
bodies automatically continue their motion with consequences of which
we are only too painfully aware. This affords us an insight into inertial
motion quite different from that gained from watching a javelin thrower.
For in that case the motion has clearly been initiated by a forceful act and
this led, in medieval times, to the idea that the projectile is kept in motion
by the transference of a 'force' or 'impetus' or even 'spirit' from the
thrower to the projectile.

Thus, although this was a step, and quite an important one, towards
the law of inertia, it remained very restricted: a particular cause was
invoked for a restricted class of motions - those manifestly initiated by a
thrower. There was no real awareness that the factor at work keeping the
javelin moving is universal and just as much at work in all the other
myriad motions of which we take cognizance.

Equally difficult to acquire was the notion that a given motion of this
kind must be decomposed into two parts - the horizontal inertial compo-
nent and the vertical motion decelerated and then accelerated by gravity.
It was a decisive and bold step on Galileo's part to divide up projectile
motions cleanly into two constituents. Crucial to this was his perception
that without air resistance the horizontal motion remains perfectly uni-
form - that was the property that, so to speak, identified the horizontal
component as something autonomous and simultaneously rendered it
amenable to precise mathematization.

If we turn now to the Second Law and start by considering what was
needed for the discovery of its most important feature, the central role
played by acceleration, we find that here the difficulties were even
greater. For let us consider what is involved in studying motion.

First, we need to see objects and follow the various paths they take.
Here we are well endowed by our senses. Objects are easy to see, and
both in astronomy and terrestrial physics nature provided us with an
almost perfect backcloth on which to trace their motions - the fixed stars
in the sky and the solid ground on the earth. Thanks to the stability of the
ground, the existence of solid objects, and the excellence of our vision, we
acquire a good qualitative grasp of geometrical relationships within a year
or two of our arrival in the world. Arithmetic belongs to prehistory, but
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geometry too was developed early to a highly precise and formalized
science. Measurement with rulers is one of the easiest and most reliable
means of making quantitative observations. There can be little doubt that
the early discovery of geometry was due to these favourable circum-
stances. Particularly important was the fact that the means of measure-
ment were sufficiently accurate to point forcibly to the existence of
absolutely exact relationships. The recognition of such relationships and
their formal statement as axioms appears to be a key step in the
development of science. It is only absolutely exact relationships that
admit mathematization and can provide a formal theoretical framework
in which the need for the measurement of particular quantities is
perceived.

Thus, if we ask what it is that stimulates the development of an exact
science, the answer appears to be that there must be a means of
observation sufficiently accurate to alert man to the possible existence of
simple exact numerical or geometrical relationships behind the empirical
phenomena. In the case of geometry and pitch, excellent means of
measurement are available - rulers for geometry, as we have seen, and
the human ear for pitch. Even the unmusical can hear acoustic frequencies
with remarkable accuracy, so the conditions for Pythagoras's discoveries
in harmony were very favourable.

In addition to the means of observation there must of course be suitable
phenomena to observe. They must exist and be reproducible and
sufficiently striking to attract attention. Now we have seen that in the case
of the First Law suitable phenomena were simply not presented to the
senses. However, in the case of the Second Law it would seem that nature
did provide a reproducible and most striking motion that should have
been appropriate: the free fall under gravity of stones and other heavy
objects. As Aristotle himself commented:5 'His must surely be a careless
mind who does not wonder how it is that a small particle of the earth, if
raised to a height and then set free, should refuse to remain where it was
but begin to travel.' Why was it so long before this remarkable
phenomenon gave rise to a quantitative science?

The main answer must have been: there was no suitable clock. The typical
speeds of motions observed on the surface of the earth are measured in
metres a second but the accelerations are typically measured in metres-
per-second a second. For this reason, the motions themselves (unless
subject to human or animal will) only last a few seconds. Whereas man
found about him an abundance of highly accurate means for measuring
distance (rulers etc.), so that a metre can easily be measured to an accuracy
of one part in a thousand, nature signally failed to provide us with an
adequate clock. It is well known that Galileo made the first discoveries in
dynamics using the pulse-beat - an erratic clock with an accuracy of not
better than a second. Thus, the speeds of the motions from which the
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rudiments of dynamics might have been learnt could be measured to an
accuracy of, say, only 50%. This accuracy was of course quite inadequate
for the development of quantitative study of motions, and accelerations,
which ultimately unlocked the mystery of motion, were beyond measure-
ment. This sheer inability to 'see' accelerations must have been the main
factor why free fall and other terrestrial motions failed to attract
quantitative study.

A graphic illustration of the extreme difficulty of arriving at accurate
knowledge about terrestrial motions caused by the absence of a
convenient clock is provided by one of the few passages that have
survived from antiquity with a valuable insight into nonuniform motion. It
derives from Strato, who in 287 BC became the head of Aristotle's
Lyceum. He comments6 that a falling body as it accelerates 'completes the
last stage of its trajectory in the shortest time. . . . For if one observes
water pouring down from a roof and falling from a considerable height,
the flow at the top is seen to be continuous, but the water at the bottom
falls to the ground in discontinuous parts. This would never happen
unless the water traversed each successive space more swiftly/

Note that Strato, who was obviously not the first person to note the
phenomenon, is completely reliant upon a secondary effect, from which
nothing more than a qualitative judgement can be made. He has
succeeded in grasping only the grossest features of the motion.

It is worth mentioning specifically two further errors about terrestrial
morion that were widespread before Galileo's time. The most famous is,
of course, the mistake made by Aristotle and other Greeks that heavier
bodies fall faster than lighter ones. The effect of air resistance does, of
course, provide some sort of excuse, but this was really an extraordinarily
gross error, which neither air resistance nor the absence of a suitable clock
can possibly explain. As late as Galileo's time many people believed that
a two pound weight would fall twice as fast as a one pound weight. We
shall return to a discussion of this point shortly.

The other error is very peculiar. In Aristotle's On the Heavens there is a
curious passage7 which states that 'for things whose motion is that of a
missile' the greatest speed occurs in midflight. In fact, it seems most
probable that there is here some error of transcription or a misunder-
standing. Nevertheless, in the Middle Ages it was firmly and quite widely
believed8 on the basis of this statement that a thrown projectile does not
acquire its maximum speed immediately it leaves the thrower's hand but
only in the middle of its flight. According to this notion, which was taken
as an undoubted empirical fact, there is therefore an initial build-up of
speed and only then does deceleration commence. As we shall see in
Chap. 4, this was the belief of one of the greatest of all medieval natural
philosophers, Nicole Oresme.

Under such circumstances, presented with a plethora of diverse
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motions and a focus inadequately sharp for the salient details to obtrude
on the consciousness, it is perhaps not surprising that ancient and
medieval physics was content with a purely qualitative description. How
and when did the shift to quantitative study occur?

Working through the history of dynamics, one of the things that strikes
one most forcibly is the occurrence of key events when often quite
unwittingly - or at least only with a very dim awareness of the long-term
consequences - someone decides to look at long known phenomena from
a different point of view. The initial shift of emphasis is often apparently
quite small, seemingly innocent; the end result appears out of all propor-
tion to the initial step. In fact, subsequent events show that it is, quite
literally, a step into a new world.

Such was Galileo's conscious decision to take an interest in accelera-
tions. Having once got the idea, he was forced to use a clock to make
measurements sufficiently accurate for his purposes. Galileo's originality
did not lie in the particular clock he invented but rather in deciding to use
it on terrestrial motions. It says much about the totally different ways in
which astronomy and terrestrial physics developed that, according to
Ptolemy,9 water clocks were used before his time (circa AD 150) in an
attempt - unsuccessful in fact - to measure the apparent diameter of the
sun (by measuring the time taken for the sun to rise) and thereby establish
in a direct manner whether the distance of the sun varies significantly.
This shows clearly that Ptolemy's predecessors were already convinced
that there was something worth finding in the heavenly motions. Conscious
efforts were made to wrest the secrets of the celestial bodies from the
heavens. But no one before Galileo seems to have had the idea of using
accurate water clocks to study terrestrial motions. This therefore provides
a further explanation for that extraordinarily gross error about the times
of falling of objects of different weights. There was simply a total lack of
awareness that any significant or rewarding insight was to be gleaned
from attentive and quantitative observation of terrestrial motions. What
thinking that did go into the subject concentrated instead on the
seemingly much more important and interesting question of why the
apple falls, not how it falls.

This is an appropriate place to give Galileo's own description of the
clock he used in the experiment that at last set the study of terrestrial
motion on the right road:10

For the measurement of time, we employed a large vessel of water placed in an
elevated position; to the bottom of this vessel was soldered a pipe of small
diameter giving a thin jet of water, which we collected in a small glass during the
time of each descent, whether for the whole length of the channel or for a part of
its length; the water thus collected was weighed, after each descent, on a very
accurate balance; the differences and ratios of these weights gave us the
differences and ratios of the times, and this with such accuracy that although the
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operation was repeated many, many times, there was no appreciable discrepancy
in the results.

It has been remarked that a major scientific discovery can be expected
whenever the accuracy of measurement of any fundamental quantity is
increased tenfold. This is beautifully confirmed in Galileo's case. Galileo
reports that he measured the time 'with an accuracy such that the
deviation between two observations never exceeded one-tenth of a
pulse-beat.'

More than enough facts were constantly under our nose but were for
that very reason just out of focus.

I still have the vivid memory of watching on television the American
astronauts working on the moon. By chance, one of them happened to
kick up gently some moon dust, which could be seen to travel slowly
about five or six metres in a perfect parabola. The motion was sufficiently
slow for the mind to be forcibly struck by the uniform persistence of the
horizontal (i.e., inertial) motion and the gradual deceleration and
acceleration of the vertical motion. As the moon's surface gravity is about
a sixth of the earth's, the transfer to the moon achieved much the same
effect as Galileo's clock described above. In addition, the disturbing
influence of air resistance was completely eliminated. To inhabitants of
the moon, the laws of motion would have been as transparent as
geometry was to the Greeks. The irony is that the sustenance of life
requires an environment rich in change and motion, but this very richness
and mutability prevented man seeing through to the inner essence of
motion.

Are there other clues, literally before our eyes, that, even now, in this
high tide of the technological era, could transform our conceptions as
profoundly as Galileo's clock? The history of dynamics suggests there
could be.*

We still have not completed the survey of nature's perversity in hiding
the clues to the discovery of dynamics. We recall that acceleration is only
part of the story of the Second and Third Laws. Just as important are the
physical quantities which appear too, above all the mass of the accelerated
body and the charge which causes the acceleration. What chance was there
of discovering the physical essence of these two laws, that is, that bodies
accelerate each other through forces. To answer this question, we have to
look at the forces separately. Nuclear forces were, of course, quite out of

* As a striking example of what can escape notice (though with no suggestion that it has any
bearing on fundamental questions of dynamics) the following may be mentioned. In a
department store in the centre of Brussels the undersides of the escalators have been covered
with mirrors at exactly 45° to the vertical. If one stands and looks at the mirrors, all the public
is seen walking upside down, and the curious swaying and rising and sinking manner in
which people walk is suddenly made apparent. The effect is so surprising as to be almost
hypnotic.
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reach. There were, however, abundant manifestations of both electrical
and gravitational forces - but none in a form that could have led readily to
the formulation of the Second Law. Consider electrostatic forces; on the
face of it, these should have been ideal for recognizing the inverse square
law. Quite the contrary; for a start, due to the existence of both positive
and negative charges, almost all the electrical charges in the world are
locked up in neutral complexes. The Coulomb forces are thus almost
completely withdrawn from the macroscopic world and all that remains
are contact forces. This greatly strengthened the natural view that motion
is all a matter of pulling and pushing and put in the foreground
characteristics of material bodies such as their geometrical shape or their
hardness. No one looked for or suspected the existence of things such as
charge. And even in the cases, well known to the Greeks, in which an
electrostatic charge can be accumulated, great care and controlled
laboratory conditions are needed if repeatability is to be achieved and
genuine effects observed.

In the case of gravity the situation was slightly more favourable. Here
at least there is no mutual cancellation, but the extreme weakness of
gravity has the consequence that the only obvious manifestation of
gravity is free fall to the surface of the earth. But this is just a single
phenomenon; there is not the remotest possibility of recognizing directly
that the strength of gravity depends upon distance or on the gravitational
mass of the accelerating body. Nor is there any chance of perceiving that
gravity is a force of mutual attraction: The mass and pull of the earth
totally outweigh the effect of the attracted stone or apple. There is no
manifestation of the law of action and reaction. Thus, although Galileo
brilliantly overcame the problem of timing the descent of bodies and
achieved a more or less complete understanding of terrestrial motions
under the joint influence of gravity and inertia he made no progress at all
towards the statement of Newton's law of universal gravitation. His
insight, although crucial, was still very partial.

Thus, many factors taken together contributed to the extreme difficulty
of perceiving the physical aspect of motion.

There was just one chink left in nature's physical armour - magnetism.
In permanent magnets, the miraculous lodestones, enquiring man was
granted one reliable force that came in a manageable amount and could be
used in controlled experiments. The conditions were certainly nowhere
near favourable enough for the discovery of the actual law of force, but
they were good enough to suggest a qualitative concept of physical force
capable of acting over distances. Gilbert's book on magnetism11 published
in 1600 marked a significant development and suggested the concept of
force in a form capable of mathematical development. But that did not
occur in magnetism. Kepler took the idea of physical force from Gilbert
and applied it in the heavens. Here at last were motions of a kind suitable
for mathematical analysis. They eventually yielded their secret.
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The next section considers the cause of the curious paradox that the key
to terrestrial dynamics was found in the heavens, but before that we
should point out how all the reasons so far examined for the nondiscovery
of dynamics were amalgamated together into a fundamental proposition
that contained sufficient truth to have appeared plausible for two
millennia and yet was disastrously wrong. Under the influence of
Aristotle, whose ideas we shall consider in Chap. 2, there became
established the doctrine that no body could move unless it was moved by
some other body.12 In the Middle Ages, this was expressed by the
following words: Omne quod moveturab olio movetur. However, the motion
of the pushed body was believed to come to a stop as soon as the pushing
stopped. This accorded with the even more fundamental doctrine that
when a cause ceases to work the effect it produces disappears: Cessante
causa, cessat effectus.

In the light of the above discussion, we can easily see how such an idea
arose. Most bodies on the earth are in a state of rest. In accordance with
Newton's Third Law, they can only be set in motion by the action of some
other body. But air resistance, friction, and the absence of an accurate
clock hide the fact that the pushing body produces an acceleration rather
than the motion itself. Also, because resistance brings most morions
quickly to a halt, it is very easy to see how the idea that motion itself must
be sustained by a pusher rather than merely initiated by the pusher took
such a hold. Finally, the effective absence of electrostatic forces means
that in almost all cases direct contact is needed to produce motion. All
these factors taken together therefore conspired to produce Aristotle's
doctrine, which was all the more misleading because it was not totally
wrong. As so often, partial truth is more dangerous than straight error.

Finally, there is a further very deep reason why dynamics took so long
to discover. In accordance with Newton's laws, the earth is unquestion-
ably in a state of rotation. Nevertheless, a frame of reference fixed to the
surface of the earth approximates an inertial frame of reference to a
remarkably good degree, and since according to Newton's own laws a
state of uniform motion is quite indistinguishable from one of perfect rest
the Galilean invariance of dynamics produces an extremely powerful
impression of the complete immobility of the earth. In the following
chapters we shall see how the belief in terrestrial immobility was a
powerful factor that held back the discovery of dynamics. This only serves
to emphasize the crucial role of astronomy. For it was astronomical facts,
patiently accumulated in painstaking observations stretching over
centuries, that finally produced the most convincing evidence that the
earth rotates and moves (both with respect to the stars and the family of
inertial frames of reference). It was this that broke the log-jam and more
than anything else provided the hints that enabled Galileo and Newton to
bring about the synthesis of the disparate parts and thereby create the
science of dynamics.
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1.4. Why the first breakthrough occurred in astronomy

Man was endowed by nature with two clocks. With the one, his heart-
beat, he lived for millennia in a cornucopia of motions but had not an inkling
of their secret.

The other clock was so fantastically accurate and convenient that
astronomy became a highly accurate and sophisticated science well over
one and a half millennia before Galileo obtained the first useful results in
terrestrial dynamics. I refer, of course, to the rotation of the earth and the
apparent motion of the sun and the moon. In Chaps. 2 and 3, we shall
consider the nature of time from the philosophical and empirical points of
view and establish what it means to say time passes uniformly. But for the
purposes of the present discussion, let us take the concept of uniform
flow of time as granted. Then this uniform flow is measured by the
rotation of the earth with an accuracy of about one second in a year, i.e.,
one part in thirty million. Almost as important as the accuracy is the
convenience. The alternation of day and night marks the 'second/ the
very ticks of the clock; the sun and moon are its big and little hands, the
star-studded welkin the clockf ace, on which the twelve signs of the zodiac
mark the twelve 'hours' in the astronomical system of time keeping. No
wonder Plato called the celestial bodies the 'eternal image' of time.13

And it was not only the existence of a suitable clock that created such
favourable conditions in astronomy. The motions themselves that were
available to be studied were of such a different kind. Terrestrial motions
exhibit a bewildering variety - from the purposeful locomotion of animals
to the falling of rain and snow, the blowing of leaves in the wind, ordered
wave motion in calm weather, and the raging of the sea in a storm.
Moreover, all terrestrial motions are readily distorted by extraneous -
from the point of view of the subsequent theory of motion - factors, above
all air resistance and friction, these themselves being highly variable,
unpredictable, and differing in their action on different bodies (stream-
lined or not, dense or light, rough or smooth).

How different and so simple are the celestial motions in comparison
and with what sedateness and clarity are they described! Seven lights
(sun, moon, and five planets) creeping more or less regularly across a
black backcloth richly laid with perfect markers, the stars, which never
move or fail. It is almost as if a system of polar coordinate axes were
painted on the sky: azimuth measured round the zodiac, declination from
the pole of the ecliptic. Thus, for those prepared to make the effort - and
many were - nature in her bounty made it as easy to pluck precise data
from the heavens as nuts from the autumn hedges.

These facts give some indication as to why astronomy was to prove the
high road to the discovery of dynamics and how it was that ancient
astronomers were able to make the significant discoveries they did.
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There is another most important factor that favoured the quantitative
development of astronomy and held back terrestrial dynamics. We have
already mentioned the bewildering variety of terrestrial motions. But this
is only a part - and perhaps the least important part of the story. In a study
concentrated solely on dynamics, it is all too easy to forget that motion is
but one of innumerable phenomena that take place on the earth. The
variety of motions is as nothing compared with the rich profusion of
earth-bound events that involve qualitative changes and in which the
motional aspects often appear quite minor and insignificant. This is an
aspect of terrestrial physics that we have not yet mentioned. Yes, the
falling apple is striking but not half so marvellous as the ripening apple,
the golden corn, and the fermentation of grape juice into wine. Or the
mystery of fire, the freezing of water, and the deep blue of the sky giving
way in the evening to the red glow of sunset. Is it surprising that under
such circumstances Aristotelian and medieval physics was essentially a
theory of all qualitative changes? Was it not the purest speculation to
suppose that the quantitative aspects of motion alone, the least exciting
perhaps of all these almost unbelievable transformations, should hold the
key to their understanding?

In contrast, the celestial spectacle was pure ballet; attention was
perforce concentrated on motion, for almost nothing else could be
observed.

It is here worth quoting from the opening passages of Ptolemy's
Almagest, written about five hundred years after Aristotle flourished and
another one thousand five hundred years before Galileo. It reveals a truly
remarkable awareness that the study of motions, especially celestial
motions, represented pretty well the only place in which man could hope
to make a genuine breakthrough to a secure understanding of things.
Here are Ptolemy's words; note in particular the parts I have italicized:14

For Aristotle divides theoretical philosophy too, very fittingly, into three primary
categories, physics, mathematics and theology. For everything that exists is
composed of matter, form and motion; none of these [three] can be observed in its
substratum by itself, without the others: they can only be imagined. Now the first
cause of the first motion of the universe, if one considers it simply, can be thought
of as an invisible and motionless deity; the division [of theoretical philosophy]
concerned with investigating this [can be called] 'theology', since this kind of
activity, somewhere up in the highest reaches of the universe, can only be
imagined, and is completely separated from perceptible reality. The division [of
theoretical philosophy] which investigates material and ever-moving nature, and which
concerns itself with 'white', 'hot', 'sweet', 'soft' and suchlike qualities one may call
'physics'; such an order of being is situated (for the most part) amongst corruptible bodies
and below the lunar sphere. That division [of theoretical philosophy] which
determines the nature involved in forms and motion from place to place, and
which serves to investigate shape, number, size, and place, time and suchlike,
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one may define as 'mathematics'. Its subject-matter falls as it were in the middle
between the other two, since, firstly, it can be conceived of both with and without
the aid of the senses, and, secondly, it is an attribute of all existing things without
exception, both mortal and immortal: for those things which are perpetually
changing in their inseparable form, it changes with them, while for eternal things
which have an aethereal nature, it keeps their unchanging form unchanged.

From all this we concluded: that the first two divisions of theoretical philosophy
should rather be called guesswork than knowledge, theology because of its completely
invisible and ungraspable nature, physics because of the unstable and unclear nature of
matter; hence there is no hope that philosophers will ever be agreed about them;
and that only mathematics can provide sure and unshakeable knowledge to its
devotees, provided one approaches it rigorously. For its kind of proof proceeds by
indisputable methods, namely arithmetic and geometry. Hence we were drawn
to the investigation of that part of theoretical philosophy, as far as we were able to
the whole of it, but especially to the theory concerning divine and heavenly things. Fo
that alone is devoted to the investigation of the eternally unchanging. For that reason it
too can be eternal and unchanging (which is a proper attribute of knowledge) in
its own domain, which is neither unclear nor disorderly.

Note first how Ptolemy more or less identifies mathematics with the
study of motion and sees absolutely no hope of progress in either
'physics' or theology and that alone in the study of 'divine and heavenly
things', i.e., the sun, moon, planets, and stars, is there any hope of
genuine progress - and that because of the 'eternally unchanging' nature
of what happens in the heavens.

From the point of view of the discovery of dynamics, astronomy offered
other advantages, one a fortunate fluke: the existence of the moon, the
eclipses of the sun it causes, and the eclipses it suffers. These, thanks to
the perfect clock, which enabled them to be recorded with such accuracy
and convenience, revealed a most mysterious feature of celestial motions,
which is already hinted at in the above extract from Ptolemy. Although
the motions themselves were not perfectly regular - even the simplest
motion, that of the sun, is not perfectly uniform - the predictability of
eclipses was nevertheless evidence of some deep interconnection of
things. Moreover, the eclipses were such awesome events, man's
curiosity could not but be drawn to ponder their origin. It was the
experience of an eclipse at the age of 14 which turned Tycho Brahe into the
greatest astronomer of perhaps any age. It struck him as 'something
divine that men could know the motions of the stars so accurately that
they were able a long time beforehand to predict their places and relative
positions'.15

The cyclic regularity of the celestial motions was probably the single
most important factor in the discovery of dynamics if not the entire
scientific revolution.

Quite generally, astronomy appears to have attracted attention because
of its 'divine' attributes, which awoke in man a sense of awe before the
starry heavens, the perfect uniformity of the diurnal rotation, and the
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seeming eternity of the celestial constellations. In the case of terrestrial
motions, it was an example of familiarity breeding contempt; but the
celestial motions, few as they were, exerted a constant pull upon the
imagination and simultaneously imposed a severe discipline on the
investigator. He had no choice but to investigate their motion; there was
nothing else to study. Thus, the great bulk of Ptolemy's Almagest, the
bible of ancient astronomy, is in a terse, sober, and very factual style. Most
of it could be printed in the Physical Review without appearing out of place.
But every now and then there are lyrical passages in which Ptolemy
breaks out in enthusiasm for his subject and reveals the inner drive that
sustained him through all those hours of observation and computation.
We have already seen how he identifies the heavenly bodies with the
divine. A little later, commenting on the celestial affairs and their
proximity to perfect divinity, he writes: 'from the constancy, order,
symmetry and calm which are associated with the divine, it makes its
followers lovers of this divine beauty'.

What was the physical cause of this inspiration in Ptolemy? What made
him want to study what he was convinced was divine - and thereby lay
the foundations of a science that ultimately killed the divinity he so
fervently worshipped?

We shall go into this in more detail in Chap. 3, but basically the inherent
advantage of celestial motions (as the key to find some of the most
important secrets of dynamics) derives from the fact that the moon and
planets move in the nearly perfect vacuum of interplanetary space and in
the central force field of the sun, so that the effect of the law of inertia is
manifested in their behaviour in an almost undiluted form, as we saw in
Sec. 1.1. in the discussion of the area law. All earth-bound motions come
to an end, but the celestial motions go on for ever. This is what made them
appear an eternal image of time and divinity. The search for immortality
was the first stimulus to the discovery of dynamics.

But even in astronomy, though the conditions were much more
propitious, Newton's laws could still not be 'read off directly from the
heavenly motions. Because of the overwhelming mass of the sun in the
solar system and of the earth in the earth-moon system there is no real
manifestation of the Third Law. Moreover, and more seriously, the
observed motions arise from the combination of the First and Second
Laws, neither of which are manifested in pure form. Without hints that
were finally supplied by terrestrial motions, the clear separation of the
effects of these two laws in the heavenly motions could never have been
made. Thus it was that Kepler achieved marvels in the actual quantitative
description of the motions and had several ideas which the subse-
quent work of Newton showed were basically sound, even inspired,
yet he completely failed to overcome the supreme impediment to the
discovery of dynamics: Aristotle's dictum Omne quod movetur ab olio
movetur.
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1.5. General comments on the absolute/relative debate

The debate about the absolute or relative nature of motion revolves
around two basic questions. In broad terms, the first is: how is motion (or
more generally any kind of change), irrespective of its causes and
particular properties, to be described? And the second is: what is the
nature of motion, what laws does it obey? We shall see that the two
questions are much more closely interrelated than might appear at the
first blush. For what is at stake is not so much a description in any terms
provided only that they are unambiguous but rather an appropriate
description that not only describes but simultaneously puts that which is
described into its most comprehensible form. For it turns out that one and
the same objective state of affairs can be described in more than one way.
This is the origin of the seemingly endless debate about whether the earth
actually moves or not. It is here essential to distinguish between features
of motion and change that exist objectively and independently of the
means of description from those that vary with them.

The clarification of these questions is thus an ongoing enterprise, and
the truth is that the conclusions reached at any one stage in the
development of dynamics in particular and physics in general are always
liable to radical revision when new objective relationships are discovered
in the world. This is reflected in the fact that since the original proposal of
the earth's mobility by Copernicus the question of whether the earth
moves or not - and, if so, in what sense it does move - has passed through
at least three different stages, each of which has put previous conclusions
in a different light. Indeed, there seems to be clear evidence that the
conceptual difficulties get more complex the more progress is made in
understanding how the world works. The level of sophistication needed
to treat these matters unquestionably increases.

Let us briefly anticipate the main stages (though this will take us
beyond the period covered by the present volume). Up to and including
the discovery of dynamics by Newton and its conceptual clarification in
the nineteenth century there did not appear to be any severe restriction on
the means of description. The main question appeared to be merely that
of finding the means that were most appropriate. Nevertheless, the end
result of the process was quite startling in its implications for the
relationship between space and motion, as we shall see in Chap. 12. The
next really significant development came with the growing awareness,
which crystallized in Einstein's work, that our means of observation, on
which our description must ultimately rest, are themselves governed by
the laws of nature. This has the consequence that the possibility of
describing motion and change meaningfully is not independent of the
actual laws that govern the very motion and change one is wishing to
describe. Thus, it is not possible to lay down a priori a framework in which
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motion can be adequately described come what may, i.e., whatever the
actual nature of motion may turn out to be. The instinctive approach is to
say that motion is to be measured by rods and clocks; but once it is realized
that the behaviour of rods and clocks is itself governed by laws of nature
that are not known in advance it becomes clear that the choice of the
means of description goes hand in hand with the establishment of
concrete empirical facts about motion as it is actually observed.

A further significant stage in our growing appreciation of the com-
plexity of the problem of describing nature and the world is represented
by quantum mechanics. Here the very existence of a unique well-defined
externally existing world is questioned in the most acute form. The
problems presented by quantum mechanics go well beyond the scope of
the present study and will be considered at most peripherally. They are
mentioned here only to indicate the further level of sophistication that is
needed to think about the world.

The realization of the provisional status of all our conclusions about
something so apparently simple as motion should not, however, be the
occasion for pessimism. The successes already achieved belong to some
of the finest accomplishments of the human intellect; they are associated
above all with the names of Newton and Einstein.

After these general comments about the interconnection of the two
basic questions mentioned at the beginning of this section, let us now
nevertheless look at them separately to the extent which that is possible.
For the topics of concern in Vol. 1, their mutual interdependence does not
become acute. We begin with the first question.

If scientific discourse is to serve any useful purpose, a moment's
reflection will convince one that any statement about the motion of a body
will be meaningless unless it is simultaneously stated with respect to what
that motion takes place. The thing with respect to which the moved thing
moves must be just as unambiguously defined as the thing which moves.
This is clearly an epistemological imperative, but it is nevertheless
remarkable how often this simple fact has been ignored or overlooked in
the history of science. What is the cause of the neglect?

There can be little doubt that it is due to a pure accident, namely, the
fortunate fact that we live in a relatively very stable environment. From
earliest times nature presented man with two seemingly completely
stable and rigid structures - the ground beneath his feet and the
unchanging appearance of the heavens. The rigid structure of the earth
provided a perfect framework within which motion could be observed
and studied. Because nothing significant in the framework changed, it
acquired the status of the frame, or better arena, of motion. It is certain
that this apprehension of the existence of an all pervading frame of
reference, which for practical purposes is indistinguishable from
Newton's absolute space, occurred instinctively and unconsciously. It
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takes a conscious effort of will to question the existence of this space,
which may be called intuitive space. As will be seen in the next chapter, the
first major figure to do this was Aristotle. He initiated the strand of
philosophy that seeks to demonstrate the relative nature of motion and
space. However, it will be worth pointing out here that the instinctive
belief in intuitive space is very deep indeed. In this connection Anneliese
Maier (writing on the subject of medieval concepts of place and space)
makes the following very relevant comments:16

In general, the philosophers of late scholasticism behaved in the face of concrete
physical questions just like the natural scientists of all times: when the all too
abstract philosophical concepts became uncomfortable, they tacitly replaced
these concepts by the naive empirical concepts of prescientific thinking and in
practice worked with them. This explains why all kinematic problems were
treated, not on the basis of the . . . Aristotelian space and time definitions, but
rather on the basis of a purely descriptive determination in which motus localis
[i.e., motion*] is treated simply as a successive change of position, this change of
position moreover being by no means relative to an ultimum continentis [ultimate
container] in the Aristotelian sense but relative to the empirical space of practical
experience; this space is the same as the one Galileo meant and which then was
finally introduced officially as 'absolute space' into physics by Newton. And the
change of position takes place in a time of which the same can be said.

The truth of what Maier says here about empirical space (clearly the
same as what I have called intuitive space) is borne out time and again -
not only in the medieval period but before that in the writings of Aristotle
and then later in the work of nearly all the major natural philosophers of
the seventeenth century. Only on such a basis is it possible to explain what
appear to be some gross inconsistencies on the part of several of the major
figures who contributed to the creation of dynamics. The point is that the

* The curious expression motus localis ( = local motion) has the following origin. Aristotle's
physics, which we shall study in the next chapter, did not give to motion the predominant
status that it has acquired in the modern age since the discovery of dynamics in the
seventeenth century. It therefore treated motion within an all-embracing framework that
encompassed all forms of change (e.g. hot to cold, blue to red, etc.) and not just change of
place. Although the Greek word kinesis (from which both kinetic and kinematic derive) has the
primary meaning of movement, it can be used of all transitions, in particular from one
qualitative state to another. This was Aristotle's practice. When he required an exclusive
word for motion in the modern sense, he, like Plato, used phora17 [phoronomy is a rarely used
synonym of kinematics, coined in fact before the latter (in 1716 by Hermann as the Germa
word Phoronomie18)]. In Latin the word corresponding to kinesis is motus, and in this case the
modern meaning motion was distinguished by adding the adjective localis. This construction
persists, of course, in our word locomotion. Modern physicists should therefore be aware that
'local' in local motion (which is often found without any explanation in translations of early
texts on motion) is nearly always redundant in modern English and has a meaning quite
different from the same word in, say, local field theory.

As we shall see in later chapters, medieval physics was full of expressions like motus ad
formam, motus ad calorem, motus ad cjuantitatem applied to processes which involve changes in
shape, heat, and quantity, respectively.
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concept of space is shaped by the problem with which any given thinker
or natural scientist is actively confronted and is adapted accordingly. We
must be prepared to encounter the concepts of space and motion of both
the philosopher and the natural scientist and realize that they need not be
the same - even when one and the same person is involved. I would only
add to Maier's broad division of spatial concepts into those that are
practical and those that are philosophical a third strand which runs
between them and is sufficiently distinct from both to warrant special
consideration, namely, the concepts used by working astronomers. By
the very nature of their work, which requires the determination of the
position of one object relative to others, they are constantly reminded of
that epistemological imperative which might otherwise occur to only the
reflective philosopher. On the other hand their work is pre-eminently
practical and, at least in the tradition of theoretical astronomy initiated by
the Greeks, is at the same time a fully-fledged science of motion.

This is one of the reasons why a relatively large amount of space will be
given to the work of the astronomers. It is, I feel, a part of the absolute/rela-
tive debate that has been rather seriously neglected. For example, Capek
has published a quite excellent selection19 of extracts from numerous
authors in his book The Concepts of Space and Time yet Ptolemy, Copernicus,
and Kepler are represented only in an essay on Copernicus by Koyre, and
that is on the finiteness of the Copernican cosmology rather than the
absolute/relative question.

Just as the stability of the earth and the heavens gave rise to intuitive
space, another accident of our particular circumstances gave rise to an
equally pervasive concept: that of the uniform flow of time. The origin of
this notion is clearly to be sought in the rotation of the earth. It is
interesting to note that an inveterate belief in the idea that there is such a
thing as a uniform flow of time was clearly established long before secure
scientific evidence was forthcoming to demonstrate that there was a
sound basis in fact for the conviction. Once again we shall find in Chap. 2
that Aristotle was the first who seriously and clearly posed the
fundamental question: what do we mean by the flow of time? And once
again we shall find that just at the point at which philosophical enquiry
becomes both interesting and difficult Aristotle lapses into intuitive
practicality.

The clearest evidence that the Greeks had an instinctive awareness not
only of space (reflected in the development of Euclidean geometry) but
also of what may be called the uniform flow of time is to be found in the
development of kinematic geometry, for which there is evidence that it
began to emerge as early as the middle of the fifth century BC.20 This
branch of mathematics was of the utmost importance for the development
of Greek astronomy and much later played a crucial role in Galileo's work.
The distinctive feature of kinematic geometry is that it is used to generate
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curves of a higher order of sophistication than the circle, doing this by
means of points and lines which are assumed to move uniformly. A
classic and very important example is provided by Archimedes' Spiral
Lines, which contains the famous definition:21 'If a straight line one of
whose extremities is fixed turns with uniform speed in a plane, reassum-
ing the position from which it started, and at the same time a point of that
rotating line is moved uniformly fast on that line, starting from its fixed
extremity, the point will describe a spiral in the plane.'

We can now briefly state what were the prevailing notions about space
and time at the various stages in the discovery of dynamics. Throughout
the entire period, the concept of time seems to have given very little
trouble. Many pondered its nature but no one seriously doubted that it
flowed uniformly. This uniformity of flow was the only thing the
dynamicists needed to transform kinematic geometry into physical
dynamics. In Chap. 3 we shall see that the most important practical
problem of time-keeping had been solved by Ptolemy's time, and this
probably explains why the nature of time, as opposed to its measurement,
played such a small role in the history of dynamics right up to the
beginning of this century. The early intuitive concept passed quite
unscathed through the two major events that did necessitate drastic
reconsideration of the concepts of space and motion: the Copernican
revolution and the revival of atomism.

As regards the concepts of space and motion, we find in Aristotle, in the
prescientific (or, at best, quasiscientific) period, a very interesting
anticipation of the debate that raged throughout the seventeenth century
and has still not subsided. It was largely a reaction to atomism. Perhaps
even more than the Copernican revolution it is atomism that makes the
relativity of motion into an acute issue. We have already seen that our
environment provided two alternative frames of reference for describing
motion: the earth and the fixed stars. As long as neither was seriously
believed to change intrinsically, the problem of describing motion never
really became acute. Motion was indeed recognized as relative but only
relative to the frame provided by the solid earth or the firmament of stars.
In the presence of an essentially unchanging framework, the question of
whether motion is relative to space or matter is at most academic. It is only
when the awareness dawns that the frame may not be rigid at all, that the
universe may contain nothing but a seething mass of atoms, that the real
dilemma of motion becomes acute.

This was what Aristotle sensed with a fair degree of clarity - and he did
not like it, as we shall see. The alternative cosmology that he developed
had the effect of refreezing the firmament of the stars and placing an
immobile earth firmly at the centre of a spherical rotating cosmos.
Although the Copernican revolution reversed the motions of the firma-
ment and earth, it did not immediately unfreeze what Aristotle had
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refrozen in reaction to the atomists. It was in this immediately post-Coper-
nican period that Galileo established many of the most important results
of dynamics, using as an effective framework what he still regarded as
truly fixed stars. Virtually all the major discoveries that went to make up
the final Newtonian synthesis were made in the period in which kinematic
geometry appeared to have a natural validity. The great early discoveries
in astronomy were made in the post-Aristotelian period in which the
earth provided the fiducial body at rest in an effective space in which
kinematic geometry was clearly the appropriate tool to use to describe
motion. The Copernican revolution merely transformed the fixed stars
into the fiducial body, which was the explicit frame of reference for
Kepler's great discoveries in astronomy. Galileo too had no cause to
worry about the frame of reference.

The fact that Galilean dynamics seemed to work perfectly well in the
intuitive space of kinematic geometry, in which Galileo instinctively
believed the stars to be at rest, made it that much easier for Newton to
believe in real space, even though he was very much aware of the potential
unfreezing of the cosmos. In fact, Newton's formulation of his concepts
of absolute space and time was in the nature of a blessing after the event,
not the setting up of a general framework in which the laws of motion had
yet to be found.

This will suffice for a general outline of the origin of the intuitive
concepts of space and time and how it came about that they were used by
Newton in almost exactly the same form as they must instinctively have
been conceived about two thousand years earlier by Greek geometers
and, deep down, even by philosophers such as Aristotle.

It will also be helpful to distinguish at this stage between some typical
forms through which the laws of motion passed, as this also has a bearing
on the absolute/relative debate. It will in fact be helpful to coin new words
to underline the conceptual differences between the different types of
laws of motion.

Let us first mention the mechanical (or contact-mechanical) theories. Of
this kind, the crudest are those that posit an invisible machine or
mechanical contrivance as an explanation of observed motions; for
example, the solid spheres invoked by Aristotle to carry the planets, sun,
and moon around the earth. Although he is not explicit, it seems that
Copernicus adhered to some such conception.

Less crudely machinelike are the mechanical theories developed in
antiquity and revived in the seventeenth century. They come in two
broad classes: plenum theories, the crucial feature of which is that the
world is assumed to be completely full of a fluid-like matter (which may
also contain some solid matter), so that all motion results from the direct
pushing of one part of the fluid on another, and atomistic theories, in
which particles of fixed shape are assumed to move through the void,
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suffering intermittent collisions. The characteristic feature of early
mechanical theories is that they seek to explain observed phenomena
almost exclusively in f/zr^-dimensional geometrical terms. In histories of
dynamics, such geometromechanical explanations of motion are often
described as physical, but this latter word will be reserved in this book for
genuinely dynamic concepts such as mass and charge, as defined in
Sec. 1.1.

Next in order of development were approaches that I shall call motionic.
We have here a class of theories that marked an important step towards
fully-fledged dynamics but that is neverthless sufficiently different in
outlook to warrant a special name. The hallmark of such approaches is
that they concentrate on motion as such and aim to describe the observed
motions, either qualitatively or quantitatively; they seek neither a hidden
mechanical explanation for motion nor a visible source of forces that cause
motion, as, for example, in Newton's theory of gravitation. Aristotle's
approach, for instance, was by no means exclusively mechanical; it also
contained much that can be dubbed motionic. The main exponents of the
motionic approach were the Hellenistic astronomers and Galileo, who
resolutely refused to look for physical or mechanical causes of motion.
Within the general motionic approach, it is also worth introducing a
special word to denote a particular type of law of motion that appeared in
antiquity and has special significance for the debate about the nature of
motion.

Historically, the first laws of motion clearly formulated as such were
purely geometrical in nature; they were manifestly inspired by the spirit
of kinematic geometry. Thus, the fundamental law of ancient Greek
astronomy stated that all celestial bodies move in perfect circles at a
uniform (perfectly constant) speed. In accordance with this law, the
motion as such is entirely independent of all the other bodies and matter
in the universe.

Of course, since this law was formulated by astronomers, they had a
very clear idea that the motion was actually taking place at some quite
definite position relative to their fundamental body of reference (the
earth), and they attempted as best as they could to determine that
position: independent in the previous paragraph means that the position of
the centre of the circular motion and its speed were not in any way
determined by the remaining bodies in the universe. Provided there is an
unambiguous specification of the frame of reference and the means for
measuring time, such a law is epistemologically unexceptionable. Since
its formulation involves the bare minimum of concepts and is aphysical in
that physical concepts such as mass or charge do not appear in it, we may
call it a geometrokinetic law. Not a very elegant word, but none better
comes to mind. Such a law can be contrasted with dynamical, or physical
laws of motion, of which Newton's law of universal gravitation is the
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classic example. Such laws cannot be formulated without the introduction
of essentially physical concepts such as mass and charge. These are
concepts that go beyond the purely kinematic concepts of space and time
and can in no way be derived from them. They belong to dynamics
proper, the study of motion in relation to the forces that produce the
motion.

It may be wondered why it is necessary to introduce the new concept
geometrokinetic when we already have the perfectly good distinction,
introduced by Ampere, between kinematics and dynamics. The point is
that Ampere defined kinematics as the science of pure motion, considered
without reference to the matter or objects moved or to the force producing or
changing the motion (OED; my italics), the purely geometrical science of
motion in the abstract. But this means that the adjective kinematic cannot
properly be used to describe either the ancient Greek law of celestial
motion nor, more importantly, Newton's First Law, the law of inertia. For
these are laws of nature and they apply to real bodies. Moreover, they
hold, if at all, as empirical laws. They cannot be obtained as geometrical
theorems, in contrast to genuine kinematic relationships (such as, for
example, the purely mathematical relationships for the transition from
one coordinate system to another moving relative to it at some given
velocity). Nevertheless, since the Greek law of astronomy and the law of
inertia do not contain any reference to a force 'producing or changing the
motion', one does quite commonly find both laws referred to as
'kinematic'. This is normally not serious and will probably be understood
to mean that forces do not figure in the laws. However, when Greek
astronomy as a whole is characterized as 'entirely kinematic' I suspect that
many readers would take this to mean that astronomers like Hipparchus
and Ptolemy were concerned solely to fix the positions of the celestial
bodies in the heavens and dispensed entirely with theory. This would be
a decided misconception; they had laws of motion, or, in essence, just one
law of motion, but it was a geometrokinetic law - it was not physical, and we
lack a word to describe it.*

* It is interesting to note in this connection the absence of an adequate word to describe
Galileo's work on motion, which can, depending on the author, be found described
variously as kinematic, dynamical, or even occasionally mechanical (the least appropriate).
I shall mostly refer to it as motionic. It is worth noting that the general term mechanics (still
widely used today) became established in the seventeenth century at the time, before the
creation of dynamics by Newton, in which mechanical explanations of motion were assumed
more or less as an article of faith. The word dynamics, which derives from the Greek word for
power and force (cf. dynamite), was originally coined by Leibniz to describe his own theory
of motion but by the mid-eighteenth century was used to mean 'the science of the motion of
bodies acting on each other in any way whatever.'22 Ampere's distinction between dynamics
and kinematics came later. The distinctive characteristic of dynamics is the interactive nature
of the motion which it describes; the word dynamics will be used almost always throughout
this book with this connotation.
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The distinction is important since, through a series of intriguing
metamorphoses, which we shall trace in the following chapters, the
ancient Greek geometrokinetic law of astronomy split in two and became
by stages Newton's law of inertia (which remained geometrokinetic, i.e.,
aphysical; we recall from Sec. 1.1 how the First Law is set apart in this
respect from the Second and the Third) and Newton's law of universal
gravitation (which became a fully fledged dynamical, i.e., physical law).
Now the question at the heart of the debate about absolute and relative
motion is this: Is the law of inertia truly a geometrokinetic law or is it, like
the other half of the ancient Greek law, physical too and only apparently
geometrokinetic? Historical examination of the discovery of dynamics
makes the question particularly relevant, since, as we shall see, Kepler
used very much the same epistemological and physical arguments in
performing the Herculean task that helped ultimately to prise the
Newtonian dynamical law of gravitation out of its geometrokinetic
antecedent in Greek astronomy as Mach did when he argued that inertia
has a physical origin. It was in this sense that Kepler's discovery of the
laws of planetary motion was a pre-Machian (and pre-Newtonian)
triumph of Machian ideas and suggests that in Newton's formulation the
phenomenon of inertia appears in geometrokinetic garb only because its
physical origin was rather more thoroughly hidden than was the case for
Newton's Second and Third Laws. As pointed out in the Introduction,
such considerations are among the main justifications for the historical
approach to these problems.

1.6. Was dynamics discovered or invented?

One of the leitmotifs of this book is the declaration by Mach of his belief in
an ultimately indissoluble unity of the universe:23 'Nature does not begin
with elements, as we are obliged to begin with them. It is certainly
fortunate for us, that we can, from time to time, turn aside our eyes from
the overpowering unity of the All, and allow them to rest on individual
details. But we should not omit, ultimately, to complete and correct our
views by a thorough consideration of the things which for the time being
we left out of account/

Science as an attempt to find a rational description of the world is
subject to an occupational hazard to which this section is intended to
draw attention - and which the reader is asked to bear in mind throughout
the book.

The natural scientist is constantly seeking 'basic' elements from which
the world may be built up conceptually in a coherent rational scheme.
This analytic method, still followed in its essentials 2500 years after its
formulation in ancient Greece, was expressed in the following way by
Aristotle:24 '. . . knowledge is always to be sought through what is
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primary, and the primary constituents of bodies are their elements. . . .
Let us then define the element in bodies as that into which other bodies
may be analysed . . . and which cannot itself be analysed into con-
stituents differing in kind. Some such definition of an element is what all
thinkers are aiming at throughout.' The word analyse derives from unravel.

The danger with this approach - to which there does not appear to be
any alternative - is that any new insight into the workings of the world, in
particular the recognition of 'elements' from which it appears possible to
understand a large body of phenomena, is liable to crystallize and
gradually assume the nature of an unquestioning belief that the world is
cast in a particular mould. It then slowly becomes inconceivable that it
could be any other way. While the extent to which this happens will
depend on the particular historical circumstances, the danger is inherent
in the nature of the enterprise.

A first and very obvious example is the early belief in a flat earth. The
world around us appears flat, ergo the whole world is flat. The proofs of
the earth's sphericity (given by Aristotle and Ptolemy) belong to some of
the first solid achievements of science and demonstrated how observa-
tions of comparatively small effects combined with rational arguments
using geometrical theorems could change drastically a view of the world
formed by premature conclusion from its local apparent flatness.
Nevertheless, as we shall see in the next chapter, Aristotle's recognition
of the sphericity of the earth did not prevent him making several mistakes
about the nature of the world every bit as misleading as the flat earth idea.

The flat earth mistake and these mistakes of Aristotle to be considered
in the next chapter spring either from an unjustified extrapolation (local
flatness extended to infinity) or an inability to see distant things clearly
enough. As we shall see, this was ultimately the reason why both
Aristotle and Ptolemy thought the heavenly bodies were divine. But there
is also a potentially much more subtle danger and one that is also far less
easy to eliminate by experimental advance. It is this: when some striking
facet of the world is recognized and postulated as a basic element from
which the whole is built up, the key assumption which is made is that the
facet retains, when detached from its context, the essential property or
properties for the sake of which it was selected. The danger here is that
the facet may only have the desirable property for which it is chosen
because it is in the context of the whole. In such a case, an attempt to regard
the facet as capable of existing in its own right with all these properties
and to imagine the whole built up from facets with such properties will
clearly lead to a quite incorrect conception of the interrelation of the whole
and the parts.

To give a very simple illustration. Suppose a cathedral were built of
bricks that under pressure change their colour, the colour depending on
the pressure. Because of the different pressures exerted on the bricks, the
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cathedral, when built, will obviously glow with many different colours.
Then the naive 'atomistic' interpretation of the phenomenon is that bricks
come in different colours and different proportions of bricks were used by
the builders to achieve their particular end. Short of dismantling the
cathedral, it might be difficult to recognize the fallacy of the theory
(though not in principle impossible, for example, by observing carefully
the relationship between colour and position in the overall structure).
This is the problem we face with inertial motion: the actual phenomenon
is not in doubt (even though it took remarkably long to discover); the
problem is in the nature of its relation to the whole. It is particularly acute
since the 'cathedral' in this case is nothing less than the entire universe,
so there is no way in which it can be 'dismantled' to see if inertia still
persists in its absence.

It is appropriate here to anticipate the criticism that Mach made of
Newton's conclusion from the undoubted existence of inertia in the
presence of the stars that inertia exists independently of the stars. The
following quotation is from Mach's Mechanics, the italics are mine:25

When we say that a body K alters its direction and velocity solely through the
influence of another body K', we have asserted a conception that it is impossible
to come at unless other bodies A,B,C. . . are present with reference to which the
motion of the body K has been estimated. In reality, therefore, we are simply
cognizant of a relation of the body K to A, B, C . . . I f now we suddenly neglect
A, B, C . . . and attempt to speak of the deportment of the body K in absolute
space, we implicate ourselves in a twofold error. In the first place, we cannot know
how K would act in the absence of A, B, C . . .; and in the second place, every means
would be wanting of forming a judgment of the behavior of K and of putting to the
test what we had predicated - which latter therefore would be bereft of all
scientific significance.

Mach is here pointing out that underlying Newton's apparent proof of
the existence of absolute space there is a major hypothesis. It may be
called the detachment hypothesis: that a phenomenon observed within a
given environment is in essence independent of the environment.
Moreover, the logical possibility that the phenomenon could be indepen-
dent of the environment is not a proof that it actually is independent.

It is worth pointing out here that the word absolute carries the detach-
ment hypothesis implicitly in its etymology. The Latin absolutum meant
originally loosened, free, separate. Moreover, the concept of absolute
space is, as we shall see in Chap. 2, closely related to the atomic concept
of matter, according to which the world, which is presented to us through
the senses as an indissoluble whole, is dissolved conceptually into atoms
and space. Atomic concepts are so familiar that we tend to forget what a
huge assumption underlies them - it is arguable that many working
physicists, as opposed to philosophers of science, are quite unaware that
any assumption is made at all. But it should not be forgotten that we never
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actually see space; all we ever see is matter against the background of
other matter. If we were to stick to the bare facts, all our talk would be
relative - how certain matter stands with respect to other matter. With the
assistance of the concept of space, the atomic hypothesis breaks the bond
between matter and matter, detaches individual parts of matter from the
overall material concatenation, and sets them loose in conceptual space.
This discounts the possibility that the material concatenation is the cause
of the very existence of the parts. Mach's Principle is a suggestion of this
kind, not so much about the existence of material bodies as such but rather
the motion they execute.

In the light of these comments, which clearly imply that Newton may
well have given us a seriously distorted picture of the world, it may
reasonably be asked why this volume is nevertheless entitled The
Discovery of Dynamics. Does not the very title imply that dynamics is
something quite definite, sitting out there in the world waiting to be
discovered like America? Is it correct to equate Newton with Columbus?
Is it not much truer to say that Newton put together elements in a
particular way, but that there is nothing particularly sacrosanct about the
actual structure he finally chose? Should not one speak of the invention of
dynamics? And did not Einstein himself give powerful support to such a
view with his assertion26 that the basic concepts and laws of physics are
'free inventions of the human mind'?

By way of answer to these questions, put to me by Michael Purser after
reading a first draft of this volume, let us look a little more closely at what
Einstein actually said in his Herbert Spencer Lecture given in Oxford in
1933, from which the above quotation is taken. Einstein was countering
the view that the basic laws of nature can be deduced with ineluctable
logic from facts of experience. There can be no doubt that Einstein was
perfectly correct to point out that this is not the case. The simple fact that
his own general theory of relativity describes the phenomena of
gravitation every bit as well as Newton's theory (better indeed, though in
1933 the proven differences were very few) puts his case beyond any
question. Nevertheless, the expression 'free inventions,' which has
subsequently been quoted many times, often misleadingly and out of
context, is rather unfortunate. It seems to imply that experience puts little
or no constraint on theorizing.

That this is very far from true follows from a passage a little later in
Einstein's lecture, in which he says: 'Experience can of course guide us in
our choice of serviceable mathematical concepts' (my italics). And then
comes the explicit statement: 'Experience of course remains the sole
criterion of the serviceability of a mathematical construction for physics'
(again my italics). But the fact that a physical or mathematical concept,
which is indeed a free construction, is actually serviceable for the
description of natural phenomena is itself unquestionably a discovery. The
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construct itself is not discovered but created; but the congruence between the
construct and the phenomena (the fact that they match to within the
experimental errors) is truly discovered.

Seen in this light, all the various individual parts that were used by
Newton in his synthesis of dynamics and the synthesis itself represent
true discoveries - not of the parts and the synthesis but of the fact that
they are congruent to contingent facts. The congruences are real, every bit
as real as America, and it is their existence that is significant. Mathematical
constructs are two a penny but such congruences, which are naturally
never more exact than the accuracy to which they have been tested, are
very rare indeed, as the history of science shows. It is in this sense of the
discovery of congruences that it seems to me far more appropriate to
speak of the discovery of dynamics, rather than its invention or creation.

Such considerations help to answer the extreme sceptics who maintain
that science does not rest on objective facts, and that the impression it
gives of making steady forward progress is an illusion. It is asserted that
there is no such thing as a bare observation, that all observation contains
an element of theory, which is in turn a 'free invention'. According to this
view, we are brainwashed into seeing a 'reality' in the world that does not
exist at all. Now since the whole purpose of this book is to raise questions
about some of our most basic concepts - concepts that undoubtedly shape
the picture we form of the world - this last view is a thesis with which I
would not wish to disagree. There is undoubtedly an element of
brainwashing. On the other hand, I am convinced that we are making
progress in understanding the nature of our existence. How are these two
viewpoints to be reconciled?

The reconciliation is to be found, I suggest, in the essentially open-
ended but at the same time at least partially rational nature of our
existence. Hitherto mankind has not come up against any limit to either
the flux of new experiences to which it is exposed or the ability of great
minds to find rational constructs congruent to these experiences. And the
development of dynamics is itself clear proof that the finding of objective
congruences between the rational constructs and experience is genuinely
progressive. Once a real congruence has been established, it is never
discarded; it is merely fitted into a new whole. Of course, in the process
the view that we have of the significance of the congruence is changed out
of recognition. In this sense all discovery and progress in science is a
journey into the totally unknown, in which shock follows shock. But we
must ask how it is that we then do not simply sink in the sea of our new
experiences. The answer is that we are still carried by the discoveries that
lie behind us, even if we now see them in a quite different light and
perspective. They are still there. As long as man and man can agree that
the moon is the moon and the sun the sun (unlike Kate and Petruchio27 in
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The Taming of the Shrew) there will still be a great deal of truth and utility in
the Ptolemaic system, which, hardly less than the Newtonian, was also a
true science.

The past discoveries of true congruences are the raft that carries us into
the unknown future.



Aristotle: first airing of the
absolute/relative problem

2.1 Brief review of the period up to Aristotle

The scientific revolution was a unique event in human history. It was
created out of the intellectual activity of two great periods, of which the
second is our own and began in the high Middle Ages. The first lasted
from around 600 BC until the first centuries after Christ. It was almost
entirely associated with Greek thinkers and Greek culture, which became
very widely diffused by the activities of Alexander the Great (356-323 BC).
It is convenient to divide Greek history into two basic periods -before and
after Alexander. The second period is generally referred to as the
Hellenistic age and will concern us in the next chapter.

The first two centuries of the pre-Alexandrian period (600-400 BC) were
the age of the so-called pre-Socratic philosophers. They are noted for the
boldness of their philosophical speculations, but unfortunately there is
not much first-hand information available about them. The following
notes are based mainly on the Dictionary of Philosophy;1 fuller accounts can
be found in Barnes2 and Kirk, Raven, and Schofield.3

The best known figure of the entire early period was Pythagoras (circa
572-497 BC). He founded a school of philosophy and mathematics that
was simultaneously a religious brotherhood and flourished until the end
of the fourth century BC. Although the famous theorem is associated with
his name on dubious grounds, he and his school did make important
discoveries in harmony and mathematics (discovery of irrational
numbers). Pythagoras is held by some4 to have been the most important
formative influence responsible for the scientific revolution because of the
great emphasis that the Pythagoreans put on geometry and numbers.
They held that all matter is literally composed of numbers and that
numerical ratios underlie all sensuous phenomena. For them mathemati-
cal harmony was the sole reality behind the visible universe. They had a
great influence on Plato and the early giants of the modern scientific age:
Copernicus, Kepler, and Galileo.
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Quite independent of the Pythagoreans was the Milesian or Ionian
school of philosophy. This was developed in the sixth century BC by
Thales, Anaximander, and Anaximenes. Thales is supposed to have
predicted an eclipse of the sun in 585 BC. The distinctive idea of the
Milesians was that a single elementary cosmic matter underlies all the
transformations of nature. Thales declared this primordial matter to be
water; Anaximenes said it was air; while Anaximander identified it with
'the unbounded'.

The next major figure, a generation later, was Heraclitus (circa 536-470
BC) from Ephesus. In opposition to the Milesians, he held that there is
nothing in the world that persists. There is merely a constant and
ceaseless flux. Change is the only reality; the appearance that things
persist is an illusion created by the ordered manner in which change takes
place. In this respect he foreshadowed the modern realization that the
laws of nature, describing the way things change, are more important
than what is actually changing.

The next step was the reaction to Heraclitus, which was taken by
Parmenides, who founded the Eleatic (of Elea) school and whose life
spanned the sixth and fifth centuries BC. Whereas Heraclitus put all
the emphasis on change and becoming, Parmenides insisted on the
supremacy of being. However, his was not simply a return to the
Milesians, for he took his notion to its logical and paradoxical extreme. He
held that there is only the one being without inner differentiation and that
change and the apparent diversity of things is an illusion. He was
followed by Melissus (of Samos; active around 450 BC), who believed in a
One that is eternal, motionless and without change, and by Zeno of Elea
(circa 490-430 BC), who devised his famous paradoxes in order to prove
that motion is an illusion.

The final phase of the pre-Socratic period is marked by attempts to
reconcile the two extreme and apparently irreconcilable points of view of
Heraclitus and the Eleatics. Empedocles of Agrigentum (circa 490-430 BC)
developed the idea that all individual things are produced by the mixing
of the four elements: earth, air, fire and water. The elements remain the
same, things arise from their mixing in different proportions. This seems
quite modern but one can hardly say the same of his idea that love and
hate are the cause of motion and therefore bring about the mixing of the
elements.

An alternative reconciliation of Heraclitus and the Eleatics was attemp-
ted by the atomists from Abdera: Leucippus (active around 450 BC) and
Democritus (circa 460-360 BC!). Leucippus retained Parmenides' idea that
there is just one being, of itself completely homogeneous, but he
supposed that it was broken up into infinitely many pieces, or atoms, of
different shapes and sizes, and that their combination gave rise to all the
variety of individual bodies. This atomic hypothesis was made famous by
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Democritus and in antiquity was further developed by Epicurus (341-270
BC). The main source of knowledge about ancient atomism, especially in
the Epicurian form, is the famous poem of the early Roman poet Lucretius
(circa 95-55 BC) De Rerum Natura (On the Nature of Things).

The atomic hypothesis is important for this book in marking an early
step towards the concept of absolute space. The point is that Leucippus
not only broke up the homogeneous block of Parmenides's being into
atoms but also assumed that these pieces of being are separated by that
which is non-being or void, i.e., empty space. This introduction of empty
space, as that in which the atoms can move (mobility is evidently crucial
for the atomic hypothesis), was the outcome of a sophisticated
philosophical debate, which is well described by Bailey.5 The void is not
nearly such an obvious concept as it might appear to the modern mind.
Leucippus defined the void, or emptiness, by contrast with what is real
and tangible. If we stretch out our hand and feel something tangible, then
that is matter; but the lack of this positive sensation is also in its way real.
Thus, nothing (=no-thing) has a kind of reality too. It should, however,
be said that the atomists seem to have developed only the vaguest of
spatial concepts, getting little further than the idea of emptiness between
the atoms. The reader is especially recommended the early selections in
£apek's The Concepts of Space and Time.6 As we shall see shortly, the
vagueness of the atomists on this question was an important stimulus to
Aristotle.

The last of the pre-Socratics to be mentioned is Anaxagoras of
Klazomene, who settled in middle age in Athens and was active around
430 BC. He taught that there was an infinity of simple substances,
divisible into parts, as in the atomic hypotheses. All becoming is due to
their combination and separation. To explain the motion of the parts he
assumed the existence of a 'soul-substance' that is itself in motion and can
set the normal substances in motion. In contrast to the atomists,
Anaxagoras accorded purpose an important role in nature. However, in
practice he did not develop this idea very much; Aristotle, for whom
teleology was the supreme principle in nature, took it much further.

In philosophy, the century before Alexander was dominated by Athens
and its three great philosophers Socrates (circa 470-399 BC), Plato (circa
427-347 BC), and Aristotle (384-322 BC), who was actually tutor to the
young Alexander. For the subsequent development of science, Plato and
Aristotle were the most important, since they shaped the general climate
of thought. The two men had very different attitudes to the material
world. For Plato it was largely an illusion; he distrusted the senses and
held that true reality resided in eternal immaterial forms. On the other
hand, he greatly emphasized the importance of mathematics, especially
geometry. In 387 BC he founded a school of mathematics and philosophy



Brief review of the period up to Aristotle 63

in Athens, which became known as the Academy (after the name,
Akademos, of Plato's garden, where the school was held). His works have
been very well preserved. Largely through the writings of St Augustine
(AD 354-430), the part of Plato's philosophy distrustful of the material
world and the senses influenced the early Christian world and may have
been a factor in the decline of science during that period. In contrast the
mathematical and geometrical aspect of his teaching was very influential
in the sixteenth and early seventeenth century.

Aristotle was much more 'realistic' than Plato. He took the observed
world at its face value and was therefore far more empirical. The second
great period of intellectual activity that produced the modern scientific
revolution was initiated by the rediscovery of his works (which survive in
a much less satisfactory form than Plato's - basically as lecture notes with
many apparent interpolations that may be by later hands) in Christianized
Western Europe in the thirteenth century. It was his cosmology and
concepts of motion that provided the framework of scientific thought up
to the time of Galileo and this is the reason why a complete chapter needs
to be devoted to his ideas, which have a very close bearing on the
absolute/relative debate - indeed they amount to the first full-scale airing
of this question and there are many parallels between his writings and the
discussions about the problem in the seventeenth century.

Like Plato, Aristotle founded a school of philosophy in Athens, called
the Lyceum, at which he taught from 335 BC for twelve years. The school
was also known as the Peripatetic, apparently because Aristotle liked to
lecture in a covered walk, or peripatos. The Peripatetics, as they were
called, dominated philosophy in European universities from 1300 to
about 1650. Aristotle is also known as the Stagirite, because he was born
at Stagira. His works constitute the oldest extant treatises that are
consistently informed by an essentially scientific spirit.

The period before Alexander left few if any solid results in the study of
the natural sciences. It was, in general, far too speculative and without
sound empirical basis, except in the study of the geometry of the natural
world. Almost all of Aristotle's output was purely qualitative and much
was, with hindsight, badly wrong. The period's most permanent achieve-
ments were in mathematics, especially geometry, which undoubtedly
laid the foundations of the later great advances in astronomy beginning in
the Hellenistic period, in statics, also in the Hellenistic period, mainly
through the work of Archimedes (circa 287-212 BC), and then, much later,
in dynamics in the early seventeenth century with Galileo (1564-1642).

Thus, the main importance of the first period of Greek history was in
awakening the spirit of rational enquiry about the world and in creating
the science of mathematics, which has proved to be the sine qua non of all
advance in the study of motion.
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2.2. Aristotle: the man and his vision

In most accounts of the history of dynamics, Aristotle is regarded as
having had a perverse effect and to have retarded the development of the
subject. He is generally compared unfavourably with Plato and the
pre-Socratics. This judgement is too facile and was certainly encouraged
by the fact that the dramatic rise of modern science in the seven-
teenth century coincided with the overthrow of the last remnants of
Aristotelianism. However, one could well argue that the largely qualita-
tive Aristotelian phase had to precede the quantitative stage in the
development of dynamics.

There is a good rough and ready way of estimating Aristotle's con-
tribution. Newton, as we know, postulated three fundamental laws of
motion. Examination of pre-Aristotelian authors reveals only traces of
anything resembling these laws. On the other hand, antecedents of all
three laws occur in Aristotle's main works relating to the problems of
space, time, and motion. Further, it is not just that they are mentioned
among much else; on the contrary, they occupy a prominent position in
his work. It is true that they are subordinated to his supreme teleological
principle (that7 'God and nature create nothing that does not fulfil a
purpose') and this was completely abandoned by Newton (or it was at
least as an explicit dynamical principle). However, this lofty teleology -
and theology - of Aristotle's overall scheme was not in itself a hindrance
to scientific progress, being far removed from the rough and tumble of the
actual world. God could see the overall pattern and determine the final
causes of things, but the nitty-gritty details were, so to speak, delegated
to efficient causes, and it was with these that Aristotle's principles, just
like Newton's laws, were concerned.

Aristotle was the great systernatizer. He arrived on the scene at the end
of a period of intense scientific and philosophical speculation. Making a
broad survey of what had been achieved, Aristotle perceived that, with
the partial exception of Plato, all his predecessors had hardly come to
terms with motion. They had not even considered carefully the meaning
of crucial words such as place and space; thus, their concepts of motion
itself were almost nonexistent. Moreover, in the enthusiasm generated by
the discovery of geometry, the atomists and Plato sought to explain
virtually everything by purely three-dimensional geometry. For a variety
of reasons, by no means always sound, Aristotle completely rejected this
approach, according to which the majority of the phenomena associated
with motion, change, and transformation quite generally have an
explanation in terms of shape. Instead, he asserted that motion, far from
being explained, must be accepted as a primary phenomenon, not
reducible to three-dimensional geometry. Just how radical and con-
sequential he was in this respect we shall see shortly; in this respect
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Aristotle was far more progressive and modern than his predecessors and
in many ways deserves to be regarded as the pioneer of dynamics.

With the benefit of hindsight, we can see that his biggest mistake was
the failure to appreciate the crucial significance of the quantitative aspect
of motion. Plato and the atomists had an exceptionally sharp three-
dimensional vision; Aristotle was revolutionary in having a four-
dimensional vision, but it was fuzzy and qualitative. He could see that the
mountain range extended in a further dimension and he correctly
discerned the main valleys and ridges that should be explored, but there
was no sharp focus in depth, as we saw in the previous chapter. Indeed,
there seems to have been no awareness at all that such focus might prove
crucial and put things in a quite different light. In this respect, Aristotle
was indeed a step backward. The deepest and most remarkable secret of
dynamics, the connection between force and acceleration (rather than
velocity), was entirely hidden from his hazy vision; it could only come to
light when Galileo insisted that the world is as sharp and precise in four
dimensions as Plato had seen it in three. Thus, there were two essential
aspects that fused in the discovery of dynamics - quantitative mathe-
matical exactitude and four-dimensionality. Recognition of the former
was Plato's contribution, but it was Aristotle who pointed the way into
the enigmatic fourth dimension and made Chronos the world's arbiter.

Besides this fundamental turn to a truly dynamic cast of mind, Aristotle
is remarkable for his anticipation of several Machian principles of motion.
His cosmology and physics were in fact founded largely on Machian, or
perhaps one should say epistemological, principles. However, here too
there was a fundamental flaw in his thinking; once again, it derives from
Aristotle's incomplete awareness of the strong quantitative aspect of
existence. Writing in the period before geometry was fully formalized,
and above all before the systematic use of trigonometry, Aristotle
developed a concept of space and position that was almost exclusively
topological; only through the neglect of the metrical and above all
trigonometrical properties of space was he able to construct an apparently
consistent and complete cosmology.

From inadequate conceptions he nevertheless constructed a vision of
great beauty, harmony, and reassurance. His predecessors described a
world of clinical exactitude populated with aggressive sharp-edged
atoms. The gentle doctor from Stagira saw things with a human eye. His
was not the world of sharp edges and mathematical triangles; position
was not for him a point in Euclidean space, a mathematical abstraction,
but rather place, the place of wine within the bottle, the baby within the
womb. His principle was: each thing to its proper place. This is what gives
his philosophy its wombic reassurance and also the sense that fulfillment
is possible. It also no doubt largely explains how his overall conception
could survive for so long despite the fact that it was increasingly seen to
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be internally deficient and contradictory and was also steadily under-
mined (without collapsing) from within by the application of
trigonometry to astronomical problems and from without by the
astronomical discoveries made possible by this use of trigonometry.

In the following sections we shall look at the various reasons that led
Aristotle to his physical and cosmological conceptions. But before that a
brief outline of the whole.

The Aristotelian cosmology is finite and rather like an onion. At its
centre is the spherical earth (Aristotle was well aware of the earth's
sphericity and in fact gave the first numerical estimates of its radius),
which Aristotle held to be at rest. Above the earth extends a region of air
and fire, which reaches to a sphere that carries the moon. Beyond this
sphere are further spheres which carry the sun and the five naked-eye
planets known to the ancients: Mercury, Venus, Mars, Jupiter, and
Saturn. Beyond that comes the sphere that carries the stars, which
Aristotle held to be fixed and unchanging. Beyond this outermost sphere,
the ouranos, there is, according to Aristotle, neither space nor motion nor
even time. There is, in short, absolutely nothing.

All the various spheres rotate. The outermost sphere has the funda-
mental rate of rotation corresponding to what, since Copernicus, has
been recognized as the daily rotation of the earth. Because its rotation
seemed to be so much more fundamental and regular than that of the
other spheres, the outermost sphere acquired particular significance. It
rotates about fixed poles, corresponding to the two poles of the celestial
sphere. Within the ouranos are numerous other spheres (over fifty), only
seven of which actually carry celestial bodies. They are all concentric with
the centre of the earth and the ouranos but rotate about different poles and
at different rates. The purpose of all these spheres, which Aristotle took
over from Eudoxus, was to explain the irregular motion of the planets,
sun, and moon relative to the stars.

The Aristotelian cosmos was divided into two very distinct regions: the
sublunary region below the sphere of the moon and the superlunary
region of all the celestial spheres above it. The 'laws of physics and
motion' (to use a modern anachronism) that governed these two regions
were completely heterogeneous. The superlunary spheres were held to
be made of material quite different from that below the moon and to move
in a quite different way - always circularly and with perfect uniformity.
Aristotle in fact named this material aither (ether), believing it to derive
from a Greek expression meaning to 'run for ever'. This substance was
believed to be completely unchangeable, incorruptible, and later became
known as quintessence, literally the fifth (quint) essence or element, to
distinguish it from Empedocles' familiar four elements earth, air, fire, and
water, of which the sublunary region was composed.
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A very characteristic feature of the Aristotelian scheme is the doctrine
of proper places and natural motions. For example, according to this scheme
the proper place of the element earth is the centre of the universe. The
falling of a stone is explained by the striving of earth, the predominant
element in a stone, to reach the centre of the universe, which coincides
with the centre of the earth. Similarly, the proper place of fire is on the
circular periphery of the world, and this explains its striving to fly
upwards.

In contrast to the incorruptible heavens, the sublunary region is the
domain of corruption and generation. Aristotle's physics is concerned to
describe and explain all the great variety of changes that take place in this
sublunary region. As already emphasized in the previous chapter, what
we call motion was only one among very many other changes that take
place. Aristotelian physics, like the studies to which it gave rise in the
Middle Ages, really bears very little resemblance to modern physics. Its
overarching principle is that everything happens for a specific (and
basically good) purpose. Nature never does anything in vain. Thus, as
already explained, the stone falls for a purpose, to reach its proper place.
Only when there is the stone fully real, or actual. This goes some way to
explaining the Aristotelian notion, so difficult to the modern mind, that
all change, and not just motion, is a process of passing from potentiality to
actuality.

In the whole of Aristotelian physics there is very little that can be called
quantitative or mathematical. It is much more concerned with establish-
ing the essence of things and their causes. The analysis is predominantly
verbal and logical. Much attention is paid to the various categories of
existing things and Aristotle is forever posing questions like: what is
matter? what is motion? what is space? what is time? We are of course still
asking these questions but seldom from the same point of view as
Aristotle. The same is true of our notion of causality. The flavour of
Aristotelian enquiry in this field is well caught by the following summary
of Clagett:8 The four causes can be explained by analogy with something
artificially produced. A bed is a bed because it is made of wood (the
material cause), in a given shape (its formal cause), by a carpenter (its
efficient cause), for the purpose of providing slumber (final cause)/

It was probably in this logico-verbal aspect more than any other that
Aristotelianism hindered the development of science in general and
dynamics in particular. For all that, as we shall see in Chap. 4, the
medieval study of motion that developed in the form of commentaries on
Aristotle all but made the breakthrough to quantitative science. One
really needs to put oneself in the position of Aristotle, an eminently
practical and down-to-earth person (quite unlike the almost ethereal
Plato), to realize just how implausible and unexpected it was that the
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quantitative study of pure motion should ultimately cast such an
extraordinary amount of light on the multifarious qualitative changes
with which the world confronted him. And even in this century there
have been very great physicists, above all Schrodinger,9 who insist that
modern physics is still grasping and comprehending at best only a portion
of reality.

The work in which Aristotle came closest to the spirit of modern
dynamics is his On the Heavens (usually known as De Caelo). This, together
with his Physics, will be the main subject of the present chapter. In it he
treats motion as an autonomous spontaneous phenomenon. Thus, the
heavens spin forever without the intervention of any other agency, stones
fall to the centre of the universe as if drawn there by a magnetic force, and
fire similarly seeks the periphery of the cosmos drawn there by a similar
attraction. Not surprisingly, most of the quantitative studies that led to
modern dynamics developed out of the conceptions outlined in De Caelo.
In fact, Galileo still retained Aristotle's notion of natural motions; he
merely treated them mathematically and quantitatively. This shows that
it is the mathematical treatment of motion rather than the underlying
concept one has of its nature that is essential for scientific advance.

In other works, notably the Metaphysics, which, at least in part, appears
to represent a later development of his thinking,10 Aristotle developed a
scheme in which all motion is produced by an active agent. As regards the
natural motion of the four sublunary elements there is little change, since
they are moved by internal striving to reach their proper places. Other
motions below the moon are violent or enforced (because the corresponding
motion is not one to the proper place) and are caused either by an animal
agent, or ultimately, in the case of most terrestrial motions, by friction
between the nonrotating sublunary region and the rotating heavens,
which thereby transmits its motion to the corruptible part of the universe
and keeps it in a perpetual state of unrest.

But the heavens themselves are moved (or rather inspired to move-
ment) by the divine and ultimate Unmoved Mover, which in Christian
theology came to be identified with God. According to this idea, the state
of perfect rest is the highest ideal, but this is achieved only by the divine.
The heavens represent the next best approximation to this ideal. For the
ouranos, by moving circularly and with perfect uniformity, is at least
always perpetually in the best place in which it can be, nearest to the
divine. Thus, by executing perfectly uniform circular motion the heavens
emulate and are drawn to the divine, as a lover to the loved one. To
achieve this aim, Aristotle felt that the heavenly spheres needed guidance
and assistance by ethereal spirits. These spirits, which are quite absent in
De Caelo, figured prominently in medieval philosophy and helped to
sustain the notion that the cosmos is an animated organic structure.
Kepler (1571-1630) still took Aristotle's spirits as a perfectly serious
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possibility, though in his mature work he inclined to mechanical or
dynamical explanations.

Thus, in the final Aristotelian synthesis all motion in the world derived
ultimately from the external and unchanging divine. It is interesting to
note that the Aristotelian ideas about the heavens, which took such a firm
grip on the human mind, sprang from a deficiency of the human
circumstances exactly analogous to the absence, noted in the previous
chapter, of a clock suitable for timing terrestrial motions. In this case it was
the acuity of human vision and the relative brevity of human life when
measured in astronomical time scales. Human vision was marvellous for
the earth but just (and only just) failed to reveal to human beings that the
heavens were not really all that different from the corruptible earth. With
absolutely minimal artificial assistance, the human eye crosses the
resolution threshold and can see, as Galileo did, mountain ranges on the
moon and continually changing spots on the sun. So much for the eternal
and unchanging perfection of quintessence and all things heavenly. All
that was needed was again a factor of about 5 or 10, this time in the power
of vision, and the world was changed out of all recognition. Similarly, had
Aristotle's life span been lengthened by a similar factor - to the biblical
ages of Noah and Methuselah - and had he watched the stars intently, he
would have just been able to establish relative movements of the stars
among themselves, which would again have destroyed his scheme.

But for Aristotle the firmament of stars swept above his head, never
appearing to change intrinsically within itself though always seemingly
in a state of perfectly uniform motion around the centre of the earth.
Transferring the sense of awe and wonder that man feels before the sight
of the heavens to the stars themselves, Aristotle made them divine and
quintessential and said of his vision11'. . . it is the only way in which we
can give a consistent account and one which fits in with our premonitions
of divinity'. This vision, constructed by the naked human eye and
speculating mind, held in sway even the greatest minds for nearly two
millennia until it was destroyed, literally overnight, by about an ounce of
carefully ground glass and a beady Tuscan eye. The vision was as fragile
as the glass and eye which destroyed it during those fateful nights in
Padua in December 1609 when Galileo first turned his telescope to the
heavens.* Seen in the historical perspective, the world has still only just
recovered from the shock of finding it is not nested within the quintessen-
tial spheres that were held to set the limit to not only our mortal existence
but even space and time.

There is obviously a lesson in this for us too; for our present conceptions
are, just as for Aristotle, determined by our current level of ability to 'see'
and, equally and just as strongly, by our 'premonitions' of how the world

* Galileo went blind in his old age.
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must be. Let us now look in a little more detail at how Aristotle's ideas
were formed.

2.3. Pre-Aristotelian geometrism

The revolutionary nature of Aristotle's approach to motion can be best
illustrated by looking briefly at the ideas of Pythagoras, Leucippus and
Democritus, and Plato.

As noted in Sec. 2.1, the Pythagoreans appear to have believed that
matter is actually composed of numbers.12 They seem to have arrived at this
idea from the way in which they represented squared and cubed
numbers. Thus, a square number such as 9 was represented by a pattern
of three rows of three dots or pebbles placed next to each other and
forming thus a square. The cube number 27 was then formed by placing
three such squares on top of each other. Our very words square and cube
for such numbers derive from this Pythagorean notion, according to
which all bodies could be built up in this way.

It is interesting to note that another early step towards what was later
to become absolute space can be found in this Pythagorean construction -
it is the space, or void, between the dots representing the numbers. The
evidence for this remarkable notion is to be found in Aristotle:13 The
Pythagoreans too asserted the existence of the void and declared that it
enters into the heavens out of the limitless breath - regarding the heavens
as breathing the very vacancy - which vacancy "distinguishes" natural
objects, as constituting a kind of separation and division between things
next to each other, its prime seat being in numbers, since it is this void that
delimits their nature/

Let us now turn to the basic principles of atomic theory developed by
Leucippus and Democritus. According to a standard summary:14

Nothing exists but atoms and empty space; everything else is opinion. Only in
opinion does sweetness exist, only in opinion bitterness, in opinion hot, cold,
colour; in truth there exists nothing but atoms and empty space. The atoms are
infinite in number and of infinite variety in shape. . . . The differences of all
things derive from the differences of their atoms in number, shape, and
arrangement; there is no qualitative difference between the atoms; the atoms have
no 'inner state' •

If we compare this with Newton's theory of the microscopic nature of
matter, the similarity seems at first striking. Here is what Newton says in
his Opticks:15

It seems probable to me, that God in the Beginning formed Matter in solid, mass,
hard, impenetrable, moveable Particles, of such Sizes and Figures, and with suc
other Properties, and in such Proportion to Space, as most conduced to the End
for which he form'd them. . . . And therefore, that Nature may be lasting, the
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Changes of corporeal Things are to be placed only in the various Separations and
new Associations and Motions of these permanent Particles.

So far the standpoints are remarkably similar. It is, however, in the
ideas about motion that the real gulf between the atomists and Newton
and the linking role played by Aristotle become apparent.

The fact is that the ancient atomists never really developed any very
precise ideas about how their atoms actually move. There seems to have
been only one clear idea - that they fall (even this, as we shall see in
Sec. 2.5, may have been an addition of Epicurus):14 'In eternal falling
through infinite space, the larger atoms, which fall faster, collide with the
smaller; the sideward movements and vortices that then arise are the
beginning of the building of worlds. Innumerable worlds arise and pass
away, next to each other and one after another/

Note (in addition to the standard Greek error according to which larger
bodies fall faster than small ones) how vague the picture almost
immediately becomes ('sidewards movements and vortices'). In Lucre-
tius's great poem in praise of atomism, written nearly four centuries after
the time of Leucippus and Democritus, the descriptions of the motions of
the atoms are still remarkably vague, although the poem is otherwise
often marvellously precise and clearly thought out. Thus, the geometrical
aspect of atomism was clear, the motional aspect most vague.

By contrast, the quotation from Newton's Opticks continues as follows
(my italics at the end): Tt seems to me farther, that these Particles have not
only a Vis inertiae, accompanied with such passive Laws of Motion as
naturally result from that Force, but also that they are moved by certain
active Principles, such as is that of gravity.'

The first steps towards the discovery of the Vis inertiae (force of inertia)
and the active Principles were taken by Aristotle, as we shall see in the next
section. In the meanwhile, we continue with the pronounced geometrical
bias of Plato in his attempt to understand the world.

Whereas Leucippus and Democritus sought to explain all the transfor-
mations of matter by means of atoms of all shapes and sizes, Plato had a
far more definite vision. In his scheme, outlined in the Timaeus,16 material
body is built up from the simplest plane figures, triangles, which he used
to construct what are now known as the Platonic, or perfect, solids as the
'molecular' bodies that constitute the four elements: the tetrahedron for
fire, octahedron for air, icosahedron for water, and the cube for earth.*
Then the greater density of earth is readily explained by the possibility of

* Unfortunately, there were only four elements but five perfect solids. Plato remarks airily:17

'And seeing that there still remained one other compound figure, the fifth [the
dodecahedron], God used it up for the Universe in his decoration thereof.' As the translator
of the Timaeus remarks: 'How God "used it up" is obscure: the reference may be to the 12
signs of the Zodiac.'
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dense packing of the cubes while the penetrating power of fire is
attributed to the sharpness and cutting capacity of the points and edges of
the little pyramidal tetrahedrons of which it is composed:18

Firstly, then, let us consider how it is that we call fire 'hot' by noticing the way it
acts upon our bodies by dividing and cutting. That its property is one of sharpness
we all, I suppose, perceive; but as regards the thinness of its sides and the
acuteness of its angles and the smallness of its particles and the rapidity of its
motion - owing to all which properties fire is intense and keen and sharply cuts
whatever it encounters - these properties we must explain by recalling the origin
of its form, how that it above all others is the one substance which so divides our
bodies and minces them up as to produce naturally both that affectation which we
call 'heat' and its very name.*

There is even a mechanical explanation of old age:20

Now when the structure of the whole creature is new, inasmuch as the triangles
which form its elements are still fresh, and as it were straight from the stocks, it
keeps them firmly interlocked one with another. . . . But when the root of the
triangles grows slack owing to their having fought many fights during long
periods, . . . in this condition every animal is overpowered and decays; and this
process is named 'old age'.

Although some of these passages in Plato have an occasional appear-
ance of modernity and the spirit of his approach (mathematical and
quantitative) is far closer to that of modern physics than Aristotle's
(organic, qualitative, and teleological), the fact remains that most
fundamental properties of matter - mass, weight, momentum, and
energy - are quite inexplicable in terms of three-dimensional geometry.
They are instead properties of the four-dimensional world in which time
is included as an essential dimension. It is precisely here that Artistotle
makes such a significant departure from Plato and points the true way
forward. Before discussing this, it is worth reflecting on the contribution
that Platonic thought made to the historical development of physics and
dynamics.

It is well known that Plato is supposed to have had inscribed above the
entrance to his Academy in Athens the words: 'Let no man ignorant of
geometry enter here/ Whether he did or not, there is no doubt that Plato
put great emphasis on geometry. It could well be argued that this was his
supreme contribution to the development of science. One of the most
striking features of the history of fundamental physics is the way in which
mathematical theories were developed more or less completely without
any idea of direct application to the world and were then found to be
essential for the correct application of fundamental physical processes.
These applications often occurred decades, and in extreme cases
millennia (in the case of conic sections, i.e., ellipses, parabolas, and

* Plato derived the Greek word for 'heat' from the word for 'mince up'.19
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hyperbolas), after the mathematics had been fully worked out. Eugene
Wigner has written a famous essay on this subject:21 'On the unreasonable
effectiveness of mathematics/

Thus, the importance of Plato and his emphasis on mathematics is
manifest.* Nevertheless, examination of the actual successes that were
achieved shows that they were not in the field of mechanico-geometrical
explanation of the transmutations of the elements and their dynamical
behaviour as outlined in the Timaeus; such models proved to be sterile.
The emphasis on geometry and geometrical relationships bore its richest
fruits in other applications. Of these, probably the most important
(because it represented the first real breakthrough to what can be called
genuine laws of motion) occurred about 150 years after Plato's death
when Hellenistic astronomers started to use geometrokinetic models to
explain and describe planetary motions - and achieved spectacular
success. Much later, in the sixteenth and seventeenth centuries, Plato's
motto was again taken up with the greatest enthusiasm, and geometry
formed the indispensable tool for first Copernicus and then Kepler and
Galileo.

On the basis of Aristotle's topological concept of position (to be
discussed in Sec. 2.5), the projection of man's understanding far beyond
the surface of the earth would have been quite impossible. Moreover, by
his emphasis on exactness, t Plato encouraged both Kepler and Galileo to
expect and seek precision not only in spatial relationships but also in
time - in motion. It was only then that the dynamics of terrestrial motions
progressed beyond the primitive embryonic and qualitative form in
which Aristotle had left it and could be unified with the much more
advanced art of celestial dynamics.

Even so, science advanced in curious and ironic ways. Kepler was
initially fired by a dream as purely geometrical as anything thought up by
Plato: to show that the relative distances of the planets from the sun can
be understood in terms of successive nesting of the five Platonic solids
within one another. To the end of his life he regarded his (worthless)
Platonic theory of the sizes of the planetary orbits more highly than his
correct determination of the motions of the planets, a discovery that
finally blew apart the world to which he too clung.

* Mention should here be made of Eudoxus, who was born circa 400 BC in Cnidus and died
circa 347 BC. He was a scholar and scientist of great eminence who contributed to the
development of astronomy (through his theory of the motion of the planets based on the
system of concentric spheres that Aristotle adopted and modified), mathematics,
geography, and philosophy, as well as providing his native city with laws. His thinking lies
behind much of Euclid's Elements, especially Books V, VI, and XII. He worked for a while in
association with Plato. Unfortunately, not a single text by his hand has survived.22

t 'as regards the numerical proportions which govern their [i.e., the molecules of the
elements] masses and motions and their other qualities, we must conceive that God realized
these everywhere with exactness.23
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2.4. Aristotle's natural motions

'If you can look into the seeds of time
And say which grain will grow and which will not'
Macbeth, Act I, Scene 3

It is a little difficult to know where to step into Aristotle's closed and
self-contained world. Each part depends on the rest. However, as already
indicated, one of his most interesting (and eventually fruitful) innovations
was in the doctrine of natural motions, so let us begin there.

Quite why Aristotle put such emphasis on motion is not clear to me
from his work. It could be that, having examined the work of his
predecessors, he came to the conviction that purely geometrical con-
siderations were quite incapable of providing explanations for some of the
simplest and most striking phenomena relating to motion. An earlier
quotation demonstrated the impression that free fall made upon him. A
great part of Book III of his De Caelo is concerned with the discussion of
whether weight and lightness can be explained in geometrical or other
terms. Aristotle concludes that they cannot. One source of his doubt must
surely have been the multiplicity of explanations, often contradictory,
that had been advanced by his predecessors for the phenomenon of
weight. In addition, many explanations were revealed on examination to
be mere hand waving with unbridgeable lacunae in the logical chain. For
example:24 'There are some, e.g. certain Pythagoreans, who construct
nature out of numbers. But to construct the world of numbers leads them
to the same difficulty, for natural bodies manifestly possess weight and
lightness, whereas their monads in combination cannot either produce
bodies or possess weight.'

Again, he is critical of the indiscriminate and vague use of motion made
by the atomists:25

When therefore Leucippus and Democritus speak of the primary bodies as always
moving in the infinite void, they ought to say with what motion they move and
what is their natural motion. Each of the atoms may be forcibly moved by another,
but each one must have some natural motion also, from which the enforced
motion diverges. Moreover the original movement cannot act by force, but only
naturally. We shall go on to infinity if there is to be no first thing which imparts
motion naturally, but always a prior one which moves because itself set in motion
by force.

One could see here a qualitative anticipation of Newtonian dynamics,
with the natural motions that Aristotle seeks to define corresponding to
inertial motion and the enforced motion that diverges from it corre-
sponding to the force-induced deviations from rectilinear inertial
motions. However, instead of just the one Newtonian inertial motion,
Aristotle has several natural motions, none of them corresponding exactly
to the Newtonian. Nevertheless, the tendency is in the right direction and
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there is for the first time an overall, potentially complete concept of
motion. It was precisely this concept, with one significant alteration that
Copernicus forced upon it, that Galileo developed with such dramatic
effects.

Besides this partial anticipation of the overall structure of the New-
tonian scheme, we should note Aristotle's conviction that concepts which
belong to dynamics can only be defined in dynamical terms. This is
particularly interesting in connection with the tortuous history of the
concept of mass, which, as explained in the Introduction, plays an
important part in the discussion of Mach's Principle. Aristotle's discus-
sion of weight and lightness anticipates the methodology of Mach's
eventual clarification of the mass concept.

It will be recalled that the atomists, like others of Aristotle's pre-
decessors, sought to reduce weight to size. Bodies are heavier simply
because they are larger; the dynamical property weight is thus to be
explained geometrically in terms of extension. For example, bodies
containing invisible pores, i.e., voids, will be lighter than ones of the same
overall size containing no such pores. There is not much point in going
into the details of Aristotle's discussion of this question (in Book III of De
Caelo) because often both his arguments and those of the people he is
criticizing are flawed by straight errors of fact. What comes out clearly is
Aristotle's conviction that all such attempts are misguided and that a quite
different approach is needed.

Thus, whereas, for example, in the Timaeus of Plato the essence of the
four elements is seen (or rather conjectured) to lie in the three-
dimensional structure of the small bodies of which these elements are
composed, Aristotle completely dismisses such an approach and, instead
of making the motions of the elements the secondary consequences of
their primary geometrical properties, promotes the characteristic motions
(falling of earth, ascending of fire) to the essential defining properties of
the elements. His standpoint is essentially that earth, by definition, is that
which falls:26 'Let "the heavy" then be that whose nature it is to move
towards the centre, "the light" that whose nature it is to move away from
the centre, "heaviest" that which sinks below all other bodies whose
motion is downwards, and "lightest" that which rises to the top of the
bodies whose motion is upwards/

This definition thus establishes the ordering: earth, water, air, fire. It is
almost an operational definition of how to obtain these elements and
anticipates, in a way, the mass spectrometer, in which a fundamental
dynamical property is used to separate different substances. There is no
doubt that Aristotle regarded his definition as an important insight and a
significant advance. He does not look for any deeper explanation of
weight and falling unless it be in metaphysics. The task of the scientist is
to note the existence of the characteristic phenomena, not explain them.
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In this attitude, as in several other respects, he was a precursor of Mach.
The extent to which Aristotle regarded motion as primary is evident in

his statement:27 'Of bodies some are simple, and some are compounds of
the simple. By "simple" I mean all bodies which contain a principle of
natural motion/

Thus, the very essence of a simple body is its principle of natural
motion. The modernity of this approach is confirmed by the fact that it is
precisely the same principle which is used today to define and distinguish
the various elementary particles.

This is an appropriate place to put in a good word about those much
abused terms potentiality and actuality, which figure so prominently in
Aristotelian physics. Originally, when Aristotle called 'weight' the
unrealized potential of a body to fall, he was merely putting his finger on
an important physical property and moreover one that he correctly
perceived was primary. Modern science does no different when it says
that a body is electrically charged when it is capable of being accelerated
in an electric field. Newton himself was being characteristically Aristote-
lian when, in his definition of inertia, he described the faculty by which
any body remains in its state of rest or uniform motion in a straight line as
a potentia.

It is also worth noting that the modern word potential, as in potential
energy, was introduced deliberately28 in almost exactly the Aristotelian
sense (existing in a latent or undeveloped state). In modern science, the
expression vis potentialis was first used by the Bernoulli brothers and Euler
around 1750. The concept of potential function, with multifarious uses in
mathematics and physics, was introduced by Green in 1828. Finally, the
expression potential energy was introduced in 1853 by Rankine in explicit
contradistinction to actual energy, which last expression was then renamed
kinetic energy by Thomson and Tait, which somewhat obscured Rankine's
explicitly Aristotelian contrasting of potential and actual.

How very right Aristotle was in his insistence on the study of motion in
its own right is highlighted by a further remarkable passage from
Ptolemy's Almagest, which comes immediately after the passages quoted
in the previous chapter (pp. 43-4) and reveals once more the clear
influence of Aristotle. Having pointed out that the mathematical study of
celestial motions offers the only true prospect for a genuine scientific
understanding of things, as opposed to mere 'guesswork', Ptolemy
points out that this also applies to motions on the earth:29 'As for physics,
mathematics can make a significant contribution. For almost every pecul-
iar attribute of material nature becomes apparent from the peculiarities of
its motion from place to place. [Thus one can distinguish] the corruptible
from the incorruptible by [whether it undergoes] motion in a straight line
or in a circle, and heavy from light, and passive from active, by [whether
it moves] towards the centre or away from the centre.'
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This is so close to the spirit and inspiration of Galileo one wonders why
the scientific revolution did not take off then and there. Was the
explanation perhaps that the pursuit of pure understanding was the
passion of such a small band of people?

From the historical point of view, the problem with Aristotle's
philosophy was that it could be developed in two directions: 'upwards' in
the direction of metaphysics, theology, and teleology and 'downwards'
in the direction of quantitative investigation of the precise way in which
potentials were in fact actualized. Perhaps not surprisingly, the medieval
philosophers mostly found the 'upward' direction much more congenial.
Aristotle himself gave precious little encouragement to the quantitative
development of his physics. Moreover, by his espousal oiplenism (i.e., the
view that the world is a plenum rather than a combination of matter and
void) as opposed to atomism, he put a premium, in his physics of terrestrial
enforced motions, on elucidation of the mechanisms by which motion is
communicated from one body to another rather than on the quantitative
study of motion in its own right. This was, in fact, a relapse into
geometrism. Thus, from embryonic science Aristotle's motionics soon
degenerated into mere mumbo-jumbo (of which Aristotle himself
provided a goodly portion) until Galileo injected enough Platonism into
the fourth dimension to reveal its remarkable properties and spell the end
of the Aristotelian organic view of the world.

And perhaps even committed scientists would allow that the detour
through Aquinas and Dante (see Chap. 4) was worth the candle.

2.5. The corruptible and the quintessential

We have already seen certain affinities between the approach of Mach and
Aristotle. Basically they stem from the same instinctive reaction to the
perceived world - to regard it as a reliable source of knowledge, which is
to be extracted by careful observation. In this respect, Mach was,
however, far more single-minded and exclusively empirical than
Aristotle.

Perhaps the closest direct parallel between Aristotle and Machian ideas
in the narrow sense of the problem of giving meaningful expression to
Newton's First Law is to be found in Aristotle's discussion of what he saw
as a manifest defect in the atomists' ideas of motion in the void. His
recognition of it seems to have been one of the major factors that helped
to determine his own rival scheme. His point was that in an undifferen-
tiated isotropic void, the same everywhere and in all directions, it is
impossible to conceive of any definite motions at all. For he notes that
terms such as up and down, left or right, are, in a geometrical space,
purely relative:30 The comparison of mathematical figures illustrates the
point. For such figures occupy no real positions of their own, but
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nevertheless acquire a right and left with reference to us, thus showing
that their positions are merely such as we mentally assign to them and are
not intrinsically distinguished by anything in Nature.' The final words,
'not intrinsically distinguished by anything in Nature', are extremely
typical of the relationists and similar passages are found repeatedly in
Berkeley, Leibniz, and Mach and, before them and Newton, in Kepler too.

Thus, in a vacancy, i.e., void, it is quite impossible to conceive that
motion can take place in a definite direction (as happens in the case of
falling under gravity)31 'since no preference can be given to one line of
motion more than to another, inasmuch as the void, as such, is incapable
of differentiation/ And even more explicitly:32 'But how can there be any
natural movement in the undifferentiated limitless void? For qua limitless
it can have no top or bottom or middle, and qua vacancy it can have no
differentiated directions of up and down (since the non-existent can no
more be differentiated than "nothing" can, and the void is conceived as
not being a thing, but as mere shortage)/

The parallel with Mach and indeed specifically Mach's Principle
becomes almost complete when Aristotle argues from the undoubted
existence of the falling of bodies that they must be falling to a definite place.
Aristotle's position is as follows. We observe in the world several
extremely striking examples of natural motions that quite clearly
distinguish certain directions: these are the falling of heavy bodies, the
ascent of fire, and the circular motion of the heavens. But for him it is quite
inconceivable that these directions should somehow crystallize spon-
taneously out of the atomists' void. They must be motions tending to
some quite definite goal.

Now these directions are not like the purely relative ones of mathe-
matical space just discussed; for:33

These terms - such as up and down and right and left, I mean - when thus applied
to the trends of the elements are not merely relative to ourselves. For in this
relative sense the terms have no constancy, but change their meaning according
to our own position, as we turn this way or that; so that the same thing may be
now to the right and now to the left, now above and now below, now in front and
now behind; whereas in Nature each of these directions is distinct and stable independently
of us. 'Up' or 'above' always indicates the 'whither' to which things buoyant tend;
and so too 'down' or 'below' always indicates the 'whither' to which weighty and
earthy matters tend, and does not change with circumstance; and this shows that
'above' and 'below' not only indicate definite and distinct localities, directions and
positions, but also produce distinct effects.

The italics in this passage are mine. They emphasize the double parallel
with Mach - the epistemological (in a featureless space there are no
markers to which motion can be referred) and the physical (the idea that
the places not only act as markers but also exert a causal effect, serving as it
were as centres of attraction). Of course, the parallel is not complete: the
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motions are not the same and the role of the markers is also subtly
different. In Aristotle, there are two distinguished places: the centre of his
universe, occupied by the earth, and the periphery of his 'onion', where
the shells of quintessence spin. The earth and the quintessence mark
these distinguished positions, and thereby define definite goals for
motion, but the attractive power resides in the places themselves, not in
the matter that occupies the places. In this respect Aristotle is unphysical.
Mach identified the masses of the universe as the actual 'attractors' (one
should really say 'governors of motion' - governor being used in its
original Latin meaning of the steersman, i.e., the masses of the universe
literally steer inertial motion according to Mach's idea). Further, he
almost certainly assumed that their 'attracting' or 'steering' power is
proportional to their masses, a physical concept of which only the first
hints can be discerned in Aristotle.

Before we complete the description of the solution that Aristotle found
to the problem of defining motions in a cosmological context, it is worth
making a digression on the subject of the perpetual falling of the atomists,
since this provides one of the most beautiful examples of a detachment
hypothesis of the kind mentioned in Sec. 1.6. It illustrates how deeply and
unconsciously the stability of the human environment influenced thought
about space throughout all ages - and, no doubt, still does.

There has been considerable controversy in the literature on classical
philosophy about who precisely did introduce the notion of perpetual
falling (see, for example, Barnes's comments on atomism and the motion
of the atoms2). It was at first believed that the idea originated with
Leucippus or Democritus, but majority opinion now inclines to the view
that it was introduced by Epicurus, possibly reacting to Aristotle's
criticism that the atoms were not given definite motions.34 Whatever the
truth, the idea resulted in a most amusing paradox, one, moreover, which
should not have persisted (let alone arisen if it did) after Aristotle's clear
pointing out of the absence of distinguished directions in a featureless
void.

For the atomists, wishing to explain the existence of our stable earth,
made the daring conjecture that originally no world existed at all. Instead,
there was nothing but an immense void through which the myriad atoms
fell, some faster than others, their collisions giving rise to innumerable
worlds, both 'next to each other and one after another'. One such world
was supposed to be ours. The detachment hypothesis here is as follows.
The actual world in which the atomists lived had an Up and a Down.
There was a dynamical definition of up and down, through falling, and a
purely geometrical definition, through the surface of the earth. Although
the two agreed to a high degree of accuracy, the atomists who postulated
the falling did not perceive there could be a causal connection between the
two. Instead, transferring conceptually the effective frame of reference
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defined practically by the earth from the earth to the void, they imagined
the earth to be no more but left in the void the disembodied Up and Down
that the 'earth-to-be-explained' had defined for them. And they explained
the existence of the earth by means of a phenomenon that we now know
is not the cause of its (the earth's) coming into existence but is in fact
caused by the very thing whose existence the atomists sought to explain -
the earth. We can, of course, see the fallacy so clearly because, in effect,
the atomists' 'world' has long since been 'dismantled'.

The relevance of this discussion to the Machian problem is highlighted
by the following quotation from Einstein's late Autobiographical Notes,
which follows immediately the passage quoted in the Introduction (one
wonders if Einstein knew that what he described did in fact happen
almost exactly as he envisaged):35

How sound, however, Mach's critique is in essence can be seen particularly
clearly from the following analogy. Let us imagine people construct a mechanics,
who know only a very small part of the earth's surface and who also can not see
any stars. They will be inclined to ascribe special physical attributes to the vertical
dimension of space (direction of the acceleration of falling bodies) and, on the
ground of such a conceptual basis, will offer reasons that the earth is in most
places horizontal. They might not permit themselves to be influenced by the
argument that as concerns the geometrical properties space is isotrope and that it
is therefore supposed to be unsatisfactory to postulate basic physical laws,
according to which there is supposed to be a preferential direction; they will
probably be inclined (analogously to Newton) to assert the absoluteness of the
vertical, as proved by experience as something with which one simply would have
to come to terms. The preference given to the vertical over all other spatial
directions is precisely analogous to the preference given to inertial systems over
other rigid co-ordination systems.

But now to continue with Aristotle's scheme.
The spherical universe was the solution to all his problems, since, as we

have seen, in such a universe there are unambiguously defined
distinguished places and motions, above all the centre of the sphere and
its surface as the distinguished places, and circular motion around the
centre and linear motion towards the centre (downwards) and away from
the centre (upwards) as the distinguished motions. Aristotle puts great
stress on the fact that these are the only simple - and hence natural -
motions and proceeds to construct not only his cosmology but also his
'chemistry' upon them. As far as the sublunary world is concerned, it is
all built up from what goes 'up' (fire) and what goes 'down' (earth):36

'Every element has its proper motion, and the motion of a simple body is
simple. But there is not an infinite number of simple motions, because the
directions of movement are limited to two [up and down].'

For Aristotle, this is the basis of all terrestrial chemistry.
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It must be said that the intermediate elements, water and air, have to be
introduced rather unnaturally into this scheme:37

the centre is the contrary of the extremity, and the constantly falling body of the
rising. That there are two kinds of body, the heavy and the light, is thus
conformable to reason, for the places are two, centre and extremity. But there is
also the space between the two, which bears the opposite name in relation to each,
for that which lies between the two is in a sense both extremity and centre. Owing
to this there is something else heavy and light, namely, water and air.

In this respect, at least, Plato is more convincing with his perfect solids.
(Many Greek thinkers appear to have placed great store in contraries, and
Aristotle often introduces them on rather shaky grounds.)

This then gives Aristotle his four terrestrial elements. There is no point
at all in going into his theory of transformation - generation and
corruption - but it is remarkable how deeply he was impressed by motion
and how he regarded motion as more significant than substance or shape.
This left an indelible mark on medieval and Renaissance physics and
eventually bore fruit.

Almost more valuable (by an ironic quirk of history) for the evolution of
dynamics was his theory of quintessence (aither), the fifth element that he
postulated as the substance of the celestial bodies and the spherical shells
that carry them.* This was just an extension of his theory of simple
(natural) motions. Aristotle was always on the lookout for intelligible
concepts. The infinity of endless space cannot be comprehended in his
view; the mind cannot grasp it. In contrast, the circle, which closes on
itself, is the paradigm of intelligibility. Circular motion about the centre
had two irresistible attractions for Aristotle - it was self-contained (and
therefore intelligible) and, if the periphery is regarded as a proper place,
it has the wonderful property of maintaining the substance that circles
around such a periphery eternally in its proper place. These were grounds
enough for Aristotle to postulate the existence of a fifth element, aither,
and endow it with all the divine attributes of which he could think. The

* It is interesting that Aristotle did not postulate the crystal spheres to carry the stars and
planets because he found it inherently impossible to believe that they could move of their
own accord. The significant thing for him was the manner in which they moved.38 The
argument was as follows: first, the sun and the moon were evidently spherical. From this he
concludes all celestial bodies must be so. Now in the case of the moon it could actually be
seen that it neither rotated on its axis nor rolled - but these were the only two effective
(natural) motions of which terrestrial spheres were observed to be capable. Extrapolating
from the moon to all the celestial bodies, Aristotle concluded that they must all move by
virtue of being fixed on spherical shells, since otherwise they would have to be endowed
with wings or flippers to swim through the ether. One sees here how plenism dominated his
thinking. One of the more entertaining passages in Kepler's Astronomia Nova is his quite
serious discussion of whether the planets have flippers.
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following is one of the passages that came to dominate centuries of
physical, philosophical, and theological thought:40

From what has been said it is clear why, if our hypotheses are to be trusted, the
primary body of all is eternal, suffers neither growth nor diminution, but is
ageless, unalterable and impassive. I think too that the argument bears out
experience and is borne out by it. All men have a conception of gods, and all assign
the highest place to the divine, both barbarians and Hellenes, as many as believe
in gods, supposing, obviously, that immortal is closely linked with immortal. It
could not, they think, be otherwise. If then - and it is true - there is something
divine, what we have said about the primary bodily substance is well said. The
truth of it is also clear from the evidence of the senses, enough at least to warrant
the assent of human faith; for throughout all past time, according to the records
handed down from generation to generation, we find no trace of change either in
the whole of the outermost heaven or in any one of its proper parts. It seems too
that the name of this first body has been passed down to the present time by the
ancients, who thought of it in the same way as we do, for we cannot help believing
that the same ideas recur to men not once nor twice but over and over again. Thus
they, believing that the primary body was something different from earth and fire
and air and water, gave the name aither to the uppermost region, choosing its title
from the fact that it 'runs always' (aei #eiv) and eternally. (Anaxagoras badly
misapplies the word when he uses aither for fire.)

The grandeur of such passages cannot be denied (though it is interest-
ing to find the OED seems to support Anaxagoras with regard to the
etymology of aitherl) Part of Aristotle's grip on men's minds must have
come from the way, already noted, in which he transfers the awe man
feels before the welkin to the substance of the firmament itself. Thus, we
attribute to the putative quintessence all that we associate with our own
moments of heightened awareness and ecstasy. (In a notable passage in
his Dialogo,*1 Galileo points out that quintessence and the never changing
celestial world would in reality be excruciatingly dull.)

But the history of dynamics is nothing if not ironic. On the one hand
Aristotle put an almost unbridgeable gulf between the heavens and the
earth, but at the same time he attributed to the motion of the heavens
pretty well all the correct properties of inertial motion, as is clear from the
following passage:42

the circular motion in question, being complete, embraces the incomplete and
finite motions. Itself without beginning or end, continuing without ceasing for
infinite time, it causes the beginning of some motions, and receives.the cessation
of others . . . it suffers from none of the ills of a mortal body, and
moreover . . . its motion involves no effort, for the reason that it needs no
external force of compulsion, constraining it and preventing it from following a
different motion which is natural to it. Any motion of that sort would involve
effort, all the more in proportion as it is long-lasting.

It is by no means fortuituous that Aristotle does ascribe the essential
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properties of inertial motion to the heavens, since the actually observed
diurnal motion of the heavens (which inspired him to the above passage)
is a consequence of the rotational, i.e., basically inertial, motion of the
earth, while the proper motion of the planets, sun, and moon are to a large
degree the result of the inertial component of their motion. Indeed,
although not normally interpreted that way, the Ptolemaic planetary
system is an early expression of the law of inertia - incomplete but
accurate in essentials. There are three aspects of unadulterated inertial
motion that still evoke wonder, in ascending order: the rectilinearity, the
uniformity, and the eternity. What made Galileo's introduction of inertia
so breathtaking - and simultaneously amenable to mathematization -
was precisely the eternal uniformity. The revolutions of the heavens did
appear to persist for ever, but on the earth, in Aristotle's words (echoed
by the poets of all ages) 'time itself is destructive . . . things perish
without anything being stirred, and it is a kind of perishing without
apparent provocation that we especially attribute to time.'43

Lost from view on the surface of the earth because of the host of
disturbing factors and the absence of a decent clock, the most funda-
mental law of nature (admittedly not yet formulated in the Newtonian
manner) finally forced its way into Galileo's consciousness (or, at least,
into the way he presented the matter in his famous Dialogo) after
Copernicus had boldly proclaimed the earth to be a planet. Locked in
deadly combat with the Catholic Church and more or less forced to it by
Copernicus's proposal of the earth's mobility, Galileo pulled down
eternity from the heavens in a desperate attempt to prove that the earth
too could move. He realized the implication of the earth's mobility - that
through terrestrial perishing and decay there must after all run a thread
which persists for ever. He made us partakers of eternity. (It's ironic that
Hamlet called man the quintessence of dust just when Galileo was taking
our 'quintessential nature' seriously.)

As we shall see, this was one of the decisive steps in the eventual
recognition of the law of inertia and opened the door to mathematization
of motion (eternal uniformity was a concept that could be formulated
precisely before the development of the calculus). It also had the
consequence that the law of inertia was formulated in geometrokinetic -
indeed almost transcendental - terms. As already intimated, Mach's
Principle is the attempt to recast the law in physical terms - to shake off
the residual geometrokineticism which it inherited from Aristotelian
metaphysics and ancient astronomy.

One is left to wonder if things had to take such a curious roundabout
route. In the paragraph immediately following the one from which the
quotation of Ref. 42 is taken, Aristotle dismissed the Atlas myth because
he said it arose from the mistaken belief that the material of the heavens
has weight and must therefore somehow be prevented from falling
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(according to his fundamental motion-based physics and chemistry, only
the substances that fall have weight). He then went on: 'We must not then
think in this way, nor in the second place must we say with Empedocles
that it [the sky] has been kept up all this time by the cosmic whirl, i.e., by
having imparted to it a motion swifter than that to which its own weight
inclines it.'

Poor Empedocles. How near the truth he was. Two thousand years
later, Hooke, newly appointed Secretary to the Royal Society, would
write to Newton, posing the problem of the planets in strikingly similar
terms.44

This completes what needs to be said about the five Aristotelian
elements and their natural motions. These, on earth at least, were
augmented by the concept of violent motions, enforced by some agent
(either an animated being or some body which itself is kept in motion in
some manner). It is again interesting and ironic that the quantitative
description of such motion (the development of which eventually led to
Newton's Second Law) constituted the terrestrial physics that Kepler
learnt at his Alma Mater, Tubingen, and was imported by him into the
heavens to account for planetary motions just when Galileo was
importing celestial inertia into terrestrial physics in order to understand
earthly motions.

Ironic yes, but there is a logic to it too. Copernicus's mobile earth
bridged the Aristotelian gulf between the terrestrial and the celestial.
Rather over half a century later, two intrepid robbers, each with a bag of
booty on his back, could be seen venturing through the void across that
flimsy arch. Kepler from the earth to the heavens, Galileo from the
heavens to the earth. They exchanged a cordial word or two as they
passed, but each went resolutely on his own way.

2.6. The concept of place and the self-contained universe

The key to understanding Aristotle's cosmology is his concept of place
(topos). Aristotle presents the problems associated with the concepts of
place and space very clearly in Book IV of his Physics, from which it is
worth quoting at some length, particularly in view of the fact that the
problem of the nature of space figures prominently in the discussion
about absolute and relative motion. Aristotle opens the discussion as
follows:45

The Natural Philosopher has to ask the same questions about 'place' as about the
'unlimited'; namely, whether such a thing exists at all, and (if so) after what
fashion it exists, and how we are to define it. ...

But we encounter many difficulties when we attempt to say what exactly the
'place' of a thing is. For according to the data from which we start we seem to reach
different and inconsistent conclusions. Nor have my precursors laid anything
down, or even formulated any problems, on this subject.
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He sees the strongest argument for the reality of space in the phenomenon
of 'replacement':46

To begin with, then, the phenomenon of 'replacement' seems at once to prove the
independent existence of the 'place' from which - as if from a vessel - water, for
instance, has gone out, and into which air has come, and which some other body
yet may occupy in its turn; for the place itself is thus revealed as something
different from each and all of its changing contents. For 'that wherein' air is, is
identical with 'that wherein' water was; so that the 'place' or 'room' into which
each substance came, or out of which it went, must all the time have been distinct
from both of the substances alike.

Although as a plenist he does not himself believe in it, Aristotle also
mentions the argument from the void:47

Further, the thinkers who assert the existence of the 'void' agree with all others in
recognizing the reality of 'place', for the 'void' is supposed to be 'place without
any thing in it.'

One might well conclude from all this that there must be such a thing as 'place'
independent of all bodies, and that all bodies cognizable by the senses occupy
their several distinct places. And this would justify Hesiod in giving primacy to
Chaos [ =the 'Gape'] where he says: 'First of all things was Chaos, and next
broad-bosomed Earth'; since before there could be anything else 'room' must be
provided for it to occupy. For he accepted the general opinion that everything
must be somewhere and must have a place.

But Aristotle is not happy with the idea that void has reality:48

And if such a thing should really exist well might we contemplate it with wonder -
capable as it must be of existing without anything else, whereas nothing else could
exist without it, since 'place' is not destroyed when its contents vanish.

But then, if we grant that such a thing exists, the question as to how it exists and
what it really is must give us pause. Is it some kind of corporeal bulk? Or has it
some other mode of existence?

His initial discussion of this question, which is not particularly
illuminating in the context of this book, leads him to the conclusion that
the 'mode of existence' of space is extremely difficult to pin down, and he
concludes the chapter by remarking:49 'after all, we are forced by these
perplexities not only to ask what a "place" is, but also to reopen the
question that appeared to be closed and ask whether there is such a thing
as "place" at all'.

In coming to grips with this problem, Aristotle exhibits a strongly
posirivisric frame of mind.* He insists instinctively, though without, I
think, stating it as an explicit principle, that there must be something

* The doctrine of positivism, first associated with Auguste Comte (1798-1857), is the
philosophical basis of Mach's approach to physics and asserts that the highest form of
knowledge is obtained from direct description of sensory phenomena in mathematical
terms.50
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observable that defines place. This leads him to his fundamental concept:
place, whatever may be its actual mode of existence, is defined by a
material container. His favourite example is a vessel that may contain
successively water, wine, or air. Very characteristic is his assertion that
the 'immediate place' of a thing is the 'inner surface of the envelope [i.e.,
container]'.51 This is the rock on which everything in his scheme stands or
falls: unless there is some defining container, all talk of place or space is
meaningless. This is why he needs a plenum.

However, this still leaves open a number of possibilities for what place
actually is. We know that a body occupies a place when within a
container. Then in answer to the question 'what is place?' Aristotle
asserts:52 'it must be either (i) the form or (ii) the matter of the body itself,
or (iii) some kind of dimensional extension lying between the points of the
containing surface, or (iv) - if there be no such "intervenient", apart from
the bulk of the included body - the containing surface itself.'

He (at least) can readily eliminate the first two possibilities. It is clearly
not the matter of the body itself (ii), since that can be replaced (as we have
seen). Nor should it be regarded as the form of the body. For though 'that
which embraces' may suggest the moulding 'form' (since 'the limiting
surfaces of the embracing and the embraced coincide') and 'both the
"place" and the "form" are limits', they are not limits 'of the same thing,
for the form determines the thing itself, but the place the body-continent'.

He finds possibility (iii), which he says Plato favoured by advocating
the identity of 'room' and 'matter', harder to eliminate and admits:53

we see that what makes 'place' appear so mysterious and hard to grasp is its
illusive suggestion now of matter and now of form, and the fact that while the
continent is at rest the transferable content may change, for this suggests that
there may be a dimensional something that stays there other than the entering and
vacating quanta - air too contributing to this last illusion since it looks as if it were
incorporeal - so that the 'place', instead of being recognized as constituted solely
by the adjacent surface of the vessel, is held to be the dimensional interval within
the surface, conceived as 'vacancy'.

and he also says:54 'it is no wonder that, when thus regarded - either as
matter or as form, I mean - "place" should seem hard to grasp, especially
as matter and form themselves stand at the very apex of speculative
thought, and cannot well, either of them, be cognized as existing apart
from the other/

In the face of these baffling questions, he falls back on the doctrine of a
plenum and completely eliminates space as a conceptual entity:55

But because the encircled content may be taken out and changed again and again,
while the encircling continent remains unchanged - as when water passes out of
a vessel - the imagination pictures a kind of dimensional entity left there, distinct
from the body that has shifted away.
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But this is not so; for what really happens is that (instead of anything being left)
some other body - it matters not what, so long as it is mobile and tangible -succeeds
the vacating body without break and continuously.

There is no point in getting involved in the arguments for or against the
idea that the world is a plenum. It was the subject of great controversy
both in the ancient world - in De Rerum Natura Lucretius referred to the
supporters of the plenum as stolidi - and again in the seventeenth century.
However, this 'great debate' in the end proved to be little more than an
exercise in shadow-boxing, the reason for which will be indicated shortly.
For the purposes of the present discussion, let it simply be accepted that
for Aristotle the plenum was more or less an article of faith.

Having thus disposed of all the other alternatives, Aristotle concludes
that place is not only defined by but actually is the inner surface of the
container: the envelope. The inner wall of the bottle is the place of the
wine, the water that touches its outside is the place of the boat. However,
this is only the immediate place of the body. In another clear anticipation of
Mach, Aristotle puts the immediate place in a larger context: he is careful
not to fall victim to a detachment fallacy:56

And so, too, a 'place' may be assigned to an object either primarily because it is its
special and exclusive place, or mediately because it is 'common' to it and other
things, or is the universal place that includes the proper places of all things.

I mean, for instance, that you, at this moment, are in the universe because you
are in the air, which air is in the universe; and in the air because on the earth; and
in like manner on the earth because on the special place which 'contains and
circumscribes you, and no other body'.

The hierarchical nature of place comes out explicitly in the following
passage, which more or less completes Aristotle's account of how we are
to understand place:57

And, from this point of view, if one thing is moving about inside another, which
other is also in motion, as when a boat moves through the flowing water of a river,
the water is related to the boat as a vessel-continent rather than as a place-
continent; and if we look for stability in 'place', then the river as a permanent and
stable whole, rather than the flowing water in it at the moment, will be the boat's
site. Thus whatever fixed environing surface we take our reckoning from will be
the place.

So the centre of the universe and the inner surface of the revolving heavens
constitute the supreme 'below' and the supreme 'above'; the former being
absolutely stable, and the latter constant in its position as a whole.

He has found and defined the universal and ultimate frame of
reference.

This might seem facile; for it appears that the outermost heaven, the
ouranos, should be regarded as 'placed' by the void beyond it. In fact, the
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problem presented by the placing of the outermost sphere played a
significant role in the late medieval and Renaissance periods in under-
mining the Aristotelian cosmos on the basis of purely philosophical
considerations. Already in Plato's time Archytas, a Pythagorean, had
posed questions that we find recurring time and again from the thirteenth
to the beginning of the seventeenth century (and, indeed, still are put by
the layman to any relativist who attempts to explain the concept of a
closed finite world):58

If I am at the extremity of the heaven of the fixed stars, can I stretch outwards my
hand or staff? It is absurd to suppose that I could not; and if I can, what is outside
must be either body or space. We may then in the same way get to the outside of
that again, and so on; and if there is always a new place to which the staff may be
held out, this clearly involves extension without limit.

Equally famous is Lucretius's taunt:58

If for the moment all existing space be held to be bounded, supposing a man runs
forward to its outside borders and stands on the utmost verge and then throws a
winged javelin, do you choose that when hurled with vigorous force it shall fly to
a distance, or do you decide that something can get in its way and stop it? for you
must admit and adopt one of the two suppositions; either of which shuts you out
from all escape and compels you to grant that the universe stretches without end.

Such criticisms of Aristotle's remarkable idea that there is literally
nothing beyond the outermost shell of his cosmos strengthened and
anticipated the even more destructive evidence that was to be brought
forward by the astronomers and were an important factor in preparing
the human mind for the transition from a closed world to an infinite
universe.

With the benefit of hindsight, I do not suppose that Aristotle's answer
to the problem of the placing of the outermost sphere will be found by the
reader to be completely convincing - for this, Aristotle would have had to
anticipate non-Euclidean geometry. However, an answer of sorts can be
found in the way Aristotle couples the problem of space so strongly to that
of motion. In fact what partially saves Aristotle's universe from the
objection that his ouranos must itself be ultimately contained in the
limitless void is that his scheme is dynamically self-contained. In fact,
quintessence comes to the rescue. It is not so much that Aristotle
abolishes the problem of the 'place' of the 'supreme above', as that within
his scheme the problem never becomes acute since all substance at the
'supreme above' moves circularly. The threat to the logical coherence of
his scheme from Archytas's question is simply ignored, but with a
semblance of logic and coherence since, in accordance with Aristotle's
own laws of motion, the outermost sphere spins within itself and the laws
of motion for the other elements say explicitly that they have no cause to
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pass beyond the ouranos; for all the places to which they strive are
contained within it.

Such thoughts are implicit in the following passages:59

It follows that if a body is encompassed by another body, external to it, it is 'in a
place'; but if not, not. As to such an 'unplaced' body (be it water or anything else)
its parts may be in motion, for they embrace each other, but as a whole it can be
said to 'move' only in a special sense. For as a whole it cannot change its collective
place. But it may have a motion of rotation, which motion is what constitutes the
'kind of place' with respect to which the rotating parts move.

Now in the universe there are some parts which do not move up and down but
do rotate; and others (such as are susceptible to condensation and rarefication)
which can either rotate or move up and down . . . but the heavenly mass as has
been said cannot change its place as a whole. Nor indeed has it a place to change,
seeing that there is no body-continent embracing it. But after the fashion of its own
motion it constitutes places for its own parts, since one part embraces
another. . . .

Heaven therefore 'rotates', but the universe has not a 'where', for to have a
'where' a thing must not only exist itself but must be embraced by something other
than itself; and there is nothing other than the universe-and-the-sum-of-things,
outside that sum, and therefore nothing to embrace it. . . .

So earth is naturally surrounded and embraced by water, water by air, air by
aether, aether by heaven, and heaven itself not at all.

It must be admitted that Aristotle's solution to the problem of space and
its profoundly mysterious, elusive nature has many attractions. By
defining place as the envelope of the contained body and insisting the
world is a plenum, he was effectively able to say that space does not exist
at all and was able to reduce everything to matter. Not only is matter
everywhere, so that the embarrassment of the void is eliminated, but
matter also, in being everywhere, is always available to define not only
the immediate place but also a universal frame of reference. Moreover,
from the epistemological point of view, the very diversity of matter and its
differentiation was welcome in lending a certain precision to the concept
of space - it is seldom difficult to say where one thing ends and another
begins.

Where is the flaw in this all but self-contained whole? Undoubtedly in
Aristotle's neglect of the metrical, as opposed to topological, properties of
space. His concept of place is at once fundamental but primitive.
Fundamental because it derives directly from the most basic of spatial
concepts - contiguity, coincidence, and inclusion. Primitive because it
stops there and takes almost no account of the metrical properties of the
world, which although secondary nevertheless have a very real practical
existence and lead to the instinctive posing of questions like the one that
Archytas put. The defect with Aristotle's concept of place is that it ignores
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a second - and in many ways much more convenient and effective - way
of determining position. This is the method in which position is
determined by using the metrical properties of Euclidean space, e.g. by
defining the position of a body by means of its distances from certain
selected points of reference. In this method, the distances can be
measured either directly, by rulers, or indirectly, by means of
trigonometry.

In this connection it is interesting to note that Aristotle, despite his
high-brow philosophy, also had a concept of a metric space in the manner
of Euclid buried deep in his psyche. For metrical geometry does enter
Aristotle's scheme in numerous places, above all in the use he makes of
straight lines and circles to define natural motions. He also frequently
talks about distance without making the least attempt to show how such
a precise quantitative concept derives from his more primitive topological
concept of place. But perhaps the most graphic evidence of his instinctive
but unconscious belief in space is to be found in his firm belief that the
earth is at rest while the heavens spin.60 For all that one can observe is
relative: there is absolutely no objective criterion provided by anything in
Aristotle's concept of place that would enable one to say that it is the
heavens that spin rather than the earth. Indeed, in Aristotelian rigour the
notion that either is at rest (nonrotating) is meaningless.

Aristotle is thus a classic example of the point made by Maier and
quoted in Chap. 1. Like other philosophers, he was capable of developing
a sophisticated concept of place that dispenses with space, but this broke
down as soon as it became necessary to treat problems involving motion.
Here instinctive man, with both feet firmly on the solid ground,
immediately comes to the fore and we are confronted with what seems to
us to be an almost schizophrenic failure to link together the two aspects of
geometry: the Aristotelian topological (and positivistic) concept of place
and the Euclidean concept of space with its metrical notions adopted as
true a priori - because self-evidently true!

Kuchaf has pointed out to me that the coexistence for around two
millennia of these two concepts, represented respectively by the finite
Aristotelian cosmos and infinite Euclidean space, which were both
developed with great precision and detail long before the end of Greek
antiquity and then lived on cheek by jowl until almost the middle of the
seventeenth century, when the Euclidean concept finally triumphed, is a
most remarkable and almost inexplicable phenomenon. How were people
able to live for so long with such contradictory notions?

I think the answer must be that it takes the human mind an extra-
ordinary effort to put together the disparate parts of experience into a
coherent and unified whole. Who knows, millennia from now our
descendants may smile at the way most modern scientists live quite
happily with a scientific picture of the world devoid of all qualitative
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sensations, with which, however, they are confronted in the most intense
manner in every instant of their conscious existence. I refer again to
Schrodinger's Mind and Matter.9

One thing at least is suggested by the history of the period from
Aristotle to Descartes - that clarity of philosophical argument and
mathematical intuition alone are not sufficient to bring about a funda-
mental change of concepts. Opposition to Aristotle was frequently
voiced, often with striking clarity, as for example by John Philoponus (in
the sixth century AD):61 'Place is not the adjacent part of the surrounding
body. . . . It is a given interval, measurable in three dimensions; it is
distinct from the bodies in it, and is, by its very nature, incorporeal. In
other words, it is the dimensions alone, devoid of any body. Indeed,
insofar as their matter is concerned, place and the void are essentially the
same thing/ This concept of space is already extremely close to that of
Newton. Moreover, it reappeared at numerous times in the Middle Ages
but never with enough strength to overthrow Aristotle. (For a discussion
of concepts of space in the Middle Ages the reader is referred to Grant's
Much Ado About Nothing.62)

What was lacking, I suggest, was really hard and ineluctable evidence,
empirically based and expressed in mathematical form, suggesting that
there was something fundamentally wrong with the Aristotelian scheme.
This evidence was supplied by the astronomers.

It is for this reason that a particularly important part of this book is
concerned with tracing how the alternative metrical, above all trigono-
metrical, concept of position determination steadily undermined the
Aristotelian universe. Here again the difference between the heavens and
the earth is most interesting and significant. The point is that whereas on
the earth both methods, metrical and topological, can be used - and in
practice are used - to determine position, in the heavens the topological
method is, with a very few exceptions, entirely useless. It can be used to
determine the apparent position of a planet on the heavens but fails
completely to say how far away the planet is. It is interesting to note in this
connection that in De Caelo Aristotle gives only the most meagre informa-
tion about the distances of the planets and the size of his universe. In fact,
he is content to give an estimate of the size of the spherical earth and to
note the fact - established by a topological observation, an occultation of
Mars by the moon - that the planets are further away than the moon. He
does not even attempt to estimate the distance to the moon.

We shall see shortly how quantitative study of the heavens, first by the
ancients and then by Copernicus and Kepler, simply bypassed Aristotle's
philosophy and step by step reinstated geometry as an essentially
quantitative science of the real world. This will also give us a key to
understanding why one of the greatest of all philosophical disputes, that
between the adherents of the void and plenum, generated a great deal of
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smoke without materially affecting the actual development of dynamics
once it got into its stride. Because de facto planets have no visible
'envelopes', Aristotle's concept of position fails completely for them.
Astronomers were forced to use trigonometry and geometrical models to
determine planetary positions. But this concentrated attention directly on
trigonometric position and change of position, both being treated
quantitatively of necessity, since the raw data were gathered in quantita-
tive form and could be evaluated in no other way. Thus, far more effort
was expended on establishing the precise motions of the planets than on
speculating about their origin and whether the planets are moved by the
agency of a medium, by an active soul, or by an occult faculty - gravitation.
This is true above all of Kepler, despite the fact that for him physical
speculation was a consuming passion and he dabbled in all three
explanations.

Thus it was that Aristotle's physics lived on, a fleshy beast with no clear
contours, while astronomy, an austere science far removed from the
fleshpots of the world, was forced willy-nilly to come to terms with the
bony quantitative reality of celestial phenomena. This may also explain
why Kepler, the astronomer by choice, made a more radical break with
Aristotle than Galileo, the astronomer by accident.

We cannot conclude this section without commenting on the remark-
able similarity of the closed universes constructed by Aristotle and, more
than two thousand years later, by Einstein. Both were spatially spherical
and infinite in both temporal directions. (Einstein's metrically closed
universe was, of course, intellectually far more satisfying than the
topologically closed universe of Aristotle, based, as we have seen, on
inadequate concepts.) Even more striking is the fact that both were
constructed for essentially Machian reasons - a desire to find a closed
circle of observable physical causes.

This point is of the greatest importance for the understanding of
Aristotle and the realization of what ultimately defeated Einstein. In
common with many Greek thinkers, Aristotle abhorred the idea of the
'actual infinite/ As we have seen, he was always on the look out for
'intelligible concepts', ones that the mind could completely grasp. He
literally recoiled before the idea of an infinite universe, and much of his De
Caelo is devoted to proving that the universe cannot be infinite. The only
form in which Aristotle could contemplate the infinite was as a potentiality,
for example, as the potential possibility of infinite division of a finite piece
of matter into ever more and more pieces. Looking forward to the end of
Vol. 2, it is worth noting that conscious rejection of the infinite was
probably one of the major factors that led Aristotle to his closed finite
cosmology in the first place, whereas for Einstein realization of the danger
posed by the infinite came very late, in fact only after he had developed
his dynamical theory in its entirety. As the story of the absolute/relative
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debate unfolds, we shall see that the intervening discovery and systematic
elaboration of dynamics goes a long way towards explaining the different
perspectives of these two great men who dominate the history of
dynamics at its respective ends.

Another significant similarity between the cosmologies of Aristotle and
Einstein is that both were blown apart by that unbiddable beast appro-
priately called dynamics. The Aristotelian vision of the quintessential
divine heavens was indeed destroyed overnight, but the Aristotelian
universe lived on for another half century or so, a rusting old hull whose
quintessence had lost all its sheen and inner vitality. But then came
Newton and his laws of motion that burst asunder the cordon sanitaire with
which Aristotle had fended off the nagging void. It was Newton's laws
(already anticipated in some of their essential features by Descartes) that
let in infinite space, the logical extension of the trigonometric space of the
solar system in which Kepler had uncovered ellipses, significant steps
from the finite Aristotelian circles to infinite conic sections stretching out
forever into the void.

If Aristotle's spherical universe survived two millennia, Einstein's had
barely two months of existence before de Sitter gave it the coup de grace.
Hamlet would have had as much pleasure from the end of Einstein's
universe as he had from the abrupt demise of Guildenstern and
Rosencrantz. Truly a case of the 'engineer hoist by his own petard'.
Aristotle's universe was blown apart by Newton's laws; Einstein's by
Einstein's. We shall come to all this anon.

2.7. Time in Aristotelian physics

In his discussion of time, Aristotle again exhibits characteristic reflexes
that can be called 'Machian' but, as in the case of space, the explicit
positivistic philosophy exists alongside abstract mathematical intuition.
This section is to be seen as an introduction to some very remarkable
empirical and quantitative results about the nature of time discovered by
the Hellenistic astronomers. These will be discussed in the next chapter.

Innumerable phenomena give rise to a sense of awareness of the
passage of time - the alternation of day and night, the seasons, the lunar
cycle, birth, growth, and death. Ariotti63 makes the interesting point that,
apart from the Greeks, the people living around the Mediterranean in
antiquity 'did not separate time from its contents . . . Time was not a
neutral and abstract frame of reference. Time was its own contents.
Events were not in time, they were time. Ancient Hebrew did not have a
word for time, but for season, point in time, or eventful duration.' There
were as a result multiple times. Ariotti sees a significant conceptual
development in the fact that the Greek theogonists and poets 'hyposta-
tized time into a single entity, cosmological principle or god: Chronos.' In
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the great flowering of Greek literature, time plays a dominant role. For
Sophocles time was all-mastering. For the emergence of the science of
dynamics, the transition from all the particular measures of time to the
concept of a universal and uniformly flowing time was crucial.

In this process, Plato and Aristotle mark two important stages. Plato
said that,64 'with a view to the generation of Time/ God brought the
celestial bodies into existence 'for the determining and preserving of the
numbers of Time'. He seems to have come quite close to identifying the
passage of time with the motions of the heavenly bodies. On the other
hand, Plato regarded the world as a mere play of appearances and in his
hands time does not acquire a genuine concrete reality. There is also the
obvious problem that the various celestial bodies move at different
apparent speeds at different times. Which among them would define a
unique time, if, indeed, such a thing exists? It was left to Aristotle, who,
as we have seen, took a much more commonsense attitude to the world
and regarded it as the only reality, to crystallize, very nearly, the concept
that would endure until the end of the Middle Ages. We recall that for
Aristotle motion was a primary phenomenon. However, it was not the
case that Aristotle conceived motion as taking place in time. Rather, for
him, all changes, including the special case of motion, are what is
primary. Aristotle, like the medieval philosophers, and unlike scientists
of the post-Newtonian age, was still much closer to the primitive concept
in which time is not distinguished from its contents.

As is his usual practice, Aristotle attempts to establish what is the
nature of time, a thing evidently as elusive as space. Of one thing he is
certain:65 Time cannot be disconnected from change; for when we
experience no changes of consciousness . . . no time seems to have
passed' and again: 'Since, then, we are not aware of time when we do not
distinguish any change . . . it is clear that time cannot be disconnected
from motion and change.' Aristotle, as always, strives to be concrete, as is
evident in his remark66 'when any particular thing changes or moves, the
movement or change is in the moving or changing thing itself or occurs
only where that thing is.'

Numerous passages in which Aristotle discusses the measurement of
time and motion, which we shall shortly consider, indicate that he would
have preferred to think merely in terms of concrete change and a
succession of states, or 'nows', dispensing entirely with an abstract
notion of time. However, he is prevented from taking such a course by
two things which are in reality but one - the overwhelming sense of a
passage of time that goes on independently of any particular process of
change one may happen to be observing and the fact that innumerable
processes of change are going on simultaneously. For example, he
immediately qualifies the comment just made by saying66 'Whereas "the
passage of time" is current everywhere alike and is in relation with
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everything. And further, all changes may be faster or slower, but not so
time; for fast and slow are defined by time, "faster" being more change in
less time, and "slower" less in more/ The philosopher of the concrete
here reverts to the abstract with the same instinct that told him the
heavens truly rotate.

His conclusion is:67 'Plainly, then, time is neither identical with move-
ment nor capable of being separated from it.'

However, his tendency to the concrete reasserts itself when he con-
siders the question of measurement, which in his mind is closely related
to the true nature of time. Suppose, as a clarification of Aristotle's ideas,
we imagine ourselves taking a series of snapshots of an object moving
against a fixed and unchanged background, on which much detail can be
seen. We obtain, say, a hundred such pictures. Because of the detail
supplied by the background, we could, even if the snapshots were
handed to us in a completely mixed-up order, readily put them in the
correct order. There is a clear ordering with respect to before and after.
Aristotle comments that68 'the primary significance of before-and-
afterness is the local one of "in front of" and "behind" . . . But there is
also a before-and-after in time, in virtue of the dependence of time upon
motion.' He seeks to make this before and after ordering, derived from
spatial relationships through motion, correspond in the closest possible
way to time itself: 'Motion, then, is the objective seat of before-and-
afterness both in movement and in time.' He can now almost lay his
hands on time:69

Now, when we determine a movement by defining its first and last limit, we also
recognize a lapse of time; for it is when we are aware of the measuring of motion
by a prior and posterior limit that we may say time has passed. And our
determination consists in distinguishing between the initial limit and the final
one, and seeing that what lies between them is distinct from both; for when we
distinguish between the extremes and what is between them, and the mind
pronounces the 'nows' to be two - an initial and a final one - it is then that we say
that a certain time has passed; for that which is determined either way by a 'now'
seems to be what we mean by time. And let this be accepted and laid down.

Although this seems definite enough, it is still not quite as precise as
one would wish. There is unfortunately a gap between the principle and
concrete practicality. Let us first look at a few more explications of the
general principle. Aristotle says:70 'When we perceive a distinct before
and after, then we speak of time; for this is just what time is, the calculable
measure or dimension of motion with respect to before-and-afterness' (my italics).
The ability to count different stages in a process is here important:71 'It is
in virtue of the countableness of its before-and-afters that the "now"
exists/ so that:72 'time, then, is the dimension of movement in its
before-and-afterness, and is continuous (because movement is so)/ Even
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more explicitly:73 Tor "before" and "after" are objectively involved in
motion, and these, qua capable of numeration, constitute time.' And
finally:73 'Time is the numeration of continuous movement.'

Taken literally, this would seem to suggest that time is to be identified
with the counting of the snapshots we considered above, or perhaps with
the distance that the object has travelled ('the dimension of movement').
There is a danger here that we then finish up with a separate time for each
motion; however, this is a possibility that Aristotle explicitly rejects in a
passage that simultaneously makes his overall concept of time much
clearer:74

But if we take one kind of change and say 'now' with respect to it, other kinds of
change, each of which has a specifically different unit to be counted in, will be at
a certain stage of their change at this same 'now'. Can each of them have a different
time, and must there be more than one time running concurrently? No; for it is the
same lapse of time that is counted by two 'news', everywhere at once, whatever
the units of movement or change; whereas the one-and-sameness of the units is
determined by their kind and not by their 'at-once-ness'; just as if there were dogs
and horses, seven of each, the number would be the same, but the units
numbered different. So, too, of all movement-changes determined simultane-
ously the time is the same; one may be quick and another slow, and one a change
of place and the other of quality; the time, however, is the same, if the counting
has reached the same number and been made simultaneously, whether of the
qualitive modification or of the change of place. So the movements or changes are
different and stand apart, but the time is the same everywhere, because the
numeration, if made simultaneously and up to the same figure, is one and the
same.

Because Aristotle's universe is finite, the ideas expressed here can be
illustrated particularly well by the snapshot device. Let us suppose
snapshots taken of successive 'nows' of the entire universe. Within the
universe, innumerable processes of both general change as well as motion
are taking place. We could concentrate our attention on any one of these,
establish the succession of 'befores' and 'afters' and count them.
According to Aristotle, this numeration is time. We can do the same with
any other particular process of change. But because all the processes take
place simultaneously, there is a one-to-one correspondence between the
'nows' in the two parallel trains of successive 'nows'.

Although he does not say so explicitly, such a notion of a universal
succession of all-embracing simultaneities in which all the different
processes of the universe 'run together' is clearly what underlies the
above passage.

At this point we must distinguish between mere succession and the
notion of uniform motion. It is here that commonsense prejudice gets the
better of the philosopher of the concrete. As we saw in the previous
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chapter, by Aristotle's time the Greek mathematicians had clearly
developed the concept of a uniform motion and used it as the basis of their
constructions in kinematic geometry. It is quite obvious from the passages
which follow that Aristotle shared their belief in the existence of uniform
motion. But if time is revealed by nothing else but motion and change,
where do we find a criterion that tells us a motion is uniform? All that is
agreed so far is that change and motion provide the evidence for the lapse
of time. That is what Aristotle calls time. But uniform motion can only
mean that the motion results in equal displacements in equal times. But
the times are derived from the motion, so we get ourselves into a vicious
circle.

In the case of a single motion, as in the first snapshot example we
considered, it is manifest nonsense to adhere to the Aristotelian concept
of time as constituted solely by the changes that occur and attempt in
addition to say that such a motion is uniform. There is just a mere
succession, nothing more and nothing less.

Aristotle in fact gets very close to solving the problem of saying what
one means by uniform motion within the framework of a philosophy that
admits nothing but the concrete when he considers what it means to say
that one motion is quicker than another:75 'What I mean by one change
being quicker than another is that, of two homogeneous change-
movements (either both on a periphery, for instance, or both on a straight
line, if it be a local movement, and mutatis mutandis in other kinds of
change), that one is the quicker which reaches a certain determined stage
or point in its course "before" the other reaches the point at the same
distance from the starting-point in its course.'

From this it is just one short step to an operational definition of uniformity
of motion, namely, one motion may be said to be uniform relative to another
motion if the distance traversed in one motion always stands in a given
fixed ratio to the distance traversed in the other.

But Aristotle does not take this final step, which would have made time
both concrete (entirely reduced to motion and change and not conceived as
an abstract or transcendent, i.e., not realizable in experience, entity) and
relative. [It would then, of course, have been an empirical matter to
establish to what extent such mutually uniform motions are actually
realized in the world.] He introduces the concept of uniform motion
without defining it in concrete terms:76

And not only do we measure the length of uniform movement by time, but also
the length of time by uniform movement, since they mutually determine each
other; for the time taken determines the length moved over (the time units
corresponding to the space units), and the length moved over determines the time
taken. And when we call time 'much' or 'little' we are estimating it in units of
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uniform motion, as we measure the 'number' of anything we count by the units
we count it in - the number of horses, for example, by taking one horse as our unit.
For when we are told the number of horses, we know how many there are in the
troop; and by counting how many there are, horse by horse, we know their
number. And so too with time and uniform motion . . .

But the problem with this is that a horse may be recognized without
reference to anything else, whereas, as we have seen, a uniform motion is
incapable of definition in isolation.

Aristotle's discussion reveals no evidence that he was aware of the
vicious circle or that he could have avoided it by a relative definition. This,
then, is another classic confirmation of Maier's thesis. Abstract instinct
takes over. The remainder of his discussion is concerned solely with
practicalities. Given that uniform motions do exist, by which may time be
most conveniently measured? Circular motion is chosen as an obvious
candidate:77

And now, keeping locomotion and especially rotation in mind, note that every-
thing is counted by some unit of like nature to itself - monads monad by monad,
for instance, and horses horse by horse - and so likewise time by some finite unit
of time. But as we have said, motion and time mutually determine each other
quantitively; and that because the standard of time established by the motion we
select is the quantitive measure both of that motion and of time. If, then, the
standard once fixed measures all dimensionality of its own order, a uniform
rotation will be the best standard, since it is easiest to count.

This is then followed by a somewhat curious passage:78 'Neither
qualitive modification nor growth nor genesis has the kind of uniformity
that rotation has; and so time is regarded as the rotation of the sphere,
inasmuch as all other orders of motion are measured by it, and time itself
is standardized by reference to it.'

The translator provides no explanation of what Aristotle means here by
'the sphere'. It does not seem that Aristotle means the sphere of the fixed
stars, though this would fit in very well with a passage in De Caelo in
which he says79 'the revolution of the heaven is the measure of all
motions, because it alone is continuous and unvarying and eternal'. In
fact, intepretation of 'the sphere' as the generic sphere would not be
inconsistent with the idea, found at various points in Aristotle's work (cf.
the footnote on p. 81), that uniform rotation is natural to all spheres. This
is certainly true of the celestial spheres, for a primary property of the
Eudoxan system of concentric spheres, which Aristotle adopted and
modified, is that all the spheres rotate uniformly, though not about the
same poles or at the same rate. As we shall see in the next chapter, belief
in the perfect uniformity and circularity of celestial motions appears to
have been an article of faith from the period of Plato and Aristotle through
to Ptolemy about five hundred years later.
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It seems reasonable to conclude therefore that both practically and as a
metaphysical principle Aristotle believed the rotation of the heavens
defined and measured the uniform flow of time. In adopting this position
he was not true to his philosophical instincts. It seems that the intuition of
Plato and the geometers held too strong a grip on his mind. Even so, it is
worth emphasizing that in attempting to define time concretely Aristotle,
who was followed by the medievals,80 developed a concept of time that,
in many ways, is more modern than the concept of Newtonian absolute
time, as we shall see in Chaps. 3 and 12.



Hellenistic Astronomy: the foundations
are laid

3.1 Historical: the Hellenistic period

In the second half of the period dominated by Greek culture the most
important centre of learning was Alexandria, which was founded by
Alexander the Great in 332 BC near the Nile estuary. Through the
encouragement of the rulers, the Ptolemies, the city acquired superb
library facilities, and most scientists of any note went there at some time.
The two books most influential for the subsequent development of
science in Western Europe were written in Alexandria: The Elements of
Euclid (fl. around 300 BC) and the Almagest by Ptolemy (circa AD 100-draz
AD 170) (the name is common and does not imply a royal connection).

Alexandria was, however, not the only centre of learning. Archimedes
(born 287 BC) studied there before returning to his native city of Syracuse
in Sicily, where he is alleged to have been killed after its capture in 212 B
by a Roman soldier while intent on drawing a mathematical figure in the
sand. For the general development of science, Archimedes' writings were
almost as important as those of Euclid and Ptolemy. Archimedes is not
only regarded as the greatest mathematician of antiquity; he also created
the science of statics on a rigorous mathematical basis. This example was
undoubtedly of the greatest value to Galileo, who was inspired to set up
a similar mathematical science of terrestrial motion. However, in contrast
to many historical studies that treat statics and dynamics within the
general framework of mechanics and see statics as an important source of
inspiration for the concepts of dynamics, this approach does not seem
particularly illuminating in the framework of the absolute/relative debate
nor in a specialized study of dynamics. The law of the lever and related
mechanical machines (pulleys, screws, etc.) undoubtedly helped to
suggest the fundamental importance of momentum, but it is questionable
whether this was a real help, since it led to the identification of force with
momentum rather than change of momentum, which was the decisive
step. On the other hand, the concept of the centre of gravity of a system of
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bodies, which was clarified by Archimedes and used in brilliant
applications, did play a significant part in the work of Huygens and
Newton and could almost be reckoned among the baker's dozen of key
insights (mentioned in the Introduction) that were essential for the final
synthesis of dynamics. It should also be said that ideas from statics played
an important role in the post-Newtonian development of analytical
mechanics by continental mathematicians.

Of much more direct relevance for the present study was the work of
the Hellenistic astronomers. Unfortunately, very little indeed is known
about the early history of Greek astronomy as an exact and quantitative
science as opposed to philosophical speculation of the kind found in
Aristotle. This is not the impression that one might gain from many books
written on the subject,1 in which several brilliant ideas are attributed
to early figures such as Heraclides (born circa 388 BC, died after 339 BC)
and especially Aristarchus (circa 310-230 BC), who is often credited
with having developed a heliocentric system almost as detailed as
Copernicus's. As we shall see later, this is an unjustified speculation and
tends to give credit to the early Greek astronomy at the expense of the
later work. For a modern evaluation of the achievements of Greek
astronomy the reader is referred to Neugebauer's monumental A History
of Ancient Mathematical Astronomy2 and Toomer's articles in the Dictionary
of Scientific Biography3 on Heraclides, Apollonius (circa 255-170 BC),
Hipparchus, who was the first astronomer with unquestioned 'world
rank' status (born in the first quarter of the second century BC and died
after 127 BC), and Ptolemy.

From the meagre information that is available about the early figures,
Neugebauer concludes that4 'there is much in the astronomy of Eudoxus,
Aristarchus, and Archimedes (i.e., in the period just preceding
Apollonius) that shows a lack of interest in empirical numerical data in
contrast to the emphasis on the purely mathematical structure'.
Eudoxus's scheme of concentric spheres has already been briefly
mentioned. It was discussed and modified by Aristotle in his Metaphysics.
According to Aristotle's commentator Simplicius (sixth century AD), the
Eudoxan system was very soon abandoned because of its complete
inability to explain the extreme variations in the brightness of Mars.
Dreyer gives a quite full description of the system5 as does Neugebauer.6

Viewed in the historical perspective, its chief virtue was in being the first
attempt to find a rational and rigorously mathematical description of
planetary motions by the superposition of circular motions which were
each separately and strictly uniform; after modification, this became a
very fruitful paradigm. However, because all the Eudoxan motions were
concentric, each of the planets must remain at a constant distance from
the earth, which was why it could not cope with the variations of Mars's
brightness. It also failed badly in the description of Mars's motion. It is
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for this sort of reason that Neugebauer classes Eudoxus's work as
mathematical speculation.

The only two extant works from the early period are Aristarchus's On
the Sizes and Distances of the Sun and Moon, which will be discussed in
Sec. 3.2, and Archimedes' Sand-Reckoner, a curious work in which
Archimedes calculates how many grains of sand would fill the universe.
He does this to demonstrate the use of a system he had devised to
represent very large numbers. It is in connection with an estimation of the
size of the universe that Archimedes mentions Aristarchus's lost proposal
of a heliocentric arrangement of the earth-sun system. Both of these
works show a pronounced lack of concern with observational facts
(Aristarchus actually gives the moon's diameter as 2°, which is four times
too large) and are manifestly mathematical demonstrations rather than
descriptions of methods used by working astronomers. Both works are
redolent of the pure mathematician's insistence on rigour. Neugebauer
comments:7 'As soon as pure geometry is involved both Aristarchus and
Archimedes proceed without mercy and completely ignore the practical
significance of the problem.'

One of the most interesting questions in the history of Greek astronomy
concerns the discovery of the epicycle-deferent scheme for the descrip-
tion of the motions of the heavenly bodies, especially the planets. As
Neugebauer points out,8 this scheme, which will be described in Sec. 3.9,
opened the way for an astronomy that was at once rational and empirical.
Until recently, histories of astronomy put this discovery quite early, most
attributing it to Heraclides. For this there seems to be no sound evidence
at all.9 All that is known for certain is that Ptolemy10 attributes to
Apollonius of Perga, who wrote a famous treatise on conic sections, a very
important theorem in the epicycle-deferent theory, so it was obviously
known by then, i.e., by about 200 BC. Neugebauer11 in fact concludes tha
these models for planetary motions were most probably invented by
Apollonius. However, it is not at all clear to what extent the models were
actually tested by him against empirical observations.

Almost as interesting as the discovery of the epicycle-deferent model is
the question of when and why the Greek astronomers began the systema-
tic testing of this and other models against observations. It was the
combination of the two strands - the empirical and the theoretical - that
more than anything else gave rise to dynamics. This proved to be the very
essence of the science of dynamics. The first person definitely known to
have undertaken such work was Hipparchus. Very interesting here is the
possible influence of 'Babylonian' astronomy, i.e., the highly-developed
astronomy that appeared in Mesopotamia in the fifth and fourth centuries
BC. For an account of this remarkable science and the story of the
deciphering of the cuneiform tablets the reader is referred to
Neugebauer.12 The point that needs to be made here is that the Babylonian



Historical: the Hellenistic period 103

astronomers, using intricate numerical difference sequences, compiled
tables giving the positions of the celestial bodies with high accuracy
though without, it seems, any of the underlying geometrical theory that
the Greek astronomers developed somewhat later. Hipparchus had
access to Babylonian data, and may well have been stimulated by their
influence to import empirical exactitude into the theory he had inherited
from Apollonius. Neugebauer writes:13 'For us the influence of Babylo-
nian data, accompanied of course by the sexagesimal number system, is
first clearly visible with Hipparchus (around 150 BC). Now astronomy
becomes a real science in which observable numerical data are made the
decisive criterium for the correctness of whatever theory is suggested for
the description of astronomical phenomena.'

The band of theoretical astronomers, who made such a major contribu-
tion to the discovery of dynamics, was extremely small. There are, in fact,
only three well-attested major figures associated with this first develop-
ment of a successful rational theory of empirically observed motions:
Apollonius, Hipparchus, and Ptolemy. It should not be forgotten that
theoretical astronomy was very much a side-stream of the main
astronomical activity and much more work was devoted to calendric and
astrological aims. (Astrology spread to the Greek cultural world as a
pseudoscience from Mesopotomia in the second century BC and took
root, after which it spread to the entire world.)14 In the early history of the
subjects, astrology and astronomy were not distinguished. Astrology
was still a major (and respectable) activity in Kepler's time; he seems to
have had some remarkable successes with horoscopes.15 A comment by
Neugebauer about the tabulation of mathematical functions and the
absence in Ptolemy's work of the trigonometric tan function brings home
rather graphically the minority status of the work that would eventually
do so much to transform man's concept of the world:16 'Obviously it is the
smallness of the number of people who were interested and able to
undertake productive work in theoretical astronomy that is responsible
for the slow progress in the mechanization of procedures. Whenever a
large number of practitioners is involved as, e.g. in calendric or in
astrological computations, we notice the tabulation of a variety of
sometimes very complicated functions taking place.'

After a section dealing with purely geometrical topics and their relation
to the philosophical questions of the previous chapter, the greater part of
this chapter will be concerned with an explanation of the epicycle-
deferent scheme, the demonstration of why it worked so well, and a
discussion of its significance for the discovery of dynamics. This will
demonstrate simultaneously the importance of the empirical input. The
intimate interplay of observation and theory, so characteristic of all
modern science, will be seen at work for the first time in history.

Before we start, it is worth emphasizing the striking difference between
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the Hellenistic and more or less contemporaneous Babylonian astronomy,
the one permeated by geometrical models, the other seemingly not. This
makes one wonder if science had to develop in the way it did. Neugebauer
comments:17 'It is a historical insight of great significance that the earliest
existing mathematical astronomy was governed by numerical techniques,
not by geometrical considerations, and, on the other hand, that the
development of geometrical explanations is by no means such a "natural"
step as it might seem to us who grew up in the tradition founded by the
Greek astronomers of the Hellenistic and Roman period/

3.2. Purely geometrical achievements and the development of
trigonometry

The first solid achievements of Greek astronomy were those that
established the spherical shape of the earth, led to an estimate of its
diameter, and proved that the stars and planets were at an immensely
great distance compared with the diameter of the earth. Some of the
arguments were quite sophisticated and give evidence of systematic
compilation of data. For example, Ptolemy18 noted that an eclipse of the
moon commences when the shadow of the earth falls on the moon and is
therefore observed at the same instant by all observers but that those
further to the east invariably record the eclipse as having occurred a
longer time after their local noon than the observers further to the west.
From the fact that the differences in the local time are always found to be
proportional to the difference in longitude, Ptolemy concludes that the
earth's shape must be spherical. The diameter of the earth was, of course,
deduced from observation of the altitude of the pole star at different
latitudes with known north-south separation. The first such estimate had
already been given by Aristotle.19

Particularly interesting are the arguments advanced by Ptolemy20 to
show that the earth must be at the centre of the celestial sphere which he
believed carried the stars. These arguments were, of course, invalidated
by the one simple fact that the stars are at a distance whose immensity was
beyond the capacity of the ancient mind to conceive. However, had the
ancients been correct in their assumption of comparative proximity of the
stars, Ptolemy's arguments (some of them very elegant) for the earth's
occupying the central position would have been entirely correct.

The ancients' mistake about the disposition and distances of the stars
has a moral for discussions about the origin of inertia: a successful,
intuitively appealing theoretical interpretation of phenomena that is
confirmed by careful observations at the limiting accuracy available in a
particular epoch is liable to become dogma with the passage of time, an
interpretation of the world ingrained in our conceptions. Great powers of
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Fig. 3.1.

imagination are then required to establish an alternative conception, to
separate the world from the dogma.

Apart from the great distance of the stars, the major problem that the
ancient astronomers faced in forming a conception of the world was that
they could recognize only very few possibilities to exploit the main tool
used to build up a three-dimensional picture from a set of two-
dimensional views of it: the phenomenon of parallax.

We can best appreciate the significance of parallax by considering how
the Greeks did succeed in obtaining a relatively good estimate of the
distance of the moon. Parallax is the change in the apparent position of a
relatively nearby object against the background of very distant objects
produced by a change in the position of the observer. In Fig. 3.1, A and B
are two points on the surface of the earth and C is a point on the moon (the
figure is not to scale!). The angle ACB is equal to the angle on the sky
between the positions at which C is seen against the background of the
very distant stars from A and B. If the distance between A and B is known
(which in principle it is), the distance of the moon from the earth follows
by elementary trigonometry. The parallax effect for the moon is quite
appreciable, since the diameter of the earth is about 8000 miles while the
mean distance to the moon is 240000 miles. Thus, for observers on
opposite sides of the earth, who obtain the maximal parallax effect for
terrestrial observers, the angle ACB is about 2°. This is, of course, the
apparent diameter of the earth as seen from the moon. Since the moon's
apparent diameter is i°, it is readily understood that the moon's position
against the background of the stars is very sensibly different for two
observers on opposite sides of the earth.

This effect, which was used by Hipparchus in order to obtain an
estimate of the distance of the moon, was probably recognized very early
by the ancient astronomers, though they found it quite difficult to exploit
or take into account in observations of the motion of the moon. Ptolemy's
Almagest contains numerous references to the difficulties of calculating
the parallax.21 These were mainly due to the absence of means of
instantaneous communication between observers at different points on
the earth. In addition, the radius of the earth was not accurately known
and all observations were effectively made from a relatively small area of
the world (around the Mediterranean). It is worth mentioning here the
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importance of eclipses of the moon for determining lunar positions free of
parallax. The astronomers knew that the sun was much further away
from the earth than the moon and therefore had a practically negligible
parallax. Also, as we shall shortly see, they always knew to a reasonably
good accuracy the position of the sun on the sky at any given time. Now
at a total eclipse the earth comes between the sun and moon and at
mid-eclipse, the time of which can be readily determined, the moon must
be exactly opposite the sun. From this it was therefore possible to
determine the position at which the moon would be seen from an
observer at the centre of the earth and thus free of parallax.

In principle there are numerous possible ways in which parallax can be
used to determine the distance of the moon. In this connection it is worth
noting that the determination of the moon's distance by parallax
demonstrates simultaneously the strength and weakness of Aristotle's
definition of the position of a body by means of the containing envelope.
As we saw, Aristotle was most reluctant to define position as relative to
space - for the simple reason that space can never be observed. Hence, he
relied on immediate contiguous matter to define position. However, the
Greek determination of the earth-moon distance shows that one must
distinguish between actual (physical) contiguity and perceived contiguity.
The point is that in all parallax observations there is an 'envelope' which
plays an indispensable part. It is the background against which the object
whose distance is to be determined is observed. Without the backcloth of
the stars, the parallax of the moon would simply be invisible. Each
observation of the moon against a particular background can be called a
primal observation; it is an actuality without which nothing at all can be
said. As in Aristotle's concept of space, this is a topological relation of
contiguity: the observed background of the stars envelopes the observed
moon. The great difference between the Aristotelian philosophical
definition of position and that used in Hellenistic (and all later) astronomy
is that the former requires actual contiguity and is based directly on primal
observations, whereas the latter derives from primal observations but
determines position only after the intervention of a theory of vision. (The
ancient Greeks assumed in effect that if the images of two celestial bodies
were seen at the same point on the sky then at the instant of observation
they were situated on the same line of sight, or 'ray of vision', emanating
from the observer; translated into modern terms, this resulted in an
interpretation of observations that assumes an infinite speed of propaga-
tion of light along straight lines.)

As this question bears directly on the epistemological foundation of the
absolute/relative debate, some general comments are here in place. All
knowledge of the contingent world rests ultimately on primal observa-
tions. A primal observation is something 'that is the case'. No other
datum is recognized by experimental science. That science is possible at
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all is based on the fact that the primal observations which we each make
are not random or irregular impressions but exhibit a high degree of
correlation. It is the nature of this correlation which suggests to us a
representation of our successive two-dimensional views of the world by a
single three-dimensional representation, which is, when all is said and
done, a theoretical construct. Thus, science constructs a picture of the
world by ratiocination over primal observations and the correlations
which they exhibit. The method of ratiocination and the direction in
which we develop it are to some extent at our disposal; in particular, we
are guided by the correlations which appear to us to be significant. Unlike
the primal observations, which are given and cannot be changed, the
selection of the correlations that are deemed to be significant is subjective
and can therefore be changed. Aristotle's remark that place is the inner
surface of the envelope applies only to the primal observations. It is a
constraint on the very possibility of saying anything meaningful. But it
does not constrain the conceptual picture we form from valid observa-
tions; Aristotle's arguments about space have to do with the validity of
observations, not the nature of the conclusions that can be drawn from
them. In Vol. 2 of this study we shall see that similar arguments
reappeared in a different guise in the present century and played a very
important conceptual role in both the special and the general theory of
relativity. Meanwhile, we note that the philosophical basis of Aristotle's
cosmology - the concept of place as the inner surface of the container -
was undermined, or rather circumvented, almost before it was
formulated.

Whereas the effect of parallax for the moon is appreciable (2°), for the
sun it is about 360 times smaller, the sun being 360 times further away.
Such an effect was quite out of range of the ancient astronomers.
Nevertheless, they did succeed in obtaining a very rough estimate of the
sun's distance by two independent methods.

We shall look at one of these methods, the one in the extant work of
Aristarchus already mentioned, because, though of little practical
significance, it too highlights an aspect of position determination very
relevant to the absolute/relative debate, as we shall see at the end of this
section.

The idea is as follows.22 In Fig. 3.2 (not to scale), E is the earth, M is the
moon, and S the sun. Aristarchus made the assumption that when the
moon is seen from the earth in the half-moon phase, the angle EMS is an
exact right angle. Since the earth-moon distance EM can be measured by
one of the parallax methods and angle MES can in principle be measured,
the earth-sun distance can be estimated. Except for the purposes of
obtaining a very rough estimate - that the earth-sun distance is very
much greater than the earth-moon distance - Aristarchus's proposal is
impracticable because it is extremely difficult to determine the exact
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Fig. 3.2.

instant at which the moon is at one of its halves, and it is also very difficult
to measure the angle MES with sufficient accuracy. Not surprisingly,
Aristarchus seriously underestimated the distance and size of the sun.

Hipparchus later developed a more realistic method that made use of
both lunar and solar eclipses. An important part was played in this case
by the apparent diameters of the sun and moon and also of the shadow of
the earth where it is intersected by the moon in a lunar eclipse. The
method is discussed in the works already quoted,23 and I shall merely
quote the results that Ptolemy obtained after analysis and recalculation of
his predecessor's determination of the distances of the moon and sun. He
concluded that the best estimates were (in units of the earth's radius):24

mean earth-moon distance 59, mean earth-sun distance 1210 (i.e., about
5 million miles). These values were still accepted as basically correct as late
as Brahe's time. Thus, although the ancients were wrong by a factor
of nearly 20 in their estimate of the distance to the sun, they did at least
have some comprehension of the distances involved and certainly knew
that the sun was vastly larger than the earth (170 times the earth's
volume according to Ptolemy's estimate). It has been suggested223 that
Aristarchus may have been encouraged to develop his anticipation of
Copernicus's heliocentric astronomy through his awareness of this fact.

It is here worth making a comment about the astronomers' develop-
ment of systematic trigonometry, which means, of course, measurement
of triangles; these may be either plane or spherical. Neugebauer
comments25 that Pythagoras's theorem had been used to solve (plane)
right triangles and to break up general triangles into two right triangles
since Old Babylonian times. But that is not yet the essence of
trigonometry. As Neugebauer says: 'What constitutes real progress,
however, is the decision not to solve individually every problem as it
arises but to tabulate the solutions of right triangles once and for all as
functions of one of its angles/ He thinks that this decisive step may well
have been taken by Hipparchus, possibly through his familiarity with
Babylonian numerical triangles.



Purely geometrical achievements 109

Fig. 3.3.

What Ptolemy did is known because it is all explained fully in the
Almagest.26 He had a single trigonometric function, which did not
correspond to any of those currently used. It was the chord function. That
is, Ptolemy calculated the lengths of chords of a circle that subtend given
angles at the centre of the circle. In Fig. 3.3, AB is the chord and O the
centre of the circle. As he used the sexagesimal system (analogous to the
decimal system with 60 used as base instead of 10), he took the radius OB
to have the length 60 and calculated the length of chord AB for angles
AOB from 0 to 180° at intervals of half a degree.

The development of trigonometry not only provided a means for man
to probe the universe far from the regions to which he had direct access.
It also opened up an entirely new way of thinking about motion (though
it was not one that was developed until the modern age).

As already noted in Chap. 1, it is clear that the earliest conceptions of
space, position, and motion were strongly influenced by the (fortunate)
accident of our happening to live on the earth. Geometrical relations were
discovered on its remarkably stable surface. Thus, we walk around on a
part of the lawn of a garden and rapidly form a three-dimensional picture
of the disposition of the bushes, trees, and borders distributed over the
lawn. We can then choose a point that we have never previously visited,
let ourselves be guided there blindfolded, and predict the two-dimensional
picture we shall see when the scarf is taken from our eyes. We think of the
trees and bushes as having a definite place on the lawn. We ourselves move
across the lawn. Not surprisingly, man hypostatized space, took it to be a
real thing with all the geometrical properties of the lawn, removing only
the tactility and visibility. The environment was divided into two - the
lawn and the objects on it. The concept of intuitive space, the container of
the material objects in the world, developed very naturally as a
consequence of the very special nature of our environment.

All the major contributors to the development of dynamics, above all
Galileo and Newton, worked with an underlying conception of motion as
taking place in space. Even Einstein, as we shall see in Vol. 2, could not
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entirely shake off this way of thinking. But the real lesson of trigonometry
is that the establishment of spatial relationships is in no way dependent
on the lawn; the trees and bushes, and, very important, the light by which
we see them, are sufficient in themselves. Figure 3.2 contains just three
bodies - the earth, sun, and moon; the relationships of relative size and
mutual distance which Aristarchus deduced for them owe nothing to
'space'. Even the backcloth of the stars is not required (the observation of
the angle MES must of necessity be made in daylight, when the stars are
not visible). Why then must we conceive of them as moving in a space that
plays no part at all in the operational determination of these relationships?
Should we not do better to concentrate directly on what is objectively
given?

It is the ascent into the heavens that forces upon man a revision of his
concepts of space. The further we progress, the more the old familiar
framework recedes. The surface of the earth is far below us, but somehow
we seem to feel the need to take it, or rather its surrogate, space, with us -
a safety net for the first hesitant attempts in celestial acrobatics. But the
acrobat keeps his eye on the trapeze and on his partner; he cannot even
see the net. Aristarchus pointed the way. Kepler learnt the trick. But not
until Poincare perfected the art of celestial dynamics at the end of the
nineteenth century was the 'lawn' revealed for what it was: a convenient
but dispensable aid to conceptualization. We shall come to this too in
Vol. 2.

3.3. Astronomical frames of reference

To begin the discussion of the discovery of the laws of planetary motion,
let us distinguish three frames of reference. (1) We begin with the
geocentric and geostatic frame; for brevity, this may be called the earth
frame. The earth is assumed to be at rest and at the centre of the universe.
A point anywhere in the universe is defined by its distance along the ray
from the centre of the earth to the point in question and by the point of
intersection of this ray with the surface of the earth. (2) As emphasized in
Chap. 2, the stars exhibited no motions relative to each that could be
detected by the ancient astronomers. On the other hand, the planets, sun,
and moon do move perceptibly relative to the distant stars. In many ways
it is therefore convenient to 'subtract out' the diurnal rotation and refer
the motion of the seven 'wanderers' directly to the stellar background.
This leads us to the geoastral frame: the origin is still the centre of the earth,
from which the distances are therefore measured, but now it is not the
points of the earth's surface but rather the relatively fixed stars on the
celestial sphere that are the markers of the angular position; in this frame
the stars are at rest. Although the two greatest astronomers of antiquity,
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Hipparchus and Ptolemy, were firm believers in the geocentric and
geostatic cosmology, much of their work was in effect done in the
geoastral frame, since this was so much more convenient. (3) Finally, we
have the helioastral frame. The origin is now the sun, while the coordinates
are the distance from the sun and the angular position determined by the
position of the stars on the celestial sphere.

Throughout all the discussion of prerelativistic physics, we shall ignore
the effects due to the finite speed of propagation of light. Thus, we
assume that light propagates instantaneously along straight lines. This
means that we ignore aberration (which causes a change in the apparent
positions of the stars and will be discussed in Vol. 2) and also the time
taken for light from the planets to reach the earth. All the associated
effects are below the accuracy attainable with naked-eye astronomy.

An important property of all the three frames introduced above is that
they are concretely realized by observable objects. Their conceptual status
is therefore free of all the ambiguities associated with Newton's absolute
space. Although the determination of the distance is problematic, the
angular positions can in principle be determined directly in the earth
frame and the geoastral frame. As regards the determination of position
in the helioastral frame, that is very largely the story of pretelescopic
astronomy. As we shall see, the greater part of this task was performed
quite unwittingly by the Hellenistic astronomers as they developed a
theory of motion of the planets, which although formulated nominally in
the earth frame became in effect a theory of motion in geoastral space.

Indeed, the stars of the geoastral frame, in providing points of reference
far removed from our immediate terrestrial environment, made possible
that first loosening of man's imagination from the chains of preconception
imposed by the immediate vicinity. By far the most striking observed
phenomenon was the diurnal rotation, observed of necessity in the earth
frame. But careful observation revealed small deviations from the
dominant pattern, the slow creeping of the planets, sun, and moon across
the sky relative to the stars. Both practically and conceptually it was much
easier to refer this motion directly to the geoastral frame, rather than the
earth frame.

Thus, the first step away from the primitive earth-based viewpoint
occurred unconsciously and unwittingly. As the ancient astronomers
immersed themselves more and more in the planetary phenomena, the
diurnal motion was gradually lost from sight: they paved the way for the
ultimate transition to the helioastral system by showing that what was
initially regarded as a minor blemish (an alien disorder) on the divine
perfection of the diurnal rotation was in fact a completely autonomous
phenomenon, a spectacle played out on the heavens and not in any way tied
to the 24-hour diurnal rotation.
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3.4. Manifestations of the law of inertia in the heavens

In Sec. 1.4 we pointed out the great advantages but also the disadvantages
of celestial motions from the point of view of the discovery of dynamics.
We may summarize the discussion by saying that the celestial motions
were excellent from the point of view of suggesting the existence of laws
that govern them; they were less good as guides to finding the precise
form of those laws.

Let us now look at individual phenomena and see how they shaped
conceptions and dictated (to a large degree) the manner in which the
problem of the celestial motions would be attacked.

Astronomically speaking, the most pronounced effect was produced
by the least significant cause: the rotation of the earth (which to an
observer outside the solar system would appear to be rather a minor
matter compared with all the other motions). Coupled with the complete
absence of any apparent dynamical effects of the rotation for an observer
on the earth rotating with it, this created the powerful impression of a
stationary earth about which the stars and other celestial bodies appeared
to move in perfect circles.

The frontispiece of this book shows just how dramatic the effect is. It is
a photograph of the stars taken by opening for about two hours the
shutter of a camera placed on the ground at night and pointed towards the
pole star. As the earth rotates, the apparent positions of the stars change,
and their images leave circular tracks on the photographic film. As one
gets further and further away from the pole, the lengths of the tracks
become correspondingly longer. Although the ancient astronomers had
no cameras, they were extremely conscious of this effect. It is not difficult
to realize how the notion of perfectly uniform and circular motion made
such an impact on the ancient imagination. It established itself as the
norm against which everything else was compared.

Apart from their more or less fortuitous alignments in constellations,
the stars do not distinguish any particular positions on the celestial
sphere. This situation is completely changed by the diurnal rotation of the
earth, which distinguishes the two poles of the rotation and the great
circle between them that cuts the celestial sphere into two equal
hemispheres, the northern and the southern. The stars on this great
circle, which is called the (celestial) equator, have an important property.
The circle on which they move is the longest of the circles described by the
stars as the celestial sphere turns in its apparent rotation. Since the
horizon defines a great circle, it cuts the equator at any instant into two
equal semicircles. This means that a star situated on the equator takes
exactly twelve hours to pass across the sky from the point at which it rises
to the point at which it sets. (This ignores refraction, which causes
celestial objects near the horizon to appear higher than they would in the
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absence of the earth's atmosphere.) It is because of this effect that the
equator gets its name. When the sun crosses the equator, day and night
each last twelve hours, and the equator is therefore the circle that
equalizes day and night (circulus aequator diei et noctis), and the time at
which this happens is therefore called an equinox (when the night, nox, is
equal to the day). This is a phenomenon that is quite independent of an
observer's position on the earth; equinox occurs on the same day through-
out the world.

Because the two poles of the diurnal rotation and the equator are
uniquely defined, they suggest the use of a very convenient orthogonal
spherical coordinate system. The poles of this system are, of course, the
points at which the earth's axis punctures the celestial sphere. Now
imagine all the great circles that pass through these two poles; they are
completely analogous to the lines of longitude on the earth. They cut the
equator and any other circle parallel to it at right angles. Such circles are
analogous to the lines of latitude on the earth. Thus the position of a star
on the celestial sphere can be uniquely specified by coordinates exactly
analogous to latitude and longitude. Note that whereas latitude measures
the angular distance north or south of the terrestrial equator the
corresponding distance on the celestial sphere from the celestial equator
is called the declination, while the celestial analogue of longitude is called
right ascension. (The fixing of the great circle of zero right ascension - the
analogue of the Greenwich meridian - will be considered shortly.)

It seems27 that in Hipparchus's time such a coordinate system had not
yet been established and that he employed a more archaic system based
on position relative to chosen constellations. However, in the Almagest,
Ptolemy does use such a system. Since Ptolemy, in his work as a
geographer and cartographer, was the person who first introduced
latitude and longitude for the specification of position on the surface of
the earth, Neugebauer thinks he may well have been the first to do it for
the celestial sphere as well.

To summarize this part of the discussion. One simple phenomenon,
the rotation of the earth, suggested to the ancient astronomers the notion
of perfectly circular and uniform motion as the paradigm of celestial
motion, provided an effective clock, and strongly suggested a method of
position location on the sky.

The reason for this pervasive influence of the diurnal rotation is not far
to seek. It is essentially conservation of angular momentum that keeps the
earth spinning uniformly about a direction fixed in geoastral space. As
with the area law, this, as we saw in Chap. 1, is an almost direct
consequence of Newton's First Law. From the start this law was therefore
shaping conceptions and imposing patterns of thought, though not ones
that led directly to its discovery.

The next effect we consider is the consequence of the earth's motion
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around the sun. This, of course, appears as an apparent motion of the sun
against the background of the stars. We immediately encounter an
equally dramatic and striking consequence of inertia. The earth's motion
around the sun meets the conditions under which the area law holds,
since, very small perturbations apart, the motion is governed by inertia
and the central attraction of the sun. The motion therefore takes place in
a plane that, according to Newtonian theory, is fixed in absolute space.
What we actually observe is that the plane is fixed in geoastral space, i.e.,
relative to the stars (again ignoring very small perturbations).

Now the only thing we can observe from the earth directly is the
direction towards the sun; we cannot readily determine its distance. The
sun is therefore observed to move around the heavens on a great circle
(the plane in which the earth moves of necessity contains the earth and,
since it is a plane, it must cut the celestial sphere in a great circle), and this
circle keeps a fixed position in geoastral space. Since eclipses of the sun or
moon can only occur when the moon, which normally is not situated in
the plane defined by the motion of the earth around the sun, is actually in
this plane, the great circle of the sun's apparent motion is called the
ecliptic. At an eclipse of the moon, the sun is on one side of the ecliptic
while the moon is at the diametrically opposite point, as we noted in the
discussion of parallax. Eclipses of the moon therefore 'pick out' the
ecliptic. Being such awesome events, they helped underline the striking
and singular nature of the ecliptic. After the diurnal rotation of the earth,
the existence of the ecliptic is the 'cleanest' and most striking reflection of
Newton's First Law presented to observant man. It is therefore not
surprising that, like the diurnal motion, this phenomenon soon began to
impose patterns of thought and to dictate technical developments.

Because the axis of the earth's rotation is not perpendicular to the plane
of the earth's orbit, the great circles of the equator and the ecliptic do not
coincide but meet at a certain angle, which is called the obliquity of ecliptic,
Its present value is a bit less than 23£° and varies slowly over a period of
more than a thousand years, deviating by at most H°.

It so happens (for reasons that obviously have to do with the origin of
the solar system) that the planes of the orbits of the other planets all lie
quite close to the plane of the ecliptic, and for this reason they do not,
when observed from the earth, deviate very much from the ecliptic. The
moon too is never too far from it. The ecliptic is, however, sharply
distinguished from the paths of the planets and moon as observed from
the earth since none of these other bodies follows a fixed great circle on the
celestial sphere (the moon is observed on a great circle that moves slowly).
Because the sun moves more or less steadily around the ecliptic (just how
steadily we shall shortly see) and the moon and planets never deviate far
from it, and, moreover eclipses always occur on it, the Greek astronomers
quite rapidly found it convenient to use it too, like the celestial equator,
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for reference purposes. This led to the introduction of a second orthogonal
spherical coordinate system, in which the analogue of the celestial
equator was played by the ecliptic. The corresponding poles of this
coordinate system are therefore displaced from the poles of the celestial
equator by 231°, i.e., by an angle equal to the obliquity of the ecliptic. In
the ecliptic coordinate system, the coordinates analogous to terrestrial
latitude and longitude are also called latitude and longitude (ecliptic
latitude and longitude), and are thus distinguished from the corresponding
declination and right ascension of the equatorial celestial system. It seems
likely that it was Ptolemy too who introduced systematic use of the
ecliptic coordinate system.28 Indeed, one of the most impressive features
of Ptolemy's Almagest is his use of theorems of spherical trigonometry,
which were actually discovered by Menelaus (first century AD), to show
how to make a transformation of coordinates from the equatorial to the
ecliptic coordinate system and vice versa. Figure 3.4 is a diagram, due to
Kepler, showing the mutual disposition of the two systems on the
celestial sphere. The signs of the zodiac mark the position of the ecliptic
(LQ). The poles of the ecliptic are O and P and the poles of the celestial
equator are B and C.

It is worth mentioning here the basic principle of an instrument which
enables one to determine the instantaneous position of the ecliptic on the
sky. Suppose that on the surface of the earth a shaft, which can rotate
about its axis, is set up in a fixed position parallel to the line of the poles of
the earth's rotation. Let a second shaft, which I shall call the ecliptic shaft,
be rigidly attached to the rotating shaft, inclined to it at fixed angle equal
to the obliquity of the ecliptic. As the first shaft is rotated around the line
of the earth's poles, the ends of the inclined shaft will, if imagined
continued to the celestial sphere, describe on it the circular tracks of the
two poles of the ecliptic in their diurnal motion around the poles of the
earth's motion. The actual position of the poles of the ecliptic at any
instant can be determined as follows. Suppose a rigid circular hoop fixed
at right angles to the ecliptic shaft (like the ecliptic ring in Fig. 3.4) as a

Fig. 3.4
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wheel on an axle. Suppose also the sun is shining. Let the rotating shaft
(and with it the ecliptic shaft and hoop) be rotated. When it reaches the
position in which the ecliptic shaft is parallel to the true line of the ecliptic
poles, the ecliptic shaft must be at right angles to the direction of the sun
(which defines the ecliptic) and in this (and only this) position the ecliptic
ring will shade itself, i.e., the shadow of the half facing the sun will fall
exactly on the opposite half. The ecliptic hoop is then parallel to the actual
ecliptic and the ecliptic shaft points to the instantaneous positions of the
two poles of the ecliptic.

This arrangement illustrates the theory of the armillary sphere, which
has a skeleton of metal or wooden moving and fixed concentric rings set
up within a frame aligned north-south that permits the whole system of
rings to rotate about an axis parallel to the earth's rotation axis. By means
of two of the rings it is possible to adjust the system to the correct
instantaneous position of the ecliptic (by means of the sun or, at night, by
a reference star) and then by means of a further moving ring, which is at
right angles to the ecliptic ring, it is possible to determine directly the
ecliptic latitude and longitude of any object in the sky. The armillary
sphere, which is described by Ptolemy in the Almagest, was a most
important instrument in astronomy up to the time of Tycho Brahe and
reflects the dominant and guiding role played in early astronomy by the
ecliptic.

To summarize this section: the two cleanest manifestations of the law of
inertia presented to the astronomers gave rise to two different coordinate
systems and helped to generate and impose two different sets of
techniques for studying astronomical problems. There was not the
remotest chance of 'reading off the law of inertia directly from these
phenomena. Nevertheless, they still contained so much of its essential
features that they inevitably governed the way in which astronomy and
dynamics would develop. In all the plethora of motions presented to
man, genuine stability could be discerned in only two; that of the stars
around the poles of the celestial equator and that of the sun around the
ecliptic (it is, incidentally, in the opposite direction to that of the diurnal
rotation of the stars, i.e., from west to east). These provided an 'eternal
image' onto which the astronomers could latch themselves. These two
motions, the one as perfectly steady as anyone could wish, the other
nearly so (as we shall see), slowly drew the astronomers on step by step
into the development of ever more sophisticated theoretical and
experimental techniques for describing the motions of the sun, moon,
and planets. In the process they went a very long way towards creating
the science of dynamics.
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3.5. The 'flaw' from which dynamics developed

Pearls grow from an imperfection, a bit of grit, within the oyster. The first
step towards theoretical dynamics as a quantitative discipline controlled
by empirical observation can be seen in the way Hipparchus attempted to
account for a 'flaw' in the ecliptic motion of the sun. Before we consider
what he did, we must look at the nature and origin of the 'flaw'.

There are four points on the ecliptic that stand out by virtue of their
singular properties. At the two points at which the ecliptic crosses the
equator the lengths of day and night are, as we have seen, equal. These
two equinoctial points are crossed by the sun in the spring (vernal
equinox, around 21 March) and in the autumn (autumnal equinox,
around 21 September). The other two distinguished points occur at
midsummer (21 June) and midwinter (21 December); because the sun at
these times reaches its greatest distance from the equator, so that its
motion in declination comes to a stop before recommencing in the
opposite direction, these two points are called the summer and winter
solstices, from solstitium, the standing still of sol, the sun. Because of their
significance for calendric and agricultural purposes, these points entered
deep into the awareness of ancient man, much more so than in the present
age of convenient clocks and the inevitable present of a calendar at
Christmas. They are separated from each other by exactly 90° around the
ecliptic and therefore divide it into four equal quadrants. The vernal
equinox in particular played (and still plays) an especially important role
in astronomy since it was chosen by Ptolemy as the zero point for the
measurement of both right ascension and ecliptic longitude, with positive
sense of increase eastward from the vernal equinox. This convention,
which has been retained ever since, completes the definition of the two
coordinate systems described in the previous section. (It should be noted
that because of the phenomenon known as the precession of the equinoxes
the points at which the ecliptic cuts the equator are displaced at a very
slow rate. This effect, which was discovered by Hipparchus sometime
after 135 BC, will be discussed in Chap. 5 but ignored in this chapter.)

One of the earliest of the 'shocking' discoveries that the Greeks made
was that the sun does not take the same number of days to pass through
each of these four quadrants. Its apparent motion is nonuniform. (In the
context of Greek astronomy, uniform motion always has the precise
meaning of motion at an exactly constant speed. The speed may be either
angular speed, as in the case of the apparent motion across the sky, in
which case it is measured in degrees per unit time, or alternatively actual
speed through space.) It is not known when the nonuniformity of the
solar motion was discovered (it was certainly not later than the time of
Aristotle), but the first attested attempt at a theoretical explanation of
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reasonably accurate observations is due to Hipparchus. Ptolemy reports
that:29 'these problems have been solved by Hipparchus with great care'.

Hipparchus's work is to be seen as a most significant step forward in the
Greek programme of finding geometrokinetic explanations for why the
observed motions of the sun, moon, and planets did not fit the divine
paradigm of perfect uniform circular motion. The divinity of the celestial
bodies had to be saved by a geometrical explanation. This was the
programme, begun by Eudoxus in the time of Plato, that the Greeks came
to call saving the phenomena (or appearances). In Hipparchus's hands the
programme progressed from the qualitative to the quantitative stage.
Before we look at this first step on the long road to theoretical dynamics,
it will be helpful to discuss Kepler's laws of planetary motion and their
explanation in Newtonian terms.

3.6. Kepler's laws of planetary motions

As pointed out earlier, the overwhelming dominant force that acts on
each of the planets, including the earth, is the gravitational attraction
towards the sun. If, as is perfectly justified for naked-eye astronomy
unless conducted over periods spanning several centuries, all the other
gravitational forces acting within the solar system are ignored, the motion
of any individual planet satisfies the conditions under which the area law
holds. The first consequence of this is that the motion of any given planet
is entirely restricted to a plane that contains the sun, through the centre of
which the plane passes. This, as we have seen, is why the apparent
motion of the sun always takes place exactly along the great circle of the
ecliptic. It is, as we saw in Chap. 1, one of the most primitive consequences
of Newton's three laws, since it holds whatever the nature of the force
acting between the sun and the planet provided only the force is central,
i.e., directed exactly towards (or exactly away from) the sun. The second
consequence is that as the planet moves around the sun the radius vector
from the sun to the planet sweeps out equal areas in equal times. This
result is again quite independent of the actual force acting provided only
it is central. These two properties are the closest we get in astronomical
phenomena to direct manifestations of the two parts of the law of inertia;
the uniform rectilinear motion of the primal law is, so to speak, bent into
a curve, which, however, still possesses very remarkable properties.

Both results, which, as we have seen, take us very close to the heart of
dynamics, were established in an absolutely clean form by Kepler. The
first effect, that the motion of each planet takes place in a fixed plane that
contains the sun, was discovered for the earth's motion in antiquity in the
guise of the ecliptic. Its extension to all of the planets by Kepler is not
reflected in any special designation, but it would be highly appropriate to
call it Kepler's Zeroth Law (as it is sometimes and will be so called in this
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book). The area law itself is what is now known as Kepler's Second Law, and
was announced (in a somewhat confused manner) by him in 1609, at the
same time as the Zeroth Law and the First Law, to which we now turn.

Unlike the Zeroth Law and the Second Law, Kepler's First Law is a
specific consequence of the fact that gravity is an attractive force with a
strength that varies inversely as the square of the distance from the
attracting centre. As Newton showed in the Principia, this law has the
consequence that any body subject to the attractive force of the sun and
no other force will always describe a curve which is fixed in space and
which corresponds to one of the so-called conic sections. These curves can
be generated as follows. Imagine two straight lines that intersect at a point
A (Fig. 3.5(fl)) and the line that bisects them (the dotted line in Fig. 3.5(b)).
Hold this line fixed and rotate the two lines around it to obtain a circular
double cone of revolution (Fig. 3.5(b)). Then imagine a plane, not passing
through A, that cuts the surface of the cone (Fig. 3.5(c)). An ellipse is
obtained when the plane makes an angle with the cone axis greater than
the angle made with the axis by the conical surface. An hyperbola (with two
branches) is obtained when the angle of the plane is less than the angle of
the cone. A circle (a special case of an ellipse) is obtained when the plane
is perpendicular to the cone axis; and finally a parabola is obtained when
the plane makes the same angle with the cone axis as the conical surface.

Mathematically, the most convenient definition of a conic section is that
it is the curve (locus) described by a point that moves in such a way that
the ratio of its distance from a fixed point to its distance from a fixed line
is constant. The ratio is called the eccentricity, denoted e; the fixed point is
called a focus; and the fixed line is called the directrix. When e = 0, the
curve is a circle, when e < 1 an ellipse, when e = 1 a parabola, and when
e > 1 an hyperbola. There are two foci; in the case of a circle they coincide
and are situated at its centre; in the case of a parabola, one of them is at

Fig. 3.5. The generation of conic sections. (Figure (c) is derived from Mathematics
Dictionary, by James and James, 4th edn, Van Nostrand, New York (1976), p. 71.)
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infinity. The nonmathematical reader will probably find this definition
rather opaque. For the case of an ellipse, which is much the most
important for our present purposes, an alternative method of generation
is much more transparent.

Take a smooth board and into it push two pins. Then take a loop of
string of strictly fixed length, lay it around the pins on the board, take a
sharp pencil, hold it in such a way that the loop is kept taut, and then
move the tip of the pencil around the pins, making sure to keep the string
taut while describing a curve on the board. The resulting curve (Fig. 3.6
is an ellipse and the two pins (S and S') are at its two foci. The point O
midway between the two pins is the centre of the ellipse. The longest axis
AOB is called the major axis; the shortest axis DOC, the minor axis. The
segment AO (=OB) is the semimajor axis; OC (=OD) is the semiminor
axis. The eccentricity as defined earlier turns out to be equal to the ratio
OS/OA. Thus, if OA is taken to have unit length, the distance OS (=OS')
is the eccentricity e. The eccentricity is then the distance of either focus
from the centre of the ellipse. We shall see shortly that this explains the
origin of the word eccentricity.

In the Principia, Newton established the conditions under which the
various different types of conic section are realized by bodies moving in
the gravitational field of the sun. In rather simplified terms, one can say
that a body which does not have sufficient speed to escape completely
from the sun moves in an ellipse. If the body has just sufficient speed to
escape, then it moves in a parabola. If its speed is still higher, it will move
along one branch of an hyperbola. In all cases the sun is at a focus of the
corresponding conic section. Thus, in Fig. 3.6, the sun will be at S, say, while
the second focus S' will be a void point. (In the case of parabolic motion,
the sun is obviously at the focus which is not at infinity. This case is
obtained from the situation in Fig. 3.6 by taking the second focus S'
further and further away from S. Another special case is obtained by
bringing S and S' closer and closer together and making them coincide
at O; the ellipse then becomes a circle.)

Fig. 3.6.
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For the planets the conditions for elliptical motion are satisfied. This is
what Kepler found empirically about 75 years before Newton discovered
his theoretical explanation. Kepler's First Law states that the planets move
in ellipses that have the sun at one of the foci.

It is worth making two comments about this law. First, the orbit is
closed and fixed in helioastral space (except for the perturbations
introduced by the other planets, which are very small). Thus, the planet
keeps on going round exactly the same curve and returns to exactly the
same point in helioastral space whenever a period of its motion has been
completed. As already emphasized, without this strict periodicity it is
difficult to see how the laws of motion would ever have been found. The
fact that the curves which the planets follow are closed is actually very
special. For a general force law, the curve does not close after every circuit
around the force centre, though it fortunately does so for the inverse
square law of gravitational attraction.

The second comment is that the planetary problem decomposes into
the problem of the geometrical shape of the orbit and of the speed with
which the motion is executed. For any given orbit, the speed within it is
determined by Kepler's Second Law, the area law. The average speed is
determined by the distance from the sun. Although this last aspect of
planetary motion, which is governed by Kepler's Third Law, did not play
a particularly significant role in the early history of astronomy, we shall
describe it here for the sake of completeness. Like the First Law, the Third
Law, which Kepler announced in 1619, is a specific consequence of the
inverse square law and states that the squares of the periods of the planets
are proportional to the cubes of their mean distances from the sun. If P is
the period and R the mean distance of a planet, then

where a is a constant of proportionality.
A point to note is that the actual speed of the planet is slower for the

planets at greater distances from the sun. If all planets were to move at the
same speed, one would simply have a direct proportionality between the
period and the radius, P °c R, since the distance travelled increases
linearly with R. Kepler's Third Law shows that the outer planets travel
slower. Thus, the mean orbital speeds of the planets in helioastral space
are (to the nearest km/s) 48 for Mercury, 35 for Venus, 30 for the earth, 24
for Mars, 13 for Jupiter, and 10 for Saturn.

or
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3.7. The zero-eccentricity and small-eccentricity forms of Kepler's laws

In many problems in physics and mathematics it is helpful to consider
what are known as small-parameter expansions. It is very often the case that
the particular manifestation of a given phenomenon depends in a
characteristic way on the numerical value of some determining parameter
and that significant simplifications arise when the numerical value of the
parameter is small. In such cases it is very helpful to expand the functions
that describe the phenomenon with respect to this small parameter, e say.
This leads to a series expansion of the form / = f0 + efa + £2/2 + . . ..
Here, /0 describes the behaviour when e = 0. If £ is very small, then only
the first two terms of the expansion, /0 and £/l7 need to be taken into
account. Then the term efi appears as a correction to the term/0, which is
called the term oi. zeroth order. When e gets rather larger, the term £2/2 must
be taken into account and is to be regarded as a correction to the first-order
approximation represented by/0 + e/j.

In the planetary problem such a parameter is the eccentricity. For the
early history of astronomy it is extremely illuminating to consider the
approximations to Kepler's laws given by the zeroth and first approxima-
tions in the eccentricity.

In the zeroth approximation, the elliptical orbits all then have zero
eccentricity, which means that they become circles with the sun at the
exact centre. The orbits are than a series of concentric circles around the
sun. This is what happens to Kepler's First Law. The Second Law now
takes the form that the planets each move at an exactly constant speed in
the orbit. The Third Law remains essentially unaltered.

Before we discuss the corresponding forms of the laws in the first-order
approximation, which may be called the small-eccentricity approximation (in
contrast to the zero-eccentricity approximation just discussed) we need to
know one more important fact about ellipses. In Fig. 3.7, we have

Fig. 3.7.
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redrawn the ellipse from Fig. 3.6 but we have added to it the circle with
centre O and radius equal to the semimajor axis OA. This circle, AFBE,
circumscribes the ellipse, touching it at A and B.

As we see from Fig. 3.7 the areas between the ellipse and this circle take
the form of crescents: BDAEB and BCAFB. Kepler called each of them a
lunula (literally little moon). The thickness of the lunulae at their greatest
widths, ED and CF, is a measure of the extent to which the ellipse is
elliptical, i.e., falls short of being a perfect circle (elleipo means come short in
Greek, hence ellipsis for words omitted from a quotation). We have
already noted that if AO = 1, then OS = e. For the history of ancient
astronomy a most important property of the ellipse is the fact that in the
limit of small eccentricity its ellipticity, defined as the ratio ED/OE (or,
therefore, ED/OA), is equal to a very good accuracy to k2/ i.e., half of the
square of the eccentricity. Because of the factor 2 but even more because of
the squaring, the ellipticity remains numerically very small until the
eccentricity reaches quite appreciable values. This means that until the
eccentricity reaches a value of about half, the lunulae remain very slender
indeed. If the circumscribed circle is not shown, ellipses with eccen-
tricities less than about 0.4 can hardly be distinguished by the eye from
circles. This is illustrated by the ellipses in Fig. 3.8. The first is the
degenerate case of a circle, for which the two foci S and S' (not shown)
coincide with the centre O. Then come ellipses with eccentricity TO, §, 3, \,
and §. Note how far the foci move apart before the ellipticity becomes at
all apparent. The displacement of the foci from the centre is an effect of
first order in the eccentricity, while the ellipticity is an effect of second
order.

Let us now consider what happens to Kepler's First Law in the
small-eccentricity approximation. We start with a somewhat surprising
result: the orbit is still a circle, since the ellipticity is a correction of order
e2. However, the sun is no longer at the centre of the circle, as it was in the
zero-eccentricity approximation, but is displaced to what is in fact one of
the foci, though the fact that this is a focus is not at all apparent since the
ellipse is still a circle to an extraordinarily good approximation. Thus, in
this approximation, which is remarkably accurate for e < 5, Kepler's First
Law says the planets move in circles with the sun somewhere in an
eccentric position not too far from their centre. All the planes of the circles
in which the planets move intersect at the centre of the sun (by Kepler's
ZerothLaw).

We now ask what happens to Kepler's Second Law. Here the area law
gives rise to a very interesting effect associated with the second (void)
focus. Since the sun is displaced from the centre of what is still a circular
orbit, it is immediately evident that, because of the area law, the planet
can no longer move at uniform speed about the centre of the circle, i.e., its
actual speed in helioastral space is nonuniform. An observer placed at
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Fig. 3.8.
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Fig. 3.9.

either the centre of the orbit or at the sun would see the planet moving
relative to the stars at a nonuniforrn rate. However, if the observer were
placed at the void point corresponding to the second focus, a striking
effect would be observed. Seen from this point, the planet would appear
to move with constant angular speed relative to the distant stars.

We can see intuitively how this most important effect comes about by
examining Fig. 3.9, which shows the case corresponding to e = 5. The
centre of the circle is at O, the sun is at S, at distance e on one side of O (we
take the radius OA =1), while the point S' corresponding to the void
second focus is at distance e on the opposite side of O from S. When the
planet is at A it is closest to the sun. This point is called the perihelion
(meaning nearest the sun) in helioastral space, the perigee (nearest the
earth) in geoastral space, which corresponds to the ancient geocentric
viewpoint. The distance SA is 1 — e. When the planet is at B, it is at its
furthest from the sun S. This point is called the aphelion in the heliocentric
scheme, the apogee in the geocentric. The distance SB is 1 + e. Now
suppose that in unit time the planet moves from D to C. Then to a very
good approximation the area that is swept out by its radius vector from the
sun is |DC(1 — e). Now suppose that in the same length of time the planet
at the other end of the orbit traverses the distance EF. Then the
corresponding area is sEF(l + e). By Kepler's Second Law, these two
areas must be equal:
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Therefore

Thus, an observer at O would see the arcs DC and EF as unequal, in just
this ratio. But now suppose the observer moved to S'. For purely
geometrical reasons, the arc DC will appear from S' to be smaller than it
appears from O by a factor (1 + e). Similarly, the arc EF will appear
enlarged by the same factor. Seen from S', the two arcs will therefore
appear equally large, and the planet will appear to move equally fast over
these two arcs.

I leave it as an exercise to the reader, if so inclined, to prove that this
result, obtained for the perihelion and aphelion, holds at all points on the
orbit, that is, an observer stationed at the point corresponding to the
second focus will see the planet travel around a great circle on the sky at a
uniform angular speed. It must be borne in mind that the result holds only
to first order in the eccentricity but is remarkably good in that order (just how
good we shall see shortly). This then is the form that Kepler's Second Law
takes to first order in the eccentricity. One can imagine a spoke with one
end fixed at S' and rotating with uniform angular speed about that point.
Suppose the other end of the spoke and the planet pass through A at the
same instant. Then at all subsequent times the position of the planet will
almost exactly coincide with the point at which the spoke intersects the
orbit.

For reasons that will become clear towards the end of the chapter, the
point S' is called the equant point (punctum equans, the equalizing point), or
simply equant. (Strictly speaking, it is a certain circle whose centre is the
equant point that is properly called the equant, but I shall follow the
widespread practice of applying this word to the centre of the circle.) The
points A and B are known as the apsides (singular apsis, or also apse, as in a
church), and the line AB is called the line of the apsides.

Table 3.1 gives the periods, eccentricities, ellipticities, semimajor axes
(in astronomical units; 1AU is the semimajor axis of the earth's orbit), and
inclinations of the orbits (relative to the orbit of the earth) of the six planets
out to Saturn for the epoch 1900.30 It should be noted that all the orbital
elements of the planets change very slowly over periods of centuries. The
values given in Table 3.1 are only slightly different from the values in
Ptolemy's age. The most noticeable change is the precession of the lines
of the apsides in helioastral space. These changed by several degrees
between the time of Ptolemy and Kepler, who was well aware of these
secular variations, as they are called.

Examination of Table 3.1 shows clearly why the approximations of zero
and especially small eccentricity played such an important role in the
early history of theoretical astronomy. For the earth and Venus, the
eccentricities are so small that the zero-eccentricity approximation is
already very good for them. For the other four planets the eccentricities,
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Table 3.1. Orbital elements of the planets
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Planet

Mercury
Venus
Earth
Mars
Jupiter
Saturn

Semimajor
axis of orbit

(AU)

0.387
0.723
1.000
1.524
5.203
9.539

Sidereal
period

(tropical
years)

0.241
0.615
1.000
1.881

11.862
29.458

Eccentricity

0.206 (-1/5)
0.007 (-1/147)
0.017 (-1/60)
0.093 (-1/11)
0.048 (-1/21)
0.056 (-1/18)

Ellipticity

-1/47
-1/43478
-1/7033
-1/227
-1/852
-1/646

Inclination
to ecliptic

7°0'
3°24'

—
1°51'
1°18'
2°29'

especially of Mars and Mercury, are quite appreciable but the ellipticities
are all very small, reaching about 1/47 in the case of Mercury alone.

Later we shall consider precisely what opportunities existed for
detection of the eccentricities, ellipticities, and nonuniformities in the
motions of the planets. However, one general comment can already be
made. Several books on the history of astronomy (especially Koestler'slc

but also to some extent the studies of Dreyerla and Koyre31) give the quite
erroneous impression that the early astronomers (up to and including
Copernicus (1473-1543) and Tycho Brahe (1546-1601)) could not make
sense of the planetary motions because they assumed through thick and
thin that the planetary orbits were perfectly circular. The implication is
that if only they had had a more open mind about alternative possible
orbits the data would have fitted much better. However, this is quite
wrong. The circularity of the orbits was, in fact, by far the best assumption
that the early astronomers made, and the problem of the celestial motions
would never have been solved without it. No one made more use of
circles, nor more effectively, than Kepler, though he eventually discarded
them with less than complimentary comments.

As we shall see, the problems the astronomers faced were of quite a
different kind and had very much more to do with the specific
eccentricities of the various planetary orbits. Among the books on the
history of astronomy known to me, only Hoyle's little book on
Copernicus32 emphasizes the importance of the small-eccentricity limit,
though the essential facts about it are given by Neugebauer.33

To conclude this section let us briefly mention another approximation
of a quite different sort. We recall that the plane of each planetary orbit
contains the sun. It therefore cuts the plane of the earth's orbit, i.e., the
ecliptic, along a certain line, called the line of the nodes. The nodes are the
two points at which the orbit of the planet passes through the ecliptic (the
ascending node is the node at which the planet passes into the northern side
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of the ecliptic; the other node is the descending node). The angle between
the plane of the orbit and the ecliptic is called the inclination. Like all the
other orbital parameters, the inclinations and the positions of the lines of
the nodes vary very slowly by small amounts over characteristic periods
of thousands of years.

Now, as can be seen from Table 3.1, the inclinations of the planetary
orbits to the ecliptic are all small or very small. This is the reason why the
planets are never observed to move far in latitude from the ecliptic. As a
result, the motion in longitude can to a very good approximation be
treated independently of the (actually rather complicated) motion in
latitude. This gives us the approximation of zero-inclination, which is all
that we shall consider in this chapter.

3.8. Hipparchus's theory of the apparent solar motion

In considering Hipparchus's attempt to describe the apparent motion of
the sun in geoastral space, let us first consider what could be observed.
The eccentricity of the earth's orbit is about 1/60 (—1/57 in Hipparchus's
time) and this means that the sun's apparent diameter, which is about 30
minutes of arc (30'), varies during the year by a factor of about 1/30. This
was too small to be reliably detectable by naked eye methods. Thus, all
Hipparchus could actually observe was the position of the sun as it moves
round the ecliptic. Now the apparent motion of the sun from the earth is
exactly the same as that of the earth from the sun with a phase difference
of 180°. How will this motion appear? We start with purely formal
considerations, the significance of which will become clearer shortly.

In Fig. 3.10 the curve with short dashes is an ellipse with eccentricity
e = 3, i.e., appreciably greater than the eccentricities of any of the
planetary orbits. Its centre is at O and its two foci are at E and E'. We shall
take this ellipse to represent the orbit of the sun in geoastral space. Then
A is the apogee, P is the perigee, E is the position of the earth, and E' is the
position of the void focus. In later applications in the Copernican scheme
we shall assume that the sun is at E and the ellipse is the orbit of a planet.
For the moment we ignore the two circles in Fig. 3.10.

There is, of course, no mark on the ecliptic indicating the position of
either the apogee A or perigee P of the sun's orbit around the earth.
However, suppose we did know the position of A. Let us measure time in
units such that the period of the sun's motion is 2n, i.e., if it passes A at
time t = 0 it will pass P at time n and return to A at the end of its complete
revolution at t = 2jt. Suppose that at time t the sun has progressed to the
position S indicated by the arrow in Fig. 3.10. Let y be the angle SEA, i.e.,
the angle measured from the earth between the sun and the apogee. In the
theory of Keplerian motion33 this angle is a very important quantity. It
cannot, in fact, be represented in closed form by means of elementary
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functions and can only be specified by means of a series expansion in
powers of the eccentricity e. To the terms quadratic in e, the expansion is

Let us now compare this actual motion of the sun with that of a
hypothetical body called the mean sun, as opposed to the true, or apparent,
sun. As we shall see in what follows, the mean sun was, in Ptolemy's
scheme, to develop into what was perhaps the most important concept in
the whole of ancient astronomy. The hypothetical body of the mean sun
simply defines the position that the sun would have if it were to move
around the ecliptic with an exactly uniform angular motion. Its position in
Fig. 3.10 is shown by the spoke ESm/ which rotates around E. Since the
angle SmEA (measured in radians) is given directly by the time t, the angle
corresponding to (3.1) for the mean sun is simply
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From the Greek point of view the solar motion was anomalous in two
respects. First, the fact that the sun moved relative to the stars at all was
anomalous. This is probably the reason why the angle y came to be called
the anomaly (or true anomaly). By contrast, the angle (3.2) became known
as the mean anomaly.* The solar motion was then doubly anomalous in that
the sun not only moved relative to the stars but did so in a nonuniform
manner. As a result, y differed from ym. The difference was revealed by
the fact that the sun took different lengths of time to pass through equal
arcs of the ecliptic. This is the nonuniformity of the solar motion that
Hipparchus attempted to explain theoretically. It is worth mentioning
here that, in medieval European astronomy, the difference between the
true anomaly and the mean anomaly came to be called the equation, or
equation of centre, presumably because it equalized out the difference
between these two angles. One of the main tasks of theoretical astronomy
was to devise models that could reproduce the equation (and its analogue
in planetary theory, to which we shall come later).

Let us now consider the orders of magnitude involved. First, since
there are 365? days in a year and 360° in a circle, the mean sun moves
through just a little less than one degree per day, i.e., it travels in a day
through a distance equal to about twice its apparent diameter. As regards
the magnitude and nature of the nonuniformity, these depend, as is
evident from (3.1), entirely on the value of the eccentricity. As we noted,
in Hipparchus's time the eccentricity of the earth's orbit was about 1/57.
We can conclude immediately from this that the maximal value of the first
correction term (—2e sin t) in (3.1), which is reached when t = nil. and
3ji/2 (the two corresponding positions of the sun are known as the
quadrants) and sin t = 1, is ±2e, i.e., just about 2° (because 1 radian is just
over 57°). Since the ancient astronomers could measure to an accuracy of
about 10 minutes of arc (one third of the apparent diameter of the sun
or moon), the effect of this term was comfortably within reach of
Hipparchus's observations. Let us now consider the term of second order
in the eccentricity (fe2 sin 2t). Since this depends on sin 2t, it is maximal
in magnitude at the four so-called octants, when t = jr/4, 3jr/4, 5;r/4, and
7jr/4 (or 45°, 135°, 225°, and 315°). However, since e -1/57, the maximal
value of this term is about 90 times less than the maximal value of the first
term and a great deal less that anything Hipparchus could measure. In
fact, it was also just too small for even Tycho Brahe to pick up. Thus, in
the case of the solar motion the term of second order in the eccentricity
was simply invisible.

* The expressions true anomaly and mean anomaly are still used in modern astronomy.
They are, however, now measured from perigee (or perihelion) rather than the ancient
practice of measuring from the apogee. The switch was made to accommodate comets,
whose perihelion as they sweep past the sun is readily observable, whereas the aphelion is
excessively distant and in most cases quite unobservable.
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We now come to Hipparchus's observations and theory, which are
reported by Ptolemy in §111.4 of the Almagest. Ptolemy reports that
Hipparchus found the interval from spring equinox to summer solstice to
be 94| days and the interval from summer solstice to autumnal equinox to
be 92£ days. This was clear evidence of nonuniformity of the sun's
motion. These two data were sufficient for Hipparchus to find a
theoretical solution to the problem that can reproduce the observations
with remarkable accuracy and is also quite close to the truth. Hipparchus's
theory can be represented in two forms, of which we shall choose the
simpler, which was also the one adopted by Ptolemy. The alternative will
be discussed briefly in connection with the epicycle-deferent theory a
little later.

It will be recalled that all celestial motions were believed to be perfectly
circular and exactly uniform. How could this be reconciled with the
manifest nonuniformity that Hipparchus found? Hipparchus made the
rather natural assumption (which belonged to the theoretical ideas
already worked out before his time)34 that the sun did move with perfect
uniformity in a perfect circle but that the centre of this circle did not coincide
with the centre of the earth, i.e., the position of the observer. He assumed
that the sun moved around the earth on an eccentric circle. In Greek
astronomy such a circle was, for this reason, called an eccentric, and the
distance from its centre to the position of the observer became known as
the eccentricity *

It will be helpful at this stage to analyze a generalization of Hipparchus's
model. This will give us an overall view of what his model and its
generalization by Ptolemy for the planets were able to achieve in the
programme of 'saving the appearances'. We attempt to reproduce the
solar motion by means of a simple model that contains two essential
features, the first of which is that the sun is assumed to move on an exactly
circular orbit.

Namely, in Fig. 3.10 we imagine a circle of diameter equal to the
semimajor axis AP of the sun's orbit in geoastral space. The centre of this
circle is taken to lie at some point C situated on the line of apsides. The
position of C is taken to be Ae from E (the centre of the earth) and therefore
(2 — X)e from E', the void focus. By varying A we shift the centre of the
circle up and down on the line of the apsides. For A = 1 the centre of the
circle coincides with the centre of the ellipse and we obtain the

* This is, in fact, the origin of the word, both in normal language and for the eccentricity of
conic sections.35 It comes from the theoretical description of nonuniform apparent motion
of celestial bodies by means of circular motions about centres not coincident with the
observer. It was only after Kepler's discoveries that the astronomical eccentricity was
identified with the key ratio in the mathematical theory of ellipses and used to denote tha
ratio, after which the term was extended to all conic sections to denote the ratio used in the
definition of such curves in terms of the directrix.



132 Hellenistic astronomy

circumscribing circle of the ellipse that, as we know from the discussion
of Sec. 3.7, is such a good approximation of the actual orbit. This is the
continuous circle in Fig. 3.10. The circle formed by the long dashes in the
same figure has centre at the point C corresponding to A = 1.5.

The second essential feature of the model is that the speed with which
the sun (or planet, mutatis mutandis) is assumed to move around the orbit
is regulated by a simple but special device - the equant prescription.
Namely, let one end of a spoke be fixed at E', the void focus, and swing
about that point with uniform angular velocity equal to unity in the units
we have adopted. This means that after time t it has swung through angle
t from the direction of the apogee A if it started from that point at time
t = 0, i.e., when the sun also passes through its apogee. Thus, the spoke
remains always parallel to the direction of the mean sun from the earth
and completes one revolution after time t = 2n. In this one-parameter
family of models of the solar motion, the body that models the sun is
assumed to move round the corresponding circular orbit in such a way
that it is always exactly at the point of intersection of the equant spoke
with its circular orbit. Thus, for the model with circle centered on O it is at
SP, and for the model with centre C it is at Sc.

It should be emphasized that a generalized model of this kind was quite
alien to Hipparchus. Nevertheless, in the special case when A = 2, the
centre of the circle coincides with E' and for this unique case of our
one-parameter model we obtain the Hipparchan situation in which the
sun is supposed to move uniformly around the centre of its circular orbit.

Since Hipparchus could observe only angles, the point of most
immediate interest is the ability of such models to reproduce the observed
angular positions of the sun. In a useful paper, Whiteside36 has calculated
the corresponding angles for the exact Keplerian orbit and for the
generalized model to the third order in the eccentricity. However, for our
present purposes we only need go to the second order (the term of third
order, i.e., cubic in the eccentricity, is just about observable at the
maximal accuracy achieved by Brahe in the observations of Mars, the
analysis of which by Kepler was Whiteside's concern). The expression we
need is

Now, except for the appearance of A in the term quadratic in e, this
expression is identical to the Keplerian expression. A particularly
important point to note is that A does not occur in the first correction term
(—2e sin t), but this, as we know from the earlier discussion of orders of
magnitude, is all that is effectively visible in naked-eye astronomy (for the
case of the sun).

We see that, if only angles are observed, models of the solar motion of
the kind considered are subject to a double and serious ambiguity. First,



Hipparchus's theory of the apparent solar motion 133

the overall size of the circle on which the sun is supposed to move is
almost completely arbitrary (the only restriction is that it must be
sufficiently large for parallax effects to be undetectable). Second, the
position of the centre of the circle is equally arbitrary. The only quantity
that follows unambiguously from the data at the attainable observational
accuracy is 2e, the distance of the fixed point E'of the equant spoke from
the observer at E (strictly it is the ratio of this distance to the ratio of the
diameter or radius of the circle that is determined).

Thus, if Hipparchus was able, and we shall see that he was, to
determine the line of the apsides, it is evident from (3.3) that he would
conclude, on the basis of observations and the model he adopted, that the
sun moved uniformly round a circle whose centre was situated at relative
distance 2e (where e is the eccentricity of the Keplerian orbit) from the
terrestrial observer.

Before continuing with Hipparchus's model, let us take the opportunity
to point out how remarkably good in quantitative terms is the small-
eccentricity circle-plus-equant model of Keplerian motion of the planets
described in Sec. 3.7. This is the model obtained by taking A = 1, so that
the circle which approximates the orbit is centred on O, exactly half-way
between the two foci. Then

and we see that, to second order in e, the Keplerian angular positions are
reproduced except for the very small error of {e2 sin 2t. Moreover, we
have already noted how extraordinarily thin are the two lunulae between
the circumscribing circle and actual orbit (the maximal separation between
the two is ?e2). In fact, if we take a circle concentric with the circumscribing
circle but with radius reduced by le2, the separation between this circle
and the orbit is never greater than {e2 (taking the radius of the circle to be
unity) and the position of the model planet from the actual planet is never
greater than about ke2. At the octants the actual planet is exceptionally
close to the approximating circle and the error is almost entirely
concentrated in the angular position. At the quadrants and apsides the
angles are correct but the model and actual orbits are le2 apart. There is a
real beauty about the circle-plus-equant model and, as we shall see, it
lends the early history of astronomy an especial fascination. For full
appreciation of its subtlety it needs, as here, to be considered to second
order in the eccentricity.

It is also worth emphasizing the dangers that lurk in the exclusive
concentration on reproducing the observed angles at the level of the
second-order term too. Suppose these angles can be measured to great
accuracy. Then, in the framework of our one-parameter model, analysis
of angle data alone would clearly lead one to choose the circle-plus-equant
model with A = f, for then (3.3) becomes identical to (3.1). This gets the
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angles exactly right to second order but shifts the centre of the circular
model orbit \e away from O. In Fig. 3.10 the position of the planet is then
shifted from the tip of the arrow at S to X. The price that has to be paid for
getting the angles correct to second order is a perceptible worsening of the
spatial positions, in fact, an error of first order is introduced.

We come up here against the fundamental problem that the ancient
astronomers had to overcome, namely, that theories of the motion of the
sun and planets may reproduce the angular positions extremely well and
yet give quite seriously incorrect results for the actual position in space of
the object being studied. The overcoming of this problem and the
conclusions drawn in the process are what make the astronomical
problem absorbing and so significant in the context of this book.
Essentially, the aim of this chapter and those on Copernicus and Kepler is
to give the reader a clear grasp of all the essential steps in this process.

Let us now consider the principle of the method that Hipparchus used
in the actual solution of his problem, since it became the paradigm of
virtually all the techniques used in early theoretical astronomy. In
Fig. 3.11, which is drawn to scale, the circle represents the theoretical
Hipparchan orbit of the sun with centre O. According to Hipparchus's
theory, the sun moves round the circle at a uniform speed. Since the year
lasts 365i days, the sun must advance from a given point V on its orbit by
360/365i = 0.986° per day. Now Hipparchus found that the time taken by
the sun to pass from the vernal equinox to the summer solstice was 94i
days. Therefore let V be the point on the Hipparchan circular orbit
corresponding to the vernal equinox. In 94£ days the sun will have
travelled on the orbit to the point S, the summer solstice, where the angle
VOS = 94.5 x 0.986° « 93.2°. This fixes the point S. He also found that
from summer solstice to autumnal equinox (F) the sun took 92g days. The
point F is therefore found by making the angle SOF = 92.5 x 0.986°=
91.2°. Now the earth, from which Hipparchus made the observations,
must clearly lie on the line VF, since, on the sky, the vernal and autumnal
equinoxes are separated by 180°. Further, the earth must be at the point E
obtained by dropping the perpendicular from S onto VF, since angle
VES = 90°= angle SEF.

Thus, E is the position of the earth, OE is the eccentricity and PEOA is
the line of the apsides, and we see that three observations of the angular
position of the sun separated by known intervals of time suffice to solve
the problem by elementary trigonometry. Figure 3.11 gives a good idea of
the smallness of the effects with which we are concerned but also
demonstrates that a relatively small eccentricity can in principle be
measured by such methods, though, for the reasons explained,
Hipparchus's theory will always give a value for the eccentricity twice as
large as it should be.

Hipparchus in fact obtained only a moderately accurate result,37 finding
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Fig. 3.11. Hipparchus's theory of the solar motion (drawn to scale). The sun is
assumed to move uniforrnly round the circle, whose centre is at O. The arc VS
corresponds to the distance travelled by a uniformly moving sun in the 94i days
that Hipparchus found was necessary to pass through the apparent angle of 90°
between the vernal equinox and the summer solstice. The arc SF corresponds to the
92| days between the summer solstice and the autumnal equinox. In accordance
with Hipparchus's theory, the earth must be situated at the base E of the
perpendicular from S onto VF. Note that the apogee A occurs near the summer

solstice, so that the earth is further from the sun in the northern summer.

for the eccentricity the value r ~ 1/24 = 2/48 whereas he should have
obtained about 2/57. However, for the line of the apsides (which,
incidentally, can in principle be determined correctly from Hipparchus's
theory, for the error in spatial position associated with his model merely
displaced the entire orbit along the line of the apsides but does not affect
the angular position on the sky of the apogee and perigee) he did get the
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rather good result 65°30' for the ecliptic longitude of the solar apogee, i.e.,
he found it to be 65°30' east of the vernal equinox along the ecliptic.
Modern calculations show that its value at his epoch was 66°14'.38

However, this result was something of a fluke. Indeed, it is obvious from
a glance at Fig. 3.11 that the position found for the line PEOA will be
rather sensitive to errors in the observations. For precise estimates, see
Ref. 38.

Some three hundred years later, Ptolemy repeated Hipparchus's
observations. These observations, like quite a number of others in the
Almagest, have been the subject of much controversy. Ptolemy, in fact, is
widely suspected of having faked, or at least 'doctored' his observations,
quite for what reason is not clear (we shall return to this briefly in the final
section). Whatever the truth, he reports in §111.4 of the Almagest that he
obtained more or less identical results to Hipparchus, including the same
ecliptic longitude of the apogee. On this basis he concluded that the solar
eccentricity remains constant and that the solar apogee keeps a fixed
distance from the vernal equinox. This is in fact wrong; the eccentricity
does change and the solar apogee moves relative to the equinoxes
(because of their precession) and also, more slowly, relative to the stars.
Both effects were too small for Ptolemy to have discovered given the
accuracy of his and Hipparchus's observations. We shall see in Chap. 5
that this insufficient accuracy led to numerous confusions in the Middle
Ages and caused quite a headache for Copernicus.

It is here appropriate to say something about the accuracy of ancient
astronomy. As we see in the case of the solar model, the accuracy was not
marvellous; in fact, when y = 90°, i.e., the sun is at the quadrants, the
inaccuracy of Hipparchus's and Ptolemy's model reached about 23
minutes of arc, i.e., about f of the apparent solar diameter. Now this
inaccuracy permeated the whole of ancient astronomy because of the key
role played by eclipses, which, as we pointed out in Sec. 3.2, were used to
determine the position of the moon, which at mid-eclipse was taken to be
180° from the true sun, whose position was in turn deduced from the
position of the mean sun in accordance with Hipparchan theory.
Moreover, as we shall see, the theory of the moon's motion was itself
developed to a very respectable level, and this made it possible to use the
moon as a 'marker' to determine the positions of fixed stars from which
the positions of the planets were then determined. Thus, the almost
steady motion of the true sun and the perfectly steady motion of the mean
sun served as the referential basis of virtually all ancient astronomy in the
sequence sun-moon-stars-planets. Unfortunately, the basis was not
determined through observations as accurately as it might have been.

It is worth quoting here what Neugebauer has to say on the subject of
observational accuracy:39
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Both Babylonian and Greek astronomy are based on a set of relatively few data,
like period relations, orbital inclinations, nodes and apogees, etc. The selection of
these data undoubtedly required a great number of observations and much
experience to know what to look for. Nevertheless, a mathematical system
constructed at the earliest possible stage of the game was generally no longer
systematically tested under modified conditions.

This attitude can be well defended. Ancient observers were aware of the many
sources of inaccuracies which made individual data very insecure. . . . On the
other hand period relations, e.g. time intervals between planetary oppositions
and sidereal periods, can be established within a few decades with comparatively
high accuracy because the error of individual observations is distributed over the
whole interval of time. If the theory was capable of guaranteeing correct periodic
recurrence of the characteristic phenomena then intermediate deviations would
matter little . . .

There is therefore little point in looking at the actual accuracy
Hipparchus and Ptolemy achieved. It is, however, well worth considering
the potential accuracy that might have been achieved by their models had
they had the means and inclination to make regular observations at the
accuracy achieved by Brahe in the late sixteenth century, which was about
2 minutes of arc, i.e., about TS of the apparent diameter of the sun and
moon. Seen in this light the potential accuracy of the Hipparchan solar
model was almost phenomenal. As we have seen, the maximal deviation
from the exact law is only f of a minute of arc. In fact, the Islamic
astronomer Al Battani (858-929), using Hipparchus's theory, obtained a
value of the eccentricity corresponding to an error of maximally just 1
minute of arc.40 The potential accuracy of the ancient models is important
because they went on being used essentially unchanged until Kepler's
time, when of course the accuracy was much better. In fact, a large part of
the story of theoretical astronomy up to and including Kepler's discovery
of his laws consists of the extension and modification of the initial
Hipparchan solar model.

Indeed this simple model led the astronomers almost effortlessly into
what finally developed into fully-fledged dynamics. Numerous charac-
teristic features of the theory that reached maturity with Newton's
Principia make their first appearance with Hipparchus's seemingly
modest attempt to remedy the 'blemish' of the sun's nonuniform motion.
The earlier quotation from Macbeth in Chap. 2 about 'which grain will
grow' is particularly relevant here. Indeed, all the Hipparchan seeds
grew. They were: (1) The measurement of speeds by means of some
reference motion taken as a measure of the flow of time (rotation of the
earth, already discussed); (2) the idea that bodies (the sun in this case)
follow quite definite paths in three-dimensional space and that it is the
task of observation to determine the nature and position of these paths
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from the two-dimensional motions observed on the sky; (3) the use of the
well-developed mathematical science of geometry to solve this problem;
(4) the realization that the immediate deliverances of the senses must be
guided by a precise theory if the primal observations are to be made
intelligible; (5) and, finally, the realization that the worth of the scheme is
ultimately confirmed through its ability to predict future events from a
few carefully selected observations made in the past. In fact, the Hippar-
chan theory requires just four input data: the number of days in the year
and the three observations quoted by Ptolemy. With these data Hippar-
chus in principle succeeded in predicting the position of the sun on the
ecliptic for many years in advance with a reasonable accuracy (generally
significantly better than the apparent width of the solar disk).

We see from this discussion that not only the entire body of ancient
theoretical astronomy but also a great deal of later dynamics was literally
'carried' by the two favourable manifestations of the law of inertia
reflected in the diurnal rotation of the heavens and the apparent motion
of the sun around the ecliptic.

But there was also an adverse side to the Hipparchan theory. It was only
partially correct. Out of the three features of the correct small-eccentricity
theory of the earth's motion around the sun, it grasped only two: the
circularity of the orbit and the eccentric position of the observer. The
actual nonuniformity escaped Hipparchus because his theory auto-
matically selected the unique model with uniform actual motion among
the one-parameter family of models that all equally well reproduced the
angular positions of the sun, and, as we have seen, he obtained an
eccentricity about twice as large as he should have. We shall see that
nature and mathematics conspired to play several caddish tricks on the
ancient astronomers; this hidden defect of the seemingly perfect
Hipparchan solar theory was perhaps the nastiest. It had no effect on the
theories of either the sun or moon, but it did have serious consequences
in the theory of the planets and remained undetected for over 1700 years.

There is one final point that may have escaped the reader; for
Hipparchus made a significant but arbitrary assumption to do with the
passage of time. Let us recall and emphasize the crucial importance of the
'ticks' provided by the earth's rotation; without them Hipparchus would
have had absolutely no means of saying where the sun must be on its
theoretical orbit. But we know from the philosophical discussion at the
end of Chap. 2 that the speed of one motion can be measured only by
means of a second motion, taken as reference. Hipparchus was concerned
with just two motions - that of the diurnal rotation of the stars and that of
the sun around the ecliptic. Under these circumstances it is clearly
impossible to say that one or the other motion is uniform; they are either
mutually uniform or mutually nonuniform. What then is the justification
for saying one is uniform while the other is not? In Hipparchus's time,
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there was little sound scientific evidence for the choice that he made,
namely, the assumption that the diurnal rotation of the stars was uniform
and the apparent motion of the sun nonuniform. However, his gut
intuition, guided no doubt by the overwhelming impression that the
diurnal rotation does make, led him to make a choice that was in fact
'right'. We shall discuss the precise sense in which Hipparchus was 'right'
after considering the Ptolemaic theory of the moon and planets.

The next topic to be discussed is the epicycle-deferent technique,
which was the most characteristic part of the theoretical structure of
Hellenistic astronomy. Although virtually nothing is known about the
process of its discovery beyond the fact that the technique was clearly
known to Apollonius, the reason for its invention is not hard to seek - it
was, just like the theory of the eccentric just described, born from the
attempt to explain nonuniformity of the two-dimensional motion of the
celestial bodies as observed on the sky by means of uniform circular motions
in three-dimensional space.

3.9. The epicycle-deferent theory

The basic idea of the epicycle-deferent method is very simple. Imagine a
large circle (Fig. 3.12) at the centre of which an observer O is situated and
on the circumference of the circle, which is called the deferent (this is the
medieval term), imagine a second circle, smaller than the first and with its
centre B exactly on the deferent's circumference. The second circle is
called the epicycle. Now suppose that the centre of the epicycle moves at a

Fig. 3.12.
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perfectly uniform speed around the circumference of the deferent, so that
the angle 9 between the fixed line OA and the moving radius OB, which
we shall call the deferent spoke, increases at a constant rate, and that
simultaneously an observable body D moves round the epicycle in such a
way that the angle q> made by the radius vector BD, the epicycle spoke, and
OBC also increases at a uniform rate. From O, the object will, of course,
be observed along the direction of OD. It is obvious that the angle
between OA and OD, i.e., 9 + y, will increase at a nonuniform rate, so
that a nonuniform apparent motion can be generated.

There is, in fact, a rather good physical realization of the epicycle-
deferent system in the solar system - the earth-moon-sun system. Put
the sun at O, the earth at B, and the moon at D. Then to a first
approximation the motion of this system corresponds to the epicycle-
deferent scheme. From the sun, the moon is observed to pass around the
earth as the earth itself moves around the sun. However, the analogy is
not complete and highlights an important feature of the epicycle-deferent
scheme. In the physical example just given, the earth occupies the
position B but in Hellenistic theoretical astronomy the point B, which may
be called a guide point, is void. There is just one observable body, and that
is at D.

It is quite surprising how much can be achieved by this simple model.
Let us list the disposable parameters that can be adjusted in order to
reproduce observed nonuniformities. Except for the moon, the absolute
scale was inaccessible to the astronomers, so OA can be taken as the
nominal unit of distance. Then the most important parameter of the
model is the ratio of the epicycle radius BD to OA, the deferent radius.
Next come the two angular velocities 9 — dO/dt and <p = d(p/dt. (Note
that either angle may increase in either clockwise or anticlockwise
direction; the observed behaviour of D is clearly strongly influenced by
the sense of rotation of the epicycle relative to the deferent motion.)
Finally, there is the relative phase of 9 and cp. Suppose that at time t = 0 the
radius vector OB passes through A. At this time, the angle (p will have a
certain value q>Q. This too is an adjustable parameter of the model. We
shall see later how these parameters, which are all observable in principle,
were determined in practice.

We can mention here already some of the simple modifications of
which the basic epicycle-deferent scheme is capable and which greatly
extend its ability to reproduce observed nonuniform motions. First, a
further circle, or 'epiepicycle' can be added. In this case, D too becomes a
void guide point, the centre of an even smaller circle that travels around
the epicycle while the body itself travels around the epiepicycle. A second
simple modification is to assume that the observer is not at O, the centre
of the deferent circle, but at some eccentric point. This obviously combines
the eccentric scheme already discussed in the Hipparchan solar theory
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with the epicycle technique. Finally, we have assumed that the epicycle is
in the plane of the deferent. This means that the observer at O always sees
the body move on a great circle on the celestial sphere. But if, as is the case
with the planets, the observed body always remains close to a great circle
(the ecliptic), but not exactly on it, one can attempt to reproduce this
motion by tilting the plane of the epicycle at some definite angle to the
deferent. Numerous other modifications are possible, and some of them
were actually used.

Viewed from a certain distance, one can see that the epicycle-deferent
scheme and its various modifications evolved in an ad hoc but very natural
manner. The astronomers grasped whatever device came to hand in order
to describe nonuniform apparent morions by mathematically tractable
techniques, the ultimate basis of which was, in all cases, a uniform
circular motion (which is particularly easy to handle), nonuniformity
being generated either by superposition or by eccentric position of the
observer. Once the desire to find a rational explanation for motions
believed to be divine had given the initial stimulus, and the first successes
had given confidence in the basic correctness of the technique, theoretical
astronomy developed as a more or less autonomous science. In Kuhn's
terminology,41 it is the first example - and a very good one at that - of
normal science at work. And the circles survived for so long for one simple
and very sound reason - the orbits of the celestial bodies in helioastral
space are circles to a very high degree of accuracy. This means that good
results could be obtained with only comparatively slight modifications
to the basic scheme, so that need for an alternative was not felt. Even
the quite appreciable nonuniformity of the actual motions could be
accommodated, as we shall see.

3.10. First application of the epicycle-deferent theory:
alternative form of Hipparchus's theory

Let us now look at the application of the epicycle-deferent technique to
two of the great early problems in astronomy: the solar motion and the
motion of the planets. This is just to give us a first idea of its applications
and power. We start with an alternative version of the Hipparchan solar
theory.

In Fig. 3.13 let the large continuous circle be a deferent, the small circle
an epicycle and suppose that when the guide point of the epicycle is at B,
the body itself is at D and that as the guide point moves anticlockwise
relative to the fixed line OB, so that it is carried to a certain point B' at time
t, the epicycle spoke moves relative to the main spoke OB' clockwise at
exactly the same rate, so that at time t the body will be at D'. Then
obviously B'D' will be parallel to BD and, since B'D' = BD, it is quite clear
that the path described by the body in space will be the dashed circle with
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Fig. 3.13.

centre at O'. If we now look back to Fig. 3.10 and take the epicycle radius
and OO' to be 2e, it is quite clear that the motion of the body with respect
to O (and hence its observable position on the sky) will be exactly as that
of the sun in the Hipparchan solar theory described earlier. Thus, in this
very special case, the eccentric scheme and the epicycle-deferent scheme
are completely interchangeable.

Neugebauer points out that both the Greeks and the medieval
astronomers switched frequently from the one model to the other and
that this readiness to switch:42 'is the best indication of the fact that none
of these models implied that there existed in nature a corresponding
mechanical structure'. Although we shall see later that there is some
doubt about the universal validity of this assertion, the techniques were
certainly to a very large degree formal devices. This is often described as
a weakness of Greek astronomy - as betraying a lack of interest in physical
explanation. It is, however, necessary to bear in mind what was said in the
previous chapter about geometro-mechanical explanations of motion.
They were in fact a hindrance to progress, since they obscured the fact
that, in the final analysis, motion is a primary phenomenon and cannot be
reduced to three-dimensional geometry. The great virtue of Hellenistic
astronomy, as the subsequent history showed, was that it determined the
actual motions in three-dimensional geoastral space. Although the
devices used to reproduce these motions were often to a high degree
arbitrary, as illustrated by the frequent switching, the actual motions
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were the same whatever model was used. When the Copernican
revolution finally came, it was merely necessary to transcribe the celestial
motions from geoastral space to helioastral space in order to obtain what
was already an extremely good approximation to the actual motions in
helioastral space. Whether by luck or judgement, the astronomers
undoubtedly chose the correct route. Before the actual motions were
known to a high degree of precision, the search for a physical cause of
them was wildly premature. Moreover, when the explanation did come it
was a total surprise and quite unlike anything that could have been
anticipated. It is thus important not to be misled by the mathematical
techniques used by the astronomers to describe the celestial motions. For
the discovery of dynamics, the important thing was the actual motions,
not the means of their description.

One should also not be misled by a comparison, sometimes made,
between the epicycle-deferent technique and Fourier's representation
of arbitrary continuous functions by trigonometric series. There is
unquestionably an analogy, especially in the case of the Hipparchan solar
theory. In fact, examination of Eq. (3.1) shows that the effect of the
epicycle is exactly reproduced by the first term of a trigonometric series,
which can be seen as a small correction to the main term t. What was
striking about the further development of Hellenistic theoretical
astronomy was its demonstration that amazingly few 'correction' terms
were needed to reproduce the observed celestial motions to a very good
accuracy. Had the motions been more arbitrary, far more terms would
have been needed. But in any case the comparison between Fourier
analysis and the epicycle-deferent scheme is flattering rather than
pejorative - and that for two reasons: (1) it correctly reflects the genuine
periodicity that resides in the celestial motions, (2) as we have said, the
most important thing in the early steps towards the rational description of
motion was to describe the actual observed motions accurately and
economically - in a form that could be readily surveyed. For this purpose,
the epicycle-deferent technique, with its potential for easy adaptation to
introduce small corrections when needed, was almost as good as Fourier's
admirable technique, which still serves as a guide to innumerable
discoveries.

3.11. Second application of the epicycle-deferent theory:
the motion of the outer planets

Figure 3.14 shows, in the Copernican scheme, the orbits of the earth and
Saturn to scale but in the zero eccentricity and zero inclination approxima-
tion, i.e., both planets are assumed to move at a perfectly uniform speed
in coplanar circles that have the sun (S) at their common centre. The point
P representing Saturn moves around S in about 29! years, while the point
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Fig. 3.14.

E representing the earth takes one year to traverse its orbit. Therefore, as
seen from the sun, Saturn moves uniformly around a great circle. Our
question is: how does Saturn appear to move as seen from the earth?

Since the circles are assumed coplanar, Saturn is observed from the
earth to move around the same great circle as for a solar observer.
However, the motion is clearly no longer uniform. It is very easy to see
how it will appear. When Saturn is seen from the sun along SP, it is seen
from the earth along EP. In Fig. 3.14, the point P' makes SEP'P into a
parallelogram, i.e., SE is parallel to PP' and SP to EP'. Thus, if there were
a real body at P' an observer on the earth would see it at the same point on
the stellar background as an observer on the sun would see the actual
planet. Now as both E and P move, the motion of P about P' is the same
as that of E about S but 180° out of phase. Thus, the apparent motion of P
about E can be decomposed as follows. First, the void point P' moves
around the earth with exactly the motion of Saturn about the sun. At the
same time, P moves around P' with the motion of the earth about the sun
but 180° out of phase. But this last motion is the apparent motion of the
sun about the earth.

Thus, the terrestrial observer will be led very naturally to picture the
motion of Saturn as follows. First, a void point P' moves round the earth
with exactly the same motion as does Saturn about the sun (we recall that
the stars are effectively at infinity, so that P' is projected from E onto the
same point of the stellar background as P from S). Then the actual planet
P moves around P' with exactly the apparent motion of the sun about the
earth. But this is exactly what we have in the epicycle-deferent scheme
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with EP' corresponding to the deferent spoke and P'P to the epicycle
spoke.

Of course, what we have in effect done is to go over from the helioastral
frame to the geoastral frame, i.e., we have merely shifted the origin of the
coordinate system from the point S, which is at rest in the helioastral
space, to the point E, which is moving in that space. The directional
coordinates remain unaffected because of the great distance of the stars.
We note a curious effect of this shift of the coordinate origin: the actual
motion of the real planet Saturn about the sun is transformed into
apparent motion of the void point P' around the earth. If one considers
just the deferent motion, then the deferent guide point seems to move
around the earth in exactly the same way as the planet moves around the
sun.

Figure 3.15 shows the motion (over a period of just over 2 years) in
geoastral space (i.e., as obtained by the method just explained) of the
three outer planets under the assumption that all eccentricities (of the
orbits of the earth and Mars, Jupiter, and Saturn) are zero. The points on
the curves show the positions of the planets at intervals of 30 days (the
corresponding void guide points on the deferents are also shown at
intervals of 30 days). Some positions of the epicycle spoke are shown for
the case of Saturn. The direction of the epicycle spoke always gives the
direction of the sun as seen from the earth. For example, when the planet
Saturn is at O, the sun is at O'.

The figure reveals very clearly, especially for Saturn and Jupiter, the
two most characteristic features of the apparent motions: their pro-
nounced nonuniformity and the so-called retrogression loops. Let us, for
example, follow the motion of Saturn from position m, at which it
becomes visible in the morning sky, through to O when it is in what is
called opposition (because it is then in the position of the sky opposite to
the sun) and on to e, when it is still visible in the evening sky. At the start
of this period the planet moves forward around the ecliptic in the same
sense as the invisible guide point and also the sun. However, quite soon
the apparent forward motion is slowed down, this happening for two
reasons. First, because the distance the planet moves in geoastral space in
equal intervals of time becomes less (the points in the figure are crowded
together more closely) and, second, because the motion is no longer
purely radial in geoastral space but has an ever increasing component
towards the observer. Indeed, at the point Sl7 the apparent forward
motion comes to a halt and for quite a length of time the planet seems to
stand still before starting to move backwards. This retrograde motion lasts
until the planet reaches the point S2, at which it again appears to stand still
before once again resuming the dominant forward motion. An important
point to note is that the apparent retrograde motion at O is always slower
than the apparent forward motion at m and e. For the construction of an
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Fig. 3.15.
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epicycle-deferent model, this is a clear hint that the sense of rotation of
the epicycle spoke must be the same as that of the deferent spoke. Of
course, the terrestrial observer sees only the projection of the motion onto
the sky but a clear indication (albeit not too accurate) of the actual varying
distances between the observer and planet is provided by the change in
brightness, which is always greatest when the planet is in opposition. For
Mars this effect is very pronounced indeed and confirms that at
opposition the epicycle spoke must be pointing towards the earth.

On the basis of these very striking features one can readily appreciate
how the Greeks were led to propose the epicycle-deferent model for the
explanation of the planetary motions.* From the apparent motions as
observed on the sky it is not difficult to deduce the basic parameters of the
model. Because the centres of the retrogression loops always occur at
opposition (at O for Saturn), when the sun is diametrically opposite to the
planet on the ecliptic, one can deduce the crucial property that the
epicycle spoke must always be parallel to the direction from the earth to
the sun. It must therefore rotate once through 360° relative to a fixed
direction in geoastral space in 365? days (the length of the year),
corresponding to the mean motion of 0.9856° per day. Because the
deferent spoke itself moves, the angle between the epicycle spoke and the
deferent spoke increases not quite so fast: 0.9522° per day for Saturn,
0.9025 for Jupiter, and 0.4616 for Mars. It only remains to calculate the
ratio of the length of the epicycle spoke to the length of the deferent
spoke. This can be done, for example, as follows. Sixty days after Saturn
has passed through opposition at O the void guide point will have
advanced round the deferent to the point G, while the epicycle spoke will
have simultaneously rotated into the position GQ. The position G can be
calculated from the mean motion of Saturn and the position Q is observed.
Thus, the angle QEG can be determined and from it the required ratio.

* The precise manner in which the model was found historically is not known. The account
given here is merely an illustration of how the discovery could have been made; no pretence
to historical accuracy is claimed.

Fig. 3.15. The motion of Saturn, Jupiter, and Mars in geoastral space, drawn to
scale but under the assumption of zero eccentricity of all three planets. The earth
is at E. The points on the continuous curves show the positions of the planets at
intervals of 30 days. The corresponding positions of the void guide points of the
deferents are also shown. Note that the ancient astronomers had no sound basis
for determining the absolute dimensions. In the Almagest, Ptolemy set the radii of
the deferents equal in all cases to the nominal value 60. In his later Planetary
Hypotheses he assumed that the epicycle-deferent systems fitted flush next to each
other, eliminating the gaps shown in the figure. Note also that the figure is drawn
for the case in which all three planets are in opposition at once - a very rare

occurrence.
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Figure 3.15 also shows very clearly how the characteristic observed
behaviour of the three outer planets changes. For Saturn about 28?
retrogression loops are completed before the planet returns (after 29?
years) to the same point in the ecliptic; for Jupiter the number is just under
11; while for Mars the retrogression loop is not in fact quite completed. It
is worth pointing out that the form of the retrogression loops depends
both on the radii of the orbits (i.e., on the ratio of the lengths of the
epicycle and deferent) and on the speeds of the planets in their orbits. This
is readily seen. Let R and r be the radii of the deferent and the epicycle
respectively and let the angular velocity of the deferent spoke in geoastral
space be 9 and the angular velocity of the epicycle spoke relative to the
deferent spoke be cp. Then EO = R — r and the forward motion of the
deferent spoke at O in a short time interval dt will be (R - r)6dt. But the
motion of the tip of the epicycle spoke as it passes through O (when its
backward motion is fastest) will carry it relative to the deferent spoke a
distance r<pdt in the opposite direction in the same time. Thus, retrograde
motion will only occur if r<p > (R — r)6 or

It is interesting to note that the condition (3.4) is always satisfied for the
planets by virtue of Kepler's Third Law. If Saturn's orbital speed were the
same as the earth's, it is easy to show that (pi6 = (R - r)/r would hold,
i.e., Saturn would appear to come to a halt but would not actually
retrogress - after a pause, the planet would recommence its forward
motion. However, it is a consequence of Kepler's Third Law (in the case
of zero eccentricity) that the orbital speed is proportional to 1/VR, with
the consequence that retrogression is always observed, though the retro-
gression loops occupy a progressively smaller proportion of the complete
cycle the larger the ratio r/R. This effect is clearly seen in the sequence
Saturn-Jupiter-Mars (Fig. 3.15). Note, however, that, as seen from E, the
apparent size of the loops decreases in the sequence Mars-Jupiter-Saturn.

For the three outer planets the retrogression loops can always be
observed extremely well since the sun is in the opposite part of the sky
and the planets are seen due south at midnight. These are the best
observing conditions. It is therefore perhaps not surprising that the Greek
astronomers with their instinctive use of geometry (which is so charac-
teristic of their work) developed quite early a precise mathematical theory
of retrogression. In fact, the theorem of Apollonius mentioned in Sec. 3.1
deals with precisely this point.43 For given R, r, (p, and 6 it tells one the
position of the epicycle spoke relative to the deferent spoke at the moment
at which retrogression commences, i.e., the forward motion stops and is
then reversed.
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This entire treatment so far has been based on the assumption of zero
eccentricity. As we shall see in Sec. 3.14, the situation becomes
significantly more difficult when the actual eccentricities have to be taken
into account. Before that we need to consider the theory of the motion of
the two inner planets, Venus and Mercury.

3.12. Epicycle-deferent theory for the inner planets

In Fig. 3.15 we have plotted the actual orbits in geoastral space of the three
outer planets. We see that as the ratio r/R gets larger on the transition from
Saturn through Jupiter to Mars the characteristic form of the orbits
remains the same though the retrogression loops become less frequent.
However, on the transition to the inner planets, a qualitative change takes
place. The reason for this can be seen by going back to Fig. 3.14, which we
interpreted as follows: the void point P' moves around E with the same
motion as P about S while P moves around P' with the reverse of the
earth's motion about the sun. There is, however, an interesting alterna-
tive way of looking at the situation, which rests on the commutativity of
vector addition. Still holding on to the idea that E is at rest, one could
equally well say that S, the sun, moves around E, the earth, on a small
deferent circle with radius ES and that the planet P moves about S on a
large epicycle with radius SP. In this case the void point P' plays no role,
but the price one has to pay for this is a 'top heavy' situation in which the
epicycle has a larger radius than the deferent. Examination of Fig. 3.15
shows how unnatural it would be to adopt such an explanation for the
motion of Saturn and Jupiter in particular. However, for Mars, for which
the two radii are much more nearly equal, the choice between the two
possibilities is not nearly so clear cut. Moreover, once we pass to the two
inner planets the ratio of epicycle radius to deferent radius will have to
become greater than one if we are to stick to the same scheme as for the
outer planets. But at this the ancients baulked.

That the two mathematically equivalent possibilities for interpreting
Fig. 3.14 do exist was undoubtedly well known to them, since Ptolemy
proves Apollonius's theorem simultaneously for the two cases.43 How-
ever, reading the Almagest, one gets the impression that Ptolemy was
somewhat mesmerized by the matter and could not feel comfortable
unless the epicycle had a radius less than the deferent. He therefore chose
differently for the two cases - using the scheme explained in Sec. 3.11 for
the outer planets but with the reversed situation for the two inner planets.
This ensured that he had in all cases an epicycle spoke shorter than the
deferent spoke but at the price of a notable heterogeneity in the system.
For in the case of the inner planets it is now the deferent spoke, not the
epicycle spoke, that always remains parallel to the sun.
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The transcription from helioastral to geoastral space for the two inner
planets is shown in Fig. 3.16(0). The deferent spoke ES for both planets
coincides with the radius vector from the earth, E, to the sun, S, around
which Mercury (M) and Venus (V) rotate on epicycles that have the sun at
their centre. Note the most striking feature in the apparent behaviour of
the inner planets; they are never seen at more than certain definite
maximal angles from the sun, quite unlike the outer planets.

It must however be said that Fig. 3.16(0), which shows the correct
positions in geoastral space, is seriously misleading in one respect; for the
Greeks, or at least Ptolemy, did not adopt the model shown in Fig. 3.16(0)

Fig. 3.16.
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but one that was merely equivalent to it as regards the observations that
could be made from the earth E. We recall that the astronomers were
unable to measure any distances except that of the moon and, very
inaccurately by means of eclipses, that of the sun. They had no means of
determining the distances of the planets. This led to a scale invariance of the
planetary problem. The epicycle-deferent theory made it possible to
determine from the observations the angles of the epicycle spokes (SV
and SM in Fig. 3.16) relative to ES, which were determined without any
ambiguity. However, only the ratio of the lengths of SV and ES could be
determined. This leads to a great ambiguity of possible models for the
description of the same observed motions on the sky. In Fig. 3.16(b), S'V
is parallel to SV in Fig. 3.16(0) and of length such that EV is parallel to EV
in Fig. 3.16(fl). It is evident that if S' moves round on a circle of radius ES'
at the same rate as ES, and V swings round S' at the same rate as V about
S, then from E the point V will always appear on the sky at the same
angular position as V. A similar alternative construction is shown for
Mercury (M'). To the modern mind, shown a diagram like Fig. 3.16(b), it
seems almost incredible that the ancient astronomers did not automati-
cally assume that the two inner planets did actually circle the sun. For they
knew that the deferent for Venus and Mercury always pointed in the
direction of the sun and that neither planet was ever observed at more
than a certain fixed maximal elongation from the sun, appearing now on
one side of it, now on the other. What more natural explanation of this
behaviour could be found than the suggestion that Venus and Mercury do
actually circle the sun? This would have led to a partially heliocentric
scheme.*

There are several reasons that can be advanced to explain why the
Greeks did not adopt this idea. The first is to do with the earlier history of
astronomy. We recall that Aristotle had believed the celestial bodies to be
carried by quintessential spheres. But if Mercury and Venus do circle the
sun on an epicycle, they must be constantly passing through the sphere
that carries the sun. It could be that to avoid this possibility the ancient
astronomers assumed that the entire epicycle-deferent system for each
celestial body must lie either completely outside or inside the sphere of
the sun. Such a notion did in fact gain support from another remarkably
perverse and caddish trick that nature played on the astronomers. It
seems that Ptolemy,45 considering the great distance between the moon
and sun (of which he had an estimate at least), felt that it would be

* Many histories of astronomy suggest that Heraclides actually discovered the epicycle-
deferent theory for the case of Venus and that he did posit partial heliocentricity. This
appears to be a classic case of historians repeating earlier historians' mistakes. According to
Toomer, there is no solid foundation to the suggestion, though the arrangement was
proposed in antiquity, in fact before the time of Ptolemy, who for some reason ignored the
proposal.44



152 Hellenistic astronomy

appropriate if this empty space were filled by the epicycle-deferent
systems of Mercury and Venus. He therefore assumed that Mercury at its
closest approach to the earth came just to the sphere of the moon. Since
the moon's distance was known, this enabled him to determine the
absolute scale of the epicycle-deferent scheme of Mercury. He then
assumed that Venus at its closest approach to the earth was at the distance
of Mercury when it was furthest from the earth. This then set the scale for
Venus. When Ptolemy did his calculations, he found that Venus had a
furthest distance of 1190 earth radii from the earth that was almost exactly
equal to the minimum distance of the sphere of the sun as determined
through the eclipse observations (1160 earth radii). This, of course, was
the purest of flukes but it lent powerful support to the idea, which then
remained unchallenged until the Copernican revolution.*

Taken together, the scale invariance and the epicycle-deferent inver-
sion for the two inner planets went a long way to destroying an organic
picture that Ptolemy would otherwise have obtained - a picture that
would probably have suggested the heliocentric possibility more strongly
than was the case. For the three outer planets there was a clearly
discernible trend. In the sequence Saturn, Jupiter, Mars the periods of the
deferent motion became successively shorter while the ratio of the lengths
of the epicycle spoke to deferent spoke increased. This suggested strongly
to the ancients what was, in fact, the correct ordering of the orbits: Mars
nearest the earth, then Jupiter, finally Saturn, all three being placed
beyond the sphere of the sun. But for the two inner planets, which were
generally but not invariably taken to be within the sphere of the sun, the
deferent period was the same and equal to that of the sun. This produced
a curious and ungainly system and strengthened the impression that true
universality was not to be found in the celestial motions. For the moon
and sun each had a type of motion quite distinct from the planets. But
even these, in their turn, seemed heterogeneous on account of the
epicycle-deferent inversion. Thus, there appeared to be four broadly
different types of motion: for the moon, for the sun, for Mercury and
Venus, and for the three outer planets. In fact, the heterogeneity was
increased still further by the details of the motion of Mercury, which, as
we shall see, Ptolemy found himself forced to describe in a manner
significantly different from Venus.

* This 'filling-the-empty-space' theory was not put forward in the Almagest but in Ptolemy's
later Planetary Hypotheses. It is worth noting that in the Almagest Ptolemy merely said that
Mercury and Venus must be a substantial distance beyond the moon since neither exhibit
parallax effects. His later theory conflicts with this requirement, and Mercury should
certainly have exhibited parallax. This is one of only two manifest errors in Ptolemy's work,
i.e., examples of errors in which his theory was in clear disagreement with observation. We
shall come to a more serious example shortly.
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After this survey of some of the problems that still survived or were
even in part created by the epicycle-deferent scheme, we should now
point out that its discovery was nevertheless a triumph whose signifi-
cance can hardly be overemphasized. The motions of each of the planets
as observed from the earth are highly irregular with enormous deviations
from uniform circular motion. Yet they are all described well, and some
almost perfectly, by a clean decomposition into just two circular motions,
both of them uniform. Moreover, the extremely large variations in the
brightness of Mars, in particular, were simultaneously given a very good
qualitative explanation - two birds hit with one stone! The epicycle-defe-
rent theory really was a great discovery and certainly deserves to be
identified as the first of the half-dozen insights from the theory of celestial
motions that went into the creation of dynamics. It gave a tremendous
boost to the faith in a rational explanation of the seemingly irrational
motions of the seven 'wanderers',* who represented such a curious
blemish when compared with the perfection of the diurnal rotation of all
the stars. Once it had been discovered, it, much more than 'divine
preconceptions', was clearly what sustained the astronomers in the belief
that they possessed a universal law: every celestial motion is either a uniform
circular motion about a centre or else is compounded out of such motions. We
shall see shortly how well even the most irregular motion in the heavens,
the moon's, seemed to satisfy the principle.

However, before we pass on to the final achievements of ancient Greek
astronomy, the theory of the moon and Ptolemy's theory of the planets, it
is worth emphasizing the extent to which the epicycle-deferent theory of
planetary motion clearly implicated the sun as a major determining factor
in the apparent motions of the planets. For, as we have seen, the
epicycle-deferent decomposition of the motion of any planet always has
a component along the line joining the sun and the earth. Either the
epicycle spoke (in the case of Mars, Jupiter, and Saturn) or the deferent
spoke (Venus and Mercury) is always aligned along a line parallel to the
earth-sun direction. No matter how the decomposition of the motion is
made, one leg of the decomposition - either the deferent motion or the
epicycle motion - always marches in phase with the sun. It seems that the
sun exerts a partial control on the planets in a most mysterious fashion.
This was perfectly well known to the ancient astronomers and yet seems
to have attracted remarkably little comment on their part. In the Almagest,
Ptolemy states this highly important observational result in a most dry
and matter-of-fact way - there is no hint of mystification or surprise. The
result permeates the entire theory of the planets, but an inattentive

* Initially the Greeks referred to the sun, moon and five naked-eye planets as 'wanderers'
(planets); only later were the sun and moon excluded from this designation.
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modern reader might well miss the point at which Ptolemy mentions the
fact explicitly.46

Thus, Ptolemy and the ancients were content merely to note the fact; no
attempt was made to seek a cause for the commonality in the motion of
the planets and the sun. It was left to Copernicus, Kepler, and Newton to
do that. But, as we shall see in Chaps. 10 and 11, Newton discovered a
remarkable commonality in the motion of all bodies in the universe -
inertial motion. Moreover, there is an 'alignment' too: in an inertial frame
of reference (to use modern terminology), the distant stars are observed
to be at rest. The inertial motion is 'aligned' on the distant stars. Newton's
explanation of this commonality by means of absolute space parallels the
ancients' acceptance of alignment of one component of the planetary
motion with the sun as a fact of life. He did not look for a visible cause of the
commonality. Mach suggested that it could be found in the totality of the
matter in the universe. According to his suggestion, the universe as a
whole stands in a causal relation to inertial motion in much the same way
as the sun to the mysterious sun-aligned component in the planetary
motions.

We conclude this section by noting that Aristotle's cosmology and
physics had a charmed life. The early work of the Hellenistic astronomers
undermined it in two directions: first, through the development of
trigonometry. This was a time bomb with a very slow burning fuse.
Potentially more dangerous was the failure of Eudoxus's strictly earth-
centred scheme to account for the apparent motion and brightness of the
planets and its replacement by the far more successful epicycle-deferent
theory. Strictly speaking, this should have demolished the entire
Aristotelian structure; for it established beyond reasonable doubt that
planetary motions are in no way compounded from simple uniform
motions around the single centre of the universe. There was in fact no
need to wait for the Copernican interpretation of the astronomical
observations for the overthrow of Aristotle; the ancient system was
already at variance with it.

Significantly, this was one of the points at which Copernicus chose to
mount his assault on Aristotle:47 'nothing prevents the earth from
moving. . . . For, it is not the centre of all the revolutions. This is
indicated by the planets' apparent nonuniform motion and their varying
distances from the earth. These phenomena cannot be explained by
circles concentric with the earth. Therefore, since there are many centres,
it will not be by accident that the further question arises whether the
centre of the universe is identical with the centre of terrestrial gravity or
with some other point.'

This poses the question of how Aristotle survived so long. The first
reason no doubt was that there was still no direct evidence for any motion
of the earth. A second was certainly that although the complete scheme
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was no longer tenable some of the most important parts of it had in fact
been dramatically confirmed. This is the irony of the circles: Aristotle was
only saved by the fact that the planets do indeed move in nearly perfect
circles around the sun. This need not have been the case.

The circle concept arose originally from the diurnal motion. Developing
trigonometric methods totally at variance with Aristotle's philosophy of
place, the Hellenistic astronomers applied them to essentially new pheno-
mena, the residual planetary motions when the diurnal motion was
subtracted; miraculously, the circles appeared to work perfectly. The
two-millennial survival of the Aristotelian system was based on a solid
success, even if it was a fluke. Nevertheless, the first major step had been
made from Aristotle's qualitative and organic geocentric world. The
inexorable logic of trigonometry, coupled with accurate observation, had
established beyond reasonable doubt the existence of other centres of
revolution at immense distances from the earth. The world no longer had
a single centre. The Aristotelian unity was falling apart, though the most
characteristic feature of this process could already be discerned: the unity
imposed by the concept of a unique centre of the universe was being
replaced by a unity of behaviour of the parts. For, however imperfectly
perceived, the behaviours of the planets considered separately still
undoubtedly possessed features in common. We have here the first hints
of a quite different type of unity; expressed through the laws of motion
being the same everywhere and at all times rather than their being
referred to a unique centre of the universe.

There was never really any danger of the whole world falling apart - it
was just the first step in the process of adjusting to the awareness that
unity can be expressed in more subtle and all-pervading ways. Nature is
more sophisticated than the mind of man - even Aristotle's.

3.13. The theory of the moon

The techniques so far described correspond roughly to the level of
sophistication to which theoretical astronomy had advanced when Hip-
parchus died sometime after 127 BC. It will be helpful to review these
briefly in terms of orders of magnitude with respect to the eccentricities.
The behaviour of the planets in zeroth order in the eccentricities was
perfectly described by the epicycle-deferent theory. However, the situa-
tion with regard to the two relatively large and equally important first-
order effects-the displacement of the still almost perfectly circular orbit
into an eccentric position and the marked nonuniformity of the motion
within the displaced orbit-was more complicated. For, deceived by a
perversity of the mathematics and the specific eccentricity of the earth's
orbit, Hipparchus (using either an eccentric or the epicycle-deferent
scheme) had managed to reproduce at a good quantitative level the
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observed manifestations of both effects in the solar motion by means of a
theory that took into account only the displacement to an eccentric
position. The effect of the actual nonuniformity of the motion had been
mimicked by a false doubling of the displacement.

Now in fact exactly the same thing happened with the moon, though
here there was a curious and helpful twist. The part played by the moon,
which was bound to attract attention from an early date on account of its
phases, the rapid speed of its motion, and the eclipses it suffers and
causes, is somewhat surprising. Its motion is complicated to say the least,
since it is the only one of all the dynamical problems in the naked-eye
astronomy of the solar system in which so-called three-body effects play a
significant part. The point is that the moon's motion relative to the earth
is largely determined by the earth, but the sun nevertheless exerts quite
substantial perturbations. The most striking consequence is that the
plane in which the moon moves around the earth itself moves. It
maintains a more or less constant angle of about five degrees to the
ecliptic, but the nodes, at which it cuts the ecliptic, move steadily once
round the ecliptic in the opposite direction to the motion of the moon in
about 18§ years. To a first approximation, the orbit of the moon around the
earth within this moving plane is nearly circular but has a relatively large
eccentricity of about 1/18, significantly more than the eccentricity of the
earth's orbit around the sun. The nonuniformity of the moon's apparent
motion is therefore about three times more pronounced than the sun's
but, rather remarkably, the eccentricity is still just small enough not to
reveal the defects of the Hipparchan solar theory when it is applied to the
moon. In addition the moon's apogee moves in the same direction as the
moon in a period of 8.85 years. The model which Hipparchus adopted to
describe these three effects was equivalent to having the moon move
uniformly in an eccentric that itself rotated once in 8.85 years while the
entire plane of the orbit moved round the ecliptic backwards in 18| years.
As a result, without essentially changing his solar theory, Hipparchus
obtained a quite good description of the moon's motion (apart from one
effect to be described in a moment). Moreover, combining it with the
theory of the sun, he was able to predict lunar eclipses with a very
tolerable degree of accuracy. This was a notable triumph and a rather
wonderful one too considering the complexity of the observed motions
and the simplicity of the means employed. It marks the high point in the
successful application of the 'universal law of celestial motions' (p. 153).
Lunar theory takes up a large portion of the Almagest and represents the
most sophisticated body of theory that Ptolemy inherited from Hippar-
chus. It was nevertheless deceptive since the underlying theory took no
account of the actual nonuniformity of the motion of either the moon or the
sun (in geocentric guise). This may well have been the reason why
Hipparchus never apparently succeeded in developing a satisfactory
theory of the planets, whose observed motions on the sky cannot, as we
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shall see, be described without introducing genuine nonuniformity in
one form or another into the theoretical models. In fact, although Greek
astronomers were undoubtedly active after Hipparchus died, no really
outstanding new discovery seems to have been made until Ptolemy began
his work.

Interestingly, the first significant innovation that he made was in the
theory of the moon, not the planets. This was associated with a further
effect of the solar perturbations. In fact, the moon is subject to a second
significant nonuniformity within the moving plane of its orbit, and its
longitude 6 from apogee is given to a good approximation by the formula48

where 6 is the distance of a fictitious mean (uniformly moving) moon from
the apogee, e is the eccentricity of the moon's orbit, E is the angle between
the sun and the moon, and c is a constant with a value of about e/3. Now
the first correction term on the right-hand side (—2e sin 6) is exactly
analogous to the corresponding first-order correction term for the appar-
ent motion of the sun [see Eq. (3.1)] though, as we have said, it is about
three times as large. However, the other correction term is completely
new and is due to the perturbation exerted by the sun. The effect it
describes is known as evection and has rather remarkable properties - at
both new moon and full moon, when E = 0 and n respectively, the second
correction term has exactly the same effect as the first and there is a single
effective correction term, — (2e — c) sin 6. The evection term is most readily
apparent at half moons (£ = Ji/2 or 3jr/2) when simultaneously 6 = jt/2 or
3jr/2.

As we_have noted, Hipparchus more or less correctly determined the
—2e sin 6 term in the lunar motion, just as he had in the solar motion, but
the evection term escaped him. The reason for this is quite simply that
Hipparchus based his theory solely on lunar eclipse observations. As we
have seen, it is only at such eclipses that the effect of parallax can be
readily eliminated, but precisely then the second correction term becomes
indistinguishable from the first and can be taken into account by a change
of the factor 2e into 2e — c, which is what Hipparchus effectively did. It
seems likely that towards the end of his life Hipparchus came to suspect
the existence of the evection term, for he left behind a record of observa-
tions of the moon made at times that would reveal the effect.49 Ptolemy50

recounts how he himself did suspect the term and had an armillary sphere
(see Sec. 3.4, pp. 115-116), which he in fact called an astrolabe, specially
built in order to measure the angular position of the moon relative to the
sun and the ecliptic. With this instrument, and also using the observations
of Hipparchus, he established the existence of the evection term and
measured its magnitude with good accuracy.

He then proceeded to devise a geometrical model of the motion of the
moon using the basic epicycle-deferent scheme with in addition eccentric
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position of the observer in order to represent all three terms in Eq. (3.5). I
shall not attempt to describe this model, which is ingenious but quite
complicated (the reader is referred to the Almagest, and also
Neugebauer's explanation52) but it is important for two reasons. First, it
was in this model that Ptolemy first introduced the first new element into
the armoury of theoretical tools he had inherited from his predecessors.
As we have emphasized, in all of these the underlying principle is that of
a circular motion that is uniform relative to the corresponding centre of the
motion. Ptolemy recounts in the Almagest53 how in his theory of the moon
he was forced to abandon this principle. He found that the idea of uniform
motion could still be saved, but that one had to introduce a further point,
not coincident with the centre of the circular motion, with respect to
which the motion was uniform. In the case of the moon's motion, this
rather technical innovation on Ptolemy's part was not of any great import
(except in permitting a very good description of the observations).
However, as Neugebauer points out,54 it was probably what suggested to
Ptolemy the use of a similar device to describe the planetary motions. As
we shall see, it had there the most profound consequences.

The second reason for the importance of Ptolemy's work on the moon
was that it produced results of such potential accuracy that the very
definition of time became acute. This aspect of his work will be discussed
in Sec. 3.15.

It should also be said that, despite the excellence of Ptolemy's predic-
tions for the longitude of the moon, his theory was quite wrong in the
predictions it made for the earth-moon distance. According to his model,
the ratio of the greatest to the least distance is almost 2:1 and this should
be reflected in a corresponding change in the apparent diameter of the
moon. In fact, the changes in the moon's apparent diameter were known
to the ancients, and were within the range of estimation because the
eccentricity of the moon's orbit around the earth is three times greater
than that of the earth's around the sun. However, the ratio of nearly 2 to
1 was in flagrant contradiction to directly observable facts. Neugebauer
comments:55 'Nevertheless, the longitudes are so well represented by the
new theory that it was not replaced . . . before the late Islamic period and
then again by Copernicus. Ptolemy himself never mentions this difficulty
although he cannot have overlooked it.'

A final comment about Ptolemy and the theory and observations of the
moon. Nowhere more than in Ptolemy's historical introduction to the
study of the moon,56 where he discusses attempts to find periodicities in
the lunar motion made centuries before his time, does one get such a good
feeling for the antiquity of astronomy as a discipline subject to a rigour
worthy of modern science. The searches for periodicities involved
painstaking study of a vast mass of empirical material and were in many
ways remarkably like much modern work done, for example, at high-
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energy accelerator laboratories. There is no doubt where quantitative
empirical science was born: in the study of the moon and its eclipses.

Let us now see what Ptolemy made of the problem of the planets.

3.14. Ptolemy and the small-eccentricity planetary system

It is helpful to begin this discussion by considering the accuracy Ptolemy
could achieve, so that we know what effects he had a chance of
discovering. The moon and sun each subtend about half a degree on the
sky. Ptolemy's accuracy corresponded on average to about, say, one third
of this, i.e., he made observations with an accuracy of around 10 minutes
of arc. It will here be helpful if the reader refers back to Table 3. 1 on p. 127,
which gives the eccentricities and ellipticities of the various planetary
orbits. It is these quantities that determine the observed deviations from
the zero-eccentricity approximation. If this last were exactly valid, the
planetary motions would all be perfectly described by the simple epicycle-
deferent scheme, and Ptolemy would have had nothing to do. But, as we
know, they are not - deviations arise because of the eccentricity of the
orbits, the nonuniformity of the motions, and the ellipticities of the orbits.
Which of these deviations did Ptolemy have a realistic hope of discover-
ing?

A simple estimate shows that if da is the angular accuracy of the
observations in minutes of arc, then in principle an eccentricity or
ellipticity of value

can be established (provided the correct theory is being used). Here, C is
a numerical constant of order unity peculiar to each individual observa-
tion; it lies in the range 0.2 to 5 depending on the position of the earth, the
sun, and the observed planet. The significance of (3.6) is that in the most
favourable circumstances Ptolemy had the potential possibility of
discovering eccentricities as small as 1/350. Thus, the eccentricities, even
of Venus (~ 1/1 47), were readily accessible to observation.

Equally accessible were the deviations from the zero-eccentricity
approximation associated with the departure from uniformity of the
motion. They are in fact of exactly the same magnitude as the eccentricity
deviations. However, examination of Table 3.1 shows that the ellipticities
(except in the case of the very unfavourable Mercury) were quite out of
reach for Ptolemy. (It might seem that Mars's ellipticity was just within
Ptolemy's reach. However, in this case the geometrical factor C in (3.6)
militated against him, quite apart from the fact that the errors in his
scheme completely swamped the ellipticity.)
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Before starting on a detailed discussion of what Ptolemy did, a general
comment is in order. In the framework of the general programme to 'save
the phenomena', Ptolemy's main aim was, of course, to explain the
appearances observed on the two-dimensional sky by means of motions
in three-dimensional space that were as simple and economic as possible.
A key aspect of this programme was the recognition that the observed
motions were evidently due to the superposition of two motions, one of
which, as we now know, corresponds to the planet's own motion around
the sun, while the other corresponds to the earth's motion. Since both
effects represented deviations from the uniform diurnal motions, they
were, for the reason given earlier, called anomalies; in the medieval and
Renaissance literature they were also called inequalities, and Kepler calls
the motion corresponding to the planet's own motion around the sun the
first inequality and that corresponding to the earth's the second inequality.57

Because of the epicycle-deferent inversion, the second inequality
corresponds to the epicycle motion of the outer planets and the deferent
motion of the inner planets. Because of this complication, it will be
increasingly convenient, especially in Chaps. 5 and 6, to refer to the two
inequalities, which have, in contrast to epicycle and deferent, a fixed
significance. In these terms, Ptolemy's task was to unravel cleanly the first
inequality from the second and to represent each by as simple a motion as
possible. As we shall see, he nearly but not quite succeeded.

Let us now consider how Ptolemy probably attempted to refine the
simple (zero-eccentricity) epicycle-deferent technique is inherited from
his predecessors. Examination of Fig. 3.15 will tell us what the observa-
tions suggested. That figure has been drawn under the assumption that
the earth and the three outer planets all have zero eccentricity. In that
idealization, the retrogression loops, representing the effect of the second
inequality, i.e., the earth's motion, repeat themselves with perfect
regularity, the sizes and the intervals between them remaining constant.
Now suppose that the earth still has zero eccentricity but that the three
outer planets have their actual eccentricities. Because the epicyclic motion
reflects the motion of the earth around the sun, the epicycle motion
(uniform rotation about the guide point) will remain unaltered. However,
the deferent motion, or first inequality, which is simply the motion of the
planet around the sun, will be changed accordingly. When the planet is at
its furthest from the sun, its apparent motion is slower; half of the
reduction corresponds to the actual slowing down, the other half to the
purely geometrical effect of the motions being seen from further away.
This means that the deferent guide point will not advance so far around
the ecliptic between successive retrogression loops - the successive
points corresponding to the point O in Fig. 3.15 will be more crowded
together. But when the planet is at the diametrically opposite point of the
ecliptic, the deferent guide point will advance more rapidly, and the
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retrogression loops will be accordingly more widely spaced. The sizes of
the loops will also be different, being smaller when the planet is further
away from the sun. For Saturn and Jupiter these effects are quite readily
observable if followed for a sufficient number of years.

Now because of the specific eccentricities of the orbits of the earth and
the outer planets, above all the relative smallness of the eccentricity for the
earth, the picture just described, corresponding to zero eccentricity of the
earth's orbit, is very close to what is actually observed. The nonzero but
very small eccentricity of the earth's orbit changes the apparent motion of
the three outer planets from the pattern described in Fig. 3.15 by an
amount that is only about a tenth of the change just described in the
deferent motion in the case of Mars and even less in the case of Jupiter and
Saturn. (The exact amounts are determined essentially by the ratios of the
eccentricities and the ratio r/R, where r is the mean radius of the earth's
orbit and R is the mean radius of the outer planet under consideration.)

Not surprisingly, Ptolemy concluded that the epicycle part of the
theory for the three outer planets was perfectly correct and that in all three
cases the retrogression loops were simply due to an epicycle spoke (of
constant length) rotating at a uniform rate around a deferent guide point,
just as in the simple theory. He saw the main task as being the explanation
of the apparently nonuniform motion of the guide point around the
deferent, i.e., around the ecliptic.

Now as regards the observed general tendency, the effect is just like
what Hipparchus and Ptolemy observed in the case of the sun (and the
main correction to the moon's motion), namely, the apparent non-
uniformity in the deferent motion appears to be due to an eccentric placing
of the deferent circle with respect to the observer. This rather obvious
conclusion was moreover confirmed by the fact that the retrogression
loops were observed to be smaller in the part of the ecliptic in which the
planet is moving slower, as is to be expected if an epicycle spoke of
constant length is observed from a greater distance. Thus, just as for the
sun, Ptolemy must initially have concluded that the magnitude of the
eccentricity and the direction of the line of the apsides could in principle
be deduced from observations of the position of the deferent point at
three different times. (It will be recalled that Hipparchus based his theory
of the sun on observations of the times at which the sun passed through
the vernal equinox, the summer solstice, and the autumnal equinox.)

However, in the case of the epicycle-deferent motion of the planets
there is an important difference from the solar theory. The sun is seen
directly as it travels around the ecliptic. But in the theory of the planets the
deferent guide point is void. One can only see the planet, but that travels
on the tip of the epicycle spoke. How did Ptolemy set about locating the
exact position of the guide point? Crucial here was his assumption that
the epicycle spoke rotated perfectly uniformly. Now if the eccentricity of
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the earth's orbit had been exactly zero, the epicycle spoke would always
march exactly in step with the sun, since the epicyclic motion is simply the
reflection of the earth's motion around the sun. Thus, the epicyclic spoke
would always be exactly parallel to the direction from the earth to the sun.
But here Ptolemy faced a problem. He had no idea of the underlying
identity of the two motions. For the purposes of describing the apparent
motions of the planets, perfectly uniform motion of the epicyclic spoke
seemed quite adequate. But the sun did not move uniformly, as Ptolemy
knew only too well. But, in that case, what determined the direction of the
epicyclic spoke? Since the spoke was assumed to rotate uniformly, it
could not remain parallel with the direction to the nonuniformly moving
sun. Ptolemy grasped at the only straw to hand and assumed that the
epicyclic spoke rotated uniformly and always remained exactly parallel to
the direction of the mean sun. By making this assumption, Ptolemy elevated
the mean sun to the most important concept in his theory, compared with
which the part of the true sun was that of the second fiddle. (The main
importance of the true sun in Ptolemy's overall scheme was in fixing the
position of the moon at the centre points of lunar eclipses.) Kepler
remarked58 that Ptolemy did this without a sound observational basis, fol-
lowing instead 'the preconceived and false opinion that it is necessary to
suppose the movements of the planets are regular throughout the whole
circle'. This is a bit unfair, since Ptolemy was prepared to abandon the prin-
ciple of uniform motion when it was absolutely necessary, and this, as we
shall see, had very important consequences. However, in the case of the
epicyclic motions, it just so happens that uniform motion in alignment with
the mean sun describes the observations surprisingly well.

The assumption that Ptolemy made about the parallelism between the
epicyclic spoke and the mean sun was all he needed to complete his
model. Figure 3.17 shows what must, almost certainly, have been the
form of his initial model, or hypothesis as he and all early astronomers
called such models. (In the astronomical jargon, hypothesis had much the
same meaning, say, as physical model does in modern nuclear physics.) In
this figure, the earth (and observer) are at O. The centre of the deferent
circle is at C, so that the line of the apsides is along OC with the perigee of
the deferent guide point at B and apogee at A. Ptolemy's original
assumption must have been that the centre D of the epicycle, the guide
point, moves uniformly around the deferent (on the tip of the deferent
spoke, shown by the broken line) while the epicycle spoke DP, at whose
tip P the planet is carried, rotates uniformly relative to a direction fixed in
geoastral space. Of course, Ptolemy could only observe P, not D, so a
priori, he did not know the position of D. However, he made the
assumption that DP is always exactly parallel to O0, the vector of the
mean sun 0. He therefore looked for occasions at which the planet was in
opposition to the mean sun (as in Fig. 3.17) and noted its longitude in
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Fig. 3.17.

geoastral space (i.e., its ecliptic longitude). In accordance with his model,
he knew that at the time of such an opposition the guide point would
coincide with the planet's position on the sky as observed from the earth.
This was the device that Ptolemy employed to make the guide point
'visible'. Such occasions occur whenever the planet is observed from the
earth to be in opposition to the mean sun. Such observations were called
acronychal* observations and play a very significant role in the Almagest
and also in the work of Copernicus, Brahe, and Kepler.

Once Ptolemy had in his possession three such acronychal observations
of an outer planet corresponding to the points D, D', and D", in Fig. 3.17,
he was in nearly but not quite exactly the same position as Hipparchus in
the solar problem, for he knew the lengths of time taken by the planet to
pass between these points, from which the actual lengths of the arcs DD'
and D'D" could be calculated (since the deferent guide point is assumed
to move uniformly around C and the period of this motion is known, the
mean daily motion of the deferent guide point can be readily calculated).
So far there is no difference from the Hipparchan theory. However, we
recall that Hipparchus made his observations at the two equinoxes and
the summer solstice, so that he obtained successive positions of the sun
that, seen from the earth, were separated by exactly 90°. Mathematically,
this gives us the original Hipparchan problem, which can be stated as

* The word derives from the Greek for 'at nightfall', since the superior planets rise at sunset
when they are in opposition to the sun.
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follows. Suppose a body moves around a circle at a given uniform speed
and is observed at three times. The arcs of the circle traversed by the body
between the first and the second observation and between the second and
the third are then known. Each of these arcs is known to subtend a right
angle from a point O situated at some unknown position not coincident
with the centre of the circle. The problem, which is readily solved by
elementary trigonometry, is to find this position from the given data.

We now consider the generalized Hipparchan problem, which corresponds
to Fig. 3.17. In this case the observations again tell us the angles subtended
at O by the arcs (DD' and D'D"), but these angles are no longer right
angles. This problem too can be solved uniquely by trigonometric
methods though it involves considerably more work. Rather than go
through the details, let me merely demonstrate its solvability by a simple
heuristic argument. Suppose three coplanar lines emanating from a point
O and making adjacent angles at O equal to DOD' and D'OD" (Fig. 3.17).
Draw a circle with arcs subtended from the centre proportional to the times
between the observations (as fractions of the orbital period). This
corresponds to the assumption of uniform motion about the centre of the
orbit. Now take any point on the line corresponding to OD and place it at
D. Then, holding the chosen point fixed, swing the lines around until the
line corresponding to OD' passes through D'. In general, the third line
will not pass through D" but will cut the circle at some other point X. But
now vary the original point chosen on the first line to coincide with D. The
new point X will then be moved on the circle. Continue adjusting the
point on the first line corresponding to D until the resulting point X
coincides with D". The problem is then solved, since O is at the position at
which the given arcs subtend the required angles. Note that, once again,
the absolute dimensions cannot be determined, so that the overall scale is
arbitrary. It is also worth noting that the generalized Hipparchan problem
occurred in the Hipparchan-Ptolemaic theory of the moon, in which three
observations are obtained at eclipses of the moon. Such observations, like
the acronychal observations of the planets, are also not separated by 90°.
Finally, we may mention that Hipparchus need not have solved the solar
problem with observations at the equinoxes and a solstice; he could have
taken any three observations suitably spaced around the orbit. From the
point of view of accuracy, this would, in fact, have been preferable, since
the precise moment of a solstice, at which the sun has no motion in
declination, is difficult to determine with accuracy.

Let us now return to Ptolemy and the problem of the planets. Solving
the generalized Hipparchan problem with three acronychal observations,
he could determine for the deferent the direction of the line of the apsides
AB and the eccentricity OC (as always, Ptolemy set the length of the
deferent radius CA equal to 60). Knowing then the period of the deferent
motion (equal to the sidereal period of the planet being studied), he must
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have assumed that the deferent spoke rotated about the centre of the
deferent with uniform angular speed corresponding to this period. As he
also knew the time at which the guide point occupied the position D, he
could then calculate its position at any other time. But he also knew the
position of the epicycle spoke at the same time and how fast it too moved.
The only information he lacked was the length of the epicycle spoke as a
ratio of the length of the deferent spoke. But this, as we have seen, is
readily determined.

It is only necessary to calculate, for example, the time required for the
epicycle spoke to rotate through 90° relative to the deferent spoke. At that
time the deferent guide point will have moved forward a certain calculable
distance. Then from observation of the actual position of the planet at that
time relative to the position calculated for the guide point the length of the
epicycle spoke follows by elementary trigonometry. Thereafter, it was a
matter of pure calculation to determine where the planet should be
observed at any future time. In principle, the prediction should be
accurate to about 3 of the apparent diameter of the moon.

However, when Ptolemy checked the theory, he must have found the
predictions were quite seriously wrong except for acronychal situations,
i.e., when the planet was in opposition to the mean sun. In the light of our
earlier discussion of the small-eccentricity limit of Kepler's laws the
reason is evident. Ptolemy's initial model* does not reflect what actually
happens. In particular, his theory takes no account of the fact that in the
small-eccentricity approximation the deferent motion, which is the reflec-
tion in the epicycle-deferent model of the planet's actual motion in
helioastral space, is not uniform about the centre of the deferent circle but
about the point corresponding to the second (void) focus of its elliptic
orbit. Thus, Ptolemy's initial deferent model suffered from exactly the
same defect as the Hipparchan solar theory: he must have obtained for the
deferent an eccentricity that was exactly twice what it should be. And
whereas in the case of the sun this defect remained undetectable, in the
case of the theory of the planets the error did show up.

The reason for this can be quite readily seen by referring back to
Fig. 3.10 (p. 129). In the discussion of that figure we pointed out that
provided the equant spoke always rotates uniformly about the point E' at
distance 2e from the observer (at E) then the position of the centre of the
circle on which the observed body is assumed to move has very little
influence on the position at which the model predicts it will be seen on the
sky. This is because a shift in the position of the centre of the conjectured
orbit merely moves the predicted position in space up or down the line
E'Sp (to the position Sc). But because of the conditions of observation, this
motion, when seen from E, is very greatly foreshortened. It is for this

* It should be emphasized that I describe here an hypothetical reconstruction.
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reason that it becomes virtually undetectable unless the eccentricity is
quite large.

Now in the case of the planets the theory described by Fig. 3.10 does not
give the position of observed body but only the position of the guide point
around which the epicycle spoke rotates. The planet itself is at the tip of
the epicycle spoke. Figure 3.18 shows the situation to scale for Jupiter,
which has an eccentricity of ~1/21. The observer is at E, which is
effectively the position of the sun, since the epicycle-deferent motion
makes the deferent motion for an outer planet into the motion of the
planet around the sun (only approximately, since Ptolemy did not
separate the two motions quite cleanly). The correct position of the guide
point (corresponding to the epicycle-deferent representation of planetary
motion) is at D, the incorrect one deduced following the model of the
Hipparchan solar theory is at D'. The points P and P' represent the
position of the planet when the epicycle spoke is at right angles to the
deferent spoke in the correct and incorrect theories, respectively. Two
factors help in the detection of the flaw. First, the eccentricity of Jupiter's
orbit being about three times that of the earth, the angle DED' is
correspondingly larger (recall that Fig. 3.10 is shown for a greatly
increased eccentricity, whereas Fig. 3.18 is to scale). Second, the position
of the epicycle spoke puts PP' in a more favourable position for
observation than DD', i.e., the epicycle spoke effectively transports DD'
into the position PP', which is more favourable for observation from E.
This effect is particularly important for Mars and Venus, since for them
the epicycle spoke is nearly as long as the deferent spoke, so that the angle
DEP becomes quite large (about 50°). The error shows up because the

Fig. 3.18.
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possibilities for using trigonometry to control not only angular positions
but also actual positions in space are very greatly extended in the
planetary problem.

Ptolemy was not one to admit defeat readily. It is worth quoting here
what he said in the Almagest in connection with his realization that the
theory of the moon which he had inherited from Hipparchus (and in
which he had invested much effort himself) worked very well for eclipse
observations but not nearly so well at the lunar quadratures:59 'Those who
approach this science in a true spirit of enquiry and love of truth ought to
use any new methods they discover, which give more accurate results, to
correct not merely the ancient theories, but their own too, if they need it.
They should not think it disgraceful, when the goal they profess to pursue
is so great and divine, even if their theories are corrected and made more
accurate by others beside themselves.'

Ptolemy does not tell us in the Almagest how he found the solution to
his problem; he merely speaks of being compelled:60 'to make some basic
assumptions which we arrived at not from some readily apparent
principle, but from a long period of trial and application'. However, it
appears that, having worked out his initial theory (presumably along the
lines indicated here), he tested it by calculating how large the retro-
gression loops should appear when the guide point is at perigee and
apogee. For purely optical reasons, the loops should appear larger at
perigee, and the difference should follow from the theory. Ptolemy
reports61 however that the eccentricity deduced from the equation (i.e.,
from application of the Hipparchan solar theory to explain the non-
uniformity of the motion of the deferent guide point) is found by
observation to be about twice that derived from the size of the
retrogression arcs. This presumably gave him the hint that the true
geometrical centre of the deferent must be found by halving the
eccentricity found by the Hipparchan solar theory. However, this forced
him to abandon the idea that the void guide point on the deferent rotates
at uniform angular speed about the centre of the deferent. Instead, if
Neugebauer is correct,54 he used his experience from the moon and
assumed that there exists some other point about which the motion of the
guide point appears to be uniform. Where could this point lie? As the
reader already knows the small-eccentricity form of Kepler's laws, the
result that Ptolemy obtained will come as no surprise. The point
previously taken to be the centre of the orbit lost that status but was
reinterpreted as the point about which the motion appears uniform.
Ptolemy found the equant. That is, he found that all the observations, both
acronychal and nonacronychal, could be explained by assuming that an
observer stationed on the opposite side of the centre of the deferent from
the position of the terrestrial observer and at an equally great distance
from the centre would, if the guide point were visible, observe that it
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moves around against the backcloth of the stars with a constant angular
velocity. Thus, the total distance between the observer and the equant
must be precisely equal to the eccentricity obtained using the incorrect
Hipparchan solar theory. Since the centre of the deferent is at the middle
between these two points, the deferent must have an eccentricity only half
as large as that deduced from Hipparchan theory. Without knowing it,
Ptolemy had found the two foci of the planet's elliptical orbit together
with the circle, correctly positioned with its centre at the centre of the
ellipse, that gives the best approximation of the elliptical orbit. Thus, he
had found, in geocentric guise, exceptionally good approximations to
both of Kepler's first two laws of planetary motion; for both effects of first
order in the eccentricity - the eccentric position of the orbit and the
genuine nonuniformity of the motion - were in essence correctly
described.

We must say at least a few words about the geometrical technique
which Ptolemy used to determine the locations of the equant and the
centre of the orbit. We may call the corresponding problem Ptolemy's
problem. Here too he broke new ground, providing the first example in the
exact natural sciences of solution of a problem by successive approxima-
tion. The most important property of the two Hipparchan problems (the
original and the generalized) so far considered is the definiteness in their
formulation; this derives from the fact that the body is assumed to move
with exactly constant speed about the centre of the orbit. From the time
between the observations one can then calculate directly the lengths of
the corresponding arcs traversed by the body in its orbit. However, in
Ptolemy's problem the centre of uniform motion is not at the centre of the
orbit but at the equant, and the position of the equant is not known in advance.
It is therefore impossible to calculate the lengths of the arcs traversed in
the orbit between the times at which the observations are made from the
point of observation. All the theory tells one is that it and the equant are
at equal distances from the centre of the orbit, on opposite sides from the
centre, and that the motion appears uniform about the equant.

The way in which Ptolemy overcame this problem appears to reflect the
two successive stages that we have here conjectured his investigations to
have followed. Rather than describe in detail his procedure, I shall break
free somewhat from Ptolemy's exposition and merely explain the
underlying ideas; in particular I omit entirely the lengthy trigonometric
calculations that Ptolemy gives explicitly for each of the three superior
planets. The first step in finding the orbit from three acronychal observa-
tions separated by known intervals of time is to assume that the initial
theory, with equant at the exact centre of the orbit, is correct. One then
has to solve a well-defined generalized Hipparchan problem. In Fig. 3.19
the continuous circle with centre C is taken as the first approximation to
the orbit. The angles XCY and YCZ correspond to the arcs XY and YZ that
would be traversed by a body moving around the circle at uniform speed
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Fig. 3.19.

in the time intervals between the observations. The point O is found by
solving the generalized Hipparchan problem from such data, i.e., the
angles XOY and YOZ are equal to the differences of the observed
longitudes at the three successive acronychal observations. This, of
course, is not the solution to Ptolemy's problem, since the equant
coincides with the centre of the orbit and only O, the position of
observation, is eccentric. However, it can be modified to supply a
reasonably good approximation to the solution. To obtain this, we join C
and O and take the point C' at the midpoint between C and O. About this
point as centre we describe a second circle, of radius equal to the first. This
gives us the dashed circle in Fig. 3.19. From C let CX, CY, and CZ be
extended until they meet the new circle at X', Y', Z'. This dashed circle can
then be taken as a better approximation of the orbit and C and O as the
corresponding approximations of the equant and point of observation.
For the centre C' of the dashed circle is at the midpoint between C and O,
as it must be in Ptolemy's model, and the angles X'CY' and Y'CZ' are
equal to XCY and YCZ, respectively, i.e., they are the correct angles that
should be observed from the equant. Only the angles at O are incorrect.
For the observed angles between the three acronychal observations
should be XOY and YOZ, and these are not equal to X'OY' and Y'OZ',
respectively.
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The error can be corrected in one of two ways, either of which involves
renewed solution of a properly defined generalized Hipparchan problem.
In the first, one can calculate the angles subtended by the arcs X'Y' and
Y'Z' at the centre of the dashed circle and seek a new point O' such that
the arcs X'Y' and Y'Z' subtend from the point O' the two angles between
the observed acronychal longitudes. In this case, the Hipparchan problem
is solved for the dashed circle. Alternatively - and this is the choice that
Ptolemy made - one can stick to the original continuous circle (this is the
equant circle mentioned in Sec. 3.7, p. 126) with arcs XY and YZ and solve
a new Hipparchan problem, in which the two angles between the three
successive acronychal longitudes are corrected by means of the solution
already found. For, as Ptolemy pointed out, that solution was found
under the assumption that the point X coincides with X', Y with Y', and Z
with Z'. We recall now that the points X', Y', Z', through which the planet
passes in accordance with the modified model, are actually visible,
whereas X, Y, Z are not. However, possessing our first approximate
solution, we can say that, could we observe X, Y, Z directly, we should see
them from O displaced by the angles X'OX, Y'OY, Z'OZ. These angles
can be calculated by trigonometry using the first approximate solution.
From the actual point of observation, which we hope to find and which
can be assumed to be quite close to O, the corresponding 'correction
angles' will be nearly equal to these angles. Therefore, adding them as
corrections to the actually observed angles, we obtain a new Hipparchan
problem with the same given arcs XY and YZ but corrected angles. It to
will lead us to a revised position O' for the position of the observer (not,
in general, coincident with the O' found by the alternative method but
nevertheless very close to it).

However, we are still not at the end since the centre C' of the dashed
circle is not in general at the midpoint of O' (found by either method) and
C. Therefore, the next step is to take a new circle (not shown in Fig. 3.19)
of the same radius as the first two but with centre C" at the midpoint of
O'C. The approximation procedure can then be repeated with this new
circle taken as the actual orbit. Thus, the solution of Ptolemy's problem
involves solution of a succession of generalized Hipparchan problems,
each one leading to a better approximate solution until the observations
are reproduced to realistic accuracy. Ptolemy in fact found that it was
necessary to make only one or two corrections.

Having found the deferent, equant, and point of observation, Ptolemy
then needed one further observation, which must be nonacronychal, to
determine the relative length of the epicycle spoke. This completed his
model and thus, with just four observations, he was in principle able to
determine the position of the planet to a remarkably good accuracy at any
other time. The simplicity, elegance and accuracy of his theory are
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breathtaking, and the sophistication in its practical application is
impressive.

The equant was truly Ptolemy's greatest discovery and the crowning
achievement of Hellenistic astronomy. Both Ptolemy's lunar theory and
his discovery of the equant can be regarded as corresponding to an
advanced, or second, level of theoretical sophistication. For the effects
described by the Hipparchan solar theory and the simple epicycle-
deferent theory of planetary motion could be read off more or less directly
from sufficiently good observations. These theories are thus at the first
level of sophistication. But neither evection nor the equant could become
apparent before these first-level theories had been pushed to the limit of
what they could achieve. Only when this had been done did these two
residual effects become apparent; they were literally 'made visible' by the
lower-order theories. For reasons that will later become clearer, the
discovery of the equant must certainly rank as one of the most important
milestones on the road to the discovery of Newtonian dynamics. It is
unquestionably one of the 'baker's dozen' and the second to come from
astronomy.

Great though Ptolemy's discovery was, it may have contributed to the
subsequent stagnation of theoretical astronomy for nearly one and a half
millennia. In this, the specific eccentricities of the individual planetary
orbits undoubtedly played an important role. To see this we need to
summarize what Ptolemy achieved with his discovery of the equant. At a
stroke he reduced the errors of the simple epicycle-deferent theory for the
three superior planets by an order of magnitude. Only for Mars does
Ptolemy's final scheme lead to occasional errors significantly in excess of
his observational accuracy. (From the Almagest it is not possible to judge
to what extent Ptolemy was aware of this. He does not leave the
impression of having made long and extensive series of observations to
check in detail the predictions of his theory once found. There is also a
passage, to be quoted in Sec. 3.16, which can be read as an admission on
his part that the phenomena did not quite fit his theory in every respect.)

The unfortunate aspect of this great advance was that it obscured a
particular perversity of the problem of unravelling the planetary
observations by means of observations from the earth. We recall that
the motion of a planet in helioastral space is a problem with a small
parameter - the eccentricity of the planet's orbit. But when the planet is
observed from the earth, this relatively simple theory with a single small
parameter is transformed into a problem with two small parameters, for
now the effect of the eccentricity of the earth's orbit is added. It is this that
makes the problem in its full generality so difficult. In one sense Ptolemy
was very fortunate that the eccentricity of the earth's orbit is so small,
since it effectively reduced the problem for the outer planets to one with
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only one small parameter. This was undoubtedly the reason why Ptolemy
was able to discover the equant in the first place. But he was simul-
taneously misled into thinking that the epicyclic part of his scheme was in
essence correct - that the epicycle spoke does indeed rotate with perfect
uniformity.

This led him to believe that in all cases the deferent motion must be
described by an equant but not the epicycle's motion. Looked at in terms
of expansions with respect to the eccentricities, Ptolemy's scheme
therefore represented a hybrid - it was of first order with respect to the
eccentricities of the three superior planets but of zeroth order with respect
to the earth's motion.

This erroneous impression was greatly strengthened by the curious
accident that the orbit of Venus, next to the earth on its inner side, has by
far the smallest of the eccentricities of the earth and the five naked-eye
planets. However, for this planet, like Mercury, the deferent and epicycle
were interchanged. Thus, for Venus, which is in fact the only planet for
which Ptolemy explicitly demonstrated62 how the existence of the equant
could be proved and its position established,* the deferent motion
represented the earth's motion while the epicycle represented Venus's.
Once again this made it appear that there was an equant in the deferent
motion but not in the epicycle. The greatest irony here was that Ptolemy,
quite unwittingly, determined the eccentricity of the earth's orbit twice -
once in the theory of the sun, when, using Hipparchus's theory, he
obtained a value about twice the correct one, and again in the theory of
Venus, when he obtained a value much closer to the correct one, namely
~l/48. (He also found that the line of the apsides for Venus's deferent was
in roughly the same direction as the line of the apsides for the solar
motion. However, these coincidences did not apparently attract his
attention.)

Of the five naked-eye planets, only Mercury, which has by far the
largest eccentricity, failed to fit into the neat pattern Ptolemy had found
for the other four (with equant in the deferent motion and uniform
epicycle motion). The scheme which Ptolemy devised for Mercury was
much more complicated than for the four other planets. This was not
surprising, since for Mercury the eccentricities of both orbits come into
play and even the ellipticity of Mercury's orbit produces a sensible effect.
Thus, whereas the problem for the other four planets contained
effectively only a single small parameter manifested to first order at the
level of Ptolemy's accuracy, the problem for Mercury contained two with
one of them, moreover, manifested in second order. To boot, Mercury,
being always so close to the sun, is quite the hardest of them all to observe.

* For the inferior planets Ptolemy was able to use a different and rather more direct scheme
to solve his problem than was possible in the case of the superior planets.
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No wonder it is called the thankless planet. For this reason it played little
positive part in the early development of theoretical astronomy.

We shall have more to say about the residual defects of the Ptolemaic
system in the chapters on Copernicus and Kepler, since their elimination
is closely associated with the emergence of some of the most important
concepts of dynamics. In the meantime we can close this section with
some general comments that are already appropriate.

First, seen in the light of the subsequent history of astronomy, the
problem with the Ptolemaic system was that it was good but not quite
perfect. Because it was good - in part extraordinarily good - it was able to
survive for a very great length of time. Inverting Voltaire's famous
aphorism, we can truly say 'the good was the enemy of the best'. The
trouble was that none of the residual defects was sufficiently large or
manifested with a signature sufficiently clear to suggest that anything
was drastically wrong. For this the specific eccentricities of the planetary
orbits coupled with the poor observability of Mercury were almost
entirely responsible. Thus, for many centuries after Ptolemy the
astronomers, especially the Islamic ones, busied themselves with
improvements to various elements of Ptolemaic theory, making, for
example, accurate determinations of the solar eccentricity. This led them
to note, for example, the fact that the eccentricity for Venus's deferent was
remarkably close to half the value they determined for the solar motion
and this was adopted as a definite relationship,63 without however any far
reaching consequences being drawn. There was also quite a lot of what
might be called aesthetic or philosophical rearrangement of the Ptolemaic
models, which aimed to reproduce essentially the same motions but with
different arrangement of circles etc. We shall return to this topic in
Chap. 5, since it was this kind of activity that led Copernicus to his great
discovery. However, because the models seemed to work so well, and
with such an economy of means, no one appears to have attempted a
really thorough re-examination and comprehensive testing of the entire
structure of the theory presented in the Almagest (which, we recall, was
built up in a very logical manner in the sequence sun-moon-stars-planets
with each new level resting on what had gone before).

This situation actually persisted until after the Copernican revolution.
It was only in the second half of the sixteenth century that Tycho Brahe
(1546-1601) set about the systematic accumulation of data in sufficient
quantity and with sufficient accuracy to permit a really radical re-
examination of the Ptolemaic models. It was at this point that the curious
failings of the models at last became obvious and it was necessary to face
up to the paradox of the remarkably good accuracy of much of the system
coupled with a persistent inability to get everything just right.

The Ptolemaic system in fact worked rather like a sausage machine, and
indeed in two respects. First of all, it was an automatic algorithm. You fed
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in certain carefully selected observational data, did the calculations, and
out came the information you needed: the eccentricity of the deferent, the
direction of its apsides, and the ratio of the length of the epicycle spoke to
the deferent spoke. Calculation of the future position of the planet at any
future epoch was then more or less a matter of turning the appropriate
handle. The problem was that errors associated with the mistake made in
the Hipparchan solar theory, i.e., in the earth's motion in Copernican
terms, and also associated with the use of the mean sun, introduced a lack
of focus which had the effect of 'smearing' the predictions for the
positions of the planets, especially Mars, when away from acronychal
positions. Instead of producing a clean line, the algorithm produced a
string of sausages: the theory matched the predictions pretty well at the
acronychal points, at which the skin of the sausage pinched in, but in
between the errors became larger than the observational errors.

Until Kepler joined Brahe's team, the attempts to rectify the system
failed because no one grasped the direction in which the original epicycle-
deferent scheme needed to be changed. It was not through the addition
of extra motions (epiepicycles etc.); for (in geoastral space) the original
idea was quite right: only two motions were needed. There was nothing
wrong with that idea, nor even the circularity of the motion. What no one
grasped was that the problem really contained not just one eccentricity
and one equant (in the deferent) but two of each. Except for Mercury, the
defects of the Ptolemaic system all resided in the theory of the second inequality,
i.e., the component in the apparent motion of each of the planets with the
same periodicity as the sun's apparent motion. The fruitless searching for
the correct solution gave rise to considerable scepticism among Brahe's
assistants about the possibility of ever 'saving the appearances'. Whatever
hypothesis was chosen to sharpen the focus in one part of the system
made it more blurred elsewhere. The last elusive refinements needed to
perfect the system could not be run to ground.

The second comment that can be made here concerns the character of
the "laws of motion' which Ptolemy (and his predecessors) used to
describe the planetary motions. Ptolemy's scheme was geometrokinetic
through and through; in the Almagest he sought simply to describe
motions - he did not invoke any sort of causal or physical explanation for
them. We have already commented on the remarkably matter-of-fact way
in which Ptolemy reports that the motions of the planets (and, to a lesser
extent, the moon) are to a high degree controlled by the sun. But I do not
think there is a single word in the Almagest that implies the requirement
of some physical cause to explain this undoubted fact.

This comment should not be interpreted as a criticism of Ptolemy: it is
certainly anachronistic to expect the Hellenistic astronomers to have had
our modern notions of physical causation. Indeed, I have already
emphasized the point that it was only because they did concentrate
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almost exclusively on the accurate mathematical representation of celes-
tial motions that the eventual emergence of physical concepts was made
possible at all. It is also worth mentioning in Ptolemy's defence that he
was well aware of the apparent oddity of some of the motions that he
proposed, especially in the explanation of the motion in latitude, i.e., out
of the ecliptic, of the planets (this is a topic which we shall consider in
Chaps. 5 and 6), but he argued, very plausibly given his basically
Aristotelian outlook, that one should certainly not expect celestial bodies,
which, after all, were believed to be made of an entirely different
substance (quintessence) from the terrestrial bodies, to behave in the way
one would expect from earth-bound experience.64

Finally, we may point out that closely related to the lack of a physical
element in the Ptolemaic system is the prominent place accorded in it to
moving or stationary void points. They occur in innumerable places and are
an indispensable part of the theoretical scheme. Each deferent for the
planets has two - the centre and the equant. To these are added the
moving void points of the epicycles. Moreover, in the case of the moon the
deferents themselves move about further void points. Just as with the
manifest connection between the epicycle motion and the apparent solar
motion, the Almagest does not reveal any curiosity on Ptolemy's part as to
the origin of these mysterious void points. In fact, he clearly did not see
them as puzzling or problematic.

Seeing a mystery in them was one of Kepler's major advances.

3.15. Time in Ptolemaic astronomy

So far we have awarded two 'buns' out of the 'baker's dozen' that went
into the creation of Newtonian dynamics to Hellenistic astronomy: for the
development of the epicycle-deferent scheme and for Ptolemy's dis-
covery of the equant. In this section the case is going to be argued for the
awarding of a third - for the clarification of the relationship between time,
or rather the measurement of time, and the mathematical description of
observed motions. And whereas the first two discoveries did not enter
directly into the final synthesis of Newtonian dynamics but still needed to
be transformed by the work of Copernicus and Kepler, the aspect of time
that the ancient astronomers uncovered passed almost unchanged into
Newton's Principia.

We have already seen that not only Aristotle but also the mathema-
ticians who developed kinematic geometry had a deeply ingrained notion
of the uniform passage of time. The astronomers Hipparchus and Ptolemy
were clearly no exception to this instinctive standpoint. The Almagest
contains numerous references to the passage of true time and Ptolemy
clearly felt no need to elaborate philosophically in the manner of Aristotle
on the nature of time. There is, however, a significant section in the
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Almagest in which he discusses the practical measurement of time and
identifies what he considers to be the one true source for measurement of
the passage of time.

Before we start on this, it is helpful to quote what Mach said in reaction
to Newton's assertion in the Principia that:65 'absolute, true, and
mathematical time, of itself, and from its own nature, flows equably
without relation to anything external'. In the face of this metaphysical
dogmatism - which was only an explicit statement in words of what the
Greeks had felt in their bones two thousand years earlier - Mach
responded in his characteristically uncompromising way:66 'It is utterly
beyond our power to measure the changes of things by time. Quite the
contrary, time is an abstraction, at which we arrive by means of the
changes of things; made because we are not restricted to any one definite
measure, all being interconnected. A motion is termed uniform in which
equal increments of space described correspond to equal increments
described by some motion with which we form a comparison, as the
rotation of the earth. A motion may, with respect to another motion, be
uniform. But the question whether a motion is in itself uniform, is
senseless/ The second half of this criticism by Mach has, of course,
already been anticipated in the discussion of Aristotle's lapse into
mathematical intuition following a more critical examination of what we
mean by time. (It is worth noting in passing the similarity between
Aristotle's 'philosophical' doctrines about time and Mach's 'time is an
abstraction, at which we arrive by means of the changes of things.')

What makes the stage of theoretical astronomy reached in the Almagest
so appropriate for the clarification of what we mean by the passage of time
is that it corresponded to an age in which, unlike Mach's, there existed
only one unique reliable source of time measurement (the rotation of the
earth) but at the same time momentous discoveries had just been made
that began to show in a precise manner (not hitherto suspected at all) how
'the changes of things' are all 'interconnected'.

Let us start by making one or two points. Until the invention of the
pendulum clock by Huygens in the seventeenth century, there were no
terrestrial motions or processes with a regularity remotely good enough
to serve as accurate time-keepers for either short or long periods of time.
They were all subject to far too many disturbances to be of any use,
though water clocks provided useful measures of times accurate to a few
minutes over hours or even days. This absence of a convenient clock was
reflected in the fact that in antiquity the length of an 'hour' depended on
the season of the year, the terrestrial latitude, and even whether it was
night or day. For the time between sunrise and sunset at any particular
locality was simply divided nominally into twelve equal daylight hours
and the time between sunset and sunrise into twelve equally nominal
night-time hours. These therefore were only of equal duration at the two
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equinoxes. This gave rise to the use in astronomy of equinoctial hours as a
technical concept for the measurement of times other than at the
equinoxes. By their definition, these were equal to our present hours. For
most astronomical purposes, a timing accuracy of one or two equinoctial
hours was perfectly adequate since the sun and the planets have on the
average an apparent motion of about one degree per day; since the
accuracy of measurement was about 10 minutes of arc and motion
through this angle required about four equinoctial hours, an accuracy of
one or two such hours was clearly adequate.

However, the moon's apparent motion is much more rapid, since it
travels through a degree on the sky in about two hours, or its own
apparent diameter in one hour. Thus, the unit of positional accuracy (10
minutes of arc) corresponds to about 20 equinoctial minutes, so the timing
accuracy for lunar work wants to be rather better than that if, for example,
the occurrence and appearance of eclipses (of great importance for
astronomers) are to be accurately predicted. Now this in fact brought the
question of the 'true' measure of time to a head. The reason is as follows.
Assuming for the moment that the rotation of the earth does measure the
'true' passage of time (we shall return to this), the question still remains:
Do we measure a day by successive return of the sun to the meridian or by
the successive return of a particular star to the meridian? For all civil
purposes, it is evidently much more convenient to use the return of the
sun (solar time), but this leads to a difference from the time measured by
the return of a given star (sidereal time). The difference comes about
because the sun moves relative to the stars and must therefore yield a
different unit of time. The most obvious difference is trivial: the mean
motion of the sun around the ecliptic means that the average solar day is
about four minutes longer than the average sidereal day. A more subtle
difference comes from two other factors. First, the sun moves at a
nonuniform rate around the ecliptic, as we know from the Hipparchan
solar theory. Second, the sun moves on the ecliptic, which is inclined at
an appreciable angle to the celestial equator. For this reason the solar day
would not be equal to the sidereal day (less those four minutes) even if the
motion of the sun around the ecliptic were perfectly uniform. The two
effects are superimposed, giving a characteristic curve which measures
the accumulated difference between solar and sidereal time over the
course of a year (they agree again after a year, of course). This curve,
which is shown in Fig. 3.20 as the heavy curve (the sum of the two
components), is known as the equation of time. It can be seen from the
figure that the maximum span of the deviation is about half an hour.

Neugebauer comments:67 'It is characteristic for the high level of
Hellenistic astronomy that a correct determination of this correction was
achieved. We do not know to whom is due this important step in the
theory of time reckoning; in the sources available to us the equation of



178 Hellenistic astronomy

Fig. 3.20. The equation of time (thick curve) and its two components (thin curves).
The component due to the obliquity of the ecliptic begins and ends at 0 on
March 22. The other thin curve is the component due to the nonuniformity of the
sun's motion around the ecliptic. (From General Astronomy, by H. Spencer Jones,

Arnold & Co, London (1951), p. 47.)

time, or its equivalent, is first attested in the Almagest.' The particular
significance of this correction is emphasized by Ptolemy himself, for
having noted the magnitude of the effect, he says:68 'Neglect of a
difference of this order would, perhaps, produce no perceptible error in
the computation of the phenomena associated with the sun or the planets;
but in the case of the moon, since its speed is so great, the resulting error
could no longer be overlooked.'

In praising Hellenistic astronomy for discovering the equation of time,
Neugebauer presumably had in mind the high level of its technical
competence. It is, however, worth noting that the astronomers' work,
especially Ptolemy's, had brought to light highly significant facts about
the way in which the passage of time is actually manifested in the world.
Aristotle may have had an intuitive notion of the uniform passage of time,
but in his day none of the innumerable motions observed on the earth or
in the heavens had been studied with the accuracy needed to translate
this intuition into anything that could be tested against fact. By the time
Ptolemy had completed his work, the comparison could be made for the
celestial motions at least, and the results represented a significant
modification of previous ideas. There were now sufficient data available
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to give a nontrivial answer to the question: What does it mean to say that
a motion is uniform or nonuniform? It was possible to give precise content
to the notion of a universal and equable flow of time.

One of the particular attractions of looking at this question on the basis
of the data available to Ptolemy is the relatively small number of celestial
motions that could be observed in his day. The whole field can therefore
be surveyed with ease and the conceptual points brought out more
clearly. Let us therefore list the available motions, bearing in mind that for
time-keeping purposes a motion alone is not sufficient - the motion must
be observed relative to certain marks that permit an unambiguous count
to be made, as when the hands of a clock move across the marks on the
dial.

There is first the apparent diurnal rotation of the stars. For time-keeping
purposes, this is extraordinarily convenient. A day can be defined by the
rising, setting, or passing across the meridian of any particular star as
observed from a fixed point on the surface of the earth. Since the stars all
appear to move together, the time defined by the apparent stellar motion
is the same whatever star is chosen as time-keeper. The diurnal motions
of all the stars are truly mutually uniform (though, of course, only to the
extent that their proper motions are ignored). It was, no doubt, because
of this fact, together with the belief that the sphere of the fixed stars
represented the most important part of the universe, which was respon-
sible for the evidently very deeply ingrained belief that the diurnal motion
of the stars is uniform. As we have seen, Hipparchus appears not to have
hesitated for a moment when confronted with the choice between the
apparent motion of the sun around the ecliptic and the diurnal rotation.
He automatically assumed the sun's motion to be nonuniform despite the
fact that, strictly speaking, such a choice is meaningless if only two
motions are involved. Ptolemy, for his part, made exactly the same choice
and evidently felt no need to justify it. In the Almagest he says simply:69

The revolution of the universe takes place uniformly about the poles of
the equator/

Continuing our list of observed motions, we have already mentioned
the motion of the sun around the ecliptic. This in fact generates two
possible measures of time because it can be considered relative to two
different markers - the fixed stars along the ecliptic and its passage across
some fixed local meridian. It is obvious that each of the other six
'wanderers' - the moon and the five naked-eye planets - each supply two
such possibilities for time measurement. They each also provide one
further possibility due to their motion in latitude, i.e., their deviation
from the ecliptic. In total, therefore, the ancients had at their disposal 21
different basic measures of the passage of time ( 1 + 2 + 3 x 6 ) . None of
these motions are mutually uniform. Thus, if any one is taken as the measure
of time and plotted along the x coordinate of a two-dimensional system of
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orthogonal Cartesian coordinates (the abscissa) while the other is taken as
the dependent variable y (the ordinate), then the resulting graph is not a
straight line. In the light of this fact, the unquestioned choice of the
diurnal apparent motion of the stars as the true measure of the uniform
passage of time appears rather remarkable.

The justification comes solely from the success of the theories that
Ptolemy (and, in part, Hipparchus before him) devised to account for
these various motions. The distinctive feature of all these theories is a
prescription that says how far the investigated body moves along a
definite curve in three-dimensional geoastral space while the stars make
a certain number of diurnal revolutions. Three points need to be made
here: (1) the theories are all expressed in strikingly simple terms using the
simplest geometrical curves (circles); (2) the prescription does not change
in time over very long periods (Ptolemy was able to show that lunar
eclipses recorded by the Babylonians in 720 BC led to the same theory of
the moon's motion as his own observations made about 850 years later);
(3) the time defined by the diurnal rotation of the stars works for the
theories of the motions of all the observed celestial bodies but the attempt
to use the time defined by any other of the motions fails; it is only when
the one sidereal time is used that all motions can be simultaneously
described by simple theories. This time is therefore universal.

Although some of these empirical results had been intuitively antici-
pated (especially the universality of the time measure) their actual
confirmation was still very important. Other results had not been
anticipated at all, above all the nominiformity of the motion. The early
philosophers and astronomers (Eudoxus, Aristotle, and even Hippar-
chus) had all assumed strict uniformity in the various elements that go
into the theories. With mutual uniformity assured, the relationship
between time and motion is almost trivial. Ptolemy found that non-
uniformity can still be described in a constant lawful manner and thus
advanced theoretical astronomy to a more sophisticated and nontrivial
level.

Given the mutual nonuniformity of all the observed celestial motions,
the fact that there is nevertheless a measure of time that is somehow
distinguished in a very special way is a most remarkable fact about the
world that should not escape mention. It clearly did not seem too
remarkable to Ptolemy because it fitted more or less the common intuition
of his time. Moreover, in the geocentric cosmology it seemed most
reasonable to assume that the sphere of the fixed spheres supplied the
prime definition of time. However, in the post-Copernican view of the
world, the fact that the rotation of the earth (and the other planets), alone
among the various motions of the planets and satellites, should give this
distinguished time directly seems rather more remarkable. One of the
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main aims of this study must be to try and come to a deeper understanding
of this fact, which will in any case be forced upon us by the later progress
of dynamics, which demonstrates quite clearly that the earth's rotation
cannot possibly be regarded as the ultimate measure of the passage of
time.

Although Ptolemy did not bring astronomy to the level of perfection at
which this need becomes acute, he did advance the art to a state in which
it could cope with this problem with relative ease when it did arise; that is,
he prepared astronomy for the day when it had to be recognized that there
is no motion at all that realizes concretely the 'uniform flow of time'.

To see this, suppose that after Ptolemy had worked out all his theories
some one presented him with a 'solar system' in which the orbital
elements of the various celestial bodies had been changed somewhat but
not out of all recognition and, in addition, the earth no longer rotated. The
clock had stopped. In this case, all Ptolemy would be able to observe
would be the positions of the seven wandering luminaries on the
background of the stars. But with trial and error (and, perhaps, the
assistance of a computer) Ptolemy would certainly have been able after a
while to compile tables of where the various bodies would be seen at a
certain 'time'. Unlike his actual tables, in which time was measured in
diurnal revolutions, the 'time' in these tables would not be concretely
realized by any motion but would be 'reconstructed' using the known
theory and the observed motions. For example, according to his theory
the longitude of the sun from apogee as it moves around the ecliptic is
given by

in which t is the 'true' time that has elapsed since the passage through
apogee (as earlier, we take the period to be 2ri). Ptolemy would know
neither the eccentricity e that appears here nor the position of the apogee,
so he could not invert the formula to obtain t from the observed positions.
However, by sheer brute force he could try all possible positions of the
apogee and all possible values of the eccentricity and then see if any of the
times then obtained made sense of the motions of the other bodies.
Finally he would hit on the correct 'time', and all the motions would work
out as they should according to his theory.

Nearly two millennia after he died, in the nineteenth and present
centuries, astronomers did in fact construct an abstract time in this sort of
fashion. This time, called ephemeris time, is the time according to which the
tables of positions of the planets and moon are calculated. (An ephemeris is
a table of the positions of a celestial body at future and past times as
calculated in accordance with the appropriate law of motion.) Note that
ephemeris time is only abstract in the sense that it is not realized by any
one particular motion but is concrete in the sense that it must be
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determined empirically from actually observed motions.* This manner of
conceiving how 'time' could be found empirically by trial and error
highlights the remarkable way in which all motions do run together. It
demonstrates, in Mach's words:71 'the profound interconnection of
things'.

Because of the important part played by nonuniform motions in his
scheme, Ptolemy was the first man who came to grips with this
interconnection at a level that required genuine sophistication. And
because he had effectively established the way in which a time parameter
can be introduced (which he did by showing that there exists a common
time parameter for the nontrivial laws of motion of all the celestial bodies)
the transition from sidereal to ephemeris time could be made relatively
painlessly when it became necessary. As a result, the concept of time
never suffered any abrupt or revolutionary change analogous to the
Copernican revolution between the age of Aristotle and 1905, when
Einstein created special relativity and completely changed ideas about
time. However, this should not obscure the important developments that
occurred in the meantime, above all the clarification by Ptolemy in a
nontrivial situation of the role that time plays in dynamics. As we shall see
in Chap. 11, the weightiest evidence that Newton advanced for his
concept of absolute time was essentially the evidence that Ptolemy
produced in the Almagest and summarized in his discussion at the end of
its third book.72 For this reason, these two or three pages, read in the light
of the theories developed in the Almagest, must be regarded as the most
significant discussion of the nature of time as a scientific concept prior to
Einstein's 1905 bombshell.

This is the reason why the third of the 'baker's dozen' should be
awarded to ancient astronomy.

It is appropriate to end this section with a brief extract from the Almagest
in which Ptolemy uses the Babylonian eclipse records mentioned a little
earlier to establish the positions of the moon and sun about 850 years
before his time. By means of chronological tables he knew the number of
days that had elapsed from the eclipse to his own epoch. This gave him
the number of 'ticks' of the clock, from which, as we shall see, he

* It is interesting to note that the practical realization of ephemeris time, which has since
been replaced by the use of atomic time, i.e., a time measure based directly on atomic
processes, actually inverted the Hipparchan choice of the motion used to measure time. For
ephemeris time, which was originally known as Newtonian time, was based on the apparent
motion of the sun around the ecliptic and was obtained by comparing the observed position
of the sun with the position based on the predicted motion found by solving Newton's
equations of the motion of the earth around the sun with allowance for the perturbations
caused by the other planets. An important point to note is that the corresponding corrections
are amenable to theoretical calculation whereas the rate of rotation of the earth is affected by
frictional tidal disturbances in its interior produced by the moon, and these could not be
calculated.70
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determined the position of the sun on the ecliptic and from that the
position of the moon. Note how the time of mid-eclipse is determined in
order to obtain a parallax-free position of the moon. Note also the use of
equinoctial hours and the conversion from Babylonian to Alexandrian
local time. Here is what Ptolemy has to say about the first of the eclipses
he used:73

The first is recorded as occurring in the first year of Mardokempad, Thoth [I] 29/30
in the Egyptian calendar [-720 Mar. 19/20]. The eclipse began, it says, well over an
hour after moonrise, and was total.

Now since the sun was near the end of Pisces, and [therefore] the night was
about 12 equinoctial hours long, the beginning of the eclipse occurred, clearly, 4|
equinoctial hours before midnight, and mid-eclipse (since it was total) 2\ hours
before midnight. Now we take as the standard meridian for all time determina-
tions the meridian through Alexandria, which is about f of an equinoctial hour in
advance [i.e. to the west] of the meridian through Babylon. So at Alexandria the
middle of the eclipse in question was 83 equinoctial hours before midnight, at
which time the true position of the sun, according to the [tables] calculated above,
was approximately -)4 24s0.*

We see thus how the whole of ancient theoretical astronomy hung on
the regular 'ticks' of the rotating heavens, the 'eternal image' of the law of
inertia.

3.16. The achievement of Ptolemy and Hellenistic astronomy

As noted in the introduction to this chapter, the achievements of
Hellenistic astronomy were for a long time underrated by comparison
with the purely speculative ideas that preceded them. It seems to have
suffered from the general opinion that the really great period of Greek
history lasted from Homer (whenever or whoever he was!) to about 50
years after the death of Sophocles and that anything which did not come
within this span was almost by definition decadent, a sad falling off from
the greatness that was Athens in its prime. Hellenistic astronomy is
pejoratively described as kinematic, while hints of heliocentricity in early
Greek astronomy (among the Pythagoreans) are lauded for their
'intellectual vigour' and bold use of physical concepts; Aristarchus is
hailed as the Copernicus of antiquity.74 Aristarchus's suggestion will be
discussed in Chap. 5, but it can already be said here that such a view does
great injustice to Apollonius, Hipparchus, and Ptolemy.

* ft 24i° means the sun was at 241° into the zodiacal sign of Pisces, i. e., at longitude 354|° (or
—5i°) from the vernal equinox (which was why the night was approximately 12 equinoctial
hours long). Note that the ecliptic was divided quite nominally into twelve equal intervals of
30° each; the working astronomers used the zodiacal names to identify these precisely
defined intervals, not the corresponding constellations, which had ill-defined boundaries.
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The truth is that it was the Hellenistic astronomers who patiently
accumulated all the data and developed for the first time in history a
theoretical method capable of making sense of the data. They were the
ones who pioneered the true scientific method and proved it by garnering
the first solid results in natural science; they discovered the first laws of
nature - and they made possible the Copernican revolution. No one
seized of the extent to which Newton relied on Kepler and Kepler on
Ptolemy (at least as much as on Copernicus) can fail to appreciate the part
played by Hellenistic astronomy in the discovery of dynamics.

For some reason the early historians of astronomy were particularly
hard on Ptolemy. The first great historian of the subject, Delambre
(1749-1822), dismissed Ptolemy as a hack. Neugebauer75 discusses the
way in which Delambre consistently downrated Ptolemy's work and
sought to show that he got the best part of it from Hipparchus. Koestler's
very widely read The Sleepwalkers gives a jaundiced and grossly unfair
picture. He says:76 There is something profoundly distasteful about
Ptolemy's universe; it is the work of a pedant with much patience and
little originality, doggedly piling "orb in orb".' He says that Ptolemy did
not contribute 'any idea of great theoretical value' and quotes with
approval the famous satirical lines from Milton's Paradise Lost, in which he
says of the astronomers:

. . ., when they come to model Heaven
And calculate the stars, how they will wield
The mighty frame, how build, unbuild, contrive
To save appearances, how gird the sphere
With centric and eccentric scribbled o'er,
Cycle and epicycle, orb in orb.

Reading Koestler, and several other authors, one can easily get the
impression that the Ptolemaic scheme was excessively complicated, as
implied by the quotations just given and also Koestler's statement77 that a
total of no less than forty wheels (i.e., circular motions) was needed in the
perfected Ptolemaic system. In fact, there are far fewer circles in the
Ptolemaic scheme presented in the Almagest than many accounts would
lead one to believe; Ptolemy was remarkably economic in his use of
circular motions. For the all-important longitudinal motions, only two
each were needed for Venus, Mars, Jupiter and Saturn. The sun required
only one. Apart from the treatment of the motion in latitude, the only
complexity was in the treatment of Mercury and the moon - and that was
highly understandable for Mercury and inescapable for the moon.

It is therefore appropriate to conclude this chapter with some general
comments about the overall achievement of this first great period in the
discovery of dynamics, summarizing some of the points that have already
been made. The first aspect to be noted is the astronomers' anticipation of
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the genuine scientific method, in particular the use of theory controlled by
observation.

One should start by distinguishing two quite different kinds of
theorizing: on the one hand, speculation based on plausible ideas but
unsupported by quantitative comparison with proper observations and,
on the other, the systematic use of theory as a means of interpreting a
given body of data with, equally important, additional data being used as
a control to check the correctness of the theory. Early Greek science, up to
and including Aristotle, abounded in the first kind of 'theorizing', as we
have seen.

The great achievement of Hellenistic astronomy was that it developed
systematically and with considerable success the fruitful use of theory in
which it is used to interpret observations, suggest further observations,
and in turn is submitted to testing by more observations. One of the most
significant passages in Ptolemy's Almagest is in his discussion78 of ancient
observations of the planets and his comment that they were made at times
and positions unsuitable for testing and setting up theoretical schemes.
By recognizing that observations had to be made at carefully chosen times
in order to get the greatest value from the point of view of understanding
the world, as opposed to just recording appearances, Ptolemy, who was
himself following the tradition set by the earlier Hellenistic astronomers,
above all Hipparchus, went half way towards the seventeenth-century
realization that the investigator of nature must intervene actively in order
to obtain the most favourable conditions of observation. And, above all,
Ptolemy and his predecessors used laws of motion in the systematic
attempt to understand the heavens. Conceptually, but with a long
chronological break, the work of Copernicus, Brahe, Kepler, and even
Galileo and Newton joined on continuously to what Ptolemy bequeathed
to posterity in the Almagest.

Thus, to pass from reading, say, Aristotle's Physics to Ptolemy's
Almagest is to pass from a world of philosophy rich in conceptualization
but disciplined at best by the rules of logic to science based on hard fact.

With hindsight, it is all too easy to criticize Ptolemy's rigidly geometro-
kinetic approach and the absence of any hint of physical causality, but this
fails to do justice to his great services to science. Astronomy had to pass
through that stage before it had the remotest chance of discovering, first,
the deviations from uniformity of the motion and then, second, the
utterly unexpected and minute deviations from perfect circularity that,
taken together, at last revealed the need for physical causality and
pointed the way to a true dynamic theory of motion. It would, in fact, be
difficult to devise a more efficient way of discovering the secret of the solar
system than the approach laid out by Hipparchus and Ptolemy.

It is also worth noting that although Hellenistic astronomy lacked our
modern physical causality it was nevertheless permeated by the idea of
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causality. For the whole basis of ancient Greek astronomy was the idea
that the irregular apparent two-dimensional motions on the sky were to
be explained by regular and lawful motions in three-dimensional space.
The successes of Apollonius, Hipparchus, and Ptolemy established on an
extremely secure foundation one of the greatest central ideas of modern
science - that behind the apparently irrational particular phenomena
presented directly to our senses there is a rational but unseen basis. This
idea, and the highly successful and not at all trivial demonstration of its
fruitfulness, was certainly a decisive factor in the emergence of modern
science.

Another point should be emphasized - Ptolemy's insistence that
observation comes before theory and that any theory, however attractive,
must be abandoned if it fails to describe the observations. For this attitude
of mind Kepler is given great credit and deservedly, as we shall see. But
the example had already been set for him by Ptolemy. We have already
quoted Ptolemy's comments about the need to revise the theory of the
moon's motion. It is also worth quoting what he had to say about
Hipparchus's attitude to the problem of the planets:79

but, [we may presume], he reckoned that one who has reached such a pitch of
accuracy and love of truth throughout the mathematical sciences will not be
content to stop at the above point, like the others who did not care [about the
imperfections]; rather, that anyone who was to convince himself and his future
audience must demonstrate the size and the period of each of the two anomalies
by means of well-attested phenomena which everyone agrees on, must then
combine both anomalies, and discover the position and order of the circles by
which they are brought about, and the type of their motion; and finally must make
practically all the phenomena fit the particular character of the arrangement of
circles in his hypothesis. And this, I suspect, appeared difficult even to him.

In the light of Neugebauer's comment quoted earlier (p. 137) about the
accuracy of ancient astronomy, it might seem that Ptolemy did not quite
live up to the ideals that he praised so eloquently. The resolution is to be
found in the failure, principally among Ptolemy's successors, to
appreciate that accuracy in itself is not enough; for, as the work of Brahe
and Kepler was subsequently to show, accuracy must be combined with
really systematic observational testing of the theories once found.

Nevertheless, when we consider the cavalier attitude to observation
and quantitative accuracy displayed by the Greeks, medieval
philosophers, and even Descartes and other major figures in the
seventeenth century in their study of terrestrial motions, we can
appreciate the importance for science of this example set by Hipparchus
and Ptolemy for at least the heavenly motions and their commitment to
find sound theoretical explanations for accurate observations. The
passage just quoted is perhaps the oldest extant statement of a systematic
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scientific research project. It established a paradigm that still proved
remarkably fruitful when extended far beyond its original domain.

We should also mention in this connection the immense importance of
Ptolemy's Almagest. As author of this work Ptolemy performed a service
to posterity of magnitude almost as great as that of Euclid. The Almagest,
which is more properly called the Syntaxis80 (i.e., a systematic treatise on
all aspects of astronomy), became a kind otHandbuch of ancient astronomy
and was of the first importance for several reasons. First, it summarized
all the major astronomical discoveries made by the ancients up to
Ptolemy's time, including his own; second, it was a masterpiece of clear
scientific exposition and became the standard reference work for over a
millennium. By virtue of its sheer quality it rapidly became indispensable,
and this ensured that the very substantial achievements of ancient
astronomy survived the vicissitudes of the pre-Gutenberg world and
were not lost for ever, as so much else was.

The Almagest, which has recently been translated into English by
Toomer and is highly recommended (together with the extensive
commentaries on it by Neugebauer2 and Pedersen81*) to the interested
reader, is written in a terse, sober, and factual style with an absolute
minimum of speculation. Its approach to observation and accuracy of
measurement is entirely modern (which makes some errors in the work,
especially in the solar observations, and also the occasional fiddling of the
data, particularly baffling). Just occasionally, there are passages of almost
lyrical intensity in praise of truth and the appeal of the heavens as a
subject most worthy of study. These give one an insight into Ptolemy's
psyche and also demonstrate how awe of the heavens inspired ancient
scientists to extraordinary labours in trying to track and interpret celestial
motions while completely disdaining terrestrial motions. It was Galileo's
achievement to exalt the mundane to the same status and significance as
the heavenly. His application of the celestial standards set by Hipparchus
and Ptolemy to the terrestrial motions was a major factor in the creation of
dynamics. In a very real sense, the Almagest became the 'bible' of medieval
and Renaissance astronomy. Just as the Sermon on the Mount set the tone

* Pedersen's Survey is especially recommended for its final chapter on Ptolemy's personality
(he was a Stoic) and his numerous other important and influential works. There is a
sympathetic discussion of Ptolemy's work on astrology, the Tetrabiblos, and an interesting
account of the rediscovery of the part of his Planetary Hypotheses, written some years after the
Almagest, in which he proposed a complete mechanical system of moving spheres to account
for the motions established in the Almagest; this shows that despite the impression one might
get from the earlier work and Neugebauer's comment quoted on p. 142, he does appear to
have taken the moving spheres seriously. Pedersen also gives an account of how the
Almagest was transmitted to posterity and includes a helpful account of the development of
technical astronomical terminology in the Middle Ages. At various places he also discusses
the problem, mentioned earlier, of Ptolemy's 'doctoring' of data, which is also discussed by
Toomer.82
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of Christian ethics, Ptolemy's formulation of the problem of the planets
set the standards and aims of astronomy, the purest and most rigorous of
the natural sciences. Ptolemy posed the great problem of astronomy. And
as regards the development of dynamics and science generally it truly was
a case of 'Seek ye first the Kingdom of Heaven and the rest will be given
unto you/ Once the great mystery of the heavens had been cracked, the
rest fell into place quite soon - though not however without vital hints
supplied by the study of terrestrial motions.

Ptolemy not only posed the great problem. He also found (or used and
passed on) most of the methods of solution - and many important parts
of the answer. Indeed, he was as good as his word: he did succeed in
making 'practically all the phenomena fit the particular character of the
arrangement of circles in his hypothesis'. But the greatest prize eluded
him - he did not hit on the idea of a heliocentric cosmology.

As this, more than anything else, is probably the reason why Ptolemy
has so often had a 'bad press', this is perhaps a good point to review the
astronomical evidence for heliocentricity as it accumulated through the
Hellenistic period and, in particular, the suggestion115 that Aristarchus
was the 'Copernicus of antiquity'. In one sense, he clearly was not: no
Aristarchan revolution followed his proposal. Very little is known about
the details of Aristarchus's proposal. In his extant work (discussed earlier
in connection with his introduction of trigonometric techniques into
astronomy), there is no trace of heliocentricity. The main source of
information about Aristarchus's proposal is in Archimedes' Sand-
Reckoner, written about a generation after Aristarchus's time. According
to Archimedes:83 'His hypotheses are that the fixed stars and the sun are
stationary, but the earth is borne in a circular orbit about the sun, which
lies in the middle of its orbit, and that the sphere of the fixed stars, having
the same centre as the sun, is so great in extent that the circle on which he
supposes the earth to be borne has such a proportion to the distance of the
fixed stars as the centre of the sphere bears to its surface.'

Archimedes has little to say about the merits of the proposal. In fact, all
he really does is criticize rather pedantically the final words for being
mathematical nonsense, since a point cannot bear a proportion to a
surface (it seems clear that Aristarchus was only using a loose expression
to mean that the stars are at an immensely great distance).

Now the part of Copernicus's De Revolutionibus that really established
his theory was the very clear geometrical explanation he was able to
provide for the retrograde motions of the planets (and indeed for the
second inequality in its entirety) and the associated dramatic extension of
trigonometric techniques within the solar system that it made possible
(this will be discussed in Chap. 5). He spoke, as it were, directly to readers
with a good mathematical intuition; such were Kepler and Galileo - and
the light dawned on them. But Archimedes was just as great a mathe-
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matician. It seems hard to believe that had Aristarchus presented clearly
the gist of Copernicus's arguments Archimedes would have had so little
to say about them. In fact, there is no mention of the planets in the above
quotation or in any of the other extant references to the proposal. This
absence of any explicit reference to the planets has not prevented
innumerable authors from saying that in the Aristarchan scheme all
planets circle the sun in concentric circular orbits. Moreover, it is evident
from other records that the proposal gained quite wide currency in the
ancient world even though it is not mentioned by Ptolemy (who does
however discuss84 - and reject - the idea of the earth's rotation) but still it
sparked no revolution. I suspect that the difference between the two men
was precisely that Copernicus grasped fully the immense significance of
the proposal (which, after all, was not originally his own), stated it clearly,
and provided solid arguments in its support. And the reason why
Copernicus could do this but Aristarchus could not is clearly to hand: all
the detailed observations and analysis on which Copernicus could base
his case were not available to Aristarchus; for they were made by his
successors. They were the true creators of the heliocentric system;
Copernicus only added the final touch.

For the real evidence for heliocentricity was in the demonstration by
Ptolemy that in all cases the second inequality can be unravelled from the
first and that when this is done it leaves behind in each case a first
inequality characterized by essentially the same functional dependence
and structure (circular motion with eccentric centre and equant). Without
the solid basis that these factual data provided, the Copernican revolution
would have been impossible.

The transition from the old cosmology of Plato and Aristotle to the new
astronomy of Kepler required four major steps: liberation of astronomy
from the diurnal motion of the earth, liberation from the annual motion,
liberation from uniformity of motion, and liberation from circularity of the
motion. The first and second of these were presented almost 'on a plate'
to Copernicus by the combined efforts of the ancient astronomers. The
third was entirely Ptolemy's achievement. And the fourth, in some ways
the least important in the historical perspective, could never have been
effected without the previous three.

Why did Ptolemy not see what he himself had made almost blindingly
obvious? He had enough hints - many of his own making. He knew the
sun was vastly bigger than the earth, and he knew that all the planets
danced in tune in their epicyclic twirls to the steady beat of Father Sun.
One important explanation was in his conception of the laws of terrestrial
motion, which will be discussed in a later chapter. Another no doubt was
in his reverence for his forebears, above all Hipparchus. He may too, if he
did consciously ponder Aristarchus's proposal, have been simply
overawed by the sheer immensity of the cosmos that it implied. But I think
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the truth is that he was blinded by his own success. The fate of
Archimedes, killed by the Roman soldier while tracing figures in the
sand, may give us the real clue. Perhaps he was simply too intent on
tracing those mysterious patterns in the starry sky, too absorbed in the
details of the dance.

What then was left for Copernicus to do? First, he realized how the scale
invariance of the Ptolemaic algorithmic procedure could be exploited to
convert the geometrical similarity of the epicyclic motion into identity,
that is, he postulated that all the epicyclic radii of the superior planets
should be set equal to the earth - sun distance and that the same should
be done for the deferents of the inferior planets. Next, he inverted the
deferent and epicycle for the two inner planets. Then he stretched out his
hand, plucked the luminous planets from the tips of the epicyclic spokes
and calmly placed them in the ghostly deferent guide points. Finally, he
reversed the earth-sun vector. Thus he made the transition from the
geoastral to the helioastral frame. The move was deft, almost cheeky; but,
at a fundamental level, he did precious little else.

Ptolemy built the carousel. Long after the fair-keeper had retired to bed,
Copernicus came in the night, moved the linchpin, and switched on the
lights. The effect was magical. Science, already stirring, woke from its
millennial torpor. Copernicus's proposal is a never-ending source of
fascination, bizarre, as we shall see, in the manner he made it, incredible
in the extent of its far-reaching consequences, and the parallel in science
to Richard II's soliloquy on the fate of kings:85 The merest pinprick that
finds the point on which all hinges.



The Middle Ages: first stirrings of the
scientific revolution

4.1 Introduction

In histories of dynamics written in the nineteenth century, the period
between antiquity and Galileo was treated as an almost complete blank. It
was believed that nothing significant had occurred during the 'Dark
Ages'. This attitude was changed almost single-handed by the French
physicist Pierre Duhem, who became an historian of science almost by
accident.1 In his monumental Le Systeme du Monde he argued that several
basic principles of Galileo's physics were in essence already worked out
in the fourteenth century, and that Galileo's work consisted more of
explication and further development rather than genuine revolution.2

The flavour of Duhem's writings is expressed by this quotation:3

From the start of the fourteenth century the grandiose edifice of Peripatetic
physics was doomed to destruction. Christian faith had undermined all its
essential principles; observational science, or at least the only observational
science which was somewhat developed - astronomy - had rejected its
consequences. The ancient monument was about to disappear; modern science
was about to replace it. The collapse of Peripatetic physics did not occur suddenly;
the construction of modern physics was not accomplished on an empty terrain
where nothing was standing. The passage from one state to the other was made
by a long series of partial transformations, each one pretending merely to retouch
or to enlarge some part of the edifice without changing the whole. But when all
these minor modifications were accomplished, man, encompassing at one glance
the result of his lengthy labor, recognized with surprise that nothing remained of
the old palace, and that a new palace stood in its place.

In Duhem's view, the long process of piecemeal modification, which he
set out to document in such detail, was quite erroneously seen as a
revolution by those who added the final touches - and who naturally cast
themselves in the roles of the revolutionaries.

Duhem's views stimulated lively discussions between historians of
science, in which one point at issue was whether the role played by
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Christian theology in the unique emergence of modern science was a
positive or negative factor.* These discussions still continue.5

The considered opinion of two of the most respected historians of
science in the Middle Ages, Anneliese Maier6 and Marshall Clagett/ is
that Duhem performed a capital service in rescuing the schoolmen from
oblivion but overargued his case. In Maier's opinion Duhem was certainly
correct to see the scientific ideas of the fourteenth century as a preliminary
step towards and preparation of classical physics but that he had often
extracted too modern a meaning from the medieval texts and had also
exaggerated their importance. She points out that, considered overall, the
history of the exact sciences in the Christian West was, from its beginnings
in the thirteenth century through to the eighteenth century, a story of the
gradual overcoming of Aristotelianism. This did not occur in a single great
revolution but also not in a completely continuous process. There were
two high points, the first in the fourteenth century, the second in the
seventeenth.

The starting point of this process was the rediscovery in the thirteenth
century of Aristotle's work. A highlight in that century was the attempt
by St Thomas Aquinas (1225-1274) to synthesize Aristotelian philosophy
with Christian theology. Aquinas referred to Aristotle simply as The
Philosopher and his output was massive.

By helping to establish Aristotelianism at the expense of Platonic
metaphysics, Aquinas must certainly have done much to create a climate
favourable for the development of a scientific attitude of mind:8 'The
Platonic man, who was scarcely more than an incarcerated spirit, became
a rational animal . . . the Platonic theory of knowledge . . . was trans-
lated into a theory of abstraction in which sensible experience enters as a
necessary moment into the explanation of the origin, the growth and the
use of knowledge, and in which the intelligible structure of sensible being
becomes the measure of the truth of knowledge and of knowing.'

This was undoubtedly a very positive and progressive development (cf.
the footnote below) and helped to lay the foundations for the mini-Renais-
sance of science in the following century. Dante made Aquinas's synthe-
sis the philosophical basis of his great poem La Divina Commedia (written

* It is worth quoting here the following passage from Whitehead's Science and the Modern
World:* 'I do not think, however, that I have even yet brought out the greatest contribution
of medievalism to the formation of the scientific movement. I mean the inexpugnable belief
that every detailed occurrence can be correlated with its antecedents in a perfectly definite
manner, exemplifying general principles. Without this belief the incredible labours of
scientists would be without hope. It is this instinctive conviction, vividly poised before the
imagination, which is the motive power of research: - that there is a secret, a secret which
can be unveiled. How has this conviction been so vividly implanted on the European
mind? . . . My explanation is that the faith in the possibility of science, generated ante-
cedently to the development of modern scientific theory, is an unconscious derivative from
medieval theology.'



Kinematics 193

1308-1321). Three centuries later, when Aristotelianism had ossified and
long since ceased to be a positive development, the immense influence of
these two must have done much to make the overall Aristotelian world-
view seem far more unassailable than it really was.

But in the high Middle Ages, stimulated by the fresh air of Aris-
totelianism, many philosophers worked away on Aristotle's various
books, writing commentaries, attempting to reconcile him with the works
of Archimedes, which had of course very solid scientific value, and also
examining the commentaries and criticisms of Aristotle that survived
from antiquity. The attitude to Aristotle was by no means subservient and
new points of view were steadily brought forward. Out of this busy
self-confident work of the schoolmen several scientific developments
important for the subject of this book were born and flourished in the
fourteenth century. Perhaps the most important thing was that a branch
of exact learning developed that was to a large degree independent of
general philosophy and theology. It made the transition, in Maier's
words, from natural philosophy to natural science. Moreover, as in the
seventeenth century, the key development was associated with the study
of motion. For our purposes, the most important work was done at
Merton College in Oxford and at the University of Paris.

4.2. Kinematics

We start with the work done at Merton, for which I follow Clagett9 closely.
In the light of the comments made earlier about the difficulty of
recognizing motion as something primary and rather special compared
with general qualitative alterations (see in particular the quotation from
Ptolemy, p. 43), it is interesting to note that the work at Merton, which is
associated with the names of Thomas Bradwardine, William Heytesbury,
Richard Swineshead and John Dumbleton and belongs to the period 1328
to 1350, grew out of the philosophical problem of how qualities change in
intensity, e.g., how something becomes hotter or whiter. It seems that in
the general framework of this approach what we would today call
instantaneous velocity was regarded as the intensity of movement, while
the total distance travelled in a given time was regarded as the quantity of
the movement. The specialized study of these concepts led to important
developments in kinematics. According to Clagett, the achievements of
the Mertonians can be summarized as follows:

(1) Their work led to a clear-cut distinction between (in modern terms) dynamics
and kinematics, i.e., between the causes of movement and the effects of
movement as observed in space and time;

(2) They developed, perhaps for the first time, the idea of an 'instantaneous
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velocity' having an existence conceived as distinct from the spaces traversed
in given time;

(3) They defined a uniformly accelerated movement as one in which equal
increments of velocity are acquired in any equal periods of time;

(4) They stated and proved a fundamental kinematic theorem, which became
known as the Merton Rule.

This last is as follows. Suppose a point starts from rest and is uniformly
accelerated with acceleration a for a time T. After time T/2, it will have
speed V± = aT/2. Then the Merton Rule states that the distance traversed
by the uniformly accelerated body in the complete interval T is equal to the
distance traversed in the same time Tby a body moving with the speed Vj.
This, of course, is j ust a consequence of the two fundamental results of the
theory of uniformly accelerated motion:

where v is the speed at time t and s is the distance traversed at time t. For
a body moving with speed \al (the speed acquired at time t = T/2) will
traverse in time T the distance T x \aT = \al2.

These achievements of the Mertonians, especially the last two, are
important because they mark the first significant steps from the Greek
mathematization of uniform motion to the successful mathematical
treatment of nonuniform motion; in their mathematics at least they
prepared the ground for several of Galileo's most important results,
especially in the clear definition of the concept of uniformly accelerated
motion. It would however be a mistake to see the Mertonians as
precursors of Galileo as a physicist and attempt to give them the credit for
the discovery of the law of free fall. For, as Clagett is careful to point out,
their work 'was almost entirely hypothetical and not rooted in empirical
investigations'. Rather, we have here a classic example of the mathematics
necessary for a physical discovery having been created long before it
found physical application. The Mertonians no more discovered the law
of free fall than Apollonius, who wrote the first great systematic treatise
on conic sections, discovered the law of elliptical planetary motion. That
does not, of course, detract from their mathematical achievement, nor
their significance in the overall development of science.

One really needs to read the extensive extracts from the medieval
documents in Clagett's work to get a feeling for the difficulty of forming
the key concepts of kinematics that now come so easily to the trained
scientist. Even as late as the 1630s Galileo clearly felt the need to proceed
very carefully and slowly in introducing concepts such as that of uniform
acceleration.10 The medieval documents also demonstrate how precise
concepts are developed in a process of gradual refinement.
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The ideas of the Mertonians spread quickly and were known in France
and Italy by about 1350. Clagett quotes a document written in Prague in
1360 which refers to the Mertonians as the 'Calculators'.11 Richard
Swineshead in particular was known throughout the fifteenth century as
the Calculator and the technique of treating motion in the Merton manner
became known as 'the Calculations'.

The spread of Merton kinematics to the continent led to an important
event, namely, the application of graphing or coordinate techniques to
the English concepts dealing with qualities and velocities.12 This was in
fact a partial step towards the analytic geometry of the seventeenth
century initiated by Descartes, though it did not go so far as to translate
algebraic expressions into geometric curves and vice versa, which is the
essence of that method.

The method is normally attributed to Nicole Oresme and dated around
1350. Clagett argues that it arose slightly earlier in Italy. Interesting is his
comment that the graphing concept had been applied from antiquity to
cartography and astronomy and that the very terms (latitude and longitude)
used by Oresme and his contemporaries suggest an intentional transfer
from these older disciplines.

Also interesting in connection with the emergence of kinematics as a
discipline in its own right is the fact that Oresme's text is entitled On the
Configurations of Qualities, i.e., it treats variations of qualities in general by
geometrical methods. Clagett comments that Oresme is concerned 'with
a figurative presentation of hypothetical quality variations . . . totally
unrelated to any empirical investigations of actual quality variations'.13 It
is therefore in the nature of an exercise to set up a general theoretical
framework for the treatment of qualitative terrestrial physics, which
Ptolemy, we recall, felt was such a hopeless undertaking (p. 43). How-
ever, like the Mertonians, Oresme also treated velocity changes, and so
gave a geometrical method of representing them.

In view of its exceptional interest from the point of view of the modern
way of thinking about motion, I quote in full the following passage from
Clagett's book together with the necessary figure (Fig. 4.1):14

As examples of Oresme's technique let us consider the accompanying rectangl
and right triangle [Fig. 4.1]. Each measures the quantity of some quality. Line AB
in either case represents the extension of the quality in the subject. But in addition
to extension, the intensity of the quality from point to point in the subject has to
be represented. This Oresme did by erecting lines perpendicular to the base line,
the length of the lines varying as the intensity varies. Thus at every point along AB
there is some intensity of the quality, and the sum of all these lines is the figure
representing the quality. Now the rectangle ABCD is said to represent a uniform
quality, for the lines AC, EF, BD representing the intensities of the quality at
points A, E, and B (E being any point at all on AB) are equal, and thus the intensity
of the quality is uniform throughout. In the case of the right triangle ABC it will be
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equally apparent that the lengths of the perpendicular lines representing
intensities uniformly decrease in length from BC to zero at point A. Hence the
right triangle is said to represent a uniformly difform* (nonuniform) quality. Of
course the intensities could vary in an infinite number of ways and we would have
a limitless variety of figures to represent other kinds of nonuniform qualities. It is
worth pointing out that Oresme designated the limiting line CD (or AC in the case
of the triangle) as the 'line of summit' or the 'line of intensity'. This is comparable
to a 'curve' in modern analytic geometry. And thus the figures themselves in
Oresme's system are comparable to 'the areas under curves'. The 'curve' or
summit line of Oresme is representing a 'function' expressed verbally instead of
by algebraic formula, the verbal expressions of the functions being 'a uniform
quality', 'a uniformly nonuniform quality', etc. The variables in these functions of
Oresme are the quantity of a quality and the extent and intensity of the quality.

It was by means of this technique, developed for qualities quite
generally but applied specifically to speeds, that Oresme gave a
geometrical proof of the Merton rule.

Clagett concludes his discussion of medieval kinematics with the
comment:15 'It was, then, in the area of kinematics, and particularly in the
geometrical analysis of uniform acceleration, that the medieval tradition
was to be most significant for the development of modern mechanics/

4.3. Dynamics

Of all the steps that led to the definite structure that was given to
dynamics by Newton the clear recognition of the existence of inertial
motion and its elevation to the first and most fundamental law of
dynamics was the most important. As we shall see in the chapters on
Galileo and Descartes, the process of recognition of the existence and
significance of inertial motion was most complex and required the coming
together of various different (and quite distinct strands). As already

* Uniformly difform was the medieval expression for changing at a uniform rate, i.e.
uniformly difform motion is uniformly accelerated motion.

Fig. 4.1.
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hinted in the chapter on Aristotle, one of these strands was provided by
astronomy and came, in Aristotelian terminology, from the superlunary
sphere. In the following chapters we shall see precisely how the
Copernican revolution enforced the introduction of this strand into
terrestrial physics.

The second strand, with which we shall be concerned here, had its
origin solely in sublunary, or rather terrestrial, physics. It was this
development that finally broke the tyrannical grip of the Aristotelian
notion that terrestrial bodies can only move if they are constantly being
pushed by something else and that if the cause of motion ceases then so
too will the motion. For the heavenly motions, which manifestly
persisted, this problem never arose since Aristotle made their motion
directly dependent upon divine ordinances, and, as Ptolemy correctly
sensed, the job of the natural scientist in this case was solely to describe
the motion, not to locate some efficient cause in the shape of a material
'pusher'. But in the case of terrestrial motions, except for the natural (in
the Aristotelian sense) motions of ascent and falling, the main task in their
study was to locate the 'pusher'. It was for this reason that the notion of a
plenum was so all important to Aristotle. His dynamical law sought (in
very qualitative form) to establish how the speed of a body results from
the relationship of the force of the 'pusher' to the resistance of the medium
through which the pushed object is being moved.

The concept of a plenum was a severe hindrance to the recognition of
inertial motion. This is most clearly seen in a rather remarkable passage in
which Aristotle actually anticipated something very much like the law of
inertia but used what he saw as the absurdity of such a law to supply one
further argument for a plenum and against a void. Speaking of a body
moving in a void, he says that, if such a thing were to happen, it would
not be possible to assign a reason 'why the projectile should ever stop -
for why here more than there? It must therefore either not move at all, or
continue its movement without limit, unless some stronger force impedes
it'.16

It is perhaps not surprising that it was through the consideration of the
motion of projectiles that the first serious doubts about Aristotle's
assertion of the invariable need for a 'pusher' for all terrestrial motions
arose. Aristotle's treatment of this question, which he considered only
rather peripherally, involved such manifest absurdities that they stimu-
lated a healthy reaction which eventually developed into the second main
strand leading to the clear recognition of the law of inertia.

For example, immediately before the passage just quoted, Aristotle
says of projectiles that move when the body that impelled them is no
longer in contact with them that this is either17 'due (as some suppose) to
a circulating thrust [antiperistasis], or to the air being set by the original
impact in more rapid motion than that of the natural movement of the
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missile towards the place proper to it'. Later, he asserts18 'that the prime
mover conveys to the air ... a power of conveying motion, but that this
power is not exhausted when the intermediary ceases to be moved itself.
Thus the intermediary will cease to be moved itself as soon as the prime
mover ceases to move it, but will still be able to move something else'.

In late antiquity (sixth century AD) John Philoponus,* whose views on
space we quoted in Chap. 2, criticized Aristotle's ideas, which seemed to
involve two if not three theories of the phenomenon, and in his
commentary on Aristotle's Physics, wrote:20 'Let us suppose that . . .
according to the first method indicated above, namely, that the air pushed
forward by the arrow gets to the rear of the arrow and thus pushes it from
behind. On that assumption, one would be hard put to it to say what it is
(since there seems to be no counter force) that causes the air, once it has
been pushed forward, to move back, that is along the sides of the arrow,
and, after it reaches the rear of the arrow, to turn around once more and
push the arrow forward. . . . Such a view is quite incredible and borders
rather on the fantastic.'

After further severe criticism, Philoponus says (italics added by
translator)

From these considerations and from many others we may see how impossible it is
for forced motion to be caused in the way indicated. Rather is it necessary to assume
that some incorporeal motive force is imparted by the projector to the projectile, and that
the air set in motion contributes either nothing at all or else very little to this
motion of the projectile. If, then, forced motion is produced as I have suggested,
it is quite evident that if one imparts motion 'contrary to nature' or forced motion
to an arrow or a stone the same degree of motion will be produced much more
readily in a void than in a plenum. And there will be no need of any agency
external to the projector. . . .

The italicized words contain the essence of what in the fourteenth
century was to become the central idea of Buridan's impetus theory.
Anyone remotely familiar with Newtonian dynamics will note that there
has been a significant shift from Aristotle towards Newton. Also worth
noting in Philoponus is the clear tendency to thinking about motion in the
first place in a void rather than in a plenum. When one reads even an early
work of Galileo,21 written long before he made his most important
discoveries, one of the most striking differences from Aristotle is in

* Philoponus, whose work has been the subject of a recent book,19 is renowned for his
refutation of the Greek error about the speed with which bodies fall and for the oldest extant
record of an experimental test of such fall: 'But this is completely erroneous, and our view
may be corroborated by actual observation more effectively than by any sort of verbal
argument. For if you let fall from the same height two weights of which one is many times as heavy as
the other, you will see that the ratio of the times required for the motion does not depend on the ratio of
the weights, but that the difference in time is a very small one' (translator's italics; quoted from
Ref. 20, p. 220).
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Galileo's attitude to the medium through which the body under study is
moving. Whereas for Aristotle the medium is the sine qua non of the body's
motion, determining directly the most fundamental features of the
motion, for Galileo the medium is merely a source of disturbance and
resistance that causes a body to move otherwise than it would. In
Galileo's view it is the idealized motion that the body would follow in the
absence of a medium that is truly significant. This and numerous passages
in other authors show that the millennia that came between Aristotle and
Galileo did much to change the whole climate of opinion as to the basic
attitude one should take to the study of motion. For all that it was Aristotle
who drew attention to the importance of the study of motion per se.
Virtually all the new developments grew out of commentaries on
Aristotle.

We omit discussion of the extent to which Philoponus's idea and some
interesting Islamic modifications of it22 may have influenced the Paris
school of dynamics founded by Buridan (this topic is very well covered by
Clagett) and turn straight to Buridan's exposition of impetus theory, as it
became known. Buridan, who according to Clagett23 was probably born at
Bethune around 1300 and was variously reported at the University of
Paris during the period 1328-1358, was a figure rather like Bradwardine
and can be regarded as the founder of a school in Paris of which the most
able followers were Nicole Oresme, Albert of Saxony (who later founded
the University of Vienna), and Marsilius of Inghen (who founded the
University of Heidelberg).

Since the work of Buridan and the Paris school was first discovered by
Duhem, it has been the subject of numerous studies, one of the fullest
being Clagett's, which also gives references to many others, especially
those of Anneliese Maier.

I shall quote here only some of the most striking passages from
Buridan's Questions on the Eight Books of the Physics of Aristotle. Buridan
opens with some remarks about the difficulties of Aristotle's theory that
are reminiscent of Philoponus. Then follow some devastating physical
arguments, chosen with a skill worthy of Galileo, that completely
demolish the idea that projectiles could be pushed for a long time from
behind by the air:24

A lance having a conical posterior as sharp as its anterior would be moved after
projection just as swiftly as it would be without a sharp conical posterior. But
surely the air following could not push a sharp end in this way, because the air
would be easily divided by the sharpness. . . . a ship drawn swiftly in the river
even against the flow of the river, after the drawing has ceased, cannot be stopped
quickly, but continues to move for a long time. And yet a sailor on deck does not
feel any air from behind pushing him. He feels only the air from the front resisting.

Buridan gives numerous other examples, many of which reveal a clear
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awareness of the phenomena associated with inertial motion. Then
comes a clear statement of his concept of impetus:25

Thus we can and ought to say that in the stone or other projectile there is
impressed something which is the motive force (virtus motiva) of that projectile.
And this is evidently better than falling back on the statement that the air
continues to move that projectile. For the air appears rather to resist. Therefore, it
seems to me that it ought to be said that the motor in moving a moving body
impresses (imprimit) in it a certain impetus (impetus) or a certain motive force (vis
motiva) of the moving body, [which impetus acts] in the direction toward which
the mover was moving the moving body, either up or down, or laterally, or
circularly. And by the amount the motor moves that moving body more swiftly, by the same
amount it will impress in it a stronger impetus. It is by that impetus that the stone is
moved after the projector ceases to move. But that impetus is continually
decreased (remittur) by the resisting air and by the gravity of the stone, which
inclines it in a direction contrary to that in which the impetus was naturally
predisposed to move it. Thus the movement of the stone continually becomes
slower, and finally that impetus is so diminished or corrupted that the gravity of
the stone wins out over it and moves the stone down to its natural place.

Clagett used italics for the sentence in the middle of the above quotation
to draw attention to the way in which Buridan anticipated not only
Newton's First Law but also Newton's identification of momentum as the
most fundamental dynamical concept. We recall that momentum
(quantity of motion was Newton's expression) is defined as the product of
the mass of the body and its velocity (directed speed). It will be seen from
the above sentence that Buridan made the strength of the impetus
proportional to the speed of the body that is thrown. Even more
remarkable is the following passage, which follows immediately after the
above (again the italics are, of course, Clagett's):

For if anyone seeks why I project a stone farther than a feather, and iron or lead
fitted to my hand farther than just as much wood, I answer that the cause of this
is that the reception of all forms and natural dispositions is in matter and by reason
of matter. Hence by the amount more there is of matter, by that amount can the body receive
more of that impetus and more intensely. Now in a dense and heavy body, other things being
equal, there is more of prime matter than in a rare and light one. Hence a dense and heavy
body receives more of that impetus and more intensely, just as iron can receive more calidity
than wood or water of the same quantity. Moreover, a feather receives such an impetus
so weakly that such an impetus is immediately destroyed by the resisting air. And
so also if light wood and heavy iron of the same volume and of the same shape are moved
equally fast by a projector, the iron will be moved farther because there is impressed in it a
more intense impetus, which is not so quickly corrupted as the lesser impetus would be
corrupted. This also is the reason why it is more difficult to bring to rest a large smith's mill
which is moving swiftly than a small one, evidently because in the large one, other things
being equal, there is more impetus.

As a particularly apt demonstration of his theory of impetus, Buridan
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says that: 'one who wishes to jump a long distance drops back a way in
order to run faster, so that by running he might acquire an impetus which
would carry him a longer distance in the jump.* Whence the person so
running and jumping does not feel the air moving him, but [rather] feels
the air in front strongly resisting him.'

Clearly, we have come a long way from Aristotle. Indeed, on this
particular aspect of dynamics, it is not until Newton himself that we come to
the formulation of fundamental dynamical insights of such clarity and
cogency. No wonder Duhem raised a triumphant cry when he discovered
the works of Buridan and the Paris school about 80 years ago.

The grounds for seeing Buridan as the true formula tor of Newton's First
Law appear to be still further strengthened by his theory of celestial
motions:26

Also, since the Bible does not state that appropriate intelligences move the
celestial bodies, it could be said that it does not appear necessary to posit
intelligences of this kind, because it would be answered that God, when He
created the world, moved each of the celestial orbs as He pleased, and in moving
them He impressed in them impetuses which moved them without his having to
move them any more except by the method of general influence whereby he
concurs as a co-agent in all things which take place; 'for thus on the seventh day
He rested from all work which He had executed by committing to others the
actions and passions in turn'. And these impetuses which He impressed in the
celestial bodies were not decreased nor corrupted afterwards, because there was
no inclination of the celestial bodies for other movements. Nor was there
resistance which would be corruptive or repressive of that impetus. But this I do
not say assertively, but [rather tentativelyl so that I might seek from the theological
masters what they might teach me in these matters as to how these things take
place.

Despite all the remarkable anticipations of Newton's First Law in these
quotations from Buridan, we are, pace Duhem, still a long way from
Newton's First Law stated in the full consciousness of the fact that it is the
first law of motion (with universal applicability to all motions of all bodies
in the universe), and with full understanding of what can be achieved
with it. For this we still have to wait more than three centuries (Clagett
dates Buridan's Questions somewhere between 1340 and 1357;27 there is
some possibility that Buridan died from plague in 1358).

A fuller discussion will have to wait until later, but two points can be
made already.

(1) There is no clear statement that, in the absence of resistance and
gravity, impetus would carry a body on a straight line at a uniform speed
for ever. For example, in the case of the celestial motions, Buridan must
clearly have had uniform circular motions in mind. We note also the

* As the French indeed say: reculer pour mieux sauter.
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reference in one of the quotations to a smith's mill, and in this case too a
circular impetus may be implied, as indeed Buridan says explicitly: 'in the
direction toward which the mover was moving the moving body, either
up or down, or laterally, or circularly' (my italics). Thus, Buridan's main
contribution was to overcome the Aristotelian idea that no motion is
possible without a constant 'pusher'. He definitely seems to have
entertained perpetual uniformity of the motion but lacked the break-
through to universality of uniform rectilinear motion. Buridan still worked
in the overall framework of Aristotelian physics and cosmology, as is
exemplified by his use of the Aristotelian terms natural and enforced
motion.

(2) Buridan makes only one application of his concept of impetus that
goes beyond noting how impetus can sustain motion after the immediate
cause of motion has ceased and how it is nevertheless gradually corrupted
to nothing by resistance. This is in the following passage, which comes
immediately after the passage in which he so clearly anticipates Newton's
concept of momentum and before the reference to the long jumper:28

From this theory also appears the cause of why the natural motion of a heavy body
downward is continually accelerated. For from the beginning only the gravity was
moving it. Therefore, it moved more slowly, but in moving it impressed in the
heavy body an impetus. This impetus now [acting] together with its gravity
moves it. Therefore, the motion becomes faster; and by the amount it is faster, so
the impetus becomes more intense. Therefore, the movement evidently becomes
continually faster.

Now there is one sense in which Buridan is here actually closer to
Newton than Galileo, and we shall discuss it in Chap. 7. However, more
telling are the two respects in which Buridan does not match Galileo.
Although the kinematics needed to describe free fall had already been
developed to a large degree by the Mertonians and was well known to
Buridan, there is no attempt by Buridan to give a precise and quantitative
mathematical treatment. Furthermore, just as in the case of the
Mertonians, there still seems to be a complete lack of any idea of tying the
physical concepts he has developed to experimental measurements. The
time just does not seem to have been ripe for that sort of undertaking.

The above quotation is all we shall have to say about the question of free
fall at this stage. Other medieval work on that particular problem will be
briefly reviewed in the chapter on Galileo. There too we shall bring the
history of impetus theory in the centuries between Buridan and Galileo
and Descartes up to date. All that we shall say here is that impetus theory
suffered a fate rather like that of impetus itself as conceived by Buridan.
The only really great idea that Buridan had was that, in the absence of
resistance, the impetus would last for ever with undiminished vigour. But
already Buridan's brilliant successor Oresme in fact gravely weakened the
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clarity and clear cut nature of Buridan's concept by introducing the idea
that the impetus first of all builds up and then dies away spontaneously.
Oresme's reason for this curious theory was the enigmatic passage in
Aristotle, suggesting that a projectile reaches its greatest speed in mid
flight, to which reference was made on p. 37.29 This greatly diminished
the value of the concept; for Buridan's concept was amenable to precise
expression in mathematical terms whereas Oresme's was not. Neverthe-
less, impetus theory gained very widespread acceptance, and by 1600 had
almost completely supplanted the Aristotelian theory, albeit in a form
according to which the impetus slowly died away spontaneously.

4.4. Cosmology and early ideas about relativity

As we saw in Chaps. 2 and 3, the possibility that the earth moved was
discussed in antiquity several times, in most cases as a mere hypothesis to
be rejected. Two motions were considered: daily rotation about the axis to
account for the daily rising and setting of the sun, moon, stars, and
planets, and an annual motion of the earth around the sun (Aristarchus).
I hesitate to say that the latter motion was proposed to account for any
particular phenomenon since what is known of Aristarchus's proposal
gives no indication of why he proposed it.

Following the example of the ancient authors, above all Aristotle, many
medieval authors discussed the possibility of the earth's daily rotation.
The two most notable examples are Buridan and Oresme, to whose
discussions we now turn. There is no evidence that any medieval
philosopher proposed an annual motion of the earth around the sun.30 As
we shall see in the next chapter, this was the really decisive step that
Copernicus took.

We start with some extracts from Buridan's Questions on the Four Books
on the Heavens and the World of Aristotle. In it he says:31

many people have held as probable that it is not contradictory to appearances for
the earth to be moved circularly . . . and that on any given natural day it makes a
complete rotation from west to east. . . . Then it is necessary to posit that the
stellar sphere would be at rest, and then night and day would take place through
such a motion of the earth, so that that motion of the earth would be a diurnal
motion (motus diurnus). The following is an example of this [kind of thing]: If
anyone is moved in a ship and he imagines that he is at rest, then, should he see
another ship which is truly at rest, it will appear to him that the other ship is
moved. This is so because his eye would be completely in the same relationship to
the other ship regardless of whether his own ship is at rest and the other moved,
or the contrary situation prevailed.

Here we have a clear statement of the principle of relativity, certainly
not the first in the history of the natural philosophy of motion but perhaps
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expressed with more cogency than ever before. The problem of motion is
beginning to become acute. We must ask ourselves: is the relativity to
which Buridan refers kinematic relativity or Galilean relativity! There is no
doubt that it is in the first place kinematic; for Buridan is clearly concerned
with the conditions under which motion of one particular body can be deduced by
observation of other bodies. He is referring to what I called the epistemo-
logical imperative (p. 47). Meaningful interpersonal communication
about motion cannot be made unless reference is made to at least some
comparison bodies. But this of necessity introduces a degree of reciprocity
that in the case of just two bodies is complete ('his eye would be
completely in the same relationship to the other ship regardless of
whether his own ship is at rest and the other moved, or the contrary
situation prevailed/) But at the same time an element of Galilean relativity
is mixed into Buridan's statement implicitly (without Buridan's being at
all aware of it) because the sailor carried along by a ship moving uniformly
has no evidence from within his own ship to suggest that he is in motion
and therefore has to look outside the ship. If ships in uniform motion were
not closed dynamical systems, in the sense defined in Chap. 1 (p. 31), the
sailor would not be forced to rely on external objects to supply criteria of
motion. This, therefore, is the hidden dynamical reason (as yet, quite
unrecognized) why ships at sea were so readily chosen to exemplify
kinematic relativity. Henceforth, whenever we come across any reference
to the relativity of motion we must closely examine the sense in which it
is meant and try to establish the extent to which the author in each given
case was explicitly aware of the two aspects of relativity.

Two more comments of Buridan are particularly interesting because
they reappear with significant developments in Copernicus. They are
made in the form of two further 'persuasions' for diurnal rotation of the
earth rather than the highest celestial sphere:32

To celestial bodies ought to be attributed the nobler conditions, and to the highest
sphere, the noblest. But it is nobler and more perfect to be at rest than to be moved.
Therefore, the highest sphere ought to be at rest. . . . The last persuasion is this:
Just as it is better to save the appearances through fewer causes than through
many, if this is possible, so it is better to save [them] by an easier way than by one
more difficult. Now it is easier to move a small thing than a large one. Hence it is
better to say that the earth, which is very small, is moved most swiftly and the
highest sphere is at rest than to say the opposite.

Despite these arguments, Buridan says: 'But still this opinion is not to
be followed'. He opens with an argument that implies the conventionality
of science; this argument keeps on reappearing through the centuries and
is still with us to this very day. Its gist is that correct saving of appearances
by a particular hypothesis is no guarantee for the correctness of that
hypothesis. It may simply be convenient because it provides a simple
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explanation. Tussling with this type of argument and attempting to
describe precisely the unquestioned empirical facts in a form that is
capable of withstanding sustained epistemological probing is the
toughest of all tasks in a book such as the present one. It is Faust
confronting stubbornly recalcitrant nature ('Wo fass ich dich unendliche
Natur?'*) while Mephistopheles plays his role as the spirit that continually
denies. Here is Buridan:33

But still this opinion is not to be followed. In the first place because it is against the
authority of Aristotle and of all the astronomers (astrologi). But these people
respond that authority does not demonstrate, and that it suffices astronomers that
they posit a method by which appearances are saved, whether or not it is so in
actuality. Appearances can be saved in either way; hence they posit the method
which is more pleasing to them.

Buridan then lists various practical objections to rotation of the earth.
These may all be termed dynamical arguments. I give all three that Clagett
includes in his translation, not only for their intrinsic interest but also to
show, from the manner in which Buridan writes, that rotation of the earth
really must have been quite a lively topic of discussion in Paris in the mid
fourteenth century:34

If anyone were moving very swiftly on horseback, he would feel the air resisting
him. Therefore, similarly, with the very swift motion of the earth in motion, we
ought to feel the air noticeably resisting us. But these [supporters of the opinion]
respond that the earth, the water, and the air in the lower region are moved
simultaneously with diurnal motion. Consequently there is no air resisting us.

Another appearance is this: Since local motion heats, and therefore since we
and the earth are moved so swiftly, we should be made hot. But these [supporters]
respond that motion does not produce heat except by the friction (confricatio),
rubbing, or separation of bodies. These [causes] would not be applicable there,
since the air, water, and earth would be moved together.

But the last appearance which Aristotle notes is more demonstrative in the
question at hand. This is that an arrow projected from a bow directly upward falls
again in the same spot of the earth from which it was projected. This would not be
so if the earth were moved with such a velocity. Rather before the arrow falls, the
part of the earth from which the arrow was projected would be a league's distance
away. But still the supporters would respond that it happens so because the air,
moved with the earth, carries the arrow, although the arrow appears to us to be
moved simply in a straight line motion because it is being carried along with us.
Therefore, we do not perceive that motion by which it is carried with the air. But
this evasion is not sufficient because the violent impetus of the arrow in ascending
would resist the lateral motion of the air so that it would not be moved as much as
the air. This is similar to the occasion when the air is moved by a high wind. For
then an arrow projected upward is not moved as much laterally as the wind is
moved, although it would be moved somewhat.

* From Goethe's Faust: 'Where can I grasp you, infinite nature?'
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I do not propose to discuss here these dynamical arguments of Buridan,
which finally persuaded him that the earth does not rotate, because it will
be more appropriate to consider them when we come to Galileo. I will
only mention that, had Buridan had Galileo's insight, he already
possessed an idea that would easily have permitted him to refute this last
argument of Aristotle - Buridan's own greatest contribution to dynamics:
impetus theory. This failure shows more clearly than anything else that
genuine discovery in dynamics requires not only the recognition of an
idea but nontrivial demonstration of how it can be used.

In Oresme's On the Book of the Heavens and the World of Aristotle we find
several interesting advances on Buridan, admittedly often in nuances
rather than explicitly. He starts with a bald assertion about the possibility
of the earth's diurnal rotation, asserting that35 'one could not demonstrate
the contrary by any experience'. It is also worth noting the clear
understanding of the importance of kinematic relativity:36 'I make the
supposition that local motion can be sensibly perceived only in so far as
one may perceive one body to be differently disposed with respect to
another.'

It is in supporting this assertion of kinematic relativity that he introduces
one of his more significant nuances that takes him some way towards
stating explicitly the fundamental condition that must hold in the case of
Galilean relativity (the italics in the quotation are mine): 'If a person is in
one ship called a which is moved very carefully [i.e., without pitching or
rolling] - either rapidly or slowly - and this person sees nothing except
another ship called b, which is moved in every respect in the same manner
as a in which he is situated, I say that it will seem to this person that neither
ship is moving.'

We also find a first tentative hint of a line of argument that Copernicus
advanced, and Galileo improved out of all recognition, to meet the
objection which Buridan regarded as telling most against rotation of the
earth:37

concerning the arrow or stone projected upward etc., one would say that the
arrow is trajected upwards and [simultaneously] with this trajection it is moved
eastward very swiftly with the air through which it passes and with all the mass
of the lower part of the universe mentioned above, it all being moved with a
diurnal movement. For this reason the arrow returns to the place on the earth from
which it left. This appears possible by analogy: If a person were on a ship moving
toward the east very swiftly without his being aware of the movement, and he
drew his hand downward, describing a straight line against the mast of the ship,
it would seem to him that his hand was moved with rectilinear movement only.
According to this opinion [of the diurnal rotation of the earth], it seems to us in the
same way that the arrow descends or ascends in a straight line.

Expanding on this argument, Oresme comes very close to anticipating
some of Galileo's greatest insights; they may seem rather trivial but their
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implications, when fully grasped (which they certainly were not by
Oresme), were momentous. Here are Oresme's words:38

Also, in order to make clear the response to the third experience, I wish to add a
natural example verified by Aristotle to the artificial example already given. It
posits in the upper region of the air a portion of pure fire called a. This latter is of
such a degree of lightness that it mounts to its highest possible point b near the
concave surface of the heavens. I say that just as with the arrow in the case posited
above, there would result in this case [of the fire] that the movement of a is
composed of rectilinear movement, and, in part, of circular movement, because
the region of the air and the sphere of fire through which a passes are moved,
according to Aristotle, with circular movement. Thus if it were not so moved, a
would ascend rectilinearily in the path ab, but because b is meanwhile moved to
point c by the circular daily movement, it is apparent that a in ascending describes
the line ac and the movement of a is composed of a rectilinear and a circular
movement. So also would be the movement of the arrow, as was said. Such
composition or mixture of movements was spoken of in the third chapter of the
first book [of the De Caelo]. I conclude then that one could not by any experience
whatsoever demonstrate that the heavens and not the earth are moved with
diurnal movement.

In anticipation of the discussion in the chapter on Galileo let it merely
be noted here that the crucial idea, enforced by the Copernican revolution
when it finally came, was that natural motions are compounded. The key
phrase in this passage of Oresme's is: 'composed of a rectilinear and a
circular movement'.

Like Buridan, Oresme argues that on grounds of economy one would
argue for rotation of the earth rather than the heavens, emphasizing even
more than Buridan the speed with which the heavens would have to
rotate:39 'one could not imagine nor conceive of how the swiftness of the
heaven is so marvellously and excessively great. It is so unthinkable and
inestimable.'

Oresme's final summary of the question of the earth's rotation is
particularly interesting in showing just how close he was to coming out
and saying roundly that the earth rotated. It is to be noted that he finally
allows himself to be persuaded by a scriptural argument despite the fact
that a little earlier in his treatise he had shown with great tact towards the
Scriptures how such arguments could be defused completely:40

It is apparent, then, how one cannot demonstrate by any experience whatever
that the heavens are moved with daily movement, because, regardless of whether
it has been posited that the heavens and not the earth are so moved or that the
earth and not the heavens is moved, if an observer is in the heavens and he sees
the earth clearly, it (the earth) would seem to be moved; and if the observer were
on the earth, the heavens would seem to be moved. The sight is not deceived in
this, because it senses or sees nothing except that there is movement. But if it is
relative to any such body, this judgement is made by the senses from inside that
body, just as he [Witelo] stated in The Perspective; and such senses are often
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deceived in such cases, just as was said before concerning the person who is in the
moving ship. . . . Yet, nevertheless, everyone holds, and I believe, that they (the
heavens), and not the earth, are so moved, for 'God created the orb of the earth,
which will not be moved' (Ps. 92:1), notwithstanding the arguments to the
contrary. . . . But having considered everything which has been said, one could
by this believe that the earth and not the heavens is so moved, and there is no
evidence to the contrary. Nevertheless, this seems prima facie as much, or more,
against natural reason as are all or several articles of our faith. Thus, that which I
have said by way of diversion (esbatement) in this manner can be valuable to refute
and check those who would impugn our faith by argument.

I will leave the reader to make what he or she can of this final argument.
It seems, to say the least, a curious way of bolstering faith.

It is worth noting that both Buridan and Oresme clearly have a notion
of absolute space: both are convinced that either the earth or the heavens
move. The idea that there is simply nothing but relative motion is quite
foreign to both. This is revealed by many tell-tale expressions.

It was asserted in the Introduction that the discovery of dynamics
hinged on a dozen or so insights that all had to do with the mathematical
description of empirically observed motions. The clearest reason why the
fourteenth century was not the true century of the scientific revolution is
to be seen in its failure, for whatever reason, to produce one single such
insight. The ideas were there and the mathematics had been developed.
But for some reason or other they were not put together. Nowhere is the
crucial role of the application of mathematics more evident than in the
contrast between Buridan and Galileo in their discussions of the
dynamical arguments for and against the earth's rotation or between both
Buridan and Oresme, on the one hand, and Copernicus, on the other, in
discussing the bare possibility of the earth's rotation. Oresme, in
particular, is often much more incisive than the man who lived nearly two
centuries later but it was Copernicus who revolutionized the world, not
Oresme. He did it by an insight that no one (with the possible exception
of Aristarchus) before him ever had. And because it involved nontrivial
mathematics and empirically observed motions Copernicus spoke with
urgency and the authority of one who knows. Thus, Copernicus stated
that the earth does truly move whereas Oresme merely advanced the idea
as a'diversion'.

Let us now see why Copernicus could speak with such authority.
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5.1 How Copernicus came to make his discovery

It would be a nice party game for historians of science to compile lists of
worthy scientists born too early to receive that ultimate of accolades, the
Nobel Prize. Who, one asks, should be awarded the first of these
posthumous Nobel Prizes in the field of physics? Given the subject of this
chapter, the reader will no doubt expect the nomination of Copernicus. In
fact, the case will be argued for Ptolemy. The reasons for this will become
clearer as the book proceeds, but we can already anticipate them in this
imagined citation: 'For the discovery of the equant and the important
stimulus which this gave to the correct solution of the planetary problem
by Copernicus and Kepler and to the development of the dynamical
conception of motion by Kepler and Newton/

We recall that the rather ad hoc introduction of the equant was made by
Ptolemy in extremis when all traditionally accepted means to reconcile the
data had failed. Ptolemy felt he had to apologize for his radical innovation
and said he was compelled 'to make some basic assumptions which we
arrived at not from some readily apparent principle, but from a long
period of trial and application'. Readers familiar with the early history of
the quantum theory will note here a striking parallel with Planck's
discovery of the quantum of action by the ad hoc idea of quantization of
emission and absorption processes. Both men were conservative by
inclination and only reluctantly took a step that observations simply
forced upon them. Neither could have made their discoveries had they
not deeply immersed themselves in the nitty-gritty details of the problem
and, in both cases, pushed the existing theories, both of which contained
large elements of truth, to the absolute limits of what the theories were
capable. They both added an extraneous and incongruous device to laws
of motion hallowed by centuries of successful use - an addition apparently
made as a desperate last resort to save appearances that obstinately
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refused to fit the old mould but in reality were the harbingers of a new
dispensation.

But if Ptolemy and Planck were remarkably similar in the manner of
their discoveries, the development of the discoveries initially unfolded in
quite different ways. Planck's was carried forward within a few years in
giant leaps by two of the most daring intellects in the history of science -
Einstein and Bohr. In contrast, Ptolemy's was advanced many, many
centuries later in a roundabout manner by a man with a decidedly
conservative, if not to say pedantic, cast of mind, who literally stumbled
on the heap of gold amassed - without their realizing it - by the Hellenistic
astronomers while he was in fact attempting to put back the clock by
finding an alternative to the equant.

Copernicus (1473-1543) could not abide the idea of celestial bodies
moving nonuniformly. He had the greatest admiration for Ptolemy, of
whom he wrote:1 'Claudius Ptolemy of Alexandria, who far excels the rest
by his wonderful skill and industry, brought this entire art [the study of
celestial motions] almost to perfection', but Ptolemy's equant and
nonuniform motion would not leave him in peace. In his Commentariolus,
circulated in manuscript form many years before the publication in 1543
of his famous De Revolutionibus Orbium Celestium (On the Revolutions of the
Celestial Spheres), he wrote:2

these theories were not adequate unless certain equants were also conceived; it
then appeared that a planet moved with uniform velocity neither on its deferent
nor about the center of its epicycle. Hence a system of this sort seemed neither
sufficiently absolute nor sufficiently pleasing to the mind.

Having become aware of these defects, I often considered whether there could
perhaps be found a more reasonable arrangement of circles, from which every
apparent inequality would be derived and in which everything would move
uniformly about its proper center, as the rule of absolute motion requires. After I
had addressed myself to this very difficult and almost insoluble problem, the
suggestion at length came to me how it could be solved with fewer and much
simpler constructions than were formerly used.

He recounted in De Revolutionibus, in the preface addressed to Pope
Paul III, how he came to make his actual discovery:3

I undertook the task of rereading the works of all the philosophers which I could
obtain to learn whether anyone had ever proposed other motions of the universe's
spheres than those expounded by the teachers of astronomy in the schools. And
in fact first I found in Cicero that Hicetas supposed the earth to move. Later I also
discovered in Plutarch that certain others were of this opinion.

Therefore, having obtained the opportunity from these sources, I too began to
consider the mobility of the earth. And even though the idea seemed absurd,
nevertheless I knew that others before me had been granted the freedom to
imagine any circles whatever for the purpose of explaining the heavenly
phenomena. Hence I thought that I too would be readily permitted to ascertain
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whether explanations sounder than those of my predecessors could be found for
the revolution of the celestial spheres on the assumption of some motion of the
earth.

It will be recalled from Chap. 3 that the problem of the planets reduced
to the unravelling and interpretation of two inequalities: the first, which
in the helioastral frame corresponds to the proper motion of the individual
planets around the sun, and the second, which corresponds to the earth's
motion around the sun. Ptolemy had represented the latter by perfectly
uniform epicyclic motion (for the superior planets) and the former by
eccentric deferents and the ad hoc concept of the equant with the
associated necessity of nonuniform motion in space of the guide point as
it moves around the deferent.

Copernicus set out to rectify what he perceived as a defect - the equant -
in the theory of the first inequality.

He found an interpretation for the second inequality (in terms of mobility of
the earth) and realized well enough that he had struck gold. He exploited
to the full the geometrical and trigonometrical potential of his discovery
but went no further. Instead, the bulk of his effort was still expended on
rectifying the defect in the first inequality. He appears to have believed
that his discovery of an interpretation of the second inequality in terms of
terrestrial mobility represented an advance in the theory of the first. In
fact, it left it exactly where it was. Planetary theory itself was barely
advanced an iota by Copernicus himself.

Copernicus's attitude to Ptolemy and nonuniformity of motion reminds
one of the Venerable Bede and his concern about the Irish Christians -
such excellent people if only they would desist from celebrating Easter on
a noncanonical date.4 And, like Bede, he cannot get the fault out of his
mind. He keeps coming back to the point. Only about a fifth of De
Revolutionibus is about the true Copernican revolution; much of the
remainder is an attempt, which does not lack a certain ingenuity, to undo
the equant. This is what gives his discovery its bizarre element.

Another bizarre - or perhaps one should say disconcerting - aspect of
his work is that his attempt to undo the equant was anticipated in
remarkable detail some two centuries before his time by Islamic
astronomers of the so-called Maragha School, which flourished under the
leadership of Nsir al-Din al-Tusi (1201-74) at the astronomical observatory
at Maragha in Iranian Azerbaijan. I say 'disconcerting' because for each of
the technical devices that Copernicus employed to eliminate Ptolemy's
various violations of the golden rule of ancient astronomy (p. 153) - that
every celestial motion should be a uniform circular motion or alternatively
be compounded of two or more uniform circular motions - a more or less
exact counterpart can be found in the writings of the Maragha School or
the related work of the later astronomer Ibn al-Shatir (1304-75/6), who
worked in Damascus and devised, among other things, a model of the
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moon's motion that reproduced Ptolemy's lunar longitudes but was a
great improvement on Ptolemy's model in that it greatly reduced the
predicted variation in the moon's apparent diameter - the one really gross
flaw that can be found in the Almagest. Copernicus's own model for the
moon is, apart from minor differences in the parameters, identical to that
of Ibn al-Shatir. So many coincidences naturally arouse the suspicion that
Copernicus knew of the earlier work, yet De Revolutionibus contains no
hint of acknowledgement. It must also be said that no evidence has yet
come to light to prove that the work of the Maragha School was
transmitted to Renaissance Western Europe. This question, to which I
shall return briefly, is discussed by Roberts, Kennedy, Swerdlow, and
Neugebauer.5"9

It will be helpful to conclude this section with some brief historical
details, in which I follow the comprehensive monograph on De
Revolutionibus by Swerdlow (the main author) and Neugebauer.9

Although much astronomical work was done by Arabic astronomers and
a certain amount of it is reflected in De Revolutionibus (either openly,
especially in the case of Islamic determinations of elements of the solar
theory, or, possibly, as plagiarism from the Maragha School), the solid
foundation of Copernicus's work is the Almagest. The transmission of this
work to Western Europe was therefore of the very greatest importance for
the Copernican revolution. Significant astronomy in Europe only
commenced with the translation of astronomical texts, including the
Almagest, in the twelfth and thirteenth centuries. The really important
development came however in the middle of the fifteenth century with
the work of Georg Peurbach (1423-61) and his student Johannes Miiller of
Konigsberg (1436-76), who was called Regiomontanus. Peurbach wrote a
very popular work, Theoricae novae planetarum (1454), with detailed models
of the movements of the planets by means of spheres, and he commenced
work on an exposition of the Almagest, the Epitome of the Almagest, which
was completed in brilliant fashion by Regiomontanus following Peur-
bach's death. The Epitome was published in 1496 and was the book that
Copernicus followed, even often it seems in preference to the Almagest
itself.8 Regiomontanus's early death is widely deplored, but Swerdlow
and Neugebauer point out that his excellent grasp of Ptolemaic astronomy
and its lucid presentation in the Epitome mark the effective rebirth of the
Almagest and were crucial for the Copernican revolution. Swerdlow
emphasizes8 especially the fact that Regiomontanus draws explicit
attention in the Epitome to the possibility of treating all planets in a
uniform manner without the unfortunate epicycle-deferent inversion for
the two inner planets, the use of which by Ptolemy did so much, as we
noted in Chap. 3, to obscure the true unity of the planetary motions.
Swerdlow believes that this was a most important preparation for
Copernicus's innovation.
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Many readers will no doubt be familiar with the details of Copernicus's
life. He was born at Torun in eastern Poland and is generally regarded as
a Pole, though precise nationalities are not so easy to determine for that
period and region, a fact that has resulted at times in some unedifying
nationalistic disputes between Poles and Germans. He studied in Cracow
from 1491 for several years and was then sent by his uncle, a powerful
bishop of the Catholic church, to study in the University of Bologna. In
Italy he studied Greek, mathematics, law, and medicine (in later life he
practised as a doctor among other things). He visited Rome in 1500,
studied for almost four years at Padua, but actually obtained a degree at
Ferrara. He returned to Poland in 1503 and worked for his uncle until the
bishop's death in 1512. He settled permanently at Frauenberg in
Ermeland on the Baltic coast and worked until his death as a canon of the
Catholic church, carrying out numerous functions, some of them in
difficult and even dangerous conditions.

His interest in astronomy dated from the period in Cracow, where he
acquired several astronomical treatises, including the so-called Alfonsine
Tables. It is not known when he had the idea that, at a stroke, transformed
man's conception of the cosmos: it was certainly before 1515 and may
have been as early as 1510. Fairly soon after this he appears to have
written the Commentariolus, which contains a brief outline of his scheme.
Realizing that a convincing presentation of his ideas, including his
alternative to the equant as well as the new cosmology, would require
careful revision of Ptolemy's work and redetermination of orbital
elements, he left the Commentariolus unpublished (though it appears to
have circulated in manuscript) and embarked on an ambitious pro-
gramme of observations and calculations that in the event occupied him
until very nearly the end of his life. Swerdlow and Neugebauer emphasize
what a great labour this was on Copernicus's part. In the preface to De
Revolutionibus, Copernicus himself commented that he had mulled over
his idea 'not merely until the ninth year but by now the fourth period of
nine years'. In fact, the task was really too much for him, and he never
succeeded in getting his entire theory into a satisfactory shape.

Meanwhile, knowledge of his revolutionary proposal spread quite
widely and attracted to Frauenberg the young, mercurial, and enthusi-
astic Georg Joachim Rheticus, who, together with other friends, finally
persuaded the extremely hesitant Copernicus - whose main fear was that
he would be 'laughed at and hissed off the stage', though the unsatisfac-
tory state of some of his calculations must also have been a factor - to
publish his work. In fact, before De Revolutionibus appeared in 1543 a first
account of the Copernican system was published by Rheticus (with
Copernicus's approval) as the Narratio Prima (1540). Copernicus himself
died just at the time De Revolutionibus was published - report has it that he
was handed a copy of the book on his deathbed.
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It is surprisingly tricky to explain the precise details of what Copernicus
actually proposed. We shall therefore attack the problem in stages.

5.2. What Copernicus did: first approximation

A rather curious aspect of the Copernican revolution was that it did not
occur at the stage in the development of astronomical knowledge at
which, with hindsight, it might naturally have been expected. This was
the point at which the epicycle-deferent technique had been developed,
probably around the time of Apollonius or a bit earlier. As we have seen,
this technique gives a perfect explanation of the zero-eccentricity
behaviour of the planets and it is clear from Ptolemy's account (p. 186) that
Hipparchus at the latest knew it described the motions of the planets in
their broad details. As the simple epicycle-deferent theory, without the
modifications that Ptolemy made, is also by far the easiest point of
departure for the transition to the heliocentric system, one may
reasonably have expected its discovery to prompt Hipparchus to
heliocentricity whereas in fact the discovery of the equant by Ptolemy was
what eventually moved Copernicus. Why did Hipparchus fail to make the
transition?

It may be significant that, as Ptolemy reports, Hipparchus was aware
that the simple epicycle-deferent theory alone was inadequate for the
exact description of the planetary motions. Ptolemy says Hipparchus
knew one had to cope with problems like the nonconstant size of the
retrogression loops of the planets and the variability of the motion
corresponding to the first inequality. The difficulty with all these 'messy'
aspects of the overall problem was that they added no further hints at all
of the attractions of a heliocentric cosmology. Indeed, they made it rather
less attractive; for such a cosmology loses a lot of its attraction once it is
realized that the sun cannot in fact be at the exact centre of the planetary
orbits, as we well know from the small-eccentricity limit of Kepler's laws.
We shall never know whether Hipparchus seriously considered Aristar-
chus's suggestion and with it a heliocentric cosmology; if he did, he may
simply have concluded it did not match the observations and for that
reason had little attraction. Meanwhile the more urgent task seemed to be
to account for the puzzling deviations from the simple epicycle-deferent
scheme. In a way, both Hipparchus and Ptolemy were held back from a
heliocentric cosmology by knowing too much. Their failure to adopt one
is probably a classical example of a failure to see the wood for the trees. It
is exactly the same problem that makes it difficult to say what precisely
Copernicus did do.

Therefore, to reveal the mathematical core of the Copernican revolution,
we shall go back to the state of knowledge represented by Apollonius's
theorem, i.e., the pure epicycle-deferent model corresponding to zero
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eccentricity of all the planets (and to zero inclination of their orbits). The
sun is therefore assumed to be strictly at the centre of concentric and
coplanar circular planetary orbits. To be specific, we consider the
Copernican explanation of the motion of one of the outer planets.

Of course, everyone knows what Copernicus proposed: that the earth
rotates around an axis and simultaneously travels around the sun (he also
proposed a third motion of the earth to account for the precession of the
equinoxes in a rather awkward manner; this was shown by Kepler to be
superfluous and will not be considered in this book). But it was not so
much these motions and the rather obvious explanations that they
provided for the apparent diurnal motion of the stars and annual motion
of the sun that made Copernicus's suggestion into a true revolution.

At the heart of the revolution was a simple but nontrivial mathematical
insight. The Greeks had represented the motion of the outer planets in a
first approximation by the motion of the planet riding on the one end of a
rotating epicyclic spoke whose other end moves uniformly round a
deferent circle, at the centre of which the observer is placed. Copernicus's
first great insight was that, if the stars are sufficiently far away, the
motions observed on the sky that result from this epicycle-deferent
arrangement are identical to the motions that will be observed if both the
earth and the planet move in circular orbits of different radii about a
common centre.

A key point here is that the ratio of the epicycle radius to the deferent
radius must be equal to the ratio of the radius of the circle in which the
earth moves to the radius of the circle in which the planet moves.
Otherwise the mathematical equivalence of the two schemes is not
present. Equally, the rotation periods must match. The transition is
shown in Fig. 5.1. Shorn of all the messy aspects of the real solar system,
these insights are the essence of Copernicus's revolution. He found an
alternative explanation, as precisely mathematical as that of the ancients,
of the nonuniform motion of the planets, above all the retrograde
motions.

Before we continue, an important point should be underlined. The
success of the explanation of the retrograde motions of the planets
represented by Fig. 5.1 is in no way dependent on the presence of the sun
at the exact centre of the two circles when the Copernican arrangement is
adopted. As far as the explanation of the apparent motions of the planets
is concerned, the point O in Fig. 5.1 can be void. This fact should be borne
in mind by the reader. The Copernican system was not nearly so
heliocentric as the reader might imagine. It is much more aptly called a
theory of the earth's mobility. This point is anticipated by Copernicus in his
preface to the pope, in which he says10 that all the phenomena of the
planetary motions can be explained 'if the motions of the other planets are
correlated with the orbiting of the earth'. The somewhat curious and



216 Copernicus: the flimsy arch

Fig. 5.1. The mathematical core of the Copernican revolution. In the Ptolemaic
arrangement for an outer planet (shown for zero eccentricity of both orbits) the
terrestrial observer is at O, the deferent guide point at G and the planet at P. The
planet is seen along OP. In the Copernican arrangement the centre of the earth's
orbit is at O, the earth is at O' and the planet is at G. Because Copernicus takes
OO' = PG, the planet is seen from the earth along O'G, which is parallel to OP.

The observed phenomena are therefore the same.

ambivalent role of the sun in the scheme will become clear as the chapter
proceeds.

We can see that Copernicus's insight was nontrivial by comparing it
with the two other observable phenomena that his twofold motion of the
earth explained. The first is the apparent diurnal rotation of stars. It is
obvious that a much smaller feat of the imagination is required to arrive at
the conclusion that this could be created by rotation of the earth and not
rotation of the heavens. This proposal was indeed made by Heraclides
and was discussed by both Aristotle and Ptolemy. We have seen in the
previous chapter that it must also have been quite widely discussed in the
Middle Ages. Somewhat more advanced in its level of sophistication is
the alternative explanation for the apparent motion of the sun around the
ecliptic. Here it is not simply a matter of the earth rotating around its axis.
One must postulate that it moves in a circle around the sun. This then is
sufficient to explain the apparent motion of the sun (provided the stars are
sufficiently distant for them to reveal no effect of the earth's motion).

It seems to be completely clear from Archimedes' account that Aristar-
chus had the clear realization that the apparent motion of the stars and the
sun could be explained if the earth rotated about an axis while
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simultaneously moving around the sun in a circle of a rather large radius.
But, to the best of my knowledge, there is no evidence beyond plausible
conjecture to support the suggestion that he also had Copernicus's
insight, namely, that the same motion of the earth around the sun could
simultaneously explain the retrograde motions of the planets. This, it
should be noted, is what first makes Copernicus's proposal into
something of genuine scientific value. Putting the earth into a spin to
explain the apparent motion of the stars is merely to exchange one motion
for another. To put the earth into motion round the sun rather than the
sun into motion around the earth is to do no better. These are merely
trivial geometrical examples of kinematic relativity. The only advantage
gained is the rather marginal one pointed out clearly by Buridan and
Oresme: if the earth rotates rather than the heavens, the phenomena can
be saved by a much slower motion of a much smaller object, which
accords with the notion that nature never achieves a given effect by
superfluous means. But to explain the apparent motion of the sun and
stars and simultaneously, without having to introduce any extra motion,
to explain all the retrograde motions of the planets - that was a real coup
and a nontrivial advance. There is nothing like this in the writings of
Buridan and Oresme; it was the first sophisticated exploitation of kinematic
relativity.

That is why Copernicus gets the extra odd 'bun' that makes up the
'baker's dozen' and at the same time, as we shall see in Chap. 7, provides
the crucial link between the heavens and the earth.

Copernicus's first great insight was the key to his second, which was
hardly less important. He saw that if one of the two components in the
nonuniform observed motion of each of the planets (the second
inequality) is due to the motion of the earth around the sun then the radii
of the circles in which the other planets move around the sun can all be
deduced from the observed motions and expressed in terms of the radius
of the earth's circular orbit. For, as was noted above, a necessary condition
for the equivalence of the two representations is that the ratio of the
lengths of the epicycle and deferent be reproduced in the ratio of the radii
of the two circular orbits in the Copernican scheme. It followed
immediately from this that the orbits of Mars, Jupiter, and Saturn must lie
outside the earth, in that order, and that Mercury and Venus, for which it
was evidently necessary to invert the epicycle and deferent, must have
orbits inside the earth's, with Mercury nearer the sun.

Thus, the aesthetic guesswork on which Ptolemy had based his
ordering of the celestial bodies was replaced by rigorous theory. The
single assumption that the second inequality in the motion of the five
naked-eye planets is actually a reflection in the sky of the earth's motion
around the sun led immediately to an unambiguous ordering of the
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Fig. 5.2. The Copernican arrangement of the spheres as depicted in Rheticus's
Narratio Prima. Reproduced from Johannes Kepler Gesammelte Werke, Vol. 1, C.H.

Beck'sche Verlagsbuchhandlung, Munich (1938), p. 103.

planets and to a fixing of all distances apart from one common scale factor,
the radius of the earth's orbit. The Copernican arrangement is shown in
Fig. 5.2.

Thus far, Copernicus's insights were purely mathematical. However,
he found a beautiful confirmation of the correctness of his conjecture
when he saw the consequences of what mathematics and observation
forced upon him. Whereas Ptolemy had the earth at rest and a distinctly
heterogeneous system of six bodies divided into three distinct types
(Mercury and Venus; the sun; Mars, Jupiter, and Saturn), Copernicus had
the sun (known to be much larger than the earth) at rest and six planets
moving round it with each of them having the same basic motion - simple
circular. The incongruous epicycle-deferent inversion was abolished and
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so was the odd fact that the sun exhibited only one motion but all the
planets two. But even more impressive was the correlation that
Copernicus found between the positions of the planets and the speeds at
which they moved in their orbits - Mercury had the fastest motion and
was nearest the sun, then came Venus in the second place with the next
fastest motion, the earth in the third place with the third fastest motion
and so on.

The recognition of this organic structure, which was a qualitative
anticipation of Kepler's Third Law, gave Copernicus immense confidence
that he was on the right track and prompted him to his famous
characterization of the Ptolemaic system. In his preface to De
Revolutionibus, he said that the principal failing of the astronomers was
that they could not deduce 'the structure of the universe and the true
symmetry of its parts'. He continued:11 'On the contrary, their experience
was just like some one taking from various places hands, feet, a head, and
other pieces, very well depicted, it may be, but not for the representation
of a single person; since these fragments would not belong to one another
at all, a monster rather than a man would be put together from them.'

This is a good metaphorical description of the Ptolemaic system; the
theories of the individual planets are Very well depicted'. Ptolemy simply
failed to link them together, though the potential was always there.
Copernicus found the missing link and was able to knit the planetary
system into a symmetric whole.

It is worth quoting here Kepler's comment on the difference between
the ancient Ptolemaic school of astronomy and the new one founded by
Copernicus:12 The former treated each planet separately and identified
the causes of its motion in its corresponding orbit. The latter compares the
planets with one another and derives that which is common in their
motion from a common cause . . . from motion of the earth.' Thus,
Copernicus perceived the unity hidden in the Ptolemaic details, and he
was able to tell the pope proudly that not only do all the phenomena
follow from his system:13 'but also the order and size of all the planets and
spheres, and heaven itself is so linked together that in no portion of it can
anything be shifted without disrupting the remaining parts and the
universe as a whole'. Later, in Chap. 10 of Book I he expands on this:14

In this arrangement, therefore, we discover a marvelous symmetry of the
universe, and an established harmonious linkage between the motion of the
spheres and their size, such as can be found in no other way. For this permits a not
inattentive student to perceive why the forward and backward arcs appear greater
in Jupiter than in Saturn and smaller than in Mars, and on the other hand greater
in Venus than in Mercury. This reversal in direction appears more frequently in
Saturn than in Jupiter, and also more rarely in Mars and Venus than in
Mercury. . . . All these phenomena proceed from the same cause, which is in the
earth's motion.
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In exploiting the assumption of terrestrial mobility to show how all the
bodies of the solar system could be arranged in an harmonious order that
explained the astronomical phenomena most satisfactorily, Copernicus
did indeed solve at a stroke what was probably the supreme problem that
concerned the astronomers of the late Renaissance: what is the form of the
world? where precisely are all its parts? The quiet self-confidence with
which he answers these questions in the body of his book was clearly a
major factor in winning adherents to his proposal in an age characterized
by great doubt and scepticism on matters astronomical.

One further point he might have made in the passage just quoted but
probably did not because it is a shade technical concerns the phase of the
epicyclic motion in the Ptolemaic system for the outer planets and of the
deferent motion for the inner planets. Why did they always march exactly
in phase with the motion of the sun? In principle, after all, the epicyclic
spoke could rotate at any uniform rate as the epicycle moves around the
deferent. Why did it always move at exactly the rate of the mean sun,
always pointing moreover exactly in its direction (matching of the phase)?
This Copernicus was able to explain at a stroke, as it was a necessary
consequence of his alternative mathematical model for explaining the
retrogression loops of the planets provided the sun is close to the centre
of the planetary system. Thus, what appeared as a remarkable and
inexplicable coincidence in the old representation was a simple and
necessary consequence in the new. In essence, the epicyclic motions of
the planets and especially their retrogression loops were revealed as
simple parallax effects caused by the motion of the earth around the sun.
Since the one motion around the sun produced all the epicyclic motions,
it was obvious that all had to be mutually in step with one another as well
as with the sun.

Let us conclude this section by considering once more the question: did
Aristarchus share Copernicus's more sophisticated insight into the origin
of the retrogression loops? In this connection it is interesting to compare
the fate of Aristarchus's lost heliocentric treatise with the Commentariolus,
also circulated in manuscript form. The former was read by the greatest
mathematician of antiquity, himself a practising astronomer. Yet all
Archimedes bothered to say about Aristarchus's treatise was a pedantic
quibble; other commentators said even less. In contrast, Copernicus's
Commentariolus created sufficient stir for a cardinal in Rome to write to
Copernicus in 1536, warmly encouraging him to publish his work. The
cardinal's brief summary of the heliocentric system, received at second
hand, is considerably more detailed than Archimedes' first-hand account
of what Aristarchus had said. Here is the cardinal:15

I had learned that you had not merely mastered the discoveries of the ancient
astronomers uncommonly well but had also formulated a new cosmology. In it
you maintain that the earth moves; that the sun occupies the lowest, and thus the
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central, place in the universe; that the eighth heaven remains perpetually
motionless and fixed; and that, together with the elements included in its sphere,
the moon, situated between the heavens of Mars and Venus, revolves around the
sun in the period of a year. I have also learned that you have written an exposition
of this whole system of astronomy, and have computed the planetary motions
and set them down in tables, to the greatest admiration of all.

(The cardinal's letter is quoted in full by Copernicus before the preface to
De Revolutionibus.)

The prominent references by the cardinal to the planets and their
absence from the various extant accounts of Aristarchus's proposal does
provide some support for the conclusion that Copernicus was the first
man in history to realize (and certainly to persuade others) that a
heliocentric cosmology could explain not only the apparent motion of the
sun but simultaneously the principal oddity in the apparent motion of all
the five planets.

5.3. Kinematic relativity in De Revolutionibus

Being based on a nontrivial application of kinematic relativity, and having
simultaneously such dramatic and startling implications, the Copernican
revolution put the question of the relativity of motion squarely in the
forefront of discussion, a position that it had not hitherto occupied.
Although Copernicus was not the first person to draw attention explicitly
to the relativity of motion and we find in his writings several points
anticipated in the Middle Ages by Buridan and Oresme, his were the first
important pronouncements on the subject, since it was De Revolutionibus
that was to become the seminal book for the development of modern
dynamics. Relativity was an issue which, of course, Copernicus could not
duck. His whole argument for the mobility of the earth hinged upon it.
Copernicus invoked kinematic relativity, which may also be called optical
relativity. Commenting on the apparently nonuniform motion of the
planets, he first notes that their distances from the earth must be assumed
to vary and he then says:16 'Hence I deem it above all necessary that we
should carefully scrutinize the relation of the earth to the heavens lest, in
our desire to examine the loftiest objects, we remain ignorant of things
nearest to us, and by the same error attribute to the celestial bodies what
belongs to the earth.'

He then states the principle on which he will argue that motion of the
earth is at least conceivable as an explanation of celestial phenomena,
however ridiculous or downright stupid it may appear:17

Every observed change of place is caused by a motion of either the observed object
or the observer or, of course, by an unequal displacement of each. For when things
move with equal speed in the same direction, the motion is not perceived, as
between the observed object and the observer, I mean. It is the earth, however,
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from which the celestial ballet is beheld in its repeated performances before our
eyes. Therefore, if any motion is ascribed to the earth, in all things outside it the
same motion will appear, but in the opposite direction, as though they were
moving past it.

The present study is to a large extent about the difficulty of forming
adequate concepts of motion and the true nature of the world. Perhaps
more than anything else, this passage should give us cause for reflection.
For Copernicus taught us something about the earth by looking in exactly
the opposite direction. He persuaded men that the earth moves by getting them
to examine the heavens. The most important evidence can be found in the
place we least expect it.

Later on Copernicus supports this approach with the illustration with
which we are already familiar from the previous chapter and which was
to become one of the most common devices in physics, repeatedly used
by Einstein and innumerable textbooks on relativity. Although not the
first time used, it was certainly highly significant in the context of De
Revolutionibus:w'when a ship is floating calmly along, the sailors see its
motion mirrored in everything outside, while on the other hand they
suppose that they are stationary, together with everything on board. In
the same way, the motion of the earth can unquestionably produce the
impression that the entire universe is rotating/

On this basis he argues:18 'Why should we not admit, with regard to the
daily rotation, that the appearance is in the heavens and the reality in the
earth? This situation closely resembles what Vergil's Aeneas says: "Forth
from the harbor we sail, and the land and the cities slip backward"
[Aeneid, III, 72].'

As used by Copernicus, the principle of relativity is purely kinematic.
There are fewer hints of Galilean relativity than in Oresme. He merely
states the fact that if two bodies share the same motion the one will seem
to be at rest relative to the other. Except in one highly important passage,
the elaboration of which was to occupy a significant proportion of
Galileo's working life, and which we shall consider in the chapter on
Galileo, Copernicus did not address himself to the question of how it can
come about that two objects, for example, a sailor and a ship, can share a
common motion. How does it come about that the sailors 'suppose that
they are stationary, together with everything on board'? As we have seen,
there are two aspects of this matter - the dynamic and the kinematic. Of
the two, the dynamic is the more profound: What specific property of
nature and its laws is it that makes it possible for the ship, all its contents,
and the sailors to be carried along together with no appearance at all (if
observation is restricted to the ship) of being in motion? Most of the early
discussion of Copernicus's suggestion of the earth's mobility did not
attack this question but rather took the existence of such a state of affairs
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as a fact and concentrated on the observable consequences it had. The
principle of kinematic relativity deals with the problem of finding the
evidence in external phenomena for the motion of such a ship or
spaceship earth, for which the ship serves as simile, given the fact that
internal evidence for motion is lacking. The emergence of the dynamic
element of the principle of relativity, the first tentative beginnings of
which we saw in Oresme (p. 206), is closely associated with the growing
understanding of the nature of motion, a process that will occupy us
much throughout the remainder of this volume and the next and has
probably not yet come to an end.

5.4. Preliminary evaluation of the significance of
Copernicus's discovery

Copernicus's most important insight was that if the earth is assumed to
move around the sun, the diameter of the earth's orbit can be used as a
trigonometric baseline. As we have seen, the peculiar retrograde motions
of the superior planets then arise as a parallax effect from the motion of
the earth.

All the early advances in astronomy were associated with the develop-
ment of new trigonometric techniques. Copernicus's was the most
important. It secured for astronomy the trigonometric baseline which it
still uses. It was Copernicus who measured the heavens. He effectively
introduced the astronomical scale of distance, the astronomical unit.*
About a century before Galileo turned his telescope on the stars,
Copernicus surmised that the lower limit for the distance to the stars must
be greater than the amount suspected by Ptolemy by the ratio of the
earth-sun distance to the earth's radius (8000 miles). Even with the too
small value for the astronomical unit that Copernicus accepted, the
distance to the stars was increased at least two or three thousandfold. Let
us quote Copernicus again:20

Yet none of these phenomena appears in the fixed stars. This proves their
immense height, which makes even the sphere of the annual motion, or its
reflection, vanish from before our eyes. For, every visible object has some
measure of distance beyond which it is no longer seen, as is demonstrated in
optics. From Saturn, the highest of the planets, to the sphere of the fixed stars
there is an additional gap of the largest size.

Although, as we shall see, Copernicus retained an essentially Aristote-
lian cosmology, his dramatic magnification of its size was almost certainly
one of the factors that led to its ultimate replacement, about a century after

* As an official unit of distance, the astronomical unit (= mean earth-sun distance =
semimajor axis of earth's orbit) was actually introduced by Gauss (1777-1855).19
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Copernicus's death, by the notion of an infinite space. Note how, in
Fig. 5.2, the interstitium between Saturn and the fixed stars is described as
'immense and even like the infinite'. This was only one of the ways in
which Copernicus forced upon thinking man a radical revision of basic
concepts. In the light of the coexistence of two different spatial concepts
in Aristotle's philosophy (p. 90), it is interesting to see here explicitly how
the practical astronomers imposed the trigonometric viewpoint at the
expense of the philosophers.

It is worth noting that in his own work Copernicus was able to draw
very little additional advantage from his insight into the possibility of a
further extension of trigonometry. He was not able to point to any
additional confirmation of his claim to have correctly measured the
distances to the planets and to have arranged them in the correct order,
apart from the discovery of Kepler's Third Law in qualitative form, as
already explained.

The dramatic confirmation of the Copernican system of triangulation
came with Galileo's telescopic discoveries about 70 years after Copernicus
died. The phases of the planets, visible through the telescope, especially
in the case of Venus, provided strong confirmation of the distances that
Copernicus had postulated and demonstrated beyond all doubt that
Venus orbited the sun. Figure 5.3 is Kepler's illustration of how the
phases arise for an earth-based observer. There was now a second,
independent way of determining the distance (albeit only qualitative),
and the two methods agreed. What is interesting is that this significance
of Galileo's observations was almost completely lost sight of in the furore
about whether the earth truly moves or not. Galileo was convinced that,

Fig. 5.3. Kepler's explanation of the phases of Venus as seen by a terrestrial
observer. The orbit of Mercury is also shown. Reproduced from Johannes Kepler
Gesammelte Werke, Vol. 7, C.H. Beck'sche Verlagsbuchhandlung, Munich (1953),

p. 309.
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in confirming Copernicus's prediction, these observations proved the
earth's mobility. In fact, they were still compatible with what one might
call the 'essential' Ptolemaic system. As emphasized in Chap. 3, the
Ptolemaic theory left six free parameters that had to be fixed by
guesswork. No violence was done to the essentials of the Ptolemaic
theory by fixing these in such a way that the deferents of Mercury and
Venus were taken equal to the earth-sun distance and the deferents of the
superior planets to their actual distances from the sun. This choice has the
consequence that the geometrical arrangement of the Copernican system
(when treated as here in the zero-eccentricity approximation) is exactly
reproduced, the only difference being that in one system the earth is at
rest, in the other the sun. This, in fact, is the system which Tycho Brahe
(1546-1601) proposed. In it, the sun goes round the earth, while the
planets circle the sun as it circles the earth. As far as astronomical
observations are concerned, the Tychonic system, which is a special case of
the Ptolemaic one, is kinematically identical to Copernicus's except in its
relationship to the distant stars. Initially, it proved to be much more
popular with both astronomers and nonastronomers, since it avoided the
dynamical problems of a moving earth and the much larger cosmos
implied by the Copernican arrangement.

All that Galileo's observations in fact confirmed were the geometrical
relationships that Copernicus had deduced; this, of course, was pointed
out to Galileo by his opponents. Meanwhile, the unquestioned triumph
of Copernicus was almost forgotten. No one doubted that his distance
relationships were essentially correct.

It is worth pointing out just how significant an advance this was and
simultaneously drawing attention to a recurrent problem in the
philosophy of science closely related to the absolute/relative debate: to
what extent do physical theories give us a true picture of reality? It is
particularly appropriate to raise this question here in view of the notorious
foreword that was appended anonymously to De Revolutionibus by a
certain Andreas Osiander, who was entrusted with seeing the book
through the final prepublication stages. Fearing that the book would
cause an uproar, the officious Osiander added a foreword that was taken
by many (until Kepler established and published the truth in his
Astronomia Nova21) to be Copernicus's own. Echoing sentiments that we
have already encountered in the previous chapter and derived from the
scepticism engendered by the numerous different ways in which the
astronomers attempted to 'save the phenomena', Osiander sought to
soften the radical import of the book by asserting that it did not necessarily
say anything about 'reality':22 'For it is the duty of an astronomer to
compose the history of the celestial motions through careful and expert
study. Then he must conceive and devise the causes of these motions or
hypotheses about them. Since he cannot in any way attain to the true
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causes, he will adopt whatever suppositions enable the motions to be
computed correctly from the principles of geometry for the future as well
as for the past. The present author has performed both these duties
excellently. For these hypotheses need not be true nor even probable. On
the contrary, if they provide a calculus consistent with the observations,
that alone is enough/ (This passage must have rather mystified the early
reader of the book, since if one thing shines through its pages it is
Copernicus's belief in the actual mobility of the earth.)

There has, in fact, always been a sizeable minority of philosophers and
even working scientists who have had a very sceptical attitude to the more
dogmatic claims of science to be able to tell us how the world actually is.
Since physics, which is regarded as the most basic of the natural sciences,
has passed through no less than four major revolutions in less than half a
millennium (the Copernican, the Newtonian, the Einsteinian (relativity),
and the quantum), each of which has changed our view of the world
almost out of recognition, a certain degree of scepticism and caution does
not seem out of place.

Thus, even now, three and a half centuries after Galileo's condemnation
by the Inquisition, it is still remarkably difficult to say categorically
whether the earth moves and, if so, in what precise sense. The basic
standpoint of this book, hinted at in Chap. 1, is that correct insights into
the interconnections of things are apt to suggest concepts of the world
and reality that go far beyond the objective facts from which they spring
and are suggested. Sooner or later they are shown to be gross distortions
of the truth even though they may have done sterling service in the
meantime and helped to uncover numerous further objective inter-
connections between observed phenomena.

Good theories contain a high truth content even though they do not tell
us the final truth about the world. The measure of their truth content is
their ability to make predictions. Ptolemy's theory of the planetary
motions had a high truth content because, on the basis of past
observations, he was able to predict, with very reasonable accuracy, how
the heavens would appear at any time in the future as seen from the surface
of the earth. The really dramatic advance that the Copernican revolution
brought was that it extended the ability to predict the appearance of the
heavens at any date in the future from the surface of the earth to any point
in the solar system (in principle, in fact, to the entire universe). Thus, the
astronauts knew what the universe would look like from the moon before
they got there. This helps to put residual difficulties about the problem of
stating the precise sense in which the earth does or does not move into
their proper perspective - while also emphasizing that these very same
difficulties often give hints of the direction in which new theories will
develop, usually with the most profound consequences.
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5.5. What Copernicus did: second approximation

Copernicus's one great original idea achieved an almost miraculous
simplification of the original Ptolemaic system; at a stroke, it eliminated all
the Ptolemaic epicycles, providing simultaneously a wonderfully simple
explanation for their appearance. Equally important, it gave the planetary
system a far greater coherence and intrinsic symmetry. The original
inversion of epicycle and deferent for the two inner planets was
eliminated. All five planets, to which the earth was now added, had
similar orbits. Several curious and inexplicable features of the old system
found very simple explanations in the new. Above all, the scales of the
observed retrogressions were unambiguously linked to the rotation
periods and the distances from the centre of the system. The exact
alignment of all the epicycle vectors with the direction of the sun was
equally well explained.

Despite all these advantages, the final Copernican system was, in fact,
surprisingly messy and, to modern eyes, full of incongruities. To
understand why, we need to have a clear grasp of the principles in
accordance with which Copernicus chose to work and of the mathematical
tools he had at his disposal. It is then quite easy to see how certain given
features of the solar system, above all the specific eccentricities of the six
planets' orbits, coupled with the type of observations that Copernicus
inherited and made himself, led him to the system that he presented to
the world in De Revolutionibus.

Copernicus was a purist and he had a single inviolable principle - the
golden rule of pre-Ptolemaic ancient astronomy that we quoted earlier:
every celestial motion should be a uniform circular motion or alternatively
be compounded of two or more uniform circular motions. This therefore
had the status of a rigorous law of motion, from which Copernicus was
determined not to waver. It will be helpful to consider first what its
practical application amounted to in ancient astronomy, in which the
earth provided a unique centre of the universe. Expressed (anachronistic-
ally) in modern vector terminology, it meant that one had to suppose the
motion of each celestial body to be governed by an assemblage of linked
vectors that all rotate uniformly. The end of the first vector is fixed at the
position of the observer, while the other end rotates in a circle with
constant uniform speed. At its end there is attached another vector of
fixed length which also rotates at a uniform rate. The chain can in
principle be extended by as many such vectors as one pleases. At the far
end of the final vector the celestial body is placed. The body is seen along
the resultant line of sight from the observer and the main task of the
astronomer was to devise an arrangement of vectors that matched the
observed motions. Besides its philosophical and aesthetic appeal, this
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principle had other great advantages: it fitted very well with the idea that
the celestial bodies were transported physically by revolving spheres, it
provided a straightforward and tractable computational algorithm, and it
was simultaneously governed by mathematical rigour. In its geocentric
form, this was exactly the approach adopted by the Maragha school.5"7

Copernicus's approach was the same except that he placed the initial
point of all the vector assemblages at a point near the sun, not at the centre
of the earth. As we shall see soon, the precise point he chose had a
decisive and malign influence on his system.

One of the major sources of ambiguity in ancient astronomy was a
simple mathematical fact that we have already noted in Chap. 3 - the
commutativity of vector addition. Provided the lengths and rotation rates
(relative to the stars) of the vectors in the assemblages just described are
unchanged, the motions generated by the complete linkages are
completely unaffected by the order in which the vectors are taken. From
Apollonius on, all the major astronomers in our story showed themselves
aware of this fact to a greater or lesser extent - Copernicus's own clear
recognition of it may owe a lot to Regiomontanus, as noted earlier. This
freedom allowed Copernicus and his Islamic predecessors to juggle their
circles with sometimes surprising results.

The ingenious but purely technical innovations made in Ptolemaic
theory by the Maragha School and Copernicus, by means of which it
proved possible to eliminate the objectionable violations by Ptolemy of
the uniformity principle, all rest on the special results that can be obtained
by the combination of two vectors in which one rotates with a period that
is an exact multiple of the other's. We can complete the account of the
mathematical tools at Copernicus's disposal by considering these
possibilities; this will simultaneously show what the Maragha School
achieved in this technical respect. We begin with the description of what
Kennedy7 has called theTusf couple after the man mentioned in Sec. 5.1
(Naslr al-Din al-TusI), who was apparently the first to employ it in
astronomy. The TusI couple was originally obtained as a geometrical
theorem in the following form. Let a circle of radius R/2 roll without
slipping around the inside of another circle of radius R. Then any fixed
point on the circumference of the smaller circle will move up and down on
a diameter of the larger circle, executing simple harmonic motion on that
diameter. The TusI couple is illustrated in Fig. 5.4. It is readily seen to be
equivalent to a linkage of vectors OA and AB of equal length R/2 with AB
rotating (in space) exactly as fast as OA but in the opposite direction. The
successive positions of the two ends are A, A', A" and B, B', B", the latter
generating the rectilinear motion. The TusI couple is thus a reciprocating
device for translating uniform circular motions into rectilinear motion and
thus shows how the latter can nevertheless be regarded as compounded
from uniform circular motions.
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Fig. 5.4. The TUSI couple.

It was used by its inventor to eliminate the equant as follows. In Fig. 5.5,
D is the centre of a Ptolemaic deferent, the observer is at O, and EC is the
rotating spoke with the equant point E at one end and the planet C at the
other. Although the equant spoke rotates uniformly, the basic astro-
nomical law of motion' is violated by the fact that the length of EC is
variable, being shortest at apogee, A, and longest at perigee, P. Now for
relatively small eccentricity the variation in length of the equant spoke can
be represented to good accuracy by a simple harmonic motion, that is, its
length / can be expressed as

where a is the mean anomaly (measured from apogee), and R is the radius
of the Ptolemaic deferent. Such an effect can obviously be achieved by
having an equant spoke of fixed length R but placing at its end a TusI
couple, with radius of the smaller circle equal to e/2, as shown in Fig. 5.5.
Nasif al-Din showed that the resultant motion is not quite circular, the
point determined by the couple lying just outside the Ptolemaic deferent,
though coinciding exactly with it at A and P, of course. Because the couple
swings round with the equant spoke, the resultant point is always seen to
move uniformly around E (it merely moves up and down on the equant
spoke). Thus, this property of the Ptolemaic arrangement is exactly
preserved, and for small eccentricity the observed motion is effectively
identical to the Ptolemaic motion.
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Fig. 5.5. Use of the TusI couple to reproduce Ptolemaic equant-type motion to a
high accuracy. The heavy circle is the Ptolemaic deferent carrying the planet C.
The alternative arrangement leads to a position for the planet that is on EC but just

outside the deferent circle except at A and P.

An alternative to this device is found in the writings of Gutb al-Din
al-ShlrazI (1236-1311). This is as follows.7 In the Ptolemaic scheme a new
point H is introduced (Fig. 5.6) at the midpoint between D and E, i.e., at \e
from the observer. Around this point rotates uniformly the vector HQ
with radius equal to the (nominal) radius of the Ptolemaic deferent and
the orbital period of the planet. At its end the vector QC, which has length
\e, rotates in the same sense and at twice the rate of HQ. When the planet
is at apogee (A), QC points towards H; two other positions of the linkage
are shown. In this arrangement the Ptolemaic eccentric deferent and
equant are replaced by a simple eccentric and epicycle. This device leads
to exactly the same motion as the use of the TusI couple and, therefore,
reproduces the Ptolemaic (and actual) motion just as well. It is important
to note that both of these devices represent only formal elimination of the
equant. There is no suggestion by the innovators that Ptolemy failed to
describe the observed motions accurately; the only quibble is with the
means of description.
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Fig. 5.6. The device of Qutb al Dm and Copernicus for replacement of the equant
mechanism by eccentric with centre H at 3e/2 from the observer O and epicycle
with spoke QC of length e/2. The position of C is very close to the Ptolemaic

deferent (shown by the dashed circle).

It is because Copernicus uses both of these devices and on several
different occasions (with some variations between the Commentariolus
and De Revolutionibus) that he comes under the suspicion of plagiarism. In
De Revolutionibus his method of eliminating the equant is identical to Gutb
al-Dln's, while the Tusi couple is used both in his theory of precession and
in his model of Mercury's motion. As has already been noted, his lunar
theory is essentially that of Ibn al-Shatir. All that I think one can say in
Copernicus's defence is that independent rediscovery (indeed, multiple
rediscovery) is a commonplace in science. It is especially prevalent in
periods of what Kuhn calls normal science (p. 141), i.e., at a time in the
development of a science in which clear ground rules have been laid
down and there are more or less well-defined problems that call for
solution. This is precisely the situation created by Ptolemy's great
discoveries. Indeed, it could well be argued that it would have been
surprising if no attempt had been made to reconcile the facts of planetary
motion brought to light by Ptolemy with the hallowed ancient law of
uniform circular motions. Any reasonably competent mathematician -
and that, at least, Copernicus was - was almost bound to come up with
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essentially the same solution. Nevertheless the grounds for doubt are
clear, and the purpose of this review was not to put in a plea for
Copernicus but rather to outline for the reader the main mathematical
tools which he had at his disposal - and also to note that although his
avowed intention was to eliminate the equant, the effect which Ptolemy
had described by the equant remained an integral part of Copernicus's
scheme, being described by an almost exactly equivalent mechanism. On
Copernicus's part this was truly a case of having one's cake and eating it.
No wonder he was pleased with the solution.

This brings us appropriately to the last point that we must consider
before turning to the details of Copernicus's scheme, namely, his attitude
to Ptolemy's work. We recall that after the death of Ptolemy no one had
apparently had the idea of a really comprehensive observational testing of
the Ptolemaic system in its entirety. What had been done, often quite
successfully and accurately (especially in the case of the solar theory), was
redetermination of particular parameters of the models. Now, in the first
place, these had not been determined all that accurately by either
Hipparchus or Ptolemy; secondly, many of them had in the meanwhile
changed quite appreciably (mostly due to the precession of the equinoxes,
so that, for example, the lines of the apsides had all shifted by about 20°
relative to the vernal equinox in the time between Ptolemy and
Copernicus; in addition there were smaller but still in some cases
significant shifts relative to the stars). As a result of both these factors,
subsequent observers, including Copernicus himself, had often found
deviations, sometimes large, from the parameter values that Ptolemy and
Hipparchus had determined. Copernicus, who was always too ready to
believe the observations of others, especially Ptolemy, took these
deviations at their face value and assumed that the parameters of the
Ptolemaic models varied with the time. In this he was quite correct, but,
by treating earlier observations - and his own - with too little considera-
tion for their possible errors, he vitiated much of the potential value of his
conscientious attempt to redetermine Ptolemy's parameters, finding and
mixing up as a result quite spurious as well as genuine changes. What
Copernicus did not do was question the basic correctness of the Ptolemaic
models. Instead, he set himself a three-fold task: to convert the Ptolemaic
models from geocentric to heliocentric form, to eliminate Ptolemy's
violations of the uniformity rule, and to redetermine the parameters of the
Ptolemaic models after they had been adapted in accordance with his first
two aims. Since the first two aims were more or less purely formal in
nature, it follows that Copernicus made no attempt to change the essen-
tials of Ptolemy's work. He seems to have given absolutely no considera-
tion to the possibility of genuine errors in Ptolemy's models, or to the
possibility that the presence of the sun near the centre of the planetary
system might have very far reaching implications beyond the purely
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kinematic consequences of which he was very well aware. He thereby
missed a great opportunity, and this prompted Kepler to a famous
remark:23 'Unaware of his own riches, Copernicus merely set himself the
task of reproducing Ptolemy, not the nature of things, to which however
he had come the closest of all/

Let us now see how Copernicus set about his task. Having got hold of
the idea that the earth revolves around the sun rather than the sun around
the earth, Copernicus's first step was to transcribe the earth-sun motion.24

It was here that he made his biggest mistake, for he simply inverted the
Hipparchan solution. Just as Hipparchus and Ptolemy believed that the
sun circled uniformly about a point at some distance from the earth,
Copernicus believed the earth did the same about a point at some distance
from the sun. This led him to make two mistakes. He was correct in
displacing the centre of the earth's orbit from the centre of the sun but
followed Hipparchus and Ptolemy in making the eccentricity (the
displacement from the centre) too large by a factor of two. Second, he
assumed that the earth's motion around this displaced point was perfectly
uniform. He postulated that the earth moves uniformly in a circle, which
he called the orbis magnus (the great circle), around a point at twice the
distance of the actual centre of the earth's orbit.

A clear understanding of the precise location of this point is crucial -
expressed in Keplerian terms, it is the second (void) focus of the earth's
orbit (cf. p. 125). This is the measure of Copernicus's mistake; for, as we
know, the centre of the earth's orbit in helioastral space is exactly at the
mid-point between the two foci. Copernicus therefore misplaced the
centre of the earth's orbit by its eccentricity, an error of about 1.8 solar
diameters.

It is worth noting here what happens to the Ptolemaic concept of the
mean sun. In Ptolemy's scheme it is merely a variable direction that points
always from the earth in the direction that a uniformly moving body,
coincident with the true sun in the apsides, would have. In the
Copernican arrangement, these lines all pass through the position of the
second focus of the earth's orbit, and one may therefore now think of the
mean sun as a fictitious body occupying the void focus. The Copernican
mean sun, as we may call it following Swerdlow and Neugebauer,9 is at the
centre of the orbis magnus.

There is no word in De Revolutionibus to indicate whether or not
Copernicus ever contemplated any alternative to his chosen arrangement.
One supposes he must have realized that an equant-type motion for the
earth was at least a possibility. As this question is tied up with his
treatment of the other planets, I defer further discussion and merely
comment that his solution, which describes the observed solar motions
excellently, fitted his predilection for circular motions perfectly and this
must certainly have helped to still any doubts he may have had.
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This error on Copernicus's part, which he probably made around 1510,
had already plagued astronomy (in its geocentric guise) for a millennium
and a half and continued to do so for nearly another century until Kepler
finally spotted the offending bit of grit and took it out of the works.

The mistake was disastrous for the new astronomy, since, as Coper-
nicus realized more clearly than anyone before him, correct interpretation
of the spectacle unfolding on the heavens required above all a correct
understanding of the part that the observer himself plays in the process.
For if the observer himself is moving, the whole aspect of the dance will
be changed. Copernicus in fact made precisely the mistake against which
he had himself offered such good advice:25 'Hence I deem it above all
necessary that we should carefully scrutinize the relation of the earth to
the heavens lest, in our desire to examine the loftiest objects, we remain
ignorant of things nearest to us, and by the same error attribute to the
celestial bodies what belongs to the earth/ Thus, several of the motions
that Copernicus had to invent to explain the planetary motions had
exactly the same origin as the epicycles of the original Ptolemaic system -
a lack of awareness of the true position of the earth. But these motions
stand to the original epicycles in much the same way as the aftershocks to
the original earthquake - secondary adjustments to the new equilibrium
position. They are for all that still a considerable source of worry - they
certainly drove Brahe and his assistants to distraction.26

So far, we have only considered the relationship of the earth and the
sun. It was in his placing of the planets within his overall cosmology that
Copernicus introduced his most incongruous ideas.27 It was here that the
specific values of the planetary eccentricities played their little trick again.
Let us begin with the three outer planets. On the face of it, Ptolemy had
already solved the problem; for, as we have seen, the epicycle-deferent
construction had the effect of mapping the motions of these planets
around the sun into the motion of the deferent guide points around the
earth. It would appear that all Copernicus had to do was convert the
Ptolemaic deferent motion around the earth into real planetary motion
around the sun. Moreover, the deferent half of the epicycle-deferent
theory was already very nearly correct. But not quite - and that 'not quite'
was Copernicus's undoing. The deferent theory, possessing as it did
equant and eccentricity, would have been perfectly correct (except for the
minute ellipticity corrections, which, let it be said again, were the least of
Copernicus's worries) had it not been for the fact that in the Ptolemaic
scheme everything was aligned on the mean sun, not the true sun. Here,
as in so many things, Copernicus simply followed Ptolemy. Thus, the
formal and faithful transcription of the Ptolemaic scheme for the three
outer planets led Copernicus to align their apsidal lines on the mean sun
too. That is, he assumed that the lines through the centres of the orbits of
Mars, Jupiter, and Saturn and the corresponding equants of these orbits
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Fig. 5.7. Positions of the centres of the orbits and the equants (indicated by the
barred symbols) for the earth (©), Mars (cf), Jupiter (Qj.) and Saturn (Q). The
continuous lines are drawn through these points; they are the 'knitting needles'
that all converge at the centre of the sun, which is represented by the small black
circle and is drawn to scale. Copernicus incorrectly assumed that the centre of the
earth's orbit is at ©, not © and that the apsidal 'knitting needles' for the three outer
planets also converge on ©". This arrangement is shown by the dashed lines (it will
be explained in Sec. 6.2 why the positions of the equants are unchanged). It can
be seen that the resulting errors are relatively small, which is the reason they could

not be readily detected.

(which Copernicus effectively retained as auxiliary concepts for computa-
tional purposes) converged like knitting needles on the centre of the orbis
magnus. And there, in the ghostly body of the mean sun, and not in the
true heart of the solar system, this crucial point was placed, an egregious
insult to the sun of which Copernicus was blissfully unaware.

It is worth looking at the physical reason why Copernicus could make
this remarkable mistake, which was not spotted for 60 years despite
monumental efforts at the end of the period on the part of Brahe. As
already hinted, it is to be sought in the specific eccentricities of the
planetary orbits. Figure 5.7 shows the sun and the positions of the centres
of the orbits and the equants for the earth and the three outer planets. The
lines of the apsides (continuous lines) all converge on the sun. The dashed
lines show the situation that Copernicus obtained by his machinelike
transcription of the Ptolemaic system. The false position of convergence
is the true measure of the residual errors in the Ptolemaic system. One can
clearly see why they escaped detection for so long, since these errors are
far smaller than the main deviations from the zero-eccentricity epicycle-
deferent scheme, the elimination of which was Ptolemy's great achieve-
ment. These main deviations correspond, of course, to the displacements
of the centres and equants of the planetary orbits from the centre of the
sun, which are much greater than for the earth.
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The same diagram explains simultaneously the other residual error of
the Ptolemaic epicycle-deferent scheme for the outer planets - the
perfectly uniform rotation of the epicycle spoke of constant length about
the void deferent guide point. We recall that Ptolemy's scheme was a very
accurate approximation of first order in the eccentricity of the orbits of the
outer planets but only zeroth order in the eccentricity of the earth's orbit. To
have made the scheme have first order in both eccentricities, Ptolemy
would have had to have devised a very much more complicated scheme
involving eccentric and nonuniform equant-type motion in the epicycle
too. All these complexities simply escaped him because, first, the earth's
orbit has an eccentricity much less than the orbits of the three outer
planets and, second, the observability of that eccentricity in the epicyclic
motions of the outer planets is additionally reduced in the ratio of the
semimajor axes of their orbits to the semimajor axis of the earth's orbit.
Thus, in the apparent motions of the outer planets, the eccentricities of
the planetary orbits result in observable effects that are on average 8.5,15,
and 31 times larger for Mars, Jupiter, and Saturn, respectively, than the
effects due to the eccentricity of the earth's orbit. This was why the
Ptolemaic models could be so good and yet very misleading for the
unfortunate Copernicus, who saw in the uniform epicyclic motions of the
three outer planets perfect confirmation of his transcription of the
Hipparchan-Ptolemaic solar motion; for they too clearly indicated that
the earth must circle uniformly about the mean sun, just as he had already
found from the solar model. Thus, the grounds for identifying the mean
sun with the linchpin of the entire planetary system were greatly
strengthened. The Copernican transcription for the outer planets is
shown in Fig. 5.8.

We have not yet considered the two inner planets. Before we do so, it
will be well to emphasize an important constraint under which Coper-
nicus worked but from which Ptolemy was free. We have already hinted
at it at the end of the last paragraph, namely, the Ptolemaic system treated
the motion of all the celestial bodies independently; a priori there was no
reason to suspect that there were absolutely necessary connections
between the various observed motions (cf. Kepler's remark quoted earlier
on p. 219). However, the observations showed that nevertheless there
were apparent correlations - the epicyclic motions of the outer planets
and deferent motions of the inner planets seemed to be strongly correlated
to the motion of the sun. However, because no deeper reason for this
correlation was looked for, the Ptolemaic system could (and did) tolerate
a certain mismatch between these motions. However, Copernicus's
radically new suggestion of terrestrial mobility posited that these
seemingly separate motions were all merely the reflection of a single
motion of the earth. This had the inescapable consequence that all must
be exactly correlated.
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Fig. 5.8. Copernicus's formal transcription of the Ptolemaic scheme for the outer
planets. In the Ptolemaic scheme the observer is at O, the centre of the deferent is
at D, the equant point at E, the epicycle guide point at G, and the planet at P.
Under the transcription O becomes the centre of the orbis magnus (the Copernican
mean sun at the second (void) focus of the earth's orbit), the earth is at O', and the
planet is at G. Since OO' is parallel to PG and of equal length r, O'G is parallel to
OP, and the planet is seen along the same line to the distant stars. In the
Copernican scheme the orbit of the planet is therefore aligned on the mean sun.

This was a point that Copernicus clearly understood very well but in
interpreting the Ptolemaic system as he addressed the problem of its
transcription to his own his attitude of mind to the accuracy and essential
correctness of the Ptolemaic system was crucial. As we have noted, he did
not question them. This led him into severe difficulties with the inner
planets, to which we now turn.

Here the eccentricities led Copernicus into a very odd error. This was
especially ironic since it was precisely for Venus that Ptolemy's model
came nearest the truth and might have given Copernicus his most
valuable hint. We recall that, quite unwittingly, Ptolemy had determined
the elements of the earth's orbit twice - once incorrectly in the solar theory
(getting a value for the eccentricity twice what it should have been) and
once more or less correctly in the construction of his model of Venus's
own motion. Here exactly the same effect occurred as between the earth
and the outer planets. The eccentricity of Venus's orbit is 2.45 times less
than that of the earth's and the ratio of the semimajor axes (1.39) means
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that in the apparent motion of Venus the eccentricity effects of the earth's
orbit show up about 3i times more strongly on the average than those of
Venus's orbit (both effects are moreover rather small compared with the
outer planets). This again led to the impression that the epicyclic motion
of Venus corresponded to perfectly uniform circular motion. However, in
this case, the deferent motion, which in the Ptolemaic system did have
eccentricity and equant, should correspond to the earth's motion. Taken
at its face value the straightforward transcription of such motion would
have led Copernicus to the conclusion that the earth moved on an
eccentric with motion governed by an equant. Moreover, the equant must
be at the position of the (Copernican) mean sun and the centre of the
eccentric must be displaced from it by the corresponding eccentricity.

Such a transcription would have taken Copernicus very close to the
truth. But this was where the Ptolemaic system gave him contradictory
hints. Such motion could not be reconciled with the earlier transcriptions
for the sun and the three outer planets, which had all told him the earth
had no equant in its motion and simply circled uniformly around the
mean sun as its centre. But now he found that the Ptolemaic system,
transcribed mechanically, required the centre of the earth's orbit to be in
two different places simultaneously! Since that could not be, Copernicus
was forced to make a choice. One wonders how long he pondered his
awkward choice. He must surely have felt rather like Buridan's ass, forced
to choose between two equally distant heaps of hay. However, in
Copernicus's case the alternatives did not appear equally balanced - the
sun, Mars, Jupiter, and Saturn were all ranged in complete unanimity
against the dangerous allures of the goddess of love. Further grounds for
distrusting her evidence were also probably supplied in Copernicus's
mind by Mercury, for which the transcription suggested yet another
placing of the centre of the earth's orbit (for the details of the intricate orbit
chosen for Mercury the reader is referred to Ref. 9).

But if the earth does circle the mean sun, how can this be reconciled
with the apparent motion of Venus? Copernicus reported to a remarkable
dodge. He kept his previous solution for the eartn's motion and simply
transferred the 'excess motion' to Venus! That is, whereas strictly
Ptolemy's Venus model required the earth to be described (in accordance
with the scheme used by both Gutb al-Din and Copernicus) by an
eccentric and epicycle rotating around the guide point on the eccentric at
twice the angular velocity of the guide point around the eccentric,
Copernicus simply shifted the correction to uniform circular motion of the
earth produced in this way to Venus and accordingly required the centre
of the circle in which Venus moved to itself move around in a (very small)
circle twice in the time that the earth required to move around its orbit.
Copernicus's transcription for Venus and the crucial role played in it by
the commutativity of vector addition are illustrated in Fig. 5.9.
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Fig. 5.9. Copernicus's formal transcription of the Ptolemaic scheme for Venus. In
the Ptolemaic scheme (heavy lines) the deferent arrangement has been replaced
by Copernicus's almost exactly equivalent arrangement in which the observer is
at O, F (at distance 3e/2 from O) is the centre of circle AD, D is the centre of the
small epicycle of radius e/2, and G is the centre of the large epicycle which carries
the planet V. The position of G is so close to the Ptolemaic guide point (not shown)
that the two arrangements are effectively identical (if e is sufficiently small). Under
the Copernican transcription O becomes the centre of the orbis magnus, the earth
is at E and Venus, V, circles G', which itself circles F. The planet is seen along the
same direction to the distant stars because EO is parallel to FD and of equal length
and FG' is parallel to DG and equal to it in length. If the heavy links OF, FD, DG
and GV are represented by the vectors p, q, r, s respectively, then OV = p + q +
r + s and EV = q + p + r + s . Strictly, the vectors q, p, r should all be
associated with the earth's motion and only s with Venus. However, Copernicus
lumped p and r in with s so that he could say, as for the outer planets, that the earth

circles uniformly around O.
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It should be said that Copernicus does not discuss any of these
problems with his readers. He simply announces that 'this planet differs
somewhat from the others in the pattern and measurement of its
motions'28 and then gives the results of his transcription without any
explanation. In the case of Mercury's motion he was also forced to
introduce a curious correlation with the motion of the earth on the orbis
magnus; in fact, he required two motions, one in a small circle and one
along a diameter of another small circle and controlled by a Tusl couple,
both to be executed twice in a terrestrial year.

We are still not yet done with the oddities of the Copernican system; for
we must say at least a few words about the particularly bizarre
mechanisms which Copernicus devised to account for the planetary
motions in latitude, i.e., out of the ecliptic. This is a motion that we have
hitherto almost completely ignored, but it proved to be very important in
Kepler's work. The planes of the planets' orbits are, as noted in Chap. 3,
inclined at small angles to the plane of the earth's orbit, i.e., the ecliptic.
For this reason, the planets are sometimes to the north and sometimes to
the south of the ecliptic. Moreover, because of their nonuniform motion
in longitude their rate of motion from north to south is also nonuniform.
In particular, the planets do not remain for equal lengths of time on the
two sides of the ecliptic. In additon, as the earth moves around its orbit,
its approach to and receding from the other planets create the impression
of an apparent additional deviation in latitude. This effect is particularly
pronounced at opposition to one of the outer planets, at which the planet
usually appears to deviate more strongly from the ecliptic at the same time
as performing its retrograde motion, thus describing a loop on the
background of the stars. Some examples of such loops for Jupiter in
different parts of its orbit are shown in Fig. 5.10.

In principle this was an effect that should have provided some of the
most convincing arguments for the heliocentric theory, since the latitude
motions, just like the epicyclic motions of the outer planets and the
deferent motions of the inner planets, can all be explained purely
kinematically as a reflection of the earth's motion by the simple
assumption that the planes of the planets' orbits are inclined at certain
fixed angles to the plane of the earth's orbit and pass through the centre
of the sun. Although Copernicus made them pass through the mean sun,
this error alone would have had comparatively little influence on the
small latitude effects. He was in fact well aware of the new possibility of
explaining the latitude motions in such a natural and pleasing manner but
was completely led astray by the unsatisfactory state of Ptolemy's latitude
theory as presented in the Almagest. At the time the Almagest was written,
Ptolemy must have been working with very inaccurate data, since his
latitude theory contains numerous defects, and he was forced to
introduce, for example, variable tilts of the planes of the epicycles relative
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Fig. 5.10. Retrogression loops of Jupiter at different positions in the ecliptic (the
numbers give the ecliptic longitude). The black points show the observed position
of the planet against the background of the stars at intervals of 10 days (the planet
moves from right to left apart from the retrogression). The scale of the vertical
direction (latitude) has been multiplied by two to show the effect more clearly.
(Derived from: O. Neugebauer, A History of Ancient Mathematical Astronomy,

3 vols., Springer, Berlin (1975), p. 1256.)

to the planes of the corresponding deferents. These tilts varied with the
position of the sun in the ecliptic. It is evident that Ptolemy continued
working conscientiously on the latitude theory after completing the
Almagest, since his Handy Tables and Planetary Hypotheses contain a greatly
improved theory - one indeed that corresponds very well to transcription
from the heliocentric to the geocentric system. In particular, the variable
tilts were eliminated.29

It appears that this later work of Ptolemy never became widely known
and Copernicus reveals no awareness of its existence. He therefore
merely did his best to reproduce the geocentric theory of the Almagest in
his own system. Part of the latitude motion could be explained perfectly
correctly, but for the spurious residue due to the defects inherited from
the Almagest he invented a wobble of the planes of the planetary orbits
which made them have a tilt that varied in phase with the motion of the earth
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in its annual revolution* This mistake on Copernicus's part may actually
have helped to advance science, since Kepler, already recognizing it as a
monstrosity,30 decided quite soon in his investigations to test the alleged
effect against Brahe's observations and very readily demonstrated its
nonexistence. This work led him to establish two highly significant facts:
(1) the planes of the planets' orbits have a fixed inclination in helioastral
space, (2) they all pass through the sun and not the centre of the orbis
magnus, as Copernicus believed. This is the result which was designated
in Chap. 3 as Kepler's Zeroth Law, and it played a very important part in
establishing the law of inertia and the other foundations of dynamics, as
well as showing that they are valid over astronomical scales of distance.

By trusting Ptolemy so implicitly in the question of the latitude motions,
Copernicus missed a very great opportunity to achieve a radical
simplification in the lesser as well as the greater motions of the celestial
bodies. It is when all the pieces come together in a coherent and accurate
picture that a theoretical scheme really acquires a power to persuade
acceptance. This Copernicus failed to achieve. It was, in fact, in
connection with the lamentable latitude theory of De Revolutionibus that
Kepler made his remark about Copernicus not having appreciated his
own riches (divitiarum suarum ipse ignarus).

The numerous errors in the Copernican system - the transcription of
the Hipparchan solar theory for the earth's motion, the identification of
the point of convergence of the apsidal lines with the centre of the orbis
magnus, the curious correlations between the longitudinal motions of the
two inner planets and the motion of the earth, and the even more curious
latitude motions (all born of overzealous fidelity to Ptolemy) - were
responsible for the most remarkable feature of all in the Copernican
system. For although Copernicus sensed the importance of the sun and,
equally important, made the earth a planet like the others, his final
scheme remained to a remarkable degree geocentric. First, the motion of
the earth was quite different from that of the planets. Alone among them
it moved uniformly in helioastral space. Second, the motions of the five
planets were not coordinated on the sun but on the centre of the earth's
orbit, the orbis magnus. Moreover, they were strongly correlated to the
earth's orbital period. Only now can we understand the true meaning of
Copernicus's comments to the pope that he will31 'correlate the motions
of the other planets . . . with the movement of the earth'.

As we noted earlier, Copernicus pondered the heliocentric system 'not
merely until the ninth year but by now the fourth period of nine years'; it
seems never once to have entered his head that the earth should behave
in the same way as the other planets or that the motions of the planets
should be centred on the sun rather than on the centre of the earth's orbit.
But before we laugh and hiss the scheme off the stage, let us recall that
Brahe and other astronomers worked happily with it for a couple of
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generations without suspecting there was anything wrong. Nearly a
century after Copernicus's death, even Galileo did not suspect there was
anything amiss. More clearly than anything else, this shows us that the
conception of motion was not yet ripe for change. This point will be taken up
in Sec. 5.7 and in the chapter on Kepler.

Also we should recognize that, seen from Copernicus's perspective, his
scheme was rather a success. Quite apart from the heliocentric hypothesis
and the genuine improvement of Ptolemy's lunar theory, the abolition of
the Ptolemaic equant, that affront to divine aesthetics which had a much
more intimate relation to heliocentricity than Copernicus ever realized,
must have given him much satisfaction, especially if the elegant device by
which it was achieved was his own independent rediscovery. The
importance of the equant as a stimulus to thorough re-examination of the
Ptolemaic models should not be forgotten; indeed, we have to thank
Copernicus's Quixotic mission (for he is a somewhat Quixotic figure) to
purify the art of astronomy for the greatest revolution in history.

As he grappled with the problem of the celestial motions over all those
years, Copernicus had to contend with several problems. Some were his
own preconceptions, many were due to the almost complete lack of
observations of the number and quantity needed to pin down the
numerous lesser effects that he felt obliged to accommodate, and quite a
number more were the result of the particular eccentricities of the
planetary orbits. But, in addition to these, he faced throughout his work
the problem of kinematic relativity - the apparent motion of any given
body may contain a component that could be attributed to motion of the
observer rather than of the observed object. This was a problem that, as
we have seen, he himself highlighted and exploited brilliantly but which
nevertheless got its revenge in many ways, most noticeably in the case of
the longitudinal motion of Venus. It is ironic that what Copernicus failed
to note in the case of Venus (and Mercury and the latitude motions) he did
clearly recognize in yet another curious feature in his system. This has to
do with the question of the exact position of the centre of the universe.

As we shall see in the next section, Copernicus had a rather precise
notion of position and the ordering of the world. It is therefore somewhat
surprising to find that he was at a loss where to place its exact centre. He
was floored by the same combination of factors as in all his other work:
inaccurate observations, the residual defects of the Ptolemaic system, and
his own curious blend of heliocentricity and geocentricity.

His first and most important task had been to transcribe the earth-sun
motion. As we have seen, this led him to the concept of the orbis magnus
and its distinguished centre. This, however, only disposed of the gross
(annual) motion of the sun. In addition to this there were the very slow
secular changes that had taken place since Ptolemy's time. In the
observational record at Copernicus's disposal these effects, together with
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Fig. 5.11. The scheme which Copernicus devised to explain the slow variations of
earth-sun motion which he believed to have taken place since antiquity. In this
arrangement the sun is at S, the point A travels very slowly about a circle centred
on S while the point B, the centre of the earth's orbit, travels very slowly around
A. (Reproduced from: /. L. E. Dreyer, A History of Astronomy from Tholes to Kepler,

Cambridge University Press (1906) (republished by Dover Publ. Inc. (1953)).)

the effects of the precession of the equinoxes, could not possibly be
cleanly separated from observational errors. Copernicus was therefore
attempting to transcribe into heliocentric terms an amalgam of effects,
some genuine, some the pure artefact of inaccurate observations, above
all an apparent irregularity in the apsidal precession. The scheme he
devised is shown in Fig. 5.11. The sun is at S, around which the point A
moves in a circle from west to east in about 53 000 years (corresponding to
a mean annual apsidal precession of somewhat more than 24 seconds of
arc). Around A moves the point B in the small circle in the opposite
direction in 3434 years. The moving point B is the centre of the orbit of the
earth's annual motion, the centre of the orbis magnus.

The uncertainty in Copernicus's mind to which I referred just now was
that he was not in his mind entirely sure - about which he was engagingly
frank - whether to take the sun absolutely at rest and let the centre of the
orbis magnus ride around as indicated in Fig. 5.11 or take the orbis magnus
fixed and let the sun execute analogous motions, which would have the
same observational consequences. Thus, at this one point he threw in the
sponge and gave up the attempt to beat the impartiality of relativity.
Depending on the choice, the position identified as the formal centre of
the universe would be changed.

Thus, in Book I, Chap. 9, Copernicus says that 'the sun occupies the
middle of the universe', but a little later in Chap. 10, he says that 'near the
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sun is the centre of the universe', which he here appears to identify with
the centre of the orbis magnus. Later, in discussing the details of this theory
of the earth-sun system, he says:32

Nevertheless I am also not unaware that if anybody believed the center of the
annual revolution to be stationary as the center of the universe, while the sun
moved with two motions similar and equal to those which I explained in
connection with the center of the eccentric [III, 20], all the phenomena would
appear as before - the same figures and the same proof. Nothing would be
changed in them, especially the phenomena pertaining to the sun, except the
position. For then the motion of the earth's center around the center of the
universe would be regular and simple (the two remaining motions being ascribed
to the sun). For this reason there will still remain a doubt about which of these two
positions is occupied by the center of the universe, as I said ambiguously at the
beginning that the center of the universe is in the sun [I, 9,10] or near it [1,10].

We find in this frank admission of defeat on Copernicus's part an
anticipation of the debate that will rage during the second half of the
seventeenth century and which has still not subsided. What is motion? By
what criteria are rest and motion defined? For if motion is defined by
relationship to specific identifiable objects, there are as many motions as
there are reference objects. Copernicus was only able to look on this
problem with equanimity because he still had an ultimate fallback
position: the fixed stars. In his mind, the uncertainty arose simply
because the corresponding effects were much too small to show up in
parallax displacements. In principle he believed he had nothing to fear.
The threat posed by the realization that the 'fixed stars' might not be fixed
at all was still a century ahead. We shall see in the next section how this
influenced his concept of place.

This completes what we need to say about the technical aspects of the
Copernican system. There is quite a lot more material in De Revolutionibus
that is entirely omitted from this account, including his theory for the
moon and Mercury.

Viewed purely in terms of improvement in the models of the celestial
motions, Copernicus's contribution was very modest if the heliocentric
theory is left out of account. Only his theory of the moon marked a
significant advance over Ptolemy. Nevertheless, he performed a useful
service to astronomy in updating Ptolemy's work, especially in recomput-
ing orbits and determining new parameter values. His elements were
employed in the compilation of new astronomical tables, the Prutenic
Tables. Most of his immediate successors saw this as his main achieve-
ment, together with his ingenious proposal for eliminating the equant.
Gingerich33 has shown that working astronomers in the second half of the
seventeenth century did make use of his work, which, despite claims to
the contrary by Koestler ('the book that nobody read'34), was apparently
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quite widely read by the professionals. But, intriguingly, none of them
would risk a word in print about the mobility of the earth until the 25 year
old Kepler came out in the open with eloquent support more than 50 years
after De Revolutionibus had appeared.

We now consider some more general aspects of Copernicus's work and
the bearing that they have on the discovery of dynamics and the absolute/
relative debate.

5.6. Copernicus's concept of place and the ultimate frame of reference

We begin this section by drawing attention to the typically Renaissance
concept of cosmology that we find in a most pronounced form in
Copernicus, Kepler, and Galileo. It is that of the well-ordered cosmos, a
concept that derives from Pythagoras. Entranced by the beauty of the
world, he called it cosmos, the Greek word meaning primarily order, but
also decoration, embellishment, or dress (cosmetic derives from the same
origin), the Latin mundus muliebris, the ornament of women. Thus, cosmos
and mundus were conscious coinings to express the 'perfect order and
arrangement' of the world, perceived as an indissoluble unity.35

This concept, revived strongly in the Renaissance, had a twofold
significance in that period. On the one hand, it provided an extremely
important psychic stimulus to the study of astronomy and the celestial
motions, a stimulus that was all the more fruitful for being enriched by the
reawakening of the Platonic ideals of geometrical exactitude and perfect
symmetry. On the other hand, it helped to shape the concept of motion,
which was very much seen as an integral expression of the overall
harmony of the cosmos. Since the cosmos was believed to derive this
harmony from the felicitous mutual disposition of its parts, such a
concept inevitably tended to emphasize the relational aspect of position
and motion. The cosmos-based concept of motion was therefore a
relational and matter-based concept. Natural motions at least had to
maintain the overall harmony created by the disposition of the parts. This
attitude is very marked in both Copernicus and Galileo. In view of the fact
that what he regarded as his major work, the Harmonice Mundi,36 is a
hymn in praise of Pythagorean harmony, it is rather curious that Kepler's
own conception of celestial motions was much more modern than either
Copernicus's or Galileo's even though his cosmology was at least as
Pythagorean and Aristotelian as theirs.

If Copernicus's concept of motion can be seen as a kind of prescientific
or artistic Mach's Principle, Kepler's concept of motion is a clear
anticipation of a modern and fully scientific (i.e., physical) form of the
principle. One of the main aims of this and the following chapter is to
show how this dramatic change in the concept of motion occurred. The
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key element in this transition from aesthetic geometrokineticism was
Ptolemy's discovery of the equant, the very thing that Copernicus was so
anxious to abolish. However, before we get on to this topic, let us look
more closely at Copernicus's concept of place.

In the light of the subject of this book, the Aristotelian element in
Copernicus is particularly interesting. Copernicus is very concerned that
his concept of motion should be epistemologically sound. It is clear that
he rejected the idea that motion takes place relative to space - it must be
relative to observable matter. Like Aristotle, he invokes the idea of a
universal frame of reference; the only difference between them is that for
Aristotle the frame of reference was conceived to spin, whereas for
Copernicus it is, almost by definition, at rest.

For example, quite early in Book I, in discussing the possibility that the
earth could move, he says:37 'since the heavens, which enclose and
provide the setting for everything, constitute the space common to all
things, it is not at first blush clear why motion should not be attributed
rather to the enclosed than to the enclosing, to the thing located in space
than to the framework of space.' By the 'heavens' Copernicus meant, of
course, the immensely distant sphere of the fixed stars.

The above concept of position, and hence motion, clearly comes from
Aristotle. Nevertheless, despite this strongly Aristotelian element, the
centuries of practical astronomy left their mark. Copernicus needs a
container, but one is sufficient; his world is not an onion in which a
succession of layers are needed to give meaning to position all the way
from the outermost layer right through to the centre. Copernicus
combines Aristotle's ultimate ouranos with the Platonic concept that
Aristotle rejected, namely, that space is 'some kind of dimensional
extension lying between the points of the containing surface' (see (iii) on
p. 86). The space within the container is no longer a nest of topological
envelopes but a tautly spanned region of trigonometric relations, an
invisible membrane spanned by the rim of the drum provided by the fixed
stars.

This concept of space is rather well illustrated by Fig. 5.12, which
actually is due to Kepler but this is not relevant since on this particular
point his views were almost identical to Copernicus's. The stars ('studs')
are represented by the signs of the zodiac around the rim of the 'drum'.
The successive points on the rim represent successive conjunctions of
Jupiter and Saturn. The lines within the rim highlight the way in which
metrical geometry is used within an ultimate frame of reference provided
by the stars. Copernicus had an open mind about what lay beyond them
and said:38 'Let us therefore leave the question whether the universe is
finite or infinite to be discussed by the natural philosophers.' Copernicus
never forgot that the studs on the rim are what ultimately define position.
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Fig. 5.12. An illustration by Kepler of successive great conjunctions of Jupiter and
Saturn. Reproduced from: Johannes Kepler Gesammelte Werke, Vol. 7, C.H.

Beck'sche Verlagsbuchhandlung, Munich (1953), p. 127.

He could not possibly afford to, since he asserted that the earth moves.
And the earth frame, the solid ground on which Ptolemy stood, is the one
frame that is completely useless to demonstrate mobility of the earth.

There is a curious side to Copernicus's proposal which tells us some-
thing about his concept of motion, indeed, the difficulty of anyone in
forming a conception of motion. He wanted to set the earth loose from its
bearings, but could not do this without simultaneously making sure it
was securely fenced in. Without the fence, he cannot assert that the earth
moves at all. As a result, the overall impression one gets from De
Revolutionibus is that Copernicus inhabited a world more claustrophobic
than did Ptolemy; it is almost as if he were confined in a medieval
courtyard. Ptolemy stands on the earth and looks outward. Copernicus
first checks the walls are there and then starts working inward. With
Aristotle, he is prepared to accept that 'beyond the heavens there
is ... no body, no space, no void, absolutely nothing/39 He is only
interested in what is inside the outermost rim and he opens the account
of his cosmology with these words:40 The first and highest of all is the
sphere of the fixed stars, which contains itself and everything, and is
therefore immovable. It is unquestionably the place of the universe, to
which the morion and position of all the other heavenly bodies are
compared/

There are several other passages in De Revolutionibus in which he is as
explicit.
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It is perhaps worth making the point here that four great men working
in the capacity of theoretical astronomers (i.e., actually working on the
problem of describing celestial motions) made important contributions to
the development of dynamics: Ptolemy, Copernicus, Kepler, and
Poincare. Without exception, when forced to ask themselves the question
'What is motion?' all instinctively referred it to observable matter. In
contrast, none of the three giants of dynamics - Galileo, Newton, and
Einstein - worked actively on astronomical problems in the way the other
four men did.* Interestingly, all three - even including Einstein -
instinctively thought of motion as taking place relative to space. To these
three Maxwell, hardly less of a giant, can also be added. We shall return
to this point in Vol. 2.

This is perhaps a good point at which to review the concept of the frame
of reference as it developed up to Copernicus's time. As mentioned in
Chap. 1, primitive man must instinctively have referred all motion to the
surface of the earth. In the first rush of speculative enthusiasm, the early
atomists dissolved the earth and plunged enthusiastically into the
limitless void. But, in reality, their void was just the framework of the
earth made invisible; they even left in Up and Down. Aristotle called a halt
to this heady enthusiasm and not only insisted on epistemological
decorum but actually went further, endowing properly defined place
(i.e., place defined by visible matter) with dynamical power of a sort: the
ability to attract the elements to their proper places.

This incipient dynamism was not developed by the Hellenistic
astronomers. Instead, they concentrated on the more mundane matter of
accurately charting and interpreting the motions of the celestial bodies.
The early astronomers worked effectively with two equivalent frames of
reference: the earth and the fixed stars, the one being related to the other
by a simple and straightforward uniform rotation. However, there then
came a crisis of sorts, which may in fact have helped to tip the balance in
favour of a geostationary view of things. This was the discovery of the
precession of the equinoxes sometime after 135 BC by Hipparchus.41

Let us briefly recall the modern (i.e., post-Newtonian) account of the
precession of the equinoxes. As we have seen in Chap. 3, the orbit of the
earth defines a plane in helioastral space which cuts the celestial sphere in
the ecliptic. The plane of the ecliptic varies only very slowly and within a
narrow range and can be assumed to be fixed for the purpose of this
discussion. The rotation axis of the diurnal motion of the earth is inclined
to the axis of the poles of the ecliptic at an angle of about 232° (the obliquity
of the ecliptic). Were the direction of the rotation axis fixed in space, the

* This statement requires clarification in the case of Newton, who did do such work.
However, it was done in earnest only after he had put together all the elements of his
dynamics and was done more with a view to confirming details of his theory of universal
gravitation.
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four distinguished positions in the earth's orbit separated by exactly 90°
and corresponding to the vernal and autumnal equinoxes and the winter
and summer solstices would correspond to fixed positions of the sun in
the ecliptic, i.e., the vernal equinox would always occur when the sun is
at exactly the same position in the ecliptic. However, because of the
oblateness of the earth's shape and the tilt of its axis, the sun's gravity
exerts a torque on the spinning earth, which causes the axis of rotation to
precess uniformly, describing a circle on the celestial sphere about the
pole of the ecliptic. The radius of this circle is about 23|°, i.e., equal to the
obliquity of the ecliptic, and the circle is described uniformly in about
26 000 years. This means that the equinoctial positions of the sun precess
around the ecliptic, moving round the ecliptic in the opposite direction to
the annual motion of the sun. As a result, the so-called tropical year,
defined by the equinoxes and solstices, is about twenty minutes shorter
than the sidereal year, defined by the period required for the sun to return
to the same ecliptic position.

This phenomenon, discovered by Hipparchus by comparing observa-
tions over a period of many years, caused something of a crisis and made
Ptolemy think very hard about what might be called the 'ultimate frame
of reference'. The point is that the tropical year is defined using the earth
frame; if you set up a gnomon at a fixed point on the earth, the tropical
year corresponds to the interval between the successive times at which
the sun's shadow at noon has its shortest length. In contrast, the sidereal
year is defined in the geoastral frame by the passage of the sun along the
ecliptic against the backcloth of the stars and back again to its starting
point.

The problem facing Ptolemy was this. How is the length of the year
defined? And, more fundamentally, is there any unambiguously defined
frame of reference for describing motion? It seems that Ptolemy was
swayed in the end by practical considerations. He opted for the tropical
year:42

We must define the length of the year as the time the sun takes to travel from some
fixed point on this circle back again to the same point. The only points which we
can consider proper starting-points for the sun's revolution are those defined by
the equinoxes and solstices on that circle. For if we consider the subject from a
mathematical viewpoint, we will find no more appropriate way to define a
'revolution' than that which returns the sun to the same relative position, both in
place and in time, whether one relates it to the [local] horizon, to the meridian, or
to the length of the day and night; and the only starting-points on the ecliptic
which we can find are those which happen to be defined by the equinoxes and
solstices. And if, instead, we consider what is appropriate from a physical point
of view, we will not find anything which could more reasonably be considered a
'revolution' than that which returns the sun to a similar atmospheric condition
and the same season; and the only starting-point one could find [for this
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revolution] are those which are the principal means of marking off the seasons
from one another (i.e. solsticial and equinoctial points].

Ptolemy was clearly an astronomer with his feet firmly on the ground.
He accordingly measured everything relative to the earth and assumed
that in addition to the diurnal rotation all the stars (and, with them, the
entire orbits of the planets (though not the sun)) are subject to the
additional slow motion of precession. It is interesting to note that Ptolemy
anticipated the problem at the heart of the discussion of Mach's Principle
that became inescapable once the idea gained ground that the stars are all
in a state of relative motion. How can you define an ultimate frame of
reference if all the bodies in the universe are in motion relative to one
another? For he said:43 'One might add that it seems unnatural to define
the sun's revolution by its return to [one of] the fixed stars. . . . For, this
being the case, it would be equally appropriate to say that the length of the
solar year is the time it takes the sun to go from one conjunction with
Saturn, let us say (or any other of the planets) to the next. In this way
many different 'years' could be generated.'

As there are several thousand stars visible in the sky and only the five
planets, sun, and moon exhibited any observable relative motions, this
objection appears something of a pedantic quibble on Ptolemy's part. For
all that, Ptolemy had a valid point. Once the realization dawns that all the
stars are in ceaseless relative motion among themselves, the heavens lose
all their reassurance as the ultimate frame of reference. We come face to
face with the central question: what is motion?

It is particularly interesting in this connection that both Hipparchus and
Ptolemy harboured a certain distrust towards the reliability of the stars. In
fact, Hipparchus at one stage believed that the stars near the ecliptic could
be very slowly moving planets since he found that their longitudes
increased very slowly with the passage of time; however, he later
inclined,44 though only tentatively in view of his sparse evidence, to the
(correct) view that the effect was common to all stars and was simply the
precession just described. Because Ptolemy had at his disposal the
accurate observations of Hipparchus made about three centuries earlier,
comparison with his own observations revealed clearly the true nature of
the precession, and he was able to vindicate completely the revised
conjecture of Hipparchus.45 Hipparchus is justly famous for the first
systematic compilation of a star catalogue (Ptolemy reports46 that very
little work of such kind was done before Hipparchus), and Ptolemy went
to considerable trouble in an attempt to establish, on the basis of this
catalogue, whether the so-called fixed stars exhibit proper motions, i.e.,
move relative to each other on the heavens. In particular, he compiled a
list of alignments of three stars on a single line. He compared the positions
in his time with those in Hipparchus's and found no visible changes had
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occurred in the intervening three hundred years. But47 'in order to
provide those who come after us with a means of comparison over a
longer interval' he carefully reproduced Hipparchus's list of alignments
and added some more of his own. Eventually his labour paid off. In 1718,
Halley48 concluded that both Arcturus and Sirius had moved southwards
since the time of Ptolemy by about 1°.

By Copernicus's time the situation with regard to the length of the year
and the precession of the equinoxes had become very complicated.
Inaccurate observations, including some by Ptolemy himself (who
believed the precession of the equinoxes had a period of 36 000 years), had
created the impression that the precession of the equinoxes was
nonuniform. Copernicus firmly believed this, being too prepared, as we
noted, to trust the accuracy of his predecessors' observations. To account
for these phenomena, various astronomers had proposed the existence of
additional spheres whose motions were intended to explain these slow
variations, some of which were entirely nonexistent. Copernicus firmly
rejected these proposals and attributed all these effects to motions of the
earth. This was much easier to conceive than the addition of one sphere
on another in the great vault of the heavens.

Writing nearly two centuries before Halley's discovery and about a
century before Descartes first sowed serious doubt about the stability of
the astral frame (Chap. 8), Copernicus was quite sure that the fixed stars
represented the only appropriate frame of reference and said that:49 'we
must not heed Ptolemy in this regard'.

5.7. Copernicus's concept of motion

In one very important respect the Copernican revolution is to be seen as a
triumphant culmination of ancient theoretical astronomy rather than its
destruction and replacement by a quite new order. It will be recalled from
Chap. 3 that although Hellenistic astronomy lacked a notion of physical
causality it was nevertheless permeated by a kind of causality - the idea
that the two-dimensional motions observed on the sky are to be explained
by laws of motion operating in three-dimensional space. So far as one can
judge, it was this aspect of Greek theoretical astronomy that so
significantly distinguished it from the contemporary or slightly earlier
Babylonian astronomy. Seen in this light, Copernicus's insight is to be
regarded as the crowning triumph of the programme to 'save the
appearances' that began with Eudoxus and saw such significant advances
in the hands of Apollonius, Hipparchus, and Ptolemy. For the explicatory
power of motion to explain observed phenomena is the very essence of
the Copernican revolution. In terms of showing how much could be
achieved by the assumption of certain motions in space, its importance
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was at least equal to that of the discovery of the epicycle-deferent scheme,
to which, of course, it bears the closest connection.

Thus, although Copernicus would probably have disagreed strongly
with Osiander's argument that the idea of the earth's mobility should not
be taken literally, he would have had much less objection to the basic
principle of theoretical astronomy as enunciated by Osiander,22 namely to
adopt 'whatever suppositions enable the motions to be computed
correctly from the principles of geometry for the future as well as for the past'
(my italics). Let us now look in a little more detail at the manner in which
Copernicus conceived motion and, above all, at the role he allotted to the
sun.

We may begin by remarking that although Copernicus's thinking was
extremely clear and radical when it needed to be, his concepts of motion
(and its causes) looked back more to Aristotle and Plato than did
Ptolemy's; he strikes one as actually more cramped in his thinking than
Ptolemy. For example, geometry plays a more prominent part in its own
right in De Revolutionibus than in Ptolemy's Almagest, imposing patterns of
thought, rather as it does in Plato. For Ptolemy, geometry was a tool of the
trade; for Copernicus, it was much more the mystical Platonic key to the
essence of nature. Plato is mentioned many times in De Revolutionibus but
not once in the Almagest.

Copernicus's somewhat mystical attitude to geometry is, no doubt,
part of the explanation for his insistence that all observed celestial
motions must be explained by a superposition of exactly circular and
exactly uniform motions. Thus, Copernicus would still have disagreed
with the last quotation from Osiander because of what he would have
seen as the excessive licence implied in the 'whatever suppositions'. This
aspect of Copernicus's thinking can also in part be explained as an
historical accident - he was led to make one of the greatest discoveries in
science through his insistence on the principle of perfectly circular and
uniform motions in the first place. It is probably asking too much of
human nature to expect Copernicus to have seen that his idea for
replacing the equant had in fact nothing to do with his really great insight.

Much more relevant for the central theme of this book was an equally
potent factor in the explanation for Copernicus's continued adherence to
the archaic geometrokineticism of perfect uniform circular motion,
namely that, as pointed out in the previous section, he did not suspect a
relative motion of the stars among themselves. For Copernicus, the
illusion of the seeming fixity of the stars spread, as it were, a sheet of ice
over the abyss and tended to make him content with a geometrokinetic
concept of motion. For on ice you can skate and trace the most exquisite
patterns. Copernicus looked down from his newly-won high vantage
point and had no reason to suspect that God had anything more in mind
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than the tracing of beautiful circles in the ice. Not such a bad idea either
when you stop to think of it, especially in the man who, first among men,
saw clearly for the first time the grandeur of the arena designed by God to
stage the spectacle.

Thus, although Copernicus's own work was a spectacular demonstra-
tion of the power of the principle of kinematic relativity, he himself took
only the first step in the direction of the thoroughgoing relativity of
motion implicit in Aristarchus's introduction of trigonometry into the
study of celestial motions. Only with Mach is the principle taken to its
logical conclusion - that position and motion are not merely revealed and
defined by the bodies in the universe (the insight for which we have to
thank above all Copernicus) but are actually determined by them. Before
that had to come the awareness of the acute problem of the definition let
alone determination of motion in a situation in which there are no bodies
truly at rest in the universe. But this insight is still a century ahead of
Copernicus, who had no reason to doubt the existence of the sphere of
truly fixed stars. We have seen already how it assumed an almost mystical
significance in his mind. It also had a decisive effect on the way in which
he thought about motion and helps to explain the curious fact that
heliocentricity was an incidental rather than central feature of Coper-
nicus's scheme.

It is significant that Copernicus begins the account of his cosmology -
in the passage quoted earlier on p. 248 - with the description of the sphere
of the fixed stars. This is, in fact, all he needs. Although invisible, space is
perfectly well defined within the rim that the stars pick out.

In this invisible space Copernicus (or God) can describe any circle he
pleases. For, by virtue of the stars around the edge, it is well defined and
has a real place. Both the circle and its centre are truly somewhere. Such a
circle can then become the locus of either a moving planet, which is
presumed to move uniformly around the circle, or a void guide point,
itself the centre of an epicycle carried around the deferent and upon
which the planet rides, again moving uniformly around the epicycle.
Everything is reduced to uniform motion in circles and this motion is
defined with respect to the ultimate frame of reference. The existence of
the fixed stars, believed to be at rest relative to each other, is what enables
Copernicus to feel completely happy with a purely geometrokinetic
concept of motion. He changed the frame of reference but not the concept
of motion.

Thus, Copernicus believed in the reality of motion but pointed out that
it will appear very differently depending on the point of view from which
it is observed. In some cases it may even seem to disappear. Copernicus
went only half way to a fully relative concept of motion; he still used a
safety net. The motion still exists even if we do not observe it. It is very
hard to accept that there is no ground at all under our feet. It is another
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irony that the post-Copernican defenders of Aristotelian cosmology in
the late sixteenth and early seventeenth centuries in fact pushed the
principle of optical relativity to its extreme; for just as Copernicus invoked
the principle of relativity to show that the earth could move, even if it
seemed to be at rest, they argued that the same principle implied equally
well that the earth could be at rest and the remainder of the universe in
motion. They took refuge in the impartiality of relativity. What they failed
to appreciate was that they were espousing a doctrine with ultimately
much more disconcerting implications than the scheme Copernicus
actually proposed. In his cosmology, you did at least know where you
were; he was much closer in spirit to Aristotle and the reassuring idea that
wine belongs in a bottle, or the candle in a lantern.

Which brings us back (in stages) to the sun. For Copernicus, the
problem of the motion of the planets (with the earth now included among
them) was to describe it (not explain it) and demonstrate that it consisted
of a superposition of uniform circular motions. All other considerations
were subordinated to the last requirement; if that were met, you could
rest satisfied with a job well done. As he said proudly at the end of the
Commentariolus:2 Then Mercury runs on seven circles in all; Venus on five;
the earth on three, and round it the moon on four; finally Mars, Jupiter,
and Saturn on five each. Altogether, therefore thirty-four circles suffice to
explain the entire structure of the universe and the entire ballet of the
planets.'

If he has any concept of motion that goes beyond geometrokineticism
or ballet, it is mechanical. In his preface to the pope he says:50 'I began to be
annoyed that the movements of the world machine, created for our sake
by the best and most systematic Artisan of all, were not understood with
greater certainty by the philosophers, who otherwise examined so
precisely the most insignificant trifles of this world.'

Although he says remarkably little explicitly on the subject, it appears
that Copernicus did believe the planets were carried on spheres of a world
machine. This question, a key factor in which is the sense in which
Copernicus used the Latin word orbis (it could, apparently, have meant
several things, including both sphere and circle), has in fact been the
subject of considerable controversy,51 in which Rosen and Swerdlow took
opposite sides. The debate arose from a suggestion by Swerdlow in his
commentary on the Commentariolus2 that Copernicus probably discovered
the Tychonic system (p. 225) at the same time as his own Copernican
system. Why, Swerdlow wondered, did Copernicus choose his own
system in preference to the Tychonic one, which avoids all the dynamical
problems of terrestrial mobility, to say nothing of the theological
problems? Swerdlow concluded, tentatively in Ref. 8 (and with more
conviction in Ref. 9 after the exchange with Rosen), that Copernicus was
strongly swayed by purely mechanical considerations to do with his
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acceptance of the theory that the planets are carried by material spheres.
For in the Tychonic system Mars would have to pass at some points in its
motion through the sphere of the sun, and Swerdlow believed that
Copernicus must have found this an insuperable difficulty, therefore
opting for the intellectually much more daring heliocentric system with
mobile earth.

On this particular point, I do not find Swerdlow persuasive. It is true
that in Book 1 of De Revolutionibus (Chap. 10) Copernicus seems to be on
the point of advancing the Tychonic system as an explicit possibility;
however, he immediately draws attention to the advantages of his own
system in terms that, to my mind at least, do not lend support to
Swerdlow's suggestion. I am much more inclined to take Copernicus's
writings at their face value and assume that he was primarily swayed by
the harmony of his own system as expressed in his qualitative discovery
of Kepler's Third Law. In the Tychonic system the neat ordering of the
earth's orbital period between those of Venus and Mars is lost and some
of the objectionable heterogeneity of the Ptolemaic system reintroduced.
Also, in common with many commentators, I can see no reason why
Copernicus should not have been quite strongly swayed by Neoplatonic
sympathies to see the centre of the planetary system as an ideal location
for the sun (see below). Swerdlow has little sympathy with such
considerations.

Nevertheless, it does seem to me to be a very difficult question to decide
precisely what either Copernicus or Ptolemy thought about the question
of physical mechanisms of the planets' motions (cf. p. 142 and p. 187fn).
At the least, Osiander's preface to De Revolutionibus, which we quoted
earlier and appears to represent views quite widely held at that time,
seems to suggest that specific hypotheses about the celestial motions
(and, presumably, the mechanisms which were supposed to bring them
about) were the subject of considerable sceptical doubt in Copernicus's
age. Swerdlow51 argues that the mechanical aspect does not loom large in
either the Almagest or De Revolutionibus because these two books are
primarily concerned with the mathematical description of the planetary
motions but that this does not imply any lack of support for mechanical
mechanisms. My own impression is that in both books the mathematical
description is paramount, i.e., both authors concentrate first of all on
finding what they feel is a satisfactory mathematical description
('satisfactory' for Ptolemy means simple, a point he emphasizes several
times in the Almagest; for Copernicus it means consonant with the
principle of uniform circular motions); after the mathematics has been
sorted out, one may then put one's mind (if so inclined) to the elaboration
of a mechanical model that reproduces the mathematics. This certainly
seems to be what Ptolemy did in his Planetary Hypotheses (p. 187fn).



Copernicus's concept of motion 257

As this insistence on mathematical description by Hipparchus,
Ptolemy, and Copernicus was the decisive factor from the point of view of
the discovery of dynamics, the attitudes of Ptolemy and Copernicus to the
mechanical spheres seem to me of much lesser significance than their
commitment to careful observation coupled with rigorous mathematical
description. It was this attitude, and it alone, that finally made dynamics
possible. It was, moreover, an attitude found only very rarely before the
late seventeenth century. Nevertheless, Swerdlow51 is certainly quite
right to emphasize that the definitive 'destruction' of the solid spheres by
Brahe's observations of a comet in 1577, which, he argued, showed that it
must have passed clean through successive planets' spheres, was a very
great stimulus to both Brahe and above all Kepler to rethink the whole
question of what made the planets move.

Whether or not Copernicus did believe firmly in the reality of the
mechanical spheres, the Copernican system does in fact remind one of the
threshing machines which figured so prominently in cereal farming until
the combines displaced them about two generations ago. Wheels of
different sizes all over the place, with the drive being transmitted from
one part of the machine to another. As we have seen, the correlations are
bizarre, especially in the case of the inner planets, which have circles
turning at twice the rate of the earth's annual motion. And what controls
it all?

The modern reader, coming to De Revolutionibus with so many pre-
conceptions, automatically expects everything to revolve around the sun
as linchpin. But already in the preface to the pope there are indications
which, if recognized, indicate that this is not so. One such indication has
already been mentioned; in the following passage he is more explicit (my
italics):52

In the first book I set forth the entire distribution of the spheres together with the
motions which I attribute to the earth, so that this book contains, as it were, the
general structure of the universe. Then in the remaining books I correlate the
motions of the other planets and of all the spheres with the movement of the earth so
that I may thereby determine to what extent the motions and appearances of the
other planets and spheres can be saved if they are correlated with the earth's
motions.

Most revealing of all - and quite disorientating for the modern reader -
is the fact that in the diagrams in which Copernicus explains the motions
of the planets the sun is not shown at all, and it is not at all easy to work out
where it is. Instead, everything is centred on the centre of the orbis magnus.

You look in vain for the engine which drives the Copernican threshing
machine. It is not the sun. The planets twirl at God's behest in the
framework of the space that the stars pick out. Old Saturn dances slowest
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not so much because he is furthest from the sun but because he is the
nearest to the stars, an echo of the ancient Aristotelian (and, as we saw in
the previous chapter, medieval) idea that perfect rest is the state which
most closely approaches the divine ideal. The planets dance for our
delectation. The sun does not cause and govern their motion; it is rather a
lantern hung in the middle to illuminate the dance and all the mighty
temple that houses it:53

At rest, however, in the middle of everything is the sun. For in this most beautiful
temple, who would place this lamp in another or better position than that from
which it can light up the whole thing at the same time? For, the sun is not
inappropriately called by some people the lantern of the universe, its mind by
others, and its ruler by still others. [Hermes] the Thrice Greatest labels it a visible
god, and Sophocles' Electra, the all-seeing.

In this fervour of Neoplatonic sun worship, a rare outburst in a text
otherwise as sober and restrained as the Almagest, Copernicus allows
himself one sentence which suggests he might have had in mind an even
greater role for the sun: Thus indeed, as though seated on a royal throne,
the sun governs the family of planets revolving around it.' But despite
Kepler's characteristically generous comment54 that Copernicus 'when he
speculated' shares his own belief that the sun actually controlled the
motions of the planets, Copernicus's book belies the suggestion. It
demonstrates mobility of the earth, not dominion of the sun.

5.8. The significance of the Copernican revolution: second evaluation

Several commentators, including Kuhn and Koestler,55 tend to emphasize
the unrevolutionary and even archaic aspects of Copernicus's system -
that although he eliminated one set of epicycles he introduced a new set
and finished up with a system that overall was as complicated as
Ptolemy's and, moreover, one that was no more accurate than his
predecessor's. It seems to me that this emphasis fails to distinguish
sufficiently clearly the two parts of the planetary problem - the theories of
the first and second inequality. The Copernican revolution was about the
second inequality; his conservatism related to his treatment of the first
inequality, in which he made no positive contribution at all.

Looked at in one way, what Copernicus did was very little, a pinprick
only. But he did it extremely well. On the question of the earth's motion
at least, De Revolutionibus gets the central message across with clarity.
Moreover, the preface to Pope Paul III is extremely effective, not to say
artful, in building up the expectation of a momentous announcement.

On the really big claim that Copernicus made, he did deliver the goods.
He complained to the pope that his predecessors could not:56 'elicit or
deduce from the eccentrics the principal consideration, that is, the
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structure of the universe and the true symmetry of its parts' (my italics). If
you had asked Ptolemy what the universe looks like from Saturn, he
would have been quite unable to give you any answer based on a sound
theory. He did not know how far away Saturn is; he had no way to
overcome the scale invariance of his solution to the problem of planetary
motions; his trigonometry failed him. By his extension of trigonometry,
Copernicus put in man's hand a tool that, in his mind's eye, enabled him
to travel in space. He could deduce what the world looks like from unvisited
points at vast distances from the earth. Historically, Copernicus
performed his task. He recounted his insight to his contemporaries in
lucid language and, for the experts, provided the solid mathematical
arguments which substantiated his vision. For the first time in history,
man had a tolerably accurate picture of the solar system and at least a
comprehension of the immensity of the universe. Moreover, unlike the
early Greek hints of heliocentricity, Copernicus's picture was based on
solid observation and theory (even if little of this was his own apart from
the shifting of the linchpin).

The defects of Copernicus's system were entirely confined to secondary
effects and were caused by his almost quirky refusal to take the equant at
its face value and his excessive trust in the observations of others. This led
him to reintroduce a remarkable profusion of epicycles, etc. There is
nevertheless a very good criterion which shows what a major success
Copernicus achieved. We have already mentioned the far greater
coherence of the Copernican system, at least as regards the gross features.
Attention should also be drawn, as it was by Kepler,57 to the fact that the
paths of the planets in the geoastral space of the Ptolemaic system were
never-ending spirals which wandered all over the place. Figure 5.13
shows the orbit of Mars according to Brahe's observations from 1580 to
1596 as drawn by Kepler under the assumption that the earth is at rest,
i.e., it is the orbit of Mars in geoastral space (note the signs of the zodiac
around the rim).58 Kepler describes the orbit as in figura panis (\uad-
ragesimalis - in the figure of a lenten bun, or Fastenbrezel for those familiar
with the German language and bakery! The intricate pattern is produced
by the superposition of the Ptolemaic epicycles on top of the deferent
motions. The eternal tangle of the resulting spirals is generated by the
noncommensurability of the two motions (the period of the earth's
revolution bears no simple relationship to those of the various planets). In
contrast, the largest of the Copernican epicycles all had periods that were
simple multiples of the dominant motion: this meant that the Copernican
orbits were essentially fixed in helioastral space. The innumerable corrections
that Copernicus felt obliged to introduce only had the effect of shifting the
planets about their mean orbits by what were very small amounts. In
themselves these deviations were not particularly remarkable. It was only
the mechanisms producing them that seemed so daft. The actual orbits they
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Fig. 5.13. Kepler's illustration of the motion of Mars in geoastral space from 1580
to 1596. (Reproduced from the 1609 edition of Astronomia Nova by courtesy of The

Beinicke Rare Book and Manuscript Library, Yale University.)

produced were quite accurate and deviated only slightly from the actual
fixed positions. This was an immense gain in clarity.

In a way then, it is irrelevant to find fault with the remainder of
Copernicus's work and to criticize his theory of the first inequality.
Copernicus happened to publish all his work in one book, and this tended
to obscure the issue. It must also be said that Copernicus was partly to
blame. He certainly does imply59 that his real revolution, the magnitude
of which was not in doubt in his mind (though he could not have had the
remotest notion of all its consequences), had a significant bearing on his
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theory of the first inequality and would help to achieve the elimination of
the unwanted equant. But, as we have said, it had not the slightest effect
on the problem.

One of the particular fascinations of the Copernican revolution, which
was indeed a cataclysmic event, is that it was based exclusively on a fully
developed and already existing theory. It was not preceded by any major
observational discovery on Copernicus's part. It was pure reinterpreta-
tion of something long known. This is undoubtedly what gave it much of
its dramatic impact. The history of physics shows us only one other
comparable event - Einstein's creation in 1905 of the special theory of
relativity. Like Copernicus's proposal, it too consisted of pure reinterpre-
tation - of Maxwell's electrodynamics in Einstein's case. And the
consequence of one deft move was just as disconcerting - the overthrow
of a concept of the world held for millennia as an instinctive article of faith.
Appropriately enough, both revolutions were intimately related to
relativity - in both its kinematic and Galilean aspects. Planck60 was quite
correct to say that Einstein would come to be seen as the Copernicus of the
twentieth century on account of his 1905 paper. The comparison is most
apt.

An equally fascinating aspect of the Copernican revolution, with which
we shall be concerned in the following chapters, is the consequences it
had for the theory of motion, both celestial and terrestrial. In the case of
the celestial motions it led to what may be called the second or Keplerian
stage of the Copernican revolution, which will be the subject of the next
chapter. In the case of terrestrial motions it destroyed the basis of
Aristotelian theory, according to which all natural terrestrial motions take
place towards or away from the centre of the earth, which is assumed to
coincide with the centre of the universe. It was here that the diurnal
rotation of the earth, which in De Revolutionibus had the status of almost an
incidental remark compared with the astronomical significance of the
annual motion around the sun, revealed its full implications for dynamics.
In the chapters on Galileo and Huygens we shall see how the merest
hints, forced upon Copernicus by his momentous discovery and in fact
anticipated by Oresme, led to follow-on revolutions in the science of
motion every bit as dramatic and surprising as the original revolution.

If the work of Galileo and Kepler can be seen as second stages in the
Copernican revolution, it still only partly undid the Aristotelian division
between the heavens and the earth. In their lifetime, Copernicus's
proposal still remained only a flimsy arch between two distinct parts of
the universe. The final elimination of the gulf between the two parts
represents the third stage of the Copernican revolution. At the
philosophical level this readjustment of the overall conceptual picture
was to a large degree the work of Descartes; at the level of a viable
dynamical theory of motion it was the work of Newton.
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As regards all these consequences, Copernicus clearly had much less
idea of the significance of his revolution. This should not occasion any
surprise, since clear and essentially correct ideas about geometry
crystallized in ancient times whereas the corresponding process did not
occur for motion until well over a century after Copernicus's death. The
Copernican revolution was in fact the single most important event in
bringing about this crystallization of concepts of motion.

As a preparation for the following chapter, it will be worth reviewing in
conclusion precisely why it was that Copernicus created a theory of the
mobility of the earth that was simultaneously heliostatic rather than
heliocentric, the latter being used here in the sense that the sun is accorded
a dominant role in actually controlling the motions of the planets rather
than merely being a static illuminator of their motions.

The origin of the oddity of the Copernican revolution has already been
hinted at earlier in this chapter. It has to do with the relative magnitude of
two effects, both produced by the sun: the circularity of the planetary
orbits and the small-eccentricity corrections to zero-eccentricity
behaviour. The first is by far the larger and more striking phenomenon
and was actually all that was needed for the Copernican revolution. In
fact, it was a purely historical accident that Ptolemy discovered the equant
and Copernicus heliocentricity. Logically, judged by the magnitude of
the corresponding effects, the discoveries should have happened the
other way round. In Chap. 3 it was suggested that the remarkable
successes of the Ptolemaic system were probably the main reason why
Ptolemy did not hit on heliocentricity. For the successes were very great.
Ptolemy departed the scene basking in a well-earned triumph. There
seemed to be very little left to do.

Another reason why Ptolemy may not have discovered heliocentricity
is that the impact and interpretation of the zero-eccentricity behaviour of
the planetary orbits is actually obscured by the small-eccentricity effects,
which cause the centres to be displaced from the common point at the
centre of the sun. Instead, they are scattered around the sun in a
seemingly random way, some at considerable distances (Saturn's is over
half way from the sun to the earth's orbit). If the centres alone are
considered, it appears that the sun just happens to be placed in the same
region as the centres of the planetary orbits. This is what Copernicus was
forced to conclude. There is no apparent causal connection between the
position of the sun and the various centres. This indeed is in line with the
modern understanding of the situation. The centres of the planetary
orbits are determined by the initial conditions, not by the law of gravity.

The true significance of the sun is, however, revealed by the less
striking manifestation of the sun's dominion - the equant phenomenon.
The centres of the orbits are not the only points associated with the
planetary motions. The planets move nonuniformly in their orbits but, to
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first order, uniformly about their equants. These points are just as
unambiguously determined by the observations as the centres of the
orbits. (It is a highly nontrivial property that such points exist.) That the
planets recognize the sun as lord is seen in the fact that, for each planet,
the line joining the equant and the centre of the orbit passes through the
centre of the sun. Moreover, the equant's eccentricity is exactly twice the
centre's. So subtle - indeed subliminal - is the dance. Sol is worshipped
with sophistication worthy of a choreographer who achieves his effects in
ways not directly apparent to the eye. Not for him the mere mechanical
geometrokineticism of uniform circles described on ice or in a courtyard.

Thus the irony was this. In the equant phenomenon, Ptolemy actually
discovered the lesser effect of the sun's dominion but hidden in geocentric
guise. Because it disturbed the old geometrokinetic harmonies, Coper-
nicus tried to eradicate this harbinger of a quite new order of things. In the
process he accidentally stumbled on the much more obvious effect of the
sun's dominion - the circular orbits around the sun as approximate
centre. However, he was completely misled by the accident of the specific
eccentricity values. He never could abide the equant phenomenon and
therefore had no particular wish to tie it into his new found heliocentricity.
Ptolemy's theories, which no one had ever bettered, seemed to suggest
that the system was correlated on the centre of the orbis magnus. Why
should he demur? As long as the geometrical relationships fitted,
Copernicus had no desire to better Ptolemy.

As Kepler remarked:23 'Copernicus merely set himself the task of
reproducing Ptolemy.' Therefore, it did not occur to him that the equant
phenomenon was a direct consequence of the presence of the sun and
that one should accordingly look for a specifically heliocentric explanation
of it. Instead he looked to cogwheels and cam shafts.

Thus the old obsession with the equant blinkered his vision. The
amazed Copernicus, a student in Padua a century before Galileo came
there as a professor, opened the door of night into a medieval courtyard
and found the courtiers dancing, Mother Earth among them. Dazzled by
the spectacle and instinctively applying the pedestrian rules of the
outmoded discipline of his student days, he failed to catch the new
rhythms and unwittingly demoted the lord of the dance to a mere lantern.
What he made with one hand he all but unmade with the other - but it
would have been superhuman to have done better. He had performed his
task, prompted by the right effect but for the wrong reason. It led him to
open the door into a new world; he saw enough to ensure that the door
would never be closed again. Aristarchus had probably only peeped
through the keyhole.
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6.1 Brahe and Kepler

Flamboyant, haughty, and renowned for the gold and silver nose that he
had fitted to replace the real one he lost in a duel, the Danish nobleman
Tycho Brahe (1546-1601) is the most colourful personality that appears in
our story.1 He witnessed the solar eclipse whose prediction so stirred his
imagination (p. 44) that he took up astronomy in Copenhagen in 1560.
Equally decisive was his observation of a conjunction of Saturn and
Jupiter in 1563, which occurred on a date differing from the prediction of
the Alfonsine Tables by about a month and still by a few days from that of
the much newer Prutenic Tables, which used Copernicus's models.

In all the centuries since Ptolemy there must surely have been
astronomers who had realized that the Ptolemaic models and parameters
were not quite perfect. Yet it seems that not until Brahe was an astronomer
with talent stimulated to carry out a really extensive programme of
observations and comprehensive testing of the models of the celestial
motions. Brahe threw himself at the task with immense energy. As a
young man he travelled widely and established a network of contacts
with many other astronomers in Europe. Rather appropriately, his
reputation was established by a new star which appeared in the
constellation Cassiopeia in November 1572. This was the first of two
supernovae (the second was in 1604) which occurred fortuitously at the
dawn of the scientific revolution and did much to cast doubt on the
ancient Aristotelian doctrine of the unchanging and incorruptible
heavens.

Brahe's observations of the new star, made with great accuracy,
established that it exhibited no parallax - its position with respect to the
neighbouring stars in Cassiopeia changed neither diurnally nor annually.
Thus it was situated at a distance much greater than the moon and, almost
certainly, the sun and planets. Brahe published an account of his
observations in 1573, which, together with those of others, initiated a
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profound rethinking of cosmological ideas. Another very important step
in the same direction were Brahe's observations of a comet in 1577. The
absence of diurnal parallax showed clearly that the comet too must be
much further away than the moon (thereby disposing of the ancient idea
that comets were sublunar 'exhalations'). Brahe concluded that it was at
the distance of the planets and, most important of all, that it must have
passed through the putative spheres that were meant to carry the planets.

Brahe was greatly influenced by Copernicus, whose lead he followed in
many respects, but he could not accept the Copernican cosmology, which
he rejected (and replaced by his own Tychonic system (p. 225)) partly on
the authority of scripture, even more on his disbelief that the earth could
rotate without our being forcibly made aware of the fact, but above all on
the sheer immensity of the cosmos that it implied. His own observations,
made with unprecedented accuracy, failed to reveal the stellar parallax
that one would have expected to be associated with motion of the earth in
the orbis magnus. The huge distances to the stars that this implied proved
especially difficult to accept on account of a curious fact of which the
modern reader will be quite unaware: before Galileo made his telescopic
observations, astronomers firmly believed that the stars and planets
exhibited perceptible circular disks like the sun and moon. The brighter
stars and planets were assumed to have diameters of about two or three
minutes of arc.

In the Copernican scheme this implied for the stars an incredible
diameter - greater than the diameter of the orbis magnus. The resulting
misconceptions strongly influenced cosmological ideas (including
Kepler's) until Galileo demonstrated that they were based on an optical
illusion.2 As a half-way house to full-blown Copernicanism, the Tychonic
system played an important role in the history of ideas, easing in
acceptance of the more difficult doctrine at a time of especial confusion
and great diversity of views in astronomy. (It was not the only
modification of the Copernican system proposed in the second half of the
sixteenth century; in addition, some philosophers were still struggling
with the problem of reconciling Ptolemaic epicycles and eccentrics with
the strict concentricism of Aristotelian cosmology.3)

Brahe's best observational work was done during the years 1576 to 1597
on Hven, the island in the sound north of Copenhagen between Denmark
and modern southern Sweden. In a remarkable example of royal
sponsorship of science, King Frederick II of Denmark enabled Brahe to
build on Hven his observatory, Uraniborg (heavenly castle), and equip it
with huge instruments. Over the years Brahe trained several assistants,
who stayed with him for extended periods. He developed a passion for
accuracy (both in observations and their mathematical representation)
and went to great lengths to eliminate errors, not always with complete
success, especially in the case of refraction, which he did attempt to take
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into account but not sufficiently. Brahe believed he achieved accuracies of
better than a minute of arc. Kepler estimated the accuracy of the planetary
observations more soberly as probably not better than two minutes of
arc,4 still a phenomenal achievement of naked-eye astronomy when we
recall that the moon's apparent diameter subtends only about 30'. Brahe
made very substantial contributions to the theory of the moon's motion
and discovered several important effects. He took great pains to determine
star positions with accuracy, which he used to determine planetary and
lunar positions, freeing himself thereby from the ancient overreliance on
position measurements relative to the moon, whose position was in turn
related to the sun's by means of the solar and lunar theories. Aiming at a
complete revision of the whole of astronomy, he was aware of the need to
make observations over very long periods of time and at all positions of
the orbits of the planets and moon. This comprehensiveness of Brahe's
programme was to prove to be almost as important as the accuracy of the
observations. Brahe was a formidable calculator and prolific if somewhat
conservative developer of theory. Through his very extensive correspon-
dence he did a great deal to revive astronomy throughout Europe.

As the years passed, and especially after the death of his royal sponsor
in 1588, Tycho came into progressively greater difficulties on account of
his arrogant manner and arbitrary treatment of his tenants on Hven. The
young King Christian IV did not share the old king's enthusiasm for
astronomy, and Brahe eventually felt obliged to quit Hven in 1597. The
huge observing instruments were never again used properly. After an
unsettled period, Brahe found a new royal patron in the person of
Rudolph II, the Holy Roman Emperor, who appointed him Imperial
Astronomer and invited him to Prague, where he arrived in lune 1599.
Benatky Castle, 22 miles northeast of Prague, was put at his disposal. In
fact, Brahe achieved little of significance in the two years of life that in the
event were all that remained to him, except that is for the happy stroke
which led him to invite Kepler to join him as an assistant, an event in
which Kepler at least saw the hand of divine providence at work.

Johannes Kepler (1571-1630) was born at the little town of Weil der
Stadt in southern Germany. His family was impoverished, having seen
better times, but the obviously intelligent boy was educated at the
expense of the Duke of Wiirttemberg. In 1589 he went to study at the
University of Tubingen, where he came under the influence of Michael
Mastlin (1550-1631), a more than competent astronomer, who, as Kepler
reported,5 enchanted him with his account of Copernican astronomy.
However, at that stage astronomy was only one of Kepler's many
interests:6 'As soon as I had reached the age in which I could sample the
sweet delights of philosophy, I grasped it as a whole with great eagerness
without being especially concerned with astronomy.'



Brake and Kepler 267

In 1594, he took up an appointment as teacher of mathematics and
astronomy at Graz in Austrian Styria (Steiermark). Here he had time for
thought, and he fell to pondering cosmological questions. Above all, he
sought the causes of three things - the particular number of the planets
(six when the earth is included), the diameters of their orbits, and the
speeds of their motions. One sees here the profound influence of the
Copernican revolution, for these were questions that could hardly be
asked in ancient astronomy, which had signally failed to provide a reliable
ordering of the planets let alone a theory connecting the distances and
speeds of the different planets. Dissatisfaction with this failure had clearly
been one of Copernicus's main justifications for seeking a better
alternative. Copernicus's success thus enabled the young Kepler to ask
questions that had never hitherto been posed with any real insistence. It
is clear from numerous passages in Kepler's writings that he was also
deeply affected by the Pythagorean and Platonic overtones of Book I of De
Revolutionibus, especially Copernicus's exalted praise of the sun and the
identification of the centre of the universe as a position worthy of the great
luminary. Just as important was Copernicus's qualitative sensing of
Kepler's Third Law and the harmony it established between the positions
and speeds of the planets. Kepler was fired by the suggestive words that
Copernicus had used to close the account of his cosmology:7 'In this
arrangement, therefore, we discover a marvellous symmetry of the
universe, and an established harmonious linkage between the motion of
the spheres and their size, such as can be found in no other way.' To this
day the Third Law is occasionally referred to as the harmonic law.

To most modern minds, Kepler began his career in astronomy with an
approach that could barely be regarded as scientific. He was totally
convinced that God had created a supremely beautiful and sparkling
world with the express purpose of delighting the mind and senses of
man. Nevertheless, this attitude of mind did prove to be scientifically
valuable as developed over the years by Kepler, since he was equally
convinced that the beauty and sparkle were the outward expression of a
deep and hidden harmony that God had put into the construction of this
precious ornament, the Pythagorean cosmos. For Kepler, the basis of
harmony was to be sought in mathematical relationships - in numbers
and in geometry. Moreover he believed equally passionately that God in
his goodness had left clues in his handiwork that would enable enquiring
man to see through to the deeper underlying principles on which the
masterwork was based. This was the optimistic outlook that gave Kepler
the confidence to ask those questions never hitherto asked - and to expect
to find the answers.

Throughout his life he sought for archetypal (and architectonic) and
harmonic relationships, but alongside this decidedly Platonic and
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Pythagorean bent, for which the most natural modes of expression were
numerical patterns and the synthetic geometry of the ancients, he
developed surprisingly modern concepts. Thus, in Koestler's phrase, he
was truly a watershed between the ancient and the modern.8 Already in
his first work published in 1596 and called significantly and charac-
teristically the Mysterium Cosmogmphicum (The Cosmic Secret), the more
purely physical ideas make their first tentative appearance.

To give the reader an idea of the fertility of Kepler's imagination and the
enthusiasm with which he put it to work, it will be worth retelling how the
Mysterium came into existence. He had sought long and unsuccessfully
for numerical relationships that might hold the key to the distances
between the planets and was close to despairing but then, on the
summer's day of 9 July 1595 (old style), his first great 'inspiration'
occurred. He was showing pupils how the great conjunctions of Jupiter
and Saturn are always separated by eight signs of the zodiac and pass
gradually from one triangle to another. He was drawing part of the figure
shown in Fig. 6.1 (Fig. 5.12 deals with the same question) when he noted
that the triangles inscribed in the large outer circle circumscribed the
smaller inner circle and that the ratio of the radii of the two circles
corresponded roughly to the ratio of the radii of the orbits of Jupiter and
Saturn. In a brainwave that was to transform his life, he concluded that it
was not numerical relationships but the successive circumscribing and
inscribing of circles to geometrical figures which provided the key to the
successive planetary distances. Putting a square between Jupiter and
Mars seemed to lead to a reasonable fit for those two planets, and so did a
pentagon between Mars and the earth. But the problem with this was that
polygons with successively increasing numbers of sides form an infinite
sequence but the planets were just six in number. He could find no reason
'why there were 6 rather than 20 or 100 planets'. Finally he hit upon his
'Platonic inspiration', the idea that the five perfectly regular Platonic
solids (rather than plane figures) are inscribed and circumscribed between
the spheres of the planets. At a stroke this solved his greatest problem -
for it could be proved by mathematics that there existed just five perfect
solids, so these could fit between six, and only six, planetary spheres. He
had found the 'secret of the cosmos'.

In a state of the highest excitement he wrote down almost immediately
the arrangement to which he proudly adhered to the end of his days
(never suspecting, it seems, that it was the purest fata morgana):5 The
[sphere of the] earth is the measure for all the other spheres. Let it be
circumscribed by a dodecahedron; the sphere that circumscribes this is
Mars's; let the sphere of Mars be circumscribed by a tetrahedron; the
sphere that circumscribes this is Jupiter's. Let the sphere of Jupiter be
circumscribed by a cube; the sphere which circumscribes this is Saturn's.
Now place an icosahedron within the earth's sphere; the sphere which is
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Fig. 6.1. Reproduced from Johannes Kepler Gesammelte Werke, C.H. Beck'sche
Verlagsbuchhandlung, Munich, Vol. 1, p. 12.

inscribed to it is Venus's. In Venus's sphere place an octahedron; the
sphere inscribed to it is Mercury's. You have there the reason for the
number of planets/

It is a moot point whether or not the reasonably good fit between this
prescription and the actual distances is to be seen as a fortunate
circumstance in Kepler's life. It sustained him through years of extra-
ordinarily laborious astronomical calculations that bore the richest fruit
but it seriously misled him in the evaluation of the importance of the
various strands of his own work, causing him perhaps to underemphasize
his genuine discoveries. This may be one of the reasons why his work
received such tardy recognition and even now does not get its due.
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Characteristic is Laplace's comment:5 'It is depressing for the human
mind to have to see how this great man dwells with delight on his
chimerical speculations and regards them as the soul and life of
astronomy.' A modern physics Nobel Laureate recently wrote10 that he
found Kepler 'incomprehensible in motivation and approach' and
remarked that 'in modern times, Galileo is readable, while Kepler is not'.
It is perfectly true that Kepler never abandoned the mystical, speculative,
and a priori side of his scientific personality. His comparatively late
publication Harmonice Mundi (1619), which sets out to show that the world
is constructed on harmonic principles (harmonice is to be translated as the
'science of harmonics' rather than simply 'harmony'), is replete with the
early ideas. Though he was finally forced to admit that the observations
did not quite match his Platonic solution, he attributed the discrepancies
to the fact that, in laying down the overall design of the cosmos, God
wished to realize musical harmonies in the eccentricities of the orbits and
the rhythms of the planetary motions (as expressed in his Third Law), and
these could not be completely reconciled with the Platonic proportions.
This was the explanation he provided in notes that he added to his
Mysterium Cosmographicum when he republished it in 1621.n

This account will help to balance a somewhat false impression which
the reader might gain from the almost exclusive concentration in this
chapter on Kepler's greatest work, the Astronomia Nova (1609), which
contains the account of how, using Brahe's wonderful treasury of
observations, he found his first two laws of planetary motion by studying
the motion of Mars. For, whatever may be the case with his other works,
the Astronomia Nova is in modern times extremely readable, breathtaking
even and deeply absorbing. Platonic mysticism is almost completely
absent from the work; instead it reveals Kepler's complete mastery of
theoretical astronomy, which he enriched with the physical ideas that I
have already mentioned and which we shall consider in some detail later
in the chapter. It was Kepler's misfortune that his greatest work was the
one that was almost the least read. Indeed, even today (at the time of
writing) a translation into English of the Astronomia Nova is still not
available, though it is at last imminent.12 Even the very best of Kepler has
not been readable in modern times except to those with good Latin or
German!13

But we anticipate. Kepler wrote up his idea in the Mysterium Cosmo-
graphicum, sent it to Mastlin for his opinion, was delighted with the
response, and proudly published it in 1596, though not before being
persuaded by the sympathetic rector of the University of Tubingen to cut
out his discussion of the compatibility of scripture with the Copernican
doctrine, as this might arouse such passion that it could adversely affect
the book's reception.14 (In the Astronomia Nova,15 Kepler did discuss this
question with great tact. He never seems to have offended churchmen in
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the way that Galileo did - he would probably have secured a far wider
readership for the Astronomia Nova if he had had it banned!) However,
since Copernicanism provided the entire basis of his Platonic inspiration,
he could not avoid opening the book with a marshalling of the best
arguments for the Copernican cosmology. Most historians of science are
agreed that the most persuasive arguments for Copernicanism are to be
found in Kepler's writings. Those in the first chapter of the Mysterium
(and elsewhere) are particularly eloquent, though largely limited to what
might be called kinematic and aesthetic arguments, i.e., the elimination
of unnecessary epicyles and the appropriateness of placing the sun at the
centre of the universe. The bulk of the book is given over to explaining his
own idea and attempting to show that it was compatible with the
observations, though at the end there are three highly important chapters
in which Kepler considers not just the spatial arrangement of the
planetary orbits but also the planetary motions.

Perhaps the most valuable consequence of the publication of the
Mysterium Cosmographicum was that it clearly exposed Kepler's need for
more accurate data and eventually brought about his collaboration with
Brahe. Keen to establish a reputation, Kepler sent copies of the book to
several eminent scientists, including Galileo (which led to a first brief
correspondence) and Brahe, whom Kepler, perhaps not without a certain
worldly cynicism, had mentioned a few times in the book in flattering
terms. Brahe's copy took longer to reach its destination (he was already
underway from Hven), but eventually Tycho responded quite warmly,
making tantalizing reference to some of his observations. This awoke in
Kepler a burning desire to have access to the observations, so that he
could test the 'messy' side of his theory introduced by the nonvanishing
eccentricities and inclinations of the planetary orbits, which ruled out any
simple application of the Platonic solids. A more or less regular
correspondence developed, and eventually Kepler, whose position at the
predominantly Catholic Graz was becoming untenable because of his
refusal to abandon his Protestant faith, accepted an invitation to visit
Brahe at Prague.

To cut short a story already told a great number of times,1 Kepler joined
Brahe in February 1600 and worked together with him for an initial spell
of about four months. A vivid picture of the difficulties of their
collaboration can be obtained from Caspar's biography of Kepler16 and
also Jardine's book quoted in Ref. 3. In fact Kepler found working under
the turbulent Brahe so difficult that the collaboration almost came to an
end when Kepler went back to Graz to wind up his affairs. Luckily he
returned in October 1600, and, building on highly important results
obtained during his first stay, had made considerable progress by the time
that Brahe died unexpectedly the following October 1601. Two days later
Kepler was appointed Imperial Mathematician, a post previously held by
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Brahe's arch opponent Ursus,3 and was given the responsibility for
analyzing Brahe's observations.

He had initially come to Prague in the hope of obtaining from Brahe the
precise data on planetary distances that he believed would crown the
speculations of the Mysterium Cosmographicum. But they did not exist
because Brahe did not yet understand the motions of the planets and had
failed in the analysis of his data. Kepler's interest was therefore deflected
into the study of the planetary motions, a subject that in Chap. 22 of the
Mysterium he had, ironically, said was of far less interest to him than the
question of the distances. The new problem, to which he was able to apply
most fruitfully his forward-looking physical ideas, soon almost totally
displaced his original concern with the distances, where the more
backward-looking architectonic principles found application. He took up
the challenge of Brahe's astronomy with enthusiasm and great con-
fidence. He made a rash bet that the answers to the problems of the
Martian motions, to which he was most fortunately assigned, would be
found within eight days, but in the event the bet became an intense labour
spread over more than five years (at the end of which he had found his
first two laws), and, indeed, most of the rest of his life, during which time
he extended his initial results obtained for Mars and the earth to all the
planets, compiling tables for the prediction of their positions.

One of the most remarkable aspects of Kepler's work on Brahe's
observations was his refusal to accept a model of planetary motion unless
it matched the observations perfectly and comprehensively. Although Kepler
does say in Chap. 12 of his Mysterium that every philosophical speculation
'must have as its point of departure the experience of the senses', it is still
surprising that the avid speculator submitted himself to such rigorous
empirical control, which was crucial for the final success. It will be argued
later that an important factor here was Kepler's religious beliefs; however,
the part played by Brahe must also be considered. He set up the whole
programme (thereby imposing his discipline and aims on Kepler), had an
acute awareness of how much could be learnt from observations, and set
the high level of accuracy to which he expected Kepler, like his other
assistants, to work. Characteristic is the comment that he made to Mastlin
after reading the Mysterium. While recognizing Kepler's obvious talent,
he questioned whether the reform of astronomy should be 'accomplished
a priori through the dimensions of these regular bodies rather than a
posteriori from accurate observations'.17 This judgement was obviously
sound.

Brahe was one of the most important protagonists in the discovery of
dynamics, but in a book on conceptual matters it is not possible to give
him space commensurate to his contribution. It is therefore fitting to end
this introductory section by pointing out that Brahe's share in the
discovery of the laws of planetary motions was more than just the making
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of the observations. The a posteriori side was there from the beginning in
Kepler but it was Brahe and the logic of the programme on which he put
Kepler to work that brought it into the perfect balance (unique among
great scientists) with the a priori that made possible the discoveries to
which we now turn.

6.2. The dethronement of the usurper

In describing the way Kepler found his laws through the study of the
motion of Mars, we shall follow basically his own classic account given in
the Astronomia Nova. On the first encounter, this book, which is written
for technical cognoscenti with few concessions to the layman, makes a rich
but rather rambling impression. Kepler takes a positive delight in leading
the reader through all his own false starts and mistakes. He says that he
will adopt the practice of the great explorers in writing about their
journeys and entertain the reader with all the dangers and adventures
through which he too passed in his encounter with Mars. This may
however be something of a smokescreen to disguise a very careful
structuring of the book. Stephenson18 argues that it was written and
rewritten 'to persuade a very select audience of trained astronomers that
all the planetary theory they knew was wrong, and that Kepler's new
theory was right. The whole of the Astronomia Nova is one sustained
argument'. Attentive reading of the work provides ample evidence to
support Stephenson's contention.

As an example we mention the way in which Kepler treats many
problems in triplicate, showing simultaneously how they appear in the
Ptolemaic, Tychonic, and Copernican world systems. The reason he gives
for this is a request from Brahe on his deathbed that because he (Kepler)
was a follower of Copernicus he should nevertheless not omit to
demonstrate all the proofs of hypotheses for the Tychonic system as well.
However, in reporting this, Kepler immediately takes the opportunity to
point out that, viewed in purely geometrical terms, the three forms are
completely equivalent. He thereby prepares the ground for one of the
great climaxes of the book - his identification of what he sees as the only
true reasons for preferring the Copernican system, which are exclusively
physical or dynamical and entirely new. In meeting his self-imposed
obligation to treat all three systems, Kepler seldom omits to point out the
severe physical difficulties that the two rivals to Copernicus face. Thus,
the Tychonic system gets its deserved dues but is simultaneously rather
effectively demolished.

What distinguishes the Astronomia Nova most clearly from the Almagest
and De Revolutionibus is its intimate blending of physical reasoning with
purely astronomical argument based on massive and brilliant application
of trigonometry to Brahe's observations. There is a foretaste of the physics
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in Chap. 20 of the Mysterium in which Kepler, who was influenced at that
time strongly by J. C. Scaliger (1484-1558) and took the existence of
moving souls and spirits very seriously, had suggested that the planets
nearer the sun moved faster in space than the more distant ones because
they were all moved by a simple soul which resided in the sun and whose
influence and ability to move the planets weakened with the increasing
distance to the more distant planets. Kepler's thinking was shifted
strongly from the notion of moving souls in the direction of purely
physical forces by the publication in 1600 of William Gilbert's book on
magnetism that was mentioned in Chap. 1 (p. 40). He often referred to
force generically as magnetic force. The process of replacement of moving
souls by physical forces takes place before our eyes in the Astronomia
Nova, which is the most important of texts for anyone interested in the
emergence of the force concept. Its full title is loaded with significance, a
point that has often been made. In the original Latin (and a bit of Greek) it
reads:

ASTRONOMIA NOVA

AITIOAOFHTO2

seu

PHYSICA COELESTIS

tradita commentariis

DE MOTIBUS STELLAE MARTIS
Ex observationibus G.V.

Tychonis Brahe.

Thus, the title proclaims nothing less than a new astronomy based on
causal explanation or celestial physics treating the motions of the planet Mars
deduced from the observations of Brahe. Even the subtitle, Plurium
annorum pertinaci studio elaborata Pragae . . . Joanne Keplero ('elaborated by
pertinacious study over several years at Prague by Johannes Kepler'), says
a great deal about the author. Indeed, Kepler attacked the problem of the
planets with a highly developed intuition but also great vigour and
pertinacity. He leaves the impression of someone setting about the
opening of an oyster with a can opener - by brute force if necessary but
preferably by application at the right point, which he did succeed in
finding.

What were the factors that led Kepler to adopt such a novel approach to
astronomy? Why did he part company in such dramatic fashion from
Copernicus and even Brahe, who were content to accept the celestial
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motions as they are provided only they could represent them by
combinations of uniform circular motions? There were two main reasons:
the incomplete Copernican heliocentricity and Brahe's demolition of the
crystal spheres. The two went hand in hand and were greatly
strengthened by the input of physical ideas, from Gilbert above all. First,
Kepler was quite unable to accept the curious diminution of solar pre-
eminence which the need to transcribe Ptolemy had imposed on
Copernicus. Kepler just could not accept that the sun was not exactly at
the centre of the world. Throughout the Mysterium he instinctively
assumed that the sun, not the mean sun, must be at the centre of his
system of Platonic solids. When he turned to consider the planetary
motions, he automatically applied the same approach. If the transcription
of Ptolemy suggested the sun was not the centre of the planetary motions,
this was a hint that the Ptolemaic models contained unsuspected defects.
We shall shortly see the far reaching consequences of this attitude of
mind. However, merely putting the sun at the true centre was not for
Kepler a sufficient solution to the problem of the planets. This brings us
to the second point; for in demolishing the crystal spheres, Brahe simul-
taneously removed the props by means of which the late Middle Ages and
early Renaissance had supposed the planets to be moved. The number of
times that Kepler mentions this difficulty is the clearest evidence of how
acutely he felt it. It was necessary to rethink completely the reasons why
the planets moved at all. This was where Gilbert and his physical forces
came in. If the planets were not moved by crystal spheres, they must be
moved and directed by something else - why not by forces? Finally,
everything was knitted together in Kepler's mind by the rather natural
idea (or, at least, so it now appears) that the forces which moved the
planets originated in the body of the sun. In such a case the sun would
naturally be the centre of the planetary motions.

These in broad outlines were the reasons for Kepler's physical
approach. What makes the Astronomia Nova such an absorbing book is to
see how Kepler applied these ideas in practice. For although the specific
mechanisms that Kepler proposed in the development of his programme
were all wide of the mark, they mostly contained a sound physical
element and played a most important heuristic role in suggesting to him
the places at which the old Ptolemaic-Copernican system was suspect. As
we have seen, Ptolemy's work had succeeded in describing all the really
obvious features of the planetary motions, including the key discovery of
the nonuniformity of the motion. But post-Ptolemy nothing stuck out
obviously in a manner that would suggest its own solution. The dance
would simply not come into perfect focus, as the frustrated Brahe and his
assistants were finding. To do the Astronomia Nova full justice one ought,
as Stephenson does,18 to follow closely the interlocking arguments from
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physics and astronomy by which Kepler finally arrived at his laws.*
Talcing advantage of the fact that this has been done, I find it more
convenient in the framework of this book to give a synoptic account of
Keplerian physics and dynamics later in the chapter (since they only took
final shape in the early 1620s after the discovery of the Third Law) and in
the meantime merely outline as much of the physics as is needed to
understand the thrust of the astronomical investigations.

So let us now take up the story at the point when Kepler first came to
Prague, bringing with him the strong conviction that the sun was the true
centre of the planetary system and the source of an as yet unspecified
virtue or force that moved the planets around in their orbits with a speed
that decreased with increasing distance from the sun. As soon as he found
that Brahe, just like Ptolemy and Copernicus, was still referring every-
thing to the mean sun, Kepler suggested that the first inequality,
corresponding to the planet's own motion around the sun, should be
separated from the second inequality, the reflection of the earth's motion
around the sun (in the Copernican system) or the sun's around the earth
(in the Tychonic system), by means of acronychal observations (p. 163)
made when the planet is in opposition, not to the mean sun, but to the true
sun. For at such times the earth lies on the line joining the sun to Mars;
from the earth we have the unique privilege of stepping, as it were, into
the sun's shoes. We see Mars as it appears against the backcloth of the
stars from the only standpoint which could have true physical signifi-
cance, that of the sun. We obtain directly its angular coordinates in the
helioastral frame. (This statement is not actually entirely true, since
Mars's orbit is inclined to the ecliptic, so that the latitude of Mars as seen
from the earth when in opposition is still not the same as that seen from
the sun except at the oppositions at which Mars happens to cross the
ecliptic. Thus, the first inequality is separated from the second only in
longitude, not latitude. We shall see shortly the brilliant use which Kepler
made of the latitude observations.)

To give substance to Kepler's general approach, let us now consider the
powerful and characteristic arguments that he advanced for taking the
true sun rather than the mean sun as the point of reference of the system
of planets. He put himself in the position of a planet trying to find its way
around the sun. Suppose first that the planet is guided by a soul. Just
imagine the problem it faces. The interplanetary space through which it
moves is void of all markings. Somewhere in this featureless space is
supposed to be the all important point that acts as the centre of the world,
the point at which the various apsidal lines of the planetary orbits

* I should like to express my especial thanks to Dr Stephenson for letting me read the text of
his book in advance of publication. It has influenced my own presentation quite strongly in
several places, particularly in Sec. 6.5.
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converge. Somehow or other the guiding soul must be able to identify not
only this void point but also the centre of its own orbit and the equant that
governs the speed of its motion (the line through these two points passes
through the centre of the world). But the really odd thing is that the void
centre of the world is said by Copernicus to lie just four solar diameters
from the centre of the true sun, which is a huge and very luminous body.
It stretches the imagination, says Kepler, to suppose that a planetary soul
would refer the planet's motion to such a ghostly and invisible point
rather than use the true sun. Even odder was the prescription that Tycho
expected the planetary soul to follow in the Tychonic system. For,
according to Tycho's transcription of the Copernican system, the
Copernican centre of the world, the point of convergence of the planets'
apsidal lines, is transformed into a point that moves with the sun as it
travels around the earth, remaining always just four solar diameters from
its centre but situated sometimes next to, sometimes below, and
sometimes above the sun.

If one gives up the idea of guiding souls and assumes instead that the
planets are moved by a force, one must then ask: whence comes this
force? Since all the planetary orbits are clearly lined up on the centre of the
world, the source of the force cannot be situated anywhere other than in
that centre. But now we encounter the utterly implausible oddity that a
void point, marked by absolutely nothing visible, is a source from which
an immensely powerful force flows while barely four solar diameters
removed from it sits the idle sun, a mere spectator and a dispenser of
nothing but light. A feature of the Copernican system centred on the
mean sun to which Kepler especially objected was the fact that the planet
in its orbit would be moving fastest when closest to the mean sun and not
when closest to the true sun. This was one of his most important insights,
and was announced already in Chap. 22 of his Mysterium and followed on
naturally from his explanation, already mentioned, of why the planets
further from the sun moved slower than those nearer to it. For if the sun
was the cause of the planets' motion, it was not unreasonable to assume
that any given planet would move slower when further from the sun and
faster when closer. This opened up the possibility of a physical explanation
of the mysterious Ptolemaic equant and the associated nonuniformity of
the actual motion to which Copernicus (and, unbeknown to Kepler, the
Maragha School) had taken such exception. Moreover, the physical
explanation directly predicted, in agreement with observation, that the
equant must lie on the line through the sun and the centre of the eccentric,
on the farther side from the sun. Moreover, if the speed of the planet was
inversely proportional to its distance from the sun, a very simple
argument showed that the centre of the Ptolemaic eccentric must be
exactly half way from the equant to the sun, just as Ptolemy had found (in
geocentric guise). However, this beautifully simple explanation of the
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equant, which was the single most important idea that Kepler injected
into theoretical astronomy, relied on alignment of all the apsidal lines to
the true sun, not the mean sun.

Such ideas are so familiar and instinctive to the modern mind that we
need to be reminded by the example of Brahe, religiously following
Copernicus despite being fully aware of the revolutionary nature of much
of his work, and by several great scientists who lived at the same time or
after Kepler (above all Galileo, Descartes, and Huygens) but refused to
follow him in ascribing to the sun an ability to move the planets that these
ideas were far from obvious before Kepler advanced them.

This is also an appropriate place at which to draw attention to the way
in which Copernicus's proposal put an order into the planetary motions
and thereby enabled Kepler's powerful intuition to develop some very
clear and precise notions. As was emphasized in Chap. 5, Copernicus
eliminated a great confusion of complicated and tangled motions when he
made the sun static. For Ptolemy the mean sun was a moving direction,
and his system was full of moving void points. For Copernicus the mean
sun became a fixed point, albeit void, onto which the imagination could
lock itself. Many of the other moving points were eliminated, and they all
would have been had Copernicus made a slightly better job of his
revolution. Kepler instinctively assumed that, apart from the very slow
secular perturbations, the paths of the planets must be completely fixed
and immobile in helioastral space. This gave him a relatively simple and
orderly picture in his mind, and he could readily see how details of the
picture could be tested by observations carefully chosen to yield the
optimal amount of information. It also immediately revealed the oddity of
taking the void mean sun, a point so near (astronomically speaking) the
true sun, as the centre of the world. Copernicus and Brahe were probably
too close to the revolution to acquire a genuine feel for its implications
(which were nearly as far reaching in the Tychonic system as in the
Copernican).

Kepler also had time to digest the implications of Brahe's abolishing of
the solid spheres. For that taught him to appreciate the complete
irrelevance, in the post-Brahian circumstances, of all the arguments about
alternative but equivalent representations of the same phenomena
by different geometrical devices. Thus, in the famous example of
Hipparchus's two alternative representations of the solar theory, the
model with epicycle and concentric differed from the eccentric only in the
geometrical means used to represent one and the same path in space. In
Kepler's view, the true task, belonging to the deeper science of
'contemplative astronomy', was that of finding the genuine paths; their
mere representation on paper by circles or other lines belonged to 'the
inferior tribunal of geometers'.19 Although the word was not introduced
until much later, Kepler was effectively using the concept of an orbit.
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Thus, Copernicus and Brahe supplied Kepler with a totally new
conceptual image of the world. Although for quite a time Kepler
continued to use many of the mathematical methods of Ptolemy and,
when he looked at the heavens, saw exactly the same spectacle, the same
bare facts - Mars and the other planets tracking their way through the sky
against the background of the stars - the world as he conceived it was
quite transformed. Ptolemy thought he was watching a spoke rotating in
the heavens, the one end fixed to an invisible circulating guide point
while the other end carried the planet at its tip. But as Kepler looked at the
same objective phenomena in order to make the acronychal observations
at opposition he imagined himself a voyager in space and was always
looking over his shoulder, watching the sun swing round behind his back.

Brahe's answer to Kepler's arguments for the adoption of the true sun
in place of the mean sun was that he might well have a point, but that he,
Brahe, and his assistants, using acronychal oppositions to the mean sun,
had in fact achieved great success in separating the first inequality of Mars
from the second. They had observed a total of 10 Martian oppositions in
the years from 1580 to 1600 (the synodic period of Mars is about 780 days,
so oppositions occur on the average every two years and sixty days);
taking some of these and using the Copernican modification of Ptolemy's
problem (p. 168), they had constructed an hypothesis for the Martian first
inequality, i.e., its eccentric orbit around the sun together with equant
point (which still existed in the Copernican system despite its nominal
elimination). Testing this against the remaining oppositions, Brahe's
assistants proudly claimed that the hypothesis predicted the positions of
all oppositions correctly to within the phenomenal accuracy of 2 minutes
of arc. How, they asked, could an hypothesis that predicted so many
points with such accuracy be wrong?

Kepler responded to this challenge with his first great piece of purely
geometrical work done on the planetary problem, and I will describe it in
some detail to illustrate his mastery of purely technical questions as well
as for the light which it casts on his predecessors' mistakes. He first of all
checked out the difference between the original Ptolemaic theory with
eccentric centred on a point e from the observer and equant 2e from the
observer and the Copernican modification used by Brahe with eccentric
centred on a point 3e/2 from the observer and minor epicycle of radius e/2.
He showed that even for the comparatively large eccentricity e of the
Martian orbit (for Mars, e ~ 1/10.8) the maximal difference between the
two theories must still be below the accuracy which Tycho could achieve,
and could therefore be ignored. Kepler instinctively preferred the
Ptolemaic scheme to Copernicus's on account of its greater simplicity and
above all for the fact that it brought out very clearly the fact which
Copernicus wanted to sweep under the carpet - the nonuniformity of the
planetary motions. (Despite his respect for Copernicus, which verged on
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hero worship, Kepler had a sharp eye for the defects in De Revolutionibus.)
Having disposed of that technical detail, he turned his attention to the

following basic question: to what extent can one tamper with the
parameters of a Ptolemaic equant-type scheme without adversely
affecting its ability to predict positions on the sky correctly? In Chap. 3
(pp. 132-3) we already noted that the acronychal positions are remarkably
insensitive to displacement of the position of the centre of the eccentric
along the line of the apsides provided the distance between the observer
and the equant point is kept fixed at 2e. Kepler's general examination of
this question showed that in fact the ability to reproduce acronychal
longitudes is determined almost exclusively by a correct positioning of the
equant point and can tolerate quite large errors in not only the position of
the centre of the eccentric but also the line of the apsides.

To see this, let us examine Kepler's own diagram (Fig. 6.2). Suppose the
Ptolemaic description of a planet's motion is exactly correct and that the
planet moves on the eccentric JTT|, which has centre at ft, line of apsides
ayi, and equant at y. The point of observation is a. This is the point to
which the terrestrial observer is translated by making the acronychal
observations of the planet. Kepler assumes that the correct point a is the
centre of the sun. He then asks: what would be the effect of putting the
point of observation at a point 6 at some distance, not too great, from the
sun, at the mean sun say? To answer his question, he joins y, the equant,
and 6, the new point of observation, and bisects dy with the point $.

Fig. 6.2. Reproduced from Johannes Kepler Gesammelte Werke, C.H. Beck'sche
Verlagsbuchhandlung, Munich, Vol. 3, p. 80.
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About this point $ he describes a new eccentric goo, keeping however the
old equant y. He has, thus, constructed a new hypothesis for which the
line of the apsides, the eccentricity, and centre of the eccentric are all
sensibly different from the original, correct hypothesis. Only the equant
is unchanged. What will this do to the predicted positions?

Now a spoke that swings uniformly about y, say yra, will intersect the
two circles at separated points r and o. It is immediately obvious from
examination of the figure that if the spoke is either in the direction
towards the apsides (either of them) or at right angles to the line joining
them, roughly where the two circles coincide, the two hypotheses will
yield virtually identical predictions, in the first case because the line of
sight is almost directly along the spoke, so that the observer simply
cannot 'see' the separation of K and £, for example, and in the second case
because the positions in space are almost coincident, since the quadrants
are the two positions at which the circles intersect. It is obvious that an
appreciable difference will only show up at positions around 45° from the
line of apsides, at the four octants. By means of Euclidean geometry,
Kepler showed that the greatest deviation corresponds to the spoke yv<p.
Substituting the actual parameters for the orbits of Mars and the earth,
i.e., taking a to be the sun and 6 the mean sun, so that ad has length equal
to twice the eccentricity of the earth's orbit, Kepler showed that the
maximal deviation would be only 5 minutes of arc, and that moreover at
only one point of the orbit. It would be considerably less at almost all other
points.

He then looked rather more closely at the work done by Brahe's
assistants, hoping to find at least one point at which there might after all
be an error greater than 2 minutes of arc and perhaps approaching 5'. In
fact, he quite soon realized that their work was not nearly as good as it
seemed. Simple checks against the known positions of the mean sun at
the Martian oppositions, which ought to be exactly 180° opposite the
acronychal positions of Mars, revealed discrepancies up to 13'. Kepler
found too that the assistants had made a hash of the reduction from
ecliptic longitudes of Mars to longitudes on the true Martian orbit (this
tricky technical point, which concerns the treatment of the Martian
latitudes, will be considered in the next section), and this must have
introduced errors several times the claimed 2'. He therefore had nothing
to fear from the much vaunted hypothesis of Brahe and especially his
assistants. Moreover, they were forced to admit that when the hypothesis
for the acronychal observations was combined with the hypothesis for the
earth's motion (or, rather, the sun's motion, since they worked with the
Tychonic system) it was not possible to reproduce either the acronychal
latitudes or the nonacronychal longitudes. In the latter case errors of one
or two degrees were not uncommon. Both these effects were just what
Kepler had expected. Let us consider the acronychal latitudes
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first. In Kepler's figure (Fig. 6.2), the orbit of the earth is not in the same
plane as the Martian orbit represented by one or other of the two circles
according to the chosen hypothesis. Kepler had shown that precisely at
opposition to Mars the errors in the longitudes disappear. But at opposition
the earth is closest to Mars, which therefore appears to depart appreciably
from the ecliptic. Since the main effect of the error introduced into the
Martian hypothesis by the false placing of the position of observation
must be a comparatively large misplacing of the spatial position of the
Martian orbit, the resulting errors in latitude will be greatest precisely at
opposition. Thus, although the acronychal longitudes are almost
completely insensitive to the error, the acronychal latitudes are in princi-
ple the latitudes most sensitive to the errors (however, because the
latitude effects are comparatively small at all times, the corresponding
errors are numerically small). Considering now the nonacronychal lon-
gitudes, it is obvious why these can be so badly affected by an error in the
hypothesis for Mars. When, taking only the acronychal observations, we
shift the view point from a to 6, we still do not move any great distance
from the centre of the Martian orbit. (It should be borne in mind that the
eccentricities in Fig. 6.2 are appreciably magnified for the sake of clarity.)
But the terrestrial observer is, in fact, a long way from the centre of the
Martian orbit, so that at non-oppositional (nonacronychal) positions he
can 'see' a segment such as K£ at a vastly more favourable angle - it is no
longer drastically foreshortened when seen 'from the side'. Errors of
orders of degrees then become apparent.

On the basis of all this preparatory work (which was already
accomplished during his first visit to Brahe) Kepler knew he was closing
in on the quarry. He had acquired a complete mastery of the problem and
appreciated that any hypothesis must satisfy three stringent tests: it must
describe simultaneously the acronychal and nonacronychal longitudes,
and the acronychal latitudes, all to the nominally adopted Tychonic
accuracy of 2'. Expressed in terms of the Martian orbit, not only the angles
but also the distances must be correct. Kepler had grasped the vital truth
that every hypothesis must be checked and counterchecked from every
possible side, and he knew that Brahe had the observations to do it. It is
true that he could not yet provide positive proof of the correctness of his
alternative proposal, for other things remained to be done. But the days
of the usurper, the ghostly mean sun, were numbered once its dangerous
over-reliance on acronychal observations had been clearly demonstrated.

Kepler's idea of transporting the terrestrial observer to the true sun
rather than the mean sun - deceptively simple for the modern mind but
in reality the reflection of a profound shift - deserves to have its praises
sung. For two millennia or more working astronomers had known that
the observed motions of each of the five planets contain two strictly
periodic components. For almost as long, certainly for nearly 2000 years,
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it had been known that one component was very closely related to the
sun. But, floored by a mathematical perversity, not one of all these
astronomers had succeeded in finding a way to separate the two
components exactly. From only one point can the skin be peeled cleanly
from a banana. Kepler found it.

6.3. The Zeroth Law, the vicarious hypothesis, and the demise of
the old order

In Book II, Kepler recounts how he set out systematically to determine the
Martian orbit in helioastral space under the assumption that the line of the
apsides passes through the true sun. This book, and the following Book
III, reveal the great strength of what may be called Kepler's fundamental
assumption (Kepler did not state it as such). This was his instinctive
assumption, arrived at by reflection on the residual oddities of the
Copernican system and already mentioned in the previous section, that
(except for very slow secular perturbations) the planets trace invariable
and strictly periodic paths (I shall often call them orbits) in helioastral
space in fixed planes that all pass through the true sun. This was, in fact,
by far the most important assumption he made and would, applied with
sufficient persistence, have sufficed to solve the problem of the planetary
motions completely using nothing but trigonometry and Brahe's observa-
tions, i.e., it would have enabled Kepler to determine precisely the orbits
and speeds of the planets at all points in the orbits. However, it is most
unlikely that exclusive use of trigonometry and traditional astronomical
techniques would have led him to discover his First and Second Laws in
the precise form in which he did enunciate them and this, as we shall see
in Chap. 10, was a vital factor in the discovery of dynamics.

Before he could do anything else, Kepler had to sort out the mess of the
latitude theory. Brahe was well aware of the importance of treating the
latitudes properly and accurately. He just did not know how to do that,
and his assistants had still less idea. Kepler knew that if his fundamental
assumption was correct, an observer on the sun would see the earth move
round the great circle of the ecliptic while Mars would move round on
another great circle inclined to the ecliptic at a fixed angle and cutting it at
the two nodes (in all this discussion I ignore the very slow secular
perturbations, which cause the nodes to move backwards round the
ecliptic, which itself, of course, also moves relative to the stars, while the
line of the apsides moves forward). At the two points 90° from the two
nodes, the Martian orbit is furthest from the plane of the earth's orbit (the
ecliptic); these points are called the limits. Neither they nor the nodes have
any physical significance for the Martian orbit; they merely affect the way
in which it is seen from the earth. The physically significant thing is the
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line of the Martian apsides, which does not coincide (except very
occasionally by chance through the effect of the secular perturbations)
with the line of the nodes or the line of the limits. To develop a physically
meaningful theory of the Martian orbit, Kepler needed to know the
longitude of Mars from the line of its apsides in the plane of its own orbit.
This would present no problem for a solar observer but floored all the
terrestrial observers before Kepler. For from the earth Mars does not
move on a fixed great circle (in striking contrast to the sun) but wanders
irregularly at variable distances both to the north and south of the ecliptic
(cf. Fig. 5.10), tracing the characteristic retrogression loops.

The acronychal observation that was actually made at an opposition by
Brahe gave the (ecliptic) latitude of Mars and the ecliptic longitude of the
point on the ecliptic found by following the great circle through the poles
of the ecliptic from Mars to the ecliptic. As Kepler showed, the reduction
from this ecliptic longitude to a Martian longitude (i.e., in the Martian
orbit as viewed from the sun) is far from trivial and must take into account
the fact that a great circle through the poles of the ecliptic will not be
orthogonal (viewed from the sun) to the Martian orbit except at the limits
(for which it also passes through the poles of the Martian orbit). But it is
not even possible to start on such a reduction until one has accurately
determined the position of the line of the nodes and the inclination of the
orbit. If, moreover, the plane of the orbit actually varied in the manner
that Copernicus had believed, the situation was even more complicated.

Trusting in his fundamental assumption, as I have called it, Kepler first
sought among Brahe's observations for occasions at which Mars crossed
the ecliptic. He found Mars four times at the ascending node and noted
the dates. Each occasion followed the previous occasion at an interval of
687 terrestrial days, i.e., precisely the sidereal period of the planet, a
quantity well known (in geocentric guise) since antiquity. Only two
observations at the descending node were on record, and Kepler found
that these were separated by 3 x 687 days. He thus knew for certain tha
Mars passed through the ecliptic at either of the nodes at precisely regular
intervals of 687 days. This was the first confirmation of his fundamental
assumption. Because at each nodal observation the earth was at a differen
point of its orbit, Kepler did not yet know the direction from the sun to the
Martian nodes. However, he already possessed (through Brahe's work) a
very reasonable approximation to the solar Martian longitudes, and this
established that the nodes lay diametrically opposite to each other on a
line through the sun that was fixed to the accuracy he was using at the
time. In particular, it did not exhibit any dependence on the position of
the earth in its orbit. He had established the first part of (what I am calling)
his Zeroth Law (p. 118).

Next he had to determine the angle of inclination of the Martian orbit to
the ecliptic and simultaneously test for the putative Copernican wobbles.
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Fig. 6.3. Reproduced from Johannes Kepler Gesammelte Werke, C.H. Beck'sche
Verlagsbuchhandlung, Munich, Vol. 3, pp. 134,137,140.

This was a far from easy problem, and Kepler had to choose observations
extremely carefully at times at which he could be certain he was observing
the true inclination directly. This brought out all his talent for judicious
selection of advantageous configurations and simultaneously underlined
the value of Brahe's comprehensive coverage of the orbit with observa-
tions; for Kepler needed observations at times at which earlier astron-
omers might never have considered making an observation. The three
types of configuration he selected are shown in Figs. 6.3(a),(b),(c). In case
(a), Kepler looked for occasions (again using the approximately known
orbits) with Mars, E, at one of its limits and the earth, A, in a position such
that the point C obtained by dropping a perpendicular from E onto the
ecliptic formed an isosceles triangle with A and the sun (at B). Then EC
must subtend exactly the same angle at the earth as at the sun, and the
inclination would be measured directly. Another device for effectively
transferring the observer to the sun! He did not find any configurations
that exactly satisfied the required conditions but did have observations for
cases quite near them, from which he could interpolate. In case (V), He
considered a quite different configuration with B, the earth, on the line of
the Martian nodes (passing through the sun) and Mars fortuitously
placed at D with DBA a right angle; CDA is the plane of the Martian orbit
HGEF is the ecliptic and C is a limit. But in this case angle DBF (F is the
perpendicular projection of D onto the ecliptic) must be equal to CAE, and
that in its turn gives the inclination directly. This, in principle, is the
cleanest of the methods he employed, since it required no prior
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knowledge of orbital dimensions but merely the position of the line of the
nodes. However, due to the absence of ideal configurations he was again
forced to interpolate. In the final case (c) he discussed, he again used
reasonably well-known data and considered an opposition at which
Mars, at C, was near one of its limits. From the observed angle EBC and
given BA and AC he could then calculate the inclination BAG.

In all three cases, deliberately chosen in very different sun-earth-Mars
configurations to test for the 'monstrous' Copernican suggestion of a
Martian wobble dependent on the earth's position, Kepler found that the
inclination came out very close to 1°50'. He announced his first major
observational result in Chap. 14 of the Astronomia Nova: 'We draw from
this the quite certain conclusion that the inclination of the planes of the
eccentrics to the ecliptic does not change at all. (Why should we not
generalize this conclusion if there is no ground for it to hold for just one
planet? In fact I can also confirm it for Venus and Mercury through a proof
based on observations.)' The establishment of the first of his laws, the
Zeroth as we are calling it, was now complete. He had shown that Mars
moved in an invariable plane in helioastral space that passed through the
centre of the sun. From antiquity it was known that the earth did the
same, and he had already made the obvious generalization to the other
planets. It was in this chapter that Kepler made his famous remark about
Copernicus being ignorant of his own riches. With his first solid triumph
in the bag, he could get down to the much more arduous job of
determining the orbit of Mars in the plane which he now knew passed
through the sun at a fixed inclination of 1°50' to the ecliptic.

Kepler was determined to make a success of this determination of the
Martian orbit, on which he invested an immense amount of computa-
tional labour spread over a couple of years. The first thing he had to do
was convert by interpolation and extrapolation Brahe's acronychal obser
vations at opposition to the mean sun to oppositions to the true sun.
Kepler described this as 'very thorny work'. To the ten oppositions used
by Brahe's assistants Kepler added those of 1602 and 1604 for the account
given in the Astronomia Nova, though the most important conclusion
drawn from this work had already been reached by the spring of 1601.

Before he started he thought afresh about the Ptolemaic halving of the
eccentricity, i.e., Ptolemy's placing of the centre of the eccentric exactly
half way to the equant. Although, as explained earlier, he believed he had
a good physical explanation for such a halving, he nevertheless thought
that Ptolemy had accepted the halving on a rather inadequate observa-
tional basis. He noted too that Copernicus in his theory of Mars had not
in fact held strictly to what (in his modified version) would correspond to
exact halving of the eccentricity. Finally, Brahe himself had found that the
acronychal observations would be better represented by assuming that
the eccentricity was not exactly halved (Brahe found best agreement with
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his observations when the centre of the eccentric was taken closer to the
equant than to the point of observation). Kepler therefore decided to leave
open the question of the precise position of the centre of the eccentric and
let it be determined along with the other unknowns (the distance from the
sun to the Martian equant and the Martian line of the apsides) by the
observations.

Compared with Ptolemy's problem (p. 168), this meant he needed to
determine an extra unknown parameter. Since Ptolemy's problem
required the input data of three acronychal observations it is clear that
Kepler would need four. He formulated his problem using the diagram
shown in Fig. 6.4, in which HI is the line of the apsides that is to be
determined along with C, the equant, B, the centre of the Martian
eccentric, and A, the position of the sun. The only things known in
advance are the directions AF, AE, AD, and AG, which are obtained from
the four acronychal observations (at opposition to the true sun and with
latitude effects taken into account), and the angles FCE, BCD, DCG, and
GCF, which must add up to 360° and be proportional to the time between
the observations (modulo the Martian sidereal period); this is the equant
property of C.

Kepler stated his problem thus: 'Angles FAH and FCH must be taken of
such a magnitude that after their fixing we find, on the one hand, that the
points F, G, D, E lie on a circle, and, on the other, the middlepoint B of this

Fig. 6.4. Reproduced from Johannes Kepler Gesammelte Werke, C.H. Beck'sche
Verlagsbuchhandlung, Munich, Vol. 3, p. 153.
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circle lies between the points C and A on the line CA.' It is obvious that
this problem, Kepler's problem, is significantly more complicated than
Ptolemy's problem, which was already so difficult that Copernicus,
shuddering no doubt at his own memory of repeating it three times (once
for each of the outer planets), remarked that it involved an 'enormous
mass of calculations' (ingentem numerorum multitudinem). Kepler remarks
laconically that 'it cannot be solved geometrically to the extent that
algebra is not geometrical'. Like Ptolemy he had to solve it by making an
assumption known in advance to be incorrect (doubly incorrect in fact in
Kepler's case) and then correct the error by successive approximation.

I shall not attempt to explain Kepler's procedure, since the discussion
of Ptolemy's problem will have given the reader an idea of what is
involved. Let me merely quote what Kepler said to the reader at the end
of the explanation which he wrote in 1604:20 'If you have had enough of
this wearying procedure, you will with justification feel pity for me; for I
carried it out at least seventy times with great loss of time. Also you will
not be surprised any longer that the fifth year already passes since I began
my attack on Mars, even though the year 1603 was almost completely
occupied with optical investigations.'* (Gingerich21 has made an interest-
ing study of Kepler's actual notebooks which throws some light on this
comment.)

Kepler then proceeds to take the reader through a calculation with all its
gory details. The end result that he obtained for the eccentricities, with
the radius of the Martian orbit taken to be 100 000, is as follows (the firs
column gives Kepler's results, the second those of a recalculation by
Delambre;22 Kepler's error would have been greater but for some mutual
cancellations of errors):23

Sun to equant (total eccentricity) 18564 18570]
Sun to centre of eccentric 11332 11387 [ 
Centre of eccentric to equant 7232 7183J

* Kepler was the most important figure in the early history of optics. His work sprang from
observations of a partial eclipse of the sun which he made with a pin-hole camera in the
market-place at Graz in July 1600 during his return to that city after the first visit to Prague.
Soon afterwards, pondering the apparent diminution of the lunar disc in the image of the
pin-hole camera, he found the principles of its operation and was led to introduce the
concept of light rays. This led him on to explain how the eye functions and forms an inverted
image on the retina. He was also able to provide a theory of eyeglasses, which had been in
use for three centuries without an understanding of their operation (Kepler himself needed
them). Later, prompted by the problems it causes in astronomy, Kepler was led to study
refraction. He published his studies in 1604 in Ad Vitellonium Paralipomena, which had the
alternative title Astronomiae Pars Optica (Optical Part of Astronomy). Following the
publication in 1610 of Galileo's astronomical observations with a telescope, Kepler was able
to work out the theory of the telescope within a few months and published it in his Dioptrice
(1611).
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We should quote here, for the significance it will later gain, a comment
that Kepler was careful to make at this point about his monumental
labour:

Following Ptolemy I have made the following assumptions: all positions of the
planet in the heavens can be arranged on the circumference of a single circle;
further, the physical slowing down of the motion is greatest in the places at which
the planet is furthest from the earth (Ptolemy) or the sun (according to Tycho and
Copernicus), and there exists a fixed point in accordance with which this slowing
down is controlled. Everything else I have proved.

After this there follows a brief digression (Chap. 17) in which Kepler
looks into the question of how much the lines of the nodes and the apsides
appeared to have changed since Ptolemy's time. Taking Ptolemy's values
as correct and comparing them with his own determinations using
Brahe's observations, he concluded that the nodes regress through about
5'17" in 30 years and the line of the apsides moves forward by 6'29" in the
same time. Both of these are relative to the stars, not the equinoxes. The
correct values are in fact about 11' and 8', respectively.24 Since Brahe's
observations spanned more than 20 years and were accurate to around 2',
Kepler therefore knew he had to take into account the secular perturba-
tions even over the comparatively short period of two or three decades if
he was to do Brahe's observations justice.

Finally in Chap. 18, Kepler comes to the climax of his work, the testing
of all twelve acronychal positions by means of the hypothesis. The result
could not have been better, and Kepler proudly announced that 'the eight
other acronychal observations all fit to within 2', an accuracy better than
which one cannot expect'.

The triumph, somewhat artfully engineered in its presentation by
Kepler, is short-lived. Chapter 19 opens with the words: 'Who would
have thought it possible!' (Fieri quis posse putaret?). Kepler says bluntly that
the hypothesis, calculated his way with the true sun or Brahe's way with
the mean sun, is false. He established this immediately he made the
additional checks of the orbit mentioned at the end of Sec. 6.2. We recall
that the acronychal latitudes, in contrast to the longitudes, are sensitive to
the placing of the centre of the Martian eccentric. Checking them out,
Kepler found that they were incompatible with the value 11332 (Eq. 6.1)
he had found for the distance between the centre of the sun and the centre
of the Martian eccentric. According to the latitudes, this distance must
be in the range 8000-9943. The check against the nonacronychal lon-
gitudes suggested the same. It is true that the results were somewhat
contradictory, but 11332 for the separation between the sun and the
centre of the eccentric was definitely ruled out. Moreover, Kepler noted
that half of the total eccentricity, 18 654, gave the value 9282, and this lay
near the middle of the range 8000-9943 indicated by the acronychal
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latitudes. It appeared that, after all, Ptolemy's exact halving of the total
eccentricity, for which Kepler believed he had such a satisfactory physical
explanation, was correct.

At this point let us recall the formulae we gave in Chap. 3 for the
longitude of a planet from apogee as seen from the sun. In exact Kepler
theory the longitude y is

where t is the time measured in units such that the period is 2n, i.e., tis
the mean anomaly. In the Ptolemaic model with exact halving of the
eccentricity

but if the centre of the eccentric deferent is taken at 5e/4 from the point of
observation and 3e/4 from the equant, then

i.e., in this modified Ptolemaic model the angles can be reproduced
perfectly up to the second order in the eccentricity. Since e2 for Mars is
about 1/115, the maximal value of the term in (6.4) quadratic in e, which
corresponds to t = jr/4, 3jr/4, 5jr/4, and 7jr/4, i.e., at the octants, is around
37' or 38'. Thus, whereas the term quadratic in the eccentricity was still
just invisible at the level of Brahe's accuracy for the motion of the earth,
i.e., for the solar theory, for the Martian motion it could be very readily
observed.

Moreover, we note that if one wishes to optimize the angles and ignore
the distances, which is just what Kepler was doing with his work on the
acronychal longitudes, the optimal division of the total (sun-equant)
eccentricity must be in the ratio 5/3 ~ 1.67. Taking the ratio 11332/7232 of
Kepler's result from Eq. (6.1), we find that he obtained a ratio of ~1.57
(~1.59 according to Delambre's corrections), which is impressively close
to the optimal value. Although Kepler did not have the benefit of
Eqs. (6.1)-(6.3), he knew perfectly well what he had done - he had
optimized the angles at the expense of the distances.

But he also knew something of potentially far greater importance. The
whole thrust of his work in Book II, which he very deliberately
emphasized in its subtitle was being done 'in imitation of the ancients',
had been to reproduce the observations of Mars under the assumption
that: (a) the Martian orbit is a perfect circle, (b) there exists a point
somewhere on the line of the apsides from which the motion of Mars
against the background of the stars appears perfectly uniform. The
incredibly laborious work on the acronychal longitudes had established
beyond reasonable doubt that such an orbit, if it existed at all, must have
its centre at a point that divided the total sun-equant eccentricity into two
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appreciably unequal parts. But this, in its turn, was quite incompatible
with the latitude and nonacronychal observations. If, however, one
trusted the distance and latitude evidence (both of which were supported
by Kepler's theoretical argument from the assumed force of the sun) and
took the centre of the orbit exactly half way between the sun and the
equant, then, as Kepler showed, errors of up to 8 minutes of arc appeared
at the octants. To Kepler the conclusion was inescapable: one or other (or
both) of the two basic assumptions, (a) or (b), must be wrong. The kind of
orbit and motion he had been seeking could not exist. Now we appreciate why
Kepler had been at such pains to state so clearly the premises on which his
work on the acronychal observations was based.

This monumental discovery hinged on nothing but the difference
between the term e2 sin 2t in (6.3) and fe2 sin 2t in (6.4) - a miserly ke2 at
the octants, equivalent to an angle of about 1\ minutes of arc (8 minutes
according to Kepler's calculations). (Kepler did not omit to point out that
an angle of this size escaped Ptolemy because he worked to an accuracy of
only 10'.)

As we shall see in the next section, Kepler had come extraordinarily
close to achieving a perfect representation of the motion of all the planets
by means of exact circles and Ptolemaic equants with the centre of the
eccentric deferent precisely halving the total sun-equant eccentricity.
That this did not happen was solely due to the fact that the eccentricity e
of Mars was just big enough to reveal the minute difference. It was only
by the merest whisker that Brahe and Kepler did not usher in an era in
which the ancient dream of description of the celestial motions by perfect
circles appeared at last to have been realized. Despite the application after
1610 of the telescope to astronomy, such an era could well have lasted for
nearly a century.

But Kepler had a nose for the big discovery. Let me quote some more of
his famous words:25

We, whom God in his goodness has given such a careful observer in Tycho Brahe,
and whose observations reveal the 8' error of Ptolemy's calculation, should
thankfully recognize this goodness of God and make use of it. That is, we should
make the effort (supported by the arguments for the falsity of our assumptions) to
find at last the true form of the celestial motions.

He continued:

If I had believed that we could ignore these 8' in longitude, I could easily have
improved my hypothesis sufficiently (by halving the eccentricity). But since this
error now cannot be ignored, these 8' alone reveal the need for reformation of the
whole of astronomy; they become the material for a great part of my work.

He ends Book II with the following summary: Thus, the house that we
erected on the basis of the Tychonic observations we have now
demolished with other observations of the same man.' To emphasize that
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the old era is drawing to a close and that astronomy faces a crisis
(equivalent to the one that forced Ptolemy to introduce the equant), he
says that this crisis must have come about because we made 'some
plausible but actually false assumptions. This is why I have devoted such
an effort to imitating the old masters.'

Kepler liked to comment on the marvellous economy of means that
nature employed to bring about its effects and how it could achieve
several different purposes with one and the same thing. He could with
justice have applied the comment to himself as well. He used the work on
the acronychal longitudes to bring down the old order. But in his later
work he still retained, on a provisional basis, the orbit that he had
constructed with such labour. For he knew that although it got the
distances wrong, it reproduced the angles, as seen from the sun, with
near perfect accuracy, and that, as we shall see, he found extremely
valuable. Because he used it as a stand-in to represent the helioastral
longitudes he called it the vicarious hypothesis.

6.4. The halving of the eccentricity of the earth's orbit

We noted in the previous section that Kepler's checking of the vicarious
orbit against the acronychal latitudes and nonacronychal longitudes had
certainly revealed a substantial error in the placing of the orbit but that
nevertheless the data were still contradictory (quite apart from the
residual 8'). Since all observation is relative, one possible explanation of
apparent contradictions in the motion of Mars could be that the motion of
the earth, the platform of all but the acronychal observations of Mars, did
not take place exactly as had hitherto been assumed. Kepler took this as a
stimulus to investigate a matter about which he had long had suspicions
and to which he had already drawn attention at the very end of Chap. 22
of the Mysterium Cosmographicum. He had pointed out there the oddity of
the Copernican system, according to which Saturn, Jupiter, and Mars had
equants but the earth was supposed to move with perfect uniformity
about the same eccentric point (the Copernican mean sun) at which the
apsidal lines of these three planets were made to converge. Surely, he
thought, the earth ought to have an equant too. He was also deeply
suspicious about the Copernican models for Venus and Mercury. How-
ever, he lacked the observations to do anything about his suspicions.

His distrust of the traditional solar theory, on which Copernicus's orbit
for the earth was based, was greatly strengthened by a letter he received
from Brahe in 1598, in which he said:26 The annual circle of Copernicus or
the epicycle of Ptolemy does not appear to have the same size at all times
if it is compared with the eccentric [for an outer planet]; for all three
planets it gives rise to a significant variation, so that the difference angle
for Mars can reach 1°45'/ Kepler's comment on this was:27 'Already then,
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when I heard that the annual circle expands and contracts, a good spirit
gave me the thought that this fantastic phenomenon (phantasma) arises
from the fact that the Copernican annual circle is not at equal distances
from the point around which it is supposed to move equal angles in equal
times.'

Thus, Brahe's observations suggested that the earth too was subject to
the equant phenomenon, in good agreement with Kepler's intuition. This
question was, in fact, one of the first that he had considered when he
joined Brahe in 1600, and during those first months he had already found
observational confirmation of his suspicion. It was one of the factors that
fuelled his early optimism and led him to believe, for about two years it
seems, that he was close to the complete solution of the problem of the
planetary motions on the basis of perfectly circular orbits with lines of the
apsides all passing through the sun. However, he had not investigated
the matter thoroughly, and therefore had only an approximate knowl-
edge of the earth's orbit.

Having spent so much time on the systematic study of the Martian
orbit, and knowing full well that there was something exciting and quite
new to be discovered there, Kepler nevertheless turned aside from the
main quarry and concentrated his attention on the earth. In fact, kinematic
relativity being an inescapable concomitant of observation, he had in
truth no alternative to this indirect journey to the grail he actually sought.
Book III of the Astronomia Nova is entitled: Study of the Second Inequality,
i.e., the Motion of the Sun or the Earth, or the Key to a More Penetrating
Astronomy.

It was not too difficult for Kepler, proceeding rather in the manner in
which he had attacked the latitude problem, to deduce from some
judiciously chosen observations that he was on the right track. He also
commented that the annual variation of the sun's apparent diameter
(about 30' in summer and 31' in winter) suggested a halving of the
Hipparchan-Ptolemaic-Copernican eccentricity. But he wanted a trans-
parent and unambiguous demonstration; even more importantly, he
needed data on the position of the earth's orbit that were as accurate as he
could possibly make them. How could this be done?

The solution he found is one of the master strokes of theoretical
astronomy. It came straight from what I have called his fundamental
assumption, and showed how astronomy, which had hitherto depended-
dangerously on hypotheses, could be built up on an absolute minimum of
assumptions. In fact, all that Kepler used was trigonometry, Brahe's
positions of the sun, and the periodicity of the Martian orbit, more
precisely its sidereal period of 687 days. These were things about which,
as Kepler emphasized, there could not be any doubt. (We should perhap
also mention the rotation of the earth, which provided the all-important
clock.)
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His idea was as simple as it was beautiful. It shows dramatically the
liberation of Kepler's mind brought about by the Copernican revolution.
He had learnt to wander freely in helioastral space and solved the
problem by transporting himself conceptually to Mars. The space journey
was done as follows. According to Kepler's fundamental assumption,
Mars must (again ignoring the secular perturbations, which, however,
Kepler could now handle) return to exactly the same point of helioastral space
every 687 days. Therefore, said Kepler, let us make observations of Mars at
precise intervals of 687 days. To eliminate problems with the latitude
effects, let us choose the times at which Mars crosses the ecliptic. Because
the period of the earth's orbit is quite different from that of Mars, we shall
see Mars at such times at quite different positions on the sky. At such
times the observations give us the apparent positions of both Mars and
the sun as seen from the earth; from the vicarious hypothesis we also
know the position of Mars as seen from the sun. Kepler's diagram is
shown in Fig. 6.5. Now the sun-Mars line is fixed, since by assumption
Mars returns to exactly the same point, x, of helioastral space. All the
angles are known. Therefore, the positions of the earth in helioastral
space can be calculated relative to the fixed positions of the sun and Mars.
Given three such points (e, rj, ft, say) one can describe a unique circle.
Given a fourth such point K (and Kepler had one), one can check whether
it lies on the same circle. Moreover, one can also determine the position of
the centre of the earth's circular orbit and see where it lies relative to the
sun and the already known position of the equant (the Copernican mean
sun - always the easiest point to find).

It all came out just as Kepler had foreseen: the observations established
beyond all doubt that the centre of the earth's orbit did not coincide with
the point a about which the motion appeared uniform but lay instead on
the line between a and the centre of the sun, roughly half way between
these two points. The Copernican orbit (continuous circle in Fig. 6.5) was

Fig. 6.5. At the top: Kepler's illustration of his triangulation of the orbit of the earth
(broken curve) by means of the sun and the known position, x, of Mars in
helioastral space. The continuous circle is the orbit which Copernicus had
assumed for the earth. In the two lower illustrations, Kepler repeats his
demonstration in terms of the alternative world systems of Ptolemy and Tycho
Brahe, showing the corrections to be introduced if those systems are adopted. By
giving the demonstration in all three systems, Kepler highlighted their
equivalence at the kinematic level and emphasized that the choice between the
rival systems must be based primarily on physical and dynamical arguments. He
thereby raised issues that are still very relevant to the absolute/relative debate.
Part of the text of the 1609 edition of the Astronomia Nova is shown to illustrate the
beautiful quality of the printing of this comparatively rare book. (Reproduced by

courtesy of The Beinicke Rare Book and Manuscript Library, Yale University.)
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Fig. 6.5.
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therefore seriously misplaced relative to the true orbit (dashed circle).
Although the observations permitted a certain latitude, Kepler unhesitat-
ingly took the centre of the earth's orbit to be exactly half way between a
land the centre of the sun. A few comments are here in order, as Wilson
has emphasized.28 The point is that, for all its conceptual beauty and
simplicity, Kepler's method of triangulation, which involved the deter-
mination of three angles, was subject to observational errors. In view of
the vital importance of this work, Kepler in fact employed several
different methods in order to make his conclusion as secure as possible
(such thoroughness was very characteristic of all his analysis of the
Brahian data), but he still obtained quite a scatter of positions for the
precise centre of the earth's orbit. They were all consistent with
approximate halving of the eccentricity, but Kepler's decision to adopt
exact halving was clearly governed by his theoretical considerations. As
Wilson points out, he appears simply to have taken the eccentricity from
Brahe's solar theory, which was 0.03584, halved it, and rounded off the
result to 0.018. He also retained Brahe's position for the line of the
apsides. Given his confidence in the theoretical proposition and its
reasonably good empirical confirmation, Kepler had good grounds for
doing this, since his earlier study had shown clearly how the position of
the equant can be determined with much greater accuracy than the
position of the centre of the orbit. Thus, halving of the empirically
determined equant eccentricity was a more accurate even if indirect
method of determining the orbit's eccentricity.

Kepler concluded his long and vitally important study of the earth's
motion as follows: 'I believe it is now adequately confirmed that the
earth-sun distances must be calculated on the basis of a halving of the
eccentricity found by Tycho.' The dethronement of the mean sun, the
usurper that Hipparchus had unwittingly helped to the throne all those
long years ago, was complete. Kepler had the added satisfaction of
confirming that this serious error had been able to remain undetected for
so long solely because the eccentricity of the earth's orbit was so small.
This was why Brahe's solar theory, derived ultimately from Hipparchus,
was seriously defective yet nevertheless gave solar longitudes in almost
perfect agreement with observation. However, the very slightest increase
in the eccentricity would have led to observable effects.

In many ways, this result was Kepler's greatest triumph - there is
nothing more satisfying than to announce in advance that you are going
to sink the putt and then actually do so. He suspected the result and
devised the stratagem to achieve it. And if his empirical evidence was still
not quite as unambiguous as he might have wished, his clean halving of
the eccentricity revealed the surety of the investigator who knows that a
perfectly clear theoretical concept is sometimes to be preferred to the
always somewhat uncertain deliverances of experiments and observa-
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tions. With its bold hypotheses theoretical astronomy had always
marched rather far ahead of the supporting observations. Kepler closed
the gap to its absolutely irreducible minimum (at the level of the Brahian
accuracy) but still trusted his theory to take him just a wee bit further than
he could actually see provided the theoretical construct in his mind was at
once luminous in itself and founded on a solid physical argument.

Kepler had now identified and eliminated the last of the residual
defects of the Ptolemaic-Copernican models that had been able to creep
into theoretical astronomy because of the particular absolute value of the
eccentricity of the earth's orbit and the ratios it bore to the eccentricities of
the orbits of Saturn, Jupiter, and Mars, on the one hand, and Venus, on
the other. We recall that the Ptolemaic system is most accurately
characterized as one that is peculiarly hybrid in the orders of the
eccentricities - for the description of the apparent motions of the three
outer planets it is essentially correct to first order in the eccentricities of
their orbits but only to zeroth order in the eccentricity of the earth's orbit.
For Venus the situation is precisely reversed. In addition, the solar theory
is only correct to zeroth order in the eccentricity when distances as well as
longitudes are considered. All these oddities had now been laid bare, and
their origin was thoroughly understood.

We have now reached about the half way stage in Kepler's work on
Brahe's observations of Mars -both conceptually and in time (the work on
the earth's orbit was mostly done in the latter part of 1601) - and a certain
amount of stocktaking is in order, particularly as many commentators
tend to skim over the earlier work as a rather straightforward preparation
for what followed. But the fact that in this part of his work Kepler had a
very good idea of the direction he was going should not blind us to the
originality of his work nor to the magnitude of the revolution which he
had already wrought. The work of the first stage provided not only the
absolutely sure astronomicotechnical foundation for what followed but
also supplied Kepler with unmistakable hints of the way the sun could be
expected to influence the motion of the planets. It armed him with ideas
totally unavailable to his great predecessors.

Let us first have one last look at the technical aspect. Kepler proudly
proclaimed that the halving of the eccentricity of the earth's orbit was to
become the basis of the renewal of the entire science of astronomy. The
claim is not exaggerated - for the first time since Ptolemy, struggling to
make sense of the precession of the equinoxes, declared the earth to be the
one secure basis of astronomy, the watchers of the sky had a firm
foundation on which to work - even if it was a raft adrift in space.

There is something very appropriate about the fact that Kepler,
quintessentially a child of the heady Renaissance times of new endeavour
and breaking free from old bonds, was the author of an early work in the
genre of scientific fiction - a dream of a journey to the moon.29 He was
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indeed the first man whose spirit roamed freely in space, in this respect
the mortal counterpart of Shakespeare's Ariel, a contemporary creation in
the world of drama. In his Epitome of Copernican Astronomy, published a
decade and a half later and after he had completed his work on the
renewal of astronomy for all the planets, he even advanced 'space travel'
as one of the reasons for believing in the Copernican world system:30

For it was not fitting that man, who was going to be the dweller in this world and
its contemplator, should reside in one place of it as in a closed cubicle: in that way
he would never have arrived at the measurement and contemplation of the so
distant stars, unless he had been furnished with more than human gifts . . . it
was his office to move around in this very spacious edifice by means of the
transportation of the earth his home and to get to know the different stations,
according as they are measurers - i.e., to take a promenade - so that he could all
the more correctly view and measure the single parts of his house.

This passage, incidentally, shows just how far the early supporters of
Copernicanism were from the modern viewpoint according to which the
main effect of the Copernican revolution was to demote man from the
central position in the universe. They still saw things very anthropo-
centrically - even Newton continued that tradition.

Let us now turn to the conceptual and physical implications of what
Kepler had already achieved, essentially by making the Ptolemaic
schemes uniformly valid to first order in the eccentricity. The part of Book
III of the Astronomia Nova that we have now reached almost oozes the
satisfaction of an author who knows he has achieved a great synthesis
(the first, in fact, in the history of the natural sciences unless geometry is
counted as part of physics) and cleared up many long-standing problems
that had sorely vexed the astronomers. For now nearly everything slotted
into place. Kepler was virtually certain that the tidying up operation that
he had carried out for Mars and above all the earth would be repeated for
Venus and Mercury; as for Jupiter and Saturn they had always given the
least trouble. If the minute residual problems with Mars were discounted,
a perfect uniformity could be perceived: all planets moved on circular
orbits on fixed planes that passed through the sun; all had equants, and
all had centres of their eccentric deferents that exactly bisected the line
joining their respective equants to the centre of the sun. Each planet in its
orbit moved fastest when closest to the sun and slowest when furthest
from it. Finally, the planets moved overall progressively slower in their
orbits the further they were from the sun. At long last the sun was truly
located at the exact centre of the world of the planets and most manifestly
controlled their motions. The carousel which Ptolemy had built and
Copernicus had so magically transformed with that one deft move but
had nevertheless contrived to leave in a creaking and rickety state by
making a botched job of fitting the last horse (the earth) was now in
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perfect working order, oiled and polished with loving care by a
mechanical genius.

But Kepler was very well aware that there were many more implications
of his work than simply the smooth running of a carousel. He knew that
he had also transformed the debate about Copernicanism, a subject that
was very dear to his heart - as many passages scattered throughout the
Astronomia Nova (and also the whole of his Defence of Tycho against Ursus3)
eloquently testify. As already pointed out, nobody understood more
clearly than Kepler that, when it came to the crunch, the purely kinematic
and geometric arguments that traditional astronomy could provide for
Copernicanism were of no avail to settle the argument definitively. The
counter put forward by Osiander in the notorious anonymous preface to
De Revolutionibus was horribly insidious. For in its observational
consequences Tycho's system, which Kepler duteously purged of its
residual defects at the same time as he performed the same service for
Copernicus's, was every bit as capable of saving the appearances as its rival.

Kepler felt so deeply about this problem that he addressed it head-on in
a brief passage at the very front of his book, placed immediately after the
titlepage. (It was here that he identified the hitherto anonymous
Osiander.) Grasping the nettle, Kepler conceded that geometrical
hypotheses alone could never settle the question; this could only be done
by completing the traditional structure of theoretical astronomy by
physical principles, which, if not absolutely conclusive, were at least
highly plausible. Now, half way through Book III, as a complement to the
purely technical chapters that had provided the astronomical arguments
for the halving of the eccentricity for all the planets, the character of
Kepler's discourse changes abruptly from a strongly innovative but
basically traditional astronomical disquisition to a long stretch devoted to
the arguments for Copernicanism and the exposition of his physical
principles, some of which, he readily granted, were on a less secure
rooting than others. Not surprisingly, he started with the strongest
arguments.

In the Mysterium he had marshalled mainly kinematic arguments. Now
he came again with even more subtle kinematic arguments and followed
them up with his really heavy guns, the physical arguments. First he used
the refined kinematic evidence to pick off Ptolemy (Galileo had not yet
made his observations of the phases of Venus, which, on the basis of
direct observation, narrowed down the choice to one between Tycho and
Copernicus). He had shown beyond reasonable doubt that the apparent
motion of the sun - be it due to actual motion of the sun or of the earth -
must be described by an eccentric and an equant with doubled
eccentricity, just as was found in the first inequalities of the three outer
planets and would almost certainly be found for Venus and Mercury.
Moreover he had demonstrated (as yet strictly only for Mars) that this
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relatively complicated motion was exactly replicated in the second
inequalities of all the five classical planets. For each and every planet it
would now be necessary to replace the simple original Ptolemaic epicycle
by a more sophisticated arrangement that was the perfect mirror
reflection, true in every detail, of the new solar theory. It was, he asserted,
simply asking too much of human credibility to deny that all these
identical equantized, and eccentricated, and perfectly phased epicycles
did not have a common origin - either in the motion of the earth around
the sun or the sun around the earth. Either Copernicus or Tycho must be
correct. Kepler confidently and correctly predicted that:31 'the bright sun
of the truth will melt all this Ptolemaic apparatus like butter, and the
followers of Ptolemy will disperse partly into the camp of Copernicus,
partly into that of Brahe'. A somewhat inglorious end for the unfortunate
Ptolemy, but the manner in which the equant dominates the discussion
throughout the crucial Books II and III of the Astronomia Nova is testimony
enough to the contribution he had made. The last service of all great
theories is to provide the framework which isolates the very phenomena
that ultimately destroy them. Every really good approximation is the basis
of a better.

But now, Ptolemy dismissed, it was necessary to consider the Tychonic
arrangement. Could one really regard it as plausible? He (Kepler) had
proved the unquestioned existence of a unique point, the centre of the
world, the point at which the apsidal lines of all the five classical planets
converged (he was anticipating here a bit but was totally vindicated by the
sequel). Whether the earth went round the sun or the sun went round the
earth, he had proved that for these five planets this point lay right in the
middle of the sun. All these five planets circled the sun in accordance with
laws that implicated the sun as governor of their motions beyond all
reasonable doubt: fastest precisely when closest to the sun, slowest when
furthest. But what about the earth? If the sun did go round the earth, was
it not simply extraordinary that it did so in accordance with exactly the
same law as the five planets went round the sun, and how could the tiny
earth move the huge sun and all its attendant planets? How much easier
to suppose with Copernicus (duly modified) that the earth went around
the sun. Then all six planets would have apsidal lines meeting at that
unique point in the heart of the sun, all would follow the same law, and
the earth's orbital period would fit so sweetly between the 225 days of
Venus and 687 of Mars (the Copernican argument from harmony that had
so wrought on Kepler's imagination). These were the physical arguments
that he now had securely in hand, all of them anticipated by his powerful
intuition, and all of them backed up by innumerable observations of the
greatest observer in history.

This central dynamical argument for dominion and centrality of the sun
(which is permanently reflected in the very language of astronomy in the
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characteristic words perihelion and aphelion that Kepler coined32 for the
positions in the planets' orbits when they are closest to and furthest from
the sun) then served Kepler as his constant guide as he searched for
principles that would enable him to understand and master those
perplexing residual eight minutes of arc in the motion of Mars.

Before we start on this, the most complicated part of the story, in which
Kepler, following a surprisingly tortuous route, finally arrived at the
conclusion that the planetary orbits are ellipses, let us review the role that
circles played in the history of astronomy prior to Kepler's momentous
discovery. It has been pointed out once or twice already in this book that
numerous commentators on the history of astronomy have implied that
many early problems faced by the astronomers stemmed from their too
rigid adherence to the tyrannical doctrine of perfect circularity of the
orbits. Even such a great scholar as Koyre was capable of confusion on this
point as we see from the following passage:33

It so happens, that the orbit of Mars is not the most eccentric - that distinction
belongs to Mercury - but it is the only one whose eccentricity [sic] is sufficiently
large to be apparent in the observational data of astronomy before the time of
Galileo, or even Tycho Brahe. This was the very reason why it was so difficult for
Ptolemy, as well as for Tycho Brahe and Copernicus, to account for the orbit in
terms of circular motions.

The falsity of such assertions should now be perfectly evident. Any
attempt on the part of the early theoretical astronomers seriously to
consider noncircular motions would have been a complete waste of time.
The corresponding effects, which are only a small fraction of the readily
observable effects of second order in the eccentricity, would have been
completely swamped by residual defects of lower order. All these
mistakes derive from the failure to distinguish between the eccentricity
(which is readily observable for all the planets) and the ellipticity (which
is extremely difficult to observe even for Mars and Mercury). Even if Mars
had had a much smaller eccentricity, Brahe and his assistants would have
had almost as much difficulty as they actually had before Kepler joined
them; for their problem - and Copernicus's and Ptolemy's - was not Mars
but the earth. The first service that Mars performed for Kepler was in
holding up a mirror to the earth, in which he could perceive the correct
eccentricity of its orbit. This was just as important a service as the second
one, which had to follow the first, the revealing of the ellipticity.

6.5. The First and Second Laws

Now what did Kepler do about those mysterious eight minutes? He could
so easily have done nothing. Who knows when or in what form dynamics
would have been discovered if Kepler had thrown in the sponge at that
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stage in the way that the aged Copernicus more or less gave up the
attempt to understand the latitudes? But Kepler was only in his mid-
thirties, and, quite undaunted by the horrors of calculations, he buckled
on his sword again to rejoin battle with Mars.

Since the manner of Kepler's discovery was rather surprising, any
reader who does not already know how Kepler came to his first two laws
might like to pause here and, before reading on, try to guess how it might
have happened, bearing in mind what has already been recounted and
also the fact that in his work on optics on which he was simultaneously
engaged Kepler had done important work on conic sections, developing
above all the theory of the foci, which had been treated only rather
cursorily by Apollonius - the word focus was actually introduced into
European literature by Kepler in this sense in his 1604 work on optics. As
Wilson points out,28 one might well expect that Kepler simply reversed
the technique whereby he had used Mars to find the position of the earth,
i.e., that from the now known position of the earth and the longitudes of
Mars as seen from the sun (known from the vicarious hypothesis) he
would have used triangulation to find out directly the positions of Mars.
This would have revealed an ever so slightly elliptical orbit of Mars and,
clinching the argument for a true ellipse, a focal positioning of the sun.
Somehow or other he might then have been led to his area law as the rule
governing the speed of motion in the orbit determined empirically in this
manner.

In reality things happened very differently. The word focus does not
even appear in the Astronomia Nova and the focal properties of the solar
position are used only implicitly. (They are mentioned together with the
word focus in the later Epitome of Copernican Astronomy (1621), where the
sun is also called the focus of the universe, i.e., its hearth.) Even more
remarkable is the fact that Kepler used the area law before he found the
ellipse - indeed it played a role just as crucial, perhaps even more so, than
direct triangulation in the discovery of the ellipse. The reason why Kepler
did not take the route that with hindsight seems rather obvious was his
passionate concern to find the true physical reasons for the motions that
Mars actually made. In a rare example of physical intuition, he correctly
sensed that the discrepant eight minutes of arc were not some aberrant
quirk peculiar to the Martian orbit (which could be tolerated in rather the
same way that Ptolemy accepted the recalcitrant Mercury as a sui generis
oddity) but that they were a deeply significant clue to the basic physical
processes by which the planetary motions were determined. Kepler
undoubtedly made his discovery of the ellipse much more difficult than it
might have been by taking the route through a physics that only took
shape as he worked his way along (and was, in truth, often a decided
hindrance). But he - and, even more so, Newton more than three quarters
of a century later - got a huge bonus for all the extra labour. This was the
discovery of the area law, which truly it is difficult to see how Keoler could
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Fig. 6.6. Explanation of speed relation at apsides that follows from equant
mechanism. The sun is at S, the centre of the planet's orbit is at C (e from S), and
the equant is at E (2e from S). In infinitesimal time dt, the 'spoke' emanating from
E sweeps through angle wdt, where a) is its angular velocity. Therefore, at A the
translational speed of the planet is co • EA while at P it is a> • EP. But EA = SP an
EP = SA by virtue of the particular positions of S and E relative to C. Therefore the
ratio VA/VP of the speeds at the apsides is SP/SA, i.e., in inverse proportion to the

distances from the sun.

have found by any other route than the serendipitous and very
idiosyncratic one that he did take.

And yet, if you put yourself in Kepler's shoes, it was not all that
idiosyncratic. One just has to appreciate the confidence that Kepler had
gained from the already achieved successes which he could rightly
attribute to his physical interpretation of the Ptolemaic equant. What was
more natural than that he should attempt to take the success further?

Instead of turning directly to Mars, Kepler began by testing out an
original idea on the motion of the earth. This is introduced in Chap. 40 of
the Astronomia Nova. Following up his interest in the equant phenome-
non, he established the important and key result that for exact equant-
type motion the ratio of the orbital speeds of a planet in its orbit at
perihelion and aphelion is inversely as the ratio of its corresponding
distances from the sun. Thus if rp and ra are the distances from the sun at
perihelion and apogee, respectively, and vp and va are the corresponding
speeds, then Vp/va = ra/rp. An explanation of this result in modern terms
is given in Fig. 6.6. Thus, at least on the line of the apsides the speed of
the planet was found to be exactly inversely proportional to its distance
from the sun.

Kepler regarded this precise relationship as extremely significant and
suggestive, and it completely dominated his whole approach to the
problem of planetary motion; for it fitted perfectly with his physical
notions, according to which the planets were driven around the sun by
some force or virtue that emanated from the sun. If this were the case,
then he felt that it was extremely plausible that the strength of the force
should decrease in inverse proportion to the distance from the sun.
Although in astronomy as hitherto practised such an approach was
utterly novel, Kepler was here using an argument that any working
physicist of the last three centuries would regard as perfectly sound,
except for the fact that he was thereby relating force directly to speed. To
fault Kepler for this mistake would be quite inappropriate; he could not
possibly have anticipated the extremely subtle reinterpretation of his
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relationship that Newton was later to supply. Like all great theoreticians,
Kepler had a very sure sense of when to generalize, and he conjectured
that such a speed law held exactly not only at the apsides but throughout
the entire orbit, that is, he assumed the speed v of the planet along its orbit
in helioastral space to be exactly inversely proportional to its current
distance from the sun. Kepler realized that if this was the case it must
come into conflict with the equant law, for which the exact inverse
proportionality held only at the apsides. However, he welcomed this and
showed that for the earth at least, with its very small eccentricity of only
just over 1/60, the two laws were effectively indistinguishable in their
observational consequences at the Tychonic level of accuracy.

This permitted Kepler to conclude that the equant law was only a highly
accurate approximation to the exact inverse proportionality law, which
we may call the distance law. He then foresaw, quite correctly, that in the
case of Mars, with its significantly larger eccentricity, the difference
between the two laws would reach a level that could be distinguished by
means of Brahe's observations. It seems clear that he hoped to explain the
mysterious eight minutes of arc discrepancy by this means.

Before we go on to consider what actually happened, let us note how
Kepler's new physical approach caused him to adopt what was a quite
new attitude to small residual failures of the existing models of planetary
motion. For Ptolemy and Copernicus they were simply mysterious
curiosities, to be handled in an ad hoc manner as best one could. But we
can now see why for Kepler they were vital clues and warranted an
attention that Ptolemy or Copernicus were never led to accord them.
Besides his new physical approach, a vital ingredient that made possible
Kepler's heightened awareness of the significance of small deviations was
the quite outstanding success he had had in clearing away all the spurious
residual defects of the Ptolemaic and Copernican models. The new
system was so simple and clean that the remaining deviations stood out
quite clearly in a manner which they could never have done before his
preparatory work. They were in fact now reduced to the eight minutes for
Mars and the slow secular perturbations.

We now come to the first example of Kepler's serendipity. It is
important to appreciate that Kepler's mathematical arsenal was woefully
inadequate for the kind of programme on which he had embarked. He
was getting into a situation in which it was necessary to sum successive
small increments in order to predict the consequences of the putative law
he wanted to test. For if the planet's instantaneous speed in its orbit is
inversely proportional to its current distance from the sun, an integration
problem must in fact be solved to determine the point in its orbit that the
planet will have reached after a given time. But the calculus did not yet
exist, and Kepler had to resort to a most laborious method of calculation.
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Before we describe this, it is worth mentioning that although he
undoubtedly had an intuitive notion of instantaneous speed, Kepler did
not and could not use it directly in his work. For a start, it was considered
improper in mathematics to form a ratio of heterogeneous quantities such
as distance and time - one should always form ratios of like quantities.
(This, incidentally, has a bearing on the question of the nature of time, to
which we shall return in the final chapter of this book, p. 656.) In addition,
the mathematics that Kepler would have needed simply did not exist.
(Whiteside has interesting comments on this subject,34 as does Stephen-
son.18 The deficiencies of Kepler's mathematics were not always a
disadvantage, as we shall soon see.)

To test his theory, Kepler needed to know how long it would take the
planet, starting at aphelion, to reach a given point of the orbit. Because the
speed was variable and Kepler could not solve his problem by the
integration it required, he proceeded as follows. He divided the first half
of the orbit, from the aphelion to perihelion, into 180 equal segments, i.e.,
each segment had length jtR/180, where R is the radius of the orbit, which
Kepler still, of course, assumed to be circular. He then calculated the
distances from the initial point of each of these segments to the
eccentrically located sun and assumed that the time taken by the planet to
traverse this segment, the delay (mora) as he called it, was proportional to
the corresponding current distance r (such an assumption being equiva-
lent to a speed inversely proportional to the distance). The constant of
proportionality was then normalized in such a way that the time required
to traverse the complete orbit (found by laborious summation of the
individual delays) was equal to the observationally well-known sidereal
period (the year for the earth).

Kepler found this work particularly irksome, especially since to find the
position at any given time it was necessary to carry out all the intermediate
summations. This was intolerable, and he looked for a device to avoid
such calculations. He was aware that 'there are infinitely many points on
the eccentric and correspondingly infinitely many distances'. It therefore
occurred to him, as he put it rather enigmatically, that 'the area of the
eccentric contains all these distances'. He then recalled that 'Archimedes
had once divided the circle into infinitely many triangles when he
attempted to determine the ratio of the circumference to the diameter'. In
this way he was led to introduce the idea that the area swept out by the
line joining the planet to the sun could be proportional to the time taken
by the planet to traverse the corresponding arc. It was immediately clear
to Kepler that his device with the area could only be an approximation to
what he took to be the exact distance law, since (expressed in modern
terms) the infinitesimal area swept out by the line from the sun to the
planet is exactly proportional to the delay corresponding to the distance
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law only when the instantaneous velocity is at right angles to the line
joining the planet to the sun, i.e., only at the apsides. Nevertheless, by
some rather ingenious arguments (for a discussion of which - as indeed
of all this part of Kepler's work on which we are now embarked - the
reader is referred to Stephenson's book18) Kepler was able to show that
the approximation (as he thought) was remarkably accurate, leading to a
significantly closer agreement with the result of the distance law than the
equant approximation, though in the case of Mars he was aware that the
difference between the area rule and the distance law would just about
reach a level that could be detected at the level of Brahe's accuracy
(maximally about four minutes of arc at certain points of the orbit).

The irony in all this is, of course, the fact that, as Kepler later discovered,
the area rule is actually exact while the distance law is only approximate.
Considerable confusion reigns in the literature about the extent to which
and when Kepler became aware of the fact that the distance law was only
approximate. There is a confused (and confusing) discussion by Kepler
towards the end of Astronomia Nova, once he had found the correct forms
of his first two laws, in which he appears to be reinterpreting the distance
law to make it apply to unequal intervals of the orbit. In the much later
Epitome of Copernican Astronomy he finally gave a clear and correct
statement of the distance law, stating (again in modern terms) that it is
only the component of the speed perpendicular to the instantaneous
radius vector of the planet that is inversely proportional to the speed. As
Caspar emphasizes,35 Kepler's confusion only relates to the status of the
distance law. Once he had obtained his great results, he did recognize
that the area law, as we may now call it, represented an exact empirical
result even though he still looked for a physical interpretation in terms of
the (modified) distance law. For a discussion of this question the reader is
referred to the studies already cited, and also two papers of Aiton.36

We should also mention here that the introduction of the area rule did
not by any means solve all of Kepler's mathematical problems. For
consider the orbit, still assumed to be circular, shown in Fig. 6.7. The
centre of the orbit, with radius taken to be unity, is at O, the sun, at
distance e from O, is at S; in a certain time t the planet will have moved
from the aphelion A to its current position P. If we continue to measure
angles in radians and take the sidereal period of the planet to be 2jr, we
must remember that the area of a circle of radius unity is n when we come
to relate time to the area. In fact, according to the area rule, the time t will
then be equal to twice the area ASP; but this area is the sum of the segment
AOP, equal to \Q, where 6 is called the eccentric anomaly (for the circular
orbit), and triangle OSP, whose base is e and height is PQ = sin 6 (PQ is
the perpendicular from P onto Q), since OP = 1. Thus,
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Fig. 6.7.

and to determine 6 for a given t (which is the situation he always faced)
Kepler had to invert Eq. (6.5), which is called Kepler's equation. He was
(correctly) convinced that there was no simple solution to this problem,
on account of the 'heterogeneous nature of the arc and the sine', as he put
it, and he issued the problem as a challenge to the mathematicians of his
day.37 It became known as Kepler's problem (not to be confused with the
same expression that I have used earlier in connection with the vicarious
hypothesis) and played an important role in the history of mathematics.
Rather remarkably, as we shall see, Eq. (6.5) also reappears in the theory
of elliptical orbits though only with a redefinition of the eccentric ano-
maly.

It will deepen appreciation of the way in which the physics of the
situation is expressed through the geometry and simultaneously help the
reader who wishes to consult more specialized works if we introduce here
one or two more of Kepler's basic concepts. Following the tradition of
ancient astronomy, Kepler related all angles to the mean anomaly, the
angle that increases uniformly with the time, has the value zero when the
actual body passes through apogee (aphelion in heliocentric astronomy)
and (in radian measure) reaches 2ji when the actual body has completed
its orbit. Since the time is given in accordance with (6.5) the mean anomaly
•y will (with our choice of units) simply be equal to it:
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Now were the planet to move uniformly around the centre of its orbit, one
would simply have y = 6. Thus, e sin 6 measures the difference angle
due to the actual (physical) nonuniformity. Kepler called this angle,
which is represented geometrically by twice the area of triangle OSP, the
physical equation (equation, we recall, is always the word used by
astronomers to denote the correction between a quantity - an angle in this
case - one would have expected and the actually observed quantity).
However, the angle actually observed from the sun is the true anomaly,
angle ASP; this is the angle given by Kepler's vicarious hypothesis. This
differs from 6 by the angle SPO, which arises for purely optical reasons
(because the point of observation is at S). Kepler therefore called it the
optical equation. Thus, to get from the mean anomaly to the observed true
anomaly one had to subtract the physical equation, given by twice the
area of triangle SPO, and then the optical equation, given by angle SPO.
The true anomaly was therefore also called the equated (or coequated)
anomaly. In accordance with his comprehensive programme of matching
all observations, Kepler's fundamental aim was to devise theoretical
schemes from physical principles that gave both the distances from the
sun to Mars and the equations correctly. The distances were obviously
determined by the shape of the orbit, the equations by the speed law of
the planet in its orbit.

Note the beautiful way in which Kepler had managed to achieve a
simple geometrical representation of all the nontrivial parts of his
problem. Specify 6; then the time taken by the planet from A to P was
found simply by adding twice the area of the little triangle SPO to 9.
Moreover, the optical equation was simply the angle at P of the same
triangle. Everything of interest was encoded in that one little triangle, and
time had received a direct and perspicuous representation in purely
geometrical terms. We shall see in Chap. 10 how this success of Kepler,
which was only slightly modified on the transition to the true elliptical
orbit, predetermined the manner in which Newton treated time in his
dynamical problems.

Having tested out his ideas on the earth and shown to his satisfaction
that Ptolemy's equant rule could indeed be merely an approximation to
his own distance rule, Kepler at last turned his attention to Mars. We
recall that he knew at least one of his basic assumptions in the derivation
of the vicarious hypothesis must be wrong - either there was no equant or
the orbit could not be a circle, or both. Since the equant had always been
suspect and he had a ready alternative to it, it is hardly surprising that at
this stage Kepler still did not seriously question the circularity of the orbit.
He set to work with great vigour, applying both the area law and distance
law to Mars under the assumption of a circular orbit. The result was a
disappointment - he still found discrepancies at the octants that were just
about as large as when he had used an equant with exactly bisected
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eccentricity; now, however, they were of the opposite sign. Specifically,
and this is worth noting, he found when using the area law that his
predicted position for the planet was about 8' of arc ahead of the actual
planet at the first octant (45° from aphelion) and the same amount behind
at the second (135°). In a dejected mood he threw aside such calculations
and was obviously at rather a loss.

Considering the magnitude of the step which is supposed to have been
involved, Kepler says remarkably little in the Astronomia Nova about what
the final abandonment of perfect circularity of the orbit involved for him.
Perhaps his most explicit comment is the one at the beginning of Chap. 40:
'My first mistake was that I assumed the orbit of the planet to be a perfect
circle. This error proved to be a particularly damaging thief of my time in
having the support of the authority of all the philosophers and was in
particular most agreeable to metaphysics/ One or two comments are here
in order. No astronomer before Kepler had ever even contemplated that
any of the seven wanderers except the sun (or earth, post Copernicus)
moved in a single perfect circle. All that they had required was that the
motion be compounded out of perfectly circular motions. But, as noted
earlier, Kepler had long recognized the important concept to be the actual
path in helioastral space, not the circular motions by means of which
ingenious geometers described that path. But for noncircular paths
Kepler had several precedents - the moon, Mercury and, indeed, all the
planets according to the prescription of Copernicus for eliminating the
equant in their first inequalities. Thus, adoption of a noncircular orbit on
his part would not have been such a great step. I suspect that what held
him up was much more the considerable success he had already achieved
with circles. The work that Kepler did during those first few months with
Brahe really were the most extraordinary vindication of the circle concept.
No astronomer before Kepler had seen the prospect of adequately
representing the motions of the planets with less than about 30 circles
(when latitude motions are included). Kepler had reduced the number to
the truly irreducible minimum of six (one for each planet) and simul-
taneously improved the accuracy with which the planetary motions could
be predicted by about li orders of magnitude. (I am not saying Kepler had
done all this in detail, but its possibility was completely clear to him.) We
can therefore appreciate better the words with which Kepler opens
Chap. 44 (which has the title That the path of the planet in the heavens is
not a circle'): 'When the eccentricity and the ratio of the diameters [of the
orbits of Mars and the earth] have been determined with great certainty,
an astronomer might find it extraordinary that anything could remain to
hinder the triumph over astronomy. And, by God, I did triumph for two whole
years!' (my italics).

Apparently it was only in the early months of 1602, after the abortive
application of the area law/distance law calculations to Mars's motion,
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that Kepler turned to triangulation as a means of direct determination of
the orbit. What he did was determine the position in helioastral space of
three points on the Martian orbit and then find the circle that passed
through them by classical geometrical methods. Knowing its centre and
the position of the sun, he could then determine its line of apsides. He
found that this did not agree exactly with the line of the apsides of the
vicarious orbit. He then repeated the procedure for further triplets of
triangulated positions; each time he found a slightly different circle. The
conclusion was inescapable - the orbit could not be a circle.

Kepler still proceeded in a very methodical way. Using very refined
methods (including again the device of observing Mars at intervals of its
sidereal period, this time at positions near the line of the apsides, and also
a correction of suspect observations by using the mean motion at different
locations in the orbit given by the vicarious hypothesis - this was
something that could be found with much greater accuracy than
individual positions), he determined as accurately as possible the precise
position of the line of the apsides and the location of the sun along that
line, i.e., the solar eccentricity. Both of these determinations played a
crucial role in the later work, especially the eccentricity. He then imagined
an auxiliary, or reference, circle that passed through the Martian aphelion
and perihelion and therefore had the line of the apsides as a diameter. In
his subsequent work this circle played a role almost as important as the
actual orbit. He started to determine positions of Mars when away from
the line of the apsides and compare them with the auxiliary circle. The first
three positions, one still close to the line of the apsides, the other two
around the octants, showed unmistakably that the orbit bent in from the
auxiliary circle. At the middle longitudes the planet was closer to the sun
than the circle. The orbit must be some kind of oval.

This step was his last that followed the marvellously limpid logic which
he had employed hitherto. For at this point - apparently without making
any further attempt to determine the precise orbit by direct triangulation -
Kepler got completely carried away and seriously set about an attempt to
determine the orbit theoretically using further physical ideas that were
gradually taking shape in his mind. I think it is instructive to consider why
Kepler did embark on this extraordinarily ambitious programme, which,
as he ruefully admitted, led him into a fearful labyrinth.

First, we may note that the discovery of noncircularity, above all the
bending in of the actual orbit within the auxiliary circle, cast an exciting
and totally new light on the work with the area law that he had done on
the Martian orbit. Figure 6.8 shows the auxiliary circle and the putative
oval which he now expected. Consider a segment of area swept out by the
radius vector from the sun, at S, to the planet when at aphelion, A. Such
a segment is a smaller fraction of the area of the auxiliary circle, the orbit
which Kepler had assumed for the area law work, than it is of the putative
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Fig. 6.8. Explanation of the effect of the area law. The hatched segment is a larger
proportion of the area of the oval than of the circle. Therefore, if the oval is the
correct orbit and the area law holds, the planet must spend a larger proportion of

its period near aphelion, A, than in the case of a circular orbit.

oval. Thus, if the orbit actually is oval, the planet must take a longer
proportion of its total sidereal period to traverse the apsidal regions than
in the case of the circular orbit previously assumed. But this was exactly
what Kepler had found - his theoretical prediction for Mars had been
ahead of the real planet at the first octant, behind at the second (towards
the perihelion), just as one would now expect. The distance law had also
predicted quantitatively the same effect. Kepler realized that if he had
only had the courage of his convictions he could have predicted not only
the noncircularity of the orbit but also its bending in within the auxiliary
circle.

He had at least the consolation of knowing that the area law had become
a powerful tool in his hands. Any conjecture he might now make about
the geometrical shape of the orbit could be tested by seeing if it, in
conjunction with the area law, predicted the correct longitudes of the
planet (which had to match those of the vicarious hypothesis). Expressed
in traditional terms, the assumed geometrical orbit and the area law
(which to Kepler's good fortune he generally used for the sake of its
convenience) were required to reproduce the correct equations. Wilson28

has emphasized the importance of the area law in the eventual finding of
the elliptical orbit, noting that this has escaped many of the earlier
commentators, who believed that it was found solely by triangulation.
The important point here is that, generally speaking, the distance
determinations were not quite so accurate nor, for Kepler, nearly so
convenient as the longitudes, which the vicarious hypothesis supplied
him with at any point of the Martian orbit.

A second, and perhaps more important, factor in Kepler's deciding to
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attempt a theoretical prediction of the orbit was a lot of prior work he had
done on analyzing the reasons for the planets' variable distances from the
sun. So far we have only considered the question of the variability of their
speed in their orbits - Kepler had, as we have seen, attributed this to a
weakening with distance of the solar force that drove the planets around
their orbits. As we shall see in the next section, Kepler believed that this
force was ultimately generated by rotation of the sun. But quite
independent of this, in Kepler's view, was the question of what generated
the eccentricity. How did it come about that the planet approached and
receded from the sun? For him this was now the most fundamental
question of all, since the speed in orbit followed as a necessary
consequence once the distance had been established.

Kepler's insistence on finding a reason for the variable distances from
the sun highlights once more the novelty of his approach. The purely
geometrical approach of all of his predecessors had led them to look no
further than a simple geometrical arrangement that could save the
appearances. Such an explanation, once found, was sufficient in itself,
especially if based on a circle. Inured to eccentrics by two millennia of
successful saving of the appearances by means of them, astronomers did
not think to ask for any further explanation.

In order to give the reader at least some idea of why Kepler got into the
labyrinth he did, it will be helpful to stand back a little from his problem,
and use hindsight. His first problem was a severe limitation of his
mathematical equipment; this will be illustrated shortly. Much more
serious was the fundamental defect from which his physics suffered - the
fact that he believed force to be directly proportional to the motion which
it produces. As we have already noted, Kepler could not possibly have
guessed nature worked on an analogous but subtly different plan,
relating forces to accelerations. If one compares his approach to the
problem of celestial motions with that of his contemporaries and all his
successors up to Newton, one has to say that Kepler had a more
systematic and (with hindsight) basically correct approach to it than any
of the others. What one can say is that if nature had worked in the manner
Kepler believed he would surely have discovered her laws. He was very
aware of the need to understand the minutest deviations from what
seemed to be an almost perfect circle-based scheme. He correctly sensed
that there were deeper and, so to speak, invisible or transcendent
principles at work behind the beautiful geometrical structures that the
traditional astronomical techniques, brilliantly consummated by his own
innovations, had revealed. Most striking of all was his conviction that
these deeper principles must be manifested in precise mathematical
relationships. He had found one such relationship, or thought he had, in
his distance law (and truly had in the area law). Now he was looking for
an analogous relationship that governed the varying distances. But this
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was where nature's subtlety threw him - he was looking for a relationship
that actually lay exactly one layer lower in terms of the differential orders
of the yet to be discovered infinitesimal calculus. He was, in fact,
extremely fortunate that he chanced upon the area law, for this, expres-
sing as it does what is called a first integral of the motion, does involve a
first derivative (the transverse speed) directly and linearly. But the other
fundamental relationships of dynamics lay too deep for not only his
mathematical techniques but also, perhaps more seriously, for his intui-
tion. As a result, Kepler spent, with interruptions, about three years on a
tortuous study that attempted to establish a simple and physically plausi-
ble relationship between orbital properties that the subsequent Newto-
nian theory showed to be relatively superficial features of the Martian
motions. He did eventually find one that seemed to fit the bill, and this
fortunately persuaded him that he had at last found the correct orbit.
However, the discovery by Newton of the true dynamical principles
underlying the Keplerian ellipses was to show that Kepler had merely
stumbled across a rather remote consequence of them, devoid, in itself, of
intrinsic significance. But that was the sort of luck Kepler deserved.

Now to the curious story of the deficiencies of his mathematics. Kepler,
who possessed nothing like the notion of polar coordinates, which
provide the natural tool for describing his orbital problem, needed a
mathematical framework by means of which he could analyse the distance
problem. He started on this work long before the discovery of the
noncircularity and therefore naturally assumed a perfectly circular but
eccentric orbit. By one of the nicest ironies of his work, he chose as
analytical tool a geometrical device that was almost the most ancient that
astronomy could offer: Hipparchus's epicyclic alternative for represent-
ing the solar motion. In Fig. 6.9(a), CDF is the eccentric circular orbit of
Mars. The sun is at A, the centre of the orbit at B. We recall from Sec. 3.10
that such an orbit can be represented equivalently as follows. About A as
centre, describe a circle (not shown in Kepler's diagram) with radius BC.
(This circle passes through the point N.) Let an epicycle Dy with centre at
N and radius ND equal to the eccentricity AB move around the circle
centred on A. If the planet D on the epicycle moves in such a way that
angle yND is always exactly equal to angle CAN, then D will move around
the original circle CDF.

The current distance of the planet from A is AD. Kepler transcribed
these distances into the auxiliary diagram Fig. 6.9(b), which leaves out the
large circle and merely shows the distances relative to the epicycle. That
is, da in the auxiliary diagram has length equal to DA, ra length equal to
EA, and so forth. Angle yfid is equal to angle CBD (=angle CAN), angle
y/te is equal to angle CBE, and so forth. So far, this is pure mathematics.
However, Kepler now examined the two parts of the diagram to see if any
physical or other reason could possibly be found to explain how such
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Fig. 6.9. Reproduced from Johannes Kepler Gesammelte Werke, C.H. Beck'sche
Verlagsbuchhandlung, Munich, Vol. 3, p. 257.

varying distances could be brought about. For greater clarity, he drew
circles with centre at a through 6 and $ and through e and n. Then as the
planet moved through the points C, D, E, F, G, H, C in the main diagram
(which are separated by equal 60° increments of the eccentric anomaly)
the planet must have successively the same distances from the sun as the
points y, i, A, £, A, i, y have from a.

No matter how Kepler looked at these two complementary diagrams,
he found the evidence they gave bizarre. This was so even if he invoked
purely physical mechanisms or allowed the planet's motion to be
generated by some animal spirit and governed by some sort of mind.
Stephenson's account18 of this aspect of Kepler's thought is especially
recommended. Most commentators seem to have preferred to pass in
silence over the possible role that Kepler was apparently still prepared to
accord to spirit and mind (which he carefully distinguished-animal spirit
provided the force which generated the motion, mind directed it). One
can clearly see a tendency on Kepler's part to rely more and more on
purely physical arguments and dispense with minds. But even when
Kepler does invoke minds, he seems to be using them, as Stephenson
points out, mainly to test whether some particular motion is plausible or
not.
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Suppose for example that the epicycle has some genuine existence and
the variable distances from the sun are in reality brought about by an
animalistic force within the planet which drives the planet around the
epicycle. The difficulty with this is that the eccentric anomaly CBD
increases nonuniformly with time; since angle DNy must always march
exactly in step in order to maintain the geometrical equivalence of the
epicyclic representation, one is forced to conclude that the planet must be
driven round the epicycle nonuniformly. But how could the planet's
mind achieve such a feat? It would have to keep the epicyclic angle exactly
equal to angle CBD (or CAN). But this involves another of these
mysterious void and completely invisible points to which Kepler
resolutely refused to accord any significance. The planet's mind could not
possibly be expected to calculate an angle by observing the invisible point
B (or alternatively N). He allowed that the mind could sense the direction
ND, which is parallel to FC, the line of the apsides; for this is clearly
something physical and moreover points to a point on the celestial sphere
identifiable by the stars as markers. But point B is not marked by
anything. As soon as any mechanism became too implausibly difficult,
Kepler ruled it out.

Kepler also considered the possibility that the planet-sun distances
were directly determined (rather than via an epicyclic mechanism) in
some manner, either physically or by a mind. What disturbed Kepler in
this case was the curious way in which the distances must then change.
For in the first 60° increment of eccentric anomaly the distance is changed
by the length of yi, in the next by d, and in the next by A£. These three
segments are all unequal. Kepler particularly distrusted the asymmetry
represented by the fact that A£ was longer than yi. During this early
examination of the distance problem, he noted that a more plausible law
of distance variation would be obtained by dropping perpendiculars from
<5 and 8 onto ya, so that the successive changes in distance would follow
the symmetric scheme YK, K^JL, ju^ (YK = //£). He called this distance law
diametral libration, i.e., regular motion back and forth along the diameter
y£ of the auxiliary epicycle.

All this initially fruitless analysis, in which, as he reports, Kepler
became very well versed, had served to bring home to him a most striking
fact, namely, the circular motions that seemed so satisfying to a mind
accustomed to think in purely geometrical terms did not at all appear to
rhyme with physical explanation. One can therefore well understand
how his mind was blown by the discovery of the noncircularity. As he
himself admitted, he seized on the first idea that occurred to him and
charged into the labyrinth. In fact, he assumed that the planet was moved
around its epicycle (which therefore remarkably reacquired a late lease of
life) by a force intrinsic to the planet which always produced a uniform
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epicyclic motion (in contrast to the circular orbit, for which the epicyclic
motion had to be nonuniform). However, the speed of the motion in the
resultant orbit was still assumed to be governed by the distance law.

This was a problem for which the mathematics of Kepler's day was
totally inadequate. No astronomer before Kepler had attempted to
construct such an orbit. We cannot possibly attempt to recount here all the
shifts and stratagems that Kepler employed as he struggled to come to
terms with his problem. They were interrupted by the work on the optics
and dragged on for about two years. In the Astronomia Nova, five of the
most difficult chapters, in which Kepler recounts with almost masochistic
delight his travails, are devoted to this phase of his work. The especially
interested reader is recommended to either Kepler himself (soon available
in English,12 it is to be hoped) or Stephenson's monograph.18 All we can
do is merely note the parts of this work that finally put Kepler back on the
right track.

He was able to show that his 'physical' prescription for the orbit led to
one that was ever so slightly egg-shaped - wider at the top near aphelion
and narrower near perihelion. However, he found calculations with it
impossibly difficult. In another stroke of serendipity he was led to attempt
to approximate the ovoid by an ellipse. The reason for this is an important
mathematical property of ellipses which enabled Kepler to apply his area
law to them directly. In Fig. 6.10, suppose the planet on the elliptical orbit
adopted as approximation is at P and the sun at S. Let P' be the
intersection with the auxiliary circle of the perpendicular PQ dropped
from P onto the line of the apsides SA. Kepler then exploited a result due
to Archimedes: wherever P may lie on the ellipse, the ratio P'P/PQ is a
constant. But, the infinitesimal areas being proportional to the respective
heights, this means that the area of the elliptical segment APQ is always

Fig. 6.10.
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strictly proportional to the circular segment AQP'; the triangles SPQ and
SP'Q must bear exactly the same ratio, since they have common bases and
heights PQ and P'Q in the same proportion. Thus, on the assumption of
an elliptical orbit and sufficient accuracy of the area law Kepler now had
in his hands a geometrical prescription for finding the position of the
planet at any time t after passage through aphelion. Namely, let the ratio
of t to the sidereal period be p. It is then necessary to solve Kepler's
equation and find angle P'SQ such that the area of AP'SA bears to the total
area of the circle the ratio p. From point P' found in this manner, drop the
perpendicular P'Q onto the line of the apsides. The point P at which it cuts
the ellipse is then the position of the planet at time t. Note that this
construction does not require the sun to be at a focus of the ellipse.

Kepler's next piece of luck was that he was able to calculate the
eccentricity of the ellipse that best approximated his theoretical ovoid
(this is putting things in modern terms; he actually calculated the area and
thickness of the lunula AP'BPA). It turned out to be an ellipse having
eccentricity V2e, where e is the eccentricity of the sun from the centre of
the Martian orbit which Kepler had found by his very careful triangula-
tion. Kepler was therefore applying the area law calculation to an ellipse
with V2 times the Martian eccentricity and the sun at its correct position
between the Martian aphelion and perihelion but not at a focus of this
ellipse. Because the maximum thickness of the lunula for an ellipse of
eccentricity e is k2 (to good accuracy for small e), by taking an ellipse with
V2 times the actual Martian eccentricity, Kepler was actually dealing with
an ellipse for which the lunula had twice the thickness of the real ellipse's.

Kepler duly applied the area law and, to his disappointment, found
that whereas his earlier, circle-based, calculation had given octant
positions for the theoretical planet about 8' further from the line of the
apsides than the actual planet the new calculation gave octant positions
that now had precisely the opposite error. Whereas before, in the circular
orbit, he had moved the planet too fast at the apsides, now he was moving
it too slowly. After several more abortive attempts to save the ovoid,
Kepler finally had to admit that it could not save the appearances: the
equations did not match those of the vicarious hypothesis. Although at
this stage (in the late summer of 1604) he did note that the correct orbit
could well be an ellipse half way between the auxiliary circle and the
ovoid-approximating ellipse, he does not yet seem to have taken an
ellipse seriously. He was, it seems, still far too intent on theoretical
derivation of the law in accordance with which the planet-sun distance
changed and, as yet, the ellipse offered him no illumination on that score.

Instead, he turned back to observations and at long last started
systematic triangulation of positions of Mars all around the orbit and not
just at the three positions initially established. The extension of these
observations into the region of the quadrants, which he had hitherto
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omitted, confirmed the bending in of the orbit but suggested that the
amount was not so much as required by the ovoid. This was in agreement
with what the area law calculations had indicated. But still the key to the
distance variation eluded him. Meanwhile, the emperor, Rudolph, was
expecting to see results, and Kepler wrote up the outcome of his studies
and had reached Chap. 51 of the Astronomia Nova by Christmas 1604 but
still did not have the elliptical law.38 After he had found it, he introduced
some modifications into the text already written, but the bulk appears to
have been left unchanged.

It was only in the early months of 1605 that he had his final major lucky
break. He had calculated that, with the semimajor axis of the Martian orbit
taken equal to 100000 units, the lunula of his ovoid had maximum
thickness 858, at eccentric anomaly 6» = 90° (Fig. 6.11). Half of this
number is 429; this was a number that was firmly lodged in his memory.
So was another datum; this was the optical equation, angle SPO,
corresponding to this position. It was 5°18'. As Kepler was idly looking
through tables of trigonometric functions, he happened to note that the
secant of this angle was 100 429 (the secant for his purposes was defined
as the length of P'S when P'O is taken to be 100000). A spark flashed -
subtract the 429 (the width of the lunula that the true orbit must have) and
one gets exactly the mean radius 100 000 (the radius of the auxiliary circle).
But this means that at eccentric anomaly 90° the planet-sun distance PS is,
to very great accuracy, 100 000. Quite unaware of the fact, Kepler had here
stumbled on an important result of the geometry of ellipses, which it is
worth explaining in terms of the generation of ellipses by means of a loop
of string laid around two pins S and S' (which become the foci) and held
taut by the tip of a pencil (p. 120). If the semimajor axis is unity, the length
of the loop of string is 2 + 2e. At A (Fig. 6.11), the distance SA is 1 + e.

Fig. 6.11.
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When the tip of the pencil is at P, 2e of the length of the string lies along
SOS', and the remainder is exactly divided between PS' and PS, which
must therefore each have length unity.

However, Kepler appears to have been quite unaware of this. Instead
he guessed at a generalization of his result to the entire orbit. In modern
terms he posited that the planet-sun distance is given by

where the semimajor axis is unity and 6 is the eccentric anomaly. For
6 = 0, this gives r = 1 + e and for 6 = 90° we recover the result r = I tha
set Kepler off on this track.

What made Kepler supremely confident of having at last found the
correct law of variation of the distance was his intuition that Eq. (6.6)
represented a law that could be readily derived from physical principles.
He outlined in some detail an ingenious mechanism involving magnetic
dipoles that he believed could give rise to such a law; we shall consider
this in the next section. As this mechanism was not without at least one
major difficulty, he sketched an alternative (and not too fanciful) account
of how a planetary mind might be expected to bring about such a distance
law. As always with Kepler, this required the mind to respond somewhat
as a servomechanism (i.e., in accordance with a well-defined mathemati-
cal relationship) to a quantity that could be directly measured and
involved truly observable entities. This too we will consider (in Sec. 6.7).
All these matters are discussed in Kepler's long physical Chap. 57 of the
Astronomia Nova and are fully covered by Stephenson.18

A final source of satisfaction to Kepler was that his law (6.6) turned out
to be the libration on the diameter of the epicycle that he had long before
felt was a more comprehensible law of variation of the distance than the
one actually realized in a perfectly circular orbit. It must however be
pointed out that the original diametral libration had been defined by
means of the original eccentric anomaly corresponding to a circular orbit
But, as Stephenson points out, the eccentric anomaly, originally defined
for a circular orbit, had entered a state of limbo once Kepler abandoned
circularity and embarked on the study of his ovoid.

The final stage of Kepler's search for the true Martian orbit can be seen
as the struggle to find an appropriate redefinition of the eccentric
anomaly. Kepler's diagram (Fig. 6.12) shows the two-step process by
means of which he finally arrived at the truth. It is worth explaining this
diagram in detail (only the top half of which we need to consider). The sun
is at A and the centre of the Martian orbit is at B (eccentricity e). The
auxiliary circle with diameter formed by the line of the apsides joining the
aphelion G and perihelion Q is GDPQ. The circle HKRS has centre at the
sun and is the circle which carries the epicycle in the alternative
Hipparchan form of the solar theory. It therefore has the same radius as
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Fig. 6.12. Reproduced from Johannes Kepler Gesammelte Werke, C.H. Beck'sche
Verlagsbuchhandlung, Munich, Vol. 3, p. 365 (the symbols 6 and e have been

added).

the auxiliary circle. Kepler initially constructed the orbit of the planet as
follows. He specified a certain angle 6, called the eccentric anomaly, and
described the straight line from B that cuts the auxiliary circle at a point D
such that angle GBD = 6. Parallel to BD he drew the line AK, cutting the
circle with centre A. On this he imagined an Hipparchan epicycle with
radius DK equal to the eccentricity AB. In the figure, angle DKL is
therefore equal to 6, the eccentric anomaly. From D he dropped the
perpendicular DE onto AK, obtaining the length AE = 1 + e cos 6. He
then described the circle with centre at A and this length as radius. The
curve EJF shows part of this circle. His first idea was that the planet shoul
be situated at J, and that the orbit of the planet would be traced out by the
locus of such points (N shows such a position in the lower quadrant).
Kepler realized that this would generate a curve that, like the ovoid,
would be ever so slightly thicker near aphelion than near perihelion. He
called it the via buccosa, a 'chubby-cheeked' way. Here he had his last piece
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of good luck. He mistakenly believed that this orbit would lead to
equations in disagreement with the longitudes known from the vicarious
hypothesis. However, as Whiteside has pointed out,34 the via buccosa
differs so minutely (for Mars) from the true orbit that had Kepler applied
the area law correctly he would not have been able to distinguish the two
observationally.

After this, Kepler finally became convinced that the orbit must be a
perfect ellipse; he was obviously strongly swayed by the consideration
that the true orbit must exactly straddle the lunula between the auxiliary
circle and his ovoid-approximating ellipse, since the area law had shown
these to give equal and opposite errors at the octants. At long last, just
after Easter 1605, he finally found the result he needed (it involved
Kepler's finding a geometrical relationship which Wilson28 believes was
hitherto unknown). Instead of taking the planet to be at J, Kepler dropped
the perpendicular DC from D onto the line of the apsides and posited that
the planet would be at F, so that distance FA would be 1 + e cos 6 with 9
as previously defined. Rather remarkably, this does in fact generate an
ellipse, as Kepler was able to show, and his distance law was thereby
accommodated in a geometrical orbit which he already knew would give
the correct equations in conjunction with the area law. The final step was
to check that the predicted distances agreed with the ones that Kepler
found by triangulation for 28 points distributed around the orbit. Bearing
in mind the uncertainties of the distance determinations, Kepler
concluded that the agreement was perfectly satisfactory.

To find the position of the planet at time t, Kepler proceeded in exactly
the manner already described, solving his equation to find the eccentric
anomaly (whose meaning was now clarified - it had only a mediate
connection with the actual position of the planet in its orbit) corre-
sponding to the required time. The key idea, that of dropping the
perpendicular from D and then taking its intersection with the circle
described from A with radius 1 + e cos Q, was clearly suggested by the
earlier work that had enabled Kepler to extend convenient use of the area
law on a circular orbit to an elliptical orbit, initially used only for the
purposes of approximation.

We see here again what a vital role was played by the area law, which
Kepler now accepted as empirically exact even though he still made a
confused attempt to save the law according to which the speed in orbit is
inversely proportional to the distance from the sun. Wilson28 believes that
Kepler's finding of the ellipse owes rather more to theory (via the area
law) than direct triangulation. This may slightly overstate the case. After
all, the sun's eccentricity (i.e., its asymmetric position on the line of the
apsides) was determined by very careful triangulation, and this too
played its part, admittedly through a very intricate chain, by ensuring
that the ovoid-approximating ellipse with eccentricity V2e overcorrected
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the circular orbit by precisely a factor 2, as was then revealed by the area
law and comparison of the resulting predicted equations with the
vicarious hypothesis. It is, however, manifest that the area law and ellipse
were discovered in an inseparable amalgam, and that Kepler's approach
interwove theory and observation to such an extent that it becomes
almost impossible to say whether any particular result is empirical or
theoretical. The vital importance of the theory of the earth's motion and
the way in which Kepler played tennis between Mars and the earth (being
unable to get at either separately) should also be borne in mind. All his
conclusions were empirical-cum-theoretical, and in the end the area law,
the ellipse, and the theory of the earth's motion were all established
together.

At the end of this chapter an attempt will be made to digest the
significance of Kepler's tour deforce in discovering his first two laws and to
put them in the perspective of the complete history of naked-eye
astronomy, which came to an end in the very year 1609 that Kepler
published the Astronomia Nova (the delay of four years was due to a
dispute with Brahe's heirs over the right to his observations). However,
the following comparison will serve as an illustration of Kepler's
achievement: If the ellipse representing the Martian orbit is drawn with
semimajor axis equal to the width of the printing on this page and the
circle that best approximates it is superimposed in the position which
gives the closest fit, the greatest deviation between the two nowhere
exceeds a quarter of a millimetre! The angular positions are equally well
represented by the equant device.

Can we, in the whole history of physics, find another such example as
we have in Kepler of dogged solo searching, extending over years, for a
radically new conception of physics that, against all the odds and about
two generations ahead of its time, is finally found? I think there is only one
other example - Einstein's discovery of the general theory of relativity. As
will be argued in Sec. 6.7, the stimuli to these two marvellous
accomplishments had a significant element in common.

6.6. Kepler's physics and his Third Law

In the previous sections we have mentioned Kepler's physical and
dynamical notions only to the extent that they were needed to highlight
and explain the remarkable new directions into which he directed
astronomy. Their greatest and most lasting significance was indeed that
they guided Kepler to the correct laws of planetary motion. However,
they also influenced the subsequent development of ideas in their own
right, though to an extent which it is difficult to pin down precisely. They
are also well worth considering because Kepler was the first major figure
since Aristotle to attempt the construction of a genuinely new dynamical
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scheme. It is particularly interesting to see how very close he came to
Newton's scheme in many important respects yet lacked the one vital
element that was the key to Newton's success.

Aristotle's physics had been based almost completely on the idea of a
unique centre of the universe. For it was around this unique centre that
the celestial bodies were supposed to make their eternal circular motions,
and it was to the same centre that bodies were supposed to strive in the
phenomenon of gravity. Although Ptolemaic astronomy, with its
multiplication of centres of motion far from the centre of the earth, put the
Aristotelian scheme under great pressure, it nevertheless retained a very
definite centre of the universe, so that the Aristotelian explanation of
gravity was not challenged. But when Copernicus made the earth a planet
and Kepler took him seriously, the old explanation became quite
untenable. The earth was manifestly no longer the centre of the universe,
so the phenomenon of gravity on its surface could not possibly be
attributed to a striving to a centre of the universe. A new explanation of
gravity would have to be found. Moreover, although both Copernicus
and Kepler retained a cosmology that was strikingly Aristotelian in
having a unique centre (the sun instead of the earth) and a sphere of
distant fixed stars, the motions within this sun-centred cosmology bore
little or no resemblance to the motions of the previous earth-centred
cosmology. Kepler did not see any realistic possibility of salvaging
anything of Aristotle's doctrine of natural motions - the astronomers had
long since abandoned the simple circular motions of the Aristotelian
quintessence, and now Copernicus had deprived the natural motions of
the four ordinary elements of the unique centre which had provided their
only justification.

Kepler felt it was necessary to recast the theory of motion ab initio. He
therefore abandoned completely the notion of natural motions and
assumed that all matter has an inherent tendency to remain at rest. In
applying this assumption to all matter Kepler took an important step
towards the universal concept of matter and motion which Descartes was
to introduce. However, as in so many things, Kepler remained poised
between the past and the future; for what he meant by 'all matter' was
something rather different from what we would understand today.
Kepler's cosmology (for a more detailed discussion of which see Ref. 39)
consisted of three quite distinct parts: the sun, the 'movables' (by which
he meant primarily the planets but also the objects on them and comets),
and the sphere of the fixed stars. For a variety of reasons Kepler did not
think the stars were simply other suns. For him they were quite literally
situated on a huge distant sphere that formed the boundary of the
universe and simultaneously, just as with Copernicus, provided a frame
of reference with respect to which motion and rest were defined. The sun
too played a distinguished role; for it not only provided the universe with
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heat and light (as it did for Copernicus) but was also the motor of all the
motions within the universe.

What Kepler in fact attempted to do was set up a dynamical scheme that
applied to the 'movables'. Only to that extent was it universal.

There were two basic elements of his scheme. First, he posited a
universal and inherent tendency of matter to remain at rest (this idea
almost certainly derived from medieval notions of the passivity and
deadness of matter as opposed to spirit40) and, second, a notion of force,
which overcomes a body's tendency to remain at rest and causes it to
move. Of the two concepts, the force concept is found earlier in his
writings. We have seen how it first appeared in the Mi/sten'wm,41 as a
spiritual and animalistic 'virtue' (virtus) by which the sun is capable of
moving the planets around in their orbits, and then, under the strong
influence of Gilbert's book on magnetism, was transformed into a purely
physical 'force' (vis) in the Astronomia Nova. By the end of that work,
Kepler had clarified his thoughts about three different types of force, two
of which were rather remarkable anticipations of the forces that then
appeared in Newtonian dynamics - except for the one crucial difference
that Kepler followed medieval Aristotelian physics in relating forces
directly to speeds rather than accelerations, as in Newtonian dynamics.
This, as we have noted, was the fatal flaw that Kepler, radical innovator
in so many ways, retained in his scheme. Let us now see the consequences
of this mistake, beginning with the manner in which he supposed force to
act.

Kepler lived long before the time in which laws of motion were
expressed by means of equations in the modern fashion, but it is clear that
he envisaged a relationship between speed v and force F of the form

i.e., the speed increases in direct proportion to the force acting.
This idea is most fully elaborated for the force which Kepler believed

carried the planets around the sun. It will be worth going into this in some
detail particularly in order to draw attention to an aspect of the solar
system that misled the seventeenth-century scientists quite grievously.
This is the fact that all the bodies in it which could be readily observed in
that century have the same sense of rotation about the sun (in the case of
the planets) or about the individual planets (in the case of the moon and
the satellites of Jupiter and Saturn). The agreement is very far reaching:
the sun and planets rotate around their axes in the same sense as the
planets orbit the sun and the moons the planets. This striking regularity,
which modern science unhesitatingly attributes to the conditions under
which the solar system was formed, caused the early investigators to
believe that the common sense of rotation reflected an essential feature of
the underlying dynamics, whereas modern science merely attributes it to
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the initial conditions. Even after Newton had found the correct laws of
motion, he refused to believe that the regularity could be the result of
natural processes and believed God had set up the solar system in that
very special way.42

Considering the concordant circular motions of all the planets, Kepler
was led to a rather remarkable prediction - that the planets move around
the sun so regularly because the sun itself rotates about an axis that must
point approximately in the direction of the poles of the ecliptic and that
this rotation generates a force that, so to speak, sweeps round in the
ecliptic, carrying the planets with it. One can imagine immaterial spokes
sticking out from the sun in its equatorial plane and rotating with the sun
like the spokes of a bicycle wheel. As they turn, the spokes push, as it
were, the planets in the azimuthal direction, so that they orbit the sun.
Kepler did not speak of spokes but rather of an immaterial species
emanating from the sun; as used by Kepler, species is a word that is very
difficult to translate into modern English. Even Kepler himself when
writing in German did not attempt to translate the Latin word.
Stephenson18 suggests that image is the most appropriate translation. That
is, there is an immaterial something transported (instantaneously) to the
position of the planet which reflects the fact of the sun's rotation and
causes the planet to follow the rotation.

At the time Kepler made his original proposal, there was no direct
evidence at all for rotation of the sun, but very soon after he had published
the Astronomia Nova, in which he made a confident prediction of the
rotation, Galileo (and others) observed the famous spots on the surface of
the sun and from their apparent motion deduced a rotation of the sun at a
rate that fitted Kepler's prediction remarkably well. The rotation axis also
pointed in about the right direction. Kepler naturally regarded this as a
triumph, and his belief in the existence of an azimuthal force generated by
the rotating sun was strengthened. (We may mention in passing that the
confirmation by Galileo of Kepler's prediction seems to have had little or
no impact on Galileo or any of Kepler's other contemporaries. The
discovery of the sunspots did however greatly undermine confidence in
the general correctness of Aristotelian philosophy.)

Both in the Astronomia Nova and the later Epitome ofCopernican Astronomy
Kepler indulges in quite extensive speculation as to the strength that one
should expect this force to have. Analogy with light might lead one to
expect its strength to decrease with the square of the distance from the
sun. However, as we have seen, Kepler needed a force that decreased as
the distance only, and he succeeded in persuading himself that this
should be so. Stephenson18 discusses this rather involved topic, which is
interesting in its own right but is too specialized to consider here.

Of much more relevance for the development of the fundamental
concepts of dynamics was Kepler's introduction of the concept of inertia
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as the quantitative measure of a body's tendency to remain at rest. Out of
it, following a very significant transmutation by Newton, the modern
concept of the inertid mass of a body arose. So far as I can understand
Kepler, he was led to introduce it more or less as a corollary to the manner
in which he conceived the rotational force generated by the sun to act. For
if one were to take the idea of rotating spokes seriously, one would expect
the planets to be carried round exactly as fast as the spokes themselves.
But this would mean that the transverse speed of a planet would increase
linearly with increasing distance from the sun and all the planets should
have the same orbital periods, equal to the rotational period of the sun.
But this was quite clearly not the case.

Kepler therefore posited not only that all bodies had an innate tendency
to remain at rest but went beyond this qualitative notion in assuming also
that they resisted motive forces applied to them by a quite definite
amount, the power of resistance being an intrinsic quantitative charac-
teristic associated with each body. The basic idea is expressed very clearly
in the Astronomia Nova:43

Thus the driving force [of the sun] is ready to impart to the planet a speed that is
so great as its own. But the planet's speed is not so great because either the
medium, i.e., the material of the celestial aether, or the disposition to remain at
rest of the body itself which is being moved (dispositione mobilis ipsius ad quieteni)
offers a resistance. . . . The period of revolution of the planet comes about from
the interaction of these factors with the impulse of the driving force.

Although Kepler was clear in his mind about the need for the introduc-
tion of such a concept, he was, perhaps not surprisingly, rather vague
about how his 'resistance' should be conceived. In introducing the
concept of disposition ad quietem in the passage above, he says: 'Others
would call it the weight; however, I cannot agree to that unreservedly,
even in the case of the earth/ In other places, particularly in his discussion
of gravity (see below) in the Astronomia Nova and in the first of his two
important letters to David Fabricius,44 a fellow astronomer, he seems to
regard it as a measure of the quantity of matter or just the bulk (moles) of
the body. After the discovery of his third law of planetary motion, Kepler
made his concept rather more precise. We shall come to that shortly.

It is clear from the manner in which he speaks that Kepler envisaged the
actual speed of a body to which a force is applied to be determined by a
balance between the resistance to motion and the force applied. Several
commentators45 suggest that Kepler had in mind a relation of the form

where F is the force applied, m is the measure of the resistance of the body
to motion, and v is the resulting speed. There is no doubt that one
particular passage in the Epitome, to which we shall come, does yield such
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an interpretation unambiguously. However, there are several other
passages which point to a different interpretation; for in several places
Kepler implies quite clearly that a body with no resistance at all would not
be moved with infinite speed, as Eq. (6.7) implies, but with the 'speed of
the force itself. Indeed, in the passage quoted above from the Astronomia
Nova, Kepler says that 'the driving force is ready to impart to the planet a
speed that is so great as its own'. Thus, there is definite speed associated
with the force (it is clearly the rotational speed of the 'spokes' at the
position of the given planet), and a body without resistance would have
such a speed imparted to it. This means that Eq. (6.8) must be replaced by
something like

so that v = F if m = 0 but v < F if m > 0. In the Epitome there is a clear
passage which needs to be interpreted in this sense:46 'For one mover [the
sun] by one revolution of its own globe moves six globes. . . . Wherefore
if the globes did not have a natural resistance of fixed proportion, there
would be no reason why they should not follow exactly the whirling
movement of their mover, and thus they would revolve with it in one and
the same time.'

A relation like (6.9) was attractive to Kepler for a reason that is worth
mentioning here, if only to highlight a crucial difference between him and
Galileo on the question of the earth's rotation. As a committed
Copernican, Kepler had to counter the insistent arguments of anti-
Copernicans, such as Brahe, who argued that rotation of the earth would
cause objects thrown into the air to be left behind by the earth's rotation.
A cannon ball shot vertically into the air ought to fall far to the west when
it returns to earth.

In the Astronomia Nova Kepler has only a few rather cryptic remarks to
say on this subject, but he wrote at length at that time to David Fabricius
on the subject.44 Kepler supposed that such objects are somehow bound
by forces to follow the earth round as it rotates. The vertical motion is
governed by gravity, but in its horizontal motion a projectile is, as it were,
grasped by the earth and carried round with it. Kepler points out to
Fabricius that projectiles (whose size is a minute fraction of the earth's)
can be expected to have an utterly negligible resistance compared to the
force of the earth, and so will be carried at exactly the same speed as the
surface of the earth, so that the effect anticipated by Brahe and others
would not occur. Such an argument implies that Kepler's 'fundamental
law of motion', if ever he had formulated one as such, should have the
form (6.9) rather than (6.8).

In his letters to Fabricius Kepler even extended such ideas tentatively to
the moon; were the moon free of all resistance and were it carried around
in its orbit through a force generated by the earth's rotation (as Kepler
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supposed the planets to be moved by the sun's rotation), then the month
should be exactly as long as the day and the moon should spin around in
phase with the earth. Kepler attributed the fact that the moon moved
slower than followed from such an argument to diminution of the
strength of the earth's force with distance from the earth and to a
nonvanishing resistance of the moon. This type of argument again
implies a relationship of the type (6.9).

Kepler's explanation for nonobservation of effects of the earth's rotation
on projectiles thrown into the air has an interesting implication for
experiments of this kind performed on a ship. Kepler's mechanism will
ensure that any body in the immediate vicinity of the earth is carried
round with it with the earth's rotation velocity. But suppose a ship sails
with uniform motion across the seas and a heavy weight is let fall from the
top of its mast. When released, its motion in the east-west direction will,
according to Kepler, be controlled by the earth. However, because the
ship is capable, according to Kepler,47 of moving objects only by direct
contact, and the ship is moving relative to the surface of the earth,
Kepler's proposal must mean that the weight should definitely land on
deck at a point displaced from the foot of the mast. It is a remarkable fact
that in Kepler's time this was firmly believed to be the case. Indeed, the
erroneous belief in the reality of the phenomenon was used precisely as
an argument to show that, by analogy, the same would happen for the
rotating earth. Kepler's forces by which the earth 'grasped' bodies were
designed to defuse this argument for the rotating earth but could not be
invoked for ships. We shall come back to this point in the chapter on
Galileo.

An important development in the history of dynamics was the introduc-
tion by Kepler of a special name to designate this 'resistance to motion'. In
the Astronomia Nova he did not settle on any particular distinctive name
for the property, but shortly after, in a booklet48 written in German in
answer to some queries raised by one Roslin about his earlier work on the
supernova of 1604, he introduced the name which stuck - inertia, or rather
the German tragheit for the Latin word, which means inactivity, idleness,
laziness (the last especially). From then on, inertia was the word Kepler
used regularly to describe the proprietas of bodies that he had recognized
as being necessary to formulate the laws of motion. It is worth
emphasizing the Latin word proprietas, which draws attention to the fact
that Kepler's inertia is intrinsic to the body considered; for, as explained
in the Introduction, much of the confusion that surrounds Mach's
Principle stems from Einstein's attempt to make inertial mass (the concept
that derives from Kepler's tragheit) into something with an extrinsic origin.

Inertia entered the vocabulary of dynamics on a permanent basis when
Newton used the word to characterize the inertial mass m that now
appears as a coefficient in his Second Law. Newton, who appears not to
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have read Kepler in the original except for his work on optics, learnt about
the word from some letters of Descartes49 and in the Principia described
the word inertia as 'a most significant name'.50

Of course, as used by Newton, inertia means resistance to acceleration,
not resistance to motion itself. It really is remarkable how close Kepler
came to the correct structure of Newtonian dynamics in many respects
but yet was separated from it by this one difference, which was in truth an
uncrossable gulf. The whole difference can be expressed by two equations
of the utmost simplicity and a striking similarity of form. The first is what
we have called Kepler's 'law of motion'. Rearranging (6.8) or (6.9) and
introducing vectors, which, as we shall shortly see, is justified for
Kepler's mature dynamics, his law (6.8) becomes

[or (1 + m)v = F if we follow (6.9)] while Newton's Second Law can be
written

where a is the acceleration of the body, not its velocity v as Kepler
imagined, and the 'resistance' m plays an analogous role in the two cases.

In fact, pared to the bare essentials of the discovery of dynamics, one
can say that the story of the first half of this book is how Kepler came to
find the laws of planetary motion and attempted to explain them by
(6.10), while the second half will trace the steps that led to the rejection of
(6.10) and its replacement by (6.11) by Newton. The result was a
reinterpretation of planetary motions whose simplicity would have left
Kepler gasping.

Let us now consider how Kepler's discovery of his Third Law, more
than a decade after the discovery of the first two, led to a refinement of his
ideas. He first attempted to find a relationship between the periods of the
planets and their distances from the sun in Chap. 20 of his Mysterium. This
attempt was flawed by an unfortunate mathematical slip, as Kepler
ruefully admitted when he republished the Mysterium a quarter of a
century later.n He noted that if all the planets were to move through space
with exactly the same speed, their periods should simply increase as the
radii of their orbits, since the circumference (the distance to be travelled)
increases thus. He noted however that the periods of the planets
increased more strongly than linearly with the radii of their orbits as
deduced from Copernicus's theory of the planetary distances. From this
he correctly concluded that the outer planets must move through space
more slowly than the inner ones. By how much? He speculated
(incorrectly) that the speed through space decreased inversely as the
radius R, i.e., as 1/R. Thus, Mercury should move faster than Venus in the
proportion that the orbit of Venus is further out than the orbit of Mercury,
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or, in symbols vMlvv = RV/RM (with obvious meaning of the symbols;
Kepler's simplified treatment assumes each planet remains at a constant
distance from the sun). From his assumption he should have concluded
that the periods P increased as the square of the radii (since a longer
circumference is also traversed at a slower speed):

Kepler in fact considered increments. Thus, he supposed RV = RM + <3RMV

and Pv = PM + <^MV (where the subscript MV means the increment on
the transition from Mercury to Venus) and tried to work out (in words
used in default of symbols) how dP^ should be related to the other
quantities. From his assumption about the speeds he should have
deduced

which follows from (6.12). What he actually deduced (translated into
symbols) was

His mistake had an ironic and misleading consequence. Because the
periods actually increase as R3/2 and not R2, the increment (6.13) Kepler
would have obtained by correct mathematics would have been too large.
His mathematically incorrect result (6.14) was actually nearer the
empirical truth. In fact, he obtained results that were at least good enough
to persuade him that more accurate observations might match his theory.
Struggling to reconcile the data with his various theories he remarked
wistfully:51 'Would that we might live to see the day when these things are
brought into harmony.' In the notes added 25 years later to the
republished Mysterium he was able, referring to his discovery of the Third
Law, to remark:52 'We experienced this day after 22 years.'

The Astronomia Nova contains virtually nothing on this subject except
for a solitary remark at the beginning of Chap. 39: Tf a given planet were
to execute complete orbits successively at different distances from the
sun, the periods would be in proportion to the squares of the distances or
the circumferences.' This suggests that Kepler had in the meanwhile
noted the error in (6.14) and had corrected it to (6.12) but had not bothered
to check the conclusion against the empirical facts.

He finally discovered the correct relationship in the late stages of his
work on the Harmonice Mundi, in which the Third Law is stated in Book V
as:53 The ratio that exists between the periodic times of any two planets is
precisely the ratio of the |th power of the mean distance.' Compared with
his other two laws, Kepler says very little about the discovery of his Third
Law; it obviously required a lot less work, but it gave a tremendous boost
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to his belief that God had constructed the world on architectonic and
harmonic principles.

It belongs most emphatically to the mystical side of Kepler's personality
and is, in fact, the only direct fruit of his search for architectonic harmonies
in the world that has stood the test of time.

The discovery of the Third Law showed that the speed relationships
obeyed by the planets were considerably more complex than Kepler had
appreciated at the time when he discovered his first two laws. In the
Epitome,54 Kepler attempted to reconcile them with his physical ideas. He
had by then clearly realized that if one planet is considered alone in its
orbit the component ptr of its instantaneous velocity at right angles to the
radius vector varies in inverse proportion as the distance from the sun:

As we have seen, Kepler originally believed that (6.15) held for the total
speed v and, moreover, not only for a given planet but for all planets, i.e.,
the more distant planets moved more slowly in accordance with the same
law that Kepler originally believed to hold for the total speed in a given
orbit. However, the Third Law showed that this could not be. Consider,
for example, the case of zero eccentricity, i.e., circular orbit with the sun
at the centre so that vti = v. Then from P <* Rm it follows that

To reconcile the two laws (6.15) and (6.16), Kepler held fast to the idea
that the solar rotatory force decreased as 1/R. He was able to reconcile this
with (6.15) by making the modified assumption (compared with the
Astronomia Nova) that the solar rotatory force acted only on the transverse
component (at right angles to the radius vector) of the planet's velocity.
To satisfy (6.16) as well, Kepler indulged in some rather obvious 'hand
waving'. He supposed that three factors together determined the speed
that a planet would acquire when acted upon by the solar force: the
strength of the force, the amount of matter in the body of the planet
(which measured its inertial resistance), and the volume of the planet. He
argued that the solar force would, so to speak, grasp hold of the planet
more effectively the larger its body and would therefore exert an effect in
proportion to the volume of its globe. He assumed (citing some rather
inaccurate observations of the apparent sizes of the planets made since
the application of the telescope to astronomy) that the volume of the
planetary globes increased linearly with the distance from the sun. In the
calculation of the periods, this would exactly cancel the effect of the
greater distance that the planets would have to travel. Now his force
decreased as 1/R and to obtain the result of his Third Law he assumed
finally that the amount [copia] of matter, i.e., the inertia, increased as Rm
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on the transition from planet to planet. This is incidentally the passage in
the Epitome mentioned earlier that implies a relationship between inertial
mass and force of the simple form mv — F rather than (1 + m)v = F.

One does not suppose that Kepler took these rather transparent
manipulations too seriously. I mention them here for two reasons. The
first interesting point is Kepler's clear distinction between the volume of
a body and the amount of matter, resistance to motion, that it possessed.
We have here a clear anticipation of inertia as a dynamical concept
independent of size. As already pointed out in the discussion on Aristotle,
the clarification of the mass concept proved to be very difficult indeed; in
my view, the history of the discovery of dynamics ends properly with
Mach's clarification in the late 1860s of the mass concept as something
specifically dynamical and not definable in nondynamical terms. We shall
return to this in Chap. 12.

The other point I wanted to make in this connection is an amplification
of a point made in the previous section, namely, that the kind of problems
with which Kepler was contending all derived from the flaw in his basic
'equation of motion' (6.10). It was the existence of the very similar law
(6.11) hidden at a deeper layer of things which threw up all the striking
mathematical relationships that so intoxicated Kepler's spirit and quite
correctly convinced him that the sun was the source of a force that
influenced the motion of the planets in a very direct manner. But the one
true force, acting in conjunction with inertia under the conditions of the
solar system with its hugely dominant solar mass, generated many
relationships at Kepler's level of inquiry. For example, because he lacked
the Newtonian concept of inertia he had to try and devise a mechanism
which could explain why all the planets moved in different planes
inclined to each other at small angles. Modern dynamics simply attributes
them to different initial conditions and a special mechanism is unneces-
sary. The more Kepler worked on these problems and immersed himself
in the facts of the planetary motions, the more his instinct led him to
remarkably sound concepts. Yet he was doomed by the one fatal
shortcoming of his scheme to trying to chase up one relationship after
another like a willing but inexperienced sheep dog trying to force sheep
into a fold into which they just won't go. In fact, had he made a
determined effort to see the precise mathematical consequences of his
assumptions (rather than merely use them, as he did, as guides in the
search for simple mathematical relationships in the motions of the plan-
ets), he would actually have found that they were mutually contradictory,
as Treder55 and Hoyer45 have shown.

Let me finish this section by briefly mentioning the two most important
of the other forces that Kepler considered. Both brought him exceptionally
close to the spirit of Newtonian dynamics.
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Fig. 6.13. Reproduced from Johannes Kepler Gesammelte Werke, C.H. Beck'sche
Verlagsbuchhandlung, Munich, Vol. 7, p. 337.

Among the options that Kepler considered to explain how a planet
could move towards the sun in one part of its orbit and away from it in
another, his favourite by far was a mechanism that involved magnetism.
In effect this required the body of the planet to be the seat of a magnetic
dipole, the direction of which, lying more or less in the ecliptic, had to
keep a fixed direction relative to the stars at all times. Thus, in one position
in the orbit the 'north pole' of the dipole would point towards the sun, but
in the opposite position the 'south pole'. At the two intermediate
positions, the two poles would be equidistant. Kepler's diagram is shown
in Fig. 6.13. In accordance with this proposal, the surface of the sun had
to have one polarity, say 'north', and its interior the opposite. Thus when
the north pole of the planet pointed towards the sun the planet would be
repelled in the radial direction, but there would be attraction in the
opposite part of the orbit and intermediate degrees of repulsion and
attraction (which Kepler always related directly to the speed of the radial
motion) at other points of the orbit. In this way Kepler supposed that the
tantalizingly simple libratory radial motion which he had found could be
generated. The direct influence of Gilbert's book on magnetism is
nowhere more evident than here.

A point to note about this explanation, which to the modern physicist
may seem rather crude and pedestrian (it also suffered from severe
difficulties - as Kepler himself pointed out in Chap. 57 of the Astronomia
Nova, one would naturally expect the dipole axis of the earth to lie along
its rotation axis, but that gave an orientation which did not fit the
requirements), is that it anticipates Newton's law of gravity in requiring a
magnetic faculty to be present in both the sun and the planet. There is a
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genuine interaction - one of the most characteristic features of dynamics -
between the two bodies. By comparison, the solar rotatory force was a
much more archaic conception, reducing ultimately to mere pushing.

Finally, in Kepler's ideas about gravity, we have - except for the false
coordination of force with speed rather than acceleration - a nearly perfect
anticipation of Newton. This is what Kepler had to say about gravity in the
Astronomia Nova:56 'Gravity is a mutual propensity between like bodies to
unite or come together... so that the earth draws the stone to it much rather
than the stone seeks the earth, 'i.e., the stone does not seek the centre of the
universe but is pulled to the earth, wherever the earth itself may be carried.
Particularly remarkable is the following passage: 'If two stones were to be
placed anywhere in the world outside the range of influence of a third simi-
lar body, then each stone, like two magneticbodies, would come together at
an intermediate point, each stone travelling towards the other a distance
proportional to the bulk of the other.'

Here the interactive nature of the phenomenon is quite explicit, i.e.,
bodies exert a mutual influence on each other: if body A moves body B,
then body B will simultaneously move body A. Moreover, when
allowance for the sizes of the objects is made, the mutual influences are
equal in magnitude and opposite in direction. The almost perfect
anticipation of Newton's quantitative Third Law is particularly striking -
so far as I know it is the earliest. Yet Kepler was able to make but little use
of his concept of gravitational attraction - he used it qualitatively to
account for terrestrial gravity (and thus also the existence of the earth as a
compact body that nevertheless could move through space) and also the
tides, which he correctly attributed to attraction by the moon (thereby
earning the disapproval of Galileo, who was strongly opposed to the
'occult attractions' in which he felt Kepler was far too ready to dabble).
However, lacking entirely the notion of inertial motion, Kepler had
no idea that gravity could explain why the moon orbits the earth. Indeed,
the mutual gravitation of the earth and moon was if anything an
embarrassment and had somehow to be neutralized:56

If the moon and earth were not held in their orbits by an animalistic or other force,
the earth would rise up towards the moon by a 54th part of the distance between
them and the moon would descend about 53 parts of the interval between them;
at that point they would come together. However, it is here assumed that the
substance of both is of the same density.

We see here Kepler bridging the Aristotelian gulf between the heavens
and the earth by his importing of ideas taken from terrestrial physics into
astronomy. But all the daring is flawed by what would later be seen to be
a hopelessly inadequate conception of the manner in which forces
influence the motion of bodies.

One final respect in which Kepler anticipated Newton was in his
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awareness that in a consistent physical scheme the very slow secular
changes observed in astronomy - the advance of the apsides, the
backward motion of the nodes, and the movement of the earth's axis
which produces the precession of the equinoxes - all needed to be
explained simultaneously by the action of the basic forces which caused
the main observed motions. Needless to say, none of his explanations
(which he discusses most fully in Chap. 57 of the Astronomia Nova) was
correct but his instinct was again sound.

To summarize: what did Kepler get right in dynamics? Except for the
one basic error, he had a very clear idea of the need for forces. The need
was made manifest on an extremely sound basis - the extremely sugges-
tive occurrence of the planet-sun distance (and the actual position of the
sun) in all the precise laws of planetary motion that he had found.
Pondering deeply the precise laws, he was led to conceive planetary
motion as being determined by two basic forces, one acting radially, the
other azimuthally. In the Epitome the motions generated by these two
forces are in effect combined in accordance with the laws of vector
addition. Such composition of motions was another anticipation of
mature Newtonian dynamics. We have noted the early form of Newton's
Third Law. Finally in trying to set up a comprehensive system of dynamics
for all the 'movables' in his still rather archaic cosmology, he went quite a
long way towards the universal concept of motion and matter that
Descartes introduced.

What Kepler totally lacked were Newton's First Law and the correct
form of his Second Law. The reader should not get the impression from
this account of Kepler's physics that it was the mere misfortune of
choosing one particular basic law of motion rather than another that stood
between him and the insights that Newton achieved. From the astro-
nomical phenomena in which Kepler immersed himself so deeply he
could hardly even have dreamed of taking uniform rectilinear motion as
the foundation of dynamics. How could the nearly perfectly circular
motions of the planets ever have suggested such a thing? But even if he
had had such an idea, he would still have had no stimulus to do all the
extra work of elaboration needed before anything like Newtonian theory
could possibly have emerged.

In astronomy Kepler fitted all the pieces together with consummate
skill. In the matter of celestial dynamics he merely set the agenda.

6.7. Kepler's anticipation of Mach's Principle

It is not good for the wanderer to stray in that infinity57

There are obvious dangers in attempting to draw parallels between the
thought of people who lived centuries apart; for in a very real sense they
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inhabit different worlds, and any parallels which do exist are at most
partial. However, I believe that certain similarities between the
approaches to the problem of describing and explaining motion that
Kepler and Mach adopted are so striking that they warrant closer
examination. Moreover, the issues at stake have not lost any of their
relevance - we are concerned here with the perennial problem of the
conceptual foundations on which physical theory is to be based.

Mach's criticisms of the Newtonian concepts of space, time, and motion
had two sides: (1) a critical epistemological rejection of the idea that
motion could be referred to an invisible framework of space and time
conceived to exist quite independently of matter and its motion; (2) a
positive suggestion about how the difficulty which led Newton to
introduce his concepts of absolute space (without which he could not see
any way of formulating his First Law of motion) could be overcome by
ascribing to matter an as yet unsuspected capacity to influence the motion
of other matter. My thesis is that, in both respects, Kepler anticipated
Mach - and, moreover, that Kepler's 'Machian' instincts had very positive
effects.

Let us begin with the first point. We have seen in Chap. 2 that there was
a 'prerun' of the absolute/relative debate in antiquity. It was stimulated by
the atomists and their introduction of the idea of atoms moving through
the void. Aristotle's rejection of this idea (on the grounds that the
completely empty, uniform, and featureless void made it impossible to
conceive of definite motions) was a significant factor in the development
of his matter-based cosmology. We have seen how well the Aristotelian
cosmology (in its broad features) matched the practical needs of
astronomers to define position with respect to something real,
definite, and observable. In this respect Kepler was merely the last
member of a distinguished quintet composed of the philosopher Aristotle
and the four great practical astronomers: Hipparchus, Ptolemy, Coper-
nicus, and himself. Kepler's ultimate notion of position is therefore
virtually indistinguishable from Copernicus's. For example:58

The region of the fixed stars supplies the movables with a place and a base upon
which the movables are, as it were, supported; and movement is understood as
taking place relative to its absolute immobility.

And again we find an echo of Copernicus's rather commonsense
standpoint that to conceive a motion of the system of stars as a whole is
nonsense, so that the most sensible approach is to say that, by definition,
motion is motion relative to the stars:59

The second argument destroys completely every movement of the sphere of the
fixed stars. For it is not apparent for whose good, since nothing is outside of it, it
changes its position and appearances by being moved to what place or from what
place, and since it obtains by rest whatever it could acquire by any movement. For
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the movements of all bodies are understood from its rest, and unless it gives them
a place, as it can do perfectly by being at rest, nothing can be moved.

It is particularly interesting that in the early seventeenth century Kepler
was confronted with the same sort of alternative cosmologies that
Aristotle had reacted against and reacted against them in much the same
way, revealing a characteristically Aristotelian dislike of the vacuum and
all things indefinite. For although atomism itself was not yet being
revived as a serious contender, Gilbert (a hero of Kepler's, as we have
seen) and Bruno had already both argued strongly for the infinity of the
universe. Kepler wrote:60 'Gilbert's religious feeling was so strong that,
according to him, the infinite power of God could be understood in no
other way than by attributing to Him the creation of an infinite world. But
Bruno made the world so infinite that [he posits] as many worlds as there
are fixed stars.'

Kepler recoiled from the idea of a limitless space. His Aristotelian
reflexes are very evident in the comment:61 This very cogitation carries
with it I don't know what secret, hidden horror; indeed one finds oneself
wandering in this immensity, to which are denied limits and centre and
therefore also all determinate places.'

His whole cosmology expresses the Greek abhorrence of the infinite
void. Here is his description of the world:62

The sun is the fireplace of the world; the globes in the intermediate space warm
themselves at this fireplace, and the sphere of the fixed stars keeps the heat from
flowing out, like a wall of the world, or a skin or garment - to use the metaphor of
the Psalm of David.

The developments that are to be described in the second half of this
book show that in his cosmology Kepler was clinging to attitudes that
would prove to be inimical to a general trend of thought that led to the
acceptance of the law of inertia and the triumphant overcoming of the
defects of Kepler's celestial physics mentioned in the previous section. In
his book on this great shift of basic attitudes, From the Closed World to the
Infinite Universe, Koyre correctly casts Kepler as a reactionary in this
respect:63 'We have to admit that Johannes Kepler, the great and truly
revolutionary thinker, was, nevertheless, bound by tradition. In his
conception of being, of motion, though not of science, Kepler, in the last
analysis, remains an Aristotelian.'

However, on issues of this kind, concerning basic questions such as the
nature of motion, the time scale can be important. What is a harmful
influence over decades may be beneficial over centuries. Kepler certainly
looks back to Aristotle but he also looks forward to Mach and Einstein -
and perhaps even beyond.

For on the question of the need to relate motion of a studied body to
other observable matter - an aspect of the problem of motion with which
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Koyre was not concerned when he made the above judgement - the
astronomers were on very sure ground, none more so than Kepler. The
epistemological facts of life were constantly thrust upon them by the
nature of their trade. Astronomers, unlike philosophers, make measure-
ments. Even if you have a good ruler and can put one end against the
object whose position is to be measured, no measurement can be made
unless there is at least one other real mark against which the other end of
the ruler may be placed. In astronomy, such markers are the stars. Given
this total reliance on the stars (and here we must also include the planets
and the sun - just think of the role that both Mars and the sun as well as
the stars played in Kepler's triangulation of the orbit of the earth!), it is
hardly surprising that not only Kepler's practical work but also the
theoretical ideas described in the Astronomia Nova are often startlingly
'Machian'. Moreover, it is easy to demonstrate that a very positive
influence was here at work.

Measured simply in terms of the size of the corrections that Kepler
made to the Copernican motions, his innovations do not seem all that
remarkable. However, what made the true Keplerian revolution was the
fact that his corrections brought all of the planetary motions into quite
perfect alignment with the sun. If we ask what it was about Kepler's
approach that made this possible, we find above all two related attitudes
of mind that distinguish him from Copernicus and, in conjunction with
the Brahian observations and his extraordinary technical competence,
were responsible for his success.

The first was the remarkable degree to which Kepler, acting on his gut
feeling that position is ultimately defined and determined by matter and
not void space, raised his level of reliance on matter to define the position
and motion of other matter. As we have seen, Copernicus relied on the
stars to give him a concept of position. However the stars were enough for
him. He was perfectly happy to imagine the planets wending well-
defined ways (around precisely defined but void points) in the mathe-
matical space that the distant stars defined. The fact that he sensed no
difficulty in such a situation may have been in part due to an instinctive
belief in spheres actually carrying the planets. But when Kepler came to
the problem he found the space of the solar system swept clear by Brahe's
destruction of the spheres. The ethereal air of interplanetary space is the
arena of the planetary motions that is constantly presented to the reader
in the Astronomia Nova. And the supreme problem that Kepler confronts
throughout the work is this: how can it possibly come about that the
planets follow definite paths through the completely featureless ether?
How do they 'know' where to go? And what moves them? We have seen
how such questions recur throughout the book.

The key to Kepler's success was his unhesitating belief that the planets
must somehow 'use' not only the distant stars but also the more proximate
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bodies, above all the sun. One could say that for him the Copernican
scenario, post Brahe, was like skaters on a vast lake at night who each
describe an intricate but most precise and regular path about a single
totally unmarked point (the ghostly Copernican mean sun), performing
this feat by nothing more than an occasional glance at the distant stars.
This was just too implausible for words. Kepler insisted that the sun must
play a crucial role as both hub and marker about which the whole dance
turned. He therefore adopted Copernicus's 'Machian' definition of
position by means of the stars much more urgently and extended it to the
sun. This was the first decisive shift, and it provided Kepler with a
valuable heuristic principle in deciding which motions of the planets were
and which were not plausible.

Time and again we find him rejecting putative motions because they
require the planet to follow a path through featureless space around an
entirely unmarked point. For example:64 T do not deny that one can
conceive a point and around it a circle. But I maintain that if the centre
point exists only in thought, timeless, without outer sign, then in reality
no mobile body can form a perfectly circular path around it.' The
importance to Kepler of markers to define position and directions is
nowhere more explicit than in his discussion, already mentioned briefly
in Sec. 6.5, in Chap. 57 of the Astronomia Nova of how a planetary mind, if
one existed, could control the sun-Mars distance in accordance with the
law r = 1 + e cos 6, where 6 is the eccentric anomaly, measured from the
centre of the orbit. Kepler supposed that, through some sensory means,
the planetary mind could gauge its distance from the sun by measuring
the apparent angular diameter of the sun. Determination of the eccentric
anomaly (from which the mind would 'deduce' the appropriate planet-
sun distance in accordance with the above law) required on the part of the
mind a capacity to sense two things. The first was the direction of the
aphelion of the planet. Kepler did not find this problematic, since the line
of the apsides points to a definite position on the heaven of the stars 'and
the fixed stars are real bodies'. It was therefore reasonable that the
planetary mind should have an awareness of this position. However, the
final element in the task of steering the planet was for Kepler much more
problematic; for the planetary mind also needed to have an awareness of
the position of the centre of the orbit, but this was void and was therefore
ruled out by the kind of argument quoted above. Kepler worried away at
this problem and only declared himself content when he found that there
existed a relatively simple mathematical relationship between the true
anomaly and the apparent diameter of the sun as seen from the planet. But
the true anomaly was something that the planetary mind could observe
directly, since it was measured from the body of the true sun. Thus,
control of the planet's motion was linked explicitly and directly to the real
sun and the real stars, which between them defined the true anomaly.
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The confidence which Kepler thereby gained in the correctness of his
distance law was an important stimulus to his persistent and finally
successful attempts to reconcile it with an elliptical orbit.

If the role of material bodies in defining position is most manifest when
Kepler looks at the problem from the point of view of putative planetary
minds, a more physical 'Machian' aspect comes to the fore when Kepler is
thinking in terms of forces. This brings us to the second significant shift of
attitude from Copernicus's standpoint. We saw in Chap. 5 that as far as
planetary motions were concerned the sun played an entirely passive role
in the Copernican scheme - it was a mere dispenser of light and heat,
indeed so irrelevant to the problem of the planetary motions as not to
warrant inclusion in the diagrams depicting them! In contrast, Kepler, as
we have seen, accorded the sun an indispensable role as motor of the
planetary motions. Matter is quite vitally involved in physically determin-
ing the motion of other matter. This indeed is the core of the Keplerian
revolution, and is rightfully reflected by the depiction of the sun at the
hub of all his diagrams in the Astronomia Nova. It was this conviction
which led Kepler to suspect that the planetary motions were governed by
simple mathematical laws in which the position of sun was the key to
everything else. Without this conviction the area law, and with it the
ellipse too, could never have been found.

There is a striking parallel between the way in which Copernicus
accepted as merely fortuitous the presence of the sun near what he took
to be the centre of the universe, i.e., near the centres of the orbits of the
planets, and the way in which Newton accepted the fact that the distant
stars appeared to be at rest in what he called absolute space, and we now
call the family of inertial frames of reference. In forming their conceptions
of motion, both discounted the possibility that the known coincidence
might have profound physical significance; neither the sun in De
Revolutionibus nor the stars in the Principia played more than incidental
roles. This parallel between Copernicus and Newton underlines the fact
that it was the same instinctive stimulus that led Kepler before 1600 to
promote the sun and Mach, more than two and a half centuries later, the
stars (or more generally, the matter of the universe as a whole) to the
status of primary determinants of motion.

Kepler found his laws of planetary motion by a kind of first-order
Mach's Principle (first-order because it considered velocities rather than
accelerations). These laws later enabled Newton to peel away the law of
universal gravitation from the ancient geometrokinetic law of circular
motions of the Greek astronomers, transforming that part of it at least into
a genuine physical law. The residuum - the law of inertia - remained
geometrokinetic, circles being merely replaced by straight lines. At the
end of Kepler's life serious doubts as to the stability of his ultimate
markers - the stars that staked out the Copernican cosmos - were just
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about to be raised by Descartes. Would Kepler, faced with this threat,
have followed Newton's lead and substituted space for the stars as the
ultimate frame of reference?

I doubt it. He was not at all enamoured of the idea of space existing on
its own as a physical entity independent of tangible and perceptible
matter. To quote from the Epitome:65 'If you are speaking of void space,
that is, of what is nothing, what neither is, nor is created, and cannot
oppose a resistance to anything being there, you are dealing with quite
another question. It is clear that [this void space], which is obviously
nothing, cannot have an actual existence.' It is true that in Chap. 2 of the
Astronomia Nova Kepler grants that a body might be able to follow a
straight line through the empty ethereal air. But at the back of his mind he
always had the stars to define such a motion. Thus although in Kepler's
world the planets find their way by looking to markers that he believed to
be fixed - the sun and stars - his conceptual framework is in fact only one
short step from the solution to which Mach was led when he confronted
the fact of universal motion of all matter in the universe. The natural
progression from Kepler's scheme is not one in which all the bodies in the
universe look to invisible space 'to see where they should go' in their
motion but rather the fully Machian one in which 'all look to all' and
perform coordinated motions relative to each other independently of
space.

There is another affinity between Kepler and Mach that is worth
mentioning, particularly in connection with an interesting difference
between Kepler and Galileo in their approach to empirical facts. Although
Galileo is generally given the credit for being the person who brought
home to the world the need to found science on empirical fact - and there
are indeed certain passages in his writings that get this message across
most effectively - in their personal practice Kepler's record is much more
impressive than Galileo's, and the image of Galileo as a dedicated
empiricist, fostered by the story of his having dropped weights from the
Leaning Tower of Pisa to disprove the most notorious error of Greek
physics, is something of a distortion of the true facts. He used empirical
observation to suggest theoretical schemes of great simplicity. This
empirical input made him a great revolutionary, and in his sense for what
is significant and the scope it offers for constructing a harmonious
theoretical scheme he strongly resembles Einstein. But with regard to
experiments and accurate observation, Galileo actually had a rather
cavalier attitude - they were means to reveal the underlying simplicity
and geometricity that he suspected everywhere in nature, not, in striking
contrast to what Kepler made of them, precision tools for delicate probing
of the secrets of nature.

The difference between the two men is highlighted by Galileo's theory
of the tides, which will be discussed in the next chapter since it bears
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closely on the debate about the absolute and relative nature of motion.
In accordance with this theory, the tides should exhibit a 24-hour
periodicity, since Galileo attributed them to rotation of the earth. In fact,
however, high tides recur about 50 minutes later each day, being tied to
the motion of the moon. Galileo seems to have been quite capable of
overlooking this embarrassing and quite large discrepancy in the most
important quantity in his theory (the period of the tides). In contrast,
when Kepler had brought the art of astronomy to the highest state of
perfection compatible with perfectly circular orbits of the planets the
residual discrepancy with the observations was minuscule yet it led
Kepler to demolish the whole scheme. And what was most remarkable
about this rejection of his own labour was not so much the fact that it was
done for the sake of such a small quantitative failure - as we have seen,
the ideal of saving the phenomena to that level of accuracy was already de
rigueur when Kepler joined Brahe and his assistants - but Kepler's acute
awareness, amply confirmed in the event even if not exactly in the
manner he originally anticipated, that the minuscule discrepancy was
precisely the evidence which pointed to the need for a profound
reappraisal, truly from the ground up, of the entire prevailing conception
of things.

Kepler could never have embarked upon his extraordinarily arduous
revision of what had already been a monumental labour had he not had
the deepest conviction that the deliverances of nature through the senses,
however slight they might appear, were the carriers of information of the
deepest significance. What led him to that conviction? It was not simply
the belief that the world is organized on a rational and harmonious basis;
for that he shared with all great scientists. What sets him apart is the
intensity with which he saw significance in the concrete and actual
manifestation of the world. It is here that we find the second link with
Mach. There is a kinship in their ontology. Many of the great scientists,
possibly under the influence of Plato (surely the case with Galileo), had a
certain distrust of the senses and instinctively looked behind them for
conceptual entities that spoke more directly to the mind. Although Kepler
too provided a classic example of this with his perfect Platonic solids, he
had simultaneously a religious devotion to the world as it actually is,
seeing in palpable creation a direct expression of the ultimate reality, God.
In a significant passage early in the Astronomia Nova he states as a fact
that:66 The divine voice which calls man to study astronomy is expressed
in the visible world itself, not in words and syllables, but in the things
themselves.' The same thought is expressed in his Calendar for 1604
which Caspar quotes at the beginning of his biography of Kepler:16

I may say with truth that whenever I consider in my thoughts the beautiful order,
how one thing issues out of and is derived from another, then it is as though I had
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read a divine text, written into the world itself, not with letters but rather with
essential objects, saying: Man, stretch thy reason hither, so that thou mayest
comprehend these things.

Kepler took the writing of the divine text into the world in the form of
essential objects as literal truth. It provided the underpinning of his
cosmology:67 The Sun represents, symbolizes, and perhaps even
embodies God the Father; the stellar vault, the Son; and the space in
between, the Holy Ghost/ Elsewhere he speaks of the universe as:68 'the
image of God the Creator and the Archetype of the world . . ., there are
three regions, symbols of the three persons of the Holy Trinity - the
centre, a symbol of the Father; the surface, of the Son; and the
intermediate space, of the Holy Ghost/

It is on this divine ground that the planets are seen to move. Such is the
attitude of mind which explains Kepler's dedication to observational
facts, which he handled with a care akin to reverence and love - for him,
the observations were literally as precious as jewels. No wonder he clung
tenaciously to the evidence of the observations - the most faithful guides
(fidissimi duces), as he called them.

This might all seem a far cry from post-Darwinian Mach, an anti-clerical
sceptic and a ridiculer of religious interpretations of physics. Yet on closer
examination there are some striking similarities. Deeply distrustful of all
mechanical models of physical phenomena, Mach took the phenomena
themselves, the direct deliverances of the senses, to be the only ultimate
reality. Having banished models, yet deeply persuaded of the existence
of order in what is perceived, Mach actually put himself in a situation
remarkably like that in which Kepler found himself after Brahe had
destroyed the spheres that were supposed to carry the planets. In both
cases the props were all gone - it was necessary to understand the order
which undoubtedly existed directly in terms of what was given. Even the
mathematical relationships long recognized in the phenomena required
the forging of a new framework in which they could be comprehended. It
is in their instinctive reactions to the very similar problems that they faced
that we see the kinship of Kepler and Mach. Moreover, Kepler's
dedication to the essential objects in which he believed the divine text to
be written is paralleled by Mach's dedication to the phenomena - for
Mach had a true devotion to sights, sounds, and colours and wanted to
show that they, and not conjectural atoms devoid of all phenomenal
accidents, were the true bricks of the world.

Because Kepler and Mach share a certain childlike primitivity, we
should not underestimate the vitality of their ideas. Kepler's own Platonic
solids proved to be nothing but an empty shell, but with his early
anticipation of Mach's Principle he found the laws of planetary motion.
The more sophisticated Galileo, with his distrust of the senses, was led by



344 Kepler: the dominion of the sun

his more Platonic concept of space (which contrasts with Kepler's
Aristotelian notion of position - roughly the divide between the absolute
and relative approaches to motion) to formulate a quite erroneous theory
of the tides. And it was the Galilean line which Newton developed with
his notion of inertial motion in absolute space - the very notion that led
Mach to revive a principle which Kepler had used to such good effect. Let
Kepler's dramatic success at least serve as ground for considering Mach's
Principle seriously.

It may also be noted that in one of the great problems of today's
physics - the reconciliation of quantum theory with gravitational theory
in a cosmological setting - modern researchers find themselves in a
situation strikingly reminiscent of the one that Kepler confronted after
Brahe had removed all the spheres. For in its conventional form, quantum
mechanics is formulated in a given space-time background, but in the
cosmological setting such a prop really has no place or warrant. No one
has yet succeeded in reformulating quantum mechanics without the old
framework, though that is now as obsolete as the crystal spheres. Let me
encourage the reader to ponder these questions - and take heart from
Kepler's example!

The whole discussion of this section emphasizes the ebb and flow of
attitudes with respect to ultimate questions. Copernicus and Kepler had
an extremely clear notion of motion as being with respect to matter. But in
the last decade of Kepler's life Descartes began the hatching of a new
scheme which shattered the sphere of the fixed stars and led to the
establishment of empty space as the ultimate referential basis of motion.

About 40 years after Kepler published the Epitome of Copernican
Astronomy, the concept of motion had passed from being completely
matter-based to completely space-based. Yet the actual observations, the
objective facts from which both conceptual schemes sprang, were still
exactly the same. The astronomers were still carefully tracking Mars
across the backcloth of the heavens.

That was why the pendulum, having swung suddenly one way,
eventually swung back again.

6.8. A last look at the astronomy and evaluation of Brahe and
Kepler's achievement

Almost all of the astronomical input required by Newton to create his
synthesis of dynamics was published before any of the really significant
complementary work on terrestrial motions appeared (though the crucial
work of both Kepler and Galileo was in fact done almost exactly
contemporaneously). Therefore, before we turn to that work, it is
appropriate to have one last look at the astronomy, which achieved such
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a wonderful state of maturity in the observations of Brahe and theory of
Kepler.

Examined over its two-millennial history, the science of naked-eye
astronomy can be seen to have developed very largely in an entirely
predictable manner. Virtually all the significant effects were discovered in
the order that one would expect on the basis of the magnitudes of their
manifestations and ease of observation: first the larger effects associated
with the motion of the sun and moon, then the gross effects in the motions
of the planets, finally the corrections of higher order in the eccentricities
of the planets' orbits. Much of the fascination of the planetary astronomy
comes from the gradual uncovering of the subtle and delicate interplay of
the eccentricity of the earth-sun motion with the eccentricities of the
orbits of the other planets.

Superimposed on this regular predictability were certain other major
events. It is not at all clear that these were bound to occur at all or, if so,
when and in what order. Eclipses were such awesome events that the
development of techniques to predict them does seem rather inevitable.
However, the methods employed to do so do not appear nearly so
inevitable in the light of the Babylonian numerical techniques. Thus, the
first great unpredictable was the theoretical application of geometry by
the Greeks. Equally important and uncertain was the subjecting of the
geometrical models to precise observation. The brilliant idea of using
geometry to represent motions observed in two dimensions by actual
motions in three dimensions might well have come to nothing had not
Hipparchus married it to the quantitative astronomy of the Babylonians.
Toomer has written fascinatingly on the question of how Hipparchus
acquired the Babylonian expertise.69 He thinks Hipparchus may have had
to travel to Babylon and get instruction at first hand. The whole history of
naked-eye astronomy might therefore hang on a single decisive journey
(it was certainly brought to a close by another - Kepler's to Prague).
Another great unpredictable was the time at which the geocentric-
heliocentric revolution occurred (the fascination with which can only
grow the more one is exposed to its multifarious consequences). It very
nearly happened before Hipparchus, yet one can see no reason why the
spark that illuminated the possibility of the leap should not have occurred
after the Brahian programme of ultraprecise observations to track down
the last defects of the Ptolemaic models. Finally and equally mysterious,
we have the appearance at particular times of the two theoretical genii:
Ptolemy and Kepler. Seen in the light of these unpredictables, the history
of pre-telescopic astronomy was not so much a steady and mundane
accumulation of observed facts and interpretations as a fairy story that
began, true to the genre, in Babylon, passed through a miraculous
transformation, and ended in the city of the Winter Queen!
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Almost as intriguing as these aspects is the role played by the circles.
How marvellously circular the orbits are! And what a fortunate fluke was
the equant and the manner in which it permitted Ptolemy to retain the
mathematical tractability of circular motion in a sophisticated device that
improved the accuracy of prediction so immeasurably. The conservative
astronomers may have fought the equant tooth and nail but they could
not do without it. Thus it remained an indispensable part of astronomy
until Kepler transformed it so surprisingly into the area law (probably the
supreme achievement of theoretical astronomy - and what a transforma-
tion was yet to come in Newton's hands!) Then there was the final
flowering of the circles when for a brief period of about two years Kepler
had put together a carousel which would have astounded Eudoxus,
Calippus, Plato and Aristotle such was its simplicity (six circles) and
precision. Even when Kepler pulled the whole beautiful geometrical toy
apart for the sake of his seemingly mad physics, he still put the circles of
Apollonius and Hipparchus to work for him. In fact, one never quite
knows how he conceived the epicycle that weaves its way through the
tortuous chapters of the Astronomia Nova in which Kepler finally found his
own way to the ellipse and area law. At times he certainly accorded it
physical reality, at others it and its deferent seem merely to have served
as a scaffolding by means of which Kepler could clamber around on the
support of the auxiliary circle to see precisely where Mars was going.
Indeed, one of the nicest ironies is the way in which Kepler introduces the
ellipse by means of the circles. The reader should look again at Fig. 6.12
(reproduced here as Fig. 6.14 directly from the original), which is the
termination of the story. The past, represented by the epicycle and
deferent, is superimposed on the future, represented by the ellipse. The
whole history of theoretical astronomy is compressed into a single figure,
testimony to the ingenuity of the astronomers in describing complex
motions with inadequate mathematics stretched to the limit.

Finally we should mention especially the progressive development of
Hipparchus's original simple but effective idea for getting from actual
observations to representations of the solar inequality by a simple
eccentric. We have here an organic development which is rather like the
growth of polyphony out of Gregorian chant. For we have seen how the
original problem (simplified by the presence of two right angles) was first
generalized to arbitrary angles to treat the theory of the moon and eclipses
and then drastically modified by Ptolemy into what Swerdlow and
Neugebauer call70 'a tour de force of possibly the most complex and
extended calculations in all of ancient mathematics': Ptolemy's problem
for determination of planetary equants and apsides. They also emphasize
the revival of this technique by Copernicus. Indeed, the importance of
this solid piece of work on Copernicus's part is quite evident in the
account which Kepler gives in the Astronomia Nova, where he discusses
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Fig. 6.14. Kepler's diagram showing the construction of the elliptical orbit of Mars
as it appeared in the 1609 edition of the Astronomia Nova. The construction is
explained on p. 319 ff. (Reproduced by courtesy of The Beinicke Rare Book and

Manuscript Library, Yale University.)

first Brahe's adaptation of Copernicus's work and then his own develop-
ment of the non plus ultra which the Hipparchan problem finally became:
Kepler's problem for determining his vicarious hypothesis. This sequence
of problems and their solutions represent the irreducible nontrivial core
of pre-telescopic theoretical astronomy. Nearly all the great triumphs
rested upon this steady evolution of theoretical techniques; in particular,
the method achieved its ultimate success when it provided Kepler,
through the failure of the vicarious hypothesis to match the Martian
latitudes and nonacronychal longitudes, with unambiguous evidence of
a breakdown of previously well-proven concepts and thereby opened the
way to the discovery of ellipticity (and its own demise).
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This brings us appropriately to the evaluation of the significance of
Kepler's discoveries. One can often find it asserted that the greatest
importance of Kepler's work was its overthrowing of the millennial
tyranny that the idea of perfectly circular uniform motion had imposed on
the mind of man. Kepler is held to have been the man that broke this log
jam. There are several objections to such a view.

First, the notion of the tyranny of the circles carries with it the
implication that their adoption was what had been holding back progress.
It should by now be evident that the concept of circular motion was in fact
just about the best possible assumption the ancient astronomers could
have made. The problem of the planets could not possibly have been
cracked without it. Prior to Kepler's clarification of the precise nature of
the earth's motion, any use of ellipses or other curves to describe the
motion of the planets would have been a step back. This point has already
been adequately made.

A second objection to seeing Kepler's especial merit as being in the
overthrow of the ancient dogma is that it tends to obscure the important
fact that half of this service was performed by Ptolemy and leads to an
unbalanced appreciation of the key factors at work in the history of
astronomy.

In fact, if one wants a discovery that truly had an effect like the one
attributed to the replacement of circles by ellipses, one should look to
Ptolemy's discovery of the equant and his willingness to take it at its face
value. He would undoubtedly have been able to devise schemes of the
sort that Copernicus introduced and hide the fact that the sacred cow of
uniform motion was violated in the heavens. Instead, he advertised the
effect and thereby stimulated two successive revolutions: the one brought
about in the attempt to undo the equant (Copernicus's) and the one that
flowed from Kepler's enthusiastic welcome for the equant as a most
fundamental fact of celestial motions.

So much for the role of the circles before Kepler made his discovery.
What about the effect of the ellipses after it?

The simple truth is that for a long time they made remarkably little stir.
Kepler's replacement of circles by ellipses was not followed by anything
remotely comparable to the debate that followed Copernicus's proposal
of terrestrial mobility. In fact, the process of assimilation and acceptance
of Kepler's work was very gradual and was still far from complete when
Newton found his dramatic dynamical interpretation of Kepler's laws
almost exactly 50 years after the Imperial Mathematician had died. To get
a clearer picture of the influence that Kepler exerted, it is necessary to
distinguish the evolution of ideas among professional astronomers and
among the more general community of natural philosophers. The
reflection of this process in the technical astronomical literature of the
seventeenth century has been charted by Russell.71 Kepler's reputation
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among the astronomers was essentially established by the Rudolfine Tables
that he published in 1627. Their accuracy was simply so much superior to
any of the rivals that astronomers slowly gained confidence in Kepler's
discoveries. An especially notable triumph was Kepler's rather accurate
prediction of the time of a transit of Mercury across the sun in 1631, which
was duly observed by Gassendi (the first such observation in history). It
is interesting to note that of Kepler's three laws it was the second (the area
law) that gained least acceptance, not so much because its accuracy was
questioned but on account of the inconvenience of working with it. For
this reason, modified equant devices remained popular right up to the
time of Newton's discovery. This highlights not only the remarkable
accuracy and utility of Ptolemy's discovery but also Kepler's achievement,
crucial for the final synthesis of Newtonian dynamics, in breaking with
the equant.

Turning now from specialized astronomy to the general evolution of
ideas about cosmology and the nature of the world, I can find no evidence
at all that Kepler's discoveries played any significant part in bringing
about that dramatic change in outlook which is so well characterized by
the title of Koyre's book From the Closed World to the Infinite Universe. This
change was much more due to factors such as the Copernican proposal,
the supernovae of 1572 and 1604, the host of telescopic discoveries that
began with Galileo's observations in winter 1609/10, and the associated
revival of interest in ancient rivals to Aristotelian philosophy, above all
atomism. Bruno, the first great speculator who helped to bring about
acceptance of an infinite universe, had been burnt alive before the ellipses
were discovered. Galileo totally ignored them and anyway, as we shall
shortly see, remained tied to a remarkable degree to the old cosmology.
To claim that the discovery of the ellipses helped significantly to change
the climate of opinion, one must show that it significantly shaped the
philosophy of Descartes, for it was in his work more than any other that
the new outlook crystallized. Here there is no evidence at all that the
ellipses per se impressed Descartes, who tended very much to miss those
sorts of minutiae. If Kepler did influence him, it was probably more
through his universal concept of motion, in which he made a much more
significant break with Aristotle than did Galileo. (Descartes may also have
got the idea of his famous vortex theory of planetary motion - to be
discussed in Chap. 8 - from a similar idea that Kepler put forward very
tentatively in Chap. 57 of the Astronomia Nova.)

Thus, whereas in 1602 it took considerable intellectual courage on
Kepler's part to reject the circles, many factors quite unrelated to his very
specialized work on planetary motions had contributed within 25 years to
the development of a situation in which the cosmological framework that
had sustained the belief in circles was rapidly being abandoned. There
were many factors that led the natural philosophers of the middle of the



350 Kepler: the dominion of the sun

seventeenth century to embrace the idea of an infinite world and accept
the paradigm of uniform rectilinear motions in place of the eternal circular
motions of the Aristotelian universe. Kepler's detailed laws had a minimal
part in the process. The circles went without the push that Kepler gave
them.

There is another way of looking at this question. What would Kepler's
influence have been had Brahe's accuracy been rather less than it was or,
equivalently, had the eccentricity of Mars's orbit been half as great (and
the ellipticity therefore only a quarter as great), so that Kepler's discovery
of the ellipticity of Mars's orbit would have been impossible? His influence
would undoubtedly have been almost as great. The halving of the earth's
eccentricity and the replacement of the mean sun by the true sun would
alone have seen to that.

In fact, consideration of these two achievements of Kepler, which,
together with the Zeroth Law, date from his earliest work with Brahe and
were both anticipated in the Mysterium Cosmographicum, give us the key to
the significance of his work at the deepest level. It was, as hinted earlier,
the unambiguous implication of the sun in the motion of the planets. The
implication was so significant because it was established through precise
quantitative laws. Approximate equality can be dismissed as mere chance;
if the sun is merely near the centre of the world defined by the motions of
the planets, no deep dynamical significance follows from that fact. When
Kepler showed that the lines of the apsides of all the planets passed
exactly through the centre of the sun (a result that does not depend on the
precise final form of his laws) he had done enough (assuming only the
continued existence of sustained human scientific endeavour) to ensure
the eventual establishment of a view of nature and matter profoundly
different from what had gone before. His was the first clear step towards
the modern synthetic view of dynamics in accordance with which the
motion of matter is actively influenced by the physical effect of other matter.
(For those familiar with the Lagrangian formulation of dynamics, Kepler's
work presaged the appearance of interaction terms in all nontrivial
dynamical systems). To summarize: Brahe and Kepler's place in history
did not depend on ellipticity - but it did crown an achievement both
worthily deserved.

Thus, even if Kepler had ceased work when he had cleaned up and
perfected the Ptolemaic scheme with perfectly circular but nonuniform
equant-type motions, he would still have exerted a powerful influence at
the time, about 35 years after his death, when sufficiently acute minds,
armed with essential new ideas drawn from terrestrial physics, at last
turned seriously and with a reasonable chance of success to the problem
posed by the planetary motions. In particular, the notion of a force
exerted by the sun on the planets would almost certainly have made its
appearance. Without Kepler's work, it is by no means so obvious that this
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would have happened as might appear to the modern mind. Indeed, we
shall see in the following chapters that in the years immediately following
Kepler's death in 1630 majority opinion among natural philosophers
swung rather decisively against the force-type notions which played such
a significant and fruitful role in Kepler's work. However, in the long run
it was simply impossible to ignore the solid results that Kepler had
achieved. Eventually the two levels of his achievement - the clear
identification of the significance of the sun and then the precise details of
the planetary motions - were bound to exert a powerful influence. And
because his laws of planetary motion, especially the area law, were
formulated in a form that reflected the way he had found them through
developing the notion of physical forces, Newton's own dynamical
interpretation of these laws was of necessity strongly influenced by
Keplerian ideas. This came about not so much through Newton's having
read and accepted Kepler's speculative notions (it is doubtful whether
Newton read any of Kepler's astronomical writings49'71) but rather
through the fact that Kepler encapsulated the laws of planetary motion
with great success and in a particular form. He provided Newton with a
complete and specific formulation of the problem and thereby exerted a
strong influence on the form of solution that then appeared. There is no
doubt that each of Kepler's three laws belongs to the 'baker's dozen' of
insights about motion expressed in mathematical form that were neces-
sary prerequisites for Newton's synthesis of dynamics.

One last thought to end the astronomy. Kepler's work represents one
of the most complete and definitive syntheses achieved in science. It is the
final chapter of a long and very absorbing book. One could be excused for
mistaking it for the end of the story, so much seemed to be precisely right.
Yet within the outlines so clearly delineated by Kepler there lurked a
fantastic and utterly unexpected secret. Imagine a boy who finds for the
first time a ripe horse-chestnut with the outer shell intact. Cherishing the
golden and curiously shaped object, he might take it home, quite unaware
of the shiny brown and perfectly smooth conker ready to spring from the
shell on application of a little directed pressure. That was Kepler's fate: he
died without an inkling of what his nut really contained.
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Galileo: the geometrization of motion

7.1 Brief scientific biography and general comments

'In the history of science there are few instances of coeval and
complementary works as striking as in the case of Johann Kepler and
Galileo Galilei/1 These words of Stillman Drake, the well-known
authority on Galileo and translator of many of his works, are an apt
introduction to this chapter. Kepler brought an ancient science to
maturity, but completely lacked certain ideas essential for its interpreta-
tion; Galileo more or less created a new science and in the process
introduced most of the seminal ideas and results which eventually did
make possible the dynamical interpretation of the astronomy which
Kepler so remarkably anticipated.

Galileo (1564-1642) was a few years older than Kepler and outlived him
by more than a decade. His father, who was an important figure in the
theory of harmony and music, wanted him to study medicine. However,
Galileo became attracted to mathematics, in particular Euclid's geometry,
early in his studies and, with the reluctant agreement of his father, set out
on a career to make his living as a professor of mathematics. It is clear from
his writings that he greatly admired aspects of Plato's philosophy,
especially the emphasis on the importance of geometry. A much quoted
saying of Galileo's is his comment that Trying to deal with physical
problems without geometry is attempting the impossible'.2 Of even
greater importance than the general influence of Plato was the specific
influence of Archimedes, whom Galileo never mentioned without the
greatest praise. An important aspect of Galileo's work, which it will not be
possible to treat here, was his development of Archimedean techniques
in statics - both within statics and transferred to problems involving
motion.

Galileo's credo can be summarized in three words: Nature is mathe-
matical. The Hellenistic astronomers had mathematized celestial motions;
the two aspects of their work - precise measurement interpreted by
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geometrical theory - were perfected to a fine art by Brahe and Kepler,
respectively. Just as this astronomical work was drawing to its triumphant
conclusion, Galileo applied essentially the same approach on the earth: he
mathematized terrestrial motions. In a brief period of barely five or six
years he achieved - single handed - results at least as important as
the immense two-millennial labour encapsulated in Kepler's laws of
planetary motions.

His early work on motion, done in his first post at Pisa, was Aristotelian
in outlook though critical of Aristotle in many details. Characteristic of his
sharp powers of observation and his ability to draw far-reaching
conclusions from seemingly mundane matters was his reflection on a
hailstorm that he witnessed. He noted that hailstones of very different
sizes landed more or less simultaneously. Since it was reasonable to
assume they had all started to fall simultaneously, the observation was in
conflict with the Aristotelian teaching that larger and heavier bodies fall
faster than lighter and smaller ones.3 Despite a certain Platonic other-
worldliness (which will be discussed in the penultimate section), Galileo
was an extremely practical man who was very interested in engineering
problems.

While at Pisa he completed his early unpublished De Motu (circa 1590),
an essentially Aristotelian study of motion. This is important in proving
that he had by then already read Copernicus's De Revolutionibus (since he
uses the Tusi couple) without, it seems, being persuaded at all of its truth.
The cosmological conception is still entirely Ptolemaic. De Motu is also
important in that it casts light on the way in which Galileo discovered and
interpreted an early form of the law of inertia (see Sec. 7.3).

According to the reconstruction of Stillman Drake, Galileo's conversion
to Copernican cosmology occurred around 1595, after he had moved to
Padua as professor of mathematics. It certainly occurred before 1597, for
in that year Galileo wrote to Kepler (by whom, we recall, he had been sent
a copy of the Mysterium Cosmographicum) saying4 'as from that position I
have discovered the causes of many physical effects which are perhaps
inexplicable on the common hypothesis. I have written many reasons and
refutations of contrary arguments which up to now I have preferred not
to publish, intimidated by the fortune of our teacher Copernicus, who
though he will be of immortal fame to some, is yet by an infinite number
(for such is the multitude of fools) laughed at and rejected.'

Kepler assumed that Galileo's reference to 'many physical effects which
are perhaps inexplicable on the common hypothesis' was to an explana-
tion of the tides, and support for this assumption came to light quite
recently in evidence which suggests that Galileo had developed his
theory of the tides (see Sec. 7.5), for which the Copernican thesis of the
earth's mobility was crucial, by about that date.5

The really great period of Galileo's work on motion - the discovery of



354 Galileo: the geometrization of motion

the law of free fall, a restricted form of the law of inertia, and the parabolic
motion of projectiles - covered the years from 1602 to 1608. These
discoveries will be discussed in the following sections. Galileo was in the
process of writing up these discoveries for publication when the whole
course of his life was changed more or less by accident. Hearing by chance
about the invention of the telescope, he set about the task of making one
himself and soon succeeded in constructing an instrument greatly
superior to any hitherto made. Although not the first to do so, he began
to observe the heavens - the moon in December 1609, Jupiter and its
moons in January 1610. Very soon after he published his booklet Sidereus
Nuncius6 (Galileo seems to have intended this to mean The Message of the
Stars but it is also widely translated as The Starry Messenger - nuncius can
mean either message or messenger). He exploded onto the scene and
rapidly became an internationally famous figure.

The work on motion was laid aside for many years - the Latin text he
had prepared before the telescopic discoveries was not published until
1638 (eight years after the death of Kepler and thirty years after it - and the
Astronomia Nova - had been written), when it was incorporated in his
Discorsi. Meanwhile, Galileo had returned to his native Florence and
much had happened since the news of the telescope first circulated in
Venice. (In Galileo's time, Padua formed part of the Venetian state, by
whom Galileo was employed.) So much has been written about Galileo's
telescopic discoveries and his subsequent tussle with the Inquisition, one
is severely inhibited in putting pen to paper. Nevertheless, a few facts and
reflections are necessary.

The telescopic discoveries were important for several reasons. For a
start, they made him so famous that wide readership of his subsequent
books on the Copernican system and motion was ensured. They must
also have been important for establishing the mobility of the earth beyond
all doubt in Galileo's mind. For the first time, he came out in the open in
the Starry Messenger with a statement, admittedly guarded, that lent
support to the Copernican system. Speaking of the moons of Jupiter
which he had discovered he said:7

Here we have a fine and elegant argument for quieting the doubts of those who,
while accepting with tranquil mind the revolutions of the planets about the sun in
the Copernican system, are mightily disturbed to have the moon alone revolve
about the earth and accompany it in an annual rotation about the sun. Some have
believed that this structure of the universe should be rejected as impossible. But
now we have not just one planet rotating about another while both run through a
great orbit around the sun; our own eyes show us four stars which wander around
Jupiter as does the moon around the earth, while all together trace out a grand
revolution about the sun in the space of twelve years.

The Jovian moons were, incidentally, striking confirmation of Kepler's
argument that celestial bodies must circle around material bodies, not
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mathematical points. Kepler's intuitive shift from Copernicus's geo-
metrokinetic concept of motion to a physical, causally-determined
standpoint had found further observational support. Quite soon, Galileo
discovered the phases of Venus, which unambiguously confirmed the
Copernican arrangement of the planets, though it could not settle the
argument between supporters of the Copernican and Tychonic systems.
Very important for the destruction of the Aristotelian division of the
world into the perfect heavens and the corruptible earth were Galileo's
observations of mountains on the moon and spots (constantly changing)
on the sun. These showed the celestial bodies to be far more like the earth
than was permitted by the ossified Aristotelianism with which Galileo
had increasingly to contend. Important publications that followed fast on
the heels of the Starry Messenger were his three Letters on Sunspots,8 the
second of which is particularly important for us in containing his first
statement in print of his form of the law of inertia (Sees. 7.3 and 7.4).

The next twenty years in Galileo's life, over which we shall skip, were
dominated by the developing crisis of his dispute with the Catholic
Church about the truth of the Copernican system. The crisis came to a
head with his publication in 1632 of the most famous of all his books, the
Dialogo Sopra i due Massimi Sistemi del Mondo Tolemaico e Copernicano (which
I shall refer to as the Dialogo; it is translated as Dialogue Concerning the Two
Chief World Systems - Ptolemaic and Copernican9). Written in Italian in the
popular dialogue form of the period of which Galileo was such a master,
it expounds his general views on motion and the world (Day 1), shows
how the dynamical arguments against the diurnal rotation of the earth
can be overcome by means of his theory of motion, gives astronomical
arguments for the annual motion of the earth around the sun (Day 3), and
ends with what Galileo himself regarded as the supreme proof of the
earth's mobility - his erroneous theory of the tides (Day 4). For the
subsequent history of dynamics, Day 2 is by far the most important: it
formulates, albeit somewhat imperfectly and in a restricted form, the law
of inertia and the principle of Galilean invariance. Together with Days 3
and 4 of the Discorsi (published in 1638 as Discorsi e Dimostrazioni
Matematiche Intorno a due Nuove Scienze; translated into English as Dialogue
Concerning Two New Sciences10 and referred to as the Discorsi), it provided
a secure basis for the development of a rational theory of motion. Roughly
speaking, that part of Newtonian dynamics not directly related to the
concept of force as the cause of motion, in particular gravity, stems from
this work of Galileo, the bulk of which, as already explained, was done in
the period 1602 to 1608. However, it should be emphasized that Galileo's
mature work was not at all dynamic in the sense of conceiving motion as
produced by forces; for unlike Kepler, Galileo made no attempt in his
most important work to identify causes of motion (given the primitive
state of the study of terrestrial motions, such an attempt would certainly
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have been premature). Instead, he simply concentrated on the mathe-
matical description of actual motions. It is because the concept of force
plays no role in his work that it is more appropriately referred to as
motionics than as dynamics. As pointed out in Chap. 1, I use the word
motionics rather than kinematics (a word often used by historians of
science) because Galileo created a science of the actual motions of real
bodies. (Because some of Galileo's results later become integral parts of
the modern science of dynamics, it is not always possible to be entirely
consistent in terminology, and I do sometimes refer to them as dynamic
to emphasize that they express essential results of the modern science.)

It should also be noted that Galileo did not himself provide an overall
framework for the science of dynamics. That was more the contribution of
Descartes. What Galileo provided was assured quantitative results and
proved techniques that Newton was able to incorporate into a quite new
but only qualitative framework that Descartes supplied. In fact, we shall
see that in many ways Galileo, in contrast to Descartes, stayed remarkably
true to Aristotelian concepts, above all to that of natural motions.
Moreover, this was actually a help rather than a hindrance to Galileo in
the contribution that he made to the discovery of the law of inertia and in
providing very nearly the correct explanation for the absence of dynamical
effects of the earth's diurnal rotation. Kepler's more radical break with
Aristotle led him to a dead end. The first genuine insights into the nature
of the most ubiquitous of all phenomena - motion - were achieved by the
mathematizing of Aristotle's qualitative motionics. Geometry played a
key role in this process.

Galileo's faith in geometry finds expression in a memorable passage
published in 1623 in his book // Saggiatore (The Assay er).n The first half of
this credo in geometria is given as one of the quotations at the start of this
book. The full passage is as follows:

Philosophy is written in this immense book that stands ever open before our eyes
(I speak of the Universe), but it cannot be read if one does not first learn the
language and recognize the characters in which it is written. It is written in
mathematical language, and the characters are triangles, circles, and other
geometrical figures, without the means of which it is humanly impossible to
understand a word; without these philosophy is a confused wandering in a dark
labyrinth.

Only the first half is given at the start of the book to emphasize that the
'language' in which the 'book' is written remains an open question.
However, the fact that Galileo can justly be called the father of modern
science is no doubt in large part due to the enthusiasm and vigour with
which he applied mathematics, above all Euclidean geometry, to the
problem of describing and understanding the w.orld. The Encyclopaedia
Britannica (15th edition) says of Galileo that 'perhaps the most far-reaching
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of his achievements was his re-establishment of mathematical rationalism
against Aristotle's logico-verbal approach and his insistence that the
"Book of Nature" is written in mathematical characters'.

Indeed, one of the most striking things about the Dialogo is the way that,
time and again, Galileo insists that the arguments for and against
Copernicanism must be examined with careful mathematical analysis. It
is only after such an analysis that the appeal to the evidence of the senses
is made. For Galileo, the senses could at times be very deceptive unless
properly interpreted. What, however, he did insist upon was that
observations of nature always take precedence over rival authorities -
such as Aristotle or theologians. Experience is the ultimate arbiter but
must be ordered by mathematics.

The reason why Galileo rather than anyone else can be called the creator
of modern science is hinted at in the above quotation. Before Galileo, the
theory of terrestrial motions had been dominated by the concept of cause.
The important thing was to find a qualitative explanation (in terms of
essential nature etc.) of why any particular body moved in the way it did.
Galileo by no means threw off this way of thinking entirely. Instead, he
augmented it by an approach that, at least up to the present day, has
proved to be far more fruitful. He stopped looking for causes of motion and
instead, like the early astronomers, sought merely to describe actually
observed motions. He no longer asked: why does the stone fall, but how
does the stone fall? In the Discorsi, he comments that innumerable books
had been written explaining why bodies fall towards the ground with an
accelerated motion but adds drily that12 'to just what extent this
acceleration occurs has not yet been announced'.

Of such innocent questions are revolutions made.
Before we turn to detailed aspects of Galileo's work, it is worth pointing

out that Galileo was not only a great scientist but also a great writer. He is
regarded as the greatest writer of Italian prose between Machiavelli and
Manzoni,13 a span of 400 years. He is still read today in Italian schools -
but more as Italian literature than for the sake of his physics. His preferred
style of exposition was the dialogue form, which he adopted for his two
greatest works, the Dialogo and the Discorsi. The characters are the same
in both: Salviati, who is an expert and generally expresses Galileo's views,
Sagredo, who is the archetypal intelligent layman, and Simplicio, who is
an Aristotelian philosopher. In the preface to the Dialogo Galileo explains
that the names Salviati and Sagredo were chosen to honour two dear but
deceased friends of his Paduan period with those names and that the
name Simplicio was suggested by Simplicius, the commentator on
Aristotle from the sixth century AD whom we met on p. 101 and will mee
once more. However, it was evidently also used by Galileo with the
implication that Peripatetic philosophers were dim-wits. (For all his skill
as a writer, Galileo had little sense of diplomacy. One of the conditions
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under which he obtained his Imprimatur for the Dialogo was that at the
end he should include an argument against the Copernican system dear
to the then pope, which was that man cannot presume to know how the
world is really made because God could have brought about the same
effect in ways unimagined by him (note the echo of Osiander), and he
must not restrict God's omnipotence. Galileo rashly put these words in
the mouth of Simplicio.) Finally, there is every now and then a reference
to a mysterious, anonymous, and very brilliant Academician, who is none
other than Galileo and with whom Salviati is alleged to be in regular
communication.

A great advantage of the dialogue form of presentation was that it
enabled Galileo to draw prominent attention to his own best ideas. The
typical way in which this is done is for Salviati to report some discovery or
insight of his Academician friend, whereupon Sagredo, with whom the
reader (who also naturally likes to think of himself as an intelligent
layman) identifies, breaks out in hymns of praise. We smile, of course, at
Galileo's self-praise, expressed in this rather endearing manner, but it
does simultaneously enable Galileo to overcome the problem that many
great discoverers face: how can they get across the significance of what
they have discovered without appearing immodest? Far more so than
the authors of the three great astronomical books that preceded his
dialogues - the Almagest, the De Revolutionibus, and the Astronomia Nova -
Galileo overcame the natural inhibitions that prevent an author doing
justice to his own work. The significance of the great works of astronomy
was lost on all but the experts who were prepared to work their way
patiently through page after page of technical details. But with marvellous
flair Galileo made his insights accessible to a very wide audience and
made abundantly certain that they grasped the key points. Coupled with
this was a certain very intense vision which helps to give the reader a
heightened awareness of where significant and exciting developments
are to be expected.

This expository skill, which has never been surpassed in scientific
writing, had the consequence that all of Galileo's discoveries exerted their
full effect relatively quickly, even though in terms of the mathematics and
observation required they were really quite modest compared with the
discoveries of Ptolemy and Kepler (one could without any injustice to
Galileo put them at the level of astronomy corresponding to the work of
Hipparchus). The same objective results in the hands of a less skilled
expositor would not have had remotely the same impact. This has had the
consequence that Galileo's contribution to the development of science in
general and dynamics in particular has been well and fairly reflected in
histories of the subject, whereas the astronomical contribution, especially
that of Hipparchus, Ptolemy, and Kepler has been, perhaps, rather
unduly neglected.
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7.2. Galileo's cosmology, overall concepts of motion, and the
influence of Copernicus

There are dangers in writing about Galileo's overall concepts of motion
and cosmology; in particular, it is necessary to reconcile some seemingly
contradictory statements. Also, since Galileo's two main works were
written in dialogue form, there is the problem of whether what the
interlocutors say in the dialogues can be taken as his own opinion.
However, the main difficulty is in the method of exposition favoured by
Galileo, who was in fact always very sparing in stating the premises he
needed to arrive at a particular conclusion. Not for him the grand
statement of comprehensive principles adopted by Descartes and
Newton. He was probably inclined to such a method of exposition by his
admiration for Plato and his belief that knowledge of geometry at least is
latent in the mind and only needs to be drawn out by some well-chosen
Socratic questions (recollection theory of knowledge). It also accords very
well with his own basic philosophy which, as Drake points out,14 was not
so much a closed system as a method - that is, mathematics and reason
are to be used in an ongoing process to interpret empirical observations.
Only in this way will man eventually build up a true picture of the world.

Perhaps the most interesting way to approach the problem is to see
how, in the Dialogo, especially in Days 1 and 2 of the dialogue, Galileo,
who follows Copernicus remarkably closely, amplifies and extends in one
very significant respect the very bare hints that Copernicus offered as to
how the dynamical arguments against the earth's diurnal rotation should
be overcome. The powerful stimulus that the Copernican revolution gave
to not only astronomy but also the theory of motion is then very apparent.
We have already followed in the previous chapter the astronomical fork
of the Copernican revolution; we now commence the descent of the fork
that led to dynamics. It is appropriate to begin with Copernicus's own
thoughts on the subject as expressed in De Revolutionibus. We shall see
how the bare hints led to a veritable flood of ideas and results.

Although Copernicus was very well aware of the revolutionary nature
of his proposal of the earth's mobility, he made no attempt at all to recast
the entire theory of motion as it had been developed by Aristotle. This
would really have been the logical course to take (and was taken by
Kepler), since Aristotle's entire motionics was designed and built around
the assumption of the earth's immobility at the precise centre of the
universe. The overwhelming bulk of De Revolutionibus is purely astro-
nomical; barely three or four pages are devoted to the problems of motion.
Nevertheless, in this brief space Copernicus, like Oresme before him,
succeeded in pointing the way that historically did in fact lead, through
Galileo, to the foundations of the modern theory of motion. What
Copernicus did was to retain the overall Aristotelian concepts of natural
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and violent motions but abolish the idea that a given body had a unique
natural motion; he introduced the concept (already recognised as
important by Oresme) of a mixed natural motion. It was in amplifying this
notion, coupled with the quantitative and mathematical (as opposed to
purely qualitative) treatment of free fall, that Galileo did such important
preparatory work for the creation of dynamics.

In the synoptic Book 1 of De Revolutionibus, Copernicus outlined the
main objections to the earth's mobility, especially its rotation, perceived
within the framework of the pre Copernican theory of motion. There was
for a start the problem of gravity that we have already considered in
Sec. 6.6. Aristotle had taught that bodies seek the centre of the universe,
not specifically the centre of the earth. Were by any chance the earth to be
displaced from the centre of the universe, bodies would continue to fall,
according to Aristotle, to the centre of the universe. But, of course, it is not
possible to put this to the test, so that speculation or enquiry on the
subject did not seem to have any point. The way in which the Aristotelian-
Ptolemaic cosmology had a 'freezing' effect on scientific thinking is well
illustrated by a remark of Ptolemy's in the Almagest:15 'I think it is idle to
seek for causes of the motion of objects towards the centre, once it has
been so clearly established from the actual phenomena that the earth
occupies the middle place in the universe, and that all heavy objects are
carried towards the earth.' Thus, scientific enquiry is useless since we are
presented with a unique situation.

Once the earth had been set in motion, the situation was entirely
changed. Admittedly, Copernicus's own reaction to the new possibilities
that he himself had opened up seems quaint and quite unscientific. On
the question of gravity, he says the following:16

the further question arises whether the center of the universe is identical with the
center of terrestrial gravity or with some other point. For my part I believe that
gravity is nothing but a certain natural desire, which the divine providence of the
Creator of all things has implanted in parts, to gather as a unity and a whole by
combining in the form of a globe. This impulse is present, we may suppose, also
in the sun, the moon, and the other brilliant planets, so that through its operation
they remain in that spherical shape which they display. Nevertheless, they swing
round their circuits in divers ways.

This is all he has to say about the subject. Somewhat surprisingly,
Galileo, writing 80 years later (and, moreover, 20 years after the
publication of Kepler's much more precise and scientific ideas on the
subject), appears to have been essentially content with this broad
explanation; that at least is the impression given by Day 1 of the Dialogo.
We shall go into this shortly.

The next problem Copernicus had to contend with subsequently played
an important part in the clarification of centrifugal force, which was also
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very important in the discovery of dynamics and the debate about
absolute and relative motion. Ironically, Copernicus felt obliged to answer
an objection to diurnal rotation of the earth that Ptolemy had never
raised - Copernicus misunderstood a poor translation. Ptolemy had in
fact been countering the suggestion that the earth itself must fall. At the
end of his discussion, which had nothing to do with rotation of the earth,
Ptolemy said:17 'If the earth had a single motion in common with other
heavy objects, it is obvious that it would be carried down faster than all of
them because of its much greater size: living things and individual heavy
objects would be left behind, riding on the air, and the earth itself would
very soon have fallen completely out of the heavens. But such things are
utterly ridiculous merely to think of/

Ptolemy then followed this immediately with a discussion of the
possibility, raised by 'certain people', that the earth rotates (Ptolemy did
not discuss anywhere the possibility of an annual motion of the earth).
His answer to this suggestion was: 'However, they do not realise that,
although there is perhaps nothing in the celestial phenomena which
would count against that hypothesis, at least from simpler considerations,
nevertheless from what would occur here on earth and in the air, one can
see that such a notion is quite ridiculous/

Among the reasons he adduced for the suggestion being ridiculous was:

they would have to admit that the revolving motion of the earth must be the most
violent of all motions associated with it, seeing that it makes one revolution in
such a short time; the result would be that all objects not actually standing on the
earth would appear to have the same motion, opposite to that of the earth: neither
clouds nor other flying or thrown objects would ever be seen moving towards the
east, since the earth's motion towards the east would always outrun and overtake
them, so that all other objects would seem to move in the direction of the west and
the rear.

It was arguments like these that provided the main counter to
Copernicus's proposal in the century after he made it. Few people made
the effort to understand the astronomical arguments and readily agreed
with Brahe that motion of the earth was unthinkable. Thomas Kuhn18

quotes a satirical poem that circulated in Elizabethan England and put
forward such arguments. Copernicus's synopsis of his mistaken under-
standing of Ptolemy's argument was as follows:19

Therefore, remarks Ptolemy of Alexandria [Syntaxis, I, 7], if the earth were to
move, merely in a daily rotation, the opposite of what was said above would have
to occur, since a motion would have to be exceedingly violent and its speed
unsurpassable to carry the entire circumference of the earth around in twenty-four
hours. But things which undergo an abrupt rotation seem utterly unsuited to
gather [bodies to themselves], and seem more likely, if they have been produced
by combination, to fly apart unless they are held together by some bond. The earth
would long ago have burst asunder, he says, and dropped out of the skies (a quite
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preposterous notion); and, what is more, living creatures and any other loose
weights would by no means remain unshaken. Nor would objects falling in a
straight line descend perpendicularly to their appointed place, which would
meantime have been withdrawn by so rapid a movement. Moreover, clouds and
anything else floating in the air would be seen drifting always westward.

Copernicus immediately gave a hint of the answer he was to give to this
problem. It was to suggest that the rotational motion of the earth is a
natural motion (in the Aristotelian sense, though not hitherto included
among the natural motions):20

if anyone believes that the earth rotates, surely he will hold that its motion is
natural, not violent. But what is in accordance with nature produces effects
contrary to those resulting from violence, since things to which force or violence
is applied must disintegrate and cannot long endure. On the other hand, that
which is brought into existence by nature is well-ordered and preserved in its best
state. Ptolemy has no cause, then, to fear that the earth and everything earthly will
be disrupted by a rotation created through nature's handiwork, which is quite
different from what art or human intelligence can accomplish.

We then begin to understand why earlier (Book I, Chap. 3) Copernicus
had been at pains to show that the earth is spherical ('it is perfectly round,
as the philosophers hold') and had followed this with a chapter entitled
The motion of the heavenly bodies is uniform, eternal, and circular or
compounded of circular motions'. This opens with a very Platonic
statement:21 'the motion of the heavenly bodies is circular, since the
motion appropriate to a sphere is rotation in a circle. By this very act the
sphere expresses its form as the simplest body, wherein neither beginning
nor end can be found, nor can the one be distinguished from the other,
while the sphere itself traverses the same points to return upon itself.'

He had thus prepared the ground for the suggestion that, the earth
being round, it might well rotate itself and move in a circle around the
sun. He opens Chap. 5, entitled 'Does circular motion suit the earth?' with
this statement:22 'Now that the earth too has been shown to have the form
of a sphere, we must in my opinion see whether also in this case the form
entails the motion.'

On this basis he can therefore argue that a rotational motion of the earth
is not only natural but actually to be expected, even if it brings with it the
consequence that heavy objects on the earth have a dual natural motion:23

'We must in fact avow that the motion of falling and rising bodies in the
framework of the universe is twofold, being in every case a compound of
straight and circular/ We note how similar is this view to the one
expressed by Oresme (p. 207) nearly 200 years before Copernicus. There
is, however, a significant difference: Copernicus asserts that this is how
things are, Oresme only how they could be.

Anticipating, let me say that if there was one single step more important
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than any other in the creation of modern dynamics it was Galileo's
elaboration 80 years later of the concept enunciated here of dual morion of
the bodies moving near the surface of the earth - a concept that was
literally forced upon Copernicus once he set the earth loose. Much of
dynamics was the fruit of Galileo's years of pondering the consequences
of terrestrial mobility. This indirect astronomical input was perhaps of
even greater importance than the direct empirical discovery of the law of
free fall.

Copernicus summarizes his view of the nature of natural motions
and the teleological purpose that they serve in the following passage, in
which the Pythagorean concept of the well-ordered cosmos is most
pronounced:24

Hence the statement that the motion of a simple body is simple holds true in
particular for circular motion, as long as the simple body abides in its natural place
and with its whole. For when it is in place, it has none but circular motion, which
remains wholly within itself like a body at rest. Rectilinear motion, however,
affects things which leave their natural place or are thrust out of it or quit it in any
manner whatsoever. Yet nothing is so incompatible with the orderly arrangement
of the universe and the design of the totality as something out of place. Therefore
rectilinear motion occurs only to things that are not in proper condition and are
not in complete accord with their nature, when they are separated from their
whole and forsake its unity.

Surprising as it may seem, Galileo, pioneer of the modern theory of
dynamics and writing nearly a century after the publication of De
Revolutionibus, appears to have been quite content to adopt this basic
conception of motion and the purpose it served. His exposition in the
Dialogo presents a most curious mixture of the ancient and the modern.
The overall concept was almost archaic; the revolution was all in the
detail. But here Galileo was on very secure ground - he had observation
and powerful rational arguments to back him. He was fully aware of the
far-reaching potential of the first small innovations of his quantitative
motionics. They led him to the partial formulation of one of the most
fundamental principles of modern science - Galilean invariance. This will
be discussed in Sec. 7.4; here we complete the overall picture that Galileo
describes in Day 1 of the Dialogo.

Galileo's picture of the world, at least as described in the Dialogo, was as
teleological as Aristotle's, though modified. He still has the Pythagorean
concept of the cosmos as the perfectly ordered work of God. Salviati
says:25 'it [the world] is of necessity most orderly, having its parts
disposed in the highest and most perfect order among themselves.' This
statement is emphasized by Galileo in a marginal note, in which he states:
The author assumes the universe to be perfectly ordered.'

The purpose of (natural) motion is to carry bodies to their proper places
and then maintain them there:26 'We may therefore say that straight
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motion serves to transport materials for the construction of a work; but
this, once constructed, is to rest immovable - or, if movable, is to move
only circularly.'

The great virtue of circular motion is that it maintains objects in their
proper place. Linear motion is quite inappropriate for this purpose:27 "if all
the integral bodies in the world are by nature movable, it is impossible
that their motions should be straight, or anything else but circular.... For
whatever moves straight changes place, and continuing to move, goes
ever farther from its starting place . . . at the beginning it was not in its
proper place . . . it is impossible that anything should have by nature the
principle of moving in a straight line [for ever].' And again:28 'only circular
motion can naturally suit bodies which are integral parts of the universe
as constituted in the best arrangement.' This is emphasized by another
marginal note: 'Straight motion assigned to natural bodies to restore them
to perfect order when they are disordered.'

Finally, we come to Galileo's views on gravity, on which, as noted in
Sec. 6.6., he maintained a life-long hostility to the concept of gravitational
attraction as advanced by Kepler, regarding it, especially in connection
with the tides, as inadmissible invoking of 'occult qualities' that should
have no place in the new science that he was helping to create. On the
problem of what holds the celestial bodies together, he simply says:29 'just
as all the parts of the earth mutually cooperate to form its whole, from
which it follows that they have equal tendencies to come together in order
to unite in the best possible way and adapt themselves by taking a
spherical shape, why may we not believe that the sun, moon, and other
world bodies are also round in shape merely by a concordant instinct and
natural tendency of all their component parts?'

Thus, in all the above there is no change at all from Copernicus. Like
him, Galileo uses the concept of the 'integral bodies' of the universe: parts
of such bodies are brought together by linear motion and then, integrality
having been achieved, all such motion should cease and be replaced
either by perfect immobility (the most noble state of all - echoing
Copernicus, who had, following Aristotle and the medievals, said:30

'immobility is deemed nobler and more divine than change and
instability') or, at most, circular motion of the integral body as a whole.

It seems remarkable that out of this quite fallacious (in modern eyes)
concept of motion Galileo should have forged the foundations of modern
science. The explanation of the paradox is that what counted in the end
was the use Galileo made of the details - the individual motions
themselves. First, by establishing precisely the nature of these motions,
he introduced the quantitative aspect that terrestrial Aristotelian physics
had hitherto lacked. Equally important was the demonstration of what
could be done with the individual motions. What Galileo actually created
was a kind of atomic theory of motion - the atoms were not the material
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atoms of Leucippus and Democritus but primordial natural motions.
Whereas the atomists (and Plato in most of the Timaeus) had sought to
explain the phenomena of the world by geometrical shapes, Galileo
sought instead to achieve the same by geometrical motions. This is the true
significance of the passage from The Assayer quoted in the previous
section.

Thus, although Galileo strikes one as more Aristotelian than not,
especially in his retention of the concept of natural motions, he followed
Copernicus's lead in extending the class of allowed natural motions,
which, quite early in Day 1, he tells us are of three kinds: straight, circular,
and mixed circular-straight. There is also a significant relaxation of
the rigidly concentric Aristotelian world, and, equally important, an
inversion of the way in which cosmology should be approached:31

it appears that Aristotle implies that only one circular motion exists in the world,
and consequently only one centre to which the motions of upward and downward
exclusively refer. All of which seems to indicate that he was pulling cards out of
his sleeve, and trying to accommodate the architecture to the building instead of
modelling the building after the precepts of architecture. For if I should say that in
the real universe there are thousands of circular motions, and consequently
thousands of centres, there would also be thousands of motions upward and
downward.

The 'precepts of architecture' - these were the primordial atomic
motions that Galileo was convinced he had found: the symbols of nature's
language. In the next section we recount how he found them; in the
following, how he used them.

7.3. The primordial motions: circular inertia and free fall

If it had not happened, one would wonder if it were possible. The entire
world - or rather the way it is perceived - turned upside down by the mere
rolling of a 'perfectly hard ball' down an 'exquisitely polished plane'. That
is what happened sometime around 1603. The revolution was in Galileo's
mind, in the lesson he drew from the observation. He 'had experienced
just once the perfect understanding of one single thing'.* He discovered
and, very importantly, correctly analyzed the law of free fall. At much the
same time he clarified his thoughts about what one may call a law of
'circular inertia' and how it could be combined with the law of free fall to
give the law of motion of projectiles on the surface of the earth.

* From the Dialogo,32 in a passage in which Galileo expresses his belief that in a few
instances, in which mathematical truths are involved, the human mind can partake of divine
knowledge: Tor anyone who had experienced just once the perfect understanding of one
single thing, and had truly tasted how knowledge is accomplished, would recognize that of
the infinity of other truths he understands nothing.'
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We shall begin the account of this work with his 'law of inertia', or
perhaps one should say 'laws of inertia', since he actually considered
more than one such law, and, as we shall see, the whole story is rather
complicated. Indeed even the expression 'law of inertia' may be
misleading; for, as we have seen, Galileo spoke of motions (more or less in
the Aristotelian sense) and inertia was a word that he did not employ at
all. However, since he did clearly recognize in terrestrial motions the
characteristic persistence of motion that is encapsulated in Newton's First
Law, which today is usually called the law of inertia (though it was not by
Newton), the expression is perhaps the best that is to hand, and the
addition of quotation marks will signify that we have at most a partial
statement of the content of Newton's First Law, and that inertia is used in
the modern sense of persistence of motion (and not resistance to motion
or acceleration as originally used by Kepler and Newton).

The main complication that arises in this discussion is that Galileo
considered two distinct motions, both anticipations of the law of inertia,
one corresponding to natural motion and the other to violent motion in the
old Aristotelian sense. Moreover, the anticipation of the law of inertia
corresponding to natural motion also existed in two forms: a weak one
that derived from Copernicus and was necessitated by the astronomical
evidence for the earth's diurnal rotation, and a stronger form that derived
as an offshoot from Galileo's work on free fall and motion down inclined
planes. All three forms of the 'law of inertia' are present in Galileo's
Dialogo, introduced separately but without any discussion on Galileo's
part of the relationship which he perceived between them.

To try and get an idea of how this came about, it is helpful to consider
the evidence of Galileo's early unpublished tract De Motu,33 which was
mentioned in Sec. 7.1. This reveals that Galileo was perfectly familiar with
the impetus theory considered in Chap. 4. We noted there that by
Galileo's time Buridan's very clear formulation, according to which the
impetus persists for ever with undiminished strength, had largely been
replaced by the form in which the impetus dies away spontaneously and
the body eventually comes to rest. A passage from the Dialogus
trilocuterius de possest of Nicholas of Cusa (1401-1464), which I quote from
Jammer's Concepts of Force shows, first, the strongly animistic component
of the concept and, secondly, how far its use in the late Middle Ages was
from recognition of it as a universal and truly fundamental law of
motion:34 The child takes the top which is dead, that is, is without
motion, and wants to make it alive; . . . the child makes it move with
rotational motion as the heavens move. The spirit of morion, evoked by
the child, exists invisibly in the top; it stays in the top for a longer or
shorter time according to the strength of the impression by which this
virtue has been communicated; as soon as the spirit ceases to enliven the
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top, the top falls/ There was not much prospect of mathematizing that
concept!

In the Astronomia Nova, Kepler makes a brief but graphic reference to an
equally animistic form of the theory when discussing the motive power of
the sun:35 'It might seem as if there were hidden in the body of the sun
something divine, something comparable with our soul, from which that
species springs which moves the planets, just as from the soul of the man
that throws a stone there attaches itself to the stone the species of the
motion, so that as a result the stone flies on even when the thrower has
withdrawn his hand/

Finally, it will be worth quoting a few lines from Galileo's De Motu to
show how he too used impetus theory and to demonstrate the inferiority
of that theory (at the time he used it) to his own later anticipation of the
law of inertia:36 'In order to explain our own view, let us first ask what is
that motive force which is impressed by the projector upon the projectile.
Our answer, then, is that it is a taking away of heaviness when the body
is hurled upward, and a taking away of lightness, when the body is hurled
downward. But if a person is not surprised that fire can deprive iron of
cold by introducing heat, he will not be surprised that the projector can,
by hurling a heavy body upward, deprive it of heaviness and render it
light. . . . The impressed force gradually diminishes in the projectile
when it is no longer in contact with the projector/ Although this is not so
animistic as Kepler, it is clearly of little use for a mathematical theory of
motion.

Despite the manifest degeneration of Buridan's original idea, one might
have thought that the law of inertia must nevertheless have developed
out of such impetus-type concepts, which did indeed clearly play a
prominent part in Descartes' work, as we shall see in the next chapter.
However, as far as Galileo's work is concerned, it would be more accurate
to speak of two initially totally distinct strands that only finally merged
after Galileo's death and still persisted in independent forms in the
Dialogo. And undoubtedly it was the other strand, which took its origin in
Aristotelian cosmology and forced its way into terrestrial physics under
the pressure of Copernican astronomy, that was the dominant strand in
Galileo's work. To this we now turn.

The development of Galileo's thinking is fairly well documented.
Besides the use of impetus theory just quoted, De Motu contains several
important indications of how the dominant strand developed. Two
chapters are relevant: Chap. 14, a 'Discussion of the ratios of the [speeds
of the] motions of the same body moving over various inclined planes'
and Chap. 16, 'On the question whether circular motion is natural or
forced'. The first of these chapters is evidence of Galileo's early interest in
the problem that would have brought him undying fame even without
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the telescope and Inquisition, though the emphasis is as yet on speed
rather than acceleration. Galileo operates in an essentially Aristotelian
world - there are innumerable references to the centre of the universe,
taken to coincide with the centre of the earth - but there is a strong
infusion of mathematical techniques learnt from Archimedes.

An extremely important difference from Aristotle and one which
figures prominently in all Galileo's writings (and which we have already
seen anticipated in Philoponus and the medieval writers) is his concept of
the ideal, perfectly mathematical motion which a body would follow were
it not for the effects of air resistance, roughness and friction. For Aristotle,
the medium was the essential agent without which most terrestrial
motions would be unthinkable - the speed of a body was the resultant of
the push of the medium on the one hand and the resistance of the medium
on the other. For Galileo the effect of the medium was nothing but an
annoying perturbation of the perfect mathematical law that the body
would follow in its absence. Here is a very characteristic passage from De
Motu:37

But this proof must be understood on the assumption that there is no accidental
resistance (occasioned by roughness of the moving body or of the inclined plane,
or by the shape of the body). We must assume that the plane is, so to speak,
incorporeal or, at least, that it is very carefully smoothed and perfectly hard, so
that, as the body exerts its pressure on the plane, it may not cause a bending of the
plane and somehow come to rest on it, as in a trap. And the moving'body must be
[assumed to be] perfectly smooth, of a shape that does not resist motion, e.g., a
perfectly spherical shape, and of the hardest material or else a fluid like water.

There is a hint here, in the 'so to speak, incorporeal', of the Platonic
otherworldliness of Galileo's Weltanschauung; we shall take up this point
in Sec. 7.6.

The precise mathematical approach to the problem indicated by the
above passage leads Galileo to the observation that on a plane sloping
ever so gently downwards the moving body will have a slight positive
tendency to motion downward while on one sloping slightly upward it
will have a slight resistance to motion. Galileo interprets this entirely in
Aristotelian terms - the body moves downward in a natural motion
because it gets closer to its proper place while it resists upward motion,
which is violent in that the body is thereby carried further from its natural
place. Then comes the key passage:38 'any body on a [perfectly smooth]
plane parallel to the horizon will be moved by the very smallest force,
indeed, by a force less than any given force.'

Galileo comments that 'this seems quite hard to believe', and therefore
provides a demonstration of its truth, which concludes with this
statement:39

A body subject to no external resistance on a plane sloping no matter how little
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below the horizon will move down [the plane] in natural motion, without the
application of any external force. This can be seen in the case of water. And the
same body on a plane sloping upward, no matter how little, above the horizon,
does not move up [the plane] except by force. And so the conclusion remains that
on the horizontal plane itself the motion of the body is neither natural nor forced.
But if its motion is not forced motion, then it can be made to move by the smallest
of all possible forces.

Moreover, in a note added in the margin, Galileo comments that there
can be no such thing as mixed (violent mixed with natural) morions with
one significant exception (my italics): 'since the forced motion of heavy
bodies is away from the center, and their natural motion toward the
center, a motion which is partly upward and partly downward cannot be
compounded from these two; unless perhaps we should say that such a
mixed motion is that which takes place on the circumference of a circle
around the center of the universe. But such motion will be better described
as "neutral" than as "mixed". For "mixed" partakes of both [natural and
forced], "neutral" of neither/

In the later Chap. 16, Galileo hints that such neutral motions, in which
bodies rotate without approaching or receding from the centre of the
universe (i.e., their proper place), might well be perpetual:40 'For if its
motion is not contrary to nature, it seems that it should move perpetually;
but if its motion is not according to nature, it seems that it should finally
come to rest.'

A little later he gives an explicit example in which he expects perpetual
uniform motion:41

This makes clear the error of those who say that if a single star were added to the
heavens, the motion of the heavens would either cease or become slower.
Actually, neither of these things would happen. For since, in their view, too, the
rotation of the heavens takes place about the center of the universe, the adding of
a star or the further addition of any other heavy weight will neither help along nor
retard the motion . . .

. . . For a star will be able to retard the motion only when it is being moved away
from the place toward which it would naturally tend. But this never happens in a
rotation that takes place about the center of the universe, for there never is upward
and never downward motion. Therefore the motion will not be retarded by the
addition of a star.

There is no suggestion at all in De Motu that Galileo was prompted to
such thoughts by his reading of De Revolutionibus, which must, however,
have been quite thorough for him to have picked up the detail of the Tusi
couple. A fortiori is there no suggestion that he saw any connection
between his idea of a neutral motion and the problem of the earth's
rotation, in which he evidently did not believe at that time. His work can
be seen rather as a modification of the basic Aristotelian doctrine of
natural and forced motions towards and away from the centre; the
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recognition of a 'neutral' motion, in which perfectly ordinary bodies
might circle the centre of the universe perpetually, then obviates the need
for the introduction of a special substance, quintessence, whose particular
nature it is to move in a perfect circle. Thus, the concept of neutral motions
is a step towards a more universal concept of motion, which, however,
Galileo never took very far.

The next significant development, about which only conjecture is
possible, was the conversion to Copernicus's theory of the earth's
mobility and Galileo's development of a theory of the tides, the details of
which we defer until Sec. 7.6. As already mentioned, Drake dates this
highly important event around 1595. It is evident that from this point on
Galileo's thoughts must have turned repeatedly to the dynamical
problems posed by rotation of the earth.

The breakthrough came in the early years of the seventeenth century.
It seems highly symbolic that the first really solid advances in the scientific
revolution were made contemporaneously at the dawn of the century and
that those of both Kepler and Galileo owed a great deal to the questions
posed by Copernicus's proposal. The discovery of dynamics can be
represented graphically in its essentials by a diagram reminiscent of
split-beam experiments in quantum mechanics. The beam was split by
Copernicus, each fork representing a problem: what drives the planets
and how can the Aristotelian theory of motion be reconciled with motion
of the earth? These problems were solved separately and in isolation by
Kepler and Galileo, respectively. The reuniting of the two forks by
Newton created dynamics:

Kepler
(problem of the planets)

Copernicus
(mobility of the earth) (dynamics)

Galileo
(rotating earth)

The crucial step by Galileo that made possible the eventual Newtonian
synthesis occurred when he attempted to determine precisely the speed
at which bodies fall freely, or rather, as that was a process too rapid for
him to investigate, moved down smooth inclined planes. This drew his
attention to the gradual build-up of speed. Decisive here was his interest
in accelerations acquired continuously, as opposed to speeds acquired
over definite finite descents. Drake believes that Galileo's attention was
drawn to such accelerations by a long pendulum with which he performed
experiments. For such a pendulum, the gradual build-up of speed
becomes almost tangible. Drake makes the following comment:42 'It was

Newton
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probably the long and heavy pendulum that Galileo used in 1602 which
called his attention to the importance of acceleration in downward
motion, and to the continuation of motion once acquired - things that
soon led him to an entirely new basis for his science of motion which
replaced his earlier causal reasoning/ It seems to me possible that Galileo
may also have been directly stimulated by a remark of Copernicus in his
Chap. 8 of Book I. We have already seen the extent to which this short
discussion of the problems of motion in De Revolutionibus appears (on the
evidence of the Dialogo) to have shaped Galileo's overall conceptions. It is
striking that the final paragraph from Copernicus quoted on p. 363 (the
one ending with '. . . and forsake its unity') is immediately followed by
this comment:43 'Furthermore, bodies that are carried upward and
downward, even when deprived of circular motion, do not execute a
simple, constant, and uniform motion. . . . Whatever falls moves slowly
at first, but increases its speed as it drops/ Could this have provided the
stimulus to the posing of that most significant of all questions in the
discovery of dynamics?

Whatever the stimulus, the initial breakthrough was unquestionably
empirical. By reducing the acceleration sufficiently and improving the
accuracy of his timekeeping by the barest of margins, Galileo put himself
in a position in which he could actually 'see' a law of motion. This is how
Drake describes the crucial experiment:44 'In 1604 he devised a way to
measure actual speeds in acceleration. For this purpose he let a ball roll
from rest down a very gently sloping plane (less than 2°) and marked its
positions after a series of equal times, judging by musical beats of about a
half-second. These distances were then measured in units of about one
millimeter/

What Galileo discovered was a law of unsurpassed simplicity and
beauty. Namely, that if the distance traversed in the first unit of time is
taken as unity, then the distance traversed in the second unit of time is
equal to three, that in next to five, and so on. Thus, if s(t) is the distance
traversed in time t, then

If the poet Blake was able to see 'a world in a grain of sand', Galileo saw
one too in the odd-numbers law (7.1), the first law discovered in the science
of terrestrial rational motionics. For Galileo, this was a law of miraculous
Pythagorean harmony. What clearer proof could there be of the inner
mathematical harmony of nature's workings? He had seen through the
deceptive outer appearances to the eternal Platonic forms - he had
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discovered a four-dimensional geometry of motion. At a stroke, the whole
direction of thinking about motion was changed: Geometry is concerned
with laws not causes - ergo, so too is motion.

As Drake comments,45 once Galileo was in possession of this empirical
law, he was able to make progress using mathematics alone. On the
subject of Pythagoras and the connection between empiricism and
mathematics Galileo himself made the following comment many years
after his own discovery of the odd-numbers rule:46

I think it certain that he first obtained it by means of the senses, experiments, and
observations, to assure himself as much as possible of his conclusions. Afterward
he sought means to make them demonstrable. That is what is done for the most
part in the demonstrative sciences. . . . And you may be sure that Pythagoras,
long before he discovered the proof for which he sacrificed a hecatomb, was sure
that the square on the side opposite the right angle in a right triangle was equal to
the squares on the other two sides. The certainty of a conclusion assists not a little
in the discovery of its proof . . .

The first important result that Galileo deduced from Eq. (7.1) was what
is now called his law of free fall. He apparently arrived at it in a somewhat
roundabout way and with some difficulty,47 but for us the step involves
little difficulty. For it is a matter of simple addition to deduce from Eq. (7.1)
that the distance s of descent increases as the square of the time

Thus, putting the result in its modern form, we have

where a, the acceleration, has the value a — 2 in the units adopted for the
purposes of this discussion. Thus, Galileo originally discovered his law of
free fall in the integrated form which states that the distance fallen is
proportional to the square of the time of descent.*

It seems that it took two or three years for Galileo to deduce from the
integrated form of his law the correct law that governs the increase of
speed with time.49 He initially made the rather natural assumption that
the speed v is proportional to the distance of descent, i.e., v °c s, and only

* One of the main reasons why Galileo had more difficulty than we do in arriving at the law
(7.3) is that, in common with the practice of the time, he worked with ratios of like quantities
and squaring a time and finding the distance to which it corresponded was not at all the sort
of operation that would occur to him naturally.48



The primordial motions: circular inertia and free fall 373

later deduced the correct result that the speed is proportional to the time
U.e.,

I do not propose to attempt to reconstruct here the steps by which
Galileo arrived at Eq. (7.4). Some idea of the difficulty he must have had
can be gauged from the amount of space and trouble he devotes in the
Discorsi (published, as we recall, over 30 years after he had made his
discoveries) to the basic concepts needed to give adequate expression to
the laws (7.1)-(7.4). The treatment given in the Discorsi (Day 3 of that
dialogue) more or less reverses the steps by which Galileo arrived at the
law (7.4). For, having first of all considered the definition of uniform
motion, Galileo first proceeds to define what he means by a uniformly
accelerated motion, which is a motion in which equal increments of speed
are added in equal increments of time (and not, importantly, distance).
After that he proves (by geometrical arguments) his basic result:50

The spaces described by a body falling from rest with a uniformly accelerated
motion are to each other as the squares of the time intervals employed in
traversing these distances.

It is only then, as a corollary to this result, that he deduces the
odd-numbers rule (7.1) that was his empirical point of departure.

The law (7.4) is of course the law of uniform acceleration considered by
the Mertonians (Chap. 4), and much of Day 3 of the Discorsi is taken up
with proving results that had already been obtained in the late Middle
Ages, at the very least as abstract mathematical possibilities. It is therefore
perhaps reasonable to ask to what extent Galileo should be given the
credit for discovering the law of free fall. This question has been looked at
in considerable detail by Clagett,51 whose conclusions I shall briefly
summarize. Between Aristotle and Galileo there were numerous discus-
sions of the subject. With a few exceptions, of which the most notable is
Philoponus in the passage quoted in the footnote on p. 198, there seems
throughout the period to have been a remarkable lack of interest in
actually attempting to determine by measurement how bodies fall. The
extreme difference between astronomical practice and the attitude to
terrestrial physics is nowhere more apparent than in this field. Interest-
ingly, one of the earliest discussions of free fall to attract widespread
comment was due to Hipparchus, whose ideas influenced Galileo's early
thinking. In order to give a flavour of what much of the subsequent
discussion was like, I quote here part of Simplicius's account of
Hipparchus's lost work on the subject:52

Hipparchus, on the other hand, in his work entitled On Bodies Carried Down by
Their Weight declares that in the case of earth thrown upward it is the projecting
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force that is the cause of the upward motion, so long as the projecting force
overpowers the downward tendency of the projectile, and that to the extent that
this projecting force predominates, the object moves more swiftly upwards; then,
as this force is diminished (1) the upward motion proceeds but no longer at the
same rate, (2) the body moves downward under the influence of its own internal
impulse, even though the original projecting force lingers in some measure, and
(3) as this force continues to diminish the object moves downward more swiftly,
and most swiftly when this force is entirely lost.

It will be noted that in Hipparchus too there appear to be intimations of
impetus theory; a similarity with the earlier quotation from Galileo's De
Motu is evident.

In the Middle Ages, Buridan, in the passage already quoted in Chap. 4,
came closest to providing an explanation of the mechanism of free fall in
line with Newtonian conceptions. However, his discussion remained
qualitative. As regards the quantitative description of free fall, Clagett
points out that there was much confusion. Writers who followed the basic
idea of Buridan's impetus theory did in some cases, not surprisingly,
arrive at the conclusion that the speed of fall increased in proportion to the
time of falling. But the very same people also often thought that the speed
of fall increased in proportion to the distance fallen! The most notable of
these were Albert of Saxony, Leonardo da Vinci, and even Galileo (as late
as 1604), as already mentioned. What one lacks throughout the entire
discussion is a sense of urgency. Galileo makes you feel the whole
conception of nature hangs on the outcome of his discussion, and he
speaks, like Copernicus on the matter of the earth's mobility and, unlike
the medievals, with the authority of someone who knows. This may be
contrasted with what Clagett53 believes is the 'first statement of free fall
with the infinitesimal implications of the Merton discussions explicitly
applied'. It is found in a work published in 1555 by the Spaniard,
Domingo de Soto. After a statement of the Merton Rule, de Soto
comments, casually and in the manner of a thought experiment: 'This
species of movement belongs properly to things which are moved
naturally and to projectiles. For when a body falls through a uniform
medium, it is moved more quickly in the end than in the beginning.'

What is perhaps most important of all in Galileo's discussion is his
emphasis on the need to find the precise mathematical law which
describes what happens when actual bodies fall. The attentive reader
cannot fail to note the excitement and pride of someone who has made an
unexpected and beautiful empirical discovery and found the mathematics
which describes it adequately. Let me conclude this digression with
Clagett's emphatic summary:54 'Regardless of how well he performed his
experiments and what data came out of those experiments, Galileo's
treatment was certainly the starting point of modern investigations of the
problem of the acceleration of falling bodies/
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We now return to the discussion of the law (7.4), the importance of
which for the development of dynamics can hardly be overestimated, as
we shall see in Chaps. 9-11. It was certainly one of the most important of
the baker's dozen. However, it would be wrong to conclude that Galileo
immediately drew all the modern conclusions that we do from the law. In
the long run his discovery opened the way to the recognition that the
secrets of dynamics are revealed by examining accelerations and not the
speed of motion or the path along which bodies move (the world that
Kepler still inhabited).

Galileo was not capable of such a leap, which could not come before the
development of a suitable general framework and the discovery of several
more important mathematical relationships. As already hinted, what
Galileo actually did was develop a kind of analytic motionics - analytic
because he decomposed in his mind a given motion into atomic
constituent motions, motionic because these atomic motions were taken as
such without any search for a dynamic (i.e., causal) origin of them. Such
motions did not arise for physical reasons; they did not have efficient
causes but only the final teleological cause that Galileo seems to have been
content to inherit from Aristotle through Copernicus. They were not
fitted into a comprehensive scheme. But, of course, the real revolution
was in the mathematization of motion and the identification and
description by simple mathematical laws of motions that do actually occur
in nature. The mathematics was like the application of a drop of easing oil
to a great machine, built but never set in motion. It all started to move.

If Galileo was conservative in retaining an essentially Aristotelian and
teleological overall concept of motion, he was strikingly revolutionary in
postulating mathematical laws of motion. It was in this mathematization
of empiricism that Galileo laid such secure foundations for dynamics.

To summarize this part of the discussion, we can say that the main
significance for Galileo of the law (7.4) of free fall was that through it he
felt convinced he had discovered nature's language. Secure in the
knowledge of his possession of one at least of the 'symbols' in which the
book of the universe is written, he could set about the task of analysing
the bewildering variety of motions observed on the earth.

In fact, before he could do that he had to find his second 'symbol'. This
was his 'law of circular inertia', the discovery of which was intimately
linked to his work on the descent of bodies down gently sloping planes.
However, before we come to that, it is worth underlining the intimate
connection between the mathematization of motion and the very
possibility of quantitative study of nature. It is clear from the quotations
about the effects of friction and air resistance already given from De Motu
that Galileo was strongly predisposed to the discovery of simple
mathematical laws of motion years before he actually discovered them.
However, it was only with the discovery of such laws that quantitative
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treatment of air resistance etc. became possible. The progression (7.1) is
of such beauty and simplicity that - at least to some one of Galileo's bent -
it just has to express the inner reality of things even though any empirical
realization of descent down an actual inclined plane will not satisfy the
law (7.1) exactly. The actually observed motions only approximate the
progression (7.1) and other such 'exact' laws of motion, but the important
thing is that the approximation is good enough for Galileo the mathe-
matician to pick out the pure undefiled law and peel away the dross of the
imperfect world. He can identify the laws bodies would have in the absence
of the disturbing elements, and his spirit delights in their recognition.
Where Kepler treasured the actual observations of planets as gems,
Galileo treasured the ideal motions.

Of course, Galileo was not the first to recognize the fact that friction
affects the motion of a body. But without the clear concept of a law of
motion such as (7.1), there is no standard against which the disturbing
effect can be measured and quantified. This remark demonstrates the
truth of the statement that meaningful measurement is hardly possible
without an underlying theoretical conception of what it is significant to
measure. One of the most striking things about Galileo is the confidence
and surety with which he writes and formulates principles of scientific
method that are as valid now as in the seventeenth century. This can only
stem from the confidence given him by the discovery of laws such as (7.1).

The possibility of using a precise mathematical law to 'separate' the
pure state from disturbances introduced by the contingent world acquired
even greater significance (admittedly after Galileo's death) in the case of
the law of inertia. Galileo was thinking of disturbances introduced by
imperfections of the experimental apparatus. Newton used the law of
inertia to effect a clean division between primordial inertial motion and
the completely uneliminable disturbances in motion introduced by forces
such as gravity and magnetism. This procedure had far more radical
consequences for our overall conception of the world - as drastic as
Alexander taking his sword to the Gordian knot - and will lead us to the
heart of the debate about the absolute or relative nature of motion.

I have emphasized this aspect of Galileo's mathematization of motion
not only for its intrinsic importance in the development of the methods of
modern science but also because it is characteristic of the move away from
the contingent world into the perfect world of mathematics. This
movement gained great strength from the success of Galileo's work and
was taken still further by Descartes. These two men can be regarded as the
founders of modern rationalism. Although the empirical content was
much more pronounced in Galileo's thinking than in Descartes', they
were united in seeing the clarity of the concept as all important. Such a
concept was space. We shall see in the next chapters how space gradually
acquired all the attributes of a perfectly clear concept. For Copernicus and
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Kepler, space was truly nothing; after Galileo and Descartes it became
almost palpable. The overthrow of Aristotle was complete, and space
became such an ingrained part of our thought that it remains, I believe,
the biggest single obstacle to a Machian, i.e., relational, conception of
motion.

But we must now return to Galileo's discoveries. It is clear from his
writings that Galileo was deeply struck by something which might be
called 'persistence' of motion, that there is an 'amount' of motion (which
is not yet Newton's momentum) and which has an existence just as real as
material objects. In both the Dialogo and the Discorsi he lays great stress on
the fact that the speed acquired by a body in descending from a given
height depends on that height alone and is quite independent of the
steepness of the slope down which it has descended (always assuming
complete absence of friction) and, equally important, that such speed,
however acquired, will suffice to carry the body back up to the same
height from which it has previously descended, even if it reascends along
a slope of different inclination, or even a curved slope. Mach55 believes
that Galileo discovered the essence of the law of inertia in a flash of
inspiration by considering the descent of some body and its subsequent
reascent along a plane inclined at a very small angle indeed to the
horizontal. In such a case it would travel a very great distance in
the horizontal direction before finally coming to a stop when it had
regained the height from which it was originally released. From this it is a
small step - which Galileo undoubtedly took - to making the assumption
that on a horizontal plane the motion would persist forever. This feeling
for persistence of a definite quantity of motion is strongly expressed in his
writings and was clearly anticipated in De Motu. However, whereas in De
Motu Galileo pointed out that a body could be put into horizontal motion
by the application of the slightest imaginable force (friction of course
being absent), the emphasis in his mature work is on the persistence for
ever of the motion once commenced.

There are several things that must be said about this persistence of
motion. The first is that in Galileo's mind a horizontal surface meant the
spherical surface of the earth. This is repeatedly emphasized in the Dialogo
and is implicit in the Discorsi. This means that for Galileo the persistence
of motion was persistence in circular motion - he had a concept of 'circular
inertia'. We shall return to this later. The second is that Galileo had lighted
(more or less simultaneously) on a second atomic, or primordial, motion:
here was another motion capable of precise mathematical formulation,
another of the 'precepts of architecture'. A third point is that Galileo must
certainly have been encouraged in accepting the idea of perpetual uniform
motion, especially circular, from the precedent set by Aristotelian
cosmology and above all Copernican astronomy and Copernicus's
argument that, if the earth rotates, there just has to be some natural
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motion which carries the earth and all its parts around in perpetual
circular motion. The precise connection with Copernicus's proposal will
be discussed in the next section. The final point is that although Galileo
certainly saw his Taw of inertia' as extremely important (quite contrary to
Mach's puzzling assertion that he discovered it 'quite incidentally' and
that it 'appears never to have played a prominent part in Galileo's
thought'56), it did not for him become the most fundamental of all laws.
Unlike Descartes and Newton, he did not elevate it to the status of Lex
Prima, the First Law of Motion. For Galileo it was just one of the
'architectural precepts' of mathematical motionics, more or less on an
equal footing with the law of free fall.

Imperfectly recognized as it was, Galileo's Taw of inertia' takes the
second of the baker's dozen for terrestrial motions, though, because he
failed to raise it to the status of the first law of nature, he shares the honour
for its recognition with Descartes.

We shall have more to say about the manner in which Galileo dis-
covered the Taw of inertia' in Sec. 7.5, in which we discuss the connection
it had in his mind with the problem of the rotation of the earth. Before
then, Sec. 7.4 will give us an idea of just how important the discovery was.

7.4. Compound motions. Parabolic motion of projectiles

We now come to the next great service that Galileo performed in creating
the foundations of dynamics - the development of the technique of
composition of primordial atomic motions. More than anything else, this
revealed the rich potential of the law of inertia. One can say that although
Galileo's concept of inertial motion was not quite correct, the use he made
of it, especially in the Discorsi, was. He was fortunate in applying it in a
situation in which the curvature of the earth's surface could be ignored,
so that the difference between his law of 'circular inertia' and Newton's
law had no effect. (The reason why many physicists, including Mach,
formed a rather false picture of Galilean motionics is that they based their
conclusions almost exclusively on the Discorsi, in which the subject matter
is much more limited than the Dialogo. In particular, the fact that Galileo
believed in 'circular inertia' can very easily escape a modern reader of the
Discorsi.)

This part of Galileo's work is characterized by the masterly use that he
made of geometry and his adaptation to problems in motionics of the
ancient Greek technique of kinematic geometry for generating curves by
the composition of different motions. The simplest example of this
technique, well known to the Greeks, from whom Gaileo certainly learnt
it, is as follows: if a body moves with uniform velocity along a line AB and
the line is simultaneously displaced with uniform velocity in a direction
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not lying within the line, so that the ends A and B are displaced to C and
D, respectively, while the body moves from A to B, then the resultant
motion of the body will be that of uniform rectilinear motion along the
diagonal AD of the parallelogram ABDC. This is the parallelogram of
velocities law used by pilots when flying in a wind. Even more suggestive
for Galileo was the construction by Archimedes of his well-known spiral,
which we discussed in Sec. 2.7, in connection with the Greek concept of
the passage of time. Galileo explicitly mentions this construction in the
Dialogo.57 He may also have been influenced by the astronomers' practice
of superimposing motions (superposition of deferent and epicycle
motion) to give the observed motion.

The more one studies Galileo's work, the more significant does his
concept of physically compound motions appear. In his Galileo at Work,58

Drake discusses a manuscript record of an experiment Galileo performed
in Padua which served simultaneously to verify (indirectly) his 'law of
persistence of horizontal motion' and the law of parabolic motion of
projectiles. In this experiment, Galileo rolled balls down an inclined plane
from different heights onto a horizontal table top and then let them roll
across the table with their acquired speed before falling off the edge.
Galileo was testing the relationship between the speed acquired in the
descent and the horizontal distance the ball would travel after falling off
the table before striking the floor.

This experiment is particularly interesting as an example of the rational
scientific method in which Galileo delighted. We have already seen how
the law of uniform acceleration in free fall was not discovered directly but
through its consequence - the odd-numbers law (7.1). In the table top
experiment, Galileo was able to make a similar indirect test of his 'law of
inertia'. If horizontal motion acquired naturally by a previous descent
remains constant in magnitude, then the horizontal distance traversed by
the balls after they leave the table and before they strike the ground must
simply be proportional to their horizontal speed, which Galileo could
calculate, since he knew the height through which they had fallen (in the
Discorsi, Galileo called this height the sublimity - literally, the amount
lifted up59).

This experiment led to Galileo's third great discovery in motionics - the
parabolic trajectory of projectiles. According to Drake,60 this discovery
was a by-product of the experiment to test the 'law of inertia' - the
parabolic nature of the path can almost be seen directly. Exceptionally
important for the development of dynamics was the fundamental
assumption on which the whole experiment was based, namely that once
the ball has passed over the edge of the table its motion consists of two
simultaneous and independent primordial motions - the uniform horizontal
motion and the uniformly accelerated motion of free fall. It is here that
Galileo's concept of analytical motionics came into its own. Day 4 of the
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Discorsi shows how the parabolic motion of projectiles arises from the
superposition of these two motions.

Although, no doubt, many readers will be familiar with Galileo's
derivation of the parabolic motions of projectiles, let us nevertheless look
at the key passages. After all, this result must count as the third of the
baker's dozen awarded to Galileo. Moreover, there are few great
discoveries in science presented with the lucidity that we find put here in
the mouth of Salviati, quoting directly from a text of the anonymous
Academician:61

Imagine any particle projected along a horizontal plane without friction; then we
know, from what has been more fully explained in the preceding pages, that this
particle will move along this same plane with a motion which is uniform and
perpetual, provided the plane has no limits. But if the plane is limited and
elevated, then the moving particle, which we imagine to be a heavy one, will on
passing over the edge of the plane acquire, in addition to its previous uniform and
perpetual motion, a downward propensity due to its own weight; so that the
resulting motion which I call projection [projectio], is compounded of one which is
uniform and horizontal and of another which is vertical and naturally accelerated.
We now proceed to demonstrate some of its properties, the first of which is as
follows: A projectile which is carried by a uniform horizontal motion compounded
with a naturally accelerated vertical motion describes a path which is a semi-
parabola.

At this point, our intelligent layman Sagredo interrupts with a request
for some mathematical details about parabolas, in which he is seconded
by the good Simplicio 'for although our philosophers have treated the
motion of projectiles, I do not recall their having described the path of the
projectile except to state in a general way that it is always a curved line,
unless the projection be vertically upwards' (which will give the reader an
idea of Galileo's waspish way of making the Peripatetics look faintly
ridiculous). Salviati, of course, obliges with a short discourse in which
Apollonius's work naturally figures prominently. He then proceeds to
the proof of the theorem, which I give together with Galileo's figure
(Fig. 7.1):62

We can now resume the text and see how he demonstrates his first proposition in
which he shows that a body falling with a motion compounded of a uniform
horizontal and a naturally accelerated [naturale descendente] one describes a
semi-parabola.

Let us imagine an elevated horizontal line or plane ab along which a body moves
with uniform speed from a to b. Suppose this plane to end abruptly at b; then at
this point the body will, on account of its weight, acquire also a natural motion
downwards along the perpendicular bn. Draw the line be along the plane ba to
represent the flow, or measure, of time; divide this line into a number of
segments, be, cd, de, representing equal intervals of time; from the points b, c, d, e,
let fall lines which are parallel to the perpendicular bn. On the first of these lay off
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Fig. 7.1.

any distance ci, on the second a distance four times as long, df; on the third, one
nine times as long, eh; and so on, in proportion to the squares of do, db, eb, or, we
may say, in the squared ratio of these same lines. Accordingly we see that while
the body moves from b to c with uniform speed, it also falls perpendicularly
through the distance ci, and at the end of the time-interval be finds itself at the
point i. In like manner at the end of the time-interval bd, which is the double of be,
the vertical fall will be four times the first distance ci; for it has been shown in a
previous discussion that the distance traversed by a freely falling body varies as
the square of the time; in like manner the space eh traversed during the time be will
be nine times ci; thus it is evident that the distances eh, df, ci will be to one another
as the squares of the lines be, bd, be. Now from the points /, /, h draw the straight
lines io, fg, hi parallel to be; these lines hi, fg, io are equal to eb, db and cb,
respectively; so also are the lines bo, bg, bl respectively equal to ci, df, and eh. The
square of hi is to that of fg as the line Ib is to bg; and the square of fg is to that of io
as gb is to bo; therefore the points i, f, h, lie on one and the same parabola.

It is quite clear from the amount of space that Galileo devotes to the
question of the composition of motions in both the Dialogo and the Discorsi
that he regarded this as one of the most important of his insights and as
one that his readers would find particularly hard to grasp and accept. For
example, Sagredo, Galileo's favoured mouthpiece for emphasizing the
important insights, comments on the above proof:63 'One cannot deny
that the argument is new, subtle and conclusive, resting as it does upon
this hypothesis, namely, that the horizontal motion remains uniform,
that the vertical motion continues to be accelerated downwards in
proportion to the square of the time, and that such motions and velocities
as these combine without altering, disturbing, or hindering each other.'
Before Galileo, there was no clear conception of such superposition of
motions, each conceived to have an independent physical existence.*

* The astronomers' superposition of epicyclic and deferent motion, mentioned earlier as a
possible influence on Galileo, is not a true anticipation of Galileo's principle, since it was
purely formal. It is only in Kepler's compounding of the two force-induced components in
the motions of the planets (as he conceived them) that we find a genuine parallel to Galileo's
physical principle. However, Kepler made only modest use of the principle, whereas Galileo
gave it great prominence and truly demonstrated its potential.
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Instead, people had thought that one of the motions would win out and
completely dominate the resultant motion. According to this view, a
cannon ball shot at an angle to the horizontal would at first travel in a
straight path (along the line of the barrel) but near the end of its flight,
when its initial impetus had been greatly weakened, gravity would take
over (having originally been completely 'switched off); it was believed
that in the final section of the flight the cannon ball would drop vertically
to the ground, gravity having become dominant. The earlier quotation
from De Motu (p. 367) shows that Galileo himself initially shared similar
ideas.

The advance achieved by Galileo in scientific method is very apparent
when we compare his treatment of the projectile problem with the
quotations from Buridan in Chap. 4. Buridan is close to the truth but
remains completely qualitative - he is a logico-verbal Aristotelian. From
the final two sentences of the quotation from him on p. 200 it would not
be possible to predict the quantitative outcome of a projectile experiment -
even one in a vacuum. The new elements introduced by Galileo are the
assumption of two idealized motions, both of them described quantita-
tively, and the further assumption, forced upon Galileo by his belief in the
rotation of the earth (see Sec. 7.5) and confirmed by the tabletop
experiment, that two such motions can exist simultaneously without
interfering with each other.

For the projectile problem, Galileo's assumption of an incorrect law of
inertia was of no importance, and he was able to anticipate an important
result of fully fledged Newtonian dynamics. As in the case of pure free
fall, the result was a beautifully simple mathematical law - the path of the
projectile is a parabola. More evidence of an ideal world glimpsed
through the confusing senses.

It would again be wrong to conclude that Galileo had arrived in the case
of the projectile problem at a Newtonian conception of the problem. It is
true that, like Newton, Galileo has a generic division of motions. But
Newton's is the division into free inertial motion in any direction and
force-induced accelerations superimposed on the inertial motion. In
Galileo's motionics, there are no forces in the Newtonian sense, and his
division of motions is along different lines - into uniform and perpetual
circular motion, on the one hand, and linear vertically accelerated motion
on the other.

Wohlwill64 points out a significant difference between Galileo's treat-
ment of the vertical motion of free fall and the post-Newtonian treatment.
In Newtonian dynamics, inertia is operative in both the vertical and the
horizontal directions in the problem of projectile motion. In the horizontal
direction there is no force acting, so the horizontal motion remains
constant. In the vertical direction a constant force acts, and this keeps on
adding increments to the downward velocity which are all retained by virtue
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of exactly the same principle of inertia as acts in the horizontal direction.
In Newtonian dynamics, the vertical motion is itself a composite motion.
Such an approach is alien to Galileo; the vertical and horizontal motions
are as different as chalk and cheese. The vertical motion is a distinct
primordial motion just like the circular motion. In this respect, Buridan's
qualitative discussion (p. 202) was actually closer to Newton than
Galileo's.

We can see here too how helpful it was for Galileo (and the development
of dynamics) that he did adhere to the old Aristotelian concepts - for these
suggested to him that primordial motions do exist. Moreover, the fact that
there were for him, as for Aristotle, only two such motions, both of great
simplicity, gave him the confidence to develop a primitive form of
dynamics based on analysis of compound motions into their primordial
constituents.

This remark also shows clearly how the Copernican revolution gave
birth to dynamics. For Aristotle possessed the same two primordial
motions but they belonged to different worlds: the circular to the heavens, the
rectilinear to the earth. The two had no intercourse with each other. No
compounding, no real dynamics. But when Copernicus raised the earth
into the heavens and made it a planet like the others, the motions were of
necessity conjoined. Dynamics was the offspring of this shotgun
marriage. Copernicus caught them in the act; Galileo married them.

The work on the parabolic motion of projectiles brought Galileo to the
very threshold of dynamics. In fact, on the basis of the law of free fall and
the parabola law, Newton actually credited Galileo in the Principia with
knowledge of his first two laws of motion, claiming that Galileo obtained
his results by using them. This was certainly an anachronism on Newton's
part but it does underline Galileo's achievement. Clear evidence of how
close Galileo was to the definitive form of dynamics can be seen in the
appearance in the projectile problem of one of the most characteristic
features of dynamics - the determination of the actual motion of a body by
the simultaneous action of the universal law governing its motion and the
specific initial conditions. For, as we have already noted, Galileo
considered the possibility of an arbitrary preassigned value of the
horizontal velocity of the body (acquired by letting it roll down from
different sublimities, i.e., heights), and this leads to a complete family of
different motions, all of them, however, governed by the same principle.
We see simultaneously, as pointed out by Wohlwill,65 that there is still a
severe limitation in Galileo's outlook - the initial velocity may vary in
magnitude but it is always horizontal. Thus, the limitation of Galilean
motionics is reflected in the fact that in his theorem he obtains a semi-
parabola, the motion always commencing at the apex. There is still a
vestigial Up and Down in Galileo's work, a reflection of the fact that he did
not break entirely with Aristotle. In Chap. 10 we shall see the final step
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taken by Newton - the extension of the framework of dynamics to
encompass arbitrary initial conditions.

To conclude this section, we again anticipate the absolute/relative
debate. It was Galileo's work that made possible the concept of absolute
motion. We have already seen that mathematization of motion is an
essential step in the identification of the ideal, the separation of the
perfect from 'accidental and special circumstances'. The decomposition of
motions that Galileo demonstrated in the projectile problem was far more
drastic. There is no suggestion here that either of the two constituent
motions is a mere disturbance (like friction) of the other. When Galileo
decomposes the composite motion into two, he is not scraping away
dross; he is taking the surgeon's knife in true dissection. He showed how
motions could be separated. Newton went far further. For in Galileo's
mind, both motions were intimately related to the earth - circular motion
around it, maintaining 'proper position', and free fall towards the earth,
to 'return to the proper position - or at least get closer to it'. Both motions
were still understood ultimately in teleological terms in their relation to the
contingent world. In contrast, Newton used decomposition of motion to
divide motions as observed into a part due to forces and an inertial part.
For the part due to forces he provided - along Keplerian lines - an explicit
dynamical explanation in terms of identifiable features of the contingent
world. But the inertial part was completely detached - from all contingent
circumstances.

The Machian thesis is that inertial motion is not at all pure motion in
space on which the contingent world superimposes force-induced
disturbances. It is rather that inertial motion is itself the outcome of a huge
cooperative effort by the universe, with which any body in motion
interacts. Mach challenges Galileo's atomic conception of motion as
modified by Newton; he argues that there is no way of separating out
motions pure and undefiled. Indeed, that would be to cut oneself off from
the source, from the mother of all. In the Machian view, Newton used
Galileo's knife to cut motion's umbilical cord to the mater omnium.

7.5. Rotation of the earth, different forms of the law of inertia and
Galilean invariance

Galileo's aim in writing the Dialogo, his most famous book - though
perhaps not his most influential (for the history of dynamics, that honour
must be accorded to the Discorsi) - was to prove that the earth truly moves.
Writing under the constraint of not being allowed openly to advocate
Copernican teaching, he adopted the device of an allegedly neutral
dialogue in which Salviati represents Copernicus, Simplicio defends
Aristotelianism, and Sagredo represents the interested and intelligent
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layman wishing to discover the truth. In fact, no reader of the Dialogo
could have been left in any doubt as to Galileo's own opinion.

There are three main planks in Galileo's argument by which he sought
to meet the challenge Cardinal Bellarmine had thrown down - bring me
proof positive that the earth moves.66 Of lasting importance for the
history of dynamics was the discussion in Day 2, in which Galileo
countered the dynamical arguments against rotation of the earth. This
will be the topic of this section. In Day 3, Galileo advanced the
astronomical evidence for annual motion of the earth around the sun.
This part of the dialogue is remarkable for Galileo's apparent ignorance of
basic theoretical astronomy and the complete absence of any reference to
Kepler's work on the orbit of Mars (beyond, in Day 4, a most cursory hint67

that the problem of the true planetary orbits was most complicated and
still far from solution). Kepler's Astronomia Nova had been published more
than twenty years earlier; his work had been amplified in the later Epitome
ofCopernican Astronomy. Kepler had marshalled the astronomical evidence
for motion of the earth around the sun with great clarity and equally great
tact towards ecclesiastical sensitivity. One would like to believe that if
Kepler had sat down to a quiet talk with Bellarmine, the cardinal would
have come away a convinced supporter of Copernicus, or rather the
Imperial Mathematician, Protestant though he was. As we have seen,
Kepler immeasurably strengthened Copernicus's arguments for mobility
of the earth. Above all, he had completely eliminated all the plethora of
mutually contradictory hypotheses, each yielding more or less equally
inadequate 'saving of the appearances', that had plagued astronomy for
millennia and had done so much to foster the cynical conventionalism
which Osiander expressed in the anonymous preface to De Revolutionibus
(and in which Bellarmine at times seems to have taken refuge). He
completely eliminated all uncertainty about the relative dispositions of the
bodies in the solar system and showed that the only remaining ambiguity
corresponded to the irreducible kinematic freedom associated (to use
modern terms) with the choice of the coordinate system. His dynamical
arguments must surely have persuaded Bellarmine (who had only asked
for reasonable certainty) that the heliocentric option was the only sensible
one, especially when coupled with Day 2 of Galileo's Dialogo, which,
although it provided no positive proof of diurnal rotation, at least took all
the sting from the dynamical arguments against the earth's rotation.

Yet, remarkably, Galileo chose merely to reiterate Copernicus's original
argument from the retrograde motion of the planets. He said not a word
of the far more telling fact that the apsidal knitting needles defined by the
equants and eccentric centres of each of the planets all converge precisely
on the centre of the sun and - most eloquent of all evidence - that the
earth's orbit too has an equant. Galileo was, of course, able to augment the
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original argument of Copernicus by his own telescopic discoveries, above
all the phases of Venus, which unambiguously confirmed the relative
order of the celestial bodies. However, as already pointed out, the
Tychonic system was just as effective from that point of view. If anything,
Day 3 actually strengthened, rather than weakened, the position of the
Dane, towards whom Galileo seems to have nurtured a certain antipathy
('nor have I ever set much store by Tycho's verbosity' says Salviati68).

Thus, positive proof, in the form of Galileo's theory of the tides, was
reserved for Day 4. We shall discuss this in the next section. The theory of
the tides being incorrect, the only lasting achievement of the Dialogo (in
purely scientific terms) was to show how rotation of the earth could be
reconciled with the theory of motion. This was an immense achievement
and one of the most important chapters in the discovery of dynamics.
There is a poem by Wordsworth that in eight brief lines succeeds in
capturing, whether intentionally or not, the mystery of this whole matter
of the earth's rotation - the fact that we spin with the earth and yet remain
quite unaware of the fact:

A slumber did my spirit seal;
I had no human fears:

She seem'd a thing that could not feel
The touch of earthly years.

No motion has she now, no force;
She neither hears nor sees;

Roll'd round in earth's diurnal course
With rocks, and stones, and trees.

What Galileo did was to find a mathematical account of the matter,
admittedly not quite without flaw, that did justice to the great mystery.
He sensed correctly that thread of motion which persists forever and
escapes 'the touch of earthly years'. In the process he very nearly
succeeded in giving the correct formulation of what is, perhaps, the
deepest of all the principles of physics - the principle that is now called the
principle of Galilean relativity. The residual flaws in his treatment are
reflected in the fact that in the process he used no less than three different
forms of the 'law of inertia'.

We begin the discussion of this feat, which will simultaneously cast
more light on the emergence of the concept of inertial motion (the vitally
important step without which dynamics could not have appeared), with
Galileo's earliest published statement of his 'law of circular inertia'. It
comes in the second of his Letters on Sunspots (1613):69

I seem to have observed that physical bodies have physical inclination to some
motion (as heavy bodies downward), which motion is exercised by them through
an intrinsic property and without need of a particular external mover, whenever
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they are not impeded by some obstacle. And to some other motion they have a
repugnance (as the same heavy bodies to motion upward), and therefore they
never move in that manner unless thrown violently by an external mover. Finally,
to some movements they are indifferent, as are these same heavy bodies to
horizontal motion, to which they have neither inclination (since it is not toward
the center of the earth) nor repugnance (since it does not carry them away from
that center). And therefore, all external impediments removed, a heavy body on
a spherical surface concentric with the earth will be indifferent to rest and to
movements toward any part of the horizon. And it will maintain itself in that state
in which it has once been placed; that is, if placed in a state of rest, it will conserve
that; and if placed in movement toward the west (for example), it will maintain
itself in that movement. Thus a ship, for instance, having once received some
impetus through the tranquil sea, would move continually around our globe
without ever stopping; and placed at rest it would perpetually remain at rest, if in
the first case all extrinsic impediments could be removed, and in the second case
no external cause of motion were added.

It will be noted that Galileo here follows his early De Motu extremely
closely. Interestingly, his justification of the principle is not empirical but
by more or less strictly Aristotelian arguments. Very important is the
notion of rest and motion as representing intrinsic properties of bodies:
the state of uniform circular motion is something intrinsic to the body, not
something impressed from outside, as in impetus theory. We shall see
that this is a significant conceptual advance. It clearly stems from
Aristotle's concept of a natural motion.

In the Dialogo, published nearly twenty years later, the same principle
is introduced in a much more empirical way, though even there it is
through a process of Socratic questioning in which Salviati elicits from the
hesitant Simplicio the facts that Galileo had observed empirically in his
Paduan workshop. Salviati invites Simplicio to consider70 'a perfectly
round ball and a highly polished surface, in order to remove all external
and accidental impediments. Similarly I want you to take away any
impediment of the air caused by its resistance to separation/

By using the same sort of leading questions that Socrates employs in
Plato's dialogue to extract a geometrical proof from a slave boy, Salviati
leads the unfortunate Simplicio through a course of basic motionics which
culminates in a heuristic derivation of Galileo's restricted law of circular
inertia on the surface of the earth. In the course of this grilling, Simplicio
agrees that on a horizontal plane 'there would be an indifference between
the propensity [to move] and the resistance to motion' and 'I cannot see
any cause for acceleration or deceleration, there being no slope upward or
downward', so that 'if such a space were unbounded, the motion on it
would likewise be boundless. That is perpetual.'

The concluding question of this discussion is:71 Then a ship, when it
moves over a calm sea, is one of these movables which courses over a
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surface that is tilted neither up nor down, and if all external and accidental
obstacles were removed, it would thus be disposed to move incessantly
and uniformly from an impulse once received?'

To which, of course, Simplicio must give his assent. Before we discuss
the use that Galileo makes of this principle, which quite clearly he
formulated on the basis of his Paduan experiments and his Aristotelian
concept of a 'neutral' motion, let us consider the other two forms of
'inertia' that he employs.

The second form of 'inertia' is a weaker form of the principle which we
have just discussed (and which is most clearly stated in the second of the
Letters on Sunspots). The second form manifestly derives from De
Revolutionibus. It will be recalled that Copernicus had argued that the
integral bodies of the universe, being spherical in shape, would by virtue
of their spherical shape have an intrinsic propensity to circular motion -
either about an axis (rotation) or in revolution about the sun. Copernicus
argued that parts of the earth would, simply because they are parts of the
earth, have the same propensity.* This idea features prominently in the
Dialogo, more so perhaps than the specifically Galilean form of the
principle already enunciated, from which moreover it is not clearly
distinguished. For example, in discussing the problem of a stone that falls
from the top of a high tower, Galileo has Salviati say74 'the diurnal motion
is being taken as the terrestrial globe's own and natural motion, and
hence that of all its parts, as a thing indelibly impressed upon them by
nature. Therefore the rock at the top of the tower has as its primary
tendency a revolution about the center of the whole in twenty-four hours,
and it eternally exercises this natural propensity no matter where it is
placed.'

Note that according to this principle the only inherent property which
the stone possesses is 'its primary tendency' to 'revolution about the
center of the whole in twenty-four hours', i.e., strictly along a line of
latitude and at a given, latitude-dependent, speed. In contrast, in
Galileo's stronger form the ship can course over a calm sea in any direction

* It is interesting to note that Kepler, in the Astronomia Nova, explicitly mentions this theory
of Copernicus in connection with his own (inadequate) discussion of rotation of the earth.7\
'Copernicus, it is true, prefers to assume that the earth and all things terrestrial, even if
detached from the earth, are directed by one and the same moving soul that, at the same time
as it turns the earth, turns with it simultaneously parts detached from its body.' (The moving
soul alleged by Kepler is actually completely absent in Copernicus.) It is moreover clear from
the manner in which Kepler discusses this theory and his reference, noted earlier, to
impetus theory that he regarded them as applying to two totally distinct phenomena. Thus
both strands that led to the law of inertia passed unnoticed and distinct through Kepler's
hands. This can also help to explain how Galileo could simultaneously use two different
forms of inertia. It is also worth noting that at the end of his book on magnets, which Galileo
read and praised (describing the book as 'great to a degree that is enviable'73) Gilbert argued
at length for the Copernican explanation of the earth's rotation.
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and at any speed. As we shall see, this strengthening was vitally
important.

Finally, Galileo also introduces, though only episodically, a concept of
rectilinear inertia. This is done alongside his concept of circular inertia.
Baffling for the modern reader is the fact that Galileo does this without
seeming to note the slightest discrepancy. There is absolutely no
discussion of the connection between the two principles. The only
possible explanation is that to Galileo (and, hence, by implication to his
readers too) they related to phenomena that were self-evidently different.
This is confirmed by the examples which are given and which strongly
suggest that Galileo still adhered to the Aristotelian distinction between
violent and natural motions.* The examples he discusses are examples of
violent motion: stones cast by slings and bullets shot from guns. In the
Dialogo,76 Galileo appears to accept without question - and as something
generally known - that a stone leaves a sling in a straight line along the
tangent and that a cannon ball leaves the cannon along the straight line
defined by the barrel. In both cases it is clear he assumes that in the
absence of air resistance and weight both the stone and the cannon ball
would continue forever with uniform speed along the initial line. This is,
of course, the correct law of inertia. Its appearance without any clear
precedent (and without particular emphasis) is puzzling. It may derive
from medieval impetus theory in the pristine form given it by Buridan
(rather than the form that Galileo used in his early De Motu). However,
elsewhere in the Dialogo Galileo appears to dissociate himself from
impetus theory, as we shall see.

It is interesting that Galileo makes no claim or implication which would
indicate that he regarded himself as the discoverer of this third principle
(the one actually nearest the truth). Nor, as we have said, does he supply
any explanation for the apparent conflict between this law and his own
law of 'circular inertia'. One can only surmise that what to a modern
reader is a glaring discrepancy did not at all strike him as odd. It shows
how far Galileo was from a modern understanding of dynamics; the point
is that the sling-projected stone and the cannon ball are doing something
quite different from a stone that acquires a speed by falling naturally
before being deflected into perpetual circular motion. The cannon ball has
been forced into a violent motion by the will of the cannoneer, while the
stone, in falling, is simply striving to return to its proper place and, having
reached it, can happily go into a state of uniform circular motion, which is
natural because the stone remains in its proper place. In such a teleological

* It seems that this division between violent and natural motions (which even Newton75

considered in the mid-1660s) was the last feature of Aristotelianism to die - in fact, one could
even argue that the division lived on in the Newtonian distinction between inertial motion
and acceleration-inducing forces.
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view of motion, there is nothing odd about two objects commencing a
motion at the same point, and with the same initial velocity, but then
going in deviating directions although all the other external circumstances
are identical. It is only from the high ground achieved by Newton,
according to whom the subsequent motion - for given forces - is uniquely
determined by the initial position and velocity, that Galileo's acceptance of
two different laws appears so odd.*

In the light of these comments, Galileo demonstrates the truth of
Mach's comments in the quotation at the beginning of the book about the
need for an examination of science in a historical perspective. The
example we are considering shows how a general philosophical
framework held Galileo back from breaking through to a genuinely new
concept of motion. Later in the chapter we shall see that the new
mathematical and physical ideas that Galileo developed were also capable
of leading him to incorrect results that are particularly illuminating in the
context of the discussion in this book of the status of absolute and relative
motion.

Now that we have discussed the three forms of the 'law of inertia' that
appear in the Dialogo, we can examine some of the uses to which Galileo
put them in arguing for rotation of the earth. He realized that his biggest
task was to overcome ingrained prejudice. (Simplicio comments79 that
The crucial thing is being able to move the earth without causing a
thousand inconveniences.') In the person of Salviati, Galileo comments:80

'Aristotle's error, and Ptolemy's, and Tycho's, and yours, and that of all
the rest, is rooted in a fixed and inveterate impression that the earth
stands still; this you cannot or do not know how to cast off, even when
you wish to philosophize about what would follow from assuming that
the earth moved.' He makes great play of the fact that many so-called
proofs of the earth's immobility are logically fallacious since they assume
what they are intended to prove (this leads Salviati to comment81 that
although Aristotle was the undoubted discoverer of the rules of logic that
did not mean that he was himself a good logician!).

To help overcome the prejudice against terrestrial mobility, Galileo
puts great emphasis on the relativity of perceived motion. Salviati's
opening statement on the subject is:82

whatever motion comes to be attributed to the earth must necessarily remain
imperceptible to us and as if nonexistent, so long as we look only at terrestrial
objects; for as inhabitants of the earth, we consequently participate in the same

* This explanation of the occurrence of two different 'laws of inertia', which I formed on the
basis of a first reading of the Dialogo,77 is, as I found later, essentially the conclusion that
Drake78 reached too after much consideration of the matter. With one significant exception,
to be discussed in Chap. 9, Galileo's examples are all consistent with such a division into
violent and natural motions.
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motion. But on the other hand it is indeed just as necessary that it display itself
very generally in all other visible bodies and objects which, being separated from
the earth, do not take part in this movement. So the true method of investigating
whether any motion can be attributed to the earth, and if so what it may be, is to
observe and consider whether bodies separated from the earth exhibit some
appearance of motion which belongs equally to all.

This is, of course, Copernicus's point that the positive evidence for the
earth's mobility must be sought in the heavens, not on the ground. For the
purposes of Day 2, Galileo concentrates his attention on the disappear-
ance of all effects of motion if we merely look at nearby objects that move
with us, and to demonstrate that an overall motion of the earth and its
parts can remain quite imperceptible on the surface of the earth, Galileo
illustrates with examples the purely kinematic principle that8? 'such
motion as is common to us and to the moving bodies is as if it did not
exist'. One of his most imaginative examples is of an artist sitting on the
deck of a ship as it sails from Venice to Aleppo and drawing a picture.84

Galileo asks one to imagine the true path of the nib of the artist's pen. It is,
of course, a long line stretching from Venice to Aleppo. The movements
made by the artist to produce his drawing appear as the minutest
deviations around the 'mean' line. Yet the final picture reveals not the
slightest trace of the long journey - which is 'subtracted' out by virtue of
the fact that the artist travels with the ship. Galileo drives home his point
with the comment: 'you are not the first to feel a great repugnance
toward recognizing this inoperative quality of motion among the things
which share it in common/

Thus:85 'Motion, in so far as it is and acts as motion, to that extent exists
relatively to things that lack it; and among things which all share equally
in any motion, it does not act, and is as if it did not exist.' It is here worth
noting the final words: 'as if it did not exist'. We shall return to them in
Sec. 7.6.

So far Galileo has merely stated a kinematic truth, admittedly with
much greater urgency than the medievals or Copernicus. However, he
extracts from it profound dynamical consequences through his physical
assumption that all the bodies on the earth have an inherent tendency to
uniform circular motion. To answer the difficulty of why a cannon ball
dropped from the top of a high tower appears to fall vertically, grazing the
side of the tower, and is not left far behind by the rotation of the earth,
Galileo invokes his 'law of inertia' in its Copernican form:86 'Keeping up
with the earth is the primordial and eternal motion ineradicably and
inseparably participated in by this ball as a terrestrial object, which it has
by its nature and will possess for ever.'

If this is granted, together with the further important principle that the
motion of falling of the ball towards the centre of the earth coexists with
the circular motion without in any way interfering with it, then it follows
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that although the actual path of the cannon ball in space will be curved, to
an observer on the earth it will appear to move vertically downward.
Galileo takes this opportunity to comment how deceiving the senses can
be if not properly guided by reason:87 'With respect to the earth, the
tower, and ourselves, all of which all keep moving with the diurnal
motion along with the stone, the diurnal movement is as if it did not exist;
it remains insensible, imperceptible, and without any effect whatever/

In the Dialogo, the problem of finding the actual path of the ball as it falls
to the earth is not solved exactly, but Galileo achieves a very adequate
qualitative solution and states clearly and with confidence the principle of
superposition of motions. As we have seen in Sec. 7.4, this principle bore
its richest fruit in the solution of the projectile problem. In Chap. 10 we
shall see the crucial role that this problem and Galileo's discussion of it
(and others like it) played in Newton's definitive clarification of the
principles of dynamics.

It is in further examples in which Galileo combines his kinematic
principle of the relativity of apparent motion with his stronger form of the
'law of inertia' (for natural motions) that Galileo comes closest to the
modern formulation of Galilean invariance and the related concept of
inertial frames. As already mentioned, Galileo does not draw attention to
the difference between his principle and the weaker Copernican
principle, with the consequence that the former sometimes seems to be
merely an unconscious extension of the latter. Perhaps it was, but this is
hard to reconcile with the very clear statement of the stronger form in the
Letters on Sunspots and also with the fact that, as he himself emphasizes,
results far stronger than the minimal one that the Copernicans need and
claim can be deduced. This comes out clearly in his discussion of a cannon
ball dropped from the mast of a ship onto the deck, in one case while the
ship is at rest relative to the surface of the earth, in another when the ship
is under sail. In the early seventeenth century it was firmly believed that
in the latter case the cannon ball would not fall at the base of the mast.

As we saw in the previous chapter, this alleged but nonexistent effect
was used by the anti-Copernicans against mobility of the earth. For, they
argued, if the effect occurs on a ship, it must similarly occur on a rotating
earth. Therefore, since the cannon ball is seen to fall vertically when
dropped from a tower, the earth must be immobile.

In the Dialogo, Galileo, who, if the suggestion made there can be
trusted, never even bothered actually to verify the effect in an experiment
('Without experiment, I am sure that the effect will happen as I tell
you'88)*, roundly declares this to be false: 'anyone who does [the ship

* Incredible as it may seem, it appears that this crucial experiment was not performed by
anyone before 1640, when Gassendi carried out the experiment on a ship in Marseille
harbour.89
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experiment] will find that the experiment shows exactly the opposite of
what is written; that is, it will show that the stone always falls in the same
place on the ship, whether the ship is standing still or moving with any
speed you please. Therefore, the same cause holding good on the earth as
on the ship, nothing can be inferred about the earth's motion or rest from
the stone falling always perpendicularly to the foot of the tower/

In fact, it is in the proof of this claim that Salviati takes Simplicio through
the Socratic grilling described earlier in this section.

In the discussion of this and similar effects there may be noted a decided
superiority of the Galilean conception of persistence of motion (derived at
least in part, it may be said, from Aristotle) over the impetus theory of
impressed force. According to the latter, force is, so to speak, transferred
from the thrower to the object thrown, to which it 'attaches' itself. In the
passage which now follows, in which Galileo is discussing balls thrown
into the air by horsemen, he more or less explicitly rejects the idea of
transfer of impetus and comes extremely close to the Newtonian (or
rather, one should say, Cartesian) conception of inertial motion as a
natural state rather than an enforced motion (note the 'mere opening of
your hand'):90

When you throw it with your arm, what is it that stays with the ball when it has
left your hand, except the motion received from your arm which is conserved in it
and continues to urge it on? And what difference is there whether that impetus is
conferred upon the ball by your hand or by the horse? While you are on horseback,
doesn't your hand, and consequently the ball which is in it, move as fast as the
horse itself? Of course it does. Hence upon the mere opening of your hand, the
ball leaves it with just that much motion already received; not from your own
motion of your arm, but from motion dependent upon the horse, communicated
first to you, then to your arm, thence to your hand, and finally to the ball.

These examples of Galileo, in which riders of horses or passengers in
carriages throw heavy objects vertically up into the air while in motion
and are then able to catch them again because the objects keep up with the
motion of the thrower, caused a considerable stir91 in the seventeenth
century; even today it is probably the case that more than half the world's
population would be surprised at the demonstration of such experiments.

The great importance of these examples - and the Paduan experiments
on which they ultimately rested - was that they went far beyond the bare
necessities imposed by Copernican theory. Just as Kepler extended the
astronomical side of the Copernican revolution into hitherto undreamed
of directions, so too did Galileo transfigure Copernicus's crude adaptation
of Aristotle. And in the case of both Kepler and Galileo powerful intuition
was linked to crucial empirical observation. This was what distinguished
their contribution to the scientific revolution from Descartes' much more
purely philosophical approach.
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Let us now see how Galileo's extension of Copernicus's notion brought
him a long way towards the fundamental principle of science that is
worthily named after him: the principle of Galilean invariance. We have
seen that in the example of the ship Galileo nowhere stipulates the
direction or speed of its motion; all that is required is that it should be
moving at a uniform speed over the surface of the earth. This freedom was
quite clearly suggested by Galileo's tabletop experiment, for which the
'sublimity' - and thus the resultant horizontal speed of the ball - can have
any value. Thus, in discussing the motion of the ship and its parts, Galileo
effectively introduced (without explicitly formulating the concept) a class
of primordial motions - his example will be true if any uniform motion
over the surface of the earth is a natural or 'primordial', motion,
irrespective of its speed and direction. Thus, Galileo was de facto using all
the key elements of the principle of Galilean invariance, though in a
restricted form and also in a form only approximately true.

First, he recognized a class of distinguished frames of reference (frames
moving at uniform speed on the surface of the earth), the most important
property of these being that if phenomena are observed strictly within the
frames it is impossible to establish the particular frame by such observa-
tions: without looking out of the cabin window, it is not possible to say
whether the ship is under sail or not. Second, he attributed this
'unobservability of the common motion' to a physical principle, namely,
to the fact that the common motion corresponds to a primordial motion,
shared by all the parts of the ship. Equally important is his principle of the
composition of motions, which permits different motions to be super-
imposed on each other without any mutual interference. This means that,
if a collection of bodies share one common motion, and this happens to be
primordial circular motion about the centre of the earth, they can
themselves superimpose on the circular motion certain relative motions
among themselves. This comes out particularly clearly in Galileo's
discussion of why birds in flight do not suffer any 'inconveniences' from
rotation of the earth, a point on which Sagredo expresses a touching
concern for the hapless birds:92

If only the flying of birds didn't give me as much trouble as the difficulties raised
by cannons and all the other experiments mentioned put together! These birds,
which fly back and forth at will, turn about every which way, and (what is more
important) remain suspended in the air for hours at a time - these, I say, stagger
my imagination. Nor can I understand why with all their turning they do not lose
their way on account of the motion of the earth . . . , which after all much exceeds
that of their flight.

Salviati reassures him with these words:93

if you drop a dead bird and a live one from the top of a tower, the dead one will do
the same as a stone; that is, it will follow first the general diurnal motion, and then
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the motion downward, being heavy. But as to the live bird, the diurnal motion
always remaining in it, what is to prevent it from sending itself by the beating of
its wings to whatever point of the compass it pleases? And such a new motion
being its own, and not being shared by us, it must make itself noticeable. If the
bird moves off toward the west in its flight, what is there to prevent it from
returning once more to the tower by means of a similar beating of its wings? For
after all, its leaving toward the west in flight was nothing but the subtraction of a
single degree from, say, ten degrees of diurnal motion, so that nine degrees
remain to it while it is flying. And if it alighted on the earth, the common ten would
return to it; to this it could add one by flying toward the east, and with the eleven
it could return to the tower.

As Segre94 comments, such conclusions, the fruit of Galileo's long
rumination on the implications of terrestrial mobility, 'are among the
most profound scientific insights ever achieved'. The principle of Galilean
invariance is certainly the fourth of the baker's dozen associated with the
study of terrestrial motions, though in this case Galileo must share the
honour for it with Huygens, as we shall see in Chap. 9.

In view of its importance as the paradigm of the most powerful of all
scientific principles, i.e., principles which state that in all circumstances
certain positive effects will never be observed - principles of impotence, as
Whittaker95 calls them - we conclude this section with Galileo's own
account of the 'nullity' of such experiments:96

For a final indication of the nullity of the experiments brought forth, this seems to
me the place to show you a way to test them all very easily. Shut yourself up with
some friend in the main cabin below decks on some large ship, and have with you
there some flies, butterflies, and other small flying animals. Have a large bowl of
water with some fish in it; hang up a bottle that empties drop by drop into a wide
vessel beneath it. With the ship standing still, observe carefully how the little
animals fly with equal speed to all sides of the cabin. The fish swim indifferently
in all directions; the drops fall into the vessel beneath; and, in throwing something
to your friend, you need throw it no more strongly in one direction than another,
the distances being equal; jumping with your feet together, you pass equal spaces
in every direction. When you have observed all these things carefully (though
there is no doubt that when the ship is standing still everything must happen in
this way), have the ship proceed with any speed you like, so long as the motion is
uniform and not fluctuating this way and that. You will discover not the least
change in all the effects named, nor could you tell from any of them whether the
ship was moving or standing still. In jumping, you will pass on the floor the same
spaces as before, nor will you make larger jumps toward the stern than toward the
prow even though the ship is moving quite rapidly, despite the fact that during
the time that you are in the air the floor under you will be going in a direction
opposite to your jump. In throwing something to your companion, you will need
no more force to get it to him whether he is in the direction of the bow or the stern,
with yourself situated opposite. The droplets will fall as before into the vessel
beneath without dropping toward the stern, although while the drops are in the
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air the ship runs many spans. The fish in their water will swim toward the front of
their bowl with no more effort than toward the back, and will go with equal ease
to bait placed anywhere around the edges of the bowl. Finally the butterflies and
flies will continue their flights indifferently toward every side, nor will it ever
happen that they are concentrated toward the stern, as if tired out from keeping
up with the course of the ship, from which they will have been separated during
long intervals by keeping themselves in the air. And if smoke is made by burning
some incense, it will be seen going up in the form of a little cloud, remaining still
and moving no more toward one side than the other. The cause of all these
correspondences of effects is the fact that the ship's motion is common to all the
things contained in it, and to the air also.

This passage brings us close to one of the central problems of the book.
In modern terms, what is the origin of the distinguished class of inertial
frames of reference! In Galileo's worldview, his residual Aristotelianism
provided an explanation of sorts for the existence of a distinguished
'frame of reference' such as the ship's cabin. There is even an explanation
of a class of such frames of reference. As already noted, they are tied into
the contingent world. But when first Huygens and then Newton enlarged
and altered the class of preferred frames, going over from uniform circular
motions over the surface of the earth to uniform rectilinear motions in all
three dimensions, they broke the last link with the Pythagorean cosmos,
leaving us speeding through the enigmatic void. A crude return to
primitive Aristotelianism is clearly impossible. The only alternative to the
void is a more sophisticated - dynamical and physical - reconnection of
the links between the here and now and the world at large. Kepler hinted
at the direction we must go - even if erudite philosophers shake their
heads in disapproval.

7.6. Galileo and absolute motion

The history of dynamics and especially the debate about the absolute or
relative nature of motion demonstrates that certain ideas about the nature
of things can become so ingrained in the mind as to defy almost
completely any possibility of being dislodged. The beginning of such a
tendency, specifically a belief in the independent and real existence of
space, can be discerned in Galileo's writings. As explained earlier in this
book, one of its aims is to lay bare the origin of our conceptions about
space, time, and motion. Let us therefore consider what Galileo thought
about these subjects.

We begin with one of the central questions of this book. How is motion
to be described? To what is motion to be referred - space or other bodies?
If we ask what Galileo thought about this subject, we find that in neither
the Dialogo nor the Discorsi is there any general discussion of the nature of
motion (such as is found in Descartes, Newton, and Leibniz). Galileo's
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beliefs, perhaps unconscious, have to be deduced from the manner in
which he describes motion. Luckily, this can be done quite readily.

As one reads through the Dialogo, it becomes more and more apparent
that, although he still retained a quite remarkably strong vestigial
Aristotelianism in his concept of position, Galileo, as Maier (p. 48) quite
rightly pointed out, instinctively regarded motion as taking place relative
to space - which was of course the space of Euclidean geometry. Despite
his profound remarks quoted above about the inoperative nature of
motion common to a collection of bodies, the qualification 'as if it did not
exist' is revealing and means in Galileo's mind precisely what it implies -
the motion does actually exist. Whether he made his famous retort 'Eppur
si muove' ('And yet it moves'), or not, nothing could be more characteristic
of Galileo's attitude: the mobility of the earth was for him an absolute and
objective fact.

In this section I shall first review the evidence in Galileo's writings on
which the conclusion of the foregoing paragaph is based, and then finally
consider the explanation of his belief that motion takes place with respect
to space rather than other bodies in the universe.

Right at the start of the Dialogo, in the review of Aristotelian physics and
cosmology, there are several revealing comments - and omissions.
Although Galileo comments on and emphasizes one of the most charac-
teristic features of Aristotelian motionics, namely, that in it diversity of
motions is an 'original principle', i.e., the elements are defined by their
motions, he seems to have been completely uninterested in Aristotle's
concern, evidently shared by Copernicus and Kepler, for an epistemolog-
ically sound definition of position by means of something material and
visible. Statements like those of Copernicus in De Revolutionibus quoted in
Chap. 5 and of Kepler in Chap. 6 are conspicuous by their absence
throughout the whole of the Dialogo. If Galileo believed motion to be
purely relative, he missed countless opportunities to say so. On the other
hand, there was still a relational side to his thought, because he retained
the concept of a Pythagorean cosmos, i.e., that the world97 'is of necessity
most orderly, having its parts disposed in the highest and most perfect
order among themselves'. But this must imply a strong degree of
relationism, for the optimum order must clearly be expressed by the
relative order of the bodies among themselves. It is also implicit in the
concept of the primordial motions as Galileo defined them - towards the
centre of the earth in a straight line in order to attain the 'proper place' and
around the earth in a circle so as to 'remain there'. However, quite early
on comes a passage which suggests that Galileo conceived of motion as
taking place relative to space. In talking about the 'creation of order from
chaos', Salviati describes:98 'primordial chaos, where vague substances
wandered confusedly in disorder, to regulate which nature would very
properly have used straight motions . . . But after their optimum distri-
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bution and arrangement it is impossible that there should remain in them
natural inclinations to move any more in straight motions.'

But, one asks, how are straight motions defined? In a primordial chaos,
in which everything is in a state of motion, straight lines cannot be defined
operationally. Once the heaven of fixed stars or the solid frame of the
earth is broken up, the parts wandering 'confusedly in disorder', there are
no fixed points by means of which a straight motion can be defined. The
concept can only be given meaning if Galileo had an underlying concept
of motion as taking place with respect to space.

This passage could perhaps be dismissed as a mere poetic allegory but
for the fact that in numerous places throughout the Dialogo Galileo
indicates quite clearly that he regarded the state of rest as something
totally different from motion - this is what gives the intensity to the whole
of his passionate defence of Copernicanism. Particularly revealing is his
attitude to the stars. Although he no longer thought of the stars as
attached to a crystalline sphere but rather as distributed (in very great
numbers) over a finite region at an immense distance from the sun, he still
appears to have regarded them as fixed relative to one another and, more
significantly, in a state of overall rest. Whereas Copernicus and Kepler say
explicitly that the stars define the state of rest, Galileo says that they are a
rest. For example" 'the fixed stars (which are so many suns) agree with
our sun in enjoying perpetual rest'. This is a bald statement of fact and
noticeably more emphatic than, for example, Copernicus's statement:100

'As a quality, moreover, immobility is deemed nobler and more divine
than change and instability, which are therefore better suited to the earth
than to the universe.'

It is moreover clear from numerous passages in the Dialogo that Galileo
regarded the question of the earth's mobility as a quite definite either-or
question. Either the earth moves or it does not. Speaking of the choice
between the two, he says unambiguously101 'one of the arrangements
must be true and the other false'. The reason for this is the difference
between rest and motion, which are such that between them Galileo
cannot imagine a greater dissimilarity:102 'Are not these two conclusions
such that one must needs be true, and the other false? . . . moving
eternally and being completely immovable are two very important condi-
tions in nature, show the very greatest dissimilarity. . . . Eternal motion
and permanent rest are such important events in nature and so very
different from each other . . . it is impossible that one of two contradictory
propositions should not be true and the other false.'

But such a standpoint only makes sense if there is some ultimate
standard of rest or motion. If motion is purely relative, it is simply not
possible to say that any particular body is at rest or in motion. There is
only relative motion, and that belongs to the system of bodies considered
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together. Galileo must instinctively have regarded motion as taking place
relative to space, otherwise his statement makes no sense.

The clearest evidence for Galileo's belief in the reality of motion with
respect to space is to be found in his theory of the tides, of which he was
very proud and not a little blind to its defects, as we have already
mentioned in Chap. 6. He wrote a long letter103 on his theory to Cardinal
Orsino in 1616 and it also formed the subject of Day 4 of the Dialogo. In
fact, it was actually Galileo's intention to name the whole work Dialogue
on the Tides (Dialogo del Flusso e Reflusso del Mare), but he was made to
change the title by Pope Urban VIII.104 The gist of the theory is as follows.

Galileo observed, quite correctly, that if one of the barges carrying
sweet (i.e., fresh) water to Venice happens to run aground, the abrupt
deceleration of the barge causes the water to surge forward relative to the
vessel. He therefore concluded that, if the earth's motion is accelerated or
decelerated, the tides might be explained by such an effect. Galileo was
completely convinced that the earth both rotates about its axis and moves
in its orbit around the sun. Thus (Fig. 7.2), if the speed of the earth in its
orbit is V and the speed on the surface of the earth due to its rotation alone
is v, then the total speed at point A is V + v but at B it is V — v. For the
purposes of this discussion, the curvature of the earth's orbit can be
ignored. Galileo compares the magnitudes of these speeds, V + v and
V — v, and notes that they are different, ergo, the motion of a point on the
surface of the earth is accelerated. (It is important to note that Galileo did
not have the Newtonian concepts of velocity and acceleration as vectors.)
From this Galileo constructs a theory of the tides - the details of which
need not concern us here - and indeed makes the tides the crowning piece
of evidence in favour of the Copernican system and the earth's mobility.
But, of course, as we now well know, it follows from Galilean invariance
(of all things!) that the translational motion can have no influence at all. It
can just as well be set equal to zero, and, since v = —v\, the effect
disappears.

Fig. 7.2.
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In view of the title of this study, it is particularly interesting that Galileo
actually uses the words absolute motion several times in the discussion of
the tides (but nowhere else in the Dm/ogo):105 'it must happen that in
coupling the diurnal motion with the annual, there results an absolute
motion of the parts of the surface which is at one time very much
accelerated and at another retarded by the same amount.'

Although Galileo uses the expression absolute motion, he does not seem
to feel that it is necessary to explain precisely what it means. With respect
to what is this absolute motion? Mach comments:106 'It is noteworthy that
Galileo in his theory of the tides treats the first dynamic problem of space
without troubling himself about the new system of coordinates. In the
most naive manner he considers the fixed stars as the new system of
reference/

This, like several of Mach's comments about Galileo, is rather mislead-
ing. It is certainly true that Galileo did not trouble himself about the
system of coordinates. However, I do not think there is any warrant for
saying that Galileo instinctively regarded the fixed stars as 'the new
system of reference'. This would after all imply that the tides (an
undoubted physical effect on the earth) were somehow causally related to
the earth's speed relative to the distant stars, a notion entirely alien to
Galileo, who strongly opposed Kepler's 'occult' suggestion that the tides
were caused by the moon. No, the role of the stars is at most that of
accidental spectators. The parts of the earth are accelerated and
decelerated relative to space. That this same space happens to contain stars
at rest relative to it is, from the point of view of the tides, a pure accident.

Wohlwill107 calls Galileo's theory of the tides one of the most interesting
mistakes in the whole history of science. It appears to me a good
demonstration of how a conceptual way of thinking that, despite
successful application, has no ultimate anchor in empirical observations
can take hold of the imagination and lead one to an entirely false
conception of the world. As this is all very relevant to the subject of this
book, it is worth asking what it was that led Galileo, almost certainly
unconsciously, to a position much more absolutist than Copernicus's. In
particular, why was it that in thinking about the instantaneous configura-
tion of the bodies in the world he still retained an Aristotelian cast of mind
and was quite happy to use concepts such as proper place (which derive
their meaning from a global and relational concept of position as typified
in the Pythagorean cosmos) but as soon as his thoughts turned to motion
he seems to have forgotten the world and instinctively to have assumed
motion takes place in space?

The answer must lie in a combination of the syndrome to which Maier
drew attention (p. 48) and Galileo's supreme belief in geometry and a
Platonic view of the world that was much bolstered by his dynamical
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discoveries. It is possible, as Ptolemy, Copernicus, and Kepler seem to
have done, to regard the theorems of geometry as tools to tell one about
the disposition of objects relative to one another in space. But if one takes
Euclidean geometry seriously, it is much more congenial to regard
triangles, circles, and other geometrical figures as truly real and not as
merely something formed by chance alignments of bodies as they move
relative to one another. In Chap. 11 we shall see how Newton was quite
explicit on this point. He conceived triangles and spheres as possessing
just as real an existence in space as a statue that a sculptor could hew from
a block of marble.

Also one should not forget the fact that Galileo was the creator of the
science of rational motionics. His writings bear eloquent testimony to his
own conceptual struggles to formulate what are now some of the most
basic concepts of science. Reading in the Dialogo and the Discorsi the
passages in which Salviati patiently and with great care explains to
Simplicio and Sagredo concepts such as that of instantaneous speed and
its continuous variation - concepts which, as we have seen, were
developed only with difficulty by the Mertonians - one realizes how
indispensable space must have been to Galileo (and them) as an
underlying concept. Indeed, without it velocity as a unitary concept
dissolves - a single velocity in space is replaced by a huge and completely
indeterminate number of relations to other objects in the universe. Had
Galileo stopped to consider that daunting prospect, he would surely
never have made any progress at all. Thus, motionics rested on space,
strengthening an already strong geometrical predisposition.

Geometrical figures were always seen as the paradigms of the Platonic
Ideas or Forms, the eternal reality behind the deceptive and transient
world. Galileo's natural inclination to order things according to the ideal
of geometry - not an empirical science in his day but an expression of
necessary truths - must have been greatly strengthened by his dynamical
discoveries. Galileo must surely have believed that laws like those of
perpetual and uniform circular motion and the odd-numbers rule were
the reality behind an order perceived only imperfectly and approximately
in the transient world. Of such perfection in themselves, how could they
possibly be an expression of relations holding between bodies in this
shifting contingent world?

Laws of such apparent geometrical perfection point to a transcendent
world - beyond direct sense perception - governed by mathematics and
geometry. Science in this view is not the ordering of sensual empirical
facts that in and by themselves constitute the totality of reality. It is rather
a journey by which the soul finds its way back laboriously, through the
Socratic process of recollection, to its antenatal disembodied state, in
which it can enjoy the 'direct contemplation of unbodied reality', i.e., the
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Forms.108 It is clear that for Galileo the world had just as much of its
Renaissance sparkle as it did for Kepler - but was perhaps for that very
reason to be distrusted.

The debate about the absolute or relative nature of motion is at root a
debate about reality: is reality transcendent, beyond our ken, or is the
world simply what it appears to be?

7.7. At the threshold of dynamics

As discussed in Chaps. 1 and 2, one of the most remarkable things about
the discovery of dynamics was the extreme difference between the study
of celestial and terrestrial motions. In the study of the latter, no real solid
progress at all was made until the sudden explosion of Galileo onto the
scene. Why that happened when it did - in precisely the decade that the
astronomical part of our story was brought to its triumphant conclusion -
is clearly a question that belongs to a study of far wider scope than this can
be. What we can consider here briefly are those aspects of terrestrial
motions which made them suitable for revealing aspects of dynamics
which it would have been very difficult if not impossible to deduce from
the astronomical results. Three things especially are to be noted.

First, we saw in Chap. 6 that one of Kepler's biggest problems in trying
to comprehend planetary motions was that he was fixing his attention on
mathematical relationships in observed motions at too high a level; he
was not able to get down to the deeper, more fundamental, and more
revealing level. His problem was much too complicated for that. The
advantage which Galileo had over Kepler is highlighted by comparing
Kepler's law r = 1 + e cos 6 (where 6 is the eccentric anomaly) for the
planet-sun distance and Galileo's odd-numbers law for the distance of
descent of a freely falling body. Both laws were discovered empirically
and, in fact, almost exactly contemporaneously. In many ways the actual
discovery of Kepler's relationship was a far greater achievement than the
finding of the odd-numbers rule. It certainly required a great deal more
work and sophistication, to say nothing of the preparatory work of the
earlier astronomers. Yet to Kepler it did not (and could not) yield any deep
dynamical secret. It did not contain the time and could not, by itself, tell
Kepler anything really useful. That could only come from a mathematical
analysis made in conjunction with his other discoveries, an analysis
moreover that was way above anything that either Kepler or Galileo could
have attempted. In contrast Galileo found the simplest problem that
exists in dynamics: one-dimensional and with constant acceleration. Yet
for all its simplicity it was still nontrivial and, containing the time
explicitly, was representatively characteristic of the basic structure of
dynamics. This is why Galileo deserves great credit for realizing that the
entrancing beauty of the odd-numbers rule was not the complete story
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and for finding the deeper and much simpler law that lay beneath it: the
law of uniform increase of speed with time. From this, as we shall see, the
full structure of dynamics was eventually built up. Kepler too had a sense
for something deeper behind his law; it was just that he had no chance of
finding it. Thus, despite all his labour, he was not granted the satisfaction
which was Galileo's - that of experiencing 'just once the perfect
understanding of one single thing'.

The second great advantage of terrestrial motions was the easy possi-
bility they offered of varying the initial conditions and thus revealing the
very characteristic structure we find in dynamics, in which universal laws
are coupled with initial conditions, the actually realized motions being
determined by the two in conjunction. This is another way in which the
terrestrial motions made the deep structure of dynamics more evident,
and we have already noted the first steps taken by Galileo in that
direction. In contrast, the motions in astronomy are given as unique
examples and there is no scope for varying the initial conditions. Only in
one respect did astronomy offer an advantage of this kind - because
several planets, each at different distances from the sun, are observed
simultaneously, comparison of their motions reveals the distance
dependence of the solar force which acts upon them. Kepler already had
a good idea of this and set out to find it but with no hope of success given
the difficulties he faced. Later, as we shall see in Chap. 10, the distance
dependence of the solar force was the first useful information to be
extracted from the astronomical data.

The third principal advantage of terrestrial motions was that they
suggested much more readily the notion of rectilinear uniform motion as
a basic norm than any of the phenomena in astronomy could have done.
However, as we have seen, Galileo did not fully grasp this advantage,
though it did play an important role in some further work of his to be
discussed in Chap. 9 and was also used de facto in the projectile work. In
the next chapter we shall see how Descartes clearly recognized what
Galileo missed.

Important as all these advantages of the study of terrestrial motions
were, Galileo's supreme achievement was simply that he made the study
of motion as an empirical and quantitative subject a matter of intense
importance and interest. Coupled with his two solid and tangible results -
the law of free fall and the parabolic law for projectiles - this ensured that
relatively soon a complete theory of dynamics would have to be found in
one form or another. He was the Hipparchus of terrestrial motions. In a
famous remark in the Discorsi, Galileo himself summarized the impor-
tance of his own work:109 There have been opened up to this vast and
most excellent science [of motion], of which my work is merely the
beginning, ways and means by which other minds more acute than mine
will explore its remote corners/ That exploration is still continuing.
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If the inevitability of a way forward was now clear, it is much less certain
whether the actual route that Newton took was preordained. The next
chapter will show how Descartes introduced at least two twists into the
story that by no means followed the logical path that one might have
expected. It is at this point of the story that the quotation at the beginning
of the book from Kepler's Astronomia Nova is shown to be even more apt
than it was at the time he made it.

However, before we turn to that, it is fitting to close this chapter on
Galileo with what can only be called a spiritual anticipation of one of the
key ideas of Einstein's general relativity. It will by now be abundantly
clear to the reader that one of the most decisive steps taken by Galileo was
in his decomposition of motion. In Chap. 10 we shall see how this did, in
fact, to a very large degree predetermine the form in which Newton
discovered dynamics, especially after the intervention of Descartes. Yet
there is one passage in the Dialogo from which it is perfectly clear that in
his heart Galileo would have preferred a form of the theory of motion in
which this does not occur. It is hard to imagine an approach more
geometrical than the one Galileo actually created. Nevertheless, the
passage we are about to consider reveals a hankering on Galileo's part for
an even deeper and more harmonious geometrization of motion than
either he or Newton achieved.

It comes in the passage in the Dialogo in which Galileo discusses the
actual path taken by bodies when they are dropped from towers on the
rotating earth. Although Galileo's basic principles are quite close to the
truth, the mathematical details of the problem were well above the level
at which Galileo could cope and his treatment contains both technical and
conceptual flaws.* In fact, we shall see in Chap. 10 that the final
breakthrough to dynamics occurred when Hooke prompted Newton into
a precise mathematical study of this very problem. What is interesting in
the present connection is that Galileo mistakenly believed when he wrote
the Dialogo that the path in space which the falling body would follow
would be a circle and that it would moreover move in its circular path with
an exactly uniform speed (Galileo did not take into account the annual
motion of the earth, only its diurnal rotation). This is what Salviati has to
say:111

if we consider the matter carefully, the body really moves in nothing other than a
simple circular motion, just as when it rested on the tower it moved with a simple
circular motion.

The second is even prettier; it moves not one whit more nor less than if it had
continued resting on the tower. . . .

* Galileo's mistakes in treating this problem gave rise to quite a long history of attempts to
rectify them. Koyre' followed them up in a well-known paper. 10 We shall omit this
intermediate history and only return to the problem at the point at which it was attacked in
earnest by Newton.
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From this there follows a third marvel - that the true and real motion of the stone
is never accelerated at all, but is always equable and uniform. . . . So we need not
look for any other causes of acceleration or any other motions, for the moving
body, whether remaining on the tower or falling, moves always in the same
manner; that is, circularly, with the same rapidity, and with the same uniformity.

Clear evidence of Galileo's enthusiasm for these ideas is revealed in the
fact that Sagredo is lost for words to praise them:112 'I tell you that I cannot
find words to express the admiration they cause in me/ Stillman Drake,
in his notes on his translation of the Dialogo, makes the following
comment about Salviati's words 'even prettier':113 This remark, though
based on an erroneous demonstration, is particularly noteworthy for the
light it throws on the deepest scientific predilections of the author.
Galileo's attempt thus to discover an equivalence among "natural"
motions is a philosophical anticipation of the concept of world lines in
modern physics.'

Although the full significance of these words may be lost on the readers
who have not yet learnt about the special and general theory of relativity -
which cannot possibly be anticipated at this point - those who are familiar
with Einstein's work will certainly recognize the truth of Drake's
comment. If Newton's greatest achievement was to decompose motion in a
gravitational field into an inertial part and a part caused by the
gravitational force, Einstein's even greater achievement was to reunite
the two parts (perhaps under the influence of Mach's remark (p. 54) to the
effect that 'Nature does not begin with elements') into the single law of
geodesic motion of bodies subject to only gravitational and inertial forces.

There can be no more fitting conclusion to this chapter on Galileo than
Drake's observation of his spiritual affinity to Einstein. Perhaps one
should rather say of Einstein to Galileo. But we should also not fail to note
how much Galileo looked backwards as well as forwards: his commitmen
in the above passage to perfectly uniform circular motion was every bit as
intense as Copernicus's and the Greeks'. Galileo is probably the most
striking example in history of a great scientist poised between the very
ancient and the truly modern.



8

Descartes and the new world

8.1. Introduction

'From the start of the fourteenth century the grandiose edifice of Peripate-
tic physics was doomed to destruction/ We encountered these words of
Duhem in Chap. 4. The complete destruction was a long time coming, but
when it finally came the tottering structure was brought down in spec-
tacular fashion by Descartes (1596-1650).

The process began, as we saw, with 'a long series of partial transforma-
tions'. Initially, in the High Middle Ages, the transformations were
mainly in attitudes of mind. With Copernicus, hard science began to
make a real contribution. The famous supernova explosions of 1572 and
1604 shattered faith in the immutability of the heavens. Then came the
telescope, a veritable Joshua's trumpet, and blasted gaping holes in the
structure. But still it did not quite topple to its destruction. It survived, in
fact, only because an alternative edifice was not immediately constructed
in its place. Galileo was its last tenant. Like all tenants he was only too
ready to complain to the landlord about the appalling state of repair of the
old palace - without thinking about moving out into a new one. During
the very years in which he wrote the Dialogo, which, as we have seen, was
still permeated with the ancient idea of perfectly circular motion,
Descartes was at work on plans for a new edifice.

Descartes is, perhaps, the most enigmatic of the figures who appear in
this book. He played an important, indeed central, role in the discovery
of dynamics, but this came about almost incidentally, not through inten-
sive study of actual motions in their own right. His contribution was of a
kind quite different from that of the astronomers and Galileo; it was much
more purely philosophical and is to be compared with Aristotle's. Before
we examine the details, it will be worth saying a few words about the man.

The son of a well-to-do lawyer and judge, Rene Descartes was educated
at a famous Jesuit school in La Fleche in France. The Jesuits seem to have
left a permanent mark on his personality. It is noteworthy that he
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presents a picture of someone fully prepared to topple Aristotle but very
reluctant to essay a frontal encounter with the Church. He appears to
have been devout, and died 'in the faith of his nurse', to whom he was
devoted.1 There is an interesting difference between Galileo's writings
and Descartes'. No one reading the Dialogo could be in any doubt that
Galileo believed in the earth's motion and wanted the intelligent reader to
see through the subterfuges of his token impartiality in the presentation
of both sides of the argument. In the case of Descartes' works published
during his lifetime the reader remains in doubt. Descartes was in fact a
secretive man and his proudly proclaimed motto was bene vixit, bene qui
latuit (he has lived well who has hid well).2 As Santillana says,3 Descartes
chose to wear a mask 'from the moment he stepped upon the stage'. In
Sec. 8.6 we shall see why.

With moderate inherited wealth, Descartes resolved to live a life
dedicated to the finding of a more satisfactory system of philosophy than
the one he had learnt at school. After a decade of an almost nomadic
existence he settled more or less permanently in Holland, though fre-
quently changing his abode. He lived there from 1628 to 1649, when he
was finally inveigled into moving to Stockholm to instruct the young
Queen Christina of Sweden in philosophy. He died the following year, a
victim of the Swedish winter.

For the development of his physical ideas, his early collaboration with
the Dutchman Isaac Beeckman (1588-1637),4 with whom he worked
during the years 1619 to 1623, was very important. Like Descartes,
Beeckman had a concept of inertial motion and should perhaps be given
some credit for the idea. It was, however, Descartes, not Beeckman (who
published nothing in his lifetime), who presented the idea of inertial
motion, in a form quite close to that finally adopted by Newton, to the
world with a great flourish and thereby influenced the course of further
developments.

From about 1628 Descartes began systematic elaboration of his ideas.
For our purposes his two most important works were his Le Monde (The
World), which was more or less complete by 1633 and contains the key
ideas of Cartesian physics, and his Principles of Philosophy (published in
1644). For reasons that will be explained in Sec. 8.6, The World was with-
held from publication by Descartes and only appeared after his death in
1664. Descartes became famous in 1637 with the publication (anony-
mously, though the authorship soon became common knowledge) of his
Discours de la Methode (Discourse on Method). This work, to which the
interested reader is recommended as the best introduction to his general
philosophy, is held by many to mark the beginning of modern
philosophy, and it was in it that Descartes expounded his famous method
of Cartesian doubt, encapsulated in the saying Cogito, ergo sum (I think,
therefore I am). The attitude of mind that informs this philosophy is of
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central relevance for the absolute/relative debate and will, in particular, be
considered in Sec. 8.3. However, a few words are appropriate at this
point.

Descartes' main concern was to find absolutely secure grounds of
knowledge and to achieve these he took as his first principle:5 'That
whoever is searching after truth must, once in his life, doubt all things;
insofar as this is possible.' Practising such doubt, he concludes that he
cannot even take the existence of the material world as an undoubted fact;
for the sense perceptions that he has of it might simply be conjured up in
his mind by a 'malignant demon'. But the one thing that he absolutely
cannot doubt is his own existence as a thinking being, hence the famous
saying, which is stated explicitly in his Principles in §1.7.

From the one thing in which he is absolutely confident, that he truly
exists as a thinking subject, Descartes draws a conclusion that is charac-
teristic of his whole philosophy - that the only ideas that one can trust
when philosophizing are the clear and distinct notions formed by the mind.
He arrives at this conclusion through one of the most important argu-
ments in his system, namely, that an essentially good God must exist and
that, being essentially good, God would not implant clear and distinct
ideas in our minds if they were not truthful. Thus,6 'we never err when
we assent to only things which are clearly and distinctly perceived'.
On such a basis, Descartes develops a philosophical system that puts
great emphasis on the clarity of concepts and rational thought. In this
respect he greatly strengthened a somewhat similar tendency in Galileo,
in whom however the empirical input is vastly more important, indeed
essential for suggesting the key ideas.

Descartes was, in fact, sorely deceived as to his ability, using his own
'clear and distinct' ideas, to elaborate a comprehensive account of the
material world. His detailed physics proved to be very largely useless. He
nevertheless played an important role, for three main reasons: (1) First,
the overall conception of the world, being based on a truly universal
concept of matter and motion, was much more conducive to the final
emergence of dynamics than the decrepit Aristotelianism it replaced;
(2) his physics was in fact (despite the Cartesian principles) based, at least
qualitatively, on empirical input, the great potential significance of which
Descartes correctly realized, and this resulted in the recognition of the law
of inertia as the first law of motion; (3) his basic physical scheme, which
anticipated the structure of mature Newtonian dynamics in several
important respects, prompted Huygens and Newton to study quantita-
tively two key phenomena that Galileo failed to treat adequately and
these provided the final two of the 'baker's dozen' needed before the
definitive synthesis of dynamics could occur.

Descartes was therefore instrumental in bringing the study of terrestrial
motions to the point at which it was able to supply the hints that finally
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cracked the astronomical problem, which all this while, through three
generations, awaited the final coup de grace.

However, the way in which all this happened was not at all smooth.
There were some very curious twists, as we shall see.

8.2. The new world

As we have seen, both Kepler and Galileo developed rather than com-
pletely broke an essentially Aristotelian concept of the world. They
followed the tradition of the Hellenistic astronomers, transforming quali
tative Aristotelianism through an infusion of quantitative empiricism. In
the end, the new wine was, of course, too searching for the old bottle.
Descartes' approach was quite different. In spirit he was a pre-Socratic in
the mould of Leucippus and Democritus; he hankered after one or two
simple clear concepts that, at a stroke, would explain the workings of the
entire material world.

To gain a deeper understanding of what Descartes was trying to
achieve and identify the sources of his inspiration, one can do no better
than to read the admirably brief and eloquent opening chapters of The
World, which, at the time of its writing, Descartes undoubtedly regarded
as his magnum opus, even though he was very nervous about the reception
it would get.7 His aim was no more and no less than to give a rational
explanation for all the phenomena of the material world. The work is
written as a charming fable: Descartes says he will not attempt to explain
the real world but will instead describe an imaginary world, a 'new
world', about which the most important thing is that it is completely
determined and described by an absolute minimum of properties. In fact,
he puts into this imagined world nothing but matter, whose sole property
is that it possesses extension, and, vitally important, motion. His assertion
is that, provided this matter and motion satisfy (by God's ordinance)
certain almost self-evident laws, such a world, whatever its initial condi-
tion, would of necessity evolve into a world indistinguishable from the one
we observe around us. Hence his famous assertions: 'Give me extension
and movement and I will reconstruct the world'8 and The entire universe
is a machine in which everything is made by figure and movement.'9

Descartes was nothing if not ambitious. He justified his confidence in the
following characteristic words:10

But I shall be content with showing you that, besides the three laws that I have
explained, I wish to suppose no others but those that most certainly follow from
the eternal truths on which the mathematicians are wont to support their most
certain and most evident demonstrations; the truths, I say, according to which
God Himself has taught us He disposed all things in number, weight, and
measure. The knowledge of these laws is so natural to our souls that we cannot
but judge them infallible when we conceive them distinctly, nor doubt that, if God
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had created many worlds, the laws would be as true in all of them as in this one.
Thus, those who can examine sufficiently the consequences of these truths and of
our rules will be able to know effects by their causes and (to explain myself in the
language of the School) will be able to have demonstrations a priori of everything
that can be produced in that new world.

It is significant that Descartes opens The World with a discussion of
what, since Locke, has become known as the problem of the primary and
secondary qualities. This problem was first raised with full clarity in the
modern age by Galileo in his 'bestseller' The Assayer published in 1623.
Galileo argued that there are certain fundamental properties of matter,
above all extension and motion, which truly do exist in the external world
and have a nature more or less as we perceive them. These are the primary
qualities. With these are contrasted the secondary qualities such as heat,
taste, and colour, which Galileo argued are merely sensations produced
in the mind by the interaction between the external world and our sense
organs and brain:11

To excite in us tastes, odors, and sounds I believe that nothing is required in
external bodies except shapes, numbers, and slow or rapid movements. I think
that if ears, tongues, and noses were removed, shapes and numbers and motions
would remain, but not odors or tastes or sounds. The latter, I believe, are nothing
more than names when separated from living beings.

It is with a similar discussion that Descartes opens The World. What was
for Galileo a passing remark is for him the central concern. In The World
and the later Principles he expounds the dream of the rationalists: to
explain as many of the secondary qualities using as few primary qualities
as possible.

Let us now briefly outline the basic scheme by which Descartes sought
to achieve this. It is a curious amalgam of ancient atomism and ancient
plenism with one or two new and, as events showed, fruitful ideas.
Descartes had in common with the atomists the idea that the material
world is composed of a single matter, which exists in different shapes and
sizes. These pieces are assumed to be completely homogeneous; in fact,
according to Descartes they have absolutely no other properties than
extension - they are purely mathematical (or geometrical) figures. Unlike the
atomists, who assumed that the atoms remain completely unchanged
and can be neither broken up nor amalgamated into new pieces, Descartes
assumed that the shapes of his individual pieces of matter were constantly
being changed as a result of mutual collisions. In fact, he assumed that,
whatever initial condition God might have chosen at the beginning of his
'new world', there would after a certain time develop a situation in which
there exist only three basic types of pieces, elements as Descartes calls
them. The first element consists of very small pieces that move with great
rapidity and are associated with fire; the pieces of the second element are
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of intermediate size and spherical, having been ground into this shape
like pebbles on the seashore. The pieces of the third element are gross and
slow and make up the body of the earth. The programme, for it was a
programme, of Cartesian physics was to show how all qualities of bodies12

'can be explained without the need of supposing for that purpose
anything in their matter other than the motion, size, shape, and arrangement
of its parts' (my italics). This extreme rationalist programme came to
dominate scientific thought for well over half a century. As we shall see,
its influence was initially beneficial for the discovery of dynamics but then
more of a hindrance; it was also one of the factors that delayed the
acceptance of Newton's theory of gravitation on the Continent for several
decades.

In common with Aristotle, Descartes assumed the world to be a plenum
- he did not permit any empty spaces anywhere. The reasons for this are
not brought out very clearly in The World, but they evidently had to do
with the explanations that Descartes provided for certain key pheno-
mena, to which we shall shortly come. In the later Principles the absence
of a vacuum is raised to a metaphysical principle of the very highest
importance; as it plays an important part in Descartes' concept of motion
we shall consider this point in later sections of this chapter.

The most distinctive, original, and valuable part of the Cartesian
scheme (from the point of view of the discovery of dynamics) was the role
played in it by motion. It will be recalled from Chap. 2 that one of
Aristotle's most telling criticisms of the atomists was that Leucippus and
Democritus had not stated with sufficient clarity what precise motions
their atoms followed. This criticism, which was evidently a key factor in
Aristotle's development of his alternative scheme, had little impact in
antiquity. As we noted, in Lucretius's masterpiece De Rerum Natura,
written about 300 years after Aristotle, the motions of the atoms are still
remarkably vague despite the precision and clarity with which the poem
is otherwise generally argued.

Whether consciously or not, Descartes took up Aristotle's challenge.
He lived in the age in which the Zeitgeist became reintoxicated with the
heady pre-Socratic vision of the infinite universe. (Descartes was 4 when
Giordano Bruno was executed, 14 when the Starry Messenger amazed the
world.) Moreover, the Euclidean systemization of geometry had long
since purged the atomists' void of its distinguished direction of eternal
falling. In the ideal world of Euclid, close packed with points and infinite
lines, this anthropomorphic relic was replaced by thoroughgoing direc-
tional democracy. Descartes grasped it. Two simple ideas were born and
espoused with an eloquence that would never permit them to be forgotten
again: first the idea that any piece of matter, once set in motion, would
continue to move for ever with the speed initially imparted to it if it were
not for the intervention of other matter and, second, the idea that this
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motion would be along a straight line in space, again if it were not for the
intervention of other matter.

We shall look at the origin of these ideas, which were fused by Huygens
and Newton into the modern law of inertia, and their significance for the
discovery of dynamics in Sees. 8.4 and 8.5 and mention here only that
crucial for their recognition and significance in Descartes' eyes was the
long recognized but hitherto little studied phenomenon of centrifugal force
(the name was coined by Huygens in 1673). The stone flung from the sling
is by far the most important empirical input in Cartesian physics and
figures prominently throughout The World. It clearly played an important
role in suggesting to him the two components of his 'law of inertia'.
Simultaneously, centrifugal force was destined to carry the main explicat-
ory burden within his programme for the rational explanation of all the
observed phenomena of nature.

We have here, in fact, the great difference between Descartes and
Galileo. Galileo was interested in motion in its own right, as a deeply
interesting subject of empirical study, Descartes only as a means of
explanation. Descartes did not stand in awe before motion and reverently
and patiently unravel its secrets as had Galileo (following the example set
by the astronomers in their patient watching of the planets). As we shall
see later, he was forced to think hard about the ontological nature of
motion, but as far as his physics was concerned he took it more or less for
granted, convinced he already possessed knowledge of the laws of
motion.

He used motion rather than studied it. In a letter to Beaune, he said:13

'Although my entire physics is nothing but mechanical, nevertheless
I have never examined questions which depend on measurement of
velocity in detail.'

This is the first of several paradoxes we meet in Descartes: we owe the
first outline of dynamics to Descartes' explicatory urge, not a study of
motion per se.

There is no point in going into the details of Cartesian physics, which
does rather tend to degenerate into 'hand waving' once Descartes leaves
the exposition of his basic ideas, in which he achieved a lucidity that rivals
Galileo's and which was undoubtedly also a factor in his great influence.
It will however be helpful to give some more details of the overall scheme
and also sketch the mechanisms that he proposed for some key pheno-
mena. I follow loosely the account given in The World.

One of the most characteristic features of Descartes' physics is his circle
of motion. Since the world is a plenum, matter can only leave one place if
other matter comes in to fill the void. Depending on the disposition of the
pieces of matter, this may involve quite an extended circular readjustment
of matter. The circle must however always close because volume of matter
is exactly conserved in Cartesian physics.
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We may mention in passing that, viewed in the historical perspective of
mechanical explanations of nature, the plenum, which Descartes needed
primarily for his theory of light (see below), proved to be rather a
redundant feature. For it had been required by Aristotle mainly to
produce motion at a distance by direct transfer or 'push' (through
pressure). However, this role of the plenum was largely obviated by
Descartes' own 'law of inertia', i.e., rectilinear persistence of motion, and
his rules of collision (to which we shall also come). The plenum was in the
event a blessed nuisance - you had to have hordes of little pieces of matter
squeezing through all the interstices in order to leave absolutely no gaps
anywhere (Cartesian physics is rather like the rush hour on the London
Underground) - and it was soon dropped by some of Descartes' most
enthusiastic followers, notably Huygens. What they did, in fact, was
transfer the Cartesian concept of persistence of motion to atomism. The
associated acceptance of the vacuum was greatly helped by the work of
Pascal, Torricelli, Boyle and others and by the famous vacuum demonstra
tions of Guericke in 1654.14

The notion of a circle of motion, which is, of course, quite different from
the ancient circular motions of the astronomers, is central to one of the
most distinctive features of the Cartesian cosmology - the theory of
vortices. According to Descartes' 'laws of nature', to which we shall come
in Sec. 8.4, God created the world with a certain initial amount of motion
of the individual pieces of matter and then, through the laws of collision,
ensured that this motion always remained in the world in an unchanged
amount, being merely passed from certain pieces of matter to others (the
details will be considered in Chap. 9).* Descartes posited that as a result
of the combined influence of these factors - the collisions and the
constancy of the total amount of motion - the world would, on a large
scale, settle down into a system of huge vortices, in which the various
particles swarmed around centres at which he placed the sun and the
other stars. Thus, each vortex was assumed to be at least as large as the
solar system. Figure 8.1 shows the diagram by means of which Descartes
illustrated his vortex scheme (in The World he called each of the vortices a
heaven, since the various planets were assumed to be carried around in
them by the plenal fluid). The sun is at the centre S of one vortex. The

* It may be mentioned that the idea of conservation of motion and matter is another of those
intuitive ideas like the uniform flow of time (discussed in Chaps. 2 and 3) that were originally
assumed instinctively by philosophers and then justified by genuine discoveries based on
sound empirical observations and theory. However, in all such cases the subsequent
justifications demonstrated that what was initially assumed as a metaphysically obvious
truth rests ultimately on sophisticated facts about the interconnection of different pheno-
mena in the world, the clarification of which is very far from trivial. Before the end of this
volume we shall meet another example of this kind in the concept of absolute space. The
clarification of the basis of conservation laws by what is known as Noether's theorem will play
an important role in Vol. 2.
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planets (indicated by their symbols; the earth is T) are carried around the
sun in the circles as shown. Other stars, with planets assumed around
them too, are at the centres of the other 'spiders' webs' (at the points
marked E and A). The curious tube shown passing through the top of the
solar system represents the path of a comet, which Descartes assumed to
be more massive than a planet, so that it would have sufficient strength to
plough through the current of one vortex and pass into another, unlike
the planets, which, being lighter, would be carried with the vortex like
twigs and feathers in a whirlpool.

Fig. 8.1.
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It should be said that Descartes almost always talks as if his vortices are
two-dimensional cylindrical formations. They must, however, be three-
dimensional and spherical, a fact that presents all sorts of complications
with which Descartes hardly begins to come to terms. In fact, the modern
reader, coming to Descartes after a detailed reading of Kepler's Astronomia
Nova and Galileo's great dialogues, cannot help feeling a sense of disap-
pointment and also some surprise that Descartes had the influence that he
did. Of course, Kepler's physical theory of the planetary motions, for
example, was quite wide of the mark, but, as we have seen, it was
developed on the basis of sound observations and was used as a valuable
heuristic guide in the successful finding of more detailed results, which
were expressed by very precise mathematical laws. In comparison the
following passage from Descartes' Principles shows the level at which
Descartes worked. It also shows that, for all his much-vaunted claim to be
describing everything in nature by mathematics, in reality his physics
very seldom advanced beyond pictorial analogy; the truth of his comment
to Beaune is nowhere more evident than in this passage:15

let us assume that the matter of the heaven, in which the Planets are situated,
unceasingly revolves, like a vortex having the Sun as its center, and that those of
its parts which are close to the Sun move more quickly than those further away;
and that all the Planets (among which we [shall from now on] include the Earth)
always remain suspended among the same parts of this heavenly matter. For by
that alone, and without any other devices, all their phenomena are very easily
understood. Thus, if some straws [or other light bodies] are floating in the eddy of
a river, where the water doubles back on itself and forms a vortex as it swirls: we
can see that it carries them along and makes them move in circles with it. Further,
we can often see that some of these straws rotate about their own centers, and that
those which are closer to the center of the vortex which contains them complete
their circle more rapidly than those which are further away from it. Finally, we see
that, although these whirlpools always attempt a circular motion, they practically
never describe perfect circles, but sometimes become too great in width or in
length, [so that all the parts of the circumference when they describe are not
equidistant from the center]. Thus we can easily imagine that all the same things
happen to the Planets; and this is all we need to explain all their remaining
phenomena.

This may seem persuasive on first reading, but the minute one starts to
think about the details of the motions of the planets that Kepler had
demonstrated so conclusively, above all the fact that the centres of the
planetary orbits are scattered around the sun with second foci at equal
distance on the side further away from the sun and that the inclinations of
the orbits are all different but fixed, the task of reproducing them by a
vortex mechanism is immediately seen to be quite hopeless, as Newton
was to point out with withering scorn in the Principia.16

We now consider briefly some of the phenomena that Descartes was
most keen to explain. This will demonstrate the positive new part of his
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programme as compared with the original atomism - the much greater
emphasis placed on motion and the anticipation of Newton's law of
inertia. We have already seen that Descartes posited an inherent tendency
of bodies to continue moving in a straight line if once set in motion.
However, if at rest, they would remain so. To be set in motion, a certain
force must be supplied - or rather the motion of a moving body must be
transferred in a collision to the body at rest in order to set it in motion. It
is most important that Cartesian physics allowed absolutely no other
mechanism for the acquisition of motion. In a way, this was a useful
rigour and subsequently played a fruitful role in the discovery of
dynamics in much the same way as the notion of uniform circular motion
had in astronomy (even to the extent of being abandoned at the crucial
moment of synthesis). Its great merit was that the idea was amenable to
mathematical treatment. However, very little of this mathematics was
supplied by Descartes himself.

Let us first consider Descartes' explanation of hardness and liquidity.17

He notes that if two small parts of matter are touching each other, 'some
force is necessary to separate them'. Thus, if a body is composed of parts
that are all at rest relative to each other, the mere fact of this will mean that
it will not give way readily. Therefore,18

to constitute the hardest body imaginable, I think it is enough if all the parts touch
each other with no space remaining between any two and with none of them being
in the act of moving. For what glue or cement can one imagine beyond that to hold
them better one to the other?

I think also that to constitute the most liquid body one could find, it is enough
if all its smallest parts are moving away from one another in the most diverse ways
and as quickly as possible, even though in that state they do not cease to be able
to touch one another on all sides and to arrange themselves in as small a space as
if they were without motion. Finally, I believe that every body more or less
approaches these extremes, according as its parts are more or less in the act of
moving away from one another. All the phenomena on which I cast my eye
confirm me in this opinion.

The question of what 'glue' or 'cement' holds bodies together was one
of several topics that dominated the natural philosophy of the seven-
teenth century - and helped to distract it from the precise quantitative
study that Galileo had demonstrated could be so fruitful.

Next we come to light. Significantly, The World has an alternative title:
in full it is Le Monde ou Traite de la Lumiere (The World or Treatise on Light).
Descartes' idea was as follows. According to his scheme (outlined in
Chaps. 2, 8,13 and 14 of The World) the material that collects at the centre
of the vortices is of the finest type, i.e. is made up of the smallest particles,
which move with the greatest rapidity (first element). In fact, it is these
bodies that constitute the sun. The region between the sun and the
planets is occupied by the larger (but still, of course, minute) spherical
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particles of the second element, which constitute the vortex, which in
turn carries around the planets, which are made of the more bulky third
element. Now by their inherent nature, all these rapidly moving particles
have a tendency to carry on straight forwards in their motion. They are,
however, constantly being prevented from doing this by the presence of
the objects in the vortex further out from the centre than they are. This has
two consequences: first, the individual particles are constantly being
deflected into circular motion; second, the inner particles exert a constant
pressure on the outer particles. According to Descartes, this pressure,
which he assumes is transmitted instantaneously through the vortex (this
is why he needs a plenum), is what the eye senses as the light of the sun
(the pressure can also be 'reflected' by more solid objects like the moon
and planets). Figure 8.2 is the diagram that Descartes used to explain how
the pressure is transmitted from the body of the sun, with centre S, to the
orbit of the earth at E. Descartes concludes his account of this explanation
of light with the words:19 'Thus, if it were the eye of a man that was at the

Fig. 8.2.
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point E, it would actually be pushed, both the sun and by all the matter of
the heaven between the lines AF and DG.'

Finally, we come to Descartes' account of the phenomenon of weight
(Chap. 11 in The World). Descartes argued that not only is the earth carried
around the sun in a large vortex (or heaven) but that also there is a small
vortex or second heaven which surrounds the earth and rotates in the
same sense as the main vortex. In his scheme, which is shown in Fig. 8.3,
the moon is carried around at the outer edge of the second (little) heaven.
Now the little heaven plays a crucial role in the explanation of weight,
which Descartes says is as follows:20

Now, however, I would like you to consider what the weight of this earth is; that
is to say, what the force is that unites all its parts and that makes them all tend
toward its center, each more or less according as it is more or less large and solid.
That force is nothing other than, and consists in nothing other than, the fact that,
since the parts of the small heaven surrounding it turn much faster than its parts
about its center, they also tend to move away with more force from its center and
consequently to push the parts of the earth back towards its center.

In other words, terrestrial gravity is produced by a kind of centrifuge
effect; the smaller and faster particles of the second heaven have a greater
tendency to recede from the centre of their rotation than do the particles
of the third element, which forms the earth, and this causes bodies made
up of the third element to be pushed back towards the centre of the earth.

Now in fact - and quite unbeknown to Descartes - this conception of th

Fig. 8.3.
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origin of weight was a great deal better than one might at first blush
suppose. In the following chapter on Huygens we shall see why. It
undoubtedly played a positive role in the discovery of the last of the
'baker's dozen' needed before the synthesis of dynamics could com-
mence.

There is little point in going into any further detail of the mechanistic
and pictorial accounts that Descartes provided for these and other pheno-
mena. It is, however, well worth pointing out that, almost by accident,
Descartes provided the one vital clue to the cracking of the planetary
problem that completely escaped both Kepler and Galileo. Kepler came
closest to the solution of the problem with his idea that the motion of the
planets is produced by the combined influence of two forces - the
azimuthal force produced by the rotating sun and a further magnetic force
that alternately attracted the planets towards the sun or pushed them
away again. Descartes changed the competition from one between two
forces into the interplay of a tendency on the part of all matter to proceed
forwards in a straight line and the intervention of a second factor, which
causes the planets to be deflected into a continual circular motion. This
was a crucial step; although he was wrong about the mechanism produc-
ing the deflection, he was right in the basic formulation. Within a decade
or two of Descartes' death several talented men were coming to grips with
the problem of the planets in the framework of a formulation that sooner
or later was bound to yield the secret.

In Sec. 8.4 we shall look in more detail at the precise form in which
Descartes formulated his fundamental principles. Before that we shall
consider the relationship between Descartes' more general philosophy
and some underlying aspects of the absolute/relative question. However,
we are already in a position to understand how it was that Descartes came
to perform the office of midwife to the birth of dynamics (in which
capacity I contrast him to Galileo, the creator of motionics). Descartes'
anticipation of the law of inertia was the child of his consuming desire to
explain and the manner in which he understood explanation. The ele-
ments he originally allowed himself in his self-imposed rigour were just
three: space, matter, motion. Nothing else was allowed to have explicat-
ory power. Kepler, it will be recalled, proposed a mechanical explanation
of the motion of the planets, but his entire clockwork was driven by the
animalistic power of the rotating sun, which he simply had to invoke
since his physics taught the inherent tendency of all motion to decay.
Descartes banished such demiurges with contempt. But, since the world
manifestly persists, he needs must have a perpetual source of explana-
tion; the spring must not dry up up. Ergo, matter and motion must last
forever. This is the origin of Descartes' twin principles of the conservation
of matter and of motion. He could not do without them.
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8.3. The Cartesian concept of substance and the divide between
materialism and idealism

Descartes is famous, if not infamous, for the line he drew between mind
and matter (which includes the human body). He recognized the exis-
tence of just two substances - thinking matter (res cogitans) and extended
matter (res extensa). It was the latter that was to become the hallmark of
materialism: dead inert matter informed (or rather governed) solely by
laws of nature laid down by God from the beginning of time.

The concept of substance dominates not only Descartes' thought but
also the Newtonian and post-Newtonian debate about the nature of
space. It will therefore be as well to look at his concept more closely. He
says:21

However, corporeal substance and created mind, or thinking substance, can be
understood from this common concept: that they are things which need only the
participation of God in order to exist. Yet substance cannot be initially perceived
solely by means of the fact that it is an existing thing, for this fact alone does not
per se affect us; but we easily recognize substance from any attribute of it, by means
of the common notion that nothingness has no attributes and no properties or
qualities. For, from the fact that we perceive some attribute to be present, we
[rightly] conclude that some existing thing, or substance, to which that attribute
can belong, is also necessarily present.

This is fairly conventional philosophy, at least as regards the concept of
substance. However, Descartes then introduces the distinctively Carte-
sian idea with which we are already familiar, namely, that 'each substance
has one principal attribute, thought, for example, being that of mind, and
extension that of body'22 (my italics):

And substance is indeed known by any attribute [of it]; but each substance has
only one principal property which constitutes its nature and essence, and to
which all the other properties are related. Thus, extension in length, breadth, and
depth constitutes the nature of corporeal substance; and thought constitutes the
nature of thinking substance. For everything else which can be attributed to body
presupposes extension, and is only a certain mode [or dependence] of an
extended thing; and similarly, all the properties which we find in mind are only
diverse modes of thinking. Thus, for example, figure cannot be understood except
in an extended thing, nor can motion, except in an extended space; nor can
imagination, sensation, or will, except in a thinking substance. But on the
contrary, extension can be understood without figure or motion; and thought
without imagination or sensation, and so on; as is obvious to anyone who pays
attention to these things.

As we have seen, most of the Principles is actually taken up by an
extended discourse in which Descartes claims to show that the entire
material world and all its phenomena can be understood more or less
completely on the basis of this one single principal attribute of corporeal
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substance (in conjunction with motion). However, this is not the point
which is to be made here but rather that Descartes, like many
philosophers, could not conceive a world without substance - something
that stands under and acts as support to the brightly coloured and
variegated world that we actually perceive through our senses. As
outlined in the passages above, substance itself is not directly accessible
to perception but only the attributes, of which substance is the bearer.

The philosophical counter-attack to Cartesian-Newtonian materialism
was mounted by Berkeley (1685-1753) when he pointed out23 that the
concept of substance is not derived through Cartesian introspection but
empirically - from the observational fact of persistent correlation of attributes
We form the concept of body from the invariable correlation of qualita-
tively different deliverances of the various senses: a certain visual shape,
taste, smell, and texture are invariably found together with the thing that
we call an apple; the word apple is nothing but a convenient symbol to
denote this remarkable correlation of phenomena. In this view, the attributes
and their correlation are sufficient in themselves. There is no need to posit
an underlying substance to carry them and explain the correlation.
Substance is purportedly an explanation of correlation but is in reality, say
the relationists, merely an alternative name for the correlation itself - a
pleonasm.

In the discussion of Aristarchus and the application of trigonometry to
astronomical problems, space was characterized as a safety net without
which we feel that it is unsafe to embark on celestial acrobatics. Space is
just one case of a general syndrome - one might call it the substance reflex.
We instinctively look for support. At the deepest level, this is probably
what explains the passionate rejection of Copernicanism in the first
century after it was proposed - for it taught that there is no ground under our
feet. Moreover, absolute space can be seen as a conceptual substitute for
the ground that Copernicus so deftly pulled from under us. (And even he,
as we have seen, felt he had to cling onto the walls of his medieval
cosmology, i.e., the fixed stars.)

The standpoints of Descartes and Berkeley represent the two
philosophical extremes between which the debate about the absolute or
relative nature of motion moves. They are reflected in quite different
attitudes to the scientific endeavour and different interpretations of what
it is about. Let us start with materialism in the exteme form expressed in
Descartes. For some reason or other, he thinks he can understand space
and motion directly; that somehow the comprehension of motion is no
different from the comprehension of numbers; therefore, like arithmetic,
its basic laws are a priori, not dependent on experience; the same is true of
extension, which he regards as the essential attribute of matter. Thus,
extended matter and motion are lumped together with numbers and
space and strictly separated from all the sensual (secondary) qualities.
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This standpoint of Descartes leads to something of a paradoxical situation
- for it was with mental conceptions that he constructed a material world.
This is the whole point of his fable of the 'new world'.

In this connection, it is worth noting a very characteristic difference
between Kepler, the empiricist, and Descartes, the rational philosopher,
in the grounds they have for believing that the matter throughout the
universe is one and the same. (The abolition of the Aristotelian distinction
between quintessence and the four corruptible elements, i.e., between
the heavens and the earth, was one of the major qualitative differences
between the old and the new science.) In the Astronomia Nora,24 Kepler's
standpoint is that since the earth manifestly obeys the same laws of motion as
the other planets one can reasonably conclude that it is made of the same
matter. Descartes is able to find an a priori metaphysical argument25 for the
same conclusion, asserting that pure extension is the essence of corporeal
substance and introspection of our mind reveals that pure extension is the
same here as it is there!

It is also worth mentioning a very illuminating point made by Koyre.
Writing of Descartes, he says:26 The God of a philosopher and his world
are correlated. Now Descartes' God, in contradistinction to most previous
Gods, is not symbolized by the things he created; He does not express
Himself in them. There is no analogy between God and the world; no
imagines and vestigia Dei in mundo'. This goes a long way to explain
Kepler's ecstatic empiricism and Descartes' rather contemptuous attitude
to the contingent world. As we saw in Ptolemy, the inspiration that
sustained the long and weary hours of observation came in significant
part from the expectation that divinity itself would be revealed by all his
labours. It was much the same with Kepler. This was the attitude that
made him look on observation as an exciting voyage of exploration -
exploration of the divine in which great surprises are to be expected. For
how could man expect to be able to anticipate the divine?

It was a very deliberate and conscious decision on Descartes' part to
withdraw the divine completely from the contingent world and reduce it
to mere res extensa (the use of the passive extensa is deliberately symbolic;
cf. Koyre27).

Two points should be made about this. First, by making the material
world completely homogeneous and passive, Descartes simultaneously
made it a lot less interesting. This may well explain why, despite what
proved to be some very promising ideas, Descartes' actual physics
yielded virtually no solid results. His ideas only became fruitful when
Huygens and Newton added the empirical and quantitative aspect that is
so characteristic of Galileo and Kepler.

The second point has to do with overall concepts and the difficulty of
changing them. The very approach that Descartes adopted in identifying
what he regarded as reliable concepts - involving a sounding of his
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conceptions, a careful sifting through them, and then the ruthless rejec-
tion of all those to which there appeared to attach the slightest doubt - of
necessity meant that Descartes finished up with a set of concepts that do
indeed seem beautifully 'clear and distinct'. One of the reasons why
Descartes is important for the subject of the book is that some of the
concepts which he identified in this manner became essentially the
concepts that underlie the absolutist concept of motion. Their very clarity,
coupled with the brilliant success of Newtonian dynamics, has meant that
they have become deeply ingrained in the scientific consciousness and
extremely difficult to dislodge. Moreover, they are tailor-made to fit the
law of inertia in the form that it was formulated, first by Descartes, then
by Newton. Perhaps the biggest hurdle that the advocates of relative
motion and a conceptually different formulation of the law of inertia must
overcome is that they are trying to persuade people whose deepest
concepts were developed - in part, no doubt, unconsciously - for the
precise purpose of giving expression to the Cartesian-Newtonian law of
inertia.

Perhaps the most striking example of such concepts is provided by that
of Cartesian coordinates. By introducing28 the idea that the distance of a
point from a line can be represented algebraically by a number, Descartes
made geometry amenable to algebraic treatment and thereby made a most
important contribution to the development of mathematics in the seven-
teenth century. The value of his method was greatly enhanced by
Leibniz,29 to whom the name Cartesian coordinates is due, when he
pointed out the convenience of making the coordinate axes orthogonal.
Leibniz thereby introduced for the plane orthogonal coordinate systems
analogous to the spherical orthogonal systems that Ptolemy had intro-
duced in astronomy. It should be emphasized that the ubiquitous use of
Cartesian coordinates in problems of dynamics does much to disguise the
problem of the ultimate invisibility of space. Because the conceptual axes
are drawn on paper, the actual absence of reference marks in space can be
conveniently forgotten.

Let us now briefly consider why the diametrically opposed
philosophies of idealism, founded by Berkeley,23 and the rather less
extreme phenomenalism or positivism supported by Mach,30 were able to
play a positive role in counteracting the clangers inherent in the Cartesian
approach. One of the important aspects of these philosophies is that they
challenge the Cartesian idea that certain concepts or ideas are more
fundamental than others. This is closely related to the distinction between
primary and secondary qualities. As we have seen, Descartes argued that
only the former - concepts such as motion, size, and extension - are truly
comprehensible; only they can correspond to real features of the external
world. All the other sensations we have of colours, sounds, etc. must be
illusions created, in Descartes' view, by the31 'close and profound union



424 Descartes and the new world

of our mind with the body'. The secondary qualities are to be explained by
the primary qualities. But according to the rival view, neither primary nor
secondary qualities are intelligible in any ultimate sense - they are literally
the data of human experience, the one no less than the other. The
phenomenalists give up all attempt to 'construct the world' in the
Cartesian manner. Instead, they concentrate attention on the sense
perceptions and seek merely to correlate the data. Berkeley overcame the
notorious dichotomy in Cartesian philosophy between mind and matter
by denying the existence of matter altogether. He asserted that nothing
exists except God and minds, in which God directly implants the sense
perceptions. Mach took a view somewhat less extreme (and certainly less
theological) but no less radical: since we have access to sense perceptions
and nothing else, speculation about the world is futile. Science, in his
view, consists of nothing more than establishing relations between the
phenomena that are presented to our senses. It is inevitable that in such
an approach much more attention is concentrated on the attempt to
establish relationships between different observed phenomena, as
opposed to the attempt to derive all such empirical phenomena from
certain clear and distinct metaphysical first principles.

Ever since he first propounded the view in his Mechanics, Mach's
philosophy has been contentious. Many scientists adopt a negative
attitude to Mach's Principle because they associate it with pheno-
menalism and the denial of an external world. It would be quite inappro-
priate to enter into a long discussion here about the pros and cons of
Machian positivism. The aim of the present section is more to inform the
reader of the existence of the two main streams of thought that lie behind
the absolute/relative debate. It is certainly not the case that a commitment
to Mach's Principle necessarily involves adoption of thoroughgoing
phenomenalism or idealism. Einstein is an example of a great scientist
who took useful ideas from Mach without in any way fully accepting his
system. In fact, systematic adherence to either one or other of the extreme
viewpoints is almost certainly inimicable to the progress of science. Some
of the defects of Cartesian physics have already been listed; it should also
be pointed out that the approach that attempts to dispense totally with
auxiliary concepts such as substance and deal solely with direct sense
percepta has also had very little success hitherto in constructing viable
theories. What we shall see in Vol. 2 is the way in which the relational
standpoint led to very fruitful modifications to the rigidly Cartesian
concepts of space and time that Newton adopted and thereby helped to
lead Einstein to exciting new theories that have withstood experimental
testing extraordinarily well. And before this volume is ended we shall see
how the recognition that all good theory must ultimately be anchored in
observation and observable things led to a very helpful clarification of the
true basis of Newtonian dynamics.
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We conclude this section with another of the several paradoxes that we
find in Descartes. As we shall see in Sees. 8.6 to 8.8, Descartes was
simultaneously the initiator of both the absolute and relative standpoints
in the theory of motion. But it is a further irony that Descartes not only
formulated the basic materialistic philosophy in which the concept of
absolute space came to play such a prominent part but also stimulated
development of the diametrically opposed philosophical school of
idealism. For ultimately the Berkeleian and Machian solution to the
conundrum of primary and secondary qualities sprang from the very
same doubt that Descartes sowed when he asked so persistently and
insistently whether the world really exists and whether we can ever get to
know its essential nature if we have access to only our sense perceptions,
not the world itself. Descartes and Berkeley merely reacted in different
ways to the same problem which Descartes had posed in such acute form.
Bertrand Russell points out32 that there is 'in all philosophy derived from
Descartes, a tendency to subjectivism, and to regarding matter as some-
thing only knowable, if at all, by inference from what is known of mind'.

Thus, the great divide in post-Cartesian philosophy - between
materialism and idealism - is reflected, as we shall see, in the debate
about absolute and relative motion, and both debates, the general
philosophical one as well as the specific debate about motion, can be
traced back to a common source in Descartes.

8.4. The stone that put the stars to flight

In this section we look in more detail at the origins of Descartes' most
important contributions to the discovery of dynamics, namely, the outlin-
ing of its embryonic structure and the formulation of the principles,
advanced as the first principles of the theory of motion, that were later
fused into the law of inertia.

We begin by considering the empirical input in the principles that were
later transformed into the law of inertia. In contrast to Galileo, who drew
on both celestial and terrestrial motions in arriving at his notions of
persistence of motion, Descartes does not seem to have had any direct
inspiration from astronomy. The examples he gives to support his princi-
ples come exclusively from terrestrial motions. This in fact is a strength in
Descartes, since his inertial motion is purely rectilinear; there is none of
the curious mixture of linear and circular 'inertia' that we find in Galileo.
Descartes presents two examples with admirable clarity:33

For example, if a wheel is made to turn on its axle, even though its parts go around
(because, being linked to one another, they cannot do otherwise), nevertheless
their inclination is to go straight ahead, as appears clearly if perchance one of them
is detached from the others. For, as soon as it is free, its motion ceases to be circular
and continues in a straight line
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By the same token, when one whirls a stone in a sling, not only does it go
straight out as soon as it leaves the sling, but in addition, throughout the time it is
in the sling, it presses against the middle of the sling and causes the cord to stretch.
It clearly shows thereby that it always has an inclination to go in a straight line and
that it goes around only under constraint.

The stone flung from the sling is in fact the image that Descartes most
frequently uses throughout The World. Figure 8.4 shows Descartes' first
diagram in the book (it is repeated in the course of his explanation of the
nature of light), about which Descartes says:34 'Suppose a stone is moving
in a sling along the circle marked AB and you consider it precisely as it is
at the instant it arrives at point A: you will readily find that it is in the act
of moving (for it does not stop there) and of moving in a certain direction
(that is, toward C), for it is in that direction that its action is directed in that
instant/

How or why Descartes came to the recognition of the importance of this
law is difficult to say. However, the influence of Buridan and the medieval
schoolmen is evident. The above quotations emphasize the rectilinearity in
the law of inertia; the persistence of uniform motion (the other part of the
law of inertia) was in fact, as we shall see, of rather greater importance to
Descartes and in discussion of this aspect Descartes explicitly mentions
the schoolmen. He points out35 that they have a difficulty in explaining
'why a stone continues to move for some time after being out of the hand
of him who threw it'. If there is any one point at which the decisive step
to the basic structure of modern dynamics was taken, then surely in the
simple way that Descartes turned this problem upside down. He remarks

Fig. 8.4.
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simply: 'We should ask, instead, why does the stone not continue to
move forever?' This limpid question announces the transition from a
dynamics that, to use modern terminology, is of first order in the time
derivatives to one that is of second order. There were still innumerable
difficulties and puzzles to solve, but the step had been taken.

After these comments about the empirical and historical origins of
Descartes' concepts, let us go through his formal arguments a little more
methodically. As pointed out in Sec. 8.2, the first outline of an embryonic
form of modern dynamics grew out of Descartes' desire to explain all the
phenomena of nature by motion. Very early in The World, before the
above quotations and, significantly, in his discussion of liquidity and
hardness, we find the first outline of dynamics in a form recognizably
similar to that which it still has. Speaking of the motion of the elements of
his matter, he says:36

I do not stop to seek the cause of their motion, for it is enough for me to think that
they began to move as soon as the world began to exist. And that being the case,
I find by my reasoning that it is impossible that their motions should ever cease or
even that those motions should change in any way other than with regard to the
subject in which they are present. That is to say, the virtue or power in a body to
move itself can well pass wholly or partially to another body and thus no longer
be in the first; but it cannot no longer exist in the world.

We have here first hints of the approach developed by Huygens and
taken still further by Newton, namely, that it is not necessary to consider
what causes motion but rather what changes it. Thus, motion in itself has
a tendency to persist which is to be taken for granted; however, it can be
changed by the interaction of matter with other matter. Thus, to formulate
the theory of motion one must state the laws which say precisely how
motion persists between interactions and also the laws which govern the
interactions themselves.

This outline of the formalized structure of the science of motion was
most important and original. Kepler made a first attempt in this direction,
but his overall scheme was seriously flawed, for the reasons that we have
already explained. In contrast, Galileo formulated no overall structure at
all. The very notion of laws of motion was first clearly formulated by
Descartes in Chap. 7 of The World, which has the very significant title 'On
the laws of nature of this new world'. We find here the notion of a 'law of
nature/ expressed for the first time in a form recognizably similar to the
one it still has:37

Know, then, first that by 'nature' I do not here mean some deity or other sort of
imaginary power. Rather, I use that word to signify matter itself, insofar as I
consider it taken together with all the qualities that I have attributed to it, and
under the condition that God continues to preserve it in the same way that He
created it. For from that alone (i.e., that He continues thus to preserve it) it follows
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of necessity that there may be many changes in its parts that cannot, it seems to
me, be properly attributed to the action of God (because that action does not
change) and hence are to be attributed to nature. The rules according to which
these changes take place I call the 'laws of nature'.

It is worth mentioning that the idea expressed here of God controlling
the world 'at one remove', as it were, i.e., through 'laws of nature', is a
characteristically medieval idea and was very widely accepted in the
seventeenth century. Jaki,38 among others, believes that it was a signifi-
cant factor in the emergence of the scientific revolution from medieval
Christian philosophy, for in such an intellectual framework one is led
naturally to believe in a rationally ordered natural world - and, moreover,
encouraged to study it by rational means.

Descartes actually set up three laws (or rules) of nature in The World.
The first can be called a generalized law of inertia, according to which
things have an innate tendency to stay in the same state (Descartes had a
precise notion of state, which he used more or less in its modern scientific
sense). The very significant step that he took was to include motion
within this law:39

The first is that each individual part of matter always continues to remain in the
same state unless collision with others forces it to change that state. That is to say,
if the part has some size, it will never become smaller unless others divide it; if it
is round or square, it will never change that shape without others forcing it to do
so; if it is stopped in some place it will never depart from that place unless others
chase it away; and if it has once begun to move, it will always continue with an
equal force until others stop or retard it.

There is no one who does not believe that this same rule is observed in the old
world with respect to size, shape, rest, and a thousand other like things. But from
it the philosophers have exempted motion, which is, however, the thing I most
expressly desire to include in it.

In neither The World nor the later Principles is Descartes particularly
precise in his actual formulation of his first law as it applies to motion.
What he means does, however, become abundantly clear in his applica-
tions, especially those given in the Principles. The essence of his first law
is that the quantity of motion that a body has will remain constant unless it
interacts with other bodies. This becomes rather clearer in Descartes'
second rule in The World:40

I suppose as a second rule that, when one of these bodies pushes another, it
cannot give the other any motion except by losing as much of its own at the same
time; nor can it take away from the other body's motion unless its own is increased
by as much. This rule, joined to the preceding, agrees quite well with all
experiences in which we see one body begin or cease to move because it is pushed
or stopped by some other.

Descartes formulates here, still very imprecisely, his idea that the
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quantity of motion is conserved in collisions. In The Principles, in which
Descartes discusses the actual rules governing collisions41 (which we shall
discuss in Chap. 9), he makes it clear that by quantity of motion of a body
he means the product of the volume of the body and its speed. Note that
Descartes takes the volume, since he has no concept of mass such as
Newton developed. Because he relies completely on geometrical con-
cepts, he is forced to regard volume as the sole indicator of how much
substance any given body contains. It is equally important to note that
Descartes uses the speed and not the velocity of the body to obtain his
quantity of motion. In technical terms, this means that his quantity of
motion is a scalar, and not a vectorial, quantity. Cartesian physics lacks
the strict directionality found in Newtonian dynamics. Thus, whereas
Newton has a law of conservation of momentum, which, expressed in
modern terms, involves the conservation of three quantities (the compo-
nents of the momentum along each of the three axes), Descartes has
conservation of just one quantity.

There is nevertheless a weakened form of the Newtonian directionality,
which we have in fact already encountered in the earlier discussion of the
sling. Descartes formulates it in The World in the form of his third law:42

I will add as a third rule that, when a body is moving, even if its motion most often
takes place along a curved line and (as has been said above) can never take place
along any line that is not in some way circular, nevertheless each of its individual
parts tends always to continue its motion along a straight line. And thus their
action, i.e., the inclination they have to move, is different from their motion.

Although, as we have seen, the idea of rectilinear persistence of motion
played a most suggestive and important leading role in Cartesian physics,
which Descartes emphasized by the use of the special technical term
determination (determinatio) to denote the direction of motion, as actually
used by Descartes his third rule proved to be very weak, since it is not
associated with any rigid conservation law. Thus, according to his
scheme, if two bodies collide the sum of the quantities of their motion
must be strictly conserved but, in contrast to Newtonian dynamics, there
is no restriction imposed on the directions by a simple and universally
valid conservation law. Not even the distribution of the total amount of
motion between the two bodies is fixed. From the point of view of mature
Newtonian dynamics, this was a serious flaw in the scheme. Descartes
was always faced with the problem of finding further arguments that
could be used to determine fully the outcome of particular collisions. As
we shall see in Chap. 9, this led to all sorts of problems.

It will be evident from the above that in one obvious respect Descartes
did not precisely formulate what was later to become Newton's law of
inertia; for the persistence of the amount of motion and the rectilinearity
of that motion were formulated as two separate rules. A more substantial
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difference is that conceptually his rules 1 and 2 (especially as formulated
in The World) are rather strongly linked, more so than rules 1 and 3 (the
two parts of the subsequent law of inertia). Indeed, one can say that the
heart of Cartesian physics is his notion of the persistence of the amount of
motion, understood as a scalar quantity. Rule 1 of The World expresses this
persistence between interactions, rule 2 the persistence in interactions. In
his later Principles of Philosophy, Descartes reformulated his scheme43 in a
form that brought it rather closer to the schemes that Huygens and
Newton later developed. His rule 1 remained essentially unchanged and
was formulated as law 1, while rule 3 of The World (expressing rectilinear-
ity between collisions) was moved into second place as law 2. Rule 2 of The
World became law 3 of the Principles; at the same time Descartes attempted
to clarify its precise significance by supplying seven detailed and explicit
rules which were supposed to describe what actually happened in
collisions (to be considered in Chap. 9). This had the effect of making laws
1 and 2 rather more clearly into the laws that described the motion
between collisions, while the remaining law and its explication by seven
rules described the interactive part of his embryonic dynamics. This
paved the way for the rather natural fusing of the two parts of the law of
inertia. Simultaneously it highlighted the fact that the nontrivial part of
dynamics resided in the interactions and thereby helped to concentrate
attention on this important matter. Incidentally, the process of fusing of
the two parts of the law of inertia can be seen actually occurring in
Newton's early work, for in his earliest notes it is still formulated as two
separate laws, a clear indication of the influence of Descartes.

Although Cartesian physics suffered from serious flaws, especially in
the part dealing with the interactions (which was deduced by Descartes
more or less purely a priori and, in contrast to the inertial part, contained
only minimal empirical input), it is startling to find how modern Descartes
was in certain key respects. It is not just that he swept away the last relics
of the well-ordered Pythagorean cosmos that seemed to provide the
support to Galileo's world view nor that he adopted a completely democ-
ratic attitude to motion, regarding all motions as essentially the same, so
that the Aristotelian distinction between natural and violent motions was
abolished. His new comprehensive views, so conducive to an ordered
scientific approach, were of course extremely important and rapidly
became an integral part of the general scientific outlook. No, the moder-
nity of Descartes is even more striking. He clearly anticipated the overall
view of the dynamical history of the universe that only crystallized several
generations after Newton. As is well known, Laplace (1749-1827)
epitomized the Newtonian revolution in physics by his concept of God
the supermathematician who sees at an instant the positions and vel-
ocities of all the material bodies in the world and from this knowledge of
the instantaneous state of the universe can immediately calculate the
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entire future evolution of the world using the laws of motion. Though
Descartes' laws were different in detail from Newton's the overall Lapla-
cian concept is already prominently present in The World.

The idea of the instantaneous state, so characteristic of modern physics,
is clearly expressed: instantaneous position and speed are advanced as
the basic elements of dynamics. Descartes supposes that at an initial time
God creates pieces of matter in space, imparting to them diverse instan-
taneous velocities. From then on the laws of nature take over. The entire
history of the material world is regarded as the evolution, subject to these
laws of nature and nothing else, from the initial conditions that God in his
wisdom happened to choose (for a slight qualification of this statement,
see the footnote on p. 432).

Thus, Descartes' The World contains most of the key ideas of the
scientific revolution: materialism - that all the variety of the visible world
is to be explained by matter in motion (albeit often at a level that makes it
invisible to our senses); determinism - that the whole world unfolds from
an initial state in accordance with immutable laws (Aristotelian teleology,
still lurking around in the contemporary Dialogo of Galileo, is banished
and disappears without trace); isotropy and homogeneity of space and
time - the laws of nature are exactly the same at all times and in all places.

Even today the main thrust of the scientific endeavour is essentially
along the lines laid down by Descartes and this despite several major
revolutions (Newtonian, relativistic, and quantum) to say nothing of
significant shifts of direction such as occurred in the development of the
field concept by Faraday and Maxwell.

One involuntarily starts when reading Descartes' conception of the
fundamental problem of cosmology - how the presently observed order
in the universe could have evolved from primordial chaos. Having
introduced his concept of matter 'that has been so well stripped of all its
forms and qualities that nothing more remains that can be clearly under-
stood' and which we are to conceive 'as a real, perfectly solid body' and
having explained how it can be divided into pieces, he continues:44

Let us suppose in addition that God truly divides it into many such parts, some
larger and some smaller, some of one shape and some of another, as it pleases us
to imagine them. It is not that He thereby separates them from one another, so that
there is some void in between them; rather, let us think that the entire distinction
that He makes there consists in the diversity of the motions He gives to them.
From the first instant that they are created, He makes some begin to move in one
direction and others in another, some faster and others slower (or indeed, if you
wish, not at all); thereafter, He makes them continue their motions according to
the ordinary laws of nature. For God has so wondrously established these laws
that, even if we suppose that He creates nothing more than what I have said, and
even if He does not impose any order or proportion on it but makes of it the most
confused and most disordered chaos that the poets could describe, the laws are
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sufficient to make the parts of that chaos untangle themselves and arrange
themselves in such right order that they will have the form of a most perfect world,
in which one will be able to see not only light, but also all the other things, both
general and particular, that appear in this true world.

The creation of order from chaos is, of course, one of the most venerable
ideas of literature and philosophy and belongs to the dawn of history. The
novelty in Descartes is in the precise manner in which he conceives it
happening. In fact, this and other passages have an uncanny similarity to
many an introduction to modern papers on inflationary cosmology,
which aim to show that however the world began the laws of nature will
have inexorably forced the universe into the general appearance it now
presents.*

The main reason for this striking modernity of Descartes is quite simply
that he was the first person to see clearly (or perhaps, rather, the first to
say so unambiguously) that laws of motion are needed, not so much to
describe motion itself, as to describe change of motion. In the theory of
motion, the line that divides the modern world from the ancient was not
like the Rubicon, a river that the world, Caesar-fashion, had to cross. It
was a line written in French with a goose quill by a man who by the very
act of writing it put himself on our side and left Kepler and Galileo on the
other.

'Nous doit [sic] plutojt demander purquoy elle ne continue pas toujours
de Je mouvoir?' ('We should ask, instead, why does the stone not
continue to move forever?')

8.5. The discovery of inertial motion: Descartes and Galileo compared

We conclude this part of the chapter with a reflection on the genesis of the
law of inertia, the foundation of dynamics which Immanuel Kant46 went
so far as to describe as providing the basis 'on which the very possibility
of a true natural science rests'. How great are the respective contributions
made by Galileo and Descartes to this momentous advance?

As regards the priority of discovering and recognizing the importance
of the natural persistence of motion, there is no doubt that it belongs to
Galileo. He had it almost before Descartes (born 1596) was out of his
swaddling clothes and he published the essential idea (in the Letters on
Sunspots) while Descartes was still at school at La Fleche. More interesting
is the question: what led Descartes to inertia? Was he influenced, perhaps

* Even more uncanny (for a modern physicist at least) is the devout Descartes' anticipation45

of the modern creationist argument: that actually God created the world only six thousand
years ago but in a form and with laws of nature that make it indistinguishable from one that
had evolved out of such chaos in accordance with the Cartesian scenario - he created it with
the appearance of an evolutionary history. This is another point at which the reader is left
wondering what Descartes really believed
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indirectly, by Galileo? By his major writings, certainly not; they were
published too late to influence The World. Indirect influence by word of
mouth is possible. As a young man, Descartes travelled widely in Holland
and Germany and, by his own account, was an exhaustive interrogator of
anyone possessed of original thought. Nevertheless it must be said that
the whole manner of presentation of the subject in The World suggests that
Descartes arrived at his idea independently, and through a quite different
line of development. What he did essentially was put a new interpretation
on the phenomenon to which the medievalists had drawn attention by
their impetus theory.

A much more direct influence than Galileo's will certainly have been
that exerted on Descartes by his Dutch physicist friend Isaac Beeckman,
with whom, as we noted, he was in regular contact several years before
he wrote The World. As early as 1614 Beeckman noted in the margin of his
Journal that 'a stone thrown in vacuum does not come to rest' and that it
therefore 'moves perpetually'.47 Perhaps Beeckman should be credited
with the formulation of the first law of motion and not Descartes.
Whatever the truth, the outcome of the Beeckman-Descartes line of
development was a set of interrelated ideas that owed little to Galileo.

Why did inertia remain with Galileo but a facet of motion but was made
by Descartes into the very foundation of everything? This is surely due to
not only the accident of dates of birth but also the differences of tempera-
ment. Galileo looked intently at nature, the great book of the world, in
order to learn the language she spoke. When he had learnt the first few
basic words he began to construct his own sentences. He worked out-
ward, using confidently the elements he had found around him.

Descartes looked at nature in a way quite different from Galileo's: not
to spy out one by one her veiled secrets but rather merely to find
confirmation of laws he had already worked out in his own mind, or, in
complicated matters, to find which of several schemes, all equally consis-
tent with his basic laws, was actually realized in any particular case. A
man with such ambitions just had to have a great principle. Descartes was
lucky in lighting on one that proved very serviceable. It proved to be the
diamond for which he was looking. But it was others, using techniques
learnt from Galileo, who were destined to make it into the crown jewel.

In fact, the really important thing about the discovery of the law of
inertia was not so much the finding of the law itself as the demonstration of
what could be done with it. This achievement was almost exclusively
Galileo's; there is nothing remotely approaching the derivation of the law
of projectile motion or the resolution of the problems posed by the earth's
mobility in Descartes' work. Descartes was, as it happens, very blind to
the achievements of Galileo, about whom he made a much quoted
disparaging remark: 'Without having considered the first causes of
nature, he has only looked for the reasons for certain particular effects,
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and . . . he has thus built without foundation.'48 Because of the accidents
of time, Galileo had no opportunity to reply to this compliment, but of the
two the nineteenth-century historian of science Whewell said:49 'If we
were to compare Descartes with Galileo, we might say that of the
mechanical truths which were easily obtainable at the beginning of the
seventeenth century, Galileo took hold of as many, and Descartes as few
as was well possible for a man of genius.'

Descartes simply failed to realize what Galileo was up to. For he
automatically assumed that Galileo was engaged on the same enterprise
as himself - the discovery of universal principles that 'explain' the world
and all its myriad phenomena. He was quite wrong to say that Galileo
'looked for the reasons for certain particular effects'. Galileo did not 'look
for reasons'; he looked for characteristic phenomena, the words of nature,
and sought to reproduce them with quantitative exactitude - to tell us
precisely how they are, not to beguile us with hidden causes of their coming
to be. Then, having grasped a phenomenon here, he looked around to
find the same one elsewhere - and succeeded.

On the question of foundations, Descartes was on slightly safer ground,
though here too he failed to recognize that what he should have con-
trasted were the relative merits of two different approaches. The problem
is: whence do we find secure foundations for science? Descartes exercised
his mind to find all at once a foundation capable of supporting the entire
universe. He would even have despised Atlas for carrying only the
heavens and not the earth as well. How could Galileo's tabletop experi-
ment mentality appear to Descartes as anything but puny? But Galileo
had just as much awareness as Descartes for great issues, it was merely
that his instinct told him to set about the problem in a quite different way.
After all, the very thing that the Copernican revolution had questioned
was foundations. Profoundly aware of the fact that we and the earth, cut
loose from the moorings, were adrift on the sea, he looked about him for
handy pieces of driftwood to make a raft. Being a very skilled craftsman,
he chose and measured his wood with great care and added nothing to the
raft before he knew that it fitted exactly. In this way he slowly extended
the raft and, almost paradoxically, finished up with foundations of a sort
of which Descartes never dreamed: secure, because taken straight from
nature; and productive, because he also laid down workable ground rules
for extending the raft - first measure carefully before trying to add
anything, otherwise it is liable to fall off again.

On this surprising and quite unexpected foundation, put together in
the hour of need following the cosmic shipwreck, the mighty edifice of
science still rises, pitching it is true when the sea heaves, but with an
extraordinary buoyancy before which Galileo's mentor, Archimedes,
would have stood speechless, not even able to exclaim 'Eureka'.
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But what of the grandiose foundations of the Jesuits' pupil? Of the half
dozen or so tenets of Cartesian physics, so loudly proclaimed as the
self-evident truths of nature by the proud rationalist, only two survived
more or less intact the death of their promulgator. The stricture of
Whewell is fair. To return to the language metaphor: Galileo took the
trouble to learn a living language and thereby ensured that it is still
spoken today, the lingua franca of the scientific revolution. Descartes, the
man in a hurry, made up his own Esperanto and, as a physicist, deser-
vedly suffered Zamenhof s fate - the basic idea was so original that
everyone remembers it, but the language itself did not catch on.

Galileo's motionics, for all the oddity of its construction, was a function-
ing system and played a vital complementary role vis-a-vis Descartes'
embryonic dynamics, revealing what in it was good, and what bad.
Without Galileo, Huygens and Newton would never have found the
sound grains in the heap of Cartesian chaff, nor how to make proper use
of them, a trick that Descartes never learnt. But all this said, there is still
no awareness in Galileo of the breathtaking change of direction that
Descartes initiated. As Mach, a great admirer of Galileo, said somewhat
grudgingly of Descartes:50 The merit of having first sought after a more
universal and fruitful point of view in mechanics, cannot be denied
Descartes/ In fairness, he should have added: 'and found'.

Perhaps even that is not the correct characterization. Some of the most
important advances in physics occurred when a particular investigator
effected a complete change of direction, as, for example, when Kepler
introduced the idea that the heavenly bodies not merely dance around
each other but actually cause each other's motions. First comes the idea,
then realization. Descartes had one or two very good ideas but failed to
bring any of them to realization. His work was the Mysterium Cosmo-
graphicum without the Astronomia Nova. More than any other figure in the
history of dynamics, Descartes bequeathed to his successors much man-
ifestly incompleted business. We shall therefore return to aspects of
Cartesian physics in the chapters on Huygens and Newton: the law
governing impacts of bodies, the study of centrifugal force, and, above
all, the debate about the nature of motion. But this brings us now to the
most surprising twist of all in the story of the discovery of dynamics.

8.6. The intervention of the Inquisition

By a curious irony, in 1633, Descartes was in the final stages of preparing
The World for publication when the news broke of Galileo's condemnation
by the Inquisition. Descartes was dismayed and wrote immediately to his
friend Mersenne:51

In fact I had decided to send you my World as a New Year's gift; and no more than
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a fortnight ago I was still determined to send you at least a part of it, if the whole
could not be transcribed in that space of time. But I shall tell you that, after I had
someone enquire in Amsterdam and Leiden . . . whether Galileo's World System
was available;... I was informed that it had indeed been printed, but that all the
copies had been simultaneously burned in Rome and Galileo himself subjected to
some sanction. This astonished me so much that I have more or less decided to
burn all my papers, or at least to permit no one to see them. For I could not imagine
that an Italian, especially one who is, so I hear, well-considered by the Pope; could
have been condemned for anything other than the fact that he doubtless attemp-
ted to establish the Earth's motion. I well know that this view was formerly
censured by some Cardinals, but I thought I had heard that it was being taught
publicly, even in Rome; and I confess that if it is false, so are all the foundations of
my Philosophy, since they clearly demonstrate this motion. And it is so connected
to all the [other] parts of my Treatise, that I cannot omit it without rendering the
remainder completely defective. But since I would not wish, for anything in the
world, to write a discourse containing the slightest word which the Church might
disapprove; I would, therefore, prefer to suppress it, rather than publish it in a
mutilated version.

Implausible as it may seem, the letter quoted above is the unambiguous
starting point of a process that culminated in Einstein's principle of
general covariance and the creation of general relativity.

Luckily, a significant part of Descartes' The World, from which we have
quoted extensively already, survived and was published posthumously
in 1664. We are therefore able to compare it with his 'definitive' work, the
Principles of Philosophy, published in 1644 (six years before his death). The
comparison is most interesting: nearly all the key ideas of Cartesian
physics are clearly expressed in The World and survive essentially un-
altered in the Principles. However, the basic concept of motion undergoes
radical revision. In the early The World, Descartes is no more concerned
with the frame of reference than Galileo. Like him, he seems to have had
an intuitive concept of motion as taking place in space, this space being to
all intents and purposes much the same as Newton's absolute space -
what I called earlier intuitive space, the void of the atomists without the
distinguished direction of eternal falling. In contrast, the Principles pose
the question of the referential basis of motion as a matter of prime
importance. Space is said categorically not to exist and all motion is
declared to be purely relative. On this basis, Descartes actually succeeds
in finding a formal definition of motion according to which Copernicus's
theory of the solar system is in essence correct and yet the earth is still
maintained to be at rest! It has been suggested that Descartes may have
formulated this particular formal definition with his tongue in his cheek
(Koyre52), and indeed it is hard to conceive that he really believed it. Yet
for all that he argues the general case for relativity of motion with
considerable fervour. Unlike Galileo, he does not leave the reader obvious
clues indicating that although he says one thing he means another. In
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fact, he asserted relativism so persuasively that Huygens, the greatest
physicist of the second half of the seventeenth century except for Newton,
adopted the position himself, clearly influenced to a great extent by the
Principles.

The Principles is in fact a tangle of contradictions. The formal theory of
motion is pure relativism but never settles down to any definite theory of
relative motion. Descartes launches the acrobat on his way but gives no
guidance as to the way the trapeze will swing. The formal theory of
relative motion then comes to an abrupt end when Descartes announces
his laws of nature. These are formulated as laws of motion but with
complete disregard to the foregoing theory of relative motion. They are in
essentials the same as in The World and make perfect sense in intuitive
space, none at all in the relative world just described. Whether Descartes
saw the discrepancy is difficult to tell. There is not a word of explanation
nor any hint to the percipient reader which suggests that he did. Since
Cartesian physics contains other major defects of the same order of
magnitude of which the author was clearly unaware, it is at least possible
that Descartes was fooled by his own casuistry. It is all very intriguing:
that Descartes raised momentous issues is beyond question; that he
raised them under pressure of the Inquisition is equally clear; but what in
his heart he really believed eludes us.

What is not in doubt is the most remarkable of the paradoxes we meet
in Descartes: that he was simultaneously the effective founder of the two
diametrically opposed concepts of motion that are the subject of this book
- both the absolute and the relative!

An achievement worthy of a philosopher. Let us now see how he did it.

8.7. Descartes' early conception of motion

It is quite clear that at the time Descartes wrote The World he instinctively
conceived space as something that exists independently of matter. He has
the concept of space as the container of matter. He describes53 the world of
his fable as a 'wholly new one, which I shall cause to unfold . . . in
imaginary spaces. The philosophers tell us that these spaces are infinite,
and they should very well be believed, since it is they themselves who
have made the spaces so/ There is obvious irony here, but we have no
reason to doubt that Descartes did at this stage actually believe in space.
He talks of stopping in it at 'some fixed place'.54 He says of the matter
which he conceives that55 'each of its parts always occupies a part of that
space'. Significantly, in view of Descartes' later passionate denial of the
vacuum, in The World he grants56 that there could be void in some parts of
the world: 'if there can be a void anywhere, it ought to be in hard bodies'.

More evidence of the firm roots that the concept of Euclidean space as
the container of matter had in Descartes' mind is provided by his
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discussion in Chap. 7 of The World of the various types of motion imagined
by philosophers (by whom he primarily means Aristotle). We recall from
the footnote on p. 48 in Chap. 1 that Aristotle employed the Greek word
kinesis to mean not only motion in the modern sense but, more generally,
any change such as from hot to cold, red to blue, and so forth. As we have
seen, Aristotelian physics considered all forms of change. Aristotle did
not adopt the atomists' programme of reducing all change to motion,
though what we call motion was, at least at times, perceived as more
fundamental than other changes - after all, the natural motions of each of
the elements were regarded as their characteristic defining properties.
Thus, what Aristotle opposed to atomism was a kind of qualitative
dynamics of all change, not just motion. To use modern terms, it is as if
one were to regard colour, heat, and taste as dynamical variables more or
less on an equal footing with position and momentum.

It was this type of physics that Descartes was intent upon sweeping
away in its entirety. He objects strongly to the idea of, say, change of
colour being regarded as 'motion'. For him there is only one motion,
motion in space. This comes out very clearly in the following passages. He
is at pains to point out that the 'motion' philosophers speak of is 'very
different from that which I conceive'. The text continues:57

They themselves avow that the nature of their motion is very little known. To
render it in some way intelligible, they have still not been able to explain it more
clearly than in these terms: motus est actus entis in potentia, prout in potentia est,
which terms are for me so obscure that I am constrained to leave them here in their
language, because I cannot interpret them. (And, in fact, the words, 'motion is the
act of a being in potency, insofar as it is in potency/ are not clearer for being in
[English].) On the contrary , the nature of the motion of which I mean to speak
here is so easy to know that mathematicians themselves, who among all men
studied most to conceive very distinctly the things they were considering, judged
it simpler and more intelligible than their surfaces and their lines. So it appears
from the fact that they explained the line by the motion of a point, and the surface
by that of aline.

Note the explicit appeal that Descartes makes to the world of Euclid:
space and motion in it is the source of his inspiration.

We continue with Descartes' argument:

The philosophers also suppose several motions that they think can be
accomplished without any body's changing place, such as those they call mot us ad
formam, motus ad calorem, motus ad quantitatem ('motion with respect to form,'
'motion with respect to heat/ 'motion with respect to quantity'), and myriad
others. As for me, I conceive of none except that which is easier to conceive of than
the lines of mathematicians: the motion by which bodies pass from one place to
another and successively occupy all the spaces in between.
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It is clear from the final sentence of the quotation that Descartes initially
drew his concept of motion from his concept of Euclidean space, which,
at the time he wrote The World, he conceived to have an even more basic
existence than matter; for he clearly imagined God placing matter in space,
which is there waiting to receive the matter before it arrives. His
immediate conception was of matter moving along straight lines in space.
In Descartes' The World there is still a hierarchy of absolutes in the material
world: space is the referent of matter. This is important, since in the later
Principles Descartes denies the existence of space in the most categoric of
terms - without in reality being able to dispense with it.

The above quotations, together with the whole tenor of The World,
confirm that at the time it was written relativity of motion was the least of
Descartes' concerns. He treats space and motion exactly in the way Maier
(p. 48) describes - motion is relative to the empirical space of practical
experience. It is noteworthy that although Descartes told Mersenne (in
the letter quoted in Sec. 8.6) that the foundations of his entire philosophy
depended on the earth's motion the problems he actually confronts are
completely different from the ones that dominate the discussions of
Copernicus, Kepler, and Galileo. For example, he nowhere considers the
evidence of the earth's mobility and the fact that it must be deduced from
observation of motions in the heavens. The precise details of the actual
motions of the planets within the solar system - from which Kepler
deduced such powerful arguments for heliocentricity - are of minimal
interest to Descartes. Why then was the Copernican doctrine of such
importance to Descartes in The World? The alternative title, Treatise on
Light, provides the clue. The work is, in the first place, a theory of the
nature of light. But the sun is the main source of light known to man and
it was agreed by all in Descartes' time that the planets and moon merely
reflect light. In Descartes' scheme the sun and planets were composed of
quite different elements (of the first and third kinds, respectively). As
Mahoney points out in his introduction to The World, Descartes was a
Copernican above all because he needed the prime source of light at the
centre of his vortex:58 'It would be hard to imagine a Ptolemaic sun of the
first element swirling in a small, contained vortex in the fourth of seven
orbits otherwise occupied by large bodies of the third element, all within
a vortex of the second element rotating about a stationary earth of the
third element.'

This comment is interesting, first, in showing how the Copernican
revolution had come to influence conceptions of the world well outside
the narrow confines of the interpretation of celestial motions from which
it sprang, and, second, in showing how these secondary effects then
reacted back on the main stream of the study of motion, providing the
stimulus that led to the embryonic form of dynamics that we considered
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in the earlier sections of this chapter. These ideas were then developed
within the mainstream by Huygens and Newton, who continued the
tradition of the true study of motion in its own right developed by the
astronomers and Galileo. Thus, the lesser of the unexpected twists to
which I referred at the end of Chap. 7 was this indirect contribution to the
basic structure of dynamics. The greater was the introduction of relativity
in a quite new guise, which we now consider.

8.8. Descartes' revised concept of motion

We now come to the intriguing part of the story: the publication of the
Principles (which Koyre59 called a 'second edition' of The World). Com-
pared with the charming freshness of The World, this is a somewhat
tedious book. Descartes intended it as a comprehensive textbook of
philosophy designed to replace Aristotle - and to a large degree suc-
ceeded. It is full of formal definitions. The immediate sources of his
inspiration are less evident; in places he is obviously covering his tracks.
The most striking difference from The World is the large portion given over
to a formal theory of place and motion. Descartes insists on complete rela-
tivism and ironically adopts a position even more Aristotelian than the
Stagirite's. Comparing The World with the Principles, we realize the lengths
he was driven, in the intervening decade, to come to terms with Rome.

The all-embracing container space of the earlier work disappears with-
out trace. This is reflected in a pronounced hardening of Descartes'
commitment to plenism. In The World he was prepared to grant the
possibility of a vacuum. It is now denied in terms stronger than any
Aristotle used. The basic position of the plenists was that an empty
container was a physical impossibility since the ambient medium would
immediately press its inner walls together with great force. In contrast,
Descartes now asserts that an empty container is a logical impossibility,
that one can no more conceive such a thing than one can conceive valleys
with the intervening mountains removed.60 On the face of it, this is an
admirable economy on Descartes' part: whereas his scheme previously
contained three elements, matter, motion, space, it now contains only
two. The redundant duplication of properties inherent in characterizing
both space and matter by the same principal attribute, extension, is
pointed out to good effect. Descartes insists that space, being nothing,
simply cannot exist and is anyway superfluous. You do not need extended
space to contain material extension. In his view matter is extension - it has
no other attributes at all - and extension occupies itself; it has no need of
anything to occupy.

This development from the earlier to the later work appears logical. In
The World Descartes already seems close to remarking on the superfluity
of space as a container of matter. His characteristic standpoint that matter
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is defined by extension and nothing else is already clearly formulated. It
is in the new theory of place (needed once space has been banished) and
motion that Descartes introduces quite new elements, unexceptionable
perhaps in themselves but totally at variance with his laws of motion,
which he retains unaltered.

Descartes' claim that his matter is characterized by extension and
absolutely nothing else is not actually true; for it may also possess motion.
Indeed, most matter must possess motion or otherwise his whole enter-
prise falls apart. Officially at least these are the only two elements of the
Cartesian world. Before going on to discuss his theory of place and
motion, we must, however, point out a flaw that I do not think Descartes
anywhere addresses. Per se, extension is completely uniform. However,
Descartes constantly assumes that it is meaningful to distinguish a piece
of matter here from a different piece there. In fact, his extended matter is
divided up into pieces of all different shapes and sizes. But if matter is
nothing but pure uniform extension, what property is it that gives it this
particulate structure?

There is here a very fundamental difficulty, inherent in the concept of
Euclidean space just as much as in Descartes' pure material extension. If
uniform extension is the sole essential property in the windswept Carte-
sian ontology, whence come the distinguishing attributes that enable one
to speak of the piece of substance that is here rather than there? Descartes
and all such rationalists who strive to make the world as simple and
uniform as possible are always forced to fall back on some extra attribute,
which merely serves to distinguish different pieces of substance that
would otherwise be totally indistinguishable. But this extra attribute,
meant to serve as nothing but a label, runs quite counter to the whole
thrust of uniformization, which is supposed to have such reassuring
explicatory powers. This is a problem that we encounter through the
whole theory of motion and, indeed, any conceptual 'theory' which
strives to make the world uniform. Most rationalists are less than candid
(or clear) about this inherent difficulty, which will be discussed in Vol. 2
in connection with Leibniz's work.

Let us now consider the 'official' Cartesian theory of place and motion,
bearing in mind that, strictly, it requires the introduction of at least one
further attribute to permit unambiguous identification of different pieces
of matter. (It might be argued that different pieces of the Cartesian matter
could be identified by means of the second attribute that is allowed in the
scheme - motion. However, this is not possible since Descartes' whole
purpose is to define motion. The definition rests completely on the concept
of relative transference of distinguishable pieces of matter. Descartes
cannot save his concept of motion without at least one further attribute of
matter.) The most important concept in the new theory is that of the
external place, or situation, of some given piece of matter. This immediately
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plunges us into Cartesian relativism. (I use the world relativism to avoid
the ambiguity inherent in relativity. Cartesian relativism is predominantly
kinematic, with, however, as we shall see, some ill-defined dynamic
elements.) In order to determine situation61

we must take into account some other bodies which we consider to be motionless:
and, depending on which bodies we consider, we can say that the same thing
simultaneously changes and does not change its place. Thus, when a ship is
heading out to sea, a person seated in the stern always remains in one place as far
as the parts of the ship are concerned, for he maintains the same situation in
relation to them. But this same person is constantly changing his place as far as the
shores are concerned, since he is constantly moving away from some and towards
others.

This sort of problem is quite familiar from Aristotle. But now comes a
highly important development. For Aristotle, position was relative but in
the end determinate, the quintessential Catherine Wheel providing the
ultimate frame of reference. Descartes must be given the credit for being
the first to look a bleak prospect squarely in the face. For he continues62

Furthermore, if we think that the earth moves [and is rotating on its axis], and
travels from the West toward the East exactly as far as the ship progresses from the
East towards the West; we shall once again say that the person seated in the stern
does not change his place: because of course we shall determine his place by
certain supposedly motionless points in the heavens. Finally, if we think that no
truly motionless points of this kind are found in the universe, as will later be
shown to be probable; then, from that, we shall conclude that nothing has an
enduring [fixed and determinate] place, except insofar as its place is determined
in our minds.

The extraordinary sting in the tail, 'except insofar as its place is deter-
mined in our minds', was to dominate the discussion of the nature of
motion for seventy years or more. It brought all thinkers up with a severe
jerk. Absolute space was born of Newton's revulsion to such a preposter-
ous notion. As will be seen later, Descartes himself clearly had a deep
Freudian inability to believe in the doctrine he here proclaims so uncom-
promisingly. However, the lesson of Copernicanism was beginning to
sink in. The great cosmic debate had raged for a century. Just when it
appeared to be resolved in favour of Copernicus and Galileo - yes, the
earth does move - Descartes put the whole debate in a totally different
perspective. He questioned the law of the excluded middle, tertium non
datur. From now on the question was no longer: does she move or does
she not? It was transformed into: what is motion? This question, worthy
of Pilate, was the deus ex machina that Descartes summoned up to pluck
him from between the Copernican Scylla and the Roman Charybdis. It
created the subject of much of the remainder of this volume and the next.
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That the question was posed so late in the debate is not so much a
mystery as it might at first seem. In a closed world with stable rim no great
mental (as opposed to intuitive) adjustments were required to transfer
motion from the sun to the earth. In spirit and in terms of the underlying
attitude to motion, Copernican and above all Keplerian heliocentricity
were remarkably Aristotelian. The Cartesian revolution, which, in contrast
to the Copernican revolution, really did blow Aristotelian cosmology to
smithereens, was actually based on two developments that were certainly
fostered by the astronomical revolution but had nothing to do with its
central thesis. These were the gradual advance of the idea that the
universe is infinite and the notion that all matter in the universe is in
mechanical interaction, so that even the supposedly fixed stars can be
pushed about in the general plenum that transmits motion from one
region to another. This is what Descartes is hinting at in the suggestion
that there may be 'no truly motionless points' in the universe - the doubt
that a generation later would nag Newton into the conviction that space
truly exists.

If position is so relative, in the last resort mind-dependent, what hope
do we have at all of defining motion? Descartes' treatment of this question,
in which he veers from one position to another, seems to have induced sea
sickness in his contemporary readers; today it largely evokes wry smiles
because of the one or two places in which Descartes is rather obviously
toadying to Rome. For all that, the impression of sincerity was convincing
enough to persuade all the great figures of the seventeenth century that
he was in earnest with his advocacy of relativism. The credit of having
started the first real debate about the ultimate nature of motion cannot be
denied Descartes.

Descartes begins with a definition of situation, or external place, that is
startingly reminiscent of Aristotle, indeed a posthumous consultation for
the destruction of his cosmos:63

external place can be taken to be the surface which most closely surrounds the
thing placed. It must be noticed that by 'surface' we do not understand here any
part of the surrounding body, but only the boundary between the surrounding
and surrounded bodies, which is simply a mode.

In this formal statement Descartes, literally by fiat, defines position by
the immediately adjacent matter. But then he straight away admits a
possible role of more distant matter. For he continues immediately:

Or to put it another way, we understand by 'surface' the common surface, which
is not a part of one body more than of the other, and which is thought to be always
the same provided that it retains the same size and shape. For even if the whole
surrounding body, with its surface, is changed; we do not on that account judge
that the surrounded thing changes its place if it maintains the same situation
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among those external bodies which we consider to be at rest. For example, if we
suppose a boat to be driven in one direction by the flow of a river, and in the other
by the wind, with perfectly equal force (so that it does not change its situation
between the banks), anyone will easily believe that it remains in the same place,
although all its surrounding surfaces change.

We are back to square one. All the formal discussion of motion and
position in the Principles is a toing and froing between two extremes. One
limit is definite, the other indefinite. The definite limit is the surface of the
body under immediate consideration. The other limit is indefinite,
because the Cartesian universe is indefinite (Descartes was curiously
reluctant to say explicitly that the universe is infinite; he would only say it
is larger than any given size we might be able to imagine, cf. Koyre64).
Under such circumstances, Descartes' assertion that position is ultimately
in the mind is not only plausible but true, certainly so if an independent
space is denied and we seek to define position by the matter present in the
universe at large. There is no court of final appeal. This, of course, is what
Aristotle feared and his finite world so neatly obviated.

Descartes spends a lot of time on the definite limit, the immediate
surface of the body considered. He was almost certainly consciously
using it to please Rome; it is doubtful whether he fooled himself into
believing that it provided a satisfactory concept of position (and hence
motion) even if he wanted to. He was probably content to know that he
had transformed the problem of the earth's motion out of all recognition
and into a form that - theologically speaking at least - was far less
threatening. Let us therefore first consider what purports to be his
'definite' definition of motion, the counterpart to his refurbished Aristote-
lian definition of position. He tells us what movement 'properly speaking

If, however, we consider what should be understood by movement, according to
the truth of the matter rather than in accordance with common usage (in order to
attribute a determinate nature to it): we can say that it is the transference of one part
of matter or of one body, from the vicinity of those bodies immediately contiguous to it and
considered as at rest, into the vicinity of [some] others.

The virtue of this definition from Descartes' point of view was that
according to his theory of the cosmic vortex, all the planets, the earth
included, are carried around in a plenal fluid. Since the fluid carries the
earth with it, there is no relative motion between the earth and the
immediately adjacent matter. Thus, Descartes can assert, surely with very
little internal conviction, that the earth, pace Copernicus, is at rest!

Absurd as this argument may appear, Newton's famous bucket experi-
ment (to be discussed later though no doubt most readers are familiar
with it, which I here assume) is evidence of the seriousness with which
the seventeenth century took these arguments of Descartes. It is often
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wondered how Newton could have been so naive as to suppose that the
thin wall of his containing bucket could have been the dynamical deter-
minant of the contained water's motion. Anyone would surely realize
that, if motion is relative, one must look further afield for the relevant
matter. However, seen in the light of the above definition, it seems
Newton was engaging in a direct dialogue with Descartes, since the
bucket wall is, of course, the surface immediately surrounding the water.

We can probably thank Descartes' own lack of confidence in the above
argument for a further argument that he introduced almost immediately
and which undoubtedly marks the first appearance of a notion that, as we
shall see in Vol. 2, leads on inexorably to the postulate of general
covariance and some of the most basic ideas of general relativity.

In a series of comments on the formal definition given above, Descartes
finally comes to a remark that seems to have made the biggest impact of
all on his contemporaries. It is this:66

Finally, I have stated that this transference is effected from the vicinity, not of any
contiguous bodies, but only of those which we consider to be at rest. For the
transference is reciprocal; and we cannot conceive of the body AB being trans-
ported from the vicinity of the body CD without also understanding that the body
CD is transported from the vicinity of the body AB, and that exactly the same force
and action is required for the one transference as for the other.

As we have reached a crucial point in Descartes' argument, let us pause
a moment and review the various forms through which the problem of
relativity had passed from the early discussions of Buridan and Oresme,
bearing in mind that we are looking for the emergence of a clear distinction
between kinematic relativity, on the one hand, and Galilean relativity,
with its essentially dynamical element, on the other. In the case of
kinematic relativity one must, moreover, distinguish several subaspects
of the problem: (1) the ontological question, i.e., what is motion? It was
primarily this question that Aristotle addressed, as did Descartes in the
earlier quotations in this section; (2) irrespective of whatever concept we
may have of motion, how and where can we find evidence that motion is
actually taking place? This, of course, is the problem that features so
prominently in the work of Copernicus, Kepler, and Galileo; (3) finally,
there is the technical question: if motion is indeed relative, how is it
possible to say that any particular body is moving in a straight line or any
other definite trajectory? It is this last question that is crucial for the
formulation of the law of inertia. It does not feature at all as a problem in
the work of Copernicus and Kepler, since they both believed the fixed
stars were truly fixed relative to one another; this was all they needed to
have a well-deifined concept of relative motion. Galileo, as we have seen,
seems to have been curiously unconcerned about the problem. His main
contribution was in showing how Galilean invariance, which he formu-
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lated only qualitatively, could provide an explanation for the nonobser-
vance of dynamical effects of the earth's motion. He made no contribution
to the aspects (1) and (3) listed above.

In contrast Descartes raised (1) very forcibly, was not really concerned
about (2) and, as we shall see, seems completely to have failed to
recognize the existence of (3) at all. He is a classic case of a philosopher
using two different concepts of motion simultaneously; as a result, he
introduced a great deal of confusion into the whole subject of relativity,
confusion that we shall find difficult to untangle in the case of Huygens
(Chap. 9) and Leibniz (in Vol. 2). Particularly significant in this connec-
tion, because of the influence that it had on Huygens, was his statement
'and we cannot conceive of the body AB being transported from the
vicinity of the body CD without also understanding that the body CD is
transported from the vicinity of the body AB, and that exactly the same force
and action is required for the one transference as for the other' (my italics).

Although Descartes never satisfactorily explains what he means here
by 'force and action' (such words, though frequently used by Descartes,
do not properly fit into his 'official' scheme based solely on extension and
motion), this bald assertion of dynamical relativism and complete reciproc-
ity of motion goes far beyond the assertion of optical (or kinematic)
relativism so familiar from the original arguments of Copernicus and
especially Galileo.

What is significant about this passage is that it begins to introduce a
dynamical element into the discussion, doing it moreover in a way that is
not found in Galileo. He was concerned in the first place with the motion
of single bodies. Salviati reassured Sagredo that individual birds would not
lose their way relative to the rotating earth. But, as we shall see in the next
quotation, Descartes considers the situation in which two bodies are
simultaneously considered to be moving relative to the earth. This was
very important for the development of dynamics, since it marked the
beginning of the transition from single-particle motionics to two-particle
and many-particle dynamics, to which Huygens made very significant
contributions. But it simultaneously made the problem of relativity much
more sophisticated and bewildering, so much so that neither Descartes
nor Huygens was able to achieve clarity on the subject. Descartes did in
fact look the Gorgon in the face but recoiled rather rapidly. He posed the
problem rather well but baulked at giving any satisfactory answer, as we
see from the following section of his Principles (together with the figure -
Fig. 8.5 - that Descartes provided), in which he explains 'why the
movement which separates two contiguous bodies is attributed to one
rather than to the other':67

The main reason for this is that we do not think a body moves unless it moves as
a whole, and thus we cannot understand that the whole earth moves just because
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some of its parts are transported from the vicinity of some other smaller bodies
which touch them; because we often notice around us many such transferences
which are contrary to one another. For example, if the body EFGH is the earth, and
if, upon its surface, the body AB is transported from E toward F at the same time
as the body CD is transported from H toward G; then even though we know that
the parts of the earth contiguous to the body AB are transported from B toward A,
and that the action employed in this transference must be neither different in
nature nor weaker in the parts of the earth than in the body AB; we do not on that
account understand that the earth moves from B toward A, or from the East
toward the West; because in view of the fact that those of its parts which touch the
body CD are being similarly transported from C toward D, we would also have to
understand that the earth moves in the opposite direction, i.e., from West to East;
and these two statements contradict each other. Accordingly, lest we deviate too
far from the customary manner of speaking, we shall say that the bodies AB and
CD, and others like them, move; and not the earth. Meanwhile, however, we
must remember that all the real and positive properties which are in moving
bodies, and by virtue of which we say that they move, are also found in those
contiguous to them, even though we consider the second group to be at rest.

Much of the confusion surrounding the use of the word relativity,
which is still widespread today, can be traced back to the respective
reactions of Huygens and Newton to these crucial sections of Descartes'
Principles. Huygens picked up the dynamical hints that Descartes had
given and forged out of them a greatly strengthened form of Galileo's
in variance principle (the ship's cabin argument); on the other hand, he
seems to have been almost as blind as Descartes to subaspect (3) that I
listed above, and hence left the conceptual problems of kinematic relativ-
ity essentially unsolved. Newton, on the other hand, noted the glaring
discrepancy in Descartes's treatment of relativity, and this led him to the
concepts of absolute space and time. However, that is sufficient anticipa-
tion of their work. We must now return to Descartes.

There is not much point in following him through all his contortions,
some of which do him little credit, and are often hard to follow, being

Fig. 8.5.
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based on incorrect physics. They exasperated Newton but eventually
persuaded Huygens. It is, however, worth noting some passages in
which Descartes uses arguments and concepts that have a Machian
flavour. We shall see at the same time the use he made of the complete
relativity of motion postulated above. It will be recalled that, kinemati-
cally, the Copernican and Tychonic systems are identical. Now it suits
Descartes' purposes to argue that the Tychonic system actually fails to
achieve the very thing it was designed to do, namely, ensure the immobil-
ity of the earth. According to it, the earth is supposed to be at rest with the
sun circling it and the planets (except the earth, of course) in turn circling
the sun. To make his point, Descartes takes it for granted that the entire
cosmos is filled with his plenal fluid, which, he says, must also sweep
around the earth, since it carries all the other celestial bodies. There is thus
a relative motion between the earth and the plenal fluid touching it. At
this point he invokes the argument from above. The situation is entirely
reciprocal he says. Any assertion to the effect that the plenal fluid moves
automatically entails the conclusion that the earth moves just as well.
Descartes actually goes further. There is, after all, much more plenal fluid,
which stretches away indefinitely, than there is earth. On the other hand,
the actual relative motion of separation between the fluid and the earth,
which occurs only where they touch, is given and therefore seems very
insignificant when considered against the great bulk of the plenal fluid as
compared with the earth. On this score, one ought to say that it is the
earth which moves, not the remainder of the universe.68

This is not very far removed from the Machian idea that the amount of
motion of a given body is to be measured by the amount of motion it has
relative to all the other matter in the universe. There are several passages
in the Principles in which Descartes argues in such vein, as, for example,
in the passage quoted below. However, he never attempts to knit them
together into a well-defined relational theory of motion. Nor could he,
even if he had in his heart believed in his professed relativism. He faced
two problems; one of his own making, the other probably insuperable.
The one of his own making was the absurd notion that motion is
determined solely relative to contiguous matter; the insuperable problem
was in the indefinite outer boundary of the Cartesian universe. Both
problems are highlighted in the following passage, in which Descartes
explains 'how there can be innumerable diverse movements in the same
body':69

Each individual body has only one movement which is peculiar to it, since it is
understood to move away from only a certain number of bodies contiguous to it
and which are considered at rest; nevertheless, it can also participate in innumer-
able other movements, inasmuch as it is a part of other bodies which have other
movements. For example, if a sailor travelling on board his ship is wearing a
watch; although the wheels of his watch will have only a single movement
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peculiar to them, [it is certain that] they will also participate in that of the voyaging
sailor, for they and he together form one body [which is transported as a unit];
they will also participate in the movement of the ship tossing on the ocean, and in
that of the ocean itself, [because they follow its currents]; and, finally, in that of
the earth, if [one supposes that] the entire earth is moved, [because they form one
body with it]. All of these movements will indeed be in the wheels of the watch;
but because we do not ordinarily conceive of so many movements at one time, and
because we cannot even know all [those in which the wheels of the watch
participate]; it will suffice for us to consider in each body the one movement which
is peculiar to it [and of which we can have certain knowledge].

This passage shows clearly the difficulty of the problem Descartes
raised. In a democratic theory of relative motion, which ought to follow
from the situation Descartes describes at the beginning of this passage,
and in which each piece of matter in the universe should do its own little
bit to define the motion of the given piece under consideration, you have
to know when you can stop counting the votes. But Descartes resolutely
refused to draw any parliamentary boundaries for the hapless returning
officer. In fact, he rather obviously abused the relativity of motion that he
asserted and, more or less as it pleased him, chose whatever reference
matter to define motion that would give him the answer that suited his
purposes. In a way, Descartes got his deserts when he was accused of
gerrymandering.

The real lesson to be learnt is that Descartes faced a far greater problem
than the Inquisition. The hurdle which a relational theory of motion must
take, and one wonders if it ever can, is infinity. With an indefinite, or,
worse, infinite, constituency, democracy of motion becomes a mockery.
Before the infinite even Einstein admitted defeat. But we anticipate.

The remainder of this particular story is quite quickly told. After the
comprehensive statement of his principles, philosophical and physical,
Descartes turns to the causes of motion and the laws it must satisfy. We
see immediately that his conversion to relativism was not much more
than skin deep; for, as we noted in Sec. 8.4, the laws of motion formulated
in the Principles are in their essentials identical to those formulated (but
never published) more than a decade earlier in The World. We rediscover
all the familiar elements, above all the two principles that Newton,
following Descartes' lead, was later to make into the first law of motion.
Both of these principles presuppose of course that motion is quite
definite; Descartes talks blithely of uniform motion in a straight line,
extraordinarily without a single word of explanation for his non sequitur.
Having cast the unfortunate reader loose on the shifting sea of relativism,
so completely devoid of stable landmarks, he appears of a sudden to have
made a miraculous return to terra ftrma. This part of the Principles clearly
moves in the conceptual world that Descartes inhabited before the
Inquisition gave him such a rude shock. It is the world of intuitive space,
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of straight lines that are citizens of that other democracy we mentioned
earlier, Euclidean directional democracy, a different kind of democracy
that can function without constituency boundaries.

We find again too the idea, entirely meaningless without a definite
space to which it is referred, that God created a definite quantity of motion
at the first instant of the world and ordained his laws of nature in such a
way as to ensure that this given quantity of motion is preserved exactly
constant in all subsequent collisions between matter. Descartes fails to
note that this is meaningless without some quite definite frame of
reference, the very existence of which he had been at such pains to deny.

One could multiply the examples but there is no point, especially since
a particularly revealing manifestation of the absolute nature of Descartes'
treatment of motion will come to light when we consider Descartes' seven
rules of collisions in the following chapter.

This then is the confused state in which Descartes' Principles left the
theory of motion in the middle of the seventeenth century. On the one
hand, he advanced laws that cry out for an absolute space in order that
they may be formulated at all; but on the other he succeeded in making
the second half of the seventeenth century far more acutely aware of the
dilemma that motion poses than the first half had been despite all the
drama of the Copernican debate. Which of these two great strands of
thought would gain the upper hand in the sequel? The choice could not
be long delayed.

At the end of Love's Labour's Lost, Don Adriano de Armado tells the
audience: 'You, that way; we, this way.' They could almost have been
Descartes' parting words as he set off on his ill-fated journey to Sweden
and comparatively early death in 1650: across the Channel, Newton opted
for absolute space: on the Continent, Huygens and Leibniz, after vacil-
lation and not a little confusion, followed Cartesian relativism.



Huygens: relativity and
centrifugal force

9.1 Introduction

If Descartes exerted a stronger influence on the development of dynamics
than the quality of his work on motion as such might have led one to
expect, with Huygens it was the other way round. In accordance with the
tally promised in the Introduction, all but 2| of the 'baker's dozen' of
insights needed before the synthesis of dynamics could commence were
to hand when Descartes died in 1650. The remainder were all obtained by
Huygens, who almost certainly had sufficient mathematical skill to put
them together and claim the prize of immortal fame that actually went to
Newton. But it did not happen that way. Huygens' results were published
in only mutilated form in his lifetime; a decade and more after he had
discovered them and before any of them had been published Newton
rediscovered nearly all of them. Then, more than another decade later,
fortunate circumstances prodded Newton into the work that finally led to
the creation of dynamics. During all this time Huygens was held back
from taking the final step to dynamics by an attitude of mind. It was, in fact,
the very same attitude of mind that led him to his great discoveries in the
first place but which then became a hindrance. The hero and villain of this
story was likewise one and the same person - Descartes.

Christiaan Huygens (1629-95) was the son of the wealthy and dis-
tinguished Dutch diplomat and poet Constantijn Huygens. He was truly
fortunate in his birth and never had any real financial worries in his life,
though his health was never good. Like several other of the great figures
of the scientific revolution (including Newton and Leibniz) he never
married. He was able to devote his entire life to science and through
brilliant studies in several different fields rapidly established himself as
the leading scientist on the Continent. He was a very considerable, if
somewhat old-fashioned, mathematician (in mathematics he did not
quite achieve the significant results of Descartes, Fermat, Newton, and
Leibniz), a superb astronomer (he not only made important observations,
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including the discovery of a moon of Saturn and the establishment of
the interpretation of that planet's rings, but also designed micrometers
for measuring small angles with a telescope and, with his brother,
Constantijn, developed great skill in grinding lenses), and a brilliant
inventor (his invention of the pendulum clock will be discussed shortly).
Besides his exceptionally important work in dynamics, which will be the
subject of this chapter, he did brilliant work in optics, in which he excelled
even Newton. His Traite de la Lumiere,1 which has been translated into
English,2 is one of the great works in the history of science and contains
the formulation of the famous wave-front principle that is named after
him.

Huygens was in his prime in the age in which science became, if not
'big-business', at least a major intellectual activity. It developed into a
formalized undertaking and specialized journals were created specifically
for the publication of scientific results. The scientific revolution acquired
a momentum that it has never since lost. The Royal Society was founded
in London in 1660 (first charter 1662) and Huygens became a member
following a visit to London in 1663. On a second visit in 1689 he met
Newton. In 1666 Huygens became one of the founding members of the
French Academy of Sciences (Academic Roy ale des Sciences), of which he
was to become the most distinguished member. As a member he was
awarded a generous stipend and had an apartment in the Bibliotheque
Roy ale. He lived mainly in Paris during the period 1666 to 1681. For the
history of mathematics, physics, and philosophy one of the most impor-
tant events of this period was the visit of Leibniz to Paris during the years
1672 to 1676, when the young Leibniz met Huygens and learnt from him
much that was of great value in both mathematics and physics. This
encounter was of decisive importance for the subject of the present study
and its consequences will concern us both in this volume (Chap. 12) and
again in Vol. 2.

The key to both the strengths and weaknesses of Huygens' approach to
dynamics are to be found in his mechanical philosophy of nature. He read
Descartes' Principles of Philosophy at the impressionable age of 15 or 16.
Descartes was in fact a friend of Huygens' father and an occasional visitor
to the family home in Holland, where he met and was impressed by the
young Christiaan. Huygens was carried away by the idea of a mechanical
explanation of the phenomena of nature along the lines proposed by
Descartes. In accordance with this programme, all phenomena must be
given a microscopic interpretation in terms of invisible particles of matter,
the only elements allowed in this explicatory enterprise being, as we have
seen, the size, shape, and motion of the particles.

In his Treatise on Light, Huygens says that 'it is not possible to doubt that
light consists in the motion of certain matter'; he speaks of the 'true
philosophy in which the grounds of all natural effects are derived from
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mechanical causes' and says that if this approach is not adopted one must
'completely give up all hope of ever understanding anything in physics'.
It must be emphasized that mechanical is used here in the sense of direct
physical contact. Like Galileo and Descartes, Huygens rejected the
concept of attractive forces acting over distances. He completely accepted
Descartes' basic position, namely that the motion in the world was put
into it at the initial instant and has since been regulated by the action of
the law of inertia (not yet called such) and the rules of impact of bodies.
His main difference from Descartes (apart from being a vastly superior
physicist) was in following Gassendi's lead* in reviving the ancient
atomistic theory of particles moving in a void.

Huygens took the mechanistic programme very seriously and treated
the problems that it posed with rigorous mathematics rather than
Cartesian pictorial analogy. There is quite a detailed account of this work
in the article on him in the Dictionary of Scientific Biography.5 Huygens'
work in this field anticipates the great work of the second half of the
nineteenth century done on the kinetic theory of gases by Maxwell,
Boltzmann, and Gibbs. By his introduction of mathematics and at least
some sound physical principles he transformed atomism from qualitative
philosophy into a genuine science, though in retrospect we can see that
his attempts were premature and too ambitious. In the end, the main
consequence of his work was that it provided the final elements needed
for the creation of the definitive structure of dynamics. The description of
this work will take up the bulk of the present chapter.

We conclude this introduction with a brief mention of Huygens'
invention of the pendulum clock, which revolutionized the science of
time keeping and played a significant role in the final emergence of
dynamics. It will be recalled from the early chapters of this book that one
of the most serious hindrances to the discovery of dynamics was the
absence of suitable clocks. As in so many other things, it was Galileo who
made the decisive breakthrough with his observation that the period of a

* The French priest Pierre Gassendi (1592-1655), whose main achievement was the revival
of ancient atomism, is an important peripheral figure in our subject. As already noted, he
performed important services in observing the transit of Mercury across the sun in 1631 and
the experiment in which a heavy weight was dropped from the mast of a ship under sail in
order to test Galileo's ideas about motion (1640). Like Descartes and Beeckman, with both of
whom he maintained contact, he developed the idea of inertial motion and, in fact,
published a correct form of the law just before Descartes published his much more
influential Principles of Philosophy. Wohlwill3 believes that Gassendi's work would by itself
have ensured the establishment of the law of inertia in its correct form rather than the
Galilean form with 'circular inertia'. It is quite possible that his ideas about space and time -
which Gassendi taught existed independently of their content and provided the general
frame of any knowledge of reality - influenced Newton's views. Newton undoubtedly read
Gassendi, who was one of the first to adopt such universal concepts of space and time. The
reader wishing for more information about Gassendi is referred in the first place to the article
on him in the Dictionary of Scientific Biography.4
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pendulum is independent of the amplitude of its oscillation (this is the
discovery that Galileo is supposed to have made while watching the
swinging of a great chandelier in the cathedral at Pisa, his own heart beat
serving as the clock). Attempts were quite soon made to exploit this
property for time-keeping purposes, and these showed that the period is
independent of the amplitude only if the amplitude is small. Huygens
made both technical and theoretical contributions of the first order of
importance. He designed (in 1657) and patented (in 1658) a brilliantly
successful pendulum clock, which transformed time-keeping. He also
worked on the theoretical problem of designing a pendulum in which the
period is independent of the amplitude. In 1659 he showed that if the path
of the bob of a pendulum follows the curve known as a cycloid the period
will be completely independent of the amplitude. His demonstration of
how the pendulum must be designed in order to achieve this led him to
the mathematical theory of evolutes of curves.

This work was important for the burgeoning science of dynamics for
three reasons especially. First, by showing how the period T of a
pendulum, its length / and what is now known as g, i.e., the acceleration
of free fall, are related by the famous formula T = 2jrV(//g) (which
Huygens derived in his Horologium Oscillatorum (1673)6), Huygens pro-
vided a method for accurate measurement of g. Together with the
accurate measurement of the radius of the earth, which occurred
somewhat later, this datum was essential for linking the strength of
terrestrial gravity to the strength of the force that keeps the moon in orbit
and played a major role in establishing Newton's theory of universal
gravitation. Second, in 1671 Richer was sent by the French Academy of
Sciences to Cayenne on a mission having several aims* and he found that
at the latitude of Cayenne (5°N) the pendulum clock that he had taken
with him went slower than at Paris by about 2i minutes in a day 7 This was
direct evidence that the strength of gravity near the equator was less than
at Paris; as we shall see later, this observation was of great importance for
providing direct dynamical evidence of the earth's rotation and oblateness
(in turn a consequence of its rotation). Third, it was found8 that clocks
taken to the tops of mountains went slower than when at the bottoms of
the mountains. This was the clearest possible evidence that the strength
of gravity decreases with increasing distance from the centre of the earth
and provided important support for the idea that its strength falls off as
1/r2 with increasing distance r from the body producing the gravitational
attraction. This result was also important in leading to the distinction

* The most important was to make observations of Mars at identical times as an observer at
Paris to enable an accurate value for the parallax of Mars to be obtained. This was the first
determination of a distance within the solar system made with really good accuracy and led
to a dramatic enlargement of the dimensions of the solar system.7
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between weight and mass, which was another most important step in the
clarification of the fundamental dynamical concepts and will be discussed
in Chap. 12.

When we come to discuss Newton's concept of time, in Chap. 11, we
shall find confirmation of the importance of this aspect of Huygens' work.
For the clarification of the time concept it was important in providing a
second reliable motion by means of which the 'universal and uniform'
flow of time (understood in the sense explained in Sec. 3.15) can be
directly measured. And whereas the earth's rotation was a unique motion
the pendulum provided in principle as many motions as one might
reasonably want. Huy gens can be said to share with the Hellenistic
astronomers the credit for the practical clarification of the way in which
the passage of time is manifested in the world. Nor must Galileo's
contribution be forgotten. It is also worth mentioning that the invention
of the pendulum clock is one of several examples of how trade and general
economic development played an important part in the discovery of
dynamics, since one of the great stimuli to the development of accurate
chronometry was the need to determine longitude at sea, clearly a matter
of prime importance for a seafaring nation such as Holland.

We now turn to the fundamental contributions that Huygens made to
the discovery of dynamics. It must not, however, be thought that little or
no work could be done on dynamics before its definitive structure had
been established by Newton. Quite the contrary; many of the formulas
and results that students of dynamics must learn when they begin the
subject were discovered by Galileo and Huygens before Newton
published the Principia in 1687.

9.2. Collisions and relativity: general comments

In their book Gravitation, Misner, Thorne, and Wheeler include a
quotation from The Sacred Wood, in which T. S. Eliot remarks that when a
new work of art is created something happens simultaneously to all the
works of art which preceded it:9 'The existing monuments form an ideal
order among themselves, which is modified by the introduction of the
new (the really new) work of art among them.' Nowhere in physics does
this quotation come to mind more forcibly than when one reads Huygens'
works on dynamics with the benefit of hindsight illuminated by Einstein's
genius.

We shall be concerned primarily in this chapter with Huygens' two
posthumous works De Motu Corporum ex Percussione (On the Motion of
Bodies in Collisions)10 and De Vi Centrifuga (On Centrifugal Force).11 The
ideas and techniques that Einstein used to create the special theory of
relativity develop directly those of the first of these two works, while De
Vi Centrifuga anticipates several key ideas of general relativity. In
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particular, Huygens comes close to formulating Einstein's principle of
equivalence - that locally it is impossible to distinguish between inertial
and gravitational forces.

It was shown in the previous chapter how Descartes had brought the
problem of motion to a head. Arguing on the basis of the 'pure light of
reason', he had in particular stated a number of laws of impact. One of the
great advances achieved by Huygens was in correcting the mistakes that
Descartes had made in his rules of impact. Huygens made his discoveries
during the 1650s but did not publish his results until 1669, when he
responded to a general invitation issued by the Royal Society of London
in 1668 for scientists to submit the correct laws of impact. He published
the same laws at the same time in French in the Journal des Sgavans (18
March 1669).12 His publication (in Latin) in the Philosophical Transactions13

of the Royal Society was preceded by those of Wallis, who gave the laws
of inelastic collisions, and Christopher Wren,* who, like Huygens, treated
elastic collisions and gave essentially the same rules (without, however,
any general principles of their derivation). Unfortunately, the beautiful
arguments by which Huygens arrived at many of his conclusions had to
await the posthumous publication of De Motu Corporum in 1703.

The primary interest of De Motu Corporum for this book is that it
contained the first clear statement of the restricted principle of relativity
for mechanical phenomena. Galileo had of course come extremely close to
stating this principle, but Huygens went beyond him in several important
respects. First, he applied the principle quite generally to all (inertial)
systems moving uniformly with respect to each other in any direction,
i.e., Galileo's (actually incorrect) restriction to uniform motions over the
surface of the earth was lifted; second, whereas Galileo only considered
the motion of single bodies, Huygens (clearly stimulated by Descartes'
rules of impact) considered the interaction of bodies; by treating systems of
bodies he drew attention to possible new results that can be extracted
from Galileo's principle, thereby making explicit what in Galileo is only
implicit; third, he combined the principle of relativity with a further
principle that historically was to prove to be of as great significance as
Galileo's principle - the principle of the conservation of energy; by means
of these two principles the problem of elastic collisions of two bodies can
in fact be completely solved; fourth, he formalized much more clearly than
Galileo the concept of frames of reference and considered how the
expression of a law of motion stated in one frame of reference must be
transformed when one and the same phenomenon is expressed in
different frames of reference. He was the first practitioner of transforma-

* Wren (1632-1723) had already had a very distinguished career in science before turning to
architecture at the age of 30. He was Savilian professor of astronomy at Oxford from 1661 to
1673. There are numerous references to his work as a geometer in Newton's Principia.
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tion laws. It is in the combination of transformation laws and the selection
of certain simple principles or empirical facts from which far reaching
conclusions are then drawn that he so closely resembles Einstein (one
should, of course, word that too the other way round!). DeMotu Corporum
is a pre-run of the 1905 paper that created special relativity. In fact, the
editors of Huygens' works comment that if the principle of relativity
should carry anyone's name, then it should be Huygens'.14

De Motu Corporum is a beautiful exercise in logical deduction from
certain simple premises. This was, of course, what Descartes had
attempted; unfortunately, he only seldom selected sound premises.
There is another important difference: Descartes' 'deductions' were
mostly pictorial. He posited, as it were, certain principles underlying
nature, which he regarded as a mechanism, and was then content to
explain in qualitative terms how these principles operated in any
particular part of the mechanism one chose to examine. Huygens' deduc-
tions are on an altogether different basis - strictly mathematical and
simultaneously subjected to empirical verification. The failure of
Descartes and the success of Huygens were an important lesson for
science and emphasized the significance of Galileo's work (which was
grasped by Huygens but escaped Descartes): unless the natural scientist
is prepared to accept the rigour of mathematical discipline, coupled with
accurate observation, the essence of the laws of physics will elude him.
The vision will be blurred to such an extent that the key points carrying
the explicatory burden, i.e., the actual laws of nature, will disappear
entirely. The sharpness of focus is far more important than Descartes
intuitively imagined. It is not the case that with poor focus you 'see' the
same laws but not quite so precisely - you simply do not see the laws at
all. There is a world of difference between the hunch that the sun attracts
the earth and the precise statement which gives the strength of the force
and states further that there is exact proportionality between the force and
the acceleration. Of course, Descartes wanted to go in this direction but
was far too sloppy in application (and absurdly ambitious in what he
attempted to explain). Practising a self-discipline that Descartes com-
pletely lacked, Huygens demonstrated a paradox: by taking a seemingly
much shorter step, but one that is in exactly the right direction, you end
up by going much further. As Neil Armstrong remarked:15 'A short step
for a man, a giant leap for mankind'.

9.3. Descartes' theory of collisions

There is no clearer way to contrast Descartes and Huygens than through
comparison of the principles by which they sought to determine the laws
of collision between bodies, so we begin by considering Descartes' work,
which is described in Part II of his Principles.16
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We must first say something about the mass, weight, and bulk (volume)
of bodies. Descartes assumed that the dynamical properties of bodies are
determined by their volume (and speed of course). He did not have the
Newtonian concept of mass and was convinced that weight could be
explained as a manifestation of bulk, speed, and. centrifugal force. In
treating collinear collisions of two bodies, Descartes assumed accordingly
that a collision of two bodies, 1 and 2, is characterized by the velocities of
each body before the collision, u^ and u2, and after it, Vi and v2 (we
measure velocities from left to right in the usual convention, i.e., positive
M! corresponds to motion from left to right). In addition, each body is
assumed, in the formally stated rules of collision at least, to have a
volume, or bulk, that remains unchanged in the collision. It is convenient
to denote the bulks by mx and m2, since they play a role closely analogous
to mass in Newtonian physics.

The collision problem can then be posed as follows. Given m^ and m2

together with the initial velocities u^ and u2, to find the post-collision
velocities vl and v2. Since there are two unknowns, the solution of the
problem requires knowledge of two equations relating the six quantities
(four of which are known). Descartes had no difficulty in finding one such
condition. His whole natural philosophy is based on the a priori idea that
the quantity of motion, defined as the bulk times the speed (NB: speed, not
velocity) remains constant through all vicissitudes. Thus, one condition
can be written down immediately

There are two serious difficulties in the Cartesian theory of impacts.
The first is that the relation (9.1) is in fact quite false for general collisions;
the second is the missing second condition. In an attempt to provide it,
Descartes imagines that collisions are rather like two men having a fight.17

Each is endowed with a certain pre-collision 'force to move or to resist
movement'. Then, according to Descartes, to find the outcome of any
given collision, 'it is only necessary to calculate how much force to move
or to resist movement there is in each body; and to accept as a certainty
that the one which is stronger will always produce its effect'.

This principle is a lot less clear than it seems. The power of a moving
body to move can be measured by m u , the characteristic quantity that
appears in Eq. (9.1). But what about the power of a body at rest to resist
movement? Guided by intuition, Descartes had the feeling that bodies at
rest do resist motion. But where can he find a quantitative measure of this
resistance? There is no speed with which he can multiply its bulk m.
Descartes overcomes this difficulty by measuring its resistance to motion
as the speed it would acquire, after the collision, if set in motion. I do not
propose to go into the detailed arguments that Descartes employed in the
attempt to supply his missing condition. Most modern physicists would
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see them as ad hoc; they were certainly very largely wrong. The main
reason for this is undoubtedly that Descartes made no serious attempt at
all to deduce or confirm his rules of impact by observation. Instead he
relied almost exclusively on pure thought. This is why his detailed
physics generally seems of such a poor quality compared with that of
Galileo and Huygens. Nevertheless, he did make two enduring and
important contributions to the problem of collisions, namely, the clear
posing of the problem of describing them mathematically and his idea of
determining their outcome by positing the conservation of a certain
quantity (even if his own choice proved to be wrong). (Gabbey18 has
pointed out that this fruitful idea of Descartes was probably in large part
introduced in reaction to a problem in Beeckman's work, in which motion
could be lost in collisions, so that the world would eventually run down.
For a detailed discussion of Descartes' work and the way in which it
influenced Newton, the reader is referred to a further paper of Gabbey.19)
The most notorious mistake which Descartes made was in his rule 4,
which asserts that a body C at rest could never be set in motion by a
smaller body B (even if only slightly smaller). Instead, B would have to
spring back with equal speed in the opposite direction (in order for
Eq. (9.1) to be satisfied). Of the seven rules that Descartes proposed, only
one, the first, was correct.*

It is worth summarizing the rules which Descartes gives for collisions of
identical bodies. A general collision of two such bodies can be represented
formally by

Descartes gives rules (Nos. 1, 3, 6 in his enumeration) which state the
outcome of such collisions between equal bodies for different values of u^
and u2. He starts with rule 1, the only one of his seven that is in fact correct
(for what are called elastic collisions; see below), which states that if two
equal bodies approach each other with exactly equal but opposite speeds
the "contest of strength' between them must necessarily result in a draw
(since they are clearly 'equally strong'). Since (9.1) must hold always, the

* The hopelessly ambitious nature of Descartes' physics is revealed by the fact that these
seven rules of impacts, together with his form of the law of inertia, were the only explicit
rules which he gave in the Principles to account for the entire phenomena of nature. But his
physics envisaged much more than collisions in which the individual bodies remain intact.
He also relied on collisions to change the shapes of the pieces of matter; for he argued that as a
result of such collisions the various pieces of matter will, whatever shapes God may have
given them initially, be worn away until they approximate to one of three basic shapes (with
corresponding sizes too). We see that there are in fact many unknowns on the right-hand
side of Eq. (9.1), since m\ and m2 must in this more general scheme actually represent all
possible sizes and shapes of the collision products (which will also necessarily be more than
two). Since he did not even begin to discuss this problem, Descartes' claim to be able to
'reconstruct the world' from 'extension and movement' was mathematically equivalent to
trying to find the values of infinitely many unknowns from a few linear equations.
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only possible outcome of the collision is that the two spring back with
reversed but undiminished speeds:

In rule 3, Descartes supposes that one body approaches the collision
with a slightly greater speed than the other. The initial condition is thus
M + \a, —(u - ifl), where u > a > 0. In this case the 'contest of strength'
will clearly be decided in favour of the faster body, which therefore 'gets
its way', which means that it continues on its way, transferring, however,
some of its motion to the other in order to ensure that (9.1) is satisfied:

Finally, in the case when one of the bodies is at rest and the other has
speed 2u, Descartes asserts (rule 6) that the outcome will be

i.e., a rule quite different from the limit obtained from (9.4) when a —» 2.
It is revealing to consider the relative speeds of the bodies before and

after the collisions in each of the three cases. The relative speeds before
the collision are in all cases 2u (the particular initial speeds were chosen to
achieve this), but after the collision they are 2u, 0, and 2u.

However, we now recall Descartes' assertion that all motion is relative.
If that is the case, one might suppose that the frame of reference in which
any collision is observed should not make any difference to its objective
outcome. But, as we have noted, the relative speeds before the collisions
are the same in all three cases. Let us therefore go over in the case of
collisions (9.3) and (9.4) to frames of reference in uniform motion relative
to the frame in which the rules are specified by Descartes and such that in
the new frames one of the bodies is at rest. Then the three collisions are
observed in such a frame of reference as

These results have a rather startling implication, of which Descartes
himself seems to have been completely unaware (at least, there is nothing
in the Principles to suggest that he was aware of it),* namely that there is a

* It is true that Descartes qualifies his rules with the important provision that they are
supposed to hold for collisions in the absence of any contiguous bodies and that 'the
application of these rules is difficult, because each body is always surrounded by many
contiguous ones'.20 However, it is hard to believe that the differences between the outcomes
of Eqs. (9.3'), (9.4'), and (9.5) would not show up in the world in the most obvious manner.
We may also note how unphysical was Descartes' instinct: the a —> 0 limit in (9.4) is not at all
the same as (9.3), so that initial conditions differing infinitesimally lead to totally different
outcomes. This observation was the basis of a devastating criticism of Descartes' rules made
by Leibniz.21
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criterion of absolute rest. According to Eqs. (9.3'), (9.4'), and (9.5), it is not
possible to predict the outcome of a collision between equal bodies if only
the relative speed of the two is known. The outcomes in the three cases
are entirely different. However, in all cases, once the collision has been
observed it is immediately possible to say what transformation is
necessary in order to go over to Descartes' original frame of reference. The
frame in which collisions unfold as in Eqs. (9.3), (9.4), and (9.5) therefore
provides the criterion of absolute rest.

It is quite clear that Descartes formulated his rules of impact using his
'pre-Inquisition' concept of space, which is an essential element in
'gauging' the respective strengths of the two bodies in their ensuring
'contest of strength' and defining the quantity of motion.

It is worth mentioning here an aspect of scientific theories which will
figure prominently in later discussions in Vol. 2 of the respective merits of
the approaches that regard motion as absolute or relative. It is this: by
what criterion does one say that a theory is a good one? An empiricist will
say that the job of the scientist is to find out how the world is, not how he
would like it to be. Thus, empirical truth is the prime criterion of such an
approach. Taking this a bit further, we may say that an investigator will
have 'learnt to read nature's book' if what he sees around him at any one
instant enables him to predict the future. Descartes' prime concern was
rather different: as we have seen, his main aim was to understand the
world. By understand, he meant that he could form a clear picture in his
mind of what is happening. Seen in this light, Descartes would not have
been perturbed by the fact that the left-hand sides of Eqs. (9.3'), (9.4'), and
(9.5) are identical but the collision outcomes are all quite different. For he
is able to 'understand' these collisions in the conceptual framework in
which he works (in reality, absolute space), which gives meaning to the
concept of the 'strengths' with which two bodies enter collisions. If
challenged explicitly on the matter, Descartes would no doubt have
expressed himself happy to sacrifice the ability to predict the future from
observed initial data for the sake of a clear and rational explanation of
what is happening. We shall see in Vol. 2 how Poincare put the absolute/
relative debate in a particularly illuminating light by examining the matter
from the point of view of the predictability of the future. For the moment
we will only say that Cartesian rationalism is not synonymous with
predictive power - nor a true understanding of how the world really
works.

But it is now time to pass from Descartes to Huygens and see the
transformation he wrought in Cartesian physics. In the history of
dynamics there are few more beautiful pieces of work than Huygens'
replacement of Cartesian guesswork by the rigorous derivation of the
laws of impact from general principles resting on a secure empirical basis.
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9.4. Huygens' theory of collisions

Huygens opens De Motu Corporum with two fundamental propositions,
or assumptions. The first is as follows:

When once a body has been set in motion, it will, if nothing opposes it, continue
that motion with the same speed in a straight line.

We note how simply the law of inertia has been fused out of the two
parts that it possessed in Descartes' Principles. So far as I know, this is the
first clear statement of the law formulated: (a) as a single law, (b) with the
clear recognition of it as the most basic law of motion. (Although De Motu
Corporum was not published in his lifetime, Huygens repeated much the
same assumption at the very beginning of the second part of his
Horologium Oscillatorum published in 1673, where he also gives a very
clear statement of Galileo's principle of composition of inertial and
gravitational motion.)

Whereas Huygens' first assumption follows more or less directly from
Descartes, in his second he breaks new ground. He states the principle of
relativity in a form very little different from the one in which it is still used
today:

The motion of bodies and their speeds, uniform or nonuniform, must be under-
stood as relative to other bodies that are regarded as being at rest even if these
together with the others partake in a further common motion. Thus, when two
bodies collide but have in addition a further common uniform motion, they impart
to each other impulses that, viewed by one that also partakes in the common
uniform motion, are exactly the same as if the uniform motion common to all were
not present.

Thus we say that if the occupant of a boat travelling with uniform speed lets two
equal spheres approach each other with speeds that are equal relative to the
occupant and the parts of the ship then as a result of the collision each must spring
back with speeds that, relative to the occupant, are exactly the same as if the
occupant let the same spheres collide with the same speed when the ship is not
travelling or he were on land.

We shall look at the consequences that Huygens extracts from these
principles in a moment. It should, however, be emphasized that there is
in these two principles of Huygens, both of which reveal the strong
influence of Descartes, a contradiction, or at least a difficulty, just as great
as in Descartes. If motion is relative to other bodies, which bodies are they
that define the uniform motion in a straight line which, according to
Huygens' first principle, is the basis of his entire mechanics? Neither in its
formulation nor anywhere else in De Motu Corporum ex Percussione does
Huygens offer any clarification. This was probably very wise on his part.
Had he stopped at that point and attempted to unravel all the mysteries
of motion, he would probably have made no progress at all. As it was,
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doubts on this score may well have been one of the reasons why he did
not publish De Motu Corporum in his lifetime (the long delay in publishing
even the results was also probably due to a reluctance to challenge in
public the prevailing orthodox Cartesianism). If the first principle stands
totally without visible support, the principle of relativity is formulated
with words that seem to tie it in to the real contingent world but in a
curiously vague way. In expressing the principle in words, Huygens
anticipates the photographer's art of vignetting: the central point is in
clear focus, but the picture shades off gradually into nothing. There is no
supporting background, the picture hangs literally in the air. We see a
boat and there is talk of a river bank, but there it ends.

It is a delicate balancing act in the limbo created by Descartes' final
demolition of the cosmos. Huygens appears to be searching for the true
ocean through which the Galilean galley courses but does not find it. The
opening statement seems like an acceptance of Cartesian relativism (The
motion of bodies . . . must be understood as relative to other bodies that
are regarded as being at rest') but some other more stable background is
immediately implied by the 'further common uniform motion'. But where
is the court of final appeal that this common uniform motion implies, that
can define such a mathematically precise concept as uniform rectilinear
motion? Huygens answers with an example: the local surface of the earth.
He clearly cannot have believed the earth to have been the terminal
referent of motion. If questioned, he would presumably have answered
that the surface of the earth serves his purpose since it is, at least to a good
enough approximation, itself moving uniformly. But when questioned
how the concept of uniform motion tallies with the relativism he espouses
in his opening statement, he would probably have sighed and admitted
defeat.

He clearly had what Mach,22 in speaking of Newton, called the tact of
the great natural scientist. He could sense the immense but as yet
untapped potential in Galileo's cabin cameo and knew that uniformity of
the relative motion between two such cabins was an essential prerequisite
for the obtaining of correct results. But he was also very open to the
intuitive force of Cartesian relativism, and this leads him to use words and
phrases which suggest (though certainly not by any explicit proposition
or theorem) that the Galileo-Huygens principle of relativity is somehow a
necessary consequence of Cartesian relativism. It is most important to
realize that, despite the identity of expression, the actual use which
Huygens made of the principle of relativity gave to the word relativity a
significance that is quite absent in Descartes. For a start, in the latter's
Principles, there is nothing resembling Galileo's principle. As we have
seen, Descartes had very little interest in the questions that were of central
concern to Galileo. The clearest indication that Huygens' relativity marks
a completely new departure compared with Cartesian relativism is the
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word uniform, a crucial restriction, which occurs nowhere in Descartes'
general discussion of the true nature of motion (though it does of course
appear in his formulation of the laws of motion, which, as we have seen,
were formulated in a totally different conceptual framework).

Another point which must be made here is that the Galileo-Huygens
principle of relativity (which has a very precise empirical content) simply
cannot be deduced as a necessary consequence of Cartesian relativism
(which, when accepted in its most extreme form, actually denies the
possibility of an objective theory of motion by asserting that place and
motion are ultimately determined 'only in our minds'). Even if all motions
are truly relative, one could very easily imagine that motion with respect
to the universe as a whole would show up in local physics, as was pointed
out in Sec. 1.2. It is quite easy to construct models in which this is the case.
It is, in fact, very difficult to establish precisely what Huygens did
understand by relativity. The words he uses seem to suggest he meant
Cartesian relativism, i.e., kinematic relativity, but his actual principle
gives expression to Galilean relativity, which, as we have pointed out
several times, is not the same thing at all. We shall return to this question
a little later and also in Chap. 12, when we compare the positions of
Newton and Huygens.

Let us now return to Huygens' derivation of the laws of impact. Having
praised Huygens so highly earlier, I should for all that admit that the
overall presentation of elastic collisions on a straight line as given in De
Motu Corporum is not quite as clear as it might be, with subsidiary
assumptions being added as the exposition proceeds. As we shall see
later, the main reason for this seems to have been Huygens' desire to
derive as many of his results as possible by rational arguments from
principles that would command general assent (rather in the manner of
Euclid's axioms). Huygens too had a strongly rationalistic approach, but
he took care to choose principles in agreement with empirical fact. For the
sake of clarity, I shall break loose somewhat from Huygens' detailed
exposition and merely concentrate on the most important principles he
uses, showing how they are sufficient to solve the two-body collision
problem in its entirety. In Sec. 9.5,1 shall come back to the question of the
precise route by which Huygens appears to have obtained his first results,
as this is of no small interest.

We begin by considering the positive use that Huygens makes of his
principle of relativity. It is a fascinating exercise: he can be observed
feeling his way forward, careful step by careful step, to the laws of
transformation between coordinate systems that are distinguished by
being what we now call inertial. Perhaps it is precisely because he failed
to achieve clarity on the status of these systems (and therefore does not
say explicitly they are distinguished) that he moves so very cautiously.
Nevertheless, his instinct did not fail him, and he separates cleanly the
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two essential elements - the purely kinematic aspect of the problem,
which consists of establishing how an event described in one frame of
reference will appear when viewed from a different frame of reference,
and the exploitation of the physical element of the relativity principle, the
empirical statement that collisions as observed on the boat are unaffected
by whatever uniform velocity the boat may have relative to the bank.

He supposes a man in a boat on a river performing collision experiments
and a man on the bank who has two tasks, the first of which is merely that
of a spectator watching these collisions. This is the purely kinematic
aspect of the situation. As before, we measure velocities from left to right,
so that c denotes a speed of the boat as observed by the man on the bank
from left to right and —c the same speed but in the opposite direction.
However, for the moment we concentrate on the man in the boat, in
which he lets two hard (by which is meant, in modern terms, perfectly
elastic) balls collide. Let their velocities before the collision be u\ and u2

and after it vl and v2. Then the collision can be denoted symbolically by

Now if at the same time the boat is moving with uniform speed c relative
to the man on the bank, then from the bank the collision (9.6) will be
observed as

For the moment this is a purely kinematic relationship. Huy gens now
wishes to make it clear, however, that in reality the collision must not be
thought of as taking place in the boat. It is not tied to the boat, it could in
fact be regarded just as well as taking place on the bank. He makes this
point as follows. He supposes that the man on the boat effects the collision
by standing on its deck with outstretched arms holding in his hands
strings by which the balls are suspended. He then moves his hands with
the uniform velocities ulf u2 relative to the deck, thereby causing the balls
to collide with the same velocities. Huygens now arranges that as the boat
comes past the spectator on the bank, he joins his hands with the man on
the boat, so that they both hold the ends of the string. The man on the
bank moves his hands at the speeds which ensure that they travel exactly
together with the hands of the man in the boat, i.e., HI + c and u2 + c
relative to the bank. Now the balls clearly cannot 'know' which of the two
men is causing them to collide. Huygens illustrates his argument with the
characteristic picture shown in Fig. 9.1. In fact, he repeats such arguments
many times, and, to save the artist redrawing the full picture, just leaves
the hands of the two men as they lock together, as in Fig. 9.2.

It is now that the physical element is introduced. The collision (9.7) is a
collision that actually takes place in the spectator's frame of reference. It
has initial velocities u\ + c, u2 + c. But suppose that the man on the boat
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Fig. 9.1.

Fig. 9.2.
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arranges a collision in which the initial velocities relative to the boat are
HI + c, u2 + c. What will be the outcome then? It is at this point that
Cartesian guesswork gives way to physical principle. By the Galileo-
Huygens principle, the final velocities relative to the boat will be just as
they are in Eq. (9.7), despite the fact that the new collision with initial
velocities in the boat MJ + c, u2 + c is a quite different collision. Thus, by
means of the principle of relativity, knowledge of the outcome of just one
collision suffices to predict the outcome of a complete one-parameter
family of collisions, i.e., given Eq. (9.6) we can immediately deduce (9.7),
in which c can have any value.

Huygens illustrates this general rule by considering the one rule of
impact that Descartes succeeded in getting right, the one which states that
if two equal elastic bodies approach each other with equal but opposite
speeds they will rebound from the collision with the speeds reversed but
unchanged in magnitude:

Choosing now c in (9.7) to be equal to u, we immediately deduce a new
collision:

The main point of interest about (9.9) is that it is completely different
from the rule that Descartes gave for a collision with initial velocities 2u, 0.
We recall that according to his rule 6, the collision should be

Although Huygens' correct result (9.9) should have sounded the death
knell of a priori Cartesian physics, Descartes' overall scheme continued to
lead a protected life, dominating the overall pattern of thought long after
it had been shown to suffer from the most serious defects. There is a
parallel here between Descartes' scheme and the one it was intended to
replace, i.e., Aristotle's. It was a case of the curate's egg: good in parts.
Both suffered spectacular failures but both also had triumphs (the unique
centre of Aristotelian cosmology was lost, but the planets were indeed
found to move in nearly perfect circles; the rules of impact were wrong but
the law of inertia right). But the remarkable staying powers of both these
schemes cannot be explained alone by their partial successes. Much
rather, they must have made a very direct appeal to people's intuition,
giving eloquent expression to instinctively held beliefs about the nature of
the world. That Cartesianism survived for so long, many years after the
appearance of Newton's Principia, shows clearly how reluctant is the
human mind to throw off conceptions that have once taken root.

Impressive as is the generation of the one-parameter family of collisions
(9.7) from the single collision (9.6), the principle of relativity alone does
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not suffice to solve the collision problem. Having already done enough to
earn one Nobel Prize, Huygens then goes on to do the work for a second.

To solve the general problem Huygens must somehow or other deal
with the problem of the collision of unequal bodies. In the case of equal
bodies it was, of course, comparatively obvious to take the example of
their approaching each other with equal speeds and then springing back
with undiminished speeds. Granted this, then the relativity principle
solves his problem for all collisions between equal bodies. Following
along this line of attack (in which we have so far followed Huygens
faithfully) genuine further progress can only be made by making a
definite assumption about how at least one actual collision between
unequal bodies unfolds; only then can the relativity principle be used to
generate yet further collisions. It is at this point that a valuable point of
principle will be obscured if we follow Huygens too closely, so I shall go
over to a more modern approach and put the really important new idea
that Huygens introduced in the forefront of the discussion.

We must begin by saying something about masses. In De Motu
Corporum, Huygens in fact speaks of bodies being merely larger or
smaller. In the statement of the laws of impact sent to the Royal Society
and the Journal des S$avans12 he says expressly that the bodies are assumed
to be made of the same material or that their magnitude is to be estimated
by their weight. Thus, he effectively made weight the dynamically crucial
factor in collisions (along with the relative velocity - see below). Since
weight is proportional to mass and Huygens did not consider a situation
in which the bodies are moved into different gravitational fields he was
effectively operating with the Newtonian mass concept though not
clearly recognized as something distinct from weight. We shall therefore
continue to use the symbol m to denote the 'size' of the bodies, identifying
m with the mass.

What Huygens did in effect was discover a partial form of the law of
conservation of energy. This again is a fascinating combination of
elements taken from Descartes and Galileo. For a start, the stimulus to the
passage from single-particle motionics to two-particle dynamics comes
from Descartes rather than Galileo; so too does the idea that the details of
collisions are governed by a general conservation law. However,
Huygens realizes that the conserved quantity is not Descartes's quantity
of motion but something rather different. He hit on the correct quantity
by pondering that other great law of Galilean motionics: the law of free
fall.

Huygens notes that according to Galileo a body that falls freely through
a height h acquires a velocity u whose square is proportional to h, namely,
w2 = 2gh. Moreover, it will acquire exactly the same velocity if it descends
down any inclined or even curved planes (assumed perfectly smooth, of
course) through the same height. If it is then deflected into the horizontal
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Fig. 9.3.

plane it will retain that velocity for as long as one wishes but can be made
to ascend again to exactly the height h from which it originally descended.

To highlight Huygens' debt to Galileo it is here worth quoting a famous
passage from Day 3 of the Discorsi, together with Galileo's deeply sugges-
tive diagram (Fig. 9.3). Here is the passage:23

Imagine this page to represent a vertical wall, with a nail driven into it; and from
the nail let there be suspended a lead bullet of one or two ounces by means of a
fine vertical thread, AB, say from four to six feet long, on this wall draw a
horizontal line DC, at right angles to the vertical thread AB, which hangs about
two finger-breadths in front of the wall. Now bring the thread AB with the
attached ball into the position AC and set it free; first it will be observed to descend
along the arc CBD, to pass the point B, and to travel along the arc BD, till it almost
reaches the horizontal CD, a slight shortage being caused by the resistance of the
air and the string; from this we may rightly infer that the ball in its descent through
the arc CB acquired a momentum [impeto] on reaching B, which was just sufficient
to carry it through a similar arc BD to the same height. Having repeated this
experiment many times, let us now drive a nail into the wall close to the
perpendicular AB, say at E or F, so that it projects out some five or six finger-
breadths in order that the thread, again carrying the bullet through the arc CB,
may strike upon the nail E when the bullet reaches B, and thus compel it to
traverse the arc BG, described about E as center. From this we can see what can be
done by the same momentum [impeto] which previously starting at the same point
B carried the same body through the arc BD to the horizontal CD. Now,
gentlemen, you will observe with pleasure that the ball swings to the point G in
the horizontal, and you would see the same thing happen if the obstacle were
placed at some lower point, say at F, about which the ball would describe the arc
BI, the rise of the ball always terminating exactly on the line CD.

Huygens develops such considerations in a very original way. He
supposes that two bodies, say of mass m-^ and m2, are let fall from heights
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^ and h2, deflected into the horizontal with the acquired velocities
w, = V(2gh{), i =_1, 1, allowed to collide, and then to ascend inclined
planes to heights hi and h2.

In principle, fy ̂  ht since the speeds will be changed by the collision. As
the second fundamental principle introduced in De Motu Corporum,
Huygens requires that as a result of the collision the centre of gravity of the
system of two bodies should not be raised. We see here the influence of the
science of statics and the experience gained from simple mechanical
systems for raising weights which had suggested rather strongly that it is
never possible to get work done for nothing. Huygens' principle just
formulated extended such ideas by assuming that merely through the
collision of bodies one should not be able to get the centre of gravity of a
system of bodies to rise spontaneously.

When, in 1673, Huygens published in Paris his masterpiece Horologium
Oscillatorum,6 he again used this principle to solve a famous problem
known as the centre-of-oscillation problem (for a discussion of this see Ref. 5
or Mach's Mechanics2*}. Huygens pointed out that if through any purely
mechanical process involving gravity it were possible for the centre of
gravity of a system of bodies to rise spontaneously then it would be
possible to build a perpetual motion machine. This principle, like the
entire work, caused a considerable stir. The idea of deducing the outcome
of experiments in physics by means of arguments which deny the
possibility of perpetual motion machines has proved to be one of the most
powerful tools of theoretical physics. It is another of these impotence
principles to which attention was drawn earlier near the end of the
chapter on Galileo. Such principles played a central role in the discovery
of the laws of thermodynamics and quite recently helped to reveal a most
surprising connection between thermodynamics, gravity, and quantum
field theory (Hawking's theory of the evaporation of black holes25).
Huygens therefore has the distinction of being the first physicist to have
made systematic use of 'impotence' principles. It is one of the reasons
why, in certain respects, he seems so remarkably modern and a precursor
of Einstein.*

* Some time after I had written the above I came across some very interesting comments of
Martin Klein in an introduction he wrote to the recently published English translation o
Mach's book on thermodynamics (Principles of the Theory of Heat (Vienna Circle Collection,
Vol. 17), Reidel, Dordrecht (1986)). He points out that Mach, through his Mechanics (which
Einstein read avidly), may well have introduced the young Einstein to several typically
Huygensian techniques, above all the use of the relativity principle. In particular, Mach
gives an account in the Mechanics of Huygens' use of it in his work on collisions. Klein
believes that Huygens was the only person to make positive use of the principle of relativity
before Einstein employed it to such dramatic effect in his special theory of relativity, and he
thinks it possible that Einstein was therefore directly influenced by Huygens through his
reading of Mach (loc. cit, note 50, p. 419). This would obviously explain why Huygens' work
reminds one of Einstein's so often.
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But we must now get back to the collision problem. This is the point at
which we part company from Huygens' treatment, since it is simpler to
assume that after the collision the centre of gravity reascends to exactly
the same height that it had before the collision, a result that Huygens
enforces by other assumptions (we shall discuss these shortly). The centre
of gravity before the collision is at height H = (m^ + m2h2)l(ml + ^2);
substituting Galileo's law of free fall, according to which u{ = V(2g/z(),
i — 1, 2, we obtain

Writing down the corresponding relation for the height H of the centre of
gravity after the collision (when the velocities are i^ and v2) and setting
H = H, we obtain immediately

Thus, in any elastic collision (9.11) must always hold. But now consider
(9.11) in some particular case and in some particular frame of reference.
The same collision can be observed in a frame of reference moving with
uniform velocity c relative to the original frame. In the new frame, it
appears as the collision

By the relativity principle, this will be the collision that actually takes place
when u-i + c and u2 + c are the initial velocities. But by the energy
principle the law corresponding to (9.11) will also hold for the new
collision (9.12). Thus,

The two relations (9.11) and (9.14) are then sufficient to determine the
outcome of any elastic collision with given mlf m2, ulf u2. (The formal
two-fold ambiguity of the solution due to the fact that (9. 13) is a quadratic
equation merely corresponds to the possibility of an unphysical collision,
in which the particles would have to pass through each other rather than
spring back from each other, as in the physical solution, which is the one
that must be chosen.)

It must be admitted that something of the marvellous attaches to these
results, especially when one considers them in the light of the historical
development and all those long centuries in which philosophers
speculated about motion but had in truth only the vaguest notions of

Multiplying this out and substracting (9.11), we obtain
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what in reality happens. One of the ironies in the discovery of dynamics
is that as long as men stood on what they regarded as firm ground (the
earth before Copernicus) they in fact had no firm foundation at all to their
speculations about motion, but very soon after that most disconcerting of
all events, when Copernicus took the ground from under men's feet,
secure foundations for the theory of motion were in fact identified (in the
Galileo-Huygens principle of relativity) in the very process of adjustment
to the shock and the re-establishment of bearings in the new environment.
We exchanged the earth for a whole family of rafts travelling uniformly
with respect to each other. We only found our footing when we took to
these providentially provided life-rafts - inertial frames of reference, as
they came to be known. The oddity was - and is - that the rafts have a
well-defined relationship to each other (that of uniform translational
motion) but do not in themselves appear to rest on any foundation. They
are simply there, and we know not whither they are carried by what
appears to be a mysterious cosmic drift.

Although De Motu Corporum ex Percussione does not use the above
derivation of the laws of elastic impact, and the law (9.14) - the law of
conservation of momentum - is not expressly stated there as a law, the
brief communication that Huygens sent in 1669 to the Royal Society and
the Journal des Sgavans12 included very clear statements of three of the most
fundamental laws of nature: the conservation of momentum, the
conservation of (kinetic) energy in collisions, and the centre-of-gravity
(centre-of-mass) law. In stating the first of these, Huygens, though he
does not mention Descartes by name, explicitly states that his (Descartes')
fundamental law, that the quantity of motion is always conserved, is not
correct. We recall that this law states that

According to Huygens' rule 5 communicated to the Journal des Sgavans,

The quantity of motion that two bodies possess may either increase or decrease as
a result of their collision; but the quantity towards the same side, the quantity of
motion in the contrary direction having been subtracted, always remains the
same.

This is, of course, the momentum conservation law (9.14). The energy
conservation law is formulated as rule 6:

The sum of the products of the size of each hard body multiplied by the square of
its velocity is always the same before and after their collision.

Huygens concludes by saying that he has noted an 'admirable law of
Nature', according to which the common centre of gravity of two or three
or any number of bodies always advances uniformly in the same direction
in a straight line before and after a collision.
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In terms of awarding insights that belong to the 'baker's dozen', both
the principle of relativity itself and the momentum conservation law
(which was rediscovered by Newton) were vitally important, and for
these Huygens scores 1| points. In the longer term, the energy conserva-
tion theorem was perhaps even more important but Huygens himself
never made much out of it and it played no significant part in Newton's
work. It was made into something of great import by Leibniz;26 this is
something we shall consider in Vol. 2.

9.5. Collisions in the centre-of-mass frame

For a variety of reasons, it will be worth our while considering collisions
in what is called the centre-of-mass frame. According to the energy
conservation law, we have in a general frame (i.e., for arbitrary speed of
Huygens' barge)

But we can always choose the frame of reference in such a way that, for
body 1, say, the magnitude of its pre-collision velocity is equal to the
magnitude of its post-collision velocity, i.e., \u-\ = i^ . ButthenEq. (9.15)
implies that the same is true for the second body, i.e

Then the momentum conservation law reduces to

i.e., the magnitudes of the velocities of the bodies are in the inverse ratio
of their masses. Now suppose we place the origin at the centre of mass of
the two bodies, and let the bodies be at xl and x2. Then by the definition
of the centre of mass x^nii — —x2m2 and

Comparison of Eq. (9.17) with (9.16) shows that the two bodies
approach their common centre of mass with velocities of magnitude in
inverse proportion to their masses, collide at it, and rebound with their
velocities reversed but undiminished.

We note an interesting fact; if collisions are studied in the centre-of-
mass frame, Descartes' fundamental law of motion, according to which
his quantity of motion is conserved, is correct, i.e., Eq. (9.14') holds.

It seems that this result, which is not true in a general frame, was an
important factor in Huygens' discovery of the correct laws of impact, as is
pointed out by Westfall.27 For in the earliest unpublished papers of
Huygens we find that he started by considering the collision case covered

from which it follows that
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by Descartes' rule 1 and what in De Motu Corporum he called his
Assumption 2, according to which two equal bodies that are perfectly
hard and move towards each other with equal speed in opposite
directions will after colliding spring away from each other with no loss of
speed.28 Then comes a very interesting comment. He says that29 'the force
of collision is the same whether A is at rest and B moves with a given
speed, or A moves to the right and B to the left with half that speed.'
Although not identical, this passage immediately brings to mind §11.29 of
Descartes' Principles, in which it was stated that 'we cannot conceive of the
body AB being transported from the vicinity of the body CD without also
understanding that the body CD is transported from the vicinity of the
body AB, and that exactly the same force and action [my italics] is required
for the one transference as for the other.' It seems that consideration of the
relativity implicit in this statement and similar statements of Descartes led
Huygens to realize that a complete family of collisions can be generated in
the case of equal bodies from his first assumption (Assumption 2, i.e.,
Descartes' rule 1) by the Galileo relativity principle. That was the first
breakthrough. But how was he to treat collisions of unequal bodies? In
notes made at the end of his life on the problem of absolute and relative
motion Huygens mentions §11.29 of Descartes' Principles and says30 that it
is basically correct 'except where he says that the same force and action are
required to transport AB from the vicinity of CD as to transport CD from
the vicinity of AB, which is true if AB is equal to CD but not otherwise'.
Somehow or other, possibly through experiment, Huygens found quite
soon the key to the problem of generalizing his Assumption 2 in De Motu
Corporum, for in Axiom 3 of a further paper of 1652 he says:31 'If a larger
body A strikes a smaller body B, but the velocity of B is to the velocity of
A reciprocally as the magnitude A to B, then each will rebound with the
same speed with which it came.' This is immediately followed by the
triumphant comment: 'If this is granted, everything can be demonstrated.
Descartes is forced to grant it however.' Huygens is quite right; for, in
conjunction with the relativity principle, this result, which in De Motu
Corporum (in the proof of his Proposition 7) he says is in excellent
agreement with experiments, completely solves the problem of elastic
collisions. However, for some reason he appears to have been loath to
take this empirical but not intuitively obvious fact as one of the
cornerstones of his theory of impacts and commented already at the time
that 'it must be seen whether it can be demonstrated from principles that
are better known'. This appears to be the origin of the somewhat
unsatisfactory (and yet most fruitful - because it led to the energy
conservation law) proliferation of hypotheses employed in the later De
Motu Corporum, in which only the relativity principle and the law of inertia
are advanced as truly fundamental principles. The desire for 'principles
that are better known' seems to reflect a Cartesian hankering for a priori



Collisions in the centre-of-mass frame 475

certitude, which in turn is reflected in a certain obscurity, already noted,
in key formulations of principles: one cannot be sure whether Huygens is
putting them forward as empirical facts, hypotheses, or a priori truths.
This applies particularly to his formulation of the relativity principle.

An important point to note, frequently stressed by Huygens, is that the
relative velocity with which bodies approach each other in elastic
collisions is equal to the relative velocity with which they spring apart. It
is also worth mentioning another point which Leibniz,32 who learnt about
collisions from Huygens, emphasizes strongly, namely, that the effect of a
collision, by which he means the amount elastic bodies contract when
they collide, depends only on the relative velocity of the collision -
another manifestation of the Galileo-Huygens relativity principle. All of
these results tend to strengthen the notion that a collision between two
bodies is really something that can be regarded as quite detached from the
world. In this view, the 'collision-in-itself' is the collision as it unfolds in
the centre-of-mass system. We can then imagine the 'collision-in-itself
being 'towed' past us (on one of Huygens' Dutch barges) at any uniform
speed we like to choose. In such a view, the overall speed of the 'towing'
is a thing purely in the mind of the observer and we get quite close to
Cartesian relativism (though the 'thing' which is 'towed past' us is very
much a fact of experience). As noted above, when Huygens speaks of the
relativity of motion it is difficult to say what precisely he does mean (and
we shall see in Chap. 12 that he was on one point at least seriously
confused); the account of collisions just given is perhaps the closest we
can get to what he thought. It certainly goes in the direction of a further
comment that Descartes made in the crucial (but enigmatic) §11.29 of his
Principles, which is as follows: Thus, if we wish to attribute to movement
a nature which is absolutely its own, without referring it to any other
thing; then when two immediately contiguous bodies are transported,
one in one direction and the other in another, and are thereby separated
from each other; we should say that there is as much movement in the one
as in the other.' The key to Huygensian relativity seems to be that the
latter part of this statement is corrected and made precise by the centre-of-
mass formulation for collisions of unequal bodies but the idea of
detachment from the rest of the universe is accepted.

Deferring now until Chap. 12 further discussion of what Huygens
understood by relativity, it is worth pointing out here the significant
development which Huygens' mechanics represents as compared with
Galileo's motionics. As we saw, Galileo had, as it were, an atomic theory
of motions, according to which each general motion is decomposed into
'atomic' elements. In contrast, the 'atoms' in Huygens' mechanics are
collisions: the world consists of nothing but particles of matter which travel
on straight lines in uniform motion except when involved in collisions. All
the nontrivial dynamics is carried in the collisions, which, in accordance
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with the above discussion, are to be regarded as autonomous units. We
have already pointed out how seriously Huygens took the mechanistic
programme, even going so far as proper calculations to show how
microscopic vortical particles, colliding with bodies, can give rise to the
phenomena of gravity on the earth along the lines outlined by Descartes
(see, for example, Ref. 5). The importance of the mechanistic philosophy
as a stimulus to his pioneering work on collisions can be seen in a preface
that he intended for De Motu Corporum:33 Tor if the whole of nature
consists of certain particles from the rapid motion of which all the
diversity of things arises, and by the extremely rapid impulse of which
light is propagated and spreads through the immense spaces of the
heavens in a moment of time, as many philosophers deem probable, this
examination [of nature] will seem to be helped no small amount if the true
laws by which motion is transferred from body to body be made known/

Finally, it should be emphasized that Huygens assumed perfect hard-
ness, i.e., elasticity of collisions, in his DeMotu Corporum and for the atoms
of his mechanistic philosophy. This is why the bodies spring back with
undiminished speed and kinetic energy is conserved. We shall consider
the more general case of only partly elastic collisions in the next chapter.

9.6. The enigma of relativity

Huygens' work brings us to a point at which we can for the first time
formulate clearly the problem that this study addresses. All the elements
of the enigma are present in at least embryonic form. There is first of all
one fact which comes before all theorizing and detailed observation: any
observation of the real world is relative. You cannot put one end of a ruler
opposite a mark that you can see, the other opposite a mark that you
cannot see, and make an observation that tells you anything about the
world. Nothing can ever get around this fact of existence. Relativity (in
the wide sense of the word) is a fact of life. But alongside this extremely
general fact are two observational facts of a very specific nature. The first is
the fact of inertial motion. As we have seen, Huygens seems to have
accepted it without question. After the publication of Descartes' Principles
in 1644 it seems to have been accepted quite widely. For example, the
English philosopher Henry More, whose ideas on space are supposed to
have influenced Newton and who will be considered in Chap. 11, referred
to it in 1652 as34 'that prime Mechanicall law of motion persisting in a
straight line'. The difficulty was in saying in precisely what it consisted. It
all seemed very much more reassuring in Galileo's writings, in which the
phenomenon was described within the definite framework of a recogniz-
ably Aristotelian cosmos, albeit one that was being stretched and
readjusted to its very limit. In fact, if Galileo had attempted to show
systematically how not only the diurnal rotation of the earth but also its
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motion around the sun can escape detection, he would probably have
been forced to admit that the tottering structure was past saving. In the
end, the job of demolition was left to Descartes. Huygens then had no
alternative but to say farewell to the Galilean galley sailing over the blue
seas of the earth under the all embracing canopy of a well-ordered cosmos
and push out the life-rafts into the universal ocean, in which they are
undoubtedly carried by a cosmic drift as powerful as any Gulf Stream but
with two particularly odd features: (1) there is nothing immediately
apparent which shows whence the stream comes and what determines its
course; (2) the stream flows simultaneously in all directions and at all
velocities, like a multiple infinity of airport conveyor belts carrying
passengers from every possible point in every possible direction at every
possible speed - but always at a strictly uniform speed.

The attentive reader may have wondered why I showed the seemingly
superfluous Fig. 9.2 a few pages earlier. The reason is that there is
something very symbolic about those disembodied hands and the lifeless
balls dangling from them. They illustrate in graphic form two conflicting
processes that make up the whole enigma we are trying to comprehend.
Ideally, for greatest effect, Fig. 9.1 should be preceded by a picture
depicting the way in which Galileo had his first intimations of the law of
inertia. Cast our minds back barely more than 60 years to Galileo's Pisan
tract, De Motu.35 At that time, he clearly conceived motion as being
determined in all its aspects by the cosmos, the one unique frame of
reference that gives meaning to motion, the structure that defines the loci
of the teleological goals. Thus, as Tig. 9.0', the reader is asked to picture
a ball rolling round the earth, whose centre coincides with the centre of
the Aristotelian cosmos. The complete universe is shown. Without it the
picture loses all its meaning. The celestial spheres and the centre of the
universe are every bit as important for understanding the motion of that
ball as is the geography of Bunyan's world for the pilgrim's progress.

Figure 9.1 shows how the concept of motion has changed in two
generations. Unable to fathom the cosmic drift, Huygens has been forced
to vignette away not only the universal framework but also the earth. But
even Fig. 9.1 shows too much. The mysterious conveyor belts are after all
completely invisible. Lange36 commented that, conceptually speaking,
the main effect of the discovery of dynamics was that the concept of
motion became completely disengaged from the contingent world.

It was surely only with an eye to economizing on printing costs that
Huygens dispensed with everything but the hands in Fig. 9.2. Yet what
could illustrate more perfectly the termination of the process described by
Lange? As formulated by Huygens, the law of inertia, the first principle of
motion, stands naked before us with no visible support or relation to
anything contingent, seemingly in complete contradiction to the all
embracing relativity that we noted at the beginning of this discussion.
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But now we cast our eyes down to the colliding balls. Here, a completely
different tendency is at work, indeed, a diametrically opposed one. For,
as we have seen, one of the most important results of De Motu Corporum is
the law of relative velocities, according to which, in any elastic collision
between two bodies of any mass, the relative velocity of the bodies before
impact is equal in magnitude to the relative velocity after impact.

In the law of conservation of the magnitude of the relative velocities we
have a fact in perfect accord with the idea that only relative quantities
should determine motion. Huygens' result is embryonic but characteristic
in the sense that in the more general case when bodies interact through
finite-range forces (as opposed to pure contact forces as in the collisions
we have been considering) the outcome, i.e., the change in the velocities
brought about by the interaction, is always completely determined by
purely relative quantities (the relative speeds and the successive relative
distances). Thus, the mutual accelerations which bodies impart to each
other are determined quite explicitly, literally before our eyes, by relative
quantities we can grasp with the greatest ease. But what governs the
motion before and after the impact eludes us.

These mysterious results came to light because Huygens, like Kepler
and Galileo before him, succeeded in decomposing observed motions
into components. Perfectly clean decomposition seems to be the hallmark
of some of the greatest of the contributions to dynamics: Kepler's finding
of the point at which to peel the earth's motion from the Martian motion,
Galileo's analysis of projectile motion into the inertial and gravitational
components, and now, in Huygens, the clean separation of the effect of
interaction of two bodies from what, for want of a better expression, I
have called their cosmic drift.

Huygens' achievement leads us straight to the enigma that gave rise to
the present book: we are in the curious position of being able to say
unambiguously what causes the cosmic drift to be changed but not what
governs the drift itself. The two parts of the Galileo-Huygens principle of
relativity seem to be saying almost contradictory things: that there is a
manifest and palpable cause of the one but not the other.

When Huygens died, about 40 years after completing DeMotu Corporum
ex Percussione, he was still impaled on the horns of this dilemma: is motion
absolute or relative? The work to be described in the next two sections
helped to make the dilemma especially acute.

9.7. Centrifugal force: the work done prior to Huygens

Centrifugal force, or the tendency of bodies swung in a circle to recede
from the centre, played an extremely important role in the arguments
about the rotation of the earth, in the discovery of the law of inertia, and
in the discovery of the law of universal gravitation; it played a key role in
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the emergence of the precise concept of force and, thus, of fully-fledged
dynamics; and it continues to play a central role in the discussion about
the absolute or relative nature of motion. The expression centrifugal force
(vis centrifuga) itself is due to Huygens, who was the first person to derive
the correct expression for its magnitude.

As with so many topics in the discovery of dynamics, the discussion of
centrifugal force begins with Copernicus and De Revolutionibus. It will be
recalled that Copernicus had been misled by a poor translation of the
Almagest, and he incorrectly reported Ptolemy as having said that things
which undergo abrupt rotation seem likely 'to fly apart unless they are
held together by some bond'. This was therefore perceived by Copernicus
as an argument against the rotation of the earth. His first counter to this
argument was to suggest that if the earth rotates then such motion will
certainly be natural. As we have seen, this concept of a natural circular
motion of the earth and its parts was central to the emergence of Galileo's
concept of inertia.

Copernicus, however, was able to produce a further argument to
counter the supposed Ptolemaic argument. If Ptolemy was concerned for
the earth, how much more he should fear for the heavens:37

But why does he not feel this apprehension even more for the universe, whose
motion must be the swifter, the bigger the heavens are than the earth? Or have the
heavens become immense because the indescribable violence of their motion
drives them away from the center? Would they also fall apart if they came to a halt?
Were this reasoning sound, surely the size of the heavens would likewise grow to
infinity. For the higher they are driven by the power of their motion, the faster that
motion will be, since the circumference of which it must make the circuit in the
period of twenty-four hours is constantly expanding; and, in turn, as the velocity
of the motion mounts, the vastness of the heavens is enlarged. In this way the
speed will increase the size, and the size the speed, to infinity.

Quaint as this vision of a mad, runaway dash to infinity may appear, it
does succeed in capturing some of the true nature of centrifugal force. It
is worth quoting a further comment of Copernicus:38

But beyond the heavens there is said to be no body, no space, no void, absolutely
nothing, so that there is nowhere the heavens can go. In that case it is really
astonishing if something can be held in check by nothing.

The next major development in this question comes in Day 2 of Galileo's
Dialogo,39 in which the question is raised of whether the earth's rotation
might not cause bodies on its surface to be flung off into space. This
passage in the Dialogo is remarkable in two respects: as a glaring logical
inconsistency on Galileo's part but also as one of the nearest misses in the
history of science. The passage in question comes immediately after the
lengthy section in which Galileo shows why the stone dropped from a
high tower is observed to fall vertically downward and is not left behind



480 Huygens: relativity and centrifugal force

by the earth's rotation. He had, of course, refuted such a suggestion by his
Copernican concept of the 'ineradicable' tendency of all parts of the earth
to circle with it, to partake 'naturally' of the earth's rotation.40

On the basis of this argument, Galileo could just as easily have argued
that all objects lying on the surface of the earth participate equally in the
diurnal revolution and that therefore the problem does not arise - it
would be quite contrary to their inborn nature to fly off the earth.
However, Galileo here appears to have felt there to be great strength in
the argument of the stone leaving the sling. Moreover, in view of his
commitment to circular inertia, it is remarkable that at this point he
clarifies the phenomenon of the sling and makes it quite clear that when
the stone leaves the sling it departs along the tangent to the circle in which
it is being swung, commencing on this motion at the point of release and
continuing with a uniform motion along the straight line defined by the
tangent.* This was already an important clarification compared with
Copernicus and the somewhat confused idea that such bodies move
radially outwards while simultaneously continuing in the circular motion.

One reads the relevant passage in the Dialogo with bated breath, for
Galileo seems to be on the point of discovering how satellites could circle
the earth. On the one hand, he grants the tendency of bodies on the earth
to fly off along the tangent; on the other, he relies on the tendency of the
weight of the bodies to draw them back down to earth. Although for only
a single initial velocity and direction, the satellite problem is here correctly
formulated. The excitement and interest of the passage comes from the
fact that Galileo had long been in possession of all the elements needed for
its solution. He appeals to a figure (given in simplified form in Fig. 9.4) in
which the circle represents the locus (i.e., path in space) of a fixed point
on the surface of the earth, while the horizontal tangent AB represents the
path that would be taken by a body subject to no gravity if released at A
with horizontal velocity equal to the surface rotation velocity of the earth.
In a certain time, the point A will move to D on the circumference of the
circle, while a body at A in the absence of gravity would have travelled
along the horizontal line AB a distance equal to the arc AD, taking it to a
point E just short of the intersection of OD with AB. In the limit when the
arc AD is very short, ED measures the distance that accelerated motion in
free fall must be able to carry the body downward in the same time if it is
not to rise up from the earth, as argued by the anti-Copernicans. Galileo
now invokes his as yet unpublished results from the Discorsi and asserts,
without proof but quite correctly, that the speed with which a body falls
freely increases linearly with the time. It is perhaps unfortunate that at
this point Galileo uses a single figure to represent two quite different

* In the chapter on Galileo, we noted that the simultaneous existence of two basically
different 'laws of inertia' in his writings probably reflects the distinction, not yet overcome
in Galileo's mind, between natural and violent motions.
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Fig. 9.4. Simplified version of Galileo's diagram explaining (incorrectly) why
gravity should always overcome the centrifugal tendency of bodies resting on the

surface of the earth however rapid the diurnal rotation.

things. In modern terminology, he takes AB as axis to represent not only
the horizontal distance but also the time elapsed from the instant of release
of the body at A. This time is also measured from A, increasing towards
B. Simultaneously, he takes AO to be an axis measuring the vertical speed
acquired in free fall. He takes the straight line AC to represent the speed
acquired in free fall with some particular acceleration as a function of the
time. This is very confusing, because the line AC appears to represent a
path in space but in fact represents a speed as a function of time. Now comes
the egregious mistake. Galileo argues that since the straight line AC is
always inside the circular locus of the point on the surface of the earth (this
is true whatever the magnitude of the acceleration), the tendency to fall
will always overcome the tendency to fly off. The mistake is, of course,
that it is not the velocity acquired in given time that is important, but the
distance d that is travelled in the given time, and that is not a linear but a
quadratic function of the time, d = %at2, as in fact Galileo well knew. That
is what he is famous for. Galileo seems to have been confused by the fact
that he had used a single figure to represent distance, time, and velocity
simultaneously. Thus, he somehow imagined that, merely because the
line AC is superimposed on the circle representing the earth, it represents
position in space. He was no doubt also anxious not to give away as yet
too many of his results on the law of free fall. Whatever the reason, he
inadvertently got himself into a Zeno type paradox. Ironically, it is
precisely after this false demonstration that Galileo praised the power of
geometry, making his famous comment that 'trying to deal with physical
problems without geometry is attempting the impossible'.

Perhaps one should say that, without the calculus - many ideas of
which are implicit in Galileo's argument (which I have given in a very
simplified form) - it was extremely understandable that Galileo got in a
tangle. But it is fascinating to consider what might have been had Galileo
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spotted his mistake. As we shall see, it was left to Huygens and Newton
to rectify the mistake.

Incidentally, this passage in the Dialogo contains such a clear formula-
tion of not only the correct law of inertia but also the problem of
centrifugal force that it might well have been sufficient on its own,
without the intervention of Descartes, to lead Huygens and Newton (who
both studied it carefully) to the central insights from which dynamics was
synthesized. Without the work of Kepler the Principia is utterly inconceiv-
able; without Galileo's barely conceivable. But although Descartes clearly
did influence developments quite strongly, Huygens and Newton might
have found sufficient stimulus to their work from other sources. If there
is a point at which Descartes unambiguously exerted a positive influence
that could not have come from any other source, then it was in the
stimulus he gave to the study of collisions. In other cases (except the
absolute/relative question, which I am not considering here), his inter-
vention tended to highlight problems and ideas already present in one
form or another rather than introduce them.

A typical example of this is the case of centrifugal force. The credit for
having put the problem of its accurate mathematical description at the
centre of attention in the study of motion is undoubtedly Descartes'. We
have seen that in his The World, exactly contemporary with Galileo's
Dialogo as regards its writing, Descartes made the breakthrough to very
nearly the modern conception of inertia and its relation to the phenome-
non of centrifugal force. (By modern I mean post-Newton but pre-

Fig. 9.5.
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Einstein.) Moreover, we have also seen that precisely this phenomenon
was chosen by Descartes to play the central explicatory role in the
framework of his physical conceptions.

Thus, the concept of centrifugal force, or endeavour from the centre
(conatus a centra), as Descartes called it, occupies a prominent position in
The World and the Principles. Several sections of Part III of the latter41 (§§56
to 59) are devoted to a formal discussion of the phenomenon, in which,
for example, Descartes considers the force with which a stone swung in a
sling (Fig. 9.5) will strive to recede from the centre E. The main interest of
this discussion is that Descartes poses the problem as one of prime
importance but fails to treat it adequately, despite the fact that the
heading to §59 even announces that he will determine 'how great the
force of this striving is'. However, when he actually comes to the hurdle,
the horse refuses, and the discussion ends with a purely qualitative
statement: 'since what makes the rope taut is nothing other than the force
by which the stone strives to recede from the centre of its movement, we
can judge the quantity of this force by the tension/

9.8. Huygens' treatment of centrifugal force

It is from this qualitative treatment of Descartes, rather than Galileo's
quantitative but incorrect treatment, that Huygens took his point of
departure. His treatment of centrifugal force illustrates, perhaps more
clearly than anything else in the literature, the transition from embryonic
Cartesian dynamics to fully fledged dynamics. It shows us what Descartes
lacked and Galilean motionics was able to provide - a well-defined
concept of force, though not, it is true, one that Galileo used. In fact, both
Galileo and Descartes frequently use the word force but always with a
vague undefined meaning. Huygens saw that a precise definition of force
could not be obtained unless Cartesian dynamics was complemented
with an awareness of something that it completely lacked: acceleration.
He realized that through acceleration it was possible to form a precise
concept of force.

Huygens solved the problem of centrifugal force in the year 1659 as a
by-product of his attempt to find a mechanical explanation of gravity, in
which he followed Descartes' suggestion that terrestrial gravity is to be
explained mechanically by a kind of centrifuge effect of the cosmic vortex.
His results were written up in the form of a manuscript entitled De Vi
Centrifuga11 (On Centrifugal Force), which, however, was only published
posthumously, together with De Motu Corporum ex Percussione, in 1703.
However, when Huygens published his Horologium Oscillatorum in 1673
he added at the end, without proofs, a number of the main theorems on
centrifugal force. Their publication was an important development in the
history of dynamics, since they made it possible to attack the problem of
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the planetary motions quantitatively, and this led rapidly to a precise
clarification of the essence of the problem, as we shall see in Chap. 10.

The stimulus to Huygens' work in this field is apparent in the opening
sentence of De Vi Centrifuga: 'Weight is a striving to downward motion.'
Huygens' concern with finding a mechanical explanation for gravity had,
from his point of view, both a negative and a positive effect. The negative
one was that he tried to perfect the Cartesian theory of vortices as the
explanation of the planetary motions and terrestrial gravity and therefore
did not attempt to see if gravity could explain not only the falling of apples
but also the motion of the moon and planets. He persisted in the vain
search for an explanation of gravity, whereas Newton found an explana-
tion for the structure of the world in terms of gravity. The positive effect
was that he was led to look closely at Galileo's work on free fall. After all,
he wanted to explain Galileo's results and, unlike Descartes, he was not
content with purely qualitative arguments. He wanted to get exact
quantitative results. This must have undoubtedly impressed upon him
that the essence of terrestrial gravity is uniform acceleration and from this
came his great breakthrough: that the dynamically significant quantity is
acceleration and that the only serviceable definition of force is by means
of acceleration. It is slightly ironic that Huygens came to this insight, since
he was more at home in the Cartesian conceptual world of uniform
motion interrupted by instantaneous changes of velocity in collisions;
changes of speed brought about by gradual acceleration do not belong to
the basic concepts of Cartesian or Huygensian physics. This is another
demonstration of the strength of Galilean motionics; like Keplerian
celestial motionics, once the true facts had been discovered, they of
necessity imposed the introduction of appropriate concepts despite a
climate of philosophical opinion that was unfavourable.

Thus, like De Motu Corporum ex Percussions, Huygens' De Vi Centrifuga
draws heavily on Galileo's work.

Huygens first of all reviews Galileo's theory of free fall and descent
down inclined planes, putting particular emphasis on the fact that
uniform acceleration is the essence of free fall. He then turns to consider
the 'tug' that a weight exerts when suspended vertically on a string (Fig.
9.6) or else is prevented from rolling down an inclined plane (Fig. 9.7). He
says that we are to regard this tug as giving an indication of what the body
is trying to do; the 'tug' is a measure of what the body would do if no
longer constrained by the string. He recalls that according to Galileo a
body, if released, begins to descend in accordance with the odd-numbers
rule, passing through the successive distances 1,3,5,7, . . . in successive
units of time. Thus, the total distance traversed increases as the square of
the elapsed time: 1, 4, 9,16, ... However, he points out that it would be
incorrect to attempt to measure the tug by the distance that the released
body falls in a given time, say, one second. He illustrates his point by Fig.
9.8, in which the suspended ball touches a smooth curved wall at C, at
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Fig. 9.7.

Fig. 9.6.

Fig. 9.8.
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which point the wall is vertical. In this case/ as we know from direct
experience, the tug is just the same as if the wall were perfectly plumb and
did not curve below the point C. But if the ball in Fig. 9.8 is released, it is
only at the initial instant that its motion is identical to that of vertical free fall;
after the initial release the ball does not, because of the constraint imposed
by the curved wall, fall so rapidly.

Huygens thus arrives at his most important conclusion: that if we want
to find a feature of the motion actually realized when the body is released
that corresponds exactly to the tug it exerts before the moment of release,
then the only feature which serves our purpose is the instantaneous
acceleration at the moment of release along the direction of the tug. Huygens'
actual words are: 'It is therefore clear that when we wish to determine the
force we must consider, not what happens during a length of time after
the body has been released, but rather what happens in an arbitrarily
small amount of time at the beginning of the motion.'

The concept of force had been born.
Force is something which causes the body on which it acts to be

accelerated in a given direction. The strength of the force can be measured
in two ways: by the 'tug' it exerts if the body is constrained or by the
instantaneous acceleration which results on release.

Huygens immediately generalizes the concept beyond the immediate
phenomenon from which it was deduced, thus converting another of his
small carefully measured steps into a giant leap. He asserts that whenever
we experience a tug, no matter what its origin, there is a constraint
imposed on the body that tugs and that release of the constraint will be
immediately followed by acceleration of the body in the direction of the
tug. The acceleration will be directly proportional to the tug.

Although Huygens did not write down such a formula, we can express
his conclusion by the equation

where a is the acceleration, c is a constant of proportionality, and T is the
tug.

After these preparations, Huygens says: 'Let us now see how great is
the striving that bodies swung round on a string or attached to a wheel
have to recede from the centre of the circle/ This is illustrated in Fig. 9.9,
in which the circle BG with centre A represents a wheel which rotates in
the horizontal plane. Huygens supposes that on the wheel is fixed a small
ball. When it reaches the point B, it is released. Following Descartes
closely (though without quoting him), Huygens asserts that the ball,
when released, will move away along the tangent to the circle at B,
moving along the straight line BH with uniform speed. Here again we see
how he accepts the law of inertia without reservation or comment.
Simultaneously he thereby tacitly assumes a frame of reference in which
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Fig. 9.9.

it holds and in which the basic calculations are made. These are initially
purely kinematic. The wheel is imagined to be very large, so that a man
(attached firmly) may sit on the wheel as it rotates. It is supposed that the
man restrains the ball from flying away before it reaches the point B by a
short string held in his hand, the other end of which is attached to the ball.
Huygens comments that the tension that the man feels in the string is
clearly exactly the same as if the string were attached to the axle A of the
wheel. Later, Huygens demonstrates the identical effect of the centrifugal
tug and the effect of gravity by supposing that the tug in the string needed
to prevent the ball flying away tangentially is supplied by letting the other
end of the string hang down vertically at A with a suitable weight at its
end. This is a beautiful illustration of Einstein's famous equivalence
principle - in their observable effects, centrifugal force and gravity are
locally indistinguishable. This is a point which Huygens is very keen to
make, with similar but not quite identical intention to Einstein two and a
half centuries later.

The problem that Huygens sets himself is to describe the motion of the
ball, after it has been let loose at B, from the point of view of the man
sitting on the wheel. Thus, he goes over in effect to a coordinate system
rotating with the wheel. Let us first of all consider the kinematics of the
situation in the nonrotating frame. This is shown in enlarged scale in
Fig. 9.10. In a short time interval, the man is carried to point E, while the
ball, travelling inertially along the tangent is carried to K, the distance BK
being equal to arc BE. In the next time interval of equal length, the man is
carried to F, the ball to L, and so forth. Now comes the decisive point.
Huygens asks: what is the ratio of the lengths of the arcs EK, FL, MN?
These are the successive arcs along which the body appears to travel as
seen from the man. The answer is that if the time intervals are taken
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Fig. 9.10.

sufficiently short, the lengths of the arcs EK, FL, MN increase as 1, 4, 9,
16 . . ., i.e., exactly as in Galileo's law of free fall. In fact, as far as the man
on the wheel is concerned, the motion that the ball executes is
kinematically the same as the initial motion of the ball when released in
the situation shown in Fig. 9.8. For as seen from the man's point of view
the resultant curve followed by the ball is as shown in Fig. 9.11. This
curve, BRS, is found as follows. Suppose the wheel has turned quarter of
a circle. Then if r is the radius of the wheel, the ball will have travelled in
Figs. 9.9 and 9.10 the distance \nr along BH. But in the rotating frame of
the man (Fig. 9.11) the ball will be at R, where the distance NR is \m. The
curve BRS is in fact found by 'unwinding' a string wrapped round a fixed
circle. The curve BRS can be described simply by attaching a pencil to the
end of the string at B (which can pass once round the circle, for example,
and have its other end attached at B) and pulling it away from the circle,
keeping it taut the whole time as the curve BRS is described. The
important thing about this curve from Huygens' point of view - and he
takes some trouble to prove it - is that at B it touches the radius AB, i.e.,
AB is the tangent to BRS at B. Thus, as far as the motion in the immediate
vicinity of B is concerned, the situation is identical to the one shown in
Fig. 9.8. It is just as if there were a force of gravity directed along AB.
Moreover, Huygens can readily establish how fast the acceleration
actually takes place - this is a purely kinematic calculation given the
radius and rate of rotation of the wheel - so that the magnitude of the
centrifugal force can be immediately calculated.

In view of the great importance of the equivalence principle in Vol. 2,
when we come to consider how Einstein attempted to understand the
force of inertia, it is worth quoting in full the following passage from
Huygens, which shows just how close he did come to formulating the
fundamental principle of general relativity. We should not, however, be
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misled into attributing too much to Huygens. Three geniuses addressed
themselves to centrifugal force: Huygens, Newton, and Einstein.
Huygens because he was looking for an explanation of gravity in terms of
inertia, Einstein because he was looking for an explanation of inertia in
terms of gravity (so far as I know, unaware of what Huygens had done 250
years earlier), and Newton because he realized centrifugal force was an
effect that would enable him, through Kepler's Third Law, to determine
the distance dependence of the strength of the force that keeps the planets
circling the sun. The biblical story of David slaying Goliath with a sling is
a very apt metaphor for the part that the sling played in the history of
dynamics. This simple effect, potent in the hands of the deft who know
the point at which to strike, brought down much more than just the hero
of the Philistines. But let us have Huygens' words; although the least of
the three latterday Davids, he was the first:11

Thus, we must regard the intervals EK, FL, MN as if they grew from unity as
squares: 1,4,9,16, etc. And thus the striving on the rotating wheel of the attached
ball is just the same as if it wished to move away along the continuation of the
straight line that joins it to the centre, and indeed in an accelerated motion in
which in equal intervals of time it traverses distances that grow successively as the
numbers 1, 3, 5, 7, etc. It is sufficient that this progression holds at the beginning;
for later the ball may travel in accordance with other proportions or laws of
motion. That has no bearing on the striving that is present before the motion
commences. But this striving is very similar to that which weights suspended on
a string have to falling. From this we shall also conclude that the centrifugal forces
of unequal bodies which are however rotated around equal circles with equal
speeds bear to each other the same proportion as their weights, or their bulks. For
as all heavy bodies strive to fall with the same speed and acceleration, and as
further this striving has a greater power the larger the bodies are, the same effect
must hold for bodies fleeing from a centre, whose striving is, as we have shown,
entirely analogous to the striving that is caused by gravity.

Fig. 9.11.
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The seeming closeness of Huygens to Einstein's equivalence principle
is in part an illusion created by the fact that Huygens' work was done
before the discovery of the full scheme of dynamics by Newton. The
illusion itself casts interesting light on the discovery of dynamics and the
important part played by centrifugal force in clarifying the concept of
force, without which dynamics could not have appeared. The point is that
centrifugal force was the second phenomenon discovered in nature in which
acceleration according to Galileo's odd-numbers rule was observed. Prior
to the discovery of dynamics proper by Newton and the resulting
extension of the force concept to vastly more phenomena than just these
two effects, the similarity between the two effects of necessity seemed far
more striking than after the discovery of dynamics. That the similarity
could be noted at all was due to the fact that all bodies are equally subject
to the two effects, i.e., free fall under gravity and centrifugal force. This is
the equivalence principle proper, but is not what primarily struck
Huygens, who saw the main similarity in the fulfilment, at least initially,
of Galileo's odd-numbers rule. The italicized words emphasize a further
important point about centrifugal force - although similar to the law of
free fall, it describes a situation that is not identical: the similarity only
holds at the initial instant. This began the process of generalization from
Galileo's initial discovery to the full generality of Newtonian dynamics,
which occurred when Newton had fully grasped the fact that the defining
characteristic of physical forces is that they generate an accelerated
motion that at its initial instant is described by Galileo's odd-numbers rule.

One more comment on this point before we return to Huygens'
derivation of the actual formulas for centrifugal force. Einstein is greatly
admired for having noted something very simple, well known for at least
two centuries, which had escaped the attention of everyone else. It is
what we have already mentioned several times - the equivalence
principle: locally a gravitational field is indistinguishable from the
'apparent forces' generated by inertia on the passage to an accelerated
frame of reference. But we now see that both Huygens and Newton had
also been forcibly struck by exactly the same physical phenomenon two
decades or more before Newton wrote his Principia. We see here again the
ability of great physicists to spot characteristic phenomena in nature and
exploit them to great advantage. In this century Einstein was able to use
the equivalence principle to overthrow many of the principles of
Newton's dynamics and his law of universal gravitation, replacing them
by the general theory of relativity. But two and a half centuries earlier,
Huygens and Newton, struck by exactly the same similarity as Einstein,
used the very same equivalence principle to discover the concept of force,
the universal theory of gravitation, and the general principles of dynamics
- all things that were drastically modified by Einstein when, in greatly
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changed circumstances, he 'rediscovered' the equivalence principle. But
now back to Huygens.

Having clarified to his complete satisfaction the conceptual aspect of
the problem, Huygens could now proceed to evaluate the magnitude of
the centrifugal force as a function of the radius and angular velocity of the
circular motion. He had already established that the centrifugal force was
proportional to the weight, or bulk, of the rotated body. The rest was pure
kinematics.

There is no point in going through all Huygens' theorems, though we
shall give the first two, since these already contain all the important
results (the proportionality to m, the 'mass', having already been
established). His Theorem 1 states:

If two equal bodies pass around unequal circles in equal times, the
ratio of the centrifugal force on the larger circle to that on the smaller
is equal to the ratio of the circumferences, or the diameters.

This result follows directly from Fig. 9.12. The distance s travelled in
time t in uniform motion with acceleration a is s = %at2. Thus, the
acceleration, which is the measure of the centrifugal force, is proportional
to s. It is evident that AEGC in Fig. 9.12 is similar to ADFB. Therefore, the
distances of recession from the centre, EG and DF, bear the same
proportion as the diameters or the radii: EG/DF = AC/AB. From this it
follows that/, the centrifugal force, is proportional to the radius r:

Fig. 9.12.
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Theorem 2 states:

If two equal bodies move around the same circle or wheels with
unequal speeds, though uniformly, the ratio of the centrifugal force
of the faster to the slower is equal to the ratio of the squares of the
velocities.

This is illustrated in Fig. 9.13. The ratio of the speeds, vl and v2, is as BD
is to BC. But the distances of recession, FD and EC, are in the proportion
of the squares of BD and BC (in the limit of very small arcs). It follows
immediately that the centrifugal force is proportional to the square of the
velocity:

where co = vlr is the angular velocity.
In the two theorems quoted above, Huygens only established the

proportionality / <* mco2r = mrf/r. He fixed the constant of proportional-
ity by considering a problem clearly stimulated by Galileo's discussion of
the capability of centrifugal force to fling bodies from the surface of a
rotating earth. He in effect posed this question: how fast must the earth
rotate if the resulting centrifugal force (at, say, the equator, where the
effect is largest) is to be exactly equal to the force of gravity (for once the
centrifugal force becomes greater, bodies will rise up from the surface of

Fig. 9.13.

Thus, with these two theorems, Huygens has all the essential relations
for centrifugal force, which are summarized in the well-known equations
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the earth). He gave the answer in his Theorem 5:

If a body rotates in a circle with the speed that it would acquire by
falling under gravity a distance equal to a quarter of the diameter of
the circle, then the gravity of the body is equal to its centrifugal force,
i.e., it pulls on the cord that restrains it just as strongly as if it were
suspended by it.

By means of this theorem, together with the known strength of gravity
and the rotational speed of the earth, Huygens, like Newton a few years
later, was able to conclude that the centrifugal tendency of bodies on the
surface of the earth is very small compared to the force of gravity.42 We
shall return to this question in the chapter on Newton.

It should be said that Huygens' coining of the expression centrifugal force
was a little unfortunate and is something of a misnomer that has caused
and still causes a great deal of confusion. The present writer is almost
certainly not the only person whose physics teacher at school never tired
of complaining: 'There is no such thing as centrifugal force!' The problem
with Huygens' expression is its seeming to imply that centrifugal force is
a force that acts on a body which is moving in a circle, whereas it is in fact
the reaction exerted by such a body on the body which is constraining it to
move in a circle. It will be convenient to defer the detailed discussion of
this point to Chap. 10 and here merely make two comments about
Huygens' derivation of the expression for centrifugal force.

The first is that it is unambiguously derived from the law of inertia. The
tendency to inertial motion in a straight line is the underlying phenome-
non from which all springs. There is no suggestion at all in Huygens'
exposition that circular motion exists as some kind of natural motion on
an equal footing with rectilinear inertial motion. Centrifugal force is
something observed when a body is prevented from executing the motion
to which it has a natural tendency. Moreover, it is clear that any constraint
which forces a body to deviate from its natural rectilinear motion will
produce an analogous tension in the string or push in the body which is
deflecting it. The impression that a body forced to move in a circle is
striving to get away from one specific point, namely, the centre of the
circle, is a confusing illusion caused by the fact that the curve on which the
body is forced to move is a circle rather than a completely general curve.
If Huygens' analysis is repeated for motion along such an arbitrary curve,
it will be found that the force corresponding to the centrifugal force of
circular motion is directed towards the instantaneous centre of curvature
at the point in question and its magnitude is governed by the instantane-
ous radius of curvature. Thus, the appearance of striving from one
particular point is created in the case of purely circular motion by the fact
that the successive centres of curvature all coincide because of the very
particular shape of the constraining curve.
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The second comment is to point out a significant extension in his work
on centrifugal force of Huygens' technique of examining the same
phenomenon in different frames of reference. We have already seen that
in his treatment of the relativity principle Huygens pioneered the
technique of transformation laws by showing how a single phenomenon
could be viewed in different coordinate systems. In De Motu Corporum,
the transformations were restricted to transitions between frames of
reference in uniform motion relative to each other. In De Vi Centrifuga,
Huygens went a step further and viewed phenomena from frames in a
state of uniform rotation relative to the original frame of reference. This
revealed an interesting fact that Einstein was to exploit and significantly
generalize many years later. Namely, that if one makes a restriction to
considering phenomena over only infinitesimal distances and times the
basic concepts of dynamics - above all force - are generally covariant, i.e.,
the rules for defining and using these concepts are the same in any frame
of reference.

Let us look at this for the case of force. Of course, if we define the force
which acts on a body as its instantaneous acceleration (multiplied by its
mass) in a given frame of reference, such a concept is trivially covariant,
i.e., the same in all frames of reference. It gains nontrivial content through
the physical relationship that holds between 'tug' and the purely
kinematically defined acceleration. Namely, suppose we observe a body
to have particular instantaneous acceleration in a quite arbitrary frame of
reference. Huygens' analysis shows that if in that frame of reference we
hold the body fixed and prevent the acceleration occurring then we can
only do this by applying a 'tug' proportional to the instantaneous
acceleration which the body exhibits when unconstrained. Moreover, the
tug must be applied along the line of the instantaneous acceleration.
Thus, in Huygens' example, the man sitting on the rotating wheel who
constrains the body to move with him in the circle feels in his hand a tug
indistinguishable from the tug exerted by a suspended body in a
nonrotating frame. An elastic string is extended in just the same manner
and a strain gauge will measure the same force in the two cases. The
balancing of centrifugal force by a weight suspended at the centre of the
circle, the possibility of which is explicitly pointed out by Huygens, is the
most graphic illustration of this equivalence. Thus, it is the universal
validity of the relationship between the 'tug' and the acceleration - in a
rotating or nonrotating frame - that is the nontrivial essence of the
covariance.

The use of accelerated frames of reference is another of the ways in
which Huygens looks forward to Einstein, leapfrogging Newton, as it
were. Incidentally, the concentration on infinitesimals and a purely local
treatment is a point that should be especially emphasized. It does much
to create the impression that the laws of motion (more generally the laws
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of physics) are a purely local matter, quite divorced from the universe at
large. We have already made this point in the previous sections. It cannot
be emphasized too strongly that the appearance of 'disengagement' is an
illusion created by the very success of dynamics. As we have said,
Huygens was the first person to succeed in doing for terrestrial motions
what Kepler had done just over fifty years earlier for celestial motions: he
succeeded in separating absolutely cleanly two components of motion - the
uniform inertial motion, the mysterious cosmic drift common to all
bodies, and the local deviations from it. By remaining quietly discreet
about the inertial component, he inevitably concentrated attention on the
local physics, and this created the impression that it is quite divorced from
the universe at large. But this ignores the fact that it is only the cosmic drift
that, so to speak, enables us to build the raft on which the local physics
unfolds (this statement will be elaborated on in Chap. 12). Just as Kepler
succeeded in bringing the planetary motions around the sun into
absolutely sharp focus by learning how to subtract the earth's motion
cleanly, so too did Huygens and Newton, building on the hints they
inherited from Galileo and Descartes, learn how to identify those
components of the overall motion of bodies that have an identifiable local
cause. The rationality of motion only appeared after this clean separation of
the two components had been achieved.

9.9. Why Huygens failed to win the greatest prize

We conclude this chapter by considering briefly how it was that Huygens
created pretty well all the concepts needed for a universal dynamics but
yet did not take the decisive step (which was left to Newton). Leaving
aside fortuitous events such as the occurrence of suitable stimuli (crucial
in the case of Newton, as we shall see), the main factor was undoubtedly
Huygens' dogmatic attachment to contact-mechanical physics. He just
could not countenance the concept of attractions between bodies at
spatially separated points. Huygens' standpoint is very thoroughly
documented by Westfall,43 from whom I quote some of the most telling
points.

A decisive event was the meeting in 1669 at the Academic in Paris to
discuss the nature of gravity. Roberval and Frenicle argued that gravity 'is
caused by an attraction between terrestrial bodies and the earth, a mutual
attraction of like bodies for like' (almost identical to Kepler's viewpoint
expressed 60 years earlier), but Huygens would have none of it. His reply
opened with this uncompromising statement:44

To discover a cause of weight that is intelligible, it is necessary to investigate how
weight can come about while assuming the existence only of bodies made of one
common matter in which one admits no quality or inclination to approach each
other but solely different sizes, figures, and motions. . . .
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Nearly twenty years later, on being advised of the forthcoming publica-
tion of Newton's Principia, he commented that he looked forward to
seeing it and did not care that Newton was not a Cartesian 'as long as he
does not propose any suppositions like that of attraction to us'.45

There are few more revealing passages in Huygens' writings than the
following letter, which he wrote towards the end of his life and which is
quoted by Westfall:46

M. Descartes had found the way to have his conjectures and fictions taken for
truths. And to those who read his Principles of Philosophy something happened like
that which happens to those who read novels which please and make the same
impression as true stories. The novelty of the images of his little particles and
vortices are most agreeable. When I read the book of Principles the first time, it
seemed to me that everything proceeded perfectly; and when I found some
difficulty, I believed it was my fault in not fully understanding his thought. I was
only fifteen or sixteen years old. But since then, having discovered in it from time
to time things that are obviously false and others that are very improbable, I have
rid myself entirely of the prepossession I had conceived, and I now find almost
nothing in all his physics that I can accept as true, nor in his metaphysics and his
meteorology.

As Westfall says, Huygens was cruelly deceived in thinking he had
thrown off the influence of Descartes. He had shaken off all the details of
Cartesian philosophy yet remained completely ensnared by the general
mechanical philosophy to which he had been introduced at the
impressionable age of 15 or 16.

The disaster from Huygens' point of view was that it was precisely in
the mathematical treatment of attraction that his own concept of force,
derived so elegantly while Newton was still a schoolboy at Grantham,
came into its own and enabled Newton to make the final breakthrough to
dynamics and the recognition of the universal role played by accelerations
in all motions.

Perhaps the cruellest evidence of just how near Huygens got to the
greatest prize is to be seen in the fact that Newton consciously inverted
Huygens' own expression centrifugal force when looking for a suitable
name to describe any force, but specifically a gravitational force, that
tends toward a given centre, coining the expression centripetal force.

The point is that in accordance with Huygens' own treatment of
centrifugal force the planets must, as they orbit around the sun, strive to
recede from it with a force given by Huygens' formula. Since the planets
do not fly off along the instantaneous tangent to their orbits, there must
be some force that counteracts this tendency. Huygens, like Descartes,
believed that this force was itself produced by the centrifugal tendencies
of vortical particles, and his main effort was devoted to finding the precise
mechanism by which the counteracting force could be produced. But
Newton, like several other people in England, took seriously the idea that
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the force which keeps the planets in their orbits emanates directly from
the sun; instead of trying to find the mechanism that counteracts the
centrifugal tendency, he used the known strength of that tendency to
deduce the strength of the putative force that emanates from the sun. As
we shall see in the next chapter, this then led him on to the discovery of
universal gravitation. This discovery, besides its immense significance in
its own right, served simultaneously to demonstrate that all the parts
required to constitute a full and consistent system of dynamics were now
to hand. Huygens had all the parts in his hands but came nowhere near
using them to full effect. He created the tools but, having exhausted the
fruitfulness of the contact-mechanical philosophy, only put them to work
on relatively minor problems.

This chapter should end with a worthy appreciation of Huygens'
overall achievement. He made some of the most important discoveries in
science - he was the first to reveal the true power of the Galilean relativity
principle, he found the first form of the law of conservation of energy, and
he found the correct definition of force. But, as we have pointed out, the
very stimulus that led him to make his greatest discoveries, including, we
must not forget, the wave principle named after him (also, it may be
noted, another key phenomenon used by Einstein and derived directly
from Huygens), prevented him from exploiting them to the full. The
desire to put solid bone under the flesh of Descartes' contact-mechanical
philosophy of nature was both his strength and his weakness. His tact
and sureness of touch took him to the very brink of discovering the
universal phenomenon at the heart of dynamics: the Second Law of
Motion. As Westfall says:47 'Huygens possessed the conceptual equip-
ment that such a dynamics required. His mechanical philosophy of nature
effected its early abortion.'

Descartes gave him the stimulus to reach the brink but, like the man
sitting on the rotating wheel, held back Huygens from breaking loose on
the flight to the greatest scientific discovery of all times. The metaphor for
Christiaan Huygens comes from falconry: he is the bird imprinted on his
earth-bound falconer, Descartes. He had fashioned himself wings with
which he might have flown to unimagined heights but was restrained by
a string that temperament and circumstances never gave him cause to
break. His clarification of the centrifugal phenomenon and the elucidation
of the concept of force had an elegance that surpassed Newton's, and
anticipated his by several years.

If Huygens was a falcon content to remain on the perch having brought
home the sleekest hares ever caught on the Lord's estate, Newton was the
soaring eagle with an eye to catch the moon and the very stars. Breaking
the Cartesian tether impetuously, he set forth into uncharted regions -
whither we now must follow.
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Newton I: The discovery of dynamics

10.1. Introduction

Isaac Newton was born on Christmas Day 1642 according to the old
calendar and 4 January 1643 according to the new style. The difference
between the calendars is often exploited to make a nice symbolic point -
that Newton was born in the year, 1642, that Galileo died. As was noted
in Chap. 7, in his Discorsi Galileo predicted that:1 'there have been
opened up to this vast and most excellent science [of motion], of which my
work is merely the beginning, ways and means by which other minds
more acute than mine will explore its remote corners/ Newton's was the
mind destined to fulfil this confident - and accurate - prophecy.

Newton was a so-called posthumous child - his father, a yeoman
farmer, died three months before he was born in the hamlet of
Woolsthorpe in Lincolnshire. He barely survived his birth, but in fact
lived to the ripe age of 84, dying in 1727, feted as the greatest scientific
genius of all time. He was notorious for obsessive secrecy and neurotic
distrust, a character trait that has been attributed to the fact that his
mother remarried when he was only two, and for nine years, until her
second husband - an unsympathetic but prosperous minister of the
church - died, the young Isaac was left in the care of his grandmother. His
hatred for his stepfather is well documented. For this and other details of
his life the reader is referred, for example, to Westfall's relatively recent
biography Never at Rest.2

Newton's mother initially wished him to take over the management of
what was now a quite considerable estate but his academic promise and
manifest unsuitability for such work resulted in his being sent to school at
Grantham, where he was noted for the brilliance of the mechanical
devices that he constructed. Newton, like Huygens, combined brilliant
intellectual gifts with superb craftsmanship and design skills. In the
summer of 1661 Newton matriculated at Trinity College, Cambridge,
where his well-to-do mother gave him a very meagre allowance, which

498
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initially he was forced to augment by performing menial tasks for his
fellow students.

At that time Cambridge, like many other universities in Europe, was
still largely in the grip of the fossilized Aristotelianism immortalized by
Galileo's Simplicio. However, as Gascoigne has pointed out,3 it was by no
means completely closed to new influences and within a few years
Newton began to assimilate the ideas of the scientific revolution, which
he obtained above all from Descartes' Principles of Philosophy and La
Geometric, from Galileo's Dialogo, and from Gassendi's writings. Another
major influence was the chemist Robert Boyle (1627-1691). It appears that
he was also influenced, especially in his ideas on space and time, by the
Cambridge Platonist Henry More4 (1614-1687), who also introduced him
to alchemy, which was to take up a great part of Newton's energies over
many years.

On the basis of his readings and in almost complete isolation from other
scientists, Newton embarked, at the age of about 22, on independent
studies. As Westfall writes:5 The first blossoms of his genius flowered in
private, observed silently by his own eyes alone in the years 1664 to 1666,
his anni mirabiles.' Towards the end of this period, in 1665, the university
was closed by the famous plague, which caused Newton to return to his
home, where in the garden, as he asserted in later years, he 'began to
think of gravity extending to the orb of the Moon.'6 There are quite
extensive records of the unpublished studies that Newton did during
these early years, which included brilliant pioneering work in mathema-
tics (working out the essentials of the calculus), optics (including the
famous experiments on the spectral decomposition of light and the
invention of the reflecting telescope that is named after him), and
dynamics. His brilliance in mathematics came to the attention of Isaac
Barrow, who had recently become the first Lucasian professor of
mathematics. Aiming at even higher things - he soon became Master of
Trinity College7 - Barrow resigned the professorship and recommended
Newton, who had been made a fellow of Trinity in 1667, as his successor.
Newton obtained the post in 1669, which, if not a sinecure, at least did not
involve too much work.

Newton came to national and even international note primarily through
his work on optics, though some knowledge of his work on mathematics
was spread through correspondence and actually reached Leibniz. This
was later to lead to the acrimonious controversy as to the priority in the
discovery of the calculus and the (unjustified) charge of plagiarism made
against Leibniz.8 It was Newton's reflecting telescope that first brought
him recognition and election to the Royal Society. This encouraged him to
submit a paper on optics in 1672, which was reasonably well received but
led in the next two or three years to a bitter dispute between him and
Hooke. Newton was so mortified by the experience that he more or less
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withdrew from public life and devoted himself with increasing energy to
alchemy and the study of the early Christian Church, to which he was led
in an attempt to prove that the doctrine of the Trinity was a fabrication of
some of the early church fathers (Newton was a Unitarian, a fact which he
kept secret).

Of his early work in dynamics, recorded in his famous Waste Book and
other unpublished papers, nothing leaked out and he seems to have more
or less laid aside the studies in which he had effectively caught up with
Huygens' work described in the previous chapter (which was also unpub-
lished). It was really outside events and the quickening interest in
problems of motion that eventually brought Newton to the centre of the
stage. This growing interest had found reflection in the general invitation
issued in 1668 by the Royal Society for submission of the correct laws of
impact. The outcome was the response of Wallis, Wren, and Huygens
already mentioned in the previous chapter. It is worth quoting here an
extract of a letter written at that time (May 1669) by Oldenburg, the
indefatigable secretary of the Royal Society during its first decade and a
half and editor of the first purely scientific journal in the world (Philosophi-
cal Transactions) to Hieronymo Lobo; Westfall gives it very appropriately
opposite the contents page of his book Force in Newton's Physics?

Our Society is now particularly busy in investigating and understanding Nature
and the laws of motion more thoroughly than has been done heretofore.... Since
Nature will remain unknown so long as motion remains unknown, diligent
examination of it is the more incumbent upon philosophers . . . .

Even more significant was the publication in 1673 of Huygens'
Horologium Oscillatorum, a copy of which was presented to Newton. In his
letter to Oldenburg acknowledging the gift he made a favourable com-
ment on Huygens' theorems on centrifugal force. More directly relevant
was the fact that it quickened the pace of the attack on the problem of the
dynamical treatment of the planetary problem, on which Hooke espe-
cially had been developing promising ideas. In particular, he proposed
explicitly that it was a force directed towards the sun that kept the planets
in their orbits. This was a most significant refinement of the original
Cartesian formulation of the planetary problem. In 1679 Hooke, who had
just been appointed to succeed Oldenburg as secretary of the Royal
Society, wrote to Newton in conciliatory vein, asking him among other
things for an opinion of his theory. This correspondence stimulated
Newton into making what was probably the single most important
discovery in the history of physics - the demonstration from Kepler's
Laws that the planets must be attracted to the sun by a force whose
strength decreases as the square of the distance from the sun. The
synthesis of dynamics - in its essentials - was brought about by this work.
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For the first time the extraordinary power of the tools forged by Galileo,
Huygens, and the youthful Newton was fully revealed.

If there was now no going back, the way forward was still comparatively
leisurely and Newton, who let out no hint of his discovery, worked only
intermittently if at all on dynamics in the following years, though it is
evident that his ideas were developing apace. The final stimulus again
came from outside. For several years not only Hooke but also Halley and
Wren had been pondering the problem of the planets and slowly closing
in on the correct solution without however having the necessary
mathematical ability to crack the nut. In particular, both Halley and Wren
had had the idea of using Kepler's Third Law in conjunction with
Huygens' formula for centrifugal force to demonstrate that the force of
attraction towards the sun must fall off as the square of the distance from
the sun. They did not know that Newton himself had had a very similar
idea nearly twenty years earlier, at the end of his anni mirabiles period,
after his own rediscovery of Huygens' results. What neither Hooke, nor
Halley, nor Wren could prove was that such a force must give rise to an
elliptical orbit with the sun at one focus. When the three men met in
January 1684 at a meeting of the Royal Society Hooke's claim that he could
demonstrate all three laws of planetary motion was met with scepticism
by the other two.10 Wren offered a book worth forty shillings as a prize for
the correct demonstration, but his two-month limit was exceeded without
the answer being forthcoming. Later in the same year Halley travelled to
Cambridge, where he put the problem to Newton, only to be told that he,
Newton, had already solved the problem but could not, at the moment,
put his hand on his proof. However, he promised Halley to provide it.
Thus began the train of events which led eventually to the publication in
1687 of the Principia, a date which more than any other can be taken as the
definite commencement of the scientific age.

The chapter which now follows will look in more detail at the develop-
ment of Newton's ideas and attempt to identify the crucial clarifications of
the most important concepts in the synthesis of dynamics. In the follow-
ing chapter we shall specifically look at the reasons which led Newton to
introduce his concepts of absolute space, time, and motion. The final
chapter will round off Vol. 1 by examining the final conceptual clarifica-
tion of some of Newton's most important concepts. This work, which
only occurred in the second half of the nineteenth century, is important
simultaneously as marking the conclusion of this great enterprise that
began more than two and a half millennia ago in ancient Greece (and
Babylon) but also in preparing the ground for Vol. 2, in which we trace the
reaction to Newton's ideas and the part this reaction played in the
creation of general relativity.
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10.2 A comment on the significance of Newton's early work

A somewhat difficult question, especially relevant in the context of the
problem of the origin of Newton's ideas about space, time, and motion, is
that of the relationship of his early work on dynamics to that of the mature
Principia. My own view is that by the end of the 1660s Newton had worked
out - but tested to only a very limited degree - all the basic principles of
his mature dynamics except the notion of forces acting at a distance
towards definite centres. If he did have the idea in the plague year of
gravity as a universal force acting over great distances, the surviving
unpublished papers reveal little evidence of it. What they do show is the
development of a conceptual framework into which such a notion can be
introduced very naturally and without difficulty. In fact, as will be argued
later in this chapter, it seems to me that there was a certain inevitability
about the form that dynamics took and the way in which its development
unfolded after 1650. The reason for this is to be sought in the preparatory
work done by Kepler, Galileo, and Descartes and in certain facts of the
natural world, above all the manifestations of the gravitational force.
Quite strong support for this view is to be found in the fact that Huygens
and Newton, working in complete isolation but from the same sources
and the same facts, arrived, grosso modo, at identical results in the
penultimate stage before the final synthesis. (There are nevertheless one
or two residual differences of considerable interest to which attention will
be drawn.) Moreover, with the benefit of hindsight, we can see that the
route attempted by Huygens to go beyond his first great insights was
doomed to failure. Newton was extremely fortunate in being prodded
into the only direction that was capable of leading to success. For, at that
time, only the astronomical data contained the facts capable of justifying
fully the generic concept of force.

Thus, I see the early period as providing the elaboration of the
necessary concepts; the later period as revealing the power latent but
as yet unrecognized in the early work. This results in an evaluation
of Newton's development that differs in some respects from other
accounts, for example Westfall's,113 especially with regard to the part
played by relativity (in both forms, kinematic and Galilean), and White-
side's111* (with regard to Newton's attitude to the law of inertia). The
significance of Hooke's intervention is also interpreted somewhat differ-
ently. The reader is therefore asked to bear in mind that the account
that follows might not be accepted by all historians of science. In fact,
since the relevant documents are all published and readily available
in libraries (they are listed in Ref. 12), the reader is strongly encouraged
to consult the originals and make up his or her own mind. After this
caveat, let us now begin with Newton's early clarification of the force
concept.
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10.3. Three types of force

The most distinctive feature of Newton's dynamics is the concept of force,
or, rather, forces, since Newton actually employed three related but
distinct concepts of force. (It should be noted that in the seventeenth
century and for quite a long time afterwards the word force (vis) was used
with many different meanings, often rather imprecise.) The clarification
of these three different forces, the relationships they bear to one another,
the manner in which they are to be applied, and the extraordinary range
of their application is very largely the history of the final stages of the
discovery of dynamics.

It is ironic that the word dynamics was coined by Leibniz13 to characterize
a fourth concept of force. This was his famous vis viva, the modern kinetic
energy (apart from a factor 5). But energy is the one concept that hardly
features in Newton's dynamics, and he never introduced it as a special
concept. The word dynamics was transferred from its original narrow
Leibnizian meaning to its present meaning during the first half of the
eighteenth century and was made standard by d'Alembert in his Traitede
Dynamic/tie (Paris, 1743). The subsequent development of dynamics was
to show that energy is, in fact, the most important concept of the four,
which is posthumous consolation of a sort to Leibniz for the excessively
rough treatment he got at Newton's hands over the question of the
discovery of the calculus.

Two of the three force concepts that Newton employed developed out
of his work on collisions; the third, out of his work on centrifugal force, or
conatus a centro (endeavour from the centre), as, following Descartes, he
initially called it. We begin with collisions.

10.4 Collisions

Newton's solution of the collision problem came about a decade after
Huygens'; it belongs to his anni mirabiles period (1664-6) and is all the
more remarkable for having been done in complete isolation in Cam-
bridge, which at that time was, as has been pointed out, very much an
intellectual backwater. In fact, Newton was only in physical isolation.
Through books he had access to Galileo, Descartes, and Gassendi - and
that was more than enough stimulus.

Newton's early work on collisions (or reflections, as he called them)
survives in what he called his Waste Boofc* (see Herivel123), which contains
the complete solution to the problem of collisions, both elastic and

* The Waste Book was in fact a large notebook that Newton inherited from his hated
stepfather, Barnabas Smith, in which the rector of North Witham had entered a few
theological jottings. As a boy Newton had threatened Smith and his mother 'to burne them
and the house over them' (Ref. 2, p. 53).
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inelastic. Newton's work on collisions laid the foundations of his mature
dynamics. We shall see how, in conjunction with his work on centrifugal
force, done at much the same time, it was able to provide for him all the
really basic concepts that he needed. All that was lacking was the final
stimulus and, perhaps, one crucial suggestion; these came from Hooke
and Halley a decade and a half later.

Of particular interest are the differences in approach between Newton
and Huygens. From the very beginning, the latter's work was dominated
by the relativity principle. Though the relationship between the Galilean
relativity that Huygens actually used and the relativism which he found
in Descartes may not have been clear to Huygens, his use of the principle
was completely sound and enabled him to avoid all the problems in which
Descartes had got so bogged down in trying to determine the outcome of
collisions by estimating the respective forces of the bodies involved in
collisions. After an early use of the force concept, which, as we have seen,
may have helped him to his initial breakthrough, Huygens completely
eschewed the approach via 'forces' and sought instead universal rules
that govern the outcome of all collisions. We have seen how well he
succeeded.

In contrast, Newton retained a prominent role for the concept of force
but went far beyond Descartes in two important respects: he arrived at a
precise quantitative concept of force and he realized that the appearance
of force is subject to a precise reciprocal phenomenon - forces never
appear in isolation but always in pairs at least. This insight led eventually
to the formulation of his famous Third Law. One of the main differences
in emphasis between Newton and Huygens as regards the basic princi-
ples of dynamics is to be seen in the prominence that Newton gives to the
Third Law, whereas the relativity principle is put in the forefront by
Huygens.

The entries in the Waste Book take the form of a series of propositions or
axioms. The formal arrangement of these propositions is not so strictly
logical as in Huygens' De Motu Corporum or in Newton's own Principia,
published more than twenty years later. A distinction is not clearly drawn
between assumptions, axioms (or laws), empirical observations, and
deductions from adopted axioms. Although more advanced than mere
jottings, the entries in the Waste Book were clearly still in a stage prior to
that in which they could have been published as a formal tract. For all that
the key insights can be very readily identified - though not the manner by
which Newton arrived at them, which appears to have been by rational
thought rather than through experiment.

The general framework in which the problem is approached seems to
be clearly due to Descartes. Everything is based upon the idea that the
natural state for a body is to continue in a straight line with uniform
motion (or else to remain at rest). Collisions are events that deflect a body
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from one such state into another. Note the important point, emphasized
in the previous chapter, that the very concept of a collision is made
possible by the clear definition of inertial motion. The quantification of
collisions is not possible without the well-defined pre-collision and
post-collision states with respect to which they are themselves defined.
This led Newton to one of his two most important insights: that whatever
the ontological status of force might prove to be, its quantitative measure
must be through change in inertial motion. Moreover, it was equally clear to
Newton that speed (or, rather change of speed) alone is not a sufficient
characterization of 'force'. Clearly, more force is needed to change the
speed of a large body than a small. At this stage Newton did not possess
a clear concept of mass (as we shall see in Chap. 12, it is, in fact, doubtful
whether he ever did); like Descartes, he obviously thought that the only
distinction between bodies was one of size. (Size here means the volume
actually occupied by matter, which is itself taken to have uniform density
if free from voids and interstices.) Newton thus identified force with
change in speed multiplied by the bulk of the body. He arrived at a concept
very close to Descartes' quantity of motion. It is, however, evident from
the earliest entries in the Waste Book that Newton recognized the impor-
tance of the direction of motion. The first worked examples14 demonstrate
that Newton knew it is the directed quantity of motion (which Newton
usually simply calls motion - it is synonymous with the modern momentum
if the bulk is identified with the mass) that is conserved in collisions, not
Descartes' directionless quantity of motion. He makes this point explicitly
in an early definition, which employs the Cartesian expression determina-
tion:15 "Those Quantitys [i.e., bodies] are said to have the same determina-
tion of their motion which move the same way, and those have divers
which move divers ways.'

To understand Newton's conceptions of force we must understand his
conception of inertial motion. The evidence from his notebooks and
unpublished tracts on dynamics suggest that to a late date he conceived
the phenomenon of inertial motion somewhat after the manner of
medieval impetus theory. That is, a body in motion has in it a power or
force that maintains it in uniform motion in a straight line unless it is
affected by some external body or force.

It seems probable, on the basis of the available evidence, that for a long
period Newton regarded this force, which, following his own usage, I
shall call the inherent force (Newton also used the expression innate force),
as having a quite definite and unique value. Now this cannot be the case
unless motion is conceived as taking place with respect to some quite
definite frame of reference. It will be argued in Chap. 11 that Newton
never wavered in his belief in what he later came to call absolute space.
Initially it was no doubt purely instinctive; later it hardened into a
formalized conviction. All we need to know at this stage is that for
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Newton objects moved through a space that was as real for him as the
green felt of a snooker table. Thus, the direction and speed of rectilinear
motion were perfectly well-defined quantities in Newton's mind.

However, what distinguished the earliest work of Newton from
Descartes was his awareness that speed and direction of a physical body
cannot be considered in isolation. Speed by itself is not the measure of the
inherent force. It is not a scalar quantity but inescapably a directed,
vectorial quantity. For one-dimensional collision problems this is evident
from the definition given a little earlier; more remarkably it is implicit in
the work on two-dimensional problems that establishes the centre-of-
mass theorem,16 which will be discussed a little later.

This is intimately tied up with his second use of the word force, by
which he means a capacity to change motion. Newton called this motive
force. The first point to make is that the motion which is changed is the
inertial motion of a body which it has when free from external distur-
bances; it is the motion characterized by the inherent force. The second
point to make is that the change of motion can take place in any direction.
Newton seems to have conceived of changes in inertial motion being, as
it were, the addition or subtraction of 'bits of motion' to the already
existing inertial motion, i.e., as increments or decrements to the body's
inherent force. But since these increments or decrements are essentially
directed quantities, it is not possible to add them to something that does
not have the same essential nature, from which it follows that the
inherent force is a vectorial quantity.

It must be emphasized that such a standpoint is not explicitly verbalized
in the early notebooks and manuscripts. But the worked examples
suggest that Newton worked instinctively on such a basis. It has startling
consequences for anyone who approaches the problem of motion with
the naive intuition that Descartes very largely employed, regarding the
speed of motion as the all-important concept. Consider, for example, the
case of uniform circular motion, in which the direction of motion is
constantly changing because of an applied force but the total speed
remains the same: a 'force' appears to be acting without achieving any
effect - the speed is not changed (in modern terms we say that the force
'does no work'). The same thing can be seen in the use of the parallelo-
gram of forces (or rather motions), which is certainly one of the most
important discoveries in dynamics and is what distinguishes most unam-
biguously the Galilean and post-Galilean study of motion from what
preceded it. In the Newtonian view, a body before the application of a
force has a motion characterized by a definite speed and direction, say by
the vector AB (Fig. 10.1). When the force is applied (say instantaneously
in a collision), the vector AB has added to it the vector AC. The resultant
motion is then AD. But the length of AD depends entirely on the direction
of AC relative to AB. Changes of motion are more sophisticated than the
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Fig. 10.1.
simple addition or subtraction of lengths. Although Galileo is not men-
tioned on the subject in the Waste Book, Newton explicitly states the rule
of composition of motions by means of the parallelogram of motions.17

I said that Newton employed three different force concepts. It would in
fact be rather more accurate to say that he employed two: that of the
inherent force and that of the motive force, the latter being of two kinds -
impulsive (acting instantaneously) and continuous (changing the speed
and direction continuously). In Newton's mind there was no essential
difference between the two kinds of motive force. According as it suited
his purposes, he either regarded an impulsive motive force as the
integrated effect of an intense continuous force acting over a very short
period of time or, much more commonly, imagined a continuous force as
the outcome of innumerable infinitesimal impulsive forces applied suc-
cessively at very short time intervals. Throughout his entire work on
dynamics Newton switched promiscuously from the one to the other of
these two kinds of motive force without exhibiting the slightest discom-
fiture.

Let us now see how Newton clarified the idea that force can be regarded
not only as something that resides within a body but also as something
external to the body, something that causes a change in the body:18

Hence it appeares how and why amongst bodys move[d] some require a more
potent or efficacious cause others a lesse to hinder or helpe their velocity. And the
power of this cause is usually called force. And as this cause useth or applieth its
power or force to hinder or change the perseverance of bodys in theire state, it is
said to Indeavour to change their perseverance.

It was in developing the concept of force along the lines of this 'Indeavour'
that Newton arrived at what was probably his most important original
insight in the basic structure of dynamics, his Third Law. The next
quotation clearly reveals Newton's dual perspective of force:19

Now if the bodys a and b meete one another the cause which hindereth the
progression of a is the power which b hath to persever in its velocity or state and
is usually called the force of the body b and as the body b useth or applyeth this
force to stop the progression of a it is said to Indeavour to hinder the progression
of a which endeavour in body [b] is performed by pressure and by the same reason
the body b may bee said to endeavor to helpe the motion of a if it should apply its
force to move it forward; soe that it is evident what the Force and indeavor in
bodys are.
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As yet, this is purely qualitative. The real breakthrough, the insight that
solved the problem of collisions literally at a stroke, was in Newton's
enunciation of the rules that govern the application of 'Indeavour'. He
formulates rules that govern the changes in motion (motion, again, under-
stood in the Newtonian sense, i.e., the modern momentum) in any
collision. Three brief propositions (which between them contain the bulk
of the content of his subsequent Second and Third Laws) solve the
problem of collisions:20

119. If r presse p towards w then p presseth r towards v [i.e., in the opposite
direction; see Fig. 10.2]. Tis evident without explication.
120. A body must move that way which it is pressed.
121. If 2 bodys p and r meet the one the other, the resistance in both is the same for
soe much as p presseth upon r so much r presseth on p. And therefore they must
both suffer an equall mutation in their motion.

In essence, the statement 'both suffer an equall mutation in their
motion' solves the problem of collisions in Newton's approach. It is the
condition of conservation of momentum which we have already met in
Huygens' work. It is, of course, only a single condition and we know that
two conditions are needed to determine the outcome of a one-dimen-
sional collision uniquely. It is, however, a condition that is valid for all
collisions. In contrast, the condition of conservation of the kinetic energies
holds only in the case of elastic collisions. In this sense, Newton's
principle gives the general solution to the collision problem to the extent
that one exists. He was moreover completely clear as to the essential facts
of elasticity and the part it plays in collisions. Earlier in the Waste Book he
had treated elastic collisions. For example:21

If two equall and equally swift bodys (d and c) meete one another they shall bee
reflected, so as to move as swiftly frome one another after the reflection as they
did to one another before it. For first suppose the sphaericall bodys e, f [Fig. 10.3]
to have a springing or elastic force soe that meeting one another they will relent
and be pressed into a sphaeroidicall figure, and in that moment in which there is
a period put to theire motion towards one another theire figure will be the most
sphaeroidical and theire pression one upon the other is at the greatest, and if the

Fig. 10.2. Reproduced from: J. W. Herivel, The Background to Newton's 'Principia',
Clarendon Press, Oxford (1965).
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endeavour to restore theire sphaericall figure bee as much vigorous and forcible
as theire pressure upon one another was to destroy it they will gain as much
motion from one another after their parting as they had towards one another
before theire reflection.

There then follows a similar argument for perfectly hard bodies and it
ends with the same conclusion, namely, that the bodies 'shall move from
one another as much as they did towards one another before theire
reflection'. This is the special case of the energy conservation law for the
elastic collision of two equal bodies and, when it holds, completes the
solution of the collision problem.

It is remarkable that Newton immediately generalizes this result to the
case when the bodies in the collision have not only unequal sizes but also
unequal speeds (or, celerities, to use Newton's favourite word):22

There is the same reason when unequall and unequally moved bodys reflect, that
they should separate from one another with as much motion as they came
together.

The entire proof of this striking generalization (which is Huygens' law
of the equality of the pre-collision and post-collision relative speeds) that
Newton gives is in the There is the same reason'.

The picture of collisions that emerges from the Waste Book is that of
mutually induced changes of motion. So much as body a changes the
motion (i.e., momentum) of body b, just so much body b changes the
motion of body a. This is the only universally valid rule governing
collisions. The actual outcome of any particular collision depends on the
elasticity of the bodies involved in the collision. If they are perfectly
elastic, they will rebound from each other without any loss of relative
speed; but if they are imperfectly elastic the relative speed v will be
reduced by the collision by a factor k, the coefficient of restitution, which
takes values in the interval 0 < k < 1, with k = 1 corresponding to perfect
elasticity and k = 0 to complete inelasticity, when the bodies stick together
after the collision. In a passage in the Principia that we shall shortly quote,
Newton reports the experimental fact that k is a property of the two bodies
and has, to the accuracy of the measurements that he made, a value that
is independent of the relative speed with which the two bodies collide.

Fig. 10.3. Reproduced from: J. W. Herivel, The Background to Newton's 'Principia'
Clarendon Press, Oxford (1965).
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Fig. 10.4. Reproduced from: J. W. Herivel, The Background to Newton's 'Principia',
Clarendon Press, Oxford (1965).

Newton's fundamental rule of the 'equall mutation of the motion' led
him to the conclusion that the centre of mass (in the 'Waste Book, Newton
calls it the centre of motion) of the bodies continues in a state of rest or of
uniform motion in a straight line during the entire period of the collision.
This is the result, which, as we saw in the previous chapter, Huygens
described as 'an admirable law of Nature'. The centre-of-mass theorem
appears as an important result in the Waste Book,25 and it will be worth
saying a little about it.

Newton first of all considers the motion of two bodies that move
inertially and do not collide (he considers both the case when they move
in a common plane and also when this is not the case) and shows that in
all cases the motion of their centre of mass is along a straight line and with
uniform speed. He then shows that, in accordance with the rules of
collision formulated above, the motion of the centre of mass, for elastic or
inelastic collision, is unaffected by the collision, continuing to proceed
along the same straight line and with the same uniform speed as before.
This study culminates with the two following propositions, which I give
together with the respective figures (Figs. 10.4 and 10.5).
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Fig. 10.5. Reproduced from: J. W. Herivel, The Background to Newton's 'Principia',
Clarendon Press, Oxford (1965).

31. If two bodys (b and c) meete and reflect one another at q [Fig. 10.4] their
center of motion shall bee in the same line (kp) after reflection in which it was
before it.

32. If the bodys (b and c) reflect at (] [Fig. 10.5], to e and g, and the centers of their
motion describe the line kdop the velocity of that center (0) after reflection shall bee
equall to the velocity of that center (d) before reflection.

To give the flavour of Newton's proofs, which use all of his subsequent
three laws of motion in embryonic form, together with the law of compo-
sition of velocities (note that the bodies in Figs. 10.4 and 10.5 have a
common motion from left to right as well as towards each other in the
top-bottom direction), I give the proof of the first of these propositions
(recall that throughout Newton's motion is, subject to the proviso that bulk
is identified with mass, the modern momentum):

For the motion of b towards d the center of their motion is equall to the motion of
c towards d [by an earlier proposition] then drawing bk _L kp, and cm 1 kp, then
cd: bd::cm: bk, therefore the bodys b and c have equall motion towards the points k
and m, that is towards the line kp. And at their reflection so much as (c) presseth
(b) from the line kp; so much (b) presseth (c) from it (ax. 121). Wherefore they must
have equall motion from the line kp after reflection, that is drawing gpA_kp and ne
1 kp, (e) and (g) have equall motions towards (n), (p), then drawing the line eog tis
ne:eo::gp:go. Therefore e and g have equall motion from the point o which [by the
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earlier proposition] must therefore be the center of motion of the bodys (b) and (c)
when they are in the places g and e, and it is in the line kp.

In treating thus the motion in two dimensions Newton achieved a
sophistication that exceeded Huygens' work described in the previous
chapter.

Examined in the light of the attempts by Descartes and others (but not
Huygens) to solve the problem of collisions, Newton's solution is above
all remarkable for the way in which it passes from vague and muddled
anthropomorphic concepts of force to precisely defined quantitative rules
which simply state what happens in collisions. The notion that the
outcome of a collision is to be predicted by examining which of the
colliding particles has the greatest 'force' and assuming that the particle
will 'get its way' in the ensuing contest of strength is replaced by the bald
statement that in an actual collision 'soe much as p presseth upon r so
much r presseth on p', so that 'they must both suffer an equall mutation
in their motion'.

How simple is the solution when at last it is found! The entire Newto-
nian success rests on the recognition of the equality of the action and the
reaction. In his article 'Action and reaction before Newton', J. L. Russell
concluded:24 'There was nothing original in the principle that every action
involves a reaction. This had been asserted by so many people as an
accepted fact that it must surely have been common knowledge. The
principle of equality was, however, another matter.' We see again that
dynamics was created little step by little step, each of which transformed
a vague qualitative awareness of some phenomenon into a precise
quantitative statement. Particularly striking in the present case is the
generality of the phenomenon which Newton succeeded in quantifying
at the age of about 23 or 24: his rule applies in all collisions. Years later,
when formulating his Third Law, he generalized the rule still further to
encompass all interactions, not merely collisions. It was the key to much
that was best in his dynamics. It is interesting to note that Newton
himself, as is clear from the way in which he presented the laws of motion
in the Principia, regarded this law, his Lex Tertia, as the only one in which
he himself made an original contribution to the foundation of dynamics.
In the draft De motu,25 which immediately preceded the Principia, he says
of the first two laws that 'they are now widely accepted' and in the
Principia26 implies that they were clearly recognized and employed as
such by Galileo when he demonstrated the parabolic motion of projec-
tiles.

How Newton arrived at his rule of the 'equall mutation of the motion' I
do not know. Simon Schaffer has suggested to me that it may have come
from a deep and close reading of Descartes' rules of collision, whose
manifest conflict with empirical fact (which was widely recognized)
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clearly indicated the need for new principles radically different from those
employed by Descartes. Gabbey too (Ref. 19, Chap. 9) believes the
influence of Descartes was decisive. Whatever, the truth, I think we
simply have to accept the fact that Newton arrived at the rule as an
original and primitive insight and very soon realized its significance and
the fact that it more or less completely solved the problem of collisions.
Perhaps, like that other great discovery in the history of dynamics, the
odd-numbers rule in free fall, it was first recognized in onje of those
table-top experiments that Descartes disdained. Newton was, after all,
not only a superb theoretician. He was also a great experimentalist.
However, as already pointed out, the presentation in the Waste Book does
not suggest an experimental origin. Indeed, Newton appears rather to
approach the problem in a Cartesian and rationalistic frame of mind. It
may be that he had not yet fully developed his characteristic emphasis on
the need to attack the secrets of nature through empirical phenomena. It
was this that was to set him apart from so many of his contemporaries,
including Huygens, who, as we have seen, retained throughout his life a
predeliction for a Cartesian explicative approach.

It is worth pointing out in this connection a significant difference of
presentation of these matters between the treatment given in the Waste
Book and the Principia. In the former, the most important results are
simply presented as axioms, rather in the manner in which Huygens
introduced his most important ideas in the form of propositions. But in
the Principia Newton takes a lot of trouble to produce evidence for the
Third Law in the form of empirical results on collisions. There is a
beautiful account of an experiment he did that refined a famous demon-
stration of the collision laws that Wren performed before the Royal
Society. Wren's arrangement is shown in Fig. 10.6. Pendula of different
weights are suspended from the points C and D and allowed to collide
with various speeds, which can be calculated readily by Galileo's law of
descent (this is a fine example of indirect overcoming of the difficulty of
measuring speeds, the problem that held back the development of
dynamics for so long). The speeds that they acquire as a result of the
collision can be equally calculated from the height to which they reascend.

Fig. 10.6.
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Newton comments on this experiment:27 'to bring this experiment to an
accurate agreement with the theory, we are to have due regard as well to
the resistance of the air as to the elastic force of the concurring bodies/
There then follows a detailed account of the elegant way in which he did
this; by taking into account the air resistance 'everything may be subjected
to experiment, in the same manner as if we were really placed in vacua'. (It
is worth noting in passing how firmly Galileo's basic principles had
become established by the time Newton was writing the Principia, i.e., the
point of view that there are ideal laws of motion and that these are to be
deduced from the observed motions by careful elimination of extraneous
disturbances. (Note also that the vacuum has become established, in
Newton's mind at least - there were still plenty of plenists on the Conti-
nent - as the ideal medium in which motion can be studied.) Newton's
summary of the experiment was as follows: Thus trying the thing with
pendulums of 10 feet, in unequal as well as equal bodies, and making the
bodies to concur after a descent through large spaces, as of 8,12, or 16 feet,
I found always, without an error of 3 inches, that when the bodies
concurred together directly, equal changes towards the contrary parts
were produced in their motions and, of consequence, that the action and
reaction were always equal.'

He went to considerable trouble to do the experiment with a wide range
of bodies and not just the perfectly hard or elastic ones of the theory of
Wren and Huygens and found:28

the bodies to return one from the other with a relative velocity, which is in a given
ratio to that relative velocity with which they met. This I tried in balls of wool,
made up tightly, and strongly compressed. For, first, by letting go the pendulous
bodies, and measuring their reflection, I determined the quantity of their elastic
force; and then, according to this force, estimated the reflections that ought to
happen in other cases of impact. And with this computation other experiments
made afterwards did accordingly agree; the balls always receding one from the
other with a relative velocity, which was to the relative velocity with which they
met as about 5 to 9. Balls of steel returned with almost the same velocity; those of
cork with a velocity something less; but in balls of glass the proportion was as
about 15 to 16. And thus the third Law, so far as it regards percussions and
reflections, is proved by a theory exactly agreeing with experience.

With this we conclude the discussion of Newton's work on collisions.*
Though the end results for elastic collisions are the same as Huygens
obtained, the approach seems strikingly different. It is in the prominent

* Newton's early papers also contain some striking work on collisions of extended rotating
bodies. I omit the discussion of this work, which is reproduced and discussed in Herivel's
book,123 only because I have attempted throughout this book to concentrate on the
emergence of those dozen or so elements that proved to be sufficient for the ultimate
synthesis of dynamics. This is the story of how that happened, not of everything that
occurred along the way.
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role accorded to the relativity principle that Huygens' work differs most
from Newton's, for in neither the Waste Book nor the Principia does the
relativity principle appear as one of the principles from which the results
on collisions are deduced. In fact, so far as I have been able to discover,
the Galileo-Huygens relativity principle is not explicitly stated in any of
Newton's early unpublished work. As we shall see, it only makes its first
appearance in the period immediately preceding the writing of the
Principia. This absence of an explicit reference to the relativity principle
may be a significant clue to the development of Newton's thinking about
the relative or absolute nature of motion and we shall return to this point
later. It should also be noted that for inelastic collisions the results that can
be deduced from Huygens' and Newton's most fundamental principles
are not identical. Newton's Third Law says that momentum is conserved
in every collision; the principle of relativity says nothing definite about
the outcome of any collision - it merely shows one how to generate a
whole family of collision outcomes from a given collision that is known to
occur. The connection between the principle of relativity and the laws of
mature Newtonian dynamics will be discussed later.

Thus far we have met two of the force concepts that Newton employed,
the inherent force and the impulsive motive force, which changes the
inherent force in discrete (i.e., finite) vectorial amounts in collisions. We
now come to the third force, the force which changes motion continu-
ously. Like Huygens, Newton discovered this force by solving the
problem posed but not solved by Descartes - the problem of finding a
quantitative measure of centrifugal force, the conatus a centra.

10.5. Centrifugal force: the paradigm of a continuously
acting force

The discovery of dynamics is simultaneously the story of how men learnt,
from careful observation of phenomena, to project numbers into nature.
It is the story of the quantification of nature. One can look at this as the
progressive discovery of rulers - the word used in a generalized sense -
for measuring off numbers encoded in the seemingly perfect ordering of
the world that Pythagoras sensed as the harmony of the cosmos.

The first ruler was the ordinary ruler which discovered 'ordinary'
geometry, the quotes here being used merely to distinguish conventional
three-dimensional geometry from the four-dimensional geometry of
motion discovered by Galileo and Newton. We can usefully recall the
stages that led to the very high level of sophistication of quantification
that mature dynamics represents. The key step was the transition from
the ruler that measures distances to the ruler that measures speeds. This
comes in a beautiful passage in Galileo's Discorsi,29 in which he speaks of
the need for a measure of speed and shows where it can be found. He is
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discussing two of his most important results: first, that when a body free
of all resistance falls a definite height it acquires a definite speed, this
speed being exactly the same for all bodies; second, the fact that if such a
body is deflected into the horizontal and can continue to move freely its
speed will remain unaltered. Thus, an object let fall from a definite height
and then deflected into the horizontal becomes a kind of ruler, a unit of
speed. The key point, strongly emphasized by Galileo, is that two well
attested physical phenomena, the law of free fall and the law of inertia,
make it possible to convert a purely geometrical ruler into a 'ruler of
speeds'. In the previous section we saw a very fine example of the utility
of this ruler in Wren's collision experiment with pendula.

Galileo actually suggests that as unit of uniform speed one should take
the height of a javelin, i.e., about six feet. As we noted in Chap. 7 it is very
suggestive that, in his discussion of parabolic motion, Galileo supposes
that a body is let fall from a certain height H, deflected into the horizontal,
and then allowed to fly off the table top on which the experiment is being
done. By varying H, you thereby vary the horizontal component of the
generated uniform inertial motion and parabolas of different curvatures
are obtained as a result. Considering the far-reaching consequences of the
concepts which he was introducing, the name Galileo gave to the height
H was very apt. As we recall, he called it the sublimity. We have seen in
both Chaps. 7 and 9 how fruitful was the introduction of these ideas. It
was the sublimity that converted three-dimensional geometry into four
dimensions and simultaneously combined what was best in Plato and
Aristotle. Platonic clarity finally dispersed the mists that had so long
obscured the magnificent mountain range which Aristotle had sensed.

What was sublime about the work of Huygens and Newton in solving
Descartes' problem of finding the quantitative measure of conatus a centra
was that it took this process one stage further. They showed how Galileo's
ruler, the ruler of uniform motion, could itself be used to measure a
derivative concept one storey higher, the force of motion, or the accelera-
tion.

It is the principle by which this was done with which we are mostly
concerned; for this principle, tested on the smooth round nut of cen-
trifugal force, finally cracked the world apart.

The principle, of which Newton never loses sight, is that the quantita-
tive measure of force is the amount by which it can change inertial motion in a
given time, motion being understood as the product of bulk and velocity.
In tackling the problem of centrifugal force, the main problem that
Newton faced was finding a unit in terms of which he could measure the
centrifugal force. We can illustrate the device he employed by considering
first the simpler example of a body (of mass m) moving along a straight
line with initial speed v. A collision imparts to it a velocity increment Ai?.
Then, according to Newton, the force applied to the body, the impulsive
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motive force, is raAi;. The inherent force of the body before the collision was
mv. Then the motive force can be measured in terms of the inherent force
by the ratio: mkv/mv = Av/v. From the point of view of mature Newtonian
dynamics, there are two problems with such a definition: (1) the ratio is a
scalar quantity and is meaningful only in the case of one-dimensional
motion; if Ai? and v are not collinear, as in the general case, we cannot in
this way find a meaningful measure of the motive force itself but only its
scalar magnitude, measured by |Ai;|/|z>; however, this is sufficient for
Newton's purposes; (2) because of the Galileo-Huygens relativity princi-
ple, the velocity v by means of which the inherent force is defined is not a
well-defined quantity; in fact, by going over to a different frame of
reference moving relative to the first with velocity w, one can make the
resultant velocity v' — v — w (and also its scalar magnitude) take abso-
lutely any value. This is, in fact, the root of one of the problems that flaw
the logical consistency of Newton's famous Scholium in the Principia on
absolute and relative motion, and we shall have more to say about it in the
next chapter. I suspect that even when he became aware of the problem
Newton never ceased to doubt that there was just one unique distin-
guished frame of reference, the one that is at rest relative to absolute
space, in the existence of which he appears to have believed with an
unshakeable tenacity. At the time of his early work on centrifugal force he
may well have been unaware of the difficulty. Whatever the truth, he
used a method that is open to criticism and yet managed to obtain a result
that is quite correct. In modern terminology, he used a noncovariant
method to obtain a correct covariant result.

Some way into the Waste Book,30 we find what seem to have been
Newton's first thoughts on the problem. As Newton's understanding of
the precise nature of centrifugal force has been the topic of much
discussion,lla/llb/12a let us look closely at what Newton has to say in
general qualitative terms before we consider his solution to the problem
of quantifying the conatus a centre. The question at issue is this: when a
body moves in a circle (or some other closed curve), what are the basic
dynamical elements which determine the body's motion? Prior to his
work on the Principia, Newton has not left us many passages in his
documents from which his attitude to this question can be deduced, but
the passage which now follows is one (Newton's figure is reproduced in
Fig. 10.7):

20. If a sphaere oc move within the concave shaeicall of cilindricall surface of the
body edf circularly about the center m, it shall press upon the body deffor when it
is in c (supposeing the circle bhc to be described by its center of motion and the line
eg a tangent to that circle at 6) [it] moves towards g or the determination of its
motion is towards c therefore if at that moment the body efd should cease to check
it it would continually move in the line eg (ax, 1, 2) obliqly from the center m, but
if the body def oppose it selfe to this endeavour keeping it equidistant from m, that
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Fig. 10.7. Reproduced from: J. W. Herivel, The Background to Newton's 'Principia',
Clarendon Press, Oxford (1965).

is done by a continued checking or reflection of it from the tangent line in every
point of the circle cbh, but the body edf cannot check and curbe the determination
of the body co unless they continually presse upon one another . . . .
21. Hence it appears that all bodys moved circularly have an endeavour from the
center about which they move, otherwise the body oc would not continuusly
presse upon edf.

It is passages like the conclusion drawn in Newton's §21 which lead
Herivel,12a Westfall,lla and Whitesidellb to conclude that, because Newton
speaks of 'an endeavour from the center' he believed in the real existence
of a force, acting radially from the centre and serving as one of the factors
that determine the motion of the body. This conclusion is based in part on
an apparent similarity between the terminology employed by Newton
and Borelli31 in his theory of the motion of the planets and the satellites of
Jupiter, which was published in 1666, i.e., at much the same time that
Newton was attacking the problem of centrifugal force. However, the
similarity of terminology is, in my opinion, misleading. To demonstrate
this, it is necessary to spell out the details of Borelli's theory of orbital
motion around celestial bodies, large portions of which have been trans-
lated by Koyre in his study of the astronomical revolution.32

The most important feature of Borelli's scheme, which is a hybrid of
Cartesian and Keplerian elements, is that the motion of an orbiting body
is the outcome of the interplay of three forces that act simultaneously on the
body. First, the orbiting body is held to have a natural tendency, akin to
gravity, to move towards the central body about which it is orbiting. In the
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absence of other forces, it would simply fall into the central body.
However, just as in Kepler's theory of planetary motion, the central body
is assumed to rotate together with 'rays' that emanate radially from it, and
these 'rays', rotating with the central body, impart a circular motion to the
body. Now according to Borelli this 'circular motion confers on the
moving body an impetus to move away from the centre of revolution, as
we know from experience by spinning a wheel, or whirling a sling,
whereby a stone acquires the impetus to move away from the centre of
revolution'.33 According to Borelli, the motion of the orbiting body is
governed by these three forces; the 'rays' act as flails carrying the body in
the transverse direction while the radial motion is governed by the
balance (or, rather, imbalance in the case of noncircular motion) between
the other two forces.

Although it must be admitted that in places Borelli is difficult to follow
and occasionally seems to have at least some inkling of a more correct
understanding of things, it is quite clear that the Borellian conception of
the impetus from the centre being generated by a circular driving force is
quite definitely fundamentally wrong. It is now worth considering in
some detail what Descartes actually said on the subject. We shall see that
he is much nearer to the truth but still exhibits a degree of confusion. The
following passage is from §57 in Part III of his Principles, which we know
Newton read closely (Descartes' figure has already been reproduced as
Fig. 9.5 (p. 482), to which the reader is referred):

Now, inasmuch as it often happens that several different causes act simultane-
ously against the same body and some impede the effect of others; depending on
whether we consider the former or the latter, we can say that this body strives or
tends to move in [several] different directions at the same time. For example, the
stone A, when rotated in the sling EA around E, definitely tends from A toward
B, if all the combined causes which determine its movement from A to B are
considered simultaneously; because it is in fact thus transported. But we can also
say that, in accordance with the law of motion explained previously, the same
stone tends toward C when it is at point A, if we consider only the force of its own
movement [and agitation]; assuming AC to be a straight line which is tangent to
the circle at point A. For [it is certain that], if this stone (coming from L) were to
emerge from the sling when it reached point A, it would go toward C and not
toward B; and the sling, though it impedes this effect, does not impede the
striving [toward C].

Thus far Descartes' discussion, although only qualitative, is perfectly
correct. The most important point is that Descartes, unlike Borelli, has the
correct concept of inertia. In his scheme there is evidently no need for
'flails' to maintain the circular motion. On the basis of this passage (and
several others in Descartes) one would say that in his mind there are only
two factors determining the body's motion: rectilinear inertia and the
deflecting effect of the sling. However, Descartes concludes the passage
with this comment:
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Finally, if instead of considering all the force of its motion, we pay attention to only
one part of it, the effect of which is hindered by the sling; and if we distinguish this
from the other part of the force, which achieves its effect; we shall say that the
stone, when at point A, strives only [to move] towards D, or that it only attempts
to recede from the center E along the straight line HAD.

Before discussing what appears to be a flagrant contradiction between
this passage and the part immediately preceding it, let me make a remark
that may be helpful. We recall that Descartes was not primarily interested
in studying motion per se. He was far more interested in using motion to
provide mechanical explanations for things like weight and light. In fact,
by far the most important element in his explicative scheme was precisely
the conatus a centra. This approach to the question is very noticeable in the
passage we have just quoted. Descartes says explicitly that he is going to
pay attention 'to only part' of all the force that determines the motion. It
was the 'part' in which he was particularly interested. I believe that much
of the confusion surrounding the meaning attached to the term centrifugal
force by different authors in the seventeenth century can be attributed to
this distortion of the dynamics of the problem. Although it is perfectly
obvious that the young Newton was much more directly concerned with
fundamental dynamical questions than Descartes, it is equally clear that
until quite late in his development he undoubtedly had considerable
interest in mechanical type explanations of gravity, for example. It was
only in the extraordinary burst of concentrated work that led to the
Principia that the fundamental dynamical aspect came completely to the
forefront and Newton shook off the entanglement of mechanical explica-
tion. We should never forget the irony of the discovery of dynamics - the
uncovering of the basic structure was an almost inadvertent by-product of
Descartes' desire for explanation. And the reason why Huygens failed
where Newton ultimately succeeded is that the Dutchman never did
abandon explication as the prime aim of the exercise. This can therefore
explain why in the early Newton we find frequent references to conatus a
centro (and then later, after 1673, when Huygens coined the expression, to
centrifugal force) without this necessarily meaning that Newton would
employ the concept in a fundamental analysis of the forces that determine
motion. What I mean by this will become clearer shortly.

But now to Descartes' inconsistency. In the first part of his §57 he says
very emphatically that the stone, by virtue of 'the force of its own
movement', will definitely travel along the instantaneous tangent. How
then are we to understand his curious assertion in the final passage that
the force of the stone's motion contains a component that is purely radial
and outwards? Chapter 13 in The World (which was not available to
Newton) casts some light on this question, for there Descartes invites us
to 'imagine the inclination this stone has to move from A toward C as if it
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were composed of two other inclinations, of which one were to turn along
the circle AB and the other to rise straight up along the line EAD' (I have
changed Descartes' lettering to match Fig. 9.5). This suggests that, in the
framework of his basic scheme, Descartes regarded conatus a centra as a
kind of mathematical fiction, or, perhaps, as a concept that was not the
most appropriate way of approaching the analysis of the overall factors
that govern the stone's motion but was still of the greatest interest for his
own explicatory purposes.

Quite what Newton made of Descartes' §57 we can only guess.
Although the final part of §57 leads into two further paragraphs in which
Descartes attempts to quantify the radial striving by means of a quite
inappropriate analogy, to which neither Huygens' nor Newton's quan-
titative treatment of centrifugal force bears the remotest resemblance,
Newton's very first qualitative discussion of the problem as quoted above
does at least superficially parallel Descartes' §57. Let us now look at
Newton's words more closely.

On the basis of Newton's §20 (p. 517-18), considered for the moment
without reference to his §21, it is clear that his conception of circular
motion is quite different from Borelli's (there is no trace of Borelli's 'flails'
maintaining the circular motion). The primacy of inertial motion is
absolutely clear, in agreement with the prominent role accorded to it in
Newton's treatment of collision problems elsewhere in the Waste Book. If
it were not for the deflecting effect of the cylindrical surface, the body
'would continually move in the line eg', the tangent at c to the circle in
which it is moving. According to Newton's account, the circular motion is
the outcome of just two dynamical factors. The first is its rectilinear inertia,
the second is the 'reflection of it from the tangent line in every point of the
circle'. Newton comments further, in the ellipsis at the end of §20, that the
situation is just the same when a stone is whirled in a sling, the deflection
in this case being produced by the tension in the string.

Given that in Newton's mind circular motion is the outcome of just two
dynamical factors, and that these are the perfectly correct ones in the light
of mature Newtonian dynamics, how then are we to understand New-
ton's expression 'endeavour from the center'? It is here necessary to point
out that although the body's motion is governed by only two forces there
is a third force at work, namely, the force of reaction of the body exerted on
the body which deflects it. Note that Newton says the body and the
cylindrical surface 'continually presse upon one another'. We have here
too the germ of his Third Law, though not expressed nearly so clearly as
in the work on collisions. Now this manifestation of the Third Law has a
very surprising aspect. Although the fact that the body and the deflecting
surface are constantly being brought into mutual contact by the body's
having an inertial tendency to move forward uniformly and rectilinearly,
i.e., 'obliqly from the center' as Newton correctly says, the acceleration (in
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the Newtonian sense) of the body from its rectilinear inertial path is
purely radial, towards the centre. Thus, in accordance with mature
Newtonian dynamics, the force with which the cylindrical surface acts on
the body, which is parallel to the vectorial acceleration, is purely radial.
Therefore, the reaction force, with which the body acts on the deflecting
surface, is also purely radial but in the opposite direction, i.e., exactly
away from the centre. This is the devilishly tricky and confusing part of
the story; for the tension in the string or the pressure on the cylindrical
surface really are purely radial even though the body's primal tendency is
to move rectilinearly forward, i.e., 'obliqly from the center'. We have here
the explanation for Huygens' apt yet confusing expression centrifugal
force.

When physics teachers say 'there is no such thing as centrifugal force'
but merely a tendency to move forward in a straight line, this is only part
of the story; for the minute this tendency is thwarted, a reaction force
comes into play and this force is both perfectly real and directed radially
outward.

By the time Newton came to write the Principia he clearly understood
this, for he completes one of the proofs of the formula for centrifugal force
(it derives from the Waste Book work we are about to describe) with these
words:34 This is the centrifugal force, with which the body impels the
circle; and to which the contrary force, wherewith the circle continually
repels the body towards the centre, is equal.' The absence of such a
statement in the Waste Book at the corresponding place in the proof
suggests that Newton had not yet achieved such clarity in the 1660s. I find
confirmation of this as yet imperfect sensing of the importance of the
Third Law in circular motion in some very interesting definitions that
Newton gives in a paper, written around 1670 and called De gravitatione
(Ref. 12b, p. 121ff) (this paper will concern us greatly in Chap. 11).
However, as this would take us into a rather complex discussion, I do not
propose to take this matter any further here and will instead merely state
my conclusions.

They are that one must distinguish carefully between Newton's instinc-
tive understanding of the basic principles that govern motion and his use
of the expression 'endeavour from the center' which, given its prominent
employment by Descartes and Huygens, he could hardly avoid employ-
ing himself. I suspect that by it he meant one of two things, both of which
can be taken from his very earliest comments in the Waste Book quoted
above. We have already noted how in his §20 Newton says that the primal
inertial tendency of the body strives to carry it 'obliqly from the center';
moreover he refers to this striving as an 'endeavour'. Thus, one possible
meaning of 'endeavour from the center' could be as a convenient short-
hand for this inertial tendency; if Newton did use the expression in this
sense (and I believe there are several examples, to which we shall come,
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from the period after 1679 in which he did), then the use was perfectly
correct in the light of mature Newtonian dynamics. However, in his §21
above, Newton unquestionably says that 'all bodys moved circularly have
an endeavour from the center about which they move, otherwise the
body oc would not continuously presse upon edf/ What does Newton
mean here? He could just possibly mean oblique endeavour from the
centre, as above, which would result in pressure on edf. However, I think
more probably he does mean a radial endeavour, because, as we know,
the pressure exerted on edf is radial, not oblique (this is what is so
mysterious about the effect and made it so difficult to comprehend).
However, that granted, I can find no evidence to suggest that Newton (or
Huygens for that matter) ever regarded the radial endeavour as a funda-
mental factor determining the body's motion in the Borellian sense. Such
a notion is totally lacking from the discussion in §20, in which Newton
does approach the problem from the point of view of fundamental
dynamics. Thus, even if Newton was not consciously aware until much
later of the fact that centrifugal force is not a force that governs the motion
of the considered body but a reaction force exerted by that body as a
consequence of its being deflected from its primal inertial motion, I
believe he knew instinctively perfectly well how to tackle problems of
circular or more general motion.

In fact, the very clearest evidence that Newton did not regard cen-
trifugal force as a real force in the sense of Borelli is to be found in his first
proof, to which we now come, of the quantitative expression for cen-
trifugal force.

Therefore, after this rather lengthy but, I feel, necessary introduction,
let us now see how Newton succeeded in quantifying the 'endeavour
from the center'. He uses what at the first sight seems, compared with
Huygens' approach, to be a very crude, rough and ready, approach.
Nevertheless, guided by a very sound instinct, he eventually succeeded
in transforming it into what, from the point of view of the discovery of
dynamics (which is to be contrasted with the discovery of the law of
universal gravitation), proved to be his most important discovery - the
recognition of the dynamical significance of Kepler's Second Law of
planetary motion (the area law). Newton's first attempt comes
immediately after the qualitative discussion considered above.

Suppose a body moves within a circular rim with speed v. When it
passes a given point A, its velocity vector points in one direction. After
half a circuit, at the diametrically opposite point B, the velocity vector has
been exactly reversed. Thus, the force with which the rim acts on the body
has been capable of exactly reversing the velocity. Newton's first conclu-
sion was that the integrated effect of the force which the rim exerts in half
a circuit is equal to twice the inherent force of the body. For the instantane-
ous speed of the body at any moment is v, and this measures the inherent
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force. But between A and B a velocity of this magnitude has been
completely reversed. Newton therefore concluded that the force which
had been applied was 2 x v = 2v, i.e., twice the inherent force.

But a correction he made shows how aware he was of the vectorial
nature of force. Let us consider what actually happens in circular motion.
At any instant, the rim is constantly deflecting the instantaneous velocity.
Moreover the deflection is always exactly perpendicular to the instantane-
ous velocity; there is an instantaneous acceleration a. Of course, as the
body proceeds around the rim, the direction of the instantaneous velocity
is constantly changing, and with it the direction (but not the magnitude)
of the instantaneous acceleration. Newton's idea was to get a measure of
this acceleration by supposing it were to act continuously in a straight line,
after the manner of gravity. Such a conceptual rectification of the acceleration
is not, of course, what happens as the body passes around the rim,
because the acceleration acts in different directions. Nevertheless, it still
succeeds in completely reversing the motion in half a circuit. Newton
therefore corrected his original conclusion, making an inequality out of an
equality. His final conclusion was that35 'the whole force by which a body
. . . indevours from the centre . . . in halfe a revolution is more than
double to the force which is able to generate or destroy its motion, that is
to the force with which it is moved'.

Newton's next attack on the problem is, in fact, the first major dynami-
cal entry in the Waste Book,36 though there is no doubt that chronologically
it was a later entry. Newton continues the logic of the approach in the
passage we have just considered. He imagines a ball constrained by a
globe or ring to move within a circle. As a first step, he considered a body
moving along the four sides of a square, being reflected elastically at the
four corners by a circumscribed ring (Fig. 10.8).

When the body strikes the circle at b, the change in the normal
component of its velocity is 2v sin (jr/4). Now suppose, as Newton did,
that the square is made into a regular polygon of N sides, with N large. Let
6 be the angle between a side of the polygon and the tangent to the circle
at the point at which the side meets the polygon. Then the change in the
normal component is 2v sin 6 and this is ^2vd when N is large and 6 is
therefore small. Measured from the centre of the circle, the angle turned
through between two collisions, 0, is 26, i.e., the change is proportional
to the angle turned through: dv = v<f>. In the limit N —» <» we therefore
conclude that if all these little increments were to act in a straight line 'like
the force of gravity'37 the speed acquired would simply be V(j>, where 0 is
the arc through which the body has revolved; thus when 0 = 1, i.e., the
body has travelled through one radian, the acceleration would have
generated speed v. This is precisely Newton's conclusion:

If the ball b revolves about the center n the force by which it endeavours from the
center n would beget soe much motion in a body as there is in b in the time that the
body b moves the length of the semidiamiter bn.



Centrifugal force 525

Fig. 10.8. Reproduced from: J. W. Herivel, The Background to Newton's 'Principia',
Clarendon Press, Oxford (1965).

Let us now consider Newton's derivation of the endeavour from the
centre by polygonal approximation to a circle in the light of the earlier
discussion of the status in Newton's mind of that endeavour. The fact is
that such an endeavour appears nowhere in the entire derivation. The
motion in the polygon is made up of rectilinear sections of pure inertial
motion interrupted by reflections, at which an impressed force changes
the inertial motion. Indeed, at the crucial point in the proof Newton uses
the expression 'the force of all the reflections is to the force of the bodys
motion'. Thus, there are only two forces which govern the motion, inertia
and the force of reflection produced by the rim. Newton uses perfectly
correct dynamical arguments to obtain the quantitative expression for the
'endeavour from the center'. He clearly cannot have regarded that
endeavour as playing any part in determining the motion of the body. (It
is inconceivable that Newton should have imagined a total transformation
of the dynamical determining factors in the limit when the polygon
becomes a perfect circle.) Nowhere more clearly than in this proof do we
see the need to distinguish between Newton's use of a potentially
confusing expression and his instinctive dynamical practice. Whatever
Newton's words might suggest, his deeds do not reveal circular motion as
ultimately determined by a balance between an impressed force towards
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the centre and a Borellian type centrifugal force. The moment he attacks
the problem in earnest he correctly decomposes it into its two dynamically
correct components: inertial motion modified by a supervening force.

To conclude this discussion of Newton's treatment of centrifugal force,
we must also mention Newton's celebrated paper 'On circular motion',
which is believed to post-date the Waste Book entries, but was certainly
completed before 1669. This piece of work (written in Latin) is almost
identical in its central point to Huygens', as is immediately evident from
the figure (Fig. 10.9) and the opening proposition.38

The endeavour from the centre of a body A revolving in a circle AD towards D is
of such a magnitude that in the time [corresponding to movement through] AD
(which I set very small) it would carry it away from the circumference to a distance
DB: since it would cover that distance in that time if only it were to move freely
along the tangent without hindrance to its endeavour.

Note again that though Newton does indeed speak of endeavour from
the centre the origin of the effect in inertial motion is explicit in the 'move
freely along the tangent without hindrance to its endeavour', from which
it is quite clear that Newton saw the unimpeded endeavour as being
'along the tangent'. We shall return to this paper in Sec. 10.6, where we
consider its applications.

In this section I have wanted to emphasize the importance of centrifugal
force in clarifying the basic concept of force and thereby the basic
structure of dynamics. This conceptual significance is independent of the
specific type of force which acts in any particular case.

Highly significant in this connection is the comment that Newton
makes at the end of the entry in Folio 1 of the Waste Book and which shows
his concern to find a quantitative measure of force valid under cir-
cumstances more general than the special case of circular motion:39

If the body b moved in an Ellipsis that its force in each point (if its motion in that
point bee given) [will?] bee found by a tangent circle of Equall crookednesse with
that point of the Ellipsis.

Quite apart from the suggestive evidence this provides of very early
interest on Newton's part in the planetary problem,* the significant
expression here is 'a tangent circle of Equall crookednesse with that point
of the Ellipsis'. It shows how clearly Newton had understood the insight
which Huygens had reached about seven years earlier - that when a body

* Even earlier evidence for Newton's interest in the problem is one of the first things he
apparently wrote at all on the subject of dynamics, in a notebook that antedates even the
Waste Book:*0 'Note that the mean distances of the primary Planets from the Sunne are in
sesquialiter [i.e. f power] proportion to the periods of their revolutions in time.' How
indicative this reference to Kepler's Third Law is of Newton's awareness of the importance
of the quantitative aspect of motion and how clearly it distinguishes him from Descartes with
his pictorial and qualitative explicatory approach!
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Fig. 10.9. Reproduced from: J. W. Herivel, The Background to Newton's 'Prindpia',
Clarendon Press, Oxford (1965).

moves uniformly in a circle it is being continuously drawn away from the
instantaneous tangent with increments in the motion perpendicular to
the tangent that increase in direct proportion to the time, i.e., exactly as in
Galileo's law of free fall. But whereas Huygens' instinctive reaction was to
exploit this identity of the phenomena in order to find a mechanical
explanation of gravity in terms of a Cartesian centrifuge, i.e., to find
confirmation for his preconception of the nature of gravity, Newton
seems primarily to have been concerned to make absolutely sure he had a
failsafe method of measuring the presence of a force from its characteristic
manifestation. Having this method secure, he can then turn to the task of
establishing the actual nature of the forces present and operating in
nature. We see already in the young Newton the most valuable talent of
the mason, the ability to lay absolutely secure foundations. We see the
early intimation of that superb one sentence characterization in its Preface
(written in 1686) of what the Prindpia is all about:41 Tor the whole burden
of philosophy seems to consist in this - from the phenomena of motions
to investigate the forces of nature, and then from these forces to demon-
strate the other phenomena.'

But, if this is to be done, the very first task is to make absolutely sure
that you know the precise manner in which a force is revealed. This is why
the work on centrifugal force was so important for the clarification of the
force concept as a key element of dynamics. And it all developed out of
the overall structure of incipient dynamics as laid down by Descartes
coupled with Galileo's law of free fall, as we see again in the opening
sentence of Newton's proof in his paper 'On circular motion': 'Now since
this endeavour, provided it were to act in a straight line in the manner of



528 Newton I: the discovery of dynamics

gravity, would impel bodies through distances which are as the square of
the times . . .'.

Some of the greatest discoveries in theoretical physics were made by
men who had the ability to spot one particular phenomenon in nature and
whose instinct told them that this was but one manifestation of a
universal phenomenon. They had the ability to fathom the way nature
works from the merest of hints. With good reason does Newton say in his
Rules of Reasoning in Philosophy prefaced to Book III of the Principia 'nor
are we to recede from the analogy of Nature, which is wont to be simple,
and always consonant to itself.

I am not suggesting that Newton was already consciously embarked on
a systematic programme leading him inexorably to the Principia. He
seems to have worked in a much too eclectic and desultory fashion for
that. But he was testing the implications of Galileo's assured quantitative
results when fitted into the overall framework supplied by Descartes.

10.6. Newton's early applications of the formula
for centrifugal force

In the paper 'On circular motion', Newton finally caught up with
Huygens' sophistication in handling the problem of centrifugal force and
then promptly outclassed him in his applications. It will be worth looking
in some detail at what he did. In essence, what Newton had found was
that the acceleration towards the centre in circular motion is V2/R, where
V is the speed of the circular motion and R the radius of the circle. Now
the time of a complete revolution in a circle is 2nR/V, so that in this time a
body subject to the acceleration V2/R will, by the standard formula
s = \a&, traverse the distance

This result underlies all the applications that Newton makes; for he
considers objects rotating in circles of known radii at known speeds and
compares the distances that will be generated in a given time by the
corresponding accelerations. His first application was to complete the job
begun by Galileo but vitiated by the remarkable mistake mentioned in
Chap. 9. Newton did this by calculating the centrifugal force that acts on
a body on the surface of the earth at the equator. Crucial here was the
value that he adopted for the radius of the earth - not so much for his first
calculation but for one that was to follow it. In fact, the figures that
Newton's employs in this paper and also the calculations done on the
so-called Vellum Manuscript42 (which dates from the same period)
demonstrate unambiguously that Newton took his value for the radius of
the earth from Galileo's Dialogo, in the very part in which Galileo
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discusses the problem of bodies being thrown off the earth by its rota-
tion.43 As a result, Newton used a value that was only about 82% of the
correct radius. He concluded that the centrifugal acceleration at the
equator would44 'in a periodic day . . . impel a heavy body through 19f
terrestrial semidiameters'. Newton then points out that such an accelera-
tion would in one second move the body through f inches.

He now compares this result with the effect of gravity, which he says
'moves heavy bodies down about 16 feet in one second'. This corresponds
to an acceleration due to gravity of 32 feet/second2, a figure with a very
respectable accuracy. It will be recalled from Sec. 9.1 that accurate
determination of g, the acceleration due to gravity, was difficult prior to
Huygens' discovery of the formula P = 2ir^J(llg) f°r the period of a simple
pendulum (published in 1673 in the Horologium Oscillatorum). The Vellum
Manuscript (see Ref. 42) reveals that Newton found an alternative method
of using pendula to determine g accurately. It was based on two important
results relating to simple and conical pendula. In a conical pendulum the
bob moves in a circle with the string maintaining a fixed angle 6 to the
vertical. Considering the problem of finding the equilibrium angle 9 in a
frame of reference rotating with the bob (in which there is a genuine
centrifugal force), we find that three forces act on a bob of unit mass: the
gravity force (vertically downwards), the tension T in the string, and the
centrifugal force V2/R (radially outwards) (Fig. 10.10). In the steady
situation in which 6 = const the radial component of T must balance the
centrifugal force and the vertical component must balance the gravity
force. It immediately follows from this, by elimination of T, that the ratio
of the gravity force to the centrifugal force is equal to the tangent of 90° -
6, i.e., the ratio is tan (p, where cp = 90° - 6. This was Newton's first result.
Now let / be the length of the conical pendulum, R be the radius of the

Fig. 10.10.
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circle in which it moves, and V be the speed of its rotational motion. Then
g/(V2/R) = tan cp. But R = I cos <p, from which it follows that V = cos <p V(g//
sin <JP). The bob moves in a circle of circumference 2 nl cos <p and its period
is therefore P = 2nl cos <plV = In V[(//g) sin <p\.

But we know from Huygens' formula for a simple pendulum (Sec. 9.1),
that this is the period of a pendulum of length / sin (p. In fact, the second
result that Newton used was precisely this: that the time of complete
revolution of a conical pendulum is equal to the period of oscillation (to
and fro) of a simple pendulum in which the length is equal to the depth of
the 'centre' of the conical pendulum below the point of support. Through
this equivalence, i.e., by finding accurately the period of a simple pen-
dulum, Newton implicitly used Huygens' formula and was able to obtain
a good value for g, greatly improving the accuracy of the figures given for
free fall by Galileo.

The upshot of this beautiful work was that Newton concluded45 'the
force of gravity is of such a magnitude that it moves heavy bodies down
about 16 feet in one second, that is about 350 times further in the same
time than the endeavour from the centre [would move them], and thus
the force of gravity is many times greater than what would prevent the
rotation of the earth from causing bodies to recede from it and rise into the
air/ A few years earlier Huygens had reached essentially the same
conclusion, namely that the ratio was 265,46 a value that purely fortuit-
ously was much closer to the correct value of just over 288.47

These almost identical conclusions of Huygens and Newton demon-
strate graphically how extraordinarily close Galileo himself had come to
results which were at the very threshold of mature dynamics. We shall
shortly see another example. They demonstrate equally clearly the deci-
sive role in the discovery of dynamics played, on the one hand, by the
Copernician revolution, which literally forced this problem into a position
right at the top of the agenda, and, on the other, by Galileo's discovery of
the law of free fall. In fact, as noted in Chap. 9 (p. 482), this work shows
that Galileo's work alone would probably have led to the discovery of
dynamics in some form or other without the contribution of Descartes.
Herivel calls Newton's calculation of the centrifugal effect of the earth's
rotation 'his first great practical discovery in dynamics'.48

But this was a problem in which fateful error followed fateful error.
Galileo's had already meant that about three decades elapsed between the
publication of the Dialogo and the correct demonstration that bodies
would not be thrown off the earth by its rotation. Now, through no fault
of either, Galileo's incorrect value for the radius of the earth led Newton
to make a second error, which almost certainly delayed the discovery of
the law of universal gravitation by nearly another twenty years. This is
what happened. Where Huygens had been content to consider terrestrial
applications of his formula for centrifugal force, Newton, the 'impetuous
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eagle', turned his eye to the moon and planets. He attempted to establish,
first, the magnitude of the centrifugal acceleration corresponding to the
moon's motion around the earth. Crucial here is the distance of the moon -
the centrifugal force is co2r, where a> is the known angular velocity of the
moon in its motion around the earth and r is the radius of the moon's
orbit. From the astronomers Newton knew that r was, on average, about
sixty times the radius of the earth. The ratio was known with good
accuracy; the problem was in the value Newton used for the earth's
radius. Because he took that about 18% too small he automatically
obtained a value for the radius of the moon's orbit that was too small by
the same amount. Using this incorrect value, he first concluded that 'the
endeavour of the surface of the earth at the equator is about Y2.\ times
greater than the endeavour of the moon to recede from the centre of the
earth.' This result, being based on correct angular velocities and a correct
ratio of the radii, is perfectly satisfactory. But Newton went further. He
compared his correct determination of the acceleration of free fall on the
earth with the moon's endeavour, for which he had, of course, obtained
a value that was significantly too small. The fateful conclusion was 'the
force of gravity [as at the surface of the earth] is 4000 and more times
greater than the endeavour of the moon to recede from the centre of the
earth/ In fact, Newton's '4000 and more' should have been 4375, whereas
the correct result, which it is hard not to believe Newton was hoping to
obtain, is 3600. It is interesting to note that the place at which Newton says
'4000 and more' is the only point in the entire paper which does not give
an exact figure. It almost looks as if he could not bring himself to face up
to the brutal truth. We shall come back to this result in a moment.

Newton gives two further astronomical applications. The first is a
rather curious comment related to the question of why the moon always
presents the same face to the earth. He says: 'And if the moon's endeavour
from the earth is the cause of her always presenting the same face to the
earth, the endeavour of the lunar and terrestrial system to recede from the
sun ought to be less than the endeavour of the moon to recede from the
earth, otherwise the moon would look to the sun rather than to the earth.'
It should be noted that at that time the sun's distance from the earth was
still very inaccurately known (as we saw in Chap. 9, the first precise
parallax determination of a distance - from which all distances followed
automatically - within the solar system was made five years later in
1671-2). On the basis of this hypothesis Newton concluded (incorrectly,
since his hypothesis was not sound, though it was certainly intriguing)
that the ratio of the earth-moon distance to the earth-sun distance must
be greater than 559.5/100 000.

The second application was, in the long term, of far greater significance.
It is the first documented use of Kepler's Third Law to compare the
strengths with which the centrifugal tendencies of the planets will cause
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them to recede from the sun. Newton says: 'Finally since in the primary
planets the cubes of their distances from the sun are reciprocally as the
squares of the numbers of revolutions in a given time: the endeavours of
receding from the sun will be reciprocally as the squares of the distances
from the sun.' Perhaps it will be slightly clearer to express this in symbols.
An equivalent formulation of Kepler's Third Law is that the velocity of a
planet in its orbit is proportional to 1/VR; i.e., V <* 1/VR. But its
centrifugal tendency F is V^/R, so that F °c l/R2.

We can now appreciate the significance of the unfortunate mistake
Newton made in the case of the moon. Had he used the correct radius of
the earth* he would have found that the strength of the moon's endeavour
away from the earth was reduced compared with the force of gravity on
the surface of the earth by exactly the square of the ratio of the radius of
the earth to the radius of the moon's orbit around the earth. In conjunction
with the very striking result obtained for the planets, this must surely
have made it seem almost inescapable that the moon is restrained from
flying off from the earth by precisely the same force of gravity that causes
apples to fall to the earth and that a precisely analogous force of gravity
exerted by the sun is what keeps the planets in orbit around the great
luminary. For the rate of decrease of the gravitational force would in both
cases be as l/R2.

The paper 'On circular motion' that we have been discussing is the
primary piece of evidence in the thorny question of when precisely
Newton did get his idea of universal gravitation. As is well known, when
Halley presented the Principia to the Royal Society in 1686 on Newton's
behalf, Hooke claimed that Newton had been guilty of plagiarism - that
he, Newton, had used without acknowledgement his own idea that the
planets are kept in orbit around the sun by a force that is50 'in a duplicate
proportion to the Distance from the Center Reciprocall'.

This question is treated very fully by Herivel,51 so I will give only a brief
summary of some of the key points. The first is the curious fact that in the
paper 'On circular motion' Newton does not anywhere mention the idea
of gravity as being the force that restrains either the moon or the planets;
he only compares the endeavours away from the centre. Of course, he
may have had publication of the paper in mind and might not have
wanted to give away valuable ideas. A second point is that the paper 'On
circular motion' does not quite tally with the accounts that Newton gave
several years after the publication of the Principia, i.e., after the unpleas-
ant controversy with Hooke. There are three different versions of this
post-Principia account, all more or less agreeing in their essentials. I quote

* Had Newton taken the trouble, quite accurate values of the radius of the earth were
available and had been determined by Snel (1617)49a and Norwood (1635).49b Years later
Newton used the value published by Picard in his Mesure de la Terre (1671).49c
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the account from Whiston, who recalls how Newton told him (in 1694)
that when in Woolsthorpe at the time of the plague he had had the idea
that the earth's gravity might extend to the moon and how he had put the
idea to the test:52

Upon Sir Isaac's First Trial, when he took a Degree of a great Circle on the Earth's
Surface, whence a Degree at the Distance of the Moon was to be determined also,
to be 60 measured Miles only, according to the gross Measures then in Use. He
was, in some Degree, disappointed, and the Power that restrained the Moon in
her Orbit, measured by the versed Sines of that Orbit, appeared not to be quite the
same that was to be expected, had it been the Power of Gravity alone, by which
the Moon was there influenc'd. Upon this Disappointment, which made Sir Isaac
suspect that this Power was partly that of gravity, and partly that of Cartesius's
Vortices, he threw aside the Paper of his Calculation and went to other Studies.

Two points about this are to be noted: (1) In 'On circular motion'
Newton used Galileo's value for the radius of the earth, which does not
match with what is said here, though the error is much the same;
(2) Whiston's account implies an explicit test was made, which is not
evident from 'On circular motion'. If any early document of Newton's
were to come to light in which the idea of gravitational attraction is
explicitly mentioned, then clearly the matter would be settled beyond all
doubt. However, none has to date and the chances of this seem slim.
Moreover, at the time of the correspondence in 1686 with Halley over
Hooke's claim, Newton referred to a paper that he had written 'above 15
yeares ago & to ye best of my memory was writ 18 or 19 years ago'. From
what he writes to Halley53 it is virtually certain that this paper is the paper
'On circular motion'. What this means is that in 1686 Newton was unable
to put his hands on any other documentary evidence that proved his
point beyond any gainsaying (but, of course, it could well be true that 'he
threw aside the Paper'). Thus, there remains a suspicion that Newton was
not entirely frank in the matter.

Against this must be set the plausibility of the apple story. It has an
authentic ring about it. Let us have the story again - it is surely worth the
telling. According to Stukeley's account of his discussions in April 1726
with Newton:54 'After dinner, the weather being warm, we went into the
garden and drank thea, under the shade of some apple trees, only he and
myself. Amidst other discourse, he told me, he was just in the same
situation, as when formerly, the notion of gravitation came into his mind.
It was occasion'd by the fall of an apple, as he sat in a contemplative
mood.'

According to Pemberton:55 The first thoughts, which gave rise to his
Principia, he had, when he retired from Cambridge in 1666 on account of
the plague. As he sat alone in a garden, he fell into a speculation on the
power of gravity: that as this power is not found sensibly diminished at
the remotest distance from the center of the earth . . . that this power
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must extend much further than was usually thought; why not as high as
the moon, said he to himself?'

And according to Newton himself:56 'And in the same year [1665 or
1666] I began to think of gravity extending to the orb of the Moon, and
having found out how to estimate the force . . . compared the force
requisite to keep the Moon in her Orb with the force of gravity at the
surface of the earth, and found them to answer pretty nearly.'

On this question the jury is still out. For myself I believe Newton; it
would be sad indeed if he had fabricated the perfect and poetic little story
of the apple merely as a sordid means to make his case against Hooke
seem plausible. However, it must be emphasized that there is a world of
difference between gravity understood in a vague sense of attraction
towards some body and the precise notion of universal gravitation,
according to which each and every particle of matter attracts every other
particle of matter with a precisely defined force that has a strength
proportional to the mass of the attracting body and decreases inversely in
proportion to the square of the distance from the attracting mass. For
example, it is well known that Newton, like most of his contemporaries,
dabbled in various mechanical explanations for gravity. As Wilson57 has
pointed out very clearly, such mechanical explanations can generate a
force that impels apples and the moon to the earth and the planets to the
sun. However, there is no universality in such mechanisms; they are
specific to the centres to which the mechanical mechanisms propel the
bodies; moreover, there is no law of action and reaction, so that the moon
can be impelled towards the earth without the earth being simultaneously
impelled towards the moon. Thus, it is easy to believe, as I do, that around
1666 Newton seriously considered the possibility that terrestrial gravity
could extend to the moon and govern its motion. But this does not mean
that at that time he had even the remotest inkling of the theory of
universal gravitation. Indeed, as we shall see later, there is a great deal of
evidence which suggests that universal gravitation did not occur to him as
a serious possibility until very late indeed. But one thing is certain: by
about 1669 at the latest Newton knew how to calculate the strengths of
centrifugal endeavours. He therefore knew in principle the strength of
the force that must counter the centrifugal tendency - whatever may have
been the nature of that force. He had completed some of the most
important preparatory work for what would prove to be his greatest feat.

10.7. The development of Newtonian dynamics

It was argued in Sec. 10.2 that the main significance of Newton's early
work on dynamics lay in his clarification of general principles rather than
in the specific results he obtained, important as these were. In particular,
we have now seen how Newton developed and tested different concepts
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of force. Throughout his life, Newton employed all three of these con-
cepts, using the same word force (qualified if he felt it necessary to
distinguish between them by adjectives such as inherent, impressed, etc.) to
denote them. Among the three, the practical importance of inherent force
was quite different from that of the other two. De facto it came to signify
for Newton the phenomenon it was meant to explain, i.e., he regarded
the inherent force as something akin to an animistic force that kept any
given body following its inertial motion. But that was its sole purpose; it
was a cause invented to explain a phenomenon Newton felt unable to
accept at its face value, as a simple datum beyond explanation. During the
composition of the Principia Newton at least partially shook off this relic of
medievalism, which survived well into the seventeenth century, but the
concept was never completely exorcised. We shall return to this important
conceptual matter in Chap. 12, since it is closely related to the concept of
mass and Einstein's interpretation of what Mach's Principle should
achieve.

On the general question of Newton's development, the unpublished
early work on dynamics and the Principia reveal to my mind remarkably
little evidence of any really significant shift in Newton's attitude to the
most basic elements of dynamics. He used essentially the same three force
concepts in all his work up to and including the Principia and moreover
used them throughout with almost complete mastery. (I am referring here
to Newton's mastery of the physics - the rigour of his mathematics is
another matter.) It is true that the words used to describe the concepts
changed, and that was significant for the exposition of the work. But I do
not think it made much difference to the mental processes by which
Newton arrived at his great results or the essential content of the concepts.

In fact, the early and mature Newtonian dynamics are not distinguished
by any fundamental change in the basic concepts but rather by an
extension of their application. This occurred in two directions: (1) in the
early Newtonian dynamics, all forces were assumed to be contact forces;
the first great extension of the Principia was in the consideration of forces
acting over great distances - it was the transition from direct contact to
action at a distance; (2) the second great extension was that the early
Newtonian dynamics dealt with problems with very special initial condi-
tions, whereas in the Principia Newton made the breakthrough to being
able to handle problems with arbitrary initial conditions* The story of the
Principia is the story of how the mature Newton was prodded by Hooke

* It is above all the absence in Newton's early work of problems with general initial
conditions and nonconstant forces that makes it difficult to establish the extent to which he
fully comprehended the significance and range of the principles he employed, or, for
example, to determine precisely what he understood by endeavour from the centre. What is
certain is that the later work joins on seamlessly to the earlier and there is no point at which
a principle adopted earlier is abandoned or refuted.
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and Halley into applying exactly the principles that the young Newton
had developed on a restricted set of problems to a much wider set. It was,
as already suggested, the transition from cracking a few nuts to cracking
the world. But he used the same nutcrackers.

He had to use the same nutcrackers because their design had been
almost, though not quite completely, predetermined for him by Galileo
and Descartes. From Galileo he had the parallelogram rule for physical
motions, i.e., the rule that when a body executes a compound motion
under the influence of two simultaneously acting causes the resultant
motion is the diagonal of the parallelogram of the motions corresponding
to the two causes acting separately. Equally important, from Galileo he
had the law of free fall with the vitally important fact that the velocity
increases in proportion to the time (and not in proportion to the distance
traversed, as had hitherto been widely supposed). This gave him the
paradigm of physical force as something that changes the motion by adding
equal increments of motion in equal increments of time. It is not possible
to over-emphasize the importance of this result; together with the integ-
rated form of this law (i.e., that the distance increases as the square of the
time), it was the foundation 'of most of Newton's great applications of
dynamics. Very important here was his early realization, in which he was
anticipated by Huygens, that in the case of a force that varies either in
space or time the infinitesimal increments of motion are always propor-
tional to the infinitesimal interval of time over which the force is applied
(and that they are in the direction in which the force is applied). It was by
systematic application of this principle (in conjunction with the paral-
lelogram rule) that Newton performed his greatest feat: the demonstra-
tion from Kepler's laws of the inverse square law of gravitation.

From Descartes Newton had the significantly improved (as compared
with Galileo) concept of inertial motion.* This provided him with the
benchmark from which to operate. From Descartes he also had the
heightened awareness, to a large degree absent in Galileo, that the
primary task of dynamics is to study how bodies deflect each other from
their respective inertial motions. Rather more insistently than Galileo,
Descartes also provided the stimulus to attack the problem of centrifugal
force. He also demolished the residual Galilean vestiges of the Aristote-
lian-Pythagorean cosmos and made motion truly universal.

If Galileo and Descartes each provided one arm of the nutcrackers,
what was Newton's contribution? The linchpin, of course: Lex Tertia was
the insight that linked the two arms together. Together with the law of
inertia and the embryonic Second Law, it supplied Newton with an

* Despite what Westfalllla and Whitesidellb suggest, I can find no evidence at all which
indicates that Newton ever doubted the universal validity of rectilinear inertia (reverting, for
example, to Galilean circular inertia for problems on cosmic scales). Whiteside's arguments
have been countered by Herivel.58
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essentally complete set of rules for calculating the motions of bodies. For
the first time since Copernicus set the earth in motion, a coherent scheme
for calculating the motions of bodies was beginning to appear. Before
Copernicus - and even for a while after him - cosmology had supplied a
fixed framework. The early astronomers saw their task as the description
of the motion of individual bodies within that fixed framework. But
Newton was confronted with the task of describing the celestial acrobatics
implicit in Aristarchus's reaching out by trigonometry to sense the
distance of the sun. And although the correct way to formulate the law of
inertia would yet present - and still does present - severe conceptual
difficulties, the other two laws, already moderately well clarified,
supplied the general rules governing the way bodies moving through
space deflect one another from their respective inertial motions.

If in 1666 Newton already had such a good understanding of the basic
elements of dynamics and an apparent interest in the problem of the
elliptical planetary orbits - the problem that more than any other brought
on the full flowering of Newton's genius and the unshakeable foundation
of his mature dynamics - why did he not solve that problem then?

I think there were at least two reasons. Probably the most important
was that in 1666 Newton lacked the stimulus to attack the problem in its
full generality. For although the subsequent history was to show how
basically sound his early work was, Newton could not have known this at
the time. This is closely connected with the question of the date at which
Newton had the concept of universal gravitation and the related notion of
forces acting at a distance towards a definite centre rather than through
direct contact. We have already noted that if Newton did have the idea
that the force which keeps the planets in their orbits is the same force as is
responsible for terrestrial gravity it was only the merest glimpse of the
fully developed concept, which quite definitely did not appear before the
early 1680s. In fact, the full significance of what he was finding probably
only dawned on Newton in the early and mid 1680s as he unearthed more
and more evidence of the universality of gravity and the quite extraordi-
nary diversity of problems that this opened up to mathematical analysis.
It was only then that he grasped the power of the method which he had
forged nearly twenty years earlier. One could say that Newton developed
a theory of forces in the 1660s without being aware that they actually
existed in nature!

Of course, Newton was perfectly aware of the existence of forces of
impact, but that may well have exhausted in his mind the spectrum of
possible forces. He was probably still very much under the spell of the
Cartesian world view, i.e., the mechanical picture of the world in which
the motion of macroscopic bodies is explained by the shapes, motions,
and collisions of microscopic bodies. But such a philosophy does not lend
itself to a great deal of mathematical analysis. Newton had solved the
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problem of collisions and there did not seem to be all that much left to do.
He undoubtedly understood that a force of some kind kept the planets
from flying away from the sun in rectilinear inertial motion but may well
have supposed, like Descartes, that it was supplied by collisions with
particles in a Cartesian vortex, as the quotation earlier from Whiston
suggests. But Cartesian physics was all so qualitative; trying to subject it
to mathematical analysis was a bit like trying to pin a jelly to a wall. When
Newton discovered it more than 15 years later with all its ramifications,
universal gravitation had a great liberating effect. It suddenly created a
host of problems amenable to exact solution. Mathematical physics as a
major growth industry - still growing today in a most impressive fashion
- dates from the discovery of universal gravitation. But back in the 1660s
Newton probably lacked the stimulus and also the clues as to how he
should proceed. He stood on Darien but could not see the Pacific because
his vision was befogged by Cartesian physics.

It should also be borne in mind that dynamics was only one of Newton's
many interests, which included optics, mathematics, alchemy, and theol-
ogy; with the last two especially he became particularly absorbed.2

Moreover, before he made his great discoveries in dynamics he could not
know just how significant that subject would prove to be. It is a profound
mistake to attempt to evaluate Newton's priorities with a modern aware-
ness of the relative significance of the various subjects he studied.

A quite different but perhaps almost as important problem was that he
had not yet quite learnt how to deal with time and the variability of the
planets' motions. This is a most important technical matter, which we will
consider in Sec. 10.9.

Thus, having mastered pretty well all the basic elements of dynamics,
Newton more or less laid the subject on one side for more than a decade.
If he had not meanwhile made something of a name for himself by his
discoveries in mathematics and optics (see, for example, Westfall2), his
brilliant early work in dynamics would probably have come to nothing.
But powerful forces were at work. Great insights once achieved have a
way of working upon receptive minds. As noted in Sec. 10.1, vitally
important steps on the road to dynamics were the publication in 1669 of
the correct laws of impact by Wallis, Wren, and Huygens and the
publication in 1673 by Huygens as an appendix to his Horologium Oscil-
latorum of the correct formulas for centrifugal force. It was this in particular
that got things moving again. Several people, most notably Wren and
Halley, had the idea of using Huygens' formula in conjunction with
Kepler's Third Law to do what Newton had done already several years
earlier: to find the strength of the force with which the planets attempt to
recede from the sun. But what is only implicit in the early Newton paper
now becomes quite explicit. The search is on for the force that attracts the
planets and thus balances the centrifugal tendency.
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10.8. The Hooke-Newton correspondence of 1679

Even before Huygens published the formulas for centrifugal force, Hooke
(1635-1702) had achieved a considerable degree of clarity as to the
qualitative dynamical elements involved in the problem of orbital motion.
From about 1664 he had been pondering the problem in a basically
Cartesian framework, and in May 1666 presented a paper to the Royal
Society on the subject. In it, he said:59

I have often wondered why the planets should move about the sun according to
Copernicus's suggestion, being not included in any solid orbs. . . nor tied to it, as
their center, by any visible strings; and neither depart from it beyond such a
degree, nor yet move in a strait line, as all bodies that have but one single impulse,
ought to do ... But all celestial bodies, being regular solid bodies, and moved in
a fluid, and yet moved in a circular or elliptical lines, and not strait, must have
some other cause, besides the first impressed impulse, that must bend their
motion into that curve.

Hooke illustrated these suggestive comments, which have the effect of
highlighting the specific problem of the planets within a generally Carte-
sian approach, with a notable demonstration employing a conical pen-
dulum. He quite correctly sensed that such a pendulum does mimic the
planetary situation and reveals the two essential elements of the problem:
the inertial tendency of a body to continue in the direction of a motion
imparted to it at any instant and a deflecting force towards a fixed centre
(produced in the case of the pendulum by the horizontal projection of the
tension in the string). By varying the initial conditions, Hooke was able to
generate circular and elliptical orbits and thus show qualitatively how
orbits something like the planetary orbits could be generated by the
interaction of inertia and a deflecting force. Moreover, by hanging a little
supplementary pendulum below the bob of the main pendulum he was
able to reproduce qualitatively the motion of the moon around the earth
as the earth orbits the sun. These simple but beautiful experiments of
Hooke represent the first clear formulation of the planetary problem in
qualitatively correct terms. Indeed, the analogy would be perfect but for
the fact that the deflecting force towards the centre increases with the
distance from the centre instead of decreasing with the square of the
distance. For this reason it is not possible to obtain elliptical orbits with the
force centre at one of the foci - it is always at the centre of the ellipse.
Nevertheless, Hooke must clearly be given the credit for posing the problem
for the first time in the correct form - always the first step to finding the
solution. Newton may have had the idea at about the same time but no
firm evidence of this survives beyond the tantalizing two or three sen-
tences in 'On circular motion'.

We have already mentioned another stimulus to the solution of the
problem which also occurred in 1666. It was the publication by Borelli



540 Newton I: the discovery of dynamics

(1608-1679) of his book Theoricae Mediceorum Planetarum ex Causis Physicis
Deductae, ostensibly a physical theory of the motion of the moons of
Jupiter (which, following Galileo, he called the Medicean planets) but in
fact simultaneously a theory of the motion of the planets in the Coperni-
can framework (which, to avoid offending the Inquisition, he did not
want to emphasize). As we have seen, Borelli's theory is an interesting
mixture of Keplerian ideas (Kepler's influence is already manifest in the
title of the book, which recalls the subtitle of the Astronomia Nova) with the
important new idea that the planets are subject to a natural tendency
towards the sun. Borelli is above all important in insisting, like Kepler and
Hooke, that celestial motions are governed by essentially the same
physical causes as terrestrial motions. For, despite widespread know-
ledge of the ideas of Kepler and Descartes, there were still eminent
astronomers in the mid seventeenth century who held to the Ptolemaic
and Copernican notion that celestial motions were purely geometrokine-
tic and subject to quite different rules from the terrestrial motions. And
there were still several who held to the Tychonic cosmology, i.e., who
assumed an earth at rest around which the sun revolved with the planets
in turn revolving around the sun. These questions have been very well
discussed by Russell60 and Wilson.57 Borelli's work, for which the reader
is referred to Koyre,32 is particularly interesting on account of his frank
questioning of why the celestial bodies neither fall into the respective
central bodies nor depart ever further and further away from them.
However, as regards the dynamical formulation of the problem, Borelli's
scheme is manifestly inferior to Hooke's, since it requires three forces
instead of two and the law of inertia is at the very best only most obscurely
understood.

Thus, from about 1666 the idea of some force attracting the planets
towards the sun began to gain quite wide currency. In the next three or
four years Hooke seems to have developed his ideas with rather more
precision and in 1670 gave a lecture at Gresham College in London on the
problem of proving the rotation of the earth, at the end of which he
returned to the problem of the planetary motions. This lecture was
published in 1674 in his Attempt to Prove the Motion of the Earth. I reproduce
in its entirety the final section of the booklet devoted to this problem, since
apart from the greater precision with which the problem is posed the
passage also contains a remarkable anticipation of some aspects at least of
the theory of universal gravitation. Here it is:61

At which time also I shall explain a System of the World differing in many
particulars from any yet known, answering in all things to the common Rules of
Mechanical Motions: This depends upon three Suppositions. First, That all
Coelestial Bodies whatsoever, have an attraction or gravitating power towards
their own Centers, whereby they attract not only their own parts, and keep them
from flying from them, as we may observe the Earth to do, but that they do also
attract all the other Coelestial Bodies that are within the sphere of their activity;
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and consequently that not only the Sun and Moon have an influence upon the
body and motion of the Earth, and the Earth upon them, but that $ also $, cf, 2|,
and Q [Mercury, Venus, Mars, Jupiter, and Saturn] by their attractive powers,
have a considerable influence upon its motion as in the same manner the
corresponding attractive power of the Earth hath a considerable influence upon
every one of their motions also. The second supposition is this, That all bodies
whatsoever that are put into a direct and simple motion, will so continue to move
forward in a streight line, till they are by some other effectual powers deflected
and bent into a Motion, describing a Circle, Ellipsis, or some other more com-
pounded Curve Line. The third supposition is, That these attractive powers are so
much the more powerful in operating, by how much the nearer the body wrought
upon is to their own Centers. Now what these several degrees are I have not yet
experimentally verified; but it is a notion, which if fully prosecuted as it ought to
be, will mightily assist the Astronomer to reduce all the Coelestial Motions to a
certain rule, which I doubt will never be done true without it. He that understands
the nature of the Circular Pendulum and Circular Motion, will easily understand
the whole ground of this Principle, and will know where to find direction in
Nature for the true stating thereof. This I only hint at present to such as have
ability and opportunity of prosecuting this Inquiry, and are not wanting of
Industry for observing and calculating, wishing heartily such may be found,
having my self many other things in hand which I would first compleat and
therefore cannot so well attend it. But this I durst promise the Undertaker, that he
will find all the great Motions of the World to be influenced by this Principle, and
that the true understanding thereof will be the true perfection of Astronomy.

Within a decade Hooke's confident prediction in the final sentence was
to be triumphantly vindicated - and again, just as he predicted, by
someone else, not himself. The saddest part of the story is that Hooke
found that person, badgered him into making the greatest discovery ever
in science, and yet got nothing but pain and misery as reward. As long as
historians study the discovery of dynamics they will have to consider the
relative merits of Hooke and Newton in the making of this key discovery
which crowned the two-millennial undertaking. Perhaps the best that
one can do is relate the facts as they are known. And it is certainly true, as
Westfall points out,62 that the first clear and correct statement of the
dynamic elements of orbital motion on record is due to Hooke.

However, despite some further suggestive evidence50 it is not clear
whether Hooke should be credited with the precise notion that Newton
eventually formulated, namely, that each piece of matter always exerts and
is subject to gravitational attraction. Above Hooke merely speaks of
mutual attraction to the centres of the various bodies; in his Cometa of 1679
he says that comets can lose the gravitating principle they have when
entire if their parts become 'confounded or jumbled' (Ref. 57, p. 152).
Also, although Hooke mentions the moon above (and in Ref. 50) he does
not say explicitly that it is kept in its orbit by exactly the same
gravitational attraction as makes objects fall to the earth. Still less is
there any suggestion of a comparison of the strength of gravity on the
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surface of the earth and the strength of the force needed to keep the moon
in its orbit. This crucial insight seems to have been Newton's and
Newton's alone. Nobody else seems to have grasped with full clarity and
awareness the essential point that there must be complete identity
between the falling of apples in country gardens and the motion of the
moon - that it too falls towards the earth.

The final stage in the gradual clarification of the planetary problem
came, as pointed out in Sec. 10.1, with the publication in 1673 by Huygens
of the correct formula for centrifugal force. This enabled both Wren and
Halley to resolve the one point that Hooke left undecided in his Gresham
College lecture of 1670 - the verification of the 'several degrees' of 'these
attractive powers'. It appears that they passed on to Hooke, who was a
weak mathematician/ the result of their own application of Huygens'
formula to Kepler's Third Law, for by 1679 Hooke was sure in his own
mind that the strength of the attractive power decreased as the square of
the distance.

After this introduction, let us now look at the most important exchange
in the Hooke-Newton correspondence.

This was initiated by Hooke on 24 November 1679. He wrote to Newton
in his capacity as Secretary to the Royal Society and hoped that Newton
would continue his 'former favours to the Society by communicating
what shall occur to you that is philosophicall'. Hooke continued:64 'For my
own part I shall take it as a great favour if you shall please to communicate
by Letter your objections against any hypothesis or opinion of mine, And
particularly if you will let me know your thoughts of that of compounding
the celestiall motions of the planetts of a direct motion by the tangent & an
attractive motion towards the centrall body.'

Newton responded on 28 November somewhat evasively, saying that
he had little inclination at the present to philosophy. Of Hooke's specific
proposal he said that he did not recall hearing of 'your Hypotheses of
compounding ye celestial motions of ye Planets, of a direct motion by the
tangt to ye curve'. However, he did propose to Hooke a possible test of
the rotation of the earth based on the fact that a body at the top of a high
tower will actually have a faster rotation speed than one at its bottom, so
that, if it is dropped, then 'outrunning ye parts of ye earth [it] will shoot
forward to ye east side of the perpendicular . . . quite contrary to ye
opinion of ye vulgar'.

Newton's description of his proposal takes us straight back to the
problems that figure so prominently in Galileo's Dialogo:65 'Suppose then
* For an evaluation of Hooke and his many other remarkable achievements the reader is
referred to Westfall's article on him in the Dictionary of Scientific Biography.63 He was a brilliant
but rather sad figure, characterized by fertility of imagination and a powerful intuition but
not a capacity to elaborate the full potential of his ideas. One of his greatest achievements
was the invention and development in 1658/9 for Robert Boyle of the air pump in its modern
form.
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Fig. 10.11.

BDG represents the Globe of ye Earth carried round once a day about its
center C from west to east according to ye order of ye letters BDG; & let A
be a heavy body suspended in the Air & moving round with the earth so
as perpetually to hang over ye same point thereof B. Then imagin this
body B let fall & it's gravity will give it a new motion towards ye center of
ye Earth without diminishing ye old one from west to east. . .'. Newton's
figure, which we may have to thank for the final synthesis of dynamics, is
reproduced in Fig. 10.11.

Hooke replied on 9 December, agreeing with Newton's conclusion, but
he then ventured to suggest that Newton had made a mistake with the
shape of the curve he had communicated in his letter. Westfall has
pointed out how much Hooke's correction appears to have mortified
Newton:66 more than thirty years later he referred to the mistake as 'a
negligent stroke with his pen'. Hooke's comment was as follows:67 'But as
to the curve Line which you seem to suppose it to Desend by (though that
was not then at all Discoursed of) Vizt a kind of spirall [Fig. 10.12] which
after sume few revolutions Leave it in the Center of the Earth my theory

Fig. 10.12.
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of circular motion makes me suppose it would be very differing and
nothing att all akin to a spirall but rather a kind Elleptueid/

Newton replied to this letter on 13 December, granting that he had
made a mistake:68 'And also that if its gravity be supposed uniform it will
not descend in a spiral to ye very center but circulate wth an alternate
ascent & descent made by it's vis centrifuga & gravity alternately overbal-
lancing one another/

Westfall69 and Whitesidellb see Newton's use here of the notion of the
vis centrifuga and gravity alternately 'overbalancing' one another as
evidence that he was still confused about the correct formulation of the
dynamical elements of the problem, treating it in Borellian fashion.
However, Newton is, in fact, merely agreeing with Hooke's objection,
and his own formulation of the problem in distinctly Galilean terms on 28
November had not revealed any confusion. The point I should like to
make is that as soon as Newton fixes his attention on gravity as the cause
of the body's deflection from rectilinear inertial motion his account is
perfectly clear and derives straight from Galileo. This comes out especially
in the passage that immediately follows the last quotation. It is the second
clear example in the pre-Principia documents where Newton outlines in
qualitative terms the basic dynamical elements involved in orbital motion.
There are again just two: rectilinear inertia and gravity, which causes the
deflection. Borellian confusion is quite absent. Here is the passage (my
italics):

Yet I imagin ye body will not describe an Ellipsoeid but rather such a figure as is
represented by AFOGHIKL &c. [Fig. 10.13] Suppose A ye body, C ye center of ye
earth, ABDE quartered with perpendicular diameters AD, BE, wch cut ye said
curve in F and G; AM ye tangent in wch ye body moved before it began to fall &
GN a line drawn parallel to ye tangent. When ye body descending through ye
earth (supposed pervious) arrives at G, the determination of its motion shall not
be towards N but towards ye coast between N & D. For ye motion of ye body at G is
compounded of ye motion it had at A towards M, & of all ye innumerable converging
motions successively generated by ye impresses of gravity in every moment of it's passage

Fig. 10.13.
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from A to G: The motion from A to M being in a parallel to GN inclines not ye body
to verge from ye line GN. The innumerable & infinitly little motions (for I here
consider motion according to ye method of indivisibles) continually generated by
gravity in its passage from A to F incline it to verge from GD towards D, & ye like
motions generated in its passage from F to G incline it to verge from GN towards
C. But these motions are proportional to ye time they are generated in, & the time of
passing from A to F (by reason of ye longer journey & slower motion) is greater
then ye time of passing from F to G. And therefore ye motions generated in AF
shall exceed those generated in FG . . . . Thus I conceive it would be if gravity
were ye same at all distances from ye center. But if it be supposed greater nearer
ye cen te r . . . .

Although not without certain minor technical flaws, this passage
demonstrates a complete mastery of the basic principles. Note in particu-
lar the parts I have italicized. There is not a trace here of any mysterious
or imperfectly understood concept of vis centrifuga. It is simply an elabora-
tion of the words Newton had used on 28 November when he posed the
problem in the first place.

Let me emphasize again the point about this being pure Galileo. If it
were to be translated into Renaissance Italian and inserted into the
Dialogo, it could pass for Salviati himself. Nowhere in Newton's writings
does one see more clearly than here the extent to which Galileo predeter-
mined the structure of dynamics. We have already noted that much of
Galileo's motionics survived the transition to dynamics unscathed. In this
letter of Newton to Hooke we see how the transition occurred. In terms of
mathematical operations, Newton was doing exactly the same as Galileo.
And we know that Newton studied closely the relevant passage in the
Dialogo, since he used Galileo's numerical data in the paper we discussed
earlier (and corrected that egregious mistake of Galileo). No wonder
Newton credited Galileo with the discovery of the first two laws of
motion.70 The basic dynamic elements of this particular problem are all
there in Galileo; the real difference is in the metaphysical framework in
which they are conceived to operate. Here the shift is huge; Descartes and
the passage of time (the one as ruthless as the other) had done their work.
The one really genuine conceptual innovation on Newton's part, referred
to at the end of the above passage, is in the supposition that the force of
gravity could vary with position. In the work to be described in the next
section we shall see how Newton's far greater mastery of mathematics
enabled him to handle this significant generalization of Galileo's ideas.

In the absence of firm documentary evidence, and in view of a certain
coyness on Newton's part in his correspondence with Halley about the
part played by Hooke,71 it does seem that Hooke's innovation was the
insistence on the reality of the attractive force to a centre. Whether or not
Newton had it as a clear idea before the Hooke-Newton correspondence
is a moot point; that Hooke had it is beyond question. But most important
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of all was the fact that his persistent probing and testing of the reclusive
and crusty Newton finally forced him to take such forces seriously.
Indeed, later in the same letter of 13 December Newton said: 'Your acute
Letter having put me upon considering thus far ye species of this curve, I
might add something about its description by points quam proxime'.

But what he did in the way of determining the curve as accurately as
possible Newton kept to himself. Luckily it appears that the fruit of this
correspondence, which was as beautiful as anything Newton (or anyone
else for that matter) ever did, may well have survived. We have reached
the point at which the work of Kepler and the astronomers at long last
receives the attention it deserves.

10.9. The area law, Newton's treatment of time,
and the solution to the Kepler problem

Near the end of Sec. 10.71 said that in the 1660s Newton had not yet quite
learnt how to deal with time and the variability of the planets' motions.
The reason why he and Huygens were able to solve the problem of
centrifugal force was two-fold: (1) the simplicity of circular as compared
with elliptical geometry; in particular, the acceleration is always exactly
towards the centre of the circle, so that the deviation from the tangent is
always a direct measure of the force acting. (2) The fact that uniform
circular motion is its own clock. For the uniform circulation of the body
gives a direct measure of time in the very geometry of the problem under
consideration. Time is simply measured by the distance traversed along the
perimeter of the circle by the body. This can be seen particularly clearly by
referring back to Fig. 10.9 and the text which opens Newton's paper 'On
circular motion'. Note in particular the expression 'in the time [corre-
sponding to movement through] AD'. In fact, the interpolation here,
'corresponding to movement through', is Herivel's. Newton simply says,
'in the time AD (in tempore AD)'. This embedding of time into spatial
geometry is one of the most characteristic features of Newton's dynamical
techniques; I suspect he may have learnt it from Galileo's treatment of the
earth's rotation (see the discussion in the previous chapter, p. 480). (If he
did, he certainly never let it trip him up in the way it did Galileo.)

The proper treatment of time is so all important in dynamics because
forces generate motion in direct proportion to time. This was the key insight
Newton won from Galileo's work. Thus, to measure the strength of the
force, it is necessary to know the deflection in unit time. This is what makes
uniform circular motion comparatively easy to treat, because the time
elapsed is always directly proportional to the distance traversed around
the circle; the deflection in unit time becomes the deflection in unit
distance.

In his comment (p. 526) about the force acting when a body moves in an



The area law and Newton's treatment of time 547

ellipse, Newton took only the first step towards solving the problem of
determining the strength of the force. First, the statement as he made it
presupposes that the force acts at right angles to the instantaneous
tangent. Second, the deviation from the tangent can only serve as a
measure of the force if one knows the time taken to traverse unit distance
along the direction of the tangent. But in the elliptical motion of the
planets equal distances along the perimeter are not traversed in equal
times. It was the solution to this problem that Newton lacked in 1666; it
was a technical difficulty associated with specific problem solving rather
than a question of one of the basic principles of dynamics.

It was here that Kepler, 75 years after his first two great discoveries, at
long last came into his own (alas with very stingy recognition on Newton's
part). For not only did his laws force people to confront the problem of
elliptical orbits described about the sun at one focus. His other laws of
planetary motion gave Newton the absolutely essential hints without
which the problem would certainly not have been solved in the seven-
teenth century. The part played by Kepler's Third Law in making it
possible, through the formula for centrifugal force, to determine the
distance dependence of gravity is well known and has already been
emphasized. What is much less widely appreciated is that Kepler's area
law played an equally if not even more important role. For it was through
this law that Newton learnt, first, how to show that the planets must be
subject to a central force and, second, how to master the variability of
orbital speed. Ptolemy's great discovery and Kepler's intuitive feel for its
vital importance finally bore the fruit they deserved. Newton learnt how
to prove the existence of long-range central forces and how to embed time
into space in problems involving variable speed. The geometrization of
motion that Galileo had always known was possible was finally com-
pleted. Kepler's area law was the crucial and final link that extended the
dimensions of geometry by one, from three to four.

Where and when Newton first learnt about Kepler's area law have been
discussed by Whiteside,llb Russell,60 and Wilson.57 In his answer to
Hooke's request for a comment on his [Hooke's] theory of motion,
Newton wrote:72 'But how ye Orbits of all ye Primary Planets but §
[Mercury] can be reduced to so many concentric circles through each of
wch ye Planet moves equal spaces in equal times (for that's ye Hypothesis
if I mistake not your description) I do not yet understand/ In this sentence
Newton appears to exhibit a rather surprising degree of ignorance about
astronomy, for the planetary orbits are neither circular nor concentric.
The one thing he appears to have got right is the area law. In fact, it is very
well attested that from an early date Newton was familiar with both
Kepler's First and Third Laws. The situation with regard to the Second
Law is not nearly so clear. Although it was comparatively well known to
astronomers (as Russell60 has shown, contrary to a quite widely held
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view) and also to mathematicians (on account of Kepler's famous request
to them for assistance in solving his problem (p. 307)), many astronomers
persisted, as we noted in Chap. 6, in the use of equant mechanisms
because they were so much easier for calculations and gave such remark-
ably good results. (Kepler's great achievement, of course, was his recogni-
tion that they were not quite good enough.) Neither of the astronomical
sources that Newton is known to have used repeatedly in the 1660s gives
the area law. However, Wilson57 argues, rather persuasively, that New-
ton probably learnt about it early in the 1670s and at the latest by 1676. For
all that, the area law was not nearly so readily accepted as the First Law,
and Newton himself experimented with an equant mechanism as late as
the spring of 1769, as Whiteside has pointed out.llb

Whatever the truth, Newton's recognition of the dynamical significance
of the area law was undoubtedly one of the great turning points in the
history of science, and it is widely assumed that this occurred very soon
after (if not during) his 1679/80 corresponding with Hooke. Newton
himself said as much ('I found now that whatsoever was the law of the
forces wch kept the Planets in their Orbs, the areas described by a Radius
drawn from them to the Sun would be proportional to the times in wch
they were described'73) and the claim cannot be reasonably denied.74

Papers that might correspond to this very piece of work have been
published by Herivel,75 and they are what we shall now discuss, even
though there has been considerable controversy about their date ever
since Herivel (later supported by Westfall) suggested that they could
represent Newton's first solution of the Kepler problem (see Ref. 129, pp.
108-17 and Ref. 2, p. 387, note 145). Without wishing to enter the lists, it
does seem to me that on internal grounds Herivel and Westfall have at the
least made a quite good case for a 1679/80 dating of these papers. In
discussing them now I do not wish to commit myself to such a dating. It
is merely that Newton must - and on this all are agreed - have proved
some such results around the beginning of 1680. The results discussed in
this section must at the least correspond broadly to the most important
insights that Newton then gained, and they are what I am interested in
getting across.

One of the most interesting things about these papers is that Newton
does not start by assuming the inverse square law and then demonstrate
the motion that follows. He goes the opposite way, following the direction
already taken in the early papers, namely, he uses the observed facts to
deduce the nature and strength of the force which must be acting.

There are some points which should be made in this connection. Given
an entirely arbitrary motion in some curve, one can always take the
tangent to that curve at some given point P (Fig. 10.14) in the motion and
say that the particle, having at that point a given instantaneous velocity,
would by the action of the law of inertia alone be carried in unit time to the
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Fig. 10.14.

point R. Suppose however it is actually taken to the point Q. One may
then say that the 'extra' motion which generates the deviation RQ is due
to the action of a force. In the limit when the unit time goes to zero, R and
Q approach P and RPQ becomes an infinitesimal triangle, half of a
parallelogram in which PQ is the diagonal. Newton's assumption is that
the distance RQ, which increases as the square of the time, is proportional
to the strength of the force acting and that the force acts along RQ. (There
are, of course, some tricky mathematical questions related to this limit-
based definition, to which I shall return later.) For an arbitrary motion,
there will be nothing significant or striking about the 'force' that is
obtained. Moreover, one could easily choose some other definition of
force. What Newton actually discovered was that the force, defined in this
specific manner, turns out to have very remarkable properties. In the case
of the planetary problem, it is always found to point exactly towards the
sun and to have a magnitude inversely proportional to the square of the
distance to the sun. This was the remarkable truth that Newton dis-
covered hidden below the more superficial mathematical relationships of
Kepler's laws.

A further point which should be especially emphasized is the universal-
ity of the force phenomenon. It is often said that, through the inverse
square law, Newton was able to demonstrate the commonality (universal-
ity) of terrestrial gravity and the force which keeps the moon in its orbit.
But even deeper than this quantitative linking of the strengths and of
greater significance for the basic structure of dynamics is the fact that force
generates motion in proportion to time. This establishes a very far-reach-
ing universality of the force phenomenon and is what makes the quantita-
tive treatment of free fall by Galileo and then centrifugal force by Huygens
and Newton such significant milestones in the discovery of dynamics. It
should also be emphasized that the unambiguous identification from
empirical observations of the force of attraction of the planets towards the
sun was simultaneously the justification for using the concept of inertial
motion and extending the decomposition that Galileo had achieved in the
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projectile problem to problems involving vastly greater distances. Thus,
the solution of the Kepler problem provided three things at once: New-
ton's First and Second Laws and the specific law of gravitational force.
The crucial test comparing the strength of terrestrial gravity with the force
of attraction of the moon was therefore only the final link - though it was
of course vitally important in that it closed the circle and showed that the
whole held together.

After these introductory comments, let us now look at this marvellous
piece of work, the synthesis of all that was best in Kepler and Galileo - and
Descartes and Hooke to give them their due. Newton begins by stating
the hypotheses that he is going to use:

Hypoth. 1 Bodies move uniformly in straight lines unless so far as they are retarded
by the resistance of the Medium or disturbed by some other force.
Hyp. 2 The alteration of motion is ever proportional to the force by which it is
altered.
Hyp. 3 Motions imprest in two different lines, if those lines be taken in proportion
to the motions and completed into a parallelogram, compose a motion whereby
the diagonal of the Parallelogram shall be described in the same time in which the
sides thereof would have been described by those compounding motions apart.
The motions AB [Fig. 10.15] and AC compound the motion AD.

It is interesting to note that the parallelogram rule is stated here as an
independent hypothesis, and not, as in the Principia, as a consequence of
the First and Second Law. This is one of the arguments advanced by
Herivel and Westfall for a pre-Principia dating of these papers.

All the three hypotheses had appeared in one form or another in the
Waste Book, though the parallelogram rule is stated with rather more
precision. The new element is the use that Newton makes of them.
Proposition 1 breaks totally new ground in the application of these
principles; Newton lays bare the dynamical origin of what we have called
Kepler's Zeroth Law (that the planets move in invariable planes that all
intersect the sun) and his Second Law (the area law):

Prop. 1 If a body move in vacua and be continually attracted toward[s] an
immoveable center, it shall constantly move in one and the same plane, and in that
plane describe equal areas in equall times.

Fig. 10.15. Reproduced from: J. W. Herivel, The Background to Newton's 'Principia',
Clarendon Press, Oxford (1965).
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Newton's proof is so simple and so crucial to the further applications that
I give it in full even though it has already appeared in paraphrase in Chap.
1. It is also beautiful testimony to the central role in dynamics of Galileo's
rule of compounding physical motions; note too how beautifully it
develops out of Newton's Waste Book polygonal proof of the formula for
centrifugal force, as Herivel has pointed out to me:

Proof. Let A [Fig. 10.16] be the center towards which the body is attracted, and
suppose the attraction acts not continually but by discontinued impressions made
at equal intervalls of time which intervalls we will consider as physical moments.
Let BC be the right line in which it begins to move from B and which it describes
with uniform motion in the first physical moment before the attraction makes its
first impression upon it. At C let it be attracted towards the center A by one impuls
or impression of force, and let CD be the line in which it shall move after that
impuls. Produce BC to I so that CI be equall to BC and draw ID parallel to CA and
the point D in which it cuts CD shall be the place of the body at the end of the
second moment. And because the bases BC CI of the triangles ABC, ACI are equal
those two triangles shall be equal. Also because the triangles ACI, ACD stand
upon the same base AC and between two parallels they shall be equall. And
therefore the triangle ACD described in the second moment shall be equal to the
triangle ABC described in the first moment. And by the same reason if the body at
. . . . Suppose now that the moments of time be diminished in length and
encreased in number in infinitum, so that the impulses or impressions of the
attraction may become continuall and that the line BCDEFG by the infinite
number and infinite littleness of its sides BC, CD, DE etc. may become a curve one:
and the body by the continual attraction shall describe areas of this Curve ABE,
AEG, ABG etc. proportionall to the times in which they are described.

Fig. 10.16. Reproduced from: J. W. Herivel, The Background to Newton's 'Principia',
Clarendon Press, Oxford (1965).
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So here we have (leaving aside questions relating to the rigour of
Newton's proof) the truly dramatic turn which would have so amazed
Kepler. Within the framework in which he had worked, the significance
of the area law had seemed to be quite clear: a solar force pushed the
planets around in their orbits and its strength decreased simply as the
distance. But now Newton had changed almost everything: forces govern
accelerations, not speeds; the area law says nothing at all about the
distance dependence of the strength of the force; and the force is directed
straight towards the sun, not at right angles to the radius vector from the
sun to the planet. In one crucial respect however Kepler was completely
vindicated: the sun was unambiguously implicated in the motion of the
planets. He, of course, also supplied all the mathematical relationships in
a form marvellously suited to Newton's analysis. Nowhere more than in
the case of Newton's interpretation of the area law does one see the
extraordinary consequences that can flow from a really precise mathemat-
ical description of motion. The equant device was already amazingly good
but could not possibly have given Newton the insight that he got from the
area law and its decisive shifting of the key point from the void to the
occupied focus.

But how the problem was now transformed! Note, in particular, the
power of the law of inertia and the way in which it ensured, for central
forces, that each planet would remain on a fixed plane for ever. Many of
the particular Keplerian mechanisms on which so much thought and
ingenuity had been lavished were made redundant at a stroke. Just as
Copernicus and Kepler had cleared out the proliferation of Ptolemaic
epicycles, so Newton now cleared out the Keplerian mechanisms and
special forces. Conversely, we see what powerful empirical support for
the validity of the law of inertia the astronomical results did provide.

The dynamical interpretation of the area law was obviously the key
piece of evidence that forced Newton to take seriously the idea of a force
of attraction directed towards the sun. From now on the mathematics
would dictate the physical interpretation. Simultaneously, Newton's
results showed how the various elements of his embryonic but very
largely untested dynamics could be fitted together to give a decidedly
nontrivial result. The synthesis had begun. Finally, half of the problem of
interpreting the motion of the planets was now completed: they must be
attracted towards the sun by a force (defined in the Newtonian sense) of
some as yet undetermined strength. Moreover, as we shall now see, the
solution of the first half of the problem was of considerable assistance in
the solution of the second half, the determination of the actual strength.
To this we now turn.

The second proposition is:

Prop. 2 If a body be attracted towards either focus of an Ellipsis and the quantity of
the attraction be such as suffices to make the body revolve in the circumference of
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the Ellipsis; the attraction at the two ends of the Ellipsis shall be reciprocally as the
squares of the body in those ends from that focus.

Once again, I give the proof in full, since it shows how Newton solved the
problem of measuring force by the deviation from the instantaneous
tangent (the line of the inertia! motion that would arise if the deflecting
force were to be 'switched off abruptly) and how he used Kepler's area
law to get the correct measure of time at each point of the orbit. Here is the
proof:

Proof. Let AECD be the Ellipsis [Fig. 10.17], A, C its two ends or vertices, F that
focus towards which the body is attracted, and AFE, CFD areas which the body
with a ray drawn from that focus to its center, describes at both ends in equal
times: and those areas by the foregoing Proposition must be equal because
proportionall to the times: that is the rectangle sAF x AE and sFC x DC must be
equal supposing the arches AE and CD to be so very short that they may be taken
for right lines and therefore AE is to CD as FC to FA. Suppose now that AM and
CN are tangents to the Ellipsis at its two ends A and C and that EM and DN are
perpendiculars let fall from the points E and D upon those tangents: and because
the Ellipsis is alike crooked at both ends those perpendiculars EM and DN will be
to one another as the squares of the arches AE and CD, and therefore EM is to DN
as FCq [i.e., FC2 in modern notation] to FAq. Now in the times that the body by
means of the attraction moves in the arches AE and CD from A to E and from C to
D it would without attraction move in the tangents from A to M and from C to N.
Tis by the force of the attractions that the bodies are drawn out of the tangents
from M to E and from N to D and therefore the attractions are as these distances
ME and ND, that is the attraction at the end of the Ellipsis A is to the attraction of
the other end of the Ellipsis C as ME to ND and by consequence as FCq to FAq.
W.W. to be dem.

Most of the conceptual points that are important about this proof have
already been made. We see how naturally it follows on from the earlier
work, in particular how Newton's very early remark (p. 526) about
measuring the strength of the force in elliptic motion by a 'tangent circle
of Equall crookednesse' can now bear fruit since he has in the meantime

Fig. 10.17. Reproduced from: J. W. Herivel, The Background to Newton's 'Principia'
Clarendon Press, Oxford (1965).
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found the missing link - the embedding of time in space in the case of
variable motion. We note also that other characteristic feature of all
Newton's work: his promiscuous use of the two different force concepts -
instantaneous impulses in Proposition 1 (motive force) and continuous
acceleration in Proposition 2 (accelerative force). In the proof of Proposi-
tion 3, the statement of which we now give, he returns once more to
discrete impulses followed by a passage to the continuous limit:

Prop. 3. If a body be attracted towards either focus of any Ellipsis and by that
attraction be made to revolve in the Perimeter of the Ellipsis: the attraction shall be
reciprocally as the square of the distance of the body from that focus of the Ellipsis.

I shall not give the complete proof of this proposition, since it is full of
purely technical matters relating to the geometry of ellipses. Nevertheless
explicit quotation at a couple of crucial points will bring before our eyes
the inexorable application of the Newtonian nutcrackers, applied now to
the ellipticalnut. The following passage illustrates the ideas of rectilinear
inertial motion along the tangent, the action of the supervening force
(with the motion it generates being compounded by the parallelogram
superposition rule with the inertial motion), and the deviation from the
tangent in unit time, in the direction of the force (which Newton knows from
his first proposition), as the measure of the strength of the force acting.
Note that in Newton's figure (Fig. 10.18) PX is meant to be infinitesimally
small and the attracting focus is at F. Here are Newton's words:

Let P be the place of the body in the Ellipsis at any moment of time and PX the
tangent in which the body would move uniformly were it not attracted and X the

Fig. 10.18. Reproduced from: J. W. Herivel, The Background to Newton's 'Principia'
Clarendon Press, Oxford (1965).
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place in that tangent at which it would arrive in any given part of time and Y the
place in the perimeter of the Ellipsis at which the body doth arrive in the same time
by means of the attraction. Let us suppose the time to be divided into equal parts
and that those parts are very little ones so that they may be considered as physical
moments and that the attraction acts not continually but by intervalls once in the
beginning of every physical moment and let the first action be upon the body in P,
the next upon it in Y and so on perpetually, so that the body may move from P to
Y in the chord of the arch PY and from Y to its next place in the Ellipsis in the chord
of the next arch and so on for ever. And because the attraction in P is made towards
F and diverts the body from the tangent PX into the chord PY so that in the end of
the first physical moment it be not found in the place X where it would have been
without attraction but in Y being by the force of attraction in P translated from X
to Y: the line XY generated by the force of the attraction in P must be proportional to that
force and parallel to its direction that is parallel to PF [my italics].

The other main conceptual point is the application of the area law,
which has already been used in the crucial assertion that the force acts in
the direction of PF, to obtain a measure of time. Newton imagines exactly
the same process at p, the time taken to travel the distance px being equal
to that to traverse PX. Newton then comments: 'And because the lines PY
py are by the revolving body described in equal times, the areas of the
triangles PYF pyF must be equal by the first Proposition.' From this point
on the problem is pure geometry and exploits very ingeniously quite a
considerable number of geometrical properties of the ellipse, some of
which were well known, others of which Newton appears to have derived
himself. Newton combines all these to obtain an exact relationship that
holds for any line XI drawn parallel to PQ, which passes through the focus
F. This states that the distance XY is equal to

where YZ is the perpendicular from Y onto PQ. There is a similar relation
for xy. Now in the expression for XY, KL and AB are fixed, and in the limit
in which Y approaches P the ratio PQ/XI tends to unity. Newton then
envisages a limiting process in which Y tends to P and simultaneously y
tends to p but in such a way that the ratio of the areas of the two triangles
PYF and pyF remains exactly equal to unity, i.e., PF • YZ = pF • yz. But
through the above exact geometrical relationship this immediately deter-
mines the ratio XY/xy of the force-induced deflections in equal infinitesi-
mal times. The ratio is immediately found to be pF2/PF2. Newton com-
pletes his solution of the Kepler problem with the lapidary words: 'And
therefore the attraction in P will be to the attraction in p as pFq to PFq, that
is reciprocally as the squares of the distances of the revolving bodies from
the focus of the Ellipsis.'

We have in the work described in this section the very core of Newton's
greatest contribution to dynamics. In what does the essence of this work



556 Newton I: the discovery of dynamics

consist? It consists in the adaptation of the key elements of Galileo's work
on projectiles, which involved the compounding of two motions that
admit this with especial ease on account of two significant simplifications,
namely, the orthogonality of the two motions and the fact that one is
constant and the other is uniformly accelerated, to the much more
difficult situation in which the motions are not orthogonal and the
acceleration is not uniform. Newton achieved the generalization by
'infinitesimalizing' Galileo's procedure, that is, he broke the motion up
into a succession of very small stretches, in each of which he applied the
Galilean technique. We note that in the process he introduced a certain
imbalance not present in Galileo, for whom we recall that the two motions
in the projectile problem were treated as primordial atomic motions on an
equal footing. But in Newton's treatment, following the adoption of the
law of inertia, the two compounded elements are no longer on the same
footing: one is the instantaneous inertial motion, the other is the motion
generated by the external force in the infinitesimal time corresponding to
the considered stretch. It is this imbalance that creates the conceptual
difficulties in Newtonian dynamics as it was originally formulated; for it
is always motions that are compounded but Newton speaks of an innate
force that maintains the inertial motion but an impressed force that
generates the other motion which is compounded with the instantaneous
motion. The two forces are therefore heterogeneous - one maintains
motion, the other creates it.

We note also that the imbalance is reflected in the mathematics; for the
two sides of the 'Galilean parallelogram' are of different orders in terms of
infinitesimal analysis: if the infinitesimal arc PY along the motion in Fig.
10.18 is taken to be of order e, then PX is of order £ but XY is of order £2.
We shall come back to this point briefly later in the chapter and will merely
say here that Newton generally managed to get the physical results he
needed despite quite tricky problems in the mathematics.

10.10. The genesis of the Principia: Ulysses draws forth Achilles

It is remarkable that even the successful solution of the Kepler problem
did not stir Newton to seek publication or even, it seems, to follow up his
ideas at all energetically. Over six years elapsed between the Hooke-New-
ton correspondence and the publication of the Principia. In this section we
shall briefly recount this part of the story.

One of the most important developments was the appearance of a
magnificent comet in early November 1680 and its reappearance after
sunset in December. The nature of comets had been hotly disputed for
more than a century. Brahe's assertion (which, incidentally, Galileo76

refused to accept) that comets pass clean through the putative orbs of the
planets was a very important factor in concentrating minds on the
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problem of the nature of motion of both the planets and comets. For
Kepler, as we saw, it was the decisive piece of evidence in ruling out all
crude mechanical contrivances as the explanation of planetary motions.
Kepler himself believed that comets, which do not remain in the ecliptic,
were bodies subject to laws quite different from those of the planets. He
believed that they passed right through the solar system, travelling along
straight lines. This, in fact, was the opinion held by the majority of
astronomers - and Newton - at the time when the great comet of 1680/81
appeared.

It was this event which again caused astronomy to play a significant role
in the development of dynamics. The main protagonist, apart from
Newton, was John Flamsteed (1646-1716), who was appointed the first
Astronomer Royal in 1675, a post he held until his death. He compiled a
famous star catalogue, by far the most accurate hitherto. In accordance
with Kepler's theory of comets, the majority of astronomers assumed that
the comet of 1680/81 was not one but two. Flamsteed secured for himself
a minor but important role in the history of dynamics by espousing the
idea that there was only a single comet. He developed a theory according
to which it approached the sun, being attracted initially by a magnetic
force of the sun before being repelled again.

According to his theory, the comet passed between the earth and the
sun. Flamsteed worked quite hard on his theory and on the interpretation
of his observations and wrote them up in letters to Halley77 and arranged
that they should be brought to Newton's attention through an inter-
mediary. Now Newton himself had become extremely interested in the
comet, and he took up Flamsteed's request for comments on the
developed theory with considerably more enthusiasm than the similar
request from Hooke. He recounted78 how he had questioned people
about the comet and reported the observation of 'one of our Fellows, Dr
Babington', who around the 22 or 23 November 'between 5 & 6 saw the
tayle of ye Comet shoot over Kings College Chappel from east to west.
Twas a frosty morning & a very clear & starry sky . . . . The tayl ran from
one end of ye chappel to ye other . . . / Newton supplied a little sketch

Fig. 10.19.
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(Fig. 10.19). In a later letter,79 he reported his own extensive observations
of the comet from January to March 1681.

The main point of interest in the ensuing correspondence is that
Newton quite strongly rejected Flamsteed's idea of a single comet. He
argued that there were two and clearly seems to have believed that each
had travelled on rectilinear paths. As Westfall points out,80 only a year
earlier Newton had solved the problem of orbital motion for a planet
circling the sun. At this stage he does not appear to have believed comets
were subject to the same laws. Thus 'the letter allows us to measure
crudely the progress of his thought toward the concept of universal
gravitation/ He did not yet think gravitational attraction applied equally
to all bodies in the solar system. On the other hand, his letters to
Flamsteed (including a draft that was not actually sent81) suggest that he
was at least toying with the idea. For in his first letter, speaking of
Flamsteed's proposal that the comet passed between the earth and the
sun, he says: The only way to releive this difficulty in my judgmt is to
suppose ye Comet to have gone not between ye © [the sun] & Earth but
to have fetched a compass about ye © . . . /In the same breath he says he
'can easily allow an attractive power in ye © whereby the Planets are kept
in their courses about him from going away in tangent lines', and, in fact,
his objection to Flamsteed's proposal at this point seems to concentrate on
its being magnetical, with first attraction and then repulsion, an idea which
Newton strongly attacks. In the unsent draft he is more specific:82 "But all
these difficulties may be avoyded by supposing ye comet . . . to have
been attracted all ye time of its motion... & thereby to have been as much
retarded in his recess as accelerated in his access & by this continuall
attraction to have been made to fetch a compass about the sun in ye line
ABKDF, the vis centrifuga at C overpow'ring the attraction & forcing the
Comet there notwithstanding the attraction, to begin to recede from ye
sun/ (Incidentally, we note here Newton's continuing use of the concept
of centrifugal force despite the fact that he had in the meanwhile solved
the Kepler problem - and indeed in the previous quotation had spoken of
the planets 'going away in tangent lines'. I see this as further evidence that
Newton used the expression as a shorthand for a phenomenon whose
true dynamical significance he had always understood.)

Newton's interest in comets was reawakened by the appearance in 1682
of the comet that has since been named after Halley. Work that he did at
that time suggests that it was at about this period that he worked seriously
on the hypothesis of curved orbits for comets.83 By late December 1684 his
notions of universal gravitation had clearly become very much more
precise and he was engaged upon thorough mathematical treatment of
the problem that had already been apparent to Kepler - the small
deviations of the planets from the exact Keplerian laws. These are due
very largely to the superposition of the gravitational attraction of the
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planets on top of the dominant force of the sun. Kepler had been
concerned with the slow secular perturbations. Newton, in contrast, was
concerned with the perturbation of Jupiter on the motion of Saturn and
asked Flamsteed84 'if you ever observed Saturn to err considerably from
Keplers tables about ye time of his conjunction with Jupiter'. He explained
to Flamsteed that Saturn 'so oft as he is in conjunction with Jupiter ought
(by reason of Jupiters action upon him) to run beyond his orbit about one
or two of ye suns semidiameters'. A couple of weeks later he wrote again
and announced:85 'I do intend to determin ye lines described by ye
Comets of 1664 & 1680 according to ye principles of motion observed by
ye planets.' Finally, in September 1685 he wrote to Flamsteed that86 'I have
not yet computed ye orbit of a comet but am now going about it.' He
admitted that 'taking that of 1680 into fresh consideration, it seems very
probable that those of November & December were ye same comet.'
Flamsteed was suitably gratified and answered:87 'I am heartily glad that
you have the Theory of comets under your consideration: we have
hitherto onely groped out the lines of their Motions/ Flamsteed was alas
another of the men with whom Newton was later to have a furious row.88

The theory of comets, especially the comet of 1680/81, figures promi-
nently in the Principia. In the first edition (1687), Newton computed in
Book III a parabolic path for the 1680/81 comet. In 1695, Halley worked out
an elliptic orbit with very large eccentricity, proposing it as an alternative
to Newton's parabolic orbit. Newton then collaborated with Halley89 on
the details of cometary orbits, and in the second (1713) and third (1726)
editions of the Principia gave tables for both parabolic and elliptical orbits.

For the development of dynamics, Newton's work on comets was
important for at least two reasons. First, in extending the range of
application of a particular force; from being a force specific to the planets,
the inverse square law of attraction became a force that applied to all
bodies within the solar system. Equally important, it forced Newton to
attack dynamical problems with ever more general initial conditions.
From circles in the Waste Book he progressed through the correspondence
with Hooke to the elliptical motion of the planets and then on, through
the comets, to parabolic and hyperbolic orbits. This demonstrated clearly
that the various different shapes of the orbits reflect the possibility of
setting a body in motion at the initial time with arbitrary direction and
speed relative to the attracting centre. Newton was thus brought to grasp
the overall structure of the science of dynamics and realize the full potential
of the techniques he had developed.

At the beginning of this chapter we quoted Galileo's remark that he had
opened up the Vast and most excellent' science of motion. Elsewhere in
the Discorsi he spoke of the 'numerous and wonderful results which in
future years will command the attention of other minds'.90 How true he
was, even if it took the assistance of a great comet to rivet Newton's mind
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to the problem. But even then, in the early 1680s, Newton's attention
remained desultory. Just as he himself said, he really was the boy on the
seashore picking up one pretty pebble after the other while the great
ocean of truth lay all undiscovered before him.

But then came the decisive turn - the journey made by 'the most acute
and universally learned Mr Edmund Halley' (as Newton terms him in the
Principia91} in August 1684 to Cambridge. After this, things would never
be the same again.

As the reader will know from Sec. 10.1 (if not before), Halley came with
a specific request: what would be the curve described by a planet if subject
to a force of attraction by the sun inversely proportional to the square of
its distance? Newton replied it would be an ellipse and promised to
supply the proof. In November the delighted Halley received a short
treatise called De motu corporum in gyrum ('On the motion of bodies in an
orbit').92 This reproduces the essentials of the great results discussed in
Sec. 10.9 but adds significantly more.

There are several points of considerable interest about this paper. First,
it opens with the definition of the concept that more than any other
dominates and distinguishes the Principia - the concept of a centripetal
force:93 'I call centripetal that force by which a body is impelled or drawn
towards any point which is regarded as a centre [of force]/ This
immediately leads to a significant clarification of the expression of the law
of centrifugal force. Thus:94 'The centripetal forces continuously pull back
the bodies from the tangents [which they would follow by the action of
their innate forces alone] to the circumferences.' Second, it already has
the flavour, so characteristic of the definitive Principia, of being a general
mathematical treatise on motion. Newton delights in stating theorems,
establishing corollaries, and posing problems in the formal manner so
beloved by mathematicians ever since Euclid. He discourses on the
practical significance of his formal results in extended scholia (a scholium
was originally an ancient exegetical note or comment upon a passage in a
Greek or Latin author [OED] and was used by Newton and other
mathematicians to illustrate or amplify points of interest). Particularly
interesting in the light of the earlier comment about the significance of the
work on comets in extending the scope of dynamics is the following
problem:95

Given that the centripetal force is inversely proportional to the square of the
distance, and knowing the magnitude of that force, required to find the ellipse
which a body describes when projected from a given point with given velocity in
a given straight line.

Thus, we have here the first formulation of a general initial-value
problem. (Newton in fact comments on his proof that 'this is the way
when the figure is an ellipse. But it can happen [if the speed has the correct
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value] that the body moves in a parabola or a hyperbola/) There is also an
explicit reference to the possibility of defining the 'orbits of comets'. (This
proved to be a very difficult question and delayed Newton for two months
in the autumn of 1685 until he had found a 'good method'.96). A final point
of interest about the paper is its inclusion of two propositions on the
motion of bodies in resisting media, a further indication of the generality
at which he was now aiming.

Halley immediately recognized the importance of the work and went
post-haste to Cambridge to discuss it with Newton and get him to have it
entered in the register of the Royal Society to ensure Newton's priority.
This was done by Halley when he reported on the matter to the Royal
Society on 10 December 1684. Meanwhile Newton's life had been trans-
formed, and he had started work on one of the most astonishing labours
of intellectual man: a comprehensive treatise on motion, the aim of which
was to show how the entire gamut of observed motions - both terrestrial
and celestial - could be deduced from a mere handful of general principles
formulated in a mathematically rigorous framework. As Westfall com-
ments:97 'The problem had seized Newton and would not let him go/ For
about 18 months, until the spring of 1686, he worked on the project with
incredible energy. His famulus of the time, Humphrey Newton, reported
his rapt concentration and how he would often completely forget to eat
the food prepared for him.

Within about six months Newton had come to grips with and in
principle solved the major tasks that confronted him. On the one hand
there was the need to order the conceptual framework. He had to identify
the basic principles on which the complete system should rest. A later
reworking of the original De motu corporum in gyrum and various other
papers that predate the Principia, which are also reproduced by Herivel,98

provide evidence of this. There were two sides to this work - the selection
of the best empirical evidence for the adopted laws and concepts and the
finding of the best words to express these concepts. Then there were
numerous specific problems that must be treated within the framework of
the chosen concepts and laws. To avoid repetition, this work will be
described together with the account given of the Principia in the following
section. Here we shall merely complete the account of the genesis and
publication of the Principia.

In the autumn of 1685 Halley returned to Cambridge, where he was
shown the work that Newton had so far done. In the year since his first
visit, Newton's early solution of the planetary problem had been trans-
formed into a complete theory of universal gravitation. From this point
on, Halley devoted all his efforts to ensuring the publication of Newton's
work and to preparing the scientific community, both national and
international, for the appearance of the impending masterpiece. This
mission was to involve him in a great deal of delicate diplomacy and not a
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little risk and cost (Halley paid for the printing of the Principia).99 In later
years Halley would refer to himself with justifiable pride as 10° 'the Ulysses
who produced this Achilles'. He undoubtedly needed all the skills of the
wily Ithacan.

Towards the end of April 1686 a first version of the work, with its full
title Philosophiae Naturalis Principia Mathematica (Mathematical Principles of
Natural Philosophy) was presented to the Royal Society and on 19 May a
resolution was passed that it should 'be printed forthwith'.101 Halley
immediately wrote to Newton with the news that his 'Incomparable
treatise' had been presented to the Society and that they had ordered its
printing. Halley then had to broach another most unfortunate matter:102

There is one thing more that I ought to informe you of, viz, that Mr Hook has some
pretensions upon the invention of ye rule of the decrease of Gravity, being
reciprocally as the squares of the distances from the Center. He sais you had the
notion from him, though he owns the Demonstration of the Curves generated
therby to be wholly your own; how much of this is so, you know best, as likewise
what you have to do in this matter, only Mr Hook seems to expect you should
make some mention of him, in the preface, which, it is possible, you may see
reason to praefix. I must beg your pardon that it is I, that send you this account,
but I thought it my duty to let you know it, that so you may act accordingly; being
in myself fully satisfied, that nothing but the greatest Candour imaginable, is to
be expected from a person, who of all men has the least need to borrow reputation.

Given the circumstances of Hooke's knowledge, i.e., his complete
ignorance of what Newton had already achieved, this request was not
unreasonable. Moreover, in one of the final letters of the correspondence
of 1679/80 Hooke had explicitly told Newton that103 'my supposition is
that the Attraction always is in a duplicate proportion to the Distance from
the Center Reciprocall', and in yet another letter had told Newton104 that
it 'now remaines to know the proprietys of a curve Line (not circular nor
concentrically subject to a central attraction of the kind he envisaged and
that he was sure 'you will easily find out what that Curve must be'. With
the benefit of the access to Newton's unpublished papers we can see
clearly that the suggestion of the inverse square law was the least of
Hooke's services. Hooke's supreme service was to make Newton take the
concept of central attraction seriously in the consideration of the planetary
problem. Once Descartes had transformed the conceptual approach to
the problem and put what was later to become the law of inertia in the
forefront, the concept of a deflecting force just had to appear in any
problem not involving uniform rectilinear motion. As we have seen, it did
very naturally appear in the work of both Huygens and Newton. It had to
from the very general logic of the situation. What Hooke did was propose
a specific force responsible for the deflection. He argued for an attractive
force towards a centre. This was the greatest contrast between Hooke, on
the one hand, and, on the other, Descartes, Huygens, and the explicit
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worked examples which have survived from the early Newton. For in all
these cases the deflecting force was a contact force, supplied through a
string in the case of Descartes and Huygens and the circular rim in the case
of Newton.

After an initially restrained response to Halley's letter, Newton wrote
again to the long-suffering man and unleashed the full fury of his venom
against Hooke. This is again a point at which I would recommend the
reader to consult the readily available originals (Ref. 12c, pp. 431-47). Any
such story always loses immediacy in retelling. Apart from the rather
cruel light that the exchange casts on Newton's troubled personality - and
the favourable light in which Halley is put - the main interest of the
exchange is in showing how the problem of the planetary motions had
been brought clearly into focus by the mid and late 1670s. Hooke, Halley,
and Wren were all hovering around the prize. The vital importance of
Huygens' input of the correct formula for centrifugal force is clearly
established. Newton commented:105 'ye honour of doing it in this is due
to Huy genius.'

From its first crude outline in Descartes the problem had passed
through the qualitative stage of Borelli and Hooke and was now posed
with quantitative exactitude. It awaited only a genius commensurate to
the task. The solution of the problem was not in itself a surprise. What was
breathtaking, despite the accuracy of Hooke's prediction, was the sudden
appearance of the theory of universal gravitation with all its ramifications
fully explored. Halley had asked for the solution to a specific problem and
had received it in generous measure. The attraction of the planets to the
sun was now established beyond doubt. But in the first draft of De motu
corporum in gyrum there was as yet no hint of a universal theory of
gravitation. What changed the concept of the world so completely and
utterly was Newton's demonstration, in the minutest detail, that each
and every little piece of matter exerts a force on every other piece of matter
in the universe, the force it exerts being proportional to its mass and
universely proportional to the square of the distance to the attracted body.

Wilson has argued,57 rather convincingly in my mind, that Newton's
rather vague notions of attraction were transformed into the precise - and
vastly more far reaching - theory of universal gravitation very late indeed,
in the period between the two drafts of De motu in the autumn of 1684.
This would tally with the letters to Flamsteed mentioned earlier. New-
ton's two great contributions to dynamics were the establishment of its
overall structure and the specific discovery of the law of universal
gravitation. As regards the general structure of dynamics, I differ from
Westfalllla and Whitesidellb in seeing most of that as having been settled
in the 1660s. But it took the recognition of the dynamical significance of
the area law in 1679/80 to transform the general framework into a
powerful formalism capable of solving nontrivial dynamical problems.
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The same recognition simultaneously concentrated attention on cen-
tripetal forces - indeed it showed that they exist in a very real mathemati-
cally definable sense - and further applications must then have led,
towards the end of 1684, to the comparatively sudden (and almost
miraculous) appearance of universal gravitation. Westfall and Whiteside
place the bulk of both major discoveries comparatively late, I do that for
only one.

It is worth emphasizing that the establishment of the theory of universal
gravitational attraction was a revolution that overthrew a revolution that
at the time - just forty years earlier - had seemed just as breathtaking,
convincing, and comprehensive: Descartes' dream of explaining the
entire material world by a single primitive substance differentiated solely
by figure, magnitude, and motion. At a stroke Newton replaced this
Cartesian world - which was a pure figment of the imagination - with a
scheme that did as much, but of the three Cartesian pillars, retained only
one (motion), the other two (figure and magnitude) being replaced by
mass and gravitational force. And this scheme worked. The first explicit
intimation of what was to come is found in a significantly extended draft
of De motu corporum in gyrum, which probably dates from the end of 1684
or the beginning of 1685. At the end of an important scholium on
centripetal forces comes the passage which shows that Newton, using the
accurate value of the radius of the earth that Picard, in another of the
important studies sponsored by the Academic Royale des Sciences, had
published in 1671 in his Mesure de la Terre,106 had definitely repeated - and
now with success - his early experimentum crucis:107

For certainly gravity is one kind of centripetal force: and my calculations reveal
that the centripetal force by which our Moon is held in her monthly motion about
the Earth is to the force of gravity at the surface of the Earth very nearly as the
reciprocal of the square of the distance [of the Moon] from the centre of the Earth.

And thus the great idea burst suddenly upon the amazed world. As
Athena from the head of Zeus, so universal gravitation from Newton's. It
appeared all at once in the Principia, fully clothed and armed. The defence
against snipers was impregnable: almost all conceivable evidence was
marshalled and the theoretical elaboration was done with severe
mathematical rigour and meticulous detail.

But we anticipate a little. Halley had still to compose the tempers of
Hooke and Newton - the end was an admission by Newton to Halley108 in
a letter of 14 July 1666 that Hooke's 'Letters occasioned my finding the
method of determining Figures, wch when I tried in ye Ellipsis, I threw
the calculation by ... for about 5 yeares' and a solitary and rather
curmudgeonly remark by Newton well into the body of the Principia that
if periodic times in circular orbits are as the f th powers of the radii then the
centripetal forces will be inversely as the squares of the radii 'as Sir
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Fig. 10.20.
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Christopher Wren, Dr Hooke, and Dr Halley have severally observed'.109

That matter having been patched over as well as Newton's prickly
temperament permitted, printing of the great work could proceed and
was completed on 5 July 1687. It had already been granted an 'imprimatur'
a year earlier by everyone's favourite diarist - Samuel Pepys, the then
president of the Royal Society. The title page is reproduced as Fig. 10.20.

10.11. The Principia: its structure, fundamental concepts and
most important results

The Principia is a very substantial work - Motte's English translation
published by the University of California Press runs to nearly 550 pages.
The aim of this section is to give a brief survey of its contents and clarify
the emergence of some of the concepts that appear in it. However, two
major topics are deferred until the following chapters - Newton's concept
of mass and the entire discussion of the nature of space, time, and motion.

The book begins with an ode in Latin by Edmond Halley, which does,
in fact, give quite a good summary of its contents. It opens with the line
'Lo, for your gaze, the pattern of the skies!' and promises the reader 'the
Laws which God, Framing the universe, set not aside But made the fixed
foundations of his work'. It will reveal The force that turns the farthest
orb' and show how the planets, as they move 'through the boundless
void' are sped 'in motionless ellipses'. Echoing the spirit that informed
Lucretius's De Rerum Natura, which was written primarily to dispel fear of
capricious gods, Halley assures the reader 'Now we know The sharply
veering ways of comets, once A source of dread, nor longer do we quail'.
The 'silver moon' is also to yield the secrets of her 'travel with unequal
steps, As if she scorned to suit her pace to numbers - Till now made clear
to no astronomer'. The reader will learn why 'the Seasons go and then
return' and The Hours move ever forward on their way' and 'How
roaming Cynthia bestirs the tides'. The optimistic spirit of the age finds
expression too: through 'reason's light' the 'clouds of ignorance' are
'Dispelled at last by science'. Halley concludes the ode with ecstatic praise
of Newton, saying 'Nearer the gods no mortal may approach'.

The book itself opens with a preface by Newton written in 1686. Right
at the start, Newton makes the rather remarkable claim that geometry is
but part of universal mechanics:

To practical mechanics all the manual arts belong, from which mechanics took its
name. But as artificers do not work with perfect accuracy, it comes to pass that
mechanics is so distinguished from geometry that what is perfectly accurate is
called geometrical; what is less so, is called mechanical. However, the errors are
not in the art, but in the artificers. He that works with less accuracy is an imperfect
mechanic; and if any could work with perfect accuracy, he would be the most
perfect mechanic of all, for the description of right lines and circles, upon which
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geometry is founded, belongs to mechanics. Geometry does not teach us to draw
these lines, but requires them to be drawn, for it requires that the learner should
first be taught to describe these accurately before he enters upon geometry, then
it shows how by these operations problems may be solved. To describe right lines
and circles are problems, but not geometrical problems. The solution of these
problems is required from mechanics, and by geometry the use of them, when so
solved, is shown; and it is the glory of geometry that from those few principles,
brought from without, it is able to produce so many things. Therefore geometry is
founded in mechanical practice, and is nothing but that part of universal
mechanics which accurately proposes and demonstrates the art of measuring.

The Principia demonstrates how faithfully Newton followed Galileo's
lead in seeing the essence of mechanics in geometry. The emphasis
throughout the work on the geometrical aspect of motion, both in the
ordinary three dimensions (shape of orbits) as well as in four dimensions,
is most pronounced, but the passage quoted here is particularly interest-
ing in seeming to anticipate the recognition of Riemann and Einstein that
the explanation for geometry is to be sought in dynamics. This is a
question that will figure prominently in Vol. 2. Meanwhile it may be
noted in anticipation of the following chapter that the strongly geometri-
cal aspect of Galilean-Newtonian dynamics was a major factor in the
emergence of the concept of absolute space.

The Principia proper starts with definitions of the fundamental con-
cepts. Significantly, pride of place is given to the mass concept. On the
one hand this emphasizes the materialistic philosophy that underlies the
whole of the Principia. On the other it highlights the fact that this crucially
important concept had hitherto received remarkably little attention - not
that Newton's treatment can be regarded as entirely satisfactory. How-
ever, this is a topic that is to be deferred until Chap. 12, so I will only
mention here that already in the gloss of his definition of mass, Newton
draws attention to the distinction between mass and weight, saying that
these are proportional to each other 'as I have found by experiments on
pendulums, very accurately made'.

Newton's second definition is that of what is now called momentum:
The quantity of motion is the measure of the same, arising from the
velocity and quantity of matter conjointly'. Although the 'quantity of
matter' had never been properly defined - and, as we shall see in Chapter
12, its definition still defeated Newton - the momentum concept, albeit
one of the most fundamental, is perhaps the least innovative of Newton's
contributions to dynamics. As we saw in Chap. 4, Buridan already had a
clear intuitive grasp of the notion. Nevertheless, as already emphasized
more than once, we should be on our guard against the mistake of not
paying due attention to the precise clarification of concepts that have long
been intuitively anticipated. When they are finally put on a secure
empirical basis, they are almost always found to have subtle and far-reach-
ing implications that were by no means appreciated in the early intuitive
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period. In the case of momentum this applies especially to the way in
which it appears in Newton's Second Law.

Newton's third definition, like the second, is already familiar in its
essence from his early work and in its content does not differ much from
the statement of his First Law:

The vis insita, or innate force of matter, is a power of resisting, by which every
body, as much as in it lies, continues in its present state, whether it be of rest, or
of moving uniformly forwards in a right line.

Like the mass concept, this definition will be discussed in more detail in
Chap. 12. It is only worth mentioning here that the explicit inclusion of the
state of rest as a state of the body on a dynamically equal footing with a
state of uniform motion is a comparatively late development. In the
treatise De motu (both versions) the persistence of the state of rest is not
mentioned. I do not see this as evidence of a profound reorientation of
Newton's concept of motion, i.e., as the sudden recognition that rest and
motion have the same ontological status. I see it rather as the simple
recognition that his earlier definitions were not quite complete. The
addition did not add anything significantly new to the methods by which
Newton solved specific problems - always a good criterion for establish-
ing if something important has happened.

The remaining definitions (FV-VIII) all deal with impressed forces, i.e.,
the forces that change inertial motion. Newton begins with a general
definition:

An impressed force is an action exerted upon a body, in order to change its state,
either of rest, or of uniform motion in a right line.

After this Newton defines a centripetal force as a particular case of a
general impressed force:

A centripetal force is that by which bodies are drawn or impelled, or any way tend,
towards a point as to a centre.

It is interesting to note that the general definition of impressed force is
more or less identical to Newton's early formulations in the Waste Book.
We see how the successful application of the specialized concept of a
centripetal force demonstrated the fruitfulness of the early notions of
force and eventually led to their advancement to the forefront of Newton's
scheme. It is well worth quoting here part of Newton's amplification of
the concept of impressed force and how it continually acts to change the
inertial motion. A great deal of the story of dynamics is contained in the
two hundred words or so in which Newton, before ever he postulates his
laws of motion, illustrates the action of force and inertial motion by
explaining how artificial satellites could circle the earth:

A projectile, if it was not for the force of gravity, would not deviate towards the
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earth, but would go off from it in a right line, and that with an uniform motion, if
the resistance of the air was taken away. It is by its gravity that it is drawn aside
continually from its rectilinear course, and made to deviate towards the earth,
more or less, according to the force of its gravity, and the velocity of its motion.
The less its gravity is, or the quantity of its matter, or the greater the velocity with
which it is projected, the less will it deviate from a rectilinear course, and the
farther it will go. If a leaden ball, projected from the top of a mountain by the force
of gunpowder, with a given velocity, and in a direction parallel to the horizon, is
carried in a curved line to the distance of two miles before it falls to the ground; the
same, if the resistance of the air were taken away, with a double or decuple
velocity, would fly twice or ten times as far. And by increasing the velocity, we
may at pleasure increase the distance to which it might be projected, and diminish
the curvature of the line which it might describe, till at last it should fall at the
distance of 10, 30, or 90 degrees, or even might go quite round the whole earth
before it falls; or lastly, so that it might never fall to the earth, but go forwards into
the celestial spaces, and proceed in its motion in infinitum.

Comparison of this passage with the account Galileo gave of the
reasons why bodies are not thrown off the earth by the action of
centrifugal force (Chap. 9, p. 480) shows just how close he was to the
entire story of dynamics. His mathematics might just have sufficed to
solve the satellite problem for circular motion at least but he lacked the
overall metaphysics - and made that remarkable slip.

The remaining definitions at the beginning of the Principia are amplifica-
tions of the force concept over which we may pass. Then follows the
famous Scholium on absolute and relative space, time, and motion. This
will be discussed in the next two chapters, so we now turn directly to the
next part of the Principia, which is the formulation of the laws of motion
and the deduction of some very general consequences from them (Corol-
laries I-VI). It is here necessary to say something about the preliminary
stages through which Newton's formulations of his laws (and definitions)
passed before taking their definitive form in the Principia. In this connec-
tion it is especially interesting to compare the first and the revised form of
De motu. If we leave out of consideration the part of the tract that has to do
with motion in a resisting medium, the first version of De motu rests on
two definitions and three hypotheses. The two definitions are of cen-
tripetal force, which we have already given, and of innate force, which is
worth giving explicitly, especially for its metaphysical overtones and
distinct echo of the medieval Buridan:110 'And I call that the force of a body
or the force innate in a body by reason of which it endeavours to persist in
its motion along a straight line/ The hypotheses are as follows
(Hypothesis 1, which is omitted, merely states that for certain specified
propositions which follow the resistance of the medium is zero):111

Hypothesis 2. Every body under the sole action of its innate force moves uniformly
in a straight line to infinity unless anything extraneous hinders it.
Hypothesis 3. A body is carried in a given time under the combined action of [two]
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forces so far as it would be carried by the forces acting separately in succession in
equal times.
Hypothesis 4* The space described by a body at the beginning of its motion under
the action of any centripetal force is proportional to the square of the time.

These three hypotheses, coupled with the definition of centripetal
force, are truly admirable in expressing the way in which dynamics grew
out of Galileo's work - indeed how it was created by the application of
rigorous mathematics resting on just three hypotheses suggested by
empirical observations. The first of the hypotheses reflects the promotion
brought about by Descartes of the law of inertia to the status of the first
and most fundamental law. (I say 'brought about' because Descartes
himself certainly did not conceive the law of inertia in the way Newton did
- his service was to bring it to the forefront, after which the law was honed
into its definitive form by Huygens, Newton, and others.) The second is
straight from Galileo and the third reflects the 'infinitesimalizing' of
Galileo's law of free fall noted at the end of Sec. 10.9 (and, indeed, in
Huygens' derivation of the formula for centrifugal force). This is the
assumption that made it possible to break down the orbital problem into
a string of beads in which each bead is a miniature Galilean projectile
problem. Incidentally, the title of Newton's pre-Principia treatise - 'On the
motion of bodies in an orbit' - is eloquent evidence of the fact that it was
precisely the solution of the Kepler problem that marked the maturation
of dynamics as a nearly complete science. This realization is what slowly
dawned on Newton, and it was what determined an almost explosive
growth in his aims.

Between the revised and extended version of De motu a significant
change takes place. Newton drops the word hypothesis and employs
instead law. In the Principia the laws of motion are called the Axioms, or
Laws of Motion. This reflects Newton's desire to present dynamics in as
rigorously mathematical form as possible. It is not, of course, that he
regards the laws of motion in the way Descartes did, as truths self-evident
to the sufficiently trained and luminous intellect. Far from it; Newton is
especially keen to identify the empirical basis of the laws. But it is with
him a point of honour to reduce the number of axioms to a bare minimum.
This in fact led him to obscure somewhat the empirical springs of his
science and to attempt to derive more from his laws than can in truth be
done. This tendency is already manifest in the revised version of De motu;
the laws of motion are in fact changed almost out of recognition. Only the
law of inertia remains essentially the same:112 'By its innate force alone a
body will always proceed uniformly in a straight line provided nothing
hinders it/ In place of the other two hypotheses we now have

* This hypothesis was listed by Newton but was not actually written down. However, it was
clearly intended by Newton (see Ref. 2, p. 413, note 33).
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Law 2. The change in the state of movement or rest [of a body] is proportional to
the impressed force and takes place along the straight line in which that force is
impressed.
Law 3. The relative motions of two bodies contained in a given space are the same
whether the space in question rests or moves perpetually and uniformly in a
straight line without circular motion.
Law 4. By the mutual actions between bodies the common centre of gravity does
not change its state of motion or rest. It follows from Law 2.

Law 2 is of course Newton's Second Law. The Second Law presents a
problem in an interpretational study such as is attempted here. One can
certainly say that the discovery and explication by Newton of the
dynamics that it, in conjunction with the Third Law, represents constitute
the heart of Newton's contribution to dynamics. The Third Law being -
for all its importance - relatively simple to grasp and formulate, Newton's
outstanding achievement is certainly to be seen in the elaboration of the
content of the Second Law and in the recognition of its universality. But
in one sense Newton obscured rather than clarified the situation with his
actual formulation of the Second Law.

One can look at the matter this way. The motions in the world are given
by nature. The task of dynamics is to attempt to find laws that govern
them. The ground rules of the overall strategy for finding these laws had
crystallized within a very few years of Descartes' publishing of his
Principles of Philosophy. This is reflected by the elevation of the law of
inertia to the first law of motion113 - 'that prime Mechanicall law of motion
persisting in a straight line'. This had the effect of more or less predetermin-
ing the remaining laws of motion. For, the motions being given and the law
of inertia having been adopted, the remaining laws were forced to appear
- as the complement, so to speak, of the law of inertia in the domain of
observed motions. But if the overall strategy was predetermined (uncon-
sciously, of course, but with hindsight we can see that it was), the actual
implementation was nevertheless a supremely difficult task. The most
important step was what Newton, using the preparatory work done by
Galileo on the simplest of compound motions, so successfully
accomplished in the orbital problem.

As the overall structure of dynamics took shape, Newton correctly
sensed that the First Law must be complemented by the laws which
describe how bodies interact and mutually deflect each other from their,
inertial motions as posited by the First Law. If the Principia is considered
in its totality - definitions, laws, and explications thereof in highly
nontrivial examples - there is no question but that Newton succeeded
brilliantly. What one can fault is the manner in which the most important
empirical facts - grasped by Galileo, used by Newton in his solution of the
Kepler problem, and still formulated (in the form of hypotheses 3 and 4)



572 Newton I: the discovery of dynamics
as primal laws in the first draft of De motu - are demoted to consequences
of the allegedly more fundamental Second Law.

For in the revised draft we find that the laws posited above are
immediately followed by two lemmas:

Lemma 1, A body acted on simultaneously by [two] forces describes the diagonal
of a parallelogram in the same time as it would the sides if the forces acted
separately.
Lemma 2. The distance a body describes from the beginning of its motion under the
action of any force whatsoever is in the duplicate ratio of the time.

But nothing that Newton has formulated hitherto - in his definitions
and laws - permits him to deduce these results. The truth is much rather
that these empirical facts are what suggested in the first place the
structure of laws and definitions from which they are now supposedly
deduced. It is not that Newton's laws and definitions are wrong but
merely that they are too skeletal - they are not fleshed out with sufficient
empirical content. As Mach was careful to emphasize in later editions of
his Mechanics,114 such comments on Newton's ordering of his definitions
and axioms in no way diminishes his achievements or one's admiration of
them. There is however much to be gained - both from the point of view
of intellectual satisfaction as well as for a proper appreciation of the points
at which changes might be made in the Newtonian scheme - in laying
bare the empirical springs of the great science that took shape in the
Principia.

The unconscious process of obscuring the empirical basis of dynamics
is taken even slightly further in the Principia. Lemma 1 above reappears as
Corollary I to the laws of motion,115 but the vital Lemma 2 does not appear
until quite some way into Book I, where it is formulated as the tenth116 of
a series of decidedly mathematical lemmas. Moreover, the result is in fact
obtained - as it only can be - from Newton's implicit assumption of the
actual manner in which forces act.

In this way Newton obscured the truth that is the real heart of his
dynamical scheme - that the force is proportional to the instantaneous
acceleration. This was the result that both Huygens and Newton deduced
by their infinitesimalization of Galileo's law of free fall. The modern
reformulation of Newton's Second Law in the form F = ma (for the case of
constant mass) has restored the original insight of Huygens and Newton
to the prominence it deserves.

We must now note the appearance - so far as I know for the first time in
Newton's writings - of the law of Galilean relativity (Law 3). We see that
it appears together with the centre-of-mass theorem (Law 4), which is
stated cryptically to be a consequence of Law 2. This latter is a clear
indication that Newton must have come to realize that an important
element was still lacking from his dynamics, namely, his Third Law, for
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his Law 2 is quite insufficient in itself to derive the centre-of-mass
theorem. There must in fact have been two or perhaps three distinct
stages in Newton's advance to the comprehensive treatment of motions
that we find in the Principia. The first is the one we have treated at length
and which was certainly by far the most difficult from the technical point
of view - the mastering of the Kepler problem. This stage remains
restricted to what can be called single-particle dynamics in the force field
of a fixed attractive centre. The other two stages correspond to the
recognition of the full import of the concept of universal gravitation and
the further recognition that all changes in motion are brought about by the
interaction of at least two bodies and that if body A changes the state of
body B then body B will simultaneously change the state of body A.
Wilson57 has emphasized the intimate connection between the final
emergence of universal gravitation and the appearance for the first time
in the pie-Principia papers of the embryonic Third Law (which we shall
shortly discuss). Attractions are now mutual and truly universal, and
what in the Waste Book applied only to collisions is now extended to all
interactions. Further, in parallel with this progressive encompassing of
the full spectrum of physical possibilities now being opened up to
analysis, we have Newton's growing desire, already noted, to create a
general mathematical formalism adequate for the proper expression of
these great insights.

The two drafts of De motu reveal the dramatic extensions in the process
of taking place. In the first draft we see the bridgehead firmly established.
In the second we see the troops beginning to spread out in all directions
to occupy the rich territory now made defenceless by the fact that the
greatest problem has been comprehensively cracked. We have already
noted Newton's announcement of the successful moon test; as the
implications begin to sink in, Newton realizes more and more places at
which the concept of universal gravitation can and must be tested. The
planetary problem is immediately seen to be considerably more sophisti-
cated than the problem of a single fixed force centre controlling the
motion of a single planet. All the bodies in the solar system must interact
with one another and produce small perturbations from Kepler's laws -
hence the questions sent at this time to Flamsteed about the perturbations
of Saturn by Jupiter. Newton grasps the fact that in truth the planetary
motions are fearfully complicated but he yet sees through to the essence
of the situation: Kepler's laws hold to a first approximation and in
addition there is one beautifully simple consequence of the laws of motion
- despite the eternal tangle of the exact planetary orbits there is a
distinguished point in the solar system that has a very special motion. It
is the centre of mass of the complete system of planets and the sun.

This insight, the first clear recognition of how everything in the solar
system hangs together, is summarized in a notable passage in the revised



574 Newton I: the discovery of dynamics

version of De motu. Newton now understands how the natural world
works in its gross details and announces it to the human world in these
words:117

Moreover the whole space of the planetary heavens either rests (as is commonly
believed) or moves uniformly in a straight line, and hence the communal centre of
gravity of the planets either rests or moves along with it. In both cases the relative
motions of the planets are the same, and their common centre of gravity rests in
relation to the whole of space, and so can certainly be taken for the still centre of
the whole planetary system. Hence truly the Copernican system is proved a priori.
For if the common centre of gravity is calculated for any position of the planets it
either falls in the body of the Sun or will always be very close to it. By reason of this
deviation of the Sun from the centre of gravity the centripetal force does not
always tend to that immobile centre, and hence the planets neither move exactly
in ellipses nor revolve twice in the same orbit. So that there are as many orbits to
a planet as it has revolutions, as in the motion of the Moon, and the orbit of any
one planet depends on the combined motion of all the planets, not to mention the
action of all these on each other. But to consider simultaneously all these causes of
motion and to define these motions by exact laws allowing of convenient
calculation exceeds, unless I am mistaken, the force of the entire human intellect.

We must now consider Newton's standpoint with regard to the law of
Galilean relativity and the centre-of-mass theorem. As we see, both
appear as laws in the revised version of De motu, though the latter is said
to follow from Law 2 (Newton's Second Law). At this stage Newton's
Third Law does not yet appear, though, as we have seen, it was very
clearly formulated for impacts in the Waste Book. Does this mean that
Newton recognized Galilean relativity as an empirical fact of the first
importance, took it as a law, and then deduced his Third Law from it by
means of arguments along the lines of those used by Huygens in his work
on collisions? This seems to me most unlikely, and there does not appear
to be any evidence to support such a derivation. Moreover, the Waste Book
and the definitive treatment in the Principia suggest quite the opposite -
that the Third Law was the primal insight and that Newton attempted to
derive both Galilean relativity and the centre-of-mass theorem from it and
the other laws.

I therefore see the laws as formulated in the revised version of De motu
as corresponding to the stage at which Newton had recognized the
importance of Galilean relativity but had not yet seen his way to a
derivation of it from more primitive laws. As for his Third Law, its
omission at this stage may simply have been an oversight. Particularly
interesting in this connection are the Drafts of Definitions and Laws of Motion
which Herivel reproduces.118 He concludes that they are slightly later in
date than the revised version of De motu, and this certainly matches the
logical development that they represent. Leaving aside the question of
motion in a resisting medium (which will be considered later), we find
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that there are now five fundamental laws of motion though it is clearly
indicated that one at least can be seen as a consequence of the others. The
first two are in essence Newton's First and Second Laws. But for the first
time we now find the Third Law stated explicitly. Here are the three
remaining laws:119

3. As much as any body acts on another so much does it experience in reaction [this
is followed by several well chosen empirical confirmations].
4. The relative motion of bodies enclosed in a given space is the same whether that
space rests absolutely or moves perpetually and uniformly in a straight line
without circular motion. For example, the motions of objects in a ship are the same
whether the ship is at rest or moves uniformly in a straight line.
5. The common centre of gravity of [a number of] bodies does not change its state
of rest or motion by reason of the mutual actions of the bodies. This law and the
two above mutually confirm each other.

As in the revised version of De motu, these laws are followed by the
same Lemma 1 and Lemma 2 as above.

The final stage of this process is what we find in the Principia. The
fundamental laws of motion have been pared down to just three:120

Law I. Every body continues in its state of rest, or of uniform motion in a right line,
unless it is compelled to change that state by forces impressed upon it.
Law II. The change of motion is proportional to the motive force impressed; and is
made in the direction of the right line in which that force is impressed.
Law III. To every action there is always opposed an equal reaction: or, the mutual
actions of two bodies upon each other are always equal, and directed to contrary
parts.

The laws of motion are then followed by the six corollaries already
mentioned, which are themselves followed by a scholium in which
Newton discusses the empirical evidence for the Third Law of Motion. As
already pointed out, Newton seems to have regarded the first two laws as
so well established as to need absolutely no justification, and he states
baldly (but decidedly anachronistically) that Galileo used the first two
laws when he discovered the law of descent and the projectile law. On the
other hand, he devotes several pages to the empirical justification of the
Third Law, some of which we have already considered. As this does not
involve any further points of particular interest, we turn immediately to
the Corollaries.

The first is Lemma 1 of the revised version of De motu, i.e., Galileo's law
of the composition of two motions produced by the simultaneous action
of two forces, by which Newton usually understands, as before, the
innate force and an impressed force. Corollary II is quite new though
conceptually is closely related to Corollary I. It deals with the composition
and decomposition of forces in statics and by implication shows how
statics is subsumed in the more comprehensive science of the laws of
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motion ('for on what has been said depends the whole doctrine of
mechanics variously demonstrated by different authors'121).

Corollary III states the law of conservation of momentum:122

The quantity of motion, which is obtained by taking the sum of the motions
directed towards the same parts, and the difference of those that are directed to
contrary parts, suffers no change from the action of bodies among themselves.

Newton in fact proves this corollary only for the case of collisions. The
proof shows the dominant role played by the Third Law in his overall
scheme. It begins thus: Tor action and its opposite reaction are equal, by
Law III, and therefore, by Law II, they produce in the motions equal
changes towards opposite parts. Therefore if the motions are directed
towards the same parts, whatever is added to the motion of the preceding
body will be subtracted from the motion of that which follows; so that the
sum will be the same as before. If the bodies meet, with contrary motions,
there will be an equal deduction from the motions of both; and therefore
the difference of the motions directed towards opposite parts will remain
the same/ Then follows some numerical examples, after which Newton
concludes with a remark that, on the one hand, takes us back to the Waste
Book, in which he had solved two-dimensional problems so effortlessly,
but, on the other, demonstrates what a complete science dynamics had
now become:123

But if the bodies are either not spherical, or, moving in different right lines,
impinge obliquely one upon the other, and their motions after reflection are
required, in those cases we are first to determine the position of the plane that
touches the bodies in the point of impact, then the motion of each body (by Cor.
II) is to be resolved into two, one perpendicular to that plane, and the other
parallel to it. This done, because the bodies act upon each other in the direction of
a line perpendicular to this plane, the parallel motions are to be retained the same
after reflection as before; and to the perpendicular motions we are to assign equal
changes towards the contrary parts; in such manner that the sum of the conspiring
and the difference of the contrary motions may remain the same as before.

Corollary IV is stated as follows:124

The common centre of gravity of two or more bodies does not alter its state of
motion or rest by the actions of the bodies among themselves; and therefore the
common centre of gravity of all bodies acting upon each other (excluding external
actions and impediments) is either at rest, or moves uniformly in a right line.

The proof follows closely the one with which we are familiar from the
Waste Book. The main difference is that Newton considers the case of an
arbitrary number of bodies and not just two. He first shows that if the
bodies do not interact at all the common centre of gravity must move
uniformly and in a straight line. That interaction has no effect on this
result is proved by the definition of the centre of gravity and the Third
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Law: 'Moreover, in a system of two bodies acting upon each other, since
the distances between their centres and the common centre of gravity of
both are reciprocally as the bodies [i.e., the masses], the relative motions
of those bodies, whether of approaching to or of receding from that
centre, will be equal among themselves. Therefore since the changes
which happen to motions are equal and directed to contrary parts, the
common centre of those bodies, by their mutual action between them-
selves, is neither accelerated nor retarded, nor suffers any change as to its
state of motion or rest/ This result is extended to a system of more than
two bodies by the assumption that all interactions within a system reduce
to interactions between pairs of bodies:125 'But in such a system all the
actions of the bodies among themselves either happen between two
bodies, or are composed of actions interchanged between some two
bodies; and therefore they do never produce any alteration in the common
centre of all as to its state of motion or rest.' It is worth noting that at this
point Newton makes an assumption which goes beyond his three laws of
motion, making in effect a restriction on the manner in which the forces
of nature act. It is particularly interesting to note that he does the same in
the proof of his famous Corollary V:126

The motions of bodies included in a given space are the same among themselves,
whether that space is at rest, or moves uniformly forwards in a right line without
any circular motion.

The proof of this key proposition, which I give in full, is a great deal
shorter than the proofs given of the two previous propositions (the italics
are mine):

For the differences of the motions tending towards the same parts, and the sums
of those that tend towards contrary parts, are, at first (by supposition), in both
cases the same; and it is from those sums and differences that the collisions and impulses
do arise with which the bodies impinge one upon another. Wherefore (by Law II), the
effects of those collisions will be equal in both cases; and therefore the mutual
motions of the bodies among themselves in the one case will remain equal to the
motions of the bodies among themselves in the other. A clear proof of this we have
from the experiment of a ship; where all motions happen after the same manner,
whether the ship is at rest, or is carried uniformly forwards in a right line.

The part I have italicized is especially interesting for the discussion
which follows in Chap. 11. The first point to make is that it is a major
assumption, quite unrelated to Newton's three laws of motion, about the
manner in which interactions take place (we note that once again Newton
considers only changes produced by collisions). He has of course his
Third Law, but this only says that the action and reaction are equal in
magnitude and opposite in direction. As pointed out in Sec .1.2, there is,
however, no reason whatever why the strength of interaction (the
impulses) between two bodies (to consider the simplest case) should be
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the same when their centre of mass moves through absolute space with a
uniform velocity as when it is at rest. If there were such a dependence, the
Third Law would still ensure the validity of Corollaries III and IV but
Corollary V would not hold. In anticipation of the following chapter let it
merely be noted here that despite his firm insistence on the reality of
absolute space and absolute motion it is striking that Newton appears to
have assumed instinctively that interactions are purely relative.

We conclude this discussion of the corollaries with Corollary VI, which
is of a quite unrelated nature and seems hardly to warrant the exalted
status given it immediately following the laws of motion. It is:

If bodies, moved in any manner among themselves, are urged in the direction of
parallel lines by equal accelerative forces, they will all continue to move among
themselves, after the same manner as if they had not been urged by these forces.

Newton presumably includes it because, to a good first approximation,
it describes the situation that obtains for the earth-moon system in the
gravitational field of the sun and especially (to a very good accuracy) for
Jupiter and its system of moons. However, it is interesting to note that this
corollary anticipates Einstein's equivalence principle; for as most readers
will know, Einstein made the fact that all bodies fall with equal accelera-
tion in a given gravitational field into the physical basis of his general
theory of relativity, in which he succeeded in reformulating Newton's
theory of gravitation in a conceptually quite different framework. We see
here again something noted already more than once - that all three great
pioneers in dynamics (Galileo, Huygens, and Newton) often came
remarkably close to some of Einstein's deepest insights. This is one of the
especial fascinations of dynamics - how one and the same empirical fact
can be noted and used in totally different ways by great scientists living
centuries apart.

The main body of the Principia is divided into three Books. Books I and
II are basically of a formal mathematical nature with Book I treating the
case of motion when there is no resistance while Book II treats motion in
resisting media. These two books are essentially the mathematical theory
of the motion of bodies with mass moved in accordance with Newton's
three laws and interacting in accordance with definite forces. This work,
an almost incredible tour de force that did for the theory of motion what
Euclid had done for geometry, is perfectly characterized in Newton's
Preface by the words127 'rational mechanics will be the science of motions
resulting from any forces whatsoever, and of the forces required to
produce any motions, accurately proposed and demonstrated'. Newton
makes a point of stressing that he offers the work 'as the mathematical
principles of philosophy'. The overall logic of his book is to posit formally
the concept of force in conjunction with his laws and the definition of
mass, derive the mathematical consequences that flow from them, and
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then demonstrate that the existence of certain forces with mathematically
well-defined properties, above all forces of gravity, is proved by the
phenomena of nature. Hence his remark that we have already quoted:
'For the whole burden of philosophy seems to consist in this - from the
phenomena of motions to investigate the forces of nature, and then from
these forces to demonstrate the other phenomena/ The climax of the
work is thus in Book III, in which Newton, as he announces in the Preface,
gives 'an example of this [the finding of the forces and the demonstration
of the other phenomena] in the explication of the System of the World; for
by the propositions mathematically demonstrated in the former Books [I
and II], in the third I derive from the celestial phenomena the forces of
gravity with which bodies tend to the sun and the several planets. Then
from these forces, by other propositions which are also mathematical, I
deduce the motions of the planets, the comets, the moon, and the sea/

To do justice to the Principia I should have to write another chapter at
least as long as the present one. But as this book is about the discovery of
dynamics and the problem of whether motion is absolute or relative (and
not about dynamics itself) I shall excuse myself with an account of the
crucial sections on the orbital problem and brief summary of some of the
most important of Newton's results and applications - and the now
familiar exhortation to the reader to take up the Principia and read for
himself (or herself). It must be said that the Principia was and is a rather
daunting book - at the time it was published on account of the novelty and
difficulty of the subject for Newton's contemporaries, in the modern age
on account of the now archaic mathematical techniques and means of
expression that Newton employs. Moreover, in the first two books
Newton does often get carried away and tends to explore anything which
seems capable of analysis. He loves to add one corollary to another after
his propositions. Indeed, Newton himself, when he opens Book III,
comforts the reader about the first two books:128 'Not that I would advise
anyone to the previous study of every Proposition of those Books; for they
abound with such as might cost too much time, even to readers of good
mathematical learning. It is enough if one carefully reads the Definitions,
the Laws of Motion, and the first three sections of the first Book/ (One
wonders quite why Newton gives this advice only when the reader has
completed reading what he is here advised not to read!) In fact, the reader
with a sound knowledge of dynamics and its applications can readily
derive a great deal of interest from the Principia, since the propositions
and their physical significance are often immediately apparent to the
modern reader. Very often the most rewarding parts are to be found in the
scholia and general comments. One of the chief points of interest is
simply the extraordinary range of topics - both mathematical and physical
- that Newton covers and the sheer comprehensiveness of his treatment.
One is reminded of Carlyle's aphorism on Frederick the Great to the effect
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that what makes genius is, in the first place, a 'transcendent capacity for
taking trouble'. It is as if Schrodinger, having discovered his wave
equation, had then gone on, single-handed, to obtain all that flood of
results in the quantum mechanics of atomic systems in which so many
physicists had a part in this century at the end of the 'twenties and
beginning of the 'thirties. And Newton did it all in about 18 months to two
years.

Let me therefore now just mention some of the most salient points,
especially in the part on orbital problems, and the most interesting of the
applications.* We have already anticipated the most important tenden-
cies. The crucial role of Kepler's area law in both the final breakthrough to
mature dynamics and the clarification of the concept of force is reflected
in the fact that Newton begins the exposition proper with the derivation
of this law. It is the content of his very first proposition: 'The areas which
revolving bodies describe by radii drawn to an immovable centre of force
do lie in the same immovable planes, and are proportional to the times in
which they are described.' Just as Kepler learnt to move freely in his
mind's eye through the solar system when once he had firmly established
the halving of the eccentricity of the earth's orbit, so too did Newton learn
to treat the most general of orbital problems when once he had grasped
the dynamical significance of the area law. And thus the second great
synthesis (the creation of dynamics) was added to the first (Kepler's
discovery of the laws of planetary motions).

Newton concludes his first few propositions on the subject of the area
law with the following scholium, which shows precisely how he uses the
phenomena of motions, described with mathematical exactitude, to draw
conclusions of far reaching physical significance. He uses mathematics to
study nature in a manner of which Descartes never even dreamed:

Since the equable description of areas indicates that there is a centre to which
tends that force by which the body is most affected, and by which it is drawn back
from its rectilinear motion, and retained in its orbit, why may we not be allowed,
in the following discourse, to use the equable description of areas as an indication
of a centre, about which all circular motion is performed in free spaces?

* My treatment of the detailed mathematical aspects will, I am afraid, be very sketchy. An
especially interesting question relating to the period of development up to and including the
Principia is that of the relative importance, vis a vis the physical insights, of Newton's
growing ability to cope with the mathematics needed to solve the orbital problems. D. T.
Whiteside, who has devoted many years to the shady of Newton's mathematics, has
asserted that1293 'the continuous growth during the period 1664-84 of Newton's expertise
with the various orders of the infinitely small was a significant conditioning factor on the
effective expression and forceful persuance of his dynamical researches.' I am not always
able to follow all of Whiteside's arguments, but he is surely right that this is an important
point, and it belongs to a study more comprehensive than the present one can attempt to be.
Readers interested in these questions can begin by consulting Whiteside's works listed in
Ref. 129.
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There are then several propositions which follow up this line of
development. It will here be worth describing in general terms the
method employed by Newton to solve orbital problems, since this reveals
particularly clearly the central role played in Newton's work by the
astronomical results - and also the way in which Newton makes extensive
use of calculus-type techniques without employing formal equations of
the infinitesimal calculus. Newton's point of departure, indeed the basis
of his entire work, in the crucial early sections of the Principia, which lay
the foundations for his later demonstration of the law of universal
gravitation, is that one knows from observation that a body is moved in a
given curve at a given (position-dependent) speed such that the radius
vector from a given point to the moving body sweeps out equal areas in
equal times. Note that for a given curve (which may but need not be
closed) and for any given point it is always possible to prescribe a law of
motion in the curve such that equal areas are swept out in equal times
about the given point. (There may of course be singular situations in
which the area law is violated at certain points, but for a point strictly
within a closed, everywhere concave, curve this does not occur.) In
contrast, for an arbitrarily specified law of motion it is a highly nontrivial
result that there does exist a point from which the radius vector to the
moving body sweeps out equal areas in equal times. In fact, one of
Newton's first results130 is to show how knowledge of the velocity at three
points in the orbit suffice in such a case to determine the position of the
point about which equal areas are described and from that to find the
velocity at any other point in the orbit. Newton's construction is shown in
Fig. 10.21. The velocities are given at P, Q, and R; the perpendiculars AP,
BQ, and CR at these points to the tangents to the curves (PT, TQV, RV)
have heights that are inversely proportional to the speeds at P, Q, and R.
The line AD is parallel to PT, DBE to TQV, and CE to RV. Newton show
that the point S is the force centre about which the equal areas are
described. The basis of his construction is a corollary of the area law,
namely, that the height of the perpendicular (the dashed line, my
addition to Newton's figure) dropped from S onto, say, the tangent PT is

Fig. 10.21.
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inversely proportional to the speed at P. For in an infinitesimal time dt the
body will traverse a space vdt in the direction of the tangent at P, v being
the instantaneous velocity at that point. Let h be the height of the
perpendicular dropped onto PT. Then the area swept out by the radius
vector SP in time dt is khvdt, but this must be constant by the area law,
from which it follows that h is inversely proportional to v. (A particular
delight of the Principia is the remarkable number of important dynamical
results that Newton succeeds in deducing from the formula for the area of
a triangle in terms of its base and height.)

Just as in the solution of the Kepler problem, but now for the perfectly
general case of bodies moved in arbitrary curves by a centripetal force
towards a fixed centre at some given point, i.e., in such a way that the area
law holds with respect to that point, Newton then proceeds to solve the
problem of determining the distance dependence of the force that produces
such motion. The elements of his method are illustrated in Fig. 10.22, in
which the force centre is at S and the continuous curve PW is the curve in
which the body is moved. At a certain time the body will be at P and its
instantaneous velocity will be along the tangent PT. The dashed arc is the
circle, with centre at C, that approximates the orbital curve at the point P.
One can think of it as being obtained by taking an orthogonal Cartesian
coordinate system with origin at P, x-axis along PT and y-axis along the
perpendicular PC and then finding the Taylor expansion of the function
y(x) that describes the orbital curve. By the choice of the coordinate
system, the constant and linear terms of this expansion will be zero and
the first nonvanishing term will be the quadratic term, which, in the
neighbourhood of P, represents the circle that best approximates the
orbital curve at P. This curve is important, since it measures the instan-
taneous deviation in space of the orbit from the instantaneous tangent. In

Fig. 10.22.
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Fig. 10.23.

the case of circular motion with force centre at the centre of the circle,
when S, the force centre, coincides with C, the instantaneous centre of
curvature, this deviation is all that one needs to determine the force acting
(Fig. 10.23). (If a body revolves in a circle and turns through the small
angle <p, then the deviation QR from the tangent (which is equal to VR in
the limit q> —> 0) is proportional to 1 — cos q>, or the versed sine of (p. This
trigonometric function, which is seldom used today, appears frequently
in the Principia on account of this fact.) In the general case of nonuniform
motion in a closed curve about some arbitrary point that acts as a centre of
a centripetal force (Fig. 10.22), there are two complications in the way of
finding the deviation in unit time from the instantaneous velocity (and
hence finding the force acting): the nonuniformity of the motion and the
fact that the force centre does not coincide with the instantaneous centre
of curvature. In principle Newton overcame these difficulties by using the
area law (and the known geometry of the orbital curve and known
position of the centre from which equal areas are swept out) to determine
how much the radius vector SR (R is the point on the continuous curve of
the actual motion reached at the given time) advances from SP in time df.
In the limit when this tends to zero, the deviation QR from the instantane-
ous inertial motion at P is measured by the deviation of the instantaneous
circle of curvature at P from the instantaneous tangent PT, this deviation,
which is measured by the versed sine of the arc of the circle of curvature
(i.e., the versed sine of angle QCP), being multiplied by a suitable
trigonometric factor to take account of the fact that RQ is inclined at an
angle to QC, which coincides with CP in the limit when Q tends to P. The
important point here is that, from the area law, Newton knows that the
force is along QR towards S (in the limit QR becomes parallel to PS) and
this tells him by how much the actual deviation induced by the force is
greater than the simple perpendicular separation between Q and the
curve of the orbit (which is the force-induced deviation in the case of
circular motion). We see again how the area law simultaneously solves
two separate problems and reduces the complete orbital problem to one
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of pure geometry, albeit the geometry of limit increments of curves rather
than synthetic geometry in the spirit of the ancients.

To summarize: Newton's solution of the orbital problem consisted of
three main components. First, and most important of all, was the clear
understanding of what needed to be calculated. He needed the insight
that the area law solved the problem of determining the time over which
the deviation occurs and simultaneously the problem of determining the
direction in which it acts (without both of which the strength of the force,
measured by an infinitesimal quantity of second order, cannot be found).
Finally, he needed a high degree of geometrical competence to do the
actual computations for the case of a general orbit, when S and C do not
coincide. Difficult as this problem may be, it is nevertheless purely
technical once the conceptual points have been clarified.

Let us take this opportunity to note just how drastic and sophisticated
is the Newtonian division of the physically given motions of the planets
in their orbits into inertial motion and force-induced deviation from it. At
each new point of the orbit, the inertial motion with respect to which the
deviation is measured is a different one and advanced mathematics is
necessary to make the decomposition. Inertial motion pure and simple is
never present but is always a mathematical construct. Nevertheless, the
result of the analysis is unambiguous and certainly provides very good
grounds for the notion that bodies have an inherent tendency to uniform
rectilinear motion in the absence of deflecting forces. Inertial motion is
demonstrated by mathematics from the empirically observed motions by
'subtracting' the effect of the sun in accordance with a well-defined and
physically plausible prescription. Newton's work clearly established the
notion of inertial motion, and with it his idea of absolute space, on a vastly
more secure basis than it ever had prior to this work. Because this
dramatic discovery, the full import of which can readily escape a modern
scientist, does indeed provide the basis of dynamics and with it most of
modern science, it clearly warrants careful examination, which we shall
attempt to give in Chaps. 11 and 12.

Having developed his general technique, Newton used it to determine
the centripetal force that must act in the case of bodies that move in
various curves about particular points. His first important result with
physical applications concerns the case of elliptical motion when the
centre of force is at the centre of the ellipse. Newton shows131 that in this
case the force must increase in proportion to the distance from the
attracting centre. After that he moves onto the more difficult problem of
the centre of force being at one focus and establishes the inverse square
law for this case. He shows that the same is true for bodies moved in the
other conic sections.

As a very simple illustration, which Newton does not in fact give, let us
see how the inverse square law follows approximately from the small-
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Fig. 10.24.

eccentricity limit of Kepler's laws. Thus, suppose a circle (Fig. 10.24) and
a point E eccentric from the centre at the small distance er, i. e., e <^ r, where
r is the radius of the circle. Let a ray rotate about E with uniform angular
velocity and let the body be situated at all times at the point P at which the
spoke cuts the circle. Then we know that to a good approximation equal
areas are swept out by the radius vector SP, where S is the point at equal
distance from the centre O of the circle opposite to E. To first order in e,
the length of EP is r(l - e cos 0) and the distance travelled along the
circumference in the time corresponding to an increase in 
cos 6) d6. The radial deflection of the body, i.e., the deviation from the
tangent is proportional to the square of this distance, i.e., to first order it
is proportional to r(l — 2e cos 6). This is the radial deflection towards the
centre. But for small e, this is also, to order e, the deflection towards S. On
the other hand, the distance of P from S is, again to first order in e, equal
to r(\ + e cos &). Since 1/(1 + e cos 0)2 ~ 1 — 2e cos 9, we see that the radial
deflection towards S is, to the given accuracy, exactly what corresponds
to the inverse square law. This example uses the area law nontrivially but
still corresponds, in the adopted approximation, to trivial geometry (with
the deflection towards the centre of curvature equal to the deflection
towards the force centre).

It is appropriate to mention here the beautiful explanation that Newton
gives for the phenomenon known as the libration of the moon. As is well
known, the moon always presents the same face to the earth. However,
this is only approximately true; in the course of a month the terrestrial
observer is permitted to see a little bit of the 'other side' of the moon. The
largest effect, the libration in longitude (which amounts to about 8°) comes
about for the following reason. The moon, like most celestial bodies,
rotates about its axis. In the early part of this book it was repeatedly
emphasized that the rotation of such bodies is to a high degree uniform,
this being basically a consequence of the conservation of angular momen-
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turn. Now it so happens that the period of rotation of the moon is exactly
equal to its period of revolution around the earth; this is why we always
see the same face of the moon. Moreover, as we know from Chap. 3, the
moon has a relatively large eccentricity and therefore moves with pro-
nounced nonuniformity in its orbit. Since its axial rotation is uniform, this
is what allows us to see around the edge of the moon. The particularly
beautiful point, which Newton makes, is that since the apparent motion
of the moon appears almost exactly uniform when observed from the void
focus of the moon's orbit (this is Ptolemy's equant phenomenon), the
moon will always present more or less exactly the same face towards that
focus. In Newton's words:132 'the same face of the moon will be always
nearly turned to the upper focus of its orbit; but, as the situation of that
focus requires, will deviate a little to one side and to the other from the
earth in the lower focus.' Thus, the moon, gazing sempiternally on the
void focus of its orbit, is a perpetual monument to Ptolemy's great
discovery of the enigmatic equant in the days before Kepler had begun the
work that eventually identified the physical cause of the celestial motions
and shifted the point of interest from the void to the occupied focus - to
the centre of force that finally made sense of the celestial ballet. And this
explanation of the moon's libration in longitude* simultaneously reminds
us of the crucial importance for theoretical astronomy of the uniformity of
the rotation of celestial bodies (providing the 'ticks' of the astronomical
clock) and the equant phenomenon.

It is in fact doubly appropriate to recall Ptolemy at this point, since the
manner in which Newton presents the orbital problem in the Principia
reveals very clearly the astronomical antecedents of dynamics and
emphasizes the continuity of the development all the way from Hippar-
chus and the very first attempt to provide a rational explanation for the
nonuniformity of the solar motion through Ptolemy, Copernicus, Kepler,
and right on to Newton. The central problems throughout the entire
period were those of finding the geometrical orbit and its position in space
relative to the observer and of finding an algorithmic prescription for the
law of advance of the celestial body on its orbit with the passage of time
(as measured by the rotation of the earth). This latter problem was solved
first by Hipparchus with the simple assumption of uniform motion, then
by Ptolemy with his equant prescription, and then improved again by
Kepler with his area law. It was this algorithm, progressively refined, that
made astronomy work. It was therefore especially appropriate that
Newton then transformed the very same algorithm into a powerful tool

* The libration in latitude is also a consequence of the conservation of angular momentum,
since the moon's rotation axis is not perpendicular to the plane of its orbit but hpped at an
angle of 6i°, which permits us to see over first one and then the other pole. There was quite
a long and interesting pre-history to Newton's explanation of the moon's libration in
longitude which Gabbey has traced.133
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for solving dynamical problems, taking advantage of Kepler's great work
to encode information about time in the spatial geometry. And because of
the close connection between the area law and some of the most signifi-
cant advances in astronomy, the dynamics of the orbital problem as
treated by Newton in the Principia still retains a great deal of the geo-
metrokineticism of ancient astronomy. The spirit of Hipparchus and
Ptolemy still breathes in the geometrical constructions that Newton
employs, even though dynamics is on the point of progressing to a
language and techniques in which the influence of the early astronomy
can hardly be traced at all. But in the Principia one can see explicitly how
Newton merely continued the tradition started by Kepler of introducing
modifications in astronomical practice that were suggested by terrestrial
physics and then found fruitful application in the heavens. And, whereas
Kepler had to rely on frankly very poor terrestrial physics, Newton could
use three thoroughly good results: Galileo's law of free fall and the law of
composition of motions, and the law of inertia. Thus it was that the
combination of these three elements with Kepler's three laws yielded, in
the manner just described explicitly, the two great Newtonian discoveries
- the law of universal gravitation (using Kepler's First and Third Laws)
and the realization (brought about by the use of the Second Law) that
central forces do truly exist and that the laws of dynamics were now in
principle complete, i.e., that dynamics had been discovered.

In modern terms, the significance of the area law is that it represents
what is known as a first integral of the orbital problem. As already pointed
out (p. 413 fn), first integrals (conserved quantities) and the dynamical
symmetries with which they are associated will play an increasingly
central role in our discussion in Vol. 2. The area law is not the only first
integral that played an important part in the emergence of dynamics. The
conservation of momentum and energy must also be mentioned, espe-
cially the former, since it was crucial to the solution of the impact problem,
which, on the one hand, quickened the interest in dynamical problems,
and, on the other, gave Newton the clue to his Third Law.

Finally, these considerations show that dynamics was not discovered
by a systematic programme of painstaking observation followed by
theoretical interpretation designed to solve a well-defined problem such
as happened in the case of Brahe and Kepler's attack on the problem of the
planets. It was much rather the case that Newton gradually came to the
realization that he was in principle capable of solving any specific problem
of motion that was put or occurred to him. But if that was the case it must
follow that, without being fully seized of the fact, he possessed all the
elements of dynamics. Hence the dramatic extension of the ambit of his
investigations and the transformation of the framework in which he
conceived them that we find intimated in the progression from the first to
the revised version of De motu corporum in gyrum and brought to fruition
in the Principia in such a short space of time.
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Fig. 10.25.

Let us end this discussion of the orbital problem by reproducing (Fig.
10.25) from the Principia the diagram which Newton used to illustrate his
deduction of the inverse square law from Kepler's First and Second Laws.
This is also very appropriate because it illustrates in one diagram the
really essential contributions that went into the discovery of dynamics:
the synthetic geometry of the ancients, Kepler's first two laws, and
Newton's infinitesimalization of Galileo's projectile work. Simultane-
ously it shows the old mathematical techniques being pushed to their
very limit and presages the introduction of the infinitesimal calculus on a
systematic basis. The planet is at P, the sun at the focus S, and RQ is
parallel to PS. The contribution of synthetic geometry is in giving Newton
exact relationships between the distances RQ, QT (the perpendicular
from Q onto PS) and fixed elements of the ellipse (in this particular proof,
the semimajor and semiminor axes and chord of the ellipse through one
of the foci perpendicular to the major axis - the latus rectum). Galileo's
contribution (somewhat strengthened by Descartes) is represented by the
tangent PR and the notion it defines of the instantaneous inertial motion
at P, the deflection RQ, its compounding with PR by the parallelogram
rule, and the growth of the length of RQ quadratically with infinitesimal
displacement of R along the tangent and hence with time (the
infinitesimalization of the law of free fall). Kepler is of course represented
by the complete ellipse, the focal position of the sun, and Newton's use of
the area of the triangle PQS to measure the lapse of time. All the essentials
are put together in Newton's remark that the strength of the force acting
at P is, in the limit when Q goes to P, directly proportional to the distance
RQ and inversely proportional to the square of the area PS-QT, which
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measures the area of the triangle PQS. This measure, which Newton
regularly used, is simply the application of Newton's Second Law in the
form that the instantaneous acceleration a is proportional to the force/and
Galileo's law for the distance s of free fall in time t under acceleration
a:s = \ at2, from which there follows / °c s/t

2, and, translated into the
geometrical terms of Fig. 10.25, /oc RQ/(QT2-PS2). All that is then needed
is the exact relationship from synthetic geometry valid for arbitrary
position of Q and the recovery from it of the inverse square force law as an
exact limit of infinitesimal calculus when Q tends to P.

So much for the general approach to the orbital problem and its
particular application to the Kepler problem. We now mention briefly
some of the many other topics covered in the Principia, starting with the
perturbation of orbits. In Sec. 9 of Book I ('Motion of bodies in movable
orbits; and the motion of the apsides') Newton showed that if a body can
be made to revolve in a closed fixed orbit by a certain centripetal force to a
given centre then, by the addition of a force towards that same centre
whose strength decreases inversely as the cube of the distance to that
fixed centre, one can cause the original fixed orbit to precess in its plane
about the fixed centre while the body moves along the moving curve in
accordance with the same law as it followed in the fixed orbit. Newton
used this work in the Principia in his studies of the difficult problem of the
perturbations of the moon's orbit, in which he had only partial success.134

(Some years after the publication of the Principia Newton complained to
Halley about his work on the moon that135 'his head ached from studying
this problem'; it apparently 'kept him awake' and 'he would think of it no
more'.)

The Principia also devotes considerable space to the solution of prob-
lems with arbitrary initial conditions. We have already quoted an example
from the early draft De motu. Throughout the Principia we find many
more. It was through propositions such as these that the concept of
physical determinism became so firmly established in the scientific mind.
What was already implicit in Descartes' embryonic form of dynamics is
here made explicit. Laplace is already waiting in the wings! However, as
we shall see in Vol. 2, there is a most interesting twist to this question of
determinism in dynamics. Poincare was the first to point out clearly that
Newtonian dynamics is not as deterministic as one might imagine; in fact,
the precise extent to which it falls short of ideal determinism is the most
accurate characterization one can obtain of the difference between abso-
lute and relative theories of motion. So as not to leave the reader
completely in the dark as to the basis of this assertion, let me merely say
that Newtonian dynamics is fully deterministic if the initial positions and
initial velocities in absolute space (or a frame moving uniformly through it)
are specified. However, specification of the initial relative positions and
initial relative velocities (which are all that are observable) does not quite
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suffice to determine the future evolution of a system of particles. For more
details the reader is referred to Ref. 24 (second reference) in the Introduc-
tion.

Another extremely important result in Book I is Newton's proof of his
celebrated theorem (or rather theorems) of potential theory (as it is now
called). In accordance with the notions of universal gravity that he had
developed, the falling apple is attracted by each and every piece of matter
in the earth. Each piece of matter exerts a force proportional to its mass
and inversely proportional to the square of the distance to the attracted
body. At a great distance from the earth it is evident that the integrated
effect of all the pieces will be to produce a force that decreases as the
square of the distance from the centre of the earth. But what will happen
at short distances from the surface of the earth? In his celebrated moon
test, Newton had, it seems, instinctively assumed that the 1/r2 depen-
dence holds exactly all the way from the orbit of the moon to the surface
of the earth. But in the light of the theory of universal gravitation this is by
no means obvious - indeed it would appear to be somewhat miraculous
that the effects of all the pieces of matter in the earth should combine
together to give exactly a 1/r2 dependence just outside the earth.

Newton seems to have become aware of this problem as he worked on
the Principia, and he eventually succeeded in proving a result (among
several others to do with this problem) of which he was justly proud and
used in his correspondence in 1686 with Halley12c to bolster his claims
vis-a-vis Hooke as to the priority of finding the 1/r2 law. His result was this:
if the density distribution of any body is spherically symmetric, then the
gravitational attraction to that body will follow the 1/r2 law exactly all the
way from infinity to the surface of the body. Within the body it will follow
a quite different law, the strength at any point at distance r from the centre
being the same as the force that would be exerted by taking all the mass
within the radius r (but not the mass outside the sphere), and supposing
it concentrated at the centre. In the case of a sphere of uniform density this
results in a force that increases from the centre of the sphere in direct
proportion to the radius until the surface is reached and then falls off as
1/r2. By this result, which Newton called136 'very remarkable', it was then
possible to bring the moon test into very impressive agreement with the
theory of universal gravitation. Perhaps more than anything else in the
Principia these results of Newton demonstrate the remarkable power of
the mathematics that was now being unlocked in support of physical
investigation.

A final major topic in Book I that we must mention is the mutual
interaction of bodies. This is where the Third Law, suggested initially by
Newton's work on collisions, came into its own for the case of attractions
acting over great distances within the solar system. This side of Newton's
work has already been mentioned in connection with its first appearance
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in De motu (p. 573-4). In the Principia we find the first hints given there
expanded into one of the most important sections of Book I; it carries the
title The motions of bodies tending to each other with centripetal forces'.
We cannot go into the details of this section but it will be worth quoting
Newton's introduction to it, first because it will give the reader the flavour
of Newton's magisterial style (as translated into English by Motte, of
course), which is manifested especially when he passes from one broad
topic to another, and second because of its bearing on the absolute/relative
debate. Here are Newton's words:137

I have hitherto been treating of the attractions of bodies towards an immovable
centre; though very probably there is no such thing existent in nature. For
attractions are made towards bodies, and the actions of the bodies attracted and
attracting are always reciprocal and equal, by Law III; so that if there are two
bodies, neither the attracted nor the attracting body is truly at rest, but both (by
Cor. rv of the Laws of Motion), being as it were mutually attracted, revolve about
a common centre of gravity. And if there be more bodies, which either are
attracted by one body, which is attracted by them again, or which all attract each
other mutually, these bodies will be so moved among themselves, that their
common centre of gravity will either be at rest, or move uniformly forwards in a
right line.

Turning now to Book II, our discussion here must be very brief indeed
even though it contains a wealth of fascinating results. The stimulus to the
writing of this book seems to have come from Newton's concern to
establish the nature of the medium through which the planets move or,
alternatively - if Cartesian vortex theory is correct - by which the planets
are carried. As we noted in the discussion of De motu, the earliest of the
drafts that finally developed into the Principia already adumbrates the
problem of resistance. In a scholium included in the revised version of De
motu the thrust of Newton's thinking is clearly revealed:138

Thus far I have considered the motion of bodies in nonresisting media; so that I
may determine the motion of celestial bodies in e t h e r . . . . Now ether penetrates
freely but does not offer sensible resistance. . . . Comets . . . are carried with
immense speed indifferently in all parts of our heavens yet do not lose their tail
nor the vapour surrounding their heads [by having them] impeded or torn away
by the resistance of the ether. And the planets actually have now persisted in their
motion for thousands of years, so far are they from experiencing any resistance.

My impression from reading Book II is that its primary aim was to create
a framework of theoretical continuum mechanics by means of which
Newton could conclusively prove his own conviction that the planets
move through an ether completely free of resistance and simultaneously
demolish comprehensively Descartes' vortex theory. However, if the
work did have this initial stimulus, it certainly acquired a life of its own
and produced many results of considerable interest and value for general
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physics quite independent of Newton's opposition to Descartes and the
Cartesians. One need only mention his attempt at theoretical derivation
of the speed of sound139 on the basis of the elastic force and density of the
medium, which, though flawed (he obtained as speed in air 979 feet per
second, while the experimental value is about 1142 feet per second), was
regarded by Laplace, who completed his theory, as a140 'monumente de
son genie'.

The main topics that Newton considers are the motion of bodies that are
resisted in accordance with two basic laws (both suggested to him by
experiment): in proportion to their velocity through the medium and in
proportion to the square of their velocity. He reports extensive experi-
ments made with pendula to establish the actual resistance of air. He
considers circular motion of bodies in resisting media. Then follow
sections on the density and compression of fluids and hydrostatics. He
considers the motion of fluids and the resistance they offer to bodies
moving through them. Then comes the section on the propagation of
motion (pulses) through a fluid in which he attempted to derive the speed
of sound. Finally, he devotes a section to the circular motion of fluids, at
the end of which he says:141 'I have endeavored in this Proposition to
investigate the properties of vortices, that I might find whether the
celestial phenomena can be explained by them.' His main conclusion is
that Kepler's Third Law presents innumerable difficulties for any vortex
theory and throws out the taunt:142 'Let philosophers then see how that
phenomenon of the tth power can be accounted for by vortices.' In a
further scholium he finds even more difficulties, and concludes Book II
with these words: The hypothesis of vortices is utterly irreconcilable with
astronomical phenomena, and rather serves to perplex than explain the
heavenly motions. How these motions are performed in free spaces
without vortices, may be understood by the first Book; and I shall now
more fully treat of it in the following Book.'

Thus we come to Book III, The System of the World, the triumphant
conclusion of the Principia and the part that made such a tremendous
impact on his contemporary Englishmen (although Newton's towering
intellect was also rapidly recognized on the Continent, particularly by
Huygens and Leibniz, acceptance of his universal theory of gravitation
was more tardy. Shortly after Newton died in 1727 Voltaire became very
active and effective in propagandizing his work). Newton has worked out
in detail in Books I and II the general theory and applications of the twin
concepts of force and inertial motion. The burden of Book III is announced
in the famous sentence:143 'It remains that, from the same principles, I
now demonstrate the frame of the System of the World/ Stating several
carefully selected phenomena (which are mostly taken from celestial
phenomena - one of them will be discussed in the next chapter), Newton
demonstrates by means of his mathematics that the phenomena reveal the
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existence of a specific but universal force in nature: the force of gravity. He makes
good the promise in the Preface: 'from the phenomena of motions to
investigate the forces of nature, and then from these forces to demonstrate
the other phenomena'. The existence of the gravitational force and its
manifold consequences are demonstrated with impressive thoroughness.
Pride of place is given to the famous moon test, now made explicitly with
an accurate radius of the earth144 'as the French have found by mensura-
tion'. Newton then moves on to a most important topic - the demonstra-
tion of the universality of gravity. For the primary astronomical pheno-
mena establish essentially only that the celestial bodies move around the
attracting force centre subject to a 1/r2 force while the moon test demon-
strates the identity of this force and the force of gravity on the surface of
the earth. How do we get from these results, impressive as they are, to the
notion that each piece of matter attracts with a force that is proportional to
its mass and equally is attracted in a given gravitational field with a force
that again is proportional to its mass?

Newton begins this task by drawing attention to another of Galileo's
great discoveries - one indeed that is so well known we did not bother to
mention it in Chap. 7: the fact that145 'all sorts of heavy bodies (allowance
being made for the inequality of retardation which they suffer from a
small power of resistance of the air) descend to the earth from equal heights
in equal times.' Newton remarks that the 'equality of times we may
distinguish to a great accuracy, by the help of pendulums'. He describes
another of his simple but beautiful experiments, displaying the rare sense
of the great natural scientists for what is crucially important in the
seemingly simplest of all phenomena:146

I tried experiments with gold, silver, lead, glass, sand, common salt, wood, water,
and wheat. I provided two wooden boxes, round and equal: I filled the one with
wood, and suspended an equal weight of gold (as exactly as I could) in the centre
of oscillation of the other. The boxes, hanging by equal threads of 11 feet, made a
couple of pendulums perfectly equal in weight and figure, and equally receiving
the resistance of the air. And, placing the one by the other, I observed them to play
together forwards and backwards, for a long time, with equal vibrations. And
therefore the quantity of matter in the gold (by Cor. I and VI, Prop. XXIV, Book II)
was to the quantity of matter in the wood as the action of the motive force (or vis
motrix) upon all the gold to the action of the same upon all the wood; that is, as the
weight of the one to the weight of the other: and the like happened in the other
bodies. By these experiments, in bodies of the same weight, I could manifestly
have discovered a difference of matter less than the thousandth part of the whole,
had any such been.

Here too we see Newton, busy with his experiments in his rooms at
Trinity, brushing shoulders, as it were, with Einstein. Intent on the
experiment that gives such powerful support to his own lucid vision of
the world and the forces that shape it, he cannot really have had any
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inkling of how the very same result (confirmed with much greater
accuracy in the meanwhile) that he reports here would be used by
Einstein to create a totally different theory of gravitation - and a totally
different view of the world. Words cannot do justice to the marvel of the
thing - the magnitude of what each was able to extract from the one
simple experimental fact and the utter transformation wrought by Eins-
tein in the seemingly impregnable worldview of his illustrious predeces-
sor. Using such simple ideas suggested by such simple experiments, let
me thus eschew words and leave the reader, who will surely be aware of
the experimental basis of Einstein's theory of general relativity* (people
who are not aware of that are not likely to pick up a book such as this), to
ponder these things.

Now back to Book III. By his pendulum experiments Newton showed
that all terrestrial matter is attracted to the earth by a force proportional to
its mass. He then points out that the celestial motions prove that this
property must also hold for the material of which the planets and satellites
are made:147 That the weights [i.e., gravitational attractions] of Jupiter
and of his satellites towards the sun are proportional to the several
quantities of their matter, appears from the exceedingly regular motions
of the satellites. For if some of those bodies were more strongly attracted
to the sun in proportion to the quantity of their matter than others, the
motions of the satellites would be disturbed by that inequality of attrac-
tion/ Thus, what the pendula establish on the earth the celestial bodies
confirm in the heavens. Taken together, Newton's empirical proofs for
what is now called the equivalence principle - the principle that all bodies
fall equally fast in a given gravitational field - are extremely persuasive.

It is much harder to find direct experimental proof for the other half of
Newton's central proposition, namely, that bodies are not only attracted
but also attract in proportion to their mass and that the force of attraction
of any celestial body is the sum of the attractions of each of its individual
parts. The main arguments in the Principia are to a high degree theoretical
and rely on the Third Law and Newton's demonstration that the force of
attraction outside a spherical body with radially symmetric mass distribu-
tion decreases exactly as 1/r2, where r is the distance to the centre of the
body. Newton uses this result, in conjunction with the Third Law, to
argue from the known 1/r2 dependence outside the earth to the universal-
ity of the attraction exerted by all parts of the earth:148 'Since all the parts
of any planet A gravitate towards any other planet B . . . and to every
action corresponds an equal reaction; therefore the planet B will, on the
other hand, gravitate towards all parts of the planet A.'

Earlier in this chapter I mentioned the growing ability of natural
scientists to 'project numbers into nature'. By the development of

* It will, of course, be explained in Vol. 2.
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trigonometry and theories of the motion of celestial bodies the astronom-
ers showed how distances between objects far removed from the earth
could nevertheless be measured. In the Principia Newton takes this
process a dramatic step further - in effect he is able to weigh (or, rather,
measure) the mass of distant objects. For since the gravitational attraction
of any body is proportional to its mass, and all bodies such as satellites of
planets 'fall' equally fast in the field of the parent planet, it is a simple
matter to deduce, from the observed orbital elements of the satellites, the
mass of the attracting object (relative to the mass of a chosen reference
object). In this way Newton concluded149 that if the sun has by definition
unit mass then the masses of Jupiter, Saturn, and the earth are 1/1067,
1/3021, and 1/169 282, respectively. (Newton appears to have made an
error with a factor 2 in his value for the earth, which is about two times
larger than it should be.)

The concept of the gravitational force established a completely new
paradigm (in Kuhn's sense150) for our conception of the world. The
Principia contains numerous hints that the gravitational force is almost
certainly not the only such force in nature. Newton was however very
loathe to speculate in public about things he could not demonstrate
mathematically and summarized his standpoint in the Preface with the
following words:151

I wish we could derive the rest of the phenomena of Nature by the same kind of
reasoning from mechanical principles, for I am induced by many reasons to
suspect that they may all depend upon certain forces by which the particles of
bodies, by some causes hitherto unknown, are either mutually impelled towards
one another, and cohere in regular figures, or are repelled and recede from one
another. These forces being unknown, philosophers have hitherto attempted the
search of Nature in vain; but I hope the principles here laid down will afford some
light either to this or some truer method of philosophy.

If, according to Whitehead's famous saying,152 The safest general
characterization of the European philosophical tradition is that it consists
of a series of footnotes to Plato', one might with even more justice say that
physics since Newton has consisted of the elaboration of these two
sentences. It is however worth pointing out that there are significant
differences of emphasis between the first edition of the Principia, pub-
lished in 1687, and the two later editions (1713 and 1726). In the first
edition, Newton seemed much more prepared to conceive force as truly
existent, as an irreducible metaphysical element of the world. This was
certainly how he was interpreted (and criticized) by his contemporaries,
especially Huygens and Leibniz. In the second edition of the Principia,
Newton went to some pains to emphasize that he had an open mind about
forces - that their existence is inferred from the phenomena by mathemat-
ical rules but that they could still have an explanation in terms of unseen
mechanisms. His famous dictum: Hypotheses nonfingo (T frame no hypoth-
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eses') only appeared in the remarkable General Scholium added at the
end of The System of the World in the second edition of 1713.153

At this point we really must come to an end of this very incomplete
survey of applications of dynamics given in the Principia - there are
numerous topics that here have been barely mentioned or even com-
pletely omitted - for example, Newton's explanation of the precession of
the equinoxes and the tides, to say nothing of the extensive work in Book
III on comets and the theory of the moon. One further topic - the
oblateness of the earth - will be considered in Chap. 11.

What is perhaps most marvellous about the whole book is the way it
grew out of those two definitions and three hypotheses - about 120 words
in all - that open the first version of De motu corporum in gyrum. Newton
may have reformulated them to a considerable extent, but they are in
essence, augmented only by the mass concept and the Third Law, the
secure basis of the entire work. Delicate little beads they seem yet what a
weight of explication they carry.

Lest the reader should get the impression from the above account that
the Principia is a flawless masterpiece, it should be said that close study of
it by modern scholars reveals many places in which it can be faulted. For
example, Newton was quite capable of using dubious arguments and of
fudging results to make his results look better than they actually were. In
particular, his treatment of the more difficult topics such as the motion of
the moon and the precession of the equinoxes left much to be desired.
These were problems that were to absorb the energies of the great
mathematicians of the eighteenth century; in several cases Newton's
work merely represents a promising first step. Nevertheless, in the
breadth and coherence of its vision and in the demonstration of what
mathematics coupled to accurate observation could achieve the Principia
was truly remarkable. Readers wishing to learn more about the book may
like to consult I. B. Cohen's Introduction to Newton's 'Principia'.154

Let us now look forward to the next chapter and the main concern of
this book - the question of the nature of motion. The man who first posed
the question in acute form appears rarely in the Principia but he lurks
behind many a passage whose significance would escape the modern
reader. In fact, throughout the Principia we detect the influence, generally
implicit rather than explicit, of Descartes. The title alone is eloquent
testimony to that.155 Descartes had entitled his major work The Principles
of Philosophy (Principia Philosophiae), announcing thereby his intention to
supplant Aristotle. By also employing the word Principia in the title of his
work, Newton staked out a claim to be taken as seriously as Descartes.
Also striking is the way in which Newton emulated Descartes in setting
up laws or axioms of motion (Descartes actually called his laws of nature).
But very interesting too is the implied rebuke to Descartes (for his
overweening ambition) in using the title The Principles of Philosophy.
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Newton's natural caution, based on his recognition of the empirical origin
of our knowledge, is reflected in his more restricted title: The Mathematical
Principles of Natural Philosophy.

If Halley played the part of Ulysses in luring Newton out of his lair in
Cambridge, Descartes was the Hector whom Newton came forth to slay.
The extent to which the Principia is a polemic against Descartes should
never be forgotten, least of all in the Scholium on absolute and relative
motion.

Which brings us now to the central conflict.
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Newton II: absolute or relative motion?

11.1 General introduction: the period up to Newton

The famous Scholium in the opening pages of the Principia on absolute
and relative motion together with the whole subsequent development of
the debate, including the discovery of general relativity, constitutes one
of the most ironic and curious chapters in the history of science. I will go
so far as to say that if Descartes had finished The World a few months
earlier, and hence published it before the Inquisition condemned Galileo,
Newton might never have felt the need to formalize his views about space
and time in such an outspoken manner - and then general relativity might
never have been created. For the Scholium was Newton's response to
Descartes' squirming before the Inquisition. And if Newton had omitted
the Scholium, with its categorical and ultimately untenable endorsement
of absolute space, would Leibniz, Berkeley, and Mach have been
stimulated to oppose the concept so vigorously? Or to defend the
relativity of motion with such conviction as to call forth a second Achilles
every bit as great as Newton?

Let us start this discussion with generalities and then move on to
particulars. Broadly speaking, the concept of motion employed by the
really major figures in the history of science was relational up to Galileo.
The main reasons for this appear to have been, first, the intellectual
dominance of Aristotle, second, the fact that, alone among the disciplines,
astronomy developed as a quantitative empirical science and third,
related to the second, the unchanging aspect of the heavens. The need to
relate all motions to the distant sphere of the stars, which are assumed to
be relatively fixed, is most pronounced in both Copernicus and Kepler.

However, as we have seen, there also existed from the earliest times an
alternative concept of space which married the intuitive space of practical
experience with the formalized mathematical space of the Greek geo-
meters. Very often this concept coexisted, perhaps unconsciously, with
an 'official' relational concept of position in the mind of one and the same
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person - Aristotle is a striking example of this. This alternative space-
based view seems to have gathered strength in the second half of the
sixteenth century. Several Italian philosophers and also Giordano Bruno
played an important part in this process, which is well described by
Jammer1 in his book on concepts of space. Also recommended are Koyre's
book From the Closed World to the Infinite Universe2 and Grant's Much Ado
About Nothing,3 in which the conclusions differ somewhat from Koyre's.
In fact, one could see the evolution of the concepts of space rather well in
dialectical terms with thesis calling forth antithesis, which is in turn
replaced by a modification of the original thesis. For we saw how the
atomists advanced the thesis of the void, which was admittedly very
meagrely developed but nevertheless was sufficient to bring out strongly
the Aristotelian antithesis, in which position is determined by matter and
the existence of space is denied. But meanwhile the perceived difficulties
of Aristotle's scheme, above all the problem of what exists outside its
outermost sphere, were sufficient to keep the alternative viewpoint alive
and it gained strength steadily through the sixteenth century. Sometime
around 1630, give or take a decade, the space-based concept of position
and motion seems to have moved into the ascendancy, perhaps uncon-
sciously at first but then explicitly, as in Gassendi (see the footnote on p.
453).

A host of factors seems to have stimulated the transition from the
relational to the absolute standpoint. Perhaps the deepest reason of all
was psychological need - even the greatest and most daring minds could
not conceive a world without some sort of solid foundation. Space had to
be more or less invented when the material frame started to fall apart. For
although both Copernicus and Kepler had a relational concept of motion
their frame of reference was solid and unchanging. An equally important
fact was that the serious study of motion as a universal discipline
commenced exactly at the time of the astronomical revolution. Con-
fidence in the earth as a frame of reference for describing motion was
obviously seriously undermined by the realization that the earth itself
already had at least a two-fold motion - rotation about an axis and motion
around the sun - to say nothing of the motion of the earth's axis
corresponding to the precession of the equinoxes. Among the most
striking examples of the way in which the idea of a stable foundation of
the world held a tenacious grip on the mind are Galileo's firm conviction
that the sun, despite its manifest rotation, is in a state of absolute
translational rest (along with the stars) and Newton's extraordinary
assertion (to which we shall come later) that the centre of mass of the solar
system is the centre of the world and also at rest. Equally important in the
emergence of the concept of absolute space (and time) was the thrust to
geometrization of motion, which is extremely pronounced in the Galileo-
Descartes-Newton triad, and the associated reassertion of Platonic
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concepts. Closely related to this was the revival of the ancient doctrine of
atomism and the idea that material particles moved through a void. Thus,
the desire for a solid foundation went hand in hand with the search for a
geometrized container of the world. Absolute space could be seen as the
reified and simultaneously Platonized (i.e., geometrized) void.

The most interesting person as regards his underlying concept of
motion is Galileo. He is quite clearly a transitional figure. The idea of the
well-ordered cosmos is still very strong in him, and he clearly arrived at
the concept of inertial motion in an explictly Aristotelian - and hence
relational - context. But his theory of the tides and numerous revealing
tell-tale passages in his writings show that he was, deep down, an
absolutist. Highly significant in this connection is his use of the expression
absolute motion in the justification of his theory of the tides. Prior to
Newton, this is the only use of the expression (employed in the
Newtonian sense) that I have come across.

The inescapable need for a concept more or less identical to Newton's
absolute space comes out more clearly in Descartes' The World than
anywhere else. This is, of course, highly ironic in view of his later
advocacy of relativism (and complete denial of space), but, as we have
seen, the relativism of his Principles is but froth on the surface of a deep
underlying absolutism. The central aim of Descartes' whole philosophy -
the explication of the totality of physical phenomena by universal motion
of matter, treated geometrically and quantitatively (in principle, at least)
- made that inevitable. His central concept, that of the conserved quantity
of motion (understood in the technical sense of bulk times speed) together
with the rectilinearity of undisturbed primordial motion (watched over
meticulously by God to ensure that there is never loss of the least portion
of either matter or motion), is simply meaningless without a quite definite
frame of reference in which to prescribe it. But Descartes was far more
radical in his conceptions than either Copernicus or Kepler. The World set
in motion not merely the earth but every last particle of the universe.
Descartes was truly the creator of the restless universe. But, driven by an
explicatory urge he could not tame, he unconsciously created an underly-
ing world of perfect rest to carry the storm he had summoned forth. That
is another of the ironies of the discovery of dynamics - the extent to which
the man who prided himself on the clarity of his thought appears to have
been totally unaware (even in The World) of the fact that he not only set the
entire universe into restless motion but simultaneously created, as its
foundation, the epitome of rest. For, quite unconsciously, he embedded
the motion, as it were, in a perfectly translucent block of conceptual glass,
extending from infinity to infinity, through which the parts of the
universe move - and he did this despite his perfectly sincere espousal in
the Principles of the idea (which does not seem to have had anything to do
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with the Inquisition) that the extended nature of matter makes the
concept of an independent space redundant.

In the letter to Mersenne (quoted in Sec. 8.6), Descartes wrote that if the
doctrine of the earth's motion was false 'so are all the foundations of my
philosophy, since they clearly demonstrate this motion'. Descartes was
quite right, even though reasons other than the nature of space and
motion were probably uppermost in his mind at the time he wrote. The
decade of tortuous trimming by Descartes that followed the Inquisition's
attack on Galileo did not change the reality of the foundations of his
philosophy one jot. All it did was add a highly confusing gloss. But below
the curious and contradictory scratchings on the surface the block of glass
remained intact.

It will now be worth saying something about the period, in which more
than 40 years elapsed, between the publication of Descartes' Principles of
Philosophy and Newton's Principia. Two major forms of the theory of
motion developed, just as they had in antiquity - one based on the idea of
a plenum and the other on the revival of the atomic theory by Gassendi,
which occurred, as we have noted, at roughly the same time as Descartes
published his Principles. Simultaneously, more and more people came to
accept the idea of an infinite universe and to feel an increasing need for a
more clearly defined concept of space. Koyre's book2 is especially
recommended as a review of this process.

One aspect of the development worthy of note is the persistent
tendency of thinkers throughout the ages to seek perfection. Aristotle
thought he had found it in quintessence and its perfectly circular motion.
It is interesting to note that as the concept of quintessence fell apart and
evidence of manifest impermanence and imperfection of the heavens
accumulated from astronomy - beginning with the two famous super-
novae of 1572 and 1604 and then becoming a flood following the discovery
of the telescope - all the divine and admirable attributes of quintessence
appear to have been transferred to the concept of uniform motion
through perfectly uniform space. The Cambridge neo-Platonist Henry
More, who had corresponded with Descartes and is believed to have had
quite a significant influence on Newton,4 is full of the perfections of space,
which he compared - and even identified - with God's. What is also
interesting is that the Newtonian concept of space that today we grasp
with such ease also had to be evolved into explicit consciousness as a
precise concept. Koyre comments:5 'Absolute space is infinite, immov-
able, homogeneous, indivisible and unique. These are very important
properties which Spinoza and Malebranche discovered almost at the
same time as More . . .'.

Moreover, clarification of these concepts was to quite an extent stimu-
lated by difficulties perceived in Descartes' nominal relativity of motion.
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One sees here the impact of the infinitization of the concept of space and
the associated conceptual breakup of the sphere of the fixed stars, in both
of which Descartes played a major part. So long as the world was finite
and definite, it seemed almost natural to define position by the fixed stars.
But if matter everywhere wanders around in vague confusion, all points
of reference seem completely lost. According to More:6 'the Cartesian
definition of motion is repugnant to all the faculties of the soul, the sense,
the imagination and the reason/

Commenting on his difficulties, Koyre says:7 'He feels that when bodies
move, even if we consider them as moving in respect to each other,
something happens, at least to one of them, that is unilateral and not
reciprocal: it really moves, that is, changes its place, its internal locus. It is
in respect to this "place" that motion has to be conceived and not in
respect to any other.'

Particularly illuminating in the light of the remarks about substance in
the chapter on Descartes (Sec. 8.3) are the arguments by which More, who
accepts the reality of extension and also the void (following the lead of the
ancient atomists), seeks to demonstrate the real existence of space:8

a real attribute of any subject can never be found anywhere but where some real
subject supports it. But extension is a real attribute of a real subject (namely
matter), which [attribute] however, is found elsewhere [namely there where no
matter is present], and which is independent of our imagination. Indeed we are
unable not to conceive that a certain immobile extension pervading everything in
infinity has always existed and will exist in all eternity (whether we think about it
or do not think about it), and [that it is] nevertheless really distinct from matter.

It is therefore necessary that, because it is a real attribute, some real subject
support this extension. This argumentation is so solid that there is none that could
be stronger. For if this one fails, we shall not be able to conclude with any certainty
the existence in nature of any real subject whatever. Indeed, in this case, it would
be possible for real attributes to be present without there being any real subject or
substance to support them.

Commenting on this argument of More, Koyre sums it up rather nicely
as follows:9 'Attributes imply substances. They do not wander alone, free
and unattached, in the world. They cannot exist without support, like the
grin of the Cheshire cat, for this would mean that they would be attributes
of nothing.'* Thus, the whole tendency of the reaction to Descartes' 'official
line' - that all motion is relative - was to accept that extension must have
a substance to support it, but that this support is not matter but space -
indeed, absolute space. From this point on, such arguments form a
central element in the absolute/relative debate.

*It goes without saying that the relationist would look elsewhere in Alice for the correct
characterization of attributes - to Tweedledum and Tweedledee: the important thing is the
persistent correlation, the fact that they always appear together.
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One of the ironies about the law of inertia is the tremendous success it

achieved despite having such seemingly dubious foundations. It must
have corresponded to some deep instinct of the seventeenth century
mind; how else can one explain the fact that both Galileo and Descartes
were instinctively ready to speak about motion taking place in a straight
line and seem to have sensed no feeling that any sort of epistemological
clarification is called for? The law of inertia was used in practice for many
years before the real dilemma it posed became fully apparent. After
Descartes' Principles, and despite its crass incompatibility with Cartesian
relativism, it seems very soon to have established itself as the foundation
of the burgeoning science of mechanics. Galileo had already
demonstrated the immense practical value of such a law without,
however, elevating it to any particular pre-eminence. Descartes showed
how attractive it was to take the law, admittedly still formulated in two
parts, as the very foundation of the theory of motion. Evidence of its
complete triumph in this role and rapid adoption can be seen in its
acceptance by Huygens and in the reference to it by More (p. 476) as 'that
prime Mechanicall law of motion persisting in a straight line'.

One can see in a way how it happened. There is first of all the instinctive
prejudice pointed out by Maier (p. 48). But clearly very important was also
the thrust toward mathematization of motion; this sits very uneasily with
a thoroughgoing relativity, or at least it does if one selects a particular
body and wishes to describe its motion. Such an approach was inevitable
in the early days of the science. It is probable that the millennial history of
astronomy here left its mark. The fixed stars having exhibited absolutely
no motion among themselves throughout the entire history of astronomy,
the motion of each individual planet against the background of the stars
was something with an almost concrete reality. Astronomy always led the
way. Thus, as astronomy, the problem of the planets finally solved,
moved onto new problems, motionics picked up its cast-off swaddling
clothes and likewise sought to track bodies. Initially, the earth served as a
more or less adequate frame, but both Galileo (theory of the tides) and
Descartes (vortex theory of planetary motion) advanced into territory in
which the earth was clearly perceived as inadequate, not to say irrelevant.
But this was happening at just the time that the sphere of the fixed stars
was itself being dissolved (in the mind at least - Halley's discovery of the
proper motions of the stars was still nearly a century ahead). Motionics,
inherited the idea of quantitative tracking but without the backcloth on
which to do it. There was nothing for it: space had to fill the breach.

Reassurance must have come from the fact that locally at least it always
seemed to make sense to speak of motion taking place along a straight
line. In this way, the immediate terrestrial environment was extrapolated
to the entire universe. Relationists could see this as a late form of the
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flat-earth fallacy. Motion when observed locally and in the absence of
disturbances appears to be straight, uniform, and quite independent of
the bodies in the universe. The law of inertia was simply extrapolation
of this local straightness and uniformity without limit, just as extension of
the apparent local flatness of the ground gave rise to the flat earth.

Closely related to this was the phenomenon of centrifugal force and the
role played in the discovery of the law of inertia by the stone whirled in a
sling. For although the empirical reality of a stone, sling, and a boy David
whirling it is that the overall process can be decomposed into the motions
of all the individual parts involved relative to all the other observable
objects in the universe, hardly anyone is likely to conceive it in that way.
Attention is automatically concentrated on the circular path of the stone
prior to its release, and all the attendant details are abstracted away. The
circle remains suspended in our mind's eye and we instinctively embed it
and the tangent to it in space, without which an ideal (mathematical)
circle cannot be conceived.

It is worth pointing out that the very possibility of this happening is
actually a consequence of the law of inertia itself. This, in fact, was
Galileo's great insight - the explanation of why we observe no trace of the
earth's rotation. As he noted, the explanation for the stability of our
immediate environment is that all the bodies around us share in the same
basic motion - with respect to what is immaterial provided only we all
share that one common motion. Thus, boy David can just as well stand
upon the deck of a ship coursing over the seas and whirl his sling with as
deadly effect as he did in the desert before Goliath.

The very success of the Galilean explanations for the nonmanifestation
of the earth's rotation has an uncomfortable converse. The exquisite
cameo acted out in the cabin of the Galilean galley shows us butterflies
and candles, not the story of how the cameo itself comes to be. We who sit
and have our existence in these pockets of local stability, these havens of
order coursing through the restless ruins of the Pythagorean cosmos that
Descartes laid waste, are singularly ill-placed to conclude from the local
order observed in a particular local frame the law that determines the
motion of the frame itself. It is a bit like trying in mathematics to deduce a
function from the first term of its Taylor expansion. Of course it then looks
uniform and linear - and 'clear and distinct'.

There is a curious confirmation of this in the mistake made by Mach,
mentioned in Sec. 7.4 on p. 378. As we saw in the chapter on Galileo, the
existence of the distinguished frames of reference in the original formula-
tion of 'Galilean invariance' had a 'Machian' explanation of sorts: they
were the frames moving over the surface of the earth, never leaving their
'proper place' within the perfectly ordered cosmos on which Galileo laid
such stress. But in the Discorsi Galileo, while still retaining his concept of
circular inertia, talked exclusively about phenomena 'on the tangent
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plane' to the earth, i.e., phenomena in which the curvature of the earth
could be ignored. This led Mach to assume automatically that Galileo was
speaking of rectilinear inertia in space when in fact he had in mind circular
inertia about the earth.

In thus misunderstanding Galileo, Mach, who at least partially granted
his error10 when it was pointed out by Wohlwill,11 was a victim of the
flat-earth fallacy. The moral of the story is clear: extrapolate at your peril.

To conclude this section: it is amusing to reflect that, at the end of the
debate initiated by Descartes' espousal of relativism, More (and others)
had developed, and Newton took over, concepts of space and motion that
did not differ in any essentials from the intuitive concepts Descartes
accepted unquestioningly at the time he wrote The World. Thus, 20 years
after the publication of the Principles of Philosophy, the concept of motion
was apparently back where it had been before the dramatic intervention
of the Inquisition. That this is true in essence is confirmed by the fact that
throughout the entire diversion through the relational phase the first law
of motion remained quite unchanged. In the 'prime Mechanicall law of
motion' the uniformity and rectilinearity - concepts that are meaningless
in Cartesian relativism - were never questioned.

The importance of the diversion was that it sowed the seed of doubt,
even though germination occurred only centuries later.

11.2. Newton: general comments

And so we come to Newton. The surviving manuscripts permit, I believe,
a reasonably accurate reconstruction of the development of Newton's
standpoint in dynamics. His detailed early study of Descartes' Principles
is well documented; some early acquaintanceship with Galileo is beyond
doubt.12 Indeed, one finds it hard to believe that he did not 'devour' the
Dialogo at much the same time as the Principles. He also studied Gassendi,
and some of his early formulations of the concepts to be used in studying
motion suggest an influence (at least in wording) from that quarter (see
Westfall13).

I suggest that his initial interest was a practical one rather than an
immediate concern with the foundational concepts. This is the picture
that emerges from the dynamical entries in the Waste Book, in which he
solves a succession of practical problems one after another. At that stage
he seems to have worked a bit like Galileo, making just so many premises
as sufficed to solve the problem in hand. He solved most of them using
just four principles: that the primary dynamical quantity is motion
(understood in the technical sense as the product of bulk and directed
speed), that bodies move uniformly in straight lines unless disturbed,
that collisions are governed by the law of the 'equall mutation of the
motion', and, finally, that force causes and is measured by the deviation
from inertial motion.
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It was almost* inevitable that once Newton felt obliged, under the
pressure of Cartesian relativism, to clarify his conceptual notions, the
concepts of absolute space and time would emerge. This was dictated by
the simple fact that Newton, like Galileo, the one mentor he freely
acknowledged in dynamics, solved all his problems as geometrical problems
on a piece of paper. The elements with which he worked were right lines,
circles, and ellipses. Where else can they be described but in Euclidean
space and what is the sheet of paper but its two-dimensional reification?
Just as characteristic was the way in which he embedded time into space
and thereby made it amenable to geometrization. In his proof of the area
law, the same straight line that represents the motion in space of the body
simultaneously represents the uniform flow of time. Tempus is a right line.

No one who has successfully solved great problems will lightly discard
the most basic of the concepts that made the solution possible. Very
revealing in this connection is the review that Einstein made of his own
theory, general relativity, when he began to suspect that it did not
implement Mach's Principle. He commented14 that the theory 'rests on
three principal points of view': (a) the relativity principle, (b) the
equivalence principle, (c) Mach's Principle. Now 'principle (b) was the
point of departure of the whole theory and entailed the setting up of
principle (a); it certainly cannot be abandoned if the basic ideas of the
theoretical system are to be retained'. Thus it was that Einstein, when it
came to the crunch, was fully prepared to jettison Mach's Principle rather
than abandon 'the basic ideas of the theoretical system'.

If Einstein was prepared to abandon one of his most cherished ideas in
preference to tinkering with the elements of a working dynamical system,
how much less enthusiasm will Newton have had for flirting with
relativism, a doctrine that does not seem to have played any part in his
early solutions of dynamical problems?

To substantiate this last assertion, that Cartesian relativism played no
role in Newton's discoveries or his basic approach to problem solving, it
should first of all be repeated that there is nothing in Cartesian relativism
that remotely resembles the extremely precise relativity principle that
plays such a large part in Huygens' mechanics. The relativity principle
has a precise empirical content that clearly entirely escaped Descartes; by
his own account, he never bothered himself with the detailed study of
motion that would have been necessary to discover it. It must also be
emphasized again that inertial motion of undisturbed bodies is by no
means synonymous with the relativity principle. Inertial motion is, of
course, Galileo invariant; that was indeed the entire point of its
introduction by Galileo to explain the nonobservation of effects of the
earth's motion. Although implicit in the cabin cameo that Galileo
* This qualification is necessary if for no other reason than that Huygens' development was
not identical to Newton's. However, as we shall see in Chap. 12, Huygens was confused.
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describes, there is no a priori reason why interactions should possess the
same Galilean invariance as inertial motion. They might well be lacking
that precise invariance, which was in fact what Descartes' intuition led
him to believe. (Descartes' laws of nature are the same everywhere and at
all times but are not invariant on the transition to frames of reference in
uniform motion relative to one another.) As it happens, the interactions
in Newtonian dynamics turn out to have an invariance group much larger
than the Galilean transformations. Indeed, the central problem of Mach's
Principle is to try and understand how pure inertial motion and the
interactions as observed in nature can come to have such different
invariance groups. This will be one of the main topics in Vol. 2.

We can come in at this same group of questions from a different tack.
One of the keys to understanding a great part of what Newton has to say
in the Scholium on absolute, space, time, and motion is the fateful
expression in Descartes' Principles, §11.29, already mentioned in the
chapter on Descartes, in which he asserts that 'transference is effected
from the vicinity, not of any contiguous bodies, but only of those which we
consider to be at rest' (Descartes' italics). Now although there are several
rather contradictory things about Descartes' 'official' relativism (i.e., all
that formal theory of the 'true' nature of motion which he invented for the
sake of the Inquisition), one rather reasonable interpretation of this
statement is that we can elect to describe motion by means of a frame of
reference in a completely arbitrary state of motion, i.e., we can choose to
study the motion of some particular body by referring it to some other
body which, since its choice is entirely up to us, can therefore be in an
arbitrary state of motion. It is evident from the Scholium (as we shall see)
that this is precisely how Newton interpreted Descartes. Although
neither Newton nor Descartes was in a position to express it thus in
modern terms, one could say that implicit in Descartes' assertion was the
idea that the laws of motion are invariant with respect to a group of
transformations containing infinitely many parameters; for a body
moving arbitrarily can be described by a function of the time represented
by a Taylor expansion with infinitely many parameters (coefficients).

Now as regards the dynamical scheme which Newton put together and
used with such dramatic effect, it is invariant, with respect, so to speak,
to only the zeroth and first parameters of this Taylor expansion - with
respect to arbitrary displacements in space (arbitrary relocation of the
origin and arbitrary reorientation of the coordinate axes) and with respect
to transformation to another frame in a state of uniform rectilinear motion
with respect to the first. This state of affairs can be contrasted with the two
quite different schemes that Newton found in Descartes' Principles. On
the one hand, the 'official' relativism designed for the Inquisition
corresponds to invariance with respect to infinitely many parameters,
while the concrete concept of morion and interactions that Descartes
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actually used (and Newton instinctively adopted in so far as it did not
blatantly contradict reality, as in collision theory) has invariance only with
respect to the zeroth parameter; there is not even Galilean invariance.

But what did Newton think about Galilean invariance? The evidence of
what he wrote, published and unpublished, suggests he only became
fully aware of it comparatively late and that he never saw it as one of the
most fundamental features of the world. As we saw in Chap. 10, it
appeared briefly for the first time as a law, only to be rapidly (and
invalidly) transformed into a corollary. The contrast with Huygens'
prominent (but as yet unpublished) use of the relativity principle in his
work on collisions is very striking. It is also interesting to compare
Newton's formulation of the relativity principle with Huy gens' in
Chap. 9. Newton clearly implies (p. 571) that the state of rest has a real
meaning ('whether the space in question rests'), whereas Huygens (p.
462) uses vaguer expressions to enunciate the principle ('has some further
common motion').

A point worth making is that Galilean invariance did not completely
undermine the entire edifice of Newton's conceptual scheme. After all, he
persuaded himself that it was in fact a simple consequence of his laws of
motion (though his very brief proof is itself intriguing in revealing that he
did automatically believe the forces of interaction to be purely relative and
directly derivable from the relative configuration of the matter in the
world, putting them thus in a singular contrast to inertial motion, which
is totally disengaged from the material contents of the world). The
relativity principle is undoubtedly compatible with Newton's scheme,
and thus Newton could have argued that motion through absolute space
is perfectly real even though the specific structure of the laws of motion
make it impossible to observe an overall uniform motion.

Whatever the truth on this particular point, I believe that throughout
his life Newton believed instinctively in the reality of motion through
space and that in the Scholium, and also in the much earlier and
unpublished De gravitatione, which we shall discuss shortly, he aimed in
essence to show the nonsensicality of the notion that the laws of motion
are invariant with respect to a transformation group containing infinitely
many parameters (to use this anachronistic but convenient mode of
expression). To the extent that relativism contains infinitely many
such parameters, while Newtonian dynamics contains only the three
corresponding to uniform motions in three mutually perpendicular
directions (ignoring here the parameters corresponding to relocation of
the origin and reorientation of the axes), Newton was clearly far nearer
the truth than Descartes. Moreover, his great grasp of dynamics held him
back from asserting anything that could definitely be said to be
categorically wrong; thus, he did not repeat a mistake such as Galileo had
made with the tides. Nevertheless, the failure to face up to the fact of
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Galilean relativity is one of the defects of the Scholium; before we are
finished we shall find two more. But it is now time to consider De
gravitatione.

11.3. Newton's early discussion of motion and De gravitatione

The dynamical entries in the Waste Book contain few explicit statements by
Newton on the subject of the basic framework within which he conceived
motion. However, as has been argued at some length, he clearly worked
instinctively in an intuitive (absolute) space, just like Galileo and the
pre-Inquisition Descartes. The first really clear statement of his overall
position comes in the remarkable Laws of Motion paper, which appears to
be only slightly later in date than the Waste Book entries. The opening of
this paper is as follows:15

The Laws of Motion
How solitary bodys are moved

Sect. I. There is an uniform extension space or expansion continued every way
with out bounds: in which all bodys are each in severall parts of it: which parts of
space possessed and adequately filled by them are their places. And their passing
out of one place or part of space into another, through all the intermediate space
is their motion. Which motion is done with more or lesse velocity accordingly as
tis done through more or lesse space in equal times or through equall spaces in
more or lesse time. But the motion it selfe and the force to persevere in that motion
is more or lesse accordingly as the factus of the bodys bulk into its velocity is more
or lesse. And that force is equivalent to that motion which it is able to beget or
destroy.

The opening sentences describe almost exactly the framework in which
Descartes operates in The World when he is formulating his laws of
motion. Particularly striking is the more or less complete identity between
Newton's sentence beginning 'And their passing . . .' and the key
sentence in The World (see p. 438) in which Descartes speaks of 'motion by
which bodies pass from one place to another and successively occupy all
the spaces in between'. It was, of course, precisely this concept that
Descartes later rejected in the Principles when discussing the formal
theory of motion, but nevertheless continued to use implicitly in the
formulation of his laws of motion. For understanding the thrust of much
of what Newton has to say about space and motion, it is important to note
that Descartes explicitly rejects the central thesis of The World in the
Principles, where in §11.24 he condemns the idea that movement 'as
commonly interpreted, is nothing other than the action by which some body
travels from one place to another' (Descartes' italics). The expression 'as
commonly understood', which is also rendered16 'in the vulgar sense', is
almost certainly the reason why Newton employs the expression 'the
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common people' in the opening of the Scholium in the Principia. For he is
intent, not without a certain malicious pleasure, on turning the tables on
Descartes and demonstrating that the opinion which Descartes describes
as vulgar or common is the one that must be accepted as true.

It is therefore most important to distinguish between the two Cartesian
incarnations: the instinctive Descartes of The World, still present implicitly
in all that part of the Principles that deals specifically with the laws of
motion, and the Descartes who espoused relativism to please Rome. It is
important to bear in mind that for a reader such as Newton Descartes'
Principles provided no internal clue as to the origin of the crass
contradiction between the two concepts of motion - one explicit and
riddled with obvious difficulties, the other implicit and at least self-
consistent - that exist side-by-side in the work.

And it was the second concept that Newton instinctively adopted.
From the earliest pages of the Waste Book through to the completion of the
Principia, all of Newton's work on dynamics was based on the concept,
which he must have taken from Descartes, of uniform rectilinear motion
of undisturbed bodies. The main question at issue is: uniform and
rectilinear with respect to what? There is, however, a less important issue,
with which we deal first - the conception that Newton had of the cause of
the uniform rectilinear motion. Here there does seem to have been some
movement on his part. For as we have seen the young Newton appears to
have conceived this motion very much in the manner of medieval impetus
theory, whereas the mature Newton moved more to the Cartesian
standpoint of regarding uniform rectilinear motion as a natural state
which will persist of its own accord without the intervention of any
external or internal agency. However, this did not alter any of the
mathematical consequences of Newton's theory. It did not touch its
structure and was purely cosmetic. The mathematics - and hence the
objective content - of an existing theory is indifferent to the metaphysics
through which it is interpreted (though a change in the metaphysics may
later induce a real change in the theory).

Now to the real question: with respect to what is the uniform rectilinear
motion defined? Galileo, the pre-Inquisition Descartes, and Newton all
had the same instinctive response - it is with respect to space: absolute
space. If such a space is granted, the formulation of the law of inertia
presents no problem. This is still true even when allowance is made for
the Galileo-Huygens relativity principle. The unique absolute space is
then replaced by a family of spaces, in each of which any given
undisturbed body moves uniformly and rectilinearly. Thus, in Newton's
spaced-based concept of motion, the only ambiguity comes from the
existence of an equivalent family of frames of reference, in all of which the
motion of any particular undisturbed body is uniform and rectilinear. If its
motion is straight and uniform in one such frame of reference, it is straight
and uniform in all the other frames of the family. This is why Galileo-Huygens
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relativity was something of an embarrassment to Newton but in no way
threatened to undermine the essential structure of his dynamics.

The situation is quite different if we take Cartesian relativism seriously.
For according to Descartes we can elect to describe motion by any bodies we
care to choose. But this brings in a quite disastrous ambiguity. For a motion
that happens to be straight and uniform with respect to one particular set
of reference bodies will certainly not be so with respect to others whose
selection is arbitrary. Whereas the law of inertia based on space is
invariant on the transition between the Galileo-Huygens equivalent
frames, a freedom which is characterized by three parameters, there is not
the remotest chance of making the law when based on material bodies
invariant in an analogous manner because there is no restriction imposed
on the bodies. The freedom in this case is characterized by infinitely many
parameters. It was this latter suggestion, the post-Inquisition incarnation
of Descartes (so incongrously juxtaposed in the Principles with the pre-
Inquisition incarnation), which Newton attacked so violently; and he
attacked it essentially from the standpoint of the pre-Inquisition
Descartes.

Unlike Westfall,171 do not see much evidence for significant change on
Newton's part with regard to the most fundamental concepts of his
dynamics (that is, apart from his wholehearted adoption of centripetal
force from about 1680). From the start the law of inertia was the basis of
his dynamics and continued adherence to that, coupled with the
challenge to attack the problem of the planets, enforced the appearance of
the specific centripetal force concept. Unlike Huygens he does not seem
ever to have taken thoroughgoing relativism as a serious proposition for
the basis of a dynamical theory. He was from the start instinctively and
deeply opposed to the infinite number of parameters with respect to
which dynamics would be invariant that is implicit in Cartesian
relativism. It seems to me that there was a growing awareness that three
parameters (to accommodate Galilean invariance) would have to be
granted, but the invective against Descartes was all against the proposi-
tion that infinitely many should be granted. And as regards the status of
inherent force and the law of inertia, the change here was also
comparatively slight, the mature Newton coming to recognize that
inherent force serves not much purpose between interactions and is really
only manifested as a resistance to change of the inertial state.*

* I should like to take this opportunity to express especial thanks to Prof. Westfall for
extended correspondence on the differences noted above and in Chap. 10. It seems to me
that the most substantial point of disagreement remaining between us relates to the final
sentence of the above paragraph and similar comments earlier. Westfall believes the change
to which I refer was highly important because 'Newton could not fit circular motion into his
dynamics satisfactorily until he made the switch, because in circular motion the continual
exercise of impressed force produced no change in the internal force bearing the body
forward'. As explained in Sec. 10.5, I believe that Newton's treatment of the problem of
circular motion was in essence correct from the beginning, so that no significant change
occurred.
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So now to the paper De gravitatione et aequipondiofluidorum, named by its
opening words, which suggest that it will be about weight and buoyancy
but which was broken off before it got anywhere near a detailed
discussion of these topics. What survives is actually a violent attack on
Descartes' post-Inquisition theory of space, matter, and motion. Unlike
the Scholium in the Principia, in which Newton did not deign to mention
Descartes' name, employing instead a coded language (which has helped
to confuse the issue), De gravitatione attacks Descartes head-on and at
times goes into detailed discussion of individual articles of the Principles.
The paper, which was discovered comparatively recently (1940s), is
certainly not earlier than 1668 but certainly not much after that date either.
As the title indicates, it was written in Latin. The extracts which follow are
taken from the translation in Hall and Hall.18

Newton commences with some definitions that could easily have come
from The World:

Definitions

The terms quantity, duration and space are too well known to be susceptible of
definition by other words.

Def. 1. Place is a part of space which something fills evenly.
Def. 2. Body is that which fills place.
Def. 3. Rest is remaining in the same place.
Def. 4. Motion is change of place.

After a few amplifications, Newton turns his guns squarely on
Descartes:

For the rest, when I suppose in these definitions that space is distinct from body,
and when I determine that motion is with respect to the parts of that space, and
not with respect to the position of neighbouring bodies, lest this should be taken
as being gratuitously contrary to the Cartesians, I shall venture to dispose of his
fictions.

After a summary of the most important propositions from Part II of
Descartes' Principles, Newton launches the attack:

Indeed, not only do its absurd consequences convince us how confused and
incongruous with reason this doctrine is, but Descartes by contradicting himself
seems to acknowledge the fact. For he says that speaking properly and according
to philosophical sense the Earth and the other Planets do not move, and that he
who declares it to be moved because of its translation with respect to the fixed stars
speaks without reason and only in the vulgar fashion (Part III, Art. 26, 27, 28, 29).
Yet later he attributes to the Earth and Planets a tendency to recede from the Sun
as from a centre about which they are revolved, by which they are balanced at their
[due] distances from the Sun by a similar tendency of the gyrating vortex (Part III,
Art. 140). What then? Is this tendency to be derived from the (according to
Descartes) true and philosophical rest of the planets, or rather from [their]
common and non-philosophical motion?
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We have here already the germ of the famous distinction made in the
Scholium between absolute and relative rotation.

Newton is merciless in exposing the flagrant inconsistency of Descartes'
arguments (Newton seems not at all to have realized what had got
Descartes into his contortions). Turning to Descartes' discussion of
comets, Newton says:

The philosopher is hardly consistent who uses as the basis of Philosophy the
motion of the vulgar which he had rejected a little before, and now rejects that
motion as fit for nothing which alone was formerly said to be true and
philosophical, according to the nature of things. And since the whirling of the
comet around the Sun in his philosophic sense does not cause a tendency to
recede from the centre, which a gyration in the vulgar sense can do, surely motion
in the vulgar sense should be acknowledged, rather than the philosophical.

Then follows quite a lot more in the same vein. We come after a while
to a passage that expresses Newton's deep conviction in the reality of
motion:

For the motions that really are in any body, are really natural motions, and thus
motions in the philosophical sense and according to the truth of things, even
though he contends that they are motions in the vulgar sense only.

Newton now turns his wrath on the idea that the immediately con-
tiguous bodies play any significant role in defining or determining the
motion of a body:

But besides this, from its consequences we may see how absurd is this doctrine of
Descartes. And first, just as he contends with heat that the Earth does not move
because it is not translated from the neighbourhood of the contiguous aether, so
from the same principles it follows that the internal particles of hard bodies, while
they are not translated from the neighbourhood of immediately contiguous
particles, do not have motion in the strict sense, but move only by participating in
the motion of the external particles: it rather appears that the interior parts of the
external particles do not move with their own motion because they are not
translated from the neighbourhood of the internal parts: and thus that only the
external surface of each body moves with its own motion and that the whole
internal substance, that is the whole of the body, moves through participation in
the motion of the external surface. The fundamental definition of motion errs,
therefore, that attributes to bodies that which only belongs to surfaces, and which
denies that there can be any body at all which has a motion peculiar to itself.

This passage looks forward to the famous bucket experiment. It shows,
as hinted in the comment on pp. 444-5, that a main aim of the bucket
experiment was to discredit the notion that motion is determined by
contiguous matter. This was, in fact, one way in which Descartes'
contortions resulted in a distortion of the presentation in the Scholium.
What I mean by this is that Newton did not really have a worthy opponent
with whom to contend when he wrote the Scholium. As Berkeley,
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Leibniz, and above all Mach were to demonstrate later, a far more cogent
case for the relational nature of motion could be made than the confused
arguments Descartes had advanced. Descartes was such an easy target to
hit, Newton was not fully extended.

But to continue with Newton. He has demonstrated the absurdity of
determining motion by contiguous bodies. He now considers the
difficulties involved in referring motion to distant bodies:

Secondly, if we regard only Art. 25 of Part II, each body has not merely a unique
proper motion but innumerable ones, provided that those things are said to be
moved properly and according to the truth of things of which the whole is
properly moved. And that is because he understands by the body whose motion
he defines all that which is translated together, and yet this may consist of parts
having other motions among themselves: suppose a vortex together with all the
Planets, or a ship along with everything within it floating in the sea, or a man
walking in a ship together with the things he carries with him, or the wheel of a
clock together with its constituent metallic particles. For unless you say that the
motion of the whole aggregate cannot be considered as proper motion and as
belonging to the parts according to the truth of things, it will have to be admitted
that all these motions of the wheels of the clock, of the man, of the ship, and of the
vortex are truly and philosophically speaking in the particles of the wheels.

We now come to the heart of Newton's contentions. I give the following
passage in full and then make some comments:

From both of these consequences it appears further that no one motion can be said
to be true, absolute and proper in preference to others, but that all, whether with
respect to contiguous bodies or remote ones, are equally philosophical - than
which nothing more absurd can be imagined. For unless it is conceded that there
can be a single physical motion of any body, and that the rest of its changes of
relation and position with respect to other bodies are so many external
designations, it follows that the Earth (for example) endeavours to recede from the
centre of the Sun on account of a motion relative to the fixed stars, and endeavours
the less to recede on account of a lesser motion relative to Saturn and the aetherial
orb in which it is carried, and still less relative to Jupiter and the swirling aether
which occasions its orbit, and also less relative to Mars and its aetherial orb, and
much less relative to other orbs of aetherial matter which, although not bearing
planets, are closer to the annual orbit of the Earth; and indeed relative to its own
orb it has no endeavour, because it does not move in it. Since all these endeavours
and non-endeavours cannot absolutely agree, it is rather to be said that only the
motion which causes the Earth to endeavour to recede from the Sun is to be
declared the Earth's natural and absolute motion. Its translations relative to
external bodies are but external designations.

The first comment to be made is to draw attention to Newton's
passionate belief that there must be 'one motion' that is 'true, absolute
and proper'. I think this desire is closely related to comments I made in an
earlier chapter (p. 401) about the difficulties which Galileo had in



Newton's early discussion of motion 615

formulating concepts of motion. Motionics and dynamics started out as a
study of the motion of individual bodies (note that Newton's Laws of Motion
paper carried the subtitle 'How solitary bodys are moved'). Both Galileo
and Newton were looking for laws that describe individual motions of
individual bodies. This formulation of the problem more or less necessitated
the introduction of absolute space, especially once the overriding
importance of inertial motion had been recognized.

A second comment is that the above passage is remarkable for anticipat-
ing and rejecting Mach's idea that rotation relative to distant matter rather
than space might in some way generate the centrifugal forces we observe
locally. This sort of argument is not, in fact, repeated in the Scholium but
it is interesting to note that Newton at least considered the possibility. It
should however be noted that Newton's arguments are formal rather
than physical. What I mean by this is that if local centrifugal force were to
be generated by some physical mechanism there is no reason to suppose
that all the 'endeavours and non-endeavours' would have to agree
absolutely; for each rotating planet and orb would make their own
contribution and the net effect would be obtained by integrating all such
contributions. It is clear that such a manner of thinking was alien to
Newton. In this respect he was completely geometrokinetic. He could just
about contemplate the idea that inertial motion might be defined relative
to other matter but had no sense of a physical determination. In fact, in
De gravitatione he still clearly inhabited the world of the prevailing
orthodoxy - the mechanical philosophy in which the only interaction
between bodies is through direct contact.

The final comment is a warning that the 'translations' in the final
sentence (and which also come again later) are not on any account to be
confused with the specifically rectilinear translatory motions of the type
encountered in Galileo-Huygens transformations, i.e., in this sentence
Newton is not contrasting uniform rectilinear motion with circular
motion; he just means any change in position relative to external bodies.

If the passage just quoted did not find a reflection in the Scholium, the
ideas that immediately follow figure there very prominently, albeit in a
rather different form. If motion is relative to some particular chosen
reference body, it is only necessary to apply to the reference body a force,
and thereby move it, for an apparent motion to be generated in the body
under study although it is clear that nothing has happened to it. For
example:

It follows from the Cartesian doctrine that motion can be generated where there is
no force acting. For example, if God should suddenly cause the spinning of our
vortex to stop, without applying any force to the Earth which could stop it at the
same time, Descartes would say that the Earth is moving in a philosophical sense
(on account of its translation from the neighbourhood of the contiguous fluid),
whereas before he said it was resting, in the same philosophical sense.
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Newton gives several more examples in similar vein. This part of his
onslaught terminates in a passage which shows how clearly he perceived
the crass contradiction between the two Cartesian incarnations: i.e., how
the 'official line' of the post-Inquisition Principles is quite incompatible
with the pre-Inquisition laws of motion as they are nevertheless presented
in the Principles. Newton points out that Descartes' own concepts of
motion make a mockery of the Cartesian law of inertia, the 'prime
Mechanicall law of motion':

Lastly, that the absurdity of this position may be disclosed in full measure, I say
that thence it follows that a moving body has no determinate velocity and no
definite line in which it moves. And, what is worse, that the velocity of a body
moving without resistance cannot be said to be uniform, nor the line said to be
straight in which its motion is accomplished. On the contrary, there cannot be
motion since there can be no motion without a certain velocity and determination.

Let us now look at the arguments Newton gives to support his
contention that the Cartesian laws of motion contradict Cartesian
relativism. They also show how deeply Newton was influenced by an
insight which he almost certainly got from Descartes, or at least from the
prevailing mechanical orthodoxy, according to which all matter is in
motion. I am referring to the words in the following passage which I have
italicized:

But that this may be clear, it is first of all to be shown that when a certain motion
is finished it is impossible, according to Descartes, to assign a place in which the
body was at the beginning of the motion; it cannot be said whence the body
moved. And the reason is that according to Descartes the place cannot be defined
or assigned except by the position of the surrounding bodies, and after the
completion of a certain motion the position of the surrounding bodies no longer
stays the same as it was before. For example, if the place of the planet Jupiter a year
ago be sought, by what reason, I ask, can the Cartesian philosopher define it? Not
by the positions of the particles of the fluid matter, for the positions of these
particles have greatly changed since a year ago. Nor can he define it by the
positions of the Sun and fixed stars. For the unequal influx of subtle matter
through the poles of the vortices towards the central stars (Part III, Art. 104), the
undulation (Art. 114), inflation (Art. Ill) and absorption of the vortices, and other
more true causes, such as the rotation of the Sun and stars around their own
centres, the generation of spots, and the passage of comets through the heavens,
change both the magnitude and positions of the stars so much that perhaps they
are only adequate to designate the place sought with an error of several miles; and
still less can the place be accurately defined and determined by their help, as a
Geometer would require. Truly there are no bodies in the world whose relative positions
remain unchanged with the passage of time, and certainly none which do not move in
the Cartesian sense; that is, which are neither transported from the vicinity of
contiguous bodies nor are parts of other bodies so transferred. And thus there is
no basis from which we can at the present pick out a place which was in the past,
or say that such a place is any longer discoverable in nature. For since, according
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to Descartes, place is nothing but the surface of surrounding bodies or position
among some other more distant bodies, it is impossible (according to his doctrine)
that it should exist in nature any longer than those bodies maintain the same
positions from which he takes the individual designation. And so, reasoning as in
the question of Jupiter's position a year ago, it is clear that if one follows Cartesian
doctrine, not even God himself could define the past position of any moving body
accurately and geometrically now that a fresh state of things prevails, since in fact,
due to the changed positions of the bodies, the place does not exist in nature any
longer.

Now as it is impossible to pick out the place in which a motion began (that is,
the beginning of the space passed over), for this place no longer exists after the
motion is completed, so the space passed over, having no beginning, can have no
length; and hence, since velocity depends upon the distance passed over in a
given time, it follows that the moving body can have no velocity, just as I wished
to prove at first. Moreover, what was said of the beginning of the space passed
over should be applied to all intermediate points too; and thus as the space has no
beginning nor intermediate parts it follows that there was no space passed over
and thus no determinate motion, which was my second point. It follows
indubitably that Cartesian motion is not motion, for it has no velocity, no
definition, and there is no space or distance traversed by it.

I have given this passage in full since it is another of the parts of De
gravitatione that do not really reappear in the Scholium, which is often
very condensed and does not go fully into the difficulties which Newton
perceived in Cartesian relativism. It shows, once and for all, that
relativism and a meaningful statement of the law of inertia as formulated
by Descartes himself are simply incompatible.

Newton concludes this part of the discussion with the statement of the
inescapable need for absolute space:

So it is necessary that the definition of places, and hence of local motion, be
referred to some motionless thing such as extension alone or space in so far as it is
seen to be truly distinct from bodies.

Without such a concept, he could see no way of making sense of
Descartes' law of inertia, nor, importantly, all the numerous significant
results in dynamics that he already had to his own credit.

11.4 De gravitatione: Newton's discussion of space and body

Having arrived at his fundamental conclusion that motion must 'be
referred to some motionless thing such as extension alone or space',
Newton proceeds to analyze the concepts of extension and space. He feels
it is incumbent on him to point out, once again, the error of Descartes, this
time in asserting that we cannot form a concept of spatial extension that is
in any way different from the concept of material extension. He announces
that he will explain what 'extension and body are, and how they differ



618 Newton II: absolute or relative motion?

from each other'. For he considers it 'most important to overthrow [that
philosophy] as regards extension, in order to lay truer foundations of the
mechanical sciences'.

Newton begins by declining to define extension as either 'substance or
accident or else nothing at all'. For 'it has its own manner of existence
which fits neither substance nor accidents'. Newton lists several reasons
why it is difficult to conceive extension as a substance and then comes to
this very characteristic passage:

we can clearly conceive extension existing without any subject, as when we may
imagine spaces outside the world or places empty of body, and we believe
[extension] to exist wherever we imagine there are no bodies, and we cannot
believe that it would perish with the body if God should annihilate a body, it
follows that [extension] does not exist as an accident inherent in some subject.
And hence it is not an accident. And much less may it be said to be nothing, since
it is rather something, than an accident, and approaches more nearly to the nature
of substance. There is no idea of nothing, nor has nothing any properties, but we
have an exceptionally dear idea of extension, abstracting the dispositions and
properties of a body so that there remains only the uniform and unlimited
stretching out of space in length, breadth and depth. And furthermore, many of
its properties are associated with this idea; these I shall now enumerate not only
to show that it is something, but what it is.

The italics in this passage are mine. The words so indicated characterize
Newton's deepest conviction. The properties that Newton lists as
belonging to extension show how remarkably 'substantial' it appeared to
him. It really is a perfectly uniform and translucent block of glass
extending from infinity to infinity and has all the properties of such a
block of glass except the glass! As we see in the following extracts:

1. In all directions, space can be distinguished into parts whose common limits
we usually call surfaces; and these surfaces can be distinguished in all directions
into parts whose common limits we usually call lines; and again these lines can be
distinguished in all directions into parts which we call points. And hence surfaces
do not have depth, nor lines breadth, nor points dimension, unless you say that
coterminous spaces penetrate each other as far as the depth of the surface between
them, namely what I have said to be the boundary of both or the common limit;
and the same applies to lines and points. Furthermore spaces are everywhere
contiguous to spaces, and extension is everywhere placed next to extension, and
so there are everywhere common boundaries to contiguous parts; that is, there are
everywhere surfaces acting as a boundary to solids on this side and that; and
everywhere lines in which parts of the surfaces touch each other; and everywhere
points in which the continuous parts of lines are joined together. And hence there
are everywhere all kinds of figures, everywhere spheres, cubes, triangles, straight
lines, everywhere circular, elliptical, parabolical and all other kinds of figures, and
those of all shapes and sizes, even though they are not disclosed to sight. For the
material delineation of any figure is not a new production of that figure with
respect to space, but only a corporeal representation of it, so that what was
formerly insensible in space now appears to the senses to exist. . . .
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2. Space extends infinitely in all directions. For we cannot imagine any limit
anywhere without at the same time imagining that there is space beyond it. And
hence all straight lines, paraboloids, hyperboloids, and all cones and cylinders
and other figures of the same kind continue to infinity and are bounded
nowhere. . . .

3. The parts of space are motionless. If they moved, it would have to be said
either that the motion of each part is a translation from the vicinity of other
contiguous parts, as Descartes defined the motion of bodies; and that this is
absurd has been sufficiently shown; or that it is a translation out of space into
space, that is out of itself, unless perhaps it is said that two spaces everywhere
coincide, a moving one and a motionless one. Moreover the immobility of space
will be best exemplified by duration. For just as the parts of duration derive their
individuality from their order, so that (for example) if yesterday could change
places with today and become the later of the two, it would lose its individuality
and would no longer be yesterday, but today; so the parts of space derive their
character from their positions, so that if any two could change their positions, they
would change their character at the same time and each would be converted
numerically into the other. The parts of duration and space are only understood
to be the same as they really are because of their mutual order and position; nor
do they have any hint of individuality apart from that order and position, which
consequently cannot be altered.

4. Space is a disposition of being qua being. No being exists or can exist which
is not related to space in some way. God is everywhere, created minds are
somewhere, and body is in the space that it occupies; and whatever is neither
everywhere nor anywhere does not exist. And hence it follows that space is an
effect arising from the first existence of being, because when any being is
postulated, space is postulated. And the same may be asserted of duration: for
certainly both are dispositions of being or attributes according to which we
denominate quantitatively the presence and duration of any existing individual
thing. So the quantity of the existence of God was eternal, in relation to duration,
and infinite in relation to the space in which he is present; and the quantity of the
existence of a created thing was as great, in relation to duration, as the duration
since the beginning of its existence, and in relation to the size of its presence as
great as the space belonging to it.

Moreover, lest anyone should for this reason imagine God to be like a body,
extended and made of divisible parts, it should be known that spaces themselves
are not actually divisible, and furthermore, that any being has a manner proper to
itself of being in spaces. For thus there is a very different relationship between
space and body, and space and duration. For we do not ascribe various durations
to the different parts of space, but say that all endure together. The moment of
duration is the same at Rome and at London, on the Earth and on the stars, and
throughout all the heavens. And just as we understand any moment of duration
to be diffused throughout all spaces, according to its kind, without any thought of
its parts, so it is no more contradictory that Mind also, according to its kind, can
be diffused through space without any thought of its parts.

5. The positions, distances and local motions of bodies are to be referred to the
parts of space. And this appears from the properties of space enumerated as 1. and
4. above, and will be more manifest if you conceive that there are vacuities
scattered between the particles, or if you pay heed to what I have formerly said
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about motion. To that it may be further added that in space there is no force of any
kind which might impede or assist or in any way change the motions of bodies.
And hence projectiles describe straight lines with a uniform motion unless they
meet with an impediment from some other source. But more of this later.

6. Lastly, space is eternal in duration and immutable in nature, and this
because it is the emanent effect of an eternal and immutable being. If ever space
had not existed, God at that time would have been nowhere; and hence he either
created space later (in which he was not himself), or else, which is not less
repugnant to reason, he created his own ubiquity. Next, although we can possibly
imagine that there is nothing in space, yet we cannot think that space does not
exist, just as we cannot think that there is no duration, even though it would be
possible to suppose that nothing whatever endures. This is manifest from the
spaces beyond the world, which we must suppose to exist (since we imagine the
world to be finite), although they are neither revealed to us by God, nor known
from the senses, nor does their existence depend upon that of the spaces within
the world. But it is usually believed that these spaces are nothing; yet indeed they
are true spaces. Although space may be empty of body, nevertheless it is not in
itself a void; and something is there, because spaces are there, although nothing
more than that. Yet in truth it must be acknowledged that space is no more space
where the world is, than where no world is, unless perchance you say that when
God created the world in this space he at the same time created space in itself, or
that if God should annihilate the world in this space, he would also annihilate the
space in it. Whatever has more reality in one space than in another space must
belong to body rather than to space; the same thing will appear more clearly if we
lay aside that puerile and jejune prejudice according to which extension is
inherent in bodies like an accident in a subject without which it cannot actually
exist.

Note here particularly the reference in 5. to the law of inertia. From the
moment Newton encountered the concept of inertial motion (presumably
in Descartes or Gassendi) he does not seem to have ever wavered from his
belief in space and inertial motion within it as the prime law of nature. To
that extent his debt to Descartes (in his pre-Inquisition incarnation) was
very great. It is also worth noting that at this stage at least Newton seems
to have believed in a finite world in an infinite space. This is quite
interesting, since, as we shall see in Vol. 2, a completely relational theory
of motion can be constructed without too much difficulty for a world
conceived in this manner.

Otherwise I would just like to ask the reader to let these fairly extensive
passages from Newton work upon the mind. Newton expresses himself
with such marvellous clarity, it is a privilege to be able to step within his
mind and examine the workings of the intellect that, more than any other,
shaped the scientific view of the world. But there is a further purpose in
giving these passages at length. Concepts change. In barely more than a
century we have passed from a completely matter-based concept of
motion, as found in Copernicus and Kepler, to the space-based concept of
Newton. The pendulum will swing again. For all his pre-eminence,
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Newton does not represent the central position of the pendulum, the
point of equilibrium. He is, in fact, at one of the extremes.

Another remarkably interesting thing about Newton is the extent to
which, like the two other giants of dynamics, Galileo and Einstein, he
combined a very strongly aprioristic and rationalistic case of mind with an
almost equally strong empiricism. Descartes was, of course, the supreme
advocate of the rationalistic approach; he was convinced, as we have
seen, that all the essential concepts which we need to form a picture of the
world are implanted in the mind by God. Now, as regards the concepts of
space and time, Newton was every bit as rationalistic as Descartes. He
really did have complete confidence that his mind contained a perfect and
already formed concept of space and extension. As he said: 'We have an
exceptionally clear idea of extension/ But at the same time he had an
equally remarkable faith in empiricism. On several occasions in the
Principia he makes it clear that by intently examining nature as manifested
to us in the phenomena we can learn really fundamental things about the
way nature works. I have already mentioned his one-sentence character-
ization of what the Principia is all about. Newton's faith in the power of
empiricism finds its most remarkable expression in a remark that he made
at the end of his General Scholium on the nature of God which he added
to the second edition of the Principia, published in 1713. After the
discussion of the nature of God, Newton concludes with the sentence
(added19 as an afterthought as the book was going through the press):20

'And thus much concerning God; to discourse of whom from the appearances
of things, does certainly belong to Natural Philosophy' (my italics). Thus,
empiricism can even tell us things about the nature of God. This is a most
revealing and characteristic remark.

The division which Newton makes is clear and interesting. The con-
cepts of space and time belong to the rationalistic side of his thinking. But
as regards the nature and properties of matter he had a remarkably open
mind. One of his main charges against Descartes was that in claiming to
know a priori the essential properties of matter he was almost blasphem-
ously playing the role of God - that he was limiting the powers of God to
create matter with whatever essential properties he might care to choose.
Whereas Newton had no hesitation in saying that God had no alternative
to creating matter in space and time, he took a decidedly positivistic
attitude about matter and asserted that its inner secrets were hidden from
us. In the case of matter, all we could do was study its behaviour. Newton
begins his discussion on this subject with the following comment, which
it will be seen stands in a most marked contrast to the certainty of his
views about space:

Now that extension has been described, it remains to give an explanation of the
nature of body. Of this, however, the explanation must be more uncertain, for it
does not exist necessarily but by divine will, because it is hardly given to us to
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know the limits of the divine power, that is to say whether matter could be created
in one way only, or whether there are several ways by which different beings
similar to bodies could be produced.

To demonstrate how easily we could be misled, Newton gives the
following example:

it must be agreed that God, by the sole action of thinking and willing, can prevent
a body from penetrating any space defined by certain limits.

If he should exercise this power, and cause some space projecting above the
Earth, like a mountain or any other body, to be impervious to bodies and thus stop
or reflect light and all impinging things, it seems impossible that we should not
consider this space to be truly body from the evidence of our senses (which
constitute our sole judges in this matter); for it will be tangible on account of its
impenetrability, and visible, opaque and coloured on account of the reflection of
light, and it will resonate when struck because the adjacent air will be moved by
the blow.

Thus we may imagine that there are empty spaces scattered through the world,
one of which, defined by certain limits, happens by divine power to be impervious
to bodies, and ex hypothesi it is manifest that this would resist the motions of the
bodies and perhaps reflect them, and assume all the properties of a corporeal
particle, except that it will be motionless. If we may further imagine that that
impenetrability is not always maintained in the same part of space but can be
transferred hither and thither according to certain laws, yet so that the amount
and shape of that impenetrable space are not changed, there will be no property
of body which this does not possess. It would have shape, be tangible and mobile,
and be capable of reflecting and being reflected, and no less constitute a part of the
structure of things than any other corpuscle, and I do not see that it would not
equally operate upon our minds and in turn be operated upon, because it is
nothing more than the product of the divine mind realized in a definite quantity
of space. For it is certain that God can stimulate our perception by his own will,
and thence apply such power to the effects of his will.

In the same way if several spaces of this kind should be impervious to bodies
and to each other, they would all sustain the vicissitudes of corpuscles and exhibit
the same phenomena. And so if all this world were constituted of this kind of
being, it would seem hardly any different.

This whole discussion continues a lot further but the above passage
already gives a sufficient flavour. It will be seen that Newton takes a
decidedly positivistic approach, very much in the spirit of Mach. It is
almost pointless for us to speculate about the inner nature of matter. All
we can do is correlate the deliverances of our senses - 'which constitute
our sole judges in this matter'. We have a clear anticipation of Newton's
famous hypotheses non fingo21 (1 frame no hypotheses') in his discussion of
the nature of gravitation.

Westfall22 believes, correctly in my opinion, that this willingness of
Newton to take the evidence of the phenomena at their face value and
seek to describe them by mathematical formulae, as opposed to attempt-
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ing to come to some definitive comprehension of matter in mechanical
terms deduced from metaphysical principles (as Descartes was trying to
do), was a major factor in enabling Newton, rather than Huygens, to
discover the law of universal gravitation. It is certainly very striking that
when Newton was prodded into action by Hooke he seems instinctively
to have felt that the correct course of action was to use the empirically
known facts (Kepler's Laws) to deduce the nature of the forces rather than
make a guess about the nature of the world and then seek confirmation of
it in the phenomena (as was Huygens' approach). Of course, there is
abundant evidence to show that Newton speculated unceasingly about
possible mechanisms that would explain gravity and the other pheno-
mena of nature. Nevertheless, as regards matter and our ability to learn
about it, he was extremely realistic, sober, and positivistic.

Which makes his a priori attitudes to space and time all the more
remarkable.

11.5. The Scholium on absolute space, time, and motion

Newton's Scholium at the beginning of the Principia, immediately after
his formal definitions and before the statement of his laws of motion, is of
such transcendent importance in any discussion of the problem of
absolute and relative motion that it needs to be stated in full, despite the
fact that it is one of the most quoted passages from the whole history of
physics. Let us therefore start by having the text23 in full and then
comments. For convenience of identification, I have identified the
individual paragraphs (after item IV) by prefixing [a], [b], [c], etc.

SCHOLIUM

Hitherto I have laid down the definitions of such words as are less known, and
explained the sense in which I would have them to be understood in the following
discourse. I do not define time, space, place, and motion, as being well known to
all. Only I must observe, that the common people conceive those quantities under
no other notions but from the relation they bear to sensible objects. And thence
arise certain prejudices, for the removing of which it will be convenient to
distinguish them into absolute and relative, true and apparent, mathematical and
common.

I. Absolute, true, and mathematical time, of itself, and from its own nature,
flows equably without relation to anything external, and by another name is called
duration: relative, apparent, and common time, is some sensible and external
(whether accurate or unequable) measure of duration by the means of motion,
which is commonly used instead of true time; such as an hour, a day, a month, a
year.

II. Absolute space, in its own nature, without relation to anything external,
remains always similar and immovable. Relative space is some movable dimen-
sion or measure of the absolute spaces; which our senses determine by its position
to bodies, and which is commonly taken for immovable space; such is the



624 Newton II: absolute or relative motion ?

dimension of a subterraneous, an aerial, or celestial space, determined by its
position in respect of the earth. Absolute and relative space are the same in figure
and magnitude; but they do not remain always numerically the same. For if the
earth, for instance, moves, a space of our air, which relatively and in respect of the
earth remains always the same, will at one time be one part of the absolute space
into which the air passes; at another time it will be another part of the same, and
so, absolutely understood, it will be continually changed.

III. Place is a part of space which a body takes up, and is according to the space,
either absolute or relative. I say, a part of space; not the situation, nor the external
surface of the body. For the places of equal solids are always equal; but their
surfaces, by reason of their dissimilar figures, are often unequal. Positions
properly have no quantity, nor are they so much the places themselves, as the
properties of places. The motion of the whole is the same with the sum of the
motions of the parts; that is, the translation of the whole, out of its place, is the
same thing with the sum of the translations of the parts out of their places; and
therefore the place of the whole is the same as the sum of the places of the parts,
and for that reason, it is internal, and in the whole body.

IV. Absolute motion is the translation of a body from one absolute place into
another; and relative motion, the translation from one relative place into another.
Thus in a ship under sail, the relative place of a body is that part of the ship which
the body possesses; or that part of the cavity which the body fills, and which
therefore moves together with the ship: and relative rest is the continuance of the
body in the same part of the ship, or of its cavity. But real, absolute rest, is the
continuance of the body in the same part of that immovable space, in which the
ship itself, its cavity, and all that it contains, is moved. Wherefore, if the earth is
really at rest, the body, which relatively rests in the ship, will really and absolutely
move with the same velocity which the ship has on the earth. But if the earth also
moves, the true and absolute motion of the body will arise, partly from the true
motion of the earth, in immovable space, partly from the relative motion of the
ship on the earth; and if the body moves also relatively in the ship, its true motion
will arise, partly from the true motion of the earth, in immovable space, and partly
from the relative motions as well of the ship on the earth, as of the body in the ship;
and from these relative motions will arise the relative motion of the body on the
earth. As if that part of the earth, where the ship is, was truly moved towards the
east, with a velocity of 10 010 parts; while the ship itself, with a fresh gale, and full
sails, is carried towards the west, with a velocity expressed by 10 of those parts;
but a sailor walks in the ship towards the east, with 1 part of the said velocity; then
the sailor will be moved truly in immovable space towards the east, with a velocity
of 10 001 parts, and relatively on the earth towards the west, with a velocity of 9 of
those parts.

[a] Absolute time, in astronomy, is distinguished from relative, by the equation
or correction of the apparent time. For the natural days are truly unequal, though
they are commonly considered as equal, and used for a measure of time;
astronomers correct this inequality that they may measure the celestial motions by
a more accurate time. It may be, that there is no such thing as an equable motion,
whereby time may be accurately measured. All motions may be accelerated and
retarded, but the flowing of absolute time is not liable to any change. The duration
or perseverance of the existence of things remains the same, whether the motions
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are swift or slow, or none at all: and therefore this duration ought to be
distinguished from what are only sensible measures thereof; and from which we
deduce it, by means of the astronomical equation. The necessity of this equation,
for determining the times of a phenomenon, is evinced as well from the
experiments of the pendulum clock, as by eclipses of the satellites of Jupiter.

[b] As the order of the parts of time is immutable, so also is the order of the parts
of space. Suppose those parts to be moved out of their places, and they will be
moved (if the expression may be allowed) out of themselves. For times and spaces
are, as it were, the places as well of themselves as of all other things. All things are
placed in time as to order of succession; and in space as to order of situation. It is
from their essence or nature that they are places; and that the primary places of
things should be movable, is absurd. These are therefore the absolute places; and
translations out of those places, are the only absolute motions.

[c] But because the parts of space cannot be seen, or distinguished from one
another by our senses, therefore in their stead we use sensible measures of them.
For from the positions and distances of things from any body considered as
immovable, we define all places; and then with respect to such places, we estimate
all motions, considering bodies as transferred from some of those places into
others. And so, instead of absolute places and motions, we use relative ones; and
that without any inconvenience in common affairs; but in philosophical disquisi-
tions, we ought to abstract from our senses, and consider things themselves,
distinct from what are only sensible measures of them. For it may be that there is
no body really at rest, to which the places and motions of others may be referred.

[d] But we may distinguish rest and motion, absolute and relative, one from the
other by their properties, causes, and effects. It is a property of rest, that bodies
really at rest do rest in respect to one another. And therefore as it is possible, that
in the remote regions of the fixed stars, or perhaps far beyond them, there may be
some body absolutely at rest; but impossible to know, from the position of bodies
to one another in our regions, whether any of these do keep the same position to
that remote body, it follows that absolute rest cannot be determined from the
position of bodies in our regions.

[e] It is a property of motion, that the parts, which retain given positions to their
wholes, do partake of the motions of those wholes. For all the parts of revolving
bodies endeavor to recede from the axis of motion; and the impetus of bodies
moving forwards arises from the joint impetus of all the parts. Therefore, if
surrounding bodies are moved, those that are relatively at rest within them will
partake of their motion. Upon which account, the true and absolute motion of a
body cannot be determined by the translation of it from those which only seem to
rest; for the external bodies ought not only to appear at rest, but to be really at rest.
For otherwise, all included bodies, besides their translation from near the
surrounding ones, partake likewise of their true motions; and though that
translation were not made, they would not be really at rest, but only seem to be
so. For the surrounding bodies stand in the like relation to the surrounded as the
exterior part of a whole does to the interior, or as the shell does to the kernel; but
if the shell moves, the kernel will also move, as being part of the whole, without
any removal from near the shell.
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[f] A property, near akin to the preceding, is this, that if a place is moved,
whatever is placed therein moves along with it; and therefore a body, which is
moved from a place in motion, partakes also of the motion of its place. Upon
which account, all motions, from places in motion, are no other than parts of
entire and absolute motions; and every entire motion is composed of the motion
of the body out of its first place, and the motion of this place out of its place; and
so on, until we come to some immovable place, as in the before-mentioned
example of the sailor. Wherefore, entire and absolute motions can be no otherwise
determined than by immovable places; and for that reason I did before refer those
absolute motions to immovable places, but relative ones to movable places. Now
no other places are immovable but those that, from infinity to infinity, do all retain
the same given position one to another; and upon this account must ever remain
unmoved; and do thereby constitute immovable space.

[g] The causes by which true and relative motions are distinguished, one from
the other, are the forces impressed upon bodies to generate motion. True motion
is neither generated nor altered, but by some force impressed upon the body
moved; but relative motion may be generated or altered without any force
impressed upon the body. For it is sufficient only to impress some force on other
bodies with which the former is compared, that by their giving way, that relation
may be changed, in which the relative rest or motion of this other body did consist.
Again, true motion suffers always some change from any force impressed upon
the moving body; but relative motion does not necessarily undergo any change by
such forces. For if the same forces are likewise impressed on those other bodies,
with which the comparison is made, that the relative position may be preserved,
then that condition will be preserved in which the relative motion consists. And
therefore any relative motion may be changed when the true motion remains
unaltered, and the relative may be preserved when the true suffers some change.
Thus, true motion by no means consists in such relations.

[h] The effects which distinguish absolute from relative motion are, the forces
of receding from the axis of circular motion. For there are no such forces in a
circular motion purely relative, but in a true and absolute circular motion, they are
greater or less, according to the quantity of the motion. If a vessel, hung by a long
cord, is so often turned about that the cord is strongly twisted, then filled with
water, and held at rest together with the water; thereupon, by the sudden action
of another force, it is whirled about the contrary way, and while the cord is
untwisting itself, the vessel continues for some time in this motion; the surface of
the water will at first be plain, as before the vessel began to move; but after that,
the vessel, by gradually communicating its motion to the water, will make it begin
sensibly to revolve, and recede by little and little from the middle, and ascend to
the sides of the vessel, forming itself into a concave figure (as I have experienced),
and the swifter the motion becomes, the higher will the water rise, till at last,
performing its revolutions in the same times with the vessel, it becomes relatively
at rest in it. This ascent of the water shows its endeavor to recede from the axis of
its motion; and the true and absolute circular motion of the water, which is here
directly contrary to the relative, becomes known, and may be measured by this
endeavor. At first, when the relative motion of the water in the vessel was
greatest, it produced no endeavor to recede from the axis; the water showed no
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tendency to the circumference, nor any ascent towards the sides of the vessel, but
remained of a plain surface, and therefore its true circular motion had not yet
begun. But afterwards, when the relative motion of the water had decreased, the
ascent thereof towards the sides of the vessel proved its endeavor to recede from
the axis; and this endeavor showed the real circular motion of the water
continually increasing, till it had acquired its greatest quantity, when the water
rested relatively in the vessel. And therefore this endeavor does not depend upon
any translation of the water in respect of the ambient bodies, nor can true circular
motion be defined by such translation. There is only one real circular motion of
any one revolving body, corresponding to only one power of endeavoring to
recede from its axis of motion, as its proper and adequate effect; but relative
motions, in one and the same body, are innumerable, according to the various
relations it bears to external bodies, and, like other relations, are altogether
destitute of any real effect, any otherwise than they may perhaps partake of that
one only true motion. And therefore in their system who suppose that our
heavens, revolving below the sphere of the fixed stars, carry the planets along
with them; the several parts of those heavens, and the planets, which are indeed
relatively at rest in their heavens, do yet really move. For they change their
position one to another (which never happens to bodies truly at rest), and being
carried together with their heavens, partake of their motions, and as parts of
revolving wholes, endeavor to recede from the axis of their motions.

[i] Wherefore relative quantities are not the quantities themselves, whose
names they bear, but those sensible measures of them (either accurate or
inaccurate), which are commonly used instead of the measured quantities
themselves. And if the meaning of words is to be determined by their use, then by
the names time, space, place, and motion, their [sensible] measures are properly
to be understood; and the expression will be unusual, and purely mathematical,
if the measured quantities themselves are meant. Upon which account, they do
strain the sacred writings, who there interpret those words for the measured
quantities. Nor do those less defile the purity of mathematical and philosophical
truths, who confound real quantities with their relations and sensible measures.

[j] It is indeed a matter of great difficulty to discover, and effectually to
distinguish, the true motions of particular bodies from the apparent; because the
parts of that immovable space, in which those motions are performed, do by no
means come under the observation of our senses. Yet the thing is not altogether
desperate; for we have some arguments to guide us, partly from the apparent
motions, which are the differences of the true motions; partly from the forces,
which are the causes and effects of the true motions. For instance, if two globes,
kept at a given distance one from the other by means of a cord that connects them,
were revolved about their common centre of gravity, we might, from the tension
of the cord, discover the endeavor of the globes to recede from the axis of their
motion, and from thence we might compute the quantity of their circular motions.
And then if any equal forces should be impressed at once on the alternate faces of
the globes to augment or diminish their circular motions, from the increase or
decrease of the tension of the cord, we might infer the increment or decrement of
their motions; and thence would be found on what faces those forces ought to be
impressed, that the motions of the globes might be most augmented; that is, we
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might discover their hindmost faces, or those which, in the circular motion, do
follow. But the faces which follow being known, and consequently the opposite
ones that precede, we should likewise know the determination of their motions.
And thus we might find both the quantity and the determination of this circular
motion, even in an immense vacuum, where there was nothing external or
sensible with which the globes could be compared. But now, if in that space some
remote bodies were placed that kept always a given position one to another, as the
fixed stars do in our regions, we could not indeed determine from the relative
translation of the globes among those bodies, whether the motion did belong to
the globes or to the bodies. But if we observed the cord, and found that its tension
was that very tension which the motions of the globes required, we might
conclude the motion to be in the globes, and the bodies to be at rest; and then,
lastly, from the translation of the globes among the bodies, we should find the
determination of their motions. But how we are to obtain the true motions from
their causes, effects, and apparent differences, and the converse, shall be
explained more at large in the following treatise. For to this end it was that I
composed it.

11.6. Comments on the Scholium

About a quarter of the way into Book I of the Principia, there is a magical
moment. Newton has just solved his great problem: If a body revolves in an
ellipse; it is required to find the law of the centripetal force tending to the focus of
the ellipse. He then comments that, as in a previous problem involving an
ellipse,24 'with the same brevity with which we reduced [that] problem to
the parabola, and hyperbola, we might do the like here; but because of the
dignity of the Problem . . ., I shall confirm the other cases by particular
demonstrations' (my italics).

It is dignity that distinguishes the Scholium too (as indeed the whole of
the Principia). The summit of Galileo's ambition in the Dialogo was to show
that the phenomenon of the tides revealed the existence of an alternately
accelerated and retarded absolute motion, that from the tides the reality
of absolute motion of the earth could be proved. In the Scholium Newton
is explicitly seeking to demonstrate, through phenomena, the transcen-
dent basis of all motion. But he aims even higher; the boy from Grantham
has set his eye on the anatomy of God. Not that this is stated explicitly in the
1687 edition of the Principia: but in Query 28 appended to his Opticks in
1706, Newton came clean about his aspirations and wrote:25

And these things being rightly dispatch'd, does it not appear from Phaenomena
that there is a Being incorporeal, living, intelligent, omnipresent, who in infinite
Space, as it were in his Sensory, sees the things themselves intimately, and
throughly perceives them, and comprehends them wholly by their immediate
presence to himself: Of which things the Images only carried through the Organs
of Sense into our little Sensoriums, are there seen and beheld by that which in us
perceives and thinks. And though every true Step made in this Philosophy brings
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us not immediately to the Knowledge of the first Cause, yet it brings us nearer to
it, and on that account is to be highly valued.

As we shall see in Vol. 2, Newton's concept of absolute space as the
sensory (or sensorium) of God was an important factor in prompting Leibniz
to initiate the famous Leibniz-Clarke correspondence, which was itself
important in helping to revive the idea of the relational nature of motion
in the second half of the nineteenth century. But again we anticipate; we
must come back to the Scholium, in which Newton set out to ensure that
'these things' are 'rightly dispatch'd'. No one was ever better qualified
than he to see that they were.

Even at the rather more modest level of finding the true basis of motion,
the Scholium is shot through with grandeur. In the spirit of what it
attempts it is natural philosophy at its very best. From careful observation
and analysis, Newton is seeking 26 'to derive two or three general
Principles of Motion from Phaenomena'. More clearly than ever before,
the essential difficulty of the undertaking is laid bare, particularly in the
opening sentence of the final paragraph: 'It is indeed a matter of great
difficulty to discover, and effectually to distinguish, the true motions of
particular bodies from the apparent; because the parts of that immovable
space, in which those motions are performed, do by no means come
under the observation of our senses.'

Seen in terms of his polemic with Descartes (whom we note that
Newton does not now even mention), the Scholium was an almost
complete success - as I already indicated, more or less as an infinity of
parameters is to three. But as a demonstration of the anatomy of God it
failed; as a demonstration that the existence of an absolute immovable
space follows of necessity from the observed phenomena it failed; and as
the most accurate characterization of what precisely the Principia is able to
tell us about the observed world it also failed. In attempting to deduce the
unseen from the seen, Newton overshot the mark. But the attempt
remains one of the glories of the quest for the absolute, the ground of
being. Newton's failures have a lustre which many another man's
successes lack.

The successes of the Scholium speak for themselves. Within half a
century or so Newtonian dynamics conquered the world. Men came to
accept his concepts of absolute space and time - and they worked
brilliantly. Descartes' confused notions were completely forgotten. You
have to look quite hard to find the faults in the Scholium. If we spend time
on that rather than the successes, it will not be through any meanness of
spirit. For to find a flaw in Newton is to strike gold. So comprehensive was
his genius, it appeared to open all doors into nature, to leave nothing
really major to discover. Life after Newton seemed a mere walking
through the garden into which his genius had directed us.
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But the flaws in the Scholium point the way down little narrow paths
that Newton, his eyes fixed on the contemplation of God's majesty,
failed to note. Followed far enough, they lead to doors that, like the
one Copernicus opened, take us into worlds of which Newton never
dreamed - nor any man for that matter.

The flaws in the Scholium are three.
First, although purified of the extreme polemicism of De gravitatione, of

which it is evidently an improved version, it is nevertheless distorted by
being aimed too specifically at Descartes, above all his Aristotelian idea
that place and motion are defined by the immediately contiguous bodies
which we happen to choose as reference bodies.

Second, the physical arguments that Newton invokes to prove his point
are not taken from the full generality of the dynamics which he expounds
in so masterly a fashion in the body of the Principia. Instead he reverts to
the restricted dynamics of his early work; the only dynamical problem he
considers is that of perfectly circular motion. This gives the impression
that the all-important distinction is between rotation and absence of
rotation, whereas in reality the decisive distinction is between unacceler-
ated and accelerated motion (a very special example of which is circular
motion). Newton was probably ill-served by the fact that when he came
to write the Scholium he was able to fall back on his fully elaborated draft
of De gravitatione, written almost twenty years earlier and long before that
dramatic extension of the applications of his dynamics into which he was
prodded by Hooke, the comet of 1680/81, and Halley.

Third, throughout the Scholium Newton persistently fails to acknowl-
edge the existence of one of the most important results of his own
dynamics, the famous Corollary V to his Laws of Motion. It is this
corollary that, in the Newtonian scheme, gives expression to the Galileo-
Huygens relativity principle. As we have seen, Newton states it as
follows:27

The motions of bodies included in a given space are the same among themselves,
whether that space is at rest, or moves uniformly forwards in a right line without
any circular motion.

In the Scholium, Newton adopts a severely empirico-inductive
approach. The existence of absolute space, or rather absolute motion, is to
be demonstrated from the phenomena as interpreted by Newton's laws.
But Corollary V, alleged (according to Newton's somewhat mistaken
demonstration) to be one of the most direct consequences of the laws,
demolishes the basis of any claim that the unique speed and direction of
absolute motion can be determined from the phenomena, quite counter
to what is implied in the Scholium.

It is not possible to believe Newton was unaware of this uncomfortable
fact. Indeed the internal evidence of De gravitatione and the Scholium
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(which is much more carefully worded and goes out of its way to
emphasize the difficulty of the problem) suggests that full realization of
the import of the relativity principle came between the composition of
these two tracts. It is hard to avoid the conclusion that Newton was
committed to the concept of absolute space to such an extent that he
simply could not bring himself to look unpalatable evidence squarely in
the face. Lofty though it is in its aspirations, the Scholium is marked by a
certain disingenuousness. For all that, especially for reasons that will
become apparent in the next chapter, I would still say the Scholium was
far more right than wrong. Cartesian relativism was thoroughly routed
and the idea that motion is relational rather than absolute was reborn in
the second half of the nineteenth century shorn of its most manifest
Cartesian absurdities.

The Scholium was Newton's attempt to interpret the content of his
dynamics by identifying the referential basis of motion. It was his attempt
to explain visible motion in terms of invisible space and time. The final
clarification of the immense achievement of Newtonian dynamics only
came about two centuries later when Neumann, Mach and Lange showed
that the true understanding of what Galileo and Newton had achieved
required one to interpret visible motion, not in terms of invisible space,
but in terms of visible matter. They achieved the final conceptual
clarification which put Newtonian dynamics in its true perspective. It was
not, as Newton believed, a distant intimation of the relationship between
the material world and God, but something rather closer to home, though
not, I think, any the less wonderful for that: the intimate and unbelievably
delicate and precise bond of matter to matter, the fine and subtle net that
permeates the palpable created world.

Thus, the evaluation in depth of at least the latter parts of the Scholium
depends on this post-Newtonian conceptual clarification of Newton's
dynamics; it therefore belongs to the next chapter. We conclude this
chapter by a discussion of all but the final paragraphs of the Scholium and
those aspects of the remainder of the Principia which touch on the subject
matter of the Scholium and are not dependent on the further clarification.

The early paragraphs up to and including III speak for themselves. We
are already familiar with the basic concepts from De gravitatione, though it
is true that the words absolute space, time, and motion used to denote
them are new. (I presume Newton got the idea of using the word absolute
from Galileo's use of the expression absolute motion in the Dialogo.) It is
worth making one comment about IV and noting that the existence of
myriad different relative motions, which this highlights, was already
clearly recognized by Aristotle, in whom we encountered similar
passages. We see how little the basic problem has changed. There is,
however, a dramatic change of attitude. No less than More and Newton,
Aristotle sought to find a concept of motion according to which any given
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body has just one true motion. But his instinctive concept of motion was
matter based, and he sought the solution to his problem through the
self-contained closed and finite universe. In contrast, Newton's concept
of motion was instinctively space based and. he embraced an infinite space
(if not an infinite world). It is interesting to note a correlation between the
concepts of motion and of the divinity. The divine in Aristotle is vastly less
powerful than Newton's God. The Aristotelian universe was uncreated
and eternal and the role of the divine was reduced to supplying the
inspiration that kept the quintessence turning in its perfect circle. But
Newton's God not only created the world but also ruled over it as a lord
over his servants.28

With the paragraph identified as [a] we come to the part of the Scholium
in which Newton is on strongest ground. The significance of this
paragraph has already been anticipated in Sec. 3.15, where we discussed
the equation of time (as it later became known - Newton refers to it in the
Scholium as 'the astronomical equation'). We recall that the accuracy of
lunar theory had made it necessary for Ptolemy to distinguish between
the 'time' defined by the natural days (passage of the sun across the
meridian) and the 'time' that governed the motion of the celestial bodies
(sidereal time, defined by the passage of a given star across the meridian).
As we saw, the existence of this more or less uniquely defined time did not
strike Ptolemy as particularly remarkable, since he found that it marched
exactly in step with the diurnal rotation of the stars, i.e., in step with
what, in the prevailing cosmology, he regarded as the most fundamental
motion of all - the rotation of the universe. Nevertheless, the very fact that
the distinguished 'time' was found by Ptolemy to be common to all the
motions of the individual bodies would have permitted him to reconstruct
the same 'time' even if it had not been instantiated by the diurnal motion
of the 'fixed' stars. For, having demonstrated the pervasive 'marching-
together' of the law-governed celestial motions, Ptolemy could in
principle have dispensed with the concrete realization. And this is the
point, forced upon him by the intervening change in cosmological
conceptions, which Newton is making. For, post-Copernicus, no one
could identify the rotation of the earth with the eternal circling of the very
frame of things; nor, post-Descartes, could Newton any longer hang onto
the Aristotelian reflex - that uniform motions do exist. The new aware-
ness, child of Copernican cosmology and the Cartesian philosophy of
universal motion of matter, is expressed in Newton's 'It may be, that there
is no such thing as an equable motion, whereby time may be accurately
measured.' But the objective 'marching-together' of phenomena that
permitted the ancient astronomers to devise their schemes and predict
the future appearance of the heavens subsisted as an empirical reality just
as much in Newton's as in Ptolemy's day. Deprived of Ptolemy's option
of attributing, at least unconsciously, the remarkable interconnection of
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things to the29 'revolution of the universe', Newton looks instead to 'the
flowing of absolute time'. This is another classic example of the substance
reflex mentioned in Sec. 8.3: persistent correlations must have some
carrier.

Newton's canonization of intuition in the form of absolute time to play
the part of this carrier had the effect of freezing the concept of time. Not
until the late nineteenth century did the idea gain ground that the proper
task of interpretation was precise characterization of the empirical
correlations and not the conceptualizing of a metaphysical framework.
This will be discussed in Chap. 12. But we may note already here that
Newton did correctly grasp the essence of the facts as they were known in
his time - as we saw, they had been known since Ptolemy - and his
metaphysical concept of absolute time is, for practical purposes, identical
to the astronomers' ephemeris time (see p. 181), as we see by his reference
to the astronomers' correction of the natural days 'that they may measure
the celestial motions by a more accurate time'.

Newton was, in fact, familiar with practical calculations involving the
equation of time. In his correspondence with Flamsteed about the 1680/81
comet, Newton enquired30 whether the observations were made using
equated time or only the 'time by ye Sun's course'. In 1672 Flamsteed
himself had made the first modern study of the equation of time.31 In the
revised version of De motu Newton says explicitly32 'absolute time . . . is
that whose equation astronomers investigate.' In the triad of Newton's
absolutes - space, time, and motion - absolute time is the only one that
corresponds closely to empirical practice. (By this I mean that the manner
in which astronomers actually determine ephemeris time corresponds
closely to what Newton says on the subject of time in the Scholium,
whereas the method used to determine position, and hence motion, is
based on a principle quite alien to the spirit of the Scholium, as we shall
see in Chap. 12.) It is true that, along with the other two, Newton's
absolute time was completely overthrown by the revolution of the special
theory of relativity, but that introduced entirely new considerations
unrelated to the questions under consideration here.

To summarize for the moment Newton's discussion of time: it was
based on a sound empirical foundation, laid first by Ptolemy and
strengthened by more recent discoveries (note the references to 'the
experiments of the pendulum clock' and 'eclipses of the satellites of
Jupiter'), which demonstrated the possibility of introducing an essentially
unique time parameter with respect to which innumerable different
motions could simultaneously be made to obey basically the same laws of
motion. Although the rotation of the earth relative to the stars still
provided, and would continue to provide for about another two hundred
years, the only really reliable clock, Newton correctly foresaw the need for
its replacement by ephemeris time.
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Finally, we see again in the practical measurement of time how objective
interconnections of phenomena, once clearly recognized, survive
unscathed radical adjustment of the overarching metaphysical
framework in which they are conceived. The situation with regard to time
is just the same as the fate of Galileo's motionics - the conceptual
framework proved transitory but many of the concrete details and
techniques were admirably durable: used in their proper place they will
probably last forever.

Paragraph [b] is treated in much greater length in De gravitatione, but it
is quite clear that Newton's concept of absolute space and time had not
changed one jot in the intervening 15-20 years. It is worth recalling here a
sentence in the earlier work not reproduced in the Scholium, since it casts
light on the somewhat curious second sentence of [b]: 'Suppose those
parts to be moved out of their places, and they will be moved (if the
expression may be allowed) out of themselves.' In De gravitatione (item (3)
on the properties of space, p. 619) Newton said 'the parts of duration
derive their individuality from their order' and follows this with the
quaint comment about yesterday changing places with today. It is evi-
dently a similar thought that Newton has in mind in the Scholium, but he
does not express himself here so clearly. In the Scholium, he also omits
the very explicit statement (p. 619) of the complete identity of the parts of
space: The parts of duration and space are only understood to be the
same as they really are because of their mutual order and position; nor do
they have any hint of individuality apart from that order and position,
which consequently cannot be altered.' This extreme insistence on unifor
mity, with the denial of any genuine distinguishing attribute apart from
mere numerical ordering, has already been commented upon in Sec. 8.3.
It was the absence of 'any hint of individuality' that Leibniz found so
unconvincing in Newton's absolute space and attacked with considerable
success in the Leibniz-Clarke correspondence (Vol. 2).

Paragraph [c] is primarily of interest on account of its final sentence and
the comment that there may be 'no body really at rest, to which the places
and motions of others may be referred'. This recognition will remain as a
permanent tribute to Descartes, for he really was the first to bring to the
fore the profound difficulties implicit in the break up of the sphere of the
fixed stars. (We may mention in passing that the title of Westfall's
biography of Newton, Never at Rest, perfectly characterizes the conceptua
picture of the universe with which Newton was grappling in the
Scholium, though in fact the words are taken from a letter in which
Newton is evidently describing his own restless mind:33 'he that is able to
reason nimbly and judiciously about figure, force, and motion, is never at
rest till he gets over every rub.')

Paragraph [d] is a bit confused but certainly helps to emphasize the
dignity (or rather magnitude) of the problem which Newton is attacking.
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The idea that 'in the remote regions of the fixed stars, or perhaps far
beyond them, there may be some body absolutely at rest' anticipates
perhaps Neumann's concept of the mysterious Body Alpha, which we
shall encounter in the next chapter. The final comment ('that absolute rest
cannot be determined from the position of bodies in our regions') seems
almost a give-away line but, in fact, announces a very profound shift.
Newton renounces once and for all the attempt to define rest kine-
matically (by the mere relation to external bodies) and anticipates the shift
in the second half of the Scholium to the search for a dynamical criterion of
rest. He very nearly succeeds: of all the infinite terms in the Taylor
expansion of a body's motion, Newton in essence (if not in clear
conceptualization) succeeded in catching all but the first.

The following paragraph, [e], provides the clearest evidence in the
Scholium of Newton's desire to discredit Descartes and, by the same
token, it demonstrates the distorting effect that Descartes and the
Inquisition exerted on the Scholium. What modern reader could possibly
realize that the statement 'if the shell moves, the kernel will also move' is
just a late reverberation of the momentous events in 1633 when Galileo
was forced to his knees by the Inquisition and the offended pride of a vain
pope? It will be recalled that Descartes, with an eye to his assertion that
the earth does not move, had produced a definition of motion according
to which the kernel of the nut cannot be said to move, the reason for this
being that its immediately contiguous containing surface, the shell, has
no motion relative to the kernel. Henry More had already pointed out
absurd consequences such as these in his discussion of Descartes' defini-
tion of place.34

One of the more intriguing aspects of the Principia is the seriousness
and thoroughness with which Newton set about testing and comprehen-
sively demolishing Cartesian tenets. The bucket experiment has already
been mentioned, as have the arguments against Descartes scattered
throughout the Principia, especially in the Scholium. A little gem of this
kind is the statement near the beginning of paragraph [e] to the effect that
'the impetus of bodies moving forwards arises from the joint impetus of
all the parts'. This is a beautiful dynamical argument against Descartes'
absurd notion that the kernel does not move even though the shell does
(the kernel has no 'true philosophical motion'). Newton is simply
commenting upon the fact that if you fill a box with lead and let the box
strike another object, the outcomes of the collision will be completely
different in the presence and absence of the lead even though the lead has
no 'true philosophical motion', being at rest relative to its immediately
contiguous container. The lead may be 'philosophically at rest' but
provides striking physical evidence in a collision that it does have a
motion just as real as its container's. That Newton felt obliged to make this
seemingly obvious point shows, on the one hand, how powerful a grip
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Descartes had taken on the seventeenth-century mind but equally how
baffling the problem of motion was and how carefully Newton felt each
piece of evidence for the reality of motion should be weighed. With
that tact which Mach so admired in the great natural philosophers,
Newton found all the evidence; it would have been almost superhuman
for him to have synthesized into the bargain a conceptually impregnable
interpretation of the evidence.

To summarize the discussion of paragraph [e]: Newton concentrates
his fire exclusively on the notion that contiguous bodies are to be used to
define motion. It is a remarkable fact that (so far as I have been able to
establish) Newton never once in his published work mentions the
possibility that, unlike local bodies, the totality of bodies in the material
universe (which Newton seems to have been prepared to believe is finite,
in contrast to space) might provide a frame of reference appropriate for
defining the motion of one particular body within the universe. This is in
very striking contrast to, for example, Copernicus and Kepler. I suspect
there were three reasons for this: (1) Newton's a priori rationalistic concept
of space, which he was very loath to abandon; (2) excessive concentration
on the demolition of Descartes' specific definition of motion by means of
local bodies; (3) an acute awareness, for which Descartes must take the
credit, that all the bodies in the universe are most probably in a state of
motion relative to each other. Conceptually, as we have noted several
times, it was easy for Copernicus and Kepler to define motion relative to
the ultimate frame of what they believed were truly fixed stars. It is
impossible to say whether Newton seriously considered the possibility of
using all the bodies in the universe to define motion. Even if he did, he
may well have concluded that the bodies being 'never at rest' the technical
difficulties were insuperable and dismissed the thought forthwith.

We pass rapidly over paragraph [f], which repeats very largely the
arguments from De gravitatione in which Newton showed that motion
relative to more distant objects could not be used to define motion
satisfactorily (we repeat that in neither the Scholium nor the early work
did Newton consider the totality of all relative motions). It is worth noting
that this is the only place in the Scholium in which Newton says explicitly
that absolute space is infinite ('from infinity to infinity').

Paragraph [g] shows how fateful for the discussion of motion was
Descartes' extraordinary claim in the Principles that motion is defined by
those contiguous bodies35 'which we consider to be at rest'. We have already
seen how Huygens used an almost identical phrase (p. 462) in his DeMotu
Corporum ex Percussione, though in a much more precise context than
Descartes ever contemplated. It was probably this Cartesian phrase more
than any other which made Newton see red. It threatened to take all the
objectivity out of the world and leave a mere mishmash that man could
interpret at his pleasure (as indeed Descartes did when it served his
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purposes). No wonder Newton accused Descartes of impious atheism. In
Newton's eye, the glory of the world was the structure of its frame.
Descartes threatened to remove all the props and leave a confused
porridge into which he could stir his arbitrary mischief.

I said earlier that Newton instinctively interpreted Descartes to mean
that the motion of any given body contained infinitely many arbitrary
parameters. This comes out clearly in Newton's sentence 'it is sufficient
only to impress some force on other bodies with which the former is
compared, that by their giving way, that relation may be changed, in
which the relative rest or motion of this other body did consist.' Since the
force applied to the 'other bodies' can obviously be quite arbitrary, in
particular, time dependent, it is clearly possible to introduce infinitely
many arbitrary parameters in this way. This was the Cartesian relativism
to which Newton objected so violently.

To make the point once more: Descartes caused Newton to misdirect
his fire. The contiguity of the bodies of reference; the implication that they
could be moved arbitrarily; and the further implication that motion was to
be determined by some finite (but unspecified) number of such bodies -
all these targets, not difficult to hit, diverted Newton's attention from the
real threat to his attempt to establish space as the referential basis of
motion. He missed the points of genuine danger. We shall see in the next
chapter that a small but highly significant modification of the prescription
for selecting the bodies of reference draws the sting of all Newton's
arguments against using material bodies to provide the referential basis of
his dynamics and actually makes Newton's achievement all the more
dramatic, impressive, and epistemologically clear. And in Vol. 2 we shall
show that if the material universe in its entirety is assumed to supply the
frame of reference for describing its own motion one can not only provide
an epistemologically unexceptionable framework for describing motion
but also give plausible dynamical explanations for the most mysterious of
all phenomena in motion - the law of inertia itself.

To come now towards the conclusion of the present discussion of the
Scholium, we pass over the crucial paragraph [h] (with its appended dig
in paragraph [i] at Descartes, who is the evident butt of the shaft directed
at those who 'defile the purity of mathematical and philosophical truths')
and most of the equally crucial final paragraph; for these arguments from
the absolute nature of circular motion are best deferred to the next
chapter. We just note at the very end of the Scholium that the Achilles
whom Halley, the Ulysses of the seventeenth century, had drawn out
from his lair in Cambridge had a heel every bit as vulnerable as Homer's
petulant hero. Having shown that the speed of circular motion can be
established entirely independently of the 'remote bodies' placed in that
space, i.e., that the speed of circular motion is in some true sense absolute
(the precise sense will be made clear in the next chapter), Newton
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apparently wants to complete his demonstration that the absolute motion
can be completely determined. For he says that if the tension in the cord
is precisely what is to be expected on the supposition that the globes rotate
and the distant bodies rest, then we can conclude 'the bodies to be at rest;
and then, lastly, from the translation of the globes among the bodies, we
should find the determination of their motions'. Newton here seems to
imply that we can determine the instantaneous direction of motion of the
globes in absolute space. Two things need to be noted in this connection:
(1) Newton has only shown (within the framework of his theory) that the
distant bodies do not rotate; he cannot from that deduce that they are in a
complete state of rest (the system as a whole may have a uniform
translational motion in absolute space). Therefore, his claim falls to the
ground. (2) To complete the determination of motion, Newton seems to
need distant bodies such as the stars, which are assumed to be at rest. So
the final conclusion of the Scholium appears in truth to be an admission
of defeat: it is not possible to determine the direction of motion without
reference to other bodies! We shall find a much more striking and
unambiguous confirmation of this in the next section.

Finally, a comment that looks forward to Chap. 12 and the brief
discussion there of Huygens' standpoint with regard to this question. In
De gravitatione, as we have seen, Newton spelt out in detail what he
evidently regarded as the most manifest absurdity of Descartes' scheme:
the assertion, on the one hand, of complete relativity of motion, and, on
the other, the formulation of his laws of motion, which say bodies have an
innate tendency to persist in uniform rectilinear motion with uniform
speed. In the early unpublished work Newton showed explicitly how
such a notion is simply irreconcilable with general Cartesian relativism.
Now although this consideration is clearly implicit in much of what
Newton says in the Scholium, especially in paragraph [g], it is not actually
stated anywhere there explicitly as a bald fact. We see the same process at
work as we noted with Newton's axiomatization of dynamics. In the
desire to present the entire matter in exalted terms worthy of the great
mathematicians Newton has a tendency to omit the explicit statement of
some important details. In this case the clear statement of the non-
sensicality of the Cartesian standpoint may have been omitted because it
seemed so self-evident to Newton. Alternatively, he may simply have
wanted to avoid any direct discussion of Descartes, regarding that as
below his dignity. It is interesting to note in this connection that 'the
Cartesians' are in fact mentioned explicitly in the set of pre-Principia
definitions and laws (which Herivel dates somewhat later than the two
versions of De motu). Included among them is an evident precursor of the
Scholium, with which it is worth ending this section, since it stands in
much the same relation to the Scholium as does the complete set of
pre-Principia documents of 1684/85 to the complete Principia. In the
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preparatory documents we find the most important results and ideas
listed precisely and sparely; in the Principia we meet them all again but
greatly amplified. The passage in question is perhaps the most compelling
of Newton's statements on the need for absolute space. Here it is:36

The motion of a body is its translation from one place to another, and is
consequently either absolute or relative according to the kind of place. But
absolute motion is in fact distinguished from relative in circular motions by the
endeavour to recede from the centre, which in an entirely relative circular motion
is zero, but in a circular motion relative to bodies at rest may be very large, as in
the celestial bodies which the Cartesians believe to be at rest, although they
endeavour to recede from the sun. The fact that this endeavour [from the centre
of circular motion] is certain and determinate argues some certain and determinate
quantity of real motion in individual bodies in no wise dependent on the relations
[between the bodies] which are innumerable and make up as many relative
motions. For example, that motion and rest absolutely speaking do not depend on
the situation and relation of bodies between themselves is evident from the fact
that these are never changed except by force impressed on the body moved or at
rest, and are always changed after [the action of] such a force; but the relative
[motion and rest of a body] can be changed by forces impressed only on other
bodies to which the relation belongs, and is not changed by a force impressed on
both so that their relative situation is preserved.

Even here there is no explicit statement of the irreconcilability of
rectilinear uniform motion and Cartesian relativism. It is, of course, the
most immediate consequence of what is said and one might ask: Is it
necessary to state the obvious? In fact, had Newton done so in the
Scholium much confusion might have been avoided - as we shall see in
Chap. 12.

11.7. The absolute/relative problem in the remainder of the Principia

The Scholium ends with stirring words: 'But how we are to obtain the true
motions from their causes, effects, and apparent differences, and the
converse, shall be explained more at large in the following treatise. For to
this end it was that I composed it.'

We read through the Principia with eager anticipation but have to put it
down at the end virtually no wiser on this key question. Newton does not
return to it specifically anywhere in the book. What he does do, of course,
is present the science of dynamics with the extraordinary thoroughness
and clarity that we described in Chap. 10. This in itself is powerful
evidence in support of his overall conception, which is shown to be
internally consistent and in agreement with observation. He provides
implicit rather than explicit support for the notions of absolute space and
time. Almost any of the topics that he considers has some bearing on the
absolute-relative question, but one in particular warrants special mention:
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the oblateness of the planets, including the earth, produced by their
rotation. Although Newton does not point this out, the oblateness
provides evidence for the reality of rotation every bit as convincing as the
bucket experiment and the thought experiment with the two globes
attached to each other with a string.

Newton treats the oblateness at some length in Book III of the Principia,
beginning his discussion with Proposition XVIII, which states that 'the
axes of the planets are less than the diameters drawn perpendicular to the
axes'. For37 'the equal gravitation of the parts on all sides would give a
spherical figure to the planets, if it was not for their diurnal revolution in
a circle. By that circular motion it comes to pass that the parts receding
from the axis endeavor to ascend about the equator; and therefore if the
matter is in a fluid state, by its ascent towards the equator it will enlarge
the diameters there, and by its descent towards the poles it will shorten
the axis.' Newton points out that this is confirmed by observations of
Jupiter, which is both observed to rotate rapidly (the period is just under
10 hours) and to be sensibly flattened at the poles.

In the case of the earth, Newton made quite detailed calculations with
a view to interpreting the pendulum observations made by Richer in 1672
in Cayenne (see Sec. 9.1) and other similar observations, including one by
Halley in 1677 at St Helena (also near the equator). The period of pendula
of given length at a location near the equator is changed compared with
European latitudes by the rotation of the earth through two factors: first,
the rotation causes the oblateness, so that points at sea level at the equator
and in Europe are in gravitational fields of different strengths. But, in
addition, the rotation also produces a centrifugal effect, as both Huygens
and Newton showed, and this results in a stronger effective reduction of
gravity at the equator than in Europe. Using a very simplified fluid model
of the earth Newton predicted, on the basis of the earth's radius and
rotation speed, that the ratio of the earth's equatorial diameter to its
pole-to-pole diameter should be 230/229, i.e., the relative compression
should be 1/230, which Newton found38 to agree very well with Richer's
observations. In fact, Newton was a bit optimistic in his evaluation of
Richer's accuracy ('whose diligence and care seems to have been wanting
to the other observers'). The correct value39 of the relative compression is
actually about 1/298.

The accurate measurement of the earth's oblateness became the subject
of a major scientific undertaking in the first half of the eighteenth century.
Maupertuis and Clairaut made geodetic measurements in Lapland (while
La Condamine and others travelled to the equatorial regions of South
America). Comparison of these observations with ones made in France
confirmed Newton's prediction (and disproved a theory of Cassini,
according to whom the pole-to-pole diameter was greater). This led
Voltaire to make some innocent fun of Maupertuis, pointing out that he
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had only confirmed in the boring Lapland what Newton had known
without leaving home:40

Vous avez confirme dans les lieux pleins d'ennui
Ce que Newton connut sans sortir de chez lui.

As we shall see in Vol. 2, the oblateness of rotating bodies has been used
more than once to bring home in the most graphic fashion the mystery of
rotational motion.

But it is now time to turn to two of the most curious features of Book III,
which show more clearly than anything else that Newton was attempting
too much in the Principia. The point is that the entire abstract theory of
orbits described by bodies moving under different centripetal forces is
worked out in Book I under the assumption that absolute space exists. But
when, in Book III, the theory now complete, Newton announces with
justified pride that 'it remains that, from the same principles, I now
demonstrate the frame of the System of the World', we find that, de facto,
Newton refers all motions to the centre of mass of the solar system,
assumed to be at rest, and makes in addition the assumption that the
distant stars are at rest. It is this assumption which enables Newton to fix
directions.

Both these assumptions are very interesting and reveal the difficulties
Newton faced in trying to achieve an unconditional victory over Cartesian
relativism. Let us begin with the part played by the fixed stars. Near the
start of Book III, Newton lists several key phenomena from which he then
proceeds to deduce the nature of the forces which must act between the
bodies in the solar system. As given in the second and third editions,
Phenomenon I, for example, is as follows (the italics are mine):41

That the circumjovial planets, by radii drawn to Jupiter's centre, describe areas
proportional to the times of description; and that their periodic times, the fixed stars
being at rest, are as the f th power of their distances from its centre.

Now the interesting thing about the italicized words is that they did not
appear in the first edition of the Principia. A similar addition is made in the
later editions to the analogous Phenomenon IV, which relates to the
primary planets in their motion about the sun. The significance of the
proviso is that the astronomers measure sidereal periods, i.e., they measure
the length of time an object in the heavens requires to complete a
revolution against the backcloth of the stars. It is against this backcloth
that Kepler's law of equal areas swept out in equal times is found to hold.
On the other hand, all Newton's mathematical calculations were made in
absolute space. Thus, the link between observation and theory can only
be made under the additional assumption that the fixed stars are at rest.
Thus, this proviso, like the revealing (but possibly ambiguous) sentence
at the end of the Scholium, according to which the instantaneous
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determination of circular motion is determined by reference to 'remote
bodies', shows that Newton could not quite dispense with the distant
stars. In this later example no ambiguity is possible. Newton needs the
stars. About this, two comments should be made. The first is that
Newton's theory was in fact better than he seems to have realized. It is a
remarkable fact, only fully appreciated long after Newton's death, that
directions in 'absolute space' can be unambiguously determined without
reference to any distant stars (the quotation marks are used to indicate
that the 'absolute space' is defined in a way different from Newton's).
This will be discussed in the next chapter. The other comment is that the
Principia completely lacks any suggestion that inertial forces, specifically
centrifugal forces, could in any way be causally determined by the distant
stars. As we have seen, De gravitatione did at least pose the possibility of
some sort of connection (formal rather than physical) even if only as a
rhetorical device to demonstrate its absurdity. In the Principia there is no
hint at all in such a direction. The fact that the distant stars do not appear
to be in motion in absolute space is recognized only fleetingly in the
Principia and is treated as a fortuitous coincidence.

So much for the part played by the distant stars in the Principia. We now
consider that other inconvenient difficulty about which Newton was so
coy - the Galileo-Huygens relativity principle, as expressed in his
Corollary V to the laws of motion. There are numerous references to this
corollary throughout the Principia, indeed it is often prominently invoked,
so there is no question of Newton deliberately suppressing awkward
evidence. However, there is nowhere any admission that it makes rather
a nonsense of the idea of an unambiguously defined motion in absolute
space. Nevertheless, Newton seems to have felt obliged to establish a
criterion of absolute rest and he did this in a rather curious way. I follow
the presentation given in the later editions of the Principia (in the first
edition the arguments were presented in a slightly different way but were
in essence identical).

In Book III (The System of the World), Newton first of all establishes from
the phenomena the facts about gravity and, equally important, the
grounds for asserting that interplanetary space is a vacuum. Then follows
a remarkable hypothesis:42

HYPOTHESIS I. That the centre of the system of the world is immovable.

Newton's comment on this hypothesis is exceedingly brief: 'This is
acknowledged by all, while some contend that the earth, others that the
sun, is fixed in that centre.'

An important point to be established is what precisely Newton meant
by 'the System of the World', which is, in fact, the title of Book III of the
Principia. Does Newton mean by it the entire universe or merely the solar
system? In fact, comparison of the relevant passage in Book III with the
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analogous passage quoted in the final section of Chap. 10 (p. 574) shows
clearly that Newton means the latter. For in the earlier passage he speaks
of 'the whole space of the planetary heavens' being either at rest or in a
state of uniform motion in a straight line, so that 'the communal centre of
gravity of the planets either rests or moves along with it'. What is
particularly interesting is that in De motu Newton seemed to have been
happy to accept this state of affairs as a bald fact (he made no attempt to
distinguish between the two possibilities) whereas in the Principia he
appears to have felt it necessary to insist on a state of rest for the
communal centre of gravity. This leads him to put forward a decidedly
incongruous idea and suggests that he still had one foot in the old
cosmology. This follows from the proposition which immediately follows
Hypothesis I and in which Newton asserts that 'the common centre of gravity
of the earth, the sun, and all planets, is immovable'.

The proof is exceedingly brief:

For (by cor. iv of the Laws) that centre either is at rest, or moves uniformly
forwards in a right line; but if that centre moved, the centre of the world would
move also, against the Hypothesis.

Newton's arguments are an extraordinary mixture of sound science
and a residual geocentrism that verges on superstition. In the proof to the
following proposition (That the sun is agitated by a continual motion, but never
recedes far from the common centre of gravity of all the planets), he shows
convincingly that there is only one truly distinguished point in the solar
system, the centre of gravity of the complete solar system, and that,
according to his principles, this is either at rest or in uniform rectilinear
motion. But the second possibility is simply dismissed as inconceivable -
on the ground, 'acknowledged by all', that the centre of the system of the
world is immovable. Just as revealing is the comment Newton makes in
his earlier version of The System of the World, in which, speaking of the idea
that the centre of gravity of the solar system moves, he says:43 'But this is
an hypothesis hardly to be admitted; and, therefore, setting it aside, that
common centre will be quiescent.'

I find this almost the most intriguing passage in the entire Principia. It is
the last vestige of geocentrism. Newton, like Galileo before him, simply
cannot bring himself to believe in the absence of rest. There has just got to
be a point at rest. Copernicus put the earth in motion; Galileo, as an article
of faith, transferred the state of rest to the sun; even though he knew full
well that the sun rotated in a rather mundane mechanical sort of a way, he
nevertheless held fast to the idea that the sun as a whole enjoyed a state
of divine rest. It was no different with Newton. His laws of motion and
gravity enforced the recognition that the sun moves and permitted the
existence of just one point that could, at least in principle, be at rest: the
common centre of gravity of the solar system. It became Newton's last
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refuge. A plague on Corollary V: a truly still point was more important
than the democracy of frames of reference imposed by the laws of motion.

This point was also the last vestige of the perfectly ordered cosmos, the
belief that the observed architecture of the world is the direct handiwork
of God. Where Descartes looked forward to Laplace and the modern
inflationary cosmologists, Newton looked back to Kepler and beyond him
to Pythagoras. Newton was pretty well certain that the stars were other
suns with attendant planetary systems, but he had no doubt that the
overall structure of the universe was the conscious design of God. Yet
again he stood in direct opposition to Descartes. In the famous General
Scholium44 added to the second edition of the Principia in 1713, Newton
argued that the great regularity observed in the solar system with all the
primary planets and their satellites rotating in the same sense argued the
conscious design of God: 'It is not to be conceived that mere mechanical
causes could give birth to so many regular motions. . . . This most
beautiful system of the sun, planets, and comets, could only proceed from
the counsel and dominion of an intelligent and powerful Being/ In
Question 31 of the Opticks he said explicitly of the origin of the world that
one could not pretend that45 'it might arise out of a Chaos by the mere
Laws of Nature' and again that the 'wonderful Uniformity in the Planetary
System must be allowed the Effect of Choice'. These are all barbs clearly
directed against Descartes.

For Kepler the sun was not at all on the same footing as the stars. It was
a great globe, the image of God the Father, animating the planetary
system and illuminating the vast magical cavern formed by the system of
the fixed stars. In the teeth of all the evidence that his own colossal
industry had uncovered, Newton clung to the last remnant of this
cosmology. Whether he liked it or not, the walls of the cavern were
demolished, the soul of the sun was killed, and mechanical order reigned
almost supreme; but the still point, the centre of the world that really no
longer existed, remained. How hard it was to wrench the human mind
from the concept of perfect rest!

Keynes46 did have a point when he called Newton 'the last of the
magicians'.*

* There is a huge literature on the topics covered in this and the following chapter, much of
which is rather inconclusive in being too philosophically rather than physically oriented; in
addition much of it does not take account of the relatively recently discovered Degmvitatione.
This is not the case with Stein's paper.47 Barman's paper48 does a good job of establishing the
strength of Newton's position and can serve as an introduction to the debate in the
literature. The penultimate sentence of paragraph [i] on p. 627 has been altered from Ref. 23
on the basis of Ref. 47 (p. 184).
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Post-Newtonian conceptual
clarification of Newtonian dynamics

12.1 Introduction

As we have seen, Newton combined strongly rationalistic, a priori views
about space and time with a markedly empirical approach to the nature of
bodies and the interactions between them. This obscured the extent to
which the whole of Newtonian dynamics could be put on an empirical
foundation. The final chapter, therefore, in the discovery of dynamics
should for completeness include the significant clarification achieved in
the second half of the nineteenth century with regard to the foundations
of Newtonian dynamics. This clarification did not in any way change the
content of the science, but was valuable in several ways, of which three in
particular may be mentioned. First, in its own right, in that it provided a
coherent and intellectually satisfying account of how all the essential
features of dynamics can be identified empirically in phenomena. In this
respect, it merely completed what Newton had begun in such masterly
fashion, particularly in his identification of forces. Second, by identifying
very clearly the basic elements from which empirical dynamics can be
constructed, it simultaneously showed that there is nothing a priori or
sacrosanct about these elements. It showed that these elements depend
on nature and not metaphysical necessity, as Newton in part believed,
and that their selection is suggested ultimately by observation and could
therefore be modified in the light of further observation. What observa-
tion could make, it could also unmake. Just as important, by showing how
the theory could be built up on the basis of judiciously chosen facts of
experience, it suggested that a quite different theoretical structure might
be obtained by taking different facts of experience as the foundation.
Then quite new theories could result after extension of the range of
application. Third, the empirical definitions of inertial system by Lange, of
equality of time intervals by Neumann, and of mass by Mach provided
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paradigms of the operational definition of the basic concepts of dynamics in
terms of observable objects and processes. In themselves they were
of academic and epistemological rather than practical value; they did
not significantly change our knowledge or understanding of the real
contingent world. However, within a few decades, Einstein was to
fashion the operational definition of simultaneity very much after the
manner of these paradigms and was thereby able to bring about a
revolution every bit as great as Copernicus's. Thus, in completing the
conceptual clarification of the old science, Lange, Mach and Neumann
simultaneously started to lay the foundations of the new.

By jumping forward two centuries we shall unfortunately do some
violence to the historical development. Many things very relevant to the
absolute/relative question occurred during these two centuries. However,
it does appear to me that it will not be possible to break the story into two
volumes in any other way that makes sense conceptually. For in Vol. 2 we
shall need to consider the organic development of several entirely new
strands - analytical mechanics and the calculus of variations, the rise of
field theory, and the overthrow of Euclidean geometry, to say nothing of
special relativity - and it would not be appropriate to make a start on them
in this volume even though many important parts of the development
occurred before the work to be described in this chapter. On the other
hand, what now follows does join on conceptually in a very natural
manner and even serves to put the pre-Newtonian and Newtonian
achievement in more striking perspective. In any case, the second half of
this story, to which so many rich conceptual strands contribute, is better
arranged according to the concepts than the chronology. So we now bid
farewell to the miraculous century that opened with the great discoveries
of Kepler and Galileo and closed with the towering achievement of the
Principia and pass straight to a very different age, an age in which the
intellectual climate had changed out of recognition and no one would
dream of treating physics as an organic part of theology. This change too
had its impact on the way the concepts of space, time, and motion were
approached - as we shall see.

12.2. Neumann and Body Alpha

We begin with Carl Neumann's habitation address 'On the principles of
the Galilean-Newtonian theory', which was given at the University of
Leipzig in 1869 and published as a little booklet a year later.1 This address,
in which Neumann, who is mainly noted for his work in mathematics,
introduced his famous Body Alpha, marks the beginning of the critical
re-examination of the basic concepts of dynamics which helped to prepare
the ground for the revolutions at the beginning of this century.

Neumann begins with an illuminating discussion of what the word
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explanation means in science. He points out that it by no means implies
that a complete explanation of all phenomena is provided, so that nothing
mysterious and unexplained remains. No, explanation in empirical
science is something very different: it is the reduction of innumerable
phenomena to a few basic phenomena which in themselves are com-
pletely inexplicable. They are irrational or arbitrary, in the sense that no
reason at all can be given why they are as they are and not otherwise. He
illustrates this by the classical example of Galileo's law of parabolic
motion, which, as we saw, Galileo 'explained' by showing how it could be
decomposed into a horizontal inertial component and a vertical motion
governed by the attraction toward the centre of the earth. The existence of
each of the two separate components and the fact that they can be
combined in accordance with a rule which states that each component
continues to exist independently of the presence of the other are
observational facts for which no explanation is forthcoming. That
Galileo's discovery nevertheless has great explicatory power stems from
the fact that the initial conditions of the parabolic motion may be extremely
varied and yet the subsequent motion can always be understood in terms
of just those two same components, which are always present. It is the
universality of the components, the fact that they are invariably found in
all projectile motions, that is the real measure of their worth.

The task of science, then, is to reduce the multifarious phenomena of
nature to as few inexplicable but universal basic concepts as possible.
Moreover, it will always be an important task of the natural scientist to
identify and define as clearly as possible these foundational elements,
i.e., to lay bare their empirical basis. Only in this way will the scientist be
aware of the true basis of his work and fully aware of the changes that may
be necessary in its foundations. As Neumann put it at the end of his
address:

However exalted and complete a theory may appear before us, we shall always be
forced to give a most precise account of its principles. We must always keep before
our eyes the fact that these principles are arbitrary and hence mobile; we must at
every instant be able to see the consequences that a change of these principles
would have on the complete structure of the theory, so that we are in a position to
allow such a change to take place in good time - so that we can (in a word) protect
the theory from petrification, from rigidification, which would be nothing but
harmful and a hindrance to the progress of science.

It is in such a frame of mind that Neumann approaches the question of
the content of the law of inertia. He objects strongly to the statement that
a body subject to no external disturbance moves in a straight line, because
we do not know 'what is to be meant by motion in a straight line'. For 'a
motion that is straight when observed from the earth will appear crooked
when observed from the sun. In brief: every motion that is straight with
respect to one celestial body will appear crooked when referred to every other
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celestial body.' This, of course, is exactly the point that Newton was
making at length against Descartes in De gravitatione and rather more
succinctly (but also more obscurely) in the Scholium.

The solution which Neumann proposes to this problem is at first blush
startling. He says that 'there must be a special body in the universe which
serves us as the basis of our judgement, with respect to which all motions
are to be referred'. He arrives at this conclusion because 'careful
examination of the theoretical framework of Newtonian dynamics' clearly
reveals its foundation, namely, that 'all actual or even conceivable
motions in the universe are to be referred to one and the same body'.

The body itself is most mysterious:' Where this body is situated and the
grounds for according a single body such a distinguished, indeed
sovereign position - these are questions to which we receive no answer.'
Unperturbed by these mysteries, Neumann states formally:

As first principle of the Galileo-Newton theory one should take the statement that
at some unknown place in the universe there is an unknown body, indeed, an
absolutely rigid body, a body whose shape and size are unchanged for all time.

Neumann proposes to call this the Body Alpha and says that the second
principle of the theory is that the motion of any material point left to itself
(i.e., subject to no disturbance) is rectilinear with respect to Body Alpha.

If Newton's concept of absolute space is remarkable, Body Alpha seems
nothing short of fantastic. I have to admit that when I had got this far in
Neumann's paper I began to wonder if he had given his address on the 1st
of April (it was actually given on 3 November). However, it becomes clear
from the later discussion that Neumann deliberately intended such an
effect. He in fact uses the concept of Body Alpha in somewhat the same way
(though not for the identical purpose) that Brecht uses masks in his plays
to achieve his verfremdungseffekt (alienation). He asks if it is really
necessary to bring in this principle that is so 'strange and alien (sonderbar
und befremdlich)' and answers his question by saying that it is in order to
bring out the extremely special nature of absolute motion in Newton's
theory. For 'the character, the true essence of so-called absolute motion is
that all changes of position are referred to one and the same object, which,
moreover, is spatially extended and unchanging but otherwise not further
particularized'. Neumann in fact admits that by introducing Body Alpha he
is only giving expression with other words to what is ordinarily meant by
absolute motion in absolute space. ('Das durften nur andere Worte fur
dieselbe Sache sein.'} The purpose of Body Alpha is to shock us into an
awareness of how very special is the motion that Newton's First Law
describes.

Just how special can be demonstrated in the following manner. Imagine
a system of n material point particles, which may either be taken to
represent the entire system of bodies in the universe or else a small
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subsystem of bodies sufficiently far removed from other bodies that it can
be regarded as an isolated system not subject to any external forces. Let
the masses of the particles be m,, i = I , . . . , n, and suppose they
interact in accordance with Newton's law of gravitation. Neumann poses
the question that Newton raised at the end of the Scholium but did not
discuss or solve in full generality in the Principia: given the observable
(relative) positions of the bodies at successive times, to find how Body
Alpha, i.e., absolute space, is oriented with respect to the successive
instantaneous configurations of the particles. If we imagine the n-body
problem solved in accordance with Newtonian dynamics, i.e., 'in
absolute space', the general solution will contain In constants; these
correspond to 3n initial coordinate components, 3n velocity components,
and the n masses m{. This solution gives the positions of the particles with
respect to Body Alpha or absolute space. However, given the absolute
positions, one can calculate how the relative configuration of the n point
masses must vary. By comparing the actually observed relative configura-
tion with the general solution, it is in principle possible to determine the
unknown constants, that is, to deduce from the observed relative motions
the corresponding absolute motions. However, the solution to the
problem is not unique, for rather obvious reasons. The initial position of
the coordinate origin and the initial orientation of the coordinate axes is
entirely arbitary. Moreover, in accordance with Newton's Corollary V,
the coordinate system as a whole is only determined up to a uniform
rectilinear motion of the origin. Thus, the attempt to fix the coordinate
system uniquely by observing the relative motions over a time interval
sufficient to extract all the salient dynamical data about the system (the
'length' of this time interval will be discussed in Vol. 2 - it has great
relevance to the absolute/relative debate) necessarily fails; all one can do
is determine a family of coordinate systems, this family being charac-
terized by nine arbitrary parameters (three fix the origin at the initial time,
three the orientation of the axes, and three the velocity vector of the
uniform translational motion allowed by Corollary V). Nevertheless,
what can be fixed is still very striking. First, the n masses m, can all be
determined uniquely (in principle at least; one of them must, of course, be
taken as the unit of mass). Once the masses m, have been determined, the
centre of mass of the n-body system is uniquely determined by the relative
positions of the bodies. This is a point worth emphasizing, because it
highlights the curious interplay between relative and absolute concepts in
Newtonian dynamics. In any of the absolute frames of reference, the
centre of mass is found to move rectilinearly with constant speed. The
freedom in the absolute coordinate systems can be usefully restricted by
taking the origin to coincide with the centre of mass. When this has been
done, only three arbitrary parameters remain, the ones corresponding to
the orientation of the coordinate axes.
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It is remarkable that, within the framework of Newtonian dynamics,
there exists a natural way to fix the orientation almost uniquely (for a given
dynamically isolated system of bodies). As Neumann points out, this is
made possible by a famous theorem discovered in the eighteenth century
by Laplace: the theorem of the invariable plane, which is related to the
conservation of angular momentum and which holds whenever purely
central forces (centripetal forces in Newton's terminology) act. At this
point we should perhaps review briefly the law of conservation of angular
momentum, which can be stated as follows. In any absolute coordinate
system (i.e., in what is now called an inertial coordinate system), let the
instantaneous position of body i be given by the radius vector r, and its
instantaneous velocity by r, (the dot denoting differentiation with respect
to time). Let p, = m,r,, i.e. p, is the momentum of particle i. For the system
of n bodies we form the angular momentum vector

If the system as a whole is isolated (as we assume), then the vector M is
different in different absolute coordinate systems, but the different Ms
are each separately conserved, i.e., remain fixed in magnitude and
direction, in the respective coordinate systems. It is worth giving
explicitly the rules for finding M when the absolute coordinate system is
changed. Suppose we go over to a 'primed' coordinate system at rest
relative to the first and such that the origins are separated by the constant
vector a, so that

Then M' and M are related by

where P = 2,- P, is the total momentum of the system (the same in both
systems, since they are relatively at rest). Note that in accordance with
Eq. (12.2) the angular momentum is independent of the position of the
origin if P = 0, i.e., if the system as a whole is at rest in the chosen
coordinate systems. Particularly interesting is the decomposition of the
angular momentum into a component that can be called its intrinsic
angular momentum and a component that is due to the motion of the
system as a whole. Namely, let R be the position vector of the centre of
mass of the system in an arbitrary coordinate system and P be the total
momentum of the system in that same coordinate system. Further, let M'
be the angular momentum vector in the coordinate system with origin at
the centre of mass and axes parallel to the original coordinate system.
Then the angular momentum M in the original system is
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i.e., M breaks up into two distinct terms, one corresponding to the
angular momentum in the rest frame and one due to the motion of the
system as a whole.

Now for a given isolated system M' defines a unique and fixed direction
in absolute space. There is therefore a coordinate system that is more or
less uniquely associated with an isolated system of bodies. It is the one in
which the origin is placed at the centre of mass and one of the coordinate
axes (by convention normally taken to be the z-axis of a rectangular
system of Cartesian coordinate axes x, y, z) is taken along the direction of
M', so that M' = (0, 0, M). This direction is fixed in absolute space and the
xy plane is Laplace's invariable plane.

This represents the maximum extent to which the laws of Newtonian
dynamics can uniquely distinguish a coordinate system when applied to
a given dynamically isolated system. In general, as we have seen, the laws
of motion on their own leave nine parameters free. By going to the
centre-of-mass system one can eliminate six of these parameters; by
taking the z-axis of the Cartesian coordinate system along M', two of the
remaining three arbitrary parameters can be fixed. But in general it is not
possible to fix the last free parameter: the azimuthal angle of the x- and
y-axes about the z-axis remains free. However, it is important to note that,
although the orientation of the x- and y-axes cannot be fixed, the axes
themselves cannot rotate in absolute space; once the orientation has been
fixed at the initial time it is then fixed for all times. Thus, by carefully
noting the observable relative motions one can (in principle at least)
construct coordinate axes that are 'non-rotating in absolute space'.

The remarkable nature of Newtonian dynamics which Neumann was
trying to emphasize by introducing the concept of Body Alpha can now be
illustrated by a thought experiment (in which we ignore corrections that
general relativity introduces). Suppose there are two isolated material
systems containing n and n' bodies respectively anywhere in the universe
and separated by a very great distance. Imagine teams of astronomers
sent by spaceship to each of the systems and instructed to observe the
relative motions within their respective systems, without looking at any
other bodies in the universe. They are to carry out the construction of the
distinguished coordinate systems in the manner outlined above. Each
will find their own respective system. That they can find one at all is
remarkable enough. Even more remarkable is the result of comparing the
two coordinate systems. Let them be N and N'. Then according to the laws
of Newtonian dynamics it will be found that N and N' are related in an
almost miraculous way. For, relative to N say, the origin of N' will be
found to be either at rest or moving uniformly in a straight line. Moreover,
the axes of N' will in general be inclined to those of N but there will be
absolutely no change in the relative orientation with time. The axes are rigidly
locked relative to each other.
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Although Neumann did not give this specific example, it was above all
this remarkable rigidity of the orientations that he wanted to emphasize by
introducing the concept of Body Alpha.

It is worth spelling out what exactly happens in the Neumann process.
It is what astronomers call materialization of the frame of reference. The
Newtonian concept of absolute space is of no value whatsoever unless the
absolute frame of reference can be explicitly linked to observable matter;
this linking is what is meant by materialization. One can suppose the two
teams of astronomers in the thought experiment described above taking
'snapshots' of the instantaneous configurations of their respective
systems of point particles. These show the instantaneous relative configura-
tions, which are all that are observable (we recall that, throughout the
present volume, the velocity of light is assumed to be infinite). Once the
astronomers have obtained enough snapshots of their system, they will
be able to deduce the masses of the bodies and, for each snapshot, the
position of the distinguished coordinate system (unique up to the fixing,
once and for all, of the azimuthal angle) relative to the material frame
provided by the corresponding instantaneous relative configuration of
the bodies in the system. They can, so to speak, 'paint' the otherwise
invisible axes of absolute space onto the snapshot. The actual observa-
tions of how the axes of systems N and N' are related to each other
must always be made via the observable configurations, i.e., the
snapshots.

There is no doubt that, at the ultimate level, all observation is relative.
The thought experiment we have been describing is merely a graphic way
of making this explicit. What therefore is the justification for introducing
absolute space, or, to use Neumann's expression, Body Alpha? In what
sense is it real? Neumann has the following comment:

In a purely mathematical investigation involving several variables simultaneously
in which the relationship between these variables is to be represented in as clear a
manner as possible, it is often expedient or even necessary to introduce an
intermediate variable and then specify the relationship which each of the given
variables has to this intermediate quantity. We find something similar in the
physical theories. In order to get an overview of the connection between different
phenomena presented simultaneously, it is often expedient to introduce a merely
conceptual process, a merely conceptual substance, that, so to speak, represents
an intermediate principle, a central point, from which the individual phenomena
can be reached in different directions. The individual phenomena are linked to
each other in this manner, in that each is related to the central point. Such is the
role played by the luminous ether in the theory of optical phenomena, and the
electric fluid in the theory of electric phenomena; and our Body Alpha plays a
similar role in the general theory of motion.

We shall come back to these comments of Neumann in Vol. 2. But it is
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interesting to note that within half a century of his writing this passage all
three specific examples which he mentioned - luminous ether, electric
fluid, and Body Alpha - had taken less than ceremonious exits from the
scene.

If the concept of Body Alpha encapsulated superbly the rigidity of the
Newtonian frames of reference, it was not at all felicitous as a characteriza-
tion of the Galilean in variance of dynamics. Neumann was forced to
admit that Body Alpha was subject to a certain lack of definiteness - any
particular Body Alpha can always be replaced by another provided only the
new body is in a state of uniform rectilinear motion relative to the first.
One of the most interesting phenomena to emerge from an historical
survey of the discovery and development of physics in general and
dynamics in particular is the persistent refusal of even the greatest minds
to take Galileo's great principle at its face value - to accept that there
simply is no such thing as absolute rest. We have seen how Newton tried
to chain down the 'system of the world'. Neumann too was no exception.
He clearly was unhappy about the whole family of Bodies Alpha and
advanced the conjecture that if the totality of bodies in the universe is
considered (which therefore, by implication, is assumed to be finite) the
principal axes of the inertia tensor of the complete universe will be found
to maintain a fixed orientation with respect to the Body Alpha that has its
origin at the centre of mass of the universe. This would then in some sense
at least be clearly distinguished and provide a genuine material embodiment
of his 'central point'.

This is a somewhat startling suggestion, since the inertia tensor is a
concept that normally only has a meaningful definition for a rigid body
(see, for example, Landau and Lifshitz2); for a system of free particles, the
inertia tensor can only be defined at each successive instant and will, even
in quite simple cases, e.g. purely inertial motion, change. The principal
axes could only maintain a fixed orientation relative to Body Alpha for
highly exceptional initial conditions. The fact that Neumann was
prepared to entertain conjecture of this kind betrays a hankering for the
pre-Copernican verities of solid ground under the feet.

Brecht put masks on his actors to drum into the heads of the spectators
that what they watch is not 'reality', but a presentation of human beings
in circumstances different from their own. Neumann invented Body Alpha
for just the opposite purpose, to say, This is reality and see how
extraordinary it is.' He ended up by achieving Brecht's effect. Confronted
so clearly with the full implications of absolute space, the late nineteenth
century came to believe reality could not be so bizarre. By emphasizing so
graphically the extraordinary nature of absolute space, Neumann
hastened its demise, an eventuality that he did, in fact, anticipate as a
remote possibility. We shall come back to this too in Vol. 2.
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12.3. Lange and the concept of inertial systems

The publication in 1870 of Neumann's habilitation address was followed
two years later by Ernst Mach's slim book History and Root of the Principle
of the Conservation of Energy.3 Much more forcibly than Neumann, Mach
questioned the basis of Newtonian dynamics and came out quite openly
with the suggestion that the concept of absolute space was not merely
epistemological nonsense but could also be physically wrong. He implied
that a theory of motion based on relational ideas might well lead to
observational predictions at variance with Newtonian theory. Between
them, these two publications stimulated a discussion about the nature of
motion that, more than a century later, has still not abated. It is not the
purpose of the present chapter to go into a discussion of Mach's
arguments for a relational theory of motion. This chapter is concerned
instead with the clarification of the conceptual basis of Newtonian
dynamics, accepted as in essence correct, that was stimulated by
Neumann and Mach. Within a decade the subject had become very
topical, and important contributions to the debate were made by Streintz4

and above all Lange.5 It was Lange who coined the expression inertial
system, which has since become standard. In 1886, Lange published the
book to which reference was made in Chap. 9 (p. 477); its title can
be rendered in English as Historical Development of the Concept of Motion
and its Probable Outcome.6 It contains much useful information but is
unfortunately not easy to obtain. This section is devoted to Lange's
formulation of the law of inertia.

Lange got his idea for formulating the concept of inertial system from a
proposal that Neumann made in his habilitation address concerning
time. His solution to the problem of defining time presents what appears
at the first encounter to be an alternative to the concept of ephemeris time
(p. 181 and p. 182fn). However, we shall see that in fact there is no
effective difference. Neumann comments that the reference in Newton's
First Law to the uniformity of inertial motion has no concrete meaning
unless we know what is meant by 'equally long time intervals'. Neumann
points out that de facto the rotation of the earth provided the practical unit
of time in his day, but that it would be manifestly absurd to take the
rotation of the earth as providing the ultimate time scale; for it was already
certain in his time that the period of rotation of the earth could not be
constant in accordance with the then known laws of physics (for example,
tidal interaction of the moon and earth must cause a gradual slowing
down of the earth's rotation). To make the earth a perfect time keeper, by
definition, would be absurd; one could just as well take Mars or any other
rotating celestial body. Any such arbitary definition comes up against all
the objections which Newton found in Descartes' relativism.
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Neumann got round the apparently insuperable difficulties which
Newton had seen in Cartesian relativism in a most interesting and
illuminating manner. What he did in essence was to change in a subtle
and significant way the seemingly absurd statement Descartes made in a
closely related context, namely, that motion is to be defined by bodies
'which we consider to be at rest'. More than anything else, it was the
apparently arbitrary nature of this proposal (which Descartes manifestly
exploited and abused) that so aroused Newton's wrath. Motion cannot be
made to depend on human whim! The subtlety of Neumann's modifica-
tion was in providing objective criteria, suggested by the laws of motion
themselves, for the selection of bodies with respect to which motion is to
be determined. The key element in Neumann's concept is that of a
material point subject to no forces (in German sich selbst uberlassen, literally,
left to itself). For brevity we can call such an object force-free. The essence of
Neumann's definition of equal intervals of time, which Lange modified to
define an inertial system, is that motion and time are to be defined relative to
force-free bodies. For the moment we shall not consider the criterion used to
establish that any particular body is force-free; in fact, as we shall see
shortly, the original force-free concept of Neumann and Lange needs
to be modified in a significant way before it can acquire experimental
utility.

The use of force-free bodies to define motion and time can be (and is)
called dynamic. Conceptually, the dynamic method is quite sophisticated
since the most fundamental physical processes are defined in terms of
themselves. The processes define their own means of definition!

Let us see what this means in concrete terms by examining Neumann's
definition of equal intervals of time, which is the simplest and most
straightforward example we shall meet. Neumann observes that a
statement like 'A force-free material point travels equal distances in equal
times' is empty of content even if you can identify a force-free body and
know how to measure equal distances. But the situation is entirely
different as soon as we consider a case in which we simultaneously
observe two or more force-free bodies. For in this case the motion of one of
them can, by convention, be taken as defining equal units of time (the times
required to pass through equal distances). What this convention does is
materialize a clock. Then, with the concretely realized clock, one can make
a nontrivial experiment. Does a second force-free body travel equal
distances in equal times as defined by the first force-free body?
The answer is, of course, yes, or it is at least to the accuracy with
which Newtonian dynamics holds and the experiment is properly
performed.

Neumann states the part of Newton's First Law relating to the uni-
formity of the motion as follows:
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Two material points, each force-free, move in such a manner that equal path
distances of the one always correspond to equal path distances of the other.

Note that this definition is in agreement with the ancient requirement,
noted in Chap. 6 in connection with Kepler's treatment of orbital speed
(p. 305), that only like quantities should be compared. For in accordance
with Newmann's prescription, a studied motion is not measured in terms
of some abstract time but in terms of another actual motion. It is also
worth noting that this concept of the effective meaning of equal units of
time is quite close to Newton's own practice (though not his metaphysics).
It will be recalled how Newton embedded time in space in the problem of
centrifugal force by using the actual motion of the body in space to
provide simultaneously the measure of time. Here is one further typical
example, in which Newton is discussing Galileo's law of the parabolic
motion of projectiles:7

Fig. 12.1.

If the body A by its motion of projection alone could describe in a given time the
right line AB, and with its motion of falling alone could describe in the same time
the altitude AC; complete the parallelogram ABCD, and the body by that
compounded motion will at the end of the time be found in the place D; and the
curved line AED, which that body describes, will be a parabola, to which the right
line AB will be a tangent at A; and whose ordinate BD will be as the square of the
line AB.

It will be noted how Newton effectively uses the length of AB as the
measure of the time. As emphasized in Chap. 10, Newton was very
conscious of the fact that the geometrization of motion, the extension of
ordinary three-dimensional geometry into the fourth dimension,
depends crucially and explicitly on the law of inertia, for this is what
metrizes the fourth dimension. However, Newton had no inclination to
follow the direction which Neumann here opens up; for his whole
instinct, like Galileo's in the question of the tides, was to interpret
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dynamics as the explanation of the seen in terms of the unseen, ultimately
God, whereas the thrust of Neumann's definition is to the reinterpreta-
tion of dynamics, not so much as an explicative, but as a correlative science,
as establishing the relationships between the seen and the seen.

There is no alternative to Neumann's approach. However much
Newton may expostulate, the reality of dynamics is that it relates matter
to matter, not matter to space and time. What the whole debate is really
about is not whether motion is relative to matter or to space but the
clarification of the precise nature of the connection which dynamics
establishes between matter and matter (I use matter here in a generalized
sense, as something which is unambiguously observable). In Newtonian
dynamics the relationship between matter and matter appears highly
bizarre; so bizarre that the case for absolute space acquires a certain
cogency. Newtonian dynamics relates matter to matter but in a manner
that seems independent of matter. For we have seen how it is possible, by
careful observation of matter, to 'paint in' coordinate axes on each
successive relative configuration of the observable masses in the universe;
it is quite impossible to 'paint in' the axes without using the observable
matter but, when this is done, there is absolutely nothing about the
relative configuration of the observable matter to suggest why the axes,
when painted in, move as they do relative to the observable matter. The
rules of connection seem curiously disjunct from what they connect.
Watching the dancer, we have learned the rules of the dance but they are
not at all tailored to the dancer - who must dance, quite literally, in a
straightjacket which hangs there seemingly in nothing. Absolute space
and time (as determined empirically by careful observation of the
seen) are to a high degree irrational - as we shall see in Vol. 2 when we
come to compare Newtonian with more rational Machian forms of
dynamics.

After this general reflection and before making the linkup between
Neumann's 'time' and ephemeris time, let us now turn to Lange. His
definition of inertial system is taken directly from the paradigm provided
by Neumann's operational definition of uniformity of motion. The basis of
Lange's proposal, given in Ref. 5, is a purely mathematical fact, which I
shall present in a slightly simplified form. Imagine three straight lines x,
y, z which meet at one point and are fixed rigidly relative to each other,
i.e., the angles between them are fixed. Then take any nondegenerate
plane triangle with vertices a, b, c and attempt to place vertex a on line x,
b on line y, and c on line z. It is trivially obvious that the manoeuvre will
succeed for at least two vertices but not necessarily for the third (put
mathematically, the solutions to the equations that give expression to this
problem sometimes have real and sometimes imaginary roots; the
construction succeeds when the roots are real). For example, it is easily
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seen that if the three lines are mutually perpendicular and all the angles
of the triangle acute, the construction is readily achieved. (Put a on line x,
b on line y and lay the triangle in the plane defined by x and y. Drop the
perpendicular from c onto ab and move a and b along x and y until the
extension of this perpendicular passes through the point of intersection of
x, y and z. Hold a and b fixed and then swing c up until it rests on line z.)
If the construction succeeds for one particular set of lines and one
particular triangle then there exists a whole set of triangles obtained from
the given one by continuous variation of the triangle's sides for which the
construction still succeeds (the triangle can be continuously varied in any
way until the roots corresponding to the problem become imaginary).

It follows from this that for three point particles moved arbitrarily (subject
to continuity) it is always possible to find fixed straight lines which meet
at a point and on which the triangle can be fixed in the manner described
above for a certain finite time interval (until the corresponding roots
become imaginary). But this means we can always find a coordinate
system such that three point particles moved in an entirely arbitrary
manner will, for a finite time at least, move along straight lines emanating
from one point.

Therefore, for three or fewer bodies we see that the rectilinearity of
Newton's First Law has no physical content at all; for the construction
goes through without any restriction at all on the bodies (there is no need
for them to be force-free). There is here an exact parallel with Neumann's
definition of uniform flow of time (for one body uniformity has no
significance). Lange's operational definition of an inertial system is then
as follows. At some instant, three force-free material particles are
projected from a single point. At some later instant, choose arbitrarily a
point O which lies outside the plane formed by the instantaneous triangle
of the three bodies and join this point by straight lines to the three bodies.
A three-dimensional corner is thereby constructed. Now take any three
rectangular Cartesian axes with respect to which the three-dimensional
corner occupies a completely fixed position. Then an inertial system is
realized by these three Cartesian axes if the three-dimensional corner
(and with it the Cartesian axes) is moved in such a way that the three
bodies are always situated on the three corresponding edges of the
corner. This requirement fixes the position of the corner and axes
uniquely. As Lange emphasizes, this definition has virtually no physical
content. For a finite time at least the same construction could be carried
through for arbitrarily moved bodies.

According to Lange, Newton's First Law must then be formulated as
follows. Given an inertial system realized in the manner described, any
fourth force-free particle will be found to move rectilinearly in that
system. Clearly, this is a highly nontrivial result.
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There are several points worth making about this definition, of which
the basic principle rather than any particular detail is important. In the
chapter on Huygens, I introduced the concept of cosmic drift to describe
inertial motion. Newton made a valiant effort to define and explain this
cosmic drift in terms of transcendental, or metaphysical, concepts
(absolute space and time). Neumann and Lange rejected this approach as
being conceptually unsatisfying and experimentally valueless. Instead of
attempting to put a foundation under the cosmic drift, they made it the
foundation. For the important point is that the reference system, both in its
spatial and its temporal part, is, in principle at least, constructed explicitly
from material particles that are allowed to follow the cosmic drift. This is
the twist to the theory of motion that was announced in Chap. 1. In our
intuition we conceive that space and time exist, providing the framework
within which motion takes place. Space and time define motion. But the
truth is the other way round. For in the Neumann-Lange scheme
the space and time coordinates are explicitly constructed from the
motions. It is on them that the universal scaffolding of space and time are
erected.

We have thus a curious situation in which a basic phenomenon
(motion) is defined by a foundation which it simultaneously creates. This
is characteristic of all operational definitions and is probably what makes
them as difficult for many people as it was for Peter to accept that divine
invitation to walk on water.

At root, the reluctance to accept operational definitions as the ultimate
basis of physics is a manifestation of what I called the substance
syndrome. It springs from the desire to have ground under one's feet.
Confronted with the existence of something, we attempt to explain that
something in terms of something else. But is this not a perpetual delusion?
Perhaps the reader will excuse a digression into poetry, which may make
my point better: that our understanding of the world rests ultimately on
what we see (vision being taken here to embrace all the senses and other
aids to observation), that universal foundations for science exist only in
the patterns we perceive in the seen. For, when all is said and done,
everything of which we are aware remains perpetually incomprehensible.
Nothing is comprehensible except nothing. The nonexistent world is the
only rational world we can fully understand. Exposed to the incompre-
hensible, we search for substance and support. The mist and clouds
slowly disperse, but Atlas stands not there before our eyes supporting the
world. We never get behind the spectacle of the senses. Pull aside the
gaudy curtain and see what is behind! That is the cry. But the curtain is all.
We do not have the option of leaving Plato's cave. Whatever brought us
and the world into existence worked after the manner of Shakespeare's
poet:8
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And, as imagination bodies forth
The forms of things unknown, the poet's pen
Turns them to shapes, and gives to airy nothing
A local habitation and a name.

And though the whole 'grows to something of great constancy' the
world we confront is nevertheless a baseless fabric and could always return
from whence it came:9

And, like the baseless fabric of this vision,
The cloud-capp'd towers, the gorgeous palaces,
The solemn temples, the great globe itself,
Yea, all which it inherit, shall dissolve
And, like this insubstantial pageant faded,
Leave not a rack behind.

It is futile to look for a metaphysical substrate. The challenge is to trace
and put our finger on the universal and unifying pattern. Newton was
looking for the loom on which God wove the gorgeous fabric of the world.
He mistook the woof and the warp for the loom.

To come back to more prosaic matters. The Neumann-Lange approach
shifts the problem from the identification of space and time to the
identification of force-free bodies. Is there not a major problem lurking
behind the idea of force-free bodies? How else can a force-free body be
recognized other than by uniform rectilinearity of its motion? Are we not
confronted with a vicious circle?

This is the point at which to explain the modification of the force-free
concept which must be made before it can be employed in practice. This
leads us to the concept of a reference body whose deviation from the
force-free state can be calculated from the known forces acting on it.
Position determination with respect to such a body is then a two-step
process involving observation of the position of the studied body relative
to the reference body, whose own position is corrected by calculating
how much it must deviate from a force-free trajectory. In this way the
position of the studied body is related to an 'ideal' reference body. The
ideal reference body is immaterial, a mathematical construct, but is
nevertheless obtained by means of a perfectly real body, with which it is
not possible to dispense. As this process too is conceptually quite
sophisticated, it is worth pointing out explicitly how it relies on the
fundamental structure of Newtonian dynamics. According to the theory,
the real body would move inertially but for the interactions, which cause
deflections from purely inertial motion. Now the important point about
the deflections, to which attention has been drawn several times, is that
they have identifiable causes. Thus, examining all the potential sources
causing deflection from inertial motion, we can in principle calculate what
the deflection of any given body from inertial motion must be. From the
observed motion and the calculated correction we can then get back to the



Lange and the concept of inertial systems 661

'pure' inertial motion and hence determine an inertial frame of reference.
In principle, the determination of ephemeris time (until its replacement
by atomic time) was done in the same way, i.e., it was deduced from the
observed motion of a selected reference body whose motion was
calculated theoretically with allowance for all known perturbations.
(Ephemeris, or Newtonian, time was officially defined by the apparent
motion of the sun, as pointed out in Chap. 3, though the practical
determination was by the apparent motion of the moon.) Thus, the idea
of Lange and Neumann of 'plugging in' to ultimate standards supplied by
force-free bodies is basically sound but in reality involves a much more
comprehensive exercise in order to separate the force-free behaviour from
the disturbances.

This somewhat roundabout way of arriving at a dynamically relevant
spatiotemporal frame of reference is quite unavoidable and is forced upon
scientists, above all astronomers, by the facts of life. A point to be
especially emphasized is that the use of some material reference body can
never be avoided. The reason for this is precisely the fact that inertial
motion, which I have called cosmic drift, is not in any way tied to the
objects that can be observed in our neighbourhood. There is absolutely no
way of revealing the cosmic drift other than by letting some material body
flow with it. To be of genuine practical value, our spatiotemporal
reference system must 'tap' the dynamic behaviour of actual bodies. The
system of reference bodies then provides the frame in which the motion
of other bodies is described.

Before we examine this technique in a specific example, we should
mention an important point of principle. All matter in the universe is
subject to gravity - that is what universal gravitation means. This is a very
serious threat to Lange's definition, for it puts a question mark over the
basis of his entire construction. A force-free body simply does not exist,
since all matter resides in the gravitational field created by matter in the
universe. Even in the pre-Einstein world this fact was recognized as a
serious restriction on the practical utility of Lange's definition, though at
that time it could still be argued that for an almost perfectly isolated
system such as the solar system appeared to be the gravitational field
could be calculated from the observed matter distribution and hence
taken into account in the manner just described. Nevertheless, it is hardly
satisfactory to base the most important definitions of dynamics on a
fortunate contingent accident of the way in which matter happens to be
distributed in our immediate neighbourhood. I have not been able to
discover who first pointed out this difficulty in Lange's definition. I have
seen it attributed to Mach, but I have not been able to locate anything to
that effect in his writings. Certainly the problem was clear to Russell in
1903 when he wrote The Principles of Mathematics.10 In it he discussed a
proposal made by Streintz4 that in practical terms is essentially the same



662 Clarification of Newtonian dynamics

as Lange's and relies on the force-free concept, motion being referred to
fundamental bodies or axes which do not rotate and are independent of
all outside influences.* Russell comments: 'If motion means motion
relative to fundamental bodies (and if not, their introduction is no gain
from a logical point of view), then the law of gravitation becomes strictly
meaningless if taken to be universal - a view which seems impossible to
defend. The theory requires that there should be matter not subject to any
forces, and this is denied by the law of gravitation.'

Russell left his comment at that. Einstein, anxious to retain the sound
core of Lange and Streintz's idea, transformed it by one of the most subtle
strokes in science. Giving up the attempt to distinguish conceptually
between inertia and gravity, he altered the definition of force-free; he still
defined motion relative to distinguished bodies, but stipulated that these
be subject to no forces of noninertial and nongravitational origin. This is the
story of the equivalence principle and Einstein's rediscovery of what
Huygens had regarded as such a promising basis for explaining gravity -
the fact that, in their observed manifestations, inertial forces are
remarkably like gravity. We shall come to this in Vol. 2.

12.4. Determination of the earth's polar motion from
satellite observations

Lange's formal definition of an inertial system might appear at first
glance the sort of pedantry in which academics delight. Quite the
opposite - in the present age of high precision space technology with the
Strategic Defense Initiative (Star Wars) looming on the horizon it has
become a matter of life and death. For both modern scientific and defence
requirements, the ability to define position and motion conceptually and
measure them experimentally have become tasks of the highest import-
ance. Lange's dynamic definition of position has come into its own in our

* Streintz (conceptually) materialized 'nonrotating axes' by means of force-free gyroscopes
In practice, this is one of the easiest ways of obtaining nonrotating axes. In fact, gyroscopes
give one of the most graphic ways of visualizing the empirical reality that underlies the
concept of the family of dynamically equivalent inertial frames of reference. A triplet of
mutually perpendicular force-free gyroscopes at a common point defines the origin and axes
of one inertial coordinate system. Any other such triplet defines another. The axes of any
one triplet of gyroscopes remain rigidly locked relative to each other and to any other triplet
but the triplets themselves are in states of arbitrary uniform rectilinear motion relative to
each other. It is worth noting that the planets, spinning around their axes, implement a
system of such gyroscopes in space to a good approximation. Although the planets move
around the sun in different orbits and the spatial configuration of the planets is constantly
changing, their rotation axes maintain fixed angles relative to each other except for a very
slow precession. This also illustrates the point about the possibility of calculating the
corrections to force-free motion, since the slow precession of the planetary axes (giving rise
in the earth's case to the precession of the equinoxes) can be calculated as a perturbation from
the observed matter distribution in the solar system (cf. p. 249).
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day. In Vol. 2,1 hope to devote an entire chapter to the fascinating and
rapidly developing subject of the various different frames of reference in
current use in astronomy, space technology, and geophysics. The present
section is a brief anticipation of that chapter, inserted here to show just
how relevant Lange's definition is to modern problems. We shall consider
the problem of determining the position of the rotation axis of the earth.
It will also emphasize the following point. One can often find in the
text-book literature Lange's concept of an inertial system defined simply
by the statement that it is a frame of reference in which force-free bodies
move rectilinearly (or, more generally, the laws of motion as formulated
by Newton are found to hold). This, of course, is quite correct but it
nevertheless misses most of the subtlety of Lange's definition, which has
the virtue of emphasizing that the concept of an inertial system has no
practical value unless materialized by actual matter in motion. The example we
consider highlights this point most graphically.

One of the first major scientific discoveries in history was that of the
precession of the equinoxes by Hipparchus sometime after 135 BC. As we
saw in the chapters on Ptolemy and Copernicus, this discovery was
simultaneously the first great frame-of-reference crisis. As soon as one
thing starts moving with respect to another, problems of the definition of
motion inevitably arise. In fact, determination of the constant of
precession, which is an essential step in the determination of an inertial
frame of reference for description of motion in the solar system, is one of
the great classical problems of astronomy. In advance of the chapter
promised for Vol. 2, readers can find a clear semipopular introduction to
this topic in a paper by Clemence.11 Accurate determination of astro-
nomical frames of reference, including the fundamental dynamical frame
of reference, is important for a great many purposes but this is apparently
'very hard to get over to the astronomical community at large, who tend
to take the reference frame for granted', as C. A. Murray has pointed out
tome.

We shall not discuss here this very basic question but will consider
rather a particular problem chosen for its relevance to topics central to the
absolute/relative debate. The earth rotates about an axis. That axis points
instantaneously in a certain direction relative to the distant stars. It also
cuts the surface of the earth at a certain point. With the passage of time
both the position to which the rotation axis of the earth points on the
celestial sphere as well as the position at which it passes through the
surface of the earth vary. The later motion is typically around an irregular
spiral curve of about 15 m diameter on average. The magnitude of the
motion oscillates because there are two major components in this motion,
one annual and the other with a component of about 430 days, and these
interfere, the maximal effect occurring when the two components are in
phase. The component with period around 430 days is the famous
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Chandler wobble. The two components are of equal order of magnitude,
having amplitudes of about 3 m and 4.5 m respectively.

How are such quantities measured? And, more importantly, with
respect to what are they measured? The classical method, by which the
effect was discovered in the 1890s by Chandler, an American geodesist,
was by astronomical observations. In principle, astronomical observa-
tions can tell us two things: the point on the celestial sphere at which it is
cut by the rotation axis of the earth (this is the point on the sky around
which the stars describe the circles shown in the photograph at the front
of the book) and the angular distance of this polar point from the zenith as
observed from a particular observatory on the surface of the earth. Motion
of the rotation axis 'in space' shows up as motion of the polar point on the
celestial sphere, while motion of the polar axis relative to the earth - its
'wobble' about the rotation axis, which causes the rotation axis to
puncture the earth's surface at a different point - is revealed by a change
in the apparent distance from the zenith of the polar point.

A distance of three metres on the surface of the earth corresponds to
about a tenth of a second of arc, and classical astronomical observations
were just accurate enough for Chandler to make his discovery. A special
programme of observations with dedicated instruments was started at
the beginning of this century in order to monitor continuously the polar
motion. Firstly under the auspices of the International Latitude Service,
and subsequently the International Polar Motion Service and the Bureau
International de 1'Heure, observations have enabled the pole to be tracked
with a statistical accuracy of the order of a hundreth of a second of arc. An
account of this work together with the various subtle problems which
arise in the study of the polar motion can be found in an article by
Murray.12 Although some improvements in accuracy were achieved by
classical astronomical methods in recent decades, the accuracy of these
methods nevertheless fall just short of what is needed for a really detailed
study. One problem, always present in ground-based observations, is the
effect of the earth's atmosphere. Another is extremely relevant to the
discussion in hand and is much more fundamental, touching the very
concept of motion. I am referring to the proper motions of the stars. As
Halley was the first to show (p. 252), the stars are in continual relative
motion; the important point here is that the magnitude of the effect of the
proper motions as observed from the earth is as large as the effect of the
Chandler wobble. There are, for example, around two hundred stars
with a proper motion of about 1 second of arc per annum.

We have reached the level of accuracy at which the use of the stars as
markers of position becomes decidedly questionable. The proper motion
of the stars is, in fact, a fundamental problem in all basic frame-of-
reference work, especially that on the determination of the constant of
precession.n As the authors of a recent article in the Scientific American put
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it:13 'Measuring the exact position of a point on the earth by referring to
the visible stars is rather like being on a boat and trying to gauge one's
position by observing the positions of other boats in a large, disorderly
fleet/ This takes us straight back to the problems of relational position
determination with which Newton was grappling in De gravitatione.

In fact, at this point it is worth quoting part of a passage which Mach
wrote about two decades before Chandler discovered his wobble:3

if we wish to apply the law of inertia in an earthquake, the terrestrial points of
reference would leave us in the lurch, and, convinced of their uselessness, we
would grope after celestial ones. But, with these better ones, the same thing
would happen as soon as the stars showed movements which were very
noticeable. When the variations of the positions of the fixed stars with respect to
one another cannot be disregarded, the laying down of a system of co-ordinates
has reached an end. It ceases to be immaterial whether we take this or that star as
point of reference; and we can no longer reduce these systems to one another. We
ask for the first time which star we are to choose, and in this case easily see that
the stars cannot be treated indifferently, but that because we can give preference
to none, the influence of all must be taken into consideration.

This passage is quoted now, not for the sake of the final sentence, in
which Mach is adumbrating what later became known as Mach's Princi-
ple, but rather to emphasize the seeming impasse reached. Have we in
fact reached some fundamental limit? Is it meaningless to talk of polar
motion of the earth to an accuracy significantly better than that achieved
by Chandler?

One way round the difficulty is to look for reference objects vastly
further away than the stars, which have therefore much smaller proper
motions. This can in fact be done by means of quasars, the extraordinarily
powerful sources of radiation at great cosmological distances, and the
technique of Very-Long-Baseline Interferometry (VLBI) (see Ref. 13).
While this is at present the most satisfactory method for studying the
polar motion, it does not in principle differ from the classical astronomical
methods and can be called kinematic rather than dynamic. There is,
however, a quite different method based on observation of artificial
satellites of the earth. This is a genuinely dynamic method and a beautiful
application of the idea which underlies Lange's definition of an inertial
system.

A satellite launched into orbit around the earth is, if sufficiently massive
and high enough not to be seriously affected by the earth's residual
atmosphere, an excellent example of a body whose deviation from inertial
motion can be accurately calculated and used in the modified form of
Lange's dynamical realization of an inertial frame. It is, of course, subject
to the gravitational field of the earth, which keeps it in its approximately
elliptical orbit. It is, however, possible to model the effect of the earth and
thereby take into account the extent to which it deflects such artificial
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satellites from their inertial paths. The residual atmospheric resistance
can also be calculated. When this has been done, the satellites effectively
define an inertial frame of reference, with respect to which the motion of
the almost rigid earth can be measured. The orbits of the satellites weave,
as it were, a kind of basket framework around the earth. By measuring the
distance from stations on the earth to the various satellites (this can be
done either by laser ranging to the satellites or by measuring the Doppler
shift of radio signals transmitted at a precisely defined frequency by the
satellites) it is possible to determine the change in orientation of the earth
relative to the local inertial frame as materialized by the artificial satellites.
In this way it is possible to track not only the motion of the rotation axis
but also, of course, the rotation of the earth itself. This is intimately related
to the problem of time-keeping.

This is not the place to go into further details. The aim here is merely to
point out the conceptual and practical progress that has been made.
Descartes posed the great question: what is motion? His own answer
seemed hopelessly confused. He insisted that motion must be measured
relative to material bodies, but this appeared to open up a whole can of
worms. It seemed to deny the possibility of universal as opposed to a
particular definition of motion - for a different motion will be obtained for
each particular reference body that is chosen. Without universality,
scientific treatment is impossible and must be replaced by mere descrip-
tion. The importance of Lange's proposal is that it very neatly deals with
the problem of the particularity of relational definition of motion.
Descartes was correct to emphasize that we must always measure motion
relative to material bodies. The breakthrough to a scientifically significant
relational definition of motion came with the recognition that the
reference body only acquires utility when it is allowed, so to speak, to
follow the cosmic drift. Because the cosmic drift is universal, each particular
reference body which is allowed to follow it is, by virtue of the universality
of its motion, departicularized. Of course, the departicularization is not
complete, since the cosmic drift is only defined up to a constant rectilinear
motion. However, this does not detract from the scientific utility of the
motion which is defined in this manner. As the earth wobbles in the cage
spanned by the network of orbiting satellites, its motion relative to the
universal drift is changed in a way that is directly determinable. The
wobble is what is of scientific interest, and it is perfectly amenable to
universal definition even though any actual determination of the
wobble must always be made through particular means.

Of course, the recognition that the existence of the cosmic drift makes
possible a universal definition of motion (modulo the always undeter-
mined uniform rectilinear component) leaves unanswered the question:
whence comes the universal drift? This is the question that Mach's
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Principle sets out to answer and will obviously concern us greatly in
Vol. 2.

To conclude this section, let us look briefly at some of the remarkable
evidence that there really is a universal drift - that the determinations of
motion by different and particular frame-of-reference materializations
give a universal result. It is this coincidence among the particulars,
the commonality among the diverse, which provides the reassurance
that science is a meaningful undertaking. It is simultaneously the
phenomenon that ultimately is responsible for creating the impression
that there is solid ground under our feet. It is no coincidence that the
overthrow by Copernicus of the tenaciously held belief in the fixed earth
eventually led to at least partial clarification of the physical factors
responsible for creating this remarkably powerful illusion.

The polar motion and rotation of the earth is currently determinable in
four essentially different ways. In the last resort, all of them rest on
materialization of a frame of reference that realizes inertial motion, i.e.,
partakes of the cosmic drift. But the diversity of the materializations is
remarkable. Artificial satellites of the earth come just about as close as is

Fig. 12.2. Pole path for 1977. (Taken from C. Oesterwinter's article in: Time and the
Earth's Rotation (eds D. D. McCarthy and J. D. Pilkington), IAU (1979), pp. 263-78.)
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humanly possible to realizing Descartes' suggestion that motion is 'trans-
ference . . . from . . . bodies immediately contiguous'. Other frames of
reference are materialized by the moon, the stars, and, finally, by the
most distant objects observable in the universe - the distant quasars and
radio sources. Figure 12.2 shows plots of the polar motion of the earth as
determined by some of these different materializations. The remarkable
agreement between the determinations is the coincidence that this study
is all about: the coincidence between the earth's wobbles determined by
the almost immediately contiguous satellites and those determined by the
extragalactic sources at what for us is effectively the edge of space and
time.

Mach spoke often of the profound interconnection of things. Figure
12.2 is a striking example of this.

12.5. Back to the Scholium

It was asserted in the previous chapter that the Scholium suffered from
three main defects. The first, that it was distorted by being too specifically
directed against the Aristotelian and Cartesian notion of position
determination by immediately contiguous bodies, has already been
adequately considered. We shall be here mainly concerned with the other
defects - the concentration in the Scholium on a very special form of
motion (circular) and the suppression of Galilean invariance. We shall
also make good the claim in that chapter that in one respect at least
Newton was on stronger ground than he appreciated.

This is in fact a good point at which to start. Right at the end of the
Scholium Newton is forced to take a step which threatens to undermine
the whole basis of the main contention of the Scholium - that there are
dynamical criteria which enable us to deduce the true (absolute) motions
from the observed relative motions (which Newton asserts, at the end of
the Scholium, is the reason why he wrote the Principia: 'For to this end it
was that I composed it [the Principia]'). It will be recalled that in the final
paragraph [j] of the Scholium Newton imagined two globes, attached to
each other by a cord, and rotating in space very far from any other bodies.
He based his argument for the reality of absolute motion on the fact that,
using the formula for the strength of centrifugal force, it is perfectly
possible to establish the 'quantity of the circular motion' and also,
through observation of the effect of application of forces to different faces
of the globes, its determination (i.e., whether it is clockwise or anti-
clockwise when observed along the rotation axis from one side or other of
the plane in which the globes move). However, to determine the actual
direction of the globes at any instant, Newton is forced to use the distant
bodies: 'from the translation of the globes among the bodies, we should
find the determination of their motions'. We have seen too that in
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discussing the motions observed within the solar system Newton felt
obliged to make the assumption that the distant stars are at rest.

This creates the impression that, as a dynamical theory, Newton's
scheme is somehow incomplete - that, for example, the n-body problem
can only be fully studied if there is a background of very distant stars to
provide the ultimate frame of reference. However, Neumann's discussion
of the rt-body problem, summarized above, shows that, in principle, this
is not necessary. By observing an isolated system for sufficiently long, it
is possible to construct a coordinate system in which Newton's laws hold.
This coordinate system is explicitly constructed from the observable
relative distances and relative velocities and at any given instant has a
perfectly definite and determinable position relative to the n observed
bodies. In this respect, Newton's dynamics was even more impressive
than he seems to have realized (or at least implied). On the other hand,
this explicit construction of 'absolute axes' makes rather clear the extent to
which the construction is not unique but subject to the arbitrariness
associated with Galilean in variance.

Now to the distortion introduced by Newton's self-imposed limitation
to circular motion. This is what brings the most serious confusion into the
Scholium - and has mesmerized many people since then. The essential
point of Newtonian dynamics is that, by its internal structure, it defines a
family of frames of reference in which acceleration can be determined
uniquely (acceleration is 'absolute' but velocity is not). Thus what Newton
should have been doing was demonstrate the remarkable consequence of
this ability to determine acceleration 'absolutely'. However, the limitation
to circular motion led him to chase a will-o'-the-wisp; for what Newton
really wanted to demonstrate was that velocity in absolute space can be
determined, not acceleration. Frustrated by Corollary V in his attempt to
determine rectilinear speed, he put all his hopes on showing how circular
speed could be determined. But this seriously distorts the real content of
Newtonian dynamics and makes the difference between rectilinear and
circular motion appear excessively mysterious. A much truer picture
emerges when one considers that circular motion is just a very special case
of accelerated motion. It then becomes clear that the ability to determine
a definite speed of circular motion is a consequence of the very special
type of acceleration and is not really anything to do with the basic
structure of dynamics, which is about the difference between accelerated
and unaccelerated motion.

This can be illustrated as follows. Suppose two spaceships in empty
space far from all gravitating matter. One is totally without power and
therefore moves inertially; the other has power and is equipped with a
modern inertial guidance device such as those used in aircraft for inertial
navigation. The device is an accelerometer. If the powerless craft has on it
a set of three mutually perpendicular gyroscopes, these define an inertial
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system in which the powerless craft is at the origin. The powered craft can
now fly in a quite arbitrary way, accelerating and changing direction in all
three dimensions just as often as the pilot wishes. The remarkable thing
is that without using any observations apart from the readings of the
accelerometer the pilot of the powered craft can in principle always
immediately determine where he is in the inertial coordinate system
defined by the gyroscopes on the unpowered craft. He has no need to look
at either that craft or the distant stars. The gyroscopes within his own
accelerometer are perfectly sufficient for the task. In particular, after an
arbitrary journey, the pilot can return the second craft to the first along
any route he cares to choose and will know exactly when he will meet up
again. Indeed, there is not even any need for the first craft to remain
inertial. They can both go off on arbitrary journeys and then agree to meet
up again at a prearranged position in their original inertial frame of
reference.

This fact emphasizes another remarkable point: there is no need for the
frame of reference to be physically materialized for all time. Materializa-
tion at the beginning of the exercise is quite sufficient. Essentially, all the
materialization is needed for is to ensure that at the start the two space
craft are both 'plugged into' the same cosmic drift (in the conveyor belt
analogy from Chapter 9 (p. 477), they must both be on the same 'conveyor
belt' at the start of their manoeuvres; by means of the accelerometers they
can then always get back to the origin on the 'conveyor belt'). In Vol. 2 we
shall find a precise mathematical characterization of the remarkably small
degree of 'extraneous materialization' that Newtonian dynamics requires
to become a complete self-contained scheme.

Now in all the manifold possible journeys, with arbitrarily varying
velocities, the velocity of the powered craft in the inertial frame of reference
materialized by the gyroscopes of the other craft is always a well-defined
quantity. So is the position. Both velocity and position are determined by
integration. In the Scholium, Newton created a very misleading impres-
sion by considering a very special case. All such journeys would have
served to prove his point that acceleration is absolute (and, equally
remarkable, that within any definitely materialized inertial frame of
reference both position and velocity can be determined by purely
dynamical means), but he wanted to prove velocity is absolute and,
probably confused to some degree, chose highly singular motions among
the infinitude that are possible. By selecting uniform circular motions, he
created the spurious impression that he had achieved direct contact with
the absolute.

But one may ask, what precisely is the speed of circular motion that
Newton claimed he was able to determine absolutely? Certainly not the
speed in absolute space, since Newton can hardly have believed that
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either the bucket experiment or the one with the two globes would have
any different outcome in a frame of reference in uniform rectilinear
motion relative to the original frame in which the experiment is
performed. In fact, Newton's persistent refusal to mention this fact - and
his having overlooked it is barely credible - is the clearest evidence of
disingenuousness on his part though there does also seem to be an
element of straightforward misunderstanding. On the one hand Newton
was trying to prove more than is admissible (that velocity is absolute),
while, on the other, his self-imposed limitation obscured the truly
remarkable power and universality of his dynamics. The instantaneous
tension in the cord joining Newton's two globes is determined by their
masses and instantaneous mutual accelerations. Only in the artificial case
of constant circular motion can one pass from the accelerations to a
uniquely defined circular speed. Newton's result is an artefact of special
conditions, not a characteristic consequence of fundamental dynamics.

The root cause of his trouble seems to have been the attempt to dispense
totally with matter when defining motion. Wherever specific applications
of dynamics are made, the inescapability of a definite materialized frame
of reference is unavoidable. Without it all equations are void of content.
With it, there is no limit to what dynamics can achieve. (The ability to
guide intercontinental ballistic missiles onto targets thousands of miles
away by inertial guidance with frightening accuracy is one of the most
striking illustrations of this.) The temptation to dispense with the
particular materialization is very great. It seems rather odd that it is
always necessary to have some matter defining the frame of reference.
The very fact that, in principle, any matter will do helps to create the
impression that the materialization of the frame of reference is super-
fluous. Lange, in particular, must be given the credit for seeing that this is
not the case. He supported his case with a particularly apposite quotation
from Mach's first published book:3 'Because a piece of paper money need
not necessarily be funded by a definite piece of money, we must not think
that it need not be funded at all.'

In this inflationary age, in which the funding of paper money by gold
has been abandoned, this remark may make its point even better than it
did in 1872!

Two small points to end this section. Readers familiar with the history
of the discovery of quantum mechanics will recall that Schrodinger was
initially of the firm belief that his wave function had a real physical
meaning, representing a mass or charge density. He attempted to prove
this by showing that the wave function has no spreading in time.
Unfortunately, he showed this for the very special example of the
harmonic oscillator, which is the one dynamical system for which there is
no spreading. By choosing such a special example, Schrodinger seriously
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distorted the true content of his own theory.14 Newton's restriction to
uniform circular motion in the Scholium had a rather similar effect.
Indeed one could argue that the relevant passages in the Scholium
represent the only serious conceptual confusion in the entire Principia.

The other point concerns the thought experiment with the space craft.
The reader may have noticed the crucial restriction 'far from all gravitating
matter'. As soon as the experiment is attempted in nonconstant gravita-
tional fields, the situation is completely changed. The second craft will
then not be able to find its way back to the first without additional
information about the real contingent world around it. The discussion of
this significant complexity is deferred to Vol. 2.

12.6. Huygens and absolute motion

At this point it is appropriate to consider briefly once more the difficult
question of what precisely were Huygens' views about the fundamental
nature of motion. We shall see that his views changed, but that he never
appears to have arrived at a coherent standpoint. The most extensive
discussion of this question of which I am aware is to be found in Vol. 16 of
the Oeuvres Completes of Huygens, where the editors give several relevant
texts together with a useful commentary.15 Schouten has also published
and discussed some of the more important texts.16

We can start this discussion by noting that throughout his life Huygens
does not appear ever to have questioned the validity of the law of inertia
as the most fundamental law of motion. More importantly, he never
seems to have had more than passing doubts about the manner in which
it should be formulated. We have already encountered his formulation in
the work on collisions. Essentially the same formulation occurs in the
opening of the second part of the Horologium Oscillatorum, in which he
says that if it were not for gravity and air resistance 'every body that has
acquired a certain motion would continue to move forward with the same
speed in a straight line'.17 As has been emphasized several times, such a
statement is meaningless unless the motion in question is referred to
some quite definite frame of reference. Huygens was at least partly aware
of this problem, as is evident from an unpublished note, which may date
from 1668, in which he remarked that 'the motion of a body can at the
same time be truly uniform and truly accelerated if its motion is referred
to other different bodies.'18 As we saw in Chap. 11, this problem was the
core of Newton's objection to Cartesian relativism; it was expressed very
clearly in De gravitatione but unfortunately not so explicitly in the
Scholium. In Huygens' case it seems never to have dominated his
thought. In fact, in the period after the publication of the Principia this
difficulty seems to have escaped him completely; for we find that on the
one hand he asserts the complete relativity of motion with increasing
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conviction but yet continues to suppose that undisturbed bodies travel in
straight lines with uniform speed. There is therefore a serious contradic-
tion at the heart of Huygens' thought on this subject.

Let us now briefly review the main stages through which Huygens'
ideas passed. At a very early stage in his life he became totally convinced
of the validity of the Galileo relativity principle. This development has
been well documented by Gabbey.19 The conviction in the validity of the
Galileo relativity principle never left Huygens throughout his entire life,
and we have seen in Chap. 9 the brilliant use he made of the principle.

A new stage in his thought occurred after he had found the correct
formulas for centrifugal force in 1659. His reaction to his discovery seems
to have been exactly the same as was Newton's several years later -
because the strength of the centrifugal force is mv2lr, the circular speed of
a stone whirled around on the end of a string can be deduced from the
tension in the string without reference to any external bodies. Huygens
therefore concluded that although rectilinear uniform motion is quite
undetectable through dynamical phenomena, circular motion does truly
exist and can be measured in various ways. This appears to have been his
opinion for about a quarter of a century, or even longer. Particularly
interesting in this connection are his reflections, dating from around
1686-87, on the cause of the oblateness of the earth, which, at that time,
Huygens believed could not be due to rotation relative to the fixed stars
but must be a consequence of a motion of rotation 'pure and simple'.20

The final stage in Huygens' development was brought about by the
publication of Newton's Prindpia in 1687. This had a great impact on
Huygens and stimulated him to publish his own ideas on the nature of
gravity.21 It appears that Newton's outspoken advocacy of absolute space
and absolute motion also prompted Huygens to reconsider his views on
the nature of motion and he came round to the view that all motion is
relative. This process is especially well documented in an exchange of
letters between Leibniz and Huygens which took place in 1694, the year
before the latter's death. The correspondence has been published by
Gerhardt.22 In a letter of 29 May 1694 Huygens wrote that 'there is no real
but only relative motion. I hold this to be quite certain, without wishing
here to dwell on the arguments and experiments of Mr Newton. I see that
he is in error and am curious whether he will not withdraw his opinion in
the new edition of this book . . . Descartes did not understand enough of
this matter.' In his reply of June 1694, Leibniz commented: 'I seem to
remember that you yourself, Sir, were once of the same opinion as Mr
Newton with regard to circular motion.' Leibniz is here referring to a
discussion which he had had with Huygens in Paris more than twenty
years earlier. Huygens answered on 24 August 1694 as follows: 'With
regard to absolute and relative motion, I do admire how you have
remembered that with regard to circular motion I was in earlier time of the
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same opinion as Mr Newton. That is correct, and it is only two or three
years ago that I found a position closer to the truth/

Huygens did not elaborate on this point except to say that he did not at
all agree with Leibniz's idea, according to which 'among several bodies
moved relative to each other each does have a definite degree of motion
or true force'. In thus rejecting Leibniz's thesis (which will be discussed
further in Vol. 2), Huygens committed himself to complete relativity of
motion. How did he reconcile this with the facts of circular motion?

To answer this question, we must turn to his unpublished papers
written in the last years of his life. The most revealing of these is perhaps
the one reproduced as IV in Schouten's paper.16 It is also published in the
Oeuvres Completes (Vol. 16, pp. 232-3). The date is uncertain but is
certainly late. The paper contains several sentences which reveal how
deeply Huygens sensed the pure relativity of motion; he anticipates the
sentiments that we shall find in Vol. 2 in Berkeley's and Mach's writings.
The paper begins with the statement that 'motion between bodies is only
relative'. He points out that in the case of a single body (alone in the
universe) it is quite impossible to conceive any difference between motion
and rest of such a body. Very characteristic is the following question: 'If
space extends infinitely in all directions, what is then the definition of a
place or of rest?' By way of answer he continues: 'It is true people say that
the fixed stars of the Copernican system may be at rest. Well, suppose
they are all at rest relative to each other; but, taken all together with
respect to what other body are they at rest or in what respect do they differ
from bodies that move very rapidly in a certain direction? Therefore, one
can neither say that a body is at rest in infinite space nor that it moves in
that space, and thus rest and motion are only relative/

However, when we come to Huygens' explanation of the apparently
absolute nature of circular motion we find a deep confusion. He says that
'a rotational motion is a relative motion of the parts, which are driven in
different directions but are held together by a string or a connection/ He
continues: 'But can one say two bodies move relative to one another if
their separation remains the same? This is perfectly possible provided an
increase in the separation is prevented. In fact, on the circumference there
exists opposite relative motion/ This rather remarkable statement is
explained by Huygens in a figure (Fig. 12.3) and a footnote, in which he
says: 'Let body A move along the straight line or rod AB and body C move
along the straight line CD, which has the same direction. When A arrives
at B and C at D the two bodies are certainly moved in opposite directions;
however their separation changes very little and almost not at all. This is
what happens in the case of rotating connected bodies/

It seems almost certain that this is the argument which Huygens had in
mind when he wrote to Leibniz and asserted that he had a counter to
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Fig. 12.3.

Newton's argument for absolute motion. Huygens' argument is perhaps
the most striking example in the entire literature on the absolute/relative
debate of the tyrannical grip exerted on the mind by the intuitive notion
of space. With the very breath with which he asserts the relativity of
motion Huygens uses kinematic concepts that cannot be formulated
without some underlying concept of space. For with respect to what are
the lines AB and CD straight?

Huygens clearly believed very deeply in the complete relativity of
motion but it is evident that, unlike Newton, he did not at all grasp the full
implications of such a doctrine. His use throughout his life of the law of
inertia in an essentially Cartesian form demonstrates that. He understood
very well Galileo's principle of relativity for uniform motions and was
therefore correctly unimpressed by Newton's argument that each body
has a unique absolute motion. And because Newton did not spell out
explicitly and unambiguously in the Principia the inherent contradiction
between complete Cartesian relativism and the law of inertia Huygens
was not alerted to his own confusion. Out of this muddle came eventually
a powerful stimulus to the search for an alternative, completely relational
theory of motion. Huygens' espousal of complete relativity became
known publicly, especially in the nineteenth century following the
publication of his correspondence with Leibniz, but the confusion
underlying this espousal did not see the light of day until much later.
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12.7. Mach's operational definition of dynamical mass

Before concluding this volume, we consider the other important clarifica-
tion of Newtonian concepts that occurred in the nineteenth century:
Mach's definition of mass. This is particularly important in view of the
part played by the mass concept in Einstein's understanding of Mach's
Principle.

It is interesting that at the end of his habilitation address Neumann said
that, the concept of motion having been clarified by the introduction of
Body Alpha and that of uniform flow of time by means of the time scale
defined by inertial motion, the clarification of the concepts of Galilean-
Newtonian dynamics had been reduced to a completely straightforward
exercise. In his view, the only tricky point which remained concerned the
definition of mass, into the discussion of which he declined to enter 'as it
would take us too far to concern ourselves further with these matters'. As
it happens Mach had already given a lecture on precisely this topic a year
before Neumann's habilitation, and he published the essence of his
proposal four years later in 1872 as an appendix to his book History and
Root of the Principle of the Conservation of Energy.3 Quite apart from its
conceptual importance in the context of Vol. 2, it is well worth looking at
Mach's operational definition of mass in some detail since intellectually it
is a most satisfying piece of work and prior to Einstein's definition of
simultaneity is the most striking example of how the interpretation of
phenomena well known can be completely changed by an appropriately
chosen operational definition. Of course, as noted at the beginning of this
chapter, Mach's definition of mass merely resulted in a reinterpretation of
already known physics, whereas Einstein's definition of simultaneity
opened the door into a world as unexpected as the one inadvertently
discovered by Copernicus when trying to save uniformity of motion in the
heavens. What Mach's definition shares with Einstein's is deftness and
the way it puts familiar things in a totally different light.

It will be worth looking briefly at the development of the mass concept
in a fairly long historical perspective. The interesting question is: Why did
the physical mass concept take so long to emerge? The reasons for the
tardy development of physical concepts in general and the mass concept
in particular have already been noted in the early chapters: paucity of
suitable phenomena and the alluring prospect of explanation by means of
geometry. We have seen how the geometrism that preceded Aristotle
threatened to retard the study of motion by providing what seemed to be
an exceptionally powerful explicatory tool. It was just the same in the
seventeenth century. As regards explication of the world, shape and size
promised to achieve so much there seemed little need to develop any
further concepts. It took the discovery of dynamics to show that nothing
could be further from the truth. What moved Aristotle more than



Mack's operational definition of dynamical mass 677

anything else in the direction of genuine dynamics was probably a gut
awareness that three-dimensional geometry by itself could never explain
why motion occurs at all. Motion is something genuinely new. Thus,
where the atomists and Plato had a concept of matter determined almost
exclusively by extension and shape, Aristotle felt the need to introduce
attributes of matter that related directly to motion. Thus was born the
concept of occult quality - an intrinsic property by which a body's motion
is directly determined; occult because there was nothing in the appear-
ance of the body to tell us that it possessed such a quality. The intellectual
battle which raged in the seventeenth and early eighteenth centuries was
all about such concepts, with the pure mechanists like Descartes and
Huygens asserting that everything must be explained by means of the
only comprehensible principles available to man: shape, size, and morion.
When Newton introduced universal gravity, the concept was
immediately denounced as an occult quality. It is ironic that the
establishment in the Principia of the correct principles of dynamics passed
almost without comment - an earth-shaking event if ever there was one,
yet it aroused remarkably little interest compared with what was seen as
the pernicious reintroduction of Aristotelian occult qualities. In this
connection, the reader is particularly recommended the reading of Cotes'
Preface to the second edition of the Principia;23 it captures the flavour,
intensity, and bitterness of the debate - and is also excellent philosophy
of science.

Cotes and Newton won the debate and thereby ensured that the
concepts of active and passive gravitational charge (as they are now
sometimes called) became the first universally accepted and clearly defined
physical quantities to be associated with bodies. The evidence provided
by the phenomena and marshalled with such mastery by Newton was
overwhelming: whatever may be the ultimate mechanism behind it, the
possibility of associating an operationally quantifiable attractivity (as it
may be called) in matter was simply undeniable. The empiricopositivistic
approach to this question adopted by Newton and Cotes is remarkable
and anticipates the attitude that Mach brought to the whole field of
science: the phenomena manifestly permit the definition and determina-
tion of gravitational attractivity; therefore, let us accept it is a fact and get
on with the extremely interesting job of showing just how many and
diverse phenomena in the world can be explained by this one single
property. Further speculation on its origin is at the moment out of place;
it may be either an ultimate property irreducible to anything else or we
may eventually find an explanation of it in terms of something even more
primitive.

With the full glare of the spotlight focussed on gravity, the history of the
concept of mass is most curious: it became established as a genuinely
physical (as opposed to a purely geometrical) concept without anyone
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properly noting the fact. After more than two hundred years of brilliantly
successful use, people suddenly realized that the mass concept presented
a decided enigma. Neumann clearly recognized the existence of the
problem, though he failed to provide the answer.

For our purposes the natural starting point for the discussion of mass is
Kepler, though the reader is recommended the reading of Jammer's book
on the mass concept24 for the earlier history. It is particularly worth noting
how philosophers struggled for centuries, indeed millennia, in a more or
less fruitless attempt to characterize the essence of matter. The final
appearance of a satisfactory definition through dynamical behaviour is
really most remarkable and surprising when seen in the light of this
philosophical endeavour. What is interesting about Kepler is the way in
which his changed conception of motion led very naturally to the
introduction of genuine physical concepts. As we have seen, the great
early astronomers made no attempt to explain the celestial motions; they
merely sought to describe them. Kepler's search for a cause of the motions
led him to introduce first of all the concept of force. His instinct, prompted
by the behaviour of the planets, then told him that individual bodies must
be characterized by some quantity which measures its resistance to the
applied force. In this way he introduced the idea of a physical quantity
intrinsic to each and every body, one moreover that is present in each and
every part of any given body, so that the total 'laziness' of a body is the
sum of the 'lazinesses' of each of its parts. It is worth emphasizing that this
notion of the sum of the individual parts producing the integrated effect
is one of the most characteristic features of the transition from medieval
teleology to a modern scientific viewpoint. In this respect, Kepler was
much more modern than Galileo and perhaps even than Hooke.

It is a measure of Kepler's instinctive feel for the needs of dynamical
theory that it is only necessary for one to replace the concept of laziness
with respect to motion by laziness with respect to change in motion for one
to arrive at precisely Newton's concept of inertial mass. Kepler's major
share in the development of this concept is eloquently attested by the fact
that Newton was not ashamed to take over Kepler's name to denote the
correctly identified property. As he said, it may, 'by a most significant
name, be called inertia'. (For an interesting discussion of how Newton
came across the concept and his generally very unfair attitude to Kepler,
the reader is recommended Cohen's paper.25)

This is the point at which to make an important remark. It relates to the
two different uses made of the word inertia. There has in fact been a subtle
and potentially confusing shift in the commonly accepted meaning of this
word. Both Kepler and Newton used the word for the capacity of matter
to resist changes in its state. With Kepler this is quite explicit: he merely
took over the Latin word for laziness. For Kepler it was quite clearly what
we now call a scalar quantity, a number characterizing an intrinsic
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property of matter. When Newton first introduced the word into his own
vocabulary, in De gravitatione,26 he followed Kepler very closely. He said:
'Inertia is force within a body, lest its state should be easily changed by an
external exciting force/ Note that inertia is a resistance to change of state.
What state is not specified, though it is obvious Newton is thinking in
terms of change from one state of motion to another rather than the simple
Keplerian idea of the transition from rest to motion. The point which
needs to be made is that the concept of resistance to change of state is by
no means the same thing as the state. Indeed the transition from Kepler
to Newton illustrates this point perfectly: the concept of laziness survived
but the state (or rather states) changed. A priori, there is absolutely no
reason why the states between which a resistance barrier must be
overcome are states of uniform rectilinear motion. They could be states of
uniform circular motion or states of uniformly accelerated rectilinear
motion - or indeed any unambiguously defined state of motion.

By the time Newton came to write the Principia, the states between
which the resistance is manifested were made quite explicit. Here is
Newton's Definition III and part of his gloss on it; this shows how closely
he followed Kepler:

The vis insita, or innate force of matter, is a power of resisting, by which every body, as
much as in it lies, continues in its present state, whether it be of rest, or of moving uniformly
forwards in a right line.

This force is always proportional to the body whose force it is and differs
nothing from the inactivity of the mass, but in our manner of conceiving it. A
body, from the inert nature of matter, is not without difficulty put out of its state
of rest or motion. Upon which account, this vis insita may, by a most significant
name, be called inertia (vis inertix) or force of inactivity.

Throughout the Principia, Newton consistently uses words like vis
insita, or vis inertiae to refer to this resistance. There is no suggestion at all
in the Principia that the word inertia should be used to describe the state. It
is the resistance to the change of state, and its magnitude is characterized
by what is now called the inertial mass, the m which appears in the modern
statement of Newton's Second Law in the form

Long after Newton was dead, the connotation of the word inertia was to a
considerable degree transferred from the resistance to the state. What
Newton called Lex Prima, the First Law, and stated in the form

Every body continues in its state of rest, or of uniform motion in a right line, unless
it is compelled to change that state by forces impressed upon it

became known as the Law of Inertia. When the Oxford English Dictionary
was compiled in the late nineteenth and early twentieth centuries, inertia
was defined as 'that property of matter by virtue of which it continues in
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its existing state, whether of rest or of uniform motion in a straight line,
unless that state is altered by an external force'. This is a very major shift
of meaning and one that has passed almost unnoticed. It is interesting
that OED quotes (in Latin) Newton's definition of vis insita given above
(including the words potentia resistendi) but does not give any definition
expressing the idea of a quantitative resistance to the change of state. In
fact, among the dictionaries I have consulted Wallenquist's The Penguin
Dictionary of Astronomy is alone in adding a second meaning:27 'the
resistance to . . . change of state'.

It would clearly be quite inappropriate to attempt to reverse this shift of
usage. An adequate distinction can be made by using inertial mass to refer
to the resistance and inertial motion to refer to the state. Further evidence
for the fact that the two concepts are totally different and need to be clearly
distinguished is the circumstance of their origin. Kepler never really had
an inkling of inertial motion. He in no way contributed to the recognition
that it is a fundamental element of dynamics; that was entirely the service
of Galileo and Descartes. They, in contrast, had no part in introducing the
Keplerian concept of laziness, though Descartes used somewhat similar
ideas and served as a useful means of communicating the concept from
Kepler to Newton (see Cohen25). Perhaps the distinction could be made
clear by referring to Keplerian inertia and Galilean (or Cartesian) inertia. This
would certainly emphasize the immense utility of both concepts and do
some sort of justice to Kepler, whose major role in developing the science
of dynamics has been most regrettably underestimated. His contribution
was by no means restricted to discovering the laws of planetary motion,
crucial as that was.

More important than all this is that Einstein apparently failed to
distinguish between the Keplerian and Galilean-Cartesian concepts. This
will be a major concern in Vol. 2.

The remainder of this section is devoted to the curious history of
Keplerian inertia - the manner in which the concept of inertial mass
became established and clarified. This is the story of the breaking of the
tyranny of geometry.

We saw in Chap 6 that Kepler appears to have drawn an explicit
distinction between the amount of matter, or inertia, in a body and the
volume which the body occupies. In this he was exceptional. So far as I
can make out, nearly all the great natural philosophers of the seventeenth
century simply identified the amount of matter in a body with the volume
it occupied. None of them seems to have felt that there was anything more
to matter than extension and shape. This is explicit in Descartes but seems
to have been widely and unquestioningly accepted. Two main
mechanisms were recognized for the explanation of the great diversity of
mechanical behaviour, above all weight, observed in matter. Within the
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atomic conception, denser bodies were such by virtue of the fact that the
atoms within them were more closely packed together. There was no
suggestion that the individual atoms might have different intrinsic
densities: they were all chips off one monolithic, perfectly uniform block.
Very characteristic is the example, quoted by Westfall,28 of Gassendi, who
'employed the image of a bushel of wheat which can be shaken to cause
the kernels to fit more closely together'. Such a mechanism was not, of
course, open to the plenists like Descartes and Leibniz. They had to rely
on the differing ability of matter to give way to other matter, this
difference being ultimately explained by the shapes, sizes, and above all
the motions of the various microscopic bodies of which macroscopic
bodies were supposed to be composed.

The words most commonly used to describe quantity of matter reflect
this instinctive idea: corpus (body), moles (mass or bulk), and massa (lump,
mass). When Newton first identified the modern momentum (mass times
velocity) as the most fundamental dynamical concept, it seems that he
regarded the mass as simply the volume of the matter. This comes out in
a passage in the Waste Book in which Newton discusses collisions between
unequal bodies. He first discusses the case of equal bodies and then the
case when one is twice the other. He represents this by a figure in which
one body is simply shown as having twice the volume of the other.29

We now come to the Principia and the definition of mass which opens
the book. First, a general comment: my impression, after reading through
the Principia while watching out for the way in which Newton used the
word mass and its synonyms, is that Newton had simultaneously two
quite distinct and unrelated concepts of mass without being fully aware of
the fact. In many cases it appears that his mass concept was just the same
as in the Waste Book, i.e., that in the last resort what counts is the
(close-packed) volume of matter, conceived as chips hewn by God from a
perfectly uniform block. Such an interpretation is supported by the gloss
(quoted below) on Definition I, in which Newton says that he will refer to
the quantity of matter 'under the name of body or mass' ('sub nomine
Corporis vel Massae'). This use of the word body has a strong connotation of
volume, which would be entirely consistent with Newton's early work in
the Waste Book, as well as with the dominant concept of his age.

Alongside this concept, there are every now and then hints of a
completely different way in which mass could be defined. The clearest
example comes in Book III of the Principia (Prop. VI, Cor IV) where
Newton says: 'By bodies of the same density, I mean those, whose
inertias are in the proportion of their bulks.' It is very remarkable that in
the early De gravitatione Newton gave an explicit definition of density
along exactly these lines:30 'Bodies are denser when their inertia is more
intense, and rarer when it is more remiss.' This is clearly a totally different
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approach to the problem and amounts to a dynamic definition of mass: the
amount of mass is measured by the resistance it offers to a given force. We
shall see that this is a clear anticipation of Mach's definition of mass.

There is nothing implausible about the suggestion that Newton had
simultaneously two quite different mass concepts. He worked perfectly
happily with no less than three different concepts of force and never once
put a foot wrong. So far as I can understand his mind, he had such a sure
and instinctive grasp of the way to solve problems in dynamics that he
never had to take particular care over his definitions. By this, I do not want
to suggest that he gave only cursory consideration to the formulation of
his definitions and axioms; he certainly did spend time on them. What I
mean is that successful solution of problems did not depend for Newton
on complete prior and explicit clarification in words of his concepts. He
somehow knew what needed to be done and did it. Moreover, his
terminology lagged behind his insights; he used the old words to describe
phenomena and concepts for which he had meanwhile acquired a much
clearer dynamical understanding. This could well be what happened to
the concept of mass.

Seen in this light, let us now look at Newton's definition of mass. On
the face of it, the most important book in the history of science opens with
one of the crassest of vicious circles:

The quantity of matter is the measure of the same, arising from its density and
bulk conjointly.

Of this definition, Mach made a famous and much quoted criticism:31

'With regard to the concept of "mass", it is to be observed that the
formulation of Newton, which defines mass to be the quantity of matter
of a body as measured by the product of its volume and density, is
unfortunate. As we can only define density as the mass of unit volume,
the circle is manifest/ Clearly, everything hinges on the sense in which
Newton understood the word density. If when he wrote this definition
Newton had in mind density as defined above by means of inertia, then
the problem disappears completely. But if that is the case it is most
remarkable that Newton did not make that clear; apart from anything
else, density used in such a sense would be entirely novel, as indeed is
confirmed by the fact that in the quoted corollary Newton recognized the
need to explain what he meant by density in that particular context.
Moreover, Newton's gloss on Definition I seems to suggest that he had in
mind the older usage from the Waste Book:

Thus air of a double density, in a double space, is quadruple in quantity; in a triple
space, sextuple in quantity. The same thing is to be understood of snow, and fine
dust or powders, that are condensed by compression or liquefaction, and of all
bodies that are by any causes whatever differently condensed. I have no regard in
this place to a medium, if any such there is, that freely pervades the interstices
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between the parts of bodies. It is this quantity that I mean hereafter everywhere
under the name of body or mass. And the same is known by the weight of each
body, for it is proportional to the weight, as I have found by experiments on
pendulums, very accurately made, which shall be shown hereafter.

While this passage is far from decisive, it does appear to me consistent
with the idea that in Newton's mind higher density is a consequence of
closer packing of pieces of matter that in themselves are made of identical
matter.

However, precisely what Newton meant is not all that important;
indeed, examination of Jammer's survey32 of what the large number of
interpreters have made of Newton's definition and gloss persuades me
that the rather meagre reward is not worth the effort. I suspect that the
gloss is a vestige of the mechanical origin of dynamics, a last remnant of
Descartes' London-Underground-in-the-rush-hour concept of the world.

What is clear from reading Newton's documents dating from the period
just before the Principia is that the discovery of the law of universal
gravitation was of decisive importance for his recognition of the need for
a concept of mass distinct from weight. It was undoubtedly this insight
which led to the promotion of the mass concept to pride of place at the
head of the definitions in the Principia. It was forced upon Newton by his
realization that the gravitational force (and hence weight) decreases with
distance from the attracting body. In the gloss on his Definition VII he
says 'the force of gravity is greater in valleys, less on tops of exceeding
high mountains.'

At much the same time as Newton recognized clearly the need for the
mass concept there also occurred the shift in his conception of the nature
of the vis insita that was mentioned in Chap. 10 (p. 535). This process has
been well documented by Herivel.33 As was pointed out in Chap. 10, the
young Newton conceived the force of inertia rather in the manner of
Buridan's impetus theory, a force that keeps a body moving along at
uniform speed on its Cartesian straight line through absolute space. But
as he worked on the preparation of the Principia this original medievalism
(which never adversely affected his ability to solve problems) gave way to
the more mature (and, in fact, Cartesian) realization that resistance to
change in motion is to be distinguished from the motion that takes place
between interactions between bodies. On p. 679 we gave the start of
Newton's gloss on his Definition III of vis insita, or vis inertiae. The gloss
continues with these words:

But a body only exerts this force when another force, impressed upon it,
endeavors to change its condition; and the exercise of this force may be considered
as both resistance and impulse; it is resistance so far as the body, for maintaining
its present state, opposes the force impressed; it is impulse so far as the body, by
not easily giving way to the impressed force of another, endeavors to change the
state of that other.
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In conjunction with Newton's instinctive comment from near the end
of the Principia, quoted earlier in this chapter, to the effect that density of
mass is to be determined by inertia, this passage shows clearly that
Newton had come to distinguish, if not yet completely clearly, between
the state of inertia (uniform rectilinear motion) and the resistance to
change in that state.

In the post-Newtonian period the acceptance of the mass concept as an
independent physical concept seems also to have been not a little helped
by Newton's introduction of the Latin synonym massa alongside corpus or
quantitas, with their Cartesian mechanical overtones. Mass liberated itself
little by little from its predynamical geometrical origin and came to be
understood as that 'something' in matter which measures its inertia. It
was transformed from meaning volume into a substance, the Atlas-type
prop to support the observable attribute of resistance to acceleration. Like
absolute space it became a metaphysical concept - something we fancy we
can conceive clearly in our mind, though we are very hard pressed when
called upon to explain it in unambiguous terms. We find ourselves going
round in vicious circles like Newton.

In the mid-1860s, when he was in his late twenties, Mach set out to clear
out all the metaphysical cobwebs from the kitchen of physics. Total-
ly committed to empiricism, he began his mature work in the decade after
Riemann completed the overthrow of a priori geometry. A few decades
earlier Gauss had performed one of the most deeply symbolic experi-
ments in history: he had made a serious attempt to see if there were 180°
in a triangle. This was indeed an age to challenge all the old preconcep-
tions.

Mach's view of Newton was that he had instinctively grasped most if
not all the essentials of dynamics but that his presentation of the subject
was deficient in failing to make clear what were the key observable
phenomena on which the most important concepts of dynamics rested.
Newtonian mechanics was the culmination of a long historical process in
which metaphysics and speculative mechanics after the manner of
Descartes had vied with empirical observation for the upper hand. Both
strands were very pronounced in Newton himself. In the final product,
empiricism got the upper hand but metaphysics fought a strong rearguard
action; it appeared to make a greater contribution than it in fact did,
mainly because Newton continued to use old words for new insights.

More clearly than any of his contemporaries, Mach realized that any
successfully functioning scientific theory or discipline must in the last
resort rest on experimentally observable phenomena. For otherwise it
could not make meaningful and nontrivial statements about observed
phenomena. In particular, most of the key concepts in science are those
which permit scientists to associate definite numbers with the concepts.
Examination of ways in which these numbers are actually determined
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would then give one a clue to the phenomena which provide the ultimate
justification for the concepts themselves. In a sense, the method of
determination of the value of say, the mass, will then be simultaneously
the definition of the mass concept. We have already seen examples of this
in Neumann's definition of inertial time scale and Lange's definition of
inertial system (all position observations are made relative to observable
matter, therefore an inertial system must be conceptually materialized, to
match the experimental practice). Mach developed this technique into a
systematic art - the art of the operational definition of the fundamental
concepts of physics.

Mach's idea was to build up the concepts of dynamics systematically,
starting with the most basic geometrical elements and progressing from
them to the more sophisticated dynamical concepts. Although well aware
of the revolution wrought by Gauss and Riemann in the conceptual
foundations of geometry, Mach did not set himself the hopelessly
ambitious task of sorting out geometry as well. Instead, he accepted
distance measurement as given and also, for the purposes of the
clarification of the concepts of mass and force, that clocks exist and that
the distant stars define a frame of reference with respect to which all
motions are to be defined. Then the first observational fact on which
dynamics rests is the law of inertia: In the frame of reference defined for
practical purposes by the stars, bodies are usually observed to travel in
straight lines with uniform speed. So far, there is little difference here
from Newton; it is on the transition from velocities to accelerations that
Mach parts company from Newton, who, it will be recalled, made force the
primary concept of dynamics. However, even Newton was clear that the
existence of forces must be deduced from the observed accelerations they
induce in bodies. Developing his systematic approach, Mach insists that
the observable accelerations should come first. When this is done, it
transpires that the definition of mass (and force) cannot be separated from
the content of Newton's Third Law. For the observed facts are as follows:
Bodies normally travel on straight lines relative to the stars but, under
suitable conditions, two or more bodies can mutually accelerate each other.
Mach's great insight was that it is the very special law which governs the
manner in which this mutual acceleration takes place which makes
possible the meaningful definition of mass.

Let us consider the observationally simplest case of interaction between
bodies: collision of two bodies, 1 and 2, on a straight line. Experience soon
shows that the mere size of the individual bodies is not at all decisive for
the outcome of a collision between 1 and 2. The essential information
extracted from a collision is the change in velocity that each body
undergoes as a result of the collision. Let the changes be dvi and 6v2. Even
if collisions between only two bodies are considered, an interesting
observational fact emerges: if the precollision velocities are varied, the
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mutations dvi and 6v2 vary too, but remarkably the ratio 6vl/dv2 is
(provided we consider only nonrelativistic speeds) always the same and
equal to some constant negative number, which we shall call — C12

(C12 > 0). Suppose we now take a third body, 3, and perform collision
experiments between 1 and 3 and 2 and 3. We obtain corresponding
constants C12 and C23. Now the really striking fact is that C12, C13, and C23

are found to satisfy a very particular relationship:

A priori, there is absolutely no reason why the individual constants Q;

should exist at all, nor why a relation such as Eq. (12.4) should hold
between them. The point which Mach makes is that it is the existence of
such relationships which make possible the introduction of the mass concept.
Namely, the outcome of all collisions, elastic and inelastic, can be
characterized by associating with each body i an intrinsic number m,.
These numbers are such that  In this representation, all the
numbers m,, the masses, are determined only up to a common constant
factor, which is fixed by taking one of the bodies, say 1, as the unit of mass.

Mach had a wonderfully uncompromising attitude to the basic concepts
of physics. Time and again he insisted that there is absolutely no a priori
(merely logical) reason why the phenomena unfold in the way they do.
Before we make collision experiments, there is no way we can predict how
bodies will behave in experiments. We cannot form an idea in our minds
of what bodies are like and on that basis predict in advance what the
outcome of collisions will be. This was the route chosen by Descartes -
with disastrous results. As Westfall says,34 Newton's law of the 'equal
mutation of the motions' was a result that the seventeenth century did not
expect at all. And, as the above analysis shows, the one phenomenon
leads simultaneously to the definition of mass and the formulation of the
Third Law.

It is a further fact of experience that the same quantities m, are obtained
when the bodies do not interact instantaneously, as in collisions, but
continuously, over finite times, as in the case of the planets. In this case it
is the mutually induced accelerations which are found to satisfy a relation
like Eq. (12.4), namely, if a-^ and a2 are the accelerations which bodies 1
and 2 have induced in them by their mutual interaction, then defining

we again find that Eq. (12.4) holds.
We can conclude this discussion of the definition of mass with the

following comment of Mach:35 'All uneasiness will vanish when once we
have made clear to ourselves that in the concept of mass no theory of any
kind whatever is contained but simply a fact of experience.' It is not only
the mass concept that is deduced from the observation of collisions and



Here, the acceleration a is a directly observed kinematic quantity, while
the mass m is also an observable quantity, deduced in interaction
experiments from the observed accelerations. The use of facts of experience
to define concepts which are in turn used to summarize huge bodies of
empirical facts terminates in Mach's presentation of dynamics with the
statement of the conditions under which forces are manifested. Here
again, the phenomena are remarkably particular. A given configuration
of bodies is always found to give rise to definite and calculable forces, the
most famous example of which is, of course, Newton's law of universal
gravitation.

What then is the essence of dynamics? It is in the recognition of universal
correlations in the observed behaviour of bodies. The basis of it all, the ground
on which the correlations are observed, is the possibility of measuring
distances and times and the existence of bodies that can be recognized at
different times (without the ability to say that such and such a body is the
same as the one we were observing a moment ago, we should make very
little progress in dynamics: this question will be considered in Vol. 2).
Using these basic possibilities of observation, we establish the charac-
teristic way in which bodies accelerate themselves from one inertial
motion into another. The very specific and completely universal manner
in which the mutual accelerations always occur permits the introduction
of the mass concept, the most important concept in Newtonian dynamics
and the one which Newton, making a break with all previous tradition,
very characteristically and significantly placed at the very beginning of
the Principia even if he did not in the event succeed in providing a
satisfactory definition.

We can summarize this part of the discussion with the following
characteristic passage from Mach:36

If we pass in review the period in which the development of dynamics fell . . . its
main result will be found to be the perception, that bodies mutually determine in
each other accelerations dependent on definite spatial and material circumstances,
and that there are masses. The reason the perception of these facts was embodied
in so great a number of principles is wholly an historical one; the perception was
not reached at once, but slowly and by degrees. In reality only one great fact was
established. Different pairs of bodies determine, independently of each other,
and mutually, in themselves, pairs of accelerations, whose terms exhibit a
constant ratio, the criterion and characteristic of each pair.

Incidentally, this passage shows clearly how unjust are the criticisms
very often made of Mach that he did not believe in theories and wanted to
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continuous interaction of bodies. Forces too are to be obtained in a similar
manner. In Mach's reformulation of Newtonian dynamics, Newton's
Second Law ceases to be a law and becomes instead the definition of force:
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reduce everything to mere description - to replace a scientific theory of
the world by 'mere geographical description'. Such an opinion represents
a serious misunderstanding of what Mach was trying to do. He was
bitterly opposed to speculative, explicatory theories in the manner of
Descartes and all the seventeenth century mechanists and atomists. What
Mach wanted was the raw truth, the facts of experience. There is a thrill,
with which no amount of speculation can compare, in knowing how the
world actually is. Even today, 350 years after they were written, Galileo's
words 'but to just what extent this acceleration occurs has not yet been
announced' produce a tingle of excitement in the reader. Hence Mach's
great admiration for Galileo:37 'Galileo did not supply us with a theory of
the falling of bodies, but investigated and established, wholly without
preformed ideas, the actual facts of falling/

Equally typical is the sentence with which he (Mach) ended his first
published book:3 The object of natural science is the connection of
phenomena; but the theories are like dry leaves which fall away when
they have long ceased to be the lungs of the tree of science.'

Critics of Mach should not be misled by his pejorative use of the word
theory, the predominant meaning of which has changed quite significantly
since Mach's time (indeed, in part due to his influence). Mach used theory
in the sense of 'an explanation . . . of a group of facts or phenomena',
whereas it is nowadays used much more in the sense of 'a statement
of ... general laws, principles' (OED). Mach condemned Maxwell's
derivation of the laws of electromagnetism from underlying mechanical
models of the ether, but once they had been purified of the props which
Maxwell's imagination originally needed and had been transformed into
statements of the mere facts governing electromagnetic interactions Mach
gave them his enthusiastic assent. Thus, Mach had absolutely no quarrel
with what is today known as the Maxwell-Faraday theory of electro-
magnetism. The whole difference between Mach's concept of physics and
'descriptive geography' is in the universality of the connections between
the phenomena.

Mach's clarification of the mass concept more or less completes the
story of the discovery of dynamics and the clarification of its empirical
basis.

As the mass concept will later play a central role in the discussion of
Einstein's work, let us end this section with an explicit warning that Mach
made on the subject:38

The concept of mass when reached in the manner just developed renders
unnecessary the special enunciation of the principle of reaction [the Third Law].
In the concept of mass and the principle of reaction, . . ., the same fact is twice
formulated; which is redundant. If two masses 1 and 2 act on each other, our very
definition of mass asserts that they impart to each other contrary accelerations
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which are to each other, respectively, as 2:1. . . .As soon therefore as we, our
attention being drawn to the fact by experience, have perceived in bodies the
existence of a special property determinative of accelerations, our task with regard
to it ends with the recognition and unequivocal designation of this fact. Beyond
the recognition of this fact we shall not get, and every venture beyond it will only
be productive of obscurity.

The last sentence of this quotation proved to be remarkably prophetic.
Mach felt that his definition of mass had removed all obscurity about the
concept that made its first hesitant and somewhat muddled appearance
in Kepler's 'laziness'. There is a very important point to be made about the
mass concept: the concept itself identifies an intrinsic property of
individual bodies, i.e., it makes possible the association of a unique
number, the mass mit with each body in the universe. However, the
phenomenon through which this is made possible is one that involves at
least two bodies - because the essence of the phenomenon is mutual
acceleration of bodies. This mutuality of the acceleration makes it clear
that the original idea of Kepler which Newton developed, namely that of
the resistance of a body to a change of its state, is a misleading way of
looking at the phenomenon, and one moreover that is based on rather
direct subjective experience. When we push a body, we feel a resistance;
we naturally think the essence of the phenomenon is resistance to
pushing. But what we perceive as resistance is in reality the body pushing
us, something it must do in accordance with the law of action and reaction
as soon as we push the body. Thus, the essence of the mass phenomenon
is not resistance per se but mutuality of acceleration.

It is necessary to make this point because, as pointed out in the
Introduction, Einstein regarded an integral part of Mach's Principle as
consisting of explaining 'resistance to acceleration'. He seems to have
regarded this resistance as somehow a resistance against acceleration
with respect to the universe as a whole, with the implication that the
resistance phenomenon would disappear altogether if there were no
masses in the universe. But this completely ignores the essence of the
phenomenon, which is mutuality of the acceleration of at least two
bodies. Einstein can hardly have believed that Newton's Third Law (or its
generalization in relativistic physics) could somehow cease to hold if
masses were progressively removed from the universe. And as long as
the Third Law continues to hold, the concept of a quantity intrinsic to each
and every body in the universe, the inertial mass, will survive unscathed.
It must, or otherwise no content could be given to the Third Law.

Einstein did not heed Mach's final words quoted above. The almost
total confusion surrounding the history of Mach's Principle in this century
is ample confirmation of Mach's prediction made in 1883: 'and every
venture beyond it will only be productive of obscurity'.
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12.8. Synoptic overview of the discovery of dynamics

We have reached halfway. The Pythagorean cosmos has been dismantled,
the world atomized. Laws of nature now govern its each and every part.
The world's soul, or the universal spirit, has been killed.

Volume 2 will show how the Pythagorean cosmos is reassembled - and
in the process transformed out of recognition.

The concept of motion that emerges at this halfway station can be
characterized as semi-interactive. The earliest laws of motion, employed in
astronomy, were completely noninteractive. Both practically and con-
ceptually, geometrokinetic laws are the easiest to formulate. Given a fixed
background, the concept of uniform straight or circular motion is not a
difficult one. But as science matured, the observations became more
detailed, the pattern more complicated. The first geometrokinetic laws
were essential because without them the detail of the pattern could never
have been put in such clear relief. Only when the gross structure has been
defined does the fine structure come into focus. Nowhere is this more
clearly demonstrated than in Kepler's work. The key to all his success was
getting the orbit of the earth right. Once the equantized circle of the
earth's orbit had been properly placed, Mars at last acquired a definite
orbit. The fine details of this orbit carried the hints that led to the demise
of the geometrokinetic scheme that revealed them in the first place.
Kepler transformed the glorious lantern that God had hung at an
advantageous point to illuminate the mysterious cavity of the world into
the motor which drove the planets. The concept of motion was completely
changed; where bodies previously defined each other's motion they now
determined it. Newton completed what Kepler began.

But a geometrokinetic element remained. Galileo pulled it out of the
heavens and put it straight into his motionics as one of the elements of the
parabolic motion of projectiles. The net effect of Descartes' intervention
was merely to straighten a geometrokinetic element that Galileo had
imported from the closed circle-oriented world of Aristotle. More than
anything else this Cartesian straightening of circular Galilean inertia
brought the problem of motion to the centre of the stage. Galileo's circles
were defined relative to the matter in the cosmos. What defined the
straight lines with which Descartes replaced them? Descartes never
realized he had created this problem. He initiated the real debate about
the ultimate nature of motion quite unaware of the fact it was his own
rectilinear motion rather than the Inquisition which brought the issue to a
head.

Newton's solution to the problem, absolute space and time, left
dynamics in a semi-interactive state. It divided the original geometro-
kinetic law of perfectly uniform circular celestial motions into two: the law
of inertia, which remained geometrokinetic (though space-based instead
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of matter-based), and the law of universal gravitation, which epitomized
the totally new interactive concept of motion. With interactive motion
came necessarily the introduction of physical quantities - mass, electric
charge, gravitational charge, etc. - without which it is not possible to
realize a rational theory of interactive motion; they are needed to measure
the capacity of bodies to generate motion and the response they exhibit to
externally applied forces.

It was only in the nineteenth century that the startling consequences of
a semi-interactive dynamics became fully apparent. Under the pressure
of applications, which of necessity are matter-based and not space-based
(you cannot make an observation of how something observable moves
relative to something that is unobservable) the factual nature of absolute
space and time were identified: a family of immaterial inertial systems
whose location, orientation, and motion must ultimately be deduced
from the observed motion of matter and, as it were, 'painted in' on that
matter. What makes the family of inertial systems so mysterious is not so
much its specific structure (which is odd enough - rotationally absolutely
rigid but slightly undetermined translationally) but rather the manner in
which it is 'suspended' in a decidedly arbitrary manner in the midst of the
observable matter. The nature of this curiously disjunct suspension of the
invisible inertial systems in the observable matter will be spelt out in more
detail in Vol. 2. We have already been introduced to what is the most
important thing about this 'suspension' - that it is arbitrary. This is the
price which Newton pays for the only semi-interactive nature of his
dynamics: ultimately, it leads to a loss of predictive power, as will be
shown in Vol. 2. There is a nice way of summarizing the Copernican-
Newtonian revolution. It eliminated the Aristotelian gulf between the
heavens and the earth but created a gulf between the seen (matter) and
the unseen (inertial systems). But every gulf we perceive in the world is
more probably of our own conceptual making than a real feature of the
world.

It seems that it is only very slowly that genuinely new ideas develop.
There was much early criticism of Newtonian dynamics, and absolute
space and time were sensed to be the outlandish creatures that the
nineteenth century proved them to be. But nearly 200 years elapsed
between the publication of the Principia and the first suggestion of the idea
that for the first time offered a genuine prospect of bridging the gulf
opened up between the seen and the unseen: Mach proposed the
elimination of the cut between matter and the inertial systems. Interactive
gravity represented all that was best about the scientific revolution: there
was no hope of improvement in trying to turn back the clock from
interactionism to geometrokineticism. The way forward for Mach was to
complete the work that Kepler and Newton had begun and make
dynamics completely interactive. Only such an approach could solve
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satisfactorily the problem of the frame of reference. Volume 2 will be
basically devoted to the implementation of this idea. We can close this
part of the discussion with Mach's clearest statement of the ideal of a
seamless dynamics:39

The natural investigator must feel the need of further insight - of knowledge of the
immediate connections, say, of the masses of the universe. There will hover before
him as an ideal an insight into the principles of the whole matter, from which
accelerated and inertial motions result in the same way. The progress from
Kepler's discovery to Newton's law of gravitation, and the impetus given by this
to the finding of a physical understanding of the attraction in the manner in which
electrical actions at a distance have been treated, may here serve as a model.

Raine40 quoted the first two sentences of this passage, calling them 'a
clear, if distant, presentiment of a general theory of relativity'. When I
looked up the original quotation, having not looked at the passage in
question for several years, I was delighted to find the third sentence,
which had previously made little or no impact on me. But, meanwhile, a
year immersed in the pre-Newtonian study of motion had shaped my
awareness of the problem and the historical development on exactly those
lines - Kepler introduced the idea of interaction, Newton implemented it
only incompletely.

To conclude this first half of our study, it is worth drawing attention to
some important points that so far have hardly been emphasized but
which must certainly influence the way in which we attack the problem of
motion.

Perhaps the most important point to make in this connection is the
overriding importance of distance. It is on the possibility of measuring
distance that ultimately the whole of dynamics rests. All the higher
concepts of dynamics - velocity, acceleration, mass, charge, etc. - are
built up from the possibility of measuring distance and observing the
motion of bodies. Examination of the writings of Descartes and Newton
reveals no awareness of the potential problems of an uncritical acceptance
of the concept of distance. Both men clearly saw extension as something
existing in its own right with properties that simply could not be otherwise
than as they, following Euclid, conceived them. As Newton said in De
gravitatione:*1 'We have an exceptionally clear idea of extension.' The
overthrow of the simple Euclidean/Cartesian verities by Gauss and
Riemann is one of the most important factors that we shall have to take
into account in the attempt to create that seamless, fully interactive
dynamics which is our goal. It will complicate our task enormously but
will also lend the problem a grandeur and dignity of which not even
Newton dreamed. It will not be simply a question of interaction between
matter and matter but also of interaction between matter and space.

Even deeper than this problem of interaction between space and
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matter, which Riemann posed and Einstein cracked, is the question of the
origin of quantitative measures of distance altogether. Everything here is
still shrouded in mystery; in Vol. 2 we shall consider some of the issues.

It should also be pointed out that hitherto time has played only a
relatively small part in our considerations. For millennia time was the
Cinderella of physics - always taken for granted and completely upstaged
by space and geometry. This was mainly, as we have seen, because the
empirical manifestations of time, discovered by the astronomers, were,
despite being highly nontrivial, nevertheless largely in accord with
prescientific intuition. Einstein was the Prince Charming who rescued
Cinders from her unjust neglect - not that the poets had failed to pay due
tribute. Perhaps the most remarkable aspect of the dramatic entry of time
onto the centre of the stage was the carriage in which Einstein brought
Cinderella to the ball - the Galileo-Huygens principle of relativity, that
venerable first fruit of the Copernican revolution. As we have seen,
Newton attempted, not quite correctly, to obtain this principle as a
consequence of his three laws of motion. The relativity principle, which
played little or no part in the discovery of Newtonian dynamics, appeared
to be demoted. But the whirligig of time brings in its revenges. Huygens'
instinct, earlier than Newton's, may not have opened up the high road to
prerelativistic dynamics but in the end it proved to be the surer. The
relativity principle was found to be stronger than originally appreciated,
Newton's laws weaker. The shift in the relative importance of space and
time has been most pronounced in this century, so much so that many
people now regard the central problem in the quantization of general
relativity as the elucidation of time - 'in reconciling the diametrically
opposite ways in which relativity and quantum mechanics view the
concept of time' (Kuchaf42). Physicists of the twentieth century have
caught up with the enigma that has always fascinated poets, none more
than the late Elizabethans writing just at the time Kepler and Galileo laid
the foundations of modern dynamics.

Nor must we forget in this connection to mention the finite velocity of
light, which plays such a role in relativity. If the relativity principle was
the carriage in which Cinders came to the ball, light was the horse that
drew the carriage. The light of the world: yes, we see the world by light
but Einstein put a deeper significance into that 'seeing' than ever man
could possibly have imagined. Yet again were we disabused of the
comforting notion that we have a basically correct picture of what the
world is like and merely need our eyes to tell us what are the objects in it
and how they are disposed. Along with the 'dynamization' of geometry
(an apt coining as we shall see), the relativization of time is a second major
factor that immensely complicates the implementation of the Machian
programme for the unified treatment of motion. And if several people
(Clifford, and not least Mach himself) anticipated Einstein in seeing that
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geometry might need to be dynamized, no one had even an inkling of the
relativization of time. Truly a bolt from the bluest of skies. We still lie
spreadeagled on the ground.

This coda to the discovery of dynamics should come to an end. How do
we end on the right note? Let me stick my neck out. The acid test of any
account of motion should surely be: can it answer comprehensibly and
unambiguously the question which started the process that endowed the
word revolution with its present primary connotation: does the earth
move? Is it true, as is so often asserted, that the Copernican and the
Ptolemaic representations are equally valid at the most fundamental level
and that therefore the question of whether the earth moves or not is
ultimately a question of convention? We are now in a position to answer
this question within the context of the level of understanding achieved by
Newton, as clarified by Lange's introduction of the concept of an inertial system.

We must first insist that motion must be defined relative to something
which is definite and observable. Copernicus chose the stars and was
aware that at least in part this amounted on his part to a conventional
definition of motion ('since the heavens, which enclose and provide the
setting for everything, constitute the space common to all things, it is not
at first blush clear why motion should not be attributed rather to the
enclosed than to the enclosing, to the thing located in space rather than to
the framework of space'43). As regards the question of whether the earth
or the heavens rotates, the difference between Copernicus and Ptolemy is
indeed convention as long as we take no account of the dynamical
discoveries that completed the Copernican revolution. However, as
regards the second motion that Copernicus proposed (the annual as
opposed to the diurnal motion) there is an unambiguous difference
between Ptolemy and Copernicus, for Ptolemy taught that the earth is at
rest relative to the stars, i.e., the distance from the centre of the earth to
the stars does not change. Thus, if motion is defined as motion relative to
the matter of the universe as a whole, Copernicus is without doubt correct
about his second motion and Ptolemy simply wrong. The question of the
diurnal motion remains tantalizingly open.

When the laws of Newtonian dynamics, reformulated in terms of
inertial systems, are taken into account, the problem of the earth's motion
takes on a totally new complexion. Whereas before there existed only
kinematic definitions of motion (by means of identified bodies), there
now appears, for the first time in the history of human thought, a second
(and seemingly totally distinct) possibility of defining motion: relative to
the family of inertial systems. It is important to be clear (in the context of
Newtonian dynamics) precisely what this family is. Unlike the individual
inertial systems, the family of inertial systems is a unique entity.
Operationally it can only be defined by means of the totality of the matter
which exists in the universe. It is identified in an ongoing process by
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careful observation and analysis of the matter in the universe (in principle,
all matter has to be taken into account). It is itself completely invisible and
must be 'painted onto' the constantly changing configuration of the
contingently observable matter in the universe. It is 'suspended' on
matter in a curious way - a rigid straightjacket whose existence is inferred
by the rules of the dance. The discovery of this second means of defining
motion was totally unexpected, as was the very curious feature of this
definition of motion - that it is not motion itself that is defined but only
acceleration. In fact, with hindsight we can now recognize the intimate
connection between this mysterious feature of dynamics and the fact that
for so long the idea that the earth moves could be dismissed as fancy; for
there is no dynamical definition of motion per se, only a definition of
acceleration - and the effects of the earth's dynamical acceleration were
below the detection level as far as everyday phenomena were concerned.
Thus it was that Copernicus's cutting of the earth's, moorings led very
rapidly to the flushing out of what is perhaps the deepest and most
enigmatic of the principles of physics - the Galileo-Huygens principle of
relativity. This is what Galileo grasped: if the earth moves, the principle
has to hold.

Consideration of the different ways in which the two definitions of
motion - kinematic and dynamic - leave open considerable ambiguity
whenever we attempt to say precisely what is the motion of any particular
body emphasizes just how remarkable is the appearance of the second,
dynamical method. As regards the kinematic definition, Descartes was
absolutely right - there are as many different motions as there are
reference bodies. Only in the case of a finite universe containing a limited
number of bodies does any sort of well-defined concept of motion -
relative to the totality of the bodies - appear. In contrast, the dynamical
definition of motion is completely free of this infinitude of ambiguity in
which Descartes took refuge from the Inquisition - though the price
which Newton had to pay (and paid most grudgingly) for this certainty
was Corollary V: the final pinning down of motion (which Galileo hoped
to do by the tides) is just not possible. Thus, in accordance with the
dynamic definition of motion the earth does truly move, and it does so in
any of the allowed inertial frames of reference. But a mystery still remains
since the frame of reference is not quite unique.

Was Mach right to say one great fact was discovered? It really should be
two. While recognizing the value of Lange's concept of inertial system,
Mach did not perhaps give it sufficient due. Newton was quite right to
give the exalted names absolute space and time - and sensorium of God -
to the mysterious entity of whose existence he was completely certain
even if precisely the right way of describing it eluded him. Seen in the
perspective of the history of man's growing comprehension of the
universe this was truly an extraordinary discovery: a new, totally distinct,



696 Clarification of Newtonian dynamics

and well-defined method of determining motion - the first dramatic
denouement. Who are we to criticize Newton, the 'last of the Sumerians
and Babylonians',44 for seeing in the as yet imperfectly comprehended
dynamical frame of reference, invisible but all-powerful, the demidivine
structure of the world? And how mysteriously it hangs there, suspended
on the fleeting contingent world!

The Newtonian concepts of absolute space and time are the most
striking examples of concepts grasped intuitively but imperfectly in the
pre-scientific age and then shown to have a genuine basis in phenomena.
As in all such cases, the fact that they seem so close to the original notions
has tended to hide the remarkable nature of their discovery, the deep
sophistication of the procedure by which their empirical existence is
demonstrated, and the truth that the reality when found is always more
wonderful and subtle than its anticipation in metaphysical and intuitive
concepts. Newton's absolute space was anticipated, the family of inertial
frames of reference and the manner in which they are empirically
determined were not. We shall have to wait until Vol. 2 to see how
absolute time, also anticipated so long before Newton, required similar
modification. However, the main conclusion to be drawn from the two
and a half millennia that this volume has covered can already be stated:
the dynamical frame of reference, and not the ground under our feet or a
sphere of fixed stars in the heavens, is the true backbone of the world.

But what is its origin?
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Borelli, G. A., 518-19, 521, 523, 526, 539-

40, 563, 718
Borelli's theory of orbital motion, 518-19,

539-40, 544
Boyle, Robert, 413, 499, 542fn
Bradwardine, Thomas, 193, 199
Brahe, Tycho, 44, 108, 116, 127, 130, 132,

137, 163, 173-4, 185-6, 225, 234-5, 242,
257, 259, 264-6 (biographical), 270-9,
281-6, 289, 291-2, 296 (solar theory),
299, 301, 309, 322 (heirs), 327 (anti-
Copemican), 338-9 and 342-4
(destruction of spheres), 345, 347, 350
(accuracy of observations), 350-1
(significance of his work), 353, 361
(against rotation of earth), 386
(verbosity), 390, 556, 587, 708, 709

Brans, C, 3, 699
Breuer, R., xiii
Bruno, Giordano, 337, 349, 411, 599
bucket experiment, 444-5, 613, 626-7, 635,

670
bulk, see: volume
bullets, 389
Bureau International de 1'Heure, 664
Buridan, 198, 199ff, 203-8, 217, 221, 366-7,

374, 382, 383, 389, 426, 445, 567, 569,
683

Buridan's ass, 238
Bury, R. G., 702

Cajori, F., xv, 698, 722-2
Calculators, 195
calculus

infinitesimal, 83, 304, 313, 481, 499, 503,
581 (implicit use of by Newton), 588

of variations, 646
Calippus, 346
cameo (cabin), 463, 604, 606-7
Capek, M., 49, 62, 702-2
carousel, 190, 298, 346
Carter, B., 726
Carter, W. E., 723
Cartesian conception of inertial motion, 393
Cartesian coordinates, 423
Cartesian cosmology, 413
Cartesian definition of motion, 602
Cartesian doubt, 407
Cartesian incarnation(s), 610, 616, 620
Cartesian introspection, 421
Cartesian philosophy, 496, 632
Cartesian physics, 407, 409, 412

(programme of), 424 (failure of), 430
(heart of), 435-7, 459fn, 467, 484, 538

Cartesian universe, indefiniteness of, 444
Cartesian world view, 537-8
Cartesianism, 463, 467
Cartesians, 592, 612, 638-9
Caspar, M., xiv, 271, 306, 342, 697, 708-20
Cassini, J.-D., 640
Catholic Church, 83, 355, 407
causality, 174-5, 185-6, 252, 274
cause(s)

efficient, 64, 67, 375
final, 64, 67, 375
formal, 67
identifiable, 660
material, 67
of motion, 52, 355, 357, 375, 610

Cayenne, 454
celerity, 509
centre

of earth, 261
of gravity (see also: centre of mass), 100,

470-1, 591
of mass (determined by relative

quantities), 649; of solar system, 573-4,
(Al-A

of the universe and earth (in Aristotelian
physics), 67, 80, 87, 155, 261, 323, 359-
60, 368-9, 477

of world (intersection of apsidal lines),
298, 300, 350

centre-of-mass frame, 473-5, 651
centre-of-mass (centre of gravity) law

(theorem), 472, 506, 510-12, 572-7,
591, 649

centre-of-oscillation problem, 470
centrifuge effect, 418, 483, 527
Chandler wobble, 664-5
change, 438
chaos, primordial, 85, 397-8, 431
characteristic phenomena, 490
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charge
electric, 28, 39, 691
gravitational (active and passive), 28,

677, 691
chord function, 109
Christian IV, 266
Christina, Queen of Sweden, 407
Chronos, 65, 93
Cicero, 210
circle(s)

as conic section, 119
auxiliary (of Martian orbit), 310, 316-17,

321, 346
great, 112ff
of motion (in Cartesian physics), 412-13,

429
perfect, 112, 301, 309
role in astronomy, 301, 309, 346

circle-plus-equant model, 133
circularity, abandonment of, 309
Clagett, M., xiv, 67, 192, 193ff, 373-4, 697,

701-2, 706-7, 712
Clairaut, A. C, 640
clarity of concept, 376, 408
clear and distinct concepts, 408, 423-4, 604
Clemence, G. M., 663, 705, 723
Clifford, W. K., 693
clock(s), ii, 36, 38, 42, 69, 83, 181, 293, 546,

586
pendulum, 176, 454-5, 625, 633
water, 38, 176

Cogito, ergo sum, 407
Cohen, M. R., xv, 701, 706, 712
Cohen, I. B., 596, 678, 680, 710, 721, 724
'collision-in-itself', 475
collisions

as 'atoms', 475-6
elastic, 456, 459, 503-4, 508-9
for transfer of motion, 416, 429, 435
Huygens' study of, 462ff , 473
inelastic, 503-4, 508-9, 515
Newton's study of, 503ff, 574
of rotating bodies, 514fn
of unequal bodies, 468ff , 509
rules of in Cartesian physics, 413, 429,

430, 450, 456, 457ff, 512
study stimulated by Descartes, 482

comet(s), 130m, 257, 265, 414, 556-9, 560-1,
613, 630, 633

Commentariolus, 210, 213, 220, 231, 255
composition of motions (see also:

parallelogram rule), 378, 380-1, 383,
392, 394, 462, 550-1, 575

by astronomers, 379, 381fn
compounding of motions, 207, 550-1 (see

also previous entry)
Comte, A., 85fn
conatus a centra (see also: endeavour from

the centre and: force, centrifugal), 483,
503, 515-16, 520-1

concrete, the, 15, 342
congruence, 58
conic sections, 72, 93, 102, 119, 302 (work

by Kepler), 584 (motion in)
generation of, 119

conservation
of angular momentum, 26, 113, 585,

586fn, 650
of energy, principle of, 456, 468ff , 472-3,

497, 508-9, 576, 587
of matter, motion, 413fn, 419
of momentum, 429, 472, 508, 515, 587

conservation law(s), 413fn, 459, 468
conserved quantities, 587
contact-mechanical (theories of motion),

51, 495, 497
container

geometrized, 600
space, 86ff, 247, 437, 440
ultimate, 48, 87, 247

contiguity, in definition of position, 106
contiguous bodies (matter) (see also: bucket

experiment), 613, 630, 636, 668
continuum mechanics, 591-2
contraries, 81
conventionality of science, 204ff
conveyor belts, 477, 670
coordinate system, rotating, 487
coordinate techniques, 195ff
coordinates, polar, 313
Copernican cosmology, 49, 248, 255, 353,

632
Copernican debate, 450
Copernican representation, 694
Copernican system, Sec. 5.5 (227ff), 258,

265 (modifications of), 273, 276-8, 283
(residual oddities), 298-9, 354-5, 358,
399, 448, 574 (proved a priori), 674

Copernicanism, 298-9, 357, 398, 421, 442
kinematic arguments for, 299

Copernicus, 13-15, 46, 49, 51, 60, 66, 73,
75, 83̂ 1, 91, 101, 108, 127, 134, 136,
154, 158, 163, 175, 184-5, 188ff, 203-4,
206, 208, 209-63, 274-6, 284, 286, 298-
301, 302, 304, 309, 323-4, 329 (theory
of planetary distances), 336 (concept
of position), 338, 340, 346, 348, 353,
359, 360 (on gravity), 362ff, 366, 370,
371, 374-7, 383-6, 388, 391, 397-8,
400-1, 405-6, 421, 436, 439, 442, 444-6,
472, 479-80, 537, 539, 552, 586, 598-
600, 620, 630, 636, 643, 646, 663, 667,
676, 694-5, 707, 710

copia, 331
core problem, see: fundamental problem of

motion
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Cornford, F. M., 702, 706
Corollaries (to laws of motion), 575-8
Corollary I, 575
Corollary II, 575-6
Corollary III, 576, 578
Corollary IV, 576-7, 578
Corollary V, 32, 577-8, 630, 642-4, 649, 669,

695
Corollary VI, 578
corpus, 681
correlation (of attributes, phemomena),

107, 421, 602fn, 633
cosmology

fundamental problem of, 431
geocentric, 180
inflationary, 432, 644

cosmos, well-ordered (Pythagorean), 246,
267, 363, 396-7, 400, 430, 463, 477, 515,
536, 600, 604, 644, 690

Cotes, R., 677
Cotes' preface to Principia, 677
Coulomb's Law (force), 28, 40
covariance, general, 4, 436, 445, 494
creationist argument, 432fn
credo in geometria, 356
Crew, H., 697
Crompton, J., 718
Cusa, see: Nicholas of Cusa
cycloid, 454

d'Alembert, J. le Rond, 503, 701
Dante, 77, 192
Davis, A. E. L., xiv
De Caelo (On the Heavens), 37, 68, 74-5,

91-2, 98, 207, 697, 701n*
De gravitatione, 522, 608-9, 612-23, 630-1,

642, 644, 679, 681, 692
De Motu (Galileo), 353, 366-9, 374-5, 377,

382, 387, 389, 477, 727
De Motu Corporum ex Percussione, 455-7,

462-4, 470, 472, 474, 476-8, 483-4, 494,
504, 636, 716

De motu corporum in gyrum, 512, 560-1,
563-1, 569-70, 572, 638, 643

De Rerum Natura, 62, 87, 411, 566
De Revolutionibus Orbium Coelestium, 188,

210, 219, 221, 225, 227, 231, 233, 242,
245, 248, 253, 256-8, 261, 267, 273, 280,
340, 353 (read by Galileo), 358, 359-60,
363, 369, 371, 385, 388, 397, 479, 697,
707-S, 711-12, 717

de Salvio, A., 697
de Sitter, W., 93
de Soto, Domingo, 374
De Vi Centrifuga, 455, 483-4, 494, 716
declination, 113
decomposition

of light, 499

of motions, 384, 404, 478, 549
Defence of Tycho against Ursus, 299
deferent, 139ff

spoke, 140, 147
definition(s), operational, 5, 34, 75, 97, 646

(concept of), 654-5 (of time intervals),
657-8 (of inertial system), 659
(difficulties of), 676 (of mass), 676 (of
simultaneity), 685 (of mass)

Delambre, J. B. J., 184, 288, 709
delay (mora), 305
Democritus, 61-2, 70-1, 74, 79, 365, 409,

411
democracy

directional, 411, 450
of relative motion, 449

demon, malignant, 408
density, 682
Descartes, 13, 35, 91, 93, 186, 195-6, 202,

252, 261, 278, 323, 329, 335 (anticipated
by Kepler), 341, 344, 349, 356, 359, 367,
376-7 (founder of rationalism), 378,
393, 396, 403, 404, 409 (magnum opus),
Chap. 8 (406-50) passim, esp. 406
(biographical), 412, 421, 422 (as
rationalist), 422 (his God), 425, 430
(modernity of), 432 (novelty of
approach), 432, 437ff (intuitive concept
of space), 440 (denial of vacuum), 439
(reasons for adopting Copernicanism),
451, 453, 457 (pictorial deductions),
458ff (collisions, theory of), 459 (reason
for poor quality of his physics), 462,
463 (demolition of cosmos), 468, 474,
477 (demolition of cosmos), 482 (role
in discovery of dynamics), 483-4 (on
centrifugal force), 486, 495, 496
(Huygens on him), 497 (influence on
Huygens), 499, 502-6, 515-16, 519 (on
centrifugal force), 520, 522, 526fn, 528,
530, 536, 540, 545, 550, 562-3, 564,
570-1, 580, 588-9, 591-2, 596, 597-8,
600-14, 620-1, 623, 629, 634-8, 646,
648, 654-6, 668, 673, 677, 680-1, 683-4,
686, 688, 690, 692, 695, 720, 714, 722

pre-Inquisition, 610-11
post-Inquisition, 611

Deser, S., 12, 700
detachment hypothesis, 56, 79, 87
determinant(s) of motion, 340, 445
determination (Cartesian), 429, 505
determinatio, 429
determinism, 430-1

physical, 589
dialectical (evolution) of space concepts,

599
Dialogo, 82-3, 355 (publication of), 357-60,

363, 365fn, 366, 371, 377-9, 381, 384-5,
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Dialogo — continued
387-9, 390, 390fn, 392, 396̂ 01, 404-7,
431, 479-80, 482, 499, 528, 530, 542,
545, 605, 628, 631, 697, 703, 711-14,
717-18

Dialogue on the Tides, 399
Dicke, R. H., 3, 699
difform, uniformly, 196, 196£n
Dioptrice, 288
directionality, 429
directrix, 119, 131
Discorsi, 354-5, 357, 373, 377-9, 380 (work

on projectiles), 381, 384, 396, 401, 403,
469, 480, 515, 559, 604, 701, 706, 711-
12, 714, 716, 718, 720

Discours de la Methode, 407
distance (as basic concept), 692-3

law for planetary speeds (of Kepler),
304-6, 312, 316, 321, 331

of moon, 104ff, 108, 531
of planets, 147, 151-2
of sun, 107-8
planet-sun (especially for Mars), 318ff
relative, 6
to sun, variable, of planets, 312ff, 318ff

divine knowledge, 365fn
divine, the, 43-5, 55, 68-9, 82, 118, 153,

342-3, 422
Donahue, W., 709
Doppler shift, 666
Drabkin, I. E., xiv, xv, 701, 706, 712, 717
Drafts of Definitions and Laws of Motion, 574
Drake, S., xiii, xiv, xv, 352-3, 359, 370-2,

379, 390, 405, 697, 706, 711-14, 717
Dreyer, J. L. E., 101, 127, 701, 704, 708
drift, cosmic (or universal), 472, 477-8, 495,

659, 661, 666-8
Duhem, Pierre, xv, 191ff, 199, 201, 406,

703, 706
Dumbleton, John, 193
dynamic definition of mass, 682
dynamic definition of motion, 655, 695
dynamical criterion (of rest or motion), 635
dynamics, 53, 53fn, 100, 193, 196, 257, 261

coining of word, 503
discovery of, 16-17, 23, 26, 34, 41-2,

44-6, 48fn, 50, 54-9, 64-5, 93, 103, 112,
143, 171, 184, 329 (bare essentials of),
370, 386, 402, 406, 411, 416, 425, 435,
455, 472, 477, 479, 490, 503, 520, 523,
530, 541, 549, 579, 587-8, 600, 645, 676,
688, 694

embryonic, 426ff, 430, 435, 439, 483, 552,
589

fundamental relationships of, 313
seamless, 692
single-particle, 573

synthesis of, 16-17, 19-20, 41, 58, 101,
175, 500, 501-2, 514fn, 552, 580

two-particle, 446, 468
universal, 495

dynamism, 249
'dynamization' of geometry, 693

Earman, J., 544, 723
earth

distinguishedd role in Galilean
motionics, 384

orbital period of, 256, 300
radius of, 104, 454, 528-9, 530-2, 532fn,

564, 593
sphericity of, 55, 66, 104, 362

earth-moon system, 578
earth-sun motion, 233ff, 243ff, 300

(interpretation of), 322
eccentric (circle), 131, 142
eccentricity(ies), see also: small-eccentricity,

zero-eccentricity form of Kepler's laws
effects of, 122-6, 155-6
halving of, 167ff, 286ff, 292ff, 299, 350,

580
of conic sections, 119, 131fn, 301
of ellipse, 120, 122ff
of Mars's orbit, 279, 288 (as found by

Kepler), 301, 310
of orbits, 122ff, 131, 156 (for moon), 159,

171, 227, 234ff, 297, 345
of ovoid-approximating ellipse, 317

eclipses, 44, 61, 106, 108, 114, 136, 151,
156-7, 159, 162, 163, 177, 180, 182ff,
345, 625

ecliptic, 42, 114, 183
coordinate system, 115

egregious insult, 235
egregious mistake, 481, 545
eight minutes, 301-2, 304
Einstein, xi, 3-18, 34, 46-7, 57, 80, 92-3,

104, 182, 210, 222, 248, 261, 322
(compared with Kepler), 328 (on
inertial mass), 337, 341 (compared with
Galileo), 404-5, 424, 436, 449, 455, 457,
470, 470fn, 482, 487, 488-90, 494, 497,
535, 567, 578, 593-4, 606, 621, 646, 661-
2, 676, 680, 688-9 (in connection with
mass concept), 693, 699, 700-2, 708,
722

elasticity, role in collisions, 508-9
Eleatic school, 61
electrodynamics, 6, 261
electromagnetism, 688
electrostatic attraction, 28
Elements (Euclid), 73fn, 100
elements

basic, 54ff
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essential, 343
four, 61, 66, 68, 71, 75, 80-2, 323, 397, 422
of matter (Cartesian), 410, 416, 418, 427,

439
Eliot, T. S., xii, 455
ellipse(s), 72, 93, 119, 122ff, 317 (as

possibility for orbit), 340, 346, 348ff
(significance of), 526, 539, 547-56, 560,
584 (motion in), 588

as approximation of ovoid, 316, 321ff
discovery of, 301-2, 321
generation of, 120, 318, 321

ellipticity, 123, 159, 234, 301, 347, 350
Empedocles, 61, 66, 84
empiricism (of Galileo, Kepler and

Newton), 341, 409, 422, 621, 684
and mathematics, 372, 375

empiricist, 461
endeavour from the centre (see also: conatus

a centra and: force, centrifugal), 483,
503, 518, 521-2, 525-6, 535fn

energy
kinetic, 76, 503
potential, 76

enigma of relativity, 476-8
ephemeris (see also: time), 181
Epicurus, 62
epicycle, 139ff, 258ff, 313 (employed by

Kepler), 319
epicycle spoke, 140, 147
epicycle-deferent inversion, 149ff, 152,

160, 172, 212, 218
epicycle-deferent theory, 102, 139ff, 151fn,

214, 253
applications, 141ff, 143ff, 149ff
appraisal of, 153

'epiepicycle', 140, 174
epistemological imperative, 47, 49, 204
epistemology, 5
Epitome of the Almagest, 212
Epitome of Copernican Astronomy, 298, 302,

306, 325 (discussion of force law),
326-7, 331 and 322 (reconciliation of
inertia with Third Law), 335
(compounding of motions), 341 (views
on space), 344, 385

equant, 126, 132-3, 167ff, 209ff, 214, 229ff,
234ff, 243, 245, 247, 253, 259, 261-3,
277-̂ 8, 291ff, 300, 303, 346, 348, 385,
548, 552, 586

circle, 126, 170
equivalent to a speed relation, 303-4
for earth, 238, 292ff, 303ff

equation
as general astronomical term, 308
of centre, 130, 167, 308, 311, 317, 321
of time, 177ff, 624-5, 632-3

optical, 308, 318
physical, 308

equator, 112ff
equinoctial hours, 177, 183
equinox (see also: precession of the

equinoxes), 113, 177, 250
autumnal, 117
vernal, 117, 232

equivalence, principle of, 456, 487-91, 578,
594, 606, 662

ether (see also: aither), 66, 688
ethereal air, 338
Euclid, 73fn, 100, 187, 352, 411, 438, 464

(his axioms), 561, 578, 692
Euclidean space, 8, 90, 437, 439, 441, 606
Euclidean geometry, see: geometry,

Euclidean
Eudoxan scheme, 101, 154
Eudoxus, 66, 73fn, 98, 101-2, 118, 154, 180,

252, 346, 702
Euler, L., 23, 76
evection, 157, 171
evolutes, 454
evolution of world, 431-2
experimentum crucis, 564
explanation, meaning of in science, 647
extension

nature of (according to Newton), 617-23,
692

of matter, 409, 410-11, 420, 440-1, 446,
602

Fabricius, David, 326-7, 710
facts of experience, 687
falling, eternal (of atoms), 71, 79, 411, 436
Faraday, M, 8, 11, 431, 688
Fermat, Pierre, 451
fidissimi duces, 343
fiducial body (of reference), 51
Field, J. V., 720
field

concept, 431
theory, 6, 8, 10-11, 646

figure, 409, 564
'filling- the-empty-space' theory, 147, 152,

152fn
First Law of Motion, see: inertia, law of
fixed stars, 35, 50-1, 110, 180, 188, 223, 245,

247-8, 251-4, 323, 336, 339, 398, 400-1,
443, 445, 602 (break up of sphere of),
603, 625, 634-6, 641-2, 673-4, 696

Flamsteed, John, 557-9, 563, 573, 633, 71 8
flat earth, 55, 604-5
flippers, 81fn
fluid, plenal, 413, 444, 448
flux, 61
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focus
coining of word, 302
of conic section, 119, 302
of ellipse, 120, 552ff
of universe, 302
void, 123ff, 165, 233, 552, 586

force
accelerative, 554, 578
animalistic, 315, 334, 419
animistic, 535
apparent, 490
attractive, 453, 562
azimuthal (generated by sun), 325
central, 545, 547, 552, 562, 650
centrifugal (see also: conatus a centra and:

endeavour from the centre), 360, 412
(coining of expression), 435, 458,
478-95, 493, Sec. 10.5 (515ff), Sec. 10.6
(528ff), 536, 538, 542, 546, 549, 558,
560, 563, 569-70, 604, 615, 640, 656,
673; confusion about it, 493, 517-23
(esp. 522); of moon, 531; on rotating
earth, 492-3, 528-30

centripetal, 26, 496 (coining of
expression), 560 (first definition of),
564, 568 (definition), 569, 582ff
(problems involving), 610, 650

concept of, 274, 483ff, 486 (birth of), 503
(Newton's)

contact, 40-1, 535, 563
defined by Mach, 687
deflecting, 562
electrostatic, 40
generic concept of, 502
gravitational (revealed by phenomena),

592-3
impressed, 535, 556, 568 (defined by

Newton), 575
inherent, 505-7, 515, 523 ,̂ 535
innate, 505, 556, 568 (defined by

Newton), 569, 575, 679
in Keplerian physics, 324ff, 325 (strength

of), 331, 334 (need for), 350, 678
magnetic, 274, 333
measurement of, 553
motive, 22, 506-7, 554; continuous, 507,

515; impulsive, 507, 515
of collision, 474
ontological status of, 505
physical (defining characteristic), 490
quantative measure of, 505, 516
related to acceleration, 312
related to speed, 303, 312, 324
solar, 403, 419, 489, 552
used by Descartes, 458
various, 21ff, 39ff, 65, 274, 277, 303, 355,

368-9, 377, 382, 393, 419, 479, 537
force-free body, 655, 660, 662

form invariance, 29
forms, Platonic, 62, 371, 401-2
Fourier series, 143
fourth dimension, 65, 77
frame(s)

absolute, 30
earth, HOff, 248, 250
geoastral, HOff, 145, 190, 250
helioastral, 111, 145, 190, 276
material, 599
of reference, 30, 33, 47ff, 51, 249ff, 436,

456, 460, 477, 486, 494 (accelerated),
505, 607, 610-11; astronomical, 51,
HOff, 663; distinguished, 394, 517, 604,
607; dynamical, 696; inertial (see also:
system, inertial), 34, 154, 340, 392, 396,
472, 661, 662fn, 666, 696; ultimate
(universal), 87-9, 247, 250ff, 254, 323,
341, 442, 450, 636, 669

relative, 30
Frank, P., 708
Frederick II, 265
free fall, 36, 40, 74, 194, 198fn, 202, 354,

360, 365, 371, 373ff, 403, 468, 471, 480,
484-6, 496, 500-1, 530, 549

law of, 194, 372, 378, 379ff (compounded
with inertial motion), 513, 516, 527,
530, 536, 570, 587

free inventions, 57
French Academy of Sciences, see: Academie

Royale des Sciences
Frenicle, B. de Bessy, 495
function (math.), 196
fundamental problem of motion (Machian

problem, core problem), 8, 10-11, 14

Gabbey, A., xiii, 459, 513, 586, 673, 701,
716, 721, 723

Galilean cosmology, 359ff
Galilean galley, 395-6, 463, 477, 604
Galilean invariance (or relativity; see also:

relativity (restricted), principle of)/ 32-
3, 41, 355, 363, 392, 394ff, 399, 445-7,
604, 606-8, 611, 653, 668-9

Galilean-Newtonian dynamics, 646, 676
Galilean relativity, 10, 203ff, 206, 222, 261,

386, 392ff, 445, 456ff, 462ff, 497, 502,
504, 572, 574-5, 577-8

Galilean transformations, 30, 607
Galileo, vi, 13-14, 30, 35-̂ 0, 42, 48, 53, 60,

63, 65, 68-9, 73, 75, 77, 82 ,̂ 92, 100,
109, 185, 187-8, 191, 194, 196, 198ff,
202, 206, 208, 222-6, 243, 246, 249, 261,
263, 265-6, 270-1, 278, 299, 301, 325,
326 (difference from Kepler on rotation
of earth), 328, 334 (difference from
Kepler over tides), 341 (difference from
Kepler), 342 (influence of Plato), 343
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(distrust of senses), 344, 348 (telescopic
discoveries, ignoring of ellipses),
Chap. 7 (352^05) passim, inc. 352ff
(biographical), 353 (correspondence
with Kepler), 356-7 (creator of modern
science), 357-8 (skill as writer), 359
(method of exposition), 359 (basic
philosophy), 373ff (credit for discovery
of law of free fall), 376 (treasuring of
ideal motions), 376 (as founder of
rationalism), 380 (mocking of
Peripatetics), 383 (at threshold of
dynamics), 385 (ignorance of Kepler's
work), 388fn (comments on Gilbert),
389 (retention of distinction between
violent and natural motions), 389
(retention of teleology), 392 (on
senses), 396ff (conception of motion),
397 (concept of position), 402
(advantage over Kepler), 404
(hankering for geometrization of
motion), 406-8 (rationalism), 409-10
(on qualities), 412 (difference from
Descartes), 415-16, 419, 422, 425, 427,
430 (world view), 431-2, 432 (as
discoverer of inertia), 436, 439, 440,
442, 445-6, 453, 455-7, 459, 462, 468,
476, 477 (first intimations of inertia),
478 (decomposition of motions),
479-82, 483, 484, 492, 495, 499, 501-3,
506-7, 512-13, 514 (acceptance of his
basic principles), 515-16, 527 (his law
of free fall), 528, 530, 533, 536, 540, 542,
544-5, 549-51, 556 (disagreement with
Brahe), 559, 567, 569, 570, 572, 578,
587, 593, 598-601, 603-6, 608 (tides),
615, 621, 628, 631, 635, 643, 646-7, 656,
678, 680, 688, 690, 693, 695, 706,
722-24, 727

Galileo-Descartes-Newton triad, 599
Galileo-Huygens principle of relativity, see:

relativity (restricted), principle of
Gascoigne, J., 499, 727
Gassendi, Pierre, 349, 392, 453, 453fn, 499,

503, 599, 605, 620, 681
gauge theories, 3, 14
Gauss, C. F., 223fn, 684, 685, 692
geocentric-heliocentric revolution, 345
geocentric world, 155
geocentrism, 643
geography, descriptive, 688
geometricity, 341
Geometrie, La, 499
geometrism, 70ff, 676
geometrization

of motion, 404, 547, 599, 656
of time, 606, 656

geometrokinetic (law, etc.), 52ff, 73, 83,

118, 174, 185, 254, 340, 355, 540, 615
(attitude of mind), 690-1

geometrokineticism, 247, 253ff, 263, 587,
691

geometry, 36, 63, 65, 262, 400-1, 423
analytic, 195ff, 423
as universal mechanics, 566
Euclidean, 6, 8, 19, 49, 356, 397, 401, 411,

646
Galileo's comment on, 352, 481
kinematic, 49, 51, 175, 378
metrical, 89-90, 247
non-Euclidean, 88
of motion, 372, 515
Riemannian, 6
synthetic, 268, 584, 588-9
topological, 89-90, 247

Gerhardt, C. I., 673
Gibbons, G. W., 726
Gibbs, W., 453
Gilbert, William, 40, 274-5, 324, 333, 337,

388fn, 702, 723
Gilman, R. C., 699
Gingerich, O., 245, 288, 708-9
globes (Newton's thought experiment

with), 627-8, 668-9, 670-1
gnomon, 250
God, 19-20, 64, 68, 71, 201, 208, 253-4, 337,

342-3, 408-10, 420, 422, 427-8, 431,
450, 617-22, 628-9, 630, 632

the Father, 644
grand unification theories, 3, 13
Grant, E., 91, 599, 703, 722
gravitation

law of (see also: inverse square law), 23,
27, 31, 340, 411, 454, 478, 480, 497, 523,
530-4, 537-8, 548ff, 563, 587, 590, 683
687, 691

universal (see also previous entry), 534,
563-4, 573, 661, 677

gravity
Copernicus's and Galileo's ideas about,

360
effect on frames of reference, 661-2
Huygens' ideas about, 495-6
Kepler's ideas about, 334, 495
post Copernicus, 323
terrestrial, 454, 483; mechanical

explanation of, 418-19, 476, 483-4,
495-7, 527, 534

Greek law of astronomy, 52-4
Green, G., 76
Gresham College, 540, 542
Guericke, Otto von, 413
guide point, 140, 160ff
Gutb al-Dln al-Shirazi, 230-1, 238
Guthrie, W. K. C., 697, 702
gyroscopes, 662fn, 669-70



734 Index

hailstorm, 353
Haldane, E. S., 722
Hall, A. R. and Hall, M. B., 612, 718, 724
Halley, E., 252, 504, 532-3, 536, 542, 557-9,

561-̂ 4, 566, 589-90, 597, 603, 630, 637,
640, 664, 708, 716, 718-19

Halley's comet, 558
Handy Tables, 41
hardness (mechanical explanation of), 416,

427
harmonic law, 267
harmonic motion, simple, 228-9
Harmonice Mundi, xiv, 246, 270, 330

(statement of Kepler's Third Law), 710
Hawes, Nathaniel, 722
Hawking, S., 470
Heath, T. L., 704
heaven

Cartesian vortex, 413, 415, 418
little, 418

hecatomb, 372
Heidelberg, University of, 199
heliocentric astronomy (system), 101-2,

108, 151-2, 188ff, 214ff, 221, 240, 242
heliocentricity, 183, 188ff, 254, 256, 263, 385

(arguments for), 439, 443
incomplete (Copernican), 275
partial, 151, 151fn

heliostatic theory, 262
Hellenistic age, 60, lOOff
Hellenistic astronomers, 52, 73, 93, 101,

111, 154-5, 183ff, 210, 352, 408, 455
Hellman, C. D., 709
Heraclides, 101-2, 151, 216, 704
Heraclitus, 61
Herbert Spencer Lecture, 57
Herivel, J. W., xiii, xiv, 503, 508-11, 514fn,

518, 524, 527, 530, 532, 536, 546, 548,
550-1, 554, 561, 574, 638, 683, 713, 718,
722, 724

Hesiod, 85
Heytesbury, William, 193
Hicetas, 210
Hipparchan problem

generalized, 164, 168, 346
original, 163, 168,346

Hipparchan solar theory, 128ff, 141ff, 155,
163-7, 171, 174, 177, 233, 242

alternative forms, 141ff, 278, 313 (used
by Kepler)

Hipparchan-Ptolemaic theory of moon,
155-8, 164

Hipparchus, 53, 102-3, 105, 108, 113, 117ff,
128ff, 155-7, 161, 163-4, 167, 175, 179-
80, 183-7, 189, 214, 232-3, 249-52, 257,
296, 313, 336, 345-6, 358, 373-4 (ideas
on free fall), 403, 586-7, 663, 704, 711

History and Root of the Principle of the
Conservation of Energy, 654, 676, 723

Hodgson, P., xiii
homogeneity (of space), 431
Hooke, 84, 404, 499, 500, 502, 504, 532

(plagiarism charge), 533-5, 539-46,
542fn (biographical), 545, 547, 550, 557,
562-6, 590, 623, 630, 636, 678, 703, 716,
718-19

Hooker-Newton correspondence, 542-6,
556

Horologium Oscillatorum, 454, 462, 470, 483,
500-1, 529, 538, 672, 716

Hoyer, V., 332, 710
Hoyle, F., 3, 127, 699, 704
Huygens, Christiaan, 2, 14, 100, 176, 261,

278, 395-6, 408, 412-13, 422, 427, 435,
437, 440, 446-8, 450, 451 (biographical),
Chap. 9 (451-97) passim, 462ff (theory
of collisions), 469, 478 (decomposition
of motion), 498, 500-2, 504, 508-9,
512-16, 520, 522-3, 526, 530, 536,
538-9, 542, 546, 549, 562-3, 570, 572,
574, 578, 592, 595, 603, 606, 606fn, 608,
611, 623, 638, 640, 659, 662, 672-5, 677,
693, 716, 719, 723

Huygens, Constantijn, 451
Huygens' wave-front principle, 452, 497
Huygensian physics, 484
Hven, 265-6, 271
hybrid expansion, 172, 236, 297
Hyman, J., xiii
hyperbola, 73, 119
hyperbolic orbits, 559
Hypotheses non fingo, 595, 622
hypothesis

in astonomy, 162, 225, 256, 273, 279,
281-2

term replaced by law by Newton, 570

Ibn al-Shatir, 211
idealism, 15, 421, 423, 425
ideas, intuitive, 413
image (as translation of species], 325
imagines, 422
impact(s), see: collisions
Imperial Astronomer, 266
Imperial Mathematician, 271, 348, 385
impetus theory, 35, 198ff, 206, 366ff, 374

(intimations of in Hipparchus), 382,
387, 388fn (mentioned by Kepler), 393,
433, 505, 610, 683

impotence, principles of, 395, 470
imprimatur, 358, 566
impulse, 21
inclination (to ecliptic, see also: zero-

inclination approximation), 127-8
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inequality(ies), 160
first, 160, 189, 211, 214, 258, 260, 276,

279, 299 (for all planets); Martian, 279
second, 160, 174, 188-9, 211, 217, 258,

276, 279, 293
inertia

circular, 365ff, 375ff, 378, 386ff, 387ff
(stronger Galilean form), 388 (weaker
form of Copernicus), 389 (conflict with
correct inertia), 425, 453fn, 480, 536fn,
604-5, 690

as dynamical concept, 332, 678-30
coining of word, 328, 678
Descartes' generalized law of, 428
Galilean (or Cartesian), 680
Keplerian, 325ff, 678, 680
law of, Iff, 5, 7, 20ff, 28, 34ff, 45, 53-4,

56, 77, 83, 112ff, 119, 138, 154, 196ff,
242, 335 (lacked by Kepler), 337, 353-6,
366, 376-7, 378 (as Lex Prima), 386, 407
(anticipated by Beeckman), 408, 41 Iff
(anticipated by Descartes), 416, 419,
423, 425ff, 429-30 (anticipated by
Descartes), 432ff, 445, 453fn
(formulated by Gassendi), 462
(formulated by Huygens), 476
(acceptance of), 477-8, 480 (correctly
formulated by Galileo), 480fn, 486
(accepted by Huygens), 502, 516, 536,
540, 549-50, 562, 568, 570-1, 584
(deduced mathematically from
observed motions), 587, 603-4, 610,
617 (incompatible with relativism), 620
(in De gravitatione), 637, 647-8, 654-9
(as defined by Lange), 672, 679-SO,
685; fusing of two parts, 430

meaning of word, 678-80
rectilinear, 389 (used by Galileo), 480-2,

536fn, 544
tensor, 653

inertial guidance, 669, 671O ' '

inertial mass (see also: mass), 28, 326, 328,
678-80

Einstein's interpretation of, 5, 7, 10,
688-9

inertial motion (in contrast to mass), 680
infinite, actual, 92
infinitesimal(s), 494-5, 556
'infinitesimalizing' (of Galileo's procedure),

556, 570, 572, 588
infinitization of space (universe), 602
infinity, 335, 449

of universe, 2, 18, 247, 337, 349, 350
inflation (in cosmology), 432, 644
initial condition(s), 28-9, 262, 332, 383-4,

389-90, 403, 535, 535fn, 559, 647
arbitrary, 384, 535, 535fn, 589

of world, 409-10, 431
initial-value problem, 560-1
Inquisition, 13, 226, 354, 368, 435ff, 449,

540, 598, 600, 605, 607, 616, 635, 690,
695

integral bodies, 364
integral, first, 313, 587
integration problem, 304
interaction(s), dynamical, 334, 350, 427,

430, 456, 478, 512, 571, 573, 577-8,
590-1, 606-3, 660, 690-2

interactionism, 691
International Latitude Service, 664
International Polar Motion Service, 664
invariable plane, 650-1
invariance group, 607
invariance(s), 29ff, 607

scale, 151-2, 190, 259
inverse square law (of gravitation), 27, 119,

121, 500-1, 532 ,̂ 536, 542, 548-9, 559
(extended to comets), 562 (priority
claimed by Hooke), 564 (confirmed for
moon), 584, 584-5 (deduced
approximately), 558 (as deduced in
Principia), 590 (potential theory)

Ionian school, 61
Isenberg, J. A., 700
Isham, C. J., xiii, 699
Islamic astronomers, 137, 173, 21 Iff, 228ff
Islamic period, 158
Islamic physics, 199
isotropy (of space), 431

Jaki, S., 428, 706, 725
Jammer, M., 16, 366, 599, 678, 683, 700,

710, 722, 722, 7
Jardine, N., 271, 709
Journal (of Beeckman), 433
Journal des Sfavans, 456, 468, 472, 726
Jupiter, 127, 147ff, 161, 166, 234ff, 238,

240-1, 247, 265, 268, 518, 559 and 573
(perturbation of Saturn), 578, 640
(rotation of)

moons of, 324, 366, 518, 540, 578, 625,
633, 641

Kant, Immanuel, 432
Kennedy, E. S., 212, 228, 707
Kepler, vi, xiv, 13-15, 17, 40, 45, 49, 54, 60,

68, 73, 78, 81, 84, 91-3, 103, 110, 115,
118, 121, 123, 126-7, 132, 134, 137, 154,
160, 162-3, 174-5, 184-6, 188-9, 209,
215, 219, 224-5, 233-4, 240, 242-3,
246-9, 257-9, 265, 266ff (biographical),
Chap. 6 (264-351) passim, 304 (as
theoretician), 338 (his difference from
Copernicus), 352 (compared with
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Kepler — continued
Galileo), 353 (correspondence with
Galileo), 354-5, 356, 358, 359, 360 (on
gravity), 364, 366-7, 370, 375, 376
(treasuring observations), 377 (concept
of space), 381fn (on compounding of
motions), 385 (results ignored by
Galileo), 385 (evidence for earth's
mobility), 388fn (on Copernicus's
concept of inertia), 393, 396
(anticipation of Mach's Principle),
397-8, 400 (theory of tides), 401-2, 404,
409, 415 (compared with Descartes),
419, 422 (as empiricist), 427, 432, 435,
439, 445, 478 (decomposition of
motions), 482, 495, 502, 519, 540,
546-8, 550, 552, 557 (theory of comets),
^58-9 (secular perturbations), 580,
5oo-/, 598-600, 620, 636, 644, 646, 678,
680, 689, 690-3, 708-10, 714

discoveries, significance of, 348ff
dream (journey to moon), 297
equation, 306-7, 317, 321
'equation of motion' ('law of motion'),

326-7, 329, 332
fundamental assumption, 283-4, 293
Laws, 14, 17, 118ff, 353, 500, 536, 547ff,

558-9, 573 (perturbations of), 587, 623;
Zeroth, 118, 242, 283-6 (discovery of),
350, 550; First, 118, 121, 283, Sec. 6.6
(322-35 (discovery of)), 547, 548, 587,
588; Second (see also: area law), 119,
121, 283, Sec. 6.6 (322-35 (discovery
of)), 523, 547ff, 587-8; Third, 121, 148,
219, 224, 256, 267, 270, 276, 329-30
(discovery of), 331 (implication for
speeds), 489, 501, 526-7, 531-2, 538,
542, 547, 587, 592

Platonic inspiration, 268ff, 271
problem (planetary motions), Sec. 10.9

(546-56), 556, 558, 570, 571, 573, 582,
588-9; (for solution of his equation),
307, 548; (for vicarious hypothesis),
288, 347

Keplerian cosmology, 323ff, 337, 342
Keplerian mechanisms, 552
Keplerian physics, defects of, 312, 335, 337
Keplerian physics, description of, Sec. 6.6

(322-35)
Keynes, M, 644, 723n*
kinematic definition of motion, 694-5
kinematics, 48, 53, 193ff, 356
kinesis, 48, 438
kinetic theory of gases, 453
Kirk, G. S., 60, 701
Klein, M., 470
'knitting needles', 235, 385

Koestler, A., 127, 184, 245, 258, 268, 701,
704, 708-9, 713, 721

Koyr6, A., xv, 16, 49, 127, 301, 337-8, 349,
404fn, 422, 436, 440, 444, 518, 540, 599,
601-2, 700, 704, 708-10, 714, 718, 720-1

Kuchaf, K., xiii, 7, 12, 90, 693, 699, 724
Kuhn, T. S., 16, 141, 231, 258, 361, 595, 700,

705, 708, 713, 721

La Condamine, C. M. de, 640
Lagrangian formulation of dynamics, 350
Landau, L. D., 653, 723
Lange, F. A., 702
Lange, Ludwig, 34, 477, 631, 645-6, 654-5,

657, 659-63, 665-66, 671, 685, 694-5,
717, 723

Laplace, P., 270, 430, 589, 592, 644, 650
laser ranging, 666
latitude 113 195

ecliptic, 115
motions (of planets), 175, 240ff, 276, 281
of Mars, 276
theory, 283ff

latus rectum, 588
law(s)

of motion, 20ff, 51ff (different types of),
73, 155, 174, 185, 371, 432, 437, 441,
569-75 (clarification and formulation
by Newton); mathematical, 375, 427

of nature 61 413 420 427-9 (formulated
as clear concept), 431, 437, 457 (in
sharp focus), 596

of relative velocities, 478
physical, 28, 340

Laws of Motion 609 615
laws 1, 2, 3 (of Descartes), 430
laziness, 328, 678, 680, 689
Leaning Tower of Pisa, 341
Lear, J., 709
Leibniz, 2, 78, 396, 423, 441, 446, 450-2,

460fn, 473, 475, 499, 503, 592, 595 598
614, 634, 673-5, 681, 716-18, 723

Leibniz-Clarke correspondence, 629, 634
Lenin, 2fn
Leonardo da Vinci, 374
Le Systeme du Monde, 191
Letters on Sunspots, 355, 386, 388, 392, 432
Leucippus, 61-2, 70-1, 74, 79, 365, 409, 411
lever, law of, 100
Lex Prima (see also: inertia, law of), 378
Lex Secunda, see: Second Law of Motion
Lex Tertia, see: Third Law of Motion
libration

diametral, 315, 319, 333
of the moon, 585-6; in longitude, 585-6,

586fn; in latitude, 586fn
Liebscher, D.-E., 699
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life-rafts, 472
Lifshitz, E. M., 653, 723
light

mechanical theory of, 413, 416ff, 426
nature of, 439
speed of, 111, 693-4

lightness, 74ff
limits (of orbit), 283-4
lingua franca, 435
liquidity, mechanical explanation of, 416,

427
Lobo, Hieronymo, 500
Locke, 410
Lockwood, M., xiii
London Underground, 413, 683
longitude, 113, 195

at sea, 455
ecliptic, 115, 117
on Martian orbit, 281, 284

Lucretius, 62, 71, 87-8, 411, 566
lunula, 123, 133, 317, 318 (thickness of, for

ovoid), 321 (straddled by true ellipse)
Lyceum, 37, 63

McCarthy, D. D., 667
Mach, vi, xv, 2-18, 33-4, 54, 56, 65, 75-81,

87, 154, 176, 182, 254, 332, 336, 337,
340-4, 377-8, 384, 390, 400, 405, 423-4,
435, 463, 470ff, 572, 598, 604-5, 614-15,
622, 631, 636, 645-6, 654, 661, 665, 668,
671, 674, 676-7, 682, 684-9, 691-3, 695,
698, 705, 724-25, 723

bands, 2
number, 2
Principle, 2ff, 13, 33, 57, 75, 78, 80, 83,

246, 251, 328, Sec. 6.7 (335ff
(anticipation by Kepler)), 340, 343-4,
384, 424, 535, 606-7, 665-7, 689; First,
5fn); Second, 5fn

Machian arguments, 448
Machian concept of motion, 377
Machian ideal, 14
Machian problem, see: fundamental

problem of motion
Machian problem, nonrelativistic (and

relativistic), 7, 7fn
'Machianity' of general relativity, 8, 12
magnetic attraction, 557-8
magnetic dipoles, 319, 333
magnetic force, 274, 333
magnetism, 40, 333
Mahoney, M. S., xv, 439, 698, 714
Maier, Anneliese, xiv, 48, 90, 98-9, 192,

199, 397, 400, 603, 701, 703, 706
Malebranche, N., 601
Maragha School, 211, 228, 277
'marching-together' of phenomena, 632

Mars, 91, 101, 132, 147, 153, 159, 161, 166,
171, 174, 234ff, 238, 256, 259-60, 270,
272ff, 301 (eccentricity), 308ff
(discovery of Kepler's First and Second
Laws), 344, 346-7, 350, 385, 454fn
(parallax of), 690

Marseille, 392fn, 453fn
Marsilius of Inghen, 199
Martian oppositions, 279
mass (see also: inertial mass), 21, 28, 39, 75,

429, 455, 458, 468, 505, 535, 566-7, 595-
6, 645, 649-89, 691

active gravitational, 28
as defined by Newton, 682

mass spectrometer, 75
massa, 681, 684
Mastlin, Michael, 266, 270
mater omnium, 384
materialism, 15, 420ff, 425, 431, 567
materialization

of clock, 655
of frame of reference, 652, 667, 670-1

mathematical relationships (governing
motions), 16-17, 312

mathematization of motion, 34ff, 83, 194,
353, 375-6, 384, 603

matter (Cartesian) (see also: mind), 409, 431,
440-1, 621 (possible nature of)

Maupertuis, P. L. M. de, 640
Maxwell, J. C, 6, 8, 11, 248, 261, 431, 453,

688
McCarthy, D. D., 667
mechanical theories and models, 51, 255-6,

343, 688
mechanical explanation(s), 413, 452, 520,

527, 534
mechanics, 53fn, 100, 475 (of Huygens),

566-7, 576, 603, 606
analytical, 101, 646
rational, 578

Mechanics, 2, 4, 424, 470, 470m, 572, 698-9,
701, 705, 712, 714-16, 720, 722, 724

mechanistic programme, 476, 677
mechanists, 688
media, resisting, 561, 578, 591
Medicean planets (see also: Jupiter, moons

of), 540
Melissus, 61
Menelaus, 115
Mercury, 126ff, 149ff, 159, 172, 174, 231,

238, 240, 243, 301, 302 (sui generis
oddity), 349 and 453fn (1631 transit)

meridian, 177
Mersenne, M., 435, 439, 601, 724
Merton College, Oxford, 193ff
Merton Rule, 194, 196, 374
Mertonians, 194ff, 202, 373-4, 401
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Mesure de la Terre, 532fn, 564
metaphysical framework, 545
Metaphysics, 68, 101
method, scientific, 184-5, 376
Miles, C., xiii
Milesian school, 61
Miller, V. R. and Miller, R. P., xv, 698
mind

and matter, 420ff, 424-5
of planet (see also: spirits), 314ff, 319,

339̂ 0
Minkowski, H., 6, 700
Misner, C., xiii, 12, 455, 700, 716
missiles, ballistic, 671
Mittelstaedt, P., xiii, 700
mobility of earth, 46, 83-4, 203ff, 210ff, 215,

225-6, 236, 246, 253, 255ff, 258, 262,
353 (importance for tides), 353, 354
(accepted by Galileo), 359ff, 370
(accepted by Galileo), 384, 390ff, 398,
439, 694

moles (bulk), 326, 681
momentum (see also: conservation of

momentum), 21, 100, 200, 377, 429,
505, 508, 567, 650, 681

Monde, Le, see World, The
moon, 39, 155ff, 177, 212, 354, 454, 539,

541-2, 585-6 (its Iteration), 721
apparent diameter of, 158, 212
as 'marker', 136, 156
centrifugal force of, 531-2
distance of, 104ff, 108, 531
force moving it (Kepler), 327-8
looking towards earth, 531
mean, 157
mountain ranges on, 69
theory of, 156-8, 245, 266, 589, 596

moon test, 541-2, 549-50, 564, 573, 590, 593
mora, 305
More, Henry, 476, 499, 601-3, 605, 631,

635, 727, 720
motion(s)

absolute, 16-17, 384, 390, 401-2, 423, 514,
517, 578, 600, 624 (defined by
Newton), 628 (of earth), 630-1, 648,
668, 673

atomic (or primordial), 375, 377, 379, 383,
394, 397, 556

Cartesian, 409; concept of, 441 ff
celestial, ii, 38, 42ff, 76, 112, 153

(universal law of), 156, 197, 201, 261,
291, 312, 402, 405, 439, 540, 561, 678

circular, absolute nature of, 668-71;
virtue of, 364-5

compound, 378ff, 383
concepts of, 1, 64ff, 74ff, 222, 243, 248ff,

252ff, 436
enforced (or forced), see: motion(s),

violent

geodesic, 405
geometrical, 365
heavenly, see: motion(s) celestial
ideal, 368, 376
inertial, 476, 606-7
in sense of momentum (q.v.) and

quantity of motion (q.v.), 21, 505, 508
local, 48, 48fn
mutually uniform, 97, 176ff, 654-6
natural, 67-8, 74ff, 78, 197, 202, 246, 323,

356, 360, 362-3, 366-9, 389, 389fn,
390fn, 430, 438, 479, 480fn; mixed, 360,
362-3, 365, 387, 405; primordial, 365

nature of, 337
neutral, 369-70, 388
nonuniform, 37, 194 (mathematical

treatment of)
(perfect) uniform circular, 98, 101, 112,

118, 131, 139, 153, 155, 158, 227, 231,
253, 256, 348, 404-6, 416, 601, 690

polar, 664-8
proper (of stars), 251ff, 603, 664
quantity of (see: quantity of motion)
relative, 16-17, 208, 251, 390, 398-9, 402,

436-7, 445, 448-9, 515, 517, 624
(defined by Newton), 631 (great
number of)

terrestrial, 38, 42, 69, 76, 189, 197, 261,
357, 371, 378, 395, 402, 408, 425, 540,
561

third (of earth), 215
uniform (defined), 97ff, 178ff, 373

(defined by Galileo); in formulation of
Galilean relativity, 462-4

uniformly accelerated, 194, 373
violent (enforced, forced), 68, 84, 198,

202, 360, 362, 366-9, 389, 389fn, 390fn,
430, 480fn

motionic(s), 52-3, 53fn, 356, 363, 378, 382,
387, 397 (Aristotelian), 419, 435, 603,
615, 690

analytic, 375, 379
Galilean, 468, 475, 483-4, 545, 634, 690
Keplerian celestial, 484
rational, 371, 401
single-particle, 446, 468

Motte, Andrew, xv, 566, 591, 698
Mottelay, P. F., 701
motus localis, (see: motion, local)
motus ad forman (calorem, quantitatem), 438
'movables' (in Keplerian cosmology),

323-4, 335
movement, see: motion
movement, properly speaking, 444
Miiller, Johannes, see: Regiomontanus
Murray, C. A., xiii, 663-4, 723
mutation, equall (in motion), 508, 510, 512
Mysterium Cosmographicum, 268, 270-2,

274-5, 277, 292, 324 (introduction of
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force), 329 (preliminary work on Third
Law), 329 (republication of), 330
(comment on Third Law), 350, 353,
435, 709

Narlikar, J. V., 3, 699
Narratio Prima, 213, 218
nature's language (book), 375, 461
nature, as understood by Descartes, 427
Neoplatonic sympathies, 256, 258
neo-Platonist, 601
Neugebauer, O., xiv, 101-4, 108, 127, 136,

142, 156, 158, 167, 177-8, 184, 186-7,
187fn, 212-13, 233, 241, 346, 698, 705,
707, 711

Neumann, C, 34, 631, 645-8, 650, 652-61,
669, 676, 678, 685, 723

Newton, Humphrey, 561
Newton, vi, xi, 1, 2, 12ff, 47, 56ff, 64, 70,

76, 78, 80, 84, 91, 93, 100, 109, 119,
120-1, 154, 176, 182, 184-5, 209, 249,
261, 298, 302, 304, 308, 312-13, 325-6,
328 (adoption of word inertia), 329
(Newtonian significance of inertia),
334-5 (anticipated by Kepler), 336
(reasons for introducing absolute
space), 340-1, 344, 346, 348, 351
(reading of Kepler's writings), 351
(influenced by Kepler), 356, 359, 366,
370, 376-8, 383-4, 389fn, 390, 392, 396,
401, 404-5, 407-8, 411-12, 415, 422^,
427, 429-31, 435, 437, 440, 442
(revulsion to relativism), 443-5,
447-52, 453fn (influenced by
Gassendi), 455, 459 (influenced by
Descartes), 463 (his tact), 464, 473, 476
(influenced by More), 482 (influenced
by Descartes), 484, 489-90, 493-6, 502
(evaluation of his development), 505
(conception of force), 505 (conception
of inertial motion), 512 (original
contribution in Third Law), 517 (his
understanding of centrifugal force),
599, 600-1, 621 (rationalistic and
empirical tendencies), 621 (rationalistic
attitude to space), 645, 648, 653, 655,
656 (treatment of time), 657, 660, 663,
665, 668-71, 673, 675, 677-8 (attitude
to Kepler), 679, 681-̂ , 690-6, 702-3,
724, 726-27, 729-23

laws, Sec. 1.1 (19-29), 45, 118ff, 575
First Law, see: inertia, law of
Second Law, see: Second Law of Motion
Third Law, see: Third Law of Motion

Newtonian dynamics, 14-15, 17, Sec. 1.1
(19-29) (review of), 324, 329 (partial
anticipation by Kepler), 332, 335, 355,
382 and 408 (anticipation of), 423-4,
429, 490, 515, 535 (development of),

556 (conceptual problems of), 589
(extent of its determinism), 607 (its
invariances), 629 (conquers world), 631
(put in true perspective), 645
(clarification of), 648, 687, 691, 694

mature, 521-3, 651, 654, 660, 669
Nicholas of Cusa, 366
node(s), 127, 156, 283-4

ascending, 127, 284
descending, 128, 284
line of, 127, 289 (of Mars, variation of)
of moon, 156

Noether's theorem, 413fn
nonacronychal longitudes, 281ff
noncircularity (of orbits), 315
normal science, 141, 231
Norwood, R., 532fn, 719
Nslr al-Din al-TusI, 211, 228ff
numbers (composing space), 60, 70, 74
numbers, irrational, 60
numerology, Keplerian, 267-8

oblateness
of earth, 454, 596, 640-1, 673
of planets, 640

obliquity of ecliptic, 114, 178, 249-50
occult attractions, 334
occult qualities, 92, 364, 400, 677
occupation, 91
octants, 130, 133, 281

errors at, 309, 311, 317, 321
odd-numbers rule, 371-3, 379, 401-2, 484,

490, 513
Oesterwinter, C., 667
Oldenburg, Henry, 500
'On circular motion' (paper by Newton),

526^8, 532-3, 539, 546
On the Heavens, see: De Caelo
ontology, 342

Cartesian, 441
of motion, 412

ontological question (status of motion), 445
ontological status of rest (and motion), 568
opposition, 137, 145, 162
Opticks (Newton), 70-1, 628, 644, 702, 722-

3
optics

studied by Kepler, 288fn, 302, 316
studied by Newton, 499, 538

orbis (meaning of word), 255
orbis magnus, 233, 235, 237, 239-40, 242-5,

257, 263, 265
orbit (as concept), 278
orbital elements of planets, 127 (Table 3.1),

159
orbital problems (in Principia), 580-9
orbital speed of planets, 121, 148
order, zeroth, first etc., 122
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Oresme, Nicole, 37, 195ff, 199, 202-3,
206-8, 218, 221-3, 261, 359-60, 362, 445

Orsino, Cardinal, 399
oscillator, harmonic, 671
Osiander, Andreas, 225, 253, 299, 358, 385

preface, 225, 256, 299
ouranos, 66, 68, 88-9, 247
oval (orbit), 310ff
ovoid, 316

Paduan experiments, 370-1, 379, 393
Paduan observations, 69
Pais, A., 701
parabola (see also: semi-parabola), 39, 72,

119, 380, 382
parabolic motion of projectiles, 354, 379ff,

403, 512, 516, 556, 647, 656
parabolic orbits, 559
paradigm, 595
parallax, 105, 133, 152fn, 220, 223, 245,

264-5, 454fn, 531
parallelogram rule (see also: composition of

motions), 22, 24, 144, 379, 506-7, 536,
550, 556, 569-70, 572, 575, 588

Paris School, 201
Paris, University of, 193, 199
Parmenides, 61, 62
Pascal, B., 413
Pedersen, O., 187, 187fn, 706
Pemberton, H., 533, 719
pendulum

conical, 529-30, 539
observed by Galileo, 370-1
period of, 453-1, 529
used in experiments, 514, 567, 592-3,

640, 683
pendulum clock, see: clock(s)
Pepys, Samuel, 565-6
perfection (search for), 601
perigee, 125
perihelion, 125, 301 (coining by Kepler),

303
period relations, 137, 158
period

sidereal, 641
synodic (of Mars), 279

Peripatetics, 63, 191, 357, 380
perpetual motion machine, 470
perpetual uniform motion, 369
persistence

of amount of motion, 430
of motion, 366, 377ff, 379, 393, 413, 425,

432; in law of inertia, 426
perturbation of orbits (especially of moon),

589
Petersen, V. M., 705
Peterson, V., 705
Peurbach, Georg, 212

phases of planets, 224
phase relations (of epicycles), 140, 220
phenomena, as ultimate reality, 343
phenomenalism, 423-4
Philoponus, John, 91, 198, 198fn, 199, 368,

373, 706
philosophical notion of motion, 612-13, 635
Philosophical Transactions, 456, 500, 708, 716
phoronomy, 48
physical arguments (principles, reasons),

273, 275, 299ff, 302, 310, 314, 319 (for
variation of planet-sun distance)

physical explanation, 142
Physical Review, 45
physics

celestial (Kepler's), 274
local, 495
mathematical, 538
medieval, 43, 48, 324
terrestrial, 373, 587

Physics, 68, 84, 185, 198, 698, 702-3, 706
Picard, J., 532fn, 564, 719-20
Pilkington, J. D., 667
pitch, 36
place(s)

Aristotelian, 48, 64-5, 84ff, 106, 246, 249
Cartesian concept of, 441 ff
Copernican, 246ff, 254ff
defined by Newton, 624
external, 441-2, 443
immediate, 87, 89
proper, 67, 198, 363-̂ , 368-9, 384, 389,

397, 400, 604
plagiarism charge(s), 532-4
plague, 499, 533
Planck, 209-10, 261
Planetary Hypotheses, 147, 152, 187, 241, 256
planetary motion, laws of, see: Kepler,

Laws
planetary problem (see also: Kepler,

problem), 419, 484, 500, 526, 537, 539
(formulated by Hooke), 539-40
(formulated by Borelli), 540-2
(formulated by Hooke), Sec. 10.9
(546-56), 563, 573

planets
centrifugal tendencies of, 531-2
ordering of orbits, 152, 217
outer, motion of, 143ff
sizes of, 331
speed law of, 303ff
speeds of, 121
theories of their motion in ancient

astronomy, Sees. 3.11 (143-9) and 3.12
(149-55), 156, Sec. 3.14 (159-83)

Plato, 42, 48, 60, 62ff, 64ff, 67, 70ff, 81,
87-8, 94, 98, 189, 253, 342, 346, 352,
359, 365, 387, 516, 595, 677, 701-2, 714
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cave, 659
Platonic metaphysics and mysticism, 192,

253, 267, 270
Platonic concept of space, 86, 247, 344
Platonic ideals, 246
Platonic Forms (Ideas), 62, 371, 401-2
Platonic notions (concepts), 362, 400,

599-600
Platonic otherworldliness, 353, 368
Platonic solids, 71, 73, 81, 268, 271-2, 275,

342-3
plenism, 77, 81fn, 410, 440
plenists, 681
plenum, 51, 77, 86-9, 91, 197-8, 411-13,

417, 443, 601
Plutarch, 210
Poincare", H., 110, 248, 461, 589
poles

of ecliptic, 115
of equator, 112ff

pope (see also: Urban VIII), 358, 635
positivism, 85fn, 423-4
positivistic approach (adopted by Newton),

621-2
potential, 76
potential theory, 590
potentiality, 67, 76, 92
precepts of architecture, 365, 377-8
precession

constant of, 663, 664
of the equinoxes, 26, 117, 136, 215, 231-2,

244, 249ff, 297, 596, 599, 662fn, 663
prediction of future, 226, 461
Preface of Principia, 578-9, 593, 595
'pre-Inquisitiion' concept of space, 461
pre-Socratics, 13, 60-2, 409, 411
primal observation, 106, 138
primordial matter, 61
Principia, xi, 2, 12, 23, 31, 119-20, 137,

175-6, 329, 340, 383, 415 (demolition of
vortex theory), 455, 467, 480, 482, 496,
501-2, 504, 509, 512-15, 517, 520, 522,
527-8, 532-3, 535, 538, 544, 550, 556,
559 (theory of comets), 560-2, 564-5,
566-97 (genesis and description of),
595-6, 598, 601, 610, 621, 623, 628, 630,
635, 638-9, 641, 646, 649, 668, 672-3,
677, 679, 681, 683-4, 687, 691, 698, 700,
705, 710, 714, 718-24

Book I (of Principia), 578-9, 580-91 (topics
treated in), 641

Book II, 578-9, 591-2 (topics treated in)
Book III, 579, 592-4 (topics treated in),

640-2, 681
mathematical aspects, 580fn

Principles of Philosophy, 407-8, 411, 415, 420,
428-30, 436-7, 439-40, 444, 446-8, 450,
452, 453fn, 457, 459fn, 460, 462-6, 483,

499, 571, 596, 600-1, 603, 605, 607,
609-10, 612, 616, 698, 714-17, 722

projectiles, 37, 197ff, 199, 203
proprietas, 328
Prutenic Tables, 245, 264
Ptolemaic cosmology, 353, 360
Ptolemaic epicycles, 552
Ptolemaic representation, 694
Ptolemaic system, 59, 83, 173ff, 184,

219-20, 227, 232, 258ff, 273, 294, 297
(hybrid nature), 350, 355

'essential', 225
residual errors of, 171-4, 235ff

Ptolemy, 38, 43-5, 49, 53, 55, 76, 98, 100-5,
108-9, 113, 115-18, 126-7, 131, 136-8,
147, 149, 150, 155-90 (passim), 195, 197,
209ff, 214, 216-18, 226, 230ff, 240,
242-3, 247-53, 256-9, 262-̂ , 275-7,
279, 288, 291-2, 297-302, 304, 308, 336,
345-6, 348-9, 358, 360 (on gravity),
361ff and 390 (against earth's rotation),
401, 422 (on the divine), 423, 479, 547,
586-7, 632-3, 663, 694, 704

initial model, 161ff
problem, 168ff, 279, 287-8, 346-7

pulse-beat, 36, 39
Purser, M., xiii, 57
'pusher', 197ff, 202
Pythagoras, 36, 60, 70, 246, 372, 515, 644
Pythagorean cosmos, see: cosmos, well-

ordered
Pythagorean harmony, 371
Pythagoreans, 60, 70, 74, 183

quadrants, 130, 133, 281, 317 (triangulation
of)

qualitative sensations, 91, 193
qualities, 193, 195

primary and secondary, 410, 423—4, 425
quantification of nature, 515-16
quantities, physical, 28, 39, 52, 677, 691
quantity

of matter, see: mass
of motion, see also: momentum and

motion; (Cartesian sense), 428-9, 458,
472-3, 505, 600; (Newtonian sense),
21-2, 200, 505, 567, 576

quantization of general relativity, 4, 344,
693

quantum field theory, 470
quantum theory (mechanics), 4, 18, 47, 209,

344, 370, 580, 671, 693
quasars, 665, 668
quintessence, 66, 69, 81ff, 88, 175, 323, 370,

422, 601, 632

Raine, D. J., xiii, 3, 692, 699, 724
Rankine, W. J. M., 76
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rationalism, 376, 408, 461 (Cartesian), 621
(of Newton)

rationalists, 441
dream of, 410

rationality of motion, 495
ratios (of heterogeneous quantities), 305
Raven,]. E., 60, 701
reaction, see: action

force of in circular motion, 493, 521-3
reciprocity of motion, 445-6, 448
recollection theory of knowledge (Socratic),

359, 401
rectilinear uniform motion, 403
rectilinearity in law of inertia, 426
reference body, ideal, 660-1
reflections (collisions), 503
refraction, 112, 265
Regiomontanus Qohannes Muller), 212,

228
relational theories etc., 15, 33, 449, 620,

654, 675
relationalism, 397
relational concept of motion, 377

of position, 397
relational definition of motion, 666
relationists, 78
relativism (Cartesian), 437, 440, 442-3, 463-

4, 475, 504, 600, 603, 605-7, 611, 617,
631, 637, 638-9, 641, 654-5, 672, 675

dynamical, 446, 448
relativity

confusion about it, 9-10, 33-4, 447
general theory of, 3ff, 14ff, 33, 57, 107,

322, 404-5, 436, 445, 455, 488, 490, 501,
578, 594, 598, 606, 651, 693

Huygensian, 475
impartiality of, 244, 255
kinematic, 10, 20, 33, 203ff, 206, 217,

221-3, 243ff, 254-5, 261, 293, 390ff,
445-7, 464, 502

meanings of, 9ff, 204, 463
of all observations, 476
of motion, ii, 4, 7, 7fn, 10, 14, 50, 203-4,

221-3, 254, 436, 439, 449, 460
(implication for Descartes' theory of
collisions), 462ff, 475 (as understood
by Huygens), 598, 601 (espoused by
Descartes), 672-5 (espoused by
Huygens)

optical, see: relativity, kinematic
restricted principle of, 456, 462ff, 470fn,

472, 474-5, 478, 494, 497, 504, 515, 517,
572, 606-8, 610-11, 630-1 (implications
for determining absolute motion),
642-4, 673 (adopted by Huygens), 675,
693, 695

special theory of, 6, 7, 7fn, 107, 182, 261,
405, 455, 457, 470, 633, 646

renewal of astronomy, 297

'replacement', 85
res cogitans, 420
res extensa, 420, 422
resistance to change, 678-80, 689
rest

absolute, criterion of, 460, 641-4, 653
perfect, 204, 258, 364, 600, 644
state of, on equal footing with uniform

motion, 568
tendency to, 323-4

restitution, coefficient of, 509
retrograde motion, 145, 188, 215, 217, 223,

240, 241, 385
condition for, 148

retrogression loops, 145, 147, 160ff, 167,
214, 241

revolution
astronomical, 599
Cartesian, 443, 564
Copernican, 14-16, 50, 143, 173, 182-4,

197, 207, 212, 214ff, 226, 252, 261ff,
294, 298, 345, 348, 359, 383, 393, 434,
439, 443, 530, 691, 69^4

Einsteinian, 226
Keplerian, 261, 338, 340, 348
Newtonian, 226, 430-1, 564, 691
quantum, 431
relativistic, 431
scientific, 16, 44, 60, 191ff, 208, 393, 428,

431, 452, 499
Rheticus, Georg Joachim, 213, 219
Richer, J., 454, 640, 716
Riemann, B., 6, 567, 684-5, 692-3
right ascension, 113, 117
rigid-body theory, 26
rigidity (of frames of reference), 652-3
Roberts, V., 212, 707
Robertson, D. S., 723
Roberval, G. P. de, 495
Rosen, E., xv, 255, 697, 707-9
Roslin, H., 328, 710
Ross, G. R. T., 722
rotation, 29

diurnal, HOff, 138, 155, 179ff, 203ff, 216,
261

of earth, ii, 26, 42, 176ff, 203ff, 261, 356,
359ff, 369, 382, 454-5, 478, 540, 604,
632, 640, 654, 694; dynamical problems
of, 327, 542-5

of Jupiter, 640
relative and absolute, 613

rotation axis of earth, 663-8
Royal Society, 84, 452, 456, 468, 472,

499-501, 513, 532, 542, 561, 566
Rudolph II, 266, 318
Rudolfine Tables, 349
rules 1, 2, 3 (of Descartes) (see also: laws and

collisions), 428-30
rulers, 36, 515
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Russell, Bertrand, 425, 661-2, 715, 723
Russell, J. L., 348, 514, 540, 547, 711, 715-19

safety net, 110, 254, 421
Saggiatore, II (see also: Assayer, The), 356,

698, 711
Sagredo, 357-8, 380-1, 384, 394, 401, 405,

446
Salviati, 357-8, 363 (on order of cosmos),

380 (on parabolic morions of
projectiles), 384, 386-8, 390, 393-4,
397, 401, 404-5, 446, 545

Sambursky, S., 702
Sand-Reckoner, 102, 188
Sanrillana, G. de, 407, 714
satellites

artificial, 665, 667
circling earth, 480, 568
of Jupiter and Saturn, see: Jupiter and

Saturn
Saturn

motion of, 143ff, 161, 223-4, 234ff, 239,
247, 251, 257, 262, 265, 268, 452, 559
and 573 (perturbed by Jupiter)

satellites of, 324
saving the phenomena (appearances), 118,

131, 160, 174, 204-5, 225, 252, 299, 312,
342,385

scalar quantity, 21, 429-30, 506, 678
Scaliger, J. C, 274
Schaffer, S., xiii, 512
Schmidt, O., 705
Schofield, M., 60, 701
Scholium

General, 596, 621, 644, 710, 722
meaning of word, 560
on absolute space and time, 12-13, 517,

569, 597-8, 607-8, 610, 612, 613 (how it
was distorted), 615, 617, 623-8 (text
of), 628-38 (comments on), 648, 668-72

schoolmen, 192, 426
Schouten, J. A., 672-3, 717, 723
Schrodinger, E., 12fn, 68, 91, 580, 671, 700,

702
Sciama, D. W., xiii, 3, 699
Science of Mechanics, see: Mechanics
Scott, J. F., 714
scripture, 265, 270
secant (of optical equation), 318
Second Law of Motion, 5, 21ff, 28-9, 35ff,

39, 84, 328, 335 (lacked by Kepler), 497,
508, 536, 550, 568, 571, 572 (modern
formulation), 589, 679, 687
(reformulated by Mach)

secular variations (perturbations), 121, 126,
136, 243, 278, 283, 289, 294, 304, 334,
558-9

Segre, E., 395, 709, 711
semi-interactive concept of motion, 690-2

semi-parabola, 380, 383
sense perceptions, 408, 421, 424
senses, 357, 382, 392, 622, 627, 629
sensorium (sensory) of God, 2, 628-9, 695
serendipity, 303-4, 316
servomechanism, 319
sexagesimal number system, 103, 109
shape (see also: figure), 64, 676-7
ship (in motion), 203, 206, 208, 222, 328,

387ff, 392ff, 394ff, 575, 577, 624
Sidereus Nuncius, see: Starry Messenger
Simplicio, 357-8, 380, 384, 387-8, 390, 393,

401, 499
Simplicius, 101, 357, 371
simultaneity, 7fn, 10-11, 646, 676
situation, see: place, external
sling(s), 34, 389, 412, 426, 480, 483, 489,

519-20, 604
small-eccentricity form of Kepler's laws,

122ff, 133, 138, 155-6, Sec. 3.14 (159ff),
171ff, 262, 484-6

small-parameter expansions, 122, 171ff
Smolin, L., xiii
Smith, Barnabas, 503fn
snapshots, 8, 95-6, 652
Snel, W., 532fn, 719
Socrates, 62
Socraric questions (see also: recollection

theory of knowledge), 359, 387, 393
solar system, properties, etc., 127, 185, 324,

413, 436, 454fn, 531, 559, 57^4, 590-1,
644

solids, perfect, see: Platonic solids
solstices, 117
Sophocles, 94, 183, 258
Sorabj, R., 706
soul, see: spirits
sound, speed of, 592
space, 106ff, 109, 254

absolute, 2, 13, 19, 28, 47ff, 51, 56, 62,
70, 91, 111, 114, 154, 208, 336, 340, 344,
413fn, 421, 425, 436, 442, 447, 450, 461,
505, 517, 567, 578, 584, 598-602, 606,
608, 610, 615, 617, 623-4 (defined by
Newton), 629 (as sensorium of God),
631, 636 (its infinity), 639 (need for),
641 (used in theory), 648-9, 651-4, 657,
659, 668, 670, 673, 684, 690-1, 695-6

as clear concept, 376, 396ff, 398ff
as conceived by Descartes, 437ff
concept of, 49, 84ff
denied by Descartes, 440
empirical, see: space, intuitive
geoastral, 111, 143, 259
helioastral, 111, 143, 259, 278, 294
intuitive, 48, 109, 436-7, 449, 598, 675
metrical properties of, 65, 89ff
nature of, 84ff
nature of, according to Newton, 617-23
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space — continued
topological properties of, 65, 89ff
travel (conceptual), 259, 294, 297-8

space-time, 6, 344
species, immaterial, 325, 367
speed

as opposed to velocity, 20, 505-6
importance of in Cartesian physics, 429
instantaneous, 401
law of planets, 303ff
of planets, 121

Spencer Jones, H., 178, 705
sphere(s)

armillary, 115ff, 157
celestial (astr.), 66, 110-12, 663-4
celestial (quintessential, crystal), 51, 66,

68, 81, 81m, 104, 151, 187m, 204, 210,
228, 252, 255ff, 265, 398

crystal, demolition of, 257, 275, 278, 338,
34^4

sphericity of earth, 55, 66, 104, 362
Spinoza, 601
spirits

ethereal, 68
guiding, 276, 314
souls, moving, 274, 314, 388fn

split-beam experiments, 370
Stagirite (Aristotle), 63, 440
Stainsby, C., xiii
star catalogue, 251 (of Hipparchus), 556 (of

Flamsteed)
Star Wars, 662
Starry Messenger, 354-5, 411, 711
stars, see also: fixed stars

as markers, 315, 339
size of, 265

state
instantaneous, 431
of motion (or of body), 386-7, 393, 428,

610, 679
statics, 63, 100-1, 352, 470, 575-6
Stein, H., 644, 723
Stephenson, B., xiii, 273, 275, 276fn, 305-6,

314, 316, 319, 325, 709
stone (in rectilinear motion), 426ff
straight motion, to restore things to proper

place, 363-5
Strategic Defense Initiative, 662
Strato, 37
Streintz, H., 654, 661-2, 662fn, 723
Stukeley, W., 533, 719
subject (in philosophical sense), 602
subjectivism, 425
sublimity, 379, 383, 394, 516
sublunary region, 66-7
substance, 420ff, 441, 564, 602

reflex (syndrome), 421, 633, 659
sun, 38, 118ff, 215-16, 233, 242, 253, 255,

257ff, 275ff, 300 and 335 (dominion
over planets), 385, 413 (at centre of
vortex), 439, 497, 549ff

apparent, see: sun, true
focal position, 121, 302
influence on motion of planets, 153ff,

338-9, 350
mean, 129, 132, 136, 162, 174, 233, 234ff,

240, 275-83, 296, 350; Copernican, 233,
294, 339

motion of, 114ff, 128ff
Ptolemaic, 439
rotation of, 325
true (apparent), 129, 136, 162, 233,

276-83, 339, 350
sunspots, 69, 325, 355
superlunary region, 66
supernova

(1572), 264, 349, 406, 601
(1604), 264, 328, 349, 406, 601

superposition of motions, see:
compounding of motions and
composition of motions

superstrings, 3
supersymmetry, 3
Swerdlow, N. M., 212-13, 233, 255-7, 346,

705, 707-8, 711
Swineshead, Richard, 193, 195
symbols of nature, 375
Syntaxis (Almagest), 187, 361
synthesis

in astronomy, 298, 580
in dynamics, 580
in science, 351

system
dynamical, xi; closed, 31, 204
inertial (see also: frame of reference,

inertial), 34, 456, 464, 645, 654, 657-9,
665, 691, 694-6

of reference (coordinates), 400
of the World, the (solar system), 592,

642-4
System of the World, The, 592, 596, 642

Tait, P. G., 76
Taylor expansion, 582, 604, 607, 635
teleological goals, 477
teleology, 62, 64, 67, 363, 375, 384, 431, 678
telescope, 69, 601

reflecting (Newtonian), 499
telescopic discoveries, 69, 224, 265, 288,

349, 354, 406, 601
Teoricae novae planetarum, 212
test body, 29
Tetrabiblos, 187fn
Thales, 61
Theoricae Mediceorum Planetarum ex Causis

Physicis Deductae, 540
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theories (value of according to Mach), 688-
9

thermodynamics, 470
thin-sandwich conjecture, 18
Third Law of Motion, 26-7, 39, 334

(anticipation by Kepler), 504, 507,
512-13, 515, 521-2, 536, 571, 572-8,
590-1, 594, 596, 685-6, 688-9

Thomson, W., 76
Thome, K. S., 455, 726
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